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Traditional approaches to cognitive psychol-
ogy correspond with a classical view of logic 
and probability theory. More specifically, one 
typically assumes that cognitive processes of 
human thought are founded on the Boolean 
structures of classical logic, while the prob-
abilistic aspects of these processes are based 
on the Kolmogorovian structures of classical 
probability theory. However, growing exper-
imental evidence indicates that the models 
founded on classical structures systemati-
cally fail when human decisions are at stake. 
These experimental deviations from classical 
behavior have been called `paradoxes’, `falla-
cies’, `effects’ or `contradictions’, depending 
on the specific situation where they appear. 
But, they involve a broad spectrum of cogni-
tive and social science domains, ranging from 
conceptual combination to decision making 
under uncertainty, behavioral economics, 
and linguistics. This situation has constituted 

a serious drawback to the development of various disciplines, like cognitive science, linguistics, 
artificial intelligence, economic modeling and behavioral finance.

A different approach to cognitive psychology, initiated two decades ago, has meanwhile matured 
into a new domain of research, called ‘quantum cognition’. Its main feature is the use of the 
mathematical formalism of quantum theory as modeling tool for these cognitive situations 
where traditional classically based approaches fail. Quantum cognition has recently attracted the 
interest of important journals and editing houses, academic and funding institutions, popular 
science and media. Specifically, within a quantum cognition approach, one assumes that human 
decisions do not necessarily obey the rules of Boolean logic and Kolmogorovian probability, 
and can on the contrary be modeled by the quantum-mechanical formalism. Different con-
crete quantum-theoretic models have meanwhile been developed that successfully represent the 

Double slit-like pattern created by the concept 
Fruits interfering with the concept Vegetables in 
the disjunction Fruits or Vegetables.
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cognitive situations that are classically problematical, by explaining observed deviations from 
classicality in terms of genuine quantum effects, such as `contextuality’, `emergence’, `interfer-
ence’, ̀ superposition’, ̀ entanglement’ and ̀ indistinguishability’. In addition, the validity of these 
quantum models is convincingly confirmed by new experimental tests. We also stress that, since 
the use of a quantum-theoretic framework is mainly for modeling purposes, the identification 
of quantum structures in cognitive processes does not presuppose (without being incompatible 
with it) the existence of microscopic quantum processes in the human brain.

In this Research Topic, we review the major achievements that have been obtained in quantum 
cognition, by providing an accurate picture of the state-of-the-art of this emerging discipline. 
Our overview does not pretend to be either complete or exhaustive. But, we aim to introduce 
psychologists and social scientists to this challenging new research area, encouraging them, at 
the same time, to consider its promising results. It is our opinion that, if continuous progress 
in this domain can be realized, quantum cognition can constitute an important breakthrough 
in cognitive psychology, and potentially open the way towards a new scientific paradigm in 
social science.
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The Editorial on the Research Topic

Quantum Structures in Cognitive and Social Science

A fundamental problem in cognitive and social science concerns the identification of the principles
guiding human cognitive acts such as decision-making, categorization, and behavior under
uncertainty. Identifying these mechanisms would have manifold implications for fields ranging
from psychology to economics, finance, politics, computer science, and artificial intelligence. The
predominant theoretical paradigm rests on a classical conception of logic and probability theory.
According to this paradigm people make decisions by following the rules of Boole’s logic, while
the probabilistic aspects of these decisions can be formalized by Kolmogorov’s probability theory.
This classical approach was believed to provide a quite complete and accurate account of human
decision-making at both a normative level (describing what people should do) and a descriptive
level (describing what people actually do). However, starting from the seventies, experimental
studies of conceptual categorization, human judgment and perception, and behavioral economics
have revealed that this classical conception is fundamentally problematical, in the sense that the
cognitive models based on these mathematical structures are not capable of capturing how humans
make decisions in situations involving uncertainty. In the last decade, an alternative scientific
paradigm has arisen that employs a different and more general modeling scheme; it uses the
mathematical formalism of quantum theory to model situations and processes in cognitive and
social science. This new approach has not only met with considerable success but is becoming
increasingly accepted in the scientific community, having attracted interest from important
scientists, top journals, funding institutions, and media. Prisoners’ dilemmas, conjunction and
disjunction fallacies, disjunction effects, violations of the Sure-Thing principle, Allais, Ellsberg
and Machina paradoxes, are only some of the examples where the application of the quantum
mechanical formalism has shown significant effectiveness over traditional modeling schemes of a
classical type.

The Frontiers Research Topic “Quantum Structures in Cognitive and Social Science” present an
overview of current research that applies the formalism of quantum theory to cognitive and socio-
economic domains. The term “quantum” may be misleading. The aim here is not to investigate
the microphysical processes occurring in the human brain and, as a consequence, driving human
judgments. Rather, we inquire into the validity of quantum theory as a general, coherent, and
unitary paradigm for human cognition. In this respect, this research benefits from studies into
the axiomatic and operational foundations of quantum physics. The scope of this bold approach
to human cognition is discovering general rules that associate the empirical phenomenology in
these domains with states, measurements, and probabilities of outcomes in such a way that these
entities are represented exactly as quantum theory inHilbert space represents states, measurements,
and probabilities of outcomes in the phenomenology of microphysics. The ensuing modeling is

5
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theory-based, not experiment-based; that is, the models are not
built around a specific effect or experiment, although they are
sometimes used in conjunction with empirical data to build a
stronger case. The models are constructed following the general
epistemological and technical constraints of quantum theory;
hence the successes of this quantum theory-based modeling
suggest that it might provide a general theory for human
cognition.

This Research Topic develops around three main directions of
research, as follows.

(i) The deep reasons underlying the success of the quantum
paradigm in cognitive and socio-economic domains are
investigated.

(ii) Further empirical situations are identified in these domains
where the quantum formalism presents advantages with
respect to traditional modeling schemes, and new genuine
quantum structures appear.

(iii) The application of this quantum paradigm is extended to
novel and barely explored domains.

The first set of results concern knowledge representation and
conceptual categorization. Aerts et al. analyze the results of a
cognitive test on conjunctions and negations of natural concepts,
showing that a quantum-theoretic probabilistic model in Hilbert
space faithfully represents the collected data, at variance with
a set-theoretic Kolmogorovian model. This result is explained
by assuming the existence of two types of reasoning in human
cognition, a dominant emergent reasoning, and a secondary
logical reasoning. Some mathematical aspects of this quantum-
theoretic model on conceptual conjunctions and negations are
developed in Veloz and Desjardins through the introduction of
unitary operators in Hilbert space. Aerts et al. show instead that
the quantum-theoretic approach Aerts et al. can be interpreted
as a suitable generalization of Rosch’s prototype theory, where
prototypes are context-dependent and may interfere when
concepts combine.

The second set of results concern the modeling of human
decision-making. Moreira and Wichert explore an alternative
quantum-theoretic approach, the quantum-like Bayesian
network, to describe the paradoxes related to the violation of the
Sure-Thing Principle in experiments on human judgments. Their
model is in a good agreement with different sets of empirical
data. The opinion paper in Pothos et al. reviews some current
progress on the quantum similarity model in Hilbert space
recently proposed by Pothos et al. which correctly represents
human similarity judgments. Decision-making errors and
preference reversal are also investigated in Yukalov and Sornette
within their quantum decision theory. Wang and Busemeyer
analyze the notion of complementarity in human cognition, and
claim that the way in which it is used in quantum physics can also
be helpful in cognitive science. Human perception is the object of
the study in Khrennikov, where the author develops a quantum
model of the sensation-perception dynamics, illustrating it

by means of the model of bistable perception of a specific
ambiguous figure, the Schröder stair. Finally, Tressoldi et al.
identify a significant violation of temporal Bell inequalities in
a set of cognitive tests. The violation indicates, according to
the authors, the presence of temporal entanglement between
binary human behavioral unconscious choices at a given time
and binary random outcomes at a different time. In all these
approaches, the presence of quantum structures in cognition
is determined by the fact that the cognitive systems under
investigation share a common feature, namely contextuality. A
different position with respect to the presence of contextuality in
cognition is assumed in Zhang and Dzhafarov, where the authors
apply a theory of (non)contextuality to analyze series-parallel
(SP) mental architectures.

The third set of results concern advanced applications of
the quantum-mathematical formalism to wider ranges of social
science. Bisconti et al. propose an inverse Potts model, typically
used in statistical quantum field theory, to reconstruct the
node states in a real-world social network. Haven explores
the properties of two types of potential functions, inspired by
classical and quantum physics that can be potentially employed
to model financial information, including preferences toward
risk and uncertainty. Finally, Dalla Chiara et al. investigate
different, but mutually related, aspects of parallelism within
the framework of quantum computation, cognition and music,
and study potential applications of quantum computational
semantics in both natural and musical language.

Leaving aside the specific differences between the approaches
above, most of them agree in claiming that quantum structures
are systematically present in cognitive and social science
phenomena, and that quantum-inspired models are more
efficient than traditional set-theoretic models of probability. Is
“quantum” the end of the story? Is Hilbert space really the
place where all these phenomena can be modeled? Is there any
empirical deviation from quantum predictions? We do not have
yet an answer to these questions. This is why we believe that
the road that will lead further to possibly a generally accepted
quantum theory of human decision-making will still be full of
fascinating surprises.
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Theories of natural language and concepts have been unable to model the flexibility,

creativity, context-dependence, and emergence, exhibited by words, concepts and

their combinations. The mathematical formalism of quantum theory has instead been

successful in capturing these phenomena such as graded membership, situational

meaning, composition of categories, and also more complex decision making situations,

which cannot be modeled in traditional probabilistic approaches. We show how a formal

quantum approach to concepts and their combinations can provide a powerful extension

of prototype theory. We explain how prototypes can interfere in conceptual combinations

as a consequence of their contextual interactions, and provide an illustration of this

using an intuitive wave-like diagram. This quantum-conceptual approach gives new life

to original prototype theory, without however making it a privileged concept theory, as

we explain at the end of our paper.

Keywords: cognition, concept theory, prototype theory, contextuality, interference, quantum modeling

1. INTRODUCTION

Theories of concepts struggle to capture the creative flexibility with which concepts are used in
natural language, and combined into larger complexes with emergent meaning, as well as the
context-dependent manner in which concepts are understood (Geeraerts, 1989). In this paper, we
present some recent advances in our quantum approach to concepts. More specifically, we follow
the general lines illustrated in Gabora and Aerts (2002), Aerts and Gabora (2005a,b), and Gabora
et al. (2008), and generalize the quantum-theoretic model elaborated in Aerts (2009b) and Aerts
et al. (2013a).

According to the “classical,” or “rule-based” view of concepts, which can be traced back to
Aristotle, all instances of a concept share a common set of necessary and sufficient defining
properties. Wittgenstein pointed out that: (i) in some cases it is not possible to give a set of
characteristics or rules defining a concept; (ii) it is often unclear whether an object is a member of
a particular category; (iii) conceptual membership of an instance strongly depends on the context.

A major blow to the classical view came from Rosch’s work on color. This work showed that
colors do not have any particular criterial attributes or definite boundaries, and instances differ
with respect to how typical they are of a concept (Rosch, 1973, 1978, 1983). This led to formulation
of “prototype theory,” according to which concepts are organized around family resemblances, and
consist of characteristic, rather than defining, features. These features are weighted in the definition
of the “prototype.” Rosch showed that subjects rate conceptual membership as “graded,” with
degree of membership of an instance corresponding to conceptual distance from the prototype.
Moreover, the prototype appears to be particularly resistant to forgetting. Prototype theory also

7
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has the strength that it can be mathematically formulated
and empirically tested. By calculating the similarity between
the prototype of a concept and a possible instance of it,
across all salient features, one arrives at a measure of the
“conceptual distance” between the instance and the prototype.
Another means of calculating conceptual distance comes out
of “exemplar theory” (Nosofsky, 1988, 1992), according to
which a concept is represented by, not a set of defining or
characteristic features, but a set of salient “instances” of it stored
in memory. Exemplar theory has met with considerable success
at predicting empirical results. Moreover, there is evidence of
preservation of specific training exemplars in memory. Classical,
prototype, and exemplar theories are sometimes referred to
as “similarity based” approaches, because they assume that
categorization relies on data-driven statistical evidence. They
have been contrasted with “explanation based” approaches,
according to which categorization relies on a rich body of
knowledge about the world. For example, according to “theory
theory” concepts take the form of “mini-theories” (Murphy and
Medin, 1985) or schemata (Rumelhart and Norman, 1988), in
which the causal relationships among properties are identified.

Although these theories do well at modeling empirical data
when only one concept is concerned, they perform poorly at
modeling combinations of two concepts. As a consequence,
cognitive psychologists are still looking for a satisfactory and
generally accepted model of how concepts combine.

The inadequacy of fuzzy set models of conceptual
conjunctions (Zadeh, 1982) to resolve the “Pet-Fish problem”
identified by Osherson and Smith (1981) highlighted the severity
of the combination problem. People rate the item Guppy as
a very typical example of the conjunction Pet-Fish, without
rating Guppy as a typical example neither of Pet nor of Fish
(“Guppy effect”) (Osherson and Smith, 1981, 1982). Studies
by Hampton on concept conjunctions (Hampton, 1988a),
disjunctions (Hampton, 1988b) and negations (Hampton, 1997)
confirmed that traditional fuzzy set and Boolean logical rules
are violated whenever people combine concepts, as one usually
finds “overextension” and “underextension” in the membership
weights of items with respect to concepts and their combinations.
It has been shown that people estimate a sentence like “x is tall
and x is not tall” as true, in particular when x is a “borderline
case” (“borderline contradictions”) (Bonini et al., 1999; Alxatib
and Pelletier, 2011), again violating the rules of set-theoretic
Boolean logic. The seriousness of the combination problem was
pointed out by various scholars (Komatsu, 1992; Fodor, 1994;
Kamp and Partee, 1995; Rips, 1995; Osherson and Smith, 1997).
More recently, other theories of concepts have been developed,
such as “Costello and Keane’s constraint theory” (Costello and
Keane, 2000), “Dantzig, Raffone, and Hommel’s connectionist
CONCAT model of concepts” (Van Dantzig et al., 2011),
“Thagard and Stewart’s emergent binding model” (Thagard
and Stewart, 2011), and “Gagne and Spalding’s morphological
approach” (Gagne and Spalding, 2009). However, none of these
theories has a strong track record of modeling the emergence
and non-compositionality of concept combinations.

The approach to concepts presented in this paper grew
out earlier work on the application to concept theory on the

axiomatic and operational foundations of quantum theory and
quantum probability (Aerts, 1986; Pitowsky, 1989; Aerts, 1999).
A major theoretical insight was to shift the perspective from
viewing a concept as a “container” to viewing it as “an entity
in a specific state that is changing under the influence of a
context” (Gabora and Aerts, 2002). This allowed us to provide
a solution to the Guppy effect and to successfully represent the
data collected on Pet, Fish and Pet-Fish by using themathematical
formalism of quantum theory (Aerts andGabora, 2005a,b). Then,
we proved that none of the above experiments in concept theory
can be represented in a single probability space satisfying the
axioms of Kolmogorov (1933). We developed a general quantum
framework to represent conjunctions, disjunctions and negations
of two concepts, which has been successfully tested several times
(Aerts, 2009a,b; Sozzo, 2014, 2015; Aerts et al., 2015a), and
we put forward an explanatory hypothesis for the observed
deviations from traditional logical and probabilistic structures
and for the occurrence of quantum effects in cognition (Aerts
et al., 2015b). We recently identified a strong and systematic
non-classical phenomenon effect, which is deeper than the
ones typically detected in concept combinations and directly
connected with the mechanisms of concept formation (Aerts
et al., 2015c). This work is part of a growing domain of cognitive
psychology that uses the mathematical formalism of quantum
theory and quantum structures to model empirical situations
where the application of traditional probabilistic approaches is
problematical (probability judgments errors, decision-making
errors, violations of expected utility theory, etc.; Aerts and Aerts,
1995; Aerts et al., 2000, 2013a,b, 2014, 2015; Aerts and Sozzo,
2011, 2014; Busemeyer and Bruza, 2012; Haven and Khrennikov,
2013; Pothos and Busemeyer, 2013; Khrennikov et al., 2014;
Wang et al., 2014).

This paper outlines recent progress in the development of a
quantum-theoretic framework for concepts and their dynamics.
Section 2 explains how the “SCoP formalism” can be interpreted
as a “contextual and interfering prototype theory that is a
generalization of standard prototype theory” in which prototypes
are not fixed, but change under the influence of a context, and
interfere as a consequence of their contextual interactions (see
also Gabora et al., 2008; Aerts et al., 2013a). Section 3 presents
an amended explanatory version of the quantum-mechanical
model in complex Hilbert space worked out in Aerts (2009b)
and Aerts et al. (2013a) for the typicality of items with respect
to the concepts Fruits and Vegetables, and their disjunction
Fruits or Vegetables. This improved quantum model illustrates
how the prototype of Fruits (Vegetables) changes under the
influence of the context Vegetables (Fruits) in the combination
Fruits or Vegetables. The latter combination is represented using
the quantum-mathematical notion of linear superposition in
a complex Hilbert space, which entails the genuine quantum
effect of “interference.” Hence, our model shows that the
prototypes of Fruits and Vegetables interfere in the disjunction
Fruits or Vegetables. Sections 2, 3 also justify the fact that our
quantum-theoretic framework for concepts can be considered as
a “contextual and interfering generalization of original prototype
theory.” The presence of linear superposition and interference
could suggest that concepts combine and interact like waves do.
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In Section 4 we develop this intuition in detail and propose
an intuitive wave-like illustration of the disjunction Fruits or
Vegetables. Finally, Section 5 discusses connections between
the quantum-theoretic approach to concepts presented here,
and other theories of concepts. Although this approach can be
interpreted as a specific generalization of prototype theory, it is
compatible with insights from other theories of concepts.

We stress that our investigation does not deal with the
elaboration of a “specific typicality model” that represents
a given set of data on the concepts Fruits, Vegetables, and
their disjunction Fruits or Vegetables. We inquire into the
mathematical formalism of quantum theory as a general,
unitary and coherent formalism to model natural concepts. Our
quantum-theoretic model in Section 3 has been derived from this
general quantum theory, hence it satisfies specific technical and
general epistemological constraints of quantum theory. As such,
it does not apply to any arbitrary set of experimental data. Our
formalism exactly applies to those data that exhibit a peculiar
deviation from classical set-theoretic modeling; such deviations
are taken in our framework as indicative of interference and
emergence. Data collected on combinations of two concepts
systematically exhibit deviations from classical set-theoretical
modeling, and traditional probabilistic approaches have difficulty
coping with this. In this sense, the success of the quantum-
theoretic modeling can be interpreted as a confirmation of
the effectiveness of quantum theory to model conceptual
combinations. We should also mention that our quantum-
theoretic approach has recently produced new predictions,
allowing us to identify entanglement in concept combinations
(Aerts and Sozzo, 2011, 2014), and systematic deviations from
the marginal law, deeply connected to the mechanisms of
concept formation (Aerts et al., 2015a,c). These effects would
not have been identified in a more traditional investigation of
overextension and underextension.

It follows from the above analysis that our quantum-
theoretic modeling rests on a “theory based approach,” as it
straightforwardly derives from quantum theory as “a theory to
represent natural concepts.” Hence, it should be distinguished
from an “ad-hoc modeling based approach,” only devised to
fit data. One should be suspicious of models in which free
parameters are added after the fact on an ad-hoc basis to fit
the data more closely. In our opinion, the fact that our “theory
derived model” reproduces different sets of experimental data is
a convincing argument to support its advantage over traditional
modeling approaches and to extend its use to more complex
combinations of concepts.

2. THE SCoP FORMALISM AS A
CONTEXTUAL INTERFERING PROTOTYPE
THEORY

This section summarizes the SCoP approach to concepts by
providing new insights to the research in Aerts and Gabora
(2005a,b) and Gabora et al. (2008).

We mentioned in Section 1 that, according to prototype
theory, concepts are associated with a set of characteristic,

rather than defining, features (or properties), that are weighted
in the definition of the prototype. A new item is categorized
as an instance of the concept if it is sufficiently similar
to this prototype (Rosch, 1973, 1978, 1983). The original
prototype theory was subsequently put into mathematical
form as follows. The prototype consists of a set of features
{a1, a2, . . . , aM}, with associated “weights” (or “application
values”) {xp1, xp2, . . . , xpM}, where M is the number of features
that are considered. A new item k is also associated with a
set {xk1, xk2, . . . , xkM}, where the number xkm refers to the
applicability of the m-th feature to the item k (for a given
stimulus). Then, the conceptual distance between the item k and
the prototype, defined as

dk =

√

√

√

√

M
∑

m= 1

(xkm − xpm)2 (1)

is a measure of the similarity between item and prototype. The
smaller the distance dk for the item k, the more representative k
is of the given concept.

Prototype theory was developed in response to findings that
people rate conceptual membership as graded (or fuzzy), with
the degree of membership of an instance corresponding to the
conceptual distance from the prototype. A second fundamental
element of prototype theory is that it can in principle be
confronted with empirical data, e.g., membership or typicality
measurements.

A fundamental challenge to prototype theory (but also to
any other theory of concepts) has become known as the “Pet-
Fish problem.” The problem can be summarized as follows. We
denote by Pet-Fish the conjunction of the concepts Pet and Fish.
It has been shown that people rate Guppy neither as a typical Pet
nor as a typical Fish, they do rate it as a highly typical Pet-Fish
(Osherson and Smith, 1981). This phenomenon of the typicality
of a conjunctive concept being greater than—or overextends—
that of either of its constituent concepts has also been called
the “Guppy effect.” Using classical logic, or even fuzzy logic,
there is no specification of a prototype for Pet-Fish starting from
the prototypes of Pet and Fish that is consistent with empirical
data (Osherson and Smith, 1981, 1982; Zadeh, 1982). Fuzzy set
theory falls short because standard connectives for conceptual
conjunction involve typicality values that are less than or equal to
each of the typicality values of the conceptual components, i.e.,
the typicality of an item such as Guppy is not higher for Pet-Fish
than for either Pet or Fish.

Similar effects occur for membership weights of items
with respect to concepts and their combinations. Hampton’s
experiments indicated that people estimate membership in such
a way that the membership weight of an item for the conjunction
(disjunction) of two concepts, calculated as the large number
limit of relative frequency of membership estimates, is higher
(lower) than the membership weight of this item for at least one
constituent concept (Hampton, 1988a,b). This phenomenon is
referred to as “overextension” (“underextension”). “Double
overextension” (“double underextension”) is also an
experimentally established phenomenon, when the membership
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weight with respect to the conjunction (disjunction) of two
concepts is higher (lower) than the membership weights with
respect to both constituent concepts (Hampton, 1988a,b).
Furthermore, conceptual negation does not satisfy the rules
of classical Boolean logic (Hampton, 1997). More, Bonini
et al. (1999), and Alxatib and Pelletier (2011), identified the
presence of “borderline contradictions,” directly connected
with overextension, namely, a sentence like “John is tall and
John is not tall” is estimated as true by a significant number
of participants, again violating basic rules of classical Boolean
logic. More generally, for each of these experimental data, a
single classical probability framework satisfying the axioms
of Kolmogorov does not exist (Aerts, 2009a,b; Aerts et al.,
2013a,b, 2015a; Sozzo, 2014, 2015). To clarify the latter sentence
no single probability space can be constructed for an item
whose membership weight with respect to the conjunction of
two concepts is overextended with respect to both constituent
concepts.

These problems—compositionality, the graded nature of
typicality, and the probabilistic nature of membership weights—
present a serious challenge to any theory of concepts.

We have developed a novel theoretical model of concepts
and their combinations (Gabora and Aerts, 2002; Aerts and
Gabora, 2005a,b), conjunction (Aerts, 2009a; Aerts et al.,
2013a, 2015a; Sozzo, 2014, 2015), disjunction (Aerts, 2009a;
Aerts et al., 2013a), conjunction and negation (Aerts et al.,
2015a; Sozzo, 2015). It uses the mathematical formalism of
quantum theory in Hilbert space to represent data on conceptual
combinations, which has been successfully tested several times.
This quantum-conceptual approach enables us to model the
above-mentioned deviations from classicality in terms of genuine
quantum phenomena (contextuality, emergence, entanglement,
interference, and superposition), thus capturing fundamental
aspects of how concepts combine. More importantly, we have
recently identified stronger deviations from classicality than
overextension and underextension, which unveil, in our opinion,
deep non-classical aspects of concept formation (Aerts et al.,
2015c).

The approach was inspired by similarity based theories, such
as prototype theory, in several respects:

(i) a fundamentally probabilistic formalism is needed to
represent concepts and their dynamics;

(ii) the typicality of different items with respect to a concept is
context-dependent;

(iii) features (or properties) of a concept vary in their
applicability.

A key insight underlying our approach is considering a concept
as, not a “container of instantiations” but, rather, an “entity in a
specific state,” which changes under the influence of a context. In
our quantum-conceptual approach, a context is mathematically
modeled as quantum physics models of a measurement on a
quantum particle. The (cognitive) context changes the state of a
concept in the way a measurement in quantum theory changes
the state of a quantum particle (Aerts and Gabora, 2005a,b).
For example, in our modeling of the concept Pet, we considered
the context e expressed by Did you see the type of pet he has?

This explains that he is a weird person, and found that when
participants in an experiment were asked to rate different items of
Pet, the scores for Snake and Spiderwere very high in this context.
In this approach, this is explained by introducing different states
for the concept Pet. We call “the state of Pet when no specific
context is present” its ground state p̂. The context e changes
the ground state p̂ into a new state pweird person pet . Typicality
here is an observable semantic quantity, which means that it
takes different values in different states of the concept. As a
consequence, a substantial part of the typicality variations that
are encountered in the Guppy effect are due to, e.g., changes
of state of the concept Pet under the influence of a context.
More specifically, the typicality variations for the conjunction
Pet-Fish are in great part similar to the typicality variations for
Pet under the context Fish (and also for Fish under the context
Pet). Not only does context play a role in shaping the typicality
variations for Pet-Fish, but also interference between Pet and Fish
contributes, as we will analyze in detail in Section 3.

In general, whenever someone is asked to estimate the
typicality of Guppy with respect to the concept Pet in the absence
of any context, it is the typicality in the ground state p̂Pet that
is obtained, and whenever the typicality of Guppy is estimated
with respect to the concept Fish in the absence of any context,
it is the typicality in the ground state p̂Fish that is obtained. But,
whenever someone is asked to estimate the typicality of Guppy
with respect to the conjunction Pet-Fish, it is the typicality in
a new ground state p̂Pet−Fish that is obtained. This new ground
state p̂Pet−Fish is different from p̂Pet as well as from p̂Fish. It is close
but not equal to the changed state of the ground state p̂Pet under
the context eFish, and close but not equal to the changed state of
the ground state p̂Fish under the context ePet , the difference being
due to interference taking place between Pet and Fish when they
combine into Pet-Fish (see Section 3). The “changes of state under
the influence of a context” and corresponding typicalities behave
like the changes of state and corresponding probabilities behave
in quantum theory, giving rise to a violation of corresponding
fuzzy set and/or classical probability rules. This partly explains
the high typicality of Guppy in the conjunction Pet-Fish, and its
normal typicality in Pet and Fish, and the reason why we identify
the Guppy effect as an effect at least partly due to context. There
is also an interference effect, as we will see later.

We developed this approach in a formal way, and called the
underlying mathematical structure a “State Context Property
(SCoP) formalism” (Aerts and Gabora, 2005a). Let A denote a
concept. In SCoP, A is associated with a triple of sets, namely
the set 6 of states—we denote states by p, q, . . ., the set M

of contexts, we denote contexts by e, f , . . ., and the set L of
properties—we denote properties by a, b, . . .. The “ground state”
p̂ of the concept A is the state where A is not under the influence
of any particular context. Whenever A is under the influence
of a specific context e, a change of the state of A occurs. In
case A was in its ground state p̂, the ground state changes to
a state p. The difference between states p̂ and p is manifested,
for example, by the typicality values of different items of the
concept, as we have seen in the case of the Guppy effect, and
the applicability values of different properties being different in
the two states p̂ and p. Hence, to complete the mathematical
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construction of SCoP, also two functions µ and ν are needed.
The function µ : 6 × M × 6 −→ [0, 1] is defined such
that µ(q, e, p) is the probability that state p of concept A under
the influence of context e changes to state q of concept A. The
function ν : 6 × L −→ [0, 1] is defined such that ν(p, a) is the
weight, or normalization of applicability, of property a in state
p of concept S. The function µ mainly accounts for typicality
measurements, the function ν mainly accounts for applicability
measurements. Through these mathematical structures the SCoP
formalism captures both “contextual typicality” and “contextual
applicability” (Aerts and Gabora, 2005a).

A quantum representation in a complex Hilbert space of data
on Pet and Fish and different states of Pet and Fish in different
contexts was developed (Aerts and Gabora, 2005a), as well as of
the concept Pet-Fish (Aerts and Gabora, 2005b). Let us deepen
the connections between the quantum-theoretic approach to
concepts and prototype theory (see also Gabora et al., 2008).
This approach can be interpreted in a rather straightforward way
as a generalization of prototype theory which mathematically
integrates context and formalizes its effects, unlike standard
prototype theory. What we call the ground state of a concept
can be seen as the prototype of this concept. The conceptual
distance of an item from the prototype can be reconstructed
from the functions µ and ν in the SCoP formalism. Thus, as
long as individual concepts are considered and in the absence of
any context, prototype theory can be embodied into the SCoP
formalism, and the prototype of a concept A can be represented
as its ground state p̂A. However, any context will change this
ground state into a new state. An important consequence of
this is that when the concept is in this new state, the prototype
changes. An intuitive way of understanding this is to consider this
new state a new “contextualized prototype.” More concretely, the
concept Pet, when combined with Fish in the conjunction Pet-
Fish, has a new contextualized prototype, which could be called
“Pet contextualized by Fish.” The new state can be thought of
as a “contextualized prototype.” Hence, this is a prototype-like
theory that is capable of mathematically describing the presence
and influence of context. From the point of view of conceptual
distance, this contextualized prototype will be close to, e.g.,
Guppy.

The interpretation of the SCoP formalism as a contextual
prototype theory can be applied not just to conjunctions and
disjunctions of two concepts, but also to abstract categories such
as Fruits. It is very likely that the prototype of Fruits is close to,
e.g., Apple, or Orange. But let us now consider the combination
Tropical Fruits, that is, Fruits under the contextTropical. It is then
reasonable to maintain that the new contextualized prototype of
Tropical Fruits is closer to, e.g., Pineapple, or Mango, than to
Apple, or Orange. The introduction of contextualized prototypes
within the SCoP formalism enables us to incorporate abstract
categories as well as deviations of typicality from fuzzy set
behavior.

Another interesting aspect of this approach to prototype
theory comes to light if we consider again the conceptual
combination Pet-Fish. It is reasonable that the prototypes of
Pet and Fish—ground states p̂Pet and p̂Fish—interfere in Pet-Fish
whenever the typicality of an item, e.g., Guppy, is measured

with respect to Pet-Fish. This sentence cannot, however, be
made more explicit in the absence of a concrete quantum-
theoretic representation of typicality measurements of items with
respect to concepts and their combinations. Indeed, interference
and superposition effects can be precisely formalized in such
quantum representation. This will be the content of Sections 3
and 4.

3. A HILBERT SPACE MODELING OF
MEMBERSHIP MEASUREMENTS

One can gain insight into how people combine concepts by
gathering data on “membership weights” and “typicalities.” To
obtain data on “typicalities,” participants are given a concept,
and a list of instances or items, and asked to estimate their
typicality on a Likert scale. In other experiments participants are
asked to choose which instance they consider most typical of the
concept. Averages of these estimates or relative frequencies of the
picked items give rise to values representing the typicalities of
the respective items. A membership weight is obtained by asking
participants to estimate the membership of specific items with
respect to a concept. This estimation can be quantified using the
7-point Likert scale and then converted into a relative frequency,
and then into a probability called the “membership weight.”

Hampton used membership weights instead of typicalities
(Hampton, 1988b), because all you can do with typicalities is
fuzzy set type calculations: the minimum rule of fuzzy sets for
conjunction or the maximum rule for disjunction. This approach
has many serious shortcomings; indeed the Pet-Fish problem
could not be addressed by it. More serious failures are revealed
by membership weight data. Hampton measured “membership
weights” and “degrees of non-membership or membership,”
making these two measurements in one experiment. More
specifically, Hampton’s experiment generates magnitude data,
measuring the “degree of membership or non-membership”
using a 7-point Likert scale providing −1, −2, −3 for degrees
of non-membership, 1, 2, 3 for degrees of membership and, 0
for borderline cases. From the same experiment membership
weight data are obtained, with 8 possible triplets [±,±,±] per
item. Each triplet indicating with a + whether the participant
considered item k to be a member of the first category (A), the
second category (B) and the third disjunction category (A orB),
and with a − respectively otherwise. In the present Hilbert space
model we use the “degree of membership or non-membership”
values obtained by Hampton, add +3 to them to make them all
non-negative, sum them, and divide each one by this sum. Since
there are 24 items in total, in this way we get a set of 24 values in
the interval [0,1], that sum up to 1. We will use these values as a
substitute for membership collapse probabilities.

Let us first explain how we arrive at the membership collapse
probabilities as a consequence of a measurement, and why we
can use the above-mentioned calculated values of “degree of
membership or non-membership” as substitutes. Suppose that
instead of using the data obtained by Hampton, we performed
the following experiment. For each pair of concepts and their
combination we ask the participant to select one and only one
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item that they consider the best choice for membership. Then
we calculate for each of the 24 items the relative frequency of
its appearance. These relative frequencies are 24 values in the
interval [0,1] summing up to 1, and their limits for increasing
numbers of participants represent the probabilities for each
item to be chosen as the best member. These probabilities are
what in a quantum model are called the “membership collapse
probabilities.” Of course, the above described experiment to
determine the membership collapse probabilities has not been
performed. However, the values calculated from Hampton’s
measurement of “degree of membership or non-membership,”
after renormalization as explained above, are expected to
correlate with what these membership collapse probabilities
would be if they were measured. This is why we use them
as substitutes for the membership collapse probabilities in our
quantum model. As we will see when we construct the quantum
model, the exact values of the substitutes for the membership
collapse probabilities are not critical. Thus, if we can model the
substitutes for the membership collapse probabilities calculated
from Hampton’s data, we can also model the actual membership
collapse probabilities (the data we would have if the experiment
had been done).

So, we repeat, in Table 1, Hampton’s experimental data
(Hampton, 1988b) have been converted into relative frequencies.
The “degrees of non-membership and degrees of membership”
give rise to µk(X) and now stand for the probability of concepts
Fruits (X = A), Vegetables (X = B) and Fruits or Vegetables
(X = “A or B”) to collapse to the item k, and thus add up to
1, that is,

24
∑

k= 1

µk(A) =
24
∑

k= 1

µk(B) =
24
∑

k= 1

µk(A or B) = 1 (2)

for the 24 items. The quantum model for concepts and their
disjunction in complex Hilbert space is developed by building
appropriate state vectors and projection operators for a given
ontology of 24 items of two more abstract “container” concepts.

In our model, the Hilbert space is a complex n-dimensional
C
n, in which state vectors are n-dimensional complex numbered

vectors. We use the “bra-ket” notation – respectively 〈·| and |·〉—
for vector states (see the Appendix for further explanation). The
complex conjugate transpose of the |·〉 ket-vector (nx1 dim.) is
the 〈·| bra-vector (1xn dim.). Projectors and operators are then
combined as matrices |·〉〈·|, while scalars are obtained by inner
product 〈·|·〉. We represent the measurement, consisting in the
question “Is item k a good example of concept X?,” by means of
an orthogonal projection operatorMk. Each self-adjoint operator
in the Hilbert space H has a spectral decomposition on {Mk|k =
1, . . . , 24}, where each Mk is the projector corresponding to
item k from the list of 24 items in Table 1. A priori we set
no restrictions to the dimension of the complex Hilbert space,
and thus neither to the projection space of the operators Mk.
Each separate concept Fruits and Vegetables is now represented
by its proper state vector |A〉 and |B〉 respectively, while their
disjunction Fruits or Vegetables is realized by their equiponderous
superposition 1√

2
(|A〉 + |B〉). It is precisely this feature of the

model—its ability to represent combined concepts as superposed
states—that provides the interferential composition of what
could not be classically composed using sets.

Following the standard rule of average outcome values of
quantum theory, the probabilities, µk(A), µk(B) and µk(A or B)
are given by:

µk(A) = 〈A|Mk|A〉 (3)

µk(B) = 〈B|Mk|B〉 (4)

µk(A or B) = 〈A| + 〈B|√
2

Mk
|A〉 + |B〉√

2
(5)

After a straightforward calculation, the membership probability
expression µk(A or B) becomes:

µk(A or B) = 1

2
(〈A|Mk|A〉 + 〈A|Mk|B〉 + 〈B|Mk|A〉

+ 〈B|Mk|B〉)

= 1

2

(

µk(A)+ µk(B)
)

+ℜ〈A|Mk|B〉 (6)

where ℜ takes the real part of 〈A|Mk|B〉. This expression
shows the contribution of the interference term ℜ〈A|Mk|B〉
in µk(A or B) with respect to the “classical average” term
1
2

(

µk(A)+ µk(B)
)

. It consists of the real part of the complex
probability amplitude of the k-th item in Vegetables (concept |B〉)
to be the one in Fruits (concept |A〉).

The quantum concept model imposes the orthogonality of the
state vectors corresponding to different concepts. Therefore, we
have for the states of Fruits and Vegetables,

〈A|B〉 = 0. (7)

Each different item of the projector Mk also provides an
orthogonal projection space. Since the conceptual disjunction
Fruits or Vegetables spans a subspace of 2 dimensions in the
complex Hilbert space (along the rays of |A〉 and |B〉), we set forth
the possibility for a complex 2-dimensional subspace for each
item. This brings the dimension of the complex Hilbert space to
48. However, we will choose the unit vectors of these subspaces
in such a way as to eliminate redundant dimensions whenever
possible. Each category vector is built on orthogonal unit vectors,
defined by the projection operators Mk. i.e., we define |ek〉 the
unit vector on Mk|A〉, and define |fk〉 the unit vector on Mk|B〉.
Thus, each item is now represented by a vector spanned by
|ek〉 and |fk〉. Due the orthogonality of the projectors Mk, we
have

〈ek|fl〉 = δklcke
iγk (8)

where the Kronecker δkl = 1 for same indices and zero otherwise,
i.e., different item states are orthogonal as well. And ck expresses
the angle between the two unit vectors |ek〉 and |fk〉 of each
2-dimensional subspace of item k. Notice that should some ck
be 1, then the required dimension of the complex Hilbert space
diminishes by 1, since the vectors |ek〉 and |fk〉 then coincide—
a property that we will use to minimize the size of the required
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TABLE 1 | Membership collapse probability values µk (X) of 24 items for the categories Fruits, Vegetables, and Fruits or Vegetables (Hampton, 1988b).

A = FRUITS B = VEGETABLES

k Item µk (A) µk (B) µk (A or B) λk λ-rank ǫk φk

1 Almond 0.0359 0.0133 0.0269 0.0217 16 +1 84.0◦

2 Acorn 0.0425 0.0108 0.0249 0.0214 17 −1 −94.5◦

3 Peanut 0.0372 0.0220 0.0269 0.0285 10 −1 −95.4◦

4 Olive 0.0586 0.0269 0.0415 0.0397 9 +1 91.9◦

5 Coconut 0.0755 0.0125 0.0604 0.0260 12 +1 57.7◦

6 Raisin 0.1026 0.0170 0.0555 0.0415 7 +1 95.9◦

7 Elderberry 0.1138 0.0170 0.0480 0.0404 8 −1 −113.3◦

8 Apple 0.1184 0.0155 0.0688 0.0428 5 +1 87.6◦

9 Mustard 0.0149 0.0250 0.0146 0.0186 19 −1 −105.9◦

10 Wheat 0.0136 0.0255 0.0165 0.0184 20 +1 99.3◦

11 Root Ginger 0.0157 0.0323 0.0385 0.0172 22 +1 49.9◦

12 Chili Pepper 0.0167 0.0446 0.0323 0.0272 11 −1 −86.4◦

13 Garlic 0.0100 0.0301 0.0293 0.0146 23 −1 −57.6◦

14 Mushroom 0.0140 0.0545 0.0604 0.0087 24 +1 18.5◦

15 Watercress 0.0112 0.0658 0.0482 0.0253 13 −1 −69.1◦

16 Lentils 0.0095 0.0713 0.0338 0.0252 14 +1 104.7◦

17 Green Pepper 0.0324 0.0788 0.0506 0.0503 4 −1 −95.7◦

18 Yam 0.0533 0.0724 0.0541 0.0615 3 +1 98.1◦

19 Tomato 0.0881 0.0679 0.0688 0.0768 1 +1 98.5◦

20 Pumpkin 0.0797 0.0713 0.0579 0.0733 2 −1 −103.5◦

21 Broccoli 0.0143 0.1284 0.0642 0.0423 6 −1 −99.5◦

22 Rice 0.0140 0.0412 0.0248 0.0238 15 −1 −96.7◦

23 Parsley 0.0155 0.0266 0.0308 0.0178 21 −1 −61.1◦

24 Black Pepper 0.0127 0.0294 0.0222 0.01929 18 +1 86.7◦

Notice also the membership collapse probabilities for Mustard and Pumpkin still show the mark of double underextension of the disjunction. Membership collapse probability data with

δµ ≈ 10−4 entail phase data δφ ≈ 2 · 10−1 and lambda data δλ ≈ 4 · 10−4.

Hilbert space. Should ck be different from 1, then |ek〉 and |fk〉
span a subspace of 2 dimensions. The state vectors |A〉 and |B〉
of the concepts can then be expressed as a superposition of the
vectors |ek〉 and |fk〉 for the items:

|A〉 =
24
∑

k= 1

ake
iαk |ek〉, |B〉 =

24
∑

k= 1

bke
iβk |fk〉 (9)

where ak, bk, αk, βk ∈ R.
We can express their inner product as follows:

〈A|B〉 =
(

24
∑

k= 1

ake
−iαk〈ek|

)(

24
∑

l= 1

ble
iβl |fl〉

)

=
24
∑

k= 1

akbkcke
i(βk−αk+γk) =

24
∑

k= 1

akbkcke
iφk

where we have defined phase φk as φk: = βk − αk + γk in the last
step. The membership probabilities given in Equations (3 and 4)
and the interference terms in Equation (6) can be expanded on
the projection spaces of the items:

µk(A) =
(

24
∑

l= 1

ale
−iαl 〈el|

)

(ake
iαk |ek〉) = a2k (10)

µk(B) =
(

24
∑

l= 1

ble
−iβl〈fl|

)

(bke
iβk |fk〉) = b2k (11)

〈A|Mk|B〉 =
(

24
∑

l= 1

ale
−iαl 〈el|

)

Mk|
(

24
∑

m= 1

bme
iβm |fm〉

)

= akbke
i(βk−αk)〈ek|fk〉 = akbkcke

iφk (12)

Notice that the phase of the k-th component of the conceptual
disjunction is not at play in the interference term 〈A|Mk|B〉
(Equation 6). Taking the real part of the interference term in
Equation (12), we can rewrite the membership probability of the
disjunction in Equation (6) as follows:

µk(A or B) = 1

2

(

µk(A)

+ µk(B)
)

+ ck
√

µk(A)µk(B) cosφk (13)

Rearranging this equation we now choose φk must satisfy
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cosφk =
µk(A or B)− 1

2 (µk(A)+ µk(B))

ck
√

µk(A)µk(B)
(14)

Since all the membership probabilities on the right side are
fixed, the only remaining free parameters are the coefficients
ck. These parameters must now be tuned in order to satisfy
the orthogonality of |A〉 and |B〉. Using the expansion on the
unit vector sets {|ek〉}, {|fk〉} we obtain for their orthogonality
(Equation 7):

24
∑

k= 1

ck
√

µ(A)kµ(B)k cosφk = 0, (15)

24
∑

k= 1

ck
√

µ(A)kµ(B)k sinφk = 0. (16)

The “cosine sum” (Equation 15) is automatically satisfied due to
the definition of cosφk and the normalization of membership
probabilities (Equation 2). This can be seen by substituting
the expression of cosφk in Equation (14) and then applying
the normalization condition of the membership probabilities
(Equation 2). The “sine sum” equation still needs to be satisfied.
With the defining relation (Equation 14) of φk, and sinφk =
ǫk
√

1− cos2 φk, where ǫk = ± provides the sign, this becomes1

24
∑

k= 1

ǫk

√

c2
k
µk(A)µk(B)− (µk(A or B)− 1

2
(µk(A)+ µk(B)))2

= 0. (17)

In order to satisfy this equation a simple algorithm was devised
(Aerts, 2009a). For convenience of notation we denote the square
root expression, with ck = 1, by a separate symbol:

λk: =
√

µk(A)µk(B)− (µk(A or B)− 1

2
(µk(A)+ µk(B)))2.

(18)

First, we order the values λk from large to small and then assign
a sign ǫk to each of them in such a way that each next partial
sum (increasing index) remains smallest. The λ-ranking with
corresponding values have been tabulated in Table 1. We assign
index m to the item with the largest λ-value. In the present case,
the item Tomato has the largest value, 0.07679.

We now adopt an optimized complex Hilbert space for our
model in which ck = 1 (k 6= m), which reduces the space
to 25 complex dimensions. We again note that all items except
Tomato receive a 1-dimensional complex subspace, while Tomato
is represented by a 2-dimensional subspace. The “sine sum”
equation in Equation (17) can be written as

24
∑

k= 1,k 6=m

ǫkλk + ǫm

√

c2mµm(A)µm(B)− (µm(A or B)

− 1
2 (µm(A)+ µm(B)))

2 = 0.

(19)
1The cosine value only defines the phase up to its absolute value |φk|. Thus, the
sign of the sine value is undefined. If ǫk = −1, then φk = −|φk|.

Next, we define the partial sum of the λk according a scheme of
signs ǫk such that from large to small the next ǫkλk is added to
make the sum smaller but not negative.

Sj =
j
∑

size ordered λi

ǫiλi (20)

Sj+1 = Sj − λj+1 and ǫj+1 = −1, if Sj − λj+1 ≥ 0 (21)

= Sj + λj+1 and ǫj+1 = +1, if Sj − λj+1 < 0 (22)

The first summand is thus λm, with ǫm = +1. Finally this
procedure leads to

S24 =
24
∑

k= 1

ǫkλk ≥ 0

In the Fruits and Vegetables example with membership
probability data in Table 1, this procedure gives:

S24 = 0.0154 (23)

In general the “sine sum” equation then becomes

S24 − λm +
√

c2mµm(A)µm(B)− (µm(A or B)

− 1
2 (µm(A)+ µm(B)))

2 = 0. (24)

From which we can fix cm, the remaining ck not equal to 1:

cm =

√

(S24 − λm)2 + (µm(A or B)− 1
2 (µm(A)+ µm(B)))2

µm(A)µm(B)
(25)

In the present example we obtain the value cm = 0.8032. We
thus have fixed the inner product—or “angle”—of the vectors
|em〉 and |fm〉, and can now write an explicit representation in
the canonical 25 dimensional complex Hilbert space C

25. We can
take Mk(H) to be rays of dimension 1 for k 6= m, and Mm(H) to
be a 2-dimensional plane spanned by the vectors |em〉 and |fm〉.

We let the space C
25 be spanned on the canonical base {1i},

i ∈ [1 . . . 25]. All items k 6= m are represented by the respective
1i. While for k = m we express the projections of |A〉 and |B〉 by
Mm(H) accordingly on 1m and 125

ame
iαm |em〉 = ãme

iαm1 1m + ã25e
iαm2 125 (26)

bme
iβm |fm〉 = b̃me

iβm1 1m + b̃25e
iβm2 125 (27)

with ãm, b̃m, ã25, b̃25 ∈ R to be specified. The parameters in
these expressions should satisfy the inner product (Equation 8)
for k, l = m

ambm〈em|fm〉 = ãmb̃me
−i(αm1−βm1 ) + ã25b̃25e

−i(αm2−βm2 ),(28)

= ambmcme
i(γm−αm+βm) (29)

and the probability weights for k = m

a2m = ã2m + ã225, (30)

b2m = b̃2m + b̃225. (31)
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Finally, the representation of all vectors of the items can now
be rendered explicit by simply choosing αk = γk = 0, and
thus βk = φk, ∀k. A further simplification for Tomato is done
by setting ã25 = 0, which also allows free choice of βm2 = 0.

Then ãm = am and b̃m = bmcm, and b̃25 = bm
√

(1− c2m).
We have rendered explicit these membership probabilities and
phases in Table 1. Thus we can write the vectors |A〉 and |B〉
in C

25 Hilbert space corresponding to the categories Fruits and
Vegetables respectively.

|A〉 = (0.1895, 0.2062, 0.1929, 0.2421, 0.2748, 0.3203, 0.3373,

0.3441, 0.1221, 0.1166, 0.1253, 0.1292, 0.1000, 0.1183,

0.1058, 0.0975, 0.1800, 0.2309, 0.2968, 0.2823, 0.1196,

0.1183, 0.1245, 0.1127, 0.0000) (32)

|B〉 = (0.1153ei84.0
◦
, 0.1039e−i94.5◦ , 0.1483e−i95.4◦ , 0.1640ei91.9

◦
,

0.1118ei57.7
◦
, 0.1304ei95.9

◦
, 0.1304e−i113.3◦ , 0.1245ei87.6

◦
,

0.1581e−i105.9◦ , 0.1597ei99.3
◦
, 0.1797ei49.9

◦
, 0.2112e−i86.4◦ ,

0.1735e−i57.6◦ , 0.2335ei18.5
◦
, 0.2565e−i69.1◦ , 0.2670ei104.7

◦
,

0.2807e−i95.7◦ , 0.2691ei98.0
◦
, 0.2606ei96.8

◦
, 0.2670e−i103.5◦ ,

0.3583e−i99.5◦ , 0.2030e−i96.7◦ , 0.1631e−i61.1◦ , 0.1715ei86.7
◦
,

0.1552). (33)

This completes the quantum model for the membership
probability of items with respect to Fruits, Vegetables and
Fruits or Vegetables. It captures the enigmatic aspects of
conceptual overextension and underextension identified in
Hampton (1988b), explaining them in terms of genuine quantum
phenomena.

Recalling the terminology adopted in Section 2, the unit
vectors |A〉 and |B〉 in Equations (32) and (33) represent the
ground states of the concepts Fruits and Vegetables, respectively.
Equivalently, these unit vectors represent the prototypes of the
concepts Fruits and Vegetables in prototype theory. The unit
vector 1√

2
(|A〉 + |B〉) instead represents the “contextualized

prototype” obtained by combining the prototypes of Fruits
and Vegetables in the disjunction Fruits or Vegetables. If one
now looks at Equation (6), one sees that the prototypes Fruits
and Vegetables interfere in the disjunction Fruits or Vegetables,
and the term ℜ〈A|Mk|B〉 in Equation (6) specifies how much
interference is present when the membership probability of k is
measured.

4. AN ILLUSTRATION OF INTERFERING
PROTOTYPES

In this section we provide an illustration of contextual interfering
prototypes. It is not a complete mathematical representation as
presented in Section 3 but, rather, an illustration that can help
the reader with a non-technical background to have an intuitive
picture of what a contextual prototype is and how contextual
prototypes interfere. Consider the concepts Fruits,Vegetables and
their disjunction Fruits or Vegetables. The contextual prototype of
Fruits can be represented by the x-axis of a plane surrounded by a
cloud containing items, features, etc.—all the contextual elements

connected with the prototype of Fruits. Similarly, the contextual
prototype of Vegetables can be represented by the y-axis of the
same plane surrounded by a cloud containing items, features,
etc.—all the contextual elements connected with the prototype
of Vegetables. How can we represent the contextual prototype of
the disjunction Fruits or Vegetables? Although as we have seen
it cannot be represented in traditional fuzzy set theory, it can be
represented in terms of waves, with peaks and troughs. Indeed,
waves can be summed up in such a way that peaks and troughs of
the combined wave reproduce overextension and underextension
of the data. In other words, waves provide an intuitive geometric
illustration of the interference taking place when contextual
prototypes are combined in concept combination as discussed
in Section 3. For example, let us demonstrate the interference of
the item Almond when its membership probability with respect
to the disjunction Fruits or Vegetables is calculated based on
its membership probabilities for Fruits and for Vegetables. The
membership probabilities for the categories Fruits,Vegetables and
Fruits or Vegetables have been calculated from the Hampton’s
data and are reported in Table 1.

The idea of an illustration would be to show that in addition
to “fuzziness” (as modeled using a fuzzy set-theoretic approach)
there is a “wave structure.” How can we graphically represent
this “wave structure” of a concept? We start from the standard
interference formula of quantum theory, which is the following.
For an arbitrary item k we have

µk(A or B) = 1

2
(µk(A)+ µk(B))+ ck

√

µk(A)µk(B) cosφk.

(34)

Now, we have

φk = βk − αk + γk (35)

where αk is the phase angle connected with µk(A), βk the phase
angle connected to µk(B), and γk the phase angle connected to
〈A|Mk|B〉. This has not yet been emphasized but if one analyses
the rest of the construction in Hilbert space, it is possible to see
that one can always choose γk = 0, which means that, with this
choice, φk becomes the difference in phases βk and αk.

This is all we need to represent the “wave” nature of a concept
in a manner analogous to that of quantum theory. Indeed, it is
the “phase difference” between the waves—their phases being αk
and βk respectively – that we attach to µ(A)k and µ(B)k. They
determine, together with the membership probabilities µ(A)k
and µ(B)k the interference that gives rise to the measured data
for µ(A or B)k.

The choice of the ck is such that only for the biggest value of
λk, which in this case of Tomato, the ck is chosen different from
1. The only choice different from 1, for Tomato, still does not
influence the fact that φk is the difference between βk and αk,
when we decide to choose γk = 0. Let us consider for example
the first item Almond of the list of 24 in Table 1. We have

µ(A)1 = 0.0359 (36)

µ(B)1 = 0.0133 (37)

µ(A or B)1 = 0.0269 (38)
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These are the data measured by Hampton, and also what exists
for the concepts Fruits, Vegetables and their combination Fruits
or Vegetables with respect to membership probability of the item
Almond in the realm where fuzzy set probability appears. These
are the values that do not fit into a model in this realm, and for
which a wave-like realm underneath is necessary. Calculating the
angle φ1 we get

φ1 = 84.0◦ (39)

(see Table 1). This angle is the result of a wave being present
underneath the fuzzy, probability realm for µ(A)1 and µ(B)1,
such that both waves give rise to a difference in phase—where
the crests of one wave meet the troughs of the other—which is
equal to β1 − α1, and is the value of φ1. This can be represented
graphically by attaching a wave pattern to µ(A)1 and another one
toµ(B)1, such that both have a phase difference of 84.0

◦—see also
Figure 1.

Let us apply quantum theory to each of the items apart.
Each item k has a Schrödinger wave function vibrating in the
neighborhood of A, another one vibrating in the neighborhood
of B and a third vibrating in the neighborhood of “A or B,” and
they are related by superposition. We have:

ψA
k =

√

µk(A)e
iαk (40)

ψB
k =

√

µk(B)e
iβk (41)

ψAorB
k =

√

µk(A or B)eiδk (42)

In each case, this gives us the membership probabilities. Squaring
(multiplying by its complex conjugate), we have

〈ψA
k |ψ

A
k 〉 = (ψA

k )
∗(ψA

k ) =
(

√

µk(A)e
iαk
)∗ (√

µk(A)e
iαk
)

=
(

√

µk(A)e
−iαk

) (

√

µk(A)e
iαk
)

=µk(A)e
i(α−α)=µk(A) (43)

〈ψB
k |ψ

B
k 〉 = (ψB

k )
∗(ψB

k ) =
(

√

µk(B)e
iβk
)∗ (√

µk(B)e
iβk
)

=
(

√

µk(B)e
−iβk

) (

√

µk(B)e
iβk
)

=µk(B)e
i(β−β) = µk(B) (44)

〈ψAorB
k |ψAorB

k 〉 = (ψAorB
k )∗(ψAorB

k )

=
(

√

µk(A or B)eiδk
)∗ (√

µk(A or B)eiδk
)

=
(

√

µk(A or B)e−iδk
) (

√

µk(A or B)eiδk
)

= µk(A or B)ei(δ−δ)

= µk(A or B) (45)

If we write the quantum superposition equation for each item we
get

1√
2
(ψA

k + ψB
k ) = ψAorB

k (46)

⇔ 1√
2

(

√

µ(A)ke
iαk +

√

µ(B)ke
iβk
)

=
√

µ(A or B)ke
iδ
k (47)

where 1√
2

is a normalization factor. It is the squaring (i.e.,

multiplying each with its complex conjugate) that gives rise to
the interference equation. Let us do this explicitly to see it.

FIGURE 1 | Interference of items Almond, Acorn and Coconut in the

concept Fruits or Vegetables. Elementary oscillatory waves
√

µk (A) cos(x)

and
√

µk (B) cos(x + φk ) are associated to the components of each given item

in Fruits and Vegetables respectively. The weight amplitude of the item in the

disjunction Fruits or Vegetables emerges at the origin of
(

√

µk (A) cos(x)+
√

µk (B) cos(x + φk )
)

/
√
2.

First we multiply the left hand side with its complex conjugate.
We do the multiplication explicitly writing each step of it,
to see well how the interference formula appears. Hence, we
have

(

1√
2

(

√

µk(A)e
iαk +

√

µk(B)e
iβk
)

)∗ ( 1√
2

(

√

µk(A)e
iαk

+
√

µk(B)e
iβk
))
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=
(

1√
2

(

√

µk(A)e
−iαk +

√

µk(B)e
−iβk

)

)(

1√
2

(

√

µk(A)e
iαk

+
√

µk(B)e
iβk
))

= 1

2

(

√

µk(A)e
−iαk+

√

µk(B)e
−iβk

) (

√

µk(A)e
iαk+

√

µk(B)e
iβk
)

= 1

2

(

√

µk(A)e
−iαk ·

√

µk(A)e
iαk +

√

µk(A)e
−iαk ·

√

µk(B)e
iβk

+
√

µk(B)e
−iβk ·

√

µk(A)e
iαk +

√

µk(B)e
−iβk ·

√

µk(B)e
iβk
)

= 1

2
(µk(A)e

i(αk−αk) +
√

µk(A)µk(B)e
i(βk−αk)

+
√

µk(A)µk(B)e
−i(βk−αk) + µk(B)e

i(βk−βk))

we use now that ei(αk−αk) = e0 = 1, ei(βk−βk) = e0 = 1,
ei(βk−αk) = cos(βk − αk) + i sin(βk − αk) and e−i(βk−αk) =
cos(βk − αk)− i sin(βk − αk), to get to the following

= 1

2
(µk(A)+

√

µk(A)µk(B)(cos(βk − αk)+ i sin(βk − αk))

+
√

µk(A)µk(B)(cos(βk − αk)− i sin(βk − αk))+ µk(B))

see that the term in i sin(βk − αk) cancels, to get

= 1

2
(µk(A)+ 2

√

µk(A)µk(B) cos(βk − αk)+ µk(B))

= 1

2
(µk(A)+ µk(B))+

√

µk(A)µk(B) cos(βk − αk) (48)

Let is multiply now the right hand sight of Equation (46) with its
complex conjugate. This gives

=
(

√

µk(A or B)eiδk

)∗ (√
µk(A or B)eiδk

)

= µk(A or B) (49)

Hence, we get, as a consequence of squaring (Equation 46),
exactly our interference formula

1

2
(µk(A)+ µk(B))+

√

µk(A)µk(B) cos(βk − αk) = µk(A or B)
(50)

Note that the difference in phase βk − αk between the waves
connected with the item k and A and the item k and B is what
generates the interference. The new wave connected to the item k
and A or B, of which the phase is δ is not influenced by it, is the
amplitude of this new wave which is affected. This is the reason
that interference is visible in the realm where the fuzzy nature
appears, while it is provoked by the realm where the waves occur.

We put forward this “wave nature” aspect of concepts not
just as an illustration, but to help the reader understand the
manner in which such an underlying wave structure increases
substantially the possible ways in which concepts can interact,
as compared to the interaction possibilities in a modeling with
fuzzy set structures. Of course the notion of a “wave” only adds
clarification if we can imagine it to exist in some space-like realm.
This is the case for the type of waves we all know from our
daily physical environment, such as water waves, sound waves or

light waves. The quantum waves of physical quantum particles
can also be made visible in general by looking at probabilistic
detection patterns of these quantum particles on a physical
screen, and noting the typical interference patterns when the
waves interact and the particles are detected on the screen. One
might believe that an analogous situation is not possible for
concepts, because intuitively concepts, unlike quantum particles,
do not exist “inside” space. If we look at things is an operational
way, however, an analysis can be put forward for the quantum
model of the combination of the two concepts, and the graded
structure of collapse probability weights of the 24 items, which
does illustrate the presence of an interference pattern, and as a
consequence reveals the underlying wave structure of concepts
and their interactions. Let us explain how we can proceed to
accomplish such an analysis.

We start by considering Figure 2. We see there the 24 different
items of Table 1 represented by numbered spots in a plane where
a graded pattern, starting with the lightest region around the
spot number 8, which is Apple, systematically becomes darker.
Different numbers of items are situated in spots in regions of
different darkness, for example, number 16, Lentils, is situated
in a spot in the darkest region. Let us explain how the figure
is constructed. The “intensity of light” of a specific region
corresponds to the “weights of the items” with respect to the
concept Fruits in Table 1. Looking at Table 1, it is indeed Apple,
which has the highest weight, equal to 0.1184, and hence is
represented by spot number 8 on Figure 2, in the lightest region.
Next comes Elderberry with weight equal to 0.1134, represented
by spot number 7 on Figure 2, on the border of the lightest
and second lightest region. Next comes Raisin, with weight equal
to 0.1026, represented by spot number 6 on Figure 2, on the
border of the third and the fourth lightest region. Next comes
Tomato, with weight equal to 0.0881, represented by spot number
19 on Figure 2, in the seventh lightest region, etc. last is Lentils,
with weight equal to 0.0095, represented by spot number 16 on
Figure 2, in the one to darkest region. Hence Figure 2 contains a
representation of the values of the collapse probability weights of
the 24 items with respect to the concept Fruits. There is however
more; we can, for example, wonder what the reason is to choose
a representation in a plane? To explain this, turn to Figure 3. Let
us first note with respect to the two figures, although it might not
seem the case at first sight, all the numbered regions are located
at exactly the same spots in both Figures 2, 3, with respect to the
two orthogonal axes that coordinate the plane. What is different
in both figures are the graded structures of lighter to darker
regions, while they are centered around the spot number 8,
representing the itemApple, in Figure 2 they are centered around
the spot number 21, representing the item Broccoli, in Figure 3.
And, effectively, Figure 3 represents analogous to Figure 2 of
the same 24 items, their collapse probability weights, but this
time with respect to the concept Vegetables. This explains why
in Figure 3 the lightest region is the one centered around spot
number 21, representing Broccoli, while the lightest region in
Figure 2 is the one centered around spot number 8, representing
Apple. Indeed, Broccoli is the most characteristic vegetable of the
considered items, while Apple is the most characteristic fruit, if
“characteristic” is measured by the size of the respective collapse
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FIGURE 2 | The probabilities µ(A)k of a person choosing the item k as a “good example” of Fruits are fitted into a two-dimensional quantum wave

function ψA(x, y). The numbers are placed at the locations of the different items with respect to the Gaussian probability distribution |ψA (x, y)|2. This can be seen as a

light source shining through a hole centered on the origin, and regions where the different items are located. The brightness of the light source in a specific region

corresponds to the probability that this item will be chosen as a “good example” of Fruits.

FIGURE 3 | The probabilities µ(B)k of a person choosing the item k as a “good example” of Vegetables are fitted into a two-dimensional quantum

wave function ψB(x, y). The numbers are placed at the locations of the different items with respect to the probability distribution |ψB (x, y)|2. As in Figure 2, it can be

seen as a light source shining through a hole centered on point 21, where Broccoli is located. The brightness of the light source in a specific region corresponds to the

probability that this item will be chosen as a “good example” of Vegetables.

probability, i.e., the probability to choose this item in the course
of the study. What might not seem obvious is that in a plane
it is always possible to find 24 locations for the 24 items such
that a graded structure with center Apple and a second graded
structure with center Broccoli can be defined, fitting exactly also
the other items in their correct value of “graded light to dark,”
corresponding to the collapse probability weights in Table 1.
Such a situation is what we show in Figures 2, 3. It can be

provenmathematically that a solution always exists, although not
a unique one, which means that Figures 2, 3 show one of these
solutions.

We have chosen on purpose the graded structure form light to
dark to be colored yellow, because we can interpret Figures 2, 3
such that an interesting analogy arises between our study of
the 24 items and two concepts Fruits and Vegetables, and
the well-known double slit experiment with light in quantum
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mechanics. It is this analogy that will also directly illustrate the
“wave nature” of concepts. Suppose we consider a plane figuring
in the experiment as a detection screen, and put counters for
quantum light particles, i.e., photons, at the numbered spots
on the plane. Then we send light through a first slit, which
we call the Fruits slit, which is placed in front of the screen.
The slit is placed such that the counters in the spots detect
numbers of photons with fractions to the total number of
photons send equal the collapse probability weights of the items
represented by the respective spots with respect to the concept
Fruits. The light received on the screen would then look like
what is shown in Figure 2. Similarly, with counters placed in
the same spots, we send light through a second slit, which
we call the Vegetable slit. Now the counters detect numbers of
photons with fractions to the total number of photons equal to
the collapse probability weights of the same items with respect to
the concept Vegetables. The light received on the screen would
then look like what is shown in Figure 3. We can obtain the same
figures directly for our psychological study, consisting of each
participant choosing amongst the 24 items the one that he or
she finds most characteristic of Fruits andVegetables respectively.
The relative frequencies of the first choice gives rise to the image
in Figure 2, while the relative frequencies of the second choice
gives rise to the image in Figure 3, if, for example, we wouldmark
each chosen item by a fixed number of yellow light pixels on a
computer screen.

Before we combine the two slits to give rise to interference,
let us specify the mathematics of the quantum mechanical
formalism that underlies the two Figures. The situation
can be represented quantum mechanically by complex
valued Schrödinger wave functions of two real variables
ψA(x, y), ψB(x, y). For the light and the two slits, this situation
is the “interaction of a photon with the two slits.” For the
human participants in the concepts study, this situation is the
“interaction with the two concepts of the mind of a participant.”
We choose for ψA(x, y) and ψB(x, y) quantum wave packets,
such that the radial part for both wave packets is a Gaussian in
two dimensions. Considering Figures 2, 3, we choose the top of
the first Gaussian in the origin where spot number 8 is located,
and the top of the second Gaussian in the point (a, b), where
spot number 21 is located. Hence

ψA(x, y) =
√

DAe
−
(

x2

4σ2Ax

+ y2

4σ2Ay

)

eiSA(x,y)

ψB(x, y) =
√

DBe
−
(

(x−a)2

4σ2Bx

+ (y−b)2

4σ2By

)

eiSB(x,y) (51)

The phase parts of the wave packets eiSA(x,y) and eiSB(x,y) are
determined by two phase fields SA(x, y) and SB(x, y) which will
account for the interference and hence carry the wave nature.
Of course, these phase parts vanish when we multiply each wave
packet with its complex conjugate to find the connection with the
collapse probabilities. Hence,

|ψA(x, y)|2=DAe
−
(

x2

2σ2Ax

+ y2

2σ2Ay

)

|ψB(x, y)|2=DBe
−
(

(x−a)2

2σ2Bx

+ (y−b)2

2σ2By

)

(52)

are the Gaussians to be seen in Figures 2, 3, respectively. Let us
denote by 1k a small surface specifying the spot corresponding
to the item number k in the plane of the two figures. We then
calculate the collapse probabilities of this item k with respect
to the concepts Fruits and Vegetables in a standard quantum
mechanical way as follows

µk(A) =
∫

1k

|ψA(x, y)|2dxdy =
∫

1k

DAe
−
(

x2

2σ2Ax

+ y2

2σ2Ay

)

dxdy

(53)

µk(B) =
∫

1k

|ψB(x, y)|2dxdy =
∫

1k

DBe
−
(

x2

2σ2Bx

+ y2

2σ2By

)

dxdy

(54)

We can prove that the parameters of the Gaussians,
DA, σAx, σAy,DB, σBx, σBy can be determined in such a
way that the above equations come true, and for the images of
Figures 2, 3, exactly as we have done—using an approximation
for the integrals, which we explain later.

If we open both slits it will be the normalized superposition
of the two wave packets that quantummechanically describes the
new situation

ψAorB(x, y) =
1√
2
(ψA(x, y)+ ψB(x, y)) (55)

We have

µk(A or B) =
∫

1k

ψAorB(x, y)
∗ψAorB(x, y)dxdy

= 1

2

(∫

1k

ψA(x, y)
∗ψA(x, y)dxdy+

∫

1k

ψB(x, y)
∗ψB(x, y)dxdy

)

+
∫

1k

ℜ(ψA(x, y)
∗ψB(x, y))dxdy

= 1

2
(µk(A)+ µk(B))+

∫

1k

ℜ(ψA(x, y)
∗ψB(x, y))dxdy (56)

Let us calculate
∫

1k
ℜ(ψA(x, y)

∗ψB(x, y))dxdy. We have

∫

1k

ℜ(ψA(x, y)
∗ψB(x, y))dxdy

=
∫

1k







√

DAe
−
(

x2

4σ2Ax

+ y2

4σ2Ay

)












√

DBe
−
(

(x−a)2

4σ2Bx

+ (y−b)2

4σ2By

)






ℜ(e−iSA(x,y)eiSB(x,y))dxdy

=
∫

1k







√

DADBe
−
(

x2

4σ2Ax

+ (x−a)2

4σ2Bx

+ y2

4σ2Ay

+ (y−b)2

4σ2By

)






ℜ(ei(SB(x,y)−SA(x,y)))dxdy
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=
∫

1k





√

DADBe
−( x2

4σ2Ax

+ (x−a)2

4σ2Bx

+ y2

4σ2Ay

+ (y−b)2

4σ2By

)





cos(SB(x, y)− SA(x, y))dxdy (57)

We can hence rewrite (Equation 56) in the following way

∫

1k

f (x, y) cos θ(x, y)dxdy = fk (58)

where

f (x, y) =
√

DADBe
−
(

x2

4σ2Ax

+ (x−a)2

4σ2Bx

+ y2

4σ2Ay

+ (y−b)2

4σ2By

)

(59)

is a known Gaussian-like function, remember that we have
determined DA, DB, σAx, σAy, σBx, σBy and a and b in choosing
a solution to be seen in Figures 3, 4, and

fk = µk(A or B)− 1

2
(µk(A)+ µk(B)) (60)

are constants for each k determined by the data, and we have
introduced

θ(x, y) = SB(x, y)− SA(x, y) (61)

the field of phase differences of the two quantum wave packets.
This field of phases differences will determine the interference
pattern and it is the solution of the 24 nonlinear Equations in
(58). This set of 24 equations cannot be solved exactly, but even
a general numerical solution is not straightforwardly at reach

within actual optimization programs. We have introduces two
steps of idealization to find a solution. First, we have looked for
a solution where θ(x, y) is a large enough, polynomial in x and y,
more specifically consisting of 24 independent sub-polynomials
that are independent

θ(x, y) = F1 + F2x+ F3y+ F4x
2 + F5xy+ F6y

2 + F7x
3

+ F8x
2y+ F9xy

2 + F10y
3 + F11x

4 + F12x
3y

+ F13x
2y2 + F14xy

3 + F15y
4 + F16x

5 + F17x
4y

+ F18x
3y2 + F19x

2y3 + F20xy
4 + F21y

5 + F22x
6

+ F23x
5y+ F24x

4y2 (62)

Secondly, we suppose that 1k = 1 is a sufficiently small
square surface such that a good approximation of the integral
in Equation (58)—and it is also the approximation we have used
for the integrals (Equations 53 and 54)—is given by 1 times the
value of the function under the integral in the center of 1. This
transforms the set of 24 nonlinear (Equation 58) into a set of 24
linear equations

1f (xk, yk)θ(xk, yk) = fk (63)

We have solved them for the points (xk, yk) where the 24 items
are located in Figures 2, 3, for 1 = 0.01, which gives us θ(x, y),
and hence also the expression for |ψAorB(x, y)|2 containing the
expected interference term, and we have

|ψAorB(x, y)|2 = 1

2
(|ψA(x, y)|2 + |ψB(x, y)|2)

+|ψA(x, y)ψB(x, y)| cos θ(x, y) (64)

FIGURE 4 | The probabilities µ(A or B)k of a person choosing the item k as a “good example” of Fruits or Vegetables are fitted into the

two-dimensional quantum wave function 1√
2
(ψA(x, y) + ψB(x, y)), which is the normalized superposition of the wave functions in Figures 2, 3. The

numbers are placed at the locations of the different exemplars with respect to the probability distribution |ψA (x, y)+ ψB (x, y)|2 = 1
2 (|ψA (x, y)|

2 +|ψB (x, y)|2 )
+|ψA (x, y)ψB (x, y)| cos θ (x, y), where θ (x, y) is the quantum phase difference at (x, y). The values of θ (x, y) are given in Table 1 for the locations of the different items. The

interference pattern is clearly visible.
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TABLE 2 | The parameters of the interference pattern solution illustrated in Figure 4.

Parameters of the solution

k item (x, y) coordinates of items Sub-polynomial Coefficients Fk Gaussian Parameters

1 Almond (−7.2826, 3.24347) 1 87.6039 DA 1.18412

2 Acorn (−7.3316, 2.3116) x 2792.02 σAx 5.65390

3 Peanut (−5.2957, 4.56032) y 8425.01 σAy 3.80360

4 Olive (−4.3776, 3.41765) x2 19.36 DB 1.28421

5 Coconut (−5.0322, 1.24573) xy −2139.87 σBx 8.20823

6 Raisin (−2.7149, 0.896651) y2 −7322.26 σBy 2.41578

7 Elderberry (−1.420, 0.487598) x3 −39.2811

8 Apple (0, 0) x2y −55.5263

9 Mustard (1.7978, 7.64549) xy2 586.674

10 Wheat (2.4786, 7.73915) y3 2205.81

11 Root Ginger (2.8164, 7.41004) x4 −2.22868

12 Chili Pepper (3.9933, 7.03549) x3y 4.19408

13 Garlic (4.7681, 7.81803) x2y2 13.3579

14 Mushroom (5.6281, 6.89107) xy3 −72.233

15 Watercress (7.233, 6.67322) y4 −275.834

16 Lentils (8.1373, 6.56281) x5 0.426731

17 Green Pepper (3.8337, 5.55379) x4y 1.58764

18 Yam (1.5305, 4.69497) x3y2 0.582536

19 Tomato (2.4348, 2.42612) x2y3 −1.13167

20 Pumpkin (3.9873, 2.06652) xy4 3.44008

21 Broccoli (10, 4) y5 12.2584

22 Rice (11.6771, 0.392458) x6 −0.00943132

23 Parsley (11.3949, −0.268463) x5y −0.0535881

24 Black Pepper (11.9389, −0.107151) x4y2 −0.200688

The first column lists the different items, and the second column the coordinates of their locations in Figures 2–4. The third column contains the orthogonal set of sub-polynomials used

as first approximation for the phase field θ (x, y), and the fourth column their values. The fifth and sixth columns contain the Gaussian parameters and their values of the solution.

In Figure 4 we have graphically represented this probability
density |ψAorB(x, y)|2. The interference pattern shown in
Figure 4 is very similar to well-known interference patterns of
light passing through an elastic material under stress. In our
case, it is the interference pattern corresponding to “Fruits or
Vegetables” as a contextual, interfering prototype. The numerical
values of the solutions represented in Figures 2–4 are in Table 2.

We have thus completed our illustration of contextual
interfering prototypes. It is, however, important to remember
that this representation is at the subtle level of an illustration,
while the real working representation of contextual interfering
prototypes needs the complete quantum-mechanical formalism.
It can be considered as a pre-representation, exactly as the
wave-like representations by de Broglie and Schrödinger in the
early days of quantum physics can be considered as useful pre-
quantum representations that capture something of the wave
aspects of microscopic particles.

5. DISCUSSION

In this paper we showed that a generalization of prototype theory
can address the “Pet-Fish problem” and related combination

issues. This was done by formalizing the effect of the cognitive
context on the state of a concept using a SCoP formalism (Gabora
and Aerts, 2002; Aerts and Gabora, 2005a,b; Gabora et al.,
2008).We also developed a quantum-theoretic model in complex
Hilbert space to show that, in this contextualized prototype
theory, prototypes can interfere when concepts combine, as
evidenced by data where typicality measurements are performed.
This could then lead one to think that the general quantum
approach to concepts only presupposes a (contextual) prototype
theory. We now explain why this inference is not true.

Let us make more explicit the relationship between our
quantum-conceptual approach and other concept theories, such
as prototype theory, exemplar theory and theory theory. A deeper
analysis shows that our approach is more than a contextual
generalization of prototype theory. Roughly speaking, other
theories make assumptions about the principles guiding the
formation and intuitive representation of a concept in the
human mind. Thus, prototype theory assumes that a concept
is determined by a set of characteristic rather than defining
features, the human mind has a privileged prototype for each
concept, and typicality of a concrete item is determined by its
similarity with the prototype (Rosch, 1973, 1978, 1983). Exemplar
theory assumes instead that a concept is not determined by a
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set of defining or characteristic features but, rather, by a set of
salient instances of it stored in memory (Nosofsky, 1988, 1992).
Theory theory assumes that concepts are determined by “mini-
theories” or schemata, identifying the causal relationships among
properties (Murphy and Medin, 1985; Rumelhart and Norman,
1988). These theories have all mainly been preoccupied with
the question of “what predominantly determines a concept.” We
agree on the relevance of this question, though it is not the
main issue focused on there. Transposed to our approach, these
theories mainly investigate “what predominantly determines the
state of a concept.” Conversely, the main preoccupation of
our approach has been to propose a theory with the following
features:

(i) a well-defined ontology, i.e., a concept is in our approach
an entity capable of different modes of being with respect
to how it influences measurable semantic quantities such as
typicality, membership weight and membership probability,
and these modes are called “states”;

(ii) the capacity to produce theoretical models fitting data on
these measurable semantic quantities.

We seek to achieve (i) and (ii) independent of the question that
is the focus of other theories of concepts. More concretely, and in
accordance with the results of investigations into the question of
“what predominantly determines a concept,” as far as prototype
theory, exemplar theory and theory theory are concerned, we
believe that all approaches are partially valid. The state of a
concept, i.e., its capability of influencing the values of measurable
semantic quantities, such as typicality and membership weight,
is influenced by the set of its characteristic features, but also
by salient exemplars in memory, and in a considerable number
of cases—where more causal aspects are at play—mini-theories
might be appropriate to express this state. It is important that
“a conceptual state is defined and gives rise, together with the
context, to the values of the measurable semantic quantities.” The
fact that the specification of these values can be only probabilistic
is a confirmation that potentiality and uncertainty occur even
if the state is completely known, hence quantum structures are
intrinsically needed.

It follows from the above that resorting and giving new
life to prototype theory does not necessarily entail that
contextual prototype theory is the only possible theory of
concepts for what concerns the question of “what predominantly
determines a concept.” However, we choose to identify our
general approach as a “generalized contextual interfering
prototype theory,” because the “ground state” of a concept is
a fundamental notion of the theory, and this ground state
is what corresponds to the prototype. There is not a similar
affinity with exemplar theory and theory theory. However, the
conceptual state and its interaction with the cognitive context
can potentially capture the other conceptual aspects, exemplars
and schemata, which are instead predominant in alternative
concept theories. In this respect, an interesting analogy must
be emphasized. The quantum-theoretic approach only aims
at modeling concepts and their combinations in a unitary
and coherent mathematical formalism. We do not pretend to
give a universal definition of what a concept is and how it

forms. Using a known analogy in mathematics, we can say that
the quantum-theoretic model is to a concept as a traditional
Kolmogorov model is to a probability. A Kolmogorovian model
specifies how a probability can be mathematically formalized
independent of the definition of probability that is chosen
(favorable over possible cases, large number limit of frequencies,
subjective, etc.). Analogously, the quantum-theoretic framework
for concepts enables mathematical modeling of conceptual
entities independent of the definition that is adopted in a specific
concept theory (prototype, exemplar, theory, etc.).

We conclude with an epistemological consideration. The
quantum-theoretic framework presented here constitutes a step
toward the elaboration of a general theory for the representation
of any conceptual entity. Hence, it is not just a “cognitive model
for typicality, membership weight or membership probability.”
Rather, we are investigating whether “quantum theory, in its
Hilbert space formulation, is an appropriate theory to model
human cognition.” To understand what we mean by this let us
consider an example taken from everyday life. As an example
of a theory, we could introduce the theory of “how to make
good clothes.” A tailor needs to learn how to make good
clothes for different types of people, men, women, children,
old people, etc. Each cloth is a model in itself. Then, one can
also consider intermediate situations where one has models of
series of clothes. A specific body will not fit in any clothes: you
need to adjust the parameters (length, size, etc.) to reach the
desired fit. We think that a theory should be able to reproduce
different experimental results by suitably adjusting the involved
parameters, exactly as a theory of clothing. This is different from
a set of models, even if the set can cope with a wide range of
data.

There is a tendency, mainly in empirically-based disciplines,
to be critical with respect to a theory that can cope with all
possible situations it applies to. This is because the theory
contains too many parameters, which may lead one to think
that “any type of data can be modeled by allowing all these
parameters to have different values.” We agree that, in case
we have to do with an “ad-hoc model,” i.e., a model specially
made for the circumstance of the situation it models, this
suspicion is grounded. Adding parameters to such an ad-hoc
model, or stretching the already contained parameters to other
values, does not give rise to what we call a theory. On the
other hand, a theory needs to be well defined, its rules, the
allowed procedures, its theoretical, mathematical, and internal
logical structure, “independent” of the structure of the models
describing specific situations that can be coped with by the
theory. Hence also the theory needs to contain a well defined
description of “how to produce models for specific situations.”
Coming back to the theory of clothing, if a tailor knows the theory
of clothing, obviously he or she canmake a cloth for every human
body, because the theory of clothing, although its structure is
defined independently of a specific cloth, contains a prescription
of how to apply it to any possible specific cloth. In this respect,
we think that one should carefully distinguish between a model
that is derived by a general theory, as the one presented in this
paper, and a model specifically designed to test a number of
experimental situations.
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This brings us to the important question of the “predictive
power” of existing quantum-theoretic models. Models derived
from a theory will generally need more data from a bigger
set of experiments to become predictive for the outcomes of
other not yet performed experiments than this is the case for
models that are more ad-hoc. The reason is that in principle
such models—think of the analogy we present with the theory of
clothing above—must be able to faithfully represent the data of
all possible experiments that can be performed on the conceptual
entity in the same state. A tailor knowing the theory of clothing
can in principle make clothes for all human bodies but hence
also predicts outcomes of not performed experiments, e.g., the
measure of a specific part of the cloth, if enough data of a
set of experiments are available to the tailor, e.g., data that
determine the possible types of clothes still fitting these data
and as a consequence also determine the measure of this part
of the clothe. In general in quantum cognition, the scarcity of
data is preventing models from having systematic and substantial
predictive power. One can wonder, if predictive power is not
yet predominantly available in the majority of existing quantum-
theoretic models, why so much attention and value is actually
attributed to them? Answering this question allows us to clarify
an aspect of quantum cognition that is not obvious and even
makes it special in a specific way, at least provisionally until
more data is available. The success of quantum cognition is due
to it “being able to convincingly model data that theoretically
can be proven to be impossible to model with any model that
relies on classical fuzzy set theory and/or classical Kolmogorovian
probability theory.” Hence, a different criterion than predictive
power is provisionally used to identify the success of quantum
cognition. Of course, as soon as more data are collected, the
models will also be able to be tested for their predictive power.
Recent work in quantum cognition is starting to reach the
level of being predictive, for example study of order effects
(Wang et al., 2014), and an elaboration and refinement of
the model presented in this article (Aerts et al., 2015a,c). The
latter model simultaneously investigates the “conjuntion” and
the “negation” of concepts, starting from data collected on such
conceptual combinations. To explain the exact nature and also
accurateness of the predictive power we gained in the model
in Aerts et al. (2015a,c), consider the following mathematical
expression

IABA′B′ = 1−µ(A andB)−µ(A andB′)−µ(A′ andB)−µ(A′ andB′)
(65)

where A and B are the concepts Fruits and Vegetables,
respectively, while A′ and B′ are their negations. Thus, “A and
B′” means Fruits and not Vegetables, while “A′ and B” means
not Fruits and Vegetables and “A′ and B′” means not Fruits and
not Vegetables. In Aerts et al. (2015a,c) we published the data
for the outcomes of experiments that test the membership of the
same 24 items which we considered in the present article, but this
time not only for the conjunction of A and B, but also for the
conjunctions “A and B′,” “A′ and B,” and “A′ and B′.” Suppose
that the data follow a classical probabilistic structure, then IABA′B′

has to be theoretically equal to zero for each considered item, and
this purely follows from a general “law of probability calculus”

related to the so called “de Morgan laws” of classical probability.
This means that, under the hypothesis of a classical probabilistic
structure, if we measure the relative frequencies of “A and B,”
“A and B′” and “A′ and B,” and hence determine experimentally
the values of µ(A and B), µ(A and B′) and µ(A′ and B),
a “prediction” for µ(A′ and B′) can be made theoretically,
namely,

µ(A′ and B′) = 1−µ(A and B)−µ(A and B′)−µ(A′ and B) (66)

for each considered item. Let is explain what are our findings
in Aerts et al. (2015a,c) that make it possible for us to speak
of some specific type of predictability for the more elaborated
and refined model we developed for the combination of concepts
and their negations. In Aerts et al. (2015a,c) we have collected
data not only for the pair of concepts Fruits and Vegetables
and the 24 items treated also in the present article, but for
three more pairs of concepts, and for each of them again 24
items. Due to the already identified non classical nature of
overextension of the conjunction we expected that IABA′B′ would
not be equal to zero, and that indeed showed to be the case.
However, we detected a high level of systematics of the value
of IABA′B′ fluctuating around an average of −0.81. A statistical
analysis showed the different values for individual items to be
possible to be explained as fluctuations around this average
(see Tables 1–4 in Aerts et al., 2015a). Next to the detailed
statistical analysis to be found in Aerts et al. (2015a) we also put
forward a theoretical explanation of this value. The elaborated
and refined model for concept combinations developed in Aerts
et al. (2015a) introduces within the model the combination of
a pure quantum model and a classical model. It can be shown
that for a pure quantum model the value of IABA′B′ would be
−1. We also find that the quantum effects are dominant as
compared to the classical effects in case concepts are combined,
which explains why our refined model gives rise to a value of
IABA′B′ in between the classical one, which is 0, and the pure
quantum one, which is−1, but closer to the quantum one, hence
−0.81. This finding can be turned into a predictive one in the
following way. Suppose we measure µ(A and B), µ(A and B′)
and µ(A′ and B) for two arbitrary concepts and an item. Our
model allows us to put forward the following prediction for
µ(A′ and B′)

µ(A′ and B′) = 1.81−µ(A and B)−µ(A and B′)−µ(A′ and B)
(67)

By comparing Equations (66) and (67), we get that the
quantum-theoretic model in Aerts et al. (2015a) provides
a “different prediction” from a classical probabilistic model
satisfying the axioms of Kolmogorov, and experiments
confirm the validity of the former over the latter. We
add that the quantum model has different predictions
from a classical model also for the values of other
functions than IABA′B′ , and these predictions are “parameter
independent,” in the sense that they do not depend on
the values of free parameters that may accommodate the
data.

The results above can be considered as a strong
confirmation that quantum-theoretic models of concept
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combinations provide predictions that deviate, in
some situations, from the predictions of classical
Kolmogorovian models, which is confirmed by experimental
data.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

REFERENCES

Aerts, D. (1986). A possible explanation for the probabilities of quantum

mechanics. J. Math. Phys. 27, 202–210. doi: 10.1063/1.527362

Aerts, D. (1999). Foundations of quantum physics: a general realistic

and operational approach. Int. J. Theor. Phys. 38, 289–358. doi:

10.1023/A:1026605829007

Aerts, D. (2009a). Quantum structure in cognition. J. Math. Psychol. 53, 314–348.

doi: 10.1016/j.jmp.2009.04.005

Aerts, D. (2009b). Quantum particles as conceptual entities: a possible explanatory

framework for quantum theory. Found. Sci. 14, 361–411. doi: 10.1007/s10699-

009-9166-y

Aerts, D., and Aerts, S. (1995). Applications of quantum statistics in psychological

studies of decision processes. Found. Sci. 1, 85–97. doi: 10.1007/BF00208726

Aerts, D., Aerts, S., Broekaert, J., and Gabora, L. (2000). The violation of

Bell inequalities in the macroworld. Found. Phys. 30, 1387–1414. doi:

10.1023/A:1026449716544

Aerts, D., Broekaert, J., Gabora, L., and Sozzo, S. (2013b). Quantum

structure and human thought. Behav. Brain Sci. 36, 274–276. doi:

10.1017/S0140525X12002841

Aerts, D., and Gabora, L. (2005a). A theory of concepts and their combinations I:

the structure of the sets of contexts and properties. Kybernetes 34, 167–191. doi:

10.1108/03684920510575799

Aerts, D., and Gabora, L. (2005b). A theory of concepts and their

combinations II: a Hilbert space representation. Kybernetes 34, 192–221.

doi: 10.1108/03684920510575807

Aerts, D., Gabora, L., and S. Sozzo, S. (2013a). Concepts and their dynamics: a

quantum–theoretic modeling of human thought. Top. Cogn. Sci. 5, 737–772.

doi: 10.1111/tops.12042

Aerts, D., and Sozzo, S. (2011). Quantum Structure in Cognition. Why and How

Concepts are Entangled. Quantum Interaction. Lecture Notes in Computer

Science 7052. Berlin: Springer.

Aerts, D., and Sozzo, S. (2014). Quantum entanglement in conceptual

combinations. Int. J. Theor. Phys. 53, 3587–3603. doi: 10.1007/s10773-013-

1946-z

Aerts, D., Sozzo, S., and Tapia, J. (2014). Identifying quantum structures in the

Ellsberg paradox. Int. J. Theor. Phys. 53, 3666–3682. doi: 10.1007/s10773-014-

2086-9

Aerts, D., Sozzo, S., and Veloz, T. (2015). Quantum nature of identity in human

concepts: Bose-Einstein statistics for conceptual indistinguishability. Int. J.

Theor. Phys. 54, 4430–4443. doi: 10.1007/s10773-015-2620-4

Aerts, D., Sozzo, S., and Veloz, T. (2015a). Quantum structure of negation

and conjunction in human thought. Front. Psychol. 6:1447. doi:

10.3389/fpsyg.2015.01447

Aerts, D., Sozzo, S., and Veloz, T. (2015b). Quantum structure in cognition and

the foundations of human reasoning. Int. J. Theor. Phys. 54, 4557–4569. doi:

10.1007/s10773-015-2717-9

Aerts, D., Sozzo, S., and Veloz, T. (2015c). New fundamental evidence of non-

classical structure in the combination of natural concepts. Philos. Trans. R. Soc.

A 374:20150095. doi: 10.1098/rsta.2015.0095

Alxatib, S., and Pelletier, J. (2011). “On the psychology of truth gaps,” in Vagueness

in Communication, eds R. Nouwen, R. van Rooij, U. Sauerland, and H.-C.

Schmitz (Berlin; Heidelberg: Springer-Verlag), 13–36. doi: 10.1007/978-3-642-

18446-8_2

Bonini, N., Osherson, D., Viale, R., and Williamson, T. (1999). On the psychology

of vague predicates.Mind Lang. 14, 377–393. doi: 10.1111/1468-0017.00117

Busemeyer, J. R., and Bruza, P. D. (2012). Quantum Models of Cognition and

Decision. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780

511997716

Costello, J., and Keane, M. T. (2000). Efficient creativity: constraint-

guided conceptual combination. Cogn. Sci. 24, 299–349. doi:

10.1207/s15516709cog2402_4

Fodor, J. (1994) Concepts: a potboiler. Cognition 50, 95–113. doi: 10.1016/0010-

0277(94)90023-X

Gabora, L., and Aerts, D. (2002). Contextualizing concepts using a mathematical

generalization of the quantum formalism. J. Exp. Theor. Artif. Intell. 14,

327–358. doi: 10.1080/09528130210162253

Gabora, L., Rosch, E., and Aerts, D. (2008). Toward an ecological theory

of concepts. Ecol. Psychol. 20, 84–116. doi: 10.1080/10407410701

766676

Gagne, C. L., and Spalding, T. L. (2009). Constituent integration during

the processing of compound words: does it involve the use of

relational structures? J. Mem. Lang. 60, 20–35. doi: 10.1016/j.jml.2008.

07.003

Geeraerts, D. (1989). Prospects and problems of prototype theory. Linguistics 27,

587–612. doi: 10.1515/ling.1989.27.4.587

Hampton, J. A. (1988a). Overextension of conjunctive concepts: evidence for a

unitary model for concept typicality and class inclusion. J. Exp. Psychol. Learn.

Mem. Cogn. 14, 12–32. doi: 10.1037/0278-7393.14.1.12

Hampton, J. A. (1988b). Disjunction of natural concepts.Mem. Cogn. 16, 579–591.

doi: 10.3758/BF03197059

Hampton, J. A. (1997). Conceptual combination: conjunction and negation

of natural concepts. Mem. Cogn. 25, 888–909. doi: 10.3758/BF03

211333

Haven, E., and Khrennikov, A. Y. (2013). Quantum Social Science. Cambridge:

Cambridge University Press. doi: 10.1017/CBO9781139003261

Kamp, H., and Partee, B. (1995). Prototype theory and compositionality. Cognition

57, 129–191. doi: 10.1016/0010-0277(94)00659-9

Khrennikov, A. Y., Basieva, I., Dzhafarov, E. N., and Busemeyer, J. R. (2014).

Quantummodels for psychological measurements: an unsolved problem. PLoS

ONE 9:e110909. doi: 10.1371/journal.pone.0110909

Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitrechnung,

Ergebnisse Der Mathematik; translated as Foundations of Probability. New York,

NY: Chelsea Publishing Company.

Komatsu, L. K. (1992). Recent views on conceptual structure. Psychol. Bull. 112,

500–526. doi: 10.1037/0033-2909.112.3.500

Murphy, G. L., and Medin, D. L. (1985). The role of theories in conceptual

coherence. Psychol. Rev. 92, 289–316. doi: 10.1037/0033-295X.92.3.289

Nosofsky, R. (1988). Exemplar-based accounts of relations between classification,

recognition, and typicality. J. Exp. Psychol. Learn. Mem. Cogn. 14, 700–708. doi:

10.1037/0278-7393.14.4.700

Nosofsky, R. (1992). “Exemplars, prototypes, and similarity rules,” in From

Learning Theory to Connectionist Theory: Essays in Honor of William K. Estes,

eds A. Healy, S. Kosslyn, and R. Shiffrin (Hillsdale, NJ: Erlbaum), 149–167.

Osherson, D., and Smith, E. (1981). On the adequacy of prototype theory

as a theory of concepts. Cognition 9, 35–58. doi: 10.1016/0010-0277(81)

90013-5

Osherson, D. N., and Smith, E. (1982). Gradedness and conceptual combination.

Cognition 12, 299–318. doi: 10.1016/0010-0277(82)90037-3

Osherson, D. N., and Smith, E. (1997). On typicality and vagueness. Cognition 64,

189–206. doi: 10.1016/S0010-0277(97)00025-5

Pitowsky, I. (1989).Quantum Probability, Quantum Logic. Lecture Notes in Physics.

Vol. 321. Berlin: Springer.

Pothos, E. M., and Busemeyer, J. R. (2013). Can quantum probability provide

a new direction for cognitive modeling? Behav. Brain Sci. 36, 255–274. doi:

10.1017/S0140525X12001525

Rips, L. J. (1995). The current status of research on concept combination. Mind

Lang. 10, 72–104. doi: 10.1111/j.1468-0017.1995.tb00006.x

Frontiers in Psychology | www.frontiersin.org March 2016 | Volume 7 | Article 418 | 24

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Aerts et al. Generalizing Prototype Theory

Rosch, E. (1973). Natural categories. Cogn. Psychol. 4, 328–350. doi: 10.1016/0010-

0285(73)90017-0

Rosch, E. (1978). “Principles of categorization,” in Cognition and Categorization,

eds E. Rosch and B. Lloyd (Hillsdale, NJ: Lawrence Erlbaum), 133–179.

Rosch, E. (1983). “Prototype classification and logical classification: the

two systems,” in New Trends in Conceptual Representation: Challenges

to Piaget Theory?, ed E. Scholnick (Hillsdale, NJ: Lawrence Erlbaum),

133–159.

Rumelhart, D. E., and Norman, D. A. (1988). “Representation in memory,”

in Stevens Handbook of Experimental Psychology, eds R. C. Atkinson, R. J.

Hernsein, G. Lindzey, and R. L. Duncan (New York, NY: John Wiley & Sons),

511–587.

Sozzo, S. (2014). A quantum probability explanation in Fock space for borderline

contradictions. J. Math. Psychol. 58, 1–12. doi: 10.1016/j.jmp.2013.11.001

Sozzo, S. (2015). Conjunction and negation of natural concepts: a quantum-

theoretic modeling. J. Math. Psychol. 66, 83–102. doi: 10.1016/j.jmp.2015.01.005

Thagard, P., and Stewart, T. C. (2011). The AHA! experience: creativity through

emergent binding in neural networks. Cogn. Sci. 35, 1–33. doi: 10.1111/j.1551-

6709.2010.01142.x

Van Dantzig, S., Raffone, A., and Hommel, B. (2011). Acquiring contextualized

concepts: a connectionist approach. Cogn. Sci. 35, 1162–1189. doi:

10.1111/j.1551-6709.2011.01178.x

Wang, Z., Solloway, T., Shiffrin, R. M., and Busemeyer, J. R. (2014). Context effects

produced by question orders reveal quantum nature of human judgments. Proc.

Natl. Acad. Sci. U.S.A. 111, 9431–9436. doi: 10.1073/pnas.1407756111

Zadeh, L. (1982). A note on prototype theory and fuzzy sets.Cognition 12, 291–297.

doi: 10.1016/0010-0277(82)90036-1

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Aerts, Broekaert, Gabora and Sozzo. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org March 2016 | Volume 7 | Article 418 | 25

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Aerts et al. Generalizing Prototype Theory

APPENDIX

A. Quantum Mathematics for Conceptual
Modeling
We illustrate in this section how the mathematical formalism
of quantum theory can be applied to model situations outside
the microscopic quantum world, more specifically, in the
representation of concepts and their combinations. We will limit
technicalities to the essential.

When the quantum mechanical formalism is applied for
modeling purposes, each considered entity—in our case a
concept—is associated with a complex Hilbert space H, that is, a
vector space over the field C of complex numbers, equipped with
an inner product 〈·|·〉 that maps two vectors 〈A| and |B〉 onto a
complex number 〈A|B〉. We denote vectors by using the bra-ket
notation introduced by Paul Adrien Dirac, one of the pioneers of
quantum theory. Vectors can be “kets,” denoted by |A〉, |B〉, or
“bras,” denoted by 〈A|, 〈B|. The inner product between the ket
vectors |A〉 and |B〉, or the bra-vectors 〈A| and 〈B|, is realized by
juxtaposing the bra vector 〈A| and the ket vector |B〉, and 〈A|B〉 is
also called a “bra-ket,” and it satisfies the following properties:

(i) 〈A|A〉 ≥ 0;
(ii) 〈A|B〉 = 〈B|A〉∗, where 〈B|A〉∗ is the complex conjugate of

〈A|B〉;
(iii) 〈A|(z|B〉 + t|C〉) = z〈A|B〉 + t〈A|C〉, for z, t ∈ C, where the

sum vector z|B〉 + t|C〉 is called a “superposition” of vectors
|B〉 and |C〉 in the quantum jargon.

From (ii) and (iii) follows that inner product 〈·|·〉 is linear in the
ket and anti-linear in the bra, i.e., (z〈A| + t〈B|)|C〉 = z∗〈A|C〉 +
t∗〈B|C〉.

The “absolute value” of a complex number is defined as the
square root of the product of this complex number times its
complex conjugate, that is, |z| =

√
z∗z. Moreover, a complex

number z can either be decomposed into its cartesian form z =
x + iy, or into its polar form z = |z|eiθ = |z|(cos θ + i sin θ).
As a consequence, we have |〈A|B〉| =

√
〈A|B〉〈B|A〉. We define

the “length” of a ket (bra) vector |A〉 (〈A|) as |||A〉|| = ||〈A||| =√
〈A|A〉. A vector of unitary length is called a “unit vector.” We

say that the ket vectors |A〉 and |B〉 are “orthogonal” and write
|A〉 ⊥ |B〉 if 〈A|B〉 = 0.

We have now introduced the necessary mathematics
to state the first modeling rule of quantum theory, as
follows.

A.1. First Quantum Modeling Rule
A state A of an entity—in our case a concept—modeled by
quantum theory is represented by a ket vector |A〉 with length
1, that is 〈A|A〉 = 1.

An orthogonal projectionM is a linear operator on the Hilbert
space, that is, a mapping M : H → H, |A〉 7→ M|A〉 which
is Hermitian and idempotent. The latter means that, for every
|A〉, |B〉 ∈ H and z, t ∈ C, we have:

(i) M(z|A〉 + t|B〉) = zM|A〉 + tM|B〉 (linearity);
(ii) 〈A|M|B〉 = 〈B|M|A〉∗ (hermiticity);
(iii) M ·M = M (idempotency).

The identity operator 1 maps each vector onto itself and is
a trivial orthogonal projection. We say that two orthogonal
projections Mk and Ml are orthogonal operators if each vector
contained in Mk(H) is orthogonal to each vector contained in
Ml(H), and we write Mk ⊥ Ml, in this case. The orthogonality
of the projection operators Mk and Ml can also be expressed by
MkMl = 0, where 0 is the null operator. A set of orthogonal
projection operators {Mk |k = 1, . . . , n} is called a “spectral
family” if all projectors are mutually orthogonal, that is,Mk ⊥ Ml

for k 6= l, and their sum is the identity, that is,
∑n

k= 1Mk = 1.
The above definitions give us the necessary mathematics to

state the second modeling rule of quantum theory, as follows.

A.2. Second Quantum Modeling Rule
A measurable quantity Q of an entity—in our case a concept—
modeled by quantum theory, and having a set of possible real
values {q1, . . . , qn} is represented by a spectral family {Mk |k =
1, . . . , n} in the following way. If the entity—in our case a
concept—is in a state represented by the vector |A〉, then the
probability of obtaining the value qk in a measurement of the
measurable quantity Q is 〈A|Mk|A〉 = ||Mk|A〉||2. This formula
is called the “Born rule” in the quantum jargon. Moreover,
if the value qk is actually obtained in the measurement, then
the initial state is changed into a state represented by the
vector

|Ak〉 =
Mk|A〉

||Mk|A〉||
(A1)

This change of state is called “collapse” in the quantum jargon.
The tensor productHA⊗HB of twoHilbert spacesHA andHB

is the Hilbert space generated by the set {|Ai〉 ⊗ |Bj〉}, where |Ai〉
and |Bj〉 are vectors ofHA andHB, respectively, whichmeans that
a general vector of this tensor product is of the form

∑

ij |Ai〉 ⊗
|Bj〉. This gives us the necessary mathematics to introduce the
third modeling rule.

A.3. Third Quantum Modeling Rule
A state C of a compound entity—in our case a combined
concept—is represented by a unit vector |C〉 of the tensor product
HA ⊗ HB of the two Hilbert spaces HA and HB containing
the vectors that represent the states of the component entities—
concepts.

The above means that we have |C〉 =
∑

ij cij|Ai〉 ⊗ |Bj〉,
where |Ai〉 and |Bj〉 are unit vectors of HA and HB, respectively,
and

∑

i,j |cij|2 = 1. We say that the state C represented by

|C〉 is a product state if it is of the form |A〉 ⊗ |B〉 for some
|A〉 ∈ HA and |B〉 ∈ HB. Otherwise, C is called an “entangled
state.”

The Fock space is a specific type of Hilbert space, originally
introduced in quantum field theory. For most states of a quantum
field the number of identical quantum entities is not conserved
but is a variable quantity. The Fock space copes with this
situation in allowing its vectors to be superpositions of vectors
pertaining to different sectors for fixed numbers of identical
quantum entities. MoreA explicitly, the k-th sector of a Aock
space describes a fixed number of k identical quantum entities,
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and it is of the form H ⊗ . . . ⊗ H of the tensor product of k
identical Hilbert spaces H. The Aock space A itself is the direct
sum of all these sectors, hence

A = ⊕j

k= 1
⊗k

l= 1 H (A2)

Aor our modeling we have only used Aock space for the “two”
and “one quantum entity” case, hence A = H ⊕ (H ⊗ H). This
is due to considering only combinations of two concepts. The
sector H is called the “first sector,” while the sector H ⊗ H is

called the “second sector.” A unit vector |F〉 ∈ F is then written
as |F〉 = neiγ |C〉 + meiδ(|A〉 ⊗ |B〉), where |A〉, |B〉 and |C〉 are
unit vectors ofH, and such that n2 +m2 = 1. For combinations
of j concepts, the general form of Fock space in Equation (A2)
should be used.

The quantum modeling above can be generalized by allowing
states to be represented by the so called “density operators”
and measurements to be represented by the so called “positive
operator valued measures.” However, for the sake of brevity we
will not dwell on this extension here.
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We analyze in this paper the data collected in a set of experiments investigating

how people combine natural concepts. We study the mutual influence of conceptual

conjunction and negation by measuring the membership weights of a list of exemplars

with respect to two concepts, e.g., Fruits and Vegetables, and their conjunction

Fruits And Vegetables, but also their conjunction when one or both concepts are

negated, namely, Fruits And Not Vegetables, Not Fruits And Vegetables, and Not

Fruits And Not Vegetables. Our findings sharpen and advance existing analysis on

conceptual combinations, revealing systematic deviations from classical (fuzzy set)

logic and probability theory. And, more important, our results give further considerable

evidence to the validity of our quantum-theoretic framework for the combination of

two concepts. Indeed, the representation of conceptual negation naturally arises from

the general assumptions of our two-sector Fock space model, and this representation

faithfully agrees with the collected data. In addition, we find a new significant and a priori

unexpected deviation from classicality, which can exactly be explained by assuming

that human reasoning is the superposition of an “emergent reasoning” and a “logical

reasoning,” and that these two processes are represented in a Fock space algebraic

structure.

Keywords: cognition, concept theory, quantum structures, fock space, conceptual emergence, concept formation

1. Introduction

Substantial evidence of presence of quantum structures in processes connected with human
behavior and cognition has been put forward in the last decade. More specifically, such quantum
structures were identified in situations of decision making and in the structure of language (see
e.g., Aerts, 2009; Khrennikov, 2010; Busemeyer and Bruza, 2012; Aerts et al., 2013b; Haven and
Khrennikov, 2013; Pothos and Busemeyer, 2013; Wang et al., 2014). The success of this quantum
modeling is interpreted as due to “descriptive effectiveness of the mathematical apparatus of
quantum theory as formal instrument to model cognitive dynamics and structures in situations
where classical set-based approaches are problematical.” In particular, the mathematics of quantum
theory in Hilbert space has proved very successful in modeling combinations of two concepts
(Aerts, 2009; Aerts and Sozzo, 2001, 2014; Aerts and Gabora, 2005a,b; Aerts et al., 2013a,b; Sozzo,
2014, 2015).

The “combination problem,” that is, the question of how the representation of the combination
of two or more natural concepts can be connected to the representation of the component
concepts, has been studied experimentally and within classical concept theories in great
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detail in the last 30 years. The main experimental challenges to
traditional modeling approaches to concepts combinations are
sketched in the following1.

(i) The “Guppy effect” in concept conjunction, also known as
the “Pet-Fish problem” (Osherson and Smith, 1981, 1982).
If one measures the typicality of specific exemplars with
respect to the concepts Pet and Fish and their conjunction
Pet-Fish, then one systematically finds exemplars such as
Guppy that are very typical examples of Pet-Fish, while
neither being typical examples of Pet nor of Fish.

(ii) The deviation from classical (fuzzy) set-theoretic
membership weights of exemplars with respect to pairs of
concepts and their conjunction or disjunction (Hampton,
1988a,b). If one measures the membership weight of an
exemplar with respect to a pair of concepts and their
conjunction (disjunction), then one experimentally finds
that there is an abundance of cases where the membership
weight of the exemplar with respect to the conjunction
(disjunction) is greater (less) than themembership weight of
the exemplar with respect to at least one of the component
concepts.

(iii) The existence of “borderline contradictions” in sentences
expressing vague properties (Bonini et al., 1999; Alxatib
and Pelletier, 2011). Roughly speaking, a borderline
contradiction is a sentence of the form P(x) ∧ ¬P(x),
for a vague predicate P and a borderline case x, e.g., the
sentence “John is tall and John is not tall.” If one investigates
how people estimate the truth value of such a sentence, a
significant number of them will find it as true, in particular
for borderline cases.

What one typically finds in the above situations is a failure of
set-theoretic approaches (classical set, fuzzy set, Kolmogorovian
probability) to supply satisfactory theoretic models for the
experimentally observed patterns. Indeed, all traditional
approaches to concept theory [mainly, “prototype theory”
(Rosch, 1973, 1978, 1983), “exemplar theory” (Nosofsky,
1988, 1992), and “theory theory” (Murphy and Medin, 1985;
Rumelhart and Norman, 1988)] and concept representation
[mainly, “extensional” membership-based (Zadeh, 1982; Rips,
1995) and “intensional” attribute-based (Hampton, 1988b;
Minsky, 1975; Hampton, 1997)] have structural difficulties to
cope with the experimental data exactly where the “graded,”
or “vague” nature of these data abundantly violates (fuzzy)
set-theoretic structures (Osherson and Smith, 1982; Zadeh,
1982), indicating that this violation of set-theoretic structures is

1One typically gains insight into how people combine concepts by gathering

data on “typicalities” or “membership weights.” To obtain data on “typicalities,”

participants are given a concept, and a list of instances or exemplars, and asked

to pick which exemplar they consider most typical of the concept. A membership

weight is instead obtained by asking people to estimate the membership of specific

exemplars with respect to a concept. This estimation can, e.g., be quantified by

using 7-point (Likert) scale and then converted into a relative frequency and

then into a probability called the “membership weight.” We have worked on both

typicality measurements, as in the analysis of the Guppy effect, and membership

weights measurements, as in the analysis of Hampton’s experiments and in the

present paper.

the core of the problem. This situation is experienced as one of
the major problems in the domain of traditional concept theories
and an obstacle for progress (Komatsu, 1992; Fodor, 1994; Kamp
and Partee, 1995; Rips, 1995; Hampton, 1997; Osherson and
Smith, 1997).

Important results in concept research and modeling have
been obtained in the last decade within the approach of
quantum cognition in which our research group has substantially
contributed.We cannot report in detail the results attained in our
approach, for obvious reasons of space limits. We limit ourselves
to summarize the fundamentals and attach relevant bibliographic
sources in the following.

(a) The structural aspects of the approach rest on the results of
older research on the foundations of quantum theory (Aerts,
1999), the origins of quantum probability (Aerts, 1986;
Pitowsky, 1989) and the identification of typically quantum
aspects outside the microscopic domain of quantum physics
(Aerts and Aerts, 1995; Aerts et al., 2000). A first major
step was taken in considering a concept as an “entity
in a specific state changing under the influence of a
context,” rather than as a “container of instantiations,” like
in most the traditional approaches to concepts. This led
to the development of a “State Context Property” (SCoP)
formalism for the description of any conceptual entity in
terms of its states, contexts and properties. In a cognitive
process, such as a typicality estimation, the cognitive context
changes the state of the conceptual entity, exactly as in a
micro physics process the measurement context changes
the state of the quantum particle that is measured. In this
perspective, the state pGuppy of the concept Pet (Fish) scores a
low typicality in absence of any context, while it scores a high
typicality when the concept Pet (Fish) is under the context
Fish (Pet). This insight was made concrete by means of an
explicit quantum representation of the Guppy effect situation
(Aerts and Gabora, 2005a,b).

(b) Continuing in this direction the mathematical formalism of
quantum theory was employed to model the overextension
and underextension of membership weights measured in
Hampton (1988a,b). More specifically, the overextension for
conjunctions of concepts measured in Hampton (1988a)
was described as an effect of quantum interference and
superposition (Aerts, 2009; Aerts et al., 2013b). The existence
of superposed quantum states allows for the description of
quantum interference, i.e., the deviation from the classically
expected pattern, in the two-slit experiment with quantum
particles. Analogously, the representation of the conjunction
of two concepts by means of a superposed quantum state
allows for the modeling of overextension as an expression
of quantum interference, i.e., deviation from the classically
expected behavior. Quantum interference and superposition
also play a primary role in the description of both
overextension and underextension for disjunctions of two
concepts (Hampton, 1988b). Successively, a two-sector Fock
space structure enabled a complete representation of data on
conjunctions and disjunctions of two concepts (Aerts, 2009;
Aerts et al., 2013b).
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(c) This quantum-theoretic framework was successfully applied
to describe more complex situations, such as borderline
vagueness (Sozzo, 2014) and the effects of negation
on conceptual conjunction (Sozzo, 2015). In addition,
specific conceptual combinations experimentally revealed
the presence of further genuine quantum effects, namely,
entanglement (Aerts et al., 2013a,b; Aerts and Sozzo,
2001, 2014) and quantum-type indistinguishability (Aerts
et al., 2015c). Finally, other phenomena related to concept
combination, such as “Ellsberg and Machina decision
making paradoxes” (Ellsberg, 1961; Machina, 2009) were
successfully modeled in the same quantum-conceptual
framework (Aerts et al., 2012, 2014).

There has been very little research on how people interpret
and combine negated concepts. In a seminal study, Hampton
(1997) considered in a set of experiments both conjunctions
of the form Games Which Are Also Sports and conjunctions of
the form Games Which Are Not Sports. His work confirmed
overextension in both types of conjunctions, also showing a
violation of Boolean classical logical rules for the negation,
which has recently been confirmed by ourselves (Sozzo, 2015).
In the present paper we extend the collection of data in Sozzo
(2015) with the aim of further exploring the use of negation
in conceptual combinations and, more generally, the underlying
logical structures being at work in human thought in the course
of cognitive processes (Aerts et al., 2015a). Let us first put
forward a specific comment with respect to the “negation of a
concept.” From the perspective of prototype theory, for quite
some concepts the negation of a concept can be considered
as a “singular concept,” since it does not have a well defined
prototype. In fact, while it is plain to determine the non-
membership of, e.g., Fruit, this does not seem to lead to the
determination involving a similarity with some prototype of Not
Fruit. Some authors maintain, for this reason, that single negated
concepts have little meaning and that conceptual negations can
be evaluated only in conjunctions of the form Fruits Which
Are Not Vegetables (Hampton, 1997). We agree that there is an
asymmetry between the way people estimate the membership of
an exemplar, e.g., Apple, with respect to a positive concept, e.g.,
Fruits, and the way people estimate the membership of the same
exemplar with respect to its negative counterpart, e.g.,Not Fruits.
Notwithstanding this, we believe it is meaningful to explicitly
introduce the concept Not Fruits in our research. First of all,
because we do not confine our concept modeling to prototype
theory, on the contrary, our approach is more general, the basic
structure of prototype theory can be recovered if we limit the
concepts to be in their ground states (Aerts and Gabora, 2005a,b).
Secondly, we will see that the quantum modeling elaborated in
the present paper sheds light exactly on this problem, namely,
the “negated concept” only appears as a full concept in “one
part of the representation,” while is treated as “non-membership
with respect to the positive concept” in the other part. Hence,
quantum-conceptual framework copes with this problem in a
natural way.
Let us proceed by steps, summarizing the major findings in this
paper, as follows.

In Section 2 we illustrate design and procedure of the four
cognitive experiments we performed. In the first experiment, we
tested the membership weights of four sets of exemplars with
respect to four pairs (A,B) of concepts and their conjunction
“A and B.” In the second experiment, we tested the membership
weights of the same four sets of exemplars with respect to
the same four pairs (A,B) of concepts, but negating the
second concept, hence actually considering A, B′ and the
conjunction “A and B′.” In the third experiment, we tested
the membership weights obtained considering A′, B and the
conjunction “A′ and B.” Finally, in the fourth experiment, we
considered the membership weights obtained by negating both
concepts, hence actually considering A′, B′ and the conjunction
“A′ and B′.”

We investigate the representability of the collected data,
reported in Appendix A3, in a “single classical Kolmogorovian
probability space” (Kolmogorov, 1933). Basic notions and results
on probability measures and classical modeling are briefly
reviewed in Appendix A1. We prove theorems providing
necessary and sufficient conditions for the modeling of the
conceptual conjunctions “A and B,” “A and B′,” “A′ and B,”
and “A′ and B′” in such a single classical Kolmogorovian
framework. Then, we observe that the data significantly violate
our theorems. More specifically, our analysis of classicality for
the presence of conjunction and negation together leads to five
classicality conditions that should be simultaneously satisfied by
the data to fit into one classical probability framework together.
When we analyze the deviations of our data with respect to
these five conditions we also find a very strong, stable and
systematic pattern of violation, i.e., the deviation has the same
numerical values even over different pairs of concepts. That
the violation is numerically the same independently of the
considered pair of concepts indicates that we have identified a
non-classical mechanism in human thought which is linked to
the depth of concept formation itself, independent of the specific
meaning for a specific pair of concepts and a specific set of
considered exemplars. This was for ourselves a first surprising
and unexpected finding, and we have recently devoted an article
to investigate it in depth (Aerts et al., 2015b).

A second major and equally unexpected finding was that
the numerical size of the “deviation of classicality pattern”
can exactly be predicted in our quantum-theoretic model
in two-sector Fock space. And, more, it can be explained
by assuming that human reasoning is the superposition of
two simultaneous processes, a “logical reasoning” and a
“conceptual,” or “emergent,” “reasoning.” Logical reasoning
combines cognitive entities (concepts, combinations of concepts,
propositions, etc.) by applying the rules of logic, though generally
in a probabilistic way. Emergent reasoning instead enables
formation of combined cognitive entities as newly emerging
entities (new concepts, new propositions, etc.), carrying new
meaning, linked to the meaning of the component cognitive
entities, but with a connection not defined by the algebra of
logic. Emergent reasoning can be modeled in first sector of
Fock space and, at variance with widespread beliefs, is dominant
in our approach. Logical reasoning can be modeled in second
sector of Fock space, hence one expects that classical logical rules
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hold in this sector, like we explicitly prove here for conceptual
conjunctions and negations (see also Aerts et al., 2015b).

Our quantum-theoretic model in two-sector Fock space
for conceptual negations and conjunctions is elaborated in
Section 3. It naturally extends the model in Aerts (2009) and
follows the general lines traced in Sozzo (2014, 2015). It is
however important to notice that the simultaneous modeling
of conjunction and negation requires the introduction of two
new conceptual steps which were not needed in the modeling
of conjunction pairs: (i) the introduction of entangled states
in second sector of Fock space, which enables formalizing the
situation where probabilities in second sector can be formed by
a “product procedure,” even if they are not independent—this
is an aspect of the Fock space model we had not understood
in our earlier modeling, hence we could consider it a further
new surprising finding of the investigation presented in this
paper; (ii) the handling of “negation” in second sector by “logical
inversion,” similarly like we handled conjunction in second sector
by “product,” more concretely, an experiment with “negation”
with respect to a concept is treated by “negating logically”
an experiment on the concept itself. This is also the way in
which our Fock space model naturally copes with the general
non-prototypicality of a negated concept, as already mentioned
above.

We see in Section 4 that a large amount of data can
be faithfully represented in our two-sector Fock space, and
construct an explicit representation for some relevant cases that
are classically problematical. A complete representation of the
data is provided in the Supplementary Material attached to
this paper. As we can see the findings presented in this paper
provide strong and independent confirmations to our quantum-
theoretic framework, and we devote Section 5 to comment on our
results and extensively discuss novelties and corroboration of our
approach. Technical appendices A4 and A5 complete the paper.

2. Description of Experiments and
Classicality Analysis

James Hampton identified in his cognitive tests systematic
deviations from classical (fuzzy) set predictions for membership
weights of exemplars with respect to conjunctions and
disjunctions of two concepts, and named these deviations
“overextensions” and “underextensions” (Hampton, 1988a,b).
Cases of “double overextension” were also observed. More
explicitly, if the membership weight of an exemplar x with
respect to the conjunction “A and B” of two concepts A and B
is higher than the membership weight of x with respect to one
concept (both concepts), we say that the membership weight of
x is “overextended” (“double overextended”) with respect to the
conjunction (by abuse of language, we say that x is overextended
(double overextended) with respect to the conjunction, in this
case). If the membership weight of an exemplar x with respect
to the disjunction “A or B” of two concepts A and B is less
than the membership weight of x with respect to one concept
(both concepts), we say that the membership weight of x is
“underextended” (“double underextended”) with respect to the
disjunction (by abuse of language, we say that x is underextended

(double underextended) with respect to the disjunction, in this
case).

Similar effects were identified by Hampton in his experiments
on conjunction and negation of two concepts (Hampton, 1997).
The analysis in Aerts (2009) revealed further deviations from
classicality in Hampton’s experiments, due to the impossibility
to generally represent the collected data in a classical probability
framework satisfying the axioms of Kolmogorov. In Sozzo (2015)
we moved along this direction and performed an experiment in
which we tested both conjunctions of the form “A and B” and
conjunctions of the form “A and B′,” for specific pairs (A,B) of
natural concepts. We showed that very similar deviations from
classicality are observed in our experiment too.

In the present paper we aim to generalize the results in Sozzo
(2015), providing an extensive analysis of conceptual conjunction
and negation and investigating their reciprocal influences. To this
end we complete the experiment in Sozzo (2015) by performing a
more general cognitive test, as described in the following sections.

2.1. Participants and Design
The participants to our experimental study—40 persons, chosen
among our colleagues and friends—were asked to fill in a
questionnaire in which they had to estimate the membership
of four different sets of exemplars with respect to four different
pairs (A,B) of natural concepts, and their conjunctions “A and
B,” “A and B′,” “A′ and B,” and “A′ and B′,” where A′ and B′

denote the negations of the concepts A and B, respectively. We
devised a “within-subjects design” for our experiments, hence
all participants were exposed to every treatment or condition.
The participants were presented with a preliminary text where
we made explicit, by means of suitable examples, what one
usually means by “membership of an exemplar with respect to
a specific conceptual category.” Further, we chose participants
with different backgrounds, not only academics, to avoid issues
connected with “selection biases.”

We considered four pairs of natural concepts, namely (Home
Furnishing, Furniture), (Spices,Herbs), (Pets, Farmyard Animals),
and (Fruits, Vegetables). For each pair, we considered 24
exemplars and measured their membership with respect to these
pairs of concepts and the conjunctions of these pairs mentioned
above.

Conceptual membership was estimated by using a “7-point
scale.” The participants were asked to choose a number from
the set +3,+2,+1, 0,−1,−2,−3, where the positive numbers
+1,+2, and+3 meant that they considered “the exemplar to be a
member of the concept”—+3 indicated a strongmembership,+1
a relatively weak membership. The negative numbers −1, −2,
and −3 meant that the participant considered “the exemplar
to not be a member of the concept”—−3 indicated a strong
non-membership,−1 a relatively weak non-membership.

Although we explicitly measured the “amount of
membership” on a 7-point scale, for the scopes of this paper, we
only need the data of a sub-experiment, namely the one tested
for “membership” or “non-membership”—our plan is to use the
“amount of membership data” for a following study leading to a
graphical representation of the data, as we did with Hampton’s
data for the disjunction in earlier work (Aerts et al., 2013a,b).
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A second reason for this specific form of the experiments is
that we wanted to stay as close as possible to the disjunction
experiments by Hampton (1988b), since we plan to investigate
later the connections of our conjunction data with Hampton’s
disjunction data, for example to investigate the way in which the
“de Morgan laws” take form in our modeling of the data. This
is why we performed the full experiment measuring “amount of
membership” and also testing simultaneously for “membership
or non-membership,” while it is only the latter sub-experiment
that we use in the investigation presented in this article. The
data of this sub-experiment give rise to relative frequencies for
testing membership or not membership, which means that we
can interpret them as probabilities in the limit of large numbers.
More concretely, µ(A and B) is the large number limit of the
relative frequency for x to be a member of “A and B” in the
performed experiment. We get to this by converting the values
collected on the 7-point scale by associating a value +1 to each
positive value on the 7-point scale, −1 to each negative number,
and 0.5 to each 0 on the same 7-point scale.

2.2. Procedure and Materials
This experimental study was carried out in accordance with the
recommendations of the “University of Leicester Code of Practice
and Research Code of Conduct, Research Ethics Committee
of the School of Management” with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. For each pair (A,B)
of natural concepts, the 40 participants were involved in four
subsequent experiments, eAB, eAB′ , eA′B, and eA′B′ , corresponding
to the conjunctions “A and B,” “A and B′,” “A′ and B,” and
“A′ and B′,” respectively. More specifically, the four sequential
experiments can be illustrated as follows.

For the conceptual pair (Home Furnishing, Furniture), we
firstly asked the 40 participants to estimate the membership of
the first set of 24 exemplars with respect to the concepts Home
Furnishing, Furniture, and their conjunction Home Furnishing
And Furniture. Then, we asked the same 40 participants to
estimate the membership of the same set of 24 exemplars
with respect to the concept Home Furnishing, the negation Not
Furniture of the concept Furniture, and their conjunction Home
Furnishing And Not Furniture. Subsequently, we asked the 40
participants to estimate the membership of the 24 exemplars
with respect to the negation Not Home Furnishing of the concept
Home Furnishing, the concept Furniture, and their conjunction
Not Home Furnishing And Furniture. Finally, we asked the 40
participants to estimate the membership of the 24 exemplars with
respect to the negations Not Home Furnishing, Not Furniture,
and their conjunction Not Home Furnishing And Not Furniture.
The corresponding membership weights are reported in
Table A1.

For the conceptual pair (Spices, Herbs), we firstly asked
the 40 participants to estimate the membership of the second
set of 24 exemplars with respect to the concepts Spices,
Herbs, and their conjunction Spices And Herbs. Then, we
asked the same 40 participants to estimate the membership
of the same set of 24 exemplars with respect to the concept
Spices, the negation Not Herbs of the concept Herbs, and their

conjunction Spices And Not Herbs. Subsequently, we asked
the 40 participants to estimate the membership of the 24
exemplars with respect to the negation Not Spices of the concept
Spices, the concept Herbs, and their conjunction Not Spices And
Herbs. Finally, we asked the 40 participants to estimate the
membership of the 24 exemplars with respect to the negations
Not Spices, Not Herbs, and their conjunction Not Spices And Not
Herbs. The corresponding membership weights are reported in
Table A2.

For the conceptual pair (Pets, Farmyard Animals), we firstly
asked the 40 participants to estimate the membership of the
third set of 24 exemplars with respect to the concepts Pets,
Farmyard Animals, and their conjunction Pets And Farmyard
Animals. Then, we asked the same 40 participants to estimate the
membership of the same set of 24 exemplars with respect to the
concept Pets, the negation Not Farmyard Animals of the concept
Farmyard Animals, and their conjunction Pets AndNot Farmyard
Animals. Subsequently, we asked the 40 participants to estimate
the membership of the 24 exemplars with respect to the negation
Not Pets of the concept Pets, the concept Farmyard Animals, and
their conjunction Not Pets And Farmyard Animals. Finally, we
asked the 40 participants to estimate the membership of the 24
exemplars with respect to the negations Not Pets, Not Farmyard
Animals, and their conjunction Not Pets And Not Farmyard
Animals. The corresponding membership weights are reported
in Table A3.

For the conceptual pair (Fruits, Vegetables), we firstly asked
the 40 participants to estimate the membership of the third set
of 24 exemplars with respect to the concepts Fruits, Vegetables,
and their conjunction Fruits And Vegetables. Then, we asked
the same 40 participants to estimate the membership of the
same set of 24 exemplars with respect to the concept Fruits,
the negation Not Vegetables of the concept Vegetables, and
their conjunction Fruits And Not Vegetables. Subsequently, we
asked the 40 participants to estimate the membership of the 24
exemplars with respect to the negation Not Fruits of the concept
Fruits, the concept Vegetables, and their conjunction Not Fruits
And Vegetables. Finally, we asked the 40 participants to estimate
themembership of the 24 exemplars with respect to the negations
Not Fruits, Not Vegetables, and their conjunction Not Fruits
And Not Vegetables. The corresponding membership weights are
reported in Table A4.

2.3. Methodology
A first inspection of tables Tables A1–A4 already reveals that
some exemplars present overextension with respect to all
conjunctions “A and B,” “A and B′,” “A′ and B,” “A′ and B′.” This is
the case, e.g., for the exemplar Lamp with respect to the concepts
Home Furnishing and Furniture (Table A1), the exemplar Salt
with respect to Spices and Herbs (Table A2), the exemplar
Goldfish with respect to Pets and Farmyard Animals (Table A3),
and the exemplar Mustard with respect to Fruits and Vegetables
(Table A4). Hence, manifest deviations from classicality occurred
in our experiments. When we say “deviations from classicality,”
we actually mean that the collected data behave in such a way that
they cannot generally be modeled by using the usual connectives
of classical (fuzzy set) logic for conceptual conjunctions, neither
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the rules of classical probability for their membership weights. In
order to systematically identify such deviations from classicality
we need however a characterization of the representability of
these data in a classical probability space. To this end we derive
in the following step by step conditions that will give us an
overall picture of the classicality of conceptual conjunctions and
negations. Finally, we arrive to a set of five conditions, formulated
in Theorem 3 as a set of necessary and sufficient conditions of
classicality for a pair of concepts, its negations and conjunctions
to be representable within a classical Kolmogorovian probability
model. Symbols and notions are introduced in Appendix A1.
Let us mention that to our knowledge the “necessary and
sufficient conditions for probabilities µ(A), µ(B), µ(A′), µ(B′),
µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) to
be represented within in classical Kolmogorovian probability
model, have not yet been systematically derived, and hence
are not known in the literature. However, the “necessary and
sufficient conditions for probabilitiesµ(A), µ(B) and µ(A and B)
to be represented within in classical Kolmogorovian probability
model have been systematically studied (Pitowsky, 1989), their
direct derivation can for example be found in Aerts (2009),
theorem 1 of Section 1.3. We will start our investigation of
the classicality condition by making use of the conditions that
could be derived for µ(A), µ(B), and µ(A and B) and applying
them additionally to µ(A′), µ(B′), and µ(A′ and B′), and to
add some intermediate conditions connecting µ(A), µ(B), and
µ(A and B) and µ(A′), µ(B′), and µ(A′ and B′), to also imply
classicality for the mixed situations such as µ(A), µ(B′), and
µ(A and B′). We can prove the following theorems (see also
Appendix A4).

Theorem 1. The membership weights µ(A), µ(B), µ(A′), µ(B′),
µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) of an
exemplar x with respect to the concepts A, B, the negations “not A,”
“not B,” the conjunctions “A and B,” “A and B′,” “A′ and B,” and
“A′ and B′” are classical conjunction data i.e., can be represented
in a classical Kolmogorovian probability model, if and only if they
satisfy the following conditions.

0 ≤ µ(A and B) ≤ µ(A) ≤ 1 (1)

0 ≤ µ(A and B) ≤ µ(B) ≤ 1 (2)

0 ≤ µ(A′ and B′) ≤ µ(A′) ≤ 1 (3)

0 ≤ µ(A′ and B′) ≤ µ(B′) ≤ 1 (4)

µ(A)− µ(A and B) = µ(B′)− µ(A′ and B′) (5)

= µ(A and B′)

µ(B)− µ(A and B) = µ(A′)− µ(A′ and B′) (6)

= µ(A′ and B)

1− µ(A)− µ(B)+ µ(A and B) = µ(A′ and B′) (7)

1− µ(A′)− µ(B′)+ µ(A′ and B′) = µ(A and B) (8)

Theorem 2. The membership weights µ(A), µ(B), µ(A′), µ(B′),
µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) of an
exemplar x with respect to the concepts A, B, A′, and B′ and the

conjunctions “A and B,” “A and B′,” “A′ and B,” and “A′ and B′” are
classical conjunction data if and only if they satisfy the following
conditions.

0 ≤ µ(A and B) ≤ µ(A) ≤ 1 (9)

0 ≤ µ(A and B) ≤ µ(B) ≤ 1 (10)

µ(A)− µ(A and B) = µ(B′)− µ(A′ and B′) (11)

= µ(A and B′)

µ(B)− µ(A and B) = µ(A′)− µ(A′ and B′) (12)

= µ(A′ and B)

0 ≤ 1− µ(A)− µ(B)+ µ(A and B) = µ(A′ and B′) (13)

The classicality requirements in Theorems 1 and 2 are not
symmetric with respect to the exchange of A with A′ and B with
B′. Thus, we can look for equivalent and more symmetric sets
of requirements. These include validity of the “marginal law”
of classical probability. We see this in Theorem 3, whose proof
preliminarily requires the following lemma.

Lemma 1. The four equalities defined in Equations (5) and (6)
are equivalent with the following four equalities expressing the
marginal law for all elements to be satisfied.

µ(A) = µ(A and B)+ µ(A and B′) (14)

µ(B) = µ(A and B)+ µ(A′ and B) (15)

µ(A′) = µ(A′ and B′)+ µ(A′ and B) (16)

µ(B′) = µ(A′ and B′)+ µ(A and B′) (17)

Theorem 3. The membership weights µ(A), µ(B), µ(A′), µ(B′),
µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) of an
exemplar x with respect to the concepts A, B, A′, and B′ and the
conjunctions “A and B,” “A and B′,” “A′ and B,” and “A′ and B′” are
classical conjunction data if and only if they satisfy the following
conditions.

0 ≤ µ(A and B) ≤ µ(A) ≤ 1 (18)

0 ≤ µ(A and B) ≤ µ(B) ≤ 1 (19)

µ(A) = µ(A and B)+ µ(A and B′) (20)

µ(B) = µ(A and B)+ µ(A′ and B) (21)

µ(A′) = µ(A′ and B′)+ µ(A′ and B) (22)

µ(B′) = µ(A′ and B′)+ µ(A and B′) (23)

0 ≤ 1− µ(A and B)− µ(A and B′)− µ(A′ and B) (24)

= µ(A′ and B′)

The conditions above can be further simplified by observing that
the membership weights we collected in our experiments are
large number limits of relative frequencies, thus all measured
quantities are already contained in the interval [0, 1]. Therefore,
we have

µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′), (25)

µ(A′ and B), µ(A′ and B′) ∈ [0, 1]
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Now, when Equation (25) is satisfied, we have that from
Equations (21) and (22) follows that

µ(A and B) ≤ µ(A)

µ(A and B) ≤ µ(B)

This entails that Equations (18) and (19) are satisfied, when
Equations (21) and (22) are. Hence, we can amazingly enough
formulate Theorem 3 a new, with only five conditions to be
satisfied—four conditions expressing the marginal law.

Theorem 3
′
. If the membership weights µ(A), µ(B), µ(A′), µ(B′),

µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) of an
exemplar x with respect to the concepts A, B, A′, and B′ and the
conjunctions “A and B,” “A and B′,” “A′ and B,” and “A′ and B′” are
all contained in the interval [0, 1], they are classical conjunction
data if and only if they satisfy the following conditions.

µ(A) = µ(A and B)+ µ(A and B′) (26)

µ(B) = µ(A and B)+ µ(A′ and B) (27)

µ(A′) = µ(A′ and B′)+ µ(A′ and B) (28)

µ(B′) = µ(A′ and B′)+ µ(A and B′) (29)

µ(A and B) + µ(A and B′)+ µ(A′ and B) (30)

+ µ(A′ and B′) = 1

Equations (26–30) express classicality conditions in their most
symmetric form. A more traditional way to quantify deviations
from classical conjunction in real data is resorting to the
following parameters.

1AB = µ(A and B)−min{µ(A), µ(B)} (31)

1AB′ = µ(A and B′)−min{µ(A), µ(B′)} (32)

1A′B = µ(A′ and B)−min{µ(A′), µ(B)} (33)

1A′B′ = µ(A′ and B′)−min{µ(A′), µ(B′)} (34)

In fact, the quantities 1AB, 1AB′ , 1A′B, and 1A′B′ typically
measure overextension with respect to the conjunctions “A and
B,” “A and B′,” “A′ and B,” and “A′ and B′,” respectively (Hampton,
1988a). However, overextension-type deviations are generally not
the only way in which membership for conjunction of concepts
can deviate from classicality. Let us now introduce the following
quantities:

kAB = 1− µ(A)− µ(B)+ µ(A and B) (35)

kAB′ = 1− µ(A)− µ(B′)+ µ(A and B′) (36)

kA′B = 1− µ(A′)− µ(B)+ µ(A′ and B) (37)

kA′B′ = 1− µ(A′)− µ(B′)+ µ(A′ and B′) (38)

The quantities kAB, kAB′ , kA′B, and kA′B′ have been named
“Kolmogorovian conjunction factors” and studied in detail in
Aerts (2009). The Kolmogorovian factors measure a deviation
that can be understood as of “opposite type” than the deviation
measured by the overextension. Namely, the condition for kAB is

violated when both µ(A) and µ(B) are “too large” compared with
µ(A and B). Finally, we introduce a new type of quantities that
measure the deviations of classicality as expressed by Equations
(27–30), hence essentially deviations from the marginal law of
classical probability:2

IABA′B′ = 1− µ(A and B)− µ(A and B′)− µ(A′ and B) (39)

− µ(A′ and B′)

IA = µ(A)− µ(A and B)− µ(A and B′) (40)

IB = µ(B)− µ(A and B)− µ(A′ and B) (41)

IA′ = µ(A′)− µ(A′ and B′)− µ(A′ and B) (42)

IB′ = µ(B′)− µ(A′ and B′)− µ(A and B′) (43)

Finally, Theorem 3′ can be reformulated by means of the
introduced parameters as follows.

Theorem 3
′′
. If the membership weightsµ(A), µ(B), µ(A′), µ(B′),

µ(A and B), µ(A and B′), µ(A′ and B), and µ(A′ and B′) of
an exemplar x with respect to concepts A, B, A′, and B′ and the
conjunctions “A and B,” “A and B′,” “A′ and B,” and “A′ and B′,” are
all contained in the interval [0, 1], they are classical conjunction
data if and only if

IABA′B′ = IA = IB = IA′ = IB′ = 0 (44)

2.4. Results
Let us now come back to our experiments. Theorems 1–3 are
manisfestly violated in several cases, and we report in Appendix
A3 the relevant conditions that should hold in a classical setting.
Since the conditions kAB > 0, kAB′ > 0, kA′B > 0, and
kA′B′ > 0 are always satisfied, they are not explicitly inserted in
Tables A1–A4. On the contrary, 1XY , IX , IY , X = A,A′,Y =
B,B′, and IABA′B′ are systematically violated. This means that
deviations from a classical probability model in our experimental
data are due to both overextension in the conjunctions and
violations of classicality in the negations. We consider some
relevant cases in the following.

The exemplar Apple scores µ(A) = 1 with respect to the
concept Fruits, µ(B) = 0.23 with respect to the concept
Vegetables, andµ(A and B) = 0.6 with respect to the conjunction
Fruits And Vegetables, hence it has 1AB = 0.38 (Table A4). The
exemplar Prize Bull scores µ(A) = 0.13 with respect to Pets,
µ(B) = 0.76 with respect to the concept Farmyard Animals,
and µ(A and B) = 0.43 with respect to the conjunction Pets
And Farmyard Animals, hence it has 1AB = 0.29 (Table A3).
The membership weight of Chili Pepper with respect to Spices is
0.98, with respect to Herbs is 0.53, while its membership weight
with respect to the conjunction Spices And Herbs is 0.8, hence
1AB = 0.27, thus giving rise to overextension (Table A2). Even
stronger deviations are observed in the combination Fruits And
Vegetables. For example, the exemplar Broccoli scores 0.09 with
respect to Fruits, 1 with respect to Vegetables, and 0.59 with

2Remark that, if we set IAA′ = 1−µ(A)−µ(A′) and IBB′ = 1−µ(B)−µ(B′), we
have IAA′ = IABA′B′ − IA − IA′ and IBB′ = IABA′B′ − IB − IB′ , which means that the

parameters IAA′ and IBB′ used in Sozzo (2015) can be derived from the parameters

IABA′B′ , IA, IB, IA′ , If the membership weights and IB′ .
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respect to Fruits And Vegetables (1AB = 0.49). A similar pattern
is observed for Parsley, which scores 0.02 with respect to Fruits,
0.78 with respect to Vegetables and 0.45 with respect to Fruits
And Vegetables (1AB = 0.43, Table A4).

Overextension is present when one concept is negated. More
explicitly:

(i) in the conjunction “A and B′.” Indeed, the membership
weights of Shelves with respect to Home Furnishing, Not
Furniture, and Home Furnishing And Not Furniture is 0.85, 0.13,
and 0.39, respectively, for a 1AB′ = 0.26 (Table A1). Then,
Pepper scores 0.99 with respect to Spices, 0.58 with respect to
Not Herbs, and 0.9 with respect to Spices and Not Herbs, for a
1AB′ = 0.32 (Table A2). Finally, Doberman Guard Dog gives
0.88 and 0.27 with respect to Pets and Not Farmyard Animals,
respectively, while it scores 0.55 with respect to Pets And Not
Farmyard Animals, hence it scores1AB′ = 0.28 (Table A3).

(ii) in the conjunction “A′ and B.” Indeed, the membership
weights of Desk with respect to Not Home Furnishing, Furniture
and Not Home Furnishing And Furniture is 0.31, 0.95, and
0.75, respectively, for a 1A′B = 0.44 (Table A1). The exemplar
Oregano scores 0.21 with respect to Not Spices, 0.86 with respect
to Herbs, and 0.5 with respect to Not Spices and Herbs, for a
1A′B = 0.29 (Table A2). Finally, again Doberman Guard Dog
gives 0.14 and 0.76 with respect to Not Pets and Farmyard
Animals, respectively, while it scores 0.45 with respect toNot Pets
And Farmyard Animals, hence it scores1A′B = 0.45 (Table A3).

When two concepts are negated—“A′ and B′”—we have, for
example, µ(A′) = 0.12, µ(B′) = 0.81 and µ(A′ and B′) = 0.43
for Goldfish, with respect to Not Pets and Not Farmyard Animals,
hence 1A′B′ = 0.31, in this case (Table A3). More, the exemplar
Garlic scoresµ(A′) = 0.88 with respect toNot Fruits andµ(B′) =
0.24 with respect to Not Vegetables, and µ(A′ and B′) = 0.45
with respect to Not Fruits And Not Vegetables, for a1A′B′ = 0.21
(Table A4).

Double overextension is also present in various cases. For
example, the membership weight of Olive with respect to Fruits
And Vegetables is 0.65, which is greater than both 0.53 and
0.63, i.e., the membership weights of Olive with respect to Fruits
and Vegetables, respectively (Table A4). Furthermore, Prize Bull
scores 0.13 with respect to Pets and 0.26 with respect to Not
Farmyard Animals, but its membership weight with respect to
Pets And Not Farmayard Animals is 0.28 (Table A3). Also, Door
Bell gives 0.32 with respect toNot Home Furnishing and 0.33 with
respect to Furniture, while it gives 0.34 with respect to Not Home
Furnishing And Furniture.

Significant deviations from classicality are also due to
conceptual negation, in the form of violation of the marginal
law of classical probability theory. By again referring to
Tables A1–A4, we have that the exemplar Field Mouse has IABA′B′

in Equation (40) equal to −0.46 (Table A3), while the exemplar
Doberman Guard Dog has IABA′B′ = −1.03 (Table A3). Both
exemplars thus violate Equation (30). Analogously, Chili Pepper
has IA in Equation (40) equal to −0.73 (Table A2), hence it
violates Equation (26), while Pumpkin has IB′ in Equation (43)
equal to−0.13 (Table A4), hence it violates Equation (29).

We performed a statistical analysis of the data, estimating the
probability that the experimentally identified deviations from

classicality would be due to chance. We specifically considered
the classicality conditions Equations (26–30) with the aim to
prove that the deviations IX , X = A,A′, IY , Y = B,B′ and
IABA′B′ in Equations (40–43) were statistically significant. We
firstly performed a “two-tail t-test for paired two samples for
means” to test deviations from the marginal law of classical
probability, that is, we tested violations of Equations (26–
29) by comparing µ(X) with respect to

∑

Y=B,B′ µ(X,Y),
X = A,A′, and µ(Y) with respect to

∑

X=A,A′ µ(X and Y),
Y = B,B′. Then, we performed a “two-tail t-test for one
sample for means” to test

∑

X=A,A′
∑

Y=B,B′ µ(Xand Y) with
respect to 1. The corresponding p-values for df = 37 are
reported in Tables A5A–E. Due to the high number of multiple
comparisons—24 null hypotheses were tested for each pair (X,Y)
of concepts—we applied a “Bonferroni correction procedure”
to avoid the so-called “family-wise error rate” (FWER). Hence,
we compared the obtained p-values with the reference value
0.05/24 ≈ 0.002. We found p-values systematically much
lower than this reference value, for all exemplars and pairs
of concepts, which makes it possible to conclude that the
experimentally tested deviations from classicality are not due
to chance.

In addition, our data analysis reveals a new, fundamental and
a priori unexpected deviation from classicality. The numerical
values of IA, IB, IA′ , IB′ , and IABA′B′ in Equations (40–43)
are reported in Aerts et al. (2015b). They are such that the
corresponding pattern of violation exhibits specific features:

(i) it cannot be explained by means of traditional classical
probabilistic approaches, since we should have IA = IB =
IA′ = IB′ = IABA′B′ = 0, in that case (see Theorem 3′′).

(ii) it is “highly stable,” in the sense that the functions IA, IB, IA′ ,
IB′ , and IABA′B′ are very likely between -1 and 0;

(iii) is is “systematic,” in the sense that the values of IA, IB,
IA′ , IB′ , and IABA′B′ are approximately the same across all
exemplars;

(iv) it is “regular,” in the sense that the functions IA, IB, IA′ , IB′ ,
and IABA′B′ do not depend on the pair of concepts that are
considered.

Observations (i–iv) were for us a clue that IA, IB, IA′ , IB′ , and
IABA′B′ are constant functions across all exemplars and pairs of
concepts. This is indeed the case, as we have proved in Aerts et al.
(2015b) by means of a “linear regression statistical analysis.” This
pattern is so unexpectedly stable, systematic and regular, being
independent of exemplars, concepts and conceptual connectives,
that it constitutes for us a fundamental new finding. We believe
that this deviation from classicality occurs at a deeper level than
the known deviations due to overextension and underextension,
and that it expresses a fundamental mechanism of concept
formation.

These results could already be considered as crucial for
claiming that the violation of classicality occurs at a deep
structural conceptual level, but this is not the end of the story.We
will see in Section 5 that the stability of this violation can exactly
be explained in a quantum-theoretic framework in two-sector
Fock space elaborated by ourselves. Hence, we devote Sections
3 and 4 to expose this modeling framework (the essentials of the
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formalism we apply are reviewed in Appendix A2, and we refer
to it for symbols and notation).

3. Quantum Modeling Conceptual
Conjunctions and Negations

In Aerts (2009) we proved that a big amount of the experimental
data collected in Hampton (1988a,b) on conjunctions and
disjunctions of two concepts can be modeled by using the
mathematical formalism of quantum theory. A two-sector Fock
space then provided an optimal algebraic setting for this
modeling. In Sozzo (2014) we proved that this quantum-theoretic
framework was suitable tomodel the data collected in Alxatib and
Pelletier (2011) on conjunctions of the form “A and A′,” and in
Sozzo (2015) we were able to prove that also the experimental
data collected on conjunctions of the form “A and B” and
“A and B′,” for specific pairs (A,B) of concepts can be represented
by using the same quantum mathematics. However, a complete
modeling of data on both conjunctions and negations requires
performing new experiments, where the conceptual conjunctions
“A and B” and “A and B′” are tested together with the conceptual
conjunctions “A′ and B” and “A′ and B′.” The complete collection
of these experiments has been discussed in Section 2. As
anticipated in Section 1, we undertake this modeling task here.
It is natural to observe that the modeling in Aerts (2009) needs
a suitable generalization, since conceptual negation should be
taken into account as well. But, we will see later in this section that
such a generalization is completely compatible with the original
model, because it rests on the assumption that (probabilistic
versions of) logical rules hold only in second sector of Fock space.
By introducing this quite natural assumption, we were able to
model conceptual conjunctions and disjunctions in Fock space.
We show now that conceptual conjunctions and negations can
be modeled in Fock space by introducing the same assumption.

To model conceptual negations we also need a new theoretical
step which was not necessary in our previous formulations,
namely, the introduction of “entangled states” in second sector
of Fock space to formalize situations where the membership
weights are not independent. This introduction, together with
the application of quantum logical rules in second sector of
Fock space, are compatible with previous formulations, but they
make our generalization in this paper highly non-obvious. We
will extensively discuss the novelties of the present modeling in
the next sections. Let us first proceed with our mathematical
construction.

Let us denote by µ(A), µ(B), µ(A′), µ(B′), µ(A and B),
µ(A and B′), µ(A′ and B), and µ(A′ and B′) the membership
weights of a given exemplar x with respect to the concepts A, B,
the negations A′, B′ and the conjunctions “A and B,” “A and B′,”
“A′ and B,” and “A′ and B′,” respectively.

The decisionmeasurement testing whether a specific exemplar
x is a member or not a member of a concept A is represented by
the spectral decomposition of the identity consisting of the two
orthogonal projection operators M (generally depending on x,
we omit such dependence, for the sake of brevity) and 1 − M
defined in a complex Hilbert space H. The concepts A and B are

represented by orthogonal unit vectors |A〉 and |B〉, respectively,
ofH. Hence we have

〈A|A〉 = 〈B|B〉 = 1 〈A|B〉 = 0 (45)

By using standard rules for quantum probabilities (see Appendix
A2), we have the following

µ(A) = 〈A|M|A〉 µ(B) = 〈B|M|B〉 (46)

where µ(A) and µ(B) are the measured membership weights
of x with respect to the concepts A and B, respectively, in the
performed experiment.

The conceptual negationsA′ and B′ are represented by another
pair of orthogonal unit vectors |A′〉 and |B′〉, respectively, such
that the set {|A〉, |B〉, |A′〉, |B′〉}, is an orthonormal set. Hence we
have

µ(A′) = 〈A′|M|A′〉 µ(B′) = 〈B′|M|B′〉 (47)

where µ(A′) and µ(B′) are the measured membership weights of
x with respect to the negations A′ and B′ of the concepts A and B,
respectively, in the performed experiment.

3.1. The First Sector Analysis
Let us first analyze the situation where we look for a modeling
solution in the Hilbert space H —which for our complete
quantum model in Fock space will be the first sector of this Fock
space, as we will show in detail later. In the Hilbert space H,
the concepts “A and B,” “A and B′,” “A′ and B,” and “A′ and
B′” are respectively represented by the superposition vectors3
1√
2
(|A〉+|B〉), 1√

2
(|A〉+|B′〉), 1√

2
(|A′〉+|B〉), and 1√

2
(|A′〉+|B′〉).

Let us analyze in detail the aspects of this situation with the
aim of resulting in a view on the possible solutions. Geometric
considerations induce to observe that, if we look for a solution
in the complex Hilbert space C

8, we will find the most general
type of solution. Indeed, since we consider four orthonormal
vectors |A〉, |A′〉, |B〉, and |B′〉, our Hilbert space will contain a
four dimensional subspace generated by these vectors. Further we
have two orthogonal projection operatorsM and 1−M, that work
on this four dimensional subspace. The image of a projection
operator has dimension not bigger than the definition domain
of it, which means that the image of M of the four dimensional
subspace is at maximum equal to four, and this is also the case for
the image of 1 − M of the four dimensional subspace. Since M
and 1−M are orthogonal, this can give rise to a eight dimensional
subspace, but not more. It means that we can incorporate all what
we need in an eight dimensional complex Hilbert space. This is
the reason that we look for our representation starting with C

8,
knowing that the choice of a Hilbert space with more than eight
dimensions would not add degrees of freedom that can give rise
to additional solutions to those that can be found in C

8. Hence,
we explicitly use this Hilbert space in what follows reminding,
however, that our results hold in any higher dimensional Hilbert

3We introduce in this model a superposition vector with equal weights on the two

vectors. The general case of a weighted superposition can be considered in future

investigation, and it is an interesting line of research in itself, as the interpretation

of the weights is not trivial.
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space. Let {|1〉 = (1, . . . , 0), |2〉 = (0, 1, . . . , 0), . . . , |8〉 =
(0, 0, . . . , 1)} denote the canonical base of C

8. We construct
a representation in C

8 where M projects on the subspace C
4

generated by the last four vectors of this canonical base, and1−M
on the subspace C

4 generator by the first four vectors of it. If we
set

|A〉 = eiφA (a1, a2, a3, a4, a5, a6, a7, a8) (48)

|A′〉 = eiφA′ (a′1, a
′
2, a

′
3, a

′
4, a

′
5, a

′
6, a

′
7, a

′
8) (49)

|B〉 = eiφB (b1, b2, b3, b4, b5, b6, b7, b8) (50)

|B′〉 = eiφB′ (b′1, b
′
2, b

′
3, b

′
4, b

′
5, b

′
6, b

′
7, b

′
8) (51)

then Equations (46) and (47) become

µ(A) = 〈A|M|A〉 = a25 + a26 + a27 + a28 (52)

1− µ(A) = 〈A|1−M|A〉 = a21 + a22 + a23 + a24 (53)

µ(A′) = 〈A′|M|A′〉 = a′25 + a′26 + a′27 + a′28 (54)

1− µ(A′) = 〈A′|1−M|A′〉 = a′21 + a′22 + a′23 + a′24 (55)

µ(B) = 〈B|M|B〉 = b25 + b26 + b27 + b28 (56)

1− µ(B) = 〈B|1−M|B〉 = b21 + b22 + b23 + b24 (57)

µ(B′) = 〈B′|M|B′〉 = b′25 + b′26 + b′27 + b′28 (58)

1− µ(B′) = 〈B′|1−M|B′〉 = b′21 + b′22 + b′23 + b′24 (59)

and the orthogonality conditions become

0 = 〈A|A′〉 = a1a
′
1 + a2a

′
2 + a3a

′
3 + a4a

′
4 + a5a

′
5

+ a6a
′
6 + a7a

′
7 + a8a

′
8 (60)

0 = 〈B|B′〉 = b1b
′
1 + b2b

′
2 + b3b

′
3 + b4b

′
4 + b5b

′
5

+ b6b
′
6 + b7b

′
7 + b8b

′
8 (61)

0 = 〈A|B〉 = a1b1 + a2b2 + a3b3 + a4b4 + a5b5

+ a6b6 + a7b7 + a8b8 (62)

0 = 〈A|B′〉 = a1b
′
1 + a2b

′
2 + a3b

′
3 + a4b

′
4 + a5b

′
5

+ a6b
′
6 + a7b

′
7 + a8b

′
8 (63)

0 = 〈A′|B〉 = a′1b1 + a′2b2 + a′3b3 + a′4b4 + a′5b5
+ a′6b6 + a′7b7 + a′8b8 (64)

0 = 〈A′|B′〉 = a′1b
′
1 + a′2b

′
2 + a′3b

′
3 + a′4b

′
4 + a′5b

′
5

+ a′6b
′
6 + a′7b

′
7 + a′8b

′
8 (65)

A solution of Equations (52–65) gives us a configuration of the
four orthonormal vectors |A〉, |A′〉, |B〉, and |B′〉 in C

8, such
that self-adjoint operator formed by the spectral decomposition
of the two orthogonal projections M and 1 − M give rise
to the values µ(A), 1 − µ(A), µ(A′), 1 − µ(A′), µ(B), 1 −
µ(B), and µ(B′), 1 − µ(B′), corresponding to the measured
data.

By using standard rules for quantum probabilities we
have that the membership weights for the conjunctions
corresponding to the measured data should satisfy the following
equations:

µ(A and B) = 1√
2
(〈A| + 〈B|)M 1√

2
(|A〉 + |B〉)

= 1

2
(µ(A)+ µ(B))+ℜ〈A|M|B〉 (66)

µ(A and B′) = 1√
2
(〈A| + 〈B′|)M 1√

2
(|A〉 + |B′〉)

= 1

2
(µ(A)+ µ(B′))+ℜ〈A|M|B′〉 (67)

µ(A′ and B) = 1√
2
(〈A′| + 〈B|)M 1√

2
(|A′〉 + |B〉)

= 1

2
(µ(A′)+ µ(B))+ℜ〈A′|M|B〉 (68)

µ(A′ and B′) = 1√
2
(〈A′| + 〈B′|)M 1√

2
(|A′〉 + |B′〉)

= 1

2
(µ(A′)+ µ(B′))+ℜ〈A′|M|B′〉 (69)

Hence, in C
8 these equations become

µ(A and B) = 1

2
(µ(A)+ µ(B))+ℜ〈A|M|B〉

= 1

2
(µ(A)+ µ(B))+ (a5b5 + a6b6 + a7b7 + a8b8)

cos(φB − φA) (70)

µ(A and B′) = 1

2
(µ(A)+ µ(B′))+ℜ〈A|M|B′〉

= 1

2
(µ(A)+ µ(B′))+ (a5b

′
5 + a6b

′
6 + a7b

′
7 + a8b

′
8)

cos(φB′ − φA) (71)

µ(A′ and B) = 1

2
(µ(A′)+ µ(B))+ℜ〈A′|M|B〉

= 1

2
(µ(A′)+ µ(B))+ (a′5b5 + a′6b6 + a′7b7 + a′8b8)

cos(φB − φA′ ) (72)

µ(A′ and B′) = 1

2
(µ(A′)+ µ(B′))+ℜ〈A′|M|B′〉

= 1

2
(µ(A′)+ µ(B′))+ (a′5b

′
5 + a′6b

′
6 + a′7b

′
7 + a′8b

′
8)

cos(φB′ − φA′ ) (73)

The conditions that should be satisfied by experimental data in

order to represent them in C
8 are reported in Appendix A5. By

analogy with what we found in Aerts (2009) and Sozzo (2014, 2015),

we however expect that our experimental data in Appendix A3

cannot be generally modeled in the complex Hilbert space C
8, or

first sector of Fock space, but a second sector C
8⊗C

8 of Fock space

is also needed. Consider for example a simple case that applies for

classical logics µ(A) = 1, µ(B) = 0 and µ(A and B) = 0. This case

is consistent with the minimum conjunction rule (Zadeh, 1982)

but not with our first sector of Fock space (Hilbert space) model.

We will see that this type of cases is compatible with second sector

of Fock space, and show that a framework that encompasses both

“logical” and “emergent” reasoning about membership in these

situations requires the general properties of a Fock space. To make

our description complete however, we first have to introduce a new,

conceptually relevant, ingredient.
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3.2. Introducing Entanglement in Conceptual
Combinations
In Aerts (2009) and Sozzo (2014, 2015) we successfully modeled

conjunctions of the form “A and B” in a Fock space constructed

as the direct sum of an individual Hilbert space H, or “first

sector of Fock space,” and a tensor product Hilbert space H ⊗ H,

or “second sector of Fock space.” The concepts A and B were

respectively represented by the unit vectors |A〉 and |B〉 ofH, while

the conjunction “A and B” was represented by the unit vector
1√
2
(|A〉 + |B〉) in first sector, and by the tensor product vector

|A〉 ⊗ |B〉 in second sector. The decision measurement of a person

who estimates whether a given exemplar x is a member of “A and

B” was represented by the orthogonal projection operatorM in first

sector, and by the tensor product projection operator M ⊗ M in

second sector. The conjunction “A and B” was represented by a unit

vector of the formψ(A,B) = meiθ |A〉⊗ |B〉+neiρ 1√
2
(|A〉+ |B〉) in

the Fock spaceH⊕ (H⊗H), while the decision measurement was

represented by the orthogonal projection operator M ⊕ (M ⊗ M)

in the same Fock space. By using quantum probabilistic rules, one

could then write the membership weight of x with respect to “A

and B” as µ(A and B) = 〈ψ(A,B)|(M ⊗ M) ⊕ M|ψ(A,B)〉 =
m2µ(A)µ(B) + n2( 12 (µ(A) + µ(B)) + ℜ〈A|M|B〉). This treatment

needs now to be generalized to the decision measurement of the

concepts A, B, the negations A′, B′ and the conjunctions “A and B,”

“A and B′, “A′ and B,” and “A′ and B′.” The first sector situation has

already been analysed in Section 3.1 where we have also constructed

an explicit representation in the complex Hilbert spaceC
8. Here we

analyse the second sector situation, but we allow for the possibility

of representing concepts by entangled states too.

Is it possible to introduce some “type of entanglement” in second

sectorC
8⊗C

8? This question is interesting, since it is reasonable to

believe that the outcomes of experiments for A are not independent

of the outcomes of experiments for B. For example, in case a specific

exemplar x is strongly a member of Fruits, this will influence the

strength of membership of Vegetables, and viceversa, because the

meanings of Fruits and Vegetables are not independent. And this

apparently occurs for all human concepts. Suppose we combined,

for example, Fruits with Not Fruits, then one would expect to exist,

for any exemplar, a substantial amount of anti-correlation between

it being a member of Fruits and it being a member of Not Fruits.

How can we express the general situation, where anti-correlation,

as well as correlation, are possible to be increased or decreased by

parameters? In the foregoing modeling (Aerts, 2009; Aerts et al.,

2013b) we chose the simplest representation for the situation in

second sector, namely the product state |A〉 ⊗ |B〉, which leads to a

situation of complete independence between A and B, for whatever

exemplar tested. Let us investigate what would be a situation for a

general entangled state, and how a two-sector Fock space already

incorporates this possibility.

Suppose that the concept “A and B” is not represented by the

product state vector |A〉 ⊗ |B〉 in second sector of Fock space

C
8⊗C

8, but by a general entangled state vector |C〉 of C8⊗C
8. We

remind thatC
8 is the concrete Hilbert space we have constructed in

Section 3.1. In the canonical base {|i〉}i= 1,...,8 of C
8, we have

|C〉 =
8

∑

i,j= 1

cije
iγij |i〉 ⊗ |j〉 (74)

and

1 = 〈C|C〉 =
8

∑

i,j= 1

c2ij (75)

We now express the effect, as described in second sector, of

the experiments where participants were asked to decide for

membership (or non-membership) of a specific exemplar with

respect to the concepts A and B, as follows. Membership with

respect to A, as a yes-no measurement, is represented by the

orthogonal projection operators M ⊗ 1, (1 − M) ⊗ 1, as spectral

family of the corresponding self-adjoint operator. Hence in second

sector, tests on concept A, are described in the first component of

the tensor product Hilbert space C
8 ⊗ C

8, which forms second

sector. In an analogous way, tests on concept B, are described in

the second component of the tensor product, by the orthogonal

projection operators 1 ⊗ M, 1 ⊗ (1 − M), as spectral family of

the corresponding self-adjoint operator. Remark that we do not

introduce in any way the concepts A′ and B′ for the second sector

description, and also not conjunction of A and B with them, at

least the aspect of these conjunctions that represent new emergent

concepts. The concept A′ and B′ are indeed “emergent entities”

because the negation on a concept to give rise to a new concept,

namely the negation concept.

Also the experimental data collected on A′, B′ and combinations

of them with A and B do not appear in second sector. All

emergence is indeed modeled in first sector. This means that

also the conjunction of A and B as a new emergent concept

does not appear in second sector, it only appears in first sector

modeled there by the superposition. All non-emergent equivalents

of these are described by the tensor product of the two self-adjoint

operators corresponding to the yes-no experiments with respect

to membership performed on concepts A and consequently on

concept B, exactly as in our real life experiment that gave rise to our

data on A and B. This means that the orthogonal projectors of the

spectral family of this tensor product self-adjoint operator describe

all cases of non-emergence. This family consists of {M ⊗ M,M ⊗
(1−M), (1−M)⊗M, (1−M)⊗ (1−M)}. Let us express this on
a general entangled state vector |C〉. We have

µ(A) = 〈C|M ⊗ 1|C〉 =
8

∑

i= 5

8
∑

j= 1

c2ij (76)

µ(B) = 〈C|1⊗M|C〉 =
8

∑

i= 1

8
∑

j= 5

c2ij (77)

1− µ(A) = 〈C|(1−M)⊗ 1|C〉 =
4

∑

i= 1

8
∑

j= 1

c2ij (78)

1− µ(B) = 〈C|1⊗ (1−M)|C〉 =
8

∑

i= 1

4
∑

j= 1

c2ij (79)

And further we have

〈C|M ⊗M|C〉 =
8

∑

i= 5

8
∑

j= 5

c2ij (80)
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〈C|M ⊗ (1−M)|C〉 =
8

∑

i= 5

4
∑

j= 1

c2ij (81)

〈C|(1−M)⊗M|C〉 =
4

∑

i= 1

8
∑

j= 5

c2ij (82)

〈C|(1−M)⊗ (1−M)|C〉 =
4

∑

i= 1

4
∑

j= 1

c2ij (83)

The values of 〈C|M ⊗ M|C〉, 〈C|M ⊗ (1 − M)|C〉, 〈C|(1 − M) ⊗
M|C〉, and 〈C|(1 − M) ⊗ (1 − M)|C〉 will respectively represent

the amounts that within our Fock space model second sector

contributes to the values of µ(A and B), µ(A and B′), µ(A′ and B),

and µ(A′ and B′). We can prove that the second sector theoretical

values, allowing the state to be a general entangled state in ourC
8⊗

C
8 Hilbert space model, reach exactly the values to be found for

the case the classicality conditions Equations (26–30) in Theorem

3′ are satisfied. More explicitly, the following theorem holds (see

Appendix A4 for its proof).

Theorem 4. If the experimentally collected membership weights

µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′), µ(A′ and B),

and µ(A′ and B′) can be represented in second sector of Fock

space for a given choice of the entangled state vector |C〉 and the

decision measurement projection operator M, then the membership

weights satisfy Equations (26–30), hence they are classical data.

Viceversa, if µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′),
µ(A′ and B), and µ(A′ and B′) satisfy Equations (26–30), hence they
are classical data, then an entangled state vector |C〉 and a decision

measurement projection operator M can always be found such that

µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′), µ(A′ and B),

and µ(A′ and B′) can be represented in second sector of Fock space.

Theorem 4 implies that the tensor product Hilbert space model

(second sector of Fock space) has exactly the same generality as

the most general classical conditions for conjunction and negation.

More specifically, given any data that satisfy the five classicality

conditions of Theorem 3′, we can construct an entangled state

such that in second sector “exactly” these classicality conditions are

satisfied. Moreover, it clarifies that entangled states in our general

Fock space modeling of data on conceptual conjunction and

negation play a fundamental unexpected role in the combination

of human concepts. The fact that classical logical rules are satisfied,

in a probabilistic form, in second sector of Fock space provides an

important confirmation to our two-sector quantum framework, as

we will see in Section 5.

3.3. A complete modeling in Fock space
In Section 3.1 we have considered the situation of first sector of

Fock space, representing the starting concepts A and B by the state

vectors |A〉 and |B〉, respectively, of a Hilbert space H. Then, we

have introduced the state vectors |A′〉 and |B′〉, which represent

the conceptual negations “not A” and “not B,” respectively. Since

first sector of Fock space describes “emergence,” the state vectors

|A′〉 and |B′〉 can be interpreted as representing the newly emergent

concepts “not A” and “not B,” respectively, compatibly with the

core of the approach we developed in our quantum modeling of

combinations of concepts. We have also seen in Section 3.1 that

also the newly emergent concept “A and B,” or one of the other

conjunction combinations, “A and B′,” “A′ and B,” and “A′ and B′,”
are directly represented in this first sector of Fock space by state

vectors, more specifically by the superposition state vectors of the

corresponding state vectors, namely 1√
2
(|A〉+ |B〉), 1√

2
(|A〉+ |B′〉),

1√
2
(|A′〉 + |B〉) and 1√

2
(|A′〉 + |B′〉), respectively.

Following Aerts (2009) and Sozzo (2014, 2015), we should also

take into account the logical aspects of conceptual conjunctions and

negations in second sector of Fock space, mathematically formed by

the tensor product of the Hilbert spaceH of first sector. In previous

papers we had represented the state of the concept A and B in

second sector by the product vector |A〉⊗|B〉 of this tensor product
H ⊗ H. However, this leads inevitably to the probability for the

conjunctionµ(A and B) to be equal to the productµ(A)µ(B), as we

have seen in Section 3.2. In classical probability theory this means

that the probabilities are probabilistically independent. Now, quite

obviously, since the concepts A and B are related by their meaning,

these probabilities are not probabilistically independent. Suppose

that B is the negation A′, like in the borderline effect (Sozzo,

2014). Then, we obviously would have an anti-correlation between

µ(A) and µ(B). But, even in this not simple case, any meaning

connection between A and B would give rise to probabilities

that are not independent. On the other hand, we have seen in

Section 3.2 that we can model any type of classical probabilistic

dependence by introducing the proper entangled state for the

concept representation of A and of B in second sector. This means

that we should not in principle use |A〉 ⊗ |B〉 to represent the

concepts in second sector, but a properly chosen entangled state.

Let us denote, following our analysis in Section 3.2, such a

general entangled state in C
8 by means of

|C〉 =
8

∑

i,j= 1

cije
γij |i〉 ⊗ |j〉 (84)

where |i〉 and |j〉 are the canonical base vectors of C
8.

The state vector representing the concept “A and B” in its

totality, hence its first sector part, describing emergent human

thought, i.e., the formation of the new concept “A and B,” and its

second sector part, describing quantum logical human thought,

i.e., the conjunctive connective structure “A and B,” is then the

following

ψ(A,B) = mABe
iθ |C〉 + nABe

iρ

√
2

(|A〉 + |B〉) (85)

with m2
AB + n2AB = 1. It is indeed the superposition of two vectors,

one vector given by 1√
2
(|A〉 + |B〉) in first sector of Fock space,

accounting for the emergent part of human thought with respect

to the conjunction, and a second vector given by |C〉 in second

sector of Fock space, accounting for the quantum logical part of

human thought with respect to the conjunction. By using Equations

(84) and (85), we then get the following general expression for the

membership weight of the conjunction

µ(A and B) = 〈ψ(A,B)|(M ⊗M ⊕M)|ψ(A,B)〉
= m2

AB(〈C|)M ⊗M|(|C〉)
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+ n2AB
2

(〈A| + 〈B|)M(|A〉 + |B〉)

= m2
AB

8
∑

i,j= 5

c2ij +
n2AB
2

(〈A|M|A〉 + 〈B|M|B〉

+ 〈A|M|B〉 + 〈B|M|A〉)

= m2
AB

8
∑

i,j= 5

c2ij + n2AB(
1

2
(µ(A)+ µ(B))+ℜ〈A|M|B〉)

= m2
AB

8
∑

i,j= 5

c2ij + n2AB(
1

2
(µ(A)+ µ(B))

+ (a5b5 + a6b6 + a7b7 + a8b8) cos(φB − φA)) (86)

where we have used Equation (70) in the last line of Equation (86).

What is the procedure corresponding to emergent and quantum

logical parts of human thought when we also take into account

negations, i.e., when we consider the conjunctions “A and B′,”
“A′ and B,” and “A′ and B′”? As for first sector of Fock space,

we have already made it explicit in Section 3.1. Indeed, the new

emergent concepts “A′” and “B′” are described by the state vectors

|A′〉 and |B′〉, and the respective conjunctions, i.e., their emergent

aspects as a new concept, each time by means of the corresponding

superposition state vector. This is the way the emergence of

negation and conjunction are jointly modeled in first sector of Fock

space—new state vectors model the new emergent concepts due

to negation, and the emergent conjunctions are modeled by the

respective superpositions.

In second sector of Fock space, we however have a specific

situation to solve. Namely, exactly as we did for the conjunction,

we need to identify what is the quantum logical structure related

with negation, independent of its provoking the emergence of a

new concept, i.e., the negation of the original concept. In second

sector of Fock space we indeed only express the quantum logical

reasoning in human thought and not the emergent reasoning. For

the conjunction “A and B” we did this by means of the entangled

state |C〉. Let us reflect about the negation, for example, with respect

to the concept B. Tomake things clear let us introduce the following

two expressions. We are in the experimental situation where the

membership of an exemplar x, or the non-membership of this

exemplar, is to be decided about, by a person participating in the

experiment. The concept B can be involved, and the concept B′ can
be involved.

Expression 1. The considered exemplar x is a member of the

concept B′.

Expression 2. The considered exemplar x is “not” a member of the

concept B.

Our theoretic proposal is that:

(1) the first expression describes what happens in a human mind

when emergent thought is dominant with respect to a concept

B, its negation B′ and an exemplar x. Indeed, the focus is

on “membership” of this exemplar x with respect to the new

emergent concept “B′”;
(2) the second expression describes what happens in a human

mind when quantum logical thought is dominant with respect

to a concept B, its negation B′ and an exemplar x. Indeed, the

focus is on “non-membership” of this exemplar x with respect

to the old existing concept B.

Expressions (1) and (2) are two structurally speaking subtle deeply

different possibilities of reasoning related to a concept and its

negation.

Our third theoretic proposal is that:

(3) human thought, when confronted with this situation, follows

a dynamics described by a quantum superposition of the two

modes (1) and (2).

We will see in the following that the mathematical structure of Fock

space enables modeling this in an impecable way.

Indeed, expression (1) will be modeled in first sector of our Fock

space, and it is mathematically realised by makingM work on |B′〉.
Expression (2) will instead be modeled in second sector of Fock

space, and it is mathematically realised bymaking 1⊗(1−M) work

on |C〉. In the complete Fock space, direct sum of its first and second

sectors, mathematically a superposition of the whole dynamics can

be realised, by considering the superposition state which we already

specified in Equation (85), and consider different structures of the

projection operator on the whole of Fock space. More specifically,

(M ⊗ M) ⊕ M for “A and B,” (M ⊗ (1 − M)) ⊕ M for “A and

B′,” ((1 − M) ⊗ M) ⊕ M for “A′ and B,” and ((1 − M) ⊗ (1 −
M)) ⊕ M for “A′ and B′.” However, for each of the combinations

the vector representing the combination in second sector of Fock

space will be |C〉. So, no vector appears in second sector of Fock

space, since the negation is expressed quantum logically here, hence

by M becoming 1 − M. While in first sector of Fock space, the

negation is expressed emergently, hence by |A〉 becoming |A′〉 and
|B〉 becoming |B′〉, andM remainingM, since the focus in this first

sector of Fock space, with emergent reasoning of human thought,

is always on “membership,” while in second sector, with quantum

logical reasoning, the focus of negation is on “non-membership,”

described by 1−M.

The above conceptual analysis makes it possible for us to write

the complete Fock space formulas for the other combinations.More

specifically, if we represent the concept “A and B′” by the unit vector

ψ(A,B′) = mAB′e
iθ |C〉 + nAB′e

iρ

√
2

(|A〉 + |B′〉) (87)

with m2
AB′ + n2AB′ = 1, then, by using Equations (84) and (87), we

get

µ(A and B′) = 〈ψ(A,B′)|M ⊗ (1−M)⊕M|ψ(A,B′)〉
= m2

AB′ (〈C|)M ⊗ (1−M)|(|C〉)

+
n2AB′

2
(〈A| + 〈B′|)M(|A〉 + |B′〉)

= m2
AB′

8
∑

i= 5

4
∑

j= 1

c2ij +
n2AB′

2
(〈A|M|A〉 + 〈B′|M|B′〉

+〈A|M|B′〉 + 〈B′|M|A〉)

= m2
AB′

8
∑

i= 5

4
∑

j= 1

c2ij + n2AB′

(

1

2
(µ(A)+ µ(B′))

+ℜ〈A|M|B′〉
)
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= m2
AB′

8
∑

i= 5

4
∑

j= 1

c2ij + n2AB′ (
1

2
(µ(A)+ µ(B′))

+(a5b
′
5 + a6b

′
6 + a7b

′
7 + a8b

′
8) cos(φB′ − φA))

(88)

where we have used Equation (71) in the last line of Equation (88).

Analogously, if we represent the concept “A′ and B” by the unit

vector

ψ(A′,B) = mA′Be
iθ |C〉 + nA′Be

iρ

√
2

(|A′〉 + |B〉) (89)

with m2
A′B + n2A′B = 1, then, by using Equations (84) and (89), we

get

µ(A′ and B) = 〈ψ(A′,B)|(1−M)⊗M ⊕M|ψ(A′,B)〉
= m2

A′B(〈C|)(1−M)⊗M|(|C〉)

+
n2A′B

2
(〈A′| + 〈B|)M(|A′〉 + |B〉)

= m2
A′B

4
∑

i= 1

8
∑

j= 5

c2ij +
n2A′B

2
(〈A′|M|A′〉 + 〈B|M|B〉

+ 〈A′|M|B〉 + 〈B|M|A′〉)

= m2
A′B

4
∑

i= 1

8
∑

j= 5

c2ij + n2A′B(
1

2
(µ(A′)+ µ(B))

+ ℜ〈A′|M|B〉)

= m2
A′B

4
∑

i= 1

8
∑

j= 5

c2ij + n2A′B(
1

2
(µ(A′)+ µ(B))

+ (a′5b5 + a′6b6 + a′7b7 + a′8b8) cos(φB − φA′ ))

(90)

where we have used Equation (72) in the last line of Equation (90).

Finally, if we represent the concept “A′ and B′” by the unit vector

ψ(A′,B′) = mA′B′e
iθ |C〉 + nA′B′e

iρ

√
2

(|A′〉 + |B′〉) (91)

withm2
A′B′ + n2A′B′ = 1, then, by using Equations (84) and (91), we

get

µ(A′ and B′) = 〈ψ(A′,B′)|(1−M)⊗ (1−M)⊕M|ψ(A′,B′)〉
= m2

A′B′ (〈C|)(1−M)⊗ (1−M)|(|C〉)

+
n2A′B′

2
(〈A′| + 〈B′|)M(|A′〉 + |B′〉)

= m2
A′B′

4
∑

i,j= 1

c2ij +
n2A′B′

2
(〈A′|M|A′〉

+ 〈B′|M|B′〉 + 〈A′|M|B′〉 + 〈B′|M|A′〉)

= m2
A′B′

4
∑

i,j= 1

c2ij + n2A′B′ (
1

2
(µ(A)+ µ(B′))

+ ℜ〈A′|M|B′〉)

= m2
A′B′

4
∑

i,j= 1

c2ij + n2A′B′ (
1

2
(µ(A′)+ µ(B′))

+ (a′5b
′
5 + a′6b

′
6 + a′7b

′
7 + a′8b

′
8) cos(φB′ − φA′ ))

(92)

where we have used Equation (73) in the last line of Equation (92).

Equations (86), (88), (90), and (92) contain the probabilistic

expressions for simultaneously representing experimental data on

conjunctions and negations of two concepts in a quantum-theoretic

framework. These equations express themembership weights of the

conjunctions “A and B,” “A and B′,” “A′ and B,” and “A′ and B′” in
terms of the memership weights of A, B, A′, and B′, for suitable
values of the following modeling parameters:4

(i) the angles φB − φA, φB′ − φA, φB − φA′ and φB′ − φA′ ,

(ii) the pairs of convex coefficients (mAB, nAB), (mAB′ , nAB′ ),

(mA′B, nA′B) and (mA′B′ , nA′B′ ),

(iii) the normalized coefficients c211, . . . , c
2
88.

As we can see our two-sector Fock space framework is able to cope

with conceptual negation in a very natural way. In fact, the latter

negation is modeled by using the general assumption that emergent

aspects of a concept are represented in first sector of Fock space,

while logical aspects of a concept are represented in second sector.

This will be made explicit in Section 5. It is however important

to stress that, for a given experiment eXY , with X = A,A′, Y =
B,B′ described in Section 2, there is no guarantee that sets of

these parameters can be found such that Equations (86–92) are

simultaneously satisfied. For this reason, we provide in Appendix

A5 the conditions that should be satisfied by the experimental data

µ(A), µ(B), . . . , µ(A′ and B), µ(A′ and B) such that these sets exist.

The conclusion we draw from the analysis above is that finding

solutions for a given set of experimental data in our quantum-

theoretic modeling it is highly non-obvious, which makes the

results in the next section even more significant.

4. Representation of experimental data in
Fock space

Most of these data in Tables A1–A4, are compatible with the

intervals in Equations (A26), (A29), (A32), and (A35). Hence,

almost all our data can be successfully modeled by using the

quantum probabilistic equations in Equations (86), (88), (90), and

(92). Let us consider some interesting cases, distinguishing them

by: (i) situations with double overextension, (ii) situations with

complete overextension, (iii) situations requiring both sectors of

Fock space and/or entanglement, (iv) partially classical situations.

Complete modeling is presented in the Supplementary Material

attached to this article.

(i) Let us start with exemplars that are double overextended.

Olive, with respect to (Fruits, Vegetables) (double

overextension with respect to Fruits And Vegetables). Olive

scored µ(A) = 0.53 with respect to Fruits, µ(B) = 0.63

4We remind that n2XY = 1−m2
XY ,X = A,A′,Y = B,B′. In addition, only the sums

∑8
i,j= 5 c

2
ij,

∑8
i= 5

∑4
j= 1 c

2
ij,

∑4
i= 1

∑8
j= 5 c

2
ij, and

∑8
i,j= 5 c

2
ij appear in Equations

(86), (88), (90), and (92), respectively.
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with respect to Vegetables, µ(A′) = 0.47 with respect to

Not Fruits, µ(B′) = 0.44 with respect to Not Vegetables,

µ(A and B) = 0.65 with respect to Fruits And Vegetables,

µ(A and B′) = 0.34 with respect to Fruits And Not Vegetables,

µ(A′ and B) = 0.51 with respect to Not Fruits And Vegetables,

and µ(A′ and B′) = 0.36 with respect to Not Fruits And

Not Vegetables. If one first looks for a representation of

Olive in the Hilbert space C
8, then the concepts Fruits and

Vegetables are represented by the unit vectors |A〉 = eiφA

(−0.02, −0.47, 0.5, −0.02, −0.07, −0.31, −0.18, −0.63) and

|B〉 = eiφB (0.04, 0.02, −0.6, 0.03, −0.26, 0.35, −0.39, −0.53),

respectively, and their negations Not Fruits and Not

Vegetables by the unit vectors |A′〉 = eiφA′ (0.06,−0.47,−0.55,

0.03, −0.02, −0.64, −0.06, 0.25), and |B′〉 = eiφB′ (−0.03,

0.75,−0.01,−0.01,−0.08,−0.6,−0.18,−0.19), respectively.

The interference angles φAB = φB − φA = 57.31◦, φAB′ =
φB′ − φA = 95.32◦, φA′B = φB − φA′ = 103.43◦ and φA′B′ =
φB′ − φA′ = 85.56◦ complete the Hilbert space representation

in C
8. A complete modeling in the Fock space C

8 ⊕ (C8 ⊗
C
8) satisfying Equations (86), (88), (90), and (92) is given

by an entangled state characterized by
∑8

i,j= 5 c
2
ij = 0.442,

∑8
i= 5

∑4
i= 1 c

2
ij = 0.582,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.662 and

∑4
i,j= 1 c

2
ij = 0.182, and convex weights mAB = 0.42, nAB =

0.91, mAB′ = 0.1, nAB′ = 0, mA′B = 0.78, nA′B = 0.63,

mA′B′ = 0.52, and nA′B′ = 0.86.

Prize Bull, with respect to (Pets, Farmyard Animals)

(double overextension with respect to Pets And Not Farmyard

Animals). Prize Bull scored µ(A) = 0.13 with respect to Pets,

µ(B) = 0.76 with respect to Farmyard Animals, µ(A′) =
0.88 with respect to Not Pets, µ(B′) = 0.26 with respect to

Not Farmyard Animals, µ(A and B) = 0.43 with respect

to Pets And Farmyard Animals, µ(A and B′) = 0.28 with

respect to Pets And Not Farmyard Animals, µ(A′ and B) =
0.83 with respect to Not Pets And Farmyard Animals, and

µ(A′ and B′) = 0.34 with respect to Not Pets And Not

Farmyard Animals. If one first looks for a representation of

Prize Bull in the Hilbert space C
8, then the concepts Pets

and Farmyard Animals, and their negations Not Pets and Not

Farmyard Animals are respectively represented by the unit

vectors |A〉 = eiφA (0.07, −0.39, −0.84,0.03, −0.06, −0.35,

0.04, −0.01) and |B〉 = eiφB (0.03, 0.21, −0.44, 0.01, 0.01,

0.81, −0.2, −0.25), and |A′〉 = eiφA′ (0.01, 0.29, −0.19, 0,

0.11, 0.06, −0.2, 0.91) and |B′〉 = eiφB′ (0.01, 0.84, −0.19,

0,−0.17,−0.41,−0.01, −0.26).

The interference angles φAB = φB − φA = 105.71◦, φAB′ =
φB′ − φA = 40.23◦, φA′BE = φB − φA′ = 111.25◦ and φA′B′ =
φB′ − φA′ = 52.51◦ complete the Hilbert space representation

in C
8. A complete modeling in the Fock space C

8 ⊕ (C8 ⊗
C
8) satisfying Equations (86), (88), (90), and (92) is given

by an entangled state characterized by
∑8

i,j= 5 c
2
ij = 0.242,

∑8
i= 5

∑4
i= 1 c

2
ij = 0.272,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.842, and

∑4
i,j= 1 c

2
ij = 0.412, and convex weights mAB = 0.46, nAB =

0.89, mAB′ = 0.41, nAB′ = 0.91, mA′B = 0.54, nA′B = 0.84,

mA′B′ = 0.52, and nA′B′ = 0.85.

Door Bell, with respect to (Home Furnishing, Furniture)

(double overextension with respect to Not Home Furnishing

And Furniture). Door Bell scored µ(A) = 0.75 with respect

to Home Furnishing, µ(B) = 0.33 with respect to Furniture,

µ(A′) = 0.32 with respect to Not Home Furnishing, µ(B′) =
0.79 with respect to Not Furniture, µ(A and B) = 0.5 with

respect to Home Furnnishing And Furniture, µ(A and B′) =
0.64 with respect to Home Furnishing And Not Furniture,

µ(A′ and B) = 0.34 with respect to Not Home Furnishing

And Furniture, and µ(A′ and B′) = 0.51 with respect

to Not Home Furnishing And Not Furniture. If one first

looks for a representation of Door Bell in the Hilbert space

C
8, then the concepts Home Furnishing and Furniture, and

their negations Not Home Furnishing and Not Furniture are

respectively represented by the unit vectors |A〉 = eiφA (0,0.33,

0.37, −0.05, 0.04, −0.29, 0, 0.81) and |B〉 = eiφB (−0.14,

0.77, 0.17, −0.16, 0.24, −0.19, 0.07, −0.48), and |A′〉 = eiφA′

(0.21, −0.43, 0.66, 0.13, 0.22, −0.39, 0.22, −0.27) and |B′〉 =
eiφB′ (−0.08,−0.03,−0.45,−0.02,−0.17,−0.52, 0.7, 0.04).

The interference angles φAB = φB − φA = 102.81◦,
φAB′ = φB′ − φA = 117.67◦, φA′B = φB − φA′ = 67.37◦

and φA′B′ = φB′ − φA′ = 77.65◦ complete the Hilbert space

representation in C
8. A complete modeling in the Fock space

C
8 ⊕ (C8 ⊗ C

8) satisfying Equations (86), (88), (90), and (92)

is given by an entangled state characterized by
∑8

i,j= 5 c
2
ij =

0.352,
∑8

i= 5

∑4
i= 1 c

2
ij = 0.792,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.462 and

∑4
i,j= 1 c

2
ij = 0.22, and convex weights mAB = 0.48, nAB =

0.88, mAB′ = 0.91, nAB′ = 0.41, mA′B = 0.65, nA′B = 0.76,

mA′B′ = 0.43, and nA′B′ = 0.9.

(ii) Let us now come to the exemplars that present complete

overextension, that is, exemplars that are overextended in all

experiments.

Goldfish, with respect to (Pets, Farmyard Animals)

(big overextension in all experiments, but also double

overextension with respect to Not Pets And Farmyard

Animals). Goldfish scored µ(A) = 0.93 with respect to Pets,

µ(B) = 0.17 with respect to Farmyard Animals, µ(A′) =
0.12 with respect to Not Pets, µ(B′) = 0.81 with respect to

Not Farmyard Animals, µ(A and B) = 0.43 with respect

to Pets And Farmyard Animals, µ(A and B′) = 0.91 with

respect to Pets And Not Farmyard Animals, µ(A′ and B) =
0.18 with respect to Not Pets And Farmyard Animals, and

µ(A′ and B′) = 0.43 with respect to Not Pets And Not

Farmyard Animals. If one first looks for a representation

of Goldfish in the Hilbert space C
8, then the concepts Pets

and Farmyard Animals, and their negations Not Pets and

Not Farmyard Animals are respectively represented by the

unit vectors |A〉 = eiφA (−0.05, 0.16, −0.21, −0.01, −0.71,

0.22, 0.33, 0.51) and |B〉 = eiφB (−0.24, 0.26, −0.84, −0.07,

0.38, −0.11, −0.01, 0.12), and |A′〉 = eiφA′ (0.18, 0.85, 0.35,

0.09, 0.2, −0.12, −0.03, 0.25) and |B′〉 = eiφB′ (0.01, −0.41,

0.14,−0.01, 0.27,−0.32,−0.13, 0.79).
The interference angles φAB = φB − φA = 78.9◦, φAB′ =

φB′ − φA = 43.15◦, φA′B = φB − φA′ = 54.74◦ and φA′B′ =
φB′ − φA′ = 77.94◦ complete the Hilbert space representation

in C
8. A complete modeling in the Fock space C

8 ⊕ (C8 ⊗
C
8) satisfying Equations (86), (88), (90), and (92) is given

by an entangled state characterized by
∑8

i,j= 5 c
2
ij = 0.352,

∑8
i= 5

∑4
i= 1 c

2
ij = 0.92,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.222 and

∑4
i,j= 1 c

2
ij = 0.172, and convex weights mAB = 0.45, nAB =
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0.89, mAB′ = 0.45, nAB′ = 0.9, mA′B = 0.48, nA′B = 0.88,

mA′B′ = 0.45, and nA′B′ = 0.89.

Parsley, with respect to (Spices, Herbs) (overextension in

all experiments). Parsley scored µ(A) = 0.54 with respect

to Spices, µ(B) = 0.9 with respect to Herbs, µ(A′) = 0.54

with respect to Not Spices, µ(B′) = 0.09 with respect to

Not Herbs, µ(A and B) = 0.68 with respect to Spices And

Herbs, µ(A and B′) = 0.26 with respect to Spices And

Not Herbs, µ(A′ and B) = 0.73 with respect to Not Spices

And Herbs, and µ(A′ and B′) = 0.18 with respect to Not

Spices And Not Herbs. If one first looks for a representation

of Parsley in the Hilbert space C
8, then the concepts Spices

and Herbs, and their negations Not Spices and Not Herbs are

respectively represented by the unit vectors |A〉 = eiφA (0,

0.25, −0.63, −0.02, −0.02, 0.5, −0.06, 0.54) and |B〉 = eiφB

(0, 0.02, −0.32, −0.01, 0.09, −0.84, −0.23, 0.37), and |A′〉 =
eiφA′ (0, 0.17, 0.66, 0.02, −0.17, 0.01,0.14, 0.7) |B′〉 = eiφB′

(0,−0.95,−0.06,−0.01,−0.04, 0.11, 0.02, 0.27).

The interference angles φAB = φB − φA = 97.66◦, φAB′ =
φB′ − φA = 84.49◦, φA′B = φB − φA′ = 68.25◦ and φA′B′ =
φB′ −φA′ = 113.49◦ complete the Hilbert space representation

in C
8. A complete modeling in the Fock space C

8 ⊕
(C8 ⊗ C

8) satisfying Equations (86), (88), (90), and (92) is

given by an entangled state characterized by
∑8

i,j= 5 c
2
ij =

0.662,
∑8

i= 5

∑4
i= 1 c

2
ij = 0.322,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.682 and

∑4
i,j= 1 c

2
ij = 0, and convex weights mAB = 0.48, nAB = 0.88,

mAB′ = 0.55, nAB′ = 0.84, mA′B = 0.46, nA′B = 0.89,

mA′B′ = 0.5, and nA′B′ = 0.87.

(iii) Let us then illustrate some relevant exemplars that either

cannot be modeled in a pure Hilbert space framework, or

cannot be represented by product states in second sector of

Fock space.

Raisin, with respect to (Fruits, Vegetables). Raisin scored

µ(A) = 0.88 with respect to Fruits, µ(B) = 0.27 with

respect to Vegetables, µ(A′) = 0.13 with respect to Not

Fruits, µ(B′) = 0.76 with respect to Not Vegetables,

µ(A and B) = 0.53 with respect to Fruits And Vegetables,

µ(A and B′) = 0.75 with respect to Fruits And Not

Vegetables, µ(A′ and B) = 0.25 with respect to Not

Fruits And Vegetables, and µ(A′ and B′) = 0.34 with

respect to Not Fruits And Not Vegetables. If one first

looks for a representation of Raisin in the Hilbert space

C
8, then the concepts Fruits and Vegetables, and their

negations Not Fruits and Not Vegetables are respectively

represented by the unit vectors |A〉 = eiφA (0.05, −0.01,

0.34, 0.01, −0.1, −0.51, 0.23, −0.75) and |B〉 = eiφB

(−0.41, −0.15, −0.73, −0.1, −0.38, −0.17, −0.19, −0.25),

and |A′〉 = eiφA′ (0.56,−0.73,−0.09, 0.1,−0.08,−0.28,−0.15,

0.16) and |B′〉 = eiφB′ (0.07, 0.46, −0.14, 0.04,

0.13,−0.76,−0.11, 0.4).

However, a complete representation satisfying Equations

(86), (88), (90), and (92) can only be worked out in the Fock

space C
8 ⊕ (C8 ⊗ C

8). This occurs for interference angles

φAB = φB − φA = 80.79◦, φAB′ = φB′ − φA = 160◦,
φA′B = φB − φA′ = 18.15◦ and φA′B′ = φB′ − φA′ = 92.88◦,
and for an entangled state characterized by

∑8
i,j= 5 c

2
ij =

0.412,
∑8

i= 5

∑4
i= 1 c

2
ij = 0.852,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.322 and

∑4
i,j= 1 c

2
ij = 0.132, and convex weights mAB = 0.45, nAB =

0.89, mAB′ = 0.65, nAB′ = 0.76, mA′B = 0.26, nA′B = 0.97,

mA′B′ = 0.48, and nA′B′ = 0.88.

Fox, with respect to (Pets, Farmyard Animals). Fox scored

µ(A) = 0.13 with respect to Pets, µ(B) = 0.3 with respect

to Farmyard Animals, µ(A′) = 0.86 with respect to Not

Pets, µ(B′) = 0.68 with respect to Not Farmyard Animals,

µ(A and B) = 0.18 with respect to Pets And Farmyard

Animals, µ(A and B′) = 0.29 with respect to Pets And Not

Farmyard Animals, µ(A′ and B) = 0.46 with respect to

Not Pets And Farmyard Animals, and µ(A′ and B′) = 0.59

with respect to Not Pets And Not Farmyard Animals.

If one first looks for a representation of Fox in the

Hilbert space C
8, then the concepts Pets and Farmyard

Animals, and their negations Not Pets and Not Farmyard

Animals are respectively represented by the unit vectors

|A〉 = eiφA (−0.07, −0.84, −0.39, −0.03, −0.02, −0.31,

0.02, 0.19) and |B〉 = eiφB (−0.01, 0.17, −0.82,

0.01, −0.01, 0.28, −0.01, −0.47), and |A′〉 = eiφA′ (−0.05,

0.19, −0.31, −0.02,0.12, 0.39, −0.02, 0.83) and |B′〉 = eiφB′

(−0.14, 0.47,−0.26,−0.08,−0.08,−0.8, 0.04, 0.17).

However, a complete representation satisfying Equations

(86), (88), (90), and (92) can only be worked out in the Fock

space C
8 ⊕ (C8 ⊗ C

8). This occurs for interference angles

φAB = φB − φA = 96.58◦, φAB′ = φB′ − φA = 95.05◦,
φA′B = φB − φA′ = 85.68◦ and φA′B′ = φB′ − φA′ =
−20◦, and for an entangled state characterized by

∑8
i,j= 5 c

2
ij =

0.052,
∑8

i= 5

∑4
i= 1 c

2
ij = 0.362,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.552 and

∑4
i,j= 1 c

2
ij = 0.762, and convex weights mAB = 0.51, nAB =

0.86, mAB′ = 0.61, nAB′ = 0.79, mA′B = 0.61, nA′B = 0.79,

mA′B′ = 0.66, and nA′B′ = 0.75.

(iv) Let us finally describe the quantum-theoretic representation

of an exemplar that does not present overextension in any

conjunction, but still does not admit a representation in a

classical Kolmogorovian probability framework.

Window Seat, with respect to (Home Furnishing,

Furniture). Window Seat scored µ(A) = 0.5 with

respect to Home Furnishing, µ(B) = 0.48 with respect

to Furniture, µ(A′) = 0.47 with respect to Not Home

Furnishing, µ(B′) = 0.55 with respect to Not Furniture,

µ(A and B) = 0.45 with respect to Home Furnnishing

And Furniture, µ(A and B′) = 0.49 with respect to

Home Furnishing And Not Furniture, µ(A′ and B) = 0.39

with respect to Not Home Furnishing And Furniture, and

µ(A′ and B′) = 0.41 with respect to Not Home Furnishing

And Not Furniture. If one first looks for a representation

of Window Seat in the Hilbert space C
8, then the concepts

Home Furnishing and Furniture, and their negations

Not Home Furnishing and Not Furniture are respectively

represented by the unit vectors |A〉 = eiφA (−0.01, 0.69,

0.14, −0.01, −0.13, −0.66, −0.2, 0.11) and |B〉 = eiφB

(−0.08, −0.39, −0.6,0, −0.03, −0.4, −0.17, 0.54), and

|A′〉 = eiφA′ (0.13, −0.19, 0.69, 0.01, 0.09,0.05, −0.05, 0.67)

and |B′〉 = eiφB′ (−0.09, 0.57, −0.34, −0.02, 0.17, 0.54, 0.11,

0.47).

The interference angles φAB = φB − φA = 76.57◦, φAB′ =
φB′ − φA = 103.86◦, φA′B = φB − φA′ = 84.42◦ and φA′B′ =
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φB′ − φA′ = 85.94◦ complete the Hilbert space representation

in C
8. A complete modeling in the Fock space C

8 ⊕ (C8 ⊗
C
8) satisfying Equations (86), (88), (90), and (92) is given

by an entangled state characterized by
∑8

i,j= 5 c
2
ij = 0.312,

∑8
i= 5

∑4
i= 1 c

2
ij = 0.642,

∑4
i= 1

∑8
j= 5 c

2
ij = 0.622 and

∑4
i,j= 1 c

2
ij = 0.342, and convex weights mAB = 0.51, nAB =

0.86, mAB′ = 0.77, nAB′ = 0.63, mA′B = 1, nA′B = 0,

mA′B′ = 0.54, and nA′B′ = 0.84.

The theoretic analysis on the representatibility of the data in

Tables A1–A4 is thus concluded. We stress that the majority of

these data can be faithfully modeled by using the mathematical

formalism of quantum theory in Fock space.We finally observe that

a big amount of the collected data can be modeled by using only the

first sector of Fock space, while almost all the weights of n2-type in

first sector prevail over the weights ofm2-type in second sector. The

reasons of this will be clear after the discussion in Section 5.

5. Discussion

Our experimental data on conjunctions and negations of natural

concepts confirm that classical probability does not generally

work when people combine concepts, as we have seen in the

previous sections. And, more, we have proved here that the

deviations from classicality cannot be reduced to overextension

and underextension, but they also include a very strong and

fundamental pattern of violation. On the other side, our quantum-

theoretic framework in Fock space has received remarkable

corroboration. Thus, we think it worth to summarize and stress

the novelties that have emerged in this article with respect to our

approach.

We have recently put forward an explanatory hypothesis with

respect to the deviations from classical logical reasoning that have

been observed in human cognition (Aerts et al., 2015a). According

to our explanatory hypothesis, human reasoning is a specifically

structured superposition of two processes, a “logical reasoning”

and a “conceptual reasoning” (also called “emergent reasoning”).

The former “logical reasoning” combines cognitive entities, such as

concepts, combinations of concepts, or propositions, by applying

the rules of logic, though generally in a probabilistic way. The latter

“emergent reasoning” enables formation of combined cognitive

entities as newly emerging entities, in the case of concepts, new

concepts, in the case of propositions, new propositions, carrying

new meaning, linked to the meaning of the constituent cognitive

entities, but with a linkage not defined by the algebra of logic.

The two mechanisms act simultaneously and in superposition

in human thought during a reasoning process, the first one

is guided by an algebra of “logic,” the second one follows a

mechanism of “emergence.” In this perspective, human reasoning

can be mathematically formalized in a two-sector Fock space.

More specifically, first sector of Fock space models “conceptual

emergence,” while second sector of Fock space models a conceptual

combination from the combining concepts by requiring the rules

of logic for the logical connective used for the combining to

be satisfied in a probabilistic setting. The relative prevalence of

emergence or logic in a specific cognitive process is measured by the

“degree of participation” of second and first sectors, respectively.

The abundance of evidence of deviations from classical logical

reasoning in concrete human decisions (paradoxes, fallacies, effects,

contradictions), together with our results, led us to draw the

conclusion that emergence constitutes the dominant dynamics of

human reasoning, while logic is only a secondary form of dynamics.

Now, if one reflects on how we represented conceptual negation

in Section 3, one realizes at once that its modeling directly and

naturally follows from the general hypothesis stated above. Indeed,

suppose that a person is asked to estimate whether a given exemplar

x is a member of the concepts A, B′, “A and B′ (a completely

equivalent explanation can be given for the conjunctions “A′ and
B” and “A′ and B′”). Then, our quantum mathematics can be

interpreted by assuming that a “logical thought” acts, where the

person considers two copies of x and estimates whether the first

copy belongs to A and the second copy of x “does not” belong

to B, thus applying logical rules, though in a probabilistic way.

But also a “conceptual thought” acts, where the person estimates

whether the exemplar x belongs to the newly emergent concept

“A and B′.” The place whether these superposed processes can be

suitably structured is the two-sector Fock space. First sector of Fock

space hosts the latter process, second sector hosts the former, hence

one expects that classical logical rules are valid in this sector, though

they are generally violated whenever both sectors are considered.

The weights m2
AB′ and n2AB′ indicate whether the overall process is

mainly guided by logic or emergence.

The second confirmation of our quantum-conceptual

framework comes from the significantly stable deviations

from classicality in Equations (26–30). We have seen in Section

2.4 that these deviations occur at a different, deeper, level than

overextension and underextension. We think we have identified

a general mechanism determining how concepts are formed in

the human mind. And this would already be convincing even

without mentioning a Fock space modeling. But, this very stable

pattern can exactly be explained in our two-sector Fock space

framework by assuming that emergence plays a primary role

in the human reasoning process, but also aspects of logic are

systematically present. Indeed, suppose that, for every exemplar x

and every X = A,A′,Y = B,B′, n2XY = 1 and m2
XY = 0, that is,

the decision process only occurs in first sector of Fock space. This

assumption corresponds, from our quantum modeling perspective

(see Equations 86–92), to a situation where only emergence is

present. We have then argued in Aerts et al. (2015b) that, for every

X = A,A′,Y = B,B′, IX = IY = −0.5 and IABA′B′ = −1, in

this case. Then, an immediate comparison with the experimental

values of IX , IY , and IABA′B′ in Section 2.4 reveals that a component

of second sector of Fock space is also present, which is generally

smaller than the component of first sector but systematic across all

exemplars. The consequence is immediate: both emergence and

logic play a role in the decision process—emergence is dominant,

but also logic is systematically present. We believe that this finding

is really a fundamental one, and it deserves further investigation in

the future.

The third strong confirmation of this two-layered structure

of human thought and its representation in two-sector Fock

space comes from the peculiarities of conceptual negation. Indeed,

being pushed to cope with conceptual conjunction and negation

simultaneously, we have found a new insight which we had not

noticed before, namely, the emergent non-classical properties of the
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conjunction Fruits And Vegetables are naturally accounted for in

first sector of Fock space, while the fact that Not Vegetables does

not have a well defined prototype, but it is rather the negation of

Vegetables, is accounted for in second sector of Fock space, where

logic occurs. In both cases, the Fock space model has naturally

suggested us the right directions to follow.

The fourth corroboration derives from the fact that our Fock

space indicates how and why introducing entanglement. In our

previous attempts to model conceptual combinations, we had not

recognized that by representing the combined concept by a tensor

product vector |A〉 ⊗ |B〉, we implicitly assumed that membership

weights probabilities are factorised in second sector, that is, the

membership weights µ(A) and µ(B) correspond to independent

events in this sector. In Section 3.2 we have showed that, if

one introduces entangled states to represent combined concepts

in second sector, one is able to fully reproduce all classicality

conditions Equations (26–30) in this sector. And, more, one can

formalize the fact that, for certain exemplars, the probabilities

associated with memberships of, say Fruits and Vegetables, are not

independent. Therefore, Fock space has suggested how to capture

this relevant aspect in depth.

The discussion above shows, in our opinion, that the merits

of our two-sector Fock space framework go beyond faithful

representation of one or more sets of experimental data. It

captures some fundamental aspects of the mechanisms through

which concepts are formed, combine and interact in human

cognition.

Supplementary Material

The Supplementary Material for this article can be found online at:

http://journal.frontiersin.org/article/10.3389/fpsyg.2015.01447
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Appendix

A1. Fundamentals of Modeling in a
Classical Framework

We introduce in this section the elementary measure-theoretic

notions that are needed to express the classicality of experimental

data coming from the membership weights of two concepts A

and B with respect to the conceptual negation “not B” and

the conjunctions “A and B,” “A and not B,” “not A and B,”

and “not A and not B.” As we have anticipated in Section

2, by “classicality of a collection of experimental date” we

actually mean the possibility to represent them in a “classical,” or

“Kolmogorovian,” probability model. We avoid in our presentation

superfluous technicalities, but aim to be synthetic and rigorous at

the same time.

Let us start by the definition of a σ -algebra over a set.

First definition. A σ -algebra over a set � is a non-empty collection

σ (�) of subsets of � that is closed under complementation and

countable unions of its members. It is a Boolean algebra, completed

to include countably infinite operations.

Measure structures are the most general classical structures

devised by mathematicians and physicists to structure weights.

A Kolmogorovian probability measure is such a measure applied

to statistical data. It is called “Kolmogorovian,” because Andrey

Kolmogorov was the first to axiomatize probability theory in this

way (Kolmogorov, 1933).

Second definition. Ameasure P is a function defined on a σ -algebra

σ (�) over a set� and taking values in the extended interval [0,∞]

such that the following three conditions are satisfied:

(i) the empty set has measure zero;

(ii) if E1, E2, E3, . . . is a countable sequence of pairwise disjoint

sets in σ (�), the measure of the union of all the Ei is equal

to the sum of the measures of each Ei (countable additivity, or

σ -additivity);

(iii) the triple (�, σ (�), P) satisfying (i) and (ii) is then called

a measure space, and the members of σ (�) are called

measurable sets.

A Kolmogorovian probability measure is a measure with total

measure one. A Kolmogorovian probability space (�, σ (�), P) is

a measure space (�, σ (�), P) such that P is a Kolmogorovian

probability. The three conditions expressed in a mathematical way

are:

P(∅) = 0 P(

∞
⋃

i= 1

Ei) =
∞
∑

i= 1

P(Ei) P(�) = 1 (A1)

Let us now come to the possibility to represent a set of experimental

data on two concepts and their conjunction in a classical

Kolmogorovian probability model.

Third definition. We say that the membership weights µ(A), µ(B)

and µ(A and B) of the exemplar x with respect to the pair of

concepts A and B and their conjunction “A and B,” respectively,

can be represented in a classical Kolmogorovian probability model

if there exists a Kolmogorovian probability space (�, σ (�), P) and

events EA,EB ∈ σ (�) of the events algebra σ (�) such that

P(EA) = µ(A) P(EB) = µ(B) and P(EA ∩ EB) = µ(A and B)

(A2)

Let us finally come to the representability a set of experimental

data on a concept and its negation in a classical Kolmogorovian

probability model.

Fourth definition. We say that the membership weights µ(B) and

µ(not B) of the exemplar x with respect to the concept B and

its negation “not B,” respectively, can be represented in a classical

Kolmogorovian probability model if there exists a Kolmogorovian

probability space (�, σ (�), P) and an event EB ∈ σ (�) of the

events algebra σ (�) such that

P(EB) = µ(B) P(� \ EB) = µ(not B) (A3)

A2. Quantum Mathematics for Conceptual
Modeling

We illustrate in this section how the mathematical formalism

of quantum theory can be applied to model situations outside

the microscopic quantum world, more specifically, in the

representation of concepts and their combinations. As in Appendix

A1, we will limit technicalities to the essential.

When the quantum mechanical formalism is applied for

modeling purposes, each considered entity—in our case a

concept—is associated with a complex Hilbert space H, that is, a

vector space over the field C of complex numbers, equipped with

an inner product 〈·|·〉 that maps two vectors 〈A| and |B〉 onto a

complex number 〈A|B〉. We denote vectors by using the bra-ket

notation introduced by Paul Adrien Dirac, one of the pioneers of

quantum theory (Dirac, 1958). Vectors can be “kets,” denoted by
|A〉, |B〉, or “bras,” denoted by 〈A|, 〈B|. The inner product between
the ket vectors |A〉 and |B〉, or the bra-vectors 〈A| and 〈B|, is realized
by juxtaposing the bra vector 〈A| and the ket vector |B〉, and 〈A|B〉
is also called a “bra-ket,” and it satisfies the following properties:

(i) 〈A|A〉 ≥ 0;

(ii) 〈A|B〉 = 〈B|A〉∗, where 〈B|A〉∗ is the complex conjugate of

〈A|B〉;
(iii) 〈A|(z|B〉 + t|C〉) = z〈A|B〉 + t〈A|C〉, for z, t ∈ C, where the

sum vector z|B〉 + t|C〉 is called a “superposition” of vectors

|B〉 and |C〉 in the quantum jargon.

From (ii) and (iii) follows that inner product 〈·|·〉 is linear in the ket

and anti-linear in the bra, i.e., (z〈A|+t〈B|)|C〉 = z∗〈A|C〉+t∗〈B|C〉.
We recall that the “absolute value” of a complex number is

defined as the square root of the product of this complex number

times its complex conjugate, that is, |z| =
√
z∗z. Moreover, a

complex number z can either be decomposed into its cartesian form

z = x + iy, or into its polar form z = |z|eiθ = |z|(cos θ + i sin θ).

As a consequence, we have |〈A|B〉| =
√
〈A|B〉〈B|A〉. We define

the “length” of a ket (bra) vector |A〉 (〈A|) as |||A〉|| = ||〈A||| =√
〈A|A〉. A vector of unitary length is called a “unit vector’. We

say that the ket vectors |A〉 and |B〉 are “orthogonal” and write

|A〉 ⊥ |B〉 if 〈A|B〉 = 0.

We have now introduced the necessary mathematics to state the

first modeling rule of quantum theory, as follows.
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First quantum modeling rule: A state A of an entity—in our case

a concept—modeled by quantum theory is represented by a ket

vector |A〉 with length 1, that is 〈A|A〉 = 1.

An orthogonal projection M is a linear operator on the Hilbert

space, that is, a mapping M : H → H, |A〉 7→ M|A〉 which

is Hermitian and idempotent. The latter means that, for every

|A〉, |B〉 ∈ H and z, t ∈ C, we have:

(i) M(z|A〉 + t|B〉) = zM|A〉 + tM|B〉 (linearity);
(ii) 〈A|M|B〉 = 〈B|M|A〉∗ (hermiticity);

(iii) M ·M = M (idempotency).

The identity operator 1maps each vector onto itself and is a trivial

orthogonal projection. We say that two orthogonal projections

Mk and Ml are orthogonal operators if each vector contained in

Mk(H) is orthogonal to each vector contained in Ml(H), and we

write Mk ⊥ Ml, in this case. The orthogonality of the projection

operators Mk and Ml can also be expressed by MkMl = 0, where

0 is the null operator. A set of orthogonal projection operators

{Mk |k = 1, . . . , n} is called a “spectral family” if all projectors are

mutually orthogonal, that is, Mk ⊥ Ml for k 6= l, and their sum is

the identity, that is,
∑n

k= 1 Mk = 1.

The above definitions give us the necessary mathematics to state

the second modeling rule of quantum theory, as follows.

Second quantum modeling rule: A measurable quantity Q of an

entity—in our case a concept— modeled by quantum theory, and

having a set of possible real values {q1, . . . , qn} is represented by

a spectral family {Mk |k = 1, . . . , n} in the following way. If the

entity—in our case a concept—is in a state represented by the vector

|A〉, then the probability of obtaining the value qk in ameasurement

of the measurable quantity Q is 〈A|Mk|A〉 = ||Mk|A〉||2. This
formula is called the “Born rule” in the quantum jargon. Moreover,

if the value qk is actually obtained in the measurement, then the

initial state is changed into a state represented by the vector

|Ak〉 =
Mk|A〉

||Mk|A〉||
(A4)

This change of state is called “collapse” in the quantum jargon.

The tensor product HA ⊗ HB of two Hilbert spaces HA and HB

is the Hilbert space generated by the set {|Ai〉 ⊗ |Bj〉}, where |Ai〉
and |Bj〉 are vectors of HA and HB, respectively, which means that

a general vector of this tensor product is of the form
∑

ij |Ai〉⊗|Bj〉.
This gives us the necessary mathematics to introduce the third

modeling rule.

Third quantum modeling rule: A state C of a compound entity—in

our case a combined concept—is represented by a unit vector |C〉 of
the tensor productHA ⊗HB of the two Hilbert spacesHA andHB

containing the vectors that represent the states of the component

entities—concepts.

The above means that we have |C〉 =
∑

ij cij|Ai〉 ⊗ |Bj〉, where
|Ai〉 and |Bj〉 are unit vectors of HA and HB, respectively, and
∑

i,j |cij|2 = 1. We say that the state C represented by |C〉 is a

product state if it is of the form |A〉 ⊗ |B〉 for some |A〉 ∈ HA and

|B〉 ∈ HB. Otherwise, C is called an “entangled state’.

The Fock space is a specific type of Hilbert space, originally

introduced in quantum field theory. For most states of a quantum

field the number of identical quantum entities is not conserved but

is a variable quantity. The Fock space copes with this situation in

allowing its vectors to be superpositions of vectors pertaining to

different sectors for fixed numbers of identical quantum entities.

More explicitly, the k-th sector of a Fock space describes a fixed

number of k identical quantum entities, and it is of the form

H⊗ . . .⊗H of the tensor product of k identical Hilbert spacesH.

The Fock space F itself is the direct sum of all these sectors, hence

F = ⊕j

k= 1
⊗k

l= 1 H (A5)

For our modeling we have only used Fock space for the “two” and

“one quantum entity” case, hence F = H ⊕ (H ⊗ H). This is

due to considering only combinations of two concepts. The sector

H is called the “first sector,” while the sector H ⊗ H is called the

“second sector’. A unit vector |F〉 ∈ F is then written as |F〉 =
neiγ |C〉 + meiδ(|A〉 ⊗ |B〉), where |A〉, |B〉 and |C〉 are unit vectors
of H, and such that n2 + m2 = 1. For combinations of j concepts,

the general form of Fock space in (A5) should be used.

A3. Data Modeling Tables and Statistical
Analysis

Tables A1–A5A–E.

A4. Proofs of Theorems 1–4

Proof of Theorem 1. If µ(A), µ(B), µ(A′), µ(B′) and

µ(A and B), µ(A and B′), µ(A′ and B), µ(A′ and B′) are

classical conjunction and negation data, then there exists a

Kolmogorovian probability space (�, σ (�), P) and events

EA,EB ∈ σ (�) such that P(EA) = µ(A), P(EB) = µ(B),

P(� \ EA) = µ(A′), P(� \ EB) = µ(B′), P(EA ∩ EB) = µ(A and B),

P(EA ∩ ((� \ EB)) = µ(A and B′), P((� \ EA)∩ EB) = µ(A′ and B)
and P((� \ EA) ∩ (� \ EB)) = µ(A′ and B′). From the general

properties of a Kolmogorovian probability space it follows that (1),

(2), (3), (4), (5), (6), (7) and (8) are satisfied.

Now suppose that x is such that its membership weights

µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′), µ(A′ and B)

andµ(A′ and B′) with respect to the conceptsA, B,A′, B′, “A and B,”

“A and B′,” “A′ and B” and “A′ and B′,” respectively, satisfy (1), (2),
(3), (4), (5), (6), (7) and (8). We will prove that as a consequence

µ(A), µ(B), µ(A′), µ(B′), µ(A and B), µ(A and B′), µ(A′ and B)

and µ(A′ and B′) are classical conjunction and negation data, in

the sense that “there exists a classical Kolmogorovian probability

space, such that we can represent all of them as measures on event

sets of this space’. We make our proof by explicitly constructing a

Kolmogorovian probability space that models these data. Consider

the set � = {1, 2, 3, 4} and σ (�) = P(�), the set of all subsets of

�. We define

P({1}) = µ(A and B) (A6)

P({2}) = µ(A and B′) = µ(A)− µ(A and B) (A7)

P({3}) = µ(A′ and B) = µ(A′)− µ(A′ and B′) (A8)

P({4}) = µ(A′ and B′) (A9)

and further for an arbitrary subset S ⊆ {1, 2, 3, 4} we define
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TABLE A1 | Representation of the membership weights in the case of the concepts Home Furnishing and Furniture.

Exemplar µ(A) µ(B) µ(A′) µ(B′) µ(A and B) µ(A and B′) µ(A′ and B) µ(A′ and B′) 1AB 1AB′ 1A′B 1A′B′ IABA′B′ IA IB IA′ IB′

Mantelpiece 0.9 0.61 0.12 0.5 0.71 0.75 0.21 0.21 0.1 0.25 0.09 0.09 −0.89 −0.56 −0.31 −0.31 −0.46

Window

Seat

0.5 0.48 0.47 0.55 0.45 0.49 0.39 0.41 −0.03 −0.01 −0.08 −0.06 −0.74 −0.44 −0.36 −0.33 −0.35

Painting 0.8 0.49 0.35 0.64 0.64 0.6 0.33 0.38 0.15 −0.04 −0.03 0.03 −0.94 −0.44 −0.48 −0.35 −0.33

Light Fixture 0.88 0.6 0.16 0.51 0.73 0.63 0.33 0.16 0.13 0.11 0.16 0 −0.84 −0.48 −0.45 −0.33 −0.28

Kitchen

Counter

0.67 0.49 0.31 0.62 0.55 0.54 0.38 0.33 0.06 −0.08 0.06 0.01 −0.79 −0.42 −0.44 −0.39 −0.24

Bath Tub 0.73 0.51 0.28 0.46 0.59 0.59 0.36 0.29 0.08 0.13 0.08 0.01 −0.83 −0.45 −0.44 −0.37 −0.41

Deck Chair 0.73 0.9 0.27 0.2 0.74 0.41 0.54 0.18 0.01 0.21 0.27 −0.03 −0.86 −0.42 −0.38 −0.44 −0.39

Shelves 0.85 0.93 0.24 0.13 0.84 0.39 0.53 0.08 −0.01 0.26 0.29 −0.05 −0.83 −0.38 −0.43 −0.36 −0.34

Rug 0.89 0.58 0.18 0.61 0.7 0.68 0.41 0.21 0.13 0.07 0.24 0.04 −1 −0.48 −0.54 −0.45 −0.28

Bed 0.76 0.93 0.26 0.11 0.79 0.36 0.61 0.14 0.03 0.26 0.35 0.03 −0.9 −0.39 −0.48 −0.49 −0.39

Wall-

Hangings

0.87 0.46 0.21 0.68 0.55 0.71 0.35 0.24 0.09 0.03 0.14 0.03 −0.85 −0.39 −0.44 −0.38 −0.27

Space Rack 0.38 0.43 0.63 0.62 0.41 0.49 0.43 0.58 0.04 0.11 0 −0.04 −0.9 −0.53 −0.41 −0.37 −0.44

Ashtray 0.74 0.4 0.32 0.64 0.49 0.6 0.36 0.39 0.09 −0.04 0.04 0.07 −0.84 −0.34 −0.45 −0.43 −0.35

Bar 0.72 0.63 0.37 0.51 0.61 0.61 0.4 0.4 −0.01 0.11 0.03 0.03 −1.03 −0.51 −0.39 −0.43 −0.51

Lamp 0.94 0.64 0.15 0.49 0.75 0.7 0.4 0.2 0.11 0.21 0.25 0.05 −1.05 −0.51 −0.51 −0.45 −0.41

Wall Mirror 0.91 0.76 0.13 0.45 0.83 0.66 0.44 0.14 0.07 0.21 0.31 0.01 −1.06 −0.58 −0.51 −0.45 −0.35

Door Bell 0.75 0.33 0.32 0.79 0.5 0.64 0.34 0.51 0.17 −0.11 0.02 0.19 −0.99 −0.39 −0.51 −0.53 −0.36

Hammock 0.62 0.66 0.41 0.41 0.6 0.5 0.56 0.31 −0.02 0.09 0.16 −0.09 −0.98 −0.48 −0.5 −0.47 −0.41

Desk 0.78 0.95 0.31 0.09 0.78 0.33 0.75 0.15 −0.01 0.24 0.44 0.06 −1 −0.32 −0.58 −0.59 −0.39

Refrigerator 0.74 0.73 0.26 0.41 0.66 0.55 0.46 0.25 −0.06 0.14 0.21 −0.01 −0.93 −0.47 −0.4 −0.46 −0.39

Park Bench 0.53 0.66 0.59 0.46 0.55 0.29 0.56 0.39 0.02 −0.17 −0.03 −0.07 −0.79 −0.31 −0.45 −0.36 −0.22

Waste Paper

Basket

0.69 0.54 0.36 0.63 0.59 0.41 0.46 0.49 0.04 −0.22 0.1 0.13 −0.95 −0.31 −0.51 −0.59 −0.27

Sculpture 0.83 0.46 0.34 0.66 0.58 0.73 0.46 0.36 0.11 0.07 0.13 0.03 −1.13 −0.48 −0.58 −0.49 −0.43

Sink Unit 0.71 0.57 0.34 0.58 0.6 0.56 0.38 0.38 0.03 −0.01 0.04 0.04 −0.91 −0.46 −0.41 −0.41 −0.36

A = Home Furnishing, B = Furniture.

P(S) =
∑

a∈ S

P({a}) (A10)

Let us prove that P : σ (�) → [0, 1] is a probability measure.

For this purpose, we need to prove that P(S) ∈ [0, 1] for an

arbitrary subset S ⊆ �, and that the “sum formula” for a

probability measure is satisfied. The sum formula for a probability

measure is satisfied because of definition (A10). What remains to

be proved is that P(S) ∈ [0, 1] for an arbitrary subset S ⊆ �,

and that all different subsets that can be formed are contained

in σ (�). P({1}), P({2}), P({3}) and P({4}) are contained in [0, 1]

as a consequence of equations (1), (3), (5) and (6). Using (5)

we have that P({1, 2}) = µ(A and B) + µ(A and B′) =
µ(A and B) + µ(A) − µ(A and B) = µ(A). Using (6) we have

that P({3, 4}) = µ(A′ and B′) + µ(A′ and B) = µ(A′ and B′) +
µ(A′) − µ(A′ and B′) = µ(A′). Again using (6) we have that

P({1, 3}) = µ(A and B) + µ(A′ and B) = µ(A and B) +
µ(B) − µ(A and B) = µ(B), and using again (5) we have that

P({2, 4}) = µ(A and B′)+ µ(A′ and B′) = µ(B′)− µ(A′ and B′)+
µ(A′ and B′) = µ(B′). Moreover, P({1, 2}), P({3, 4}), P({1, 3}) and
P({2, 4}) are all contained in [0, 1] as a consequence of equations

(1), (2), (3) and (4). We have already found the representatives of

all elements and their conjunctions in σ (�). But we have not yet

considered all subsets of �. Indeed, let us consider µ({1, 2, 3}) =
µ(A and B) + µ(A and B′) + µ(A′ and B) = 1 − µ(A′ and B′).
And from (7) it follows that this is contained in [0.1]. In an

analogous way we prove that µ({1, 2, 4}) = 1 − µ(A′ and B),

µ({1, 3, 4}) = 1−µ(A and B′), and µ({2, 3, 4}) = 1−µ(A and B).

We almost have all subsets of �. Let us consider {1, 4} and {2, 3}.
Since by construction we have µ({1}) ≤ µ({1, 4}) ≤ µ({1, 2, 4})
and µ({2}) ≤ µ({2, 3}) ≤ µ({2, 3, 4}), it follows that both

µ({1, 4}) and µ({2, 3}) are contained in [0, 1]. The last subset

to control is � itself. We have P(�) = P({1}) + P({2}) +
P({3}) + P({4}) = 1, following the calculation we made above.

We have verified all subsets S ⊆ �, and hence proved that P

is a probability measure. All subsets for which we have gathered

data are represented in this σ -algebra, which completes our

proof.

Proof of Theorem 2. Let us consider Theorem 1. In its proof, we

did not use (8)„ which means that inequalities (5), (6), (7) and (8)

are not independent. By using, for example, (5), (6), and then (7)

we get

1− µ(A′) − µ(B′)+ µ(A′ and B′)

= 1− µ(B)− µ(B′)+ µ(A and B)
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TABLE A2 | Representation of the membership weights in the case of the concepts Spices and Herbs.

Exemplar µ(A) µ(B) µ(A′) µ(B′) µ(A and B) µ(A and B′) µ(A′ and B) µ(A′ and B′) 1AB 1AB′ 1A′B 1A′B′ IABA′B′ IA IB IA′ IB′

Molasses 0.36 0.13 0.67 0.84 0.24 0.54 0.25 0.73 0.11 0.18 0.12 0.06 −0.75 −0.41 −0.36 −0.31 −0.43

Salt 0.67 0.04 0.36 0.92 0.24 0.69 0.09 0.6 0.19 0.02 0.04 0.24 −0.61 −0.26 −0.28 −0.33 −0.37

Peppermint 0.67 0.93 0.38 0.1 0.7 0.38 0.55 0.15 0.03 0.28 0.18 0.05 −0.78 −0.41 −0.33 −0.33 −0.43

Curry 0.96 0.28 0.04 0.78 0.54 0.88 0.16 0.21 0.26 0.1 0.13 0.18 −0.79 −0.45 −0.42 −0.34 −0.31

Oregano 0.81 0.86 0.21 0.13 0.79 0.4 0.5 0.08 −0.03 0.28 0.29 −0.05 −0.76 −0.38 −0.43 −0.36 −0.35

MSG 0.44 0.12 0.59 0.85 0.23 0.58 0.24 0.73 0.11 0.13 0.12 0.13 −0.76 −0.36 −0.34 −0.37 −0.45

Chili Pepper 0.98 0.53 0.05 0.56 0.8 0.9 0.28 0.13 0.27 0.34 0.23 0.08 −1.1 −0.73 −0.54 −0.35 −0.46

Mustard 0.65 0.28 0.39 0.71 0.49 0.65 0.23 0.46 0.21 0 −0.05 0.08 −0.83 −0.49 −0.44 −0.3 −0.41

Mint 0.64 0.96 0.43 0.09 0.79 0.31 0.64 0.11 0.14 0.23 0.21 0.03 −0.85 −0.46 −0.47 −0.32 −0.34

Cinnamon 1 0.49 0.02 0.51 0.69 0.79 0.21 0.15 0.19 0.28 0.19 0.13 −0.84 −0.48 −0.41 −0.34 −0.43

Parsley 0.54 0.9 0.54 0.09 0.68 0.26 0.73 0.18 0.14 0.18 0.19 0.09 −0.84 −0.4 −0.5 −0.36 −0.35

Saccarin 0.34 0.14 0.68 0.88 0.24 0.54 0.24 0.8 0.1 0.19 0.1 0.12 −0.81 −0.43 −0.34 −0.36 −0.46

Poppy Seeds 0.82 0.47 0.29 0.54 0.59 0.66 0.31 0.28 0.12 0.13 0.02 −0.02 −0.84 −0.43 −0.43 −0.29 −0.4

Pepper 0.99 0.47 0.1 0.58 0.7 0.9 0.18 0.14 0.23 0.32 0.08 0.04 −0.91 −0.61 −0.41 −0.21 −0.46

Turmeric 0.88 0.53 0.11 0.43 0.74 0.69 0.28 0.21 0.21 0.26 0.16 0.1 −0.91 −0.54 −0.49 −0.38 −0.47

Sugar 0.45 0.34 0.59 0.77 0.35 0.56 0.25 0.65 0.01 0.11 −0.09 0.06 −0.81 −0.46 −0.26 −0.31 −0.44

Vinegar 0.3 0.11 0.76 0.88 0.15 0.41 0.26 0.83 0.04 0.11 0.16 0.07 −0.65 −0.26 −0.31 −0.33 −0.36

Sesame Seeds 0.8 0.49 0.3 0.59 0.59 0.7 0.34 0.29 0.1 0.11 0.04 −0.01 −0.91 −0.49 −0.44 −0.33 −0.4

Lemon Juice 0.28 0.2 0.74 0.81 0.15 0.43 0.39 0.81 −0.05 0.15 0.19 0.07 −0.78 −0.3 −0.34 −0.46 −0.43

Chocolate 0.27 0.21 0.78 0.8 0.2 0.46 0.38 0.78 −0.01 0.19 0.16 −0.01 −0.81 −0.39 −0.36 −0.37 −0.44

Horseradish 0.61 0.67 0.48 0.28 0.61 0.4 0.53 0.33 0 0.12 0.04 0.04 −0.86 −0.4 −0.47 −0.37 −0.44

Vanilla 0.76 0.51 0.3 0.49 0.63 0.61 0.33 0.35 0.11 0.13 0.03 0.05 −0.91 −0.48 −0.44 −0.38 −0.48

Chives 0.66 0.89 0.43 0.26 0.76 0.28 0.64 0.31 0.1 0.02 0.21 0.06 −0.99 −0.38 −0.51 −0.53 −0.33

Root Ginger 0.84 0.56 0.23 0.44 0.69 0.59 0.41 0.23 0.13 0.14 0.18 −0.01 −0.91 −0.43 −0.54 −0.41 −0.37

A = Spices, B = Herbs.

= 1− µ(B)− µ(A′ and B′)− µ(A)+ µ(A and B)

+ µ(A and B)

= µ(A′ and B′)− µ(A′ and B′)+ µ(A and B)

= µ(A and B)

which proves indeed that (8) can be derived from (5), (6) and then

(7), and can be left out as a condition.

Let us now prove a result which is useful for our purposes.

Following (5) and (6) we have that µ(A and B′) + µ(A and B) +
µ(A′ and B) = µ(A)+µ(B)−µ(A and B). Moreover, by using (7),

we get µ(A and B′)+ µ(A and B)+ µ(A′ and B)+ µ(A′ and B′) =
µ(A)+µ(B)−µ(A and B)+ 1−µ(A)−µ(B)+µ(A and B) = 1.

The equality

µ(A and B′)+ µ(A and B)+ µ(A′ and B)+ µ(A′ and B′) = 1

(A11)

can be used, together with (5) and (6), as follows.

µ(A)+ µ(A′) = µ(A and B)+ µ(A and B′)+ µ(A′ and B)

+µ(A′ and B′) = 1

µ(B)+ µ(B′) = µ(A and B)+ µ(A′ and B)+ µ(A and B′)

+µ(A′ and B′) = 1

This means that from (1), and hence 0 ≤ µ(A) ≤ 1, follows that

0 ≤ 1 − µ(A) ≤ 1, and hence 0 ≤ µ(A′) ≤ 1. And from (2),

and hence 0 ≤ µ(B) ≤ 1, follows that 0 ≤ 1 − µ(B) ≤ 1, and

hence 0 ≤ µ(B′) ≤ 1. Suppose now that (1) and (2) are satisfied.

This means that 0 ≤ µ(A) − µ(A and B) = µ(B′) − µ(A′ and B′)
and hence µ(A′ and B′) ≤ µ(B′), and 0 ≤ µ(B) − µ(A and B) =
µ(A′) − µ(A′ and B′) and hence µ(A′ and B′) ≤ µ(A′). The only
condition that lacks to have derived (3) and (4) from (1) and (2), is

that 0 ≤ µ(A′ and B′). We can add this as a requirement to (7).

Hence, we have proved the Theorem 2.

Proof of Lemma 1. That (14), (15), (16) and (17) follow from (5)

and (6) follows from a simple reshuffling of the terms. Suppose now

that (14), (15), (16) and (17) are satisfied. The inverse reshuffling of

the same terms proves that (5) and (6) are satisfied. This completes

the proof of Lemma 1.

Proof of Theorem3. Lemma 1 entails that we can substitute (5) and

(6) by the four equations expressing themarginal law to be satisfied.

A further simplification is possible. Indeed, (5), (6) and (7) are

equivalent with (14), (15), (16), (17) and (A11). We have proved

above that (5), (6) and (7) imply (A11). Let us prove the inverse.

Hence suppose that (14), (15), (16), (17) and (A11) are satisfied,

and let us proof (7). We have

1 − µ(A)− µ(B)+ µ(A and B)

= 1− µ(A and B)− µ(A and B′)− µ(A and B)− µ(A′ and B)

+µ(A and B)
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TABLE A3 | Representation of the membership weights in the case of the concepts Pets and Farmyard Animals.

Exemplar µ(A) µ(B) µ(A′) µ(B′) µ(A and B) µ(A and B′) µ(A′ and B) µ(A′ and B′) 1AB 1AB′ 1A′B 1A′B′ IABA′B′ IA IB IA′ IB′

Goldfish 0.93 0.17 0.12 0.81 0.43 0.91 0.18 0.43 0.26 0.1 0.06 0.31 −0.94 −0.41 −0.43 −0.48 −0.53

Robin 0.28 0.36 0.71 0.64 0.31 0.35 0.46 0.46 0.04 0.08 0.1 −0.18 −0.59 −0.39 −0.41 −0.22 −0.18

Blue-tit 0.25 0.31 0.76 0.71 0.18 0.39 0.44 0.56 −0.08 0.14 0.13 −0.15 −0.56 −0.31 −0.3 −0.24 −0.24

Collie Dog 0.95 0.77 0.03 0.35 0.86 0.56 0.25 0.11 0.09 0.21 0.23 0.09 −0.79 −0.48 −0.34 −0.34 −0.33

Camel 0.16 0.26 0.89 0.75 0.2 0.31 0.51 0.68 0.04 0.16 0.26 −0.08 −0.7 −0.36 −0.46 −0.3 −0.24

Squirrel 0.3 0.39 0.74 0.65 0.28 0.26 0.46 0.59 −0.03 −0.04 0.07 −0.06 −0.59 −0.24 −0.34 −0.31 −0.2

Guide Dog for

Blind

0.93 0.33 0.13 0.69 0.55 0.73 0.16 0.33 0.23 0.03 0.04 0.2 −0.76 −0.35 −0.39 −0.36 −0.36

Spider 0.31 0.39 0.73 0.63 0.31 0.31 0.44 0.51 0 0 0.05 −0.12 −0.58 −0.31 −0.36 −0.23 −0.19

Homing

Pigeon

0.41 0.71 0.61 0.34 0.56 0.25 0.59 0.34 0.16 −0.09 −0.03 0 −0.74 −0.41 −0.44 −0.31 −0.25

Monkey 0.39 0.18 0.65 0.79 0.2 0.49 0.29 0.61 0.03 0.09 0.11 −0.04 −0.59 −0.29 −0.31 −0.25 −0.31

Circus Horse 0.3 0.48 0.74 0.6 0.34 0.35 0.53 0.48 0.04 0.05 0.04 −0.13 −0.69 −0.39 −0.38 −0.26 −0.23

Prize Bull 0.13 0.76 0.88 0.26 0.43 0.28 0.83 0.34 0.29 0.14 0.06 0.08 −0.86 −0.57 −0.49 −0.28 −0.35

Rat 0.2 0.36 0.85 0.68 0.21 0.28 0.54 0.63 0.01 0.08 0.18 −0.05 −0.65 −0.29 −0.39 −0.31 −0.23

Badger 0.16 0.28 0.88 0.73 0.14 0.26 0.44 0.66 −0.03 0.1 0.16 −0.07 −0.5 −0.24 −0.3 −0.23 −0.19

Siamese Cat 0.99 0.5 0.05 0.53 0.74 0.75 0.18 0.24 0.24 0.23 0.13 0.19 −0.9 −0.5 −0.41 −0.36 −0.46

Race Horse 0.29 0.7 0.71 0.39 0.51 0.31 0.65 0.31 0.23 0.03 −0.05 −0.08 −0.79 −0.54 −0.46 −0.26 −0.24

Fox 0.13 0.3 0.86 0.68 0.18 0.29 0.46 0.59 0.04 0.16 0.16 −0.09 −0.51 −0.33 −0.34 −0.19 −0.19

Donkey 0.29 0.9 0.78 0.15 0.56 0.18 0.81 0.23 0.28 0.03 0.04 0.08 −0.78 −0.45 −0.48 −0.26 −0.25

Field Mouse 0.16 0.41 0.83 0.59 0.23 0.24 0.43 0.58 0.06 0.08 0.02 −0.01 −0.46 −0.3 −0.24 −0.18 −0.23

Ginger

Tom-cat

0.82 0.51 0.21 0.54 0.59 0.58 0.26 0.29 0.08 0.03 0.05 0.08 −0.71 −0.34 −0.34 −0.34 −0.32

Husky in

Slead team

0.64 0.51 0.37 0.53 0.56 0.51 0.44 0.29 0.06 −0.01 0.07 −0.08 −0.8 −0.43 −0.49 −0.36 −0.28

Cart Horse 0.27 0.86 0.76 0.15 0.53 0.2 0.84 0.23 0.26 0.05 0.08 0.08 −0.79 −0.46 −0.5 −0.31 −0.28

Chicken 0.23 0.95 0.8 0.06 0.58 0.11 0.81 0.18 0.34 0.05 0.01 0.11 −0.68 −0.46 −0.44 −0.19 −0.23

Doberman

Guard Dog

0.88 0.76 0.14 0.27 0.8 0.55 0.45 0.23 0.04 0.28 0.31 0.09 −1.03 −0.47 −0.49 −0.54 −0.51

A = Pets, B = Farmyard Animals.

= 1− µ(A and B)− µ(A and B′)− µ(A′ and B)

= µ(A′ and B′)

which proves that (7) holds.

We have thus proved Theorem 3, stating a new and more

symmetric set of classicality conditions.

Proof of Theorem 4. Suppose that the theoretical values for a

modeling only in second sector of Fock space are given. This means

that |C〉 andM are given, and the values ofµ(A),µ(B),µ(A′),µ(B′),
µ(A and B), µ(A and B′), µ(A′ and B) and µ(A′ and B′) are given
respectively by 〈C|M ⊗ 1|C〉, 〈C|1 ⊗ M|C〉, 〈C|(1 − M) ⊗ 1|C〉,
〈C|1 ⊗ (1 − M)|C〉,〈C|M ⊗ M|C〉, 〈C|M ⊗ (1 − M)|C〉, 〈C|(1 −
M) ⊗ M|C〉 and 〈C|(1 − M) ⊗ (1 − M)|C〉. If we use the results
calculated in (76), (77), (78), (79), (80), (81), (82) and (83), we can

easely prove all the classicality conditions (26)–(30) to be satisfied.

Let us prove one of them explicitly. For example, µ(A′ and B) +
µ(A′ and B′) = 〈C|(1−M)⊗M|C〉+ 〈C|(1−M)⊗ (1−M)|C〉 =
〈C|(1−M)⊗M + (1−M)|C〉 = 〈C|(1−M)⊗ 1|C〉 = µ(A′).

Let us prove the other implication. Hence suppose that we

have available data satisfying the classicality conditions (26)–(30),

let us prove that we can find a state |C〉 and an orthogonal

projector M, such that second sector models these data. It is a

straightforward verification that an entangled vector |C〉, such that

cij = 1
16

√

µ(A and B) for 5 ≤ i ≤ 8 and 5 ≤ j ≤ 8,

cij = 1
16

√

µ(A and B′) for 5 ≤ i ≤ 8 and 1 ≤ j ≤ 4, cij =
1
16

√

µ(A′ and B) for 1 ≤ i ≤ 4 and 5 ≤ j ≤ 8 and cij =
1
16

√

µ(A′ and B′) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4, is a solution.

A5. Conditions for the Existence of
Solutions in First and Second Sector of
Fock Space

In this section we make explicit the conditions that should be

satisfied by experimental data in order to be represented in Fock

space. In our analysis, we distinguish between the first sector

representation in C
8 and the complete two-sector representation

in C
8 ⊕ (C8 ⊗ C

8).

Let us start from theC
8 representation.We first analyze whether

or not the solution of (52)–(65) is compatible with (70)–(73). To

this end note that the right hand side of (70)–(73) correspond

to the average of the probabilities of the former concepts, plus

the so called “interference term,” which depends on (i) how the
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TABLE A4 | Representation of the membership weights in the case of the concepts Fruits and Vegetables.

Exemplar µ(A) µ(B) µ(A′) µ(B′) µ(A and B) µ(A and B′) µ(A′ and B) µ(A′ and B′) 1AB 1AB′ 1A′B 1A′B′ IABA′B′ IA IB IA′ IB′

Apple 1 0.23 0 0.82 0.6 0.89 0.13 0.18 0.38 0.07 0.13 0.18 −0.79 −0.49 −0.5 −0.3 −0.24

Parsley 0.02 0.78 0.99 0.25 0.45 0.1 0.84 0.44 0.43 0.08 0.06 0.19 −0.83 −0.53 −0.51 −0.29 −0.29

Olive 0.53 0.63 0.47 0.44 0.65 0.34 0.51 0.36 0.12 −0.11 0.04 −0.08 −0.86 −0.46 −0.53 −0.41 −0.26

Chili Pepper 0.19 0.73 0.83 0.35 0.51 0.2 0.68 0.44 0.33 0.01 −0.06 0.09 −0.83 −0.53 −0.46 −0.29 −0.29

Broccoli 0.09 1 0.94 0.06 0.59 0.09 0.9 0.25 0.49 0.03 −0.04 0.19 −0.83 −0.58 −0.49 −0.21 −0.28

Root Ginger 0.14 0.71 0.81 0.33 0.46 0.14 0.71 0.43 0.33 0 0 0.1 −0.74 −0.46 −0.46 −0.33 −0.24

Pumpkin 0.45 0.78 0.51 0.26 0.66 0.21 0.63 0.18 0.21 −0.05 0.11 −0.09 −0.68 −0.43 −0.51 −0.29 −0.13

Raisin 0.88 0.27 0.13 0.76 0.53 0.75 0.25 0.34 0.26 −0.01 0.12 0.21 −0.86 −0.39 −0.51 −0.46 −0.33

Acorn 0.59 0.4 0.49 0.64 0.46 0.49 0.38 0.51 0.06 −0.1 −0.03 0.02 −0.84 −0.36 −0.44 −0.39 −0.36

Mustard 0.07 0.39 0.87 0.6 0.29 0.23 0.55 0.75 0.22 0.16 0.16 0.15 −0.81 −0.44 −0.45 −0.43 −0.38

Rice 0.12 0.46 0.9 0.52 0.21 0.23 0.59 0.59 0.09 0.11 0.13 0.07 −0.61 −0.32 −0.34 −0.28 −0.29

Tomato 0.34 0.89 0.64 0.19 0.7 0.2 0.74 0.23 0.36 0.01 0.1 0.04 −0.86 −0.56 −0.55 −0.33 −0.24

Coconut 0.93 0.32 0.17 0.7 0.56 0.69 0.2 0.34 0.24 −0.01 0.03 0.17 −0.79 −0.33 −0.44 −0.37 −0.33

Mushroom 0.12 0.66 0.9 0.38 0.33 0.13 0.66 0.5 0.21 0.01 0 0.12 −0.61 −0.33 −0.33 −0.26 −0.24

Wheat 0.17 0.51 0.8 0.52 0.34 0.21 0.61 0.56 0.17 0.04 0.11 0.04 −0.73 −0.38 −0.44 −0.38 −0.26

Green Pepper 0.23 0.61 0.81 0.41 0.49 0.24 0.61 0.43 0.26 0.01 0 0.02 −0.76 −0.5 −0.49 −0.23 −0.26

Watercress 0.14 0.76 0.89 0.25 0.49 0.1 0.79 0.35 0.35 −0.04 0.03 0.1 −0.73 −0.45 −0.51 −0.24 −0.2

Peanut 0.62 0.29 0.48 0.75 0.48 0.55 0.25 0.53 0.18 −0.07 −0.04 0.05 −0.8 −0.41 −0.43 −0.3 −0.33

Black Pepper 0.21 0.41 0.81 0.61 0.38 0.21 0.5 0.63 0.17 0.01 0.09 0.01 −0.71 −0.38 −0.46 −0.31 −0.23

Garlic 0.13 0.79 0.88 0.24 0.53 0.1 0.75 0.45 0.4 −0.03 −0.04 0.21 −0.83 −0.5 −0.49 −0.33 −0.31

Yam 0.38 0.66 0.71 0.43 0.59 0.24 0.65 0.44 0.21 −0.14 −0.01 0.01 −0.91 −0.45 −0.58 −0.38 −0.24

Elderberry 0.51 0.39 0.54 0.61 0.45 0.41 0.46 0.48 0.06 −0.09 0.07 −0.07 −0.8 −0.36 −0.52 −0.39 −0.28

Almond 0.76 0.29 0.28 0.72 0.48 0.61 0.24 0.48 0.18 −0.11 −0.04 0.19 −0.8 −0.33 −0.42 −0.43 −0.37

Lentils 0.11 0.66 0.89 0.38 0.38 0.11 0.7 0.53 0.26 0 0.04 0.15 −0.71 −0.38 −0.41 −0.33 −0.26

A = Fruits, B = Vegetables.

vectors representing the former concepts in the combination, when

restricted to the subspace determined by M, project into each

other, and (ii) on the phase angles of the vectors (Aerts, 2009).

Note that the configuration of the phase angles φA, φB, φA′ , φB′

allow to model a variety of interference situations. In fact, when

the difference between these phase angles is close to 0 or π , we

have a maximal amount of interference while, when the difference

between these phase angles is close to π
2 or 3π

2 , we have a

minimal amount of interference. We can then characterize a set

of “compatibility intervals” for the solution of (52)–(65) and (70)–

(73) which determines the modeling capacity of this Hilbert space

model. Let,

i(A,B)1 = 1

2
(µ(A)+ µ(B))− |a5b5 + a6b6

+a7b7 + a8b8| (A12)

i(A,B)2 = 1

2
(µ(A)+ µ(B))+ |a5b5 + a6b6

+a7b7 + a8b8| (A13)

i(A,B′)1 = 1

2
(µ(A)+ µ(B′))− |a5b′5 + a6b

′
6

+a7b
′
7 + a8b

′
8| (A14)

i(A,B′)2 = 1

2
(µ(A)+ µ(B′))+ |a5b′5 + a6b

′
6

+a7b
′
7 + a8b

′
8| (A15)

i(A′,B)1 = 1

2
(µ(A′)+ µ(B))− |a′5b5 + a′6b6

+a′7b7 + a′8b8| (A16)

i(A′,B)2 = 1

2
(µ(A′)+ µ(B))+ |a′5b5 + a′6b6

+a′7b7 + a′8b8| (A17)

i(A′,B′)1 = 1

2
(µ(A′)+ µ(B′))− |a′5b′5 + a′6b

′
6

+a′7b
′
7 + a′8b

′
8| (A18)

i(A′,B′)2 = 1

2
(µ(A′)+ µ(B′))+ |a′5b′5 + a′6b

′
6

+a′7b
′
7 + a′8b

′
8| (A19)

and let us define the following “solution intervals”

IAB = [i(A,B)1, i(A,B)2] (A20)

IAB′ = [i(A,B′)1, i(A,B
′)2] (A21)

IA′B = [i(A′,B)1, i(A
′,B)2] (A22)

IA′B′ = [i(A′,B′)1, i(A
′,B′)2] (A23)

A solution of (52)-(73) exists if and only if the membership

weights µ(A and B), µ(A′ and B), µ(A and B′) and µ(A and B)

are respectively contained in the intervals IAB, IA′B, IAB′

and IA′B′ .
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TABLE A5A | Calculation of the p-values corresponding to the deviation IA between µ(A) and µ(A and B) + µ(A and B′).

Deviation of µ(A) from µ(A and B) + µ(A and B′)

(Home Furnishing, Furniture) p-value (Spices, Herbs) p-value (Pets, Farmyard Animals) p-value (Fruits, Vegetables) p-value

Mantelpiece 5.61E-09 Molasses 9.73E-07 Goldfish 2.52E-05 Apple 1.78E-08

Window Seat 1.08E-05 Salt 7.01E-04 Robin 1.78E-06 Parsley 5.14E-07

Painting 4.19E-07 Peppermint 5.57E-06 Blue-tit 3.56E-06 Olive 1.98E-05

Light Fixture 4.20E-06 Curry 6.51E-05 Collie Dog 7.90E-06 Chili Pepper 1.85E-07

Kitchen Counter 6.10E-05 Oregano 1.78E-06 Camel 5.92E-05 Broccoli 4.35E-09

Bath Tub 4.17E-06 MSG 5.93E-05 Squirrel 5.23E-04 Root Ginger 1.44E-06

Deck Chair 5.35E-06 Chili Pepper 4.00E-12 Guide Dog for Blind 6.72E-04 Pumpkin 9.35E-06

Shelves 2.20E-06 Mustard 2.26E-05 Spider 4.19E-05 Raisin 1.13E-06

Rug 1.81E-09 Mint 1.56E-05 Homing Pigeon 4.87E-05 Acorn 1.04E-05

Bed 5.81E-07 Cinnamon 8.90E-08 Monkey 7.21E-04 Mustard 6.05E-07

Wall-Hangings 7.75E-07 Parsley 2.05E-05 Circus Horse 3.71E-07 Rice 7.87E-05

Space Rack 2.02E-08 Saccarin 1.64E-06 Prize Bull 2.02E-08 Tomato 1.77E-07

Ashtray 2.73E-06 Poppy Seeds 5.63E-05 Rat 1.05E-03 Coconut 1.61E-03

Bar 3.07E-08 Pepper 2.70E-07 Badger 3.79E-04 Mushroom 3.40E-05

Lamp 4.80E-08 Turmeric 1.62E-08 Siamese Cat 4.20E-06 Wheat 3.76E-06

Wall Mirror 1.95E-10 Sugar 1.52E-07 Race Horse 1.47E-07 Green Pepper 3.96E-07

Door Bell 5.94E-07 Vinegar 5.93E-04 Fox 2.26E-05 Watercress 2.60E-07

Hammock 2.35E-06 Sesame Seeds 5.49E-07 Donkey 1.79E-06 Peanut 7.62E-05

Desk 2.94E-05 Lemon Juice 2.79E-05 Field Mouse 1.20E-05 Black Pepper 6.54E-06

Refrigerator 2.41E-07 Chocolate 3.06E-06 Ginger Tom-cat 9.79E-06 Garlic 2.38E-07

Park Bench 1.09E-06 Horseradish 1.55E-06 Husky in Slead team 1.56E-05 Yam 3.68E-08

Waste Paper Basket 2.41E-06 Vanilla 4.28E-07 Cart Horse 2.62E-08 Elderberry 8.82E-05

Sculpture 1.43E-06 Chives 7.42E-06 Chicken 8.62E-08 Almond 1.04E-04

Sink Unit 3.97E-07 Root Ginger 5.02E-06 Doberman Guard Dog 1.29E-04 Lentils 9.59E-07

By applying a Bonferroni correction procedure, the null hypothesis can be rejected for a p-value less than 0.05
24

= 2.08 · 10−3.

Let us now come to the complete representation in C
8 ⊕ (C8 ⊗

C
8), and let us consider the data collected in the experiments eXY ,

X = A,A′, Y = B,B′, of Section 2. These data are explicitly

reported inTables A1–A4. Since the existence of solutions for (86)–

(92) depends, for a given experiment eXY , on the expemplar x

and the pair (A,B) of concepts that are considered, we explicitly

report such dependence for all the relevant variables that are

considered in this section. Hence, for each considered exemplar

x, we collected the eight membership weights µx(A), µx(B),

µx(A
′), µx(B

′), µx(A and B), µx(A and B′), µx(A
′ and B), and

µx(A
′ and B′).

The analysis we made in the foregoing sections makes it possible

for us to propose a general modeling procedure. For what concerns

solutions that can be found on first sector alone, we determined the

intervals of solutions as explained in (A20), (A21), (A22) and (A23).

We can now easily determine the general intervals of solutions,

including the extra solutions made possible by second sector.

Therefore, we need to consider the following quantities
∑8

i,j= 5 c
2
ij,

∑8
i= 5

∑4
j= 1 c

2
ij,

∑4
i= 1

∑8
j= 5 c

2
ij and

∑8
i= 5

∑4
j= 1 c

2
ij, respectively

for the combinations “A and B,” “A and not B,” “not A and B” and

“not A and not B’. To be able to express the intervals of Fock space

solutions, we introduce the following quantities.

s(A,B, x) = min





8
∑

i,j= 5

c2ij, i(A,B)1



 (A24)

t(A,B, x) = max





8
∑

i,j= 5

c2ij, i(A,B)2



 (A25)

Then, the interval

Usol (AB, x) = [s(A,B, x), t(A,B, x)] (A26)

is the solution interval for the general Fock space model. Hence,

in case the experimental value µ(A and B) is contained in this

interval, a solution exists. As a second step we can then see whether

a solution in first sector alone exists, which consists of veryfying

whether the experimental value µ(A and B) is contained in IAB.

Suppose that the anwer is “yes,” then we can caculate the angle

φB − φA that gives rise to this solution in first sector. This angle

is then an indication of which angle to choose for the general Fock

space solution. Usually different choices are possible. If there is no

solution in first sector, we anyhow can choose an angle φB − φA,

such that a choice of this angle φB−φA, and a choice ofmAB and nAB
gives a solution. The possible values of the angle and the coefficients

mAB and nAB are calculated by solving (86).

We can analyze the other combinations in an equivalent way.

Let us start with the combination “A and not B’. We have:

s(A,B′, x) = min





8
∑

i= 5

4
∑

j= 1

c2ij, i(A,B
′)1



 (A27)

Frontiers in Psychology | www.frontiersin.org September 2015 | Volume 6 | Article 1447 | 53

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Aerts et al. Quantum structure in human thought

TABLE A5B | Calculation of the p-values corresponding to the deviation IB between µ(B) and µ(A and B) + µ(A′ and B).

Deviation of µ(B) from µ(A and B) + µ(A′ and B)

(Home Furnishing, Furniture) p-value (Spices, Herbs) p-value (Pets, Farmyard Animals) p-value (Fruits, Vegetables) p-value

Mantelpiece 1.09E-05 Molasses 4.21E-06 Goldfish 1.89E-07 Apple 9.00E-07

Window Seat 1.89E-05 Salt 9.37E-05 Robin 8.27E-07 Parsley 9.14E-08

Painting 2.20E-07 Peppermint 2.50E-04 Blue-tit 2.90E-06 Olive 6.81E-08

Light Fixture 2.99E-06 Curry 8.55E-06 Collie Dog 2.00E-06 Chili Pepper 1.60E-07

Kitchen Counter 5.12E-06 Oregano 1.25E-06 Camel 1.35E-07 Broccoli 1.22E-06

Bath Tub 1.43E-06 MSG 1.79E-06 Squirrel 5.85E-06 Root Ginger 7.24E-06

Deck Chair 1.07E-04 Chili Pepper 2.20E-07 Guide Dog for Blind 4.55E-06 Pumpkin 1.17E-07

Shelves 7.84E-07 Mustard 5.57E-06 Spider 6.15E-05 Raisin 4.75E-08

Rug 4.99E-09 Mint 1.80E-06 Homing Pigeon 1.18E-06 Acorn 9.32E-08

Bed 2.73E-06 Cinnamon 5.03E-06 Monkey 2.95E-05 Mustard 4.61E-08

Wall-Hangings 3.93E-06 Parsley 7.52E-06 Circus Horse 2.27E-05 Rice 9.76E-06

Space Rack 2.16E-08 Saccarin 2.63E-06 Prize Bull 2.17E-06 Tomato 4.63E-07

Ashtray 8.83E-07 Poppy Seeds 3.05E-06 Rat 4.08E-06 Coconut 3.58E-06

Bar 3.07E-05 Pepper 4.70E-06 Badger 8.59E-05 Mushroom 1.39E-04

Lamp 8.94E-07 Turmeric 2.06E-07 Siamese Cat 1.98E-05 Wheat 5.03E-07

Wall Mirror 1.05E-06 Sugar 2.45E-06 Race Horse 5.03E-06 Green Pepper 8.15E-07

Door Bell 6.27E-07 Vinegar 1.89E-05 Fox 9.66E-05 Watercress 1.26E-07

Hammock 4.82E-06 Sesame Seeds 6.89E-07 Donkey 2.41E-06 Peanut 3.58E-06

Desk 5.97E-06 Lemon Juice 1.64E-06 Field Mouse 1.29E-03 Black Pepper 3.97E-07

Refrigerator 3.82E-05 Chocolate 9.12E-06 Ginger Tom-cat 1.64E-06 Garlic 1.15E-05

Park Bench 2.16E-08 Horseradish 1.31E-05 Husky in Slead team 1.01E-07 Yam 1.62E-09

Waste Paper Basket 7.21E-08 Vanilla 1.22E-07 Cart Horse 2.26E-07 Elderberry 1.98E-08

Sculpture 4.46E-08 Chives 3.81E-07 Chicken 4.98E-05 Almond 2.17E-06

Sink Unit 3.64E-06 Root Ginger 1.02E-08 Doberman Guard Dog 2.40E-06 Lentils 7.69E-06

By applying a Bonferroni correction procedure, the null hypothesis can be rejected for a p-value less than 0.05
24 = 2.08 · 10−3.

t(A,B′, x) = max





8
∑

i= 5

4
∑

j= 1

c2ij, i(A,B
′)2



 (A28)

Then, the interval

Usol(AB
′, x) = [s(A,B′, x), t(A,B′, x)] (A29)

is the solution interval for the general Fock space model. The

equation to be used to calculate the angle φB′ − φA, and the

coefficientsmAB′ and nAB′ is (88).

For the combination “A′ and B,” we have:

s(A′,B, x) = min





4
∑

i= 1

8
∑

j= 5

c2ij, i(A
′,B)1



 (A30)

t(A′,B, x) = max





4
∑

i= 1

8
∑

j= 5

c2ij, i(A
′,B)2



 (A31)

Then, the interval

Usol(A
′B, x) = [s(A′,B, x), t(A′,B, x)] (A32)

is the solution interval for the general Fock space model. The

equation to be used to calculate the angle φB − φA′ , and the

coefficientsmA′B and nA′B is (90).

Finally, for the combination “not A and not B,” we have:

s(A′,B′, x) = min





8
∑

i= 5

4
∑

j= 1

c2ij, i(A
′,B′)1



 (A33)

t(A,B′, x) = max





8
∑

i= 5

4
∑

j= 1

c2ij, i(A
′,B′)2



 (A34)

Then, the interval

Usol(A
′B′, x) = [s(A′,B′, x), t(A′,B′, x)] (A35)

is the solution interval for the general Fock space model. The

formula to be used to calculate the angle φB′ − φA′ , and the

coefficientsmA′B′ and nA′B′ is Equation (92).
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TABLE A5C | Calculation of the p-values corresponding to the deviation IA′ between µ(A′) and µ(A′ and B) + µ(A′ and B′).

Deviation of µ(A′) from µ(A′ and B) + µ(A′ and B′)

(Home Furnishing, Furniture) p-value (Spices, Herbs) p-value (Pets, Farmyard Animals) p-value (Fruits, Vegetables) p-value

Mantelpiece 2.38E-05 Molasses 6.35E-05 Goldfish 1.51E-05 Apple 9.93E-05

Window Seat 4.88E-04 Salt 1.63E-04 Robin 2.85E-03 Parsley 3.03E-05

Painting 6.06E-05 Peppermint 3.01E-03 Blue-tit 4.54E-04 Olive 1.33E-06

Light Fixture 5.64E-04 Curry 7.06E-04 Collie Dog 1.39E-05 Chili Pepper 3.47E-05

Kitchen Counter 1.55E-05 Oregano 1.33E-04 Camel 5.17E-04 Broccoli 7.60E-03

Bath Tub 9.61E-05 MSG 2.91E-05 Squirrel 5.10E-05 Root Ginger 1.71E-04

Deck Chair 2.96E-04 Chili Pepper 8.75E-05 Guide Dog for Blind 2.75E-05 Pumpkin 2.55E-04

Shelves 6.06E-05 Mustard 2.14E-03 Spider 1.06E-02 Raisin 7.20E-06

Rug 1.09E-05 Mint 2.62E-03 Homing Pigeon 8.10E-04 Acorn 1.68E-05

Bed 3.00E-05 Cinnamon 3.65E-04 Monkey 5.59E-03 Mustard 1.75E-06

Wall-Hangings 1.12E-04 Parsley 1.33E-04 Circus Horse 5.80E-04 Rice 4.90E-03

Space Rack 3.28E-06 Saccarin 6.42E-06 Prize Bull 3.59E-04 Tomato 4.41E-04

Ashtray 1.55E-05 Poppy Seeds 2.05E-03 Rat 1.29E-03 Coconut 1.86E-04

Bar 2.34E-05 Pepper 7.60E-03 Badger 2.48E-02 Mushroom 2.62E-03

Lamp 2.26E-05 Turmeric 5.96E-04 Siamese Cat 2.71E-04 Wheat 2.76E-05

Wall Mirror 5.58E-06 Sugar 2.81E-04 Race Horse 1.28E-03 Green Pepper 2.75E-02

Door Bell 1.64E-05 Vinegar 5.31E-05 Fox 9.46E-02 Watercress 1.41E-03

Hammock 2.04E-04 Sesame Seeds 1.17E-03 Donkey 6.94E-03 Peanut 1.20E-05

Desk 1.36E-05 Lemon Juice 1.35E-07 Field Mouse 2.22E-02 Black Pepper 1.10E-03

Refrigerator 2.55E-05 Chocolate 3.03E-05 Ginger Tom-cat 2.79E-04 Garlic 6.14E-05

Park Bench 2.93E-05 Horseradish 2.80E-06 Husky in Slead team 3.22E-05 Yam 1.13E-06

Waste Paper Basket 7.87E-09 Vanilla 2.07E-06 Cart Horse 2.98E-04 Elderberry 1.58E-05

Sculpture 2.41E-06 Chives 1.08E-06 Chicken 2.66E-02 Almond 6.63E-06

Sink Unit 7.90E-06 Root Ginger 7.32E-04 Doberman Guard Dog 2.64E-07 Lentils 6.54E-05

By applying a Bonferroni correction procedure, the null hypothesis can be rejected for a p-value less than 0.05
24

= 2.08 · 10−3.
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TABLE A5D | Calculation of the p-values corresponding to the deviation IB′ between µ(B′) and µ(A and B′) + µ(A′ and B′).

Deviation of µ(B′) from µ(A and B′) + µ(A′ and B′)

(Home Furnishing, Furniture) p-value (Spices, Herbs) p-value (Pets, Farmyard Animals) p-value (Fruits, Vegetables) p-value

Mantelpiece 1.09E-06 Molasses 3.14E-07 Goldfish 2.89E-07 Apple 1.46E-05

Window Seat 8.03E-05 Salt 1.56E-05 Robin 2.23E-02 Parsley 5.26E-05

Painting 5.38E-05 Peppermint 1.56E-05 Blue-tit 1.63E-04 Olive 4.77E-04

Light Fixture 1.16E-03 Curry 1.83E-04 Collie Dog 2.06E-04 Chili Pepper 5.16E-05

Kitchen Counter 3.02E-03 Oregano 1.11E-03 Camel 5.93E-03 Broccoli 1.83E-04

Bath Tub 4.21E-06 MSG 2.60E-07 Squirrel 2.64E-03 Root Ginger 2.14E-03

Deck Chair 4.45E-06 Chili Pepper 1.71E-07 Guide Dog for Blind 5.83E-04 Pumpkin 5.09E-03

Shelves 5.06E-04 Mustard 4.08E-06 Spider 2.57E-02 Raisin 2.38E-05

Rug 1.17E-05 Mint 1.13E-04 Homing Pigeon 9.81E-03 Acorn 1.37E-05

Bed 4.44E-05 Cinnamon 5.03E-07 Monkey 9.47E-03 Mustard 3.07E-05

Wall-Hangings 7.21E-04 Parsley 6.14E-05 Circus Horse 1.87E-03 Rice 6.15E-04

Space Rack 1.38E-06 Saccarin 6.59E-08 Prize Bull 4.22E-04 Tomato 5.09E-04

Ashtray 5.03E-06 Poppy Seeds 1.87E-04 Rat 1.14E-02 Coconut 2.81E-04

Bar 1.74E-08 Pepper 3.52E-04 Badger 1.18E-02 Mushroom 4.84E-04

Lamp 2.24E-07 Turmeric 1.32E-06 Siamese Cat 3.69E-05 Wheat 1.45E-04

Wall Mirror 1.52E-04 Sugar 2.60E-06 Race Horse 7.53E-03 Green Pepper 4.63E-03

Door Bell 5.64E-06 Vinegar 1.50E-05 Fox 1.97E-02 Watercress 1.68E-03

Hammock 2.32E-04 Sesame Seeds 3.41E-05 Donkey 4.90E-03 Peanut 1.16E-04

Desk 6.37E-05 Lemon Juice 1.16E-06 Field Mouse 1.18E-02 Black Pepper 3.76E-03

Refrigerator 1.71E-05 Chocolate 8.26E-08 Ginger Tom-cat 1.20E-03 Garlic 4.62E-05

Park Bench 1.04E-04 Horseradish 7.46E-08 Husky in Slead team 2.62E-03 Yam 3.20E-05

Waste Paper Basket 2.88E-06 Vanilla 1.36E-06 Cart Horse 3.42E-04 Elderberry 3.72E-04

Sculpture 1.28E-04 Chives 6.15E-05 Chicken 1.92E-03 Almond 2.73E-06

Sink Unit 1.89E-04 Root Ginger 6.54E-05 Doberman Guard Dog 1.15E-05 Lentils 6.94E-05

By applying a Bonferroni correction procedure, the null hypothesis can be rejected for a p-value less than 0.05
24

= 2.08 · 10−3.
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TABLE A5E | Calculation of the p-values corresponding to the deviation IABA′B′ between µ(A and B) + µ(A and B′) + µ(A′ and B) + µ(A′ and B′) and 1.

Deviation of µ(A and B) + µ(A and B′) + µ(A′ and B) + µ(A′ and B′) from 1

(Home Furnishing, Furniture) p-value (Spices, Herbs) p-value (Pets, Farmyard Animals) p-value (Fruits, Vegetables) p-value

Mantelpiece 4.34E-09 Molasses 4.33E-07 Goldfish 3.98E-09 Apple 1.24E-08

Window Seat 5.12E-06 Salt 4.04E-05 Robin 1.09E-05 Parsley 1.03E-08

Painting 1.07E-07 Peppermint 7.51E-07 Blue-tit 3.54E-07 Olive 1.44E-08

Light Fixture 5.01E-07 Curry 3.31E-06 Collie Dog 1.55E-07 Chili Pepper 2.81E-09

Kitchen Counter 4.63E-06 Oregano 1.95E-07 Camel 1.19E-05 Broccoli 6.15E-09

Bath Tub 1.13E-07 MSG 5.67E-07 Squirrel 1.99E-05 Root Ginger 1.79E-06

Deck Chair 3.04E-07 Chili Pepper 2.19E-10 Guide Dog for Blind 2.43E-05 Pumpkin 6.60E-07

Shelves 7.84E-08 Mustard 5.67E-07 Spider 5.24E-05 Raisin 7.37E-09

Rug 8.18E-09 Mint 9.21E-08 Homing Pigeon 5.23E-06 Acorn 8.26E-09

Bed 3.69E-08 Cinnamon 2.42E-08 Monkey 5.05E-04 Mustard 9.61E-08

Wall-Hangings 1.09E-06 Parsley 2.61E-07 Circus Horse 7.10E-07 Rice 3.68E-06

Space Rack 3.77E-08 Saccarin 1.20E-07 Prize Bull 1.27E-08 Tomato 1.82E-09

Ashtray 9.08E-08 Poppy Seeds 1.24E-06 Rat 5.07E-05 Coconut 6.54E-07

Bar 2.27E-09 Pepper 8.33E-07 Badger 3.01E-04 Mushroom 5.77E-06

Lamp 1.87E-08 Turmeric 5.34E-08 Siamese Cat 1.34E-07 Wheat 9.21E-08

Wall Mirror 2.20E-09 Sugar 5.03E-07 Race Horse 5.77E-08 Green Pepper 6.54E-07

Door Bell 1.62E-07 Vinegar 3.40E-05 Fox 9.66E-04 Watercress 6.57E-08

Hammock 7.17E-07 Sesame Seeds 1.07E-07 Donkey 2.38E-06 Peanut 3.51E-07

Desk 7.94E-07 Lemon Juice 4.30E-07 Field Mouse 8.23E-04 Black Pepper 9.33E-07

Refrigerator 5.49E-07 Chocolate 5.18E-08 Ginger Tom-cat 6.79E-07 Garlic 2.51E-07

Park Bench 1.39E-08 Horseradish 5.03E-08 Husky in Slead team 3.99E-08 Yam 1.60E-10

Waste Paper Basket 1.38E-09 Vanilla 6.49E-08 Cart Horse 8.26E-09 Elderberry 1.60E-07

Sculpture 7.78E-09 Chives 1.80E-08 Chicken 1.53E-06 Almond 9.09E-08

Sink Unit 2.66E-07 Root Ginger 6.10E-08 Doberman Guard Dog 3.86E-08 Lentils 3.47E-07

By applying a Bonferroni correction procedure, the null hypothesis can be rejected for a p-value less than 0.05
24

= 2.08 · 10−3.
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The scope of this paper is to test the adoption of a statistical model derived from

Condensed Matter Physics, for the reconstruction of the structure of a social network.

The inverse Potts model, traditionally applied to recursive observations of quantum states

in an ensemble of particles, is here addressed to observations of the members’ states in

an organization and their (anti)correlations, thus inferring interactions as links among the

members. Adopting proper (Bethe) approximations, such an inverse problem is showed

to be tractable. Within an operational framework, this network-reconstruction method

is tested for a small real-world social network, the Italian parliament. In this study case,

it is easy to track statuses of the parliament members, using (co)sponsorships of law

proposals as the initial dataset. In previous studies of similar activity-based networks,

the graph structure was inferred directly from activity co-occurrences: here we compare

our statistical reconstruction with such standard methods, outlining discrepancies and

advantages.

Keywords: social network analysis, Potts model, network reconstruction, community detection, loopy belief

propagation, inverse problem, quantum structures

1. INTRODUCTION

A growing interest raised in recent years about policy networks in social and organizational studies:
the concept has flourished even in the absence of a widely agreed definition. Among the most
successful ones, we may quote (Börzel, 1997) and the concept of horizontal networks linking a
variety of actors, who share common interests about a policy, and cooperate toward its adoption.
Now, such a broad idea withstood critiques considering the policy network a mere metaphor,
more than a model capable of understanding the process of genesis and evolution of policies
(Dowding, 1995). A rich literature has adopted both qualitative and quantitativemethods to analyse
the network paradigm. In fact, in most study cases, the relations between the actors involved are
depicted as links between the corresponding nodes of a graph (the actors). Most discussions are
also driven by network analysis tools and methods (Besussi, 2006).

Among quantitative methods, for our case study we focused on the collaborative nature
of policy networks, dealing with vote behavior, an idea originally dating back to the “socio-
structural and interactional effects,” investigated since (Lazarsfeld et al., 1968). Here, however,
following a recent but well developed approach, sponsorships and endorsements of law proposals
are tracked in the dataset, rather than proper voting behavior when these proposals are
approved or rejected. Social Network Analysis (SNA) performed with co-sponsorships and other

58
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similar data in legislative bodies was started by Fowler (2006),
where the network structure and proximity measures among
the US Senate members were obtained. Further analyses were
also based on roll calls, but they focused upon the creation
and evolution of communities in the network (Porter et al.,
2007; Zhang et al., 2008). Retrieving the policy network
in a legislative body, and communities therein, using roll-
calls and co-sponsorship data, instead of final votes, is a
method embedding both advantages and disadvantages. A useful
discussion about the point can be found in Chiru and Neamu
(2012).

Main interest of this paper is the problem of preliminary
reconstruction of member-member networks, starting from the
member-activity affiliations, i.e., the roll-call votes data. Indeed,
when it comes to the network reconstruction, the preliminary
step of most SNA approaches is affected by the simplistic
assumption that: two people are related to each other if, and only
if, they perform simultaneously a (sub)set of activities, and the
strength of their interaction is measured directly counting (and
weighting) these co-occurrences.

Evidently, this standard method for network reconstruction
can be improved in its capability of finding hidden links,
or removing those due to noise and bearing no useful
information. Various strategies may contribute significantly in
this improvement: both those originated from SNA realm
itself (e.g., adopting homophily for the study of the network
structure); or from other fields (e.g., analysing covariates
generated by different observations of the network, making
use of random/mixed effects models, or checking covariance
data against pseudo-randomization in the samples, etc.). The
interested reader may find more details in specific papers. For
example, in Newman and Leicht (2007) it is performed the
reconstruction of the clusters inside a large-scale network via
mixture models, investigating similar structural connections
among the nodes. A mixture model in random graphs is used
also in Daudin et al. (2008), but this time enriching it with a
Bayesian approach, with the purpose to infer unknown classes
(Nowicki and Snijders, 2001). Finally, in Jedidi et al. (1997)
a general finite mixture structural equation model is built,
capable of dealing with heterogeneities in the network’s structural
equation models, and based upon a set of observed variables
(measured with error). In general, these approaches may adopt
finite mixture simultaneous equation models, finite mixture
confirmatory factor analysis, and finite mixture second-order
factor analysis.

Most statistical methods outlined above are a way to relax
the strong assumption that filters only those interactions due
to co-occurrences. Here, instead, it is discussed an approach
adopting the inverse Potts model, originated from Condensed
Matter Physics. Inverse models aim to infer and model the
interactions in an unknown network structure, starting from
recursive observations of the nodes’ states. As such, these
models are adapt to capture underlying quantum structures
in a decision making process, whenever the final decision
state can be deduced in terms of the observed actions (this
argument will be discussed in Section 2). Moreover, this paper
also envisages how a Q-states Potts model enables a much

better understanding and mimicking of the statistical features
of complex network structures, compared for example to a
more basic Ising modeling1. The approach is tested against a
policy network reconstruction, starting from co-sponsorship data
collected from the Italian Senate2.

It is worth to notice how Ising and Potts (direct) models have
already found a large number of applications also in the realm of
social sciences (Phani et al., 2004; Bordogna and Albano, 2007),
including policy networks (Liu et al., 2010), but always applied
to networks whose structure had been inferred previously by
other strategies. However, the inverse problem formulation has
been confined to the Ising model alone, and most of its interest
for non-physical problems has involved so far only biological
and neural sciences (Yamanishi et al., 2004; Ricci-Tersenghi,
2012), or image reconstruction tasks (Kiwata, 2012). To authors’
knowledge, this paper is the first using the inverse Potts problem
to reconstruct a network in social sciences, and it is in general the
first to apply a moment-based Loopy Belief Propagation (LBP)
method3 to solve the Potts inverse problem in the real world.

The paper will be structured as follows. In Section 2, we will
present how the Q-states Potts model intervenes in network
reconstruction, and our approach to solve it. Then, in Section
3, a reconstruction of the Italian Senate network is reported,
starting from data tracking co-sponsorships of law-proposals and
inferring interactions among the senators, according to their
decision patterns. Finally, in the Conclusions we will compare
the results with traditional SNA methods, i.e., not employing
statistical inference.

2. MODEL AND METHODOLOGY

The principle behind the approach described in this paragraph
is that (co-participation in) activities of an organization lead(s)
to two-body interactions among the organization members, and
these interactions can be captured by a networked structure. In
other words, a complete approach handling relations between
different realms (e.g., users and activities) must be able also
to examine relations within each realm, separately. Using
typical SNA nomenclature, this means computing a one-mode
network (represented by an adjacency matrix), starting from a
two-mode network (represented by an affiliation matrix, that
reports participations in the activities, by different organization
members). Currently, the standard approach to deduce the one-
mode matrix is based upon a mere counting and normalization
of co-occurrencies, according to some schemes: these include
matches-counting, covariance and correlation measures, cross-
products, up to Bonacich and Jaccard indexes (Hanneman and
Riddle, 2005). Each of these methods brings along some peculiar
features, and the Jaccard index in particular is widely adopted
(Borgatti, 2012), being well-suited for sparse affiliation matrices
that are very common in the real world.

However, none of these standard approaches resembles
probabilistic features, capable of taking into account noisy

1Adopted elsewhere in SNA literature for the same task.
2Publicly available at http://www.senato.it/leg/16/BGT/Schede/Attsen/Sena.html.
3See Section 2.
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signals, anti-correlations and co-occurrences of idle states4. This
issue highlights the chance to improve the reconstruction of
the corresponding one-mode networks, by a mapping to an
inverse statistical problem for pairwise Markov Random Fields
(MRF), as discussed in detail later. Especially for large systems,
inverse statistical problems are computationally expensive, and
approximate methods must be used. For the inverse Ising
problem are known: expansions in correlations and clusters
(Sessak and Monasson, 2009; Cocco and Monasson, 2011),
methods based upon the Bethe approximation (Ricci-Tersenghi,
2012), and pseudo-likelihood methods (Ekeberg et al., 2013).
Here, we will refer to the moment representation of the LBP
approach (MR-LBP), considered particularly advantageous for
solving this task (Horiguchi, 1981).

However, Ising models pose severe limitations for SNA
applications5, and it would be advantageous to switch to a more
general Q-state Potts modeling. A theoretical extension of MR-
LBP for this general inverse problem has been provided already
by Yasuda et al. (2012), making use of an expansion in Chebyshev
polynomials. This approach is briefly outlined in this paragraph,
before explaining how to match it with the specific needs of
our case. As the first, however, it is important to discuss at
an introductory level why inverse Potts (Ising) modeling are
considered adapt to deal with affiliation matrices, that may well
derive from quantum features of decision processes.

The starting point of the inverse Q-state Potts problem is a set
of M observations: D = {dµ ∈ {0, 1, ...Q − 1}n|µ = 1, 2, ...M}.
The task of the inverse problem is to reconstruct the (Potts)
model subtended to the observations6. In other words, each
observation in D can be considered a “snapshot” of the network
at a certain moment in time, where the (positive integer) state of
each node xi is observed as d

µ
i at the µ-th observation. Pairwise

states are indicated as x(i,j): = {xi, xj}, meaning that, at the time
of the same observation, the states of nodes xi and xj were found
to be as in x(i,j). In this study case, the allowed Q-states can be
interpreted as the possible decisions and thus positions (both
active or not), about a law proposal, which can be held by the
Senate members.

Now, among the fundamental principles of Quantum
Mechanics, there is the possibility that if an object can be in either
of two generic orthogonal7 states |φ〉 and |ψ〉, then, in general
it is also allowed to be in any linear superposition of the two:
α|φ〉 + β|ψ〉. Intuitively, however, when a measurement of the
object’s state is performed, the state must collapse into either one
or the other. This is also at the core of many models exploiting
quantumness in the cognitive realm (Haven and Khrennikov,
2013).Mapping this general statement into our specific study case
is equivalent to supposing that policy network agents perform
decisions according to the same scheme of a quantum state
measurement. Intuitively, this means that these agents do not

4To be intended as those states, that label nodes observed to be inactive, whereas

certain other activities are being performed by other nodes.
5E.g., the maximum number of allowed states is intrinsically limited to 2, while a

generic Q-states Potts model allows Q ∈ N , Q ≥ 2. Indeed, in Section 3, it will be

shown how an inverse Ising problem fails for our case study.
6To be specific, the observations are supposed to be sampled from a certain MRF.
7I.e., they cannot be observed simultaneously for the same object.

already “embed” a decision about what to do, before being asked
support for a roll-call. Only when they are confronted with the
decision making, they contextually choose one of the possible
alternatives to act: before that moment, it is possible to suppose
they were in a superposition of some (all) possible decisions.
I.e., they were considering also alternatives, before finalizing their
choice.

More formally, the generic decision state of each senator can
be mapped as a superposition state |Xi〉, in (some of) the Q-states
|χ〉 of the Potts model:

|Xi〉 =
Q

∑

χ=1

βi,χ |χ〉 (1)

and each observation of a node’s state can be understood as a
POVM of |Xi〉 in the basis of the states |χ〉, that are mutually
orthogonal. This underlies the plausible assumption that a single
member may desire—but not intend—more than one decision at
once, toward a certain law proposal: for example they cannot
simultaneously support and ignore the same roll call. Non-
classical effects of this superposition of states guiding the final
decision have already been discussed, e.g., in Aerts et al. (2012),
and a more complex quantum modeling of decision making has
been proposed in Bisconti et al. (2015).

It may be noticed that, when introducing at first the Potts
model in this paragraph, no explicit reference to quantum
states was made. In fact, this is because an effective treatment
of the quantum Potts model can be done within a classical
formalism: a more technical justification follows in the rest of
this paragraph. Indeed, a quantum Potts model introduces a
Hamiltonian characterized by two-body8 interactions as:

HPotts = −
∑

{i,j}
H(i,j)

∑

χ

P
χ
i P

χ
j (2)

where P
χ
i are projectors onto the |χ〉 state of the local space for

the i-th node. H is instead called the ferromagnetic coupling, and
it captures the intensity of interaction among the nodes.

It is known how any classical (finite-dimensional) spin model
on a lattice can be associated to a quantum model (Somma
and Ortiz, 2010), defined on the same lattice, by mapping every
classical state xi into measurement outcomes of the state |Xi〉 and
viceversa. Classically, the spin model has an energy functional
that is:

EPotts = −
∑

{i,j}
H(i,j)x(i,j) (3)

Therefore, the energy functional maps into the eigenvalues of
the Hamiltonian operator defined in Equation (2), and when
performing statistical inference from the observations of the
nodes’ states in the network, this correspondence allows us to
refer directly to the values of the classical variable xi. In the
following, therefore, the baseline assumption will be that a model
subtending a statistical treatment of the network reconstruction

8Here and in the following single-node terms are skipped for simplicity.
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problem, inspired by a quantum-mechanical counterpart, can be
far more efficient in revealing hidden links and patterns from
observations, inferring even those interactions that standard
methods are not capable of detecting.

2.1. The Inverse Potts Model
It has been seen how a statistical approach to the Potts problem,
dealing with classical variables xi, still implicitly underlines
an intrinsically quantum process of decision making, because
the likelihood of observing a certain value di for xi can be
interpreted in terms of projecting the generic quantum state
|Xi〉, onto the corresponding basis state |χ〉, where each of the
orthogonal basis states identifies a single possible decision. This
paragraph is devoted to a detailed explanation of the algorithm
inferring relationships among nodes, from the set of observations
performed: non-technical readers may skip it and move to the
considerations in Section 2.2.

It can be observed how the probability distribution—for
observations of the node states x—is clearly connected with the
energy functional in Equation (3):

P(x) ∝ exp



−
n

∑

(i,j)∈E
H(i,j)(x(i,j))



 (4)

and this closely resembles the probability distribution in general
pairwise MRF formalism. E defines here the set of connections
expected in the model, and therefore the condition (i, j) ∈ E
set in the summation can be understood as an explicit network
constraint, whereas in Equation (3) we had the generic {i, j}.
Now, in the inverse problem, the H(i,j) setting up the network

model are unknown9 and must be inferred by the probabilities
in Equation (4). In terms of the orthogonal set of Chebyshev

polynomials 8k(xi) and appropriate constants J
(k,l)
(i,j)

, it is possible

to write the two-body potential function H as:

H(i,j)(x(i,j)) =
1√
Q

Q−1
∑

k=1

[

J
(k,0)
(i,j)

8k(xi)+ J
(0,k)
(i,j)

8k(xj)
]

+

+
Q−1
∑

k= 0

Q−1
∑

l= 0

J
(k,l)
(i,j)

8k(xi)8l(xj)+ constant (5)

where constant terms in the expansion (e.g., 80(xi)) have been
all included in the last constant term. Starting from Equation (5),
Yasuda et al. (2012) applied a moment representation of the LBP
scheme and message-passing rules to the MRF described so far.
Within the Bethe approximation, it was shown how it is possible
to approximately find the constants J frommarginal probabilities
of the observations:

J
(k,l)
(i,j)

= −
Q−1
∑

xi = 0

Q−1
∑

xj = 0

8k(xi)8l(xj) lnP(i,j)(x(i,j)|D) (6)

9And in particular, it is unknown which nodes in the interaction model E are truly

linked to each other, i.e., have a non-negligible interaction: (i, j) ∈ E ⇐⇒
H(i,j) ≇ 0.

thus minimizing the (Bethe) approximate entropy of the model:
theP probability values are used to reconstruct the parameters of
the Potts model.

The probabilities P , for observing in D, respectively values
xi and x(i,j), can also be expressed as sums of Chebyshev
polynomials:

Pi(xi|D) = 1

Q
+

Q−1
∑

k= 1

〈8k(xi)〉D8k(xi) (7)

P(i,j)(x(i,j)|D) =

1

Q2
+ 1

Q

Q−1
∑

k= 1

[〈8k(xi)〉D8k(xi)+ 〈8k(xj)〉D8k(xj)]

+
Q−1
∑

k= 1

Q−1
∑

l= 1

〈8k(xi)8l(xj)〉D8k(xi)8l(xj) (8)

Here, the interesting advantage of using the LBP moment
representation is that all the quantities 〈...〉D can be derived by
averaging over an appropriate number of M observations D of
the network.

It can be both intuitively predicted, and numerical
experiments in Yasuda et al. (2012) confirmed it, that the
number of observations used is correlated with the quality of
the final network reconstruction obtained. It shall be observed
how in the original paper, numerical experiments were limited
to the case when the network structure underlying the inverse
problem was a non-periodic lattice (i.e., |i − j| /∈ {θ[min(i, j)
mod p], p} ⇒ (i, j) /∈ E ⇔ J(i,j) = 0, where θ the step function
and p the lattice period).

Considering that the main specific interest of this paper is
the reconstruction of the network, i.e., the pairwise interactions
among the nodes, here the key parameter in the Potts model
is indeed H(i,j), measuring the intensity of connection between
users i and j in the network. Equation (5) shows that H(i,j) is

directly related to the set of constants J
(k,l)
(i,j)

.

An interesting feature, that contributes to the sensitivity
of this approach compared to standard ones listed above, is
that 8k(xi)8l(xj)—used in Equation (6) for calculating J—is
in general different from 0, even when k 6= l. Therefore,
interactions are inferred also when simultaneous participation
in the same activity plays no role. The interpretation is that,
even if one expects no interaction to occur among users
because they tended to perform different activities10 in the
observation snapshots, this assumption is actually tested by the
reconstruction method against the observations, and indirect
(“out-of-diagonal”) correlations may be detected.

As better explained in Section 2.2, in most cases data
collected from social networks require caution before being
used as “observational data” in a Q-state inverse Potts problem.

10I.e., assuming that J
(k,l)
(i,j)

∝ δ(k, l), where δ(k, l) is the Kronecker delta. Indeed,

also in the pseudo-observational models defined below, the parameters α(i,j) act as

an initial guess for the interactions, based upon the assumption that interactions

shall be inferred only when simultaneous participation in activities occurs, but this

is tested against the observations.
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Therefore, it is interesting to mention the possibility to simulate
observations, whenever data about the probability distributions
are known to depend upon some parameter(s). For example,
observation samples may be reconstructed using one only
parameter α in a generative model: in this case probabilities of
observing a certain collective state x are computed according to
α, and it is possible to write down averaged functions (such as the
averages required by Equations 7 and 8):

〈f (x)〉D =
∑

x∈D
f (x)PGenMod(x|α) (9)

Clearly, because of the assumptions underlying the LBP inverse
problem approach, the most general choice for the generative
model (GenMod) must be a Q-state Potts model.

2.2. Data and Observations
It is left to explain how to employ an inverse Q-state Potts model
for the reconstruction of the Italian Senate network of members,
starting from data tracking law co-sponsorships by senators. In
the Italian legislative system, a law undergoes a few preliminary
steps before being discussed in the Senate. As the first, one or
more11 senators are responsible for writing it down, signing
and proposing it; these are very similar to the sponsors in US
legislative system. After that, other senators who are aware that
this specific law is being proposed for discussion, may co-sign
it, as an act of endorsement. They act as the US co-sponsors.
According to the Senate’s schedule, the law is then discussed
in detail and subjected (eventually) to a final vote. Therefore,
collecting (co)sponsorships’ data brings along a considerable
insight about patterns of collaboration and support among the
senators, and can be considered equivalent to other studies
performed with similar legislative bodies in other countries, as
cited in the introduction.

Our case study focuses on the first part12 of the XVI Italian
legislature, using co-sponsorship data for Senate roll calls in the
same period. We chose this period for two reasons. As the first,
one of the intents is to find communities (and their members) in
the network by automatic community detection algorithms, and
compare the resulting groups with the “official memberships in
political parties” of the senators. For this purpose, the beginning
of a legislature is ideal, because senators have just been elected as
members of a certain political party13. This makes it easy to refer
to these parties as their true memberships, whereas at later points
in time, several senators may have moved to different political
parties (e.g., because some parties have been dismantled), and
tracking these changes in a mindful way turns extremely difficult.
Moreover, the dataset of this study case is the most recent (thus

11Usually one or just a few. In some special cases, the law undergoes a peculiar path

where no initial senator is quoted for sponsoring the proposal.
12Corresponding to the first Cabinet.
13Indeed, when in the following there will be references to the “true” memberships

of the senators, these have been deduced by the participation of the senators to

political groups: a specificity of the Italian Parliament, that enables the tracking

of a senator’s loyalty to a party or group of parties. See http://www.senato.it/

leg/16/BGT/Schede/GruppiStorici/Grp.html. When, along with the period under

observation, a senator belonged to multiple groups, he/she was assigned to the

group where he spent most of the observation time.

eventually more interesting from a policy network point of view),
while referring at the same time to a past Legislature. This renders
available data “crystallized,” with less risk of updates to occur.

Usage of minimization procedures in Potts-like models for
legislative bodies is not fully new in the literature: for example,
in Liu et al. (2010), an Ising model had been used to model the
US Senate network starting from bill cosponsorships. However,
compared with this previous study, there are here a few
important differences.

• In Liu et al. (2010), the quantum Ising model is not used for
the network reconstruction, achieved by a simple weighted
interaction counts procedure. The Ising model intervenes
merely in a second phase, for the influence maximization
analysis.

• Because of the intrinsic political nature of the Italian VS the
US Senate, whereas a 2-state Isingmodel is perfectly adapted to
the strongly bipartite US case, it is rather limiting when used to
describe the multi-partite structure of its Italian counterpart,
that requires a more generic Q-states approach.

• Observing more closely the available data, US co-sponsorship
data of the 108th Congress (used for the network analysis
in Fowler, 2006 and derived ones) had in average 285 bills
(co)sponsored per legislator—against 62 bills/legislator for
Italian co-sponsorship data from the XVI legislation. Each
US bill was (co)sponsored in average by 4 legislators—while
8 legislators per bill was the average in the Italian case. The
total is of 4630 bills for 100 senators in the US case, and
3100 (M) law proposals for 338 (N) senators in the Italian
case. Summarizing, the US Senate was much more active
in sponsoring bills, and still proportionally more active in
co-sponsoring, when compared to the Italian counterpart.

The connectedness of the US legislative network, given by
the ratio cosponsorships/senators, and the reduced number of
communities therein, make it adapt of being treated with an
Ising 2-state model. Also standard methods may reproduce the
structure of that network in an acceptable way, given that its
high density may well represent14 the absence of hidden or
evolving links. This considerations, however, suggest that the
same approach may provide poor results for the Italian situation.

Here we intend to use a Q-state Potts model directly for
the network reconstruction, as outlined in Section ??. A naive
application of the model may involve two only possible states for
the nodes (senators).

1. An active state (xi = 1), corresponding to nodes sponsoring
or co-sponsoring a bill, when this is being proposed or
introduced. It is indeed intuitive to consider the request
for cosponsorships an observational event, measuring the
behavior of the nodes, and therefore the state they are in.

2. A passive state (xi = 0), when the nodes do not act as
(co)sponsors when a bill is introduced (i.e., they are detected
as inactive when they undergo “measurement”), and therefore
no endorsement is tracked in the data.

14Actually, a specular interpretation is that the mechanism used to track

interaction was poorly efficient, and therefore links in excess shall be excluded by

an inference scheme.
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This would be equivalent to an Ising model. In order to better
explain what follows, it is worth a parenthesis about the Italian
case. It was highlighted how each activity, i.e., the proposal for
each law in the Senate, was participated in average by about 8
people (NA). That is, for each of theM bills, the active community
was in average 2.5% of the whole Senate. Now, using a 2-state
Potts model as above implicitly generates correlations also among
senators often detected in passive states: Indeed, it is evident
how co-occurrences of inactive states would be assigned the same
importance, in principle, as co-occurrences of active states.

Is this meaningful? Consider the underlying phenomenon: co-
endorsing a law proposal presumes a much more intensive link
between two senators (as it obviously brings along the sharing
of the same political point of view, as well as some sort of
acquaintance with the senator who conceived the law itself),
compared to simultaneous abstaining from the endorsement
(which may be due to lack of chance to discuss and share
the law proposal; or to early abundance of cosponsors, making
worthless for other senators to join the cosponsoring group; etc.).
A simple abstinence from action is an ambiguous behavior, as
it supposes no direct opposition or lack of interest. Therefore,
it is intuitively necessary to find a mechanism that keeps these
inactive correlations15 less significant, compared to those due to
simultaneous observation of the same active state in two nodes16.

A first approach may be to still use Q = 2, while explicitly
ignoring inactive correlations when computing the interaction
parameters. This can be done by replacing:

xi(j) ∈ {0, ...,Q− 1} → xi(j) ∈ {1, ...,Q− 1} (10)

in the sums of Equation (6), where we supposed that xi =
0 corresponds to the only inactive state. However, this choice
will miss the chance of capturing hidden connections, due to
simultaneous occurrence of inactive states for some specific
reason, and particularly the hostility against the law proposal
under discussion.

An effective solution, but computationally expensive, is to pick
a high enough Q-value for the model, assigning different xi 6= 1
to members in inactive states. In particular, to avoid aprioristic
considerations about the level of interaction of people belonging
to the same faction, the random probability of assigning two
nodes to the same inactive state (pina) shall not be bigger than the
average empirical probability of two nodes being assigned to the
same active state (pact). Now: pina = N−NA

(Q+1)N
≤ pact ∼= 0.024,

which gives in turn: Q ≥ 40. Because of the computational
complexity of the procedure (O(Q2)), here for demonstrative
purposes it will be shown how the performance of the method
can change moving fromQ = 2 up toQ = 10. That is, we start by
assigning to inactive correlations the same importance as active
correlations, then we progressively reduce the importance of the
second compared to the first ones. The case with Q = 5 has
a specific underlying reason: community detection algorithms
revealed 5 clusters in the Senate network, when run against the
network, reconstructed with the standard Jaccard approach, see

15As we will call them in the following for simplicity.
16In the following for simplicity: active correlations.

Section 3. The intent is therefore to try using this information as
an initial guess for the LBP approach, introducing a number of
possible states corresponding to community membership (under
the reasonable assumption that such a membership strongly
influences the co-sponsorship decisions). However, it should be
emphasized here that partitioning the network in 5 communities
may be non-optimal. Indeed, along the period of the analysis
performed, it is true that the Parliament involved 4 major parties,
plus senators being independent, or belonging to small17 parties,
but the 4 major parties were actually joint in 2 different alliances,
thus reducing the number of effective communities to only 3.
This is an important consideration, therefore it will be discussed
again in the following.

There is still another feature in the procedure, left to discuss:
cleaning and eventually generating the observation samples. This
feature can be tuned as well, in order to introduce aprioristic
knowledge about the network structure. In general, there are at
least three different strategies to use properly the collected data:

1. a full generativemodel, where at first some standard method is
applied to reconstruct the network, this network is used as an
initial guess for the interactions among the nodes, allowing to
sample a set of observations;

2. a semi-observational model, where the observations collected
are used directly as samples, but sample averages are adjusted
against the network reconstructed via standard methods;

3. a pure observationalmodel, that is agnostic of any coarse-grain
network structure, and applies directly the LBP procedure to
the data: here sample averages are computed directly from the
data (that can thus be confused with the observation samples).

It is worth to notice how the first strategy replaces real data with
samples obtained according to some reasonable18 assumptions
about the strength of relationship among nodes, summarized as
αij elements19 of a preliminary adjacency matrix. For example,
in Liu et al. (2010) a count of co-occurrences of active states was
used:

αij =
∑

µ

δ(x
µ
i , x

µ
j , 1)

nµ
(11)

weighted with the number of cosponsors nµ, for each bill µ.
Even if a standard method is used for the preliminary

calculation of the interaction among the nodes, the LBP
procedure still intervenes in allowing to infer hidden
connections, not evident from the first step. The generative
approach is particularly useful whenever only a few or only
aggregate20 data are available for the analysis. However, this

17Here by small, we intend parties with a number of senators below the threshold

of 10, because this is the minimum number to constitute an official group in the

Italian Senate. Smaller parties are obliged to group in the so calledmixed group.
18E.g., frequency considerations, as those used in the following Equations (11) and

(13) for the semi-observational model.
19Used in a second step to calculate the probability of observations in the sample,

see Equation (12).
20I.e., there is no temporal allocation of the single observations, but only a global

count.
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strategy still introduces a manipulation of original data, in order
to make the network reconstruction possible or less noisy21.

The semi-observational strategy can be seen as a compromise
between the adoption of a generative model, and the direct usage
of data with no further adjustments. In this case, observation
data are used directly for each step of the network reconstruction,
except the calculation of averages. More technically, in this case
〈8k(xi)〉D and 〈8k(xi)8l(xj)〉D are not simple averages from the
samples’ set, but they are adjusted according to Equation (9). As
an example, the PGenMod probabilities of occurrence of the state x
may be chosen as:

PPotts(x|α) ∝ exp





1

2

N
∑

i=1

N
∑

j=1

αijδ(xi, xj)



 (12)

Generally speaking, the introduction of a subtending model as
in Equation (12) favors a reconstruction similar to the output
of the standard preliminary reconstruction method, because
the probabilities of observing configurations (not) matching the
standard reconstructions are increased (decreased), compared to
the probabilities calculated directly from the observations.

The α parameters were evaluated here in terms of frequencies
of matching activities, within the set of observations, according
to different approaches. One possibility is a pure frequentist
probability, for the two nodes i and j to be observed in the same
active state:

αij =
1

M

∑

µ

δ(d
µ
i , d

µ
j , 1)

nµ
(13)

with generalized Kronecker δ(i, j, k) = 1 ⇐⇒ i = j = k and
null otherwise, and the same weighting of Equation (11). This
strategy penalizes the interactions of those nodes having a poor
participation rate.

A second derivation for α, instead, was adjusted against the
number of times the two users were active:

αij =
1

∑

µ

(

δ(d
µ
i , 1)+ δ(d

µ
j , 1)

)

∑

µ

δ(d
µ
i , d

µ
j , 1)

nµ
(14)

thus reducing the bias of the previous formula toward active
nodes.

Finally, when a pure observational method is used, the
α parameter should play no role22, because no generative
model needs to be provided and all the averaged quantities are
computed as from the original set of data. Unfortunately, a pure
observational method with the considered dataset (characterized
by Q = 2, because of lacking information) intuitively requires
to omit the contribution of inactive correlations, such as in
Equation (10), in order not to overestimate their contribution.

21Indeed, once the preliminary model has been decided, samples can be drawn

from it in abundance, whereas a real sampling of a social network is clearly bound

to pragmatic constraints.
22For the case Q = 2, actually, it is advised to adopt a fictitious α = constant≪ 1,

because the critical value for the 2-state Potts model is α = 0.88, therefore the

calculation may turn unstable if averages are computed directly.

Whatever the strategy chosen to derive observation samples
from original data, the interactions H(i,j) will be calculated
replacing in Equation (5) the pairwise interactions J from
Equation (6).

3. RESULTS AND DISCUSSION

It was envisaged the importance of the LBP inference method,
for discovering non-evident links and connections among the
network members, as compared to traditional methods not
employing statistical inference. This paragraph illustrates the
first numerical application of a LBP procedure, to reconstruct a
generic graph Potts model. Previous simulations (Yasuda et al.,
2012), indeed, dealt only with lattice-like Potts models: the sums
in Equation (12) had a constant α instead of αi,j, and the allowed
indexes were only those compatible with the lattice structure
(i, j) ∈ E.

The first and most important results to be observed are in
Table 1 and in Figure 1. In the table are reported the main
network parameters for the various methods listed in Section
2. As a comparison, the network was also reconstructed via the
Jaccard index, a standard method particularly adapt to sparse
networks (Borgatti, 2009), such as the one analyzed in this paper
(the calculated density is indeed smaller than 0.01). For LBP-
reconstructed networks, we introduced an additional parameter,
the threshold (tm). In fact, after normalizing the intensity of
connections (i.e., 0 ≤ H(i,j) ≤ 1), the density of these networks
was close to 1 in most approaches. This is an effect of the
sensitivity of the LBP method, prone to reproduce in the final
adjacency matrix also links due to noise. In order to exclude the
weakest links, we set a threshold value tm = 0.5, thus comparing
the residual links with the standard network. It is evident how
in all cases, also the LBP-reconstructed social network displays
many more connections compared to the Jaccard one. These
hidden connections would be hard to identify without referring
to an inference statistical method, and this is a novelty of the
approach. In the pure observational case, because off-diagonal
interactions were neglected (i.e., the case in Equation 10), also
noisy connections tend to occur in a small range, thus producing
still a very high density at tm = 0.5. Because of the increased
difficulty to filter properly this noise, the pure observational
model will be omitted from analyses in the following. Also the
average strength of all the links detected “Avg. H(i,j)” has an
interesting behavior: it is strongly affected by the initial guess for
the network structure, that the LBP method tries to reproduce,
and considerably less, instead, by the value chosen for Q.

In Figure 1, instead, it is performed amore systematic analysis
of the relation between the number of links in the network,
against the threshold parameter23. A few interesting features are
evident. As the first, all statistical methods tend to saturate the
network at low values of tm. Moreover, a smoothing effect in
the dependency of the number of links on the threshold value is
observed, both when increasing Q or decreasing the average αij.
The higher the smoothing, the closest are the data to the expected

23Clearly, the density and thus the number of links detected in the Jaccard network

is independent from any threshold chosen.
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TABLE 1 | Collection of fundamental model and network parameters, for a set of network reconstruction methods, and basic metrics resulting from the

analysis.

Method # Samples Q Avg. α Density of reconstructed network (tm = 0.5) Avg. H(i,j) (normalized)

Jaccard index 3100 NA NA 0.00202 0.04901

Generative 100,000 5 0.65984−04 (Equation 13) 0.01554 0.16336

100,000 10 ′′ 0.01907 0.16938

Semi-observational 3100 2 0.65984−04 (Equation 13) 0.00540 0.17612

3100 5 ′′ 0.00936 0.13385

3100 5 0.01650 (Equation 14) 0.48623 0.50464

Pure observational 3100 2 0.01* 0.99275 0.98301

The analysis with Q = 10 required to artificially generate more samples than the direct observations from data, for the results to be reliable, therefore it is listed only within the Generative

case. *For numerical convergence reasons, in the Pure observational case, it was set αij = constant = 0.01.

FIGURE 1 | Number of links detected by the Potts-LBP approach in the

original graph, against the tm threshold parameter, for some of the

reconstruction approaches discussed in the text. The dashed red line

indicated the number of links detected with the Jaccard method.

exponential decay in the number of detected links24. Several
possible explanations for this conclusionmay be proposed. As the
first, preliminary community detection analyses with networks
reconstructed via standard methods identified 5 groups25 in the
Italian Senate network. This suggests how the observation of
only 2 states with the roll calls tends to produce distortions
and artifacts. In fact, results are improved also by randomly
introducing states other than the observed (non)sponsoring.
Smaller values of α, instead, allow the method to compute the

J
(k,l)
(i,j)

not in proximity of critical values ln(1 +
√
Q) of the Potts

model, thus improving the stability of the results.
A different analysis was focused about the capability of the

method not only to reconstruct pairwise interactions, but also to
better identify the clusters inside the network, to be interpreted
as communities of members. In Figure 2 it is investigated how

24This can be inferred by recalling that the probability to observe a certain

collective state x has the form in Equation (4).
25Here and in the following, communities are always detected with a very

successful method based upon random graph theory, the Clauset-Newman-Moore

(CNM) method (Clauset et al., 2004). Only communities whose sizes are bigger

than 3 nodes will be considered, while isolated nodes and dyads will be omitted.

FIGURE 2 | Number of communities detected in the network via the

CNM algorithm, applied to various LBP reconstructed networks.

the number of such communities depends on tm: the plot shows
that when a small tm is taken into account26, LBP reconstructed
networks have a cluster structure involving 2–3 groups. A
plausible interpretation is that, if hidden links are considered,
slight differences in the policy approach by the Senate members
are swiped out in the analysis, and the CNM algorithm tends
to detect only the fundamental communities: the ones related
with the party(ies) participating in the Cabinet, and the group
of parties opposing the first ones (plus eventually a third group
which may be considered as composed by neutral senators).
As the threshold is increased, and the graph becomes more
disconnected, also clustering features are emphasized, and the
number of detected communities increases. In particular, when
a high number of possible states is allowed (high Q), and at
the same time weak interactions are hypothesized (αij is small
in average), the number of communities tends to “explode.”
However, excluding this extreme case, detected communities are
otherwise stable, ranging between 3 and 6. It is also evident how,
when links in the network are filtered and the cluster structure
emerges, the network assuming Q = 2 totally fails to reproduce
a plausible number of communities: this is clearly due to the

26Preserving more links, indeed, leads to the discovery of weak interactions.
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artifact of imposing a naturally bipartite network in the model,
which does not correspond, though, to the expected network
structure.

Finally, we investigated if—and how much—the LBP
algorithm is able to improve the assignment of senator-nodes
to the “right” political community: i.e., the one identified by
the same political party, the senator officially belonged to. The
figure of merit will be a sort of a false discovery rate (FDR),
that is, the ratio between the number of senators assigned
by the CNM algorithm to wrong communities, and the total
number of senators analyzed. In order to emphasize the role of
hidden links, the focus will be the capability of the algorithm to
classify the senators as belonging to the group supporting the
government, the opposition group, or the mixed independent
group.

Referring to Figure 3, the reconstruction of the network
via a simple Jaccard coefficient in this case is already capable
of reproducing accurately the true membership of the nodes,
scoring only about 15% of nodes classified. The case of LBP with
Q = 2, instead, is very inefficient: almost half of the nodes is
misclassifiedm, even if the target number of communities is close
enough to allowed values of Q. This result shows the importance
of extending the Ising model used elsewhere in analyses of
policy networks: even when a subtended bipartite interaction is
tracked (i.e., sponsoring VS abstaining in a roll call vote), in
the end this is a projection of a more complex state, each agent
in the network is before performing the voting action. From a
modeling perspective, such a gap between model and reality can

be reduced by a full quantum Ising model (as showed by Liu
et al., 2010), or by semi-classical approaches with a Q-state Potts
model. In fact, results with Q = 5 display a great improvement
compared to the case with Q = 2. Especially when tm has a
value in the range where the number of detected communities
is stable, the percentage of nodes classified in the wrong group
almost matches, or even outperforms the Jaccard one (13%),
without assuming a-priori that indirect correlations among the
networkmembers are negligible. Interestingly, the best results are
achieved for values of the threshold, corresponding to intervals
where the number of comunities detected is stable (compare with
Figure 2).

Moreover, it must be remembered how this analysis is affected
by an important bias. States other than the active state (i.e.,
xi = 1 for node i) are assigned randomly, therefore favoring
communities of homogeneous cardinality: some misclassified
nodes originally belonged to mid-size communities, but at their
expense, these nodes where assigned to smaller groups. Networks
obtained with very low thresholds are particularly prone to
this effect. Some other misclassifications are due to a specular
effect: similarly to the “rich gets richer” phenomenon, discovery
of hidden links increases the size of the major communities
at the expense of the smallest ones, as it is expected when
modularity-based community detection algorithms are applied to
very dense networks. Indeed, in all LBP-reconstructed networks
the group of senators members of the party leading the Cabinet
was always (mistakenly?) bigger than expected. This effect is
evident comparing Figure 4with Figure 5, where the last one has

FIGURE 3 | Percentages of senators mistakenly classified in the “wrong” Senate political community (FDR, see Section 3), for different network

reconstruction methods. Jaccard-reconstructed network is reported for reference. Parameters used for each case are in the Legend.
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FIGURE 4 | Plot of the clusters obtained via the CNM algorithm, for the network reconstructed using the standard Jaccard method. Thick lines

connecting the quadrants indicate the global cumulative strength of inter-community links. Dark blue dots indicate the community interpreted as “loyal to the Cabinet,”

light blue dots are connected with the “opposition,” green dots are to be interpreted as “indipendent senators.”

FIGURE 5 | Plot of the clusters obtained via the CNM algorithm, for the network reconstructed using a semi-observational LBP approach, with

parameters Q = 5 and tm = 0.35. It is evident how the bigger community (dark blue dots) is overestimated compared to standard approaches (see also Figure 4),

at the expense of underestimating minor communities. As stated in the text, this effect can be reduced by lowering tm.

been indeed obtained with LBP and a relatively high tm = 0.35.
The specular consideration above suggests how to compensate
this artifact, by lowering opportunely the threshold tm (the
corresponding network graph is omitted for brevity). In any case,
it shall be remembered how major Senate groups were actually
bigger at the beginning of the legislature, compared to its end
(when a few independent groups had been founded). By inferring
weak links, it can be thus argued how LBP algorithms thus proved

more efficient in merging communities into a few principal
components, compared to forcing modularity algorithms to split
the network in 2–3 groups (i.e., forcing the CNM algorithm
to merge further the 5 communities detected as optimal by its
modularity maximization procedure, leading to the results in
Figure 3).

On the other side, further increasing the value of Q required
to rely upon a Generative model, in order to have a number of
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samples sufficient for the analysis (100 k samples), whereas the
reduced number of original data was prone to cause difficulties27

in the numerical simulations. As envisaged in Section 2.2,
moving from a (Pseudo-)Observational to a Generative approach
produced a degradation in the results, because of losing the
temporal information of the available data. In conclusion, an
approach with higher Q, but still low enough to be based
upon observational data, seems to produce the best and more
stable results for both hidden links and community detection
purposes.

4. CONCLUSIONS

Along the paper, a method based upon Q-state Potts
inverse problem and Bethe-LBP approximation for network
reconstruction was elucidated. Several possible ways were
disclosed, to use the method for inferring links among the
nodes of a generic networked social structure, under the
hypotheses that: (i) actions like roll call sponsorships resemble
decision-making processes and (ii) that these processes can be
modeled efficiently by methods used for inferring the structure
of an ensemble of quantum states, observed repeatedly over
time.

The LBP-based resolution of the inverse problem was applied
for the first time to reconstruct a generic graph structure. More
specifically, in the Social Sciences realm, this work has been the
first to use a Q-state model (instead of Ising model) to infer the
structure of a real network. The study case chosen was the Italian
Senate, analyzed starting from a dataset tracking law proposal co-
sponsorships. This allowed to evaluate the power of the method
in detecting those links, that cannot be retrieved via standard
reconstruction methods. Also the role of the diverse modeling
choices—and peculiar parameters employed—was thoroughly

27The simulation for high values ofQ requires limited precision in the intermediate

values calculated, to reduce the memory space required.

discussed, finding how the maximal value of Q permitted by the
Potts model can introduce crucial differences in the quality of the
results, alongside with aprioristic knowledge about the network
structure.

It was investigated, as well, the capability of the model to
reproduce the community structure of the network and the
single memberships of the senators: it was found that the present
method must be carefully reviewed, compared to standard ones,
in order to produce a reliable output. In fact, a naive application
without any further assumption may lead to completely wrong
conclusions. The reason is that the Potts-LBP method is much
closer to an ab-initio approach, therefore it originally embeds
no information such as the weight to be assigned to inactive
vs. active states, or direct vs. indirect correlations, or how
weak connections shall be considered noisy, ... In turn, this
higher flexibility allows to explore the role (and therefore the
plausibility) of several assumptions made when reconstructing
the network.

The authors envisage how interesting directions for further
investigation may be the adoption of a full quantum treatment
of the Potts model, as well as the possibility to apply this
extended method to cases where data retrieved for the network
do exhibit natively non-bipartite features, thus allowing a more
direct application of generic Q-state Potts models.

FUNDING

This work was part of the project “MUSCA” (PAC02L1-0018),
funded by the Italian Ministry of Education, University and
Research.

ACKNOWLEDGMENTS

We thank Emanuele Rizzo for his expert technical help, and Dr.
Marianovella Mello for aiding us throughout any administrative
trouble.

REFERENCES

Aerts, D., Sozzo, S., and Tapia, J. (2012). “A quantum model for the Ellsberg and

Machina paradoxes,” in Quantum Interaction, Vol. 7620, eds J. R. Busemeyer,

F. Dubois, A. Lambert-Mogiliansky, and M. Melucci (Berlin; Heidelberg:

Springer), 48–59. doi: 10.1007/978-3-642-35659-9_5

Besussi, E. (2006). Policy Networks: Conceptual Developments and Their European

Applications. London: Centre for Advanced Spatial Analysis, University College

London.

Bisconti, C., Corallo, A., Fortunato, L., and Gentile, A. A. (2015). A quantum-BDI

model for information processing and decision making. Int. J. Theor. Phys. 54,

710–726. doi: 10.1007/s10773-014-2263-x

Bordogna, C. M., and Albano, E. V. (2007). Dynamic behavior of a social model

for opinion formation. Phys. Rev. E 76:061125. doi: 10.1103/PhysRevE.76.

061125

Borgatti, S. P. (2009). “2-mode concepts in social network analysis,” in Encyclopedia

of Complexity and System Science, ed R. A. Meyers (Heidelberg: Springer),

8279–8291.

Borgatti, S. P. (2012). “Social network analysis, two-mode concepts in,” in

Computational Complexity, ed R. A. Meyers (New York, NY: Springer),

2912–2924.

Börzel, T. (1997). What’s so special about policy networks? An exploration of the

concept and its usefulness in studying European governance. Eur. Integr. Online

Pap. 1, 1–28.

Chiru, M., and Neamu, S. (2012). “Parliamentary representation under changing

electoral rules: Co-sponsorship in the Romanian parliament,” in Inaugural

General Conference of the ECPR Standing Group on Parliaments, Parliaments

in Changing Times (Dublin), 24–27.

Clauset, A., Newman, M. E., and Moore, C. (2004). Finding community

structure in very large networks. Phys. Rev. E 70:066111. doi:

10.1103/PhysRevE.70.066111

Cocco, S., and Monasson, R. (2011). Adaptive cluster expansion for inferring

Boltzmann machines with noisy data. Phys. Rev. Lett. 106:090601. doi:

10.1103/PhysRevLett.106.090601

Daudin, J.-J., Picard, F., and Robin, S. (2008). A mixture model for random graphs.

Stat. Comput. 18, 173–183. doi: 10.1007/s11222-007-9046-7

Dowding, K. (1995). Model or metaphor? a critical review of the policy

network approach. Polit. Stud. 43, 136–158. doi: 10.1111/j.1467-9248.1995.tb

01705.x

Ekeberg, M., Lövkvist, C., Lan, Y., Weigt, M., and Aurell, E. (2013). Improved

contact prediction in proteins: using pseudolikelihoods to infer Potts models.

Phys. Rev. E 87:012707. doi: 10.1103/PhysRevE.87.012707

Frontiers in Psychology | www.frontiersin.org November 2015 | Volume 6 | Article 1698 | 68

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Bisconti et al. Social networks’ reconstruction and spin models

Fowler, J. H. (2006). Legislative cosponsorship networks in the US House and

Senate. Soc. Netw. 28, 454–465. doi: 10.1016/j.socnet.2005.11.003

Hanneman, R. A., and Riddle, M. (2005). Introduction to Social Network Methods.

Riverside, CA: University of California.

Haven, E., and Khrennikov, A. (2013). Quantum Social Science. Cambridge:

Cambridge University Press.

Horiguchi, T. (1981). On the Bethe approximation for the random bond

Ising model. Physica A 107, 360–370. doi: 10.1016/0378-4371(81)

90095-9

Jedidi, K., Jagpal, H. S., and DeSarbo, W. S. (1997). Finite-mixture structural

equation models for response-based segmentation and unobserved

heterogeneity.Mark. Sci. 16, 39–59. doi: 10.1287/mksc.16.1.39

Kiwata, H. (2012). Physical consideration of an image in image restoration

using Bayes formula. Physica A 391, 2215–2224. doi: 10.1016/j.physa.2011.

11.025

Lazarsfeld, P. F., Berelson, B., and Gaudet, H. (1968). The Peoples Choice: How the

VoterMakes UpHisMind in a Presidential Campaign.NewYork, NY: Columbia

University Press.

Liu, S., Ying, L., and Shakkottai, S. (2010). “Influence maximization in social

networks: an Ising-model-based approach,” in Communication, Control, and

Computing (Allerton), 48th Annual Allerton Conference on (Cambridge: IEEE),

570–576.

Newman, M. E., and Leicht, E. A. (2007). Mixture models and exploratory

analysis in networks. Proc. Natl. Acad. Sci. U.S.A. 104, 9564–9569. doi:

10.1073/pnas.0610537104

Nowicki, K., and Snijders, T. A. B. (2001). Estimation and prediction

for stochastic blockstructures. J. Am. Stat. Assoc. 96, 1077–1087. doi:

10.1198/016214501753208735

Phani, D., Gordon, M. B., and Nadal, J.-P. (2004). “20 social interactions

in economic theory: an insight from statistical mechanics,” in Cognitive

Economics: An Interdisciplinary Approach, eds P. Bourgine and J.-P. Nadal

(Berlin; Heidelberg: Springer-Verlag), 335.

Porter, M. A., Mucha, P. J., Newman, M. E., and Friend, A. J. (2007). Community

structure in the United States house of representatives. Physica A 386, 414–438.

doi: 10.1016/j.physa.2007.07.039

Ricci-Tersenghi, F. (2012). The Bethe approximation for solving the inverse Ising

problem: a comparison with other inferencemethods. J. Stat. Mech. Theory Exp.

2012:P08015. doi: 10.1088/1742-5468/2012/08/P08015

Sessak, V., and Monasson, R. (2009). Small-correlation expansions for the inverse

Ising problem. J. Phys. A 42:055001. doi: 10.1088/1751-8113/42/5/055001

Somma, R., and Ortiz, G. (2010). “Quantum approach to classical thermodynamics

and optimization,” inQuantumQuenching, Annealing and Computation, eds A.

K. Chandra, A. Das, and B. K. Chakrabarti (Berlin; Heidelberg: Springer), 1–20.

Yamanishi, Y., Vert, J.-P., and Kanehisa,M. (2004). Protein network inference from

multiple genomic data: a supervised approach. Bioinformatics 20(Suppl. 1),

i363–i370. doi: 10.1093/bioinformatics/bth910

Yasuda, M., Kataoka, S., and Tanaka, K. (2012). Inverse problem in pairwise

markov random fields using loopy belief propagation. J. Phys. Soc. Jpn. 81,

044801–044808. doi: 10.1143/JPSJ.81.044801

Zhang, Y., Friend, A., Traud, A. L., Porter, M. A., Fowler, J. H., and Mucha,

P. J. (2008). Community structure in congressional cosponsorship networks.

Physica A 387, 1705–1712. doi: 10.1016/j.physa.2007.11.004

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Bisconti, Corallo, Fortunato, Gentile, Massafra and Pellè. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Psychology | www.frontiersin.org November 2015 | Volume 6 | Article 1698 | 69

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


ORIGINAL RESEARCH
published: 21 October 2015

doi: 10.3389/fpsyg.2015.01583

Frontiers in Psychology | www.frontiersin.org October 2015 | Volume 6 | Article 1583 |

Edited by:

Sandro Sozzo,

University of Leicester, UK

Reviewed by:

Tomas Veloz,

University of British Columbia, Canada

Matías Graffigna,

University of Buenos Aires, Argentina

*Correspondence:

Maria L. Dalla Chiara

dallachiara@unifi.it

Specialty section:

This article was submitted to

Cognition,

a section of the journal

Frontiers in Psychology

Received: 08 August 2015

Accepted: 29 September 2015

Published: 21 October 2015

Citation:

Dalla Chiara ML, Giuntini R, Leporini R,

Negri E and Sergioli G (2015)

Quantum information, cognition, and

music. Front. Psychol. 6:1583.

doi: 10.3389/fpsyg.2015.01583

Quantum information, cognition, and
music
Maria L. Dalla Chiara 1*, Roberto Giuntini 2, Roberto Leporini 3, Eleonora Negri 4 and

Giuseppe Sergioli 2

1Dipartimento di Lettere e Filosofia, Università di Firenze, Firenze, Italy, 2Dipartimento di Pedagogia, Psicologia, Filosofia,

Università di Cagliari, Cagliari, Italy, 3Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione, Università di

Bergamo, Dalmine, Italy, 4 Scuola di Musica di Fiesole, San Domenico di Fiesole, Fiesole, Italy

Parallelism represents an essential aspect of human mind/brain activities. One

can recognize some common features between psychological parallelism and the

characteristic parallel structures that arise in quantum theory and in quantum

computation. The article is devoted to a discussion of the following questions:

1. a comparison between classical probabilistic Turing machines and quantum Turing

machines.

2. possible applications of the quantum computational semantics to cognitive problems.

3. parallelism in music.

Keywords: Turing machines, quantum computation, quantum information, semantics, music cognition

1. INTRODUCTION

Parallelism represents an essential aspect of the activities of human brain and mind. One can
recognize some common features between psychological parallelism and the characteristic parallel
structures that arise in quantum theory and in quantum computation, being responsible for the
extraordinary efficiency and speed of quantum computers.

Quantum parallelism and classical parallelism are deeply different, although it is sometimes
claimed that quantum Turing machines are nothing but special examples of classical probabilistic
Turing machines1. But what exactly are quantum Turing machines? So far, the literature has not
provided a rigorous “institutional” concept of quantum Turing machine. Some definitions seem to
be based on a kind of “imitation” of the classical definition of Turing machine, by referring to a tape
(where the symbols are written) and to a moving head (which changes its position on the tape)2.
These concepts, however, seem to be hardly applicable to physical quantum computers. Both in the
classical and in the quantum case, it is expedient to consider a more abstract concept: the notion of
state machine, which neglects both tapes andmoving heads. Every finite computational task realized
in different computational models proposed in the literature can be simulated by a state machine3.
In order to compare classical and quantum parallelism, we will analyze the concepts of (classical)
deterministic state machine, (classical) probabilistic state machine, and quantum state machine. On
this basis we will discuss the question: to what extent can quantum state machines be simulated by
probabilistic state machines? (Sections 2, 3).

1See, for instance, Penrose (1994).
2See, for instance, Fouché et al. (2007).
3See, for instance, Savage (1998) and Gudder (1999).
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In the investigation about possible links between quantum
structures and psychological structures a useful tool is represented
by a special form of quantum logical semantics (called quantum
computational semantics) that has been inspired by the theory of
quantum computation. We will see how this semantics can be
naturally applied to a formal analysis of musical compositions,
where parallel structures, ambiguity, holism, and contextuality
play an essential role (Sections 4, 5)4.

Our analysis seems to confirm a general conjecture that has
been defended and discussed in different research-fields: the
basic concepts of the quantum-theoretic formalism (which had
for a long time been regarded as mysterious and potentially
paradoxical) seem to have a universal interest that goes beyond
the domain of microphysical phenomena.

2. CLASSICAL DETERMINISTIC AND
PROBABILISTIC MACHINES

We will first introduce a formal definition for the notion
of deterministic state machine. On this basis, probabilistic
state machines will be represented as stochastic variants of
deterministic machines, which are able to calculate different
outputs with different probability-values.

Definition 1. Deterministic state machine.
A deterministic state machine is an abstract system M based on
the following elements:

1. A finite set S of internal states, which contains an initial state
sin and includes a set of halting states Shalt = {shaltj | j ∈ J}.

2. A finite alphabet, which can be identified with the set {0, 1}
of the two classical bits. Any register represented by a bit-
sequence w = (x1, . . . , xn) is a word (of length n). Any
pair (s,w) consisting of an internal state s and of a word w
represents a possible configuration of M, which is interpreted
as follows:M is in the internal state s andw is the word written
on an ideal tape.

3. A set of words that represent possible word-inputs forM.
4. A program, which is identified with a finite sequence of rules:

(R0, . . . ,Rt).

Each Ri is a partial function that transforms configurations
into configurations. We may have: Ri = Rj with i 6= j. The
number i, corresponding to the rule Ri, represents the i-th step
of the program. The following conditions are required:

4.1 The rule R0 is defined for any configuration (s0,w0),
where s0 is the initial state sin and w0 is a possible word-
input. We have:

R0 : (s0,w0) 7→ (s1,w1),

4Some basic intuitive ideas of the quantum computational semantics are close to

the “quantum cognition approach” that has been extensively developed in recent

times (see, for instance, Aerts and Gabora, 2005a,b; Aerts and Sozzo, 2014). In both

theories concepts and thoughts are represented as special abstract entities that can

be described in the framework of the quantum-theoretic formalism. The technical

developments of the two approaches are, however, different.

where s1 is different from the initial state and from all
halting states (if t 6= 0).

4.2 For any i (0 < i < t),

Ri : (si,wi) 7→ (si+ 1,wi+ 1),

where si+ 1 is different from all si, . . . , s0 and from all
halting states.

4.3 Rt : (st,wt) 7→ (st+ 1,wt+ 1),
where st+ 1 is a halting state.

Each configuration (si+ 1,wi+ 1) represents the output for the
step i and the input for the step i+ 1.

The concept of computation of a deterministic state machine can
be now defined as follows.

Definition 2. Computation of a deterministic state machine.
A computation of a deterministic state machine M is a finite
sequence of configurations

((s0,w0), . . . , (st+ 1,wt+ 1)),

where:

1. w0 is a possible word-input ofM.
2. s0, . . . , st+ 1 are different internal states of M such that: s0 =

sin and st+ 1 is a halting state.
3. For any i (0 ≤ i ≤ t),

(si+ 1,wi+ 1) = Ri((si,wi)),

where Ri is the i-th rule of the program.

The configurations (s0,w0) and (st+ 1,wt+ 1) represent,
respectively, the input and the output of the computation; while
the words w0 and wt+ 1 represent, respectively, the word-input
and the word-output of the computation.

Apparently, each deterministic state machine is devoted to a
single task that is determined by its program.

Let us now turn to the concept of probabilistic state machine.
The only difference between deterministic and probabilistic state
machines concerns the program, which may be stochastic in the
case of a probabilistic state machine (PM). In such a case, instead
of a sequence of rules, we will have a sequence (Seq0, . . . , Seqt) of
sequences of rules such that:

Seq0 = (R01 , . . . ,R0r )

. . . . . . . . .

Seqt = (Rt1 , . . . ,Rtl ).

Each rule Rij (occurring in the sequence Seqi) is associated to a
probability-value pij such that:

∑

j

pij = 1.

From an intuitive point of view, pij represents the probability
that the rule Rij be applied at the i-th step. A deterministic
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state machine is, of course, a special case of a probabilistic state
machine characterized by the following property: each sequence
Seqi consists of a single rule Ri.

Any probabilistic state machine naturally gives rise to a graph-
structure for any choice of an input-configuration conf0 =
(s0,w0). As an example, consider the following simple case: a
probabilistic state machine PM whose program consists of two
sequences, each consisting of two rules:

Seq0 = (R01 ,R02 )

Seq1 = (R11 ,R12 ).

The graph associated to PM for the configuration conf0 is
illustrated by Figure 1.

How do probabilistic machines compute? In order to define
the concept of computation of a probabilistic machine, let us first
introduce the notions of program-path and of computation-path
of a given probabilistic machine.

Definition 3. Program-path and computation-path.
Let PM be a probabilistic state machine with program
(Seq0, . . . , Seqt).

• A program-path of PM is a sequence

P = (R0h , . . . ,Rij , . . . ,Rtk ),

consisting of t rules, where each Rij is a rule from Seqi
(probabilistically independent of all other rules of P).

• For any choice of an input (s0,w0), any program-path P

determines a sequence of configurations

CP = ((s0,w0), . . . , (si,wi), . . . , (st+ 1,wt+ 1)),

where (si+ 1,wi+ 1) = Rij (si,wi) and Rij is the i-th element
of P . This sequence is called the computation-path of PM
determined by the program-path P and by the input (s0,w0).
The configuration (st+ 1,wt+ 1) represents the output
of CP .

Any program-path P = (R0h , . . . ,Rij , . . . ,Rtk ) has a well-
determined probability-value p(P), which is defined as follows
(in terms of the probability-values of its rules):

p(P): = p0h · . . . · pij · . . . · ptk .

FIGURE 1 | The graph of PM.

As expected, the probability-value of a program-path P

naturally determines the probability-values of all corresponding
computation-paths. It is sufficient to put:

p(CP): = p(P).

Consider now the set PPM of all program-paths and the set CPPM
of all computation-paths of a probabilistic machine PM. One can
easily show that:

∑

i

{

p(Pi)|Pi ∈ PPM
}

=
∑

i

{

p(CP i)|CP i ∈ CPPM
}

= 1.

On this basis the concept of computation of a probabilistic state
machine can be defined as follows.

Definition 4. Computation of a probabilistic state machine.
A computation of a probabilistic state machine PM with input
(s0,w0) is the system of all computation-paths of PM with input
(s0,w0).

Unlike the case of deterministic statemachines, a computation
of a probabilistic state machine does not yield a unique
output. For any choice of a configuration-input (s0,w0), the
computation-output is a system of possible configuration-
outputs (sit+ 1,w

i
t+ 1), where each (sit+ 1,w

i
t+ 1) corresponds to

a computation-path CP i. As expected, each (sit+ 1,w
i
t+ 1) has a

well-determined probability-value that is defined as follows:

p((sit+ 1,w
i
t+ 1)) : =

∑

i

{

p(CP i)|the configuration-output of

CP i is
(

sit+ 1,w
i
t+ 1

)}

.

One can easily show that the sum of the probability-values of all
configuration-outputs of any machine PM is 1.

3. QUANTUM STATE MACHINES

The strong parallelism that characterizes quantum computers
is based on two quantum-theoretic notions that have been
often described as mysterious and potentially paradoxical:
superposition and entanglement. For the readers who are not
expert of quantum theory it is expedient to recall some
concepts of the quantum formalism that are used in quantum
computation5. The basic idea is that any piece of quantum
information is mathematically represented as a possible state of
a quantum system that can store and transmit the information in
question. In the simplest situations one is dealing with a single
particle S (say, an electron or a photon), whose “mathematical
environment” is a special example of a vector space: the two-
dimensional Hilbert spaceC

2, based on the set of all ordered pairs
of complex numbers. The canonical (orthonormal) basis of C

2

consists of the two following unit-vectors:

|0〉 = (1, 0); |1〉 = (0, 1),

5A survey of quantum computation theory can be found, for instance, in Nielsen

and Chuang (2000).

Frontiers in Psychology | www.frontiersin.org October 2015 | Volume 6 | Article 1583 | 72

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Dalla Chiara et al. Quantum information, cognition, and music

which represent, in this framework, the two classical bits (0
and 1), or (equivalently) the two classical truth-values (Falsity
and Truth). A pure state corresponds to a maximal piece of
information that cannot be consistently extended to a richer
knowledge. Such state is represented as a unit-vector |ψ〉 that
can be expressed as a superposition of the two elements of the
canonical basis of C

2:

|ψ〉 = c0|0〉 + c1|1〉,

where c0 and c1 (also called amplitudes) are complex numbers
such that |c0|2 + |c1|2 = 1.

The physical interpretation of |ψ〉 (also called qubit-state or,
briefly, qubit) is the following: the physical system S in state |ψ〉
might satisfy the physical properties that are certain for the bit |0〉
with probability |c0|2 and might satisfy the physical properties
that are certain for the bit |1〉 with probability |c1|2. Due to
the characteristic indeterminism of quantum theory, the pure
state |ψ〉 is at the same time a maximal and logically incomplete
piece of information that cannot decide some important physical
properties of the system S. Accordingly, from an intuitive point
of view, one can say that |ψ〉 describes a kind of cloud of potential
properties that might become actual when a measurement is
performed. Measuring a physical quantity (by means of an
apparatus associated to the canonical basis) determines a sudden
transformation of the qubit |ψ〉 either into the bit |0〉 or into
the bit |1〉. Such transformation is usually called collapse of the
wave-function.

Not all states associated to a physical system S are pure.
Non-maximal pieces of information can be represented as
mixtures of pure states (special examples of operators called
density operators). In the space C

2 a density operator ρ can be
represented as a convenient finite sum of projection-operators:

ρ =
∑

i

wiP|ψi〉,

where wi are real numbers such that
∑

i wi = 1, while each
P|ψi〉 is a projection-operator that projects along the direction
of |ψ〉. Notice that such representation is not generally unique.
A density operator that cannot be represented as a projection
P|ψ〉 is called a proper mixture. While pure states codify an
essential indetermination of some relevant properties of the
quantum system under investigation, mixtures may correspond
to an epistemic uncertainty of the observer. Unlike pure states
(which always satisfy some well-determined properties), there
are mixtures that cannot decide any (non-trivial) property of the
associated system. An example of this kind is the state ρ = 1

2I,
where I is the identity operator of the space C

2.
As happens in classical information theory, quantum

computation also needs complex pieces of information, which are
supposed to be stored by composite quantum systems (generally
consisting of n subsystems). Accordingly, one can naturally
adopt the quantum-theoretic formalism for the mathematical
representation of composite physical systems, based on the use
of tensor products (special examples of products)6. While a single

6The basic property of the tensor product H1 ⊗ H2 of two (finite-dimensional)

Hilbert spacesH1 andH2 is the following:H1⊗H2 is a Hilbert space that properly

qubit is a unit-vector of the space C
2, a pure state representing a

complex piece of information can be identified with a unit-vector
of the n-fold tensor product of C

2:

⊗n
C
2 = C

2 ⊗ . . .⊗ C
2

︸ ︷︷ ︸

n−times

(with n ≥ 1).

Such vectors are called quregisters. The canonical basis of the
space⊗n

C
2 consists af all registers, products of bits that have the

following form:

|x1〉 ⊗ . . .⊗ |xn〉 (where any xi is either 0 or 1).

Instead of |x1〉 ⊗ . . .⊗ |xn〉, it is customary to write |x1, . . . , xn〉.
Any quregister can be represented as a superposition of registers:

|ψ〉 =
∑

i

ci|xi1 , . . . , xin〉,

where ci are complex numbers such that
∑

i |ci|2 = 1.
A tensor product |ψ1〉 ⊗ . . . ⊗ |ψn〉 (of n quregisters) is often
briefly indicated by: |ψ1〉 . . . |ψn〉.

Quantum computation makes essential use of some
characteristic quantum states that are called entangled. In
order to illustrate the concept of entanglement from an intuitive
point of view, let us refer to a simple paradigmatic case. We
are concerned with a composite physical system S consisting
of two subsystems S1 and S2 (say, a two-electron system). By
the quantum-theoretic rules that concern the mathematical
description of composite systems, all states of S shall live in the
tensor productH = H1 ⊗H2, whereH1 andH2 are the Hilbert
spaces associated to the systems S1 and S2, respectively. The
observer has a maximal information about S: a pure state |ψ〉
of H. What can be said about the states of the two subsystems?
Due to the form of |ψ〉, such states cannot be pure: they are
represented by two identical mixtures, which codify a “maximal
degree of uncertainty.” A typical possible form of |ψ〉 is the
following Bell-state:

|ψ〉 = 1√
2
(|0, 0〉 + |1, 1〉),

which lives in the space C
2 ⊗ C

2, whose canonical basis consists
of the four vectors |0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉 .

This gives rise to the following physical interpretation: the
global system Smight satisfy the properties that are certain either
for the state |0, 0〉 or for the state |1, 1〉 with probability-value
1
2 . At the same time, |ψ〉 determines that the reduced state of

both subsystems (S1 and S2) is the mixture 1
2I. Although it

is not determined whether the state of the global system S is
|0, 0〉 or |1, 1〉, the two subsystems S1 and S2 can be described

includes an isomorphic image of the Cartesian product H1 × H2 (consisting of

all ordered pairs of vectors that belong to the spaces H1 and H2, respectively).

Furthermore,H1⊗H2 contains all possible superpositions of its elements. A vector

|ψ〉 of H1 ⊗ H2 is called factorized iff |ψ〉 corresponds to a pair (|ψ1〉, |ψ2〉) ∈
H1 × H2. In such a case, it is customary to write: |ψ〉 = |ψ1〉 ⊗ |ψ2〉. Of course,
not all vectors ofH1 ⊗H2 are factorized.
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as “entangled,” because in both possible cases they would satisfy
the same properties, turning out to be indistinguishable. As a
consequence, any measurement performed by an observer either
on system S1 or on system S2 would instantaneously transform
the potential properties of both subsystems into actual properties
(by collapse of the wave-function).

The celebrated “Einstein–Podolsky–Rosen paradox”(EPR) is
based on a similar physical situation. As is well-known, what
mainly worried Einstein was the possibility of “non-local effects:”
the subjective decision of an observer (who may choose among
different incompatible observables to be measured on the system
S1) seems to determine the instantaneous emergence of an actual
property for the system S2, which might be very “far” from S1
(possibly inaccessible by means of a light-signal). Interestingly
enough, in the framework of quantum computation, entangled
states have been often used as a powerful resource, even from a
technological point of view (for instance, in the applications to
teleportation-phenomena and to quantum cryptography).

As expected, quantum computation cannot be identified
with a “static” representation of pieces of information. What
is important is the dynamic process of information that gives
rise to quantum computations. Such process is mathematically
performed by quantum logical gates (briefly, gates): special
examples of unitary operators that transform quregisters into
quregisters in a reversible way. Since in quantum theory the time-
evolution of all physical systems is mathematically described by
unitary operators, one can say that quantum computations can be
regarded as the time-evolution of some special quantum objects.

We will now introduce the definition of quantum state
machine, which represents a quantum counterpart of the classical
notion of deterministic state machine. From an intuitive point
of view, any quantum state machine can be regarded as a
kind of quantum superposition of many classical deterministic
state machines. Some definitions of quantum Turing machine
discussed in the literature are based on a strong idealization:
no limit is assumed for the length of the registers occurring
in a computation. This corresponds to the classical assumption
according to which a Turing machine is equipped with an infinite
tape. We will consider a more realistic concept, closer to physical
quantum computers, which are of course always bound to a
limited memory.

Definition 5. Quantum state machine.
A quantum state machine is an abstract system QM associated
to a (finite-dimensional) Hilbert space HQM whose unit-vectors
|ψ〉 represent possible pure states of a quantum system that could
physically implement the computations of the state machine. The
spaceHQM has the following form:

H
QM = H

H ⊗H
S ⊗H

W .

The following conditions are required:

1. HH (which represents the halting-space) is the space C
2,

where the two elements of the canonical basis ({|0〉H, |1〉H})
correspond to the states “the machine does not halt” and “the
machine halts,” respectively.

2. HS (which represents the internal-state space) is associated to
a finite set S of classical internal states. We require thatHS =

⊗m
C
2, where 2m is the cardinal number of S . Accordingly, the

set S can be one-to-one associated to a basis ofHS .
3. HW (which represents the word-space) is identified with a

Hilbert space ⊗n
C
2 (for a given n ≥ 1). The number n

determines the length of the registers |x1, . . . , xn〉 that may
occur in a computation. Shorter registers |x1, . . . , xh〉 (with
h < n) can be represented in the space ⊗n

C
2 by means of

convenient ancillary bits.
Let BQM be a basis of HQM, whose elements are unit-

vectors having the following form:

|ϕi〉 = |hi〉|si〉|xi1 , . . . , xin〉,

where |hi〉 belongs to the basis ofHH , while |si〉 belongs to the
basis ofHS.

Any unit-vector |ψ〉 of HQM that is a superposition of
basis-elements |ϕi〉 represents a possible computational state
ofQM. The expected interpretation of a computational state

|ψ〉 =
∑

i

ci|hi〉|si〉|xi1 , . . . , xin〉

is the following:

• the machine in state |ψ〉might halt with probability |ci|2 (if
|hi〉 = |1H〉) or with probability 1− |ci|2 (if |hi〉 = |0H〉).

• the machine in state |ψ〉 might correspond to the classical
configuration (si, (xi1 , . . . , xin )) with probability |ci|2.
Hence, the state |ψ〉 describes a kind of quantum co-
existence of different classical deterministic configurations.

4. The set of possible inputs ofQM is identified with the set of all
computational states that have the following form:

|ψ〉 =
∑

i

|0H〉|sin〉|xi1 , . . . , xin〉.

5. Like a deterministic state machine, a quantum state machine
QM is characterized by a program. In the quantum case, a
program is identified with a sequence of unitary operators of
HQM:

(U0, . . . ,Ut),

where we may have: Ui = Uj with i 6= j.
The following conditions are required:

(a) for any possible input |ψ0〉, U0(|ψ0〉) = |ψ1〉 is a
superposition of basis-elements having the following
form:

|h1i 〉|s1i 〉|x1i1 , . . . , x
1
in
〉,

where all s1i are different from sin and |h1i 〉 = |0H〉, if t 6= 0.
(b) For any j (0 < j < t), Uj(|ψj〉) = |ψj+ 1〉 is

a superposition of basis-elements having the following
form:

|0H〉|sj+ 1
i 〉|xj+ 1

i1
, . . . , x

j+ 1
in

〉.
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(c) Ut(|ψt〉) = |ψt+ 1〉 is a finite superposition of basis-
elements having the following form:

|1H〉|shaltj〉|xt+ 1
i1

, . . . , xt+ 1
in

〉.

The concept of computation of a quantum state machine can be
now defined in a natural way.

Definition 6. Computation of a quantum state machine.
Let QM be a quantum state machine, whose program is the
operator-sequence (U0, . . . ,Ut) and let |ψ0〉 be a possible input
of QM. A computation of QM with input |ψ0〉 is a sequence of
computational states of QM

QC = (|ψ0〉, . . . , |ψt+ 1〉),

such that: |ψi+ 1〉 = Ui(|ψi〉), for any i (0 ≤ i ≤ t).
The vector |ψt+ 1〉 represents the output of the computation,
while the density operator Red3(|ψt+ 1〉) (the reduced state of
|ψt+ 1〉 with respect to the third subsystem) represents the word-
output of the computation.

Like all abstract notions of quantum computer, the concept
of quantum state machine gives rise to some critical questions
that have been often discussed in the literature. Two important
problems (which cannot have any counterpart in the case of
classical computation) are the following:

• How shall we interpret the operation of “reading the output”
of a computation of a given machine? What is the role of the
collapse of the wave-function during a reading-action?

• Is it possible to measure the halting state without disturbing
the configuration-state?

Consider now a quantum state machine whose program is

(U0, . . . ,Ut).

Each Ui naturally determines a corresponding word-operator
UW
i , defined on the word-space HW . Generally, it is not

guaranteed that all word-operators are unitary. But it is
convenient to refer to quantum state machines that satisfy this
condition. In this way, any quantum state machine (whose word-
space is ⊗n

C
2) determines a quantum circuit, consisting of a

sequence of unitary operators (gates):

(UW
0 , . . . ,U

W
t ),

where n represents the width, while t + 1 represents the depth of
the circuit.

To what extent can quantum state machines be simulated
by classical probabilistic state machines? In order to discuss
this important question, let us refer to a celebrated quantum
experiment, based on the Mach–Zehnder interferometer
(represented by Figure 2).

The physical situation can be sketched as follows. Consider
a photon-beam (possibly consisting of a single photon) and
assume that |0〉 describes the state of photons moving along
the x direction, while |1〉 describes the state of photons moving
along the y direction. All photons go through a first beam splitter

FIGURE 2 | The Mach–Zehnder interferometer.

that “splits” them giving rise to the following effect: within
the box each photon follows a path corresponding either to
the x-direction or to the y-direction with probability 1

2 . Soon
after, on both paths, all photons are reflected by a mirror that
inverts their direction. Finally, the photons pass through a second
beam splitter that determines the output-state. Suppose that all
photons entering into the interferometer-box are moving in the
x-direction. According to a “classical way of thinking” we would
expect that the photons detected at the end of the process will
move either along the x-direction or along the y-direction with
probability 1

2 . The result of the experiment is, instead, completely
different: the Mach–Zehnder interferometer always transforms
the input-state |0〉 into the output-state |0〉; while the input-state
|1〉 is transformed into |1〉.

From a mathematical point of view, such a “surprising”
result can be explained by using, in an essential way, the
concept of superposition. The apparatuses (used in the Mach–
Zehnder experiment) can be mathematically represented by two
important gates. A beam splitter can be regarded as a physical
implementation of the Hadamard-gate

√
I (also called square

root of identity), which is defined as follows (on the canonical
basis of C

2):

√
I|0〉 = 1√

2
(|0〉 + |1〉);

√
I|1〉 = 1√

2
(|0〉 − |1〉).

Apparently, the Hadamard-gate transforms the two classical bits
|0〉 and |1〉 into two (different) genuine superpositions. As a
consequence, within the Mach–Zehnder box a photon in state
1√
2
(|0〉 + |1〉) turns out to satisfy at the same time two alternative

properties: the property of moving along the x-direction and
the property of moving along the y-direction. We have here a
characteristic quantum parallelism: a single photon “goes along”
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FIGURE 3 | The quantum skier.

two different paths at the same time! Metaphorically, situations
of this kind have been sometimes compared to the puzzling
behavior of a “quantum skier” who runs at the same time on the
left and on the right side of a given tree (see Figure 3).

The second apparatus of the Mach–Zehnder interferometer
(the mirror), can be regarded as a physical implementation
of another important gate, the negation NOT (a quantum
generalization of the classical negation), which is defined as
follows:

NOT|0〉 = |1〉; NOT|1〉 = |0〉.

Accordingly, theMach–Zehnder circuit can be identified with the
following sequence of three gates (all defined on the space C

2):

(
√
I,NOT,

√
I).

Let us now apply the Mach–Zehnder circuit to the input |0〉.
We obtain:√

I : |0〉 7→ 1√
2
(|0〉 + |1〉); NOT :

1√
2
(|0〉 + |1〉) 7→

1√
2
(|0〉 + |1〉);

√
I :

1√
2
(|0〉 + |1〉) 7→ |0〉.

We can see, in this way, how the Mach–Zehnder circuit
transforms the input-state |0〉 into the output-state |0〉. In a
similar way, the input-state |1〉 is transformed into the output-
state |1〉.

Is there any natural “classical counterpart” for the Hadamard-
gate? A natural candidate might be a particular example of a
probabilistic state machine that we can conventionally call the
classical probabilistic NOT-state machine (PMNOT). Such machine
can be defined as follows:

• The set of possible word-inputs of PMNOT is the set of words
{

(0), (1)
}

.
• The program of PMNOT consists of the following sequence of

rules:

Seq0 = (R01 ,R02 ),

FIGURE 4 | A word-graph for a “classical probabilistic Mach–Zehnder

state machine.”

where:
R01 : (sin, (x)) 7→ (shaltj , (x)) and p(R01 ) = 1

2 ;

R02 : (sin, (x)) 7→ (shaltj , (1− x)) and p(R02 ) = 1
2 .

Consider, for instance, the input (sin, (0)). The output will be the
following set:

{

(shaltj , (0)), (shaltj , (1))
}

.

On this basis, a “classical probabilistic Mach–Zehnder state
machine” would determine (for the word-input (0)) the word-
graph illustrated by Figure 4.

Such a machine turns out to compute both the words (0)
and (1) with probability 1

2 . Interestingly enough, this is the same
probabilistic result that is obtained in the quantum case, when
one performs a measurement inside the interferometer-box. In
such a case, photons behave like “normal skiers,” who pass either
at the right or at the left side of a tree (where or represents here,
of course, the exclusive disjunction).

The arguments we have developed seem to confirm the
following conjecture: the characteristic superposition-patterns,
that may occur during a quantum computation (when no
measurement is performed during the computation-process),
cannot be generally represented by probabilistic state machines.
Quantum parallelism (based on superpositions) and classical
parallelism are deeply different.

4. QUANTUM PARALLELISM,
PSYCHOLOGICAL PARALLELISM, AND
QUANTUM COMPUTATIONAL SEMANTICS

What kind of similarity can be recognized between quantum
parallel structures and different forms of psychological
parallelism? Trying to represent the human mind as a kind
of system of quantum state machines would be, of course,
naive and misleading. In spite of many important results in the
framework of neurosciences, the complex network that connects
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human conscious and unconscious thoughts is still quite
mysterious7. Quantum-like superpositions can be reasonably
applied to represent some aspects of such complex networks.
Even quantum interference phenomena (with the characteristic
constructive and destructive effects) can find some natural
psychological interpretations.

According to an interesting hypothesis (discussed by the
neuroscientist Boncinelli, 2012), the mysterious emergence of an
act of consciousness can be represented as a sudden transition
from a parallel structure to a linear one. Is it reasonable to
conjecture that such transition could be described as a kind of
“psychological collapse of the wave-function?”

In the investigations about possible links between quantum
structures and psychological structures a useful tool is represented
by a special form of quantum logical semantics (called quantum
computational semantics) that has been naturally inspired by the
theory of quantum computation8.

Let us briefly recall the basic ideas of this semantics. We
can refer a first-order language L, whose non-logical alphabet
contains individual terms (variables and names), predicates
and sentential constants. Interpreting the language L means
associating to any formula α a meaning, identified with a piece
of quantum information that can be stored by a quantum system.
Accordingly, any possible meaning of α is represented by a
possible (pure or mixed) state of a quantum system: generally,
a density operator ρα that lives in a Hilbert space Hα , whose
dimension depends on the linguistic complexity of α.

The logical operators of L are associated to special examples
of Hilbert-space operations that have a characteristic dynamic
behavior, representing possible computation-actions. The logical
connectives are interpreted as particular (reversible) gates, like
the negation NOT, the Hadamard-gate

√
I, the Toffoli-gate T

(which allows us to define a reversible conjunction AND). At
the same time, the logical quantifiers (∀, ∃) are interpreted as
possibly irreversible quantum operations. Since the universe of
discourse (which the language refers to) may be indeterminate,
the use of quantum quantifiers may give rise to a reversibility-
breaking, which is quite similar to what happens in the case of
measurement-phenomena.

Due to the characteristic features of quantum holism,
meanings turn out to behave in a holistic and contextual way:
the density operator ρα (which represents the global meaning of
a formula α) determines the contextual meanings of all parts of
α (which can be obtained by applying the reduced-state function
to ρα). As a consequence, it may happen that the meaning of
a formula is an entangled pure state, while the meanings of its
parts are proper mixtures. In such cases, the meaning of a global
expression turns out to be more precise than the meanings of its
parts. It is also admitted that one and the same formula receives
different contextual meanings in different contexts.

As an example, consider the atomic sentence “Alice is pretty”
(formalized as Pa). In order to store the information expressed
by this sentence, we need three quantum objects whose states

7As is well-known, the literature devoted to the study of parallel structures in the

mind/brain-behavior is very rich. As an example, one can refer to some important

contributions of Damasio (see, for instance, Damasio, 1999).
8See (Dalla Chiara et al., 2005, 2010, in press).

represent the pieces of information corresponding, respectively,
to the predicate P, to the name a and to the truth-degree
according to which the individual denoted by the name a

satisfies the property denoted by the predicate P. Accordingly,
the meaning of the sentence Pa can be identified with a (pure or
mixed) state ρPa living in the tensor-product spaceH

Pa = ⊗3
C
2.

In order to obtain the contextual meanings of the linguistic parts
of Pa it is sufficient to consider the two reduced states Red1(ρPa)
and Red2(ρPa), which describe (respectively) the states of the
first and of the second subsystem of the quantum object that
stores the information expressed by the sentence Pa. From a
logical point of view, Red1(ρPa) and Red

2(ρPa) can be regarded as
two intensional meanings: a property-concept and an individual
concept, respectively; while ρPa represents a propositional concept
(or event).

Like formulas, sequences of formulas also can be interpreted
according to the quantum computational rules. As expected, a
possible meaning of the sequence (α1, . . . , αn) will be a density
operator ρ(α1,...,αn) living in a Hilbert space H(α1,...,αn), whose
dimension depends on the linguistic complexity of the formulas
α1, . . . , αn.

In this framework one can develop an abstract theory of vague
possible worlds. Consider a pair

W = ((α1, . . . , αn), ρ(α1,...,αn)),

consisting of a sequence of formulas and of a density operator
that represents a possible meaning for our sequence. It seems
reasonable to assume that W describes a vague possible world, a
kind of abstract scene where most events are characterized by a
“cloud of ambiguities,” due to quantum uncertainties. In some
cases W might be exemplified as a “real” scene of a theatrical
play or as a vague situation that is described either in a novel or
in a poem. And it is needless to recall how ambiguities play an
essential role in literary works.

As an example, consider the following vague possible world:

W = ((Pab), ρ(Pab)),

where Pab is supposed to formalize the sentence “Alice is kissing
Bob,” while ρPab corresponds to the pure state

|9〉Pab = |ϕ〉 ⊗ 1√
2
(|0, 1)〉 + |1, 0〉)⊗ |1〉,

where |ϕ〉 lives in the space C
2, while |9〉Pab lives in the space

⊗4
C
2. Here the reduced state of |9〉Pab that describes the

pair (Alice, Bob) has the typical form of an entangled state;
consequently, the states describing the two individuals Alice and
Bob are two identical mixed states. In the context |9〉Pab Alice
and Bob turn out to be indistinguishable: it is not determined
“who is who” and “who is kissing whom.” It is not difficult to
imagine some “real” theatrical scenes representing ambiguous
situations of this kind.

5. A QUANTUM SEMANTICS FOR MUSIC

An abstract version of the quantum computational semantics can
be applied to a formal analysis of musical compositions, where
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both musical ideas and extra-musical meanings are generally
characterized by some essentially vague and ambiguous features9.

Any musical composition (say, a sonata, a symphony, an
opera,...) is, generally, determined by three elements:

• a score;
• a set of performances;
• a set of musical thoughts (or ideas), which represent possible

meanings for themusical phrases written in the score.

While scores represent the syntactical component of musical
compositions, performances are physical events that occur in
space and time. From a logical point of view, we could say that
performances are, in a sense, similar to extensional meanings,
i.e., well-determined systems of objects which the linguistic
expressions refer to.

Musical thoughts (or ideas) represent, instead, a more
mysterious element. Is it reasonable to assume the existence of
such ideal objects that are, in a sense, similar to the intensional
meanings investigated by logic? Is there any danger to adhere,
in this way, to a form of Platonism? When discussing semantic
questions, one should not be “afraid” of Platonism. In the
particular case of music, a composition cannot be simply reduced
to a score and to a system of sound-events. Between a score
(which is a system of signs) and the sound-events created by a
performance there is something intermediate, represented by the
musical ideas that underlie the different performances. This is the
abstract environment where normally live both composers and
conductors, who are accustomed to study scores without any help
of a material instrument.

Following the rules of the quantum semantics, musical ideas
can be naturally represented as superpositions that ambiguously
describe a variety of co-existent thoughts. Accordingly, we can
write:

|µ〉 =
∑

i

ci|µi〉,

where:

• |µ〉 is an abstract object representing a musical idea that
alludes to other ideas |µi〉 (possible variants of |µ〉 that are,
in a sense, all co-existent);

• the number ci measures the “weigth” of the component |µi〉 in
the context |µ〉.

As happens in the case of composite quantum systems, musical
ideas (which represent possible meanings of musical phrases
written in a score) have an essential holistic behavior: themeaning
of a global musical phrase determines the contextual meanings of
all its parts (and not the other way around).

An important feature of music is the capacity of evoking extra-
musical meanings: subjective feelings, situations that are vaguely
imagined by the composer or by the interpreter or by the listener,
real or virtual theatrical scenes (which play an essential role in the
case of lyric operas and of Lieder). The interplay between musical
ideas and extra-musical meanings can be naturally represented in
the framework of our quantum semantics, where extra-musical

9See (Dalla Chiara et al., 2012).

meanings can be dealt with as special examples of vague possible
worlds.

We can refer to the abstract tensor product of two spaces

MSpace⊗WSpace,

where:

• MSpace represents the space of musical ideas |µ〉.
• WSpace represents the space of vague possible worlds, dealt

with as special examples of abstract objects |w〉 that can be
evoked by musical ideas.

Following the quantum-theoretic formalism, we can distinguish
between factorized and non-factorized global musical ideas. A
factorized global musical idea will have the form:

|M〉 = |µ〉 ⊗ |w〉.

But we might also meet entangled global musical ideas, having
the form:

|M〉 = c1(|µ1〉 ⊗ |w1〉)+ c2(|µ2〉 ⊗ |w2〉).

As is well-known, music gives rise to a special kind of
psychological experience, where some complex parallel
structures are consciously grasped, in a way that may appear
miraculous. Paradigmatic examples arise, for instance, in the
case of trios or quartets of lyric operas. In such cases, the
listener perceives a global polyphonic structure; at the same time,
he/she is able to follow (at least to a certain extent) the different
melodic lines and even the different thoughts and feelings of the
characters who are singing. As an example, it may be interesting
to consider three great masterpieces of the history of lyric operas:
the quartet of Act 1 in Beethoven’s Fidelio, the quartet of Act 3
in Verdi’s Rigoletto and the trio of Act 3 of Der Rosenkavalier
by Richard Strauss. The parallel structures that arise in these
three examples have some significant differences both from the
musical and from the semantic point of view.

In Fidelio’s quartet the psychological contraposition between
the four characters (Marzelline, Leonore, Rocco, Jaquino) is
realized by means of a single musical theme that is successively
sung by the four singers (Figure 5).

It is amazing how Beethoven succeeds in expressing, by
one and the same theme, different attitudes and emotions:
the joyful hope of Marzelline, the doubts and the anguish of
Leonore, the paternal satisfaction of Rocco, the jealous rage of
Jaquino. The whole context is dominated by strong ambiguities
and antagonistic elements: the contrast between an improbable
family-portrait and the cruel jail-environment, the contradictions
of Rocco (who is at the same time a fond father and an accomplice
of the prison-system), the sexual ambiguity of Leonore, the loving
heroin who has disguised herself as a man (Fidelio), in the
attempt to save her husband, the prisoner Florestan. The musical
result is an extraordinary and highly emotional polyphonic
construction based on very simple musical components.

The structure of Rigoletto’s quartet is completely different.
All characters are associated to specific musical themes that
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FIGURE 5 | The quartet-theme.

FIGURE 6 | The Duke.

are repeated with some variations. The leading musical idea
is represented by the wonderful theme sung by the Duke of
Mantova at the very beginning (Figure 6)10.

Like Mozart’s Don Giovanni, Verdi’s Duke is a cynic seducer,
who may appear sweet and sincere with his victims. And
music often exalts a paradoxical co-existence of contradictory

10Fairest daughter of love, I am a slave of your charms; with but a single word you

could relieve my every pain. Come touch my breast and feel how my heart is racing.

With but a single word you could relieve my every pain.

psychological attitudes. All contrasts are emphasized in the
quartet by the sordid environment, where a crime is going to
be committed. Maddalena’s answer to the Duke is based on
a fully different theme, a staccato-sequence of sixteenth-notes
(Figure 7)11.

Both the music and the text reflect Maddalena’s ambiguity:
she is a prostitute who is playing a traditional seductive role;

11 Ah! Ah! That really makes me laugh, talk like that is cheap enough.
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FIGURE 7 | Maddalena.

FIGURE 8 | Gilda.

at the same time she is also instrumental to a murder-project.
Gilda’s entrance (soon after Maddalena’s first phrase) determines
a sudden dramatic change. What Gilda sings is a cry of sorrow,
interrupted by some short pauses and appoggiaturas that seem to
describe desperate sobs (Figure 8)12.

One has often discussed the reasons that may have led Gilda
to her unreasonable sacrifice for an unworthy man who had
deceived her. Representing Gilda as a naive and modest girl is,
however, misleading and in contrast with the greatness expressed
by the music. Gilda’s death-choice can be perhaps better
understood as a suicide, caused by an unendurable disillusion.
Rigoletto’s role in the quartet is musically less “visible.” His mind

12Ah, these are the loving words the scoundrel spoke once to me! O wretched heart

betrayed, do not break of sorrow.

is completely absorbed in the vengeance-project (“la vendetta”)
that shall be shortly accomplished. From a musical point of
view, the quartet is constructed as a polyphonic structure, where
the four voices are interlaced, each preserving its own musical,
semantic and psychological autonomy.

Der Rosenkavalier by Strauss belongs to a musical and literary
world that is somewhat far both from Fidelio and from Rigoletto.
Different forms of ambiguity are exalted in this opera, which is
characterized by an extraordinary unity of music and text, written
by the great poet Hugo von Hofmannsthal. The theme of sexual
ambiguity is here developed by the character of Octavian, the
Rosenkavalier whose role is sung by a mezzo-soprano. Although
Octavian may recall Mozart’s Cherubino, ambiguities are in
Strauss’ opera more sophisticated: in two different situations
Octavian disguises himself as a woman in order to make fun
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of the rude fiancé of the fascinating girl Sophie. Interestingly
enough, some interpreters of the role of Octavian have told how
often they have been puzzled by their “oscillating identity” during
the opera’s performance.

A different and deeper “identity-question” is evoked in a
splendid aria sung by theMarschallin in Act 1. After a passionate
night spent with her lover Octavian, the lady is troubled by some
sad thoughts about the flowing of time and the mysterious co-
existence of different identities of one and the same person in
different stages of life. She sings:

Aber wie kann das wirklich sein,
dass ich die kleine Resi war,

und dass ich einmal die alte Frau sein werd’
.....................................

Wie kann denn das geschehen?
Wie macht denn das der liebe Gott?
Wo ich doch immer die gleiche bin.

Und wenn er’s schon so machen muss,
warum lasst er mich denn zuschaun dabei

mit gar so klarem Sinn?
Warum versteckt er’s nicht vor mir?
Das alles ist geheim, so viel geheim 13.

One is dealing with an extraordinary poetic and musical
representation of a “hard” scientific and philosophical problem,
that modern philosophers of science usually call “the genidentity-
question”14.

13But how can it be that I was the little Resi and that I shall be the old lady. .... How

can it come to pass? How can God decree it so? While, in fact, I am always the same.

And if indeed it must be so, why does he let me look at it so clearly? Why does he not

hide it to me? All this is a mystery, a great mystery.
14The term “genidentity,” which refers to the problematic identity of individuals

through time has been introduced by Lewin (in his doctoral thesis in 1922) and

The trio performed at the end of the opera by three
female voices (the Marschallin, Sophie, Octavian) is a wonderful
polyphonic construction, where the three characters express
different thoughts and feelings, which are not generally associated
to some specific musical themes (unlike the case of Rigoletto’s
quartet). The main theme is sung at the very beginning by the
Marschallin (Figure 9)15.

By this deeply moving musical phrase the Marschallin
expresses her extreme act of love, which is to renounce love.
Her choice might recall what Violetta Valery sings in Verdi’s La
Traviata:

Dite alla giovine sì bella e pura16

although Violetta and the Marschallin are, of course, completely
different characters.

Sophie’s entrance in the trio is, in a sense, surprising. She
joins in, in the final part of the Marschallin’s first phrase, just
upon the critical word “andern” (“other”). Her intervention
creates a sudden brief dissonance (a minor-second chord),
which immediately disappears when the two womem (who are
both in love with Octavian) harmonically conclude the phrase
at a distance of a minor-third. What Sophie perceives is a
strange religious atmosphere that she cannot really understand,
since she is not aware of the liason between Octavian and the
Marschallin. The incipit of the main theme (the characteristic
imprinting of the whole trio) is then immediately transposed
to a different key (from D flat major to A major) by Octavian,
whose initial attitude seems to be mainly dominated by
embarassing doubts and questions. But finally the reasons of
love prevail over all doubts. At the end of the trio, while

has been further investigated by Reichenbach and many other scholars. See, for

instance, Reichenbach (1928).
15I promised to love him in the right way, even to love his love for another woman.
16Tell the beautiful and pure girl.

FIGURE 9 | The Marschallin.
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the two young lovers sing an expected “dich habe ich lieb”
(“I love you”), the Marschallin concludes with an enigmatic
phrase:

als wie halt Männer das glücklich sein verstehen17.

singing the last note alone over a perfect tonic chord.
The three examples of polyphonic constructions, created by

Beethoven, Verdi, and Strauss, are all characterized by strong
unitary conceptions, based on complex parallel networks of
harmonic, melodic, timbric, and semantic relationships (which
have been extensively analyzed in musicological literature18).
At the same time, one can easily recognize some significant
differences that distinguish the three cases, both from the musical
and from the semantic point of view. The structure of Fidelio’s
quartet is very close to a canon-form, where the entrance of each
voice is associated to a specific semantic connotation. Rigoletto’s
quartet is, instead, dominated by strong musical contrasts that
reflect the conflicting feelings of four human beings, living in a
highly dramatic situation. Finally, Strauss’ trio seems to propose
a kind of musical and semantic “peaceful resolution.” The trio
is perceived by the listener as a strongly unitary musical idea that
evolves in time. The three female voices are in a sense “entangled,”
sometimes creating the illusion that a single voice is singing

17as far as men can understand happiness.
18See, for instance, Budden (1983), Solomon (1998), Principe (2004).

(as happens in the case of some entangled quantum objects,
whose parts are indistinguishable). Suchmusical situations can be
naturally represented in the framework of the quantum musical
semantics, where musical thoughts are dealt with as holistic ideal
objects that vaguely allude to a (possibly infinite) variety of
co-existing ideas.

The analysis proposed in this article has concerned questions
that belong to worlds apparently “far apart”: the theory of
quantum computers, psychology, logical semantics, and music.
A common pattern that arises in all these fields is a frequent and
sometimes essential emergence of some characteristic parallel
structures. We have seen how the quantum-theoretic concepts of
superposition and entanglement have inspired the development
of a “bridge-theory” (based on the quantum computational
semantics) that can be usefully applied to a formal representation
of different kinds of phenomena where parallelism plays a
relevant role.
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Two types of potential functions and
their use in the modeling of
information: two applications from
the social sciences
Emmanuel E. Haven*

School of Management, Institute for Quantum Social and Cognitive Science and Institute of Finance, University of Leicester,

Leicester, UK

In this paper we consider how two types of potential functions, the real and quantum

potential can be shown to be of use in a social science context. The real potential function

is a key ingredient in the Hamiltonian framework used in both classical and quantum

mechanics. The quantum potential however emerges in a different way in quantum

mechanics. In this paper we consider both potentials and we attempt to give them a

social science interpretation within the setting of two applications.

Keywords: potential functions, quantum mechanics

1. Introduction

Potential functions are to physicists what utility functions are to economists: they are both examples
of fundamental workhorse tools. But can there exist some connection? Utility functions, u, are
defined as: u : C → R, where C is a set of objects. A preference relation on two objects, x and y
such that, say, x ≻ y will imply that u(x) > u(y) under the necessary conditions that the preference
relation is transitive and asymmetric. This paper will not pretend to be at a level of rigor which
has been attained in economics based preference theory. Examples of such rigor abound in the
various expected utility frameworks, and some papers in this special issue will be devoted to probing
how deviations from central axioms like the sure-thing principle can be explained with the aid of
quantum structures. Our objective in this paper is modest: we would like to inform (and maybe
convince) the reader that with the help of two types of potential functions we can model, in a
reasonably successful way, information. This information can include parameters which refer to
attitudes toward risk (preferences for risk).

In the next section we introduce the basic structure where those two potential functions can
exist. In the next two sections we consider two applications from the social sciences which will
attempt to highlight the possible added value of using those potential functions in a non-physics
setting. We also consider in the last section of the paper a brief discussion on the relevance of such
potential functions in real world market settings.

2. Basic Structure where Two Potential Functions can Occur

The so called stochastic equivalent of the Hamilton-Jacobi equations provides for at least, according
to the author of this paper, a sort of twilight state where we move from classical mechanics to
stochastics and then to quantum mechanics. The hydrodynamic approach to quantum mechanics
was developed by Edward Nelson, and in this section we will provide for the essentials of the basic
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structure which we need, to develop the examples in Sections 3
and 4. We use elements from the set up in the paper by Haven
(2015). For a lot more detail, the paper by Nelson (1966) is the
essential reference. The book by Paul and Baschnagel (1999) is
also an excellent source (see also Haven and Khrennikov, 2013).

We will follow, as in the paper by Haven (2015) and Paul
and Baschnagel (1999) approach to Nelson’s theory. We also use
the same notation. Consider a position in space, x, indexed by
time (which we denote here by the index n). Let time contract
to zero, one can then write as in Nelson (1966) and Paul and
Baschnagel (1999), that dx+

dt
≃ xn+1−xn

ǫ
and dx−

dt
≃ xn−xn−1

ǫ
,

where ǫ denotes the difference in time t, and d indicates the
infinitesimal differential operator. In the area of finance, the so
called Brownian motion is a very common way of describing the
random evolution of an asset price over time. Brownian motions
are well-known in physics, especially with the formalization
Einstein gave of such motions. As we mention in Haven (2015),
Nelson (1966), and Paul and Baschnagel (1999), define two
Brownian motions of the following types:

dx(t) = b+(x, t)dt + σdW(t); (1)

where dW(t) is a Wiener process; σ is the diffusion coefficient
and b+(x, t) is the so called drift function. They also define:

dx(t) = b−(x, t)dt + σdW(t). (2)

What is now the difference between the two drift functions? Still
following the set up inHaven (2015), Nelson (1966), and Paul and
Baschnagel (1999) define:

D+x(t) = lim
ǫ→0

E

[

xn+1 − xn

ǫ

]

= b+(x, t), (3)

and also:

D−x(t) = lim
ǫ→0

E

[

xn − xn−1

ǫ

]

= b−(x, t). (4)

Note that E is the expectation operator. This paper hasmentioned
in its introduction that we consider two types of potentials.
But what are they? The real potential is the first type, well-
known from elementary classical mechanics. The real potential
formalizes potential energy. The second type, is the so called
quantum potential which emerges from inserting the polar form
of a wave function into the Schrödinger partial differential
equation. The uses of those potentials were first proposed by
Khrennikov (1999) already more than 10 years ago. Haven
(2015)1, indicates that a key component of the so called quantum
potential, can be written as follows:

∇2R′

R′
= 1

σ 2

∂

∂x

[

1

2

(

b+(x, t)− b−(x, t)
)

]

+ 1

4σ 4

[

b+(x, t)
2 − 2b+(x, t)b−(x, t)+ b−(x, t)

2
]

, (5)

1This is Equation (25) in that paper.

where R′ is a scalar field. We then argue in Haven (2015)2

that if we set b+(x, t) = b and b−(x, t) = c where
b 6= c; b, c ∈ R:

∇2R′

R′
= 1

4σ 4

[

b2 − 2bc+ c2
]

= 1

4σ 4

(

b− c
)2
. (6)

If one consider the classical mechanical equivalent of the

quantum potential, one multiplies ∇2R′
R′ with −mσ 4

2 , where
m is mass. We note that use is made of the conversion:
σ 2 = h̄

m . We note that such conversion requires further
discussion (see Nelson, 1985). Hence, we obtain, as in Haven
(2015)3:

−mσ 4

2

∇2R′

R′
= −m

8
(b− c)2. (7)

We are now ready to consider our first application.

3. Application 1: Three Examples Showing
Which Additional Information is Brought on
by the Use of the Quantum Potential

The Newtonian motion with both the real and quantum
potentials is: m.a = −∇ (V + Q) (see for instance Haven and
Khrennikov, 2013, for more detail). If one consider the force,
−∇Q, to be applied on Equation (7), one can see immediately
that:

−∇Q = − ∂

∂x

[−mσ 4

2

∇2R′

R′

]

= −∂

∂x

[−m

8
(b− c)2

]

= 0. (8)

The force derived from the real potential, −∇V , is −b+(x, t)
or −b−(x, t). From an economics point of view, such force can
be interpreted as an expected return. Hence, this force can thus
incorporate preferences for risk.

In order to give an interpretation to the quantum potential,
we need to re-consider Equation (5) but now for the case where
b+(x, t) and/or b−(x, t) are not constant. Hence, let us consider
the simple case where b+(x, t) = µx, where we can set that µ is
now the expected return. We note that making µ to be such an
expected return follows in parallel to what is done in financial
economics, where the drift term of the geometric Brownian
motion is a product of the expected return and the position
variable (i.e., the value of the stock price for instance). Let us
assume, for easiness of purpose, that b−(x, t) = 0. In this case,
we are not in Newtonian mechanics since we are now explicitly
imposing that b+(x, t) 6= b−(x, t). We re-consider Equation (5)
again:

∇2R′

R′
= 1

σ 2

∂

∂x

[

1

2
(µx)

]

+ 1

4σ 4

[

µ2x2
]

. (9)

2This is Equation (26).
3This is Equation (36).
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The quantum potential, Q, is written as: −mσ 4

2
∇2R′
R′ =

−mσ 2

2
∂
∂x

[

1
2 (µx)

]

− m
8

[

µ2x2
]

. The force is then:

−∇Q = − ∂

∂x

[−mσ 2

2

∂

∂x

[

1

2
(µx)

]

− m

8

[

µ2x2
]

]

. (10)

This yields then:

−∇Q = m

4
µ2x. (11)

If we assume that the force on the real potential, −∇V =
−b+(x, t) = −µx, then, one can also write that:

−∇V −∇Q = −µx+ m

4
µ2x (12)

We observe from the above, that besides the information
received, via the force on the real potential, i.e., the expected
return times the position, additional information is now injected
via the force on the quantum potential.

If we were to let b+(x, t) = µx2, then using Equation (5):

∇2R′

R′
= 1

σ 2

∂

∂x

[

1

2

(

µx2
)

]

+ 1

4σ 4

[

µ2x4
]

. (13)

Using −mσ 4

2
∇2R′
R′ then the force delivered by both the quantum

and real potentials (assuming−∇V = −b+(x, t) = −µx2) is:

−∇V −∇Q = −µx2 + mµ2

2
x3 + mσ 2

2
µ. (14)

If we would set b+(x, t) = µ, then [see Equation (8)], we would
only be able to write that:

−∇V −∇Q = −µ (15)

Let us compare those simple cases, Equations (12, 14 and 15).
We can observe that additional terms are added to the force on
the real potential. Remark however that we have assumed that
the drift term in the pure Newtonian environment, is the same
as the drift terms b+(x, t) and b−(x, t). If we translate the pure
Newtonian environment, into the Nelson framework we obtain

∇R(x, t) =
E
[

dx+
dt

− dx−
dt

]

2σ 2 = 0 and therefore, in that setting,
R(x, t) is constant. This would mean that the density function, in
the Nelson framework e2R(x,t) would be constant. The quantum
potential would also be zero. Hence, the equivalent information
of the pure Newtonian setting into a Nelsonian setting would be
senseless. However, the quantum potential still is comparable to
the real potential, after all one can write:−∇V−∇Q = m.a! This
is in some sense a dilemma.

Consider again Equations (12, 14 and 15), and let us re-write
slightly, as follows:

• Under the Newtonian based theory if the expected return
(i.e., force on real potential) is the expected return µ then
the additional information (brought by the gradient of the
quantum potential) is nil

• Under the Newtonian based theory if the expected return
(i.e., force on real potential) is the expected return µx then
the additional information (brought by the gradient of the
quantum potential) is [set m = 1 (please see below for a
comment on such setting)]: 14µ

2x
• Under the Newtonian based theory if the expected return

(i.e., force on real potential) is the expected return µx2 then
the additional information (brought by the gradient of the
quantum potential) is [set m = 1 (please see below for a

comment on such setting)]: σ 2µ
2 + µ2

2 x3

Given the reasonableness of this force on the quantum potential
to exist (i.e., volatility is not zero and the uncertainty given by
(

xn+1−xn
ǫ

)

6=
(

xn−xn−1
ǫ

)

to exist, it would then be reasonable to

claim that if the expected drift is given as µx in a Newtonian

world [where
(

xn+1−xn
ǫ

)

=
(

xn−xn−1
ǫ

)

and σ = 0] then in

a Nelson world this information would need to be augmented
with: 1

4µ
2x. Similarly, if the expected drift is given as µx2 in

a Newtonian world [where
(

xn+1−xn
ǫ

)

=
(

xn−xn−1
ǫ

)

and σ =
0] then in a Nelson world this information would need to be

augmented with: σ 2µ
2 + µ2

2 x3.
Remark one very important issue which refers to the setting

of m = 1 in the above discussion. The Nelson theory allows for
a transition from pure Newtonian mechanics, into a stochastic
environment [with the use of R(x, t) as a scalar field] and from
there, into a further transition into quantum mechanics [with
the use of R(x, t) now as an input into the wave function]. This
transition from stochastics to quantum mechanics, also goes via

the setting of σ 2 = h̄
m .

For a given finite σ 2, in a quantum mechanical context
when h̄ = σ 2m, it would mean that m should be extremely!!!
small indeed. The question becomes, whether the level of m
has a continuum of values when transiting from the stochastic
environment toward the quantum mechanics environment.
If one considers the case −µx + m

4 µ2x then when m is
extremely small, the term m

4 µ2x would need to be extremely

small. The same can be said for: −µx2 + mµ2

2 x3 + mσ 2

2 µ,
where the terms which are added to µx2 are then small too,

because of small m :
mµ2

2 x3 + mσ 2

2 µ. It would be a major
achievement, if indeed we could find how m behaves when
transiting from Newtonian → stochastics (with R as scalar
field) → quantum mechanics (with R as an input to the wave
function).

4. Application 2. An Example of How the
Real and Quantum Potentials can be used
in Lux’s Noise Trader Infection Model

The “noise trader/infection” model was developed by Lux (1997)
and we use it here to highlight the applications we can make,
in a financial economics framework, of the potentials we have
treated in our paper. From Equation (5), we can observe that σ 2

is essential to define the quantum potential. We will make the
simple assumption, for the purposes of the model treated here,
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that E
(

dx−
dt

)

= 0. There is a non-zero uncertainty due to the fact

that E
(

dx+
dt

)

6= E
(

dx−
dt

)

.

4.1. Brief Set up of the Lux Model
The model has two main types of traders, fundamental and
chartist (or also called noise) traders. The total number of chartist
traders is 2N. They are divided into two subgroups, n+ (the
number of noise traders who are positive about the development
of the market) and n− (the number of noise traders who are
negative about the development of the market) and hence n+ +
n− = 2N. An opinion index, which is, in the words of Lux (1997)
(p. 8) “the distribution of attitudes among the ‘population’” is
also constructed and it is defined as: x = n+−n−

2N . Remark that
in the model, chartist traders may change from one subgroup to
the other. The smallest difference in the opinion index is given
by ± 1

N and the asset price’s minimal change is ± one cent. The
central equation in which we are interested in for the purposes of
our paper, is as follows (Equation 3.7b in Lux, 1997):

dp

dt
= β

(

xTc + Tf

(

pf − p
))

; (16)

where β is defined as (Lux, 1997, p. 8): “a parameter for the
average speed of price adjustment in the presence of excess
demand.”; x is the average distribution of attitudes; Tc measures
the trading volume of the chartist traders; Tf measures the
trading volume of the fundamental traders; pf is the perceived
fundamental value of the asset and p is the expected price.

4.2. Embedding Lux’s Model in the Quantum/Real
Potential Environment
If we want to embed the above model in the quantum/real
potential model presented here in this paper, then a departure
of Lux’s model could be as follows:

dp = β
(

xTc + Tf

(

pf − p
))

dt + dW; (17)

where dW is a Wiener process as defined before. Embedding this
departure of Lux’s model in the quantum/real potential model,
we can then write that:

E

[

dp

dt

]

= xβTc + βTf pf − pβTf + E(dW); (18)

which can then be re-written as, using E(dW) = 0:

E

[

dp

dt

]

= xβTc + βTf pf − pβTf . (19)

Remark that the x parameter could be interpreted as being closely
linked to some implicit preference functional, which in this
model, is driven by chartists. We remark that Equation (3.7a; p.
13) in Lux’s paper Lux (1997) provides for the time dependent
evolution of the x parameter.

4.3. Consequence of the Absence of Expectation
Operators
Remark that if we were to write Equation (16) (as it is thus
written in Lux’s model), as a result of having it embedded in
our quantum/real potential model (thus nowwithout expectation
operator) then this would imply that dW

dt
= 0. If we now go back

to the importance of expectation operators in Nelson’s theory
we can say the following. Imagine we were to not use such an

operator on dW
dt

. For instance, can we then still write that dx+
dt

=
b+(x, t), using the Brownian motion Equation (1)? The answer
to this question would impose the requirement that no time
reversibility can exist. The argument is quite straightforward. Let
us follow the arguments of Merton (1990) (please see also Neftci,
2000, for a treatment of Merton’s arguments which we follow

here) who shows that dW
dt

, as is well-known, can not be defined
with ordinary derivatives. This problem is circumvented in the

Nelson theory by using E
[

dW
dt

]

, where E(dW) = 0.

Assume we want to impose that dW
dt

= 0 and we thus allow
for the use of no expectation operators. We note again, we are

well aware that dW
dt

does not exist. But let us do a quick thought
experiment and assume it were to exist. What would be the
consequences?

Define elapsed time as h = tk − tk−1 and let n = T
hm

with
m > 1, where T is total time. Following Neftci (2000), assume

there exists a quantity A2 so that: ∞ > A2 >
∞
∑

k= 1

E
[

1W2
k

]

and

there exists a quantity A3 so that
E
[

1W2
k

]

Vmax
> A3 with A3 ∈]0, 1[

where Vmax = maxk E
[

1W2
k

]

. From the proof which allows

for showing that E
[

1W2
k

]

= σ 2
k
h, the following relation is

essential (see Neftci, 2000): h
T
A2
A3

> E
[

1W2
k

]

> A3A1
T h, where

0 < A1 < E
[

1W2
k

]

. In order to come to show under what

conditions dW
dt

= 0 (thus without expectation operator) we want

to impose, using n = T
hm

(m > 1), that hm

T
A2
A3

> Vmax. Clearly, if
h is small (<1) then hm (m > 1) will be smaller than h. Hence, it
is reasonable to write that: hm

T
A2
A3

< h
T
A2
A3
. Hence, if we still want

hm

T
A2
A3

> Vmax, we must impose that m >
logVmax+log

A3
A2

T

log h
. We

know that A3 > 0; A2 > A1 > 0. However, h = tk − tk−1 must
clearly be positive! We can then write that: hm

T
A2
A3

> E
[

1W2
k

]

>
A3A1
T hm and one can then define that: E

[

1W2
k

]

= σ 2
k
hm. We can

approximate: dW
dt

≃ limh→0
1W
h

= limh→0
h
m
2

h
= limh→0 h

m−2
2

which form > 2 will yield 0. Thus, we obtain that dW
dt

≃ 0 in non

expectation operator form when: (i)m >
logVmax+log

A3
A2

T

log h
and (ii)

m > 2 and therefore we must impose that
logVmax+log

A3
A2

T

log h
= 2

and this condition would mean that the uncertainty concentrates

in a very specific period of time, Vmax = h2A2
A3T

. It is clear from

the condition
logVmax+log

A3
A2

T

log h
= 2 that there can not exist time

reversibility since h > 0 (and h 6= 1) for the logh to be valid. This
may on prima facie, “prove” that the expectation operators which

have been imposed on dW
dt

in Nelson’s theory are intrinsically
connected to time reversibility.
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A commutativity rule such as,

E
[

xn

(

xn+1−xn
ǫ

)

−
(

xn−xn−1
ǫ

)

xn

]

≡ E(C), also needs to

use such operators. Without the expectation operators, setting

xn fixed: xn.
[

dx+
dt

− E( dx−
dt

)
]

, is possible. Time reversibility is

obtained via the expectation operator. In the set up by Nelson, a
function u(x, t) is defined as: u(x, t) = 1

2 (b+(x, t)−b−(x, t)), and
this function is zero in Newtonian mechanics. We also remark
in Haven (2015)4 that Nelson (1966) and Paul and Baschnagel

(1999) define u(x, t) = σ 2

2 ∇ ln f , where f is a probability density

function (for instance f = e2R(x,t)).

From the above, we can not define dx−
dt

(since this would
require time reversibility) and hence, we can not define u(x, t) =
σ 2

2 ∇ ln f . This is the case, because the relation is obtained

under time reversal on the Fokker-Planck pde:
∂f (x,t)

∂t +
∇

(

b+(x, t)f (x, t)
)

+ σ 2

2 1f (x, t) = 0, which is now impossible

since logh is to exist. If u(x, t) can not be defined then ∇2R′
R′ =

1R+
(

u(x,t)
σ 2

)2
is not definable.

4.4. What are the Real and Quantum Potential in
Lux’s Model?
We can write that using the real potential, V , E

[

dx
dt

]

= ∇V =
b±(x, t). In full analogy with this, we write Equation (19) now as:

∇V = xβTc + βTf pf − pβTf ; (20)

which we write in shorthand format as: ∇V = α − pβTf .
Recall Equation (5) which gave the expression for the “quantum
potential”:

∇2R′

R′
= 1

σ 2

∂

∂x

[

1

2

(

b+(x, t)− b−(x, t)
)

]

+ 1

4σ 4

[

b+(x, t)
2 − 2b+(x, t)b−(x, t)+ b−(x, t)

2
]

. (5)

Using Equation (20) in Equation (5), we obtain:

∇2R′

R′
= 1

σ 2

∂

∂p

[

1

2
(α − pβTf )

]

+ 1

4σ 4

[

(α − pβTf )
2
]

; (21)

where we have to note that x is calculated as per Lux (1997),
∑

x

∑

p x.L(x, p; t); where L(x, p; t) is defined as the probability

to occupy a state
(

x, p
)

; i.e., where x is the distribution of
attitudes and p is price and hence indirectly x is a function of p,
via the probability L. Similarly, note that p =

∑

x

∑

p p.L(x, p; t).
Similarly, Tc in Lux (1997) is defined as: Tc ≡ 2Ntc, where
2N is the total noise trader population and tc is the amount
the chartist, individually buys or sells. We assume that tc is not
dependent on p.

Simplifying Equation (21) is now straightforward and leads to:

∇2R′

R′
= 1

σ 2

1

2
(−βTf )+

1

4σ 4

[

(α − pβTf )
2
]

(22)

4This is Equation (19).

Thenmultiplying Equation (22) with −mσ 4

2 and also taking −d
dp

so

as to get the force, we obtain:

−∇Q = − d

dp

[(−mσ 4

2

) ∇2R′

R′

]

= m

4

(

α − pβTf

)

(−βTf ).

(23)
Recall from Equation (20), that we now can write:

−∇V = pβTf − α. (24)

Recall that the m factor in −∇Q can indeed be very small if we
move toward a quantum mechanical environment. If we thus
write:−∇V −∇Q, we then obtain:

−∇V −∇Q = pβTf − α + m

4

(

α − pβTf

)

(−βTf ). (25)

This can be simplified to:

(pβTf − α)
[

1+ βTf

(m

4

)]

. (26)

Clearly, ifm → 0 and σ 2 6= 0 then βTf

(

m
4

)

is indeed very small.

We can also write: ∇V
∇R = 2σ 2 and hence: ∇R = ∇V

2σ 2 . We can
then write that:

R(p) = 1

2σ 2

∫

α − pβTf dp; (27)

which is worked out as: R(p) = 1
2σ 2 (αp)− 1

4σ 2 βTf p
2 + C. Recall

that s = 1
1+r

∫

exp(2R(p, t))dp, where s is the state price. In the
context of the model we consider here this would yield:

s = 1

1+ r

∫

exp

((

1

σ 2
(αp)− 1

2σ 2
βTf p

2 + C

))

d p. (28)

This means that the state price (an insurance price which is
paid to guarantee a financial outcome when a particular state
of nature occurs) is now dependent, using Lux’s model which
is embedded in our quantum/real potential model, on the (i)
volatility; (ii) the expected price of an asset (which chartists and
fundamental buyers buy); (iii) the parameter β for the average
speed of price adjustment in the presence of excess demand; (iv)
the term α = xβTc + βTf pf . Remark that this density function

used the amplitude function R from ∇R = ∇V
2σ 2 . The quantum

potential in its full form is absent from this relation, but parts of
that potential (i.e., ∇R) are still figuring in the equation. In this
formulation the preference factor (via x) would be embedded in
p. The volatility parameter seems to be the “conduit” factor which
links the changes in R with the changes in V , via ∇V = 2σ 2∇R.
Thus, Equation (28) does only exist here if this “conduit” factor
exists (i.e., if σ 2is not zero).
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5. What is the Relevance of Real and
Quantum Potentials in Empirical Work?

This paper has not yet answered a crucial question, for which
we have to thank one of the referees of this paper. Can the
quantum and/or real potentials have empirical relevance? The
answer is fortunately enough positive. Recent work by Belal
Baaquie shows quite clearly how real potential functions can be
estimated for traded commodities. Please consult Baaquie (2013).
The same author also shows how the minimization of a real
potential function, when that function is defined as being equal to
the sum of supply and demand functions, yields a more general
version of the equilibrium price which is well-known in basic
economics. The quantum potential can also be estimated from
real market data. In the paper by Tahmasebi et al. (2015) the
quantum potential is estimated for the Standards and Poor (S&P)
Index. More work is needed on how the path derived from the
extended Newtonian motion (i.e., with thus two potentials), can
be used to emulate price behavior over time.

6. Conclusion

We have attempted to show that preferences for risk seem to be
captured by both types of potentials (i.e., the real and quantum

potentials). When embedding the basics of the Lux model in the
types of potential approach proposed in this paper, we seem to
find that the quantum potential’s influence depends on the mass
parameter. This parameter varies depending on whether we are
far removed (or not) from the quantum physical limit. The last
section of the paper does indicate that the real and quantum
potentials can be estimated within real financial data settings. But
the question may remain, if the proposed analysis in this paper
is of any value, how one can interpret the quantum potential in
light of those real data interpretations? In the paper by Tahmasebi
et al. (2015) it is shown quite clearly that a quantum potential
with infinite walls occurs for the S&P Index for short time scales,
and when the time scale grows those infinite walls disappear
and the quantum potential for the S&P index for large time
scales resembles the quantum potential for Gaussian white noise.
Price variation is deemed to be very small for small time scales,
but allowed to be larger for large time scales. This is intuitively
acceptable.

From a Newtonian price path point of view, considering
for instance Equation (25), our analysis in this paper seems to
indicate, that the influence of the quantum potential (next to the
real potential) on the price path, may vary. But to pinpoint, in an
economics sense, what this parameter of variation really means is
very difficult.
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Quantum-like model of
unconscious–conscious dynamics
Andrei Khrennikov*

Department of Mathematics, Mathematical Institute, Linnaeus University, Växjö, Sweden

We present a quantum-like model of sensation–perception dynamics (originated in

Helmholtz theory of unconscious inference) based on the theory of quantum apparatuses

and instruments. We illustrate our approach with the model of bistable perception of a

particular ambiguous figure, the Schröder stair. This is a concrete model for unconscious

and conscious processing of information and their interaction. The starting point of

our quantum-like journey was the observation that perception dynamics is essentially

contextual which implies impossibility of (straightforward) embedding of experimental

statistical data in the classical (Kolmogorov, 1933) framework of probability theory. This

motivates application of nonclassical probabilistic schemes. And the quantum formalism

provides a variety of the well-approved andmathematically elegant probabilistic schemes

to handle results of measurements. The theory of quantum apparatuses and instruments

is the most general quantum scheme describing measurements and it is natural to

explore it to model the sensation–perception dynamics. In particular, this theory provides

the scheme of indirect quantum measurements which we apply to model unconscious

inference leading to transition from sensations to perceptions.

Keywords: sensation, perception, quantum-like model, quantum apparatuses and instruments, bistable

perception, unconscious inference

1. Introduction

In recent years the mathematical formalism of quantum mechanics was applied to a variety of
problems outside of quantum physics: from molecular biology and genetics to cognition and
decision making (see the monographs, Khrennikov, 2010b; Busemeyer and Bruza, 2012; Haven
and Khrennikov, 2012) and the extended lists of references in them as well as in the papers (Aerts
et al., 2014; Khrennikov et al., 2014).

The problem of mathematical modeling of bistable perception and, more generally, unconscious
inference1 is that it can be rather complex and that its nature is not understood well-enough to
allow one to choose the optimal model. In spite of tremendous efforts during the last 200 years,
this problem cannot be considered fully solved (cf. Newman et al., 1996; Laming, 1997). In this
note we apply the theory of quantum apparatuses and instruments (Davies and Lewis, 1970; Busch
et al., 1995; Ozawa, 1997) to quantum-like modeling of sensation–perception dynamics as the
concrete example of unconscious and conscious processing of information and their interaction.Our
model can be applied to general unconscious–conscious information processing. It generalized
the quantum-like model developed in Khrennikov (2004). We also point out that this paper is the

1Unconscious inference (Conclusion) is a term of perceptual psychology invented by von Helmholtz (1866); Boring (1942),

to describe an involuntary, pre-rational and reflex-like mechanism which is part of the formation of visual impressions.
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first attempt to apply the theory of quantum apparatuses and
instruments outside of physics, to cognition and psychology.

Special quantum structures were elaborated in order to
mathematically represent most general measurement schemes
and are applicable both in classical and quantum physics
and, practically, in any domain of science. They generalize
the pioneer quantum measurement representation by operators
of the projection type, also known as von Neumann–Lüders
measurements. In quantum physics, this new general framework
is of vital importance since the projection type measurements
do not completely cover real experimental situations (Davies
and Lewis, 1970; Busch et al., 1995; Ozawa, 1997; Nielsen and
Chuang, 2000). It seems that the same holds true in mathematical
modeling in cognition and psychology (see Asano et al., 2010a,b;
Khrennikov, 2010b; Asano et al., 2011, 2012; Khrennikov and
Basieva, 2014; Khrennikov et al., 2014), although here the
situation is not yet absolutely clear and, obviously, the underlying
reason for using quantum instruments is different.

To motivate the use of the theory of quantum apparatuses
and instruments, we shall compare it first to classical probabilistic
methods and then to simpler quantum-like models of processing
data from cognitive science and psychology based on the
von Neumann–Lüders measurements. A detailed discussion on
violation of laws of classical probability theory by statistical data
collected in cognitive science and psychology can be found in
Khrennikov, 2010b and SS. We can, for example, point to the
order effect (Khrennikov, 2010b; Wang and Busemeyer, 2013)
and the disjunction effect (Khrennikov, 2010b; Busemeyer and
Bruza, 2012). In the probabilistic terms these are just various
exhibitions of violation of the formula of total probability. In
general, during recent years quantum probability and decision
making were successfully applied to describe a variety of
problems, paradoxes, and probability judgment fallacies, such
as Allais paradox (humans violate Von Neumann–Morgenstern
expected utility axioms), Ellsberg paradox (humans violate
Aumann–Savage subjective utility axioms) (see e.g., Haven et al.,
2009; Asano et al., 2010a,b, 2011, 2012; Busemeyer et al., 2011;
Pothos and Busemeyer, 2013; Wang and Busemeyer, 2013; Aerts
et al., 2014; Khrennikov and Basieva, 2014). Psychologists and
economists explore the new way inspired by one simple fact
from physics: quantum probability can work in situations where
classical probability does not. Why? Answers may differ (see
Khrennikov, 2010b). We point to contextuality of data as one
of the main sources of its non-classicality (Khrennikov, 2010b;
Dzhafarov and Kujala, 2012a,b, 2013).

As was pointed out, at the beginning of quantum theory
physicists attempted to represent quantum measurements they
were dealing with by projectors. The same attitude could be
observed in applications of the quantum formalism outside of
physics. Granted, some statistical psychological effects can be
nicely described with the help of the von Neumann–Lüders
measurements (see e.g., Haven et al., 2009; Busemeyer et al.,
2011; Busemeyer and Bruza, 2012; Pothos and Busemeyer, 2013;
Wang and Busemeyer, 2013; Aerts et al., 2014). However, more
detailed analysis showed (Asano et al., 2010a,b; Khrennikov,
2010b; Asano et al., 2011, 2012; Khrennikov and Basieva,
2014; Khrennikov et al., 2014) that, in general, data from

cognitive psychology cannot be embedded into the projection-
measurement scheme. Therefore, it is natural to follow the
development of quantum physics and proceed within a general
theory of measurements.

In this paper we do this by illustrating the general theory
of quantum instruments with one concrete example: bistable
perception of the concrete ambiguous figure, the Schröder stair.
Why do we use a quantum-like model? Here the argument is
more complicated than in the case of the order and disjunction
effects and other probability fallacies mentioned above. The
deviation from classical probability theory is expressed not as a
violation of the formula of total probability, but as a violation
of one of the Bell-type inequalities, namely, the Garg–Leggett
inequality (Asano et al., 2014). We point out that the Bell-type
inequalities play an important role in modern quantum physics.
If such an inequality is violated, then the data cannot fit a
classical probability space. As was shown in our previous study
(Asano et al., 2014), the data collected in a series of experiments
performed at Tokyo University of Science (see Asano et al.,
2014) for details, violate the Garg–Leggett inequality (statistically
significantly)2.

The first step toward creation of a quantum-like model of
bistable perception was done by Atmanspacher and Filk (2012,
2013). We studied this problem in Asano et al. (2014), where
we demonstrated a violation of the Garg–Leggett inequality
for experimental probabilistic data collected for rotating image
of Schröder stair (the experiment was performed at Tokyo
University of Science), in Accardi et al. (in press) we presented a
quantum-like adaptive dynamical model for bistable perception.
The latter is based on a more general formalism than the
theory of quantum instruments—on the theory of adaptive
quantum systems. In the present paper, the traditional approach
to quantummeasurement theory is used for modeling sensation–
perception transition and unconscious inference.

Finally, we point out that violation of laws of classical
probability theory is a statistical exhibition of violation of laws of
classical Boolean logic. Thus, in logical terms the quantum-like
modeling of cognition is modeling of a nonclassical reasoning,
decision making, and problem solving. In particular, in our
model unconscious inference, generation of a perception from
a sensation, is not based on the rules of classical logics. We
also remark that the so called quantum logic corresponding to
the quantum formalism is just one special type of nonclassical
logic. In principle, there are no reasons to assume that human
(mental) cognition, even if it has a non-Boolean structure, can be
modeled completely with the aid of quantum logic and quantum
probability. Still more general models might be explored, see
(Khrennikov and Basieva, 2014) for a discussion.

2We remark that the formula of total probability and the Bell-type inequalities

can be treated as just two special statistical tests of non-classicality of the data

(see Conte et al., 2008; Bruza et al., 2010; Khrennikov, 2010b; Asano et al., 2014;

Dzhafarov and Kujala, 2014) for discussion. This is the “minimal interpretation.”

In quantum physics the standard interpretation of these inequalities is related

to whether we can proceed with a realistic and local model. The Garg–Leggett

inequality is a rather special type of Bell’s inequalities, since it is about time

correlations for a single system and the original Bell’s inequality is about spatial

correlations for pairs of systems.
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2. Advantageousness of Quantum
Instrumental Modeling in Cognitive
Psychology

We emphasize that, as well as quantum physics (Plotnitsky,
2006, 2009), cognitive and social sciences also can be treated as
theories of measurements. A great deal of effort has been put
into the development of measurement formalisms, cf. with, e.g.,
the time-honored Stimulus–Organism–Response (S–O–R) scheme
for explaining cognitive behavior (Woodworth, 1921). Just like
the situation in quantum physics, cognitive and social scientists
cannot approach the mental world directly; they work with
results of observations. Both quantum physics and cognitive
and social sciences are fundamentally based on operational
formalisms for observations.

The basic notions of the operational formalism for the
quantum measurement theory are quantum apparatus and
instrument (Davies and Lewis, 1970; Busch et al., 1995;
Ozawa, 1997). Quantum apparatuses are mathematical structures
representing at a high level of abstraction physical apparatuses
used for measurements. They encode the probabilities of the
results of observations as well as the back-actions of the
measurements on the states of physical systems. Such back-
actions are mathematically represented with the aid of another
important mathematical structure, a quantum instrument.
Our aim is to explore the theory of quantum apparatuses
and instruments and especially its part devoted to indirect
measurements in cognitive and social sciences.

The scheme of indirect measurements is very useful for
applications, both in quantum physics and humanities. In this
scheme, besides the “principle system” S, a probe system S′ is
considered. A measurement on S is composed of the unitary
interaction with S′ and a subsequent measurement on the
latter.

In our cognitive modeling S represents unconscious
information processing and S′ conscious. In the concrete
example of Helmholtz unconscious inference, S represents
processing of sensation (its unconscious nature was emphasized
already by Helmholtz) and S′ represents processing of perception
- conscious representation of sensation.

This approach provides a possibility to extend the class
of quantum measurements which originally were only von
Neumann–Lüders measurements of the projection type. Such
an extension serves not only the natural seeking of generality.
Generalized quantum measurements have some new features.
Here we shall concentrate only on those of them relevant to our
project on quantum-like cognition.

For us, one of the main problems of exploring solely
projective (direct) measurements is their fundamentally invasive
nature: as the feedback of a measurement, the quantum state
is “aggressively modified”—it is projected onto the subspace
corresponding to the result of this measurement. In any event,
this feature is not so natural for the dynamics of sensation and
perception states. Of course, each “perception–creation”modifies
the states of sensation and perception, but these modifications
are not of the collapse type, as they should be in the case of
projections.

Important for our applications is that a variety of different
quantum instruments (describing back-reaction transformations
resulting from measurements) can correspond to one and
the same observable on the principle system S. That is,
measurements having the same statistical results may lead to
very different state transformations (due to very different types
of interaction between the principle and probe systems). In
quantum mechanics (as Ozawa emphasized Ozawa, 1997), the
same observable can be measured by different apparatuses
having different state-transforming quantum instruments. This
is a very important characteristic of the theory of generalized
quantum measurements. It is also very useful for cognitive
modeling, since it reflects the individuality of measurement
apparatuses/instruments which are used by cognitive systems
(e.g., human beings) to generate the same perception.

We point out that the scheme of indirect measurements
accounts for state dynamics in the process of measurement,
which is not just a “yes”/“no” collapse as in the original von
Neumann–Lüders approach. The possibility to mathematically
describe the mental state dynamics in the process of perception–
creation by means of the quantum formalism is very attractive.
A study in this direction was already presented in the work
of Pothos and Busemeyer (2013), although without appealing
to the operational approach to quantum mechanics. In the
series of works of Asano et al. (2010a,b, 2011, 2012), the
process of decision making was described by a novel scheme
of measurements generalizing the standard theory of quantum
apparatuses and instruments (Asano et al., 2010a,b, 2011, 2012).

Now we list once again the main advantageous properties
of the quantum instrument/apparatus modeling in cognitive
psychology:

1. A possibility to model the feedback reaction of a “mental
measurement” (including self-measurements such as decision
making and problem judgment) without collapse-like
projections of mental states (belief states).

2. The same (self-)measurement output can correspond to a
variety of mental state processing.

3. This is the only way to consistently model indirect
measurements in which the output of one psychological
function of the brain is (self-) measured through the output
of another psychological function.

3. Quantum States

We start with a brief introduction to the quantum basics and
define pure and mixed quantum states. The state space of a
quantum system is complex Hilbert space. Denote it byH. This is
a complex linear space endowed with a scalar product, a positive-
definite non-degenerate Hermitian form. Denote the latter by
〈·|·〉. It generates the norm on H: ‖ψ‖ =

√
〈ψ |ψ〉.

A reader who does not feel comfortable in the abstract
framework of functional analysis can simply proceed with the
Hilbert space H = Cn, where C is the set of complex
numbers, and the scalar product 〈u|v〉 =

∑

i uiv̄i, u =
(u1, ..., un), v = (v1, ..., vn). Instead of linear operators, one can
consider matrices.
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Pure quantum states are represented by normalized vectors,
ψ ∈ H : ‖ψ‖ = 1. Two colinear vectors, ψ ′ = λψ, λ ∈
C, |λ| = 1, represent the same pure state. Each pure state can
also be represented as the projection operator Pψ which projects
H onto the one dimensional subspace based on ψ. For a vector
φ ∈ H, Pψφ = 〈φ|ψ〉 ψ. Any projector is a Hermitian and
positive-definite operator3. We also remark that the trace of the
one dimensional projector Pψ equals to 1: Tr Pψ = 1. (We
recall that, for a linear operator A, its trace can be defined as the
sum of diagonal elements of its matrix in any orthonormal basis:
Tr A =

∑

i aii.) We summarize these properties of an operator
(matrix) ρ = Pψ representing a pure state. It is

1. Hermitian,
2. positive-definite,
3. trace one,
4. idempotent: ρ2 = ρ.

A linear operator is an orthogonal projector if and only if
it satisfies (1) and (4); in particular, (2) is a consequence of
(4). The properties (1–4) are characteristic for one dimensional
orthogonal projectors—pure states [for a projector, (3) implies
that it is one dimensional], i.e., any operator satisfying (1–4)
represents a pure state.

The next step in the development of quantum mechanics was
the extension of the class of quantum states, from pure states
represented by one dimensional projectors to states represented
by linear operators (matrices) having the properties (1–3).
Such operators (matrices) are called density operators (density
matrices). (This nontrivial step of extension of the class of
quantum states was based on the efforts of Landau and von
Neumann). One typically distinguish pure states, as represented
by one dimensional projectors, and mixed states, those density
operators which cannot be represented by one dimensional
projectors. The terminology “mixed” has the following origin:
any density operator can be represented as a “mixture” of pure
states (ψi):

ρ =
∑

i

piPψi , pi ∈ [0, 1],
∑

i

pi = 1. (1)

The state is pure if and only if such a mixture is trivial: all
pi, besides one, equal to zero. However, by operating with the
terminology “mixed state” one has to take into account that the
representation in the form Equation (1) is not unique. The same
mixed state can be interpreted as mixtures of different collections
of pure states.

Any operator ρ satisfying (1–3) is diagonalizable (even in the
infinite-dimensional Hilbert space), i.e., in some orthonormal
basis it is represented as a diagonal matrix, ρ = diag(pj), where
pj ∈ [0, 1],

∑

j pj = 1. Thus, it can be represented in the

form Equation (1) with mutually orthogonal one dimensional

3We recall that a linear operator A in H is called Hermitian if it coincides with

its adjoint operator, A = A⋆. If an orthonormal basis in H is fixed, (ei), and A is

represented by its matrix, A = (aij), where aij = 〈Aei|ej〉, then it is Hermitian

if and only if āij = aji. A linear operator is positive-definite if, for any φ ∈ H,

〈Aφ|φ〉 ≥ 0. It is equivalent to positive definiteness of its matrix. We remark that,

for a Hermitian operator, all its eigenvalues are real.

projectors. The property (4) can be used to check whether a
state is pure or not. We point out that pure states are merely
mathematical abstractions; in real experimental situations it is
possible to prepare only mixed states; one defines the degree of
purity as Tr[ρ2 − ρ]. Experimenters are satisfied by getting this
quantity less than some small ǫ.

4. Atomic Instruments/Apparatuses

The notions of instrument and apparatus are based on very
simple and natural consideration. Consider systems of any origin
(physical, biological, social, financial). Suppose that the states of
such systems can be represented by points of some set X. These
are statistical states, i.e., by knowing the state of a system one can
determine the values of observables only with some probabilities.
Then, for each state x ∈ X and observable A and its concrete
value ai, there is defined a map

pi = fA,ai(x) (2)

giving the probability of the result A = ai for systems in the state
x ∈ X. Here fA,ai : X → [0, 1]. Then its is natural to assume
that the measurement modifies the state x, i.e., there is is defined
another map

xi = gA,ai (x), (3)

here gA,ai :X → X. This scheme is applicable both in classical and
quantum physics as well as in psychology—Stimulus–Organism–
Response (S–O–R) scheme for explaining behavior (Woodworth,
1921) of humans and other cognitive systems.

For the fixed observable A, the system of the state
transformation maps (gA,ai) corresponding to all possible values
(ai) of A is called an instrument and the collection of maps
(fA,ai; gA,ai ) is called an apparatus. Of course, this scheme is too
general and, to get something fruitful, one has to select the state
space X having a special structure and special classes of f - and g-
maps. Quantum theory is characterized by selection of the state
space starting with a complex Hilbert space. This choice leads to
theory of quantum instruments and apparatuses.

The general theory of quantum measurements is
mathematically advanced, Section 9. Therefore, it is useful
to illustrate it by a simple example. We consider the simplest
class of quantum instruments extending the class of von
Neumann–Lüders instruments of the projection type. These are
atomic instruments.

Suppose that the range of values of a measurement, spectrum
of an observable, is discrete O = {a1, ..., an}. The main point
of theory of instruments is that each measurement resulting in
a concrete value ai generates the feedback action to the original
state ρ of a quantum system, i.e., ρ is transformed into a new state
ρai , see Equation (3):

ρ → ρai . (4)

We start with the standard von Neumann–Lüders
measurements. which gives us an important class of
quantum instruments/apparatuses (especially from the
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historical viewpoint) . These measurements are mathematically
represented by Hermitian operators,

A =
∑

i

aiPai , (5)

where Pai is the projector onto the eigensubspace corresponding
to the eigenvalue ai. For pure states, the transformation
(Equation 4) is based on the projection Pai :

ψ → Paiψ, (6)

this map is linear and it is convenient to work with it. However,
if Pai 6= I, where I is the unit operator, then ‖Paiψ‖ < 1, so the
output of Equation (6) is not a state. To get a state, it has to be
normalized by its norm:

ψ → Paiψ

‖Paiψ‖
. (7)

This is a map from the space of pure states into the space of pure
states, but it is nonlinear. This type of the feedback reaction to
the result of measurement was postulated by von Neumann. It
is well-known as the projection postulate of quantum mechanics
(the state reduction postulate or the state collapse postulate,
see (Khrennikov and Basieva, 2014) for a psychologist-friendly
discussion on these postulates and their role in quantum physics
and cognitive psychology and psychophysics) 4.

Now, for a pure stateψ, one can consider its representation by
the density operator ρ = Pψ . In such terms, the state transform
(Equation 6) can be written as

ρ → PaiρPai . (8)

This is the simplest example of a transformation which in
quantum measurement theory is called a quantum operation.
It can be extended to the linear map from the space of linear
operators (matrices) to itself—by the same formula (Equation 8).
For a finite spectral set O, the collection of quantum operations
(Equation 8) , ai ∈ O, gives the simplest example of a quantum
instrument.

We are again interested in a map from the space of density
operators (matrices) to itself, see Equation (4). Thus, we again
have to make normalization:

ρ → ρai =
PaiρPai

Tr PaiρPai
. (9)

4It is less known (in fact, practically unknown) that von Neumann sharply

distinguished the case of observables with non-degenerate spectra, i.e., all (Pai )

in the spectral decomposition of A, see Equation (5), are one dimensional

projectors, and degenerate spectra, i.e., some of (Pai ) are projectors onto multi-

dimensional subspaces. In the first case he postulated aforementioned state-

collapse (Equation 7), but in the second case he pointed out that the measurement

feedback can generate state transformations different from one given by Equation

(7); in particular, the output of the initial pure state can be a mixed state.

Later Lüders extended the von Neumann projection postulate even to projectors

with degenerate spectra, i.e., in fact, he reduced the class of possible state

transformations (quantum operations). This simplification was convenient in

theoretical studies and the projection postulate was widely treated as applicable

generally, i.e., even to observables with degenerate spectra. The name of Lüders

was washed out from the majority of foundational works and nowadays the

projection postulate is typically known as the von Neumann projection postulate

(see Khrennikov, 2008) for more details.

It is nonlinear and physicists work with quantum operations
(forming instruments), by making normalization by trace only
at the final step of calculations which can involve a chain of
measurements.

However, we are primarily interested not in the measurement
feedback to the initial quantum state ρ, but in the probabilities to
get the results ai ∈ O. Denote them p(ai|ρ). Here they are given
by Born’s rule. If the initial state is pure ρ = Pψ , then

p(ai|ψ) = 〈Paiψ |ψ〉 = ‖Paiψ‖2. (10)

It is easy to see that

p(ai|ψ) = Tr PaiPψ . (11)

This formula can be easily generalized, e.g., via Equation (1), to
an arbitrary initial state ρ:

p(ai|ρ) = Tr Paiρ. (12)

A quantum apparatus is the combination of feedback state-
transformations, i.e., a quantum instrument, and detection
probabilities.

In the von Neumann–Lüders approach the quantum
instrument is uniquely determined by an observable, the
Hermitian operator A. The latter is the basis of the construction.
However, even in this approach we could start directly with
an instrument determined by a family of mutually orthogonal
projectors (Pai ), i.e.,

∑

i

Pai = I, (13)

where Pai ⊥ Paj , i 6= j, and then define the observable A simply
as this family (Pai ). In quantum information the values ai have
merely the meaning of labels for the results of measurement.
For future generalization, we remark that the normalization
condition (Equation 13) can be written as

∑

i

P⋆aiPai = I, (14)

because, for any orthogonal projector P, P⋆ = P and P2 = P.
Now wemove to general atomic instruments and apparatuses.

Here quantum operations have the form:

ρ → QaiρQai , (15)

where, for each value ai, Qai is a linear operator which is a
contraction (i.e., its norm is bounded by 1). These operators are
constrained by the normalization condition, cf. (Equation 14):

∑

i

Q⋆aiQai = I, (16)

These operations determine an atomic quantum instrument.
Each quantum operation induces the corresponding state
transformation:

ρ → ρai =
QaiρQai

Tr QaiρQai

. (17)
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In particular, pure states are transformed into pure states (similar
to the von Neumann–Lüders measurements):

ψ → Qaiψ

‖Qaiψ‖
. (18)

Probabilities of the results of measurements are given by the
following generalization of Equation (12):

p(ai|ρ) = Tr Maiρ, (19)

where

Mai = Q⋆aiQai . (20)

(We remark that if Qai is a projector, then Q⋆ai = Qai and Q2
ai
=

Qai . Thus, in this case (Equation 19) matches with (Equation 12).
In this way we obtain the corresponding quantum instrument.

The class of atomic instruments and apparatuses is the most
direct generalization of the von Neumann–Lüders class. In
particular, in general quantum instruments do not transfer pure
states into pure states, see Appendix.

5. Bistable Perception of Schröder Stair

The experiment is about perception of on the ambiguous figure,
the Schröder stair, see Figure 1. Here we reproduce data from
paper (Asano et al., 2014), where the reader can find a more
detailed presentation.

A total of 151 subjects participated in the test performed at
Tokyo University of Science. They were divided into three groups
(nA = 55, nB = 48, nC = 48). To the subjects of all three groups,
we showed 11 pictures of the Schröder stair which was leaning at
different angles. Subjects answered L =“I can see that left side is
front,”or R =“I can see that right side is front” for each picture.
Thus, we have a random variable for perception, Xθ = L,R.We
denote the experimental probability that a subject answers “Left
side is front” by p(Xθ = L).

For the first group (A), order of showing pictures is randomly
selected for each subject. For the second group (B), angle θ
changed from 0 to 90 as if the picture was rotating clockwise.

FIGURE 1 | Schröder Stair is an ambiguous figure which may have two

different interpretations, “left part (L) is front and right part (R) is

back,” and its converse. Humans percept either of them, and the

tendency of the perception depends on the roatating angle θ .

Inversely, for the third group (C), the angle θ was changed from
90 to 0. As a result, we obtained perception trends with respect
of angles, see Figure 2. These graphs demonstrate contextuality
of data, its dependence on experimental contexts, (A)–(C), (see
Asano et al., 2014) for numerical estimation of the degree of
contextuality as violation of the Garg–Leggett inequality. As
was discussed in Introduction, contextual statistical data can be
modeled by using the quantum formalism.

6. Mental Apparatuses

We shall proceed with finite dimensional state spaces by making
remarks on the corresponding modifications in the infinite
dimensional case. The symbol D(H) denotes the space of density
operators in the complex Hilbert space H; L(H) the space of
all linear operators in H (bounded operators in the infinite
dimensional case).

The space L(H) can itself be endowed with the structure of the
linear space. We also have to consider linear operators from L(H)
into itself; such maps, T :L(H) → L(H) are called superoperators.
We shall use this notion only in Section 9. Thus, for a moment,
the reader can proceed without it.

Moreover, on the space L(H) it is possible to introduce the
structure of Hilbert space with the scalar product

〈A|B〉 = Tr A⋆B.

Therefore, for each superoperator T : L(H) → L(H), there
is defined its adjoint (super)operator T⋆ : L(H) → L(H),
〈T(A)|B〉 = 〈A|T⋆(B)〉,A,B ∈ L(H).

For reader’s convenience we remind the notion of POVM.
Definition. A positive operator valued measure (POVM) is a

family of positive operators {Mj} such that
∑m

j=1Mj = I, where I

is the unit operator.
Consider a cognitive system, to be concrete consider a human

individual, call her Keiko. She confronts some recognition-
problem, i.e., in our problem of bistable perception of Schröder
stair she has to make the choice between two perception A =
L,R. In the quantum(-like) model the space of her mental states
is represented by complex Hilbert space H (pure states are

FIGURE 2 | Optical illusion is affected by memory bias: subject’s

perception is shifted in response to rotation direction of the figure.
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represented by normalized vectors and mixed states by density
operators).

In the model under construction H is tensor-factorized into
two components, namely, H = H ⊗ K, where H is the space of
sensation-states and K is the space of perception-states. The states
of the latter are open for conscious introspection, but the states of
the former are in general not approachable consciously.We recall
that we model Helmholtz unconscious inference.

In general suppose that Keiko confronts some concrete
recognition problem A with possible perceptions labeled as
ai, i = 1, 2, ...,m. We denote the set of possible values of A
by the symbol O, i.e., O = {a1, .., am}. By interacting with
a figure (in our concrete case the figure is ambiguous) she
generates the the sensation-state ρ (e.g., a pure state, i.e., ρ =
|ψ〉〈ψ |, ψ ∈ H, ‖ψ‖ = 1). The process of generation of ρ can
be mathematically represented as a unitary transformation in the
space H. Denote the pre-recognition state of sensation by ρ0.
Then

ρ = Uρ0U
⋆,

where the unitary operator U : H → H depends on the figure; in
our concrete case U = USchr.

To come to the concrete perception, Keiko uses a “mental
apparatus,” denoted as A, which produces the results
(perceptions) ai randomly with the probabilities p(ai|ρ),
the output probabilities5. An apparatus represents not only
perceptions and the corresponding probabilities, but also the
results of the evolution of the initial sensation-state ρ as induced
by the back-reaction to the concrete perception ai. This is a sort
of the state reduction, “sensation-state collapse” as the result of
creation of the concrete perception ai. Thus, the sensation state
ρ which Keiko created from her visual image is transformed into
the output state ρai .

However, as we shall see, in general this sensation-state update
can be sufficiently peaceful, so our model differs crucially from
the orthodox quantum models of cognition (Busemeyer and
Bruza, 2012) based on the projection-type state update. Thus,
each mental apparatus A corresponding to the recognition-
problem A is mathematically represented by

• probabilities for concrete perceptions p(ai|ρ);
• transformations of the initial sensation-state corresponding to

the concrete results of perception,

ρ → ρai . (21)

The rigorous mathematical description of such state
transformations leads to the notion of a quantum instrument, see
Section 9.

6.1. Mixing Law
In the quantum operational formalism it is assumed that these
probabilities, p(ai|ρ), satisfy the mixing law. We remark that,
for any pair of states (density operators) ρ1, ρ2 and any pair
of probability weights q1, q2 ≥ 0, q1 + q2 = 1, the convex

5We are going toward creation of a cognitive analog of the quantum operational

model of measurements with the aid of physical apparatuses.

combination ρ = q1ρ1 + q2ρ2 is again a state (density operator).
In accordance with the mixing law any apparatus produces
probabilities such that

p(ai|q1ρ1 + q2ρ2) = q1p(ai|ρ1)+ q2p(ai|ρ2). (22)

In our model of bistable perception the mixing law can be
formulated as follows:

A probabilistic mixture of sensations produces the mixture of
probabilities for perception outputs.

In physics this is a very natural assumption. However, in
modeling of cognitive phenomena, in particular, unconscious
inference, an additional analysis of its validity has to be
performed. We have no possibility to do this in this note, so
we postpone such analysis to one of coming publications. Now
we mimic quantum physics explicitly and proceed under the
assumption (Equation 22).

6.2. Composition of the Apparatuses
It is natural to assume that after resolving the recognition-
problem A a person is ready to look at another image B and
proceed to its perception. In general perception of B depends on
the preceding perception of A. Such a sequence of perceptions
represented as a new mental apparatus, the composition of the
apparatuses A and B : BA. Its outputs are ordered pairs of
perceptions (ai, bj). It is postulated that the corresponding output
probabilities and states are determined as

p((ai, bj)|ρ) = p(bj|ρai )p(ai|ρ); (23)

ρ(ai,bj) = (ρai )bj . (24)

The law (Equation 23) can be considered as the quantum
generalization of the Bayes rule. The law (Equation 24) is the
natural composition law.

In our experiment with rotation of the Schröder stair, we
are interested in a sequence of instruments Aθ corresponding
to some sample of angles C = {θ1, ..., θm}. Here C determines
the context of the experiment. Our data from Section 5 can be
represented as the superposition of quantum apparatuses: AC =
Aθm ...Aθ1 . Here AC is the quantum apparatus representing the
context C. In our experimental study we considered not only
deterministic contexts corresponding to clockwise and counter-
clockwise rotations, but even the random context determined by
the uniform probability distribution.

7. Perception through Unitary Interaction
Between the Sensation and
Perception-states

The above operational description of “perception–production”
was formulated solely in terms of sensation-states. However,
a sensation-state is a complex informational state which is
in general unapproachable for conscious introspective. The
operational representation of observables in the space of
sensation-states is not straightforward and in general it cannot
be formulated in terms of mutually exclusive perceptions. For
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example, in our experiment Keiko’s perceptions can be binary
encoded: A = L,R. However, her sensation of the Schröder
stair is a complex information state depending on a variety of
parameters (in particular, we are interested in dependence on
the rotation angle). The subspaces corresponding to sensations
leading to the L-perception and R-perception are in general
not orthogonal. This non-orthogonality of sensation subspaces
for different perceptions is the fundamental feature of bistable
perception, recognition of ambiguous figures.

Therefore, it is more fruitful to define the perception-
observable directly by using an additional state space, the space
of the perception-states K. In the perception space a perception-
observable can be defined as the standard von Neumann–Lüders
projection observable.

Example 1. Consider the simplest case: recognition of the
fixed figure A, with dichotomous output, i.e., there are two
possible outcomes of “perception-measurement,” e.g., L = 0 and
R = 1 for the Schröder stair. This observable can be represented
by the pair of projectors (P0, P1) onto the subspaces K0 and
K1 of the perception space K. Since the perceptions a0 = 0
and a1 = 1 are mutually exclusive, and sharply exclusive, the
subspaces K0 and K1 are orthogonal. Hence, the projectors P0
and P1 can be selected as orthogonal. The perception-observable
A can be represented as the conventional von-Neumann-Lüders
observable Â = a0P0 + a1P1(= P1). However, we emphasize
that this representation is valid only in the perception-state space
K. It is often (but not always!) possible to proceed with one
dimensional projectors, i.e., to represent possible perceptions
just by the basis vectors in the two dimensional perception-state
space, (|0〉, |1〉).Here each perception-state can be represented as
superposition

φ = c0|0〉 + c1|1〉, |c0|2 + |c1|2 = 1. (25)

Measurement of A leads to probabilities of perceptions given by
squared coefficients, p0 = |c0|2, p1 = |c1|2.

In the case of the finite-dimensional perception-state, a
perception-observable A can be represented as

A =
∑

i

aiPi, (26)

where (Pi) is the family of mutually orthogonal projectors in the
space of perception-states K and (ai) are real numbers encoding
possible answers (perceptions).

Now we shall explore the cognitive analog of the standard
scheme of quantum indirect measurements.

In our cognitive framework “indirectness” means that the
sensation-states are in general unapproachable for consicious
introspection. Therefore, it is impossible to perform the direct
measurement on the sensation-state ρ (in particular, on a
pure state ρ = |ψ〉〈ψ |). Moreover, in the sensation-state the
alternatives, say 0/1, encoded in a perception-observer A are not
represented exclusively, they can have overlap. (Mathematically
the overlap is expressed as non-orthogonality of sensation-
subspaces corresponding to various perceptions.)

In the quantum measurement framework, this situation is
described as follows: in the sensation space an observable A

is represented as an unsharp observable of the POVM-type.
Roughly speaking in the H-representation the A-zero contains
partially the A-one and vice versa. The latter is simply a
consequence of interpretation of POVM observables as unsharp
observables.

Remark 1. To map the quantum physics scheme (Ozawa,
1997) of indirect measurements onto the quantum(-like)
cognition scheme, one has to associate the state of the principle
physical system S with the sensation-state and the state of
the probe physical system S′ with the perception-state. We
point out that in the cognitive framework we do not consider
analogs of physical systems. In principle, one can consider
the sensation-system S as a part of the neuronal system
representing sensations and the perception system S′ as another
part of the neuronal system representing possible perceptions.
The latter can be specified: different measurements can be
associated with different neuronal networks responsible for the
corresponding perceptions. However, in principle we need not
associate sensation and perception states with the concrete
physical neuronal networks. In the case of cognition usage
of isolated physical systems as carriers of the corresponding
information states might be ambiguous. The interconnectivity
of neuronal networks is very high. Therefore, the picture of
distributed computational system is more adequate. (Of course,
even in physics the notion of an isolated system is just an
idealization of the real situation). Therefore, it is useful to proceed
in the purely information approach by operating solely with
states, without coupling them to bio-physical systems. This is,
in fact, the quantum information approach, where systems play
the secondary role, and one operates with states; especially for
the information interpretation of quantummechanics (Zeilinger,
2010).

In the simplest model we can assume that at the beginning of
the process of perception-creation the sensation and perception-
states, ρ and σ, are not entangled6. Thus, mathematically, in
accordance with the quantum formalism, the integral sensation–
perception-state, the complete mental state corresponding to the
problem under consideration, can be represented as the tensor
product

R = ρ ⊗ σ.

In the process of perception-creation the sensation and
perception-states (cf. Remark 1) “interacts” and the evolution of
the sensation–perception-state R is mathematically represented
by a unitary operator7 U : H → H:

R → Rout ≡ URU⋆. (27)

In the space of sensation–perception-states H the perception-
observer A is represented by the operator I ⊗ A. Thus, the
probabilities of perceptions are given by

pA⊗I
ai

= Tr Rout(I⊗ Pi) = Tr URU⋆(I⊗ Pi), (28)

6 One can say that they are independent. But one can use this terminology carefully,

since the notion of quantum independence is more complicated than the classical

one and it is characterized by diversity of approaches.
7As was mentioned, in the works of Asano et al. (2010a,b, 2011, 2012) and Accardi

et al. (in press) even non-unitary evolutions were in charge.
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where the projectors (Pi) form the spectral decomposition of the
Hermitian observable A in K, see Equation (26).

Since only the perception-state belonging K is a subject of
conscious introspective, at the conscious level the perception
process can be represented solely in the state space K. The
post-interaction perception-state σout can be (mathematically)
extracted from the integral state Rout with the aid of the operation
of the partial trace:

σout = TrHRout. (29)

Then perceptions can be represented as the results of the A-
measurement (measurement of the projection-type) in the
perception space; measurement on the output state σout. The
probabilities of the concrete perceptions (ai) are given by the
standard Born rule:

pAai = TrKσoutPi = TrK(TrHRout)Pi = TrRout(I⊗ Pi) = pA⊗I
ai

.

(30)
Thus, Equations (28) and (30) match each other.

If the concrete result A = ai was observed, then the state of
perception σ is transformed into

σi;out =
TrHRout(I⊗ Pi)

TrRout(I⊗ Pi)
. (31)

What does happen in the sensation space?
The expression (Equation 28) for the probability of the

perception ai can be represented as

p(ai|ρ) = pA⊗I
ai

= TrRout(I⊗ Pi) = Trρ ⊗ σU⋆(I⊗ Pi)U

= TrHρMai , (32)

where

Mai = TrK(I⊗ σ )U⋆(I⊗ Pi)U. (33)

The operator Mi;H → H can also be represented in the
following useful form (a consequence of the cyclic property of
the trace operation):

Mai = TrKU
⋆(I⊗ Pi)U(I⊗ σ ) (34)

We remark that (Equation 33) implies:

∑

i

Mai = TrK(I⊗ σ )U⋆(I⊗
∑

i

Pi)U = TrKI⊗ σ = (TrKσ )I.

We also remark that each operator Mai is positively defined and
Hermitian.

Thus, in the sensation space the perception-observable of
the projection-type A (acting in K) with the spectral family
(Pi) is represented as POVM M = (Mi). We remark that in
general the operators Mi are not projectors. Such measurement
cannot separate sharply sensations leading to perceptions (ai) for
different i.

The operational formalism also gives the “post-perception
sensation-state,” i.e., the state of sensation created as the feedback
to the consciously recognized perception ai,

ρai =
TrKRout(I⊗ Pi)

TrRout(I⊗ Pi)
. (35)

The output sensation-state depends not only on the initial
sensation-state ρ, but also on the initial perception-state σ,
interaction between believes and possible perceptions given by
U and the question-observable A acting in K.

8. The Indirect Measurement Scheme for
Rotation Contexts for Perception of
Schröder Stair

As at the very end of Section 6.2, we consider contextual
measurements for the Schröder stair: a sequence of perceptions
corresponding to some sample of angles C = {θ1, ..., θm}. Here
C determines the context of the experiment.We apply the scheme
of indirect measurements. We can assume that the perception
space K is two dimensional with the orthogonal basis |L〉, |R〉
representing the “left-faced” and “right-faced” preceptions of the
stair. Thus, projectors Pi, i = L,R, are one dimensional.

We start with the initial sensation state ρ0. By the visual image
rotated at the angle θ1 this state is transformed to

ρθ1 = USch;θ1ρ0U
⋆
Sch;θ1 , (36)

where USch;θ1 represents the unitary dynamics induced by this
image. Then the perception of the image is modeled starting with

Rθ1 = ρθ1 ⊗ σ0, (37)

where σ0 represents the state of perception preceding interaction
with the state of sensation. It is natural to assume that σ0 =
|φ0〉〈φ0|, where

φ0 = (|L〉 + |R〉)/
√
2 (38)

is the neutral composition of the states “left-faced” and “right-
faced.” It represents the deepest state of uncertainty. Suppose
(for simplicity) that independently of the angle the interaction
of sensation and perception states is given by the same unitary
operator U. Then Keiko’s perception of the Schröder stair
observed at the angle θ1 with the fixed result i1 = L or R leads
to the new states of sensation and perception:

σi1;θ1 =
TrHURθ1U

⋆(I⊗ Pi1 )

TrURθ1U
⋆(I⊗ Pi1 )

, ρi1;θ1 =
TrKURθ1U

⋆(I⊗ Pi1 )

TrURθ1U
⋆(I⊗ Pi1 )

.

(39)
The probability of creation of the perception i can be calculated as

pi1;θ1 = TrHρθ1Mi1;θ1 . (40)

Here POVM’s componentMi1;θ1 , i1 = L,R, has the form:

Mi1;θ1 = TrKU
⋆(I⊗ Pi1 )U(I⊗ σ0). (41)
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For the next measurement corresponding to rotation of
Schröder’s stair for the angle θ2, Keiko selects ρi1;θ1 and σi2;θ1 as
the initial states. This means that creation of the fixed perception
i1 leads to disentanglement of her mental state into the product
of two states, the state of sensation and perception. Then

ρθ2 = USch;θ2ρi1;θ1U
⋆
Sch;θ2 , (42)

where USch;θ1 represents the unitary dynamics induced by the
θ2-image. Then

Rθ2 = ρθ2 ⊗ σi1;θ1 , (43)

Then Keiko’s perception of the Schröder stair observed at the
angle θ2 with the fixed result j = L or R leads to the new states of
sensation and perception:

σi2;θ2 =
TrHURθ2U

⋆(I⊗ Pi2 )

TrURθ2U
⋆(I⊗ Pi2 )

, ρi2;θ2 =
TrKURθ2U

⋆(I⊗ Pi2 )

TrURθ2U
⋆(I⊗ Pi2 )

.

(44)
The probability of creation of the perception i2 can be calculated
as

pi2;θ2 = TrHρθ2Mi2;θ2 . (45)

Starting with ρi2;θ2 , σi2;θ2 , Keiko generates the perception of the
θ3-rotated stair and so on. After the last test, Keiko’s states of
sensation and perception ρin;θn , σin;θn depend on the sequence
of angles C and the sequence of her perceptions (i1, i2, ..., in).
The same is valid for the probability pin;θn . If the experiment
is performed for two different contexts C = {θ1, ..., θm} and
C′ = {θ ′1, ..., θ ′m}. Then in general it is impossible to embed the
probabilities of perceptions in a single Kolmogorov probability
space. Therefore, the use of quantum theory of measurement and
“quantum probabilities” can be fruitful. Our approach provides
the possibility to model probabilities of perceptions depending
on a context, a sequence of angles.

9. Representing Perception by Quantum
Instruments

The considered model of perception as the result of unitary
interaction between the sensation-state and the perception-state
describes an important class of transformations of the sensation-
state, see Equation (35). We now turn to the general case which
was considered in Section 6, see Equation (21). Set

E(ai)ρ = p(ai|ρ)ρai (46)

and, for a subset Ŵ of O, where O = {a1, ..., am} is the set of all
possible perceptions, we set

E(Ŵ)ρ =
∑

ai∈Ŵ
E(ai)ρ =

∑

ai∈Ŵ
p(ai|ρ)ρai . (47)

We point to the basic feature of this map:

TrE(O)ρ =
∑

ai∈O
p(ai|ρ)Trρai = 1. (48)

For each concrete perception ai,E(ai) maps density operators to
linear operators (in the infinite dimensional case, these are trace-
class operators, but we proceed in the finite dimensional case,
where all operators have finite traces).

The mixing law implies that, for any Ŵ ⊂ O,

E(Ŵ)(q1ρ1 + q2ρ2) = q1E(Ŵ)ρ1 + q2E(Ŵ)ρ2. (49)

As was shown by Ozawa (1997), under the assumption on the
existence of composition of the apparatuses any such amap E(Ŵ):
D(H) → L(H) can be extended to a linear map (superoperator)

E(Ŵ) : L(H) → L(H) (50)

such that:

• each E(Ŵ) is positive, i.e., it transfers the set of positively
defined operators into itself;

• E(O) =
∑

i E(ai) is trace preserving:

TrE(O)ρ = Trρ. (51)

The latter property is a consequence of Equation (48)8.
Thus, the two very natural and simple assumptions, the

mixing law for probabilities and the existence of composite
apparatuses, have the fundamental mathematical consequence,
the representation of the evolution of the state by a superoperator
(Equation 50).

In quantum physics such maps are known as state
transformers (Busch et al., 1995) or DL (Davis–Levis, Davies and
Lewis, 1970) quantum operations9.

Thus, each perception induces the back-reaction which can be
formally represented as a state transformer. In these terms

ρai =
E(ai)ρ

TrE(ai)ρ
(52)

We remark that the map Ŵ → L(L(H)), from subsets of the
set of possible perceptions O into the space of superoperators, is
additive:

E(Ŵ1 ∪ Ŵ2) = E(Ŵ1)+ E(Ŵ2), Ŵ1 ∩ Ŵ2 = ∅. (53)

This is ameasure with values in the space L(L(H)). Suchmeasures
are called (DL) instruments (Davies and Lewis, 1970). To specify
the domain of applications in our case, we shall call them
perception instruments.

The class of such instruments is essentially wider than the
class of instruments based on the unitary interaction between
sensation and perception components of the mental state, see

8 If one wants to extend E(Ŵ) from the set of density operators to the set of all

linear operators (in the infinite dimensional case it has to be the set of finite-

trace operators) by linearity then it has to be set E(Ŵ)µ = E(Ŵ)Trµ(µ/Trµ) =
Trµ E(Ŵ)(µ/Trµ) and, in particular, E(O)µ = Trµ E(O)(µ/Trµ) = Trµ.
9DL-notion of the quantum operation is more general than the notion used

nowadays. The latter is based on complete positivity, instead of simply positivity

as the DL-notion, see Appendix for the corresponding definition and a discussions

on whether the reasons used in physics to restrict the class of state transformers

can be automatically used in cognitive science.
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Equation (35). The evident generalization of the scheme of
Section 7 is to consider nonunitary interactions between the
components of the mental state; another assumption which
can be evidently violated in modeling of cognition is that
the initial sensation and perception states are not entangled
(“independent”) (see Asano et al., 2010a,b, 2011, 2012) for
generalizations of the aforementioned scheme.

We start with a discussion on possible nonunitarity of
interaction between the sensation and perception states. In
quantum physics the assumption of unitarity of interaction
between the principle system S and the probe system S′

(representing a part of the measurement apparatus interacting
with S) is justified, because the compound system S + S̃′ can
be considered (with a high degree of approximation) as an
isolated quantum system and its evolution can be described (at
least approximately) by the Schrödinger equation. And the latter
induces the unitary evolution of a state.

In cognition the situation is totally different. The main scene
of cognition is not the physical space-time, but the brain.
It is characterized by huge interconnectivity and parallelism
of information processing. Therefore, it is more natural to
consider the sensation and perception states corresponding to
different visual inputs as interacting, especially at the level of
the sensation-states. Thus, the perception-creation model based
on the assumption of isolation of different perception-creation
processes from each other seems to be too idealized, although
it can be used in many applications, where the concentration
on one fixed problem may diminish the influence of other
perception-creation processes.

In physics, the assumption that the initial state of the system
S + S̃′ is factorized is also justified, since the exclusion of the
influence of the state of the measurement device to the state
of a system S prepared for measurement (and vice versa) is
the experimental routine. In cognition the situation is more
complicated. One cannot exclude that in some situations the
initial sensation and perception state are entangled.

The representation of probabilities with the aid of POVMs is
not a feature of only the unitary interaction representation of
apparatuses, see Equation (32). In general, any DL-instrument
generates such a representation. Take an instrument E, where,
for each ai ∈ O,E(ai) : L(H) → L(H) is a superoperator.
Then we can define the adjoint operator E⋆(ai) : L(H) → L(H).
Set Mai = E⋆(ai)I, where I : H → H is the unit operator.
Then, since pai = TrE(ai)ρ = Tr I;E(ai)ρ = 〈I|E(ai)ρ〉 ==
〈E⋆(ai)I|ρ〉 = Tr(E⋆(ai)I)ρ = TrMaiρ. By using the properties of
an instrument it is easy to show that Mai is POVM. Thus, each
mental apparatus can be represented by a POVM. We interpret
this POVM as the mathematical representation of “unconscious"
inference. Such “unconscious measurements” are not sharp, they
cannot separate completely different perceptions ai which are
mutually exclusive at the conscious level. Mathematically, we
have that the subspaces Hai = MiH need not be orthogonal.
Sensation states corresponding to the perceptions ai and aj, say
ψi ∈ Hai and ψj ∈ Haj , in general have nonzero overlap
〈ψi|ψj〉 6= 0.

10. Concluding Remarks

This paper is an attempt to present the theory of generalized
quantum measurements based on quantum apparatuses
and instruments in a humanities-friendly way. This is
a difficult task, since this theory is based on advanced
mathematical apparatus. We hope that the reader can at
least follow our introductory presentation in Sections 3, 4.
Although we applied quantum apparatuses and instruments
to the concrete problem of cognition, modeling bistable
perception and, more generally, Helmholtz unconscious
inference, this approach can be used to model general
unconscious–conscious information processing. We hope
that in future other interesting examples will be presented
with the aid of this formalism (cf. Khrennikov, 2010a,
2014).
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Appendix

Do we Need Complete Positivity?
Nowadays theory of the DL-instruments is considered old-
fashioned; the class of such instruments is considered to be
too general: it contains mathematical artifacts which have no
relation to real physical measurements and state transformations
as back-reactions to these measurements. The modern theory of
instruments is based on the extendability postulate (e.g., Busch
et al., 1995; Ozawa, 1997; Nielsen and Chuang, 2000):

For any apparatus AS corresponding to measurement of
observable A on a system S and any system S̃ noninteracting with
S there exists an apparatus AS+S̃ representing measurement on

the compound system S+ S̃ such that

• p(ai|ρ ⊗ r) = p(ai|ρ);
• (ρ ⊗ r)ai = ρai ⊗ r

for any state ρ of S and any state r of S̃.
In physics this postulate is quite natural: if, besides the

quantum system S which is the object of measurement, there
is (somewhere in the universe) another system S̃ which is not
entangled with S, i.e., their joint pre-measurement state has the
form ρ ⊗ r, then the measurement on S with the result ai can
be considered as measurement on S + S̃ as well with the same
result ai. It is clear that the back-reaction cannot change the state
of S̃. Surprisingly this very trivial assumption has tremendous
mathematical implications.

Since we proceed only in the finite dimensional case,
the corresponding mathematical considerations are simplified.
Consider an instrument ES representing the state update as the
result of the back-reaction from measurement on S. For each Ŵ,
this is a linear map from L(H) → L(H), where H is the state
space of S. LetW be the state space of the system S̃. Then the state
space of the compound system S+S̃ is given by the tensor product
H⊗W.We remark that the space of linear operators in this state
space can be represented as L(H⊗W) = L(H)⊗L(W). Then the
superoperator ES(Ŵ) : L(H) → L(H) can be trivially extended to
the superoperator ES(Ŵ)⊗I :L(H⊗W) → L(H⊗W). It is easy to
prove that the state transformer corresponding to the apparatus
for measurements on S + S̃ has to have this form ES+S̃(ai) =
ES(ai)⊗ I. Hence, this operator also has to be positively defined.
We remark that if the state spaceW has the dimension k, then the
space of linear operators L(W) can be represented as the space of
k× kmatrices which is further denoted as Ck×k.

Formally, a superoperator T : L(H) → L(H) is called
completely positive if it is positive and each its trivial extension
T ⊗ I : L(H) ⊗ Ck×k → L(H) ⊗ Ck×k is also positive. There
are natural examples of positive maps which are not completely
positive (Nielsen and Chuang, 2000).

A CP quantum operation is a DL quantum operation which
is additionally completely positive; a CP instrument is based
on CP quantum operations representing back-reactions to
measurement. As was pointed out, in modern literature only CP

quantum operations and instruments are in the use, so they are
called simply quantum operations and instruments.

Themainmathematical feature of (CP) quantum operations is
that the class of such operations can be described in a simple way,
namely, with the aid of the Kraus representation (Busch et al.,
1995; Ozawa, 1997; Nielsen and Chuang, 2000):

Tρ =
∑

j

V⋆j ρVj, (A1)

where (Vj) are some operators acting in H. Hence, for a (CP)
instrument, we have: for each ai ∈ O, there exist operators (Vaij)
such that

E(ai)ρ =
∑

j

V⋆aijρVaij. (A2)

Thus,

ρai =
∑

j V
⋆
aij
ρVaij

∑

j V
⋆
aij
ρVaij

, (A3)

where the trace one condition (Equation 48) implies that

∑

i

∑

j

V⋆aijVaij = I. (A4)

The corresponding POVMsMai can be represented as

Mai =
∑

j

V⋆aijVaij. (A5)

This is a really elegant mathematical representation. However, it
might be that this mathematical elegance, and not a real physical
situation, has contributed to widespread use of CP in quantum
information theory (cf. Shaji and Sudarshan, 2005).

Is the use of the extendability postulate justified in the
operational approach to cognition?

Seemingly, not (although further analysis is required). Any
concrete perception takes place at the conscious level, and it is
based on interaction with the sensation of a visual image. The
state of this sensation corresponds to the state of the system
S in the above considerations. To be able to consider the state
of another sensation, the analog of the state of the system S̃,
the brain has to activate this sensation. Thus, we cannot simply
consider all possible sensations as existing in some kind of the
mental universe simultaneously. Hence, in general, sensations
generated by different visual stimuli cannot be treated as existing
simultaneously.

It is more natural to develop the theory of perception
instruments as the theory of DL instruments and not CP
instruments. In particular, although the Kraus representation can
be used as a powerful analytic tool, we need not to overestimate
its applicability for modeling of cognition.
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In this work, we explore an alternative quantum structure to perform quantum

probabilistic inferences to accommodate the paradoxical findings of the Sure Thing

Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing

classical probabilities by quantum probability amplitudes. However, since this approach

suffers from the problem of exponential growth of quantum parameters, we also

propose a similarity heuristic that automatically fits quantum parameters through vector

similarities. This makes the proposed model general and predictive in contrast to the

current state of the art models, which cannot be generalized for more complex decision

scenarios and that only provide an explanatory nature for the observed paradoxes. In

the end, the model that we propose consists in a nonparametric method for estimating

inference effects from a statistical point of view. It is a statistical model that is simpler

than the previous quantum dynamic and quantum-like models proposed in the literature.

We tested the proposed network with several empirical data from the literature, mainly

from the Prisoner’s Dilemma game and the Two Stage Gambling game. The results

obtained show that the proposed quantum Bayesian Network is a general method that

can accommodate violations of the laws of classical probability theory andmake accurate

predictions regarding human decision-making in these scenarios.

Keywords: Bayesian networks, decision making, quantum probability, quantum cognition, sure thing principle

1. INTRODUCTION

The present work proposes a new model to make predictions in paradoxical situations where the
Sure Thing Principle is being violated. The Sure Thing Principle (Savage, 1954) is a fundamental
principle in economics and probability theory and states that if one prefers action A over B
under state of the world X, and if one also prefers A over B under the complementary state
of the world, ¬ X, then one should always prefer action A over B even when the state of
the world is unspecified. Several experiments have shown that people violate this principle in
decisions under uncertainty, leading to paradoxical results and violations of the classical law of
total probability (Tversky and Kahnenman, 1974; Tversky and Kahneman, 1983; Tversky and Shafir,
1992; Aerts et al., 2004; Birnbaum, 2008).

1.1. Motivation
More recently, cognitive scientists have turned to quantum probability theory in order to
accommodate these paradoxical findings. Although many models have been proposed in the
literature, most of them cannot be considered predictive. Most of these models require a set of
quantum parameters to be fitted and, so far, the only way these models have to fit the parameters is
to use the final outcome of the experiment to set the parameters in order to explain that outcome.
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Moreover, these models cannot scale to more complex
decision scenarios, because the number of parameters is
exponentially large (Khrennikov, 2003a, 2004, 2006) or because
of computational constraints in the computation of very large
unitary operators (Busemeyer et al., 2006b, 2009; Pothos and
Busemeyer, 2009).

1.2. Contributions
For these reasons, in this work, we propose a network structure
framework that can easily scale to more complex decision
scenarios. In other words, we propose a quantum-like Bayesian
Network formalism, which consists in replacing classical
probabilities by quantum probability amplitudes. However, since
this approach also suffers from the problem of exponential
growth of quantum parameters that need to be fit, we also
propose a similarity heuristic (Shah andOppenheimer, 2008) that
automatically computes this exponential number of quantum
parameters through vector similarities. A Bayesian Network
can be understood as an acyclic directed graph, in which each
node represents a random variable and each edge represents a
direct causal influence from the source node to the target node
(conditional dependence).

In this article, we will address the problem of violations to the
Sure Thing Principle by examining two major problems in which
these violations were verified: the Prisoner’s Dilemma game and
the Two Stage Gambling game. These violations were initially
reported by Tversky and Shafir (1992) and later simulated in
several works in the literature that also reported similar results (Li
and Taplin, 2002; Busemeyer et al., 2006a; Hristova and Grinberg,
2008). We will show how the current classical models fail to
explain the paradoxical findings implied in the violations of the
Sure Thing Principle and we will make a more deep discussion
about the drawbacks of the most representative quantum-like
models in the literature.

1.3. Research Questions
With the present work, we intend to address the following
research questions. An answer to these questions is given in
Section 8.

1. Why do we need another quantum-like model to explain
violations to the Sure Thing Principle?

2. What is the advantage of the proposed approach? How
can it make a difference toward the current well-established
quantum models that have been proposed in the literature?

2. VIOLATIONS OF THE SURE THING
PRINCIPLE

In this section, we present two experiments from the literature, in
which it was observed violations to the Sure Thing Principle and
consequently to the laws of classical probability theory and logic.
The two experiments are the Prisoner’s Dilemma game and the
Two Stage Gambling game.

2.1. The Prisoner’s Dilemma Game
The Prisoner’s Dilemma game corresponds to an example of the
violation of the Sure Thing Principle. In this game, there are

two prisoners who are in separate solitary confinements with no
means of speaking to or exchanging messages with the other. The
police offer each prisoner an agreement: each prisoner is given the
opportunity either to betray the other (Defect), by testifying that
the other committed the crime, or to Cooperate with the other by
remaining silent.

In order to test the veracity of the Sure Thing Principle under
the Prisoner’s Dilemma game, an experiment was made in which
three conditions were tested:

• Participants were informed that the other participant chose to
Defect.

• Participants were informed that the other participant chose to
cooperate.

• Participants had no information about the other participant’s
decision.

Table 1 summarizes the results of several works of the literature,
which have performed this experiment. Note that all entries of
Table 1 show a violation of the law of total probability. According
to the total law of probability, it is expected that:

Pr(P2 = Defect | P1 = Defect) ≥ Pr(P2 = Defect)

≥ Pr(P2 = Defect | P1 = Cooperate)

Note that, Pr
(

P2 = Defect | P1 = Defect
)

corresponds to the
probability of the second player choosing the Defect action
given that he knows that the first player chose to Defect. In
Table 1 this corresponds to the entry Known to Defect. In
the same way, Pr

(

P2 = Defect | P1 = Cooperate
)

corresponds
to the entry Known to Collaborate. The observed probability
during the experiments concerned with player 2 choosing to
Defect, Pr

(

P2 = Defect
)

, corresponds to the entry unknown of
Table 1, since there is no evidence about the first player’s actions.
Finally, the entry Classical Probability corresponds to the classical
probability Pr

(

P2 = Defect
)

, which is computed through the
law of total probability:

TABLE 1 | Works of the literature reporting the probability of a player

choosing to Defect under several conditions for the Prisoner’s Dilemma

Game: when the action of the second player is known to be Defect

(Known to Defect), when the action of the second player is known to be

Cooperate (Known to Collaborate), and when the action of the second

player is not known (Unknown).

Literature Known to Known to Unknown Classical

Defect Collaborate probability

Shafir and Tversky, 1992 0.9700 0.8400 0.6300 0.9050

Croson, 1999a 0.6700 0.3200 0.3000 0.4950

Li and Taplin, 2002b 0.8200 0.7700 0.7200 0.7950

Busemeyer et al., 2006a 0.9100 0.8400 0.6600 0.8750

Hristova and Grinberg, 2008 0.9700 0.9300 0.8800 0.9500

Average 0.8700 0.7400 0.6400 0.8050

a corresponds to the average of the results reported in the first two payoff matrices of the

work of Croson (1999).

b corresponds to the average of all seven experiments reported in the work of Li and Taplin

(2002).
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TABLE 2 | Works of the literature reporting the probability of a player

choosing to make a second gamble under several conditions for the Two

Stage Gambling Game: when the outcome of the first gamble is known to

be Lose (Known to Lose), when the outcome of the first gamble is known

to be Win (Known to Win), and when the outcome of the first gamble is

not known (Unknown).

Literature Known Known Unknown Classical

to Win to Lose probability

Tversky and Shafir, 1992 0.69 0.58 0.37 0.6350

Kuhberger et al., 2001 0.72 0.47 0.48 0.5950

Lambdin and Burdsal, 2007 0.63 0.45 0.41 0.5400

Average 0.68 0.50 0.42 0.5900

Pr(P2 = Defect) = Pr(P1 = Defect) · Pr(P2 = Defect|
P1 = Defect)+

+ Pr(P1 = Cooperate) · Pr(P2 = Defect|P1
= Cooperate)

2.2. The Two Stage Gambling Game
The Two Stage Gambling game is another game that shows
violations of the Sure Thing Principle. In this game, participants
were asked at each stage tomake the decision of whether or not to
play a gamble that has an equal chance of winning $200 or losing
$100. Three conditions were verified:

1. Participants were informed if they had won the first
gamble;

2. Participants were informed if they had lost the first
gamble;

3. Participants did not know the outcome of the first gamble;

The overall results revealed that participants who knew that they
won the first gamble, decided to play again. Participants who
knew that they lost the first gamble, also decided to play again.
Through Savage’s Sure Thing Principle, it was expected that the
participants would choose to play again, even if they did not know
the outcome of the first gamble. However, the results obtained
revealed something different. If the participants did not know the
outcome of the first gamble, then many of them decided not to
play the second one.

We conclude this section by clarifying why we will only
validated the proposed quantum-like Bayesian Network in small
decision problems (such as the Prisoner’s Dilema and the
Two Stage Gambling Game), since we are defending a general
quantum-like structure that is able to deal with complex decision
scenarios. We used small decision scenarios, because we cannot
find literature showing violations to the Sure Thing Principle
for more complex decision scenarios. Actually, after performing
some research, we believe that the violations of the Sure Thing
Principle tend to diminish with the complexity of the decision
scenario. Imagine for instance a three stage gambling game. It will
be very hard to find significant data that shows a player wishing
to play the last gamble, given that he has lost the two previous
gambles. Table 2 shows the results obtained in several works of
the literature.

3. VIOLATION OF THE SURE THING
PRINCIPLE: CLASSICAL APPROACHES

There are many classical approaches that could be used to try
to accommodate violations to the Sure Thing Principle. Two
of these main models are the Classical Markov Models and the
Classical Bayesian Networks. In this section, we will describe how
these two models work and we will explain why they cannot be
used to simulate violations to the Sure Thing Principle.

3.1. Classical Markov Model
A Markov Model can be generally defined as a stochastic
probabilistic undirected graphicalmodel that satisfies theMarkov
property. This means that the process evolves (and tries to
perform a prediction) based only on the present state. The
current state is independent of any past or future states. These
probabilistic models are very useful to model systems that
change states according to a transition matrix that specifies some
probability distribution or some transition rules that depend
solely on the current state.

The initial state is given by a vector, which contains the
probabilities of each event occurring. This vector requires that
the sum of these probabilities is one.

PI =
[

a0 a1 . . . an
]

· 1
∑

i ai

The state transition is represented by a differential equation,
which consists in themultiplication of this initial probability state
PI by a transition function T(t). This function is represented by a
matrix containing positive real numbers and with the constraint
that each row must sum to one (normalization axiom). In other
words, this matrix represents the new probability distribution
across all possible outcomes through some time period t (Pothos
and Busemeyer, 2009).

d

dt
T(t) = K · T(t) (1)

The intensity matrix K corresponds to the problem’s settings.
For instance, for the Prisoner’s Dilemma Game, it represents
the payoffs of each player, in the Two Stage Gambling Game,
it represents the rewards/losses that the player can have in each
gamble. A solution to this equation is given by Equation 2, which
allows one to construct a transition matrix for any time point
from the fixed intensity matrix. In other words, the intensity
matrix performs a transformation in the probabilities of the
current state in order to favor a certain action in the decision
problem.

T(t) = eK.t (2)

In the end, we can compute the solution for the probability
distribution over time by multiplying the transition matrix by the
initial probability state.

PF(t) = eK.t · PI(0) (3)
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In Equation 3, we do not need to perform any normalization in
the end, because the operation in Equation 1 together with the
intensity matrix K assure that the values computed are already
probability values.

Since, in the end, the Markov Model has to obey to the rules
of probability theory and set theory, even if we parameterize
the intensity matrix K, we would find that there are no values
that could explain the violations of the Sure Thing Principle
without violating the laws of classical probability theory. Some
studies have been proposed in the literature demonstrating that
the classical Markov Model cannot accommodate violations to
the Sure Thing Principle (Busemeyer et al., 2009; Pothos and
Busemeyer, 2009).

3.2. Classical Bayesian Networks
A classical Bayesian Network can be defined by a directed acyclic
graph structure in which each node represents a different random
variable from a specific domain and each edge represents a
direct influence from the source node to the target node. The
graph represents independence relationships between variables
and each node is associated with a conditional probability table,
which specifies a distribution over the values of a node given each
possible joint assignment of values of its parents. This idea of
a node, depending directly from its parent nodes, is the core of
Bayesian Networks. Once the values of the parents are known, no
information relating directly or indirectly to its parents or other
ancestors can influence the beliefs about it (Koller and Friedman,
2009).

A Bayesian Network can be understood as the representation
of a full joint probability distribution through conditional
independence statements. This way, a Bayesian Network can
be used to answer any query about the domain by combining
(adding) all relevant entries from the joint probability.

The full joint distribution (Russel and Norvig, 2010) of a
Bayesian Network, where X is the list of variables, that is, the set
of nodes of the Bayesian Network and is given by:

Pr(X1, . . . ,Xn) =
n
∏

i=1

Pr(Xi|Parents(Xi)) (4)

The formula for computing classical exact inferences on Bayesian
Networks is based on the full joint distribution (Equation 4).
Let e be the list of observed variables (nodes) and let Y be
the remaining unobserved variables (nodes) in the network. For
some query X, the inference is given by Equation 5. Note that,
Pr(X, e, y) corresponds to the full joint probability distribution.

Pr(X|e) = α





∑

y∈Y
Pr(X, e, y)



 (5)

Where α = 1
∑

x∈X Prc(X = x, e)

The summation is over all possible y, i.e., all possible
combinations of values of the unobserved variables y. The

α parameter, corresponds to the normalization factor for
the distribution Pr(X|e) (Russel and Norvig, 2010). This
normalization factor comes from some assumptions that are
made in Bayes rule.

One might think that if we parameterize the Bayesian
Network, it could be possible to explain the paradoxical findings
of the Sure Thing Principle. This line of thought is legitimate,
however one must take into account that in the end, the
probabilistic inferences computed through the Bayesian Network
must obey set theory and to the law of total probability. This
means that, even if we parameterize the network, we could not
find any closed form optimization that would accommodate
violations to the Sure Thing Principle.

4. VIOLATION OF THE SURE THING
PRINCIPLE: QUANTUM-LIKE
APPROACHES

In this section, we introduce the most import quantum decision
models that have been proposed in the literature that can
accommodate the violations to the Sure Thing Principle. The
models that we describe in this section are the following: the
Quantum Dynamical Model (Section 4.1), the Quantum-Like
Approach (Section 4.2), and the Quantum Prospect Decision
Theory (Section 4.3).

4.1. The Quantum Dynamical Model
The Quantum Dynamical Model was originally proposed by
Busemeyer (Busemeyer et al., 2009; Pothos and Busemeyer, 2009)
and consists on a general framework that corresponds to a
quantum version of a classical dynamical Markov model. The
Quantum Dynamical Model takes into account time evolution.
Quantum interference effects are also taken into account though
a superposition of paths.

The initial belief state corresponds to a quantum state
representing a superposition of the participant’s beliefs in the
form of a vector. The term ψ corresponds to a quantum
probability amplitude.

PI =
[

ψ0 ψ1 . . . ψn

]

· 1
∑

i |ψi|2
(6)

Next, we need to create a unitary matrix. In quantum mechanics,
a unitary matrix restricts the allowed evolution of quantum
systems, ensuring that the sum of probabilities of all possible
outcomes of any event is always 1. This means that the matrix
must be orthonormal (the rows are mutually orthogonal unit
vectors, as are the columns). In the Quantum Dynamical
Model, this matrix encodes all state transitions that a person
can experience while choosing a decision. The unitary matrix
U is computed by a differential equation called Schrödinger’s
equation.

δ

δt
U(t) = −i ·H · U(t) (7)

The parameter t corresponds to the time evolution. Under
the Dynamical Quantum Model, this parameter is set to π/2,
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corresponding to the average time that a participant takes to
make a decision (approximately 2 s) (Pothos and Busemeyer,
2009). The matrix H is called the Hamiltonian matrix, which
must be Hermitian in order to generate a unitary matrix.

U(t) = exp(−i · H · t) (8)

By multiplying the unitary matrix with the initial superposition
belief state, one can compute the transition of the participants’
beliefs at each time. The final vector QF represents the amplitude
distribution across states after deliberation.

In the end, we can compute the solution for the probability
distribution over time by multiplying the transition matrix by the
initial probability state.

QF = U · Qi = e−i·H·t · QI(0) (9)

In Equation 9, we do not need to perform any normalization
in the end, because the operation in Equation 8 together with
the intensity matrix H assure that the values computed are in
accordance with the normalization axiom.

4.2. The Quantum-Like Approach
The Quantum-Like Approach has its roots in contextual
probabilities. This model was proposed by Khrennikov and
corresponds to a general contextual probability space from
which the classical and quantum probability models can be
derived (Khrennikov, 2009b, 2010).

In the Quantum-Like Approach, the context relates to the
circumstances that form the setting for an event in terms of
which it can be fully understood, clarifying the meaning of the
event. More specifically, it is a complex of conditions under
which a measurement is performed. For instance, in domains
outside of physics, such as cognitive science, one can have mental
contexts. In social sciences, we can have a social context. And the
same idea is applied to many other domains, such as economics,
politics, game theory, biology, etc. (Khrennikov, 1999, 2001,
2003b, 2005a,b).

The Quantum-Like Approach corresponds to a contextual
probabilistic model given by M = (C, O, π(O, C)). Where C

is a set of contexts, O is the set of observables and π(O, C)
corresponds to a probability distribution of some observables
belonging to a specific context. Associated with a context, there
are a set of observables. In quantum mechanics, an observable
corresponds to a self-adjoint operator on a complex Hilbert
Space. Under the Quantum-Like Approach, these observables
correspond to the set of possible events with their respective
values.

Let’s assume, for a context C ∈ C, that there are two
dichotomous observables a, b ∈ O, and each of these observables
can take some values α ∈ a and β ∈ b, respectively.

The Quantum-Like Approach can be built from the general
structure of the quantum law of total probability. The quantum
law of total probability is very similar to the classical law of
total probability, except that it uses complex amplitudes instead
of real probability values. In order to obtain a probability
value, the magnitude of the quantum amplitude must be

squared Busemeyer and Bruza (2012). This will generate an
additional term called the interference term. This term does not
exist in classical probability and enables the representation of
interferences between quantum states.

Pr(b = β) = Classical_Probability(b = β)+ Interference_Term
(10)

Under this representation, we can replace Classical_Probability
by the classical law of total probability, and also replace the
quantum Interference_Term by a measure of supplementary,
represented by δ(β|a,C).

If we perform the normalization of the probability measure of
supplementary δ(β|a,C) by the square root of the product of all
probabilities, we obtain:

λθ =
δ(β|a,C)

2
√
∏

α∈a Pr(a = α|C)Pr(b = β|a = α,C)
(11)

From Equation 11, the general probability formula of the
Quantum-Like Approach can be derived. For two variables, is
given by:

Pr(b = β|C) =
∑

α∈a
Pr(a = α|C)Pr(b = β|a = α,C)

+2λθ

√

∏

α∈a
Pr(a = α|C)Pr(b = β|a = α,C) (12)

If we look closely to Equation 12, we will see that the first
summation of the formula corresponds to the classical law of
total probability. The second term of the formula (the one that
contains the λθ parameter), does not exist in the classical model
and it is called the interference term.

In a quantum context, since the supplementary term δ(β|a,C)
is being normalized in a quantum fashion, then we automatically
know that the indicator term λθ will always have to be smaller
than 1 in order to obtain quantum probabilities, λθ ≤ 1. So,
under trigonometric contexts, the Quantum-Like Approach for
quantum probabilities becomes:

λθ = cos(θ) → Pr(β|C) =
∑

α∈a
Pr(α|C)Pr(β|α,C)

+2

√

∏

α∈a
Pr(α|C)Pr(β|α,C) cos(θ) (13)

Equation 13 can be simplified in the following way:

Pr(β|C) =
∣

∣

∣

√

Pr(α1|C)Pr(β|α1,C)

+eiθβ|α,C
√

Pr(α2|C)Pr(β|α2,C)
∣

∣

∣

2
(14)

Equation 14 corresponds to the representation of the quantum
law of total probability. In this equation, the angle θβ|α,C
corresponds to the phase of a random variable and incorporates
the phase of both A = α1 and A = α2 in the following way:
θβ|α,C = θβ|α1 − θβ|α2 .
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One should note that, the Quantum-Like Approach can be
extended to more complex decision scenarios, that is, with
more than two random variables. However, this will lead to
the very difficult task of tuning an exponential number of
quantum θ parameters. Peter Nyman noticed this problem
when he generalized the Quantum-Like Approach for three
dichotomous variables (Nyman, 2010, 2011b; Nyman and
Basieva, 2011a,b).

4.2.1. The Hyperbolic Interference
Although the Quantum-Like Approach provides great
possibilities comparing with the classical one, it seems that
it cannot cover completely data from psychology and that a
quantum formalism was not enough to explain some paradoxical
findings (see Khrennikov et al., 2014), so hyperbolic spaces were
proposed (Khrennikov, 2005c; Nyman, 2011a,b).

From Equation 12, if Pr(b = β) −
∑

α∈a Pr(a = α|C)Pr(b =
β|a = α,C) is different from zero, then some interference
effects occur. In order to determine which type of interference
happened, one tests the Quantum-Like Approach for quantum
probabilities. This can be determined by normalizing the
supplementary measure in a quantum fashion, just like presented
in Equation 11.

If the probability Pr(b = β) was not computed in a
trigonometric space (that is, it is not quantum), then, it is
straightforward that the quantum normalization applied in
Equation 11 will give a value bigger than 1. Since we are not in
the context of quantum probabilities, the quantum normalization
factor will fail to normalize the interference term, and will
produce a number bigger than the normalization factor. Under
these circumstances, the Quantum-Like Approach incorporates
the generalization of hyperbolic probabilities, arguing that the
context in which these probabilities were computed was in a
Hyperbolic context (Khrennikov, 2009a, 2010; Nyman, 2011a).

Under Hyperbolic contexts, the Quantum-Like Approach
contextual probability formula becomes:

λθ = cosh(θ) → Pr(β|C) =
∑

α∈a
Pr(α|C)Pr(β|α,C)

±2

√

∏

α∈a
Pr(α|C)Pr(β|α,C) cosh(θ) (15)

In summary, according to the values computed by the indicator
function λθ , the Växjö Model enables the computation of
probabilities in the following contexts:

• If |λθ | = 0, then there is no interference and the Växjö Model
collapses to classical probability theory.

• If |λθ | ≤ 1, then we fall into the realm of quantum mechanics
and the context becomes a Hilbert space. The indicator
function is then replaced by the trigonometric function
cos(θ).

• If |λθ | > 1, then we fall into the realm of hyperbolic
numbers and the context becomes a hyperbolic space. The
indicator function is then replaced by the hyperbolic function
cosh(θ).

4.3. The Quantum Prospect Decision
Theory
The Quantum Prospect Decision Theory was developed
by Yukalov and Sornette (2008, 2011) and developed throughout
many other works (Yukalov and Sornette, 2009a,b, 2010a,b). The
foundations of this theory are very similar to the previously
presented Quantum-Like Approach.

In the Quantum-Like Approach, we start with two
dichotomous observables. In the Quantum Prospect Decision
Theory, these observables are referred to intensions. An intension
can be defined by an intended action and a set of intended actions
is defined by a prospect.

Each prospect can contain a set of action modes, which are
concrete representations of an intension. Making a comparison
with the Quantum-Like Approach, a prospect can be seen as a
random variable and the set of action modes are the assignments
that each random variable can have. For instance, the intension to
play can have two representations: play action A or play action B.

Following the work of Yukalov and Sornette (2011), two
intensions A and B with the respective representations: A = x
where x ∈ a1, a2 and B = y, where y ∈ b1, b2. The corresponding
state of mind is given by:

| ψs (t)〉 =
∑

i,j

ci,j (t) | Ai Bj〉 (16)

Equation 16 represents a linear combination of the prospect basis
states. From a psychological perspective, the state of mind is
a fixed vector characterizing a particular decision maker with
his/her beliefs, habits, principles, etc. That is, it describes each
decision maker as a unique subject.

The prospect states corresponding to the intensions A and
B are given by Equation 17. The ψ symbol corresponds to
quantum amplitudes associated with the prospect state. Under
the Quantum Prospect Decision Theory, these amplitudes
represent the weights of the intended actions, while a person is
still deliberating about them.

|πA=a1〉 = ψ11|A = a1B = b1〉 + ψ12|A = a1B = b2〉
|πA=a2〉 = ψ21|A = a2B = b1〉 + ψ22|A = a2B = b2〉 (17)

The probabilities of the prospects can be obtained by computing
the squared magnitude of the prospect states (just like in the
Quantum-Like Approach and the Quantum Dynamical Model).
Consequently, the final probabilities are given by:

Pr(πA=a1 ) = Pr(A = a1,B = b1)+ Pr(A = a1,B = b2)

+InterferenceA=a1

Pr(πA=a2 ) = Pr(A = a2,B = b1)+ Pr(A = a2,B = b2)

+InterferenceA=a2

(18)

Where the interference term in defined by:

InterferenceA=a1 = 2 · ϕ(πA=a1 )
√

Pr(A = a1,B = b1)·
√

Pr(A = a1,B = b2)

InterferenceA=a2 = 2 · ϕ(πA=a2 )
√

Pr(A = a2,B = b1)·
√

Pr(A = a2,B = b2)

(19)
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In Equation 19, the symbol ϕ corresponds to the uncertainty
factor and is given by:

ϕ(πA=a1 ) = cos
(

arg (ψ11 · ψ12)
)

ϕ(πA=a2 ) = cos
(

arg (ψ21 · ψ22)
)

(20)

The interference term corresponds to the effects that emerge
during the process of deliberation, that is, while a person
is making a decision. These interference effects result from
conflicting interests, ambiguity, emotions, etc. (Yukalov and
Sornette, 2011).

One can notice that the Quantum Prospect Decision Theory
is very similar to the Quantum-Like Approach proposed
by Khrennikov (2009c). Both theories end up with the same
quantum probability formula. However, the Quantum Prospect
Decision Theory provides some heuristics in how to choose the
uncertainty factors. This information will be addressed in the
next section.

4.3.1. Choosing the Uncertainty Factor
In order to accommodate the violations of the Sure Thing
Principle, the uncertainty factor must be set in such a way that
it will enable accurate predictions. Two methods were proposed
by Yukalov and Sornette (2011) to estimate the uncertainty
factor: the Interference Alternation method and the Interference
Quarter Law.

• Interference Alternation—Under normalized conditions, the
probabilities of the prospects p

(

πj
)

must sum to 1. This
normalization only occurs if one characterizes the interference
term as an alternation, such that the interference effects
disappear while summing the probability of the prospects. The
interference alternation property is in accordance with the
findings of Epstein (1999): the destructive interference effects
can be associated with uncertainty aversion. This leads to a
less probable action under uncertainty conditions. In contrast,
the probabilities of other actions that contain less uncertainty
are enhanced through constructive quantum interference
effects. This uncertainty aversion happens quite frequently in
situations where the Sure Thing Principle is violated. This
implies that one of the probabilities of the prospects must be
enhanced, whereas the other must be decreased.

sign
[

ϕ(πA=a1 )
]

= −sign
[

ϕ(πA=a2 )
]

where
∣

∣ϕ(πA=ai )
∣

∣ ∈ [0, 1] (21)

• Interference Quarter Law—the interference terms generated
by quantum probabilistic inferences, have a free quantum
parameter, which is the uncertainty factor. The Interference
Quarter Law corresponds to a quantitative estimation of this
parameter. The modulus of the interference term q can be
quantitatively estimated by computing the expectation value
of the probability distribution of a random variable ξ in the
interval [0, 1].

q ≡
∫ 1

0
ξ · pr (ξ) dξ = 1

4
(22)

The probability distribution p(ξ ) is given by Equation 22 and
can be computed by making the average of two probability
distributions.

Pr (ξ) = 1

2

[

pr1 (ξ)+ pr2 (ξ)
]

= δ (ξ)+ 1

2
2(1− ξ) (23)

4.4. Quantum-Like Bayesian Networks in
the Literature
There are two main works in the literature that have contributed
to the development and understanding of Quantum Bayesian
Networks. One belongs to Tucci (1995) and the other to Leifer
and Poulin (2008).

In the work of Tucci (1995), it is argued that any classical
BayesianNetwork can be extended to a quantum one by replacing
real probabilities with quantum complex amplitudes. This means
that the factorization should be performed in the same way as in
a classical Bayesian Network.

One big problem with Tucci’s work was the lack of methods
to set the phase parameters. The author states that, one could
have infinite Quantum Bayesian Networks representing the same
classical Bayesian Network depending on the values that one
chooses to set the parameter. This requires that one knows a
priori which parameters would lead to the desired solution for
each node queried in the network (which we never know). So, for
these experiments, Tucci’s model (Tucci, 1995) cannot predict the
results observed, since one does not have any information about
the quantum parameters.

In the work of Leifer and Poulin (2008), the authors argue that,
in order to develop a quantum Bayesian Network, a quantum
version is required of probability distributions, quantum
marginal probabilities and quantum conditional probabilities
(Table 3). The authors made a preliminary study on these
concepts. Generally speaking, a quantum probability distribution
corresponds to a density matrix contained in a Hilbert space,
with the constraint that the trace of this matrix must sum to
1. In quantum probability theory, a full joint distribution is
given by a density matrix ρ. This matrix provides the probability
distribution of all states that a Bayesian Network can have.
The marginalization operation corresponds to a quantum partial
trace (Nielsen and Chuang, 2000; Rieffel and Polak, 2011). In
the end, these models from the literature fail to provide any
advantage relatively to the classical models, because they cannot
take into account interference effects between random variables.
So, they provide no advantages in modeling decision-making
problems that try to predict decisions that violate the laws of total
probability.

TABLE 3 | Relation between classical and quantum probabilities used in

the work of Leifer and Poulin (2008).

Classical probability Quantum probability

State Pr(A)
∣

∣

∣
eiθψA

∣

∣

∣

2

Joint probability distribution Pr(A,B) ρAB

Marginal probability distribution Pr(B) =
∑

A Pr(A,B) ρB = TrA (ρAB )

Conditional state Pr (B|A) ρB|A
∑

b∈B Pr(b|A) = 1 Tr(ρB|A ) = IA
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5. PROBLEMS WITH CURRENT
CLASSICAL AND QUANTUM-LIKE
APPROACHES

In this section, we summarize the three main models that were
presented in the previous sections (Table 4) and point out the
advantages and disadvantages of each one of them.

The Quantum-Like Approach is a very simple framework that
enables the computation of quantum probabilities by performing
the direct mapping between classical real probabilities and
quantum probability amplitudes through Born’s rule (Zurek,
2005, 2011). Although this model can be extended for N
random variables and also go beyond quantum probabilities by
incorporating hyperbolic spaces, this model cannot be called
predictive, since there are no mechanisms to estimate the
quantum θ parameters. One is required to know a priori the
outcome of the decision scenario in order to fit the quantum
parameters. So, this model has an explanatory nature in what
concerns accommodating the paradoxical findings derived from
violations of the Sure Thing Principle.

The Quantum Dynamical Model provides an elegant
framework that can estimate decisions though time evolution.
However, it also suffers from a major disadvantage related to
Hamiltonian matrices. Creating a manual Hamiltonian is a very
hard problem. It is required that all possible interactions of
the decision problem are known and this specification must be
made in such a way that the matrix is double stochastic. For
more complex decision scenarios, this process is intractable.
Furthermore, the Hamiltonian matrix grows exponentially with
the complexity of the decision problem and the computation
of a Unitary operator from such matrices is a very complex
process. Most of the times, approximations are used, because
of the complexity of the calculations involved in the matrix
exponentiation operation.

The Quantum Prospect Decision Theory is a model very
similar to the Quantum-Like Approach, but it is not extended
to the hyperbolic spaces. The main advantage of the Quantum
Prospect Decision Theory toward the other known quantum
models is its predictive nature. The Quantum-Like Approach and
the Quantum Dynamical model are more explanatory models.
That is, they require that the outcome of an experiment is known
in order to fit the parameters of the model and explain the

paradoxical findings. The Quantum Prospect Decision Theory,
on the other hand, contains an heuristic (the interference quarter
law) that enables the estimation of the quantum parameters,
turning the model predictive. However, the interference quarter
law is a static heuristic. This means that, independently of the
decision scenario and independently of the complexity of the
decision, this interference term remains constant for every
problem.

All of the above models exhibit different growth rates in
parameters. For instance, the Dynamical Model parameterizes
actions plus an additional parameter to model cognitive
dissonance effects. So the number of parameters would be static
if we consider the N-Person Prisoner’s Dilemma Game. That is,
instead of having only 2 players, this would be extended to N
players. In the case of the Quantum-Like Approach, we would
have 2N parameters for the N-Person Prisoner’s Dilemma Game.
The number 2 comes from the fact that each player has two
actions (either Defect or Cooperate). The same applies to the
Quantum-Like Bayesian Networks and to the Quantum Prospect
TheoryModel. If we extend thesemodels forN random variables,

the number of parameters grows at a rate of N
Nperson

actions , but these
parameters will be automatically set using the Law of Quantum
Interference, in the case of the Quantum Prospect Theory.
The same is applied to the proposed Quantum-Like Bayesian
Network, but instead of a static heuristic, we automatically set
these parameters using a dynamic heuristic.

At this point, the reader might be thinking that the Quantum
Dynamical Model provides great advantages toward the existing
models, since the number of parameters required corresponds
to the players actions with an additional cognitive dissonance
parameter. Although this line of thought is correct, one should
also take into account how the model unfolds. Although the
numbers of parameters do not grow exponentially large as
in the Quantum-Like Approach, the size of the Hamiltonian
does. In fact, it grows exponentially large with the following

size: N
Nplayers

actions × N
Nplayers

actions , where Nactions represents the number
of actions of the players and Nplayers corresponds to the
number of players. The computation of a unitary operator from
such matrices is a very complex process. Most of the times,
approximations are used, because of the complexity of the
calculations involved in the matrix exponentiation operation.
Table 5 summarizes the parameter growth rate of each approach.

TABLE 4 | Summary of the most relevant quantum decision models of the literature.

Model State representation Quantum interference Predictive Comments

Quantum dynamical model Superposition of Shröedinger’s No . requires Enables time

subject’s beliefs equation manual fit evolution

Quantum-Like approach Contextual probabilities Measure of No. requires Can deal with

(observables/random variables) supplementarity manual fit hyperbolic spaces

Quantum prospect Contextual probabilities Interference Yes. Uses a It is predictive

decision theory (prospects/random variables) quarter law static heuristic uses a heuristic

Quantum-Like Contextual probabilities None No. Can easily scale

Bayesian networks (observables/random variables) manual fit to more complex scenarios
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TABLE 5 | Comparison of the different growth rates in parameters for

some models proposed in the literature.

Approach Parameter Comments

growth

Busemeyer et al.,

2009;

Quantum

dynamical model

Nactions Hamiltonian size

exponential:

Pothos and

Busemeyer, 2009

N
Nperson
actions

Khrennikov, 2009c Quantum-Like

approach

N
Nperson
actions

Number of parameters

Grows exponentially

large

Yukalov and

Sornette, 2011

Quantum prospect

decision theory

N
Nperson
actions

Static heuristic

Interference quarter law

For these reasons, in this work, we propose a network
structure framework that can easily scale to more complex
decision scenarios. In other words, we propose a quantum-
like Bayesian Network formalism, which consists in replacing
classical probabilities by quantum probability amplitudes.
However, since this approach also suffers from the problem of
exponential growth of quantum parameters that need to be fit, we
also propose a similarity heuristic that automatically computes
this exponential number of quantum parameters (Shah and
Oppenheimer, 2008).

6. A QUANTUM-LIKE BAYESIAN
NETWORK FOR DECISION AND
COGNITION

The reason why we chose Bayesian Networks is because it
provides a link between probability theory and graph theory. And
a fundamental property of graph theory is its modularity: one
can build a complex system by combining smaller and simpler
parts. It is easier for a person to combine pieces of evidence
and to reason about them, instead of calculating all possible
events and their respective beliefs (Griffiths et al., 2008). In the
same way, Bayesian Networks represent the decision problem
in small modules that can be combined to perform inferences.
Only the probabilities, which are actually needed to perform the
inferences, are computed.

A Quantum-Like Bayesian Network can be defined in the
same way as a classical Bayesian Network with the difference that
real probability numbers are replaced by quantum probability
amplitudes (Tucci, 1995). Figure 1 shows an example of
the proposed Quantum-Like Bayesian Network, containing
quantum probability amplitudes, ψi,j, instead of real probability
values.

In this sense, the quantum counterpart of the full joint
probability distribution corresponds to the application of Born’s
rule to Equation 4. This results in the quantum like version of the
full joint probability distribution:

Pr(X1, . . . ,Xn) =
∣

∣

∣

∣

∣

n
∏

i=1

ψ(Xi|Parents(Xi))

∣

∣

∣

∣

∣

2

(24)

FIGURE 1 | Example of a Quantum-Like Bayesian Network. The terms

ψi,j correspond to quantum probability amplitudes. The variables X1, X2, and

X3 correspond to random variables.

In order to perform exact inference in Bayesian Networks, the
probability amplitude of each assignment of the network is
propagated and influences the probabilities of the remaining
nodes. That is, every assignment of every node of the Bayesian
Network propagate throughout the network until they reach
the node representing the query variable. Note that, by taking
multiple assignments and paths at the same time, these trails
influence each other producing interference effects.

The quantum counterpart of the Bayesian exact inference
formula corresponds to the application of Born’s rule to the
classical marginal probability distribution equation (Equation 5).

Pr(X|e) = α

∣

∣

∣

∣

∣

∣

∑

y

N
∏

x=1

ψ(Xx|Parents(Xx), e, y)

∣

∣

∣

∣

∣

∣

2

(25)

Expanding Equation 25, it will lead to the quantum
marginalization formula with interference effects (Moreira
and Wichert, 2014):

Pr(X|e) = α

|Y|
∑

i=1

∣

∣

∣

∣

∣

N
∏

x

ψ(Xx|Parents(Xx), e, y = i)

∣

∣

∣

∣

∣

2

+2·Interference

(26)

Interference =
|Y|−1
∑

i=1

|Y|
∑

j=i+1

∣

∣

∣

∣

∣

N
∏

x

ψ(Xx|Parents(Xx), e, y = i)

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

N
∏

x

ψ(Xx|Parents(Xx), e, y = j)

∣

∣

∣

∣

∣

· cos(θi − θj)

In the Quantum Dynamical Model, since it uses unitary
operators, the double symmetric property of these operators
does not require the normalization of the computed values. In
the proposed approach, on the other hand, since we do not
have the constraints of double stochastic operators, we need to
normalize the final scores that are computed in order to achieve
a probability value. In classical Bayesian inference, normalization
of the inference scores is also necessary due to assumptions made
in Bayes rule. The normalization factor corresponds to α in
Equation 26.

Note that, in Equation 26, if one sets (θi − θj) to π/2, then
cos(θi − θj) = 0, which means that the quantum Bayesian
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TABLE 6 | Table representation of a quantum full joint probability

distribution.

X1 ... XN ψ
(

X1, ...,XN
)

T · · · T ψ1 · eiθ1

T · · · F ψ2 · eiθ2
.
.
.

.

.

.
.
.
.

.

.

.

F . . . F ψM · eiθM

Network collapses to its classical counterpart. That is, the
proposed Quantum-Like Bayesian Network can behave in a
classical way, if one sets the interference term to zero. Setting the
angles to right angles means that all cosine similarities are 0 or 1.
This transforms a continuous-valued system to a Boolean-valued
system. Moreover, in Equation 26, if the Bayesian Network has N
binary random variables, we will end up with 2N free quantum θ

parameters.
The proposed Bayesian Network leaves an open research

question regarding the quantum θ parameters: how can one
compute such parameters in order to obtain realistic inferences? By
realistic, we mean the probability that an event that was observed
in an experiment. These probabilities are impossible to compute
using exact Bayesian inference in experiments where the Sure
Thing Principle is being violated. In the next section, we answer
this question by proposing a similarity heuristic that is able to
compute the quantum θ parameters through vector similarities
between beliefs/actions in superposition.

6.1. Representation of Beliefs/Actions
The superposition quantum vector, comprising all possible
events, is given by the quantum full joint probability distribution
already presented in Equation 24. The full joint probability
distribution can be illustrated in table form just like it is presented
in Table 6.

The quantum probability inference formula is composed of
two parts: one representing the classical probability and the other
representing the quantum interference term. The interference
term performs a summation over several combinations of
the entries of the full joint probability distribution in groups
of two variables:

∑N−1
i=1

∑N
j=i+1 |ψi|

∣

∣ψj

∣

∣ cos
(

θi − θj
)

. For each

pair of variables, we will represent them as a 2-dimensional
vector: one component represents the probability of ψi and the
other corresponds to ψj. Moreover, the different probabilities
represented in the full joint probability distribution table can be
seen as the different beliefs/actions that one might have available
before making a decision.

a(X = T) =
[

∣

∣ψi · eiθi
∣

∣

2

∣

∣ψi · eiθj
∣

∣

2

]

b(X = F) =
[

∣

∣ψi · eiθi
∣

∣

2

∣

∣ψj · eiθj
∣

∣

2

]

(27)

We always have two vectors, because the proposed Quantum-
Like Bayesian network only supports binary random variables,
that is, the query that it is performed to the network corresponds
to a yes or no answer. In other words, one vector corresponds to

FIGURE 2 | Vector representation of two events representing a certain

state.

the probability of the query random variable returning a positive
answer, and the other corresponds to the probability of the query
random variable returning a negative one. In a geometric space,
these vectors are represented as in Figure 2. From these two
vectors, similarity measures like the angles between the vectors
or the distances between them can be computed. These similarity
measures will be addressed in more detail in Section 6.2.

One could ask why these feature vectors are represented
by probabilities. In our model, the goal is to find a quantum
parameter that can be used to compute quantum probability
inferences. The only information that one has are the probability
distributions of a given scenario, which are encoded in the
Bayesian Network.

In quantum mechanics, quantum states are always
represented by unit length vectors. Since the proposed model is
inspired by quantum formalisms, one might be wondering why
the vectors are not unit length as well. There are two reasons
for this choice. First, this representation of beliefs/actions as
probabilities in feature vectors is not new, and it is a common
practice in the literature (Osherson, 1995). Second, since our
model is represented by a Bayesian Network and the vectors
extracted directly from the network (through the representation
of the full joint probability distribution), we do not need to have
unit length vectors. Instead, this normalization will be performed
during the inference process through the computation of the
normalization factor α.

In the end, the quantum interference term is computed
by computing different vector representations for each pair of
variables that are being computed (Figure 3). These vectors are
extremely important to compute, since they will enable the
calculation of different quantum θ parameters.

6.2. Acquisition of Additional Information
It is important to note that, over the current literature, quantum
parameters must be assigned manually in order to obtain a
prediction. So, for different experiments, we will have disparate
quantum parameters. For this reason, it is very hard to create
a universal heuristic that can assign quantum parameters for
different applications. In this work, we propose a heuristic that
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FIGURE 3 | Illustration of the different 2-dimensional vectors that will be generated for each step of iteration during the computation of the quantum

interference term.

is able to perform accurate predictions for the several different
experiments reported in the literature related to the Prisoner’s
Dilemma Game and the Two Stage Gambling Game.

The goal of this similarity heuristic is to determine an angle
between the vectors a and b (Equation 27) that can be used
as the θ parameter in Equation 26. Moreover, by computing
the Euclidean distance between vectors a and b, one can obtain
vector c. Equation 28 shows how to obtain the norm of vector
c through vectors a and b (Figure 2). Additional information
is gained by comparing the similarity between the two vectors.
This new information allows one to infer hidden properties
of a participant’s beliefs/actions from visible ones. This vector
representation is similar to the approach proposed in the
work of Pothos et al. (2013), where the authors represent a
person’s beliefs/actions in an n-dimensional vector space and
the similarity between the vectors is measured by a projection
operator, which corresponds to the computation of the squared
length of the projected vector. This is similar to our approach,
since we are also computing the length between the vectors a

and b.

||c|| =

||a− b|| =
√

(

a1 − b1
)2 +

(

a2 − b2
)2 + · · · +

(

an − bn
)2

(28)

Since we are interested in the angles that these vectors make
between each other, we used trigonometric laws, such as the law
of cosines, to determine these angles. The law of cosines is given
by Equations 29–31, where θA corresponds to the angle between
vectors b and c. θB corresponds to the angle between vectors
a and c. And θC corresponds to the angle between vectors a

and b. Since we know the coordinates of vectors a and b, one
can also compute angle θC through the similarity between two
vectors using the cosine similarity measure: cos (θC) = a·b

||a||·||b|| .
However, since we only know the length of vector c, we need to
compare the similarity of the vectors through the law of cosines.

||a||2 = ||b||2 + ||c||2 − 2 · ||b|| · ||c|| · cos (θA)⇔ θA

= cos−1

( ||b||2 + ||c||2 − ||a||2
2 · ||b|| · ||c||

)

(29)

||b||2 = ||a||2 + ||c||2 − 2 · ||a|| · ||c|| · cos (θB)⇔ θB

= cos−1

( ||a||2 + ||c||2 − ||b||2
2 · ||a|| · ||c||

)

(30)

||c||2 = ||a||2 + ||b||2 − 2 · ||a|| · ||b|| · cos (θC)⇔ θC

= cos−1

( ||a||2 + ||b||2 − ||c||2
2 · ||a|| · ||b||

)

(31)

6.3. Definition of the Similarity Heuristic
Violations to the Sure Thing principle imply a decrease in
the final probability values when compared to the classical
theory. This suggests that, somehow, we need to force the
quantum parameters to have a destructive interference effect.
This can be obtained by setting the quantum parameter to π
(which is the angle that provides the smallest cosine value). The
additional information that we incorporated in Figure 2, namely
the Euclidean distance between vectors and their similarities, is
translated into a triangle. This shape has a well-known property
that all their inner angles must sum to 180◦ or π radians.
Moreover, we would like to have a destructive interference effect
that takes into account the similarity of the original vectors.
Equation 32, shows how one can obtain this relationship.

θA + θB + θC = π ⇔ π − θC = θA + θB (32)

⇔ π − θC

2
= θA + θB + π

2

When, the similarity of the vectors is very small, that is θC is very
small, then we can add a third relationship:

θA + θB + θC = π ⇔ π = θA + θB

In this sense, we can formulate the general formula of the
proposed similarity heuristic :

h
(

a, b
)

=







π if φ < 0
π − θC/2 if φ > 0.2
π − θC otherwise

(33)

We also came up with a similarity measure φ, which is given by
the ratio between all the angles that the vectors make between
them. In order words, it represents the similarity between
the additional information found by manipulating the original
vectors and is given by Equation 34.

φ = θC

θA
− θB

θA
(34)

The thresholds shown in the proposed similarity heuristic were
taken by observing the data from several experiments violating
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the Sure Thing Principle. These include several experiments in
the literature of the Prisoner’s Dilemma Game and the Two
Stage Gambling Game. Yukalov and Sornette (2011) also did
something similar. They analyzed the experiments violating the
Sure Thing Principle and came up with a static interference term
(the Interference Quarter Law) that allows them to apply their
model without knowing exactly a priori the outcome of some
specific experiment. The proposed model works under similar
conditions. We analyzed several experiments from the literature
from different games and mapped the trends of the data into
a dynamic heuristic. So, in the end, the proposed model works
under some rules that enables a dynamic behavior (after all
each experiment is unique, so there should be the freedom of
different quantum interferences) and also enables the application
of the model without specific a priori knowledge from a specific
experiment.

In quantum mechanics, the θ parameter corresponds to the
phase of a wave. When representing a quantum state in a Hilbert
space, this phase is given by the inner product between two
quantum states (Busemeyer and Bruza, 2012). The proposed
similarity heuristic is motivated by the same idea. For two vectors
representing a person’s belief/action, we find which angle (or in
this case, a combination of angles) that can lead to the observed
probabilities for the Prisoner’s Dilemma and for the Two Stage
Gambling game.

6.4. Summary of the Proposed Model
The proposed model is built based on observed data to perform
quantum probabilistic inferences. We are using a similarity
heuristic, which relies in the data of the Bayesian Network to
indicate the parameters that will allow us to perform quantum
probabilistic inferences. One should keep in mind that this
function is a heuristic: it generally provides good results in many
situations (in this case, the Two Stage Gambling game, and the
Prisoner’s Dilemma), but at the cost of occasionally not giving us
very accurate results (Shah and Oppenheimer, 2008).

In sum, the proposed model works as follows:

• Definition of a quantum-like Bayesian Network containing
cause/effect relationships of a given scenario. Each node of the
Bayesian Network corresponds to a binary random variable
and is associated to a conditional probability table. These
tables represent conditional probability distributions, which
can be converted to quantum amplitudes through Born’s rule.

• When performing a query to the quantum-like Bayesian
Network, a set of quantum parameters will emerge, because
of the application of Equation 26. These parameters can be
determinedwith the similarity heuristic that takes into account
similarities between vectors.

• The proposed similarity heuristic takes into account two
2-dimensional vectors. Each vector corresponds to one
assignment of the query variable (for instance, the probability
of the query being true or the probability of the query being
false).

• The two features of each vector correspond to each entry of the
full joint probability distribution of the Bayesian Network that
has the same assignment of the query variable. For instance,

all entries of the distribution that have the assignment of the
query variable set to true.

• After knowing the similarities that the vectors share between
them, we can apply the proposed similarity heuristic given
in Equation 33 to obtain a θ parameter that enables the
computation of the final probability value of the query.

One might be thinking that we use two of the three data points
directly in the model (known Defect and known Collaborate).
Then, they use one free parameter to account for the remaining
data point (the probability of Defection in the unknown
condition). However, this is not what we state with this work.
As already mentioned, this work is a nonparametric method for
estimating inference effects from a statistical point of view. It
is a statistical model that is simpler than the previous quantum
dynamic and quantum-like models proposed in the literature.
Again, this work is not about simulation methods of fitting.
We are simply providing a Bayesian Network structure that
enables a simple representation of more complex decision-
making scenarios, and the incorporation of a similarity heuristic
(which results from algebraic manipulations) in order to assign
values to quantum parameters in such a way that provides
accurate predictions (that is, it can represent the data accurately).

In the next sections, we will present a full example of how
the proposed Quantum-Like Bayesian Network can be applied
(Section 6.5). We will also present experimental results of
the proposed model applied to several works of the literature
concerned with the Prisoner’s Dilemma game (Section 7.1) and
the Two Stage Gambling game (Section 7.2).

6.5. Example of Application of the
Proposed Model
In this section, we will demonstrate how the proposed Bayesian
Network can be applied to the average results presented
in Table 1 for the Prisoner’s Dilemma game. The proposed
Quantum-Like Bayesian Network can be summarized in the
following steps:

• Step 1: Create a Bayesian Network Representation of the

Problem: In the Prisoner’s dilemma game, if nothing is told
to the participants, then there is a 50% chance of the first
participant choosing to Defect or Cooperate. The decision of
the first participant is then followed by the decision of the
second participant. A Bayesian Network representation of this
problem is illustrated in Figure 4.

FIGURE 4 | Bayesian Network representation of the Average of the

results reported in the literature (last row of Table 1). The random

variables, which were considered, are P1 and P2, corresponding to the

actions chosen by the first participant and second participant, respectively.
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TABLE 7 | Quantum full joint probability distribution representation of the

Bayesian Network in Figure 4.

P1 P2 Pr(P1, P2)

Defect Defect
√
0.5 · ei·θ1 ×

√
0.87 · ei·θ3 = 0.6595 · ei·

(

θ1+θ3
)

= 0.6595 · ei·θA

Defect Cooperate
√
0.5 · ei·θ1 ×

√
0.13 · ei·θ4 = 0.2550 · ei·

(

θ1+θ4
)

= 0.2550 · ei·θB

Cooperate Defect
√
0.5 · ei·θ2 ×

√
0.74 · ei·θ5 = 0.6083 · ei·

(

θ2+θ5
)

= 0.6083 · ei·θC

Cooperate Cooperate
√
0.5 · ei·θ2 ×

√
0.26 · ei·θ6 = 0.3606 · ei·

(

θ2+θ6
)

= 0.3606 · ei·θD

FIGURE 5 | Vector representation of events P2Defect and P2Cooperate
plus the euclidean distance vector c.

• Step 2: Compute the Vectors associated to each action. Since
we want to determine the Pr(P2 = Defect), this probability
will be given by the quantum full joint probability distribution,
which is represented in Table 7.

P2Defect =
[

∣

∣0.6595 · ei·θA
∣

∣

2

∣

∣0.6083 · ei·θC
∣

∣

2

]

=
[

0.435
0.370

]

P2Cooperate =
[

∣

∣0.2550 · ei·θB
∣

∣

2

∣

∣0.3606 · ei·θD
∣

∣

2

]

=
[

0.065
0.130

]

(35)

This way, one can build feature vectors using classical
probabilities. For instance, the probability of Pr(P2 = Defect)
is given by a 2-dimensional feature vector with entries:
Pr(P1 = Defect) · Pr(P2 = Defect|P1 = Defect) and Pr(P1 =
Cooperate) · Pr(P2 = Defect|P1 = Cooperate). The feature
vector corresponding to the action Cooperate can be achieved
in the same way (Equation 35).

• Step 3: Determine the quantum parameters using the

proposed similarity heuristic: Since we only have two
random variables, we only need to compute one θ parameter.
This parameter can be obtained by directly by first computing
the Euclidean distance between P2Defect and P2Cooperate, and by
computing the inner angles of the resulting triangle (Figure 5).

||c|| =
∣

∣

∣

∣P2Defect − P2Cooperate
∣

∣

∣

∣

=
√

(0.435− 0.065)2 + (0.37− 0.13)2 = 0.4410 (36)

The norm of vectors P2Defect and P2Cooperate is given by:

∣

∣

∣

∣P2Defect
∣

∣

∣

∣ =
√

0.4352 + 0.3702 = 0.5711
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣ =
√

0.0652 + 0.1302 = 0.1453 (37)

The inner angles of the triangle formed by vectors P2Defect and
P2Cooperate and c can be computed from the law of Cosines
presented in Equations 38–40.

A = cos−1

(
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣

2 −
∣

∣

∣

∣P2Defect
∣

∣

∣

∣

2 + c2

2 · c ·
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣

)

= 2.6102

(38)

B = cos−1

(
∣

∣

∣

∣P2Defect
∣

∣

∣

∣

2 −
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣

2 + c2

2 · c ·
∣

∣

∣

∣P2Defect
∣

∣

∣

∣

)

= 0.1294

(39)

C = cos−1

(
∣

∣

∣

∣P2Defect
∣

∣

∣

∣

2 +
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣

2 − c2

2 ·
∣

∣

∣

∣P2Defect
∣

∣

∣

∣ ·
∣

∣

∣

∣P2Cooperate
∣

∣

∣

∣

)

= 0.4023

(40)
Given that θC

θA − θB
θA = 0.1046, then the final quantum θ

parameter can be computed by using the third condition of
Equation 33

θ = π − θC = π − 0.4023 = 2.7393 (41)

• Step 4: Perform the Probabilistic Inference. In order to
compute Pr(P2 = Defect) we also need to compute the
opposite probability, that is, Pr(P2 = Cooperate). Equation 42
represents quantum amplitudes through the symbol ψ . The
sub indexes D and C correspond to the actions Defect and
Cooperate, respectively.

Pr(P2 = Defect) = α

[

∣

∣ψP2=D|P1=D

∣

∣

2 +
∣

∣ψP2=D|P1=D

∣

∣

2

+2 ·
∣

∣ψP2=D|P1=D

∣

∣ ·
∣

∣ψP2=D|P1=C

∣

∣ · cos (θ)
]

(42)

Pr(P2 = Defect) = α [0.5× 0.87+ 0.5× 0.74

+2×
√
0.5× 0.87×

√
0.5× 0.74 cos (2.7393)

]

(43)

Computing the probability of Pr(P2 = Cooperate) in the same
way, we obtain:

Pr(P2 = Defect) = α · 0.0667
Pr(Cooperate) = α · 0.0258 (44)

• Step 5: Compute Normalization Factor and Final
Probabilities.

α = 1

0.0667+ 0.0258
= 1

0.0925
= 10.8108 (45)
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The final probabilities are given by Equation 45. Note that
in Table 1, the observed probability of a player choosing to
Defect was 0.64. The proposed Bayesian Network estimated
this probability to be approximately 0.72, which corresponds
to a fit error percentage of 12.63%.

Pr(P2 = Defect) = 0.7208 Pr(P2 = Cooperate) = 0.2792
(46)

7. EXPERIMENTAL RESULTS

Violations to the Sure Thing Principle are hard to verify in
complex decision-making problems. For this reason, there is not
much data available in the literature for validation purposes. So,
in this work, we will validate our model for several different
experiments made to detect violations of the Sure Thing Principle
in the Prisoner’s Dilemma Game (Section 7.1) and for the Two
Stage Gambling game (Section 7.2).

7.1. Quantum Bayesian Network Applied to
the Prisoner’s Dilemma Game
In this section, we apply our model to predict the results
obtained for the Prisoner’s Dilemma game for several works in
the literature.

It is common (and good) practice in cognitive science to
compare the results of one’s model to the results of leading
comparable models. The fit error percentages that we present in
the following sections would be much easier to interpret if there
could be other models to compare with. However, we cannot
perform this comparison directly, because the current models of
the literature only work for isolated experiments, just like it was
shown for the Quantum Dynamical Model (Section 4.1) and the
Quantum-Like Approach (Section 4.2). That is, each time there
is a new experiment, the parameters of their respective models
would need to be tuned manually in order to perform correct
predictions. We propose a general and scalable framework that is
able to perform predictions in several different setting with small
amounts of fit errors.

In this sense, we modeled each result reported in Table 1

with the proposed Bayesian Network and using the proposed

similarity heuristic. We obtained the results that are presented
in Figure 6.

For a more detailed analysis of Figure 6, Table 8 shows the
quantum θ parameters that were computed for each experiment
and the quantum parameter that would be expected to achieve a
0% fit error. The fit error is a percentage value and was computing

in the following way: (1− computed_probability
observed_probability

)∗100. In Table 8, the
term computedprobability corresponds to the column Pr(Defect)
predicted and the term observed_probability corresponds to the
column observed_probability.

In Table 8, one can see that the proposed similarity heuristic
was able to perform good approximations to the data. The
dynamical heuristic enabled to perform different estimations of
quantum interference effects for different decision problems.
However, since it is an heuristic, it can sometimes lead to
overestimations, which was the case in the work of Busemeyer
et al. (2006a). These overestimations occur due to the sensitivity
of the quantum parameters. That is, a small change in a quantum
parameter will lead to a completely different probability value.
This will be discussed in more depth in Section 7.1.2.

As one might have noticed, the work of Croson (1999) was not
taken into account in the analysis of these results. We decided to
analyse these results in the next section, because they contained
properties that were different from the remaining works. In
Croson (1999), the participants were never told about the actions
of the other player. The author asked for the participants to first
try to guess what action the other player chose and then make a
decision. In another setting, participants were just asked to make
a decision.

7.1.1. The Special Case of Croson’s (1999)

Experiments
In work of Croson (1999), we used the results reported for the
first two payoff matrices tested in their work and performed the
average of the results. When trying to compute the optimum
quantum θ parameter that would lead to the computation of
the probability with a 0% fit error, we could not find any. There
was no possible parameter that could be obtained from the two
feature vectors representing the probability of choosing either a
Defect action or a Cooperate action.

FIGURE 6 | Comparison of the results obtained for different works of the literature concerned with the Prisoner’s Dilemma game.
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TABLE 8 | Analysis of the quantum θ parameters computed for each work of the literature using the proposed similarity function.

Literature Expected θ Computed θ Pr(Defect) Pr(Defect) predicted Fit error

Shafir and Tversky, 1992 2.8151 2.8057 0.6300 0.6408 1.71

Li and Taplin, 2002b 3.3033 3.0121 0.7200 0.7122 1.09

Busemeyer et al., 2006a 2.9738 3.3628 0.6600 0.7995 21.13

Hristova and Grinberg, 2008 2.8255 2.7400 0.8800 0.8968 3.01

Average 2.8718 2.7393 0.6400 0.7208 12.63

Expected θ corresponds to the quantum parameter that leads to the observed probability value in the experiment. Computed θ corresponds to the quantum parameter computed with

the proposed heuristic.

b corresponds to the average of all seven experiments reported.

TABLE 9 | Results for the two games reported in the work of Croson (1999) for the Prisoner’s Dilemma Game for several conditions: when the action of

the second player was guessed to be Defect (Guessed to Defect), when the action of the second player was guessed to be Cooperate (Guessed to

Collaborate), and when the action of the second player was not known (Unknown).

Croson, 1999 Guessed to Defect Guessed to Cooperate Unknown Unknown predicted Violation of STP

Game 1 0.1700 0.6800 0.2250 0.5877 No

Game 2 0.4700 0.6500 0.3750 0.4390 Yes

Average 0.6700 0.32 0.3000 0.5053 Yes

FIGURE 7 | Possible probabilities that can be obtained from Game 1 (left), Game 2 (center) and the average of the Games of the work of Croson (1999),

using the quantum law of total probability.

As a first thought, we noticed that the average of the results
could be the cause of such impossibility, because they were not
the true probabilities of the events reported. So, we decided to
analyse the outcome of each experiment of the work of Croson
(1999) individually. Table 9 specifies those results.

We again analyzed the individual results of Table 9, and again,
we could not find any quantum θ parameter that would lead
to the computation of probabilities with a 0%. On the contrary,
the minimum fit errors found were 64.89, 83.25, and 17.06% for
Game 1, Game 2 and the Average of these games, respectively.
Figure 7 present all possible probabilities that can be computed
using the quantum law of total amplitude.

Analysing Game 1 (Figure 7, left), the probability that leads
to the smallest fit error is obtained when both θ parameters are
set to zero, with a probability of 0.4123. The observed probability
reported in this experiment corresponds to 0.2250, leading to a
computed fit error of 64.69%.

For Game 2 (Figure 7, center), when θ1 = 0 and θ2 = π , we
obtain the probability that leads to the smallest fit error, which is
0.4390, with a fit error of 83.25 %.

When computing the average of both games (Figure 7, right),
the quantum θ parameters found were θ1 = 0 and θ2 = 0. This
leads to a probability of 0.4947, corresponding to a fit error of
17.06%.

7.1.2. Analysing Li and Taplin (2002) Experiments
Table 10 specifies the results collected by Li and Taplin (2002),
which corresponded to the average of the results obtained in
seven different experiments for the Prisoner’s Dilemma game.
In this section we analyse each of these seven experiments, by
trying to predict their outcome using the proposed Bayesian
Network.

The results reported in the experiments conducted by Li
and Taplin (2002) are presented in Table 10. Note that Games
3, 6 and 7 are not violating the Sure Thing Principle,
because: Pr

(

Defect
)

≥ Pr
(

Unknown
)

≤ Pr
(

Cooperate
)

or
Pr
(

Cooperate
)

≥ Pr
(

Unknown
)

≤ Pr
(

Defect
)

. Additionally,
the results reported for the unknown condition in Games 3,
6 and 7 are very close to the classical probability theory. The
goal of the study performed by Li and Taplin was to question
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TABLE 10 | Experimental results reported in work of Li and Taplin (2002) for the Prisoner’s Dilemma game for several conditions: when the action of the

second player is known to be Defect (Known to Defect), when the action of the second player is known to be Cooperate (Known to Collaborate), and

when the action of the second player was not known (Unknown).

Li and Taplin, 2002 Known Defect Known Cooperate Unknown Classical probability Violation of STP

Game 1 0.7333 0.6670 0.6000 0.7000 Yes

Game 2 0.8000 0.7667 0.6300 0.7833 Yes

Game 3 0.9000 0.8667 0.8667 0.8834 No

Game 4 0.8333 0.8000 0.7000 0.8167 Yes

Game 5 0.8333 0.7333 0.7000 0.7833 Yes

Game 6 0.7667 0.8333 0.8000 0.8000 No

Game 7 0.8667 0.7333 0.7667 0.8000 No

Average 0.8200 0.7700 0.7200 0.7950 Yes

The column Violations of STP corresponds to determining if the collected results are violating the Sure Thing Principle. The values in bold represent the experiments that are not violating

the Sure Thing Principle.

FIGURE 8 | Comparison of the results obtained for different experiments reported in the work of Li and Taplin (2002) in the context of the Prisoner’s

Dilemma game.

if there was really violations of the Sure Thing Principle under
the Prisoner’s Dilemma game. According to Table 10 three of the
seven experiments did not show a violation, and reported results
very similar to the classical probability theory.

By applying the proposed quantum-like Bayesian Network
each game in Table 10, we obtained the results illustrated in
Figure 8.

The experiments that achieved the highest fit error rates
correspond to Games 2 and 6. Game 6 corresponds to a situation
where the Sure Thing Principle was not being violated. This leads
to the conclusion that the proposed Bayesian Network can also
predict classical probabilities, but with some fit errors.

Table 11 shows the quantum parameters that were computed
and compares them with the parameters that would be expected
in order to obtain the smallest fit error percentage. One
thing worth mentioning in the computation of these quantum
parameters is their sensitivity. Consider the row of Table 11

addressing the results of Game 2. The difference between
expected quantum parameter with the one that was computed
using the similarity heuristic corresponds to a difference of just
0.0322. However, this small difference introduced a fit error
of almost 11.28% in the computation of the final probabilities.

Figure 9 illustrates the relation between the quantum θ

parameter and the final probabilities that can be obtained in Li’s
Game 2, Game 6 and the work of Busemeyer et al. (2006a).

Small changes in the θ parameters can lead to a completely
different probability outcomes. This has some relation with
deterministic chaos, in which small differences in initial
conditions yield widely diverging outcomes in a system. This
chaos suggests how difficult the task of predicting human
decisions is and how random it can be (Sterman, 1989).

7.2. Quantum Bayesian Network Applied to
the Two Stage Gambling Game
For the Two Stage Gambling Game, the overall results reported
very small fit errors. The highest fit error percentage achieved was
16.3% and corresponds to the work of Kuhberger et al. (2001).
Once again, the work of Kuhberger et al. (2001) is not showing
a violation to the Sure Thing Principle, enhancing the previous
conclusion that the proposed quantum-like Bayesian Network
works best in situation where this violation exists.

In what concerns the work of Lambdin and Burdsal (2007)
the proposed Quantum-Like Bayesian Network could not make
accurate predictions. Figure 10 show all possible probabilities
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TABLE 11 | Experimental results reported in work of Li and Taplin (2002) for the Prisoner’s Dilemma game.

Li and Taplin, 2002 Expected θ Computed θ Unknown Unknown predicted Fit error %

Game 1 3.0170 2.9845 0.6000 0.6313 5.21

Game 2 3.0758 3.0436 0.6300 0.7011 11.28

Game 3 2.8052 2.9810 0.8667 0.8113 6.39

Game 4 3.2313 3.0306 0.7000 0.7341 4.87

Game 5 2.8519 2.8511 0.7000 0.7006 0.08

Game 6 1.5708 2.9350 0.8000 0.7169 10.39

Game 7 3.7812 2.7365 0.7667 0.7159 6.63

Average 3.3033 2.9888 0.7200 0.7122 1.09

The entries highlighted correspond to games that are not violating the Sure Thing Principle. Expected θ corresponds to the quantum parameter that leads to the observed probability

value in the experiment. Computed θ corresponds to the quantum parameter computed with the proposed heuristic.

FIGURE 9 | Possible probabilities that can be obtained in Game 2 of the work of Li and Taplin (2002) (left). Possible probabilities that can be obtained in

Game 6 of the work of Li and Taplin (2002) (center). Possible probabilities that can be obtained in the work of Busemeyer et al. (2006a) (right).

FIGURE 10 | Possible probabilities that can be obtained in the work of Lambdin and Burdsal (2007). The probabilities observed in their experiment and the

one computed with the proposed quantum-like Bayesian Network are also represented.

that can be obtained by varying the quantum parameters. As one
can see, the minimum value that we can obtain corresponds to
0.4593. However, the observed probability reported by Lambdin
and Burdsal (2007) corresponds to 0.41. This leads to a fit error
of 12.02%.

In the work of Busemeyer et al. (2012), the authors applied
the quantum dynamical model to reproduce the results obtained

for the Two Stage Gambling Game and also explored the use
of Hierarchical Bayesian methods to estimate the values of
quantum parameters to simulate the player’s personal profile: risk
aversion, loss aversion, memory and choice. In the recent work
of Busemeyer et al. (2015), the authors also compare the quantum
model with a classical model using Bayes factor. They concluded
that the quantum approach was preferred by the Bayes Factor.
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7.3. Comparison with Other Works of the
Literature
In this section, we compare the results obtained with the
proposed Quantum-Like Bayesian Network with the Quantum
Prospect Decision Theory (Yukalov and Sornette, 2011). From
all the analyzed models, this is the only one that can be called
predictive due to its static heuristic: the Interference Quarter
Law. The reason why we proposed a dynamic heuristic is because
every decision problem is different and, consequently, quantum
interference effects should also be different and not static. In the
Quantum Prospect Decision Theory, the quantum interference
term is fixed by the Interference Quarter Law, that is, the
quantum interference term in the law of total probability is fixed
to 0.25.

In the current model, since each decision problem is different,
the proposed heuristic will compute a quantum θ parameter
through similarities that the vector make between each other and
these vectors are constructed from the experimental data. So,
the vectors take into account the properties of each experiment,
making it possible to compute different quantum interference
terms for different decision problems.

Table 12 shows the results obtained for the Quantum Prospect
Decision Theory and for the Quantum-Like Bayesian Network
for the different works of the literature that tested violations to
the Sure Thing Principle in the Prisoner’s Dilemma Game and
the Two Stage Gambling Game.

In the end, the results from Table 12 demonstrate that, in
general, the proposed Quantum-Like Bayesian Network together
with the dynamic heuristic managed to fit the observed results
in the several different experiments with an average fit error of
6.3%, whereas the Quantum Prospect Decision Theory achieved
an average fit error of 16.51%.

One needs to take into account that in the Quantum
Prospect Decision Theory and in the proposed Quantum-Like
Bayesian Network, heuristics are used to estimate the quantum
interference effects. This means that the heuristic can lead to
a good fit of the data most of the times, but, in some cases, it
can lead to completely wrong results. In the Quantum Prospect
Theory, for instance, one can see the static Interference Quarter
Law heuristic performed several estimations with big fit errors.
The same is applied to the proposed Quantum-Like Bayesian

Network. The difference is that this last model makes use of
dynamic heuristics. Table 12 shows that the proposed dynamic
heuristic overestimated the results in the works of Busemeyer
et al. (2006a) and Kuhberger et al. (2001). This also happens
due to the sensitivity of the θ parameters already discussed in
Figure 9.

We also applied the Quantum Prospect Theory and the
proposed Quantum-Like Bayesian Network to all experiments
performed in the work of Li and Taplin (2002). Table 13 shows
again great discrepancies between the average fit error obtained
with the static heuristic of the Quantum Prospect Decision
Theory. In general, the proposed model manages to fit all the
different seven experiments with an average fit error of 6.41%,
whereas the Quantum Prospect Decision Theory achieved an
error of 24.23%. Most of the times, the Interference Quarter
Law managed to produce lower estimations of the results
observed during the several experiments. This shows that having
a dynamical heuristic that is able to adapt to the different
decision problems brings advantages in terms of predictive
effectiveness.

8. DISCUSSION AND CONCLUSION

In this work, we proposed an alternative quantum structure
to perform quantum probabilistic inferences to accommodate
the paradoxical findings of the Sure Thing Principle. We
proposed a Quantum-Like Bayesian Network, which consists
in replacing classical probabilities by quantum probability
amplitudes. However, since this approach suffers from the
problem of exponential growth of quantum parameters, we also
proposed a similarity heuristic that automatically fits quantum
parameters through vector similarities. This makes the proposed
model general and predictive in contrast to the current state of
the art models, which cannot be generalized for more complex
decision scenarios and that only provide an explanatory nature
for the observed paradoxes.

In Section 1.3, we established a set of research questions that
we would like to address with the present research work. Their
answers are detailed below.

1. Why do we need another quantum-like model to explain
violations to the Sure Thing Principle?

TABLE 12 | Comparison between the Quantum Prospect Decision Theory (QPDT) model and the proposed Quantum-Like Bayesian Network (QLBN) for

different works of the literature reporting violations to the Sure Thing Principle.

Literature Pr(Defect) Pr(Defect) Fit error Pr(Defect) Fit error

Observed Computed (QPDT) (QPDT) Computed (QLBN) (QLBN)

Shafir and Tversky, 1992 0.6300 0.6550 0.0397 0.6408 0.0171

Li and Taplin, 2002b 0.7200 0.5450 0.2431 0.7122 0.0108

Busemeyer et al., 2006a 0.6600 0.6250 0.0531 0.7995 0.2113

Hristova and Grinberg, 2008 0.8800 0.7000 0.2045 0.8968 0.0191

Tversky and Shafir, 1992 0.3700 0.3850 0.0405 0.3641 0.0159

Kuhberger et al., 2001 0.4800 0.3450 0.2813 0.4018 0.1629

Lambdin and Burdsal, 2007 0.4100 0.2900 0.2927 0.4085 0.0037

Average fit error – – 0.1651 – 0.0630

b corresponds to the average of all seven experiments reported. The values in bold represent the models that obtained the lowest Fit error.
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TABLE 13 | Comparison between the Quantum Prospect Decision Theory (QPDT) model and the proposed Quantum-Like Bayesian Network (QLBN) for

all the different experiments performed in the work of Li and Taplin (2002).

Literature Pr(Defect) Observed Pr(Defect) Computed (QPDT) Fit error (QPDT) Pr(Defect) Computed (QLBN) Fit error (QLBN)

Game 1 0.6000 0.4502 0.2497 0.6313 0.0522

Game 2 0.6300 0.5333 0.1535 0.7011 0.1129

Game 3 0.8667 0.6334 0.2692 0.8113 0.0639

Game 4 0.7000 0.5667 0.1904 0.7341 0.0487

Game 5 0.7000 0.5333 0.2381 0.7006 0.0009

Game 6 0.8000 0.5500 0.3125 0.7169 0.1039

Game 7 0.7667 0.5500 0.2826 0.7159 0.0663

Average fit error – – 0.2423 – 0.0641

The values in bold represent the models that obtained the lowest Fit error.

Many of the models that have been proposed in the literature
cannot be considered predictive. Most of these models require
a set of quantum parameters to be fitted and, so far, the only
way these models have to fit the parameters is to use the final
outcome of the experiment to set the parameters in order to
explain the experimental outcome. There is, however, one model
in the literature that proposed a static heuristic to compute
the quantum interference effects and can be called predictive.
This model is the Quantum Prospect Decision Theory, proposed
by Yukalov and Sornette (2011).

2. What is the advantage of the proposed approach? How can
it make a difference toward the current well-established quantum
models that have been proposed in the literature?

Since each decision problem is different, we believe that
a quantum decision model would benefit from a dynamic
heuristic that could take into account the decision problem’s
settings and come up with estimations for the quantum
interference parameters. In the proposed model, quantum
parameters are found based on the correlations that the
vectors share between them. These correlations are explored
through vector similarities that are computed using the Law
of Cosines in a vector space. In this sense, we suggest that
the quantum parameters that arise from interference effects
might represent some degree of similarity between events. The
previous work of Moreira and Wichert (2015) point out this

semantic relation between vectors. In the end, the proposed

model can be seen as a nonparametric method for estimating
inference effects from a statistical point of view. It is a
statistical model that is simpler than the previous Quantum
Dynamical Model (Pothos and Busemeyer, 2009) and Quantum-
Like Approach (Khrennikov, 2010) models proposed in the
literature. The method makes use of the principles of Bayesian
Networks, in order to obtain a more general and scalable model
that can produce competitive results over the current state of the
art models.

Experimental data demonstrated that the proposed heuristic
managed to produce accurate fits to the data, overcoming the
previously proposed Quantum Prospect Theory. This suggests
that taking into account a dynamic estimation of quantum
parameters is a good direction to build quantum-like predictive
models.
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This opinion paper reviews progress with
the quantum similarity model (QSM),
which was proposed by Pothos et al.
(2013). In the QSM, concepts are asso-
ciated with subspaces, the mental state
is a state vector in a Hilbert space,
and similarity between two concepts is
computed in terms of the sequential pro-
jection, between the corresponding sub-
spaces. If there is a relevant context, this
is incorporated as prior projections (e.g.,
Figure 1).

The QSM was developed as a way to
primarily cover the empirical findings of
Tversky (1977). Tversky (1977) reported a
series of results for (mostly) simple (non-
analogical, see below) pairwise similar-
ity judgments. Tversky’s (1977) research
severely challenged the dominant similar-
ity models at that time, based on met-
ric spaces and distances. Such models are
constrained to obey the metric axioms
(as long as similarities are simple func-
tions of distances). Yet, in his seminal
work, Tversky reported violations of all
three metric axioms (minimality, symme-
try, triangle inequality), in the similarity
judgments of naïve observers. Moreover,
Tversky reported a so-called diagnosticity
effect, where the same similarity judgment
could change greatly, depending on which
other stimuli were present in a (broadly)
relevant context set.

All of Tversky’s (1977) findings reveal
intuitions about human similarity that
are, initially at least, very surprising. For

example, how can it be possible that the
similarity between (simplifying his exam-
ple) China and Korea be less than Korea
and China? Yet, some thought shows
that we indeed prefer to judge a non-
prominent object (e.g., Korea) as more
similar to a prominent one (e.g., China),
as compared to the reverse order. Equally,
how can it be possible that Austria is
seen as more similar to Sweden than to
Hungary in the context of Poland, but
more similar to Hungary than to Sweden
in the context of Norway?

Tversky’s findings have been a major
focus of subsequent theoretical work
on similarity judgments. Some of the
most prominent models are the distance-
density model (Krumhansl, 1978), gen-
eral recognition theory (Ashby and Perrin,
1988), and the generalized context model
(Nosofsky, 1988; this is a theory of cat-
egorization, rather than similarity, yet
Nosofsky considered in his influential
work how to accommodate Tversky’s find-
ings as well, e.g., Nosofsky, 1991). Limited
space prevents us from a detailed anal-
ysis of this work. Overall, we think that
while such work has provided many excel-
lent intuitions regarding human similarity,
its application to Tversky’s (1977) findings
is not uniformly satisfactory. This was a
consideration that in part motivated the
QSM.

Another motivating consideration has
been the recently proposed model for the
conjunction fallacy, based on quantum

theory (Busemeyer et al., 2011). The
conjunction fallacy is a famous result in
decision making, whereby naïve observers
judge a hypothetical person, Linda, to be
more likely to be both a Bank teller and a
feminist, than just a bank teller (Tversky
and Kahneman, 1983). Of course, such
a result is paradoxical, if one employs
the rules of classical probability theory.
Tversky and Kahneman (1983) suggested
that naïve observers in their experiment
employed a so-called representativeness
heuristic, judging Linda to be more sim-
ilar to the category of bank tellers and
feminists. Thus, at the heart of the expla-
nation for the conjunction fallacy is the
idea that participants employ a similarity
process (see also Shafir et al., 1990, for fur-
ther validations of this idea). The quantum
model for the conjunction fallacy indeed
reflects operations that involve the overlap
of a state vector (representing the men-
tal state of participants) and subspaces
(which correspond to different concepts in
the participants’ knowledge space, e.g., the
idea that a woman can be a feminist; cf.
Sloman, 1993). Thus, we were interested in
whether the quantum model for the con-
junction fallacy could be extended, more
or less as it is, to function as a model of
some aspects of similarity. This was indeed
the approach that was adopted by Pothos
et al. (2013) and the QSM is structurally
and procedurally nearly entirely equiva-
lent to Busemeyer et al’s (2011) model
for the conjunction fallacy. That the same
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FIGURE 1 | An illustration of the series of projections, relevant to the similarity of Sweden to

Austria, in the context of Poland and Hungary (assuming all countries are represented as

rays). The red line shows the series of projections: P Hungary PPoland PSwedenPAustria | ψ 〉

. Similarity is
the squared length of this projection (indicated in green). The last two projections correspond to the
similarity comparison and the first two to the context. Note, also, that projections across context
elements need be counterbalanced, but, for simplicity, in the example we illustrate only one order
(from Hungary to Poland). Finally, with this context, the similarity judgment is going to be higher,
compared to having context elements not grouped together.

principles can provide a route for
explaining both aspects of decision-
making and similarity enables the exciting
possibility that a formal unification may
be possible between these two seemingly
disparate aspects of cognition.

One emphasis of the QSM has been
the demonstration of asymmetries in sim-
ilarity judgments. In the QSM this arises
in part because concepts are represented
as subspaces. Note that the use of sub-
spaces as such is not a uniquely quantum
feature of the QSM, but the lack of com-
mutativities in projection sequence (which
contributes to the emergence of asymme-
tries) is. Subspaces can have rich inner
structure, corresponding e.g., to the char-
acteristics of a concept. Thus, concepts
for which we have more knowledge (such
as China, if we imagine ourselves in the
shoes of Tversky’s participants in 1977)
will be represented by a higher dimension-
ality subspace, contrasting with concepts
for which we have less knowledge (such
as Korea). Together with an assumption
that the mental state prior to a (simple)
similarity comparison is neutral between
the two concepts to be compared, this
enables a natural emergence of asymme-
tries in human similarity judgments, in the
predicted direction. More generally, con-
ceptually, we think that representations as
subspaces are an important advance. This
is because representations in the QSM can

have inner structure, not just in terms of
a list of characteristics, but also in terms
of how the characteristics relate to each
other. By contrast, in traditional spatial
representations, with concepts being rep-
resented as points or vectors, there is no
possibility of such structure at all. This
would be the case even in e.g., Latent
Semantic Analysis approaches to represen-
tation, which have proved extremely useful
and influential (e.g., Dumais, 2004; see
also Kitsch, 2014; Kitsch, for an insightful
comparison between the QSM and Latent
Semantic Analysis; note that in Kitsch’s
(2014), approach, vectors are given vari-
able length, and this can capture differ-
ences in degree of knowledge). But even in
Tversky’s (1977) feature-based approach,
concepts would be lists of features, and
Tversky (1977) did not consider how
dependencies among features could be
incorporated in his model.

The way violations of the triangle
inequality arise in the QSM is very simi-
lar to how Tversky (1977) suggested such
effects arise. Because in the QSM repre-
sentations are subspaces, different regions
in the overall space end up reflecting the
features characteristic of the correspond-
ing concepts. So, for example, imagine a
region in the overall space with Russia
and Cuba. This region will overall reflect
the property of communism, noting that
both Russia and Cuba are consistent with

this property (thinking again as partici-
pants in Tversky’s experiment in 1977).
Then, imagine a region different to the first
one containing Cuba and Jamaica. The
shared characteristic of Cuba and Jamaica
is their geographical proximity (they are
both in the Caribbean), so this second
region will likewise correspond to this
property. It should be hopefully straight-
forward to then see how, if Cuba is on
the boundary of the communism and
Caribbean regions in psychological space,
we can have Cuba highly similar to Russia,
Cuba highly similar to Jamaica, but Russia
and Jamaica dissimilar from each other,
thus violating the triangle inequality. It
has to be noted, however, that the trian-
gle inequality is not a challenge for stan-
dard (non-linear) distance-based models
of similarity. This is because the triangle
inequality is already violated if one relates
distance and similarity, via a non-linear
function (such as the standard exponen-
tially decaying function; Nosofsky, 1984;
Shepard, 1987). Nevertheless, it is clearly
important for a similarity model to cover
violations of the triangle inequality in a
convincing manner. Note, violations of the
triangle inequality have been the focus of
an alternative similarity model, based on
quantum theory (Aerts et al., 2011).

A great focus for further work with
the QSM concerns the diagnosticity effect.
This is because the diagnosticity effect has
proved difficult to replicate (e.g., see Evers
and Lakens, 2014). We are interested in
exploring whether the QSM model can
provide insight into why the diagnosticity
effect has proved elusive in its replica-
bility. The diagnosticity effect is also sig-
nificant because the quantum formalism,
overall, is often said to embody strong
contextual influences. So, perhaps, quan-
tum theory would be particularly suitable
for modeling context effects in similarity
judgments? Well, the diagnosticity effect
does emerge fairly naturally from the
QSM, but the mechanisms that allow this
are not the traditional contextual mech-
anisms in quantum theory (e.g., relating
to entanglement or incompatibility). In
the QSM, the contextual influences rel-
evant to the diagnosticity effect emerge
from the way prior projections are used
to capture sensitivity to the grouping of
context elements. In other words, the dif-
ficulty lies in the fact that contextual
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influences in similarity specifically depend
on the degree of grouping of some of
the options in the relevant choice set. For
example, in Tversky’s (1977) demonstra-
tion, participants were asked to decide
which country is most similar to Austria,
between Sweden, Hungary, and Poland.
More participants chose Sweden, but when
the choice set included Sweden, Hungary,
and Norway, they chose Hungary. What we
might call the “traditional” mechanisms
for contextual influences in quantum the-
ory are not sensitive to the similarity struc-
ture of the relevant options.

Contextual influences in the QSM arise
in the following way. Similarity compu-
tations are based on projecting (laying
down) the state vector (which represents
the current mental state) onto different
subspaces (which represents the concepts
relevant in the similarity task; Figure 1).
This projection operation can be highly
order dependent in quantum theory. Of
relevance, the outcome of a projection
sequence is sensitive to the grouping of
the subspaces across which projection
takes place. If the subspaces are grouped
together, then a projection sequence pre-
serves the length of the state vector and
vice versa. Thus, to account for the diag-
nosticity effect in the QSM, we postu-
lated that, in a forced choice task (such
as the one employed by (Tversky, 1977),
in his diagnosticity formulation), prior to
the projections corresponding to the ele-
ments in the similarity judgment, there
would be projections corresponding to the
other elements in the choice set. So, for
example, if a participant is considering
which between Sweden, Hungary, Poland
is most similar to Austria, and is specifi-
cally evaluating the option of Sweden, then
the similarity comparison would consist of
projections from Sweden to Austria, but
also there would be prior projections to
Hungary and Poland. Using this scheme,
with fairly minimal assumptions about
the representation of the relevant stimuli,
the diagnosticity effect emerges from the
QSM.

One important challenge in further
developing the QSM is further formaliz-
ing the way contextual influences are taken
into account. The idea of incorporating
context as prior projections works well,
but it has a heuristic feel to it. Can the
QSM be extended such that these prior

projections can be motivated in a more
rigorous way (cf. Lambert-Mogiliansky
et al.’s, 2009, quantum model of fram-
ing effects)? Moreover, as noted, can the
QSM generate any new predictions regard-
ing the emergence or suppression of the
diagnosticity effect? Since Tversky’s (1977)
work, there has not really been much fur-
ther examination (or little that has reached
the journals), which is surprising (in the
sense that the idea of context in similarity
judgments seems like a vast topic). These
questions are an important focus for our
current work with the QSM.

Another important focus concerns so-
called analogical similarity judgments
(e.g., Goldstone, 1994; Gentner and
Markman, 1997). Analogical similarity
refers to the idea that, for example, if we
are comparing two people, Jim and Jack, if
they both have black hair, this will increase
their similarity, but if Jim has black hair
and Jack has black shoes (and blond hair),
this will have less impact on their similar-
ity. That is, work on analogical similarity
recognizes that objects often consist of
separate components. Commonalities on
matching components (e.g., black hair)
increase similarity more so than com-
monalities on mismatching components
(e.g., black hair and black shoes). It is cur-
rently unclear whether there is a genuine
distinction between cognitive processing
corresponding to basic similarity tasks (as
in Tversky, 1977) and analogical similar-
ity ones (some researchers have suggested
that different cognitive systems may medi-
ate the two types of judgments; Casale
et al., 2012). Nevertheless, there have been
largely separate corresponding literatures,
with different objectives. We think that
the QSM can be extended to incorporate
analogical similarity, because quantum
theory already has extensive machinery in
place for combining individual compo-
nents into a whole (cf. Smolensky, 1990).
We have been pursuing an approach based
on tensor products and we are optimistic
that a concrete proposal will be forth-
coming soon (Pothos and Trueblood,
2015).

Finally, the QSM is only part of a
broader effort within the quantum cog-
nition community to understand simi-
larity using quantum processes. A more
challenging, though important objective,
would be to examine the formal relation

between QSM and, for example, Aerts’s
(2009) model for conceptual combina-
tion or Lambert-Mogiliansky et al.’s (2009)
model of framing effects.
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A macroscopic violation of
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with behavioral observables
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In this paper we applied for the first time the no-signaling in time (NSIT) formalism
discussed by Kofler and Brukner (2013) to investigate temporal entanglement between
binary human behavioral unconscious choices at t1 with binary random outcomes at
t2. NSIT consists of a set of inequalities and represents mathematical conditions for
macro-realism which require only two measurements in time. The analyses of three
independent experiments show a strong violation of NSIT in two out of three of them,
suggesting the hypothesis of a quantum-like temporal entanglement between human
choices at t1 with binary random outcomes at t2. We discuss the potentialities of using
NSIT to test temporal entanglement with behavioral measures.

Keywords: no-signaling in time, temporal entanglement, non-local correlation in time, human choices, random
events

Introduction

The possibility to use mathematical and statistical formalisms adopted in quantum mechanics
for the study of biological (e.g., Engel et al., 2007; Blankenship and Engel, 2010) and cognitive
phenomena (e.g., Wang et al., 2014) is not only a theoretical proposal but a rich field of empirical
research (see Khrennikov, 2010; Busemeyer and Wang, 2014, for a review).

The application of quantum formalisms to domains other than quantum physics –such as
biological or mental processes- is independent to the hypothesis that processing of information
by biological systems is based on quantum physical processes within these systems. This approach
known as “quantum biological information” is based on the quantum-like paradigm: biological
systems of sufficiently high complexity process information in accordance with laws of quantum
information theory (Khrennikov, 2010; Hameroff et al., 2014).

However, documenting the usefulness of such mathematical algorithms in modeling decision
processes, memory, or consciousness, opens the possibility that the biological substrate constitutes
the basis for the emergence of these quantum phenomena. This proposition is controversially
discussed and only few researchers share this idea (see, e.g., Hameroff and Penrose, 2014). Themain
argument against the existence of quantum coherence or entanglement in biological systems like
the brain refers to decoherence as a strong boundary condition of quantum phenomena (see, e.g.,
Tegmark, 2000; Jumper and Scholes, 2014). Decoherence of quantum states seems to occur with
such a high frequency that these effects would be impossible to operate on macroscopically relevant
spatial distances or time scales (Tegmark, 2000). This would imply that non-temporal correlations
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between temporally separated events in the range of several 100
of milliseconds or even up to seconds would be highly unlikely.
In other words, the brain or the parts of it that are involved
in actual information processing constitute a macroscopic entity
and non-temporal correlations for macroscopic events are quite
rare or even impossible (see Tegmark, 2000; but see Hameroff
et al., 2014).

Independently of the quantum mind discussion, recently,
in psychology, non-temporal correlations between temporally
separated events (from a few 100 ms up to several minutes)
have been observed (see, e.g., Mossbridge et al., 2012; Bem
et al., 2014; Maier et al., 2014). These phenomena usually
involved a behavioral or physiological response at time 1 (RP
t1) and an activating event happening later at time 2 (AE
t2). In these studies a retro-causal influence and therefore
temporally non-local correlations of AE t2 on RP t1 were
reported.

Since the Maier et al.’s (2014) studies will be re-analyzed
within this article, we will refer to their data in more detail here
to illustrate the basic finding. In a series of four out of seven
studies a selective key-press at time 1 (left or right) was affected
by the random assignment of negative or non-negative picture
presentations at time 2. On average the participants were able to
avoid negative future events. The random assignment at t2 was
performed based on a pseudo random number generator (PRNG)
in Studies 1, 2, and 3 and with a quantum based random number
generator (RNG) in Study 4. In other words the events at t1 and
t2 were classically uncorrelated. The findings, however, indicated
that event t1 was affected by event t2 which could only be the
case if these macroscopically occurring events were in a state of
temporally non-local correlation. Although Maier et al. (2014)
reported a significant avoidance effect at t1 being affected by the
event on t2, a direct test of temporal non-locality has not been
performed. The goal of the data presented here is to fill this gap
by providing such a test.

Entanglement in time or temporal non-locality, that is a
non-causal correlation between events measured at successive
time frames, is one of the many “odd” phenomena studied in
quantum physics and mathematical tools have been developed
to test the existence of these effects within the empirical
data.

Although a commonly accepted mathematical algorithm for
a strict test of temporal non-locality does not exist, some
mathematical inequalities that can be applied to temporally
distinct physical or mental states have been developed to test
the quantum-nature of the underlying physical or cognitive
mechanisms. If the inequalities applied to the data are found to
be violated, they would indicate the involvement of superposed
states.

Contextual LG Inequality and No-Signaling in
Time (NSIT) Inequality
The theoretical foundations were originally discussed by Leggett
and Garg (1985) as a temporal variant of John Bell inequalities
which mainly address entanglement or non-local correlations in
space. A violation of the Leggett–Garg-equation would confirm
quantum-like superposed states between temporally separated

events and is thus a pendant of the Bell inequalities for the
time dimension. Whereas non-local temporal effects are intensely
investigated in quantum physics (e.g., Olson and Ralph, 2012;
Aharonov et al., 2014), there are still only few analyses of
this type applied to human cognition. Atmanspacher and Filk
(2010, 2012, 2013) were probably the first to test temporal
non-locality to bistable perception applying their Necker–Zeno
model which requires three different measures. Similarly, Asano
et al. (2014), derived an analog of the Leggett and Garg (1985)
inequality, “contextual LG inequality,” and used it as a test of
“quantum-likeness” of statistical data collected in a series of
experiments on recognition of ambiguous figures. The Leggett–
Garg approach has some limitations since this test can only be
applied for situations involving three consecutively occurring
events. For two event scenarios, as is the case in the Maier
et al. (2014) research, the Leggett–Garg equation cannot be used.
Fortunately, recently a test of non-local correlations for two
consecutive events has been developed (Kofler and Brukner,
2013).

The No-Signaling in Time (NSIT) Inequality
Kofler and Brukner (2013), discuss NSIT as a further necessary
condition to satisfy the Leggett–Garg inequalities to test macro-
realism defined by the postulates that (a) macroscopic objects
which may have two or more macroscopically different states,
at any given time, are in a single specific state, (b) it is possible
to measure this specific state without changing it, and, (c) the
properties of this macroscopic object are determined exclusively
by the initial conditions.

NSIT requires only two measurements in time of two
dichotomous observables, A and B, that may assume only two
distinct states ±1. Hence, the basic scenario is: At1 = ±1,
Bt1 = ±1 and At2 = ±1, Bt2 = ±1.

In accordance with the principle of NSIT the outcome
probabilities for one part must not depend on the outcome
probabilities of the second part and it is expressed by the
following formula:

P(Bt2 = + 1) = P(At1 = − 1,Bt2 = + 1) +
P(At1 = + 1,Bt2 = + 1) and symmetrically

P(Bt2 = − 1) = P(At1 = + 1,Bt2 = − 1) +
P(At1 = − 1,Bt2 = − 1) (1)

A violation ofNSIT condition could be a first indicator that the
mental state evolution cannot be described classically and may be
explained by temporally distinct cognitive states existing in a state
of superposition.

It is important to note that the temporal non-locality
interpretation of NSIT is not straightforward and commonly
accepted within the scientific community. The most accepted
interpretation of violations of NSIT is that the data that violate
these equalities are based on cognitive processes that most likely
behaved quantum like. This includes the possibility that the
underlying mechanisms are best described as information states
that co-exist in a state of superposition. Such a quantum-like
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behavior of cognitive states could be considered as being a
pre-condition for temporal non-locality to occur. In the analyses
presented here we tested this pre-condition. To our knowledge,
this is the first attempt to test this formalism in human behavioral
tasks.

Materials and Methods

Description of the Experimental Data
Here we report the analyses of the three formal experiments
in Maier et al.’s (2014) work, Study 1, Study 2, and Study 4
carried out with participants in the laboratory and with identical
conditions and instructions to the participants. Our selection
was based on the fact that only in these studies a retro-causal
effect of t2 on t1 was observed. One successful study, Study 3,
was eliminated since it was completed by a web-based program
and participants could not be monitored during their task
execution. Thus, only methodologically rigorously obtained data
were included. A more detailed description of these experiments
is presented in Maier et al. (2014).

Participants
In all experiments participants were recruited among the
undergraduate and graduate students of the University of
Munich, Stony Brook NY, and Barcelona. The number of
participants was 111, 201, and 327 for Study 1, Study 2, and Study
4, respectively.

Procedure
Each participant was tested individually in a quiet lab room. After
the completion of two preliminary tasks, lasting approximately
20 min and being unrelated to the crucial study, which were
devised in order to increase the cognitive fatigue for inducing a
more intuitive approach, participants were informed about their
new task. A written instruction was presented on the screen: ‘In
the following experiment you have to press two keys on the key-
board as simultaneously as possible. You will see this instruction
on the monitor’s screen: Please Press the Keys. While seeing this
instruction, please press both keys as simultaneously as possible!
Afterward colored stimuli will be presented which you should
simply watch.’

After the participants read the instructions, the experimenter
explained that the participants should put their index fingers on
the left and right cursor keys of the keyboard. Both keys were
placed on the table in front of the participants exactly at the same
horizontal position as the midpoint of the computer screen. The
experimenter emphasized that both index fingers should slightly
touch the cursor keys throughout the experiment, and once the
command appears they should press both keys as simultaneously
as possible. Participants were informed that there is no rush, but
the response should be spontaneous, and that after the key-press
they should simply watch the following presentation of a colored
stimulus.

Each trial started with the key-press command presented on
the screen. Once the key-press was performed, the command
line disappeared and, after a 500 ms delay with a black screen, a

masked positive (Study 1 or neutral, Studies 2 and 4) or negative
picture was presented. Themasked picture presentation consisted
of three consecutive stimulus presentations.

First, a masking stimulus was presented for 72 ms, followed
by the presentation of a negative or positive (neutral) picture
for 18 ms, again followed by the same mask for 72 ms. Each
negative and positive (neutral) picture was combined with
an individual mask. The masking stimulus was constructed
by dividing the original picture into small squares that were
randomly rearranged. The resulting mask consisted of the
same color and lightness properties as the original picture
and could therefore effectively mask the content of the
picture ensuring a subliminal presentation. According to our
theoretical model, subliminal perception is critical to allow
a superposition of the information states in time. After the
second masking stimulus had disappeared, a 3000 ms inter-
trial interval appeared before the key-press command initiated
the next trial. A total of 60 trial presentations were used in
all studies. The 60 experimental trials were preceded by three
practice trials with neutral pictures helping the participants to
familiarize themselves with the task. Pictures were taken from
the International Affective Picture System (IAPS; Lang et al.,
2008).

Although participants were told to press both keys
simultaneously, due to the design of a typical computer
keyboard, one of two keys is always triggered first. Thus, in
any given trial, either a left or a right key-press was registered
even though participants subjectively performed a simultaneous
two-key-response. For Studies 1 and 2 a closed deck procedure
was applied, that is in half of the trials, triggering a left key
resulted in a positive (neutral) masked picture presentation and
a right key in a negative one. In the other half, key and valence
assignment were exactly reversed. The randomization procedure
provided by E-PrimeTM was used to randomize the order of
trial presentation. The 10 positive and 10 negative pictures
were randomly assigned to each trial with the restrictions that
each picture could maximally be presented six times within a
study [i.e., if a participant always ‘chooses’ a positive picture
presentation, 60 (6 × 10) positive (neutral) pictures would be
presented]. In Study 4 an open deck procedure was used, that
is the exact assignment to left and right key press and neutral
vs. negative picture presentation was abandoned. Also, in this
study a quantum-based randomizer, i.e., a true RNG, was used
for randomization. Randomized trial selection was performed
at the beginning of each trial. After the completion of the 60
trials participants saw each masked picture presentation again
and were asked after each whether they could recognize anything
and, if so, what.

None of the participants in each of the experiments reported
here could precisely name the content of any picture. Thus, the
masking procedure met the criterion of subjective unawareness
(from Maier et al., 2014, pp. 130–132).

In Studies 2 and 4, material, design, and procedure were the
same as in Study 1 with the one difference that the 10 negative
pictures from Study 1 were used together with 10 neutral instead
of positive pictures. Again, the pictures were taken from the IAPS;
(Lang et al., 2008).
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In Study 4, the only difference with respect to Study 2 was
that the randomization was obtained by using a quantum based
number generator (QRNG) from www.idquantique.com.

Formal Mathematical Representation
There are two random variables A = A_{t_1} and B = B_{t_2}.
The first one corresponds to the first task where the right and
left keys determine the values A = +1 and A = −1, respectively.
The nature of another variable is more complicated. The task at
t_2 determining B is the subliminal perception of a positive or a
negative emotional picture. In psychology this task is considered
a “response.” Now if we assume that these random variables
can be represented in the classical probabilistic framework, i.e.,
there can be introduced the joint probability distribution for
their values P(A = x, B = y), the additivity of probability
implies that P(B = y) = P(A = +1, B = y) + P(A = −1,
B = y).

Typically in applications this equality is treated in the form of
the formula of total probability

P(B = y) = P(A = + 1)P(B = y/A = + 1) +
P(A = − 1)P(B = y/A = − 1)

This formula is violated in a variety of psychological tasks
related to disjunction, conjunction and order effects and
various probability fallacies (see, for example, Khrennikov, 2010;
Busemeyer and Bruza, 2012; Wang et al., 2014).

The main distinguishing feature of the present study is that
we couple the violation of the formula of total for statistical
data collected in experiments with humans with (non)signaling
problem in quantum physics, i.e., time is fundamentally involved
into the experimental scheme.

Application of NSIT Formalism
The left-hand side of equation (1) P(Bt2 = ±1) was estimated
with a mean equal to 0.5 and a SD of 0.5 assuming a correct
randomization.

The probabilities of the right-hand of equation 1, were
empirically drawn cross-tabulating the data obtained in the three
experiments (see Supplementary Material).

Following the suggestion of Khrennikov et al. (2014), we
estimated the SEM of P(Bt2 = ±1) taking in account the number
of trials of each experiment. The ratio of the observed NSIT with
the SEM was used as an estimate of the NSIT violation.

Results

In Table 1 we report the results of the application of the NSIT
inequality and the standardized deviation with respect to the P(B
t2 = ±1) in SE.

The �σ values which represent the violation of NSIT
inequality in term of the number of SE from the expected
probability at t2, 0.5 in our case, show a clear and strong NSIT
violation both in the first two experiments and in the analysis of
the total trials weighted for the number of trials. It is unclear to
us why the NSIT analysis did not reveal a violation for Study 4.

TABLE 1 | Results of the three experiments.

Study N trials SE NSIT �σ

Study 1 6660 0.006126 0.068 11.1

Study 2 8160 0.005535 0.261 47.23

Study 4 19611 0.003570 0.000 0.00

Total 34431 0.002694 0.0757 29.09

Weighted total 0.0279 10.37

SEM, standard error of mean; NSIT, no-signaling in time; �σ = NIST/SE.

One reason could be the different approaches to realize the trial
randomization. Although PRNGs have been used in Studies
1 and 2 and a true RNG was applied in Study 4, PRNG and
trueRNG both equally produce random events especially when
the seed number and the algorithm used for the PRNG procedure
was unknown to the participants, which is the case for our Studies
1 and 2. Raw data for independent analyses are available on
http://figshare.com/articles/No_Signaling_in_Time_Raw_Data/
1383260.

Discussion

Applying quantum mathematical formalisms to test the
quantum-likeness of cognitive and behavioral phenomena
is becoming more and more popular within the scientific
community. In this study we applied the NSIT formalism to
investigate temporal entanglement between binary human
behavioral unconscious choices at t1 with binary random
outcomes at t2. This is, to our knowledge, the first time that
NSIT formalism has successfully been applied to psychological
data sets. The results of three independent experiments showed
a strong violation of NSIT suggesting the hypothesis of a
quantum-like temporal entanglement between the choices at t1
with binary random outcomes at t2 in Studies 1 and 2. However,
a null result was observed in Study 4. Overall, it seems that for
the majority of the data evidence for temporal entanglement
could be found.

Our results therefore support the idea of exploring quantum
phenomena with data obtained with psychological variables
involving unconscious decision making based on automatic
affective processes. NSIT could thus be a valuable tool to test
quantum effects in similar paradigms since most psychological
experiments consists of activating events and corresponding
responses. The main goal of our analyses was to introduce
this powerful set of inequalities to a broader psychologically
interested scientific community.

In any event, it is too early to be able to draw firm conclusion
about the effect of the differences between the studies on the
outcome of the NSIT analysis. At the moment, a pre-registered
replication of Study 4 is being undertaken and will be completed
in about 1 year. An additional analysis of these data with NSIT
will shed some more light on the usefulness and applicability of
the NSIT theorem in psychology.
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Quantum models of concept combinations have been successful in representing various

experimental situations that cannot be accommodated by traditional models based

on classical probability or fuzzy set theory. In many cases, the focus has been on

producing a representation that fits experimental results to validate quantum models.

However, these representations are not always consistent with the cognitive modeling

principles. Moreover, some important issues related to the representation of concepts

such as the dimensionality of the realization space, the uniqueness of solutions, and

the compatibility of measurements, have been overlooked. In this paper, we provide

a dimensional analysis of the realization space for the two-sector Fock space model

for conjunction of concepts focusing on the first and second sectors separately. We

then introduce various representation of concepts that arise from the use of unitary

operators in the realization space. In these concrete representations, a pair of concepts

and their combination are modeled by a single conceptual state, and by a collection of

exemplar-dependent operators. Therefore, they are consistent with cognitive modeling

principles. This framework not only provides a uniform approach to model an entire

data set, but, because all measurement operators are expressed in the same basis,

allows us to address the question of compatibility of measurements. In particular, we

present evidence that it may be possible to predict non-commutative effects from partial

measurements of conceptual combinations.

Keywords: concept combination, quantum cognition, data representation, unitary transformation, conjunction

1. INTRODUCTION

1.1. Concept Combinations in Quantum Cognition
The application of quantum models to cognitive phenomena is an emergent field known as
quantum cognition (Aerts, 2009; Pothos and Busemeyer, 2013). One of the areas in quantum
cognition that has received much attention is the study of concepts and their combinations (Aerts
and Gabora, 2005a,b; Aerts, 2007a,b; Aerts and Sozzo, 2011; Aerts et al., 2013). In a general setting,
a cognitive situation might include multiple concepts forming aggregated structures (Rips, 1995;
Fodor, 1998). For example, the concepts “Fruit” and “Vegetable” can be combined to form a
new concept “Fruit And Vegetable” (Hampton, 1988a). This example of a concept combination
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is built with the connective “And,” which is also an operation
mathematically defined in logic and probability. The question
becomes, is it possible to apply the mathematical definition of the
connective “And” to build the structure of “Fruit And Vegetable”
from the structures of “Fruit” and “Vegetable”? Cognitive
scientists have performed several experiments measuring various
semantic estimations including typicality, membership, and
similarity of concept combinations built with connectives such
as “And,” and “Not” (Hampton, 1997a, 1988a,b), and adjective-
noun compounds such as “Red Apple” (Medin and Shoben, 1988;
Medin, 1989; Kamp and Partee, 1995). The evidence collected
during two decades of research suggests that it might not be
possible to represent all the experimental data for concept
combinations using the mathematical structures of fuzzy logic or
probability theory. Quantum cognition proposes an alternative
approach.

While traditional models based on classical logic, probability,
or fuzzy set theory have failed to properly account for cognitive
phenomena exhibiting non-classical probabilistic features,
quantum models have consistently provided a framework
that easily encompasses these and other so-called cognitive
biases (Gilovich et al., 2002; Busemeyer et al., 2011) or
paradoxical phenomena (Aerts et al., 2011a). Quantum inspired
models have been successfully developed in the areas of decision
making (Aerts et al., 2011b, 2012b; Busemeyer et al., 2011;
Busemeyer and Bruza, 2012), psychology of categorization
(Aerts and Aerts, 1995; Blutner et al., 2013; Sozzo, 2014), human
memory (Bruza and Cole, 2005; Bruza et al., 2009, 2012), and
finances (Khrennikov, 2009; Haven and Khrennikov, 2013).
In this paper we will focus on the phenomena of concept
conjunction. However, since our analysis and methodology is
based on pure mathematical notions of the quantum mechanical
framework, the results presented in this paper can be extended
to other concept combinations (Veloz, 2015).

Aerts (2009) formally states the conditions that characterize
the existence of a classical probability model for concept
conjunction:

Definition 1. Let µ(A), µ(B), and µ(AB) be the membership
weights of an exemplar p with respect to a pair of conceptsA and B
and their conjunction AB. We say that these membership weights
are classical conjunction data if there exists a Kolmogorovian
probability space (�, σ (�), P), and events EA,EB ∈ σ (�) such
that

P(EA) = µ(A),

P(EB) = µ(B),

P(EA ∩ EB) = µ(AB).

(1)

Classical conjunction data characterizes the membership values
of the conjunction of concepts that can be modeled in a
classical probabilistic framework. It is therefore important to
characterize the notion of classical conjunction data in terms of
the membership weights.

Corollary 1. The membership weights µ(A), µ(B), and µ(AB) of
an exemplar p with respect to conceptsA, B, and their conjunction

AB are classical conjunction data if and only if

0 ≤ µ(AB) ≤ µ(A), (2)

0 ≤ µ(AB) ≤ µ(B), (3)

0 ≤ µ(A)+ µ(B)− µ(AB) ≤ 1. (4)

A large body of experimental evidence and a considerable
amount of data analysis indicate that the membership of
exemplars with respect to concept combinations does not form
classical conjunction data (Fodor and Lepore, 1996; Hampton,
1997a,b; Aerts and Gabora, 2005a,b). Namely, the membership
with respect to the conjunction of concepts is generally larger
than the membership of one of the former concepts, and thus
violates either conditions (2) or (3). This phenomenon is called
single overextension. When conditions (2) and (3) are violated
simultaneously, it is called double overextension. The violation
of condition (4) is called the Kolmogorovian factor violation.
We refer to (Pitowsky, 1989; Aerts, 2009) for an explanation of
this phenomenon.

In Supplementary Table 1, we show two cases reported in
Hampton (1988b). In the first case, the membership weight
µ1(AB) of the item p1 =“coffee table” with respect to the
conjunction A1B1 =“Furniture And Household Appliances”
is single overextended with respect to the membership
weights µ1(A) and µ1(B) of concepts A1 =“Furniture,”
and B1 =“Household Appliances,” respectively. In the second
case, membership weight µ2(AB) of the item p2 =“tree house”
with respect to the conjunction A2B2 =“Building And Dwelling”
is doubly overextended with respect to the membership
weigths µ2(A) and µ2(B) of the concepts A2 =“Building,” and
B2 =“Dwelling,” respectively.

The phenomenon of overextension has also been
demonstrated not only for membership estimations, but
also in typicality (Smith and Osherson, 1981; Hampton, 1996;
Storms et al., 1998), property relevance (Fodor and Lepore, 1996;
Hampton, 1997a,b; Aerts and Gabora, 2005a,b), and probability
estimations (Tversky and Kahneman, 1983; Moro, 2009).

1.2. The Quantum Approach to Concept
Combination
The quantum approach to concepts introduces two fundamental
assumptions that depart from classical approaches:

A1 Concepts are not represented by a set of instances. Instead,
a concept is assumed to exist in a state. A Hilbert space H is
introduced, and a unit vector |ψ〉 ∈ H represents the state of
the concept.

A2 Semantic estimations are not functions over the set of
instances. Instead, a semantic estimation is a measurement
operator,M : H → H, that projects onto a subspace ofH.

Concepts A and B are represented by the states |A〉 and |B〉,
respectively. When we consider the conjunction AB of these
two concepts, there are two different ways to combine the
concepts (Aerts, 2009). The first considers the conjunction of
concepts from an intuitive perspective in the sense that the
connective And does not play a logical role in the combination
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AB; instead the conjunctionAB is viewed as an emergent entity.
In particular, the quantum model assumes that the state of the
combined concept |AB〉 ∈ H is given by a superposition of the
states of conceptsA and B as follows:

|AB〉 = 1√
2
(|A〉 + |B〉). (5)

The second way considers the conjunction of concepts from a
logical perspective, in the sense that And does play a logical
role in the combination AB. In particular, the quantum model
assumes that the state of the combined concept |C〉 is modeled
in the tensor product space H ⊗ H, where each space in
the product captures the representation of the concepts in the
combination, while the entire space represents the conjunction.
The two quantum models of concept combination are presented
in Supplementary Material. These two modes can be unified in
a mathematical framework developed in quantum mechanics
called Fock space (Aerts, 2007a, 2009).

A Fock space is a direct sum of tensor products of Hilbert
spaces, where each space in the sum represents the state space
of a system having different numbers of particles (Meyer, 1995).
For the case of concepts, we model the state of the combination
of two concepts in the two-sector Fock space:

F = H⊕ (H⊗H). (6)

The first space, H, also called the first sector, represents the
concept combination as an emergent entity. The second space,
H ⊗ H, called the second sector, represents the concept
combination as a logical entity. The state of the combined
concept in the two-sector Fock space is hence a superposition of
the two modes of combination.

For example, when |C〉 = |A〉 ⊗ |B〉, the state |ψ〉 of the
concept combination is

|ψ〉 = ne θ1√
2
(|A〉 + |B〉)+

√

1− n2e θ2 |A〉 ⊗ |B〉, (7)

and the membership formula is given by

µ(AB) = n2
(

µ(A)+ µ(B)
2

+ℜ(〈A|M|B〉)
)

+
√

1− n2µ(A)µ(B),

(8)
for 0 ≤ n ≤ 1.

When n = 1, the membership weight µ(AB) corresponds to
the sum of the average of µ(A) and µ(B), plus an interference
term ℜ(〈A|M|B〉) bounded by

−
√

µ(A)µ(B) ≤ ℜ(〈A|M|B〉) ≤
√

µ(A)µ(B).

In the absence of interference, i.e., when ℜ(〈A|M|B〉) = 0,
the membership weight is simply the average of the former
membership weights. This particular case, which has been shown
to provide a good first approximation to exemplars of conceptual
conjunction (Aerts et al., 2012a), is overextended, and therefore
non-classical. When n = 0, the membership weight corresponds

to the productµ(A)µ(B),which is equivalent to the probability of
two joint classical events that are independent. When 0 < n < 1,
the state of the concept is in the superposition of the two modes
of combination.

Finally, the membership operator for a certain exemplar with
respect to the conjunction of two concepts is given by

MF = M⊕ (M⊗M), (9)

where M is the operator that measures membership of the
exemplar in the first sector, andM⊗Mmeasures themembership
of the exemplar with respect to the two concepts simultaneously
in the second sector.

In addition to providing a suitable mathematical framework
for cognitive models, quantum cognition also offers a different
perspective on cognitive phenomena: uncertainty is described
by means of superposed states (Aerts et al., 2011b), non-logical
coherence involves interference (Aerts, 2009), order effects are
revealed by incompatible measurements (Wang and Busemeyer,
2013), and certain “verb-noun” conceptual combinations mimic
the structure of physically entangled particles (Aerts and Sozzo,
2014).

1.3. The Representation of Data
One of the reasons why quantum models of concept
combinations have not been widely used is that the issue
of data representation has been overlooked. Scholars have
studied the capacity of quantum models to fit semantic
estimations of concept combinations, and have presented
concrete representations of the different estimations to validate
the models (Aerts, 2007a,b, 2009; Aerts et al., 2012a; Sozzo,
2014); these concrete representations, however, model the data
in an exemplar-based fashion, where one operator is used for all
exemplars, but the conceptual state varies with exemplars.

For example, Aerts (2009) builds a quantum model in the
Hilbert space C

3 to consider the exemplars “filing cabinet” and
“heated waterbed” with respect to concepts A =“Furniture,
B =“Household Appliances,” and their conjunction AB. For the
first exemplar, we have µ(A) = 0.97, µ(B) = 0.31, and µ(AB) =
0.53. This case is represented by the vectors

|A〉 = (−0.57+ 0.40 , 0.29− 0.63 , 0.13+ 0.11 ),

|B〉 = (0.39, 0.39, 0.83).
(10)

For the second exemplar, µ(A) = 1, µ(B) = 0.49, and
µ(AB) = 0.78, and the state vectors are given by

|A〉 = (0.71, 0.71, 0),

|B〉 = (0.49, 0.49, 0.71).
(11)

In both casesM is defined by the projection operator

M(x, y, z) → (x, 0, 0). (12)

Such concrete representations are useful to validate models, but
unwieldy if one seeks to build a model that can be used for
studying and comparing large amounts of data. Because the
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state is independent of the exemplar, it must remain the same
for all measurements. But if we require the state representing
the concept to remain fixed, then the number of measurement
operators is restricted by the dimension of the Hilbert space H.
In fact, because the membership operator is usually represented
by the identity projector restricted to a smaller subspace, and
the identity operator of the entire space and the null operator
entail trivial measurements, the number of projectors available
to represent membership measurements is restricted to n −
1, for n = dim(H). This implies that, if we consider n or
more exemplars, then some exemplars will not have a unique
membership operator. These issues become crucial in real-
world situations involving concepts that entail thousands of
exemplars (Tenenbaum et al., 2011).

In Section 2, we take a close look at the concrete
representations of quantum models on each sector of the Fock
space to identify the minimal dimensionality required to reach
the modeling capacity of each of the sectors. In Section 3, we
introduce the notion of unitary transformation for the first and
second sectors of the Fock space separately, and propose concrete
representations for concepts in these two models that require a
single conceptual state, and a collection of exemplar-dependent
operators. In Section 4, we use these representations to advance a
conjecture concerning compatibility of measurements.

2. DIMENSIONALITY ANALYSIS OF THE
TWO-SECTOR FOCK SPACE MODEL

In what follows we determine the dimension of H required to
model concept combinations in the first and second sectors of
the two-sector Fock space model. To explore this question, we
assume H = C

n equipped with the standard inner product, and
analyze how n relates to the representation of concepts.

2.1. First Sector Dimension Analysis
The Hilbert space model for concept conjunction requires two
vectors, |A〉, |B〉 ∈ H, and an orthogonal projector,M : H → H,
such that

〈A|A〉 = 〈B|B〉 = 1, (13)

〈A|B〉 = 0, (14)

〈A|M|A〉 = µ(A), 〈B|M|B〉 = µ(B), (15)

µ(AB) = 1

2
(µ(A)+ µ(B))+ℜ(〈A|M|B〉). (16)

The next theorem shows that n = 3 is sufficient to build a model
that satisfies conditions (13–16).

Theorem 1. Letµ(A), µ(B), andµ(AB) denote the membership of
an exemplar with respect to concepts A, B, and their conjunction
AB. The membership weights are compatible with a complex
Hilbert space modelH = C

3 if and only if

µ(AB) ∈ [ave(AB)− dev(AB), ave(AB)+ dev(AB)], (17)

where

ave(AB) = 1

2
(µ(A)+ µ(B)), and

dev(AB) =
√

min(µ(A)µ(B), (1− µ(A))(1− µ(B)).
(18)

Proof. We derive Equation (17) by applying conditions (13–16).
First, ifM is a zero- or three-dimensional projector, then

µ(A) = µ(B) = µ(AB) = 0, or

µ(A) = µ(B) = µ(AB) = 1,
(19)

respectively. Thus, Equation (17) holds, and Equations (13–16)
are satisfied by choosing |A〉 and |B〉 to be any two mutually
orthogonal unit vectors.

Next, we consider the cases where M is either a one- or two-
dimensional projector. We apply conditions (13–16) to vectors
|A〉 and |B〉 in these two cases separately, and combine the results
to obtain (Equation 17).

If M is a one-dimensional projector, then without loss of
generality, we can choose

M(x, y, z) → (x, 0, 0), and

|A〉 = (a1e
iα1 , a2e

iα2 , a3e
iα3 ),

|B〉 = (b1e
iβ1 , b2e

iβ2 , b3e
iβ3 ).

(20)

Note that conditions (13) and (15) are satisfied by choosing the
coefficients in |A〉 and |B〉 as follows:

a1 =
√

µ(A); a2 =
√
λ
√

1− µ(A) ; a3 =
√
1− λ

√

1− µ(A),
b1 =

√

µ(B); b2 =
√
κ
√

1− µ(B) ; b3 =
√
1− κ

√

1− µ(B),
(21)

with 0 ≤ λ ≤ 1, and 0 ≤ κ ≤ 1. Moreover, Equation (16) implies
that µ(AB) is given by

µ(AB) = 1

2
(µ(A)+ µ(B))+

√

µ(A)µ(B) cos(α1 − β1). (22)

We then apply condition (14) to obtain

−
√

µ(A)µ(B) cos(γ1)

=
√

(1− µ(A))(1− µ(B))F(λ, κ, cos(γ2), cos(γ3)), (23)

−
√

µ(A)µ(B) sin(γ1)

=
√

(1− µ(A))(1− µ(B))F(λ, κ, sin(γ2), sin(γ3)), (24)

where

F(λ, κ, f (x), f (y)) =
(√
λκf (x) +

√

(1− λ)(1− κ)f (y)
)

.

(25)
Since F(λ, κ, cos(γ2), cos(γ3)) is a convex combination of

√
λκ

and
√
(1− λ)(1− κ), we have

|F(λ, κ, cos(γ2), cos(γ3))| ≤ |
√
λκ| + |

√

(1− λ)(1− κ)|. (26)
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We set
√
λ = cos(θ1),

√
κ = cos(θ2), (27)

for θ1, θ2 in [0, π2 ]. Then

√
1− λ = sin(θ1),√
1− κ = sin(θ2).

(28)

Substituting Equations (27) and (28) in Equation (26), we obtain

|F(λ, κ, cos(γ2), cos(γ3))| ≤ | cos(θ1 − θ2)| ≤ 1. (29)

Then Equation (23) implies that

|
√

µ(A)µ(B) cos(γ1)| ≤
√

(1− µ(A))(1− µ(B)). (30)

Therefore, the interference term is bounded as follows:

|
√

µ(A)µ(B) cos(γ1)| ≤ min(
√

µ(A)µ(B),
√

(1− µ(A))(1− µ(B)))
= dev(AB).

(31)

Next, combining Equations (23) and (24), we obtain

µ(A)µ(B) = (1− µ(A))(1− µ(B))F̂(λ, κ, γ2, γ3), (32)

where

F̂(λ, κ, γ2, γ3) = F2(λ, κ, cos(γ2), cos(γ3))

+F2(λ, κ, sin(γ2), sin(γ3)). (33)

Hence,

µ(A)+ µ(B) = 1+ µ(A)µ(B)
(

1− 1

F̂(λ, κ, γ2, γ3)

)

. (34)

We use the parametrization for λ and κ given by Equation (27),
and apply Equations (29–33), to obtain

0 ≤ F̂(λ, κ, γ2, γ3) ≤ cos(θ1 − θ2)2 + sin(θ1 − θ2)2 = 1. (35)

Combining Equations (35) and (34) yields

µ(A)+ µ(B) ≤ 1. (36)

Therefore, when M is a one-dimensional projector,
conditions (13–16) imply

µ(AB) ∈ [ave(AB)− dev(AB), ave(AB)+ dev(AB)], and

µ(A)+ µ(B) ≤ 1.
(37)

Next, consider the case in which M is a two dimensional
projector. Without loss of generality, we can assume

M(x, y, z) → (x, y, 0).

The requirements Equations (13) and (15) are satisfied by
choosing the coefficients in |A〉, |B〉 as follows

a1 =
√
λ
√

µ(A); a2 =
√
1− λ

√

µ(A) ; a3 =
√

1− µ(A),
b1 =

√
κ
√

µ(B); b2 =
√
1− κ

√

µ(B) ; b3 =
√

1− µ(B),
(38)

with 0 ≤ λ ≤ 1, and 0 ≤ κ ≤ 1. Moreover, Equation (16) implies
that µ(AB) is given by

µ(AB) = 1

2
(µ(A)+µ(B))+

√

µ(A)µ(B)F(λ, κ, cos(γ1), cos(γ2)).

(39)
We apply condition (14) to obtain

√

µ(A)µ(B)F(λ, κ, cos(γ1), cos(γ2))

= −
√

(1− µ(A))(1− µ(B)) cos(γ3). (40)

Since F(λ, κ, cos(γ1), cos(γ2)) ≤ 1, Equation (40) implies that

|
√

µ(A)µ(B)F(λ, κ, cos(γ1), cos(γ2))| ≤ min(
√

µ(A)µ(B),
√

(1− µ(A))(1− µ(B)))
= dev(AB).

(41)

We repeat the procedure used in the one-dimensional case to
obtain

µ(A)µ(B)F̂(λ, κ, γ1, γ2) = (1− µ(A))(1− µ(B)). (42)

Since 0 ≤ F̂(λ, κ, γ1, γ2) ≤ 1, Equation (42) yields

1 ≤ µ(A)+ µ(B). (43)

Therefore, when M is a two-dimensional projector,
conditions (13–16) imply

µ(AB) ∈ [ave(AB)− dev(AB), ave(AB)+ dev(AB)], and

1 ≤ µ(A)+ µ(B).
(44)

We complete the proof by merging Equations (37) and (44).

The general case, H = C
n for n > 3, doesn’t provide additional

modeling power since the condition given by Equation (17)
remains. Also, the caseH = C

2 is more restrictive than theH =
C
3 case. In fact, membership data compatible with conditions

(13–16) forH = C
2 must satisfyµ(A)+ µ(B) = 1 (Veloz, 2015).

2.2. Second Sector Dimension Analysis
The second sector of the two-sector Fock space requires a concept
combination state |C〉 ∈ C

n⊗C
n and an operatorM : C

n → C
n,

such that |C〉 restricted to the first sector represents the concept
A, and |C〉 restricted to the second sector represents the concept
B. However, |C〉 cannot in general be decomposed as a tensor
product of the type |CA〉 ⊗ |CB〉, for |CA〉, |CB〉 ∈ C

n. Therefore,
|C〉 is usually a non-separable state.
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To recover the probabilistic structure of the former concepts
in the combination, the operators M ⊗ 1 and 1 ⊗M are applied
to |C〉 to obtain µ(A) and µ(B), respectively. Moreover, since
|C〉 as a whole represents the concept combination AB, then the
operatorM⊗M is applied to |C〉 to obtain µ(AB).

The following definition summarizes how data is represented
in the second sector.

Definition 2. Let µ = {µ(A), µ(B), µ(AB)} be a triplet denoting
the membership of concepts A, B, and their conjunction AB. We
say that the triplet µ admits a representation in C

n ⊗ C
n if there

exists a unit vector |C〉 ∈ C
n⊗C

n, and an operatorM : C
n → C

n

such that

〈C|MA|C〉 = 〈C|M⊗ 1|C〉 = µ(A), (45)

〈C|MB|C〉 = 〈C|1⊗M|C〉 = µ(B), (46)

〈C|M∧|C〉 = 〈C|M⊗M|C〉 = µ(AB). (47)

Let {|i〉}ni=1 be the canonical basis of C
n. Without loss of

generality, we can take M to be an orthogonal projector on the
subspace of C

n spanned by the basis elements |1〉, ..., |r〉, with
r < n. Hence,

M(x1, ..., xn) → (x1, ..., xr, 0, ..., 0).

Next, let |C〉 be a unit vector in C
n ⊗ C

n. That is,

|C〉 =
n

∑

i=1

n
∑

j=1

cije
γij |i〉 ⊗ |j〉, (48)

and

〈C|C〉 =
n

∑

i,j=1

cije
γij〈i| ⊗ 〈j|

n
∑

k,l=1

ckle
γkl |k〉 ⊗ |l〉

=
n

∑

i,j,k,l=1

cijckle
(−γij+γkl)〈i|k〉〈j|l〉

=
n

∑

i,j=1

c2ij = 1.

(49)

We now prove that the operator M and the vector |C〉 above
satisfy Equations (45–47) if and only if µ(A), µ(B), and µ(AB)
are classical conjunction data.

Theorem 2. Let µ = {µ(A), µ(B), µ(AB)} be a triplet denoting
the membership of concepts A, B, and their conjunction AB. The
triplet µ is classical conjunction data if and only if it admits a
representation in C

n ⊗ C
n with n = 2.

Proof. Ifµ admits a representation in C
2⊗C

2, there exists a unit
vector |C〉 ∈ C

2 ⊗ C
2 and an operator M such that Equations

(45–47) are satisfied. If µ(A) = µ(B) = µ(AB) = 0 or 1, we can
choose |C〉 to be any unit vector inC

2⊗C
2, andM to be a zero- or

two-dimensional projector, respectively. Otherwise, let {|1〉, |2〉}

be the canonical basis for C
2. Without loss of generality, we can

define |C〉 by

|C〉 = c11e
γ11 |1〉 ⊗ |1〉 + c12e

γ12 |1〉 ⊗ |2〉 + c21e
γ21 |2〉 ⊗ |1〉

+c22e
γ22 |2〉 ⊗ |2〉,(50)

and M by the one-dimensional projector into the subspace
determined by |1〉. Note that

µ(A) = 〈C|M⊗ 1|C〉 = c211 + c212,

µ(B) = 〈C|1⊗M|C〉 = c211 + c221,

µ(AB) = 〈C|M⊗M|C〉 = c211.

(51)

Then, clearly µ(AB) ≤ µ(A), µ(AB) ≤ µ(B), and since |C〉 is a
unit vector,

µ(A)+ µ(B)− µ(AB) = c211 + c212 + c221 ≤ 1. (52)

Therefore, µ is classical conjunction data. The other implication
is proven by takingM to be the same one-dimensional projector,
and |C〉 such that

c11 =
√

µ(AB),

c12 =
√

µ(A)− µ(AB),
c21 =

√

µ(B)− µ(AB),
c22 =

√

1− µ(A)− µ(B)+ µ(AB),

and γij = 0, for i, j = 1, 2.

Theorem 2 proves the strict equivalence between classical
conjunction data and the model of conjunction built in C

2 ⊗C
2.

3. UNITARY TRANSFORMATIONS AND
DATA REPRESENTATION

We now investigate how multiple exemplars can be concretely
represented using a single concept state. To do so, we use unitary
transformations to identify a basis of the realization space where
multiple exemplars can be represented simultaneously. In this
new framework, concrete representations are consistent with the
cognitive principles of the quantum model of concepts. Namely,
a concept exists in a single state for all exemplars, and the
measurement of membership of an exemplar depends on the
exemplar to be measured rather than on the concept state.

3.1. Data Representation in the First Sector
The following definition and theorem introduce the notion of
data representation in the first sector that is consistent with the
cognitive principles of the quantum model of concepts in C

3.

Definition 3. Let µ = {µi(A), µi(B), µi(AB)}ki=1 be a set of
experimental data, where µi(x) is the semantic estimation of an
exemplar pi with respect to concepts A, B, and their conjunction
AB. A representation of µ in C

3 is defined as a pair of unit vectors
|A〉, |B〉 ∈ C

3, and a collection of orthogonal projectorsMi :C
3 →

C
3 such that conditions (13–16) are satisfied for i = 1, ..., k. We

say (|A〉, |B〉, {Mi}ki=1) is a representation of µ in C
3.
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Theorem 3. Let µ = {µi(A), µi(B), µi(AB)}ki=1 be a set of
experimental data, where µi(x) is the semantic estimation of
exemplar pi with respect to concepts A, B, and their conjunction
AB. The set of data µ has a representation in C

3 if and only if for
all i = 1, ..., k

µi(AB) ∈ [avei(AB)− devi(AB), avei(AB)+ devi(AB)]. (53)

Proof. Let |A〉 = (1, 0, 0), |B〉 = (0, 1, 0), and |C〉 = (0, 0, 1)
be the canonical basis for C

3. We prove that, if Equation (53)
is satisfied for each i = 1, ..., k then there exists an orthogonal
projector Mi such that conditions (13–16) are satisfied for |A〉,
|B〉, andMi.

Since µi(A), µi(B) and µi(AB) satisfy (Equation 53), by
Theorem 1 for each i ∈ {1, ..., k} there exist two vectors,

|Ai〉 = (a1e
α1 , a2e

α2 , a3e
α3 ), |Bi〉 = (b1e

β1 , b2e
β2 , b3e

β3 ),
(54)

and an orthogonal projector M̂i such that Equations (13–16) are
satisfied. Thus, the pair of vectors |Ai〉 and |Bi〉, as constructed
in the proof of Theorem 1, are orthonormal. We set |Ci〉 =
|Ai〉 × |Bi〉 so that the set {|Ai〉, |Bi〉, |Ci〉} forms an orthonormal
basis for C

3 for any i ∈ {1, ..., k}. Next, we define the operator Ui

by

Ui =





〈Ai|A〉 〈Ai|B〉 〈Ai|C〉
〈Bi|A〉 〈Bi|B〉 〈Bi|C〉
〈Ci|A〉 〈Ci|B〉 〈Ci|C〉



 . (55)

Ui is a unitary matrix whose action induces a change from
the basis {|Ai〉, |Bi〉, |Ci〉} to the basis {|A〉, |B〉, |C〉}. Note that
Ui|Ai〉 = |A〉, Ui|Bi〉 = |B〉, and Ui|Ci〉 = |C〉.

We can also use the operator Ui to represent M̂i in the
canonical basis {|A〉, |B〉, |C〉} as follows:

Mi = UiM̂iU
−1
i . (56)

We use the fact that I = U−1
i Ui = UiU

−1
i to show that the

remaining conditions are satisfied. That is, for each i = 1, ..., k,

µi(A) = 〈Ai|M̂i|Ai〉 = 〈AiU
−1
i |UiM̂iU

−1
i |UiAi〉 = 〈A|Mi|A〉,

µi(B) = 〈Bi|M̂i|Bi〉 = 〈BiU−1
i |UiM̂iU

−1
i |UiBi〉 = 〈B|Mi|B〉,

(57)

and

µi(AB) =
1

2
(µ(A)+ µ(B))+ℜ(〈Ai|M̂i|Bi〉)

= 1

2
(µ(A)+ µ(B))+ℜ(〈AiU

−1
i |UiM̂iU

−1
i |UiAi〉)

= 1

2
(µ(A)+ µ(B))+ℜ(〈A|Mi|B〉).

(58)

Theorem 3 provides a data representation in terms of a single pair
of vectors |A〉 and |B〉, and a set of projectorsMi, for i = 1, ..., k,
corresponding to the membership operator for each exemplar.
Since the unitary transformations preserve the inner product

between vectors and operators, the values of the membership
estimations µi(A), µi(B), and µi(AB) are preserved.

Consider for example the exemplars p =“filing cabinet” and
q =“heated waterbed” mentioned in Section 1.3. These can now
be represented by the states |A〉 = (1, 0, 0), |B〉 = (0, 1, 0) and
the following measurement operators

Mp =





0.97 −0.11+ 0.09 0.09+ 0.01
−0.11− 0.09 0.31 0.28+ 0.34
0.09− 0.01 0.28− 0.34 0.72



 ,

Mq =





1 0 0
0 0.49 0.499
0 0.499 0.51



 .

(59)

From a geometric perspective, the operators Mp and Mq

correspond to rotations of the one-dimensional projector
M(x, y, z) → (x, 0, 0) in C

3.

3.2. Data Representation in the Second
Sector
We now apply unitary transformations in the concrete
representations of the tensor product model in C

n⊗C
n. We first

define different types of representations for multiple exemplars,
and then provide explicit representation theorems for the cases
n = 2 and 3.

Definition 4. A zero-type representation of µk
i=1 on the tensor

product space C
n ⊗ C

n is a unit vector |C〉 ∈ C
n ⊗ C

n, and a
collection of orthogonal projectors {MA

i ,M
B
i }ki=1 from C

n ⊗ C
n

to C
n ⊗ C

n, such that conditions (47)–(49) are satisfied with
M∧

i = MA
i M

B
i , for i = 1, ..., k. We say (|C〉, {MA

i ,M
B
i }ki=1) is a

zero-type representation of µk
i=1 in C

n ⊗ C
n.

The zero-type representation is, mathematically speaking, the
most general representation in the tensor product model
that is consistent with the modeling principles of quantum
cognition because it assumes a single concept state |C〉, and
a collection of measurements that represent the membership
weight estimations. However, this representation cannot be
appropriately interpreted because MA

i and MB
i can be entangled

measurements, for i = 1, ..., k.
A more reasonable representation of data assumes thatMA

i =
Mi ⊗ 1, and MB

i = 1 ⊗ Mi, for i = 1, ..., k. Therefore, these
operators are not entangled because they act on different sides of
C
3 ⊗ C

3.

Definition 5. A first-type representation of µk
i=1 on the tensor

product space C
n ⊗ C

n is a unit vector |C〉 ∈ C
n ⊗ C

n,
and a collection of orthogonal projectors Mi from C

n to C
n, for

i = 1, ..., k, such that (|C〉, {Mi ⊗ 1,1 ⊗ Mi}ki=1) is a zero-type

representation of µk
i=1 in C

n ⊗ C
n.

The first-type representation is a direct extension of the
representation of individual exemplars in Definition 2, and thus
it is interpreted according to such representation: The state
|C〉 describes the situation of having two concepts and their
combination, and Mi represents the semantic estimation of
exemplar pi, i = 1, ..., k.
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The zero- and first-type representations require different
conditions to model a collection of exemplars for a pair of
concepts and their conjunction. While the first-type corresponds
to the natural way to represent a pair of systems in
quantum physics, and thus is the natural way to define a
representation in the tensor product model for concepts, the
zero-type provides a more general way to build concrete
representations because it does not impose a product structure
on the concept state or on the membership operators for the
exemplars.

In fact, from Definitions 4–5 it is trivial to deduce
that a first-type representation is also a zero-type
representation.

The following theorem characterizes the cases when a set of
data has a zero-type representation in C

2 ⊗ C
2.

Theorem 4. The set of data µk
i=1 has a zero-type representation

in C
2 ⊗ C

2 if and only if µi is classical conjunction data for
i = 1, ..., k.

Proof. For each i = 1, ..., k, we use the construction in the proof
of Theorem 2 to obtain a tensor |C̃i〉 and a one-dimensional
projector M̃ such that M̃A

i = M̃ ⊗ 1, M̃B
i = 1 ⊗ M̃, and M̃∧

i =
M̃⊗ M̃. This gives the tensor product representation of µi. Next,
we use unitary transformations to change this representation so
that |C̃i〉 is a vector in the canonical basis of C2⊗C

2. To facilitate
the notation, we will make use of the isomorphism I between
C
2 ⊗ C

2 and C
4. Let

(1, 0, 0, 0) = |e1〉,
(0, 1, 0, 0) = |e2〉,
(0, 0, 1, 0) = |e3〉,
(0, 0, 0, 1) = |e4〉.

(60)

We define

I(|1〉 ⊗ |1〉) = |e1〉,
I(|1〉 ⊗ |2〉) = |e2〉,
I(|2〉 ⊗ |1〉) = |e3〉,
I(|2〉 ⊗ |2〉) = |e4〉.

(61)

The isomorphism I allows us to represent |C̃i〉 by a vector |Ci〉 in
C
4.
We can prove the theorem by building a unitary

transformation that takes |Ci〉 to one of the canonical basis
vectors of C

4, and use this transformation to represent the
operators M̃A, M̃B, and M̃∧ by the operators MA, MB, and M∧

in C
4. Next, we apply the the inverse isomorphism I

−1 to map
these new representations to C

2 ⊗ C
2.

Let |Di〉, |Ei〉, |Fi〉 be three vectors in C
4 such that

〈Di|Di〉 = 〈Ei|Ei〉 = 〈Fi|Fi〉 = 1,

〈Ci|Di〉 = 〈Ci|Ei〉 = 〈Ci|Fi〉 = 0,

〈Di|Ei〉 = 〈Di|Fi〉 = 〈Ei|Fi〉 = 0.

(62)

The vectors |Ci〉, |Di〉, |Ei〉, and |Fi〉 form an orthonormal basis
for C

4.

Let

Ui =









〈Ci|e1〉 〈Ci|e2〉 〈Ci|e3〉 〈Ci|e4〉
〈Di|e1〉 〈Di|e2〉 〈Di|e3〉 〈Di|e4〉
〈Ei|e1〉 〈Ei|e2〉 〈Ei|e3〉 〈Ei|e4〉
〈Fi|e1〉 〈Fi|e2〉 〈Fi|e3〉 〈Fi|e4〉









. (63)

Note that Ui is a unitary matrix whose action induces a change
from the basis {|Ci〉, |Di〉, |Ei〉, |Fi〉} to the basis {|ej〉}4j=1. In fact,

Ui|Ci〉 = |e1〉, Ui|Di〉 = |e2〉, Ui|Ei〉 = |e3〉, and Ui|Fi〉 = |e4〉.

The operator Ui can now be used to change the basis in which
MA

i ,M
B
i , andM∧

i are represented, to the basis {|ej〉}4j=1:

M̄A
i = UiM

A
i U

−1
i ,

M̄B
i = UiM

B
i U

−1
i ,

M̄∧
i = UiM

∧
i U

−1
i .

(64)

Since 1 = U−1
i Ui = UiU

−1
i , we obtain

µi(A) = 〈Ci|MA
i |Ci〉 = 〈CiU

−1
i |UiM

A
i U

−1
i |UiCi〉 = 〈e1|M̄A

i |e1〉,
µi(B) = 〈Ci|MB

i |Ci〉 = 〈CiU
−1
i |UiM

B
i U

−1
i |UiCi〉 = 〈e1|M̄B

i |e1〉,
µi(AB) = 〈Ci|M∧

i |Ci〉 = 〈CiU
−1
i |UiM

∧
i U

−1
i |UiCi〉 = 〈e1|M̄∧

i |e1〉.
(65)

We then use the inverse isomorphism I
−1 to obtain a zero-type

representation in C
2 ⊗ C

2:

|C〉 = I
−1(|e1〉) = |1〉 ⊗ |1〉,

M̃A
i = I

−1M̄A
i I,

M̃B
i = I

−1M̄B
i I,

M̃∧
i = I

−1M̄∧
i I.

(66)

We have constructed a zero-type representation (|1〉 ⊗
|1〉, {MA

i ,M
B
i }ki=1) from a collection of representations (|Ci〉,M)

for the exemplars pi with M(x, y) → (x, 0) obtained from
Theorem 2.

In the construction of Theorem 4, note that when
Equation (66) entails operators MA

i and MB
i that are of the

form Mi
A = M̌i ⊗ 1 and Mi

B = 1 ⊗ M̌i, then the representation
is also of the first-type.

Stating the necessary and sufficient conditions required for
a set of data to have first-type representation is out of the
scope of this paper. However, we now introduce another type of
representation that is mathematically simpler, and can be used to
obtain sufficient conditions for a first-type representation.

Definition 6. A second-type representation of µk
i=1 on the tensor

product space C
n ⊗ C

n is a pair of unit vectors |A〉,B〉 ∈ C
n,

and a collection of orthogonal projectors Mi from C
n to C

n, for
i = 1, ..., k, such that (|A〉⊗|B〉, {Mi⊗1,1⊗Mi}ki=1) is a zero-type

representation of µk
i=1 in C

n ⊗ C
n.
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The second-type is a mathematical simplification of the first-type
representation that assumes |C〉 to be a product state.

Lemma 1. The set of dataµk
i=1 has a second-type representation in

C
2⊗C

2 if and only if for each i = 1, ..., k there exist |Ai〉, |Bi〉, M̌A
i ,

and M̌B
i such that Equations (45–47) are satisfied.

Proof. Let Ui(A),Ui(B) : C
2 → C

2 be the unitary
transformations that map |Ai〉 to |1〉 and |Bi〉 to |1〉 respectively,
for i = 1, ..., k. Then, it is straightforward to show that
(|1〉⊗ |1〉, {MA

i ⊗1,1⊗MB
i }ki=1) is a second-type representation

of µk
i=1 with

MA
i = Ui(A)

−1M̌A
i Ui(A),

MB
i = Ui(B)

−1M̌B
i Ui(B).

(67)

Theorem 4 and Lemma 1 characterize the sets of data that
have a zero- and second-type representations. Since the first-type
representation is less general than the zero-type representation,
but more general than the second-type representation, these
results can be applied to obtain an upper and lower bound for
the number of exemplars that have a first-type representation in
a given set of data.

Note that Theorem 4 is built in C
2 ⊗ C

2. We now extend
our results to C

3 ⊗ C
3 so they become compatible with the

representation analysis developed in Section 3.1 for a Hilbert
space model in C

3. The next corollary extends the proof of
Theorem 4 to the space C

3 ⊗ C
3.

Corollary 2. If the set of data µk
i=1 has a zero-type representation

in C
2 ⊗ C

2, then µk
i=1 has a zero-type representation in C

3 ⊗ C
3.

Proof. Let (|C〉, {MA
i ,M

B
i }ki=1) be a zero-type representation of

µk
i=1 in C

2 ⊗ C
2. We can create a vector

|C∗〉 =
3

∑

i,j=1

c∗ij|i〉 ⊗ |j〉 (68)

such that it is the trivial embedding of

|C〉 =
2

∑

i,j=1

cij|i〉 ⊗ |j〉 (69)

in C
3 ⊗ C

3 by choosing

c∗ij =
{

cij i, j ∈ {1, 2}
0 else.

(70)

Similarly, we can also create operatorsMA∗
i andMB∗

i by using the
trivial embedding in such a way that the actions of the operators
MA

i andMB
i on C

2 ⊗C
2 are preserved. This completes the proof.

Since second-type representations are also first- and zero-type
representations, we can apply Corollary 2 to obtain a first- and
second-type representation in C

3 ⊗ C
3.

4. A CONJECTURE ABOUT
COMPATIBILITY OF EXEMPLARS

In quantum theory, measurement operators can be incompatible.
That is, when we consider two different observables, the result of
their sequential application can depend on the order in which
they are applied. The fact that quantum measurements can be
incompatible is related to fundamental differences between the
quantum and classical realms, such as the observer phenomena,
and the Heisenberg uncertainty principle (Heisenberg, 1927;
Isham, 2001).

Definition 7. Given two operators M1 and M2 represented in
the same basis. We say that M1 and M2 represent compatible
observables if and only if the commutator operator

[M1,M2] = M1M2 −M2M1 = 0. (71)

Otherwise, the operators represent incompatible observables.

In terms of cognitive phenomena, sequential measurements
could be interpreted as consecutive cognitive actions where the
previous action serves as a context for the next action (Busemeyer
and Wang, 2007; Wang and Busemeyer, 2013). Since in our
concrete representations membership operators are represented
in the same basis for all exemplars pi = 1, ..., k, it is now possible
to test whether or not these measurement operators commute. If
we find exemplars whose operators are non-commutative, then
we can conjecture the existence of a fundamental limit to the
precision with which the membership of these exemplars can be
known simultaneously.

Note that we would expect that classical probabilistic
models should be compatible, and because the classical
probabilistic model and the tensor product model are equivalent,
tensor product operators obtained from the data should also
be compatible for the vector representing the conceptual
situation. However, Hilbert space models could exhibit
incompatible measurements for certain data on concept
combination, as the Hilbert space model represents non-classical
measurements.

We introduce the following definitions to characterize the
compatibility of exemplars in C

3 and in C
3 ⊗ C

3:

Definition 8. Let |A〉 = (1, 0, 0), |B〉 = (0, 1, 0), and {M1,M2}
be a representation in C

3 of {(µi(A), µi(B), µi(AB))}2i=1, and set

cA = 〈A|[M1,M2]|A〉,
cB = 〈B|M1,M2]|B〉,

cAB = 1

2
(〈A| + 〈B|)[M1,M2](|A〉 + |B〉).

(72)

We say p1 and p2 are compatible with respect to the concepts A,
B, and AB if and only if cA = 0, cB = 0, and cAB = 0,
respectively.

For simplicity, we will study compatibility for zero-type
representations in C

3 ⊗ C
3.
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Definition 9. Let |C〉 = (1, 0, 0) ⊗ (1, 0, 0), {MA
1 ,M

B
1 ,M

∧
1 }, and

{MA
2 ,M

B
2 ,M

∧
2 } be a zero-type representation of data in C

3⊗C
3 of

{(µi(A), µi(B), µi(AB))}2i=1, and set

c′A = 〈C|[MA
1 ,M

A
2 ]|C〉,

c′B = 〈C|[MB
1 ,M

B
2 ]|C〉,

c′AB = 〈C|[M∧
1 ,M

∧
2 ]|B〉).

(73)

We say p1 and p2 are compatible with respect to concepts A, B,
andAB if and only if c′A = 0, c′B = 0, and c′AB = 0, respectively.

We have verified the compatibility of exemplars for each
conceptual combination that can be modeled in C

3 and in
C
3 ⊗ C

3 using the data in Hampton (1988a,b). The results
support our predictions. We have found that the tensor product
model always leads to compatible measurements, and that the
Hilbert space model leads to incompatible measurements in most
cases.

For example, consider the concepts A = “Machine”
and B =“Vehicle,” and the exemplars p5 =“sailboat” and
p12 =“skateboard.” For the case of conceptual conjunction, we
have

µ5(A) = 0.56, µ5(B) = 0.8, µ5(AB) = 0.42, and

µ12(A) = 0.28, µ12(B) = 0.84, µ12(AB) = 0.34.
(74)

Note that exemplar p5 satisfies the conditions of Theorems 1
and 2. Thus, it can be represented in both C

3 and in C
3 ⊗ C

3.
However, the exemplar p12 is singly overextended. Therefore, we
can only represent the two exemplars simultaneously in C

3.
When we apply Theorems 1 and 3, and Definition 8, on these

data sets, we obtain

cA = 0.084 , cB = 0.097 , and cAB = 0.137 . (75)

Thus, exemplars p5 and p12 are incompatible. Moreover, note
that the incompatibility is larger for the conjunction of the
concepts than for each of the former concepts.

As a second example, consider the concepts A =“Building,”
and B =“Dwelling,” and the exemplars p2 =“cave,” and
p10 =“synagogue,” whose memberships are given by

µ2(A) = 0.28, µ2(B) = 0.85, µ2(AB) = 0.28, and

µ10(A) = 0.93, µ10(B) = 0.49, µ10(AB) = 0.45.
(76)

Both exemplars satisfy the conditions of Theorem 2. Applying
Theorems 2 and 4, and Definition 9, we obtain

c′A = c′B = c′AB = 0.

This is consistent with our expectations because
the representation in the second sector C

3 ⊗ C
3

correspond to classical (and thus compatible)
measurements.

Since our data was collected presenting the exemplars in
only one specific order (Hampton, 1988b), these computations

demonstrate that we can predict order effects by determining
the exemplars that are incompatible. The results presented
here are, however, speculative since there is no experimental
data where order effects have been recorded that could be
used to contrast our computations. While our data set does
not allow us to make a strong claim, we conjecture that
order effects are predictable, and suggest that the concrete
representations proposed in this paper could be used to
develop Heisenberg-like uncertainty relations in the context of
conceptual combinations.

5. CONCLUSION AND FUTURE WORK

In this paper, we have made some advances on the
representational aspects of the quantum model for concept
combinations. First, we proved that the first and second sectors
of the two-sector Fock space model of concept conjunctions
can be concretely represented in C

3 and C
3 ⊗ C

3, respectively.
Next, we introduced unitary transformations to provide
concrete representations that are consistent with the cognitive
principles of the quantum model of concepts, and used these
concrete representations to study the question of measurement
compatibility.

The representations introduced here could be an important
tool for future applications. First, since they are consistent
with the cognitive principles of the quantum model of
concepts, the model could easily be introduced to a wider
audience, and extended to produce concrete representations
in the two-sector Fock space model. Second, they can be
adopted as a representational standard for different groups
who seek to develop their own computational implementations
of the model. Third, the fact that all the measurements
are represented in a single basis constitutes a tremendous
mathematical advantage for studying the probabilistic structure
of concepts.

The evidence obtained in the application of our
representations to the issue of exemplar compatibility is
consistent with the assumptions of the model. Since the second
sector entails logical reasoning, measurements in the tensor
product model should be compatible. However, incompatible
measurements are likely to be found in the Hilbert space model,
since the first sector is associated with non-logical or intuitive
reasoning. Moreover, this line of enquiry invites us to explore
possible relations between the projector operator structure and
the meaning of the exemplar.

In summary, the introduction of unitary transformations
and the subsequent application to develop concrete
representations of concepts and their combinations seems
to be a promising line of research that has the potential to
expand both theoretical and applied research in quantum
cognition.
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Central to quantum theory is the concept of complementarity. In this essay, we argue that
complementarity is also central to the emerging field of quantum cognition. We review
the concept, its historical roots in psychology, and its development in quantum physics
and offer examples of how it can be used to understand human cognition. The concept
of complementarity provides a valuable and fresh perspective for organizing human
cognitive phenomena and for understanding the nature of measurements in psychology.
In turn, psychology can provide valuable new evidence and theoretical ideas to enrich
this important scientific concept.
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INTRODUCTION

Central to quantum theory is the concept of complementarity. This essay argues that
complementarity is also central to the emerging field of quantum cognition (e.g., Aerts and Aerts,
1994; Khrennikov, 1999; Pothos and Busemeyer, 2013; Wang et al., 2013; Bruza et al., 2015;
Busemeyer and Wang, 2015), which applies abstract, mathematical principles of quantum theory to
shed light on cognitive structures and processes. The concept of complementarity provides a valuable
and fresh perspective for organizing human cognitive phenomena and for understanding the nature
ofmeasurements in psychology. In turn, psychology can provide useful new evidence and theoretical
ideas to enrich this important scientific concept.

COMPLEMENTARITY, COMMUTATIVITY, AND COMPATIBILITY

The general concept of complementarity was developed by Niels Bohr in a series of debates
with Einstein, but the main idea can be summarized as follows (Plotnitsky, 2014, p. 5): Different
measurement conditions for observing different phenomena are complementary when

(a) they are mutually exclusive, and only one can be applied at any time; and
(b) they are all necessary for a comprehensive account of these phenomena.

An important consequence of complementarity is that the sequence or order of themeasurements
matters (von Neumann, 1932, 1962; Atmanspacher and Römer, 2012; Wang et al., 2014). The
above definition of complementarity is deliberately general so that it can permit many specific
implementations. Below, we provide a way to implement this idea in psychology.

The essential idea of complementarity can be illustrated using the following example involving the
measurements of attitudes toward politicians. In a 1997 poll in the United States, half of the 1,002
nationally sampled respondents were asked, “Do you generally think Clinton is honest?” Then they
were asked the same question aboutGore. The other half answered the same questions in the opposite
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order. The results exhibited a striking order effect: The proportion
saying “yes” to both questions was significantly higher when Gore
was judged first (Moore, 2002).

In this example, the phenomena of interest concern a survey
respondent’s beliefs about the honesty of different politicians.
Complementarity arises when a person cannot have a well-
defined position on each politician simultaneously. We can
obtain a measurement of honesty concerning Clinton or
concerning Gore, but we cannot measure both simultaneously,
and the order inwhichwemeasure them affects the answers. Once
we obtain a measurement on say, Clinton, that decision can create
a definite position for Clinton, but then the opinion regarding
the Gore must be uncertain. However, both measurements are
needed to obtain a complete understanding of a respondent’s
attitude to the two politicians being considered. Therefore,
these measurements satisfy the general requirements for
complementarity.

This example captures another idea relevant to
complementarity. The phenomena that we observe are products
of an interaction between some object of investigation and
our measurement instruments. The measurement does not
simply record a phenomenon, but it creates one. This idea is
consistent with the constructionist view of beliefs, attitudes, and
intentions proposed by many psychologists (e.g., Feldman and
Lynch, 1988; Schwarz, 2007). From this view, because of limited
mental capacity and cognitive economy, beliefs, attitudes, and
intentions do not exist in memory as properties ready to be
recorded; instead, they are constructed when needed. When one
is asked a subsequent question, information carried over from
the preceding question provides a context for the construction of
the second and influences the subsequent response.

Next, we will explain complementarity more specifically by
providing a simple “toy” quantum model for this example. To do
this, we need to first compare some concepts from classical and
quantumprobability theories (see Busemeyer and Bruza, 2012, for
more detail).

Classical probability theory is concerned with the assignment
of probabilities to events. Suppose, for example, we ask a survey
participant to evaluate various politicians with regard to their
honesty. For example, an event, A, might be that politician X
is evaluated as honest. According to classical probability theory,
events are represented as subsets of a universal set1. For example,
the event that a politician is honest is a subset of the universe of all
the features that a politician might have. Another event, B, might
be that politician Y is evaluated as dishonest. The conjunction of
two events is defined by set intersection—in this case, A and B.
As shown in Figure 1, the combined event “A and B” is the same
as the combined event “B and A,” and therefore the order of the
two events does not matter. Formally, we say that the intersection
event is commutative, and the probability assigned to “A and B”
must equal the probability assigned to “B and A.”

Quantum probability theory is also concerned with the
assignment of probabilities to events. However, according to
quantum theory, events are represented as subspaces of a

1The universal set is a set that contains a sigma algebra of subsets. The subsets
are the events that can occur and the events are subsets of the universal set.

FIGURE 1 | Sets representation of events. Classical probability theory has
difficulty explaining order effects because events are represented as sets and
are commutative, so the joint probability of events A and B is the same for the
order of “A and B” and the order of “B and A.”

universal vector space2. If events are defined as subspaces, then
the conjunction of two events may or may not exist. The
conjunction does not exist if the events are non-commutative
so that the order of evaluating them matters. Events that are
commutative are also called compatible, and events that are non-
commutative are called incompatible (Atmanspacher and Römer,
2012). Classical probability theory essentially assumes that all
events are compatible, but quantum probability theory allows
some events to be incompatible.

Figure 2 illustrates how the projective geometry used by
quantum probability theory naturally accounts for order effects.
The “yes” answer to the “Do you generally think Clinton is
honest?” question is represented by the horizontal ray (which
forms one axis from the blue basis), and the “yes” answer
to the “Do you generally think Gore is honest?” question is
represented by an oblique ray (which forms one axis from the
red basis). These two answers are incompatible because the
subspaces (rays in this “toy” example) for these answers are not
defined by a common basis. A person needs to evaluate the
Clinton question using one pair of axes (the blue axes), and
then must shift her or his viewpoint to another pair of axes
(the red axes) to evaluate the Gore question. The final result
depends on the order of the applications, because answering
one question provides a new contextualized state that is used
to generate responses to the second question. As a consequence
of incompatibility, if a person is certain about an answer to
one question, then the person must be uncertain about the
answer to the other question (evidencing the uncertainty principle
of quantum theory). In other words, when the questions are
incompatible, one cannot be certain about the answers to both
questions simultaneously (evidencing the superposition principle
of quantum theory).

A key point here is that different bases (red vs. blue axes
in Figure 2) are required to perform the Clinton and Gore
measurements. According to quantum theory, two measurement
conditions are complementary whenever we have to change the
basis used to represent the outcomes of each measurement.

2The universal vector space is a vector space spanned by a set of basis vectors.
The vector space contains subspaces, which are closed subsets of this vector
space, and events are subspaces of the vector space.
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FIGURE 2 | A “toy” example of quantum probability model of
sequential judgments. (A) Illustrates how quantum model provides a natural
account for question order effects of the Clinton-Gore example in terms of
incompatibility (Wang and Busemeyer, 2013; Wang et al., 2014). First,
consider the probability of a person’s answering “yes” to both questions when
Clinton is judged first. This is obtained by first projecting (following the black
dotted lines) the magenta-colored state S to the blue Cy (“yes” to Clinton) axis
and then projecting the result up to the red Gy (“yes” to Gore) axis, which
produces a small probability (as illustrated by the short length of the black
projection on the Gy axis). Next, consider the probability of a person’s
answering “yes” to both questions when Gore is judged first. This is obtained
by first projecting (following the green dash-dotted lines) the state S down to
the red Gy (“yes” to Gore) axis and then projecting the result to the blue Cy
(“yes” to Clinton) axis, which produces a much higher probability. In addition,
note that the probability of saying “yes” to Gore in this Gore-Clinton order is
much higher than it is in the Clinton-Gore order (as illustrated by the long
length of the green projection on the Gy axis), producing the order effect for
the Gore question when the question is asked before, as opposed to after, the
Clinton question. (B) Illustrates similar order effects, but the order effects are
much smaller because the basis vectors (i.e., the red and blue axes), which
form the subspace for evaluating the Gore and Clinton questions, are more
aligned with each other. This means that the rotation required to change from
one evaluation basis (e.g., the blue Clinton axes) to the other (e.g., the red
Gore axes) is smaller. In a sense, in psychology we could understand this as
“reduced incompatibility” of the two questions, or the two sets of projectors as
“more nearly commutative,” although in quantum physics, the original concept
of complementarity does not have the notion of degrees of complementarity
(events can be differentiated only by being complementary or not).

What makes two measures compatible in psychology? Two
questions are compatible if the subspaces representing each
question are defined by a common basis. In our example, to form
a common basis for representing the Clinton and Gore questions,
we must posit at least a four-dimensional space, with the four
basis vectors (or axes) representing the four conjunctions: (1)
“yes” to Clinton and “yes” to Gore, (2) “yes” to Clinton and
“no” to Gore, (3) “no” to Clinton and “yes” to Gore, and (4)
“no” to Clinton and “no” to Gore. The belief state would be a
vector in this four-dimensional space, and each coordinate would
indicate the belief about a conjunction (e.g., the belief in “yes”
to Clinton and “no” to Gore). When a compatible representation
is used, the order of questions does not matter, because the
person eventually arrives at the same conjunction with the same
probability when finished. Also, the person can be certain about
the answers to both questions at the same time. This seems like
a more ideal case of human cognition. This, however, all comes
at a higher cost, because more cognitive resources are needed to
increase andmaintain the higher dimensionality of the compatible
representation space (Wang and Busemeyer, 2013; Bruza et al.,
2015).

FROM PSYCHOLOGY TO PHYSICS: THE
HISTORY

It is an interesting twist of the history that the term
“complementary” first appeared in the foundational work
of psychology. In one of the most influential classic works in
psychology, The Principles of Psychology, James (1890) wrote,

“. . .in certain persons, at least, the total possible
consciousness may be split into parts which coexist
but mutually ignore each other, and share the objects of
knowledge between them. More remarkable still, they are
complementary.” (p. 204)

Although there is still debate among philosophers and
historians whether Bohr’s concept of complementarity was
influenced by James, many agree on the clear similarity between
the concept of complementarity that James created for psychology
in 1890 and that Bohr introduced into physics four decades
later, and believe Bohr was at least indirectly affected by
James’s work (e.g., Stapp, 1993; Plotnitsky, 2012). The concept
of complementarity emerged around 1926 and 1927 from the
discussions between Bohr and Werner Heisenberg related to
the discovery of the uncertainty principle. In a lecture in
Como, Italy, in 1927, Bohr (1928) for the first time discussed
complementarity in public, and the lecture was published the next
year. By the time of the famous debate with Einstein regarding
the Einstein-Podolsky-Rosen experiment, Bohr had developed a
rather complete definition of complementarity (Plotnitsky, 2014):

“Evidence obtained under different experimental
conditions cannot be comprehended within a single
picture, but must be regarded as complementary in the
sense that only the totality of the phenomena exhaust the
possible information about the objects. . .” (Bohr, 1987a,
p. 40)

It is interesting that as an adolescent, Bohr had shown interest in
describing human conscious processes (Folse, 1985, p. 175). Even
in his earlier papers on complementarity and quantum physics, he
tried to state how the concept of complementarity could be applied
to psychology. For example, he ended his Como lecture,

“I hope, however, that the idea of complementarity is
suited to characterize the situation, which bears a deep-
going analogy to the general difficulty in the formation of
human ideas, inherent in the distinction between subject
and object.” (Bohr, 1928, p. 590)

A year later, in a paper he wrote for a Planck Festschrift in 1929,
he stated his view on applying complementarity to psychology
with greater clarity:

“For describing our mental activity, we require, on one
hand, an objectively given content to be placed in
opposition to a perceiving subject, while, on the other
hand, as is already implied in such an assertion, no sharp
separation between object and subject can be maintained,
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since the perceiving subject also belongs to our mental
content. From these circumstances follows not only the
relative meaning of every concept, or rather of every word,
the meaning depending upon our arbitrary choice of view
point, but also that we must, in general, be prepared to
accept the fact that a complete elucidation of one and the
same object may require diverse points of viewwhich defy a
unique description. Indeed, strictly speaking, the conscious
analysis of any concept stands in a relation of exclusion to
its immediate application. The necessity of taking recourse
to a complementary, or reciprocal, mode of description is
perhaps most familiar to us from psychological problems.”
(Bohr, 1987b, p. 96)

Complementarity is not limited to physics. Instead, it is a
general concept that can be applied to any phenomena that
are featured by “a participating observer.” As Bohr recognized,
these kinds of phenomena are typical in psychology. In the
end, psychology is the field that studies “the participating
observer”—the observer’s perception, attention, emotion,
motivation, memory, and decision-making, among other
psychological processes.

The concept of complementarity applies naturally to
psychological systems. Just like a physical system, a psychological
system can be measured in different, mutually exclusive ways.
Although all these measurements are essential for describing
the system, they cannot be measured simultaneously, only
sequentially. In this case, we say the different measurements are
complementary (Stapp, 1993). Importantly, this means that the
measurement is “an essential part of making a property definite”
(Stapp, 1993, p. 234). In other words, measurements do not
merely record the property of a system but construct it.

EMPIRICAL TESTABILITY OF
COMPLEMENTARITY IN PSYCHOLOGY

Two criticisms are often raised in response to quantum cognition
because of misunderstandings of this new research program. One
we believe is a false alarm due to a general resistance to—and
often a legitimate concern about—the loose, vague, metaphorical,
speculative extension of quantum physics to cultural and social
studies (Beller, 1998). However, differently from what is being
argued against, the research program of quantum cognition
rigorously uses mathematical principles of quantum probability
theory to build new models of human cognition, develop specific
new predictions, and empirically test the new predictions and
compare new models against existing traditional models. Just
like other cognitive models based on classical probability theory,
quantum cognition models take advantage of quantum formalism
to provide new theoretical and modeling tools that make precise
predictions regarding human cognition.

The other typical criticism questions whether quantum
cognition can ever provide the kind of rigor and precision
that is shown by quantum mechanics. Unfortunately, it is true
that compared to quantum physics, which provides rigorous
and precise predictions about physical phenomena, psychological
theories involve many more random variables that are hardly

controlled, resulting in lower precision in prediction. To be fair,
this is a general challenge for any theories in the behavioral and
social sciences. However, through rigorous model comparison,
empirical studies have shown that quantum models provide an
elegant new way to specify general and vague verbal theories
in psychology, and better explain and predict many phenomena
puzzling to classical models, leading to highly testable models
(e.g., Bruza et al., 2015; Busemeyer and Wang, 2015; Busemeyer
et al., 2015).

In fact, compared to many other psychological theories and
models, quantum cognitive models may be more falsifiable.
Because quantum cognitive models are based on a coherent set of
axioms that are clearly stated, these models must stand up to strict
tests of these axioms in addition to performance comparisons
against competing classical models. Using our quantum question
order model as an example again, the model provides clear
theoretical predictions about when order effects will or will
not occur as well as the pattern of order effects that do occur
(Wang and Busemeyer, 2013). One of the most convincing
examples illustrating the testability of quantum models has been
an a priori, parameter-free, and precise test called the quantum
question equality, or QQ equality (Wang and Busemeyer, 2013;
Wang et al., 2014). This equality, derived from quantum theory,
imposes a strong symmetry condition on the nature of order
effects, and empirical results from more than 70 U.S. national
surveys provided surprisingly strong support for this precise
prediction (Wang et al., 2014). Rarely in social science research
do we find a priori and parameter-free predictions being upheld
with such high accuracy. Classical models cannot explain—in a
principled and a priori manner—both the question order effects
and the QQ equality observed in the empirical data (Wang et al.,
2014).

EXTENDING THE CONCEPT OF
COMPLEMENTARITY IN PSYCHOLOGY

Psychology provides an opportunity to extend and enrich the
concept of complementarity beyond what is being formulated
in physics. When applied to psychology as opposed to physics,
compatibility may take on a more fluent and malleable role.
Perhaps compatibility varies across individuals, develops across
age, and changes with experience. For example, very young
children do not seem to have the ability to take on the perspective
of another person—this capability to change perspectives develops
only after a critical developmental stage (e.g., Epley et al., 2004).

As another example, perhaps compatibility can be formed
after an individual has had many experiences with combinations
of events that permit the formation of conjunctive concepts.
To be more specific, if a combination of questions is new or
unusual, then an answer must be constructed on-line that relies
on a simpler, incompatible, lower-cost representation. However,
if a person has a great deal of experience with a combination,
then the person may have sufficient knowledge to form a
compatible representation as a result of cognitive adaptation to
the environment. Therefore, order effects are expected to occur
for uncommon or unfamiliar pairs of questions, whose answers
must be (at least partially) constructed on the spot. Indeed, two
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field experiments during the 1988 and 1992 presidential elections
supported this possibility (Simmons et al., 1993). The authors
found that the question order effects on issue opinions decreased
as the election became closer, which would be predicted by the
quantum model because the measurements on issue opinions
might more frequently occur over time during media exposure or
daily conversations—even if the measurements were not directly
noted.

In sum, at this early stage of research, the concept of
compatibility is new in psychology, and we can only speculate
about which measures will be compatible or incompatible. Then
the speculations or assumptions can be empirically tested based on
order effects or interference effects of the measures, among other
predicted effects that follow incompatibility. However, this will
be a crucial question for future research in quantum cognition,
which should enrich the concept of complementarity through
psychological experiments and theories.

CONCLUDING COMMENTS
Aswe have described, the idea of complementaritywas introduced
into psychology by James (1890). Later, the idea was developed
formally and became one of the centerpieces of Niels Bohr’s
interpretation of quantum mechanics. Unfortunately, for many
years the concept appeared to be useful only in physics, and
it almost disappeared from the psychological literature (for
exceptions, seeGrossberg, 2000). In this article, we have attempted
to reintroduce the concept of complementarity to its original
home in psychology. We think the concept provides an invaluable
service toward understanding the fundamental nature of human
cognition.
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We consider the psychological effect of preference reversal and show that it finds a

natural explanation in the frame of quantum decision theory. When people choose

between lotteries with non-negative payoffs, they prefer a more certain lottery because

of uncertainty aversion. But when people evaluate lottery prices, e.g., for selling to others

the right to play them, they do this more rationally, being less subject to behavioral biases.

This difference can be explained by the presence of the attraction factors entering the

expression of quantum probabilities. Only the existence of attraction factors can explain

why, considering two lotteries with close utility factors, a decision maker prefers one

of them when choosing, but evaluates higher the other one when pricing. We derive a

general quantitative criterion for the preference reversal to occur that relates the utilities of

the two lotteries to the attraction factors under choosing vs. pricing and test successfully

its application on experiments by Tversky et al. We also show that the planning paradox

can be treated as a kind of preference reversal.

Keywords: preference reversal, decision theory, uncertainty, behavioral quantum probability, planning paradox

1. Introduction

For many decades, psychologists and economists have been intrigued by a seemingly anomalous
effect termed preference reversal. The simplest example illustrating this effect is as follows. First,
subjects are asked to choose between two lotteries, say L1 and L2, such that L1 has a high chance
to win a relatively modest prize, while L2 offers a lower chance of winning, but an essentially larger
prize. The majority of subjects choose the more certain win of lottery L1, despite the fact that lottery
L2 can enjoy a larger expected utility. Then subjects are asked to price each of the lotteries, as if they
would own them and wish to sell the right to play them. Surprisingly, the majority of subjects price
higher the less certain lottery L2 in apparent contradiction with their previous choice. This example
embodies the essence of the preference reversal effect.

Among the first scientists emphasizing the existence of this effect were Lindman (1971) and
Lichtenstein and Slovic (1971, 1973). Their studies were followed by several authors demonstrating
the occurrence of this effect in psychology and economics (Grether and Plott, 1979; Loomes and
Sugden, 1983; Holt, 1986; Goldstein and Einborn, 1987; Karni and Safra, 1987; Segal, 1988; Tversky
et al., 1988; Schkade and Johnson, 1989). Many other citations can be found in the review articles
(Slovic and Lichtenstein, 1983; Tversky and Thaler, 1990; Tversky et al., 1990). The experimental
studies have established the clear validity and robustness of the preference reversal phenomenon.

The preference reversal effect looks surprising because, according to the common understanding
of utility, the choice among the given lotteries should be based on the objective values of the latter,
thus, being procedure invariant. Since the lottery values are not changed, why then is the preference
reversed?
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It has been proved by Tversky and Thaler (1990) and Tversky
et al. (1990) that it is the breaking of procedure invariance that
is responsible for the preference reversal phenomenon. It turns
out that subjects weight more heavily payoffs in pricing than in
choice, so that the preference reversal is a purely psychological
effect.

The origin of the preference reversal has been recently
explained from the point of view of neurology by Kim et al.
(2012). It has been experimentally shown that there exists
correlation between visual fixation and preferences. Visual
fixations both reflect and influence preferences. From one side,
these fixations reflect which objects seem to be more important
for the subject. And, from the other side, such fixations modulate
the neural correlates of preferences, with activity in ventromedial
prefrontal cortex and ventral striatum, reflecting the value of
the fixated item compared to the value of the item not fixated.
Kim et al. studied the process of decision making under risk and
measured eyemovements while people chose between gambles or
bid in pricing gambles. Consistently with the previous work, they
found that, for two gambles matched in expected value, people
systematically chose the higher probability option, but requested
a higher ask price for the option that offered the greater amount
to win, thus demonstrating preference reversal.

This effect was accompanied by a shift in fixation of the
two attributes, with people fixating more on probabilities during
choices and more on amounts during selling. In this way, there
exists probability-vs.-amount dichotomy: When choosing, one
pays more attention to probabilities while, when selling, one
better appreciates amounts.

Understanding the cause of the preference reversal is the first
necessary step. The next step should be the description of this
effect by a mathematical model. Previous suggested models were
not successful, as was analyzed by Tversky and Thaler (1990) and
Tversky et al. (1990). In the present paper, we show that the effect
of preference reversal finds a simple and natural explanation in
the frame of the Quantum Decision Theory developed by the
authors (Yukalov and Sornette, 2008, 2009a,b, 2010, 2011, 2013,
2014a,b, 2015).

2. Basics of Quantum Decision Theory

There exists several approaches applying quantum notions to
psychological sciences, as can be inferred from the books
(Khrennikov, 2010; Busemeyer and Bruza, 2012; Bagarello, 2013;
Haven and Khrennikov, 2013) and the review articles (Yukalov
and Sornette, 2009b; Busemeyer et al., 2014; Sornette, 2014;
Ashtiani and Azgomi, 2015), where numerous citations to the
previous literature can be found. Quantum Decision Theory
(QDT) principally differs from all those approaches in two
aspects. First, QDT is based on a self-consistent mathematical
foundation that is common for both quantum measurement
theory and quantum decision theory. Starting from the von
Neumann (1955) theory of quantum measurements, we have
generalized it to the case of uncertain or inconclusive events,
making it possible to characterize uncertain measurements
and uncertain prospects. Second, the main formulas of QDT
are derived from general principles, giving the possibility of

quantitative predictions, without fitting parameters. This is in
contrast with the usual way of constructing particular models
for describing some concrete experiments, with fitting the model
parameters from empirical data.

We shall not repeat here the mathematical foundation of QDT
that has been thoroughly expounded in our previous papers, but
we will just briefly recall the resulting formulas that are necessary
for describing the preference reversal effect.

Let us consider a composite event, called prospect,

πn = An

⊗

B . (1)

Here An is an operationally testable event, represented in a
Hilbert space by an eigenstate |n〉. While B = {Bα, bα} is an
inconclusive event that is a set of possible events Bα , represented
in a Hilbert space by eigenstates |α〉, and equipped with random
amplitudes bα , so that the inconclusive event is represented by a
state |B〉 =

∑

α bα|α〉.
The prospect operator is P̂(πn) = |nB〉〈nB|, such that the

prospect probability is given by the quantum formula

p(πn) = Trρ̂P̂(πn) , (2)

where ρ̂ is a strategic state of a decision maker. By construction,
the prospect probability enjoys the properties of a probability
measure:

∑

n

p(πn) = 1 , 0 ≤ p(πn) ≤ 1 . (3)

It is easy to show that the prospect probability takes the form

p(πn) = f (πn)+ q(πn) , (4)

where the first term is called utility factor, characterizing the
utility of the prospect, while the second term is attraction factor
representing behavioral biases.

The intuitive explanation of the above probability expression
(4) is straightforward: The definition of a quantum probability
(2) for a composite event can be separated into a term containing
diagonal matrix elements and a term including off-diagonal
elements. The diagonal elements compose the term f (πn), while
the off-diagonal elements define the term q(πn). The occurrence
of an off-diagonal term is a typical feature of quantum theory,
where this quantity is called interference term or coherence
term. The existence of such an interference term constitutes
the principal difference of the quantum approach from the
classical consideration, where there are no interference terms. It
is the appearance of interference terms that makes the structure
of quantum expressions richer then the related classical ones
and that allows one to explain those psychological phenomena
that, otherwise, are inexplicable in classical decision making.
Sometimes, the quantum approach even yields conclusions that
are impossible in classical decision making, as, for instance,
the possibility to agree on disagree (Khrennikov and Basieva,
2014). Below we show that this interference term, composing
the attraction factor, is essential in explaining the existence of
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the preference reversal effect that cannot be described in classical
decision theory.

The prospect probability satisfies the quantum-classical
correspondence principle.

p(πn) → f (πn) , q(πn) → 0 . (5)

This defines the utility factor as a classical-type probability, with
the standard properties

∑

n

f (πn) = 1 , 0 ≤ f (πn) ≤ 1 . (6)

This is equivalent to the normalization condition

∑

nα

|bα|2〈nα | ρ̂ | nα〉 = 1 ,

imposing a constraint on the random quantities bα .
When considering lotteries, an event An ≡ A(Ln) implies the

choice of a lottery Ln. Then the inconclusive set B characterizes
the decision maker hesitations between uncertain events Bα ,
describing uncertainty with respect to the decision maker
ability and with respect to the lottery formulation (Yukalov
and Sornette, 2014b, 2015). The explicit form of the utility
factor is given by minimizing the Kullback-Leibler information
functional, which in the simple case of uncertainty yields

f (πn) =
U(Ln)

∑

n U(Ln)
, (7)

withU(Ln) being the expected utility of a lottery Ln. Note that the
minimization of the information functional results in expression
(7) that might be familiar to psychologists as a Luce (1959) choice
rule using utility as response strength.

The attraction factor reflects the effects of quantum coherence
and interference, and in decision theory it represents the
behavioral biases rendering the prospects more or less attractive
from the subconscious point of view of decision maker. By their
definition, attraction factors lie in the interval

− 1 ≤ q(πn) ≤ 1 (8)

and satisfy the alternation property

∑

n

q(πn) = 0 . (9)

Also, in the case of non-informative priors, the attraction factors
for the considered prospect lattice {πn :n = 1, 2, . . . ,N} obey the
quarter law

1

N

N
∑

n=1

|q(πn)| =
1

4
. (10)

This law makes it admissible to estimate the attraction factors by
the values±0.25, thus quantitatively predicting preferences.

The prospect lattice is ordered by the values of prospect
probabilities. A prospect πi is termed preferable to πj if and only
if

p(πi) > p(πj) (πi > πj) .

At the same time, a prospect πi is more useful than πj when
f (πi) > f (πj). A prospect πi is more attractive than πj, when
q(πi) > q(πj). In this way, a prospect can be more useful but less
attractive, as a result being less preferable.

A necessary condition for the existence of a nonzero attraction
factor is that the composite prospect be entangled (Yukalov and
Sornette, 2014a, 2015). Otherwise, there is no need of involving
quantum probabilities.

3. General Criterion of Preference Reversal

Preference reversal may naturally arise in the frame of quantum
decision theory. In this section, we derive the general criterion for
the occurrence of this effect.

Suppose a decision maker considers a lattice of just two
prospects

πn = A(Ln)
⊗

B (n = 1, 2) , (11)

with the intention of choosing between them. Here A(Ln) implies
the action of choosing a lottery Ln. And B is a set incorporating
uncertainties associated with this choice. Let one prefer the
prospect π1 against π2, which means that

p(π1) > p(π2) (π1 > π2) . (12)

Taking into account the alternation property, we have

q(π1)+ q(π2) = 0 . (13)

This tells us that the prospect π1 is preferred to π2 if and only if

f (π2)− f (π1) < 2q(π1) . (14)

Now, assume that the decision maker plans to price the given
lotteries, e.g., wishing to sell them. The lotteries remain the same
as before. However, uncertainties in selling are of course different
from those when choosing, hence, the uncertain set B′, associated
with selling, is different from the set B including uncertainties
associated with choosing. Now, the decision maker evaluates the
two different prospects

πn = A(Ln)
⊗

B′ (n = 3, 4) , (15)

where L1 = L3 and L2 = L4.
Preference reversal implies that, contrary to the situation with

choosing, now the decision maker evaluates higher the prospect
π4 compared to π3, so that

p(π3) < p(π4) (π3 < π4) . (16)
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In view of the alternation property

q(π3)+ q(π4) = 0 , (17)

the preference of π4 occurs only when

f (π4)− f (π3) < 2q(π3) . (18)

Since the lotteries are the same (L1 = L3 and L2 = L4), their
expected utilities are pairwise equal:U(L1) = U(L3) andU(L2) =
U(L4). Therefore, the utility factors are also pairwise equal

f (π1) = f (π3) , f (π2) = f (π4) . (19)

Combining the above conditions, we obtain the preference
reversal criterion:

2q(π3) < f (π2)− f (π1) < 2q(π1) . (20)

Let us stress that in classical decision making, where q(π1) =
q(π3) ≡ 0, the inequalities (20) cannot hold, which means
that it is impossible to suggest a self-consistent mathematical
explanation of the preference reversal phenomenon in classical
terms, which is in agreement with discussions by Tversky and
Thaler (1990) and Tversky et al. (1990).

Criterion (20) not only explains the preference reversal
phenomenon, but it also provides a quantitative estimate of how
likely it may happen, as well as a posteriori confirmation of why
it has happened. This is because the attraction factors are not just
some additional arbitrary characteristics, but because their signs
are prescribed by the risk aversion notion, while their values are
constrained by conditions (8) – (10). Thus, due to risk aversion
when facing several choices, the more certain lottery is more
attractive, hence q(π1) > q(π2), which, in view of the alternation
property (9), implies that q(π1) > 0, while q(π2) < 0. Contrary to
this, when pricing, risk aversion is absent, hencemore attractive is
the lottery that can provide the larger gain, so that q(π4) > q(π3),
which, again taking into account the alternation property (9), tells
us that q(π3) < 0 while q(π4) > 0. Estimating the absolute values
of the attraction factors by the quantity 0.25, which follows from
the quarter law (10), we have the criterion

−1

2
< f (π2)− f (π1) <

1

2
.

Therefore, if the given lotteries are such that their utility factors
satisfy the above inequalities, we may expect that preference
reversal can occur. And, vice versa, if preference reversal has
happened, then the above inequalities must hold. Below we
demonstrate that criterion (20) really provides a necessary and
sufficient conditions for the preference reversal phenomenon.

4. Confirmation of Preference Reversal
Criterion

To confirm the validity of the preference reversal criterion, let us
test it with empirical data of decision-making experiments. We

shall consider pairs of lotteries with the notation of the previous
section. The prospects, related to the choice between the lotteries
L1 and L2, are denoted as π1 and π2, respectively. The prospects,
corresponding to pricing of these lotteries, will be denoted by π3

and π4. The expected utility of a lottery L = {xi, p(xi)}, consisting
of payoffs xi, with their weights p(xi), will be calculated by the
formula U(L) =

∑

i xip(xi). And the utility factors are given by
expression (7).

Example 1. Let us start with the example given by Tversky and
Thaler (1990). Consider two lotteries

L1 =
{

4,
8

9
| 0, 1

9

}

, L2 =
{

40,
1

9
| 0, 8

9

}

,

whose payoffs 4 and 40 are given in some monetary units. The
type of units, whether these are Dollars, or Euro, or Francs, is
not of importance, since such units are canceled in definition (7)
of utility factors. This is one of the advantage of employing the
dimensionless utility factors that are invariant with respect to the
type of payoff measures. The corresponding expected utilities

U(L1) =
32

9
, U(L2) =

40

9
,

result in the utility factors

f (π1) =
4

9
, f (π2) =

5

9
,

which show that the second lottery is more useful.
The experimental probabilities are defined as the fractions of

subjects preferring the related lotteries. According to Tversky and
Thaler (1990), in the case of choice, it was found that 71% of
decision makers preferred the more certain lottery L1, so that

p(π1) = 0.71 > p(π2) = 0.29 ,

despite that this lottery is less useful. In view of (4), this
corresponds to the attraction factors

q(π1) = 0.266 , q(π2) = −0.266 .

However, when pricing, 67% of subjects found Lottery L2 more
valuable, so that

p(π3) = 0.33 < p(π4) = 0.67 ,

despite that the win in this lottery is less probable. The related
attraction factors are

q(π3) = −0.114 , q(π4) = 0.114 .

Notice that, in the case of pricing, the attraction factor signs
are reversed as compared to the case of choosing. This is in
agreement with the probability-amount dichotomy (Kim et al.,
2012): when choosing, one accepts as more attractive the lottery
with a higher probability win, while when pricing, one treats as
more attractive the lottery with a higher payoff amount. In the
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process of pricing, decision makers usually are more pragmatic,
evaluating higher the more useful lottery.

Combining the data of this experiment, the two inequalities
(20) read

−0.228 < 0.111 < 0.452 ,

which confirms the prediction of QDT.
Example 2. When there is no preference reversal, the criterion

(20) does not hold. To illustrate this, let us consider an example
treated by Tversky et al. (1990), taking the lotteries

L1 = {100, 0.97 | 0, 0.03} , L2 = {400, 0.31 | 0, 0.69} .

Their expected utilities are

U(L1) = 97 , U(L2) = 124 ,

which yields the utility factors

f (π1) = 0.439 , f (π2) = 0.561 .

The first lottery is essentially more certain, and subjects
overwhelmingly tend to prefer this lottery, so that

p(π1) = 0.91 > p(π2) = 0.09 .

According to (4), the related attractions factors are

q(π1) = 0.471 , q(π2) = −0.471 .

When pricing, subjects pay higher attention to the payoff
amounts so that the fraction of decision makers preferring
the first lottery is drastically reduced. However, the preference
reversal does not occur per se, with the (more narrow) majority
pricing the first lottery higher:

p(π3) = 0.54 > p(π4) = 0.46 .

The corresponding attraction factors are

q(π3) = 0.101 , q(π4) = −0.101 .

Since

f (π2)− f (π1) = 0.122 < 2q(π3) = 0.202 ,

criterion (20) is not fulfilled, which is the expected situation in
absence of preference reversal.

This example demonstrates that, although in pricing, one
pays a higher attention to payoff amounts, however, the focus is
not exclusively on this amount. Probabilities can also influence
decisions, together with amounts.

Example 3. Another example from Tversky et al. (1990) deals
with the lotteries

L1 = {12, 0.92 | 0, 0.08} , L2 = {175, 0.06 | 0, 0.94} .

The first lottery is both more certain as well as more useful, with
the expected utilities

U(L1) = 11.04 , U(L2) = 10.5

and the utility factors

f (π1) = 0.513 , f (π2) = 0.487 .

It is not surprising that, when choosing, decision makers prefer
this lottery according to

p(π1) = 0.81 > p(π2) = 0.19 .

The related attraction factors are

q(π1) = 0.297 , q(π2) = −0.297 .

When pricing, subjects take into account that the second
lottery can provide a much higher payoff, yet with too small a
probability. As a result, the fraction of decision makers preferring
the first lottery diminishes, but preference reversal does not
happen:

p(π3) = 0.58 > p(π4) = 0.42 .

In pricing, the first lottery becomes less attractive than in
choosing, but remains more attractive than the second lottery,
with the attraction factors

q(π3) = 0.067 , q(π4) = −0.067 .

In view of the relations

f (π2)− f (π1) = −0.026 < 2q(π3) = 0.134 ,

criterion (20) does not hold, in agreement with the absence of
preference reversal. Again, we see that payoff amounts as well as
probabilities are considered in the process of pricing, although
the role of payoff amounts, without doubt, is more important in
pricing than in choosing.

We have also analyzed a large set of data presented by Tversky
et al. (1990), demonstrating the effect of preference reversal.
Pairs of lotteries were presented to 198 participants. In each pair,
one of the lotteries, L1, had a high probability, while the other,
L2, a higher payoff with lower probability. These lotteries are
given in Table 1. In each lottery, the first number is a payoff
and the next number is the probability of this payoff. A lottery
is represented as a set {x, p(x)}, implying that one gets either
the payoff x, with probability p(x), or nothing, with probability
1− p(x). The expected utilities and utility factors are shown. The
first six lottery pairs include rather small payoffs. The following
five pairs contain much larger payoffs by a factor of 25. And the
last five pairs present a mixture of large and small payoffs. All the
cases demonstrate the effect of preference reversal.

In Table 2, we show the prospect probabilities p(π1) and
p(π3), with the corresponding attraction factors q(π1) and q(π3),
demonstrating preference reversal, since p(π1) > p(π2), although
p(π3) < p(π4). Those quantities that are not presented can be
found from the relations

f (π1) = f (π3) , f (π2) = f (π4) ,

p(π2) = 1− p(π1) , p(π4) = 1− p(π3) ,

q(π2) = −q(π1) , q(π4) = −q(π3) .
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TABLE 1 | Pairs of lotteries, with their expected utilities and utility factors.

L1 L2 U(L1) U(L2) f(π1) f(π2)

4, 0.97 16, 0.31 3.88 4.96 0.439 0.561

2, 0.81 9, 0.19 1.62 1.71 0.486 0.514

3, 0.94 6.5, 0.50 2.82 3.25 0.465 0.535

4, 0.89 40, 0.11 3.56 4.4 0.447 0.553

2.5, 0.94 8.5, 0.39 2.35 3.315 0.415 0.585

2, 0.92 5, 0.50 1.84 2.5 0.424 0.576

50, 0.81 225, 0.19 40.5 42.75 0.486 0.514

75, 0.94 160, 0.50 70.5 80 0.468 0.532

100, 0.89 1000, 0.11 89 110 0.447 0.553

65, 0.94 210, 0.39 61.1 81.9 0.427 0.573

50, 0.92 125, 0.50 46 62.5 0.424 0.576

10, 0.78 100, 0.08 7.8 8 0.494 0.506

7, 0.69 40, 0.17 4.83 6.8 0.415 0.585

3, 0.86 13, 0.19 2.58 2.47 0.511 0.489

4, 0.94 150, 0.03 3.76 4.5 0.455 0.545

11, 0.89 135, 0.08 9.79 10.8 0.475 0.525

TABLE 2 | Probability p(π1) defined as the fraction of decision makers

choosing the lottery L1, and probability p(π3) defined as the fraction of

subjects pricing the lottery L1 higher.

p(π1) p(π3) q(π1) q(π3) [f(π2) − f(π1)]/2

0.83 0.26 0.391 −0.179 0.061

0.68 0.22 0.194 −0.266 0.014

0.71 0.30 0.245 −0.165 0.035

0.71 0.33 0.263 −0.117 0.053

0.73 0.17 0.315 −0.245 0.085

0.62 0.14 0.196 −0.284 0.076

0.86 0.48 0.374 −0.006 0.014

0.77 0.46 0.302 −0.008 0.032

0.84 0.47 0.393 0.023 0.053

0.82 0.48 0.393 0.053 0.073

0.70 0.32 0.276 −0.104 0.076

0.81 0.38 0.316 −0.114 0.006

0.68 0.21 0.265 −0.205 0.085

0.74 0.39 0.229 −0.121 −0.011

0.74 0.38 0.285 −0.075 0.045

0.79 0.46 0.315 −0.015 0.025

The corresponding attraction factors q(π1 ) and q(π3 ), and the combination [f (π2 )− f (π1 )]/2

that should be compared with those attraction factors according to criterion (20) obtained

from QDT, which reads here q(π3 ) < [f (π2 )− f (π1 )]/2 < q(π1 ).

We also show the value [f (π2)−f (π1)]/2 that has to be compared
with q(π3) and q(π1) in order to check the validity of criterion
(20). As is seen from Table 2, the preference reversal criterion
(20) is always valid.

Since, in each pair of lotteries considered in the case of
choosing or pricing, the utility factors do not change, the
preference reversal effect can be interpreted within QDT as
caused by the existence of the attraction factors. If one would
evaluate the lotteries solely on the basis of rational utility,

no preference reversal would occur. However, preferences of
decision makers involve irrational feelings and biases as well
as other considerations not included in the utility, which
are embodied in the attraction factors, accounting for the
phenomenon of preference reversal. In order to characterize the
deviation from rationality during decision making over a family
of N trials, we can introduce the irrationality measure

δj ≡
1

N

N
∑

n=1

|q(πj)| .

Then δ1 measures the level of irrationality in the course of
choosing, while δ3 describes the degree of irrationality in the
process of pricing. From Table 2, we find δ1 = 0.299 and δ3 =
0.118. Thus, people seem to be significantly more irrational when
choosing, as compared to pricing. In other words, the evaluation
of lotteries in pricing is more rational.

5. Discussion

We have shown that the phenomenon of preference reversal,
which is treated as an anomaly in classical decision making, finds
a natural explanation in the frame of quantum decision theory.
In the latter, the preference probability consists of two terms,
the utility factor quantifying the utility of a prospect, and the
attraction factor characterizing behavioral biases of a decision
maker. In that way, a prospect probability, defined as a quantum
quantity, has the meaning of a behavioral probability taking
into account both utility of the considered prospects, as well as
their attractiveness for the decision maker, due to subconscious
behavioral biases. We have formulated the criterion associated
within QDT with preference reversal and we have illustrated its
validity for a large set of empirical data.

We summarize the key steps of the logic we have followed.

1. We acknowledge the existence of risk aversion that leads
human to prefer the more probable outcome ceteris paribus.

2. We formulate decisions in terms of QDT and derive the
general fundamental expression (4) of QDT: p = f + q.

3. We interpret q as an “attraction factor” embodying the point
resulting from risk aversion, which determines the sign of q.

4. The structure of QDT leads to criterion (20) for preference
reversal to occur, which relates the utilities of the two lotteries
to the attraction factors under choosing vs. pricing.

5. We showed that this criterion is verified by experiments.

We have thus demonstrated that QDT predicts the existence of
two inequalities for the reversal to occur, that turn out to be
confirmed.

It is worth noting that the effect of preference reversal does
not only occur when choice is compared with pricing, but similar
reversals can happen in other cases. As another illustration,
we can mention the so-called planning paradox that can be
represented by the following stylized example.

Suppose one is deliberating about stopping smoking. Let the
imaginary plan to stop smoking be denoted as the prospect π1,
while continuing smoking corresponds to prospect π2. The utility
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of not smoking clearly overweights that of smoking because
of evident health reasons. In contrast, the negative feelings,
connected with addiction, are yet too imaginary to influence the
mood of the decision maker. We thus expect that the related
attraction factors should be rather small, so that the decision is
based mainly on rational grounds. Hence, the preference in this
plan π1 is expressed by the inequality p(π1) > p(π2), implying
that the majority of subjects would like to stop smoking.

However, when one has to choose to really stop smoking
now (but not in the future), then one actually meets another
alternative: really stop smoking, which can be denoted as the
prospect π3, or continue smoking, the prospect π4. Deciding
whether to really stop smoking now, one immediately confronts
negative feelings anticipating the suffering resulting from
addiction. This translates into the appearance of a negative

attraction factor q(π3) devaluating the utility of not smoking. As
a result, p(π3) becomes smaller than p(π4), which means that the
majority of people do not really quit smoking.

This planning paradox gives a clear example of preference
reversal, which cannot be understood in terms of classical
utility considerations, since the utility of prospects does not
change. But there is no paradox in quantum decision theory,
where the effect of preference reversal is explained by the
variation of attraction factors. Numerous data, collected by
Walsh and Sanson-Fisher (2001) from the World Health
Organization, confirm the robust existence of the preference
reversal in the stop-smoking planning paradox. Thus the
preference reversal is a rather general phenomenon that obtains
a straightforward explanation in the framework of quantum
decision theory.
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Noncontextuality with marginal
selectivity in reconstructing mental
architectures
Ru Zhang and Ehtibar N. Dzhafarov*
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We present a general theory of series-parallel mental architectures with selectively

influenced stochastically non-independent components. A mental architecture is a

hypothetical network of processes aimed at performing a task, of which we only observe

the overall time it takes under variable parameters of the task. It is usually assumed that

the network contains several processes selectively influenced by different experimental

factors, and then the question is asked as to how these processes are arranged within

the network, e.g., whether they are concurrent or sequential. One way of doing this is to

consider the distribution functions for the overall processing time and compute certain

linear combinations thereof (interaction contrasts). The theory of selective influences

in psychology can be viewed as a special application of the interdisciplinary theory of

(non)contextuality having its origins andmain applications in quantum theory. In particular,

lack of contextuality is equivalent to the existence of a “hidden” random entity of which

all the random variables in play are functions. Consequently, for any given value of this

common random entity, the processing times and their compositions (minima, maxima,

or sums) become deterministic quantities. These quantities, in turn, can be treated as

random variables with (shifted) Heaviside distribution functions, for which one can easily

compute various linear combinations across different treatments, including interaction

contrasts. This mathematical fact leads to a simple method, more general than the

previously used ones, to investigate and characterize the interaction contrast for different

types of series-parallel architectures.

Keywords: interaction contrast, mental architectures, noncontextuality, response time, selective influences,

series-parallel network

1. Introduction

The notion of a network of mental processes with components selectively influenced by different
experimental factors was introduced to psychology in Saul Sternberg’s (1969) influential paper.
Sternberg considered networks of processes a, b, c, . . . involved in performing a mental task.
Denoting their respective durations by A,B,C . . ., the hypothesis he considered was that the
observed response time T is A + B + C + . . . . One cannot test this hypothesis, Sternberg
wrote, without assuming that there are some factors, α, β, γ, . . ., that selectively influence the
durations A,B,C . . ., respectively. Sternberg’s analysis was confined to stochastically independent
A,B,C, . . ., and the consequences of the assumptions of seriality and selective influences were
tested on the level of the mean response times only.
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Subsequent development of these ideas was aimed at the
entire distributions of the response times and at a greater
diversity and complexity of mental architectures than just
series of “stages.” This development prominently includes
Townsend (1984, 1990a,b); Schweickert and Townsend (1989);
Townsend and Schweickert (1989); Roberts and Sternberg
(1993); Townsend and Nozawa (1995); Schweickert et al. (2000),
and several other publications, primarily by James Townsend
and Richard Schweickert with colleagues. For an overview of
these developments see Dzhafarov (2003) and Schweickert et al.
(2012). In the present context we should separately mention the
development of the ideas of stochastic ordering of processing
times in Townsend (1984, 1990a) and Townsend and Schweickert
(1989); as well as the idea of marginal selectivity (Townsend and
Schweickert, 1989).

The notion of selective influences also underwent a significant
development, having been generalized from stochastically
independent random variables to arbitrarily interdependent
ones (Dzhafarov, 2003; Dzhafarov and Gluhovsky, 2006; Kujala
and Dzhafarov, 2008; Dzhafarov and Kujala, 2010, in press).
The essence of the development is easy to understand using
two random variables (e.g., process durations) A,B selectively
influenced by two respective factors α, β. In Dzhafarov’s (2003)
notation, this is written (A,B) " (α, β). According to the
definition given in Dzhafarov (2003), this means that there
are functions f and g and a random variable R (a common
source of randomness) such that f (α,R) = A and g (β,R) =
B. If such a choice of

(

f , g,R
)

exists, it is not unique. For
instance, R can always be chosen to have any distribution that
is absolutely continuous with respect to the usual Borel measure
on the real line (e.g., a standard uniform, or standard normal
distribution, see Dzhafarov and Gluhovsky, 2006). However, a
triple

(

f , g,R
)

need not exist. It does not exist, e.g., if marginal
selectivity (Townsend and Schweickert, 1989) is violated, i.e., if
the distribution of, say,A at a given value of α changes in response
to changing β. But marginal selectivity is not sufficient for the
existence of a triple

(

f , g,R
)

. Let, e.g., α and β be binary factors,
with values 1, 2 each, and let the correlation ρ between A and B
for a treatment (α, β) be denoted ραβ. Then the triple in question
does not exist if the correlations violated the “cosphericity test”
(Kujala andDzhafarov, 2008), also known in quantummechanics
as Landau’s inequality (Landau, 1988):

|ρ11ρ12 − ρ21ρ22| ≤ ρ11ρ12 + ρ21ρ22, (1)

where ραβ =
√

1− ρ2αβ. There are many other known conditions

that must be satisfied for the existence of a triple
(

f , g,R
)

when
marginal selectivity is satisfied (Dzhafarov and Kujala, 2010,
2012a,b, 2013, 2014a).

The allusion to quantum mechanics is not accidental: as
shown in Dzhafarov and Kujala (2012a,b), the theory of selective
influences in psychology can be viewed as a special application of
the theory of (non)contextuality. This theory is interdisciplinary
(Khrennikov, 2009; Dzhafarov and Kujala, 2014b,c,d), but its
origins are in quantum theory, dating from Kochen and Specker
(1967) and Bell’s (1964, 1966) celebrated work. For the modern
state of the theory see Dzhafarov et al. (in press). A simplified

account of the (non)contextuality analysis of the example given
above is as follows. One labels each random variable in play
contextually, i.e., by what property is being measured/recorded
under what treatment (context):






Avalue of α
︸ ︷︷ ︸

property: what is measured







(

value of α, value of β
)

︸ ︷︷ ︸

context: under what treatement ,









Bvalue of β
︸ ︷︷ ︸

property: what is measured









(

value of α, value of β
)

︸ ︷︷ ︸

context: under what treatement
. (2)

The notation here is, of course, redundant, because the context
and property identifiers overlap, but we need now to emphasize
the logic rather than achieve notational convenience. Once the
labeling is done, one looks at all possible joint distributions
imposable on all these random variables, for all properties and
all treatments. A system is noncontextual if there exists such
a joint distributions in which any two random variables that
represent the same property (“what is measured”) are equal
with probability 1. The latter is possible only if the random
variables representing the same property always have the same
distribution: in our case

(Aα)
(α,β) ∼ (Aα)

(α,β′) ,
(

Bβ

)(α,β) ∼
(

Bβ

)(α′,β)
(3)

for any values α, β, α′, β′ of the two factors. This is called
consistent connectedness (Dzhafarov et al., in press), and in
physics is known under a variety of names, including (in certain
paradigms) “no-signaling condition” (Popescu and Rohrlich,
1994; Cereceda, 2000; Masanes et al., 2006). In psychology, this
is marginal selectivity. The definition of noncontextuality just
given is not the most general one, as the notion of contextuality
can be extended to inconsistently connected (violating marginal
selectivity) systems (Dzhafarov et al., in press), but we do not
need this generality in this paper. What is important for us here
is that the existence of a joint distribution mentioned in our
definition is equivalent to the existence of a random variable R
and the functions f , g mentioned in the introductory paragraph.

It is easy to show (Dzhafarov, 2003) that the existence
of a triple

(

f , g,R
)

for given joint distributions of (A,B)

under different treatments (α, β) is equivalent to the existence
of a quintuple

(

f ′, g′, S, SA, SB
)

, where S, SA, SB are random
variables, such that f ′ (α, S, SA) = A and g′ (β, S, SB) =
B. In such a representation, one can speak of a common
source of randomness S and specific sources of randomness
SA, SB. In Dzhafarov et al. (2004) this representation was
used to investigate different series-parallel arrangements of the
hypothetical durations A and B. The reason this representation
has been considered convenient is that if one fixes the value
S = s, then f ′ (α, s, SA) = Ac and g′ (β, s, SB) = Bc are
stochastically independent random variables. One can therefore
use theorems proved for stochastically independent selectively
influenced components (Schweickert et al., 2000) to obtain a
general result by averaging across possible values of s. For
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instance, let α, β be binary factors (with values 1, 2 each), and
let us assume that the observed duration Tαβ is min

(

Aα,Bβ

)

for
every treatment (α, β). Then Tαβs = min

(

Aαs,Bβs

)

for every
value S = s, and it is known that, for the independent Aαs,Bβs

(satisfying a prolongation condition, as explained below),

Pr (T11s ≤ t) − Pr (T12s ≤ t) − Pr (T21s ≤ t) + Pr (T22s ≤ t) ≤ 0.
(4)

Since this should be true for every value S = s, then it should also
be true that

C (t) = Pr (T11 ≤ t) − Pr (T12 ≤ t) − Pr (T21 ≤ t)

+Pr (T22 ≤ t) ≤ 0. (5)

This follows from the fact that

Pr
(

Tαβ ≤ t
)

=
∫

Pr
(

Tαβs ≤ t
)

dm (s) , (6)

where m (s) is the probability measure for S, and the integration
is over the space of all possible s. The linear combination C (t) in
(5) is called the interaction contrast of distributions functions.

The Prolongation Assumption used in Dzhafarov et al. (2004),
and derived from Townsend (1984, 1990a) and Townsend and
Schweickert (1989), is that, for every S = s,

Pr (A1s ≤ t) ≥ Pr (A2s ≤ t) , Pr (B1s ≤ t) ≥ Pr (B2s ≤ t) . (7)

For this particular architecture, T = min (A,B), this is the
only assumption needed. To prove analogous results for more
complex mental architectures, however, one needs additional
assumptions, such as the existence of density functions for
Aαs,Bβs at every s, and even certain ordering of these density
functions in some vicinity [0, τ].

The same results, however, can be obtained without
these additional assumptions, if one adopts the other,
equivalent definition of selective influences: f (α,R) = A and
g (β,R) = B, for some triple

(

f , g,R
)

. If such a representation
exists, then

aαr = f (α, r) , bβr = g (β, r) (8)

are deterministic quantities (real numbers), for every valueR = r.
Any real number x in turn can be viewed as a random variable
whose distribution function is a shifted Heaviside function

h (t − x) =
{

0, if t < x,
1, if t ≥ x.

(9)

In particular, the quantity tαβr = min
(

aαr, bβr

)

for the simple
architecture T = min (A,B) considered above is distributed
according to

h
(

t − tαβr

)

= hαβr (t) . (10)

Let us see how inequality (5) can be derived using these
observations.

We first formulate the (conditional) Prolongation Assumption,
a deterministic version of (7): the assumption is that f , g,R can
be so chosen that for every R = r,

a1r ≤ a2r, b1r ≤ b2r. (11)

Without loss of generality, we can also assume, for any given r,

a1r ≤ b1r (12)

(if not, rename a into b and vice versa).

Remark 1.1. The Prolongation Assumption clearly implies (7).
Conversely, if (7) holds, one can always find functions f , g,R
for which the Prolongation Assumption holds in the form
above. For instance, one can choose R = (S, SA, SB), take
SA and SB to be uniformly distributed between 0 and 1, and
choose f (α, . . .) , g (β, . . .) to be the quantile functions for the
hypothetical distributions of A and B at the corresponding factor
levels.

We next form the conditional (i.e., conditioned on R = r)
interaction contrast

cr (t) = h11r (t) − h12r (t) − h21r (t) + h22r (t) . (13)

Notation Convention. When r is fixed throughout a discussion,
we omit this argument and write aα, bβ, tαβ, hαβ(t), c (t) in place
of aαr, bβr, tαβr, hαβr(t), cr(t). (For binary factors α, β, we also
conveniently replace α, β in indexation with i, j.)

Following this convention, there are three different
arrangements of a1, a2, b1, b2 (for a given R = r) satisfying
(11)–(12):

(i) a1 ≤ b1 ≤ a2 ≤ b2
(ii) a1 ≤ a2 ≤ b1 ≤ b2
(iii) a1 ≤ b1 ≤ b2 ≤ a2

(14)

In all three cases,

t11 = min
(

a1, b1
)

= a1 = min
(

a1, b2
)

= t12. (15)

For arrangement (i) we have

•
t11 = t12 = a1

+h11 (t) = 1
−h12 (t) = −1
−h21 (t) = −0
+h22 (t) = 0
= c (t) = 0

≤ t <
•

t21 = b1

+h11 (t) = 1
−h12 (t) = −1
−h21 (t) = −1
+h22 (t) = 0
= c (t) = −1

≤ t <
•

t22 = a2
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This diagram shows the values of hijr (t) and the resulting values
of cr (t) as t changes with respect to the fixed positions of tijr (with

index r dropped everywhere). Analogously, for arrangements (ii)
and (iii), we have, respectively

•
t11 = t12 = a1

c (t) = 0

≤ t <
•

t21 = t22 = a2

and

•
t11 = t12 = a1

c (t) = 0

≤ t <
•

t21 = b1

c (t) < 0

≤ t <
•

t22 = b2

In all three cases, c (t) is obviously zero for t < t11 and t ≥ t22.
We see that c(t) = cr (t) ≤ 0 for all t and every R = r. It follows
that C (t) ≤ 0, because

Pr
(

Tij ≤ t
)

=
∫

hijr (t) dµ (r) , (16)

for i, j ∈ {1, 2}, and

C (t) =
∫

cr (t) dµ (r) ≤ 0, (17)

where µ is the probability measure associated with R and the
integration is over all possible r. We obtain the same result as
in (5), but in a very different way.

In this paper we extend this approach to other mental
architectures belonging to the class of series-parallel networks,
those involving other composition operations and possibly
more than just two selectively influenced processes. In doing
so we follow a long trail of work mentioned earlier. When
dealing with multiple processes we follow Yang et al. (2013)
in using high-order interaction contrasts. All our results are
replications or straightforward generalizations of the results
already known: the primary value of our work therefore is not in
characterizing mental architectures, but rather in demonstrating
a new theoretical approach and a new proof technique.

1.1. Definitions, Terminology, and Notation
Since we deal with the durations of processes rather than the
processes themselves, we use the term composition to describe
a function that relates the durations of the components of
a network to the overall (observed) duration. Formally, a
composition is a real-valued function t = t

(

a, b, . . . , z
)

of
an arbitrary number of real-valued arguments. The arguments
a, b, . . . , z are referred to as durations or components. In this
article, we will use X ∧ Y ∧ . . . ∧ Z to denote min(X,Y, . . . ,Z),
and X ∨ Y ∨ . . . ∨ Z to denote max(X,Y . . . ,Z).

A series-parallel composition (SP) is defined as follows.

Definition 1.2. (1) A single duration is an SP composition. (2)
If X and Y are SP compositions with disjoint sets of arguments,
thenX∧Y ,X∨Y , andX+Y are SP compositions. (3) There are no
other SP compositions than those construable by Rules 1 and 2.

Remark 1.3. The requirement thatX andY in Rule 2 have disjoint
sets of arguments prevents expressions like X ∧ X or X + X ∨ Y .
But if the second X in X ∧ X is renamed into X′, or X ∨ Y in
X + X ∨ Y is renamed into Z, then the resulting X ∧ X′ and
X + Z are legitimate SP compositions. This follows from the
generality of our treatment, in which different components of
an SP composition may have arbitrary joint distributions: e.g.,
X and X′ in X ∧ X′ may very well be jointly distributed so that
Pr

[

X = X′] = 1. One should, however, always keep in minds the
pattern of selective influences: thus, if X is influenced by α, then
Z is also influenced by α in X + Z above.

Any SP composition is obtained by a successive application
of Rules 1 and 2 (the sequence being generally non-unique), and
at any intermediate stage of such a sequence we also have an SP

composition that we can term a subcomposition.

Definition 1.4. Two durations X,Y in an SP composition are
said to be parallel or concurrent if there is a subcomposition
of this SP composition of the form SP

1
(

X,X′, . . .
)

∧
SP

2
(

Y,Y ′, . . .
)

(in which case X,Y are said to be min-parallel)
or SP

1
(

X,X′, . . .
)

∨ SP
2
(

Y,Y ′, . . .
)

(X,Y are max-parallel).
X,Y in an SP composition are said to be sequential or serial if
there is a subcomposition of this SP composition of the form
SP

1
(

X,X′, . . .
)

+ SP
2
(

Y,Y ′, . . .
)

.

Definition 1.5. An SP composition is called homogeneous if it
does not contain both ∧ and ∨ in it; if it does not contain ∧, it is
denoted SP∨; if it does not contain ∨, it is denoted SP∧.

The only SP composition that is both SP∧ and SP∨ is a purely
serial one: a+b+ . . .+ z. Most of the results previously obtained
for mental networks are confined to homogeneous compositions.
We will not need this constraint for the most part.
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Since we will be dealing with compositions of more than
just two components, we need to extend the definition of
selective influences mentioned above. In the formulation below,
∼ stands for “has the same distribution as.” A treatment φ =
(

λ1i1 , . . . , λ
n
in

)

is a vector of values of the factors λ1, . . . , λn, the

values of λk (k = 1, . . . , n) being indicated by subscripts, λkik .

Definition 1.6. Random variables (X1, . . . ,Xn) are selectively
influenced by factors (λ1, . . . , λn), respectively,

(X1, . . . ,Xn) " (λ1, . . . , λn), (18)

if for some random variable R, whose distribution does not
depend on (λ1, . . . λn), and for some functions g1, . . . , gn,

(X1
φ, . . . ,Xn

φ) ∼ (g1(λ
1
i1
,R), . . . , gn(λ

n
in
,R)), (19)

for any treatment φ =
(

λ1i1 , . . . , λ
n
in

)

.

In the subsequent discussion we assume that all non-dummy
factors involved are binary in a completely crossed design (i.e.,
the overall time T is recorded for all 2n vectors of values for φ).
When we have random variables not influenced by any of these
factors, we will say they selectively influenced by an empty set of
factors (we could also, equivalently, introduce for them dummy
factors, with one value each).

2. SP Compositions Containing Two
Selectively Influenced Processes

Consider two processes, with durations A and B in an SP

composition. The overall duration of this SP composition can
be written as a function of A,B and other components: T =
T(A,B, . . .). We assume that A,B, and all other components
are selectively influenced by α, β, and empty set, respectively:
(A,B, . . .) " (α, β,∅). Let each factor has two levels: α =
1, 2 and β = 1, 2, with four allowable treatments (1, 1), (1, 2),
(2, 1), and (2, 2). The corresponding overall durations (random
variables) are written as T11,T12,T21, and T22.

By Definition 1.6 of selective influences, each process duration
(a random variable) is a function of some random variable R and
the corresponding factor: A = a (α,R), B = b (β,R) . For any
given value R = r, the component durations are fixed numbers,

a (α = 1, r) = a1r, a (α = 2, r) = a2r,
b (β = 1, r) = b1r, b (β = 2, r) = b2r,

x (∅, r) = xr,
(20)

where x is the value of any duration X in the composition
other than A and B. We assume that R is chosen so that the
Prolongation Assumption (11) holds, with the convention (12).

The overall duration T at R = r is also a fixed number, written
as (recall that we replace α, β in indexation with i, j)

T
(

air, βjr, . . .
)

= tijr, i, j ∈ {1, 2} . (21)

The distribution function for tijr is the shifted Heaviside function
hijr (t) = h

(

t − tijr
)

,

• 1

•
tijr time

// 0

(22)

The conditional interaction contrast cr (t) is defined by (13).
Denoting by Hij(t) the distribution function of Tij, we have

Hij (t) =
∫

R

hijr (t) dµr, (23)

withR denoting the set of possible values of R. For the observable
(i.e., estimable from data) interaction contrast

C (t) = H11 (t) −H12 (t) −H21 (t) +H22 (t) , (24)

we have then

C (t) =
∫

R

cr (t) dµr. (25)

Note that it follows from our Prolongation Assumption that

H11 (t) ≥ H12 (t) , H21 (t) ≥ H22 (t) ,

H11 (t) ≥ H21 (t) , H12 (t) ≥ H22 (t) . (26)

We also define two conditional cumulative interaction contrasts
(conditioned on R = r):

c (0, t) =
∫ t

0
c (τ ) dτ. (27)

c (t,∞) =
∫ ∞

t
c (τ ) dτ = lim

u→∞

∫ u

t
c (τ ) dτ. (28)

The corresponding observable cumulative interaction contrasts
are

C (0, t) =
∫

R

c (0, t) dµr =
∫

R

(∫ t

0
c (τ ) dτ

)

dµr

=
∫ t

0

(∫

R

c (τ ) dµr

)

dτ =
∫ t

0
C (τ ) dτ. (29)

C (t,∞) =
∫

R

c (t,∞) dµr =
∫

R

(∫ ∞

t
c (τ ) dτ

)

dµr

=
∫ ∞

t

(∫

R

c (τ ) dµr

)

dτ =
∫ ∞

t
C (τ ) dτ. (30)

In these formulas we could switch the order of integration by
Fubini’s theorem, because, for any interval of reals I,

∫

I×R
|c (τ )| d (τ × µr) ≤

∫

I×R
2d (τ × µr) ≤ 2. (31)

Frontiers in Psychology | www.frontiersin.org June 2015 | Volume 6 | Article 735 | 159

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Zhang and Dzhafarov Mental architectures

2.1. Four lemmas
Recall the definition of cr (t) in (13). We follow our Notation
Convention and drop the index r in cr (t) and all other
expressions for a fixed r.

Lemma 2.1. In any SP architecture, for any r,

t11 ≤ t12 ∧ t21 ≤ t12 ∨ t21 ≤ t22.

Proof. Follows from the (nonstrict) monotonicity of the SP

composition in all arguments.

Lemma 2.2. In any SP architecture, for any r, c (t) equals 0 for all
values of t except for two cases:

(Case
+) if t11 ≤ t < t12 ∧ t21, then c (t) = 1− 0− 0+ 0 > 0,

and
(Case

−) if t12 ∨ t21 ≤ t < t22, then c (t) = 1− 1− 1+ 0 < 0.

Proof. By direct computation.

Lemma 2.3. In any SP architecture, for any r, c (t) ≤ 0 for all
values of t if and only if t11 = t12 ∧ t21; c (t) ≥ 0 for all values of t
if and only if t12 ∨ t21 = t22.

Proof. Immediately follows from Lemma 2.2.

Lemma 2.4. In any SP architecture, for any r,

(i) c (0, t) =
∫ t
0 c (τ ) dτ ≥ 0 for any t if and only if

−t11 + t12 + t21 − t22 ≥ 0,
(ii) c (t,∞) =

∫ ∞
t c (τ ) dτ ≤ 0 for any t if and only if

−t11 + t12 + t21 − t22 ≤ 0,
(iii) limt→∞ c (0, t) = 0 if and only if −t11+t12+t21−t22 = 0.
(iv) limt→0 c (t,∞) = 0 if and only if −t11+t12+t21−t22 = 0.

Proof. Without loss of generality, put t12 ≤ t21. We have

c (0, t) =


















































0 if t < t11

(t − t11) if t11 ≤ t < t12

(t − t11) − (t − t12) = t12 − t11 if t12 ≤ t < t21

(t − t11) − (t − t12) − (t − t21)

= −t11 + t12 + t21 − t if t21 ≤ t < t22

(t − t11) − (t − t12) − (t − t21) + (t − t22)

= −t11 + t12 + t21 − t22 if t ≥ t22

The expressions for the first three cases are obviously
nonnegative. If−t11+ t12+ t21− t22 ≥ 0, then c (0, t) ≥ 0 for all
t in the last case (t ≥ t22). With−t11+ t12+ t21− t22 ≥ 0, we have
−t11+t12+t21−t ≥ t22−t ≥ 0 for the fourth case (t21 ≤ t < t22).
Hence c (0, t) ≥ 0 for all t if−t11+t12+t21−t22 ≥ 0. Conversely,
if c (0, t) ≥ 0 for all t, then it is also true for t ≥ t22, whence
−t11 + t12 + t21 − t22 ≥ 0.

The proof for c (t,∞) =
∫ ∞
t c (τ ) dτ requires replacing it first

with
∫ u
t c (τ ) dτ ≤ 0 for some u > t22. We have

∫ u

t
c (τ ) dτ =















































































(u− t11) − (u− t12) − (u− t21) + (u− t22)

= −t11 + t12 + t21 − t22 if t < t11

(u− t) − (u− t12) − (u− t21) + (u− t22)

= −t + t12 + t21 − t22 if t11 ≤ t < t12

(u− t) − (u− t) − (u− t21) + (u− t22)

= t21 − t22 if t12 ≤ t < t21

(u− t) − (u− t) − (u− t) + (u− t22)

= t − t22 if t21 ≤ t < t22

(u− t) − (u− t) − (u− t) + (u− t)

= 0 if t ≥ t22

The expressions for the last three cases are obviously nonpositive.
If −t11 + t12 + t21 − t22 ≤ 0, then

∫ u
t c(2) (τ ) dτ ≤ 0 for all t in

the first case (t < t11). With −t11 + t12 + t21 − t22 ≤ 0, we have
−t+t12+t21−t22 ≤ t11−t < 0 for the second case (t11 ≤ t < t12).
Hence

∫ u
t c (τ ) dτ ≤ 0 for all t if −t11 + t12 + t21 − t22 ≤ 0 .

Since in all expressions u is algebraically eliminated, they remain
unchanged as u → ∞. Conversely, if c (t,∞) ≤ 0 for all t, then
it is also true for t < t11, whence−t11 + t12 + t21 − t22 ≤ 0.

The statements (iii) and (iv) follow trivially.

2.2. Parallel Processes
2.2.1. Simple Parallel Architectures of Size 2
A simple parallel architecture corresponds to one of the two
compositions: T = A ∧ B or T = A ∨ B, with (A,B) " (α, β).
Recall the definition of C (t) in (24).

Theorem 2.5. For T = A ∧ B, we have c (t) ≤ 0 for any r, t;
consequently, C (t) ≤ 0 for any t. For T = A∨B, we have c (t) ≥ 0
for any r, t; consequently, C (t) ≥ 0 for any t.

Proof. For T = A ∧ B with the Prolongation Assumption
(11)–(12), we have

t11 = a1 ∧ b1 = a1, t12 = a1 ∧ b2, t21 = a2 ∧ b1.

It follows that

t12 ∧ t21 = a1 ∧ b2 ∧ a2 ∧ b1 = a1 = t11.

By Lemma 2.3, c (t) ≤ 0. As C (t) in (25) preserves the sign of
c (t), we have C (t) ≤ 0. For T = A ∧ B, we have

t22 = a2 ∨ b2, t12 = a1 ∨ b2, t21 = a2 ∨ b1.

It follows that

t12 ∨ t21 = a1 ∨ b2 ∨ a2 ∨ b1 = t22,

whence, by Lemma 2.3, c (t) ≥ 0 and therefore C (t) ≥ 0.
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2.2.2. Two Parallel Processes in an Arbitrary SP

Network
Consider now a composition SP(A,B, . . .) with (A,B, . . .) "

(α, β,∅).

Lemma 2.6. If A,B in SP(A,B, . . .) are parallel, then
SP(A,B, . . .) can be presented as A′ ∧ B′ if they are min-parallel,
or as A′∨B′ if they are max-parallel, so that (A′,B′) " (α, β) and,
for any fixed R = r, the Prolongation Assumption holds.

Proof. By Definitions 1.2 and 1.4, if A,B are min-parallel, then
SP∧(A,B, . . .) can be presented either as

SP
1(A, . . .) ∧ SP

2(B, . . .)

or

(

SP
1(A, . . .) ∧ SP

2(B, . . .)+ X
)

∧ Y,

or else
(

SP
1(A, . . .) ∧ SP

2(B, . . .) ∧ X
)

+ Y,

where B does not enter in SP
1 and A does not enter in SP

2. On
renaming

SP
1(A, . . .)

︸ ︷︷ ︸

=A′

∧ SP
2(B, . . .)

︸ ︷︷ ︸

=B′

,

(

SP
1(A, . . .) ∧ SP

2(B, . . .)+ X
)

∧ Y

=
(

SP
1(A, . . .)+ X

)

︸ ︷︷ ︸

=A′

∧
(

SP
2(B, . . .)+ X

)

∧ Y
︸ ︷︷ ︸

=B′

,

and

(

SP
1(A, . . .) ∧ SP

2(B, . . .) ∧ X
)

+ Y

=
(

SP
1(A, . . .)+ Y

)

︸ ︷︷ ︸

=A′

∧
(

SP
2(B, . . .) ∧ X + Y

)

︸ ︷︷ ︸

=B′

,

we have, obviously, (A′,B′) " (α, β). Fixing R = r, by the
(nonstrict) monotonicity of SP compositions,

a′1 = SP
1(a1, . . .) ≤ SP

1(a2, . . .) = a′2

and

b′1 = SP
2(b1, . . .) ≤ SP

2(b2, . . .) = b′2

We can also put a′1 = SP
1(a1, . . .) ≤ SP

2(b1, . . .) = b′1
(otherwise we can rename the variables). The proof for the
max-parallel case is analogous.

Theorem 2.7. If A,B in SP(A,B, . . .) are min-parallel, then
c (t) ≤ 0 for any r, t; consequently, C (t) ≤ 0 for any t. If A,B
in SP(A,B, . . .) are max-parallel, then c (t) ≥ 0 for any r, t;
consequently, C (t) ≥ 0 for any t.

Proof. Immediately follows from Lemma 2.6 and Theorem
2.5.

2.3. Sequential Processes
2.3.1. Simple Serial Architectures of Size 2
Simple serial architectures of size 2 corresponds to the SP

composition T = A + B, with (A,B) " (α, β). Recall
the definitions of the two cumulative interaction contrasts:
(27)–(30).

Theorem 2.8. If T = A + B, then c (0, t) ≥ 0 and c (t,∞) ≤ 0
for any r, t; moreover,

lim
t→∞

c (0, t) = lim
t→0

c (t,∞) = 0,

for any r, t. Consequently, C (0, t) ≥ 0, C (t,∞) ≤ 0 for any t,
and

lim
t→∞

C (0, t) = lim
t→0

C (t,∞) = 0

Proof. Follows immediately from Lemma 2.4, since

−t11 + t12 + t21 − t22 = −
(

a1 + b1
)

+
(

a1 + b2
)

+
(

a2 + b1
)

−
(

a2 + b2
)

= 0.

2.3.2. Two Sequential Processes in an Arbitrary SP

Network
Consider now a composition SP(A,B, . . .) with (A,B, . . .) "

(α, β,∅).

Theorem 2.9. If A and B are sequential in an SP(A,B, . . .)
composition, then one or both of the following statements hold:

(i) c (0, t) ≥ 0 for any r, t, and C (0, t) ≥ 0 for any t,
(ii) c (t,∞) ≤ 0 for any r, t, and C (t,∞) ≤ 0 for any t.

Proof. In accordance with Definitions 1.2 and 1.4, SP(A,B, . . .)
with sequential A,B can be presented as either

(

SP
1(A, . . .)+ SP

2(B, . . .)
)

∧ X + Y (32)

or

(

SP
1(A, . . .)+ SP

2(B, . . .)
)

∨ X + Y (33)

(note that any Z in SP
1(A, . . .)+SP

2(B, . . .)+Z can be absorbed
by either of the first two summands). For both cases, by the
monotonicity of SP compositions, for any R = r, SP

1(a1, . . .) ≤
SP

1(a2, . . .), SP
2(b1, . . .) ≤ SP

2(b2, . . .), and we can always
assume SP

1(a1, . . .) ≤ SP
2(b1, . . .). Denoting the durations of

SP
1(ai, . . .) + SP

2(bj, . . .) by t
′
ij, we have therefore, by Theorem

2.8, −t′11 + t′12 + t′21 − t′22 = 0. Denoting the durations of X and
Y by t′ and t′′, respectively, in the case (32) we have

tij = t′ij ∧ t′ + t′′.
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By Lemma 2.4, all we have to show is that−t11+t12+t21−t22 ≥ 0.
It is easy to see that t′′ does not affect this linear combination, and
its value is (assuming t′12 ≤ t′21, without loss of generality)































0 if t′ < t′11
−t′11 + t′ if t′11 ≤ t′ < t′12
−t′11 + t′12 if t′12 ≤ t′ < t′21
−t′11 + t′12 + t′21 − t′ if t′21 ≤ t′ < t′22
−t′11 + t′12 + t′21 − t′22 if t′ ≥ t′22.

The nonnegativity of the first three expressions is obvious, the
fifth one is zero, and the forth expression is larger than the fifth
because t′ < t′22.

The proof for the case (33) is analogous.

If the SP composition with sequential A,B is homogeneous
(Definition 1.5), the statement of theorem can be made more
specific.

Theorem 2.10. If A and B are sequential in an SP∧(A,B, . . .)
composition, then c (0, t) ≥ 0 for any r, t, and C (0, t) ≥ 0 for any
t; if the composition is SP∨(A,B, . . .), then c (t,∞) ≤ 0 for any
r, t, and C (t,∞) ≤ 0 for any t.

3. Multiple Processes

We now turn to networks containing n ≥ 2 processes with
durations (X1, . . . ,Xn), selectively influenced by factors
(λ1, . . . , λn). In other words, we deal with compositions
SP(X1, . . . ,Xn, . . .) such that (X1, . . . ,Xn, . . .) "

(λ1, . . . , λn,∅), where each λk is binary, with values 1,2.
There are 2n allowable treatments and 2n corresponding overall
durations, T11...1,T11...2, . . . ,T22...2. According to Definition 1.6
of selective influences, each process duration here is a function
of some random variable R and of the corresponding factor,
Xk = xk(R, λk). For any fixed value R = r, these durations are
fixed numbers for any given treatment, and so is the overall,
observed value of the SP composition. We denote them

xk(r, λk = 1) = xk1r, xk(r, λk = 2) = xk2r, (34)

and

T(x1i1r, x
2
i2r

, . . . , xninr, . . .), . . . = ti1i2...inr, (35)

where i1, i2, . . . , in ∈ {1, 2} . The distribution function for
ti1i2...inr is a shifted Heaviside function

hi1i2...inr (t) =
{

0, if t < ti1i2...inr
1, if t ≥ ti1i2...inr

. (36)

Denoting by Hi1i2...in (t) the distribution function of Ti1i2...in , we
have

Hi1i2...in (t) =
∫

R

hi1i2...inr (t) dµr. (37)

Conditioned on R = r, the n-th order interaction contrast is
defined in terms of mixed finite differences as

c(n)r (t) = 1i11i2 . . . 1inhi1i2...inr (t) , (38)

which, with some algebra can be shown to be equal to

c(n)r (t) =
∑

i1,i2,...,in

(−1)n+
∑n

k= 1 ik hi1...inr (t) . (39)

Thus,

c(1)r (t) = 1i1hi1r (t) = h1r (t) − h2r (t)

=
∑

i1

(−1)1+i1 hi1r (t) , (40)

c(2)r (t) = 1i11i2hi1i2r (t) =
[

h11r (t) − h12r (t)
]

−
[

h21r (t) − h22r (t)
]

= h11r (t) − h12r (t) − h21r (t) + h22r (t)

=
∑

i1,i2

(−1)2+i1+i2 hi1i2r (t) , (41)

c(3)r (t) = 1i11i21i3hi1i2i3r (t)

=
{[

h111r (t) − h112r (t)
]

−
[

h121r (t) − h122r (t)
]}

−
{[

h211r (t) − h212r (t)
]

−
[

h221r (t) − h222r (t)
]}

= h111r (t) − h112r (t) − h121r (t) − h211r (t)

+h122r (t) + h212r (t) + h221r (t) − h222r (t)

=
∑

i1,i2,i3

(−1)3+i1+i2+i3 hi1i2i3r (t) , (42)

etc. The observable distribution function interaction contrast of
order n is defined as

C(n) (t) =
∫

R

c(n)r (t) dµr. (43)

By straightforward calculus this can be written in extenso as

C(n) (t) =
∑

i1,i2,...,in

(−1)n+
∑n

k= 1 ik Hi1...in (t) , (44)

or, in terms of finite differences,

C(n) (t) = 1i11i2 . . . 1inHi1i2...in (t) . (45)

This is essentially the high-order interaction contrast used by
Yang et al. (2013), the only difference being that they use survivor
functions 1 − H (t) rather than the distribution functions H (t).
We see that cr (t) and C (t) in the preceding analysis correspond

to c
(2)
r (t) and C(2) (t), respectively.
We also introduce n-th order cumulative contrasts.

Conditioned on R = r, we define

c[1]r (0, t) = c[1]r (t,∞) = h1r (t) − h2r (t) , (46)

Frontiers in Psychology | www.frontiersin.org June 2015 | Volume 6 | Article 735 | 162

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Zhang and Dzhafarov Mental architectures

c[2]r (0, t) =
∫ t

0
c(2)r (t1) dt1, c[2]r (t,∞) =

∫ ∞

t
c(2)r (t1) dt1,

(47)

c[3]r (0, t) =
∫ t

0

∫ t1

0
c(3)r (t2) dt2dt1,

c[3]r (t,∞) =
∫ ∞

t

∫ ∞

t1

c(3)r (t2) dt2dt1, (48)

etc. Generalizing,

c[n]r (0, t) =
∫ t

0

(∫ t1

0
. . .

∫ tn−2

0
c(n)r (tn−1) dtn−1 . . . dt2

)

dt1,

(49)

c[n]r (t,∞) =
∫ ∞

t

(∫ ∞

t1

. . .

∫ ∞

tn−2

c(n)r (tn−1) dtn−1 . . . dt2

)

dt1.

(50)
The corresponding unconditional cumulative contrasts of the n-
th order are, as always, defined by integration of the conditional
ones:

C[n] (0, t) =
∫

R

c[n]r (0, t) dµr

=
∫ t

0

(∫ t1

0
. . .

∫ tn−2

0
C(n) (tn−1) dtn−1 . . . dt2

)

dt1, (51)

C[n] (t,∞) =
∫

R

c[n]r (t,∞) dµr

=
∫ ∞

t

(∫ ∞

t1

. . .

∫ ∞

tn−2

C(n) (tn−1) dtn−1 . . . dt2

)

dt1. (52)

In the proofs below we will make use of the recursive

representation of the conditional cumulative contrasts c
[n]
r . It is

verified by straightforward calculus. Denoting

c
(n−1)
iwr

(t) =
∑

i1,...,iw−1,iw+1,...,in

(−1)n−1−iw+
∑n

k= 1 ik hi1...iw− 1iwiw+ 1...inr (t) ,

(53)

where w ∈ {1, . . . , n} and iw is fixed at 1 or 2, we have:

c[1]r (0, t) = c[1]r (t,∞) = h1r (t) − h2r (t) , (54)

c[2]r (0, t) =
∫ t

0
c(2)r (τ ) dτ

=
∫ t

0

(

h11r (τ ) − h12r (τ ) − h21r (τ ) + h22r (τ )
)

dτ

=
∫ t

0

[

c
(1)
iw=1,r (τ ) − c

(1)
iw=2,r (τ )

]

dτ (55)

=
∫ t

0
c
[1]
iw=1,r (0, τ ) dτ −

∫ t

0
c
[1]
iw=2,r (0, τ ) dτ,

c[2]r (t,∞) =
∫ ∞

t
c(2)r (τ ) dτ

=
∫ ∞

t

(

h11r (τ ) − h12r (τ ) − h21r (τ ) + h22r (τ )
)

dτ

(56)

=
∫ ∞

t

[

c
(1)
iw=1,r (τ ) − c

(1)
iw=2,r (τ )

]

dτ

=
∫ ∞

t
c
[1]
iw=1,r (τ,∞) dτ −

∫ ∞

t
c
[1]
iw=2,r (τ,∞) dτ,

c[3]r (0, t) =
∫ t

0

∫ t1

0
c(3)r (t2) dt2dt1

=
∫ t

0

∫ t1

0

[

c
(2)
iw=1,r (t2) − c

(2)
iw=2,r (t2)

]

dt2dt1

=
∫ t

0

[∫ t1

0
c
(2)
iw=1,r (t2) dt2 −

∫ t1

0
c
(2)
iw=2,r (t2) dt2

]

dt1

(57)

=
∫ t

0
c
[2]
iw=1,r (0, τ ) dτ −

∫ t

0
c
[2]
iw=2,r (0, τ ) dτ,

c[3]r (t,∞) =
∫ ∞

t

∫ ∞

t1

c(3)r (t2) dt2dt1

=
∫ ∞

t

∫ ∞

t1

[

c
(2)
iw=1,r (t2) − c

(2)
iw=2,r (t2)

]

dt2dt1

=
∫ ∞

t

[∫ ∞

t1

c
(2)
iw=1,r (t2) dt2 −

∫ ∞

t1

c
(2)
iw=2,r (t2) dt2

]

dt1

(58)

=
∫ ∞

t
c
[2]
iw=1,r (τ,∞) dτ −

∫ ∞

t
c
[2]
iw=2,r (τ,∞) dτ,

and generally, for n > 1,

c[n]r (0, t) =
∫ t

0
c
[n−1]
iw=1,r (0, τ ) dτ −

∫ t

0
c
[n−1]
iw=2,r (0, τ ) dτ, (59)

c[n] (t,∞) =
∫ ∞

t
c
[n−1]
iw=1,r (τ,∞) dτ −

∫ ∞

t
c
[n−1]
iw=2,r (τ,∞) dτ.

(60)
Also we have, by substitution of variables under integral,

c
[n−1]
iwr

(0, t) = c[n−1]
r

(

0, t − xwiwr
)

, (61)

c
[n−1]
iwr

(t,∞) = c[n−1]
(

t − xwiwr,∞
)

. (62)

The Prolongation Assumption generalizing (11)–(12) is
formulated as follows.

Prolongation Assumption. R and functions x1, . . . , xn in (34)
can be chosen so that xk1r ≤ xk2r for all R = r and for all
k = 1, . . . , n. Without loss of generality, we can also assume
x11r ≤ x21r ≤ . . . ≤ xn1r (if not, rearrange x

1
1r, . . . , x

n
1r).
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Notation Convention. As we did before for n = 2, when r is
fixed throughout a discussion, we omit this argument and write
x1i1 , . . . , x

n
in
, ti1i2...in , hi1i2...in (t), c(n)(t) in place of x1i1r, . . . , x

n
inr
,

ti1i2...inr , hi1i2...inr (t), c
(n)
r (t).

3.1. Parallel Processes
3.1.1. Simple Parallel Architectures of Size n
Theorem 3.1. If T = X1∧ . . .∧Xn, then for any r, t, c(n) (t) ≤ 0
if n is even and c(n) (t) ≥ 0 if n is odd. Consequently, for any t,
C(n) (t) ≤ 0 if n is even and C(n) (t) ≥ 0 if n is odd.

Proof. By induction on n, the case n = 1 being true by the
Prolongation Assumption:

c(1) (t) = h1 (t) − h2 (t) ≥ 0.

Let the statement of the theorem be true for c(n−1)(t) , with
n− 1 ≥ 1. By the Prolongation Assumption,

t1i2...in = x11 ∧ x2i2 ∧ . . . ∧ xnin = x11,

for any i2 . . . in, whence

h1i2...in (t) =
{

0, if t < x11
1, if t ≥ x11

.

Therefore c
(n−1)
i1=1 (t) = 0, and, applying the induction hypothesis

to c
(n−1)
i1=2 (t),

c(n) (t) = c
(n−1)
i1=1 (t) − c

(n−1)
i1=2 (t) = −c

(n−1)
i1=2 (t)

=
{

≤ 0, if n is even
≥ 0, if n is odd

.

That C(n) (t) ≤ 0 if n is even and C(n) (t) ≥ 0 if n is odd follows
by the standard argument.

Theorem 3.2. If T = X1∨ . . .∨Xn, then for any r, t, c(n) (t) ≥ 0.
Consequently, for any t, C(n) (t) ≥ 0.

Proof. By induction on n, the case n = 1 being true by the
Prolongation Assumption:

c(1) (t) = h1 (t) − h2 (t) ≥ 0.

Let the theorem be true for c(n−1)(t), where n− 1 ≥ 1. Let

x12 ∨ x22 ∨ . . . ∨ xn2 = xm2 ,

where 1 ≤ m ≤ n. We have then

ti1i2...im− 12im+ 1...in = xm2 ,

and

hi1...im− 12im+ 1...in (t) =
{

0, if t < xm2
1, if t ≥ xm2

,

for all i1...im−1, im+ 1...in. Then c
(n−1)
im=2 (t) = 0, and

c(n) (t) = c
(n−1)
im=1 (t) − c

(n−1)
im=2 (t) = c

(n−1)
im=1 (t) ≥ 0.

Consequently, C(n) (t) ≥ 0, for any t.

3.1.2. Multiple Parallel Processes in Arbitrary SP

Networks
In a composition SP

(

X1, . . . ,Xn, . . .
)

, the components
X1, . . . ,Xn are considered parallel if any two of them are
parallel. We assume selective influences (X1, . . . ,Xn, . . .) "

(λ1, . . . , λn,∅). We do not consider the complex situation when
some of the selectively influenced processes X1, . . . ,Xn are
min-parallel and some are max-parallel. However, if they are all
(pairwise) min-parallel or all max-parallel, we have essentially
the same situation as with a simple parallel arrangement of n
durations.

Lemma 3.3. If X1, . . . ,Xn are all min-parallel or max-parallel
in an SP composition, this composition can be presented as T =
A1 ∧ . . . ∧ An or T = A1 ∨ . . . ∨ An, respectively. In either case,
(A1, . . . ,An) " (λ1, . . . , λn) and the Prolongation Assumption
holds for any R = r.

Proof. For the min-parallel case, by a minor modification of the
proof of Lemma 2.6 we present the SP composition as

SP
1(X1, . . .)

︸ ︷︷ ︸

=A1

∧ SP
2(X2, . . . ,Xn, . . .),

or

(

SP
1(X1, . . .) ∧ SP

2(X2, . . . ,Xn, . . .)+ X
)

∧ Y

=
(

SP
1(X1, . . .)+ X

)

︸ ︷︷ ︸

=A1

∧
(

SP
2(X2, . . . ,Xn, . . .)+ X

)

∧ Y,

or else

(

SP
1(X1, . . .) ∧ SP

2(X2, . . . ,Xn, . . .) ∧ X
)

+ Y

=
(

SP
1(X1, . . .)+ Y

)

︸ ︷︷ ︸

=A1

∧
(

SP
2(X2, . . . ,Xn, . . .) ∧ X + Y

)

.

Then we analogously decompose SP
2(X2, . . . ,Xn, . . .) achieving

A1∧A2∧SP
3(X3, . . . ,Xn, . . .), and proceed in this fashion until

we reach the required A1 ∧ . . . ∧ An. The pattern of selective
influences is seen immediately, and the Prolongation Assumption
follows by the monotonicity of the SP compositions. The proof
for the max-parallel case is analogous.

Theorem 3.4. If X1, . . . ,Xn are min-parallel in an SP

composition, then for any r, t, c(n) (t) ≤ 0 if n is even and c(n) (t) ≥
0 if n is odd. Consequently, for any t, C(n) (t) ≤ 0 if n is even and
C(n) (t) ≥ 0 if n is odd. If X1, . . . ,Xn are max-parallel, then for
any r, t, c(n) (t) ≥ 0, and for any t, C(n) (t) ≥ 0.

Proof. Follows from Lemma 3.3 and Theorems 3.1 and 3.2.

3.2. Sequential Processes
3.2.1. Simple Serial Architectures of Size n
Theorem 3.5. If T = X1+ . . .+Xn, then for any r, t, c[n] (0, t) ≥
0, while c[n] (t,∞) ≤ 0 if n is even and c[n] (t,∞) ≥ 0 if n
is odd; moreover, c[n](0,∞) = 0 for any r. Consequently, for
any t, C[n] (0, t) ≥ 0, while C[n] (t,∞) ≤ 0 if n is even and
C[n] (t,∞) ≥ 0 if n is odd; moreover, C[n] (0,∞) = 0.
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Proof. By induction on n, the case n = 1 being true by the
Prolongation Assumption:

c[1] (0, t) = c[1] (t,∞) = h1 (t) − h2 (t) ≥ 0,

and

lim
t→∞

c[1] (0, t) = lim
t→0

c[1] (t,∞) = 0.

Let the statement of the theorem hold for all natural numbers up
to and including n − 1 ≥ 1. Using the recursive representations
(59)–(60),

c[n] (0, t) =
∫ t
0 c

[n−1]
iw=1 (0, τ ) dτ −

∫ t
0 c

[n−1]
iw=2 (0, τ ) dτ

=
∫ t−xw1
0 c[n−1] (0, τ ) dτ −

∫ t−xw2
0 c[n−1] (0, τ ) dτ

=
∫ t−xw1
t−xw2

c[n−1] (0, τ ) dτ

, (63)

which is ≥ 0 since c[n−1] (0, τ ) ≥ 0 and t − xw2 ≤ t − xw1 .
Analogously,

c[n] (t,∞) =
∫ ∞
t c

[n−1]
iw=1 (τ,∞) dτ −

∫ ∞
t c

[n−1]
iw=2 (τ,∞) dτ

=
∫ ∞
t−xw1

c[n−1] (τ,∞) dτ −
∫ ∞
t−xw2

c[n−1] (τ,∞) dτ

= −
∫ t−xw1
t−xw2

c[n−1] (τ,∞) dτ

,

(64)
which is ≤ 0 if n is even and ≥ 0 if n is odd. Applying the mean
value theorem to the results of (63) and (64), we get, for some
t − xw2 < t′, t′′ < t − xw1

∫ t−xw1

t−xw2

c[n−1] (0, τ ) dτ = c[n−1]
(

0, t′
) (

−xw1 + xw2
)

,

∫ t−xw1

t−xw2

c[n−1] (τ,∞) dτ = c[n−1]
(

t′′,∞
) (

−xw1 + xw2
)

,

and, as c[n−1] (0,∞) = 0, both expressions tend to zero as,
respectively, t → ∞ (implying t′ → ∞) and t → 0 (implying
t′′ → 0).

3.2.2. Multiple Sequential Processes in Arbitrary SP

Networks
In a composition SP

(

X1, . . . ,Xn, . . .
)

, the components
X1, . . . ,Xn are considered sequential if any two of them
are sequential. By analogy with Theorem 2.9 for two
sequential processes and with Theorem 3.4 for parallel
X1, . . . ,Xn, one might expect that the result for the simple
sequential arrangement X1 + . . . + Xn will also extend to
n sequential components of more complex compositions
SP

(

X1, . . . ,Xn, . . .
)

. However, this is not the case, as one can
see from the following counterexample.

Consider the composition

SP(X1,X2,X3,Y) =
(

X1 + X2 + X3
)

∧ (Y = 2) , (65)

with
(

X1,X2,X3
)

selectively influenced by binary factors, so that

x11 = x21 = x31 = 0,

x12 = x22 = x32 = 1.
(66)

It follows that

t111 = 0,
t112 = t121 = t211 = 1,
t122 = t212 = t221 = t222 = 2.

(67)

This is clearly a sequential arrangement of the three durations
X1,X2,X3, but one can easily check that c[3] (0, t) here is not
nonnegative for all t. For instance, at t=3 we have, by direct
computation, c[3] (0, t) = −1. We conclude that there is no
straightforward generalization of Theorems 3.5 to arbitrary SP

compositions.

4. Conclusion

The work presented in this paper is summarized in the abstract.
By proving and generalizing most of the known results on
the interaction contrast of distribution functions, we have
demonstrated a new way of dealing with SPmental architectures.
It is based on conditioning all hypothetical components of a
network on a fixed value of a common source of randomness
R (the “hidden variable” of the contextuality analysis in
quantum theory), which renders these components deterministic
quantities, and then treating these deterministic quantities as
random variables with shifted Heaviside distribution functions.

The potential advantage of this method can be seen in the fact
that the shifted Heaviside functions have the simplest possible
arithmetic among distribution functions: for every time moment
it only involves 0’s and 1’s. As a result, the complexity of this
arithmetic does not increase with nonlinearity of the relations
involved. Thus, Dzhafarov and Schweickert (1995); Cortese and
Dzhafarov (1996), and Dzhafarov and Cortese (1996) argued
that composition rules for mental architectures need not be
confined to+,∧,∨. They analyzed architectures involving other
associative and commutative operations, such as multiplication.
Due to mathematical complexity, however, this work was
confined to networks consisting of two components that are
either stochastically independent or monotone functions of each
other. It remains to be seen whether the approach presented here,
mutatis mutandis, will lead to significant generalizations in this
line of work.

The limitations of the approach, however, are already
apparent. Thus, we were not able to achieve any progress over
known results in applying it to Wheatstone bridges (Schweickert
and Giorgini, 1999; Dzhafarov et al., 2004). The possibility
that the “architecture” (composition rule) itself changes as
one changes experimental factors makes the perspective of a
general theory based on our approach even more problematic
(e.g., Townsend and Fific, 2004). It seems, however, that these
problems are not specific for just our approach.
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A corrigendum on

Noncontextuality with marginal selectivity in reconstructing mental architectures

by Zhang, R., and Dzhafarov, E. N. (2015). Front. Psychol. 6:735. doi: 10.3389/fpsyg.2015.00735

This corrigendum note points out and corrects two mistakes found in the paper cited in the title.
These mistakes do not affect the correctness of the statements proved and expressions derived.

1. In Zhang and Dzhafarov (2015), Lemma 2.6 (p. 7) and Lemma 3.3 (p. 10) are formulated for
series-parallel (SP) architectures in which the minimum (∧) and maximum (∨) operations
may be intermixed. The proofs are shown for the min-parallel arrangement of the selectively
influenced processes, with the correct statement that the max-parallel arrangement is dealt with
analogously. However, by an oversight, the proof for themin-parallel arrangement is shown only
for homogeneous SP∧ architectures, those that cannot contain ∨ operations. The statements of
the lemmas are correct despite this oversight, because the proofs remain valid if the rightmost
∧Y and ∧X in all expressions of the form

(

SP
1(. . .) ∧ SP

2(. . .)+ X
)

∧
↑
Y and

(

SP
1(. . .) ∧ SP

2(. . .) ∧
↑
X

)

+ Y

are replaced with ∨Y and ∨X, respectively.
2. Equations (61) and (62) on p. 9 should be disregarded: one of them, (62), contains typos, and

both are shown in the wrong place. These transformations are only valid in the context of
Theorem 3.5, for sequential architectures, and this is the only place where they are used, in
Equations (63) and (64) on p. 11.

(A typo: in Equation (60) on p. 9, c[n] (t,∞) should be c
[n]
r (t,∞).)
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