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Editorial on the Research Topic
Genes, diseases, immunity and immunogenomics

Genes transcribe both coding and non-coding RNA and are involved in regulating
several biological processes, such as cell division, differentiation, cell death, and multiple
signaling pathways (Statello et al., 2021). Non-coding RNAs (ncRNAs) modulate
expression patterns of various genes, which play important roles in different diseases.
Several studies have unraveled associations between aberrant ncRNA expressions and
pathologies of human diseases (Singh et al., 2020; Yeh et al., 2023). Like other ncRNAs,
recently discovered ncRNAs, circular RNAs (circRNAs) have also been found to play an
important role in gene regulation via interaction with other biomolecules like nucleic
acids, proteins, and microRNAs (miRNAs). In this context, they are good candidates for
diagnosing multiple human diseases, including cancers, neurological diseases, and
inflammatory diseases (Singh et al., 2022). In recent decades, several discoveries have
been made with genome-wide or candidate gene approaches that have revealed
significant insights into ncRNAs and immune interactions in different diseases. As a
result, there is a growing interest in this field to know more about interconnected
relationship between ncRNAs and immune environment (Yosef and Regev, 2016; Houck
et al., 2018; Furman et al., 2019). On the other side, specific human coding gene variants
that contribute to enhanced susceptibility or resistance against several diseases have been
identified. These genes also profoundly affect other gene expressions in disease onset or/
and progression (Choi et al., 2020; Fatma and Siddique, 2021; Fatma et al., 2022).
Transforming growth factor beta-1 (TGFβ1) plays an important role in proliferation and
differentiation of benign prostatic hyperplasia (BPH) stroma, but key downstream genes
of TGFβ1 is yet to be explored more. Xiang et al. reported upregulations of TGFβ1 in
BPH stroma compared to normal prostate stroma. They reported a total of
497 differentially expressed genes in primary prostatic stromal cells (PrSCs) with and
without TGFβ1 stimulation. Their study reported some new insights into the role of
TGFβ1 in BPH stroma and provided clues for identifying potential downstream
mechanisms and targets. Feng et al. reported the expression profiles of whole coding
and non-coding RNA transcriptomes for chronic obstructive pulmonary disease
(COPD). They constructed lncRNA/circRNA -miRNA-mRNA ceRNA networks
which may regulate TNF-α/NF-κB, IL6/JAK/STAT3 signaling pathways. This paper is
important for further research on mechanism of post-transcriptional regulation of
COPD, identifying novel targets for diagnosis and prognosis. Lastly, epigenetic
changes in DNA and RNA are crucial in multiple diseases. Histone modifications or
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N1-methyladenosine methylation (m1A)-an important RNA
methylation modification, regulates the development of many
tumors.

LncRNAs remodel tumor immune microenvironment (TIME)
by regulating the functions of tumor-infiltrating immune cells. It
remains uncertain how TIME-related lncRNAs (TRLs) influence
different immunotherapy in different cancers (Park et al., 2022).
Khan et al. summarized the role of various ncRNAs on
microcirculation, invasiveness, altered metabolism,
microenvironment, and modulation of immunological
environment. Hu et al. reported the signature of lncRNAs which
influence TIME by regulating the functions of tumor-infiltrating
immune cells in colorectal cancer (CRC). They reported how TRLs
affect prognosis and immunotherapy response of CRC and are
helpful in prognosis and immunotherapy response predictions.
Wang et al. reported a lncRNA (DUXAP8) that has been shown
to function as an oncogene in various human cancers. Their study
revealed that DUXAP8 might serve as a prognostic biomarker and
potential therapeutic target for different cancers.

Different types of cell death play a crucial role in various
diseases (Li et al., 2020; Xie et al., 2023). Zhang et al. reviewed
association between autophagy and acute pancreatitis. They
highlight regulatory function of different genes in progression
or suppression of diseases and target these genes as a potential
therapeutic approach for disease management. Zhang et al.
reported prognostic and tumor microenvironment
characteristics of cuproptosis in bladder cancer by genomic
analysis and might be helpful to personalized medicine. Yang
et al. reported eight cuprotosis-related lncRNAs signature of head
and neck squamous cell carcinoma (HNSCC) as prognostic
predictors, which may be promising biomarkers for prognosis
of HNSCC during immunotherapy. A recently identified
programmed inflammatory cell death mode called pyroptosis
plays a crucial role in different inflammatory diseases (Wu
et al., 2022). Wang et al. reported a signature of pyroptosis-
related lncRNAs (PRlncRNAs) in gastric cancer and their role in
immunotherapy and chemotherapy. They identified
3 PRlncRNAs which may also be a potential therapeutic target
in gastric cancer therapy. Another type of cell death, necroptosis,
is a novel caspase-independent, programmed necrotic cell death
distinct from other genetically controlled cell death types. Recent
investigations reported that necroptosis is associated with
multiple diseases’ pathogenesis, progression, and prognosis,
including cancers (Rosenbaum et al., 2010; Khoury et al.,
2020). However, molecular mechanisms have not been
completely explored in different diseases. Zhang et al.
identified necroptosis-related molecular subtypes directly
linked to lung adenocarcinoma (LUAD) therapeutic response.
They reported 67 necroptosis-related genes from 522 LUAD
samples and reported importance of predicting overall survival
and therapeutic benefits for LUAD patients. Wang et al. reported
necroptosis-related lncRNAs, which are useful for predicting
prognosis and immunotherapy of osteosarcoma. They also
validated three 3 lncRNAs (AL391121.1, AL354919.2, and
AP000851.2) which may be helpful in predicting the prognosis
of overall survivability and guidance for immunotherapy.

Cardiomyopathy is a major concern nowadays, often leading to
progressive heart failure and sudden cardiac death. Based on

machine learning, Ye et al. reported molecular subgroups in
dilated cardiomyopathy and identified novel biomarkers. Further,
they observed that patients from different molecular subgroups have
unique gene expression patterns and clinical characteristics. This
study is an important addition to precision medicine. Xu et al.
discussed the role of exosomal miRNAs in atherosclerosis,
myocardial injury and infarction, heart failure, aortic dissection,
myocardial fibrosis, ischemic reperfusion, atrial fibrillation, and
other diseases. Further, they explained the characteristics and
aspects of exosome separation, extraction, and identification.
Intimal hyperplasia (IH) is a prominent pathological event
during in-stent restenosis and atherosclerosis in coronary heart
disease. Zhang et al. reported ferroptosis-related genes’ expression
profiles and functions in IH induced by carotid artery ligation in
mice. Thirty-one ferroptosis-related genes (FRGs) showing
significantly different expression were identified from
1,556 differentially expressed genes (DEGs) 14 days after ligation.
They reported DEGs related to ferroptosis and IH and provided
more evidence about ferroptosis’s role in IH.

Several specific genes regulate immunomodulatory molecules,
such as IL2, IL3, miR-34a, and miR-17-92 (Olive et al., 2013; Taheri
et al., 2020; Sarsenova et al., 2022). Besides, some molecules regulate
immune responses by interacting with molecules related to immune
response either directly or via regulating other molecules. Thus,
these genes connect immunomodulatory pathways and shift pro-
inflammatory balance towards pro-disease condition. Peng et al.
identified and validated neurotrophic factor-related genes (NFRGs)
signature in HNSCC to predict survival and immune landscapes.
Due to heterogeneous nature and complex tumor
microenvironment, outcome of immunotherapeutic of HNSCC
patients is not so successful. They reported that 18 NFRGs are
closely associated with HNSCC prognosis and could be good
predictors of HNSCC. A nomogram based on this model can
help clinicians classify HNSCC patients prognostically and
identify specific subgroups of patients who may have better
outcomes with immunotherapy and chemotherapy, and helpful
for personalized treatment for HNSCC patients. Role of anoikis
in clear cell renal cell carcinoma (ccRCC) remains unclear. Chen
et al. reported a prognostic signature associated with immune
infiltration landscape in ccRCC. They integrated multiple
anoikis-related genes to establish a risk-predictive model which
might be helpful for personalized treatment of ccRCC patients.
Lin et al. investigated whether circulating NAD+ metabolism-related
genes could be used to predict immunotherapy response in ovarian
cancer (OC) patients. They found three different subgroups based
on NMRGs expression patterns. Their prognostic signature has
potential predictive value for OC prognosis and immunotherapy
response.

Research on immunogenomics in different diseases has been
gaining particular attention in recent decades. Recently, advances in
immunogenetics have made reprogramming specificity and
function of innate/adaptive immune cells possible, which leads to
the promise of generating “pharmacological targets” that can
respond to reprogrammed immune cells in disease conditions
like inflammatory diseases or cancer. Calcific aortic valve disease
(CAVD) has become a primary cause of aortic valve stenosis,
insufficiency, and the most prevalent valvular heart disease. By
meta-analysis, Wu et al. reported key immune-related genes
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(IRGs) and immune infiltration patterns in CAVD. A total of
220 differentially expressed IRGs were identified, and enrichment
analysis of differentially expressed IRGs showed that they were
significantly enriched in inflammatory responses. This meta-
analysis suggested that PTPN11, GRB2, PTPN6, SYK, and
SHC1 might be key differentially expressed IRGs associated with
immune cell infiltration and might play a role in CAVD.

The prevalence of adult degenerative diseases is increasing at
an alarming rate. However, molecular research related to these
diseases is in an infant stage. Zhao et al. described the recently
developed machine learning-based characterization of cuprotosis-
related biomarkers and immune infiltration in Parkinson’s disease
(PD). Three PD datasets from GEO database were combined after
eliminating batch effects and identified 03 cuprotosis-related
genes, ATP7A, SLC31A1, and DBT, associated with immune
cells or immune function in PD and more accurate for
diagnosis of PD course. The study reveals that several newly
identified cuprotosis-related genes intervene in progression of
PD through immune cell infiltration. Shi et al. investigated
degenerative scoliosis (ADS)-associated mRNAs and lncRNAs
by RNA-seq and performed comprehensive bioinformatics
analysis based on lncRNA-mRNA co-expression network and
protein-protein interaction (PPI) network. A total of
1,651 upregulated and 1,524 downregulated mRNAs and
147 upregulated and 83 downregulated lncRNAs were screened
out from RNA-Seq data. This study provides insight into the
altered transcriptome profile of long-stranded non-coding
RNAs associated with ADS, which paves the way for further
exploration of clinical biomarkers and molecular regulatory
mechanisms for this poorly understood degenerative disease.

Wang et al. reported N1-methyladenosine methylation-related
metabolic genes signature and subtypes for predicting prognosis
and immune microenvironment in osteosarcoma. Also, to better
guide individualized treatment, they analyzed immune checkpoint
expression differences and drug sensitivity in different risk groups
and clusters. They reported a prognostic signature, which may help
to assess patient prognosis and immunotherapy response. Awal
et al. reported a structural-guided identification of a small
molecule inhibitor of ubiquitin-like containing plant
homeodomain ring finger 1 (UHRF1) methyltransferase
activity-a cell-cycle-regulated multidomain protein. Through
molecular docking, they screened a dataset of 709 natural

compounds where chicoric acid and nystose show higher
binding affinities to the SRA domain. The study reported that
chicoric acid could become a possible epidrug-like inhibitor
against SRA domain of UHRF1 protein.

In conclusion, this Research Topic is a Research Topic of
informative research articles, excellent reviews, and meta-
analyses. I anticipate that this Research Topic contributes to
expanding research community’s knowledge about this recent
and rapidly growing field of genes, ncRNAs diseases, and
immunity for a further thorough investigation, which will surely
help to manage multiple deadly diseases.
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Prediction of Prognosis and
Immunotherapy of Osteosarcoma
Based on Necroptosis-Related
lncRNAs
Guowei Wang†, Xiaobo Zhang†, Wanjiang Feng and Jianlong Wang*

Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, China

Background: Osteosarcoma (OS) is the most common primary tumor of bone in
adolescents, and its survival rate is generally less than 20% when metastases occur.
Necroptosis, a novel form of programmed necrotic cell death distinct from apoptosis, has
been increasingly recognized as a promising therapeutic strategy. This study sought to
identify long non-coding RNAs (lncRNAs) associated with necrotizing apoptosis to predict
prognosis and target drug use to improve patient survival.

Methods: Transcriptomic data and clinical data from 85 OS patients with survival time
data and expression profiles from 85 random normal adipose tissue samples were
extracted from the UCSC Xena website (http://xena.ucsc.edu/). Nine necroptosis-
associated differential prognostic lncRNAs were then identified by analysis of variance,
correlation analysis, univariate Cox (uni-Cox) regression, and Kaplan–Meier analysis. Then,
patients were randomized into training or testing groups. According to uni-Cox, we
obtained prognostic lncRNAs in the training group and intersected them with the
abovementioned nine lncRNAs to obtain the final necrotizing apoptosis–related
differential prognostic lncRNAs (NRlncRNAs). Next, we performed the least absolute
shrinkage and selection operator (LASSO) to construct a risk model of NRlncRNAs.
Kaplan–Meier analysis, ROC curves, nomograms, calibration curves, and PCA were used
to validate and evaluate the models and grouping. We also analyzed the differences in
tumor immunity and drugs between risk groups.

Results: We constructed a model containing three NRlncRNAs (AL391121.1, AL354919.2,
and AP000851.2) and validated its prognostic predictive power. The value of the AUC curve of
1-, 3-, and 5-year survival probability was 0.806, 0.728, and 0.731, respectively. Moreover, we
found that the overall survival time of patients in the high-risk groupwas shorter than that in the
low-risk group. GSEA and ssGSEA showed that immune-related pathways were mainly
abundant in the low-risk group. We also validated the differential prediction of immune
checkpoint expression, tumor immunity, and therapeutic compounds in the two risk groups.

Conclusion: Overall, NRlncRNAs have important functions in OS, and these three
NRlncRNAs can predict the prognosis of OS and provide guidance for immunotherapy in OS.
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INTRODUCTION

Osteosarcoma (OS) is the most common primary malignant
tumor of bone in adolescents. Currently, treatment for
osteosarcoma is mainly neoadjuvant chemotherapy and
surgery (Gill and Gorlick, 2021). Over the past three decades,
limited progress has been made in improving survival outcomes
for patients with osteosarcoma. Particularly, the survival rate of
patients with metastasis is only 20% (Meltzer and Helman, 2021).
Therefore, it is crucial to search for a liable and specific biomarker
for the diagnosis and prognosis of OS.

Long non-coding RNAs (lncRNAs) are a kind of
transcriptional RNAs with a length of more than 200
nucleotides and are not translated into proteins (Bridges et al.,
2021). The expression and mutations of lncRNAs can affect the
occurrence and metastasis of tumors. The functions of lncRNAs
may be to inhibit or promote carcinogenic processes (Bhan et al.,
2017). McCabe et al. reported that lncRNAs can affect cancer
stem cell function and epithelial–mesenchymal transition
(McCabe and Rasmussen, 2021). Moreover, lncRNAs can
regulate the transcription and translation of metabolism-
related genes or the modification of metabolism-related
proteins to influence energy metabolism and cancer
progression (Tan et al., 2021). Zhang et al. described the
mechanism of lncRNA resistance to chemotherapy and
radiotherapy (Xinyi Zhang et al., 2020). Thus, lncRNAs can be
used as biomarkers of cancer progression and potential
therapeutic targets.

Necroptosis, a novel form of programmed necrotic cell death
distinct from apoptosis, is dependent on receptor interacting
protein kinase 1/3 (RIPK1/RIPK3) and mixed lineage kinase
domain-like pseudokinase (MLKL) (Galluzzi et al., 2017). In
recent years, necroptosis has been suggested to play a major
role in tumor regulation, and targeting necroptosis has been
suggested as a potential tool for novel cancer therapies (Gong
et al., 2019; Yan et al., 2022). The complex role of necroptosis in
tumor progression, tumor metastasis, tumor prognosis, tumor
immune regulation, tumor subtype determination, and tumor
therapy has been summarized by Gong et al (2019). However, the
mechanism of the role of necroptosis in tumor regulation is
unclear, and studies on the role of necroptosis-associated
lncRNAs in OS are inconclusive.

In this study, we analyzed the expression of lncRNAs in OS
and normal adipose tissue from the UCSC Xena website and
screened for necrotizing apoptosis–related lncRNAs.

MATERIALS AND METHODS

Data Collection
RNA-sequencing (RNA-seq) data and clinical features were
obtained from the UCSC Xena website (http://xena.ucsc.edu/)
on 1 April 2022, including 85 tumor datasets and 85 random
adipose tissue datasets (Chandrashekar et al., 2017). Data for
67 necroptosis-associated genes were obtained from a previous
report (Zhao et al., 2021).

Screening and Differential Expression
Analysis of Necrotizing Apoptosis–Related
lncRNAs
The packages of “limma” (Wettenhall and Smyth, 2004) and
“igraph” were used to plot the Sankey relationship between
necroptosis genes and necroptosis-associated lncRNAs by
Pearson’s correlation analysis (|Pearson R| >0.4 and p <
0.001). The Kaplan–Meier analysis and univariate Cox
regression analysis (uni-Cox) were used to select necroptosis-
associated lncRNAs with prognostic relevance. Differentially
expressed lncRNAs were explored by the package “limma”.
Differential necroptosis-related prognostic lncRNAs were
mapped by the package “pheatmap”.

Risk Modeling
To investigate the prognostic sensitivity of prognostic necrotizing
apoptosis–associated lncRNAs using expression and clinical data
from the UCSC Xena website, Kaplan–Meier analysis, univariate
Cox regression analysis, correlation analysis, and differential
expression analysis were used to screen for nine prognostically
relevant necroptosis-related lncRNAs (p < 0.05). Next, we
randomly divided all samples into training and testing groups
in a ratio of 8:2 and performed univariate Cox regression analysis
in the training group to screen out seven of the abovementioned
nine lncRNAs. To prevent overfitting, we used the least absolute
shrinkage and selection operator (LASSO) regression analysis risk
score = Ʃ [Exp (lncRNA) × coef (lncRNA)] and ran 1000 cycles to
create the final predictive model for necroptosis-associated
lncRNAs (NRlncRNAs) (Bunea et al., 2011). We divided all
samples into two groups based on median risk scores: the
high-risk group and low-risk group. We used principal
component analysis (PCA) to validate the credibility of the
model. In addition, the predictive power of the model was
evaluated by receiver operating characteristic (ROC) analysis.
Kaplan–Meier curve analysis was performed to assess the
significance of overall survival differences between high-risk
and low-risk groups.

Independent Prognostic Analysis
We explored whether clinical characteristics (age, gender, and
tumor metastasis) could be used as independent prognostic
factors by using univariate and multivariate independent
prognostic analyses of Cox regression.

Construction of the Nomogram
We used clinical factors (age, gender, and tumor metastasis) and
the risk score of our model to build a prognostic nomogram to
predict 1-, 3-, and 5-year overall survival in OS patients. The
model was calibrated by the calibration plot.

Functional Analysis
We investigated the enrichment analysis of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) in high-risk and
low-risk populations by packages “enrichplot” and
“clusterProfiler” (Damian and Gorfine, 2004; Yu et al., 2012).
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FIGURE 1 | Screening of necroptosis-related lncRNAs. (A) Necroptosis-related lncRNA–mRNA co-expression network diagram. (B) Venn diagram of
necroptosis-related lncRNA, prognosis-related lncRNAs, and differential lncRNAs. (C) Expression profiles of nine prognostic lncRNAs. (D) Survival curve of nine
prognostic lncRNAs.
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Tumor Immune Assessment
We used the CIBERSORT algorithm to investigate the
relationship between immune cells and risk groups and predict
the correlation between risk scores and immune cells (Newman
et al., 2015). Differential expression of immune checkpoints and
tumor microenvironment (TME) scores (including ESTIMATE
scores, stromal scores, and immune scores) between risk groups
was also investigated.

Predicting Potential Compounds for the
Treatment of Osteosarcoma
In order to predict potential drugs that could be used for OS
treatment, we calculated IC50 values for drugs obtained from the
GDSC website (https://www.cancerrxgene.org/). The therapeutic

effect of drugs on high-risk and low-risk groups was explored by
the package “pRRophetic” (Geeleher et al., 2014).

RESULTS

Prognosis-Related lncRNAs Co-expressed
With Necroptosis
We identified 3,343 lncRNAs (|Coefficient| > 0.4 and p < 0.001)
that were co-expressed in OS (Figure 1A). By Kaplan–Meier
analysis and univariate Cox analysis, 243 prognosis-related
lncRNAs (surlnc) were identified (p < 0.05) (Supplementary
Table S1). We obtained 641 differential lncRNAs (diflnc) (|Log ₂
FC| > 1 and p < 0.05) by differential analysis of combining 85
patients with OS and 85 random normal adipose tissue samples in

FIGURE 2 | Extraction of the prognostic signature of final necroptosis-related lncRNAs. (A)Univariate Cox regression analysis of prognostic lncRNAs in the training
group. (B) LASSO coefficient profiles of necroptosis-related lncRNAs in the training group. (C) Partial likelihood deviance of prognostic signature. (D) Sankey diagram of
necroptosis genes and related lncRNAs in the training group.
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GTEx (Supplementary Table S2). Then, nine differentially
expressed prognostic lncRNAs for necroptosis were identified
by taking the intersection of the aforementioned three sets
(Figure 1B). We drew their pheatmap and survival curve by
packages of “pheatmap” and “survival” (van Dijk et al., 2008)
(Figures 1C, D).

Model Construction and Validation
First, 85 tumor samples were randomly divided into two groups
in a ratio of 8:2. We constructed a univariate Cox regression

analysis in the training group and further found that seven of the
aforementioned nine lncRNAs were associated with prognosis
(Figure 2A). Subsequently, a model was constructed by
performing LASSO regression analysis to predict OS prognosis
(Figures 2B,C). Then, three lncRNAs (AL391121.1, AL354919.2,
and AP000851.2) were identified. The risk score was calculated as
follows: risk score = (0.316737556966157 * AL391121.1 exp.) +
(-0.905740574364951 * AL354919.2 exp.) + (0.205992179621899
* AP000851.2 exp.). The sample was divided into high-risk and
low-risk groups based on the median risk score. We could find

FIGURE 3 | Prognosis of the risk model in the entire, training, and testing sets. (A–C)Heatmap of the expression of three lncRNAs in the entire, training, and testing
sets, respectively. (D–F) Risk model of the entire, training, and testing sets, respectively. (G–I) Survival time and survival status in the entire, training, and testing sets,
respectively. (J–L) Kaplan–Meier survival curves of patients with OS in the entire, training, and testing sets, respectively. (M–N) Kaplan–Meier survival curves of patients
with tumor metastasis and tumor non-metastasis.
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that AL391121.1 and AL354919.2 were positively regulated by the
necroptosis gene in the Sankey diagram of the training group
(Figure 2D).

To assess the prognostic power of the riskmodel, we compared
the correlated expression, distribution of risk scores, and survival
status of the three NRlncRNAs between risk groups in the whole
group, training group, and test group (Figures 3A–L). Obviously,
the lower the risk score, the higher the survival rate. According to
the survival analysis, the prognosis of the low-risk group was
better than that of the high-risk group, with a statistically
significant difference. Similarly, this result was validated in the
tumor metastasis group or tumor non-metastasis group
(Figures 3M, N).

The AUCs of 1-, 3-, and 5-year survival were 0.806, 0.728, and
0.731, respectively, which indicated the NRlncRNA signature is a
good predictive value (Figure 4A). The hazard ratio (HR) and
95% confidence intervals (CI) for the risk scores were 1.320 and
1.136–1.534 for the uni-Cox regressions (p < 0.001), and 1.426
and 1.209–1.681 for the multi-Cox regressions (p < 0.001),
respectively. In addition, we identified metastasis as an
independent prognostic factor by uni-Cox regressions (HR =
4.764, CI = 2.221–10.221, p < 0.001) and multi-Cox (HR = 6.261,
CI = 2.736–14.330, p < 0.001) (Figures 4B,C). Also constructed
were clinical-pathological variables and risk scores to predict the
prognosis of OS patients at 1, 3, and 5 years (Figure 4D). The
calibration curves showed good agreement between actual overall
survival rates and predicted survival rates at 1, 3, and 5 years
(Figure 4E). In addition, principal component analysis (PCA)
showed that patients with different risks were divided into two
clusters (Figure 4F).

GSEA Enrichment Analysis
GSEA was performed for KEGG pathway enrichment analysis to
clarify the differences of enrichment pathways between low-risk
and high-risk groups. The results showed that a number of cancer
and metabolism-related pathways were enriched, including the
sphingolipid metabolism signaling pathway and tight junction
signaling pathway, which were significantly associated with the
high-risk group (Figure 5A). In the low-risk group, the primary
immunodeficiency signaling pathway, hematopoietic cell lineage
signaling pathway, B cell receptor signaling pathway, antigen
processing and presentation signaling pathway, and natural killer
cell–mediated cytotoxicity signaling pathway were significantly
enriched (Figure 5B). Therefore, we hypothesized that
necroptosis may be involved in the occurrence and
development of OS through immune-related pathways.

Investigation of Immunological Factors and
Drug Efficacy in the High-Risk Group
Differential expression of 22 immune cell infiltration fractions
[naive B cells, memory B cells, plasma cells, CD8 T cells, naive
CD4 T cells, memory resting CD4 T cells, memory activated CD4
T cells, T follicular helper cells, T cells regulation (Tregs), gamma-
delta T cells, resting NK cells, activated NK cells, monocytes,
macrophages M0, macrophages M1, macrophages M2, resting
dendritic cells, activated dendritic cells, resting mast cells,
activated mast cells, eosinophils, and neutrophils] showed that
T cell CD4 memory activation was significantly different between
the high-risk group and low-risk group (Figure 5C). In addition,
we found that lower risk scores correlated more with T cell CD4

FIGURE 4 | Assessment and nomogram of the necroptosis-related lncRNA signature. (A) 1-, 3-, and 5-year ROC curves of the entire sets. (B–C) Uni-Cox and
multi-Cox analyses of clinicopathologic factors and risk score with overall survival. (D) Nomogram for predicting overall survival. € 1-, 3-, and 5-year overall survival of
calibration curves. (F) PCA scatterplot of the sample distribution.
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FIGURE 5 | Immune signature in the high-risk and low-risk groups. (A, B) GSEA analysis in the high-risk and low-risk groups, respectively. (C) Expression of
immune cells between two groups. (D) Relationship between risk score and T cell CD4 memory activation. (E) Relationship between risk score and plasma cells. (F–H)
Differential expression of TME scores (immune scores, ESTIMATE scores, and stromal scores) between risk groups. (I) Differential expression of cell infiltration between
risk groups is based on the ssGSEA scores. (J) Immune functional differences between risk groups are based on the ssGSEA scores. (K) Differential expression of
immune checkpoints between risk groups. (L) Sensitivity performance of 30 drugs in the high-risk and low-risk groups.
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memory activation and plasma cells (Figures 5D,E). All of these
suggest that the low-risk group has a higher immune infiltration
status. Furthermore, we found that the low-risk group had a
higher immune score, ESTIMATE score, and stromal score
(Figures 5F–H). Subsequently, ssGSEA was performed to
assess the level of immune cell infiltration (p < 0.05). The
results showed that the infiltration level of aDCs,
macrophages, neutrophils, T helper cells, and TIL was
significantly different between risk groups (Figure 5I).
Moreover, the relationship between the risk score and immune
pathways in OS was investigated. The boxplot of the results
showed that cytolytic activity was correlated with risk score
(Figure 5J).

The expression of immune checkpoints (CD44, CD40, and
LAIR1) was higher in the low-risk group than in the high-risk
group, while the opposite result was observed for ADORA2A
(Figure 5K). In addition, drug sensitivity analysis was performed
between risk groups by the “pRRophetic” algorithm to find the
best therapeutic drugs for different risk groups. The IC50 of the 30
drugs applied to the treatment of OS treatment was different
between the high-risk group and low-risk group (Figure 5L). This
means that we can select the appropriate checkpoint inhibitors
and drugs for patients with different risk values according to the
NRlncRNAs signature.

DISCUSSION

Osteosarcoma is a primary malignant tumor of bone in
adolescents, which originates from mesenchymal tissue.
Currently, the main treatment for osteosarcoma is neoadjuvant
chemotherapy and surgery. However, limited progress has been
made in the last 30 years to improve survival outcomes for patients
with osteosarcoma, particularly, and the survival rate of patients
with metastasis is less than 20%. Identifying a specific and reliable
prognostic marker for OS is essential in improving the prognosis.
Many lncRNAs play regulatory roles in the development and
progression of OS. Yan et al. demonstrated that the lncRNA
CCAT2 acts as an oncogene in osteosarcoma, promoting
osteosarcoma cell proliferation, cell cycle, and invasion (Yan
et al., 2018). Zheng et al. suggested that the lncRNA SNHG3
regulates osteosarcoma invasion and migration through the
miRNA-151a-3p/RAB22A axis (Zheng et al., 2019).

Necroptosis has been shown to play an important role in the
progression of many tumors, including osteosarcoma. Xiao et al.
reported that graphene oxide–associated anti-HER2 antibodies
have the ability to kill osteosarcoma cells via the necroptotic
pathway (Xiao et al., 2019). Li et al. demonstrated that the nano-
drug delivery system modified by polypeptide nanomaterials
could kill osteosarcoma cells in vitro by inducing RIP1- and
RIP3-dependent necroptosis (Li et al., 2018). After several studies
asserted that necroptosis plays an important role in tumors, but
the mechanisms involved are still not fully understood. Herein, to
investigate the correlation between the tumor microenvironment,
immune cell infiltration, immune checkpoints, and necroptosis-
associated lncRNAs, this study constructed an NRlncRNA
signature in patients with OS for the first time.

In this study, we initially obtained nine differentially expressed
and prognostically relevant NRlncRNAs (AC124798.1,
EPB41L4A-AS1, LINC01549, LINC01060, AP000851.2,
SNHG1, AL354919.2, PVT1, and AL391121.1). Among these
lncRNAs, SNHG1 promotes osteosarcoma progression via
miR-493-5p as an oncogenic factor (Liu et al., 2022). PVT1
promotes osteosarcoma metastasis via miR-484 (Yan et al.,
2020). Subsequently, we used three NRlncRNAs (AL391121.1,
AL354919.2, and AP000851.2) to model risk through random
grouping, univariate Cox regression score, and lasso regression
analysis.

Apparently, AL391121.1 and AL354919.2 are positively
regulated by TRIM11 and CD40, respectively. In addition,
Wang et al. reported that TRIM11 was an oncogene gene in
the growth of OS cells (Wang et al., 2019). CD40 plays an
important role in tumor immunotherapy (Elgueta et al., 2009).
In other words, TRIM11 may play a carcinogenic role through
AL391121.1 and AL354919.2 may be involved in CD40-
mediated immunotherapy. These lie just in line with the
risk scoring formula. Then, based on the median risk score,
patients were divided into a high-risk group and a low-risk
group. The results showed that the low-risk group had better
prognosis than the high-risk group and that the risk score was
an independent predictor of OS patients. Similarly, the
creation of predictive nomograms including
clinicopathological variables and risk scores showed perfect
agreement between observed and predicted rates for 1-, 3-, and
5-year overall survival.

Researchers demonstrated that necroptosis and lncRNAs are
closely associated with tumorigenesis, tumor immune response,
and prognosis, but the specific roles in these processes remain
unclear (Xiao et al., 2019; Li and Wang, 2021). Therefore, we
continued to explore potential mechanisms for the lncRNA
signature associated with necroptosis between risk groups.
GSEA showed that the high-risk group was significantly
associated with the sphingolipid metabolism signaling pathway
and the tight junction signaling pathway. The low-risk group was
significantly associated with the primary immunodeficiency
signaling pathway, hematopoietic cell lineage signaling
pathway, B cell receptor signaling pathway, antigen processing
and presentation signaling pathway, and natural killer cell
pathway. Cortini et al. found that inhibition of the
sphingolipid pathway impaired the survival and migration of
osteosarcoma cells (Cortini et al., 2021). In addition, claudin1, as
a tight junction protein, is increased in metastatic OS cells
compared to primary tumor cells (Jian et al., 2015).

Due to the abundance of immune-related pathways in the low-
risk population, we used ssGSEA to explore the immune status
between risk groups. Immune cells (macrophages, neutrophils, T
helper cells, and tumor infiltrating lymphocytes) and immune
function (cytolytic activity) were predominantly active in the low-
risk group. We also found that T cell CD4 memory activation and
plasma cells were negatively associated with risk scores. In previous
reports, macrophages and neutrophils were able to induce RIPK1-,
RIPK3-, and MLKL-mediated necroptosis in cells (Shi et al., 2019;
Wang et al., 2020). These results further suggest that necroptosis
may be involved in the progression of OS by regulating tumor
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immunity. Althoughmost reported immune checkpoints could help
cancer cells evade immune destruction, some researchers claim that
the expression levels of immune checkpoints positively correlate
with the efficacy of immunotherapy (Marin-Acevedo et al., 2021; Lu
et al., 2022). Therefore, we analyzed the correlation between the
expression level of the immune checkpoint and NRlncRNA
signature. Our results showed that the majority of immune
checkpoint expression was elevated in patients in the low-risk
group compared to those in the high-risk group. Kong et al.
demonstrated that inhibiting the expression of CD44 can inhibit
proliferation, migration, and invasion of osteosarcoma cells (Kong
et al., 2022). Zhang et al. verified that the over-expression of LAIR-1
inhibited epithelial-mesenchymal transition in osteosarcoma (Jinxue
Zhang et al., 2020). Thus, immunotherapy would be more beneficial
for patients at a low risk of OS. Finally, we predicted some potentially
suitable drugs for high-risk or low-risk patients, whichmay be useful
for future treatment.

However, there are some limitations and shortcomings in our
study. First, the potential mechanisms of NRlncRNAs in OS still
need to be explored. Next, although we had internally validated
by the whole group, training group, and testing group, external
validation was not performed by other data.

In summary, the NRncRNA, as an independently prognostic
marker of OS, could help forecast the procession of OS and

provide guidance on immunotherapy for OS, but further
validation is still needed.
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Characterization of
Necroptosis-Related Molecular
Subtypes and Therapeutic Response
in Lung Adenocarcinoma
Jingchen Zhang*, Xujian He, Jia Hu and Tong Li

The First Affiliated Hospital, Zhejiang University, Hangzhou, China

Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high
morbidity and mortality and is usually associated with therapeutic resistance and poor
prognosis because of individual biological heterogeneity. There is an unmet need to screen
for reliable parameters, especially immunotherapy-related biomarkers to predict the
patient’s outcomes. Necroptosis is a special caspase-independent form of necrotic cell
death associated with the pathogenesis, progression, and prognosis of multiple tumors
but the potential connection between necroptosis-related genes (NRGs) and LUAD still
remains unclear. In this study, we expounded mutational and transcriptional alterations of
67 NRGs in 522 LUAD samples and proposed a consensus-clustering subtype of these
patients into two cohorts with distinct immunological and clinical prognosis characteristics.
Cluster B patients were associated with a better prognosis and characterized by relatively
lower expression of NRGs, higher immune scores in the tumor microenvironment (TME),
more mild clinical stages, and downregulated expression of immunotherapy checkpoints.
Subsequently, the NRG score was further established to predict the overall survival (OS) of
LUAD patients using univariate Cox, LASSO, and multivariate Cox regression analyses.
The immunological characteristics and potential predictive capability of NRG scores were
further validated by 583 LUAD patients in external datasets. In addition to better survival
and immune-activated conditions, low-NRG-score cohorts exhibited a significant positive
correlation with the mRNA stem index (mRNAsi) and tumor mutation burden (TMB) levels.
Combinedwith classical clinical characteristics and NRG scores, we successfully defined a
novel necroptosis-related nomogram to accurately predict the 1/3/5-year survival rate of
individual LUAD patients, and the potential predictive capability was further estimated and
validated in multiple test datasets with high AUC values. Integrated transcriptomic analysis
helps us seek vital NRGs and supplements a novel clinical application of NRG scores in
predicting the overall survival and therapeutic benefits for LUAD patients.

Keywords: lung adenocarcinoma, necroptosis, molecular subtypes, tumor microenvironment, therapeutic
response, prognosis
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INTRODUCTION

Worldwide, lung cancer is one of the most common malignant
tumors with high morbidity and mortality and has a poor
prognosis with critical social burdens (Herbst et al., 2018).
Non-small cell lung cancer (NSCLC) makes up approximately
85% of all lung cancers, and lung adenocarcinoma (LUAD) is the
most common pathological subtype of NSCLC (Chen F. et al.,
2022). Notably, more than 50% of LUAD patients were at
advanced stages when they were clinically diagnosed and the
prognosis was relatively poor with only 11–15% 5-year overall
survival (OS) rate (Bade and Dela Cruz, 2020). Despite the
treatment of LUAD being improved remarkably, including
surgery, chemotherapy, and radiotherapy based on the clinical
stages of LUAD, there is still a lack of effective curative effects for
advanced LUAD treatment (Denisenko et al., 2018). At present,
the clinical progress of PD-1/PD-L1 immunotherapy has brought
a promising therapeutic potential for LUAD patients, especially
for those resistant to conventional surgery, radiation, or
chemotherapy (Saito et al., 2018). Nevertheless, in our clinical
practice, even if LUAD patients were at the same pathological
stages, their therapeutical response to immunotherapy might still
be completely different (Skoulidis and Heymach, 2019).
Therefore, there is an unmet need for screening reliable
biomarkers, especially the PD-1/PD-L1 immunotherapy-related
index, which could predict outcomes of LUAD patients.

Necroptosis is a special caspase-independent form of necrotic
cell death characterized by cell membrane rupture and
inflammatory response activation regulated by receptor-
interacting protein kinase1/3 (RIPK1/3) and mixed lineage
kinase domain-like pseudokinase (MLKL) (Pasparakis and
Vandenabeele, 2015). Increasing pieces of evidence have
indicated the double-edged sword role of necroptosis in
multiple tumors. For example, necrotic tumor cells would
release their contents and further activate the inflammatory
and immunological response of surrounding immune cells
(Krysko et al., 2017; Wang et al., 2020). On the other hand,
necroptosis might also promote tumor progression and
metastasis by killing normal paraneoplastic cells and leading to
severe inflammatory disorders (Ando et al., 2020). Moreover,
recent studies have indicated that necroptosis could create an
inflammatory environment to enhance the tumor susceptibility to
immune checkpoint inhibitors in drug-resistant tumors
(Workenhe et al., 2020). These studies indicated the complex
connection between necroptosis and LUAD, but the concrete
mechanism of necroptosis in LUAD still remains unclear.

The subtype stratification of LUAD patients based on
transcriptome sequencing profiles has been recognized as a
novel methodology that can quickly obtain biological
characteristics of subtypes and help us further identify the
optimal treatment strategies for patients (Jang et al., 2020). In
addition, multiple biological signatures have also been applied to
explore novel molecular subtypes for the prognosis of LUAD,
such as immune cell infiltration (ICI) (Li et al., 2021), autophagy
(Zhang M.-Y. et al., 2021), pyroptosis (Dong et al., 2021), m6A
RNA methylation (Zhou et al., 2021), and so on. However, there
is still no study focusing on the role of necroptosis in the subtypes

of LUAD patients. In this study, we comprehensively investigated
the genetic and biological characteristics of NRGs in LUAD
patients and first divided the cohorts into different subtypes
based on the expression of NRGs. The clinical prognostic
signatures and immunological landscape of necroptosis-related
subtypes were further interpreted through survival analysis,
tumor microenvironment (TME) assessments, immune cell
infiltration (ICI) analysis, and immune checkpoint
comparison. Subsequently, a novel parameter called NRG-
score was further defined based on vital NRGs, and a valuable
nomogram, combined NRG scores with some classical clinical
stages, was successfully established and validated to ameliorate
the prognostic stratification and promote making an appropriate
therapeutic decision for LUAD patients.

MATERIAL AND METHODS

Preparation of Lung Adenocarcinoma
Datasets
The public RNA-seq transcriptome datasets of 522 LUAD
patients were downloaded from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/) with their
corresponding clinical data. In addition, three external datasets
of 583 LUAD patients with their prognostic information were
obtained from the Gene Expression Omnibus (GEO) datasets
(https://www.ncbi.nlm.nih.gov/geo/), including 176 samples in
GSE42127, 226 samples in GSE31210, and 181 samples in
GSE58001. The detailed information of the aforementioned
datasets is shown in Supplementary Table S1. Then, all the
datasets were normalized as the FPKM form for subsequent
analysis and the “ComBat” algorithm of the “sva” package was
applied to remove the technical biases between different datasets
(Leek et al., 2012).

Mutational Characteristics of
Necroptosis-Related Signatures in Lung
Adenocarcinoma
Based on the necroptosis-related dataset M24779. gmt and
previous studies, a total of 67 NRGs were chosen in this study
such as mixed lineage kinase domain-like pseudokinase (MLKL),
receptor-interacting protein kinase 1 (RIPK1), RIPK3, and so on
(Zhao Z. et al., 2021; Chen F. et al., 2022). Subsequently, we also
obtained their correspondingmutation annotation format (MAF)
from the UCSC Xena online platform including copy number
variants (CNVs) and somatic mutation data. The “maftools”
package (Mayakonda et al., 2018) was used to display the
somatic mutation of NRGs, and the “RCircos” package (Zhang
et al., 2013) was applied to exhibit their CNVs and locations on
the respective chromosomes.

Identification of Consensus Clusters for
Lung Adenocarcinoma
Based on the expression of these NRGs, we applied the
“ConsensuClusterPlus” R package (Wilkerson and Hayes,
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2010) to perform the unsupervised hierarchical clustering
analysis using the Euclidean distance and Ward’s linkage
algorithm 1,000 repeated times. Moreover, the LUAD patients
were divided into different subtypes from two to nine, and the
optimal clustering subtype was further decided with the optimal
consensus cumulative distribution function (CDF) curve. In
addition, we conducted various comparisons among different
clusters including the clinical-pathological stages, prognostic
characteristics, and tumor microenvironment (TME) analysis
to explore their disease characteristics. The Kaplan–Meier
survival analysis was performed using the “survival” package
(Therneau and Lumley, 2015) and survival curves between
necroptosis subtypes were drawn by the “survminer” package
(Kassambara et al., 2017).

Immunological Characteristics of Different
Clusters in Lung Adenocarcinoma
To explore the immunological characteristics of necroptosis-related
clustering, we further performed a comprehensive analysis according
to different immunological aspects, including immune cell infiltration
(ICI) analysis, tumor microenvironment (TME) analysis, and
immune checkpoint analysis. For the TME analysis, we used the
ESTIMATE algorithm to calculate the stromal scores, immune
scores, and tumor purity of each LUAD patient (Yoshihara et al.,
2013). To quantitatively estimate the infiltration levels of immune
cells in lung tissues, we applied the deconvolution algorithm of the
“CIBERSORT” package with 22 different immune cells and 1,000
random permutations (Chen et al., 2018). In addition, the expression
of routine immune checkpoints was compared between necroptosis-
related subtypes to evaluate the potential therapeutic responses,
including CTLA4, PD1/CD274, HAVCR2, PD-L1/PDCD1, and
LAG3. Based on the “c2. cp.kegg.v7.5.1. symbols.gmt” datasets
obtained from the MSigDB database, we further performed the
gene set variation analysis (GSVA) using the “GSVA” package,
and the results of immunogenic pathways were displayed in the
heatmap (Hanzelmann et al., 2013).

Establishment of the Necroptosis-Related
Gene Score
To further establish a novel index reflecting the prognostic features of
necroptosis-related subtypes, we performed the univariate Cox
regression analysis for the overall survival (OS) of LUAD patients
through the “coxph” function in the “survival” package. Afterfiltration
with the p-value < 0.05, the remainingNRGswere further put into the
LASSO regression and multivariate Cox regression (stepwise model)
in turn to obtain the corresponding regressive coefficients. The NRG
score was identified based on the following formula:NRG score �
Exp(Gene1)*β1 + Exp(Gene2)*β2 + . . . + Exp(Gene n)*βn,
where Exp(Gene) denotes the FPKM value of each gene and β is
their corresponding regression coefficient. The NRG scores of each
patient were calculated separately and the subjects were divided into
high and low-NRG-score subtypes according to the optimal cut-off
value by the “surv_cutpoint” function of the “survminer” package
(Kassambara et al., 2017). In addition, we also performed a similar
comparison between high and low NRG groups including the

Kaplan–Meier survival analysis, clinical stages, ICI, TME, and
immune checkpoint analysis. Moreover, two external datasets,
GSE126044 and GSE135222, were applied to further evaluate the
therapeutic response to immunotherapy, including 16 and 27 NSCLC
patients receiving anti-PD-1 therapy. Some anti-tumor drugs have
been widely recommended for the chemotherapy of LUAD including
Etoposide, Cisplatin, Gemcitabine, and Docetaxel, and the half-
maximal inhibitory concentration (IC50) values of these drugs
were calculated based on the Genomics of Drug Sensitivity in
Cancer (GDSC) datasets (Yang et al., 2013). Then, we compared
the levels of IC50 values between high- and low-NRG score patients,
and the box diagramwas drawn via the “ggpubr” package (Whitehead
et al., 2019).

Relationship Between the mRNA Stem
Index, Tumor Mutation Burden, and NRG
Scores
To investigate the potential prognostic characteristics of LUAD,
we obtained the mRNAsi score from Tathiane’s study (Malta
et al., 2018) and gained the TMB score based on themutation data
from TCGA datasets. Subsequently, we performed Spearman’s
correlation analysis of NRG scores with mRNAsi and TMB
scores. In addition, the stratified survival analysis was further
applied to evaluate the independent prognostic capacity of NRG
and TMB scores in LUAD and the mutational analysis was
conducted in high- and low-NRG score subgroups, respectively.

Identification and Validation of a Novel
NRG-Related Nomogram
To validate the prognostic value of NRG scores, other three external
GEO datasets were included to perform survival and ROC analyses
with 1/3/5-year survival rates for LUADpatients. Then, we applied the
multivariate Cox regression models (stepwise model) to construct a
novel prognostic nomogram system for LUAD patients combined
with NRG scores and other important clinical phenotypes, including
age, clinical stages, and TNM stages. Selected variables were screened
with a p value < 0.05 or saved based on clinical experiences, and the
nomogram system was further constructed to determine the
probability of 1/3/5-year survival in LUAD patients via the “rms”
package. To assess and validate the prediction value of the nomogram
scoring system, we further made the calibration curves with the
corresponding 1-, 3-, and 5-year survival through a bootstrapping
method.Moreover, time-dependent ROC and calibration curves from
the other three external GEO datasets were used to estimate the
nomogram for 1-, 3-, and 5-year survivals.

RESULTS

Genetic Mutation and Prognostic
Characteristics of NRGs in Lung
Adenocarcinoma
The whole workflow of this study is given in Supplementary
Figure S1. A total of 67 reported NRGs were chosen to perform
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the genetic mutation analysis, including somatic mutation and
copy number variant analyses (Supplementary Table S1). Of all
561 LUAD patients, about 52.76% samples were detected with

somatic mutations and the top three genes with the most
mutations were EGFR, HDAC9, and BRAF (Figure 1A). The
CNV analysis revealed that most NRGs occurred due to copy

FIGURE 1 |Mutational and expressional characteristics of NRGs in LUAD patients. (A)Waterfall figure showing the somatic mutation of 67 NRGs in LUAD; (B–C)
Situation of CNV gain and loss of the PRGs on 23 chromosomes. (D) Expression of these NRGs between LUAD and the control. (E). Prognostic characteristics and
expressional relationship among PRGs in LUAD.
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FIGURE 2 | Identification of necroptosis-related molecular subtypes and immunological characteristics in LUAD. (A,B) Patients could be well divided into two
subtypes based on CDF curves. (C) K–M survival analysis exhibited a better prognosis for cluster B patients than that of cluster A groups. (D) PCA analysis showed
significant differences in the necroptosis-related transcription profiles between the two subgroups. (E) Cluster B patients manifested more proportion of mild clinical
stages than cluster A patients. (F) Compared with cluster A patients, most cluster B patients accepted locoregional surgical treatment rather than metastatic
surgery or radiation therapy. (G) GSVA demonstrated that the immune-related pathways were significantly activated in cluster B patients compared with cluster A
groups. (H) Comparison of immune cell infiltration between the two clusters. (I) Higher stromal and immune scores with lower tumor purity were detected in cluster B
patients based on the TME analysis. (J)Cluster A patients exhibited higher expression of immune checkpoints, including CD274/PD1, PDCD1/PD-L1, CTLA4, HAVCR2,
and LAG3.
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number amplification (TERT andMYT) and some copy number
deficiency was also identified in partial NRGs (CDKN2A)
(Figure 1B; Supplementary Table S2). In addition, we also
observed that the CNV of NRGs was widely distributed into
multiple chromosomes with amplification or deficiency
(Figure 1C), and the mutual correlation and prognostic
values of NRGs in LUAD patients were displayed in a

comprehensive network (Figure 1E, Supplementary Tables
S4, 5). Interestingly, we also compared their expression levels
between tumor and normal tissues and found that the
expressional changes were complex, especially significantly
upregulated genes (CDKN2A, MYCN, PLK1, and TERT) and
some downregulated signatures (AXL, ID1, and TLR3)
(Figure 1D, Supplementary Table S3).

FIGURE 3 | Identification of NRG scores and clinical characteristics in LUAD. (A) After univariate Cox regression, 21 signatures were screened as candidate
prognosis-associated genes. (B,C) Ten NRGswere chosen with the LASSO regression analysis. (D)NRG score was defined by seven PRGs (FADD,MLKL, TNFRSF1A,
CYLD, AXL, CDKN2A, and HSPA4) with multivariate Cox regression analysis. (E) Low-NRG-score patients exhibited a longer survival time than patients with high NRG
scores. (F) Cluster B patients possessed a lower NRG score than that of cluster A cohorts. (G) Low-NRG-score patients exhibited more mild clinical stages than
high-score groups. (H)NRG scores were significantly increased in patients with an effective response rate to immunotherapy. (I)Comparison of IC50 value between high-
and low-NRG-score patients for common chemotherapeutic drugs including Etoposide, Cisplatin, Gemcitabine, and Docetaxel.
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FIGURE 4 | Relationship between immunological characteristics and NRG scores. (A) Correlation analysis showed a significant negative correlation between
immune cell infiltration and NRG scores. (B)Correlation analysis of immune cells infiltration and necroptosis-related signatures of NRG scores. (C) TME analysis showed
higher stromal and immune scores with lower tumor purity in patients with low NRG scores. (D) High-NRG-score patients exhibited higher expression of immune
checkpoints. (E) The alluvial diagram visualized the status variability of LUAD patients with different subtypes. (F) ROC analysis showing the NRG scores could well
predict the survival prognosis with high AUC values (1/3/5-year 0.663/0.640/0.598). (G) The risk of death was increased with the increase of NRG scores in LUAD.
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FIGURE 5 | Evaluation of potential therapeutical susceptibility and prognostic value of NRG scores in LUAD. (A,B) Low-NRG-score patients exhibited lower levels
and a significant positive correlation with the mRNAsi index (R = 0.34). (C,D) Low-NRG-score patients exhibited lower levels and a significant positive correlation with
TMB values (R = 0.20). (E) Survival analysis shows that the high-TMB patients exhibited a better prognosis for LUAD patients. (F) Stratified survival analysis revealed that
patients with low NRG scores and high TMB values had the best prognosis status for LUAD. (G,H) Condition of somatic mutation of NRGs in high- and low-TMB
patients. (I–K) Low-NRG-scores patients displayed a better prognosis and NRG scores could accurately estimate the OS for LUAD in external datasets (1- /3- /5-year
AUC values: 0.829/0.604/0.600 in GSE31210; 0.695/0.571/0.556 in GSE58001; and 0.748/0.639/0.635 in GSE42127).
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FIGURE 6 | Development and validation of a prognostic model for LUAD patients. (A) Combined nomogram for predicting the probability of 1/3/5-year survival for
LUAD patients, based on age, clinical stages, TNM stages, and NRG scores. (B–E) ROC analysis showed a good prediction capacity for LUAD patients with high mean
AUC values: (0.716/0.706/0.702) in TCGA datasets, 0.790/0.704/0.687 in GSE42127, 0.912/0.821/0.674 in GSE31210, and 0.684/0.662/0.657 in GSE58001
datasets. (F–I) Calibration curve of the established nomogram with 1/3/5-year survival, respectively.
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Identification of Necroptosis-Related
Subtypes and Characteristics in Lung
Adenocarcinoma
Based on the expression of the aforementioned 67 NRGs, an
unsupervised clustering method was applied to identify the
necroptosis-related subtypes of LUAD patients, and k = 2 was
further identified as the optimal clustering model from k = 2 to 9
clustering according to the consensus CDF curve, for 168 patients
in cluster A and 300 patients in cluster B subtypes (Figures 2A,
B). The survival analysis indicated that patients from cluster B
had a longer median survival time than those in cluster A
subgroups (Figure 2C) and the PCA revealed that the
expression of these NRGs could clearly divide the LUAD
samples into two distinct clusters (Figure 2D). In addition,
the clinical correlation analysis also demonstrated that cluster
B patients were positively associated with mild clinical stages
including integrated pathological and TMN stages (Figure 2E,
Supplementary Table S6) and most of these patients accepted
locoregional surgical treatment rather than metastatic surgery or
radiation therapy (Figure 2F). All these results suggested that
cluster B might be considered as beneficial subtypes with a better
prognosis for LUAD patients.

GSVA demonstrated that the immune-related pathways were
significantly activated in cluster B patients compared with cluster
A groups, including the chemokine signaling pathway, natural
killer cell-mediated cytotoxicity, JAK-STAT signaling pathway,
and T/B cell receptor signaling pathway (Figure 2G,
Supplementary Tables S7, 8). To further explore the
immunological characteristics of different subtypes, we
performed a series of immune-related analyses including TME,
ICI, and immune check-point analyses. For the immune
infiltration scores, adaptive immune response-associated
lymphocytes (including activated memory CD4+ T cells, CD8+

T cells, plasma cells, and M1 macrophages) were significantly
increased in tissues from cluster B patients than those of cluster A
cohorts while regulatory T cells (Tregs) were increased in cluster
A patients (Figure 2H, Supplementary Table S10). In terms of
TME scores, higher immune scores and stromal scores with lower
tumor purity were also observed in patients of cluster B than in
the cluster A subtype (Figure 2I, Supplementary Table S9).
Interestingly, higher expression levels of immune check-points
were detected in cluster A patients than in the other cluster,
suggesting its potential therapeutic response to immunotherapies
although with severe clinical phenotypes and poor prognosis
(Figure 2J).

Construction and Development of NRG
Scores for the Prognosis of Lung
Adenocarcinoma
After including the 67 NRGs into the univariate Cox regression,
21 signatures were screened as candidate prognosis-associated
genes for the subsequent LASSO and multivariate Cox regression
analysis (Figures 3A–C). A total of seven NRGs (FADD, MLKL,
TNFRSF1A, CYLD, AXL, CDKN2A, and HSPA4) were
successfully identified to construct a novel index representing

the characteristics of necroptosis, based on their expression and
corresponding β coefficients. The NRG score was defined by the
following formula: NRGscore � 0.016 × FADD +
0.031 × MLKL + 0.003 × TNFRSF1A − 0.055 × C
YLD + 0.004 × AXL + 0.003 × CDKN2A + 0.008 × HSPA4.
Subsequently, those LUAD patients were divided into a low- and
high-NRG-score subgroup with the optimal cut-off value (0.557)
using the “surv_cutpoint” function. Notably, of these hub genes,
only CYLD was the protective signature and the high-NRG-score
patients exhibited a worse survival state than that of low-score
cohorts in TCGA datasets (Figures 3D, E). In addition, we also
detected that cluster B groups had lower NRG scores and these
low-score patients exhibited a better clinical stage than in the
high-NRGscore patients (Figures 3F, G). From both GSE126044
and GSE135222 datasets, those LUAD patients with effective
therapeutic responses to anti-PD-L1 therapy exhibited higher
NRG scores than those who lacked responses (Figure 3H,
Supplementary Table S11). Notably, all these anti-tumor
drugs exhibited lower IC50 values in the high-NRG-score
subgroups, implying that patients with higher NRG scores
might gain a better curative effect from classical chemotherapy
treatments (Figure 3I, Supplementary Table S12).

Correlation of Immunological
Characteristics and NRG Scores
To investigate the biological characteristics of the NRG scores, we
also performed the aforementioned immunological analysis. It
revealed that NRG scores were significantly negative-correlated
with the abundance of multiple immune cells, including plasma
cells, CD8+ T cells, Tfh cells, and activated NK cells (Figure 4A).
Moreover, the expression of hub necroptosis-related signatures was
also associated with the infiltration of immune cells, especially AXL,
CDKN2A, and CYLD (Figure 4B, Supplementary Table S13). As
expected, the patients with low NRG scores exhibited higher
immune scores and stromal scores with lower tumor purity than
the high-NRG-score cohorts in the TME analysis (Figure 4C). The
expressions of immune check-points were also congruously
decreased in the low-NRG score patients, suggesting the
consistency between NRG scores and cluster subtypes
(Figure 4D). The alluvial diagram clearly visualized that patients’
status varied with different characteristics and we found that most
Cluster B patients were divided into the low-NRG-score cohorts with
better clinical stages and prognosis (Figure 4E). All these pieces of
evidence conformably indicated that the low-NRG-score patients,
consistent with cluster B subtypes, possessed an immune-activated
status and better prognosis for LUAD. The ROC analysis further
indicated that the NRG scores could well predict the survival
prognosis with high AUC values (1/3/5-year: 0.663/0.640/0.598,
respectively) and the risk of death was also increased with the
increasing of NRG scores in TCGA datasets (Figures 4F, G).

Relationship Among mRNA Stem Index,
Tumor Mutation Burden, and NRG Scores
As a novel prognosis indicator in oncological studies, the
mRNAsi score was obtained from Tathiane’s article (Malta
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et al., 2018), and the TMB score was calculated based on the
mutation data of LUAD patients from TCGA datasets, which
represent their correlation with curative effects and prognosis
multiple tumors. To further investigate their potential
relationships with NRG scores, we compared the TMB and
mRNAsi levels between different NRG score subgroups and
conducted the correlation analysis with Spearman’s methods
(Supplementary Tables S14, 15). The results revealed that the
low-NRG score patients exhibited lower mRNAsi and TMB
scores than that of high-NRG-score cohorts (Wilcox test, p =
2.3e−06, p = 0.0017, Figures 5A, C) and the NRG scores were
positively associated with mRNAsi and the TMB index
(Spearman coefficient: R = 0.34, p < 0.001; R = 0.20, p =
1.5e−05, Figures 5B, D). Notably, the survival analysis
detected a longer median survival time in high-TMB-score
patients than those in low-score patients, contradictory with
the better prognosis in low-NRG-score patients (Figure 5E).
To interpret this conflict, we performed stratified survival
analysis and observed that patients with high-TMB and low-
NRG scores exhibited the best prognosis status and NRG scores
played a more effective role in predicting the prognosis than TMB
scores, suggesting the independent effects of NRG and TMB
scores for the prognostic stratification of LUAD (Figure 5F).
Moreover, we also evaluated the distribution of somatic variants
between the high- and low-NRG-score cohorts using TCGA
datasets and multiple mutation patterns were detected in both
subgroups including missense mutation and frame shift ins.
Interestingly, there was no significant difference in the
mutation frequency between the two subgroups (58.21% in
high-NRG vs. 52.13% in low-NRG patients) but CDKN2A,
HDAC9, and ALK were the top three NRGs with the most
mutation frequency in high-NRG patients while EGFR, BRAF,
and ATRX were the top three NRGs in low NRG cohorts
(Figures 5G, H).

Evaluation and Validation of the Prognostic
Model for Lung Adenocarcinoma
To validate the prognostic value of NRG scores in LUAD, other
three external GEO datasets were applied to perform the survival
and ROC analyses. Notably, it revealed that low-NRG-score
patients displayed a better prognosis, and NRG scores could
accurately estimate the overall survival for LUAD in all datasets
(1- /3- /5-year AUC values: 0.829/0.604/0.600 in GSE31210;
0.695/0.571/0.556 in GSE58001; and 0.748/0.639/0.635 in
GSE42127, respectively) (Figures 5I–K, Supplementary Tables
S16). Subsequently, based on the NRG scores and other
important clinical features, the nomogram was successfully
constructed using the multivariate Cox model to predict 1/3/5-
year survival rates for LUAD patients. Age, clinical stages, TNM
stages, and NRG scores were included in the nomogram
(Figure 6A), and the calibration curve showed a good
prediction capacity for LUAD patients with high mean AUC
values (0.716/0.706/0.702) in TCGA datasets (Figures 6B, F). In
addition, the external datasets further demonstrated the
predictive capability of the nomogram for the prognosis in
LUAD patients, including 0.790/0.704/0.687 in GSE42127,

0.912/0.821/0.674 in GSE31210, and 0.684/0.662/0.657 in
GSE58001 datasets (Figures 6C–E, G–I).

DISCUSSION

As one of the malignant tumors with high mortality, the outcome of
LUAD patients remains poor because of the lack of effective
therapeutical responses to chemotherapy and immunotherapy due
to inner biological heterogeneity (Yuan et al., 2021). Over the past
decades, the identification of histological subtypes with an especial
genic mutation has brought dramatic amelioration in disease
outcomes of LUAD patients. In particular, massive molecularly
targeted anticancer agents, including EGFR and ALK inhibitors,
have been approved as the preferred treatments for LUAD
patients with corresponding genetic alterations (Gridelli et al.,
2014). Moreover, immune checkpoint genes (such as PD1/PD-L1,
LAG-3, CTLA-4, and HAVCR2) have been certified to participate in
the immune suppression process of multiple tumors and targeted
inhibitors have also been applied to specific immunotherapy for
cancers (ZhangH. et al., 2021). However, in our clinical practice, even
if the LUAD patients were at the same pathological stages, their
therapeutical response to the targeted immunotherapy might still be
completely different (Skoulidis and Heymach, 2019). Therefore, it is
urgently required to identify a novel molecular subtype and reliable
prognostic model for predicting the outcomes of LUAD patients.

Different from cellular apoptosis, necroptosis has been
recognized as a specially programmed cell death with an essential
role in maintaining the stabilization of the internal environment and
participating in the pathogenesis of multiple diseases including
various infections, tumor formation, and autoimmune diseases
(Schreiber et al., 2017; Wang et al., 2019; Xia et al., 2020).
Increasing studies have identified necroptosis-related gene
signatures and subtypes to predict the prognosis and therapeutic
response of multiple tumors including breast cancer (ChenW. et al.,
2022), kidney renal clear cell carcinoma (Chen W. et al., 2022), and
pancreatic adenocarcinoma (Wu et al., 2022), but there is no
research focusing on the relationships between NRGs and LUAD.

Various molecular genetic alterations have provided valuable
information for predicting the risk and prognosis of LUAD
patients, especially based on copy number variations (CNVs)
and somatic mutation analysis (Zhao Y. et al., 2021). In this study,
we also explored the genetic characteristics of NRGs in LUAD
patients and it revealed that a high somatic mutation frequency
(52.76% samples) was detected and most NRGs possessed copy
number amplification, suggesting that necroptosis might be
closely associated with a genetic mutation in LUAD patients.
The classification of LUAD patients based on various biological
signatures has been considered a promising method and applied
to various studies including immune cell infiltration (ICI) (Li
et al., 2021), autophagy (Zhang M.-Y. et al., 2021), pyroptosis
(Dong et al., 2021), and m6A RNA methylation (Zhou et al.,
2021). Therefore, this study first proposed a necroptosis-related
subtype for LUAD based on the clustering expression of NRGs
with distinct prognostic and immunological features including
TME, ICI, GSVA, and immune checkpoints. Notably, cluster B
patients exhibited a longer median survival time than cluster A
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cohorts, and the prognostic clusters were consistent with clinical
TNM stages, indicating that these NRGs were significantly related
to survival status in LUAD patients. In addition, the TME analysis
detected higher immune and stromal scores in cluster B than in
cluster A and GSVA also detected the activation of immune-
related pathways in cluster B cohorts, suggesting that the
anticancer immune response was significantly activated in
cluster B patients. Immune checkpoint genes (including PD1,
PD-L1, CTLA4, HAVCR2, and LAG3) have been demonstrated
to play an essential role in the immune suppression of multiple
cancers and several targeted inhibitors, especially PD1/PD-L1,
and have also been widely applied to clinical immunotherapy for
tumors (Kim and Choi, 2020). Interestingly, the expression of
these immune checkpoints was significantly decreased in cluster
A patients suggesting a significant immune exhaustion status and
a possible better therapeutical response in LUAD. All these results
indicated that cluster B was an immune-activated subtype with a
better prognosis and potential curative response for LUAD
cohorts.

Furthermore, a novel necroptosis-related tool (NRG score) was
successfully identified to estimate the prognostic risk of LUAD
patients based on the stepwise model of multivariate Cox
regression. Interestingly, a better survival status with lower TNM
stages, higher TME scores, and a significant negative correlation with
ICI scores were also detected in low-NRG score subgroups, consistent
with the characteristics of cluster B patients. Patients with high NRG
scores also exhibited a higher expression of immune checkpoints than
low-NRG-score patients, indicating their potential therapeutic
sensitiveness to immunotherapy for LUAD. Interestingly, the NRG
score was calculated based on the expression of hub NRGs, especially
MLKL, HSP4A, and CYLD, all associated with the pathogenesis and
prognosis of LUAD by previously published works. As the executor of
necrotic apoptosis, MLKL had been reported to be activated by RIPK1
or RIPK3with phosphorylation tomediate necrosis signaling and play
an important role in various non-necroptotic processes including
receptor internalization, ligand-receptor degradation, axonal repair,
and necroptotic inhibition (Brault and Oberst, 2017; Martens et al.,
2021). In vitro, Tan et al. (2020) further demonstrated that the
activation of RIP3/MLKL-dependent necroptosis could increase the
therapeutic sensitivity to gefitinib in NSCLC patients. Heat-shock
protein family A (Hsp70) member 4 (HSPA4) was involved in the
functional stabilization of mutated or aberrantly expressed genes in
multiple tumors (Lv et al., 2012) and had been identified to have a
significant correlation with immune regulation and prognosis of
hepatocellular carcinoma (Shang et al., 2021). Notably, as the sole
protective NRG for LUAD, CYLD Lysine 63 Deubiquitinase (CYLD)
had been considered as the tumor suppressor and further
demonstrated to be regulated by miR-96-5p and LncRNA GMDS-
AS1 to inhibit the development of LUAD via a cellular assay and
mouse tumor models (Zhao et al., 2020). These results indicate the
NRG’s potential relationship with the prognosis of LUAD and the
specific mechanism of these vital signatures in LUAD remains to be
further explored by functional experiments in vivo or in vitro.

Cancer stem cells (CSCs) are characterized by unlimited
proliferation and self-renewal and have participated in the
therapeutic resistance of lung cancers. As the most representative
parameter of CSCs, the mRNA stem index (mRNAsi) has been

widely applied to evaluate the characteristics of CSCs and prognosis
in a variety of tumors including LUAD (Zhang et al., 2020). The
TMB value has been identified as a novel biomarker of response to
immune checkpoint treatment and reported to predict the survival
status of LUAD patients (Nan et al., 2021). Therefore, the mRNAsi
index and TMB value could serve as sensitive indexes to the response
of immunotherapy. In this study, we also performed the correlation
analysis of the mRNAsi index, TMB value, and NRG scores, and our
results exhibited that there was a significant positive relationship
among the mRNAsi index, TMB value, and NRG scores, consistent
with the aforementioned finding of immune checkpoint expression.
Moreover, the stratified survival analysis demonstrated that the
prognosis capability of NRG scores was independent of the TMB
value and those patients with low NRG and high TMB possessed an
optimal survival status. It was worth noting that patients with low-
NRG scores could still exhibit favorable survival regardless of
different TMB conditions, suggesting that NRG scores might be a
more effective predictor than TMB values. More importantly, based
on the datasets with immunotherapy, we successfully validated the
potential relationship between NRG scores and clinical response to
immunotherapy in LUAD patients. Common chemotherapeutic
drugs also exhibited lower IC50 values in high-NRG-score
patients, including Etoposide, Cisplatin, Gemcitabine, and
Docetaxel, indicating a more effective role in LUAD patients with
high NRG scores.

Furthermore, to validate the significance of NRG scores in
predicting the prognosis of LUAD, other external GEO datasets
including 561 patients were used to perform the ROC analysis
and we found that NRG scores actually predicted 1/3/5-year
survival outcomes of LUAD with high mean AUC values.
Combined with age, clinical stages, TNM stages, and NRG
scores, we successfully constructed a novel nomogram tool to
accurately predict the 1-, 3-, and 5-year OS probability of
individual LUAD patients. More importantly, the predictive
capability of the nomogram was successfully validated through
the external GEO datasets based on calibration curves and ROC
curves, implying the stabilization of the model in LUAD.

However, there are still several ineluctable limitations in our
study. On the one hand, the integrated analysis based on the
transcriptomic profiles was only obtained from public open-
source databases and the size of LUAD cohorts in the
databases was relatively small and limited. Therefore, some
corresponding results, such as necroptosis-related subtypes,
remain to be further validated via more external self-
sequencing datasets or experiments in vivo and in vitro. On
the other hand, further application of NRG scores still needs
other fundamental studies and even clinical practices to be
reduplicatively validated and ameliorated. Finally, the
complicated mechanism of NRGs in the development of
LUAD was still unclear and needed to be further deeply
explored through experiments in vivo or in vitro.

CONCLUSION

In conclusion, this study first identified a necroptosis-related
disease subtype based on the unsupervised clustering of NRGs
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with different clinical and immunological signatures in LUAD
patients. Furthermore, we also defined a promising tool called
the “NRG score” to predict the OS status and potential
therapeutic response to immunotherapy for LUAD. Finally,
combined with age, clinical stages, TNM stages, and NRG
scores, we successfully constructed a novel nomogram tool to
accurately predict the 1-, 3-, and 5-year OS probability of
individual LUAD patients, and this model was favorably
validated in multiple external GEO datasets with
concordant calibration curves and high AUC values.
Integrated transcriptomic analysis helps us seek vital
necroptosis-related genes and supplements a novel clinical
application of NRG scores in predicting the overall survival
and therapeutic benefits for LUAD patients.
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Identification of NAD+
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in Ovarian Cancer Prognosis and
Immunotherapy
Liang Lin†, Li Chen†, Zuolian Xie, Jian Chen, Ling Li* and An Lin*

Department of Gynecology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China

Background: Nicotinamide adenine dinucleotide (NAD+) has emerged as a critical
regulator of cell signaling and survival pathways, affecting tumor initiation and
progression. In this study it was investigated whether circulating NAD+ metabolism-
related genes (NMRGs) could be used to predict immunotherapy response in ovarian
cancer (OC) patients.

Method: In this study, NMRGs were comprehensively examined in OC patients, three
distinct NMRGs subtypes were identified through unsupervised clustering, and an NAD+-
related prognostic model was generated based on LASSO Cox regression analysis and
generated a risk score (RS). ROC curves and an independent validation cohort were used
to assess the model’s accuracy. A GSEA enrichment analysis was performed to
investigate possible functional pathways. Furthermore, the role of RS in the tumor
microenvironment, immunotherapy, and chemotherapy was also investigated.

Result: We found three different subgroups based on NMRGs expression patterns.
Twelve genes were selected by LASSO regression to create a prognostic risk signature.
High-RS was founded to be linked to a worse prognosis. In Ovarian Cancer Patients, RS is
an independent prognostic marker. Immune infiltrating cells were considerably
overexpressed in the low-RS group, as immune-related functional pathways were
significantly enriched. Furthermore, immunotherapy prediction reveal that patients with
low-RS are more sensitive to immunotherapy.

Conclusion: For a patient with OC, NMRGs are promising biomarkers. Our prognostic
signature has potential predictive value for OC prognosis and immunotherapy response.
The results of this study may help improve our understanding of NMRG in OCs.
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BACKGROUND

Ovarian cancer (OC) is the deadliest gynecological cancer with
few initial symptoms and a poor prognosis (Webb and Jordan,
2017; Kossaï et al., 2018; Matulonis, 2018). It is the fifth leading
cause of cancer-related death in women, and fewer than 50% of
women survive beyond 5 years after diagnosis due to the rapid
emergence of chemoresistance coupled with the lack of effective
early detection strategies. A number of cancers, including OC,
have recently been treated with immunotherapy, although OC
patients are highly heterogeneous and some are immune to
immunotherapy (Roett and Evans, 2009; Ottevanger, 2017).
Furthermore, OC has a high probability of recurrence and
medication resistance (Tew, 2016; Sipos et al., 2021).
Therefore, a great deal of research is required to advance
understanding of disease etiology, identify risk factors, and
develop early detection methods and effective molecular
biomarkers.

It is believed that metabolic reprogramming plays a role in the
genesis of tumors. NAD+ plays a key role in maintaining cellular
homeostasis, genome stability, cell growth, cell death, and

immune responses (Newman and Maddocks, 2017; Pramono
et al., 2020; Navas and Carnero, 2021). In cells, NAD exists in two
states: oxidized (NAD+) and reduced (NADH). NAD+ stimulates
cancer cell growth by enhancing anaerobic glycolysis via
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and
lactate dehydrogenase (LDH). Most of exhibit increased ratios
of NAD+/NADH and NADP+/NADPH, implying that NAD+

plays a significant role in cancer (Nacarelli et al., 2020; Ghanem
et al., 2021; Wang et al., 2022). In addition, NAD+ acts as a
substrate of sirtuins, PARPs, and cADPRSs in many different
signaling pathways, including DNA repair, inflammatory
responses, posttranslational modifications, senescence, and
apoptosis (Sultani et al., 2017; Rajman et al., 2018; Zapata-
Pérez et al., 2021). Due to the ineffectiveness of traditional
anticancer therapies, researchers are seeking new therapeutic
targets. In this context, NMRGs could be a potential new
target. By investigating the role of NMRGs in OC, new
treatments can be developed and a better understanding of the
disease can be gained.

Bioinformatics techniques have made it possible for
researchers to study OC in greater detail in recent years. The

FIGURE 1 | Flowchart of this study.
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primary objective of this study is to create NMRG signals that
could provide insights into clinical treatment and prognosis for
patients with OC. Based on the expression levels of NMRGs, we
divided OC patients into two subgroups using The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
databases. Furthermore, we constructed a prognostic model of
OC patients based on NMRGs and generated an RS. We also
examined the model’s stability and the significance of RS in
clinical therapy. In summary, we successfully developed a risk
model for NAD+ that could be used in clinical therapy and
diagnostics.

MATERIALS AND METHODS

Ovarian Cancer Data Source and
Preprocessing
We retrieved RNA expression and clinical data from ovarian
cancer patients (Supplementary Table S1) in The Cancer
Genome Atlas (TCGA) and The Genotype-Tissue Expression
(GTEx) databases. Normal tissue/paracancerous tissue of OC in
GTEx was used as control. Tissues from patients with GSE26193
(Supplementary Table S2) were used as the validation dataset.
The GSE26193 annotation file is available at Affymetrix Human
Genome U133 Plus 2.0 Array (HG-U133_Plus_2). We converted
Fragments per kilobase (FPKM) values to transcripts per million
(TPM) for the TCGA cohort. Patients with missing survival
information were excluded from the study. The SVA package
of the R software is used to correct for the effects of batch
processing on data. We used the KEGG database (Pathway:

hsa00760) and the Reactome database (R-HSA-196807)
(Supplementary Table S3) to obtain NMRGs (Li C. et al.,
2022). The Immune Checkpoint Immunophenoscore (IPS) is a
good predictor of patient response to CTLA-4 and PD-1
immunotherapy. The Cancer Immunome Atlas (TCIA)
provided immunophenotyping score files for immune
checkpoint inhibitor (ICI) patients.

Ovarian Cancer Analysis Based on Online
Database
Metascape (http://metascape.org/gp/) is a gene-annotation and
analysis tool commonly used in genetic research. (Zhou et al.,
2019; Han et al., 2021; Ye et al., 2021). The Metascape database
was used to perform Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses NMRGs.

The Cancer Genome Project (CGP, https://cancer.sanger.ac.
uk/cosmic) is one of the most comprehensive databases exploring
the impact of somatic mutations in human cancer. We analyzed
the tumor mutational status of Ovarian Cancer based on
COSMIC (Jubb et al., 2018; Sondka et al., 2018).

Construction and Verification of NAD+

Metabolism-Related Genes Signatures
We performed unsupervised consensus clustering to elucidate
the relationship between NAD+ metabolic subtypes and
prognosis. We used the R package “ConsensuClusterPlus”
and repeated 1,000 times to guarantee the stability of the

FIGURE 2 | Functional enrichment of NMRGs and visualization of interactome analysis results. (A)Metascape enrichment analysis for the NMRGs. (B)Metascape
enrichment network visualization showing the intra-cluster and inter-cluster similarities of enriched terms. (C)Metascape visualization of the interactome network formed
by NMRGs candidates, where the MCODE complexes are colored according to their identities.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9052383

Lin et al. NMRG Signatures in Ovarian Cancer

36

http://metascape.org/gp/
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


clustering (Wang et al., 2020; Wu et al., 2021a). Using the
consensus clustering approach, determine the optimal
numbers of clusters. Significant DEGs are present in several
subtypes, and they were subjected to univariate Cox regression
analysis to further screen DEGs linked with OC prognosis.
After that, these genes were subjected to LASSO regression
analysis to find more useful prognostic factors. Finally, 12
genes strongly connected to OS, and an RS was generated for
each OC patient based on the expression levels of these genes
and the Cox regression coefficient (Cao et al., 2020; Liang et al.,
2020; Zhao et al., 2021). According to the median risk score,
OC patients were divided into high-risk and low-risk
subgroups. The prognostic prediction performance can
evaluate using Kaplan-Meier survival analysis and time-
dependent ROC curves. The validation cohort for the model
was GSE26193. Cox regression analysis, both univariate and
multivariate, was used to see if RS may be an independent
prognostic factor in OC patients.

GSVA Enrichment Analysis
We used the “GSVA” R software tool to perform GSVA
enrichment analysis to learn more about the differences in
functional pathways and biological processes between distinct
subtypes and high- and low-RS groups. For functional
annotation, the R package “cluster profile” was used, and the
gene set file (c2. cp.kegg.v7.2. symbols.gmt) was obtained from
the MSigDB database (https://www.gsea-msigdb.org) (Sun et al.,
2020; Chen L. et al., 2021; Wu et al., 2021b).

Tumor Microenvironment Analysis
The “ESTIMATE” package was used to predict the composition
of the immune stroma in the tumor microenvironment (TME) of
Ovarian Cancer patients, as well as to calculate Immune Score,
Stromal Score and ESTIMATE Score (Fan et al., 2021; Li Y. et al.,
2022). The ssGSEA algorithm was used to quantify dissimilarities
in immune cell infiltration subsets and immune function
enrichment between high- and low-RS groups. ssGSEA is a

FIGURE 3 | Analysis of the relationship between TP53 and NMRGs. COSMIC database analysis of OC mutation distributions (A) and its types (B, C). (D) Lollipop
charts of the mutated TP53 gene, the figure caption shows the somatic mutation rate, and the subheadings shows the name of somatic mutation. (E) TP53 was
significantly overexpressed in the tumor group. (F) The relationship between TP53 and immune infiltrating cells. (G) Relationship between TP53 and NMRGs. (H–K)
Differences in the expression levels of NMRGs between the TP53 mutant group and the wild-type group. *p < 0.05, **p < 0.01, ***p < 0.001.
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popular enrichment algorithm extensively utilized in medical
studies (Liu et al., 2021; Liu et al., 2022a; Liu et al., 2022b; Liu
et al., 2022c).

Statistical Analysis
All statistical analyses are performed by the use of R version 4.1.2.
ifferentially expressed genes (DEGs) were identified using the R
package “limma,” and survival analysis was performed using the
“survival” and “survminer” packages (Ritchie et al., 2015). The
“ggplots” software was used to create the volcano and heatmaps.
The IC50 of chemotherapeutic medicines was predicted using the
“pRRophetic” software (Geeleher et al., 2014; Wang et al., 2021).
All statistical studies used two-sided, and p < 0.05 was considered
to be significant.

RESULTS

Identification and Functional Enrichment
Analysis of NAD+ Metabolism-Related
Genes
Figure 1 depicts the study’s analysis process. The prognostic
research revealed that most NMRGs were strongly linked
with OC prognosis, implying that NMRGs play a key role in
OC (Supplementary Figure S1). We performed a functional
enrichment analysis of NMRGs using the Metascape database
and found that they were significantly enriched in
metabolism-related available pathways, including columns
Nicotinate and nicotinamide metabolism, Nicotinate

FIGURE 4 | Identification of NMRGs-related subtypes in OC patients. (A) A risk network for NMRGs. (B) Consensus clustering cumulative distribution function
(CDF) for k = 2 to 9. (C)Relative change in area under the CDF curve for k = 2 to 9. (D)K = 3was a relatively stable distinction of the samples in the OC dataset. (E)Kaplan-
Meier survival curve showing the relationship between NMRGs-related subtypes and overall survival. (F) Principal component analysis (PCA) analysis of NMRGcluster.
The heatmap shows the clinical characteristics of different subtypes of TCGA (G) and GEO (H) patients.
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metabolism, NAD+ metabolism, NAD metabolic process,
regulation of small molecule metabolic process, regulation
of cellular ketone metabolic process, Pyrimidine metabolism,
and regulation of reactive oxygen species metabolic activities
(Figure 2A). Figure 2B illustrates the link between
enrichment pathways. In addition, we identified the
regulatory networks of crucial proteins in NMRGs using
protein interaction enrichment analysis, and we discovered
that they were mainly connected with nicotinate and
nicotinamide metabolism, nicotinate metabolism,
metabolism of water-soluble vitamins and cofactors,
nicotinate and nicotinamide metabolism, pyridine-
containing compound metabolic process, and nucleotide
biosynthetic process (Figure 2C). Another important
finding was that most NMRGs were dysregulated in OC.
NAXE, RNLS, PNP, NT5DC4, PARP9, NMNAT2, RDH14,
CD38 were significantly higher expressed in OC compared
to normal tissues, while NAXD, AOX1, PAPR6, SLC5A8,
NT5C, ENPP1, NADSYN1, SIRT2, PTGIS, NT5C2, NMRK1,
NMNAT3 were significantly lower expressed in OC
(Supplementary Figure S2).

Analysis of the Relationship Between TP53
and NAD+ Metabolism-Related Genes
Based on the COSMIC database, we looked at the mutation
status of OC (Figure 3A) and discovered that missense
substitution and G > A mutations were most common
(Figures 3B,C). We also provide a lollipop plot of the
distribution of mutations in the TP53 gene based on the
TCGA data, as TP53 is the gene with the highest mutation
frequency in OC (Figure 3D). TP53 was also strongly
expressed in OC tissues (Figure 3E) and had a significant
positive link with several immune-infiltrating cells such as
NK cells, TCM, and Eosinophils (Figure 3F). Furthermore,
we analyzed the relationship between TP53 and NMRGs, we
found that TP53 was positively correlated with NADK,
NAXD, NMRK2, NT5C2, NT5C1B, PARP16, PARP4,
PARP8, QPRT, RNLS, SIRT1, SIRT3, SIRT5, and with
NAXE, NNMT has a negative correlation (Figure 3G).
Further study found that the TP53 mutant group tended to
have higher NADK2 (Figure 3H), PARP14 (Figure 3J),
NT5DC4 (Figure 3K) expression, and lower ENPP3
(Figure 3I) expression.

FIGURE 5 | Identification of functional pathway enrichment and immune cell infiltration between different subtypes. (A–C) GSVA enrichment analysis shows the
activation states of biological pathways in different subtypes. The heat map was used to visualize these biological processes, and red represented activated pathways
and blue represented inhibited pathways. (D) Tumor microenvironment analysis of NMRGcluster subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9052386

Lin et al. NMRG Signatures in Ovarian Cancer

39

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Identification of NAD+ Metabolism-Related
Genes-Related Subtypes in Ovarian Cancer
Patients
NMRGs have long been thought to have a crucial function in OC.
For further analysis, we created NMRG’s risk network by
combining the OC patient data from the TCGA and GEO
databases into one cohort with the batch correction to remove
differences between the data. Findings revealed that most
NMRGs show positive correlation relationships and may be
risk factors for OC (Figure 4A). The “Consensus Cluster Plus”
R software was used to classify OC patients based on NMRG
expression level (Figures 4B–D). The best stable clustering result
came from this analysis when k = 3. We discovered three distinct
subgroups: NMRG cluster A, NMRG cluster B, and NMRG
cluster C, respectively. According to the predictive analysis
results, patients with NMRG cluster C had a considerably
worse outcome (p = 0.017; Figure 4E). PCA analysis revealed
that the NMRG clusters were divided into three discrete clusters
(Figure 4F). The heatmap also depicts the clinical characteristics

of several subgroups of TCGA (Figure 4G) and GEO (Figure 4H)
patients (Supplementary Table S4). Furthermore, we found that
patients with NMRG cluster C had higher TP53 mutation
frequencies and lower TP53 expression levels (Supplementary
Figure S3).

Identification of Functional Pathway
Enrichment and Immune Cell Infiltration
Between Different Subtypes
Results of GSVA enrichment analysis (Figure 5A) depicted that
NMRGcluster B was mainly enriched in apoptosis and signaling
related pathways, such as RIG I like receptor signaling pathway,
Cytosolic DNA sensing pathway, Apoptosis, Antigen processing
and presentation, T cell receptor signaling pathway, B cell
receptor signaling pathway, JAK STAT signaling pathway,
NOD like receptor signaling pathway, and Toll-like receptor
signaling pathway. According to Figures 5B,C, TGF beta
signaling route, Wnt signaling pathway, Melanoma, Glioma,
Cancer pathways, Focal adhesion, JAK STAT signaling

FIGURE 6 | Development and verification of risk signatures associated with NMRGs in OC. (A) Cross-validation for tuning parameter selection in the lasso
regression. (B) Validation was performed for tuning parameter selection through the least absolute shrinkage and selection operator (LASSO) regressionmodel for overall
survival (OS). (C) Training cohort, Kaplan-Meier survival analysis of high and low RS subgroups. (D) Validation cohort, Kaplan-Meier survival analysis of high and low RS
subgroups. (E) Training cohort, patient’s survival status. (F) Training cohort-RS distribution of patients. (G) Training cohort-PCA analysis. (H) Training cohort-plots
of the AUC for time-dependent ROC performance. (I) Validation cohort, patient’s survival status. (J) Validation cohort-RS distribution of patients. (K) Validation cohort-
PCA analysis. (L) Validation cohort-plots of the AUC for time-dependent ROC performance.
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pathway, T cell receptor signaling pathway, B cell receptor
signaling pathway, Mark signaling pathway were prominent in
NMRG Cluster C. Furthermore, the intricacy of immune cell
infiltration among the three species subtypes was revealed by
ssGSEA enrichment analysis. Immune cell infiltration was lowest
in NMRG cluster A. Most of the immune cells, such as activated
B cells, activated dendritic cell, CD56dim natural killer cell,
Eosinophilia, Gamma delta T cell, Immature B cell, and
Immature dendritic cell, were abundant in NMRG cluster C
(Figure 5D).

Development and Verification of Risk
Signatures Associated With NAD+

Metabolism-Related Genes in Ovarian
Cancer
We discovered 91 shared genes across the 3 categories to further
investigate the association between NMRGs-related subtypes and
prognosis (Supplementary Figure S4; Supplementary Table S5).
Univariate COX analysis was performed on TCGA data to screen
genes associated with prognosis. The LASSO regression method
was used to further develop the OC prognostic model and

establish a risk score (RS). Finally, risk signatures for 12 genes
were discovered (Figures 6A,B). The risk score is calculated as
follows: RS = (−0.083 * CXCL11 exp.) + (0.070 * VSIG4 exp.) +
(0.009 * MS4A7 exp.) + (0.002 * SULF1 exp.) + (0.052 * SIRPA
exp.) + (0.069 * RARRES1 exp.) + (−0.059 * IGHG1 exp.) +
(−0.047 * PIGR exp.) + (0.063 * ZFP36 exp.) + (0.029 * OGN exp.)
+ (0.001 * MXRA8 exp.) + (−0.070 * FBLN2 exp.).

According to the median value of RS, OC patients were
divided into low-risk group and high-risk group, and the cut-
off value was 1.102, that is, patients with RS greater than 1.102
were in the high-risk group, and those with RS less than 1.102
were in the low-risk group. The GSE26193 cohort was used as
the validation cohort and its RS was evaluated in the same way.
The training cohort (p < 0.001; Figure 6C) and the validation
cohort (p = 0.044; Figure 6D) showed that patients with high
RS had a significantly worse prognosis. The patient’s survival
status (Figures 6E,I) and risk distribution were also explored
(Figures 6F,J). The PCA analysis revealed that RS has a more
remarkable ability to separate patients into two classes
(Figures 6G,K). The AUCs of the training cohort at years
1, 3, and 5 were 0.715, 0.672, and 0.733, respectively
(Figure 6H), and the AUCs of the validation cohort at

FIGURE 7 | The relationship between RS and tumor microenvironment. (A) GSVA enrichment analysis shows the activation states of biological pathways in
different subtypes. The heat map was used to visualize these biological processes, and red represented activated pathways and blue represented inhibited pathways.
(B) Comparison of TME scores between low- and high-risk groups. (C) The relationship between RS and RNAss. (D) Comparison of the infiltration of 16 immune cells
between low- and high-risk group. (E) Comparison of the immune functions between low- and high-risk group. *p < 0.05, **p < 0.01, ***p < 0.001.
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years 1, 3, and 5 were 0.624, 0.683, and 0.653, respectively,
confirming the model’s stability (Figure 6L). The prognostic
Nomogram plot analysis results revealed that RS was a good
predictor of OC patient’s prognosis (Supplementary Figure
S5). The results of univariate and multivariate COX analysis of
TCGA and GEO data further indicated that RS was an
independent prognostic factor in patients with OC
(Supplementary Figure S6).

The Relationship Between Risk Score and
Tumor Microenvironment
We discovered enhanced functional pathways between high-
and low-RS groups to investigate further the applicability
usefulness of our created RS in Ovarian Cancer. The high-
RS group was found to be significantly associated with several
cancer-related pathways, including colorectal cancer,

endometrial cancer, non-small cell lung cancer, pathways in
cancer, prostate cancer, small cell lung cancer, chronic myeloid
leukemia, erbb signaling pathway, renal cell carcinoma,
glioma, wnt signaling pathway, notch signaling pathway
(Figure 7A). This result further revealed that patients in the
high-risk group had a poor prognosis, multiple cancer-
regulated pathways were enriched in the high-risk group,
and different cancers may have crosstalk between NMRGs.
The high-RS group had a higher stromal score and estimate
score (Figure 7B), and was adversely connected with tumor
stemness, according to study (Figure 7C). Furthermore, the
results of immune cell infiltration analysis revealed that the
high RS group had lower immune infiltrating cell enrichment
and immune function pathways, such as aDCs, B cells, CD8+

T cells, DCs, NK cells, APC co inhibition, Checkpoint,
Cytolytic activity, HLA, and Inflammation promoting gene
(Figures 7D,E).

FIGURE 8 | Application of RS in immunotherapy and chemotherapy of OC patients. Immunotherapy in patients with high- and low-RS groups (A) CTLA4− PD1−;
(B) CTLA4+ PD1+; (C) CTLA4+ PD1−; (D) CTLA4− PD1+. Analysis of drug sensitivity in high- and low-RS groups (E–P).
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Application of Risk Score in Immunotherapy
and Chemotherapy of Ovarian Cancer
Patients
The potential NMRGs-related RS to predict the prognosis of OC
patients has been demonstrated. We gathered immunotherapy
data of OC patients from the TCIA database to further enhance
the clinical application value of RS, and we discovered that
patients with low-RS tend to have higher IPS scores, are more
responsive to immune checkpoint blockade therapy (PD1/
CTLA4), and may have superior efficacy (Figures 8A–D). The
TIDE algorithm further validated our conclusion that patients in
the low-risk group were more sensitive to immunotherapy
(Supplementary Figure S7). In addition, we compared the
IC50 of common chemotherapeutic drugs in high and low-RS
patients, and found that, except for Metformin (Figure 8O), most
drugs had lower IC50 scores in high-RS patients, indicating high-
RS patients were more susceptible to these drugs (Figure 8E–N),
except for Metformin (Figure 8O), Gefitinib (Figure 8P).

DISCUSSION

OC is one of the most dangerous gynecological cancers, with a
significant mortality rate. Despite improvements in OS survival rates
over the past 30 years, the 10-year survival rate for most patients
remains low (Wu et al., 2020; Yang et al., 2020; Morand et al., 2021).
Early symptoms of OC are subtle, and there are no reliable
prognostic markers. As a coenzyme of redox reaction in the
cytoplasm and mitochondria, NAD+ is essential for most basic
biological functions in the cell (Li et al., 2019; Sharif et al., 2019;
Palavalli Parsons et al., 2021). Although there is growing evidence
that individuals with OC have altered NAD+ metabolism-related
molecules or chemicals, no research on the NAD+ metabolic
signature of OC prognosis have been reported (Fang et al., 2015;
Chen J. et al., 2021; Challa et al., 2021; Valabrega et al., 2021).

In this study, we used public databases to gather OC
expression profile data and comprehensively examined the
involvement of NMRGs in OC. The majority of the NMRGs
were show to be significantly linked with the prognosis of OC.
TP53 is a well-known tumor suppressor that plays a critical
function in cell cycle regulation (Schuijer and Berns, 2003;
Vitale et al., 2020). We discovered that TP53 has a high
mutation frequency in OC that TP53 expression levels were
connected with the expression levels of multiple NMRGs,
highlighting the necessity of investigating NMRGs even more.
We divided OC patients into three subtypes based on NMRG
expression levels, with the NMRGcluster C subtype having the
highest chance of survival. In addition, using the LASSO
regression analysis method, we built a predictive model
combining 12 genes based on the differential genes between
the three subtypes, which was confirmed in the GEO dataset.
RS was an independent predictor of OC patients in both
univariate and multivariate Cox regression analyses. The
tumor microenvironment study revealed that RS may be used
to characterize the tumor microenvironment of OC patients, with
patients with high-RS having poor prognosis and decreased

immune-infiltrating cells enrichment. We also discovered that
RS might be used to guide clinical treatment and patients with
low-RS are more likely to respond to immunotherapy. The results
of the medication sensitivity study between high- and low-RS
groups were also helpful in treating OC patients.

In this study, we developed a model that contains 12 NMRG
signatures, which could help in the prognosis and clinical treatment of
OC patients. We acknowledge, however, that our research has some
limitations. TheROC results of the validation cohort were low, and the
modelmay have certain errors in predicting the prognosis of someOC
patients. In addition, further in vitro and in vivo experiments are
required to validate our results, especially the model’s prediction of
response to immunotherapy and chemotherapy.

CONCLUSION

Overall, we identified a new prognostic NMRGs signature of OC
patients. This signature may help to develop new OC molecular
targets and explore more effective immunotherapy strategies.
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Cuproptosis-Related lncRNAs are
Biomarkers of Prognosis and Immune
Microenvironment in Head and Neck
Squamous Cell Carcinoma
Liuqing Yang, Jinling Yu, Lu Tao, Handan Huang, Ying Gao, Jingjing Yao and Zhihui Liu*

Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China

Background:Cuproptosis is a new type of cell death that induces protein toxic stress and
eventually leads to cell death. Hence, regulating cuproptosis in tumor cells is a new
therapeutic approach. However, studies on cuproptosis-related long noncoding RNA
(lncRNA) in head and neck squamous cell carcinoma (HNSC) have not been found. This
study aimed to explore the cuproptosis-related lncRNAs prognostic marker and their
relationship to immune microenvironment in HNSC by using bioinformatics methods.

Methods: RNA sequencing, genomic mutations, and clinical data of TCGA_HNSC were
downloaded from The Cancer Genome Atlas. HNSC patients were randomly assigned to
either a training group or a validation cohort. The least absolute shrinkage and selection
operator Cox regression and multivariate Cox regression models were used to determine
the prognostic model in the training cohort, and its independent prognostic effect was
further confirmed in the validation and entire cohorts.

Results: Based on previous literature, we collected 19 genes associated with
cuproptosis. Afterward, 783 cuproptosis-related lncRNAs were obtained through
coexpression. Cox model revealed and constructed eight cuproptosis-related lncRNAs
prognostic marker (AL132800.1, AC090587.1, AC079160.1, AC011462.4, AL157888.1,
GRHL3-AS1, SNHG16, and AC021148.2). Patients were divided into high- and low-risk
groups based on the median risk score. The Kaplan–Meier survival curve revealed that the
overall survival between the high- and low-risk groups was statistically significant. The
receiver operating characteristic curve and principal component analysis demonstrated
the accurate prognostic ability of the model. Univariate and multivariate Cox regression
analysis showed that risk score was an independent prognostic factor. In addition, we
used multivariate Cox regression to establish a nomogram of the predictive power of
prognostic markers. The tumor mutation burden showed significant differences between
the high- and low-risk groups. HNSC patients in the high-risk group responded better to
immunotherapy than those in the low-risk group. We also found that risk scores were
significantly associated with drug sensitivity in HNSC.

Conclusion: In summary, our study identified eight cuprotosis-related lncRNAs signature
of HNSC as the prognostic predictor, which may be promising biomarkers for predicting
the benefit of HNSC immunotherapy as well as drug sensitivity.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSC) is a malignant
tumor that affects different tissues and organs of the head and
neck and poses a serious threat to human health (Siegel et al.,
2018). HNSC is a complex disease. Typical risk factors are
smoking, excessive alcohol consumption, and human
papillomavirus (Jamal et al., 2016; Rooper et al., 2020).
Although the current treatment methods for HNSC include
surgery and chemoradiotherapy, the recurrence rate and
metastasis risk of HNSC are still very high (Camisasca et al.,
2011). In addition, the 5-year survival rate is less than 50% (Amit
et al., 2013). An emerging approach to the treatment of HNSC is
urgently needed. Hence, it is of great clinical significance to
identify reliable biomarkers for predicting treatment response
and prognosis and to develop effective treatment strategies for
HNSC patients.

Cuproptosis is a new type of cell death that is different from
the known cell death mechanism such as apoptosis, autophagy,
and ferroptosis. When the known cell death mechanism is
blocked, copper ions can still induce cell death. Cuproptosis
occurs through the direct binding of copper ions to
lipoacylated components of the tricarboxylic acid cycle in
mitochondrial respiration, resulting in the aggregation of
lipoacylated proteins. In addition, copper ions can reduce the
protein level of the Fe–S cluster. They both induce protein toxic
stress response and eventually lead to death (Tsvetkov et al.,
2022). Based on this novel approach to cell death, we are
developing new therapies for HNSC patients. Therefore,
identifying the key regulators of cuproptosis is an important
step toward further understanding.

Long noncoding RNA (lncRNA) are single-stranded RNAs
with over 200 nucleotides in length, most of which do not have
protein-coding capabilities (Gao et al., 2020). LncRNA regulates a
variety of physiological and biochemical cellular processes by
mediating chromosomal modification, transcriptional activation,
and interference (Statello et al., 2021). Studies have shown that
lncRNA is abnormally expressed and regulated in a variety of
tumors (Castro-Oropeza et al., 2018). It has been reported that
abnormal lncRNAs can be used as prognostic indicators of
various cancers (Ai et al., 2020; Gai et al., 2020; Jiang et al.,
2021). At present, there are few studies on cuproptosis-related
lncRNAs and their association with the prognosis of HNSC
patients. Therefore, this study aims to explore prognostic
cuproptosis-related lncRNAs markers, to improve current
strategies for diagnosis, treatment, follow-up, and prevention
of HNSC.

In this study, we obtained HNSC RNA sequencing (RNA-seq)
data downloaded from The Cancer Genome Atlas (TCGA)
database and randomly assigned patients to a training and test
datasets. We identified the cuproptosis-related lncRNAs
prognostic marker (CRLPM) and developed an lncRNA
signature prognostic model, which might represent potential

therapeutic targets and provide valuable clinical utility for
prognostic prediction of patients with HNSC. Last, we verified
the predictive capacity of the model in order to provide a basis for
the development of appropriate clinical strategies and revealed its
potential to predict immunotherapy and drug sensitivity
of HNSC.

MATERIALS AND METHODS

Download and Processing of
Transcriptomic Data, Mutation Data, and
Clinical Information
The RNA-seq transcriptome profiling dataset comprised
44 normal tissues and 504 HNSC samples, which were
downloaded from TCGA (https://portal.gdc.cancer.gov/)
database on April 20, 2022. The tumor somatic mutation data
and clinical information including survival time, survival status,
age, gender, grade, stage, and tumor-node-metastasis
classification were also obtained from TCGA. The annotations
for lncRNAs were obtained from the GENCODEwebsite (https://
www.gencodegenes.org/). Furthermore, cuproptosis-related
genes were obtained based on previous literature (Tsvetkov
et al., 2022).

Generation and Assessment of the
Cuproptosis-Related Long Noncoding RNA
The coexpression analysis between cuproptosis-related genes and
lncRNAs was performed by the “limma” package in R to obtain
the cuproptosis-related lncRNAs. Meeting the |Cor|>0.4 and p <
0.001 criteria indicated an association. According to the results of
the coexpression analysis, we used R “ggplot2,” “ggalluvial,” and
“dply” packages to generate the Sankey plot.

Prognostic Model Construction
The samples were randomly divided into training and validation
groups through the R package “caret.” Univariate Cox
proportional risk regression was performed for each
cuproptosis-related lncRNAs with survival data using the
survival R package. We performed the least absolute
shrinkage and selection operator (Lasso)-penalized Cox
regression by using the “glmnet” package in R software to
avoid overfitting. The optimal and minimum criteria for the
penalty (λ) using 10 times cross-validation were selected. Next,
multiple stepwise COX regression analyses were performed to
identify the CRLPM. Afterward, the formula of the risk scoring
model was established as follows:
Lasso Risk Score � ∑n

i�1Coefp
i xi, where Coefi represents the

coefficients and xi represents the normalized count of each
cuproptosis-related lncRNAs. Based on the Lasso prognostic
model, patients can get a risk score.
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Validation of Risk Models
Patients in the training and validation groups were categorized
into the high- and low-risk groups based on the median risk score
and the corresponding coefficient of the training group. The
Kaplan–Meier method was then conducted to display the
prognostic performance of the risk score model in both the
training and validation groups. In addition, the receiver
operating characteristic (ROC) curve and the area under the
curve (AUC) were used to evaluate the accuracy and diagnostic
value of the CRLPM through the use of the survival ROC and
time ROC packages in R. The principal component analysis
(PCA) was also conducted to validate risk models, and the
results were visualized using “scatterplot3D” packages in R
software. The progression-free survival (PFS) was performed
through “survival” and “survminer” packages in R. We used
the C-index to predict the accuracy of risk models by using
the R package “rms,” “dplyr,” “survival,” and “pec.” The
validation and entire cohorts were performed to validate this
model.

Establish and Evaluate a Nomogram
We used univariate and multivariate Cox regression to investigate
the independent prognostic role of the risk model. Based on the
results of univariate and multivariate COX regression, we
developed a nomogram by employing the R package “rms,”
“regplot,” and “survival.” The accuracy of the nomogram was
evaluated using a calibration curve.

Exploration of the Relationship Between the
Prognostic Risk Score and Clinical Stage
To verify whether the model is suitable for patients with different
clinical stages, we explore the relationships between risk score and
clinical stage to reveal their possible roles in HNSC using
univariate and multivariate Cox regression analyses.

Pathway Enrichment Analysis and Gene set
Enrichment Analysis
The differentially expressed genes (DEGs) between the high- and
low-risk groups were identified using the R package “limma,”
with the limited condition set to log2 |fold change| >1 and false
discovery rate < 0.05. Based on the R package “clusterProfiler,”
“org.Hs.eg.db,” and “enrichplot,” we explored the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
database pathways to clarify the molecular functions and key
signaling pathways.

Estimation of Intratumoural Immune Cell
Infiltration and Immunotherapy
To investigate the relationship between the CRLPM risk score
and immune cell infiltration, the single-sample gene set
enrichment analysis (ssGSEA) algorithms function package in
the R software genome variation analysis package was used to
evaluate the infiltration and function of tumor-infiltrating
immune cells. The related heat map was utilized to drawn.

Next, based on the simulation of the tumor immune escape
mechanism, the tumor immune dysfunction and exclusion
(TIDE) algorithm was applied to predict the response to
immunotherapy (http://tide.dfci.harvard.edu) (Jiang et al.,
2018). Therefore, we observed the effect of immunotherapy in
the high- and low-risk groups based on the TIDE algorithm.

Evaluation of Drug Sensitivity
IC50 represented the semiinhibitory concentration of the
measured antagonist. To evaluate CRLPM in the clinic for
HNSC treatment, we calculated the IC50 of the
chemotherapeutic drugs through the “pRRophetic” R package
and its dependencies including “car, ridge preprocessCore,
genefilter and sva.” A total of 138 drugs were included such as
midostaurin, temsirolimus, tipifarnib, and imatinib. The
Wilcoxon sign rank test was used to compare IC50 differences
between common antineoplastic agents in the high- and low-risk
groups. The boxplot was presented using the R package “ggplot2.”

Calculation of Tumor Mutation Burden
Scores
Tumor mutational burden (TMB) reflects the number of
mutations in cancer mutation. The mutation data of HNSC
samples downloaded from TCGA were analyzed using the R
package “maftools.” The waterfall diagram showed the
relationship between risk scores and TMB in HNSC patients.

Statistical Analysis
All statistical analyses were processed by the R programming
language (Version 4.0.3) on R studio. RNA-seq transcriptome
data and somatic mutation data downloaded from TCGA were
combined using the “limma” package in R. Pearson correlation
test was used to analyze the correlations between cuproptosis-
related genes and cuproptosis-related lncRNAs. CRLPM were
screened for differential genes using the “limma” R package. Cox
regression and survival analysis were performed through
“survival” and “survminer” packages in R. Cox proportional
risk regression model was used to calculate the hazard ratios
of univariate and multivariate analyses. The GO terms and KEGG
pathways were analyzed by using “clusterProfiler” in the R
package. The “Pheatmap” R package was used to draw heat
maps in cluster analysis. We applied the Wilcoxon rank-sum
test to compare the difference between two groups of quantitative
data. The overall survival (OS) time of the different groups was
evaluated using the Kaplan–Meier analysis with a log-rank test.
The chi-square test was used to compare categorical data between
different groups. A p value of <0.05 was considered statistically
significant.

RESULTS

Data Processing
We removed the genes encoding proteins and identified
16876 lncRNAs in the TCGA_HNSC dataset through the
“GENCODE” database. In total, we collected 19 cuproptosis-
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FIGURE 1 | Sankey diagram and heat map. (A) Sankey diagram of coexpression between 19 cuproptosis-related genes and 783 cuproptosis-related long
noncoding RNA (lncRNAs). (B) correlation 19 cuproptosis-related genes and 8 prognostic cuproptosis-related lncRNAs. *p < 0.05, **p < 0.01, and ***p < 0.001.

FIGURE 2 |Construction of the prognostic cuproptosis-related long noncoding RNA (lncRNAs) risk model in head and neck squamous cell carcinoma (HNSC). (A)
univariate Cox regression analysis for identifying the prognostic cuproptosis-related lncRNAs. (B–C) Lasso–Cox regression analysis was performed to construct
prognostic prediction models. (D) Kaplan–Meier curves for survival analysis in the high- and low-risk groups. (E) risk score distribution and survival status in patients with
HNSC. (F) heatmap of the prognostic markers and overall survival. (G) Kaplan–Meier curves for survival analysis in the validation cohort. (H) risk score distribution
and survival status in the validation cohort. (I) heatmap of the prognostic markers and overall survival in the validation cohort.
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related genes. Based on Pearson analysis, 783 cuprotosis-related
lncRNAs were obtained. The Sankey plot showed the association
between cuproptosis-related genes and cuproptosis-related
lncRNAs (Figure 1A). Thenceforth, univariate COX regression
analysis was applied to explore cuproptosis-related lncRNAs (p <
0.05). The 501 patients were divided into the training group (n =
251) and the validation group (n = 250), and the clinical
information on HNSC was presented in Table 1. The results
showed that there was no difference between the training and
validation groups in all clinical traits.

Construction and Validation of the
Cuproptosis-Related Long Noncoding
RNAs Prognostic Marker
The univariate COX analysis of 21 cuproptosis-related lncRNAs
was shown in Figure 2A. We further screened 17 lncRNAs using
Lasso–Cox regression.We identified trajectory changes in regression
coefficients of lncRNAs and cross-validation results of model
construction (Figure 2B, C). Afterward, multiple stepwise Cox
regression analysis was performed, and we screened out eight
CRLPM with survival to establish the risk score models. In

conclusion, we generated a total of eight CRLPMs to participate
in the construction of a prognostic model to predict the OS of
patients with HNSC. Afterward, we obtained a heat map of the
correlation between cuproptosis-related genes and CRLPM
(Figure 1B). Risk score = (0.351771323*ExpressionAL132800.1) +
(−0.378321346*ExpressionAC090587.1) + (0.404882025*ExpressionAC
079160.1) + (−0.314303555*ExpressionAC011462.4) + (0.716547372*
ExpressionAL157888.1) + (−0.593212656*ExpressionGRHL3-AS1) +
(0.390726744*ExpressionSNHG16) + (−0.892732753*ExpressionAC021
148.2). Based on the median risk score, we divided the patients in the
training group into the high- and low-risk groups for survival
analysis. The KM method was used to analyze the OS of patients
in the two groups, and the results showed that the OS of patients in
the high-risk group was significantly poorer than that in the low-risk
group (p < 0.05; Figure 2D). The distribution of risk scores and the
survival status of patients were shown in Figure 2E. The expression
level of eight cuproptosis-related lncRNAs involved in the high- and
low-risk groups was shown in a heatmap (Figure 2F). It can be
observed that with the increase in risk score, the survival time was
shortened and the number of deaths increased. We also observed
statistically significant differences in OS between the high- and low-
risk groups in the validation and entire cohorts (p < 0.05;

TABLE 1 | Characteristic of head and neck squamous cell carcinoma patients.

Variable Entire cohort (n = 501) Validation cohort (n = 250) Training cohort (n = 251) p value

Age
≤65 326 (65.07%) 170 (68%) 156 (62.15%) 0.2008
>65 175 (34.93%) 80 (32%) 95 (37.85%) —

Gender
FEMALE 133 (26.55%) 59 (23.6%) 74 (29.48%) 0.1647
MALE 368 (73.45%) 191 (76.4%) 177 (70.52%) —

Grade
G1 61 (12.18%) 29 (11.6%) 32 (12.75%) 0.9801
G2 299 (59.68%) 151 (60.4%) 148 (58.96%) —

G3 119 (23.75%) 59 (23.6%) 60 (23.9%) —

G4 2 (0.4%) 1 (0.4%) 1 (0.4%) —

Unknow 20 (3.99%) 10 (4%) 10 (3.98%) —

Stage
Stage I 25 (4.99%) 10 (4%) 15 (5.98%) 0.4337
Stage II 69 (13.77%) 33 (13.2%) 36 (14.34%) —

Stage III 79 (15.77%) 44 (17.6%) 35 (13.94%) —

Stage IV 260 (51.9%) 121 (48.4%) 139 (55.38%) —

Unknow 68 (13.57%) 42 (16.8%) 26 (10.36%) —

T stage
T0 1 (0.2%) 1 (0.4%) 0 (0%) 0.3265
T1 45 (8.98%) 19 (7.6%) 26 (10.36%) —

T2 133 (26.55%) 61 (24.4%) 72 (28.69%) —

T3 96 (19.16%) 54 (21.6%) 42 (16.73%) —

T4 171 (34.13%) 80 (32%) 91 (36.25%) —

Unknow 55 (10.98%) 35 (14%) 20 (7.97%) —

M stage
M0 185 (36.93%) 98 (39.2%) 87 (34.66%) 0.9569
M1 1 (0.2%) 0 (0%) 1 (0.4%) —

Unknow 315 (62.87%) 152 (60.8%) 163 (64.94%) —

N stage
N0 170 (33.93%) 87 (34.8%) 83 (33.07%) 0.7488
N1 66 (13.17%) 31 (12.4%) 35 (13.94%) —

N2 165 (32.93%) 75 (30%) 90 (35.86%) —

N3 7 (1.4%) 3 (1.2%) 4 (1.59%) —

Unknow 93 (18.56%) 54 (21.6%) 39 (15.54%) —
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Figure 2G–I, Figure 3A–C). The PCA revealed a high degree of
differentiation between the high- and low-risk groups. Based on the
risk model of cuproptosis-related lncRNAs, we intuitively observed
that HNSC patients were effectively divided into two clusters
(Figure 3D–G).

Independence of the Cuproptosis-related
lncRNAs Prognostic Marker in Predicting
Overall Survival
Univariate and multivariate Cox regression analyses were
performed to assess the predictive value of the prognostic
model. In univariate Cox analysis, there were statistically
significant differences among age, stage, and risk score
(Figure 4A). In multivariate Cox regression analysis, they
remained prognostic value for OS (Figure 4B). The PFS
indicated significant differences in progression-free survival
between the high- and low-risk groups (p < 0.05, Figure 4C).
The ROC curves demonstrated the accuracy and diagnostic
value of the cuproptosis-related lncRNAs for OS, and the AUC
reached 0.690 at 1 year, 0.701 at 2 years, and 0.668 at 3 years
(Figure 4D). Both C-index and ROC curve indicated the
predictive accuracy of the prognostic model was superior to
other clinical including age, gender, grade, and stage (Figures
4E, F). A nomogram plot is a predictive tool for quantitative
analysis of clinical outcomes in patients with HNSC. Thus, we
initiated a prognostic nomogram based on the risk score and

other clinical characteristics (Figure 5A). The calibration plots
showed good conformity with the prediction of this nomogram
(Figure 5B).

Relationship Between the Marker and the
Clinical Features in Head and Neck
Squamous Cell Carcinoma
Next, to investigate the clinical utility of the CRLPM, we explored
the relationship of the CRLPM with clinical features. The results
indicated that there were significant differences between the
distribution of risk scores and clinical stages. In specific, stages
I–II and III–IV were statistically significant (p < 0.05,
Figure 5C, D).

Pathway Enrichment Analysis and Gene Set
Enrichment Analysis
To explore the biological functions and pathway analysis of
DEGs between the high- and low-risk groups, we further
performed the GO and KEGG enrichment analyses. A total
of 359 DEGs were identified. In the biological process category,
the genes were primarily concentrated in response to humoral
immune response, immune response-activating cell surface
receptor signaling pathway, and adaptive immune response
based on somatic recombination of immune receptors built
from immunoglobulin superfamily domains. In the cellular

FIGURE 3 | Validation of the risk model in the entire cohort and principal component analysis. (A) Kaplan–Meier curves for survival analysis in the entire cohort. (B)
risk score distribution and survival status in the entire cohort. (C) heatmap of the prognostic markers and overall survival in the entire cohort. PCA between the high- and
low-risk groups based on the (D) all genes, (E) cuproptosis-related genes, (F) cuproptosis-related long noncoding RNA (lncRNAs), and (G) cuproptosis-related lncRNAs
prognostic marker.
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component category, it was mainly enriched in the
immunoglobulin complex, external side of plasma
membrane and apical part of cell. In the molecule function
category, it was antigen binding, immunoglobulin receptor
binding, and receptor ligand activity (Figure 6A, C, E). Genes
in the KEGG category were enriched in the IL-17 signaling
pathway, hematopoietic cell lineage, and amoebiasis
(Figure 6B, D, F).

Estimation of Intratumoural Immune Cell
Infiltration and Immunotherapy
Figure 7A shows the heatmap of immune response based on
the ssGSEA algorithm. Based on ssGSEA of TCGA-HNSC
data, correlation analysis between immune cell populations
and related functions revealed that T cell functions including
regulation of inflammation, HLA, checkpoint (inhibition),
and costimulation and coinhibition were significantly
different between the high- and low-risk groups. These
results indicated that GRLPM was associated with immune
cell infiltration in HNSC. Based on the TIDE algorithm, we
predicted the effect of patients receiving immunotherapy.
Figure 7B shows significant differences in TIDE scores
between the high- and low-risk groups and the lower

TIDE scores in the high-risk group. This further proves
that patients in the high-risk group have a low potential
for immune escape and may receive better results from
immunotherapy.

Tumor Mutational Burden of the
Cuproptosis-related lncRNAs Prognostic
Marker in Head and Neck Squamous Cell
Carcinoma Samples
We collected data on somatic mutation in HNSC and calculated
corresponding TMB scores in order to investigate the potential
role of tumor mutation load in HNSC. As shown in Figure 7C,
the high-risk group had a higher mutation load than the low-risk
group in HNSC. We divided patients into “Hight-TMB” and
“Low-TMB” by median cutoff points and performed survival
analyses. The results showed that the high-risk group had a lower
survival rate than the low-risk group in HNSC (Figure 7D). A
combined survival analysis of tumor mutation load and risk
scores can obtain the combined survival curve. It revealed that
the TMB and risk scores had significant effects on the OS of
HNSC patients (Figure 7E). The mutation landscapes in the
CRLPM high- and low-risk groups were compared. Waterfall
plots visualized the 15 genes with the highest mutation frequency

FIGURE 4 | Independent prognostic analysis of head and neck squamous cell carcinoma (HNSC) overall survival (OS). (A) univariate Cox analysis. Age, stage, and
risk score were statistically significant. (B)multivariate Cox analysis. Age, stage, and risk score were statistically significant. (C) Kaplan–Meier curves of progression-free
survival (PFS). (D) TimeROC curve predicted 1, 3, and 5 years of OS for HNSC patients. (E) ROC demonstrated the predictive accuracy of the risk model was superior to
other clinical parameters. (F) C-index showed the predictive accuracy of the risk model was superior to other clinical parameters.
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in the high- and low-risk groups. The results showed that more
mutation events occurred in the high-risk group (Figures 7F, G).
TP53 was the gene with the highest mutation frequency.

Drug Sensitivity
To explore the possible use of CRLPM in the individualized
treatment of HNSC, we investigated the relationship between
risk scores and IC50 of drugs in HNSC treatment. To this end,
we compared the sensitivity of 30 common anticancer drugs
between the high- and low-risk groups. As shown in Figure 8,
the sensitivity of 12 of the 30 anticancer drugs was significantly
different in the high- and low-risk groups (p <0.05).
Meanwhile, 11 of the drugs had lower IC50s in the high-
risk group, further proving that the high-risk group was more
sensitive to drug treatment. This means that these drugs have a
potential role in the treatment of HNSC in the future.
However, the IC50s of temsirolimus were higher in the
high-risk group, which suggests that the low-risk group had
a high sensitivity to this drug. Results showed that in HNSC
patients, except for temsirolimus, the risk score was inversely
associated with IC50 (Supplementary Figure S1).

DISCUSSION

Despite advances in surgery and chemotherapy in recent years,
the prognosis for patients with advanced and metastatic HNSC
remains poor (Miyauchi et al., 2019; Johnson et al., 2020).
Cuproptosis overcomes the resistance of malignant cells to
chemotherapy and helps remove defective cells. Therefore,
cuproptosis may be an effective way to treat many types of
cancer in the future. In addition, lncRNA affects the
development and treatment of cancer through biological
means (Gao et al., 2021; Tan et al., 2021). LncRNAs have
been found to play an important role in the prognosis of HNSC
and may be a potential effective molecular target for the
treatment of HNSC (Ban et al., 2020; Tang et al., 2021; Zhu
et al., 2021). However, the regulatory mechanisms of
cuproptosis remain largely unknown, especially in the field
of lncRNA. Therefore, we should focus on the potential
interaction between lncRNA and cuproptosis to uncover
potential prognostic markers.

In the current study, we identified 21 prognostic
cuproptosis-related lncRNAs, eight of which were selected

FIGURE 5 | Construction and evaluation of a nomogram based on CRLPM. (A) nomogram used to predict prognosis was constructed based on CRLPM. (B)
calibration curves are used to predict 1-, 3-, and 5-year overall survival. (C)Kaplan–Meier curves of patients with stage I-II. (D)Kaplan–Meier curves of patients with stage
III–IV.
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for prognostic construction to predict OS in patients with
HNSC. First, 19 cuproptosis-related genes and
783 cuproptosis-related lncRNAs were obtained. Then, we
used Lasso regression and COX regression to identify the
prognostic cuproptosis-related lncRNAs. In addition, we
further explored the CRLPM and common clinical variables,
upstream regulatory mechanisms, immune cell infiltration and
immunotherapy, and drug sensitivity of HNSC.

Based on Cox, Lasso, and multivariate Cox regression
analyses, we identified eight lncRNAs associated with
prognosis, including AL132800.1, AC090587.1, AC079160.1,
AC011462.4, AL157888.1, GRHL3-AS1, SNHG16, and
AC021148.2. Guo et al. (2021) found that AC079160.1 is a
prognostic biomarker for gastric cancer, and AC079160.1 was
found to be overexpressed. In general, high expression of
AC079160.1 was associated with better survival in gastric
cancer. AC011462.4 has been reported to play an important
oncogenic role in tumors. Li et al. (2021) revealed that the high
expression level of AC011462.4 was associated with longer OS.
The expression level of AC011462.4 increased with the increase
of risk score in colon cancer. GRHL3-AS1 expression was
upregulated in patients with primary HNSC, and its

expression was associated with the survival of patients with
HNSC (Feng et al., 2021). Small nucleolar RNA host gene 16
(SNHG16) is considered to be a cancer-associated lncRNA that
promotes tumor development primarily by acting as a
competing endogenous RNA (ceRNA) (Grüll and Massé,
2019). There is evidence that SNHG16 acts as a ceRNA in
various cancer by sponging corresponding miRNA to regulate
mRNA (Zhao et al., 2018). In addition to the ceRNA
mechanism, SNHG16 plays a role in promoting cancer
through other mechanisms. SNHG16 can promote the
proliferation and inhibit apoptosis of bladder cancer by
inhibiting the expression of P21 (Cao et al., 2018).
SNHG16 was found to be significantly upregulated in a
variety of tumor tissues and cell lines, such as hepatocellular
carcinoma, lung cancer, colorectal cancer, glioma, and other
tumor types (Christensen et al., 2016; Yang et al., 2018; Chen
et al., 2019; Su et al., 2019). In addition, high
SNHG16 expression was associated with a poor prognosis.
One study showed that in oral squamous cell carcinoma, the
expression of SNHG16 was upregulated by c-Myc (Li et al.,
2019). However, there are few reports on AL132800.1,
AC090587.1, AL157888.1, and AC021148.2. Thus, it is

FIGURE 6 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. (A) barplot of the top 10 GO enrichment
terms. (B) barplot of the top 30 KEGG enrichment terms. (C) bubble chart of the top 10GO enrichment terms. (D) bubble chart of the top 30 KEGG enrichment terms. (E)
circle diagram of GO enrichment analysis. (F) circle diagram of KEGG enrichment analysis. Biological process, cellular component, and molecular function.
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necessary to further determine their mechanisms during
cuproptosis through experiments in our future studies.

Afterward, we verify the accuracy of the risk model. The
Kaplan-Meier method showed that the OS of the high-risk
group was lower than that of the low-risk group. The ROC
curves showed that CRLPM had high accuracy in predicting 1-,
3-, and 5-year survival, and AUC were all greater than 0.65.
PCA intuitively showed differences between the high- and low-
risk groups. PFS, C-index combining CRLPM with clinical
information, a new nomogram was created to predict
prognosis, lymph node metastasis, and distant metastasis in
HNSC patients.

In addition, functional enrichment analyses revealed the
potential biological mechanism of the involved CRLPM. We
explored the key signaling pathways of eight cuproptosis-related
lncRNAs. GO and KEGG analysis indicated that this
differentially expressed CRLPM was mainly enriched in the

IL-17 signaling pathway, hematopoietic cell lineage, and
amoebiasis.

Our results found that the TMB was statistically higher in the
high-risk group than in the low-risk group, suggesting that
patients at high risk of HNSC have a better response to
immunotherapy. Among the first 15 mutated genes, TP53 was
mutated more frequently in HNSC patients. Moreover, the drug
sensitivity of these CRPLM was analyzed to guide clinical
treatment. There were significant differences in IC50 between
high-risk and low-risk patients for all 12 drugs.

Cuproptosis is a new form of cell death that may play an
important role in future cancer treatments. On the other hand,
some lncRNAs influence cancer progression and treatment in a
variety of biological ways. However, there is still a lot of
unexplored territory between cuproptosis and lncRNA.
Overall, this study provides new insights into the
tumorigenesis and progression of HNSC from the

FIGURE 7 | Immunological landscape in head and neck squamous cell carcinoma (HNSC) patients and relationship between tumormutation burden (TMB) and risk
score. (A) heatmap of the tumor-infiltrating lymphocytes based on single-sample gene set enrichment analysis algorithms among the high- and low-risk groups in HNSC.
*p < 0.05, **p < 0.01, and ***p < 0.001. (B) comparison of TIDE prediction score between the high- and low-risk groups. (C) Analysis of TMB differences between the
high- and low-risk groups in HNSC. (D) survival analysis curves of the high- and low-TMB groups. (E) TMB risk combined with survival curve in HNSC. (F)waterfall
plot of top 15 mutant genes in the high-risk group in HNSC. (G) waterfall plot of top 15 mutant genes in the low-risk group in HNSC.
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perspective of cuproptosis. Biomarkers of cuproptosis that can
be used for the prognosis of HNSC were explored, which could
inform the treatment of the disease. We inevitably used only
the TCGA validation and entire cohorts, and additional
patients could improve the reliability of the model; thus,
further validation is needed through preclinical studies. In
the meantime, our study needs further validation in vivo and
in vitro soon.

CONCLUSION

To sum up, we identified a risk model based on seven cuproptosis-
related lncRNAs that accurately predicted the prognosis of HNSC.
Hence, our study provided a new therapeutic strategy for
individualized therapy and immunotherapy response in HNSC
patients. These eight cuproptosis-related lncRNAs may be
therapeutic targets for HNSC.
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Centre, King Abdulaziz University, Jeddah, Saudi Arabia, 3Translational Research Institute, Hamad Medical Corporation, Doha,
Qatar, 4Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia

Ubiquitin-like containing plant homeodomain Ring Finger 1 (UHRF1) protein is recognized
as a cell-cycle-regulated multidomain protein. UHRF1 importantly manifests the
maintenance of DNA methylation mediated by the interaction between its SRA (SET
and RING associated) domain and DNA methyltransferase-1 (DNMT1)-like epigenetic
modulators. However, overexpression of UHRF1 epigenetically responds to the aberrant
global methylation and promotes tumorigenesis. To date, no potential molecular inhibitor
has been studied against the SRA domain. Therefore, this study focused on identifying the
active natural drug-like candidates against the SRA domain. A comprehensive set of in
silico approaches including molecular docking, molecular dynamics (MD) simulation, and
toxicity analysis was performed to identify potential candidates. A dataset of 709 natural
compounds was screened through molecular docking where chicoric acid and nystose
have been found showing higher binding affinities to the SRA domain. The MD simulations
also showed the protein ligand interaction stability of and in silico toxicity analysis has also
showed chicoric acid as a safe and nontoxic drug. In addition, chicoric acid possessed a
longer interaction time and higher LD50 of 5000 mg/kg. Moreover, the global methylation
level (%5mC) has been assessed after chicoric acid treatment was in the colorectal cancer
cell line (HCT116) at different doses. The result showed that 7.5 µM chicoric acid treatment
reduced methylation levels significantly. Thus, the study found chicoric acid can become a
possible epidrug-like inhibitor against the SRA domain of UHRF1 protein.

Keywords: UHRF1, SRA domain, chicoric acid, global methylation (5 mC), molecular docking, molecular dynamics
simulation

INTRODUCTION

The DNA methylation like epigenetic modification in the CpG island manifests a crucial role in
mammalian genomic architecture, genomes expression, and genome stability (Chen et al., 1998; Bird
and Wolffe, 1999). Moreover, diverse biological responses including tumorigenesis are associated
with multiple patterns of DNA methylation (Arita et al., 2008). Among several epigenetic
modulators, the DNA methyltransferase family (DNMT) is one of the key components that play
with epigenetic modification. It is well established that DNMT1 acts as a canonical epigenetic ‘writer’
(Patnaik et al., 2018) in the DNA methylation mechanism (Moore et al., 2012). Additionally,
DNMT1 incorporates methyl group at the fifth position of cytosine in CpG islands and synthesizes 5-
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methylcytosine (5 mC). Moreover, DNMT1 maintains DNA
methylation during the DNA replication phase (Pradhan and
Esteve, 2003). In contrast, aberrant DNA hypomethylation and
hypermethylation are associated with transcriptional activation
and repression of gene expression, respectively (Baylin et al.,
2001; Patnaik et al., 2018).

Ubiquitin-like containing PHD Ring Finger 1 (UHRF1) is an
essential partner protein of DNA methyltransferase and is also
known as Np95 (Nuclear Protein 95 KDa) and ICBP90 (Inverted
CCAAT box-binding Protein of 90 KDa) in mouse and human,
respectively (Veland and Chen, 2017). Structurally, UHRF1 is a
complex of distinct domains that include-SRA (SET and RING-
associated) domain, a ubiquitin-like (UBL) domain, a plant
homeodomain (PHD) domain, and a RING domain (Bostick
et al., 2007; Bronner et al., 2007; Sharif et al., 2007; Zhang et al.,
2011; Cheng et al., 2013). Moreover, UHRF1 belonging SRA
domain recognizes the hemimethylated sequence in DNA and
facilitates the DNMT1 binding, thus the maintenance of DNA
methylation dynamics (Bostick et al., 2007).

The genomic abundance of DNAmethylation disturbs normal
cell division and complies with the pathogenic responses (Kong
et al., 2019). It has been revealed that UHRF1 can regulate the
DNA methylation in both normal and tumor cells by providing
accompanying to the epigenetic writer- DNMT1 (Bostick et al.,
2007; Sharif et al., 2007; Liao et al., 2015; Cai et al., 2017).
Moreover, aberrant DNA methylation leads the alteration of
the gene expression and has been considered as a fundamental
regulator of tumor progression (Baylin and Jones, 2016).
Moreover, global hypermethylation dictates cell proliferation
in tumorigenesis through silencing tumor suppressor genes
(TSGs) and its promoter (Shen and Laird, 2013; Baylin and
Jones, 2016). Previous studies also revealed that
UHRF1 protein is expressed during cellular propagation and
can regulate the cell cycle (Bonapace et al., 2002; Patnaik, Estève
and Pradhan, 2018). Moreover, another study also revealed that
the expression of UHRF1 is required by the cell during for
S-phase (Bonapace et al., 2002). However, G0/G1 phases may
not notably require the UHRF1 (Uemura et al., 2000; Miura et al.,
2001). UHRF1 protein is also found to be highly expressed in
cancer cells across the cell cycle. For example, the overexpression
of UHRF1 has been reported in several cancer-cell like-gastric,
bladder, breast, lung, prostate, pancreatic, and colorectal cancer
(Crnogorac-Jurcevic et al., 2005; Unoki et al., 2010; Jazirehi, Arle
and Wenn, 2012; Kofunato et al., 2012; Li et al., 2012; Yang et al.,
2012; Zhou et al., 2013).

Moreover, the study also revealed that overexpression of
UHRF1 is associated with the DNA methylation-mediated
silencing of tumor suppressor genes (Beck et al., 2018). A
study also showed that by recruiting several repressor
enzymes, such as DNA methyltransferase 1 (DNMT1), histone
deacetylase 1 (HDAC1), and histone lysine methyltransferases,
i.e., G9a and Suv39H1, UHRF1 mediates the gene silencing
mechanism (Alhosin et al., 2016). Additionally, UHRF1 has
been substantially justified for chemotherapeutic targets
(Unoki, 2011).

Chemotherapeutic resistance is a bottleneck problem in
modern cancer therapies. The chemo-resistance is influenced

through several mechanisms such as chemo target alterations,
signaling pathway diversion, and the inactivation of cell death
(Holohan et al., 2013; Ahamed et al., 2022). The chemoresistance
is explored either by the innate response which is raised through
pre-existing factors in tumor cells or by the adaptive response due
to mutated expression of molecular target and therapeutic
insensitivity to the target (Longley and Johnston, 2005;
Ahamed et al., 2021). Likewise, epigenetic modifications of
histone, such as acetylation and methylation, generate a range
of drug insensitivity (Housman et al., 2014). For instance,
aberrant methylation of the MDR1 promoter is related to
structural variations of chromatin and transcriptional
repression (Baker and El-Osta, 2003). Similarly, long-term use
of 5-Azacytidine (AZA) like DNMTi acquires resistance (Singh
and Yu, 2018). However, small inhibitors targeting UHRF1,
promote the sensitivity of therapeutics and elevate cancer
inhibition (Abdullah et al., 2021).

Hemimethylated CpG sites are target sequences for the
maintenance of DNA methylation and become completely
methylated by UHRF1. Among other domains, The SET and
RING-associated (SRA) domain of UHRF1 identifies the 5-
methylcytosine (5 mC) in hemimethylated CpG sequences
(Arita et al., 2008; Avvakumov et al., 2008; Hashimoto et al.,
2008; Qian et al., 2008; Frauer et al., 2011). The SRA domain
recognizes the presence of methylated cytosine and regulates the
recruitment of DNMT1 (Arita et al., 2008; Hashimoto et al., 2008;
Qian et al., 2008; Frauer et al., 2011; Bronner, Krifa and Mousli,
2013). Indeed, the SRA domain shows direct interaction with
DNMT1 and catalyzes the methylation function (Berkyurek et al.,
2014). It has been shown that the activity of DNMT1 has been
accelerated by 1.9-fold due to the SRA domain and 5-fold because
of UHRF1 (Bashtrykov et al., 2014). Therefore, the SRA domain
has been identified as a potential target for inhibiting the aberrant
global DNA methylation (Bashtrykov et al., 2014). Natural small
molecules would not only a promising therapeutics against the
SRA domain but also can possess the least side effects as anti-
cancer drugs (Das and Singal, 2004).

Beyond the traditional drug discovery strategy, in-silico drug
design has gained the attraction of concern due to time and cost
management (Lin, Li and Lin, 2020). In contrast, natural chemical
extraction and characterization for anticancer drug development
are frequently time-consuming and include several inevitable
barriers (Fang et al., 2018). Computer-aided drug design
(CADD) solves this constraint by making it simple to screen,
identify, and describe novel drug candidates within a short
amount of time (Ahammad et al., 2019). CADD-mediated
therapeutic development against lung and prostate cancer, for
example, has been previously reported (Cui et al., 2020).
Molecular docking and molecular dynamics (MD) simulation-
based approaches are used in the CADD study to find viable
therapies for various diseases (Lu et al., 2018; Shukla et al., 2021).
Molecular docking analysis aids in the first screening of
medication candidates for favorable binding capacity to drug-
like ligands to the intended target (Kitchen et al., 2004). Similarly,
MD simulations aid in understanding the stability of protein-
ligand interactions in a synthetic environment that mimics the
human body’s environment (Singh and Bharadvaja, 2021). As a
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result, computational drug design methodologies were used in
this investigation to help screen out possible therapeutic
candidates against the SRA domain of the UHRF1 protein.

Previously, chicoric acid-a phenolic compound derived from
various plants (Lee and Scagel, 2013) has been reported as it may
useful in NASH and liver fibrosis treatment (Kim et al., 2017; Pan
et al., 2020). Chicoric acid as a bioactive anticancer drug in
colorectal cancer has been also reported (Tsai et al., 2012).
However, as an epi-drug the role of chicoric acid was
overlooked. Hence, the present study is aimed to investigate
the role of chicoric acid in targeting UHRF1.

MATERIALS AND METHODS

Preparation of PDB Structures
The crystal structure of the SRA domain of E3 ubiquitin-protein
ligase UHRF1 (c) was downloaded from the Protein Data Bank [
RCSB PDB: Homepage. Available online: https://www.rcsb.org/
(Accessed on 25 March 2022).], the protein is then prepared and
optimized by using the “Protein preparation wizard” tool of
Schrödinger suite (Schrödinger, L. Schrödinger Release 2021-4:
Protein Preparation Wizard; Epik, Schrödinger, LLC, New York,
NY, 2021). The hydrogen bonds were added, metal bonds were
deleted, zero-order bonds were added between metals and nearby
atoms, and correction of the formal charges to metals and
neighboring atoms was done. Then add and optimize the
missing side chain by running a prime job, then generate
protonation and metal charge for states for the ligands,
cofactors, and metals at 7.0 ± 2.0 pH. Finally, H-bonds of
hydroxyl, Asn, Gln, and His are optimized at pH 7.0 using
PROPKA (Olsson et al., 2011), removal of water molecules
beyond 3 Å from HET groups and OPLS4 force field has been
used for minimization.

Data Retrieval and Ligand Preparations
The natural organic compound library was retrieved from
Selleckchem (https://www.selleckchem.com) as an SDF file’
20210416-L7600-Natural-Organic-Compound-Library.sdf’ on
25 April 2021. The sdf file contained 1,126 natural organic
compounds; of these, only 774 were found to have 3D
structures when searched in PubChem. The 774 compounds
were further filtered based on molecular weight (<500), and
finally, 709 compounds were obtained and selected for virtual
screening. The selected compounds were prepared using LigPrep
(Schrödinger Release 2021-4: LigPrep, Schrödinger, LLC, New
York, NY, 2021), 2D structures were converted to 3D, and their
tautomeric forms and ionization states were generated.

Receptor Grid Generation and Docking
Glide (Schrödinger, L. Schrödinger Release 2021-4: Glide,
Schrödinger, LLC, New York, NY, 2021) was utilized for both
grid generation and ligands docking. The grid was generated
using the PDB: 3BI7. The binding region was specified by picking
the entry identified using the SiteMap program (Schrödinger
Release 2021-4: SiteMap, Schrödinger, LLC, New York, NY,
2021). The partial charge cut-off and non-polar atoms (VdW

radii scaling factor) like parameters were set as 0.25 and 0.1,
respectively. Molecular docking simulation has been performed
by using the “ligand docking” tool in the Schrödinger suite. The
selected protocol was Extra precision (XP), the ligand sampling
method was flexible, and all the other settings were kept as
default.

Molecular Dynamics Simulations
Molecular dynamics (MD) simulation has been performed by
using were Schrödinger suite (Schrödinger, L. Schrödinger
Release 2021-4: Desmond Molecular Dynamics System, D. E.
Shaw Research, New York, NY, 2021. Maestro-Desmond
Interoperability Tools, Schrödinger, New York, NY, 2021), the
systems of Chicoric acid (CID: 5281764) in complex with
3BI7 and Nystose (CID: 166775) were retrieved from the
results of docking and first tuned through the “System
Builder” tool. The orthorhombic-shaped box and TIP3P as the
solvent model has been chosen. The neutralization of the system
has been done with Na+ ions additions. Also, the slide distances
box was fixed at 10 Ao. 100 ns/trajectory has been set up for the
MD calculation while constantly maintaining pressure,
temperature, and the number of atoms. The pressure and
temperature have been set at1.01325 bar and 300.0 K, with the
OPLS4 force field.

In Silico Toxicity Analysis
To investigate the toxicity of chicoric acid through in silico
analysis we availed the ProtoxII web server (https://tox-new.
charite.de/protox_II/) (65). The ProTox-II web server
integrates several criteria like molecular similarity,
pharmacophores, fragment propensities, and machine-learning
models to predict various toxicity endpoints like-cytotoxicity,
hepatotoxicity, carcinogenicity, mutagenicity, immunotoxicity,
adverse outcomes pathways, etc.

Cell Culture and Dose Determination
The HCT116 cell line was collected by Dr. Imran’s Lab, Dept. of
Biochemistry, KAU, Jeddah. The cell culture was performed in
Dulbecco’s modified Eagle’s medium (UFS Biotech, Riyadh, KSA)
supplemented with 10% FBS and 1% penicillin (Invitrogen) and
incubated at 37°C. The cells were maintained up to 80–90%
confluence and checked regularly to avoid any Mycoplasma
contamination (Shait Mohammed et al., 2021). Upon
confluence, cells were trypsinized and seeded in 6-well plates
and incubated overnight to ensure that cells were healthy without
any contamination. The next day the seeded cells were randomly
treated with chicoric acid at 2.5, 5 and 7.5 µM concentrations.

Extraction of Genomic DNA
The genomic DNA was isolated from both control (untreated)
and treated HCT116 cells line by utilizing DNAbler kit (https://
havensci.com/; Lot no. DE95050). 200 µL of digestion buffer was
added to each sample. 20 µL of RNase A and Proteinase K were
added. Afterward, the samples were vortexed and incubated in a
heat block (~60°C). Then 200 µL of lysis buffer was added
followed by vortexing and centrifugation. 99% ethanol was
added to aliquots. Next, ethanol-lysis buffer mix samples were
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collected in a spin column (nuclease-free) for further
centrifugation at 10,000 g speed. After centrifugation, the
samples were washed by wash buffer by following the supplied
protocol of the manufacturer. 50 µL elution buffer was added to
the center of the column and incubated the column at room
temperature for 2 min. Then centrifugation was done to elute the
genomic DNA at a speed of 8000 g for 2 min (Khan et al., 2022).

Global Methylation (5mC%) Level
Determination
The global methylation (5 mC) level of the targeted HCT116 cell
line was determined by using MethylFlash™ global DNA
methylation (5-mC) ELISA Easy Kit (Catalog no. P-1030) in
both treated and untreated conditions. 200 ng of DNA from each
sample was collected and used for the experimental analysis. The
binding solution was added to the extracted DNA samples in
wells. After that, 5 mC antibody, developer solution, and stop
solution were added as per manufacturer protocol. The optical
density (OD) was determined at the end at 450 nm wavelength by
using BioTek ELISA microplate reader (Khan et al., 2022).

RESULTS

Molecular Docking Studies
Since the crystal structure of the SRA domain of E3 ubiquitin-
protein ligase UHRF1(PDB: 3BI7) doesn’t contain ligands/
inhibitors, and to define the Grid box, we decided to perform
site mapping to identify the potential binding sites on the
protein. The SiteMap program [Schrödinger Release 2021-4:

SiteMap, Schrödinger, LLC, New York, NY, 2021.] detect only
one site, as shown in Figure 1. Then, a grid box is generated
around the detected protein’s binding site of the minimized
protein by using a receptor-Grid-Generation tool in Maestro.
The obtained Ligiprep file that contains 3D molecular
structures of the selected compounds was docked into the
protein binding site. Table 1 showed the docked ligands’
results that were selected due to their most negative
docking scores, and these scores demonstrated the best-
bonded ligand with relative binding affinities and
conformations. Chicoric acid (CID: 5281764) and Nystose
(CID: 166775) displayed the highest negative docking scores
of -13.041 and -12.962 kcal/mol in complex with 3BI7,
respectively. The molecular docking results showed that the
chicoric acid bound well within the binding site (Figures
2A,B) with the highest negative docking scores of
-13.041 and inter-acted within 3Å with 14 residues: Ala-
463, Gly-464, Gly-465, Tyr-466, Asp-469, Ser-571, Val-575,
Gln-499, Gly-483, Gly-482, Ser-481, Gly-480, Thr-479, Tyr-
478, (Figures 2C,D). Chicoric acid form charged negative
interaction with Asp-469; polar interaction with Ser-571,
Gln 499, Ser 481, Thr-479; hydrophobic interaction with
Ala 463, Tyr-466, Val-575, Tyr-478; Also form hydrogen
bond donor interaction with Gly-464 Asp-469, Gly-482,
Thr-479; and hydrogen bond acceptor interaction with Tyr-
466, Gln 482.

Since the molecular docking results showed that the Nystose
bound well within the binding site (Figures 3A,B) with second-
highest negative docking scores of -12.962 and interacted within
3Å with 16 residues: Arg-433, Gly-448, Val-446, Val-461, Leu-
462, Ala-463, Gly-464, Gly-465, Tyr-466, Asp-469, Tyr-478, Thr-
479, Gly-480, Ser-481, Gly-482, Gln-499 (Figures 3C,D). Nystose
form charged negative interaction with Asp-469; charged positive
interaction with Arg-433; polar interaction with Gln 499, Ser 481,
Thr-479; hydrophobic interaction with Ala 463, Tyr-466, Val-
446, Val-461, Leu-462, Tyr-478; Also form hydrogen bond donor
interaction with Val-446, Val-461, Asp-469, Thr-479, Gly-480,
Gly-482; and hydrogen bond acceptor interaction with Ala-463,
Tyr-466.

Molecular Dynamics Simulation
The MD simulations are performed to simulate the aqueous
physiological environment to assess the changes in protein
conformation and binding affinity during the simulation time,
compared to the original affinity and confirmation of the
crystal structure (Hollingsworth and Dror, 2018). Therefore,
the MD study was performed using Desmond software
[Schrödinger Release 2021-4: Desmond Molecular Dynamics
System, D. E. Shaw Research, New York, NY, 2021.] to evaluate
the binding affinity and stability of the protein-ligand
complexes at pH 7.0 ± 0.2 over 100 ns. Only the two top-
scoring compounds in the docking study, i.e., Chicoric acid
(CID: 5281764) and Nystose (CID: 166775), were analyzed by
MD. The RMSD maps of the selected compounds complexed
with the SRA domain of E3 ubiquitin-protein ligase
UHRF1(PDB: 3BI7) measure the average change in the
positions of the atoms of the protein and ligand inside. For

FIGURE 1 | The crystal structure of the SRA domain of E3 ubiquitin-
protein ligase UHRF1. SiteMap surface “red, blue and yellow colour” of the
SRA domain of E3 ubiquitin-protein ligase UHRF1(PDB: 3BI7) “Green colour".
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compound Chicoric acid, the RMSD of the protein
and Chicoric acid laid over each other, indicating
increased stability of the UHRF1-Chicoric acid complex
(Figure 4A). Additionally, the fluctuation seen for both
over the 100 ns was within the range. A similar RMSD
pattern was observed for Nystose and UHRF1 complex,
despite the sudden, non-significant fluctuation of Nystose at
around 80 ns (Figure 5A).

The secondary structure of UHRF1(PDB: 3BI7) was also
evaluated throughout the simulation while complexed with each
ligand. Figures 4B, Figure 5B represented the protein
evaluation while complexed with Chicoric acid and Nystose.
The top plot showed the distribution of the SSE (α-helices and β-
sheets) throughout the protein, represented by the residue
index. The middle plot monitored the overall %SSE, while
the bottom plot evaluated each SSE throughout the
simulation. Both plots indicated that the overall %SSE of the
protein was maintained, and each SSE was stable over the
simulation.

The MD study also evaluated the binding interactions of a
protein-ligand complex. For the ligand Chicoric acid, the bar
graph represented what type(s) of interactions the amino acid

residues in the binding pocket made with the ligand and for how
long the interaction was maintained throughout the simulation.
The interactions were color-coded in the stacked bar graph, as
indicated in Figure 6A. Asp-467 made direct H-bonding and
through water bridges with Chicoric acid and had a normalized
value of ~1.2. The value > 1 represented the combined value
of >1 type of interaction, indicating that these interactions were
maintained for ~120% of the simulation time. The other vital
interactions were Gly-464, Glu-467, Tyr-478, Thr-479, Gly-480,
and Ser-571, with value of ~0.7, ~0.76, ~0.8, ~0.82, ~0.95, and
~0.6, respectively. Figure 6B showed only the interactions
between Chicoric acid and the protein that occurred ≥30% of
the simulation time. Figure 6C displayed the specific interactions
between ligand Chicoric acid and the protein (top plot). At the
same time, the bottom panel demonstrated the protein residues
that interacted with the ligand at each time point/trajectory. If a
residue makes more than one specific interaction with the ligand,
it appears as darker orange color in the plot. As mentioned earlier,
Asp-469 made >1 interaction with the ligand, represented by the
dark orange color in the plot throughout the trajectory.

Figure 7 shows the amino acid residues of the protein binding
pocket that interacted with Nystose. Val-446, Ala-463, and Thr-479

TABLE 1 | In silico screening/docking results of the docked ligands that were selected owing to their most negative docking scores, with SRA domain of E3 ubiquitin-protein
ligase UHRF1(PDB: 3BI7).

aCompounds CID Docking Score Glide g-score Glide e-model XP GScore

5281764 (Chicoric acid) -13.041 -65.303 -13.041 -13.041
166775 (Nystose) -12.962 -60.686 -12.962 -12.962
439531 -11.978 -63.731 -11.978 -11.978
10542 -10.866 -52.983 -10.866 -10.866
5280805 -9.836 -71.019 -9.836 -9.836
5281377 -9.606 -60.709 -9.606 -9.606
4789 -10.358 -67.504 -10.358 -10.358
4789 -9.628 -61.404 -9.628 -9.628
83489 -9.374 -68.28 -9.374 -9.374
439242 -9.373 -55.967 -9.373 -9.373
6134 -9.29 -49.674 -9.29 -9.29
92817 -9.245 -59.163 -9.245 -9.245
5280704 -9.112 -65.2 -9.112 -9.112
11458 -9.013 -47.5 -9.013 -9.013
65064 -9.055 -66.577 -9.055 -9.055
160469 -8.937 -47.311 -8.937 -8.937
3085296 -8.91 -53.671 -8.91 -8.91
9476 -8.895 -49.356 -8.895 -8.895
6443665 -9.093 -58.108 -9.093 -9.093
10712 -8.67 -50.74 -8.67 -8.67
73191 -8.585 -58.472 -8.585 -8.585
5281544 -8.541 -51.528 -8.541 -8.541
5481663 -8.558 -77.148 -8.558 -8.558
65064 -9.974 -66.823 -9.974 -9.974
73395 -8.468 -68.725 -8.468 -8.468
87691 -8.338 -46.766 -8.338 -8.338
73568 -10.384 -69.056 -10.384 -10.384
125153 -8.221 -84.2 -8.221 -8.221
656569 -8.212 -44.998 -8.212 -8.212
440660 -8.207 -56.717 -8.207 -8.207
5282151 -8.145 -61.64 -8.145 -8.145
73466 -8.065 -43.983 -8.065 -8.065
736 -8.038 -36.572 -8.038 -8.038
503737 -8.015 -60.238 -8.015 -8.015

aIdentifier from PubChem database of chemical molecules and their activities in biological assays.
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made direct H-bonding, and through water, bridges with Nystose
had a normalized value of ~0.94, ~1.50, and ~1.63. The other vital
interactions were with Arg-433, Gly-464, Asp-469, Gly-480, and
Gly-482, with values of ~0.82, ~0.96, ~1.38, ~0.77 ~0.82, respectively.

Analysis of In Silico Toxicity
Our in-silico toxicity results for chicoric acid nystose showed that
the compounds belong to the toxicity class 5 with LD50 of
5000 mg/kg and 3000 mg/kg respectively. The various toxicity

FIGURE 2 | Molecular Docking of chicoric acid with UHRF1. (A) Molecular surface display with an electrostatic potential color scheme for UHRF1-Chicoric acid
complex and the close-up view presented. (B) Putative binding mode of Chicoric acid in the bindin site of UHRF1(PDB: 3BI7) (C) Chicoric acid was displayed as green
ball-and-sticks. And the amino acid residues of the are represented as grey sticks, and H-bonds are described in yellow dotted lines. (D) 2D depiction of the ligand-
protein interactions.

FIGURE 3 |Molecular Docking of nytose with UHRF1. (A)Molecular surface display with an electrostatic potential color scheme for UHRF1- Nystose complex and
the close-up view presented. (B) Putative bindingmode of Nystose in the binding site of UHRF1(PDB: 3BI7). (C)Nystose was displayed as green ball-and-sticks. And the
amino acid residues of the binding site are represented as grey sticks, and H-bonds are expressed in yellow dotted lines. (D) 2D depiction of the lig-and-protein
interactions.
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model reports that include hepatotoxicity, carcinogenicity, stress
response pathways, etc, were depicted and represented in Table 2.

Global Methylation Level Reduced by
Chicoric Acid
The level of global methylation (5mC) in HCT116 cell line was
determined by using the computationally identified chicoric

acid. Based on a previous study (Sun et al., 2019), the
methylation level was calculated at three different doses of
chicoric acid, such as 2.5, 5 and 7.5 µM. Moreover,
5Azacytidine (as a positive control of DNMTi) treatment was
also performed for assessing the %5 mC level (Nur et al., 2022).
The data illustrated that a 2.5 µM dose had a very low effect on
the 5 mC level reduction relative to the control sample.
Moreover, the methylation (5mC) level was moderately

FIGURE 4 |Molecular dynamics simulation analysis of chicoric acid. (A) The RMSD plot was obtained for compound Chicoric acid complexed with SRA domain of
E3 ubiquitin-protein ligase UHRF1(PDB: 3BI7). The 100 ns simulation time reaffirmed the stability of the complex without any significant changes in the structure. (B)
Stability of the secondary structure UHRF1 over the 100 ns of MD simulation when complexed with Chicoric acid. Protein secondary structure elements (SSE) like alpha-
helices and beta-strands were monitored throughout the simulation. The top plot reported SSE distribution by residue index throughout the protein structure. The
middle plot summarized the SSE composition for each trajectory frame throughout the simulation, and the plot at the bottom monitored each residue and its SSE
assignment over time.

FIGURE 5 | Molecular dynamics simulation analysis of nytose. (A) The RMSD plot was obtained for compound Nystose complexed with SRA domain of
E3 ubiquitin-protein ligase UHRF1(PDB: 3BI7). The 100 ns simulation time reaffirmed the stability of the complex without any significant changes in the structure. (B)
Stability of the secondary structure UHRF1 over the 100 ns of MD simulation when complexed with Nystose. Protein secondary structure elements (SSE) like alpha-
helices and beta-strands were monitored throughout the simulation. The top plot reported SSE distribution by residue index throughout the protein structure. The
middle plot summarized the SSE composition for each trajectory frame throughout the simulation, and the plot at the bottom monitored each residue and its SSE
assignment over time.
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FIGURE 6 | The interaction analysis of chicoric acid with UHRF1. (A)UHRF1 interactions with Chicoric acid throughout the simulation. The interactions between the
ligand and protein were classified into hydrophobic, ionic, hydrogen bonds, and water bridges. Each classification can be further sub-grouped and noticed in the
“Simulation Interactions Diagram” panel. The stacked bar charts were normalized over the trajectory’s course: for example, a value of 0.7 suggested that the specific
interaction was maintained 70% of the simulation time. Values over 1.0 were possible, as some protein residue may make multiple contacts of the same subtype
with the ligand. (B) The schematic diagram showed the detailed atomic interaction of Chicoric acid with UHRF1. Interactions occurred more than 30.0% of the simulation
time in the selected trajectory (0.00 through 100.00 ns). It is possible to have interactions with >100% as some residues may have multiple interactions of a single type
with the same ligand atom. (C) A timeline representation of UHRF1- Chicoric acid interactions is presented in (A). The top panel showed the number of specific contacts
that the protein made with the ligand throughout the trajectory. The bottom panel showedwhich residues interacted with the ligand in each trajectory frame. According to
the scale of the plot, some residues made more than one specific contact with the ligand, which was represented by a darker shade of orange.

FIGURE 7 | The interaction analysis of nytose with UHRF1. (A)UHRF1 interactions with Nystose throughout the simulation. (B) The schematic diagram showed the
detailed atomic interaction of Nystose with UHRF1. (C) A timeline representation of UHRF1- Nystose interactions is presented in (A).
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decreased by 5 µM chicoric acid treatment. However, 7.5 µM
chicoric acid treatment significantly reduced the 5 mC level by
around 0.6% compared to the control (Figure 8).

DISCUSSION

DNMTs have profound epigenetic effects on various tumorigenic
and non-tumorigenic cells (Robertson, 2001). Besides a coordinating
protein like UHRF1 interact with DNMTs through SAR domain.
Previously, it has been shown that targeting the SRA domain of
UHRF1 with various natural compounds provide a promising
strategy for chemotherapeutic purpose in cancer cell lines
(Patnaik et al., 2018). However, the study of targeting the SRA
domain of UHRF1 by chicoric acid has been overlooked previously.
Hence, in our present study, we aimed to investigate this gap. First,
we retrieved the natural compounds library followed by virtual

screening through molecular docking simulation. In molecular
docking simulation, we virtually screened 709 natural organic
compounds against the SRA domain of UHRF1. After molecular
docking simulations, we selected the top two compounds based on
the docking score which include chicoric acid and nystose. The
molecular docking simulation result of chicoric acid showed that the
chicoric acid interacted with 14 amino acids of SRA domain
UHRF1 whereas nystose interacted with 16 residues including
Asp469 residue. Asp469 of SRA domain is studied as an active
residue that recognizes methylcytosine (Patnaik, 2020). The study
showed that chicoric acid formed significant interactions with
Asp469 while the interaction with nystose is very low.
Furthermore, the study utilized molecular dynamics simulation to
analyze the protein-ligand complex stability (Islam et al., 2022). Also,
MD simulation calculates the RMSD values to confirm the
interaction stability and rigidity of the compounds with the target
protein (Liu et al., 2017). The RMSD value of the SRA domain-
chicoric acid complex showed more stable considerably. Besides the
interaction mapping also chicoric acid confirmed more stable and
durable H-bonding with Asp469 residue throughout 100ns
simulation. Moreover, we also investigated the in-silico toxicity
test that showed both chicoric acid and nystose meet all the
safety parameters and belong to toxicity class 5. However,
chicoric acid has been characterized as a more selective candidate
with a higher LD50 value of 5000mg/kg. Previously,
chemoinformatics study of chicoric acid has been studied
targeting various proteins (Healy et al., 2009; Baskaran et al.,
2012; Li et al., 2021). Till now no chemoinformatics study of
chicoric acid-targeting SRA domain of UHRF1 has been elucidated.

Additionally, the global methylation level (5mC%) was
measured to validate our in-silico results (De Oliveira et al.,
2020). We tested the chicoric acid on the HCT116 cell line at
2.5, 5 and 7.5 µM doses. From the treated sample we have extracted
the genomic DNA to measure the global methylation level of the
genome (5mC%). Our results showed that at 7.5 µM treatment
chicoric acid reduced the highest level of 5mC. No previous study
showed the effect of chicoric acid on global methylation levels.

TABLE 2 | Toxicity analysis of chicoric acid with different parameters such as, organ toxicity, toxicity endpoints, and signaling and response pathways.

Classification Target Chicoric acid Nystose

Oral toxicity LD50 (mg/kg) 5000 3000
Organ toxicity Hepatotoxicity Inactive Inactive
Toxicity end points Carcinogenicity Inactive Inactive

Immunotoxicity Active Inactive
Mutagenicity Inactive Inactive
Cytotoxicity Inactive Inactive

Tox21-Nuclear receptor signalling pathways Aryl hydrocarbon Receptor (AhR) Inactive Inactive
Tox21-Nuclear receptor signalling pathways Androgen Receptor (AR) Inactive Inactive
Tox21-Nuclear receptor signalling pathways Androgen Receptor Ligand Binding Domain (AR-LBD) Inactive Inactive
Tox21-Nuclear receptor signalling pathways Aromatase Inactive Inactive
Tox21-Nuclear receptor signalling pathways Estrogen Receptor Alpha (ER) Inactive Inactive
Tox21-Nuclear receptor signalling pathways Estrogen Receptor Ligand Binding Domain (ER-LBD) Inactive Inactive
Tox21-Nuclear receptor signalling pathways Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma) Inactive Inactive
Tox21-Stress response pathways Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (nrf2/ARE) Inactive Inactive
Tox21-Stress response pathways Heat shock factor response element (HSE) Inactive Inactive
Tox21-Stress response pathways Mitochondrial Membrane Potential (MMP) Inactive Inactive
Tox21-Stress response pathways Phosphoprotein (Tumor Supressor) p53 Inactive Inactive
Tox21-Stress response pathways ATPase family AAA domain-containing protein 5 (ATAD5) Inactive Inactive

FIGURE 8 | The global genomic methylation level study in chicoric acid
treated HCT116 cell line. The percentage of global methylation (5mC) of
HCT116 cell line treating with chicoric acid. The concentration of 7.5 µm
showed the lowest percentage of methylation (5mC) level. 5Azadc;
5Azacytidine.
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CONCLUSION

DNA methylation is necessary to control the mammalian genome
expression and stability. However, aberrant DNA methylation
leads to carcinogenesis. UHRF1 is found as a crucial target for
facilitating uncontrolled methylation. Particularly, SRA domain of
UHRF1 is highly responsive to incorporating other epigenetic
writers including DNMT1. Therefore, our study utilized diverse
in-silico approaches and virtually screened 709 natural compounds
that showed chicoric acid and nytose as prominent interactors with
or without the SRA domain of UHRF1 protein and finally
identified chicoric acid as a promising drug candidate against
the SRA domain. Finally, chicoric acid justified the epi-drug-like
effect of chicoric acid onHCT116 cancer cell line by measuring the
global methylation level (5mC%). Chicoric acid was substantially
effective in reducing DNA methylation levels suggesting that
chicoric acid may become a new epigenetic inhibitory drug for
chemotherapeutic purposes in cancer treatment.
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RNA-Seq Comprehensive Analysis
Reveals the Long Noncoding RNA
Expression Profile and Coexpressed
mRNA in Adult Degenerative Scoliosis
Xin Shi1,2†, Panpan Li 1,2*†, Xiang Wu1, Zhihua Wang1, Gang Zhao1 and Jun Shu1*

1The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China, 2Faculty of
Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany

Objective: Owing to the intensification of the aging process worldwide, the prevalence of
adult degenerative scoliosis (ADS) is increasing at an alarming rate. However, genomic
research related to the etiology of ADS is rarely reported worldwide. Since long noncoding
RNAs (lncRNAs) play a pivotal role in the progression of human diseases, this study aimed
to investigate ADS-associated messenger RNAs (mRNAs) and lncRNAs by RNA
sequencing (RNA-seq), as well as performed comprehensive bioinformatics analysis
based on the lncRNA–mRNA coexpression network and protein–protein interaction
(PPI) network.

Methods: Initially, six whole blood (WB) samples were obtained from three ADS and three
nondegenerative lumbar trauma patients who underwent surgical operation for RNA-seq
exploration to construct differential mRNA and lncRNA expression profiles. Subsequently,
quantitative RT-PCR (qRT-PCR) was performed to validate three randomly selected
differentially expressed mRNAs and lncRNAs derived from the nucleus pulposus (NP)
tissue of 14 other subjects (seven ADS patients and seven nondegenerative lumbar trauma
patients), respectively.

Results: A total of 1,651 upregulated and 1,524 downregulated mRNAs and
147 upregulated and 83 downregulated lncRNAs were screened out from the RNA-
Seq data, which constructed coexpression networks to investigate their regulatory
interactions further. GO gene function prediction revealed that lncRNA-targeted genes
might play a vital role in ADS via participation in multiple biological processes such as the
AMPK signaling pathway, lysosomes, and ubiquitin-mediated proteolysis, as well as
cellular metabolic processes. Moreover, the expression levels of three selected
lncRNAs and mRNAs were validated by qRT-PCR, respectively, demonstrating that
the relative expression levels were consistent with the RNA-seq data. Notably, the
dysregulated RNAs, AKT1, UBA52, PTPN12, and CLEC16A, were significantly
differentially expressed in ADS WB samples and might serve as potentially regulated
genes for research in the future.

Conclusions: This study provides the first insight into the altered transcriptome profile of
long-stranded noncoding RNAs associated with ADS, which paves the way for further
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exploration of the clinical biomarkers and molecular regulatory mechanisms for this poorly
understood degenerative disease. However, the detailed biological mechanisms
underlying these candidate lncRNAs in ADS necessitate further elucidation in future
studies.

Keywords: adult degenerative scoliosis, long noncoding RNA, messenger RNA, whole blood, nucleus pulposus
tissue, gene ontology, pathway analysis

INTRODUCTION

Adult degenerative scoliosis (ADS) is defined as a three-
dimensional spinal deformity with a Cobb angle >10° in the
coronal plane (Aebi, 2005), which refers to the structural curve
formed by the previously normal spine after skeleton maturity;
hence, it is also described as new-onset adult scoliosis (Grubb
et al., 1988). Because of the increase in age and the aggravation of
degeneration, up to 90% of patients with ADS may develop
central spinal stenosis with neurogenic claudication, and 60%–
80% suffer low back pain (Grubb et al., 1994; Silva and Lenke,
2010; Cho et al., 2014), even it is possible to cause complications
such as syringomyelia and Charcot arthropathy of the lower limbs
(Shi et al., 2021), which seriously affects the patient’s physical and
mental health. According to current statistics, approximately
8.9% of people have been found to have ADS among the 40-
year-old age group, with a significantly increased risk of scoliosis
from 50 to 60 years. However, due to the complicated
pathogenesis of ADS, its etiology is not completely clear.
Comprehensive studies suggest that ADS is the consequence of
a complex interaction between asymmetric intervertebral disc
degeneration (IDD), intervertebral facet joint overload, lifestyle
factors (smoking, obesity, etc.), and genetic factors (Vernon-
Roberts et al., 2008; Silva and Lenke, 2010; York and Kim,
2017). It is estimated that by 2050, the proportion of the
world’s population over 60 years old will nearly double
(Schwab et al., 2005). At the same time, coupled with the
acceleration of age-related spinal degeneration, the prevalence
of ADS is increasing at an alarming rate (Ploumis et al., 2007),
which is bound to substantially increase the economic burden on
individuals and society from a public health perspective.

Long noncoding RNAs (lncRNAs) refer to RNA transcripts
with a length of more than 200 nucleotides and lack protein-
coding capabilities (Ponting et al., 2009; Li et al., 2016; Ren et al.,
2018). An increasing body of evidence suggests that lncRNAs are
involved in various processes of cellular activities, such as
adipogenesis, apoptosis, pyrolysis, cell differentiation,
epigenetic modification, and tumorigenesis and regulation
(Fang and Fullwood, 2016; Geng and Tan, 2016; Bach and
Lee, 2018; Ma et al., 2018; Tang et al., 2019). lncRNAs are
implicated in the onset and development of various
multifactorial diseases such as cancer, cardiovascular diseases,
autoimmune diseases, and neurodegenerative diseases (Huang
et al., 2013). Furthermore, lncRNAs can exist as a stable form in
tissues and body fluids as immunity to endogenous RNase activity
(Huang et al., 2016). Recently, some studies have illustrated that
lncRNAs can facilitate autophagy and apoptosis of nucleus
pulposus (NP) cells involving IDD. Chen et al. identified that

overexpression of lncRNA XIST inactivates the PI3k/Akt
signaling pathway to regulate autophagy of NP cells in IDD
(Chen et al., 2021). Sun et al. demonstrated that lncRNA
H19 promotes autophagy and apoptosis of NP cells through
miR-139-3p/CXCR4/NF-kappa B axis to exacerbate IDD (Sun
et al., 2021). Currently, the genomic studies related to the
etiological mechanism of ADS have been reported rarely
worldwide. We chose whole blood(WB) for the analysis
because it has proven to be a useful surrogate of gene
expression in the peripheral and central nervous system and
can be collected in a minimally invasive manner that is amenable
for potential future diagnostic test development (Parisien et al.,
2017). Therefore, in this study, high-throughput sequencing was
carried out to examine the lncRNA and mRNA expression
profiles in WB samples collected from ADS patients and
nondegenerative lumbar trauma patients, and verified in the
NP tissues, which will fill in the gaps in the etiology of ADS
and provide a research basis for the identification of causative
genes and the selection of targeted therapeutic candidates in the
future.

MATERIALS AND METHODS

Ethical Approval and Patient Consent
This study was approved by the Ethics Review Committee of the
Second Affiliated Hospital of Kunming Medical University. The
study was complied with the “Declaration of Helsinki” (revised in
2013). All human tissues were obtained and utilized with the
informed consent of the participants. All samples were collected
at the Second Affiliated Hospital of Kunming Medical University
from January 2017 to December 2018.

Participants and Sample Collection
WB sample and NP tissue was obtained from 10 patients with
ADS who underwent surgical operation (ADS group). The
inclusion and exclusion criteria for the ADS group are
illustrated in Table 1, Table 2: age range: 45–59 years (mean
age: 53.4 ± 4.84 years) and body mass index (BMI)18.5 ≤
BMI<24. The patient was finally diagnosed as ADS upon a
comprehensive assessment based on the medical history,
clinical physical examination, and radiographic examination
(X-rays show that the lumbar vertebrae as the apex with a
Cobb angle range of coronal scoliosis are ≥15°; MRI indicates
varying degrees of degeneration of the IVD, intervertebral facet
joints, and ligamentum flavum).

Meanwhile, we recruited 10 lumbar spine trauma patients
without disc degeneration (Normal group) who underwent the
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lumbar surgical operation (the inclusion criteria and exclusion
criteria of the Normal group are shown in Table 3 and Table 4),
and obtained normal NP tissues and WB samples, age between
18 and 35 years (mean age: 24 ± 3.94 years), 18.5 ≤ body mass
index (BMI) < 24.

Five milliliters of fasting WB samples were collected from the
median cubital vein of each participant between 9:00 and 9:
30 AM. All WB samples were incubated in a PAXgene Blood
RNA tube (BD, USA) for 24 h at −20 °C and then transfer it to a

−80°C refrigerator for preservation. Then transfer it to a −80°C
refrigerator for storage. After collecting all samples, place whole
blood RNA tubes on a metal rack and thaw at room temperature
(18°C-25°C) for two hours. After thawing, carefully invert the
whole blood RNA tube ten times. Finally, total RNA extraction,
detection, lncRNA library construction, and sequencing were
performed on six samples. Eventually, the NP tissues were
isolated from each participant during the operation and
temporarily stored in cold phosphate-buffered saline (PBS)
and then quickly transferred to the laboratory. After, the
samples were washed in PBS to remove all blood and annulus
fibrous tissue and then frozen at −80°C for further examination.

RNA Extraction and Quality Control
According to the manufacturer’s instructions, the total RNA was
extracted from each WB sample employing TRIzol reagent
(Invitrogen, Carlsbad, CA, United States). RNA purity was
determined by using a spectrophotometer (NanoDrop-1000,
Thermo Fisher Scientific) with OD260/OD280 readings
(10mM Tris, pH 7.5) between 1.8 and 2.1. The temperature
was maintained at −80°C, while the RNA quality was
measured by the Agilent 2,100 TapeStation (Agilent
Technologies, United States) Biochip Analysis System.
Eventually, samples were selected with RNA integrity values >
7.0 to construct cDNA libraries. The RNA-seq bioinformatics
pipeline is illustrated in Figure 1A, and the workflow for this
study is schematically shown in Figure 1B.

Construction of cDNA Libraries
The Illumina® NEBNext® Ultra™ Directed RNA Library
Preparation Kit is utilized to construct Illumina True-Seq
strand lncRNA libraries. In brief, the lncRNA library is
constructed as a strand-specific library. The first strand of
cDNA is synthesized by reverse transcription in the same
method as the conventional NEB library build. Distinctively,
the dTTP in the dNTPs was substituted by dUTP when the
second strand was synthesized, which was followed by cDNA end
repair, the addition of A-tails, ligation of sequencing junctions,
and length screening in the same manner. Then, the second
strand of the U-containing cDNA was preferentially degraded
using USERase, as well as purification and enrichment of the
product by PCR to create the final cDNA library, which was
quantified via Agilent 2,200. Ultimately, six cDNA libraries were
constructed for this study.

RNA Sequencing
Mapping of paired-end reads: prior to reading the mapping, clean
reads, reads with >5% ambiguous bases (denoted as N), and low-
quality reads containing >20% of bases with mass <20 are
obtained from the original read by removing the splice
sequence. The filtered reads were aligned to the human
genome [version: GRCh38 National Center for Biotechnology
Information (NCBI)] by applying HISAT2. Typically, the
percentage of reads generated by sequencing should be above
70% (Total Mapped Reads or Fragments), as long as the reference
genome is selected appropriately and the experiment is free from
contamination. Then, the HTSeq software was utilized to obtain

TABLE 1 | Inclusion criteria of the ADS group.

Inclusion criteria of the ADS group

(1) According to the medical history, clinical examination and imaging examination
were diagnosed as ADS
(2) Over 50 years old
(3) 18.5 ≤ body mass index (BMI) < 24
(4) With the lumbar spine as the vertex, X-ray showed that the Cobb Angle range of
scoliosis on the coronal plane was greater than or equal to 15°

(5) CT and MRI suggested different degrees of degeneration of intervertebral discs,
intervertebral facet joints, ligamentum flavum, etc.

TABLE 2 | Exclusion criteria of the ADS group.

Exclusion criteria of the ADS group

(1) Medical history of metabolic bone disease, spinal trauma, and spinal infection
(2) History of spinal surgery
(3) History of autoimmune diseases, systemic inflammatory diseases, solid tumors,
or hematological malignancies
(4) Complicated with severe osteoporosis and severe liver or kidney insufficiency
(5) Pregnant or lactating women
(6) Scoliosis secondary to other organic spinal lesions, such as tumor, trauma,
tuberculosis, and metabolism
(7) History of lumbar spine surgery, congenital scoliosis, or undetected idiopathic
spinal column scoliosis in adolescents

TABLE 3 | Inclusion criteria of the normal group.

Inclusion criteria of the normal group

(1) Age between 18 and 35 years
(2) 18.5 ≤ BMI<24
(3) After X-ray, CT, and MRI examination, there is no spine-related disease,
intervertebral disc and facet joint structure is complete, and there is no lesion
(4) CT and MRI suggested different degrees of degeneration of intervertebral discs,
intervertebral facet joints, ligamentum flavum, etc.

TABLE 4 | Exclusion criteria of the normal group.

Exclusion criteria of the normal group

(1) Medical history of autoimmune diseases, systemic inflammatory diseases, solid
tumors, or hematological malignancies
(2) Complicated with severe osteoporosis, severe liver, and kidney dysfunction
(3) Pregnant or lactating women
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gene count, which was quantitatively analyzed for each sample of
the species based on the known genotype. Finally, the RPKM
method was employed to determine gene expression, which was
obtained from the samples based on expression statistics for
various gene types.

Identification of Differentially Expressed
lncRNAs and mRNAs
Sequence reads were matched by the TopHat 2.0 program
(Vernon-Roberts et al., 2008) to obtain comparison files.
Annotated references for mRNA and lncRNA analysis were
derived from the RefSeq and Ensembl transcriptional
databases. Reference genomes of reads were filtered through
HISAT2 alignment analysis. Cuffmerge software was applied
to screen lncRNAs. The gene expression data of six samples
were obtained through the fragments per kilobase of exon model
per mapped reads (FPKM), the methods for standardization of
gene expression levels. In this analysis, to enhance the reliability
of the analytical algorithm results, differentially expressed (DE)
mRNAs and DE lncRNAs were identified based on the FPKM
value of the individual gene in each sample by edgeR (Robinson
et al., 2010). The absolute logarithmic fold change (LFC) ≥ 1 (|
log2 fold change|≥ 1) and p-value <0.05 were adopted as the
screening criteria. Principal component analysis (PCA),
implemented in the prcomp function of R, was conducted to
abstract the main characteristics of the data, which served as an
indicator of the overall state of the data.

Construction of the lncRNA–mRNA
Weighted Coexpression Network
LncRNAs play a biological role by regulating mRNAs. A
coexpression network of lncRNA/mRNA was constructed to
investigate the potential interactions between lncRNA and

mRNA, which could identify the key lncRNAs involved in
ADS and their potential functional. This study analyzed the
correlation between lncRNA and mRNA in the samples using
the Pearson correlation coefficient method. The absolute values of
correlation coefficients >0.95 and p < 0.001 were specified as
screening criteria. Then, the biological functions of lncRNAs were
predicted by performing a functional enrichment analysis on
mRNAs.

GO and KEGG Pathway Enrichment
Analyses
All DE mRNAs were subjected to GO and KEGG pathway
analysis, which could investigate the potential role of lncRNAs
coexpressed with the related mRNAs. GO analysis (http://www.
geneontology.org) is commonly employed in large-scale gene
function enrichment studies (York and Kim, 2017) to
construct gene annotations. The p-values for DE genes are
measured and corrected. Then multiple hypothesis testing is
performed so that the probability of GO term being enriched
by differential genes could be calculated more accurately.
Typically, GO analysis covers three domains: cellular
composition (CC), molecular function (MF), and biological
process (BP). The Kyoto Encyclopedia of Genes and Genomes
(KEGG) (https://www.genome.jp/kegg/) is a biological system
database that integrates genome, chemistry, and system function
information. KEGG can be used to link genomes and biological
functions through PATHWAY tracking. In living organisms,
different genes coordinate with each other to perform specific
biological functions. The significant enrichment of pathways
allows the identification of the dominant biochemical
metabolic pathways and signal transduction pathways involved
in a particular gene. The false discovery rate (FDR) was used to
denote the significance of the p-value (an FDR value of <0.05 was
recommended).

FIGURE 1 | (A) RNA-seq bioinformatic pipeline. (B) Schematic diagram of the workflow of this study.
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Protein–Protein Interaction Network
Construction and Module Selection
The target genome sequences are aligned with the protein
sequences of close relatives or model species from the
STRING protein interaction database (http://string-db.org/)
utilizing Blastx, whereby interaction networks are constructed
from the protein interaction relationships of selected close
relatives or model species. Thus, the differential gene–protein
interaction network data files can be imported directly into
Cytoscape software for visual editing.

Quantitative Real-Time PCR Validation
The RNA was extracted from the NP samples of additional ADS
group (n = 7) and Normal group (n = 7), respectively, in which
cDNA was subsequently synthesized by reverse transcription
reactions. Add 1 μg of total RNA to an enzyme-free PCR tube
on ice; add 5×iScript Reaction Mix (4 μl) and iScript Reverse
Transcriptase (1 μl) to each well, then make up 20 μl with
nuclease-free water, and mix well and centrifuge briefly (5s);
Reverse transcription conditions: 37°C (60 min) −85°C
(5°min) −4°C (stop); after the reaction was stopped, the cDNA
was placed in a refrigerator at −20°C for PCR, and the primer was
diluted with DEPCwater according to the instructions; prepared to
conform to the following systematic procedure: 2×iTaqTM
universal SYBR Green supermix (10 μl), forward and reverse
primers (1.8 μl), DNA template (1 μl), and DEPC (7.2 μl).
Centrifuge briefly (5 s) after mixing. The PCR procedure is as
follows: 1) 95°C (5 min); 2) 95°C (15 s) −60°C (30 s), 40 cycles; 3)
termination at 4°C. The 2-ΔΔCt method was employed to calculate
the relative RNA expression level. This value is represented as
mean ± SD. A student t-test was conducted, and when p-value <
0.05, the results were considered to be significantly different.

Statistical Analysis
Statistical analyses were performed by the Statistical Package for
the Social Sciences (SPSS) version 25.0 software (SPSS Inc.,
Chicago, IL, United States). Data are presented as the mean ±
SD of the results of at least three independent experiments.
Appropriately, Student t-tests and Mann–Whitney U-tests
were applied to determine significant differences between
groups. The Pearson correlation coefficient was applied to
inspect the correlation of expression between samples. A
p-value < 0.05 was considered statistically significant for all
tests. Moreover, in order to correct the batch effect, the
RUVseq package for the R language was applied for batch
correction. In addition, heatmaps and volcano maps were
exported from the R language Heatmap package 2, scatter
maps, and PCA results from the ggplot2 package.

RESULTS

Overview of Differentially Expressed
lncRNAs and mRNAs
In order to determine whether there was clustering or outliers in the
sample set, the differences between the clustering of the mRNA

(Figure 2A), lncRNA (Figure 2B) expression matrixes of the ADS,
andNormal samples in different datasets were examined using three-
dimensional principal component analysis (PCA). The results
showed that ADS was well distinguished from the Normal
samples. The expression levels of lncRNAs and mRNAs in WB
samples from 3 ADS patients and 3 normal patients were analyzed
comparatively through RNA-seq. DE lncRNAs and mRNAs were
screened following the criteria |log2 (fold change)| > 1, p-value< 0.05.
LNC_000044 (log2 (fold change):15.093, p = 2.56E-07) and
ENST00000424684.2 (log2 (fold change): 10.144, p = 9.61E-05)
were the most upregulated and downregulated lncRNAs among
the identified lncRNAs. We constructed volcano maps to visualize
the differential expressions ofmRNAs and lncRNAs between samples
(Figures 3A,B). The results showed that a total of 230 lncRNAs
(147 upregulated and 83 downregulated) and 3,175 mRNAs
(1,651 upregulated and 1,524 downregulated) produced significant
changes. EPB41 (log2 (fold change):18.16001835, p = 2.23E-07) and
MYADM (log2 (fold change): 14.67313747, p = 0.000185825) were
the most upregulated and downregulated mRNAs among the
identified mRNAs. The top 10 most DE mRNAs and lncRNAs
(five upregulated and five downregulated) are displayed, respectively,
in Table 5 and Table 6. Furthermore, heatmaps were created to
group lncRNAs andmRNAs at the expression level between samples
(Figures 4A,B).

Functional Analysis of Differentially
Expressed mRNAs
DAVID (a database of annotation, visualization, and
integrated discovery) was applied to perform GO and
KEGG pathway analyses, which was carried out to figure
out the function of DE mRNAs. The enrichment results of
GO indicated that the most abundant biological processes of
upregulated mRNA include primarily cellular process or
metabolic process and cellular metabolic process; the most
significant enriched cellular component was the cell, cell part,
and intracellular; the most plentiful molecular function was
binding and protein binding (as shown in Figure 5A). The
most abundant biological processes of the downregulated
mRNAs mainly include metabolic processes, cellular
metabolic process, and cellular macromolecule metabolic
processes; the most significantly enriched cellular
components include intracellular, intracellular part, and
organelle; the most enriched molecular functions consist of
combinations of organic cyclic and heterocyclic compounds
(Figure 5B). Moreover, the results of the KEGG analysis
revealed that upregulated mRNAs were associated with
endometrial cancer, colorectal cancer, and adherens
junctions (Figure 5C). In contrast, downregulated mRNAs
were involved in base excision repair and MAPK signaling
pathways (Figure 5D).

Functional Analysis of Differentially
Expressed lncRNAs
Since lncRNAs have been reported to achieve the function by
modulating mRNAs, we performed an extra-screen for
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FIGURE 2 | Principal component analysis (PCA) shows the clustering of mRNA and long noncoding RNA (lncRNA) expression matrices in different samples. (A)
PCA of mRNA expression between the ADS cluster and normal cluster. The red dots represent the ADS samples, and the blue dots represent the normal tissue (Normal)
samples. (B) PCA of the lncRNA expression between the ADS cluster and normal cluster. The red dots represent the ADS samples, and the blue dots represent Normal
samples.

FIGURE 3 | Analysis of differentially expressed mRNAs and lncRNAs. Volcano plot showing differentially expressed (A)mRNAs and (B) lncRNA in ADS and normal
groups.

TABLE 5 | Top 10 differentially expressed mRNAs.

mRNA name Gene name Log2 (fold change) p-value Regulated

ENST00000649717 EPB41 18.16001835 2.23E-07 Up
ENST00000642937 EPB41 17.51348319 5.79E-09 Up
ENST00000370857 MBNL3 16.92620439 0.000107137 Up
ENST00000413219 SDCBP 14.12285154 6.45E-07 Up
ENST00000367051 CR1 13.59940505 0.000229326 Up
ENST00000336967 MYADM −14.67313747 0.000185825 Down
ENST00000394419 ACTN1 −14.08400562 1.37E-06 Down
ENST00000518721 ASAP1 −13.85480643 0.000220224 Down
ENST00000513163 FBXL5 −13.8071376 0.000248399 Down
ENST00000371706 SEC16A −13.57253774 9.53E-07 Down

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 9029436

Shi et al. lncRNA Expression Profile and Coexpressed mRNA in Adult Degenerative Scoliosis

75

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


DE lncRNAs associated with mRNAs. In brief, the
coexpressed mRNAs of each DE lncRNA were identified
by the correlation with protein-coding gene expression,
which was used for functional enrichment analysis.
Figure 6A–C displays the 20 most significantly enriched
GO terms and the KEGG pathway in the upregulated
lncRNAs; conversely, Figure 6B–D shows the 20 most
enriched GO terms and the KEGG pathway in the
downregulated lncRNAs. Enrichment analysis of the
KEGG pathway indicated that the DE lncRNAs were
associated with a multitude of molecular pathways,

including endocytosis, lysosomes, adhesion junctions,
mismatch repair, ubiquitin mediated proteolysis, and the
AMPK signaling pathway.

lncRNA–mRNA Coexpression Networks
We were able to anticipate the target gene of lncRNA through
intersample coexpression analysis of lncRNA and mRNA,
explore the synergistic effect of lncRNA and its differential
expression targets, and identify the pairing that may be
relevant to the pathogenesis of ADS. Ultimately, eight
interested lncRNAs were generated in the analysis, and a

TABLE 6 | Top 10 differentially expressed lncRNAs.

lncRNA name Gene name Log2 (fold change) p-value Regulated

LNC_000044 15.093 2.56E-07 Up
LNC_000009 12.943 0.00029719 Up
LNC_001060 11.905 0.00057081 Up
LNC_006155 10.413 4.82E-05 Up
LNC_005341 9.999 0.000127804 Up
ENST00000424684.2 RP11-403I13.7 −10.144 9.61E-05 Down
ENST00000627173.1 LINC00891 −9.798 9.72E-08 Down
LNC_006024 −9.593 0.00290163 Down
LNC_000026 −9.383 2.54E-05 Down
ENST00000592135.5 CTD-3014M21.4 −9.212 1.19E-06 Down

FIGURE 4 | Clustering analysis. Hierarchical clustering illustrates distinguished expression difference of (A)mRNAs and (B) lncRNAs between the two groups and
homogeneity between groups.
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lncRNA-mRNA coexpression network was constructed for
visualization (Figure 7).

Validation by Quantitative RT-PCR
When screening genes for PCR validation, the following three
factors were considered: 1. high fold of expression difference
between samples (log 2 (fold change)); 2. high gene expression
(FPKM); and 3. relatively high gene sequencing depth readcount.
Upon comprehensive analysis of the RNA-seq results, three DE
mRNAs (HK1, CD44, and NFIX) and DE lncRNAs
(XLOC_005,209, LINC01002, and XLOC_03,374) were
selected for performing qRT-PCR to validate their expression
levels further.

Eventually, the qRT-PCR data results showed consistency with
the RNA-seq results (Figure 8), which further confirmed the
reliability of the RNA-seq data.

PPI Network
In order to construct a visual network map, interaction
relationships for the list of differential genes were extracted
from the STRING protein interaction database (https://www.
string-db.org/). The network data files were imported directly
into Cytoscape software for visual editing. The size of a node in a
PPI map is proportional to the degree of the node. Among them,
PPI nodes with relatively high connectivity include UBA52,
AKT1, SUPT20H, RPL19, EGF, and MYC (Figure 9).

FIGURE 5 | Comparison of functional annotations for differentially expressed mRNAs. The 20 most enriched Gene Ontology (GO) terms for the parental genes of
(A) the upregulated differentially expressedmRNA and (B) the downregulated differentially expressedmRNA. Enriched GO terms are on the vertical axis, and the number
of annotated differentially expressed genes associated with each GO term is indicated on the horizontal axis. The 20 most enriched KEGG pathways for (C) the
upregulated differentially expressed mRNA and (D) the downregulated differentially expressed mRNA. The size of the symbol represents the number of genes, and
the colors represent the p-value.
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DISCUSSION

ADS is a progressive, relentless, and special complex three-
dimensional deformity of the spine (Kelly et al., 2020),
characterized by occurrence in the lumbar spine with
occasional compensatory thoracic curvature, rotation
usually limited to the apex of the deformity, which has the
potential to cause radiculopathy or spinal stenosis (Farfan,
1980; Bradford et al., 1999; Murata et al., 2002; Ploumis et al.,
2007), and spondylolisthesis (Cho et al., 2014). The
pathogenesis of ADS is similar to the starting point of
degenerative spinal disease, namely, age-related disc
degeneration (Kelly et al., 2020). The universally accepted
theory is that age-related disc degeneration occurs in the

general population, which is characterized by relatively
symmetrical spinal degeneration without the onset of
deformities. However, what confuses us is why some
geriatric populations suffer from ADS? While degenerative
processes are seen in a vast majority of the population with
normal aging, what varies are the mechanical, nutritional, and
inherited factors that can lead to more rapid progression,
potentially resulting in significant pathology. In 2006,
Kobayashi et al. (2006) found that osteophytes on the
lateral endplate exceeding 5 mm or asymmetrical inclination
of the IVD space exceeding 3 mm are essential risks factors for
ADS. The asymmetric degenerative changes will result in a
progressive imbalance of axial load. In contrast, an
accelerating axial rotation will stretch the surrounding

FIGURE 6 | Comparison of functional annotations of the target gene of upregulated and downregulated differentially expressed lncRNAs. The 20 most enriched
Gene Ontology (GO) terms for the parental genes of (A) the upregulated differentially expressed lncRNA and (B) the downregulated differentially expressed lncRNA. (B)
Twenty most enriched KEGG pathways for (C) the upregulated differentially expressed lncRNA and (D) the downregulated differentially expressed lncRNA. The enriched
GO terms are on the vertical axis, and the number of annotated target genes in each GO term is indicated on the horizontal axis. The size of the symbol represents
the number of genes, and the colors represent the p-value.
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ligaments, which could aggravate degenerative changes and
produce subsequent deformities, such as spinal instability,
scoliosis, and/or kyphosis (Benner and Ehni, 1979).

Therefore, ADS can be considered as the result of
asymmetric degeneration and progressive coupling of the
IVD and facet joint complex (Ploumis et al., 2007). The
IVD is composed of three anatomical components: the
central gelatinous NP, the outer annulus fibrosus (AF), and
the cartilaginous endplate (CEP) that anchor onto the
vertebral body. The NP is the core of the IVD and is
surrounded by a lamella of AF. NP cells play a crucial role
in maintaining the integrity of intervertebral discs via
producing extracellular matrix (ECM) components, such as
aggrecan alongside type II and type X collagen (Roughley,
2004). A growing body of evidence now suggests that aberrant
NP cell functions, including altered cell proliferation,
apoptosis, ECM production/degradation, and cytokine
secretion, are key to IDD pathogenesis. It has been
suggested that nucleus pulposus (NP) cells can activate the
immune response once the blood-NP barrier is damaged,
which is a crucial factor of IDD degeneration and can result
in multiple pathological processes (Bridgen et al., 2017). Thus,
WB samples can reflect the microenvironment and cytokines,
which might be a breakthrough in discovering the
pathogenesis of ADS.

According to reports, lncRNAs play an essential role in a wide-
range of functional bioactivities. In recent years, many scholars
have performed RNA sequencing on IDD and constructed a
differential expression profile of RNA, which confirms that
lncRNA plays a vital role in the development of IDD. A

FIGURE 7 | LncRNA–mRNA coexpression network. Differentially
expressed lncRNA–mRNA regulatory networks consist of eight lncRNAs and
26 mRNAs. The blue circles represent mRNAs, and the red diamond
represents lncRNAs. The Pearson correlation coefficient was limited to
an absolute value > 0.95 and p-value <0.001.

FIGURE 8 | Validation for the expression of significant transcripts by quantitative RT-PCR. (A) Relative expression levels of qRT-PCR validation of three lncRNAs
(XLOC_005209, XLOC_033746, and LINC01002) and (B) three mRNAs (HK1, NFIX, and CD44) are shown comparing ADS and normal groups. (C–D) Comparing
qPCR results and RNA-seq data reveals a good correlation between such two methods. The heights of the columns represent the fold changes (log2 transformed)
computed from the qPCR and RNA-seq data. Data are presented as mean ± SD, n = 7. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and ****
p-value <0.0001.
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recent genetic study revealed a correlation between COL2A1
polymorphism and ADS in Korean patients, suggesting a
genetic component but failing to claim that this single
nucleotide polymorphism (SNP) is a solitary genetic factor
associated with ADS (Hwang et al., 2014). The significance of
that study lies in the fact that it is the first study that the genetic
factor should be considered as one of the multiple factors related
to ADS, despite additional studies being warranted. Although
several studies on molecular levels have addressed spinal
degeneration, no such study has yet addressed the etiology of

the ADS. Currently, considering that the molecular mechanisms
of ADS are still poorly understood, few studies have focused on
the differential RNA expression profile in ADS. Therefore, a
comprehensive analysis of the DE lncRNAs and mRNAs and the
identification of the candidate genes associated with ADS
development may potentially be used to identify individuals
at risk.

RNA-seq, a high-throughput technology, could provide a
comprehensive view of the entire transcriptome, including
subtype and gene fusion detection, gene expression profiling,

FIGURE 9 | Protein–protein interaction network of significant differentially expressed genes. PPI nodes with relatively high connectivity include UBA52, AKT1,
SUPT20H, RPL19, EGF, and MYC. The size of a node in a PPI map is proportional to the degree of the node.
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targeted sequencing, and single-cell analysis (Hrdlickova et al.,
2017). RNA-seq could facilitate the identification of novel genes,
allele-specific expression, fusion genes, disease-associated single
nucleotide polymorphisms (SNPs), post-transcriptional
modifications, noncoding RNA (ncRNA), and differential gene
expression between different groups or treatments (Byron et al.,
2016). Adopting a novel RNA-seq analysis technique, this study
demonstrated that the expression of lncRNAs and mRNAs in
ADS patients differed from healthy patients. A total of
230 lncRNAs (147 upregulated and 83 downregulated) and
3,175 mRNAs (1,651 upregulated and 1,524 downregulated)
were differentially expressed between ADS patients and
healthy volunteers. LNC_000044 and ENST00000424684.2
were the most upregulated and downregulated lncRNAs.
EPB41 and MYADM were the most upregulated and
downregulated mRNAs.

With the aim of better understanding the regulatory role of DE
lncRNAs and the function of DE mRNAs, this study revealed
differentially expressed genes associated with the WB samples of
ADS and normal group through GO and KEGG pathway
analysis. The results show that a substantial number of DE
lncRNAs and mRNAs were discovered to be associated with
inflammation, autophagy (mitochondrial autophagy, endothelial
autophagy, and cellular autophagy), apoptosis, and angiogenesis,
which are consistent with the recognized pathogenesis of ADS.
Asymmetric disc degeneration is a multifactorial process,
including mechanical stress, oxidative stress, aging,
inflammation, genetic factors, the biological changes of IVD
cells, extracellular matrix (ECM) degeneration, etc. (Hwang
et al., 2016; Liu et al., 2016; Chen et al., 2017).

The most distinguishing feature of lncRNAs is the lack of ability
to encode proteins, which means it is necessary to explain the
biological function in other ways. For each DE lncRNA, the role of
the lncRNA was inferred from the function of the corresponding
mRNA by screening its corresponding coexpressed coding gene
and finding the associated RNA-mRNA pair. In this study, we have
selected eight interested lncRNAs to interact with 26 mRNAs,
which performed lncRNA-mRNA coexpression network analysis.
PTPN12 plays a role as a modulator of hypoxia-induced AMPK
activation and endothelial autophagy to facilitate angiogenesis,
whereas endothelial autophagy is the prerequisite for
angiogenesis (Chandel et al., 2021). Meanwhile, in the GO
results, we found that AKT1 is also involved in cell migration
and germinal angiogenesis. However, the IVD is a special organ
without vascular and immune privileges (Tabana et al., 2016).
Previous studies have shown that the development of disc
degeneration is associated with angiogenesis (Ma et al., 2015).
The degradation of ECM leads to the migration of endothelial cells,
which in turn results in the formation of new blood vessels. The
formation of new blood vessels exposes the NP to the immune
system, which causes an immune response that leads to
degenerative disease (Sun et al., 2013). Endothelial autophagy
and angiogenesis may play a role in asymmetric disc
degeneration of ADS, although more research is necessary to
elucidate the underlying mechanisms in the future.

Subcellular localization studies have shown that CLEC16A, a
membrane-associated endosomal protein, interacts with the

E3 ubiquitin ligase Nrdp1, which is discovered in cytoplasmic
vesicles and the Golgi apparatus. The deletion of CLEC16A
induces the increase of Nrdp1 target Parkin, which is a principal
regulator of mitochondrial autophagy (Soleimanpour et al., 2014).
These findings suggest that Golgi-associated CLEC16A negatively
regulates autophagy by modulating mTOR activity, as well as
binding to Vps16A, a subunit of the class C Vps-HOPS complex,
which could regulate receptor expression through autophagy (Tam
et al., 2017; Pandey et al., 2019). Notably, UBA52 had the highest
connectivity in the PPI network in our study.UBA52, ubiquitin A-52
residue ribosomal protein fusion product 1, known as a protein-
coding gene, encodes a protein composed of N-terminal ubiquitin
and C-terminal ribosomal protein L40, a C-terminal elongation
protein (CEP) (Lund et al., 1985). Ubiquitin is a highly conserved
nuclear and cytoplasmic protein which is also involved in the
maintenance of chromatin structure, regulation of gene
expression, and stress responses. UBA52 regulates the
ubiquitination of ribosomes, while knockdown of UBA52 always
induces cell cycle arrest (Kobayashi et al., 2016). Ubiquitination can
modulate the formation and nucleation of autophagosomes, which
means that ubiquitination can control the autophagic process in
response to various stress conditions. Autophagy plays a critical role
in maintaining normal physiological processes, and dysregulation of
ubiquitin-mediated autophagy has been associated with many
diseases. A potential link may exist between ADS and disorders
of the ubiquitin-mediated autophagic pathway (as shown in
Figure 10).

To the best of our knowledge, this is the first report to conduct
a genetic study on lncRNA-mRNA differential expression
profiling performed on WB samples derived from ADS

FIGURE 10 | Key genes and molecular mechanisms that may be related
to ADS. ADS, adult degenerative scoliosis; lncRNAs, long noncoding RNAs;
mRNAs, messenger RNAs; RNA-seq, RNA sequencing; PPI, protein–protein
interaction; NP: nucleus pulposus; IDD, intervertebral disc degeneration;
qRT-PCR: quantitative RT-PCR; IVD, intervertebral disc; DE, differentially
expressed; BMI, body mass index; PBS, phosphate-buffered saline; FPKM,
fragments per kilobase of exon model per mapped reads; CC, cellular
composition; MF, molecular function; BP, biological process; KEGG, Kyoto
Encyclopedia of Genes and Genomes; FDR, false discovery rate; SNPs, single
nucleotide polymorphisms; AF, annulus fibrosus; CEP, cartilaginous endplate;
ECM, extracellular matrix; CEP, C-terminal elongation protein.
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patients. Notably, the coexpression network of
coding–noncoding genes provides valuable insights into the
pathogenesis of ADS. Nowadays, the number of identified
lncRNAs is multiplying. Therefore, further studies are
necessary to explore their molecular and biological functions.
Moreover, this study suffers from the following limitations. First,
the samples that identified the cellular origin and tissue
expression patterns of lncRNA were obtained from the WB of
the ADS, which exclusively reflects local variations. Second, the
sample size is relatively insufficient, which may limit the validity
of the results. Third, the results were exclusively derived from
bioinformatics analysis and high-throughput sequencing
analysis, but without any animal experiments to further
confirm these results. Furthermore, all the participants we
enrolled in this study were Han Chinese from China.
However, it is well known that ethnicity is also a factor
affecting gene expression (Li et al., 2017). Since no other
studies concerning the ADS have yet been reported, more
studies will be needed to confirm the possible role of DE
genes in the development of ADS.

CONCLUSION

RNA-seq analysis provides a novel paradigm for investigating
dysregulated lncRNAs and mRNAs. The differentially
expressed genes may be involved in the regulation of the
occurrence and development of ADS. This study provides a
crucial biological basis and reference for exploring molecular
markers or new gene targets for the diagnosis and treatment of
adult degenerative scoliosis.
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RNA sequencing and integrative
analysis reveal pathways and hub
genes associated with
TGFβ1 stimulation on prostatic
stromal cells
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Objective: Benign prostatic hyperplasia (BPH) is the most common urological

disease in elderly men. The transforming growth factor beta 1 (TGFβ1) plays an
important role in the proliferation and differentiation of BPH stroma. However, it

is not clear yet which important pathways and key genes are the downstream of

TGFβ1 acting on prostatic stromal cells.

Methods: GSE132714 is currently the newer, available, and best high-

throughput sequencing data set for BPH disease and includes the largest

number of BPH cases. We examined the TGFβ1 expression level in BPH and

normal prostate (NP) by analyzing the GSE132714 data set as well as carrying out

immunohistochemistry of 15 BPH and 15 NP samples. Primary prostatic stromal

cells (PrSCs) were isolated from five fresh BPH tissues. RNA sequencing and

bioinformatics analysis were used to reveal important pathways and hub genes

associated with TGFβ1 stimulation on PrSCs.

Results: TGFβ1 was upregulated in BPH stroma compared to NP stroma. A total

of 497 genes (244 upregulated and 253 downregulated) were differentially

expressed in PrSCs with and without TGFβ1 stimulation. The Gene Ontology

revealed that differentially expressed genes (DEGs) were mainly enriched in

progesterone secretion, interleukin-7 receptor binding, and CSF1-CSF1R

complex. The Wnt signaling pathway, PI3K−Akt signaling pathway, JAK−STAT

signaling pathway, and Hippo signaling pathway were screened based on the

Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. FN1, SMAD3,

CXCL12, VCAM1, and ICAM1 were selected as hub genes according to the

degree of connection from the protein–protein interaction (PPI) network.

Conclusion: This study sheds some new insights into the role of TGFβ1 in BPH

stroma and provides some clues for the identification of potential downstream

mechanisms and targets.
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benign prostatic hyperplasia, TGFβ1, prostatic stromal cells, RNA sequencing,
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1 Introduction

Benign prostatic hyperplasia (BPH) is the most common

urological disease in aging men, affecting approximately 50%

of men at the age of 50 years (Chughtai et al., 2016).

Thereafter, its prevalence increases about 10% each

subsequent decade (Egan, 2016). Although the underlying

etiology of BPH is still not fully understood, hormonal

alterations, chronic inflammation, metabolic syndrome,

and tissue remodeling related to aging have been

suggested as key cofactors in the dysregulation of

prostatic homeostasis (De Nunzio et al., 2016). The

development of BPH is characterized by nonmalignant

proliferation of the epithelial and stromal compartment in

the prostate transition zone (Zhang et al., 2016). Regardless

of the exact ratio of epithelial to stromal cells in the

hyperplastic prostate, there is no doubt that the prostatic

stromal compartment represents a significant volume of the

gland.

The transforming growth factor beta (TGFβ) family plays

an important role in the proliferation and differentiation of

BPH stroma, as well as being a key factor for androgen-

controlled prostate growth (Schauer and Rowley, 2011; De

Nunzio et al., 2016). The upregulation of TGF-β1 (which is

produced by prostatic stromal cells) during BPH would

facilitate expansion of the stromal compartment, epithelial

to mesenchymal transition, down-regulation of claudin-1,

and epithelial barrier damage (Schauer and Rowley, 2011; De

Nunzio et al., 2016; Wang et al., 2020; Chen et al., 2021).

Moreover, TGFβ1 is one of the critical cytokines that induce

fibroblasts to transform into myofibroblasts and promotes

fibrosis, during which the expression of COL1A1, COL3A1,

and α-SMA is increased (Sheng et al., 2018; Wang et al.,

2019). The TGFβ1 expression is increased with age in the

prostate (Wang et al., 2020), and the overexpression of TGF-

β1 in the murine prostate induces inflammation and fibrosis

(Barron et al., 2010). Although TGFβ1 can promote

proliferation and fibrosis of prostatic stromal cells, it is

not very clear which important pathways and key genes

are the possible downstream of TGFβ1.
RNA sequencing (RNA-seq) is a promising and widely

used technology that can be used to analyze the complete

characterization of RNA transcripts, including

transcription start site mapping and gene fusion

detection (Wang et al., 2018). In this study, we used the

RNA-seq method to study primary prostatic stromal cells

with or without TGFβ1 treatment, in order to reveal

important pathways and hub genes related to the

downstream of TGFβ1. Therefore, this study will

improve our understanding of the mechanism of

TGFβ1 on PrSCs, which may gain more insights into the

potential therapeutic targets during the progression

of BPH.

2 Materials and methods

2.1 Patient specimens and ethics
statement

A total of fifteen BPH samples were derived from patients

undergoing the transurethral resection of prostate (TURP). Also,

fifteen normal prostate (NP) samples were acquired from patients

(aged ≤50 years) undergoing cystoprostatectomy for infiltrating

bladder cancer without prostate infiltration. We excluded patients

with prostate cancer and prostatitis, as well as patients receiving

alpha-adrenergic receptor antagonists or 5α-reductase inhibitors. All
procedures performed in the research involving human participants

were conducted in accordance with the principles of the Declaration

of Helsinki. The study was approved by the Ethics Committee at

Beijing Tongren Hospital.

2.2 Immunohistochemistry

The prostate tissues were fixed in 4% formalin buffer at 4°C

overnight, then dehydrated in ascending ethanol series, embedded in

paraffin, and cut into 5-μm sections. After conventional

deparaffinization, hydration, and antigen retrieval, the

endogenous peroxidase was inactivated by 3% hydrogen

peroxide. The primary antibodies of rabbit anti-TGFβ1 (1: 500,

Abcam) were used for incubation at 4°C overnight. The primary

antibody was recognized by the biotinylated secondary antibody at

room temperature for 30 min and visualized by the VECTASTAIN

ABC peroxidase system and peroxidase substrate DAB kit. The

TGFβ1 expression level was blindly determined via the pathological

review based on the staining score (0–9) that is defined by

multiplying the staining intensity score (0–3) with the staining

extent score (0–3) in prostate tissues.

2.3 Isolation and culture of primary
prostatic stromal cells

A total of five human primary prostatic stromal cells (PrSCs)

were obtained from five different BPH tissues. Briefly, fresh

prostatic tissues were dissected into small fragments, and

primary prostatic stromal cells were isolated and cultured as

described previously (Sheng et al., 2018; Chen et al., 2021). The

stromal cells were cultured with RPMI 1640 (Gibco, Rockville,

MD, United States) supplemented with 10% fetal bovine serum

(FBS) (Gibco, Grand Island, NY, United States) and 1%

penicillin–streptomycin solution (Gibco) at 37°C under 5%

CO2 and humidified atmosphere. The stromal cells were used

at passages 3–5. According to the previous literature, the

commonly used dose of TGFβ1 in the study of benign prostatic

hyperplasia ranges from 1 ng/ml to 10 ng/ml (Sheng et al., 2018;

Wang et al., 2020; Wang Z. et al., 2021). Therefore, cells in our
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study were treated with 10 ng/ml TGFβ1 (R&D Systems, MN,

United States) for 72 h.

2.4 RNA sequencing

RNA sequencing was performed on PrSCs with or without

TGFβ1 treatment. Profiling of transcriptome analysis was

performed with 2 μg high-quality total RNA per sample by

RNA-seq at Annoroad Gene Technology Corporation (Beijing,

China) according to the procedures described previously (Hu

et al., 2018; Li et al., 2020). Briefly, total RNA was isolated using

TRIzol reagent (Thermo Fisher Scientific). RNA samples were

rRNA depleted, and RNA libraries were constructed using the

TruSeq RNA Library Prep Kit v2 (Illumina) and sequenced as

150 bp paired-end reads using the Illumina HiSeq 2000 (Beijing

Annoroad Co. Ltd.). We filtered RNA-seq next-generation

sequencing (NGS) reads to obtain clean reads for further

evaluation and analysis, including quality inspection of reads

according to the Phred score, in comparison to the human

genome reference assembly (hg19) using HiSAT2 and merger of

transcripts in StringTie. We used fragments per kilobase of

transcript per million mapped reads (FPKM) to assess mRNA

expression. Finally, the heatmap was generated using R software

with differentially expressed genes (|logFC|>1, q-value<0.05). Gene-
enrichment and Gene Ontology-based functional annotation were

performed with DAVID Bioinformatics Resources 6.8. A

hypergeometric distribution test was carried out to identify GO

(Gene Ontology) functions and KEGG (Kyoto Encyclopedia of

Genes and Genomes) pathways in which DEGs were

significantly enriched (q-value <0.05) compared with total

background expressed genes. Next, we performed the analyses of

protein–protein interaction (PPI) networks using STRING (Search

Tool for the Retrieval of Interacting Genes) and Cytoscape to take

aim at potential targets.

2.5 Statistical analysis

Statistical analyses were performed using GraphPad Prism

software, version 7. Significant differences in statistical

analyses were calculated using a two-tailed Student’s t-test

for two groups. p-values <0.05 were considered to be

statistically significant.

3 Results

3.1 TGFβ1 was upregulated in BPH stroma
compared to NP stroma

GSE132714 is currently the newer, available, and best high-

throughput sequencing data set for BPH disease and includes the

largest number of BPH cases. To determine the role of TGFβ1 in
BPH, we first examined the relative mRNA expression level of

TGFβ1 in BPH and normal prostate using this GSE132714 data

set. Among 18 BPH and 4 NP tissues being analyzed, the

TGFβ1 mRNA expression level was higher in BPH (p =

0.0054, Figure 1A). In order to determine whether the

TGFβ1 protein level showed the same increasing trend in

BPH, we used immunohistochemistry staining to compare the

TGFβ1 protein expression in 15 BPH samples and 15 NP

samples. As shown in Figures 1B,C, TGFβ1 was primarily

expressed in the prostatic stroma, and the TGFβ1 protein

expression was higher in BPH than the normal prostate (p =

0.0025).

3.2 Differential gene expression of
TGFβ1 treatment on PrSCs

To examine the effect of TGFβ1 on prostatic stromal cells,

we first isolated primary prostatic stromal cells from five BPH

samples, and Supplementary Figure S1 showed the microscopic

morphology of PrSCs. Then, we performed RNA sequencing on

PrSCs treated with and without TGFβ1. The results indicated

that a total of 497 genes (244 upregulated and

253 downregulated) were differentially expressed between

TGFβ1 treatment and control (Figure 2A). In the meantime,

the volcano diagram results showed significantly DEGs between

TGFβ1 treatment and control (Figure 2B). The heatmap plot of

497 DEGs is shown in Figure 2C; the top 10 significantly

upregulated DEGs included COL10A1, COMP, IL11, NOX4,

UCN2, SLC19A2, CALB2, TNFSF15, COL7A1, and BHLHE40,

as well as the top 10 significantly downregulated DEGs included

CSF1, VAMP5, SECTM1, APOL1, APOL3, GBP2, CD47,

GMPR, UBA7, and FZD4. Moreover, we verified the top

10 significantly upregulated and downregulated DEGs in two

primary prostate stromal cells (PrSCs) using quantitative PCR,

and the results were basically consistent with the corresponding

RNA-sequencing results (Supplementary Figure S2). In

addition, all data of DEGs are shown in Supplementary

Table S1.

3.3 GO classification and enrichment
analysis of DEGs

In order to determine the function of DEGs, all DEGs were

mapped to terms in the GO database. This list of 497 DEGs was

divided into three main categories of GO classification (e.g.,

biological process, cellular component, and molecular

function). For biological processes, most of those were

classified into cellular process, biological regulation, and

metabolic process. For the molecular function category,

binding, catalytic activity, and molecular function regulator

Frontiers in Genetics frontiersin.org03

Xiang et al. 10.3389/fgene.2022.919103

86

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.919103


were the top abundant subcategories. Under the cellular

component category, a large number of upregulated, as well

as downregulated DEGs were categorized as cell part, organelle,

and organelle part (Figure 3A). Moreover, the cell component

indicated enrichment predominantly at the CSF1-CSF1R

complex, spermatoproteasome complex, apolipoprotein B

mRNA editing enzyme complex, SMAD protein complex,

and collagen type IV trimer (Figure 3B). DEGs were mainly

enriched in biological processes of progesterone secretion,

tendon development, trehalose catabolic process,

branchiomeric skeletal muscle development, and osteoblast

proliferation (Figure 3C). As for molecular function, these

genes showed enrichment in interleukin-7 receptor binding,

alpha,alpha-trehalase activity, macrophage colony-stimulating

factor receptor activity, trehalase activity and transforming

growth factor beta receptor, and pathway-specific

cytoplasmic mediator activity (Figure 3D).

3.4 KEGG pathway analysis of DEGs

We performed KEGG pathway analysis of DEGs between

control and TGFβ1 treatment. The results indicated that Wnt

signaling pathway (p = 0.0039), TNF signaling pathway (p =

0.0002), Th17 cell differentiation (p = 0.0006), signaling

pathways regulating pluripotency of stem cells (p < 0.0001),

PI3K−Akt signaling pathway (p = 0.0017), osteoclast

differentiation (p < 0.0001), JAK−STAT signaling pathway

(p = 0.0003), Hippo signaling pathway (p = 0.0012),

glycerophospholipid metabolism (p = 0.0001), and

cytokine−cytokine receptor interaction (p < 0.0001) may be

involved in the regulation of TGFβ1 on primary prostatic

stromal cells. The KEGG results of the enrichment of

29 pathways are shown in Supplementary Figure S3. In

addition, the details related to KEGG pathways are also

shown in Supplementary Table S2.

FIGURE 1
TGFβ1 is strongly upregulated in benign prostatic hyperplasia (BPH) compared with normal prostate (NP). (A) Expression levels of TGFβ1 mRNA
between BPH and NP in the GSE132714 data set. **p < 0.01. (B) Expression levels of TGFβ1 protein in BPH and NP tissues. Protein expression of
TGFβ1 was assayed by immunohistochemical staining in prostatic tissues. **p < 0.01. (C) Representative TGFβ1 immunohistochemical staining
images in BPH and NP tissues at different magnification levels.
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FIGURE 2
Analysis of differential gene expression in PrSCs stimulated with and without TGFβ1. (A) Results of differentially expressed genes (DEGs) were
counted according to the screening criteria of |log2 Fold change|≥1 and q < 0.05. Of the 497 differential genes detected in PrSCs with TGFβ1
stimulation, 244 genes were upregulated and 253 genes were downregulated. T_C means TGFβ1 treatment versus control. (B) Volcano diagram
showed significantly DEGs in PrSCs stimulated with and without TGFβ1. Yellow spots represented upregulated genes, and blue spots
represented downregulated genes. Gray spots indicated genes that were not differentially expressed. (C) Heatmap plot of all 497 DEGs in five PrSCs
with and without TGFβ1 treatment. The legend color bar on the right side indicated the relation between FPKM-scaled expression values and colors,
and the colors were balanced to ensure that the white color represented a zero value. C1, C2, C3, C4, and C5 in the heatmap mean PrSCs without
TGFβ1 treatment (control). T1, T2, T3, T4, and T5 in the heatmap mean PrSCs with TGFβ1 treatment.
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3.5 PPI network construction and hub
gene selection

Proteins related to DEGs were selected on the basis of

STRING database, and the pairs whose combined

score >0.7 were extracted for visualization by Cytoscape

(Supplementary Figure S4). Each node displays different

depth colors according to its degree score. From the inside

to the outside, the degree decreases and the color changes

from dark to light. Furthermore, hub genes were selected with

connection degree ≥10. In this network, the top 13 genes with

the highest degree scores were selected as hub genes,

including FN1, SMAD3, CXCL12, VCAM1, ICAM1,

PSMB8, SOCS3, CCL2, IRF1, TNFRSF1B, SOCS1, PPARG,

and LPAR3. The details of hub genes are shown in

Supplementary Table S3.

4 Discussion

In the current study, we first used the GSE132714 data set

and immunostaining method to determine that TGFβ1 is highly
expressed in the BPH stroma compared with the NP stroma.

Then, we used RNA-seq and bioinformatics analysis to reveal

important pathways and hub genes associated with

TGFβ1 stimulation on primary prostatic stromal cells. This

study provided evidence that the inflammatory cytokine TGF-

β1 can cause a series of significant pathways and gene changes in

prostatic stromal cells.

The TGFβ1 pathway is activated in BPH and contributes to

increased stromal proliferation and fibrosis. However, it is not

very clear about the potential significant pathways and hub genes

related to TGFβ1 stimulation on PrSCs. In this study, a total of

497 DEGs were identified in PrSCs with and without

FIGURE 3
GO classification and enrichment analyses of DEGs (A). GO classification of DEGs. The x-axis indicated the subcategories, the left y-axis
represented the percentage of a specific category of DEGs, and the right y-axis indicated the number of DEGs (B). Top 10 cellular component (CC)
terms in the enrichment analysis (C). Top 10 biological process (BP) terms in the enrichment analysis. (D) Top 10molecular function (MF) terms in the
enrichment analysis.
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TGFβ1 treatment. Then, GO and pathway enrichment analyses

of DEGs were performed. Moreover, the Wnt signaling pathway,

PI3K−Akt signaling pathway, JAK−STAT signaling pathway,

and Hippo signaling pathway were screened based on the

KEGG analysis. Additionally, we constructed the PPI network

and selected FN1, SMAD3, CXCL12, VCAM1, and ICAM1 as

hub genes according to the degree of connection.

All of the aforementioned hub genes play a vital role in cell

cycle, proliferation, and fibrosis, which may contribute to the

pathogenesis of BPH. Fibronectin (FN1) is an essential

extracellular matrix glycoprotein involved in both

physiological and pathological processes. Fibronectin could

stimulate the proliferation of growth-arrested polarized

mammary epithelial cells, induce an EMT response, disturb

the hollow acinar structure, and promote tumor-like behavior

(Park and Schwarzbauer, 2014; Konac et al., 2017). At the same

time, FN1 is likely to play a pivotal role in fibrosis (Cardoso et al.,

2018; Chen et al., 2021). It was reported that the phosphorylation

of SMAD3 can promote the differentiation of fibroblasts into

myofibroblasts, fibrosis, and EMT during the progression of BPH

(Sheng et al., 2018; Tang et al., 2019; Chen et al., 2021).

CXCL12 overexpression and secretion by aging fibroblasts

could enhance human prostate epithelial proliferation in vitro

(Begley et al., 2005). Moreover, CXCL12/CXCR4 axis activation

induces prostate myofibroblast phenoconversion through non-

canonical EGFR/MEK/ERK signaling (Rodriguez-Nieves et al.,

2016). High vascular cell adhesion molecule (VCAM-1)

expression is significantly associated with clinical stage and

distant metastasis in prostate cancer (Duzagac et al., 2015;

Chang et al., 2018). The JAK/STAT pathway interacts with

intercellular cell adhesion molecules (ICAM-1) and VCAM-1

to promote tumor progression (Duzagac et al., 2015). However,

the role of ICAM-1 and VCAM-1 in BPH has not been fully

elucidated.

Wnt signaling regulates cell proliferation and cell

differentiation as well as migration and polarity during

development (Brunt et al., 2021). Wnt/β-catenin and AR

signaling contribute to the proliferative growth of many cell

types and benefit from the cross-talk within the prostate (Kypta

and Waxman, 2012; Koirala et al., 2020). The status of the Wnt/

β-catenin pathway in the prostate stroma may serve as a marker

at various stages of BPH pathogenesis (Koirala et al., 2020). The

phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)

signaling pathway promotes cell proliferation and fibrosis, as

well as plays an important role in promoting the occurrence of

BPH (Sheng et al., 2018; Wang S. S. et al., 2021). In addition,

aerobic exercise may alleviate BPH in obese mice through

regulation of the AR/androgen/PI3K/AKT signaling pathway

(Wang S. S. et al., 2021). M2 macrophage-derived IL4 induced

the myofibroblast phenotype through the JAK/STAT6 and PI3K/

AKT signaling pathways in the early-progressed BPH prostate

fibroblasts (Sheng et al., 2018). It has been demonstrated that

febuxostat could ameliorate testosterone-induced BPH rats via

suppressing the XO/JAK/STAT axis (Abo-Youssef et al., 2020).

Furthermore, STAT-3 signaling is negatively regulated by labda-

8 (17),12,14-trien19-oic acid to prevent proliferation of BPH

stromal cells (Verma et al., 2014). One of the important signaling

pathways that control cell growth/proliferation, cellular

homeostasis, and organ development is the Hippo pathway

(Park et al., 2018). In advanced prostate cancer, IKBKE

activity enhances AR levels via modulation of the Hippo

pathway (Bainbridge et al., 2020). Alginate oligosaccharide

could attenuate α2,6-sialylation modification to inhibit

prostate cancer cell growth via the Hippo/YAP pathway (Han

et al., 2019). However, there is currently no research on the role of

Hippo signaling pathway in BPH. Finally, our research indicated

that these hub genes and differentially significant pathways may

be the key for studying downstream mechanisms of TGFβ1 in

PrSCs.

In conclusion, our study demonstrated a series of

differentially expressed genes and pathways by bioinformatics

analysis, which may contribute to the finding of molecular

downstream mechanisms of TGFβ1 in the BPH stroma. Hub

genes such as FN1, SMAD3, CXCL12, VCAM1, and ICAM1may

serve as the central downstream genes of TGFβ1 in BPH stromal

cells. The Wnt signaling pathway, PI3K−Akt signaling pathway,

JAK−STAT signaling pathway, and Hippo signaling pathway

may be the key downstream pathways for TGFβ1 to exert its

effect on the BPH stroma. Further molecular experiments are

required to confirm the findings of this study.
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SUPPLEMENTARY FIGURE S1
Microscopic morphology of primary prostatic stromal cells.

SUPPLEMENTARY FIGURE S2
Verification of RNA-seq results by qPCR. A and B: qPCR comparison of
10 significantly upregulated DEGs in PrSCs with TGFβ1 and without
TGFβ1 (Control). C and D: qPCR comparison of 10 significantly
downregulated DEGs in PrSCs with TGFβ1 and without TGFβ1 (Control).

SUPPLEMENTARY FIGURE S3
Scatter plot for KEGG enrichment results. The significant 29 enrichment
pathways are shown in the senior bubble chart. The Rich Ratio is the ratio
of DEG numbers annotated in this pathway term to all gene numbers
annotated in this pathway term. A Q-value is the corrected p-value.

SUPPLEMENTARY FIGURE S4
Protein–protein interaction network for DEGs. Each node displays
different depth colors according to its degree score. From the inside to
the outside, the degree decreases and the color changes from dark to
light.

SUPPLEMENTARY TABLE S1
All details of DEGs in PrSCs with and without TGFβ1 treatment.

SUPPLEMENTARY TABLE S2
Details related to KEGG pathways.

SUPPLEMENTARY TABLE S3
Top 13 genes in the protein–protein interaction network (node
degree ≥ 10).
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LncRNA DUXAP8 as a prognostic
biomarker for various cancers: A
meta-analysis and bioinformatics
analysis
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Background: Dual homeoboxes A pseudogene 8 (DUXAP8) is a newly discovered long
noncoding RNA that has been shown to function as an oncogene in a variety of human
malignant cancers. By integrating available data, this meta-analysis sought to determine
the relationship between clinical prognosis and DUXAP8 expression levels in diverse
malignancies.

Materials and methods: A systematic search was performed to identify eligible studies
from several electronic databases from their inception to 25 October 2021. Pooled odds
ratios and hazard ratios with 95% CI were used to estimate the association between
DUXAP8 expression and survival. For survival analysis, the Kaplan-Meier method and COX
analysis were used. Furthermore, we utilized Spearman’s correlation analysis to explore
the correlation between DUXAP8 and tumor mutational burden (TMB), microsatellite
instability (MSI), the related genes of mismatch repair (MMR), DNA methyltransferases
(DNMTs), and immune checkpoint biomarkers.

Results:Our findings indicated that overexpression ofDUXAP8was related to poor overall
survival (OS) (HR = 1.63, 95% CI, 1.49–1.77, p < 0.001). In addition, elevated DUXAP8
expression was closely related to poor OS in several cancers in the TCGA database.
Moreover, DUXAP8 expression has been associated with TMB, MSI, and MMR in a variety
of malignancies.

Conclusion: This study revealed thatDUXAP8might serve as a prognostic biomarker and
potential therapeutic target for cancer. It can be used to improve cancer diagnosis,
discover potential treatment targets, and improve prognosis.
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INTRODUCTION

Cancer-related deaths have risen dramatically in recent years.
Progress in anticancer drug delivery has resulted in tremendous
improvements in cancer treatment outcomes, yet cancer
survivors’ quality of life and prognosis remains dismal
(Bahrami et al., 2018). In part, this is due to the lack of
reliable biomarkers for the early identification of the majority
of malignancies. In recent years, molecular biomarkers for
multiple carcinomas have become more prevalent and may
provide further clues for following the disease’s progression
(Ilie et al., 2018). Consequently, it is imperative to seek new
cancer markers to better characterize the clinical stage, metastasis,
and prognosis of most malignancies at an earlier and more
accurate point in time (Wang et al., 2021a, 2021b).

An RNA molecule that is more than 200 nucleotides in length
but lacks an open reading frame is referred to as Long non-coding
RNA (lncRNA) (Johnsson et al., 2014). It has emerged that
lncRNAs have a role in a wide range of physiological and
pathological processes. Epigenetic regulation, transcriptional
and posttranscriptional regulation are only a few of the roles
of lncRNAs in diseases (Fan et al., 2017). LncRNAs may play a
critical role in the progression of cancer, as evidenced by recent
research (Wang et al., 2021a). Collectively, lncRNAs serve as
promising markers for cancer patients (Ma et al., 2017a).

Double homeobox A pseudogene 8 (DUXAP8) is a recently
discovered lncRNA on 22q11.1. DUXAP8 has a length of around
2,307 bp.DUXAP8 is significantly overexpressed in cancer tissues
compared to nearby non-tumor tissues, according to
observations (Ma et al., 2017b; Du et al., 2019; Chen et al.,
2020a; Chen et al., 2020b; He et al., 2020; Yin et al., 2020;
Chen et al., 2021a). DUXAP8 exerts an essential role in
tumorigenesis, proliferation, migration, invasion, and
inhibition of apoptosis, which means that DUXAP8 acts as an
oncogene in the occurrence and development of various
malignant tumors (Jiang et al., 2019; Hu et al., 2020; Wang
et al., 2020; Wei et al., 2020; Zhang et al., 2020; Guan et al.,
2021). In addition, high-quality meta-analysis has been
increasingly considered one of the keys and significant tools
for achieving evidence (Yao et al., 2016; Tian et al., 2017; Li
et al., 2018; Yang, 2018; Yang et al., 2018; Yan et al., 2019).

Thus, we performed this meta-analysis for the first time to
explore the clinical prognostic role and functions of DUXAP8 in
human cancers. In addition, we employed data mining to
investigate the prognostic value of DUXAP8 in a range of
tumor types to further validate our results. This study
included an in-depth analysis of DUXAP8 expression levels, as
well as the relationship with tumor mutational burden (TMB),
microsatellite instability (MSI), DNA methyltransferases
(DNMTs), and mismatch repair (MMR).

MATERIALS AND METHODS

Literature Search and Selection
We conducted a systematic search to identify relevant literature
from its inception to 25 October 2021, including PubMed

(Medline), Embase, and Cochrane Library. The retrieval words
include: (“LINC DUXAP8” OR “LincRNA DUXAP8” OR “long
non-coding RNA DUXAP8” OR “long noncoding RNA
DUXAP8” OR “DUXAP8 lncRNA”) and (“cancer” OR
“carcinoma” OR “tumor” OR “tumor” OR “neoplasm” OR
“adenoma” OR “sarcoma” OR “melanoma”). Additionally, we
searched the reference lists of the primary literature and reviews
to find pertinent supplementary literature.

Inclusion and Exclusion Criteria
The inclusion criteria were: 1) articles to study the clinical
functions of DUXAP8 in different cancer tissues; 2) clinical
trials in which patients were separated into two groups based
on their DUXAP8 expression levels; 3) studies that provided OS;
4) studies with sufficient data to generate HR and 95% confidence
intervals (CI) or Kaplan-Meier curves; 5) case-control studies.
The eliminated criteria included the following content: 1) studies
on DUXAP8’s structure and functions; 2) nonhuman studies,
reviews, editorials, specialist opinions, letters along with case
reports; 3) studies having insufficient original data for survival
analysis.

Data Extraction and Quality Assessment
Two researchers independently assessed and obtained all the
necessary data from the selected literature. The data extracted
from each selected study are shown in Supplementary Table S1.
If the relevant data were not directly accessible and only the
Kaplan–Meier curves had been provided, we extracted the
survival rates from the survival plot graphs and computed the
HR, and the 95% CI indirectly (Parmar et al., 1998a; Parmar et al.,
1998b). The Newcastle Ottawa Score (NOS) was used to evaluate
the quality of the included studies (Stang, 2010). A NOS score of
≥6 indicates a high-quality study.

Analysis of DUXAP8 Expression in Cancer
UCSC Xena, derived from the TCGA database (https://xena.ucsc.
edu/), provided us with data on 33 tumors, including RNA
sequences, somatic mutations, clinicopathological characteristics,
and survival rates. The cell line expression matrix was obtained
from the CCLE dataset (https://portals.broadinstitute.org/ccle/
about). We use the “Wilcox. test” to determine the difference in
DUXAP8 expression levels between tumor and normal tissues in
various cancer types. Adrenocortical Carcinoma (ACC), Bladder
Urothelial Carcinoma (BLCA), Breast invasive carcinoma (BRCA),
Cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon
adenocarcinoma (COAD), Lymphoid Neoplasm Diffuse Large
B-cell Lymphoma (DLBC), Esophageal carcinoma (ESCA),
Glioblastoma multiforme (GBM), Head and Neck squamous cell
carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal
clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma
(KIRP), Acute Myeloid Leukemia (LAML), Brain Lower Grade
Glioma (LGG), Liver hepatocellular carcinoma (LIHC), Lung
adenocarcinoma (LUAD), Lung squamous cell carcinoma
(LUSC), Mesothelioma (MESO), Ovarian serous
cystadenocarcinoma (OV), Pancreatic adenocarcinoma (PAAD),
Pheochromocytoma and Paraganglioma (PCPG), Prostate
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adenocarcinoma (PRAD), Rectum adenocarcinoma (READ),
Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), Stomach
adenocarcinoma (STAD), Testicular Germ Cell Tumors (TGCT),
Thyroid carcinoma (THCA), Thymoma (THYM), Uterine Corpus
Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS),
Uveal Melanoma (UVM).

Survival Analysis
We analyzed the relationships between DUXAP8 expression and
OS, disease-free interval (DFI), disease-specific survival (DSS),
progression-free interval (PFI), age, and clinical stage. For
survival analysis, the Kaplan-Meier method and COX analysis
were used.

Correlation of DUXAP8 Expression With
Tumor Mutational Burden, Microsatellite
Instability, DNA Methyltransferases, and
Mismatch Repair
TMB is defined as the total number of mutations per megabase of
DNA. MSI is the spontaneous loss or gain of nucleotides from short
tandem repeat DNA tracts. We utilized Spearman’s correlation
analysis to explore the correlation between DUXAP8 and TMB,
MSI, the related genes of MMR, DNMTs, and immune checkpoint
biomarkers. The resulting heatmap was implemented by using the
R-packages “reshape2” and “RColorBrewer”.

Pathway Analysis of DUXAP8
Downloaded gene sets from the Gene Set Enrichment Analysis
(GSEA) website (https://www.gsea-msigdb.org/gsea/downloads.
jsp) were used in the study. R-package “limma,” “org.Hs.eg.db,”
“clusterProfiler,” and “enrichplot” were used to perform both
Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) of DUXAP8 respectively.

Data Synthesis and Statistical Analysis
The survival result was produced by employing information from
the HR and the standard error (SE). During this meta-analysis, HRs
were pooled by employing I2 statistics to examine the heterogeneity
of the applicable studies. The random-effects model was then used
only if there was significant statistical heterogeneity between the
studies (chi-squared test, p < 0.1, I2 > 50%). We utilized the fixed-
effects model (chi-squared test, p > 0.1, I2 < 50%) where it was not
applicable (Zhai et al., 2021). To show the meta-analysis outcomes,
we employed forest plots. We used Begg’s test to see if there was any
publication bias, and sensitivity analysis to see if the results were
consistent. We applied STATA12.0, the R software to integrate and
analyze the data. p < 0.05 was considered statistically significant.

RESULTS

Studies Characteristics
Supplementary Figure S1 demonstrates the details
concerning the screening process. A systematic search of
the databases identified 114 studies published up to 25
October 2021. We excluded duplicate studies, studies

irrelevant to the research subject, and studies that did not
provide sufficient data. Therefore, there are a total of 25 studies
that meet the final analysis conditions (Ma et al., 2017b; Xu
et al., 2017; Lian et al., 2018; Lin et al., 2018; Du et al., 2019;
Jiang et al., 2019; Chen et al., 2020a; Chen et al., 2020b; He
et al., 2020; Hu et al., 2020; Nie et al., 2020; Wang et al., 2020;
Wei et al., 2020; Yin et al., 2020; Zhang et al., 2020; Zhao et al.,
2020; Chen et al., 2021a; Li et al., 2021a; Arabpour et al., 2021;
Yang et al., 2021a; Chen et al., 2021b; Guan et al., 2021; Pang
and Yang, 2021; Xing et al., 2021; Zhai et al., 2021). Moreover,
the main features of the included studies have been
summarized in Supplementary Table S1. The sample size
of the 25 studies ranged between 31 and 522, with an
average of 198.

All the included studies from 2016 to 2021 have been
implemented and published in China except one study
carried out in America. In total, 17 cancer types were
included in our study: gastric cancer (GC) (Ma et al.,
2017b), non-small cell lung cancer (NSCLC) (Yin et al.,
2020; Chen et al., 2021a), cervical cancer (CC) (Chen et al.,
2020b), oral cancer (OC) (Chen et al., 2020a), colorectal cancer
(CRC) (Du et al., 2019; He et al., 2020), papillary thyroid
carcinoma (PTC) (Pang and Yang, 2021), LGG (Zhao et al.,
2020), PAAD (Lian et al., 2018), hepatocellular carcinoma
(HCC) (Jiang et al., 2019; Hu et al., 2020; Wang et al., 2020;
Wei et al., 2020; Zhang et al., 2020; Guan et al., 2021), acute
myeloid Leukemia (AML) (Zhai et al., 2021), BLCA (Lin et al.,
2018), KIRC (Xing et al., 2021), neuroblastoma (Nie et al.,
2020), ovarian cancer (Li et al., 2021a), osteosarcoma (Yang
et al., 2021a), renal cell carcinoma (RCC) (Xu et al., 2017),
melanoma (Chen et al., 2021b), breast cancer (BC) (Arabpour
et al., 2021).

Correlation of the DUXAP8 Expression
Level With the Overall Survival
There were 25 studies (Ma et al., 2017b; Xu et al., 2017; Lian
et al., 2018; Lin et al., 2018; Du et al., 2019; Jiang et al., 2019;
Chen et al., 2020a; Chen et al., 2020b; He et al., 2020; Hu et al.,
2020; Nie et al., 2020; Wang et al., 2020; Wei et al., 2020; Yin
et al., 2020; Zhang et al., 2020; Zhao et al., 2020; Chen et al.,
2021a; Li et al., 2021a; Arabpour et al., 2021; Yang et al., 2021a;
Chen et al., 2021b; Guan et al., 2021; Pang and Yang, 2021;
Xing et al., 2021; Zhai et al., 2021), consisting of 4,757 patients,
included for OS analysis. A correlation analysis has been
performed to explore between DUXAP8 and the poor OS in
patients diagnosed with cancer. It applied the fixed effect
model to the studies (I2 = 15.1%, PQ= 0.248). As illustrated
in Figure 1A, there was a pooled HR = 1.63 between DUXAP8
and the OS (95% CI, 1.49–1.77, p < 0.001), revealing
significantly worse OS in the cancer patients with high
expression of DUXAP8.

Publication Bias and Sensitivity Analysis
We constructed Begg’s funnel plot to assess publication bias
among the reviews. There was no indication of noticeable OS
disparity (p>|t| = 0.164; Figure 1C). In addition, we ran a

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 9077743

Wang et al. DUXAP8 as Prognostic Biomarker Bioinformatics Analysis

95

https://www.gsea-msigdb.org/gsea/downloads.jsp
https://www.gsea-msigdb.org/gsea/downloads.jsp
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


sensitivity analysis after discarding each paper to confirm the
validity of the relationship between DUXAP8 expression and OS.
This analysis showed no significant change in the results.
Therefore, the meta-analysis results were trustworthy.
(Figure 1B).

Subgroup Analysis of the Relationship
Between DUXAP8 Expression Level and
Overall Survival
Based on the following factors, subgroup analysis was done to
evaluate the relationship between DUXAP8 expression levels and
OS: follow-up time (<60 or ≥60 months) (Figure 2A), the system
of cancer (digestive system, urogenital system, respiratory system,
hematologic system or other) (Figure 2B), sample size (<100 or
≥100 tissues) (Figure 2C), sample source (clinical samples or
database) (Figure 2D), the quality of included literature (NOS
scores) (Figure 2E), and type of cancer (Figure 2F). In these
malignancies, the outcomes of the subgroup analysis didn’t
change the predictive value of DUXAP8 for OS.

MultifacetedPrognostic Value ofDUXAP8 in
Pan-Cancers
To assess DUXAP8’s ability to predict pan-cancer, we
evaluated multiple datasets. We used COX analysis to
evaluated the DUXAP8-related survival (OS, DSS, DFI, and

PFI) (Figure 3). Thus, we discovered that DUXAP8 was a
detrimental factor in ACC (OS: HR = 1.910; DSS: HR = 2.037;
DFI: HR = 7.031; PFI: HR = 3.228), LIHC (OS: HR = 2.418;
DSS: HR = 1.946; DFI: HR = 1.728; PFI:HR = 1.656), KIRP (OS:
HR = 5.479; DSS: HR = 6.402; DFI: HR = 6.074; PFI:HR =
4.307), KIRC (OS: HR = 2.459; DSS: HR = 2.808; PFI:HR =
1.919), UCEC (OS: HR = 1.496; DFI: HR = 1.686, p < 0.001;
PFI:HR = 1.453), KICH (OS: HR = 18.962; DSS: HR = 21.605;
PFI:HR = 7.195), MESO (OS: HR = 1.776; DSS: HR = 1.844;
PFI:HR = 2.016), COAD (OS: HR = 1.489; DFI: HR = 2.725;
PFI:HR = 1.407), THCA (OS: HR = 3.028; DSS: HR = 3.566),
STAD (DSS: HR = 1.395; PFI: HR = 1.301), PRAD (DFI: HR =
2.007; PFI: HR = 1.435), DLBC (OS: HR = 9.983), and HNSC
(OS: HR = 1.244).

We next used Kaplan-Meier method to investigate theDUXAP8-
related survival in the TCGA (Supplementary Figure S2). We
discovered that low levels of DUXAP8 expression were associated
with a poor prognosis, which included SKCM (OS: p = 0.003; DSS:
p = 0.033; PFI: p = 0.002), READ (DSS: p = 0.041), LGG (PFI: p =
0.036). Conversely, high levels of DUXAP8 expression were
associated with a poor prognosis in KIRC (OS: p < 0.001; DSS:
p< 0.001; PFI: p = 0.001), KIRP (OS: p< 0.001; DSS: p= 0.001; PFI: p
= 0.015), LIHC (OS: p = 0.001; DFI: p = 0.041; PFI: p = 0.020), UCEC
(OS: p = 0.007; DSS: p = 0.022; PFI: p = 0.034), ACC (DSS: p = 0.028;
PFI: p < 0.001), BRCA (DSS: p = 0.048), STAD (DSS: p = 0.033,
COAD (DFI: p = 0.019), PRAD (DFI: p = 0.019), andMESO (PFI: p
= 0.034).

FIGURE 1 | (A) Forest plot reflecting the association between OS and DUXAP8 expression level in cancer. (B) Sensitivity analysis for studies about OS. (C): Begg’s
funnel plot of DUXAP8 for overall survival.
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We next used Kaplan-Meier plotter (https://kmplot.com/
analysis) to evaluate DUXAP8-related survival (OS and RFS).
Interestingly, we were able to verify that DUXAP8 had a

protective prognostic role in ESCA (OS: HR = 0.39; RFS, HR
= 0.38) (Figures 4A,B), and READ (OS: HR = 0.35) (Figure 4T).
In contrast, DUXAP8 expression had a detrimental effect in

FIGURE 2 | Forest plot reflecting the association between OS and lncRNA DUXAP8 expression level in cancer. (A): Subgroup analysis stratified by follow-up time.
(B): Subgroup analysis stratified by the system of cancer. (C): Subgroup analysis stratified by sample size. (D): Subgroup analysis stratified by sample source. (E):
Subgroup analysis stratified by NOS score. (F): Subgroup analysis stratified by type of cancer.
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HNSC (OS: HR = 1.38) (Figure 4C), KIRP (OS: HR = 3.4; RFS,
HR = 2.47) (Figures 4E,F), LIHC (OS: HR = 2.15; RFS, HR = 1.
54) (Figures 4G,H), LUAD (OS: HR = 1.38; RFS, HR = 1.61)
(Figures 4I,J), UCEC (OS: HR = 2.31; RFS, HR = 199) (Figures
4K–L), BRCA (OS: HR = 1.52) (Figure 4Q), ESC (OS: HR = 1.98)
(Figure 4R), KIRC (OS: HR = 2.56) (Figure 4S), SARC (OS: HR =
1.57) (Figure 4U). DUXAP8 expression was significantly
correlated with patients’ RFS in LUSC, EAC, TGCT, HNSC,
and THCA.

Correlation Analysis of DUXAP8 Expression
and Clinicopathology
DUXAP8 expression has been linked to numerous malignancies’
clinicopathological characteristics (Figure 5). Concerning

COAD, HNSC, KICH, KIRC, KIRP, and THCA (Figures
5A–F), DUXAP8 was highly expressed in stages III-IV. In
particular, patients over the age of 65 had greater DUXAP8
expression in OV, PCPG, SARC, THCA, THYM, and UCEC
(Figures 5H–M). DUXAP8 was, on the other hand, highly
expressed in individuals under the age of 65, notably in ESCA
patients (Figure 5G).

Expression of DUXAP8 in Pan-Cancers
We first used GEPIA to investigate DUXAP8 expression in
pan-cancer from the TCGA and GTEx databases. DUXAP8
was shown to be highly expressed in BLCA, CHOL, ESCA,
HNSC, KIRC, LIHC, UAD, LUSC, OV, SKCM, STAD, THYM,
UCEC, and UCS, except for TGCT and LAML, where it was
found to be weakly expressed (Figure 6A). Data from the

FIGURE 3 | Correlation analysis of DUXAP8 expression with survival using the COX method for different types of cancers in TCGA. (A): OS. (B): DSS. (C): DFI.
(D): PFI.
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FIGURE 4 | Kaplan-Meier survival curves comparing the high and low expression of DUXAP8 gene in various cancer types in Kaplan-Meier Plotter. OS and RFS of
(A,B) ESCA, (C,D) HNSC, (E,F) KIRP, (G,H) LIHC, (I,J) LUAD, (K,L) UCEC. RFS of (M) EAC, (N) LUSC, (O) TGCT, and (P) THCA. OS of (Q) BRCA, (R) ESC, (S) KIRC,
(T) READ, and (U) SARC. OS, overall survival; RFS, relapse-free survival.
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TCGA showed thatDUXAP8was significantly higher in BLCA,
CHOL, COAD, ESCA, GBM, HNSC, KIRC, KIRP, LIHC,
LUAD, LUSC, PRAD, READ, STAD, THCA, and UCEC
(Figure 6B). Figure 6C represents the relative amounts of
DUXAP8 expression in several cell lines based on CCLE data.

Correlation of DUXAP8 Expression With
Tumor Mutational Burden, Microsatellite
Instability, DNA Methyltransferases, and
Mismatch Repair
We found that DUXAP8 expression was positively correlated
with the TMB in THYM, BLCA, LUAD, SKCM, BRCA,
HNSC, SARC, LIHC, LUSC, ACC, CESC, KIRC, PRAD,
OV, while negatively correlated with the TMB in UCEC,
COAD (Figure 6D). Moreover, DUXAP8 expression was
found to be positively correlated to the MSI in LIHC,
SARC, TGCT, LGG, BRCA, PRAD, and CESC (Figure 6E).
In 29 of the 33 cancer types, TIGIT was correlated with the

expression of at least one MMR-related gene (Figure 7A).
DUXAP8 expression was positively correlated with DNMTs
expression level in most tumors (Figure 7B). DUXAP8
expression was correlated with immune checkpoint
biomarkers in most tumors, especially in BRCA, COAD,
KRCH, KIRC, KIRP, LIHC, STAD, TGCT, THCA, and
THYM (Figure 7C).

Pathway Analysis in Pan-Cancers
To investigate the biological function and KEGG pathway of
DUXAP8 expression in pan-cancers, we conducted GESA
(Figure 8). The results of GO indicated that DUXAP8 was able
to regulate the cell cycle, cell junction, cell recognition, cell growth,
negative regulation of cellular amide metabolic process, gene
silencing, and mRNA binding. The results demonstrate that
DUXAP8 expression is associated with several pathways: pentose
and glucuronate interconversions, porphyrin and chlorophyll
metabolism, retinol metabolism, cytokine receptor interaction,
RNA degradation, and regulation of autophagy.

FIGURE 5 |Relationship between theDUXAP8 gene expression and clinicopathological features of Pan-cancer.DUXAP8 gene expression is related to the stage in
COAD (A), HNSC (B), KICH (C), KIRC (D), KIRP (E), and YHCA (F). DUXAP8 gene expression is associated with age in ESCA (G), OV (H), PCPG (I), SARC (J), THCA
(K), THYM (L), and UCEC (M).
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FIGURE 6 | (A) DUXAP8 expression levels in different cancer types from TCGA data by Gene Expression Profiling Interactive Analysis (GEPIA). (B) DUXAP8
expression levels in different cancer types from TCGA data. The red fusiformis represents tumor tissue and the blue fusiformis represents normal tissue. p < 0.05, <0.01,
<0.001 are represented by “*”, “**”, “***” respectively. (C) The expression distribution of DUXAP8 in different tumor tissues. (D) The radar chart illustrated the association
between TMB and DUXAP8 expression in different cancers. (E) The radar chart illustrated the relationship between MSI and DUXAP8 expression in different
cancers. The blue curve represents the correlation coefficient, and the green value represents the range.
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FIGURE 7 | Co-expression analysis between DUXAP8 expression and five mismatch repair genes (A), DNA methyltransferase (B) and immune genes (C) in
cancers. *p < 0.05; **p < 0.01; ***p < 0.001. Cor, correlation coefficient. The horizontal axis represents cancer types, the vertical axis represents immune genes, and each
small rectangular module represents the co-expression of the gene and DUXAP8 in cancer, during them, the upper left corner asterisk and color represent the P-value,
and the lower right corner color represents the Cor. *p < 0.05; **p < 0.01; ***p < 0.001. Cor, correlation coefficient.
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DISCUSSION

Great improvements have been achieved in cancer detection and
treatment. However, the 5-year survival rate remains relatively
low for most cancers. Human health is seriously threatened by
cancer. Some lncRNAs have the potential to serve as biomarkers
for diagnosing and monitoring tumors due to their specific
expression during tumor occurrence and development (Qi and
Du, 2013). DUXAP8 is significantly overexpressed in cancer
tissues compared to nearby non-tumor tissues, according to
observations (Ma et al., 2017b; Du et al., 2019; Chen et al.,
2020a; Chen et al., 2020b; He et al., 2020; Yin et al., 2020;
Chen et al., 2021a). Thus, we first conducted this meta-
analysis to examine if there was a correlation between lncRNA
DUXAP8 expression and overall survival in order to better
evaluate its predictive potential. Our study revealed a
significantly worse OS in cancer patients with high expression
of DUXAP8. For this, we concluded that high levels of DUXAP8
expression are associated with a poor prognosis for cancer
patients and that DUXAP8 may be a predictor of poor
prognosis in cancer patients.

In addition, we employed data mining to investigate the
prognostic value of DUXAP8 in a range of tumor types to
further validate our results. To assess DUXAP8’s ability to predict
pan-cancer, we evaluated multiple datasets. Cox regression model
discovered that DUXAP8 was a detrimental factor in ACC, COAD,
DLBC, HNSC, KICH, KIRC, KIRP, LIHC, MESO, THCA, and
UCEC in the TCGA. Even more, we discovered that high levels of
DUXAP8 expressionwere associated with a poor prognosis in ESCA,
HNSC, KIRP, LIHC, LUAD, UCEC, BRCA, ESC, KIRC, READ, and
SARC, but with a good prognosis in ESCA, SKCM and READ by
Kaplan-Meier method.

We found that DUXAP8 expression was positively correlated
with the TMB in THYM, BLCA, LUAD, SKCM, BRCA, HNSC,
SARC, LIHC, LUSC, ACC, CESC, KIRC, PRAD, OV, while
negatively correlated with the TMB in UCEC, COAD
(Figure 6D). Moreover, DUXAP8 expression was found to be
positively correlated to the MSI in LIHC, SARC, TGCT, LGG,
BRCA, PRAD, and CESC (Figure 6E). DUXAP8 expression was
correlated with immune checkpoint biomarkers in most tumors,
especially in BRCA, COAD, KRCH, KIRC, KIRP, LIHC, STAD,
TGCT, THCA, and THYM. DUXAP8 expression was positively
correlated with MMR-related genes level in most tumors.

This study included an in-depth analysis of DUXAP8
expression levels, as well as the relationship with TMB, MSI,
MMR, DNMTs, and immune checkpoint biomarkers in 33 cancer
types. This study found that the expression of DUXAP8 is
significantly correlated with TMB in seven cancer types and
MSI in seven cancer types. DUXAP8 expression was positively
correlated with MMR-related genes level in most tumors. The
research suggested that DUXAP8 expression may have an effect
on cancer patients’ response to immune checkpoint therapy,
which will benefit the further understanding of
immunotherapy’s molecular mechanism in cancer treatment.

DUXAP8 was significantly higher in BLCA, CHOL, ESCA,
HNSC, KIRC, LIHC, UAD, LUSC, OV, SKCM, STAD, THYM,
UCEC, and UCS, except for TGCT and LAML, where it was found

to be weakly expressed. DUXAP8 was significantly higher in BLCA,
CHOL, COAD, ESCA, GBM, HNSC, KIRC, KIRP, LIHC, LUAD,
LUSC, PRAD, READ, STAD, THCA, and UCEC in the TCGA and
GTEx databases. There is accumulating evidence to reveal that
DUXAP8 is aberrantly expressed in several malignancies and
appears to contribute to the development and progression of
multiple cancers, including GC (Ma et al., 2017b), NSCLC (Yang
et al., 2019; Ji et al., 2020; Yin et al., 2020; Chen et al., 2021a; Liu et al.,
2021a), CC (Chen et al., 2020b), OC (Chen et al., 2020a), CRC (Du
et al., 2019; Gong et al., 2019; He et al., 2020; Liang et al., 2021), PTC
(Liu et al., 2021b; Pang and Yang, 2021), LGG (Zhao et al., 2020), PC
(Lian et al., 2018; Li et al., 2021b), HCC (Jiang et al., 2019; Hu et al.,
2020; Wang et al., 2020; Wei et al., 2020; Zhang et al., 2020; Guan
et al., 2021), AML (Zhai et al., 2021), BLCA (Jiang et al., 2018; Lin
et al., 2018), NB (Nie et al., 2020), ovarian cancer (Meng et al., 2020;
Li et al., 2021a), osteosarcoma (Yang et al., 2021a), RCC (Xu et al.,
2017; Huang et al., 2018; Xing et al., 2021), melanoma (Chen et al.,
2021b), BC (Arabpour et al., 2021; Yang et al., 2021b), esophageal
carcinoma (Liu et al., 2018). This is basically consistent with
this study.

Although many studies found that lncRNADUXAP8 serves as
an important prognostic factor for patients with a variety of
tumors, the underlying systems of how the lncRNA DUXAP8
impacts cancer are still unknown. DUXAP8-related molecular
targets, proteins, pathways, and noncoding RNA (microRNAs
and circRNAs) were methodically described in this meta-analysis
to provide a reference for mechanistic exploration into the
carcinogenesis function of DUXAP8 in various cancers
(Supplementary Table S2). DUXAP8 induced an EMT
phenotype transition and epigenetic alteration via various
signaling pathways covering pathways of Wnt/β-catenin (Zhai
et al., 2021)in the AML, miR-126-5p/PTEN/PI3K/AKT (Jiang
et al., 2018; Lin et al., 2018) in the BLCA, miR-130a-3p
(Arabpour et al., 2021; Yang et al., 2021b) in the BC, EZH2
(Ma et al., 2017b; Lian et al., 2018; Du et al., 2019; Gong et al.,
2019; Chen et al., 2020a; He et al., 2020) in the CRC, OC and GC,
miR-590-5p (Jiang et al., 2019; Hu et al., 2020; Meng et al., 2020;
Wang et al., 2020; Wei et al., 2020; Zhang et al., 2020; Li et al.,
2021a; Guan et al., 2021) in the ovarian cancer andHCC,miR-126
(Xu et al., 2017; Huang et al., 2018; Xing et al., 2021) in the RCC,
miR-3182/NUPR1 (Chen et al., 2021b) in the melanoma, miR-
409-3p/HK2/LDHA (Yang et al., 2019; Ji et al., 2020; Yin et al.,
2020; Chen et al., 2021a; Liu et al., 2021a) in the NSCLC, miR-
448/WTAP/Fak (Lian et al., 2018; Li et al., 2021b) in the PC,miR-
223-3p (Liu et al., 2021b; Pang and Yang, 2021) in the PTC, miR-
29 (Nie et al., 2020) in the neuroblastoma,miR-635/TOP2A (Yang
et al., 2021a) in the osteosarcoma.

Nonetheless, there were several limitations to this meta-analysis.
First, only 25 studies with several types of tumors were included in
the meta-analysis, so the results need to be further confirmed in a
large cohort in the future. Second, it might not be precise enough to
calculate HRs and corresponding 95%CIs through survival curves in
the place of precisely obtaining them from the primary publications.
Third, all included studies divided the cut-off values for high and low
lncRNA DUXAP8 expression by inconsistent methods, which made
the data less accurate. Fourth, patients from China made up the
majority of the eligible trials, which means that they may not
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accurately represent all cancer patients worldwide. For future clinical
trials, it is imperative that high-quality, multi-center studies with a
larger sample size be done to confirm and reinforce our preliminary
findings.

CONCLUSION

This study revealed that DUXAP8 might serve as a prognostic
biomarker and potential therapeutic target for cancer. It can be

FIGURE 8 | (A–J) GO functional annotation of DUXAP8 gene in ACC, BLCA, HNSC, LUSC, OV, PAAD, PCPG, TGCT, THCA, and UVM. (K–T) KEGG pathway
analysis of DUXAP8 gene ACC, BLCA, HNSC, LUSC, OV, PAAD, PCPG, TGCT, THCA, and UVM. Different color curves indicate that the DUXAP8 gene regulated
different functions or pathways of different cancers, with peaks of curves upward indicating positive regulation and peaks of curves downward representing negative
regulation.
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used to improve cancer diagnosis, discover potential treatment
targets, and improve prognosis. Therefore, combining regular
clinical examinations with an evaluation of DUXAP8 expression
provides individuals with a targeted prognosis and more
treatment options.
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Expression profiles and functions
of ferroptosis-related genes in
intimal hyperplasia induced by
carotid artery ligation in mice

Lina Zhang1, Wei Li1, Bo Shi2, Xiaoqing Zhang1 and
Kaizheng Gong1*
1Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University,
Yangzhou, China, 2School of Life Science, Liaoning Normal University, Dalian, China

Intimal hyperplasia (IH) is a prominent pathological event that occurs during in-

stent restenosis and atherosclerosis. Ferroptosis, characterized by iron-

dependent and lipid peroxidation, has become the recent focus of studies

on the occurrence and progress of cardiovascular diseases. However, there are

few studies on ferroptosis and IH. Therefore, we aimed to identify and validate

ferroptosis-related markers in IH to explore new possibilities for IH diagnosis

and treatment. The IH microarray dataset (GSE182291) was downloaded from

the Gene Expression Omnibus (GEO) database and ferroptosis-related genes

(FRGs) were obtained from the FerrDb databases. The differentially expressed

genes (DEGs) were analyzed using the GEO2R. Overlapping was performed to

identify the ferroptosis-related DEGs among the DEGs and FRGs. Then,

clustering, Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment, and protein–protein interaction (PPI)

analyses were performed. Subsequently, the hub genes were identified using

Cytoscape and hub gene–transcription factors and hub gene–microRNA

networks were constructed. Finally, real-time qPCR (RT-qPCR) and

immunohistochemistry (IHC) were used to verify the mRNA and protein

levels of the hub FRGs in IH. Thirty-four FRGs showing significantly different

expression were identified from a total of 1,197 DEGs 2 days after ligation;

31 FRGs were selected from a total of 1,556 DEGs 14 days after ligation. The GO

and KEGG analyses revealed that these 34 ferroptosis-related DEGs identified

2 days after ligation were mainly enriched in the basolateral plasma membrane,

ferroptosis, lipid and atherosclerosis, and IL-17 signaling pathways. The

31 ferroptosis-related DEGs in endometrial hyperplasia identified 14 days

after ligation were mainly enriched in response to oxidative stress,

ferroptosis, tumor necrosis factor signaling pathway, and lipid and

atherosclerosis. Five hub FRGs (Il1b, Ptgs2, Cybb, Cd44, and Tfrc) were

identified using PPI networks; four hub FRGs (Il1b, Ptgs2, Cybb, and Cd44)

were validated to be upregulated 2 and 14 days after ligation using RT-qPCR and

show significantly different expression 14 days after ligation via IHC. Our

findings verify the expression of hub DEGs related to ferroptosis in IH and

elucidate the potential relationship between ferroptosis and IH, providing more

evidence about the vital role of ferroptosis in IH.
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1 Introduction

Intimal hyperplasia (IH) is a principal pathophysiological

process of early atherosclerosis, in-stent restenosis, and vein

bypass graft failure (Dzau and Braun-Dullaeus 2002). It is

triggered by endothelial damage and leads to progressively

increasing luminal narrowing or restenosis, which sometimes

proves fatal. Previous studies have shown that the occurrence and

development of IH is regulated by various biological

mechanisms, such as autophagy, epigenetics, oxidative stress,

and endoplasmic reticulum stress (Xue and Chen, 2019). To date,

studies on IH have focused primarily on the vascular smooth

muscle cell (VSMC) proliferation pathway of IH development.

Limitations, such as unclear pathogenesis and few biological

datasets, have spurred the search for new target genes and

efficient approaches to control IH.

Ferroptosis is a new type of cell death that is distinct from

apoptosis, autophagy, and necrosis in morphology and

function, and is characterized by iron overload and lipid

peroxidation (Dixon and Lemberg 2012). Previous studies

have shown that ferroptosis is involved in many diseases,

including tumors and neurodegenerative disorders (e.g.,

Alzheimer’s disease and Parkinson’s disease) (Do and

Gouel, 2016; Hao and Yu, 2017; Lane and Ayton, 2018).

Recent studies have also shown that ferroptosis is involved

in most cardiovascular diseases (CVDs), such as

cardiomyopathy (Fang and Wang, 2019), myocardial

infarction (Baba and Higa, 2018), ischemia/reperfusion

injury (Stamenkovic and O’Hara, 2021), heart failure (Fang

and Cai, 2020), and atherosclerosis (Bai and Li, 2020). Several

studies have found that targeting ferroptosis can serve as a

feasible approach for preventing cardiomyocyte death and

managing cardiac pathologies (Ravingerova and Kindernay,

2020; Wu and Li, 2021).

However, to the best of our knowledge, there are only few

studies on the function of ferroptosis in the pathological process

of IH, which highlights the novelty of our study. Therefore, in the

present study, we aimed to identify and validate ferroptosis-

related markers in IH to explore new possibilities for IH

diagnosis and treatment.

2 Materials and methods

2.1 Microarray data

The microarray expression dataset (GSE182291) was

downloaded from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/). Five groups of

tissue samples from the right and left carotid arteries were

analyzed 2 and 14 days after ligation, respectively. The data

were based on the GPL11180 platforms (Affymetrix HTMG-430

p.m. Array Plate).

Identification of differentially expressed genes (DEGs)

related to ferroptosis

DEGs were identified using the GEO2R online analysis tool.

The classical Bayesian test in the limma package was used to

perform differential expression analysis on the two groups of

samples. Genes with a |log2FC| ≥1 (FC: fold change) and adjusted
p-value of <0.05 were defined as DEGs. Ferroptosis-related gene

(FRG) sets were acquired from FerrDb (http://www.zhounan.

org/ferrdb/index.html). The overlap was performed to

differentiate the ferroptosis-related DEGs from the DEGs

and FRGs.

Gene ontology (GO) terms and pathway enrichment analysis

for ferroptosis-related DEGs

Based on DAVID v.6.8 (the Database for Annotation,

Visualization, Integrated Discovery), GO (including biological

processes, cellular components, and molecular functions) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analyses were used to analyze the functions and related pathways

of ferroptosis-related DEGs. A p-value < 0.05 was set as

statistically significant.

2.2 Protein–protein interaction (PPI)
establishment and identification of hub
genes

The PPI networks of ferroptosis-related DEGs 2 and 14 days

after ligation were assessed using the PPI network analysis on the

STRING online tool (https://cn.string-db.org/) and visualized

using Cytoscape.

2.3 Construction of microRNA (miRNA)-
mRNA and TF-mRNA networks

MiRNAs and transcription factors (TFs) exert their

biological functions by regulating the expression of target

mRNA. Hence, we used the intersection between three

databases, namely miRWALK (http://mirwalk.umm.uni-

heidelberg.de), miRDB (http://www.mirdb.org/), and

Targetscan (http://www.targetscan.org), to predict the

potential target miRNAs of hub FRGs. The TF of hub

FRGs were predicted using the TRRUST2.0 online tool

(https://www.grnpedia.org/trrust/). In addition, miRNA-

mRNA and TF-mRNA networks were visualized using

Cytoscape. The hub genes in the miRNA-mRNA network

were obtained using the cytoHubba plugin.
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2.4 Carotid artery ligation model

Male, specific pathogen free C57BL/6 mice (8–12 weeks,

20–25 g) were purchased from the Yangzhou University (China).

To exclude the effects of estrogen on vascular damage, only adult

male mice were used in the study following a 7-days acclimatization

period to the preoperative environment. Briefly, the samples were

divided into two groups, the ligation group included the left carotid

arteries (LCAs) whereas the intra animal control group included the

contralateral right carotid arteries (RCAs) on which a sham

operation was performed. For carotid artery ligation, ketamine

(80 mg/kg intraperitoneal) and xylazine (5 mg/kg intraperitoneal)

were combined to anesthetize mice and the LCA was exposed

through a midline cervical incision and ligated with a 5–0 silk

suture just proximal to the bifurcation. A similar procedure was

performed but without ligation on the RCA. Total vascular tissue

samples were obtained from the LCAs and RCAs of mice sacrificed

at 2 and 14 days post-ligation. Then, the mice were processed for

morphological and biochemical studies at specific time points after

surgery, as described previously (Zhang andGu, 2022). All protocols

in this study were approved by the Institutional Animal Care and

Use Committee of the Affiliated Hospital of Yangzhou University,

and followed theGuide for the Care andUse of Laboratory Animals.

2.5 Real-time qPCR(RT-qPCR)

The mRNA expression levels of the FRGs were measured using

RT-qPCR; the primers were designed by the NCBI website and

synthesized through the Tsingke Biotechnology Company of China.

At 2 and 14 days after ligation, total RNA from vascular tissues was

extracted using the TRIzol universal Reagent (Tiangen), which was

then reverse-transcribed into cDNA using HiScript® Ⅲ RT

SuperMix for qPCR (+gDNA wiper) (NOVIZAN). Synthesized

cDNA was amplified through quantitative RT-PCR analysis using

ChamQ universal SYBR qPCR Master Mix (NOVIZAN) in a

CFX96 Real-Time System (Bio-Rad). Accordingly, the relative

abundance of each transcript was determined using the ΔΔCT
method. The forward and reverse primer pairs used for

quantitative RT-qPCR are shown in Table 1.

2.6 Immunohistochemistry (IHC)

IHC was performed as previously described (Zhang and Gu,

2022). Briefly, 5-µm thick formalin-fixed paraffin-embedded carotid

tissue ofmice sections were stained with anti-Cd44 (Servicebio), anti-

Il1b (Servicebio), anti-Ptgs2 (Servicebio), and anti-Cybb (Servicebio)

antibodies according to the manufacturer’s instructions. All positive

cells were counted from three sections of each artery sample and

evaluated by an investigator who was blinded to the identities of the

treatment protocols at ×100 magnification.

2.7 Statistical analysis

The data were expressed as the mean ± SD in GraphPad

Prism 7 (GraphPad Software). A two-sample, unpaired Student’s

t-test was used to analyze the differences between the two groups

of data with normally distributed variables and the probability

level was set at p < 0.05.

3 Results

To perform an in-depth analysis of ferroptosis-associated

genes in IH, gene expression and FRG datasets from GEO and

FerrDb were used, respectively. An overview of the datasets

analyzed and compared in this study is shown in Figure 1

(study protocol).

3.1 Ferroptosis-related DEGs in IH

We found that the expression of a larger number of genes

were altered in the endothelium of the LCA than the RCA. A total

of 1,197 and 1,556 DEGs were identified 2 and 14 days after

ligation, respectively, as shown in Figures 2A,B. There were

388 FRGs in FerrDb; however, after intersection with FRGs,

34 ferroptosis-related DEGs were identified 2 days after ligation

and 31 ferroptosis-related DEGs were identified 14 days after

ligation, as shown in Figure 2C. The clustering analysis of

significantly different FRGs 2 and 14 days after ligation

showed that the samples were closely related, as shown in

Figures 2D,E.

FIGURE 1
Study protocol. (A) The overall protocol of this study.
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FIGURE 2
Differentially expressed ferroptosis-related genes (FRGs) in early and late intimal hyperplasia (IH). (A) The volcano plot of differentially expressed
genes 2 days after ligation. (B) The volcano plot of differentially expressed genes 14 days after ligation. The abscissa represents the difference in the
fold change of gene expression in different treatment groups, and the ordinate represents the adj. p-value of the expression difference. Blank dots
represent unchanged genes. Red dots represent upregulated genes, and blue dots represent downregulated genes. (C)The overlapping genes
between FRGs and DEGs 2 and 14 days after ligation. (D) The heatmap of differentially expressed FRGs in the carotid artery samples 2 days after
ligation based on the clustering analysis. (E) The heatmap of differentially expressed FRGs in the carotid artery samples 14 days after ligation based on
the clustering analysis.
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3.2 Functional enrichment analysis of
ferroptosis-related DEGs

To investigate the biological functions and pathways of

ferroptosis-related DEGs 2 and 14 days after ligation, GO and

KEGG enrichment analyses were performed, respectively. The

GO analysis showed that differentially expressed FRGs were

mainly enriched in basolateral plasma membrane, organic

anion transmembrane transporter, and carboxylic acid

transmembrane transport 2 days after ligation (Figure 3A). In

addition, the KEGG results showed that the differentially

expressed FRGs were closely enriched in ferroptosis,

leishmaniasis, and lipid and atherosclerosis (Figure 3C). The

GO analysis 14 days after ligation showed that differentially

expressed FRGs were mainly enriched in the negative

regulation of apoptotic signaling pathway, cellular response to

FIGURE 3
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of FRGs. (A)GO enrichment analysis of FRGs
2 days after ligation. (B)GO enrichment analysis of FRGs 14 days after ligation. (C) Relationship among the top 10 enriched KEGG pathway terms and
targets is represented in a chord plot 2 days after ligation. (D) Relationship among the top 10 enriched KEGG pathway terms and targets is
represented in a chord plot 14 days after ligation. BP, biological processes; CC, cellular component. MF, molecular function.
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iron ion, and response to oxidative stress (Figure 3B).

Furthermore, the KEGG results showed that the differentially

expressed FRGs were mainly enriched in ferroptosis, IL-17

signaling pathway, TNF-signaling pathway, and lipid and

atherosclerosis (Figure 3D).

3.3 PPI networks and prediction of TFs for
DEGs in mouse

The differentially expressed FRGs 2 and 14 days after ligation

were analyzed using the STRING online database and a PPI

network was obtained (Supplementary Figure S1A, B). To

identify hub FRGs, the CytoHubba plugin was used. The top

10 hub FRGs 2 days after ligation included Slc7a5, Il1b, Slc7a11,

Slcla5, Asns, Ptgs2, Cybb, Slc2al, Cd44, and Tfrc (Figure 4A).

However, 14 days after ligation, the top 10 hub FRGs included

Il1b, Hmox1, Cybb, Ptgs2, Cd44, Cxcl2, Mmp13, Tfrc, Tgfbr1,

and Map3k5 (Figure 4B). Moreover, we found that Il1b, Cybb,

Tfrc, Cd44, and Ptgs2 co-existed and were upregulated in the

LCA compared to the RCA at 2 and 14 days after ligation. To

determine target-regulated FRG TFs, we used the

TRRUST2.0 database and found that 4, 10, and 40 TFs

regulate the expression of Cd44, Il1b, and Ptgs2, respectively,

however, there were no TFs regulating Cybb and Tfrc

(Figure 4C).

3.4 Construction of miRNA-mRNA
networks

To ensure the accuracy and reliability of the results, the

intersection of three databases (miRDB, Targetscan, and

miRWALK) was selected to identify target-regulated hub gene

miRNAs. By analyzing the miRNA–mRNA networks, we found

that 8, 50, 79, 42, and 48 miRNA targets regulate the expression

of Il1b, Cd44, Tfrc, Ptgs2, and Cybb, respectively (Figure 5A).

Furthermore, miRNA-mRNA networks showed that miR-335-

3p simultaneously regulates the expression of Ptgs2, Tfrc, and

Cd44, miR-882 and miR-185-5p regulate the expression of

Cd44 and Tfrc, miR-22-5p and miR-215-3p regulate the

expression of Tfrc and Cybb (Figure 5B).

3.5 Hub gene validation

To further validate the results of the hub DEGs related to

ferroptosis analyzed from bioinformatics analysis, a model of IH

was established by performing a carotid artery ligation in mice.

Quantitative RT-PCR analysis showed that the mRNA levels of

Il1b, Cybb, Ptgs2, Tfrc, and Cd44 were significantly higher (p <
0.05) in the LCA than in the RCA group 2 days after ligation.

However, with the exception of Tfrc, the expression of Il1b, Cybb,

Ptgs2, and Cd44 was significantly higher in the LCA than in the

RCA group 14 days after ligation (Figure 6). Subsequently, we

validated the presence of Il1b, Cybb, Ptgs2, and Cd44 using IHC

(Figure 7) and found that the expression levels of these FRGs

protein were elevated in LCA mice 14 days after ligation,

compared with RCA mice. In addition, the quantification

table of mRNA and IHC showed that the rising trend of Il-1b

in LCA was more evident than that in RCA, which supported the

findings of the bioinformatics analysis.

4 Discussion

Studies have shown that endothelial cell injury activation,

monocyte/macrophage adhesion, and infiltration, are the main

pathological bases of IH (Morrell and Adnot, 2009; Weber and

Noels, 2011; Nazari-Jahantigh and Wei, 2012; Andueza and

Kumar, 2020). When endothelial cells are injured, lipid

metabolism is disordered, and lipids are gradually deposited

FIGURE 4
Major protein–protein interaction (PPI) networks and
predicted transcription factors (TFs) of FRGs. (A) The major PPI
network analysis of FRGs 2 days after ligation. (B) The major PPI
network analysis of FRGs at 14 days after ligation. The color
gradation represents the expression; red represents a higher
expression. (C) The prediction of mouse DEGs TFs.
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in the intima. Oxidized lipids and lipid aggregation lead to the

activation of macrophages, thus promoting the formation of

foam tissue cells, which is the core process of atherosclerosis.

Ferroptosis, an iron-dependent, non-apoptotic mode of cell

death, is characterized by the accumulation of lipid reactive

oxygen species (ROS) (Dixon and Lemberg, 2012). Recent

studies revealed that ferroptosis plays a key role in the

progression of atherosclerosis (Guo and Lu, 2022). Thus,

elucidating the potential relationship between ferroptosis and

IH may provide new ideas and targets for the in-depth study of

IH. Kumar et al. mainly investigated the effects of atorvastatin at

two time points on global endothelial gene expression by

performing microarray studies using their mouse partial

carotid ligation model (Kumar and Sur, 2021). In our study,

there were four time points in the dataset; however, a

comprehensive analysis found no intersection across these,

and FRGs were very few at 12 and 24 h, which not enough to

support the following functional enrichment and pathway

analysis. Therefore, we systematically analyzed the expression

of FRGs in the carotid artery samples 2 and 14 days post-ligation.

It was found that 34 significantly different FRGs were identified

2 days after ligation, and 31 FRGs were identified 14 days after

ligation. Then, GO enrichment analysis and KEGG separately

revealed the diversity of functions and pathways of FRGs.

Although, the specific role of these FRGs in IH requires

further study, we speculated that these genes may play key

roles in the pathophysiological processes of IH. Thus, carotid

artery ligation altered the gene expression profile of endothelial

FIGURE 5
miRNA-mRNA network construction of hub genes. (A)miRNA-mRNA network construction. (B) The hub genes in the miRNA-mRNA network.
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cells, and although not many FRGs were obtained at days 2 and

14, their effects were mainly reflected in ferroptosis, immune

inflammation, and lipid and atherosclerosis. Furthermore, to

identify potential ferroptosis-related candidate target genes to

enrich potential targets, we analyzed these genes through PPI

network and identified five ferroptosis-related DEGs, including

Il1b, Ptgs2, Cybb, Cd44, and Tfrc.

Inflammation is an important driver of atherosclerosis and

the underlying pathology of CVDs. The NLRP3 inflammasome

and IL-1 family of cytokines are central to the pathologic

response to injury and represent a key pathogenetic

mechanism in the formation, progression, and complication of

atherosclerosis and the myocardial response to ischemic and

non-ischemic injuries. IL-1-targeted therapies have been shown

to improve cardiovascular outcomes in clinical trials in patients

with or at risk for acute myocardial infarction, heart failure, and

recurrent pericarditis (Ridker and Everett, 2017; Grebe and Hoss,

2018; Abbate and Toldo, 2020). Recent studies have revealed that

NLRP3 inflammasome activation contributes to not only

pyroptosis but also other types of cell death, including

FIGURE 6
Validation of mRNA levels. (A) ThemRNA levels of Il1b, Ptgs2, Cybb, and Tfrc 2 days after ligation in the right carotid artery (RCA) and left carotid
artery (LCA) groups in mice. (B) The mRNA levels of Il1b, Ptgs2, Cybb, Cd44, and Tfrc 14 days after ligation in the RCA and LCA groups in mice. All
values have been standardized using the expression levels of GAPDH. A two-tailed unpaired Student’s t-test was used to compare two groups. Data
are expressed as the means ± SD, n = 6, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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apoptosis, necroptosis, and ferroptosis (Huang and Xu, 2021). In

addition, GPX4, as an important negative effector of ferroptosis,

has recently been shown to inhibit caspase-11-dependent

pyroptosis and IL-1β release (Kang and Zeng, 2018).

Furthermore, a recent study showed that when ox-LDL and

ferric ammonium citrate (FAC) were added to THP-1

macrophages, FAC, as an iron additive, increased the levels of

lipid ROS, ferroptosis, IL-1β, and IL-18 in foam cells but

decreased GPX4 expression (Su and Yang, 2021). These

findings suggested that IL-1β may reflect the severity of

FIGURE 7
Validation of protein levels. (A) Immunohistochemistry staining of Il1b, Ptgs2, Cybb, and Cd44 proteins 14 days after ligation in the RCA and LCA
groups inmice. (B)Quantitative analysis of Il1b, Ptgs2, Cybb, and Cd44 proteins 14 days after ligation in the RCA and LCA groups inmice. The arteries
were harvested from uninjured RCA (that underwent a sham operation) and injured LCA 14 days after ligation. The red arrows represent positive cells.
A two-tailed unpaired Student’s t-test was used to compare the two groups. Data are expressed as the means ± SD, n = 3. **p < 0.01; ***p <
0.001; ****p < 0.0001; compared with the RCA group. Original magnification, ×100. Scale bar: 50 μm.

TABLE 1 Forward and reverse primer pairs.

Gene names Forward Reverse

Mus-Tfrc CTTCGCAGGCCAGTGCT TACAAGGGAGTACCCCGACA

Mus-Ptgs2 CATCCCCTTCCTGCGAAGTT GGCCCTGGTGTAGTAGGAGA

Mus-Cybb CCCTCCCTGTCTAGGTAATGC GCATTTGCCTTCGGTGATGT

Mus-IL-1b CCACCTCAATGGACAGAATATCA CCCAAGGCCACAGGTATTT

Mus-Cd44 GCAGAAATCAAGACGTTATGGG AAGCACCACCACCAAAGA
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ferroptosis. It has been previously reported that the expression of

prostaglandin endoperoxide synthase 2 (Ptgs2) encoding

cyclooxygenase-2 is significantly upregulated in ferroptosis

(Xie and Hou, 2016). Previously, Li et al. investigated the role

and underlying mechanisms of ferroptosis in lipopolysaccharide

(LPS)-induced cardiac injury. They found that LPS increased

levels of ferroptosis markers, including Ptgs2, malondialdehyde

(MDA), and lipid ROS inmice injected with LPS (10 mg/kg) after

12 h (Li and Wang, 2020). Upregulation-trends of Ptgs2 in

ferroptosis was further demonstrated in the study by Zhou

et al. In this study, they found that the expression of PTGS2,

ACSL4, caspase-1, and NLRP3 were upregulated at the late stages

of atherosclerosis, and these proteins could be used as biomarkers

of atherosclerosis severity (Zhou and Zhou, 2021). High

oxidative stress has been shown to impair cellular function

and angiogenesis (Yin and Xu, 2011; Hu and Wang, 2018).

NADPH oxidase 2 (Nox2), as part of the NADPH oxidase

complex, also known as Cybb, is a major source of ROS in

endothelial cells, a pro-inflammatory factor related to

interactions between neutrophils and macrophages, and plays

a crucial role in angiogenesis (Hahner and Moll, 2020; Chen and

Sun, 2021). Previous studies have shown that Cd44 plays an

important role in atherosclerotic lesions characterized by VSMC

proliferation, which is mainly involved in angiogenesis,

endothelial cell proliferation, and migration (Schultz and

Rasmussen, 2005; Zhao and Lee, 2008). In our previous study,

we analyzed the dataset uploaded by Dunn et al. using

bioinformatic analyses and found that the expression of

Cd44 was significantly upregulated after 7 days of carotid

artery ligation (Zhang and Gu, 2022). Moreover, it is closely

related to ferroptosis and has been studied in ulcerative colitis

(Cui and Chen, 2021) and various cancers (Liu and Jiang, 2019;

Deng and Zheng, 2021; Kozawa and Sekai, 2021). However, the

role of Cd44 in ferroptosis and IH remains unknown, this is the

innovation of our research. Furthermore, as a cell surface

receptor necessary for cellular iron uptake, transferrin receptor

(Tfrc) is an essential component of ferroptotic cell death (Luo

and Gao, 2020). In a study by Guo, they identified the role of

TRIB2 in mitigating oxidative damage by reducing

ubiquitination and the availability of Ub, which is necessary

for the subsequent degradation of glutathione peroxidase 4

(GPX4). Thus, they elucidated a novel role for TRIB2 in

desensitizing ferroptosis via E3 βTrCP, by which it promotes

Tfrc ubiquitination and ultimately reduces labile iron in

hepatoma cells (Guo and Chen, 2021).

Hub genes are considered to play key roles in many biological

processes. Previous studies have confirmed that TFs andmiRNAs

participate in the pathological process of IH by regulating various

target genes. To gain insight into the mechanism of FRGs in IH,

we systematically analyzed the hub gene-miRNA and hub gene-

TF networks of five hub FRGs 2 and 14 days after ligation.

Previous studies have confirmed that TFs can drive cell

differentiation (Fong and Tapscott, 2013), as well as

dedifferentiation and transdifferentiation (Takahashi and

Yamanaka, 2016). Moreover, TFs also control specific

pathways, such as the immune response (Singh and Khan,

2014). We first performed TF network analysis on five hub

FRGs and found that only Ptgs2, Cd44, and Il1b could be

regulated by some or several TFs. Furthermore, we found that

NF-κB1 and SP1 played a significant regulatory role. Previous

studies have confirmed that NF-κB1, as an important part of TFs,

is involved in the regulation of many biological processes. It is

also involved in the formation of neointima after vascular injury,

mainly by regulating the expression of inflammation-related

genes (Yoshimura and Morishita, 2001; Cartwright and

Perkins, 2016). In addition, SP1, as a common TF, has been

shown to be involved in IH (Yang and Kim, 2013). Whether NF-

κB1 and SP1 are involved and how ferroptosis is regulated in IH

still needs further exploration. The five hub FRGs can be

regulated by different miRNAs using the miRNA network

analysis. It is evident that miRNA-335-3p plays an important

role because it regulates the expression of three important genes

simultaneously. The available literature indicates that there are

few studies on miR-335-3p, especially in the cardiovascular field,

which mainly focus on cardiac development (Kay and Soltani,

2019), pulmonary hypertension (Fan and Fan, 2020), and

atherosclerosis (Hildebrandt and Kirchner, 2021). Moreover,

Sun et al. found that the overexpression of miR-185-5p could

suppress the proliferation and migration of VSMCs by targeting

FRS2 (Sun and Li, 2021). During VSMC phenotype switching, it

was demonstrated that miR-221-3P enhanced VSMC growth

in vitro and aggravated IH in balloon-injured carotid arteries

(Davis and Hilyard, 2009; Liu and Cheng, 2009). Following miR-

222-5p knockdown, the proliferative and migratory abilities were

inhibited in VSMCs induced by ox-LDL (Liu and Jiang, 2022). To

further verify the accuracy of our bioinformatic analysis results,

we verified the mRNA and protein levels of the hub FRGs using

RT-qPCR and IHC, respectively, and we found that there were

only four hub FRGs, including Il1b, Ptgs2, Cybb, and Cd44 that

were significantly differentiated in IH induced by carotid artery

ligation.

To the best of our knowledge, there are only a few studies on

ferroptosis in the context of IH. In the present study, we provided

a stepping stone for research regarding this aspect by unveiling

the link between ferroptosis and IH. Taken together, our findings

provided molecular-level evidence that FRGs at 2 and 14 days

after ligation rely on similar and different molecular

mechanisms, respectively. Importantly, key ferroptosis-related

DEGs were identified during the development of IH; this

indicates the existence of common targets and pathways

between ferroptosis and IH. However, the limitation of this

study was that the regulatory aspect of some signaling

pathways was underemphasized, most likely because we only

used microarrays, qPCR, and in silico tools for analyses. In the

present study, we provide some new insights about the

underlying mechanism of IH by exploring the key FRGs in
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the development of IH. Importantly, our results have good

novelty and provide key clue to further study the potential

target in the next work. The future study will focus on the

role of the key FRGs at the cellular and animal levels, to

further study the role and mechanism of ferroptosis in the

occurrence and development of IH, it is necessary to

determine the functions of FRGs and the pathways involved

in ferroptosis, as well as the functions and mechanisms

underlying the actions of FRGs in this disease.

5 Conclusion

To the best of our knowledge, the present study is the first to

explore the role of ferroptosis in vascular IH. Our results suggest

that these hub FRGs are involved in the occurrence and

development of intimal formation. Importantly, our study

provides a rich source of targets and pathways that can be

further explored to obtain an in-depth picture of the role of

ferroptosis in IH.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: https://www.ncbi.

nlm.nih.gov/geo/, GES182291.

Ethics statement

The animal study was reviewed and approved by the

Institutional Animal Care and Use Committee of the

Affiliated Hospital of Yangzhou University.

Author contributions

ZL designed and conducted the study, analyzed the data, and

wrote the manuscript. GK designed and supervised the

experiments and improved the manuscript. LW, SB, and ZX

contributed to this study. All authors read and approved the final

manuscript.

Funding

This work was supported by the National Natural Science

Foundation of China (NO. 81770262; NO. 81970225).

Acknowledgments

We thank Prof. Hanjoong Jo and his team for sharing their

experimental dataset. Likewise, we greatly appreciate the

professional English-language editorial support provided by

Editage. This work utilized the GEO database (https://www.

ncbi.nlm.nih.gov/gds/).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.964458/full#supplementary-material

References

Abbate, A., Toldo, S., Marchetti, C., Kron, J., Van Tassell, B. W., and Dinarello, C.
A. (2020). Interleukin-1 and the inflammasome as therapeutic targets in
cardiovascular disease. Circ. Res. 126 (9), 1260–1280. doi:10.1161/
CIRCRESAHA.120.315937

Andueza, A., Kumar, S., Kim, J., Kang, D. W., Mumme, H. L., Perez, J. I., et al. (2020).
Endothelial reprogramming by disturbed flow revealed by single-cell RNA and
chromatin accessibility study.Cell. Rep. 33 (11), 108491. doi:10.1016/j.celrep.2020.108491

Baba, Y., Higa, J. K., Shimada, B. K., Horiuchi, K. M., Suhara, T., Kobayashi, M.,
et al. (2018). Protective effects of the mechanistic target of rapamycin against excess

iron and ferroptosis in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 314 (3),
H659–H668. doi:10.1152/ajpheart.00452.2017

Bai, T., Li, M., Liu, Y., Qiao, Z., and Wang, Z. (2020). Inhibition of ferroptosis
alleviates atherosclerosis through attenuating lipid peroxidation and endothelial
dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med. 160, 92–102.
doi:10.1016/j.freeradbiomed.2020.07.026

Cartwright, T., Perkins, N. D., and L Wilson, C. (2016). NFKB1: A suppressor of
inflammation, ageing and cancer. FEBS J. 283 (10), 1812–1822. doi:10.1111/febs.
13627

Frontiers in Genetics frontiersin.org11

Zhang et al. 10.3389/fgene.2022.964458

118

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
https://www.frontiersin.org/articles/10.3389/fgene.2022.964458/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.964458/full#supplementary-material
https://doi.org/10.1161/CIRCRESAHA.120.315937
https://doi.org/10.1161/CIRCRESAHA.120.315937
https://doi.org/10.1016/j.celrep.2020.108491
https://doi.org/10.1152/ajpheart.00452.2017
https://doi.org/10.1016/j.freeradbiomed.2020.07.026
https://doi.org/10.1111/febs.13627
https://doi.org/10.1111/febs.13627
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964458


Chen, H., Sun, Q., Zhang, C., She, J., Cao, S., Cao, M., et al. (2021). Identification
and validation of CYBB, CD86, and C3AR1 as the key genes related to macrophage
infiltration of gastric cancer. Front. Mol. Biosci. 8, 756085. doi:10.3389/fmolb.2021.
756085

Cui, D. J., Chen, C., Yuan, W. Q., Yang, Y. H., and Han, L. (2021). Integrative
analysis of ferroptosis-related genes in ulcerative colitis. J. Int. Med. Res. 49 (9),
3000605211042975. doi:10.1177/03000605211042975

Davis, B. N., Hilyard, A. C., Nguyen, P. H., Lagna, G., and Hata, A. (2009).
Induction of microRNA-221 by platelet-derived growth factor signaling is critical
for modulation of vascular smooth muscle phenotype. J. Biol. Chem. 284 (6),
3728–3738. doi:10.1074/jbc.M808788200

Deng, S., Zheng, Y., Mo, Y., Xu, X., Li, Y., Zhang, Y., et al. (2021). Ferroptosis
suppressive genes correlate with immunosuppression in glioblastoma. World
Neurosurg. 152, e436–e448. doi:10.1016/j.wneu.2021.05.098

Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason,
C. E., et al. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death.
Cell. 149 (5), 1060–1072. doi:10.1016/j.cell.2012.03.042

Do, V. B., Gouel, F., Jonneaux, A., Timmerman, K., Gele, P., Petrault, M., et al.
(2016). Ferroptosis, a newly characterized form of cell death in Parkinson’s disease
that is regulated by PKC. Neurobiol. Dis. 94, 169–178. doi:10.1016/j.nbd.2016.
05.011

Dzau, V. J., Braun-Dullaeus, R. C., and Sedding, D. G. (2002). Vascular
proliferation and atherosclerosis: New perspectives and therapeutic strategies.
Nat. Med. 8 (11), 1249–1256. doi:10.1038/nm1102-1249

Fan, J., Fan, X., Guang, H., Shan, X., Tian, Q., Zhang, F., et al. (2020).
Upregulation of miR-335-3p by NF-κB transcriptional regulation contributes to
the induction of pulmonary arterial hypertension via APJ during hypoxia. Int.
J. Biol. Sci. 16 (3), 515–528. doi:10.7150/ijbs.34517

Fang, X., Cai, Z., Wang, H., Han, D., Cheng, Q., Zhang, P., et al. (2020). Loss of
cardiac ferritin H facilitates cardiomyopathy via slc7a11-mediated ferroptosis. Circ.
Res. 127 (4), 486–501. doi:10.1161/CIRCRESAHA.120.316509

Fang, X.,Wang, H., Han, D., Xie, E., Yang, X.,Wei, J., et al. (2019). Ferroptosis as a
target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. U. S. A. 116 (7),
2672–2680. doi:10.1073/pnas.1821022116

Fong, A. P., and Tapscott, S. J. (2013). Skeletal muscle programming and re-
programming. Curr. Opin. Genet. Dev. 23 (5), 568–573. doi:10.1016/j.gde.2013.
05.002

Grebe, A., Hoss, F., and Latz, E. (2018). NLRP3 inflammasome and the IL-1
pathway in atherosclerosis. Circ. Res. 122 (12), 1722–1740. doi:10.1161/
CIRCRESAHA.118.311362

Guo, S., Chen, Y., Xue, X., Yang, Y., Wang, Y., Qiu, S., et al. (2021).
Correction: TRIB2 desensitizes ferroptosis via βTrCP-mediated TFRC
ubiquitiantion in liver cancer cells. Cell. Death Discov. 7 (1), 205. doi:10.
1038/s41420-021-00597-8

Guo, Y., Lu, C., Hu, K., Cai, C., and Wang, W. (2022). Ferroptosis in
cardiovascular diseases: Current status, challenges, and future perspectives.
Biomolecules 12 (3), 390. doi:10.3390/biom12030390

Hahner, F., Moll, F., and Schroder, K. (2020). NADPH oxidases in the
differentiation of endothelial cells. Cardiovasc. Res. 116 (2), 262–268. doi:10.
1093/cvr/cvz213

Hao, S., Yu, J., He, W., Huang, Q., Zhao, Y., Liang, B., et al. (2017). Cysteine
dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells.
Neoplasia 19 (12), 1022–1032. doi:10.1016/j.neo.2017.10.005

Hildebrandt, A., Kirchner, B., Meidert, A. S., Brandes, F., Lindemann, A., Doose,
G., et al. (2021). Detection of atherosclerosis by small RNA-sequencing analysis of
extracellular vesicle enriched serum samples. Front. Cell. Dev. Biol. 9, 729061.
doi:10.3389/fcell.2021.729061

Hu, X. F., Wang, L., Xiang, G., Lei, W., and Feng, Y. F. (2018). Angiogenesis
impairment by the NADPH oxidase-triggered oxidative stress at the bone-implant
interface: Critical mechanisms and therapeutic targets for implant failure under
hyperglycemic conditions in diabetes. Acta Biomater. 73, 470–487. doi:10.1016/j.
actbio.2018.04.008

Huang, Y., Xu, W., and Zhou, R. (2021). NLRP3 inflammasome activation
and cell death. Cell. Mol. Immunol. 18 (9), 2114–2127. doi:10.1038/s41423-
021-00740-6

Kang, R., Zeng, L., Zhu, S., Xie, Y., Liu, J., Wen, Q., et al. (2018). Lipid
peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial
sepsis. Cell. Host Microbe 24 (1), 97–108. doi:10.1016/j.chom.2018.05.009

Kay, M., Soltani, B. M., Aghdaei, F. H., Ansari, H., and Baharvand, H. (2019).
Hsa-miR-335 regulates cardiac mesoderm and progenitor cell differentiation. Stem
Cell. Res. Ther. 10 (1), 191. doi:10.1186/s13287-019-1249-2

Kozawa, K., Sekai, M., Ohba, K., Ito, S., Sako, H., Maruyama, T., et al. (2021).
The CD44/COL17A1 pathway promotes the formation of multilayered,
transformed epithelia. Curr. Biol. 31 (14), 3086–3097.e7. doi:10.1016/j.cub.
2021.04.078

Kumar, S., Sur, S., Perez, J., Demos, C., Kang, D. W., Kim, C. W., et al. (2021).
Atorvastatin and blood flow regulate expression of distinctive sets of genes in mouse
carotid artery endothelium. Curr. Top. Membr. 87, 97–130. doi:10.1016/bs.ctm.
2021.08.004

Lane, D., Ayton, S., and Bush, A. I. (2018). Iron and alzheimer’s disease: An
update on emerging mechanisms. J. Alzheimers Dis. 64 (1), S379–S395. doi:10.3233/
JAD-179944

Li, N., Wang, W., Zhou, H., Wu, Q., Duan, M., Liu, C., et al. (2020).
Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac
injury. Free Radic. Biol. Med. 160, 303–318. doi:10.1016/j.freeradbiomed.
2020.08.009

Liu, T., Jiang, L., Tavana, O., and Gu, W. (2019). The deubiquitylase
OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res. 79 (8),
1913–1924. doi:10.1158/0008-5472.CAN-18-3037

Liu, X., Cheng, Y., Zhang, S., Lin, Y., Yang, J., and Zhang, C. (2009). A necessary
role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and
neointimal hyperplasia. Circ. Res. 104 (4), 476–487. doi:10.1161/CIRCRESAHA.
108.185363

Liu, Y., Jiang, G., Lv, C., and Yang, C. (2022). miR-222-5p promotes dysfunction
of human vascular smooth muscle cells by targeting RB1. Environ. Toxicol. 37 (4),
683–694. doi:10.1002/tox.23434

Luo, T., Gao, J., Lin, N., and Wang, J. (2020). Effects of two kinds of iron
nanoparticles as reactive oxygen species inducer and scavenger on the
transcriptomic profiles of two human leukemia cells with different stemness.
Nanomater. (Basel) 10 (10), E1951. doi:10.3390/nano10101951

Morrell, N. W., Adnot, S., Archer, S. L., Dupuis, J., Jones, P. L., MacLean, M. R.,
et al. (2009). Cellular andmolecular basis of pulmonary arterial hypertension. J. Am.
Coll. Cardiol. 54 (1), S20–S31. doi:10.1016/j.jacc.2009.04.018

Nazari-Jahantigh, M., Wei, Y., Noels, H., Akhtar, S., Zhou, Z., Koenen, R. R., et al.
(2012). MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in
macrophages. J. Clin. Invest. 122 (11), 4190–4202. doi:10.1172/JCI61716

Ravingerova, T., Kindernay, L., Bartekova, M., Ferko, M., Adameova, A., Zohdi,
V., et al. (2020). The molecular mechanisms of iron metabolism and its role in
cardiac dysfunction and cardioprotection. Int. J. Mol. Sci. 21 (21), E7889. doi:10.
3390/ijms21217889

Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H.,
Ballantyne, C., et al. (2017). Antiinflammatory therapy with canakinumab for
atherosclerotic disease. N. Engl. J. Med. 377 (12), 1119–1131. doi:10.1056/
NEJMoa1707914

Schultz, K., Rasmussen, L. M., and Ledet, T. (2005). Expression levels and
functional aspects of the hyaluronan receptor CD44. Effects of insulin, glucose,
IGF-I, or growth hormone on human arterial smooth muscle cells. Metabolism. 54
(3), 287–295. doi:10.1016/j.metabol.2004.09.007

Singh, H., Khan, A. A., and Dinner, A. R. (2014). Gene regulatory networks in the
immune system. Trends Immunol. 35 (5), 211–218. doi:10.1016/j.it.2014.03.006

Stamenkovic, A., O’Hara, K. A., Nelson, D. C., Maddaford, T. G., Edel, A. L.,
Maddaford, G., et al. (2021). Oxidized phosphatidylcholines trigger ferroptosis in
cardiomyocytes during ischemia-reperfusion injury. Am. J. Physiol. Heart Circ.
Physiol. 320 (3), H1170–H1184. doi:10.1152/ajpheart.00237.2020

Su, G., Yang, W., Wang, S., Geng, C., and Guan, X. (2021). SIRT1-autophagy axis
inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-
1B and IL-18. Biochem. Biophys. Res. Commun. 561, 33–39. doi:10.1016/j.bbrc.2021.
05.011

Sun, C., Li, J., Li, Y., Li, L., and Huang, G. (2021). Circular RNA
circUBR4 regulates ox-LDL-induced proliferation and migration of vascular
smooth muscle cells through miR-185-5p/FRS2 axis. Mol. Cell. Biochem. 476
(11), 3899–3910. doi:10.1007/s11010-021-04207-0

Takahashi, K., and Yamanaka, S. (2016). A decade of transcription factor-
mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell. Biol. 17 (3),
183–193. doi:10.1038/nrm.2016.8

Weber, C., and Noels, H. (2011). Atherosclerosis: Current pathogenesis and
therapeutic options. Nat. Med. 17 (11), 1410–1422. doi:10.1038/nm.2538

Wu, X., Li, Y., Zhang, S., and Zhou, X. (2021). Ferroptosis as a novel therapeutic
target for cardiovascular disease. Theranostics 11 (7), 3052–3059. doi:10.7150/thno.
54113

Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., et al. (2016). Ferroptosis:
Process and function. Cell. Death Differ. 23 (3), 369–379. doi:10.1038/cdd.2015.158

Frontiers in Genetics frontiersin.org12

Zhang et al. 10.3389/fgene.2022.964458

119

https://doi.org/10.3389/fmolb.2021.756085
https://doi.org/10.3389/fmolb.2021.756085
https://doi.org/10.1177/03000605211042975
https://doi.org/10.1074/jbc.M808788200
https://doi.org/10.1016/j.wneu.2021.05.098
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1016/j.nbd.2016.05.011
https://doi.org/10.1016/j.nbd.2016.05.011
https://doi.org/10.1038/nm1102-1249
https://doi.org/10.7150/ijbs.34517
https://doi.org/10.1161/CIRCRESAHA.120.316509
https://doi.org/10.1073/pnas.1821022116
https://doi.org/10.1016/j.gde.2013.05.002
https://doi.org/10.1016/j.gde.2013.05.002
https://doi.org/10.1161/CIRCRESAHA.118.311362
https://doi.org/10.1161/CIRCRESAHA.118.311362
https://doi.org/10.1038/s41420-021-00597-8
https://doi.org/10.1038/s41420-021-00597-8
https://doi.org/10.3390/biom12030390
https://doi.org/10.1093/cvr/cvz213
https://doi.org/10.1093/cvr/cvz213
https://doi.org/10.1016/j.neo.2017.10.005
https://doi.org/10.3389/fcell.2021.729061
https://doi.org/10.1016/j.actbio.2018.04.008
https://doi.org/10.1016/j.actbio.2018.04.008
https://doi.org/10.1038/s41423-021-00740-6
https://doi.org/10.1038/s41423-021-00740-6
https://doi.org/10.1016/j.chom.2018.05.009
https://doi.org/10.1186/s13287-019-1249-2
https://doi.org/10.1016/j.cub.2021.04.078
https://doi.org/10.1016/j.cub.2021.04.078
https://doi.org/10.1016/bs.ctm.2021.08.004
https://doi.org/10.1016/bs.ctm.2021.08.004
https://doi.org/10.3233/JAD-179944
https://doi.org/10.3233/JAD-179944
https://doi.org/10.1016/j.freeradbiomed.2020.08.009
https://doi.org/10.1016/j.freeradbiomed.2020.08.009
https://doi.org/10.1158/0008-5472.CAN-18-3037
https://doi.org/10.1161/CIRCRESAHA.108.185363
https://doi.org/10.1161/CIRCRESAHA.108.185363
https://doi.org/10.1002/tox.23434
https://doi.org/10.3390/nano10101951
https://doi.org/10.1016/j.jacc.2009.04.018
https://doi.org/10.1172/JCI61716
https://doi.org/10.3390/ijms21217889
https://doi.org/10.3390/ijms21217889
https://doi.org/10.1056/NEJMoa1707914
https://doi.org/10.1056/NEJMoa1707914
https://doi.org/10.1016/j.metabol.2004.09.007
https://doi.org/10.1016/j.it.2014.03.006
https://doi.org/10.1152/ajpheart.00237.2020
https://doi.org/10.1016/j.bbrc.2021.05.011
https://doi.org/10.1016/j.bbrc.2021.05.011
https://doi.org/10.1007/s11010-021-04207-0
https://doi.org/10.1038/nrm.2016.8
https://doi.org/10.1038/nm.2538
https://doi.org/10.7150/thno.54113
https://doi.org/10.7150/thno.54113
https://doi.org/10.1038/cdd.2015.158
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964458


Xue, C. D., Chen, Y., Ren, J. L., Zhang, L. S., Liu, X., Yu, Y. R., et al. (2019).
Endogenous intermedin protects against intimal hyperplasia by inhibiting
endoplasmic reticulum stress. Peptides 121, 170131. doi:10.1016/j.peptides.2019.
170131

Yang, H. M., Kim, B. K., Kim, J. Y., Kwon, Y. W., Jin, S., Lee, J. E., et al. (2013).
PPARγ modulates vascular smooth muscle cell phenotype via a protein kinase
G-dependent pathway and reduces neointimal hyperplasia after vascular injury.
Exp. Mol. Med. 45, e65. doi:10.1038/emm.2013.112

Yin, H., Xu, L., and Porter, N. A. (2011). Free radical lipid peroxidation:
Mechanisms and analysis. Chem. Rev. 111 (10), 5944–5972. doi:10.1021/
cr200084z

Yoshimura, S., Morishita, R., Hayashi, K., Yamamoto, K., Nakagami, H., Kaneda,
Y., et al. (2001). Inhibition of intimal hyperplasia after balloon injury in rat carotid

artery model using cis-element ’decoy’ of nuclear factor-kappaB binding site as a
novel molecular strategy. Gene Ther. 8 (21), 1635–1642. doi:10.1038/sj.gt.3301566

Zhang, L., Gu, J., Wang, S., He, F., and Gong, K. (2022). Identification of key
differential genes in intimal hyperplasia induced by left carotid artery ligation. PeerJ
10, e13436. doi:10.7717/peerj.13436

Zhao, L., Lee, E., Zukas, A. M., Middleton, M. K., Kinder, M., Acharya, P. S., et al.
(2008). CD44 expressed on both bone marrow-derived and non-bone marrow-
derived cells promotes atherogenesis in ApoE-deficient mice. Arterioscler. Thromb.
Vasc. Biol. 28 (7), 1283–1289. doi:10.1161/ATVBAHA.108.165753

Zhou, Y., Zhou, H., Hua, L., Hou, C., Jia, Q., Chen, J., et al. (2021). Verification of
ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human
coronary artery atherosclerosis. Free Radic. Biol. Med. 171, 55–68. doi:10.1016/j.
freeradbiomed.2021.05.009

Frontiers in Genetics frontiersin.org13

Zhang et al. 10.3389/fgene.2022.964458

120

https://doi.org/10.1016/j.peptides.2019.170131
https://doi.org/10.1016/j.peptides.2019.170131
https://doi.org/10.1038/emm.2013.112
https://doi.org/10.1021/cr200084z
https://doi.org/10.1021/cr200084z
https://doi.org/10.1038/sj.gt.3301566
https://doi.org/10.7717/peerj.13436
https://doi.org/10.1161/ATVBAHA.108.165753
https://doi.org/10.1016/j.freeradbiomed.2021.05.009
https://doi.org/10.1016/j.freeradbiomed.2021.05.009
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964458


A prognostic signature of
pyroptosis-related lncRNAs
verified in gastric cancer samples
to predict the immunotherapy
and chemotherapy drug
sensitivity
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Background: Pyroptosis is a recently identified mode of programmed

inflammatory cell death that has remarkable implications for cancer

development. lncRNAs can be involved in cellular regulation through various

pathways and play a critical role in gastric cancer (GC). However, pyroptosis

-related lncRNAs (PRlncRNAs) have been rarely studied in GC.

Methods: Pyroptosis-related gene were abstracted from the literature

and GSEA Molecular Signatures data resource. PRlncRNAs were obtained

using co-expression analysis. LASSO Cox regression assessment was

employed to build a risk model. Kaplan-Meier (KM), univariate along with

multivariate Cox regression analysis were adopted to verify the predictive

efficiency of the risk model in terms of prognosis. qRT-PCR was adopted to

validate the expression of PRlncRNAs in GC tissues. In addition, immune

cell infiltration assessment and ESTIMATE score evaluation were adopted

for assessing the relationship of the risk model with the tumor immune

microenvironment (TME). Finally, immune checkpoint gene association

analysis and chemotherapy drug sensitivity analysis were implemented to

assess the worthiness of our risk model in immunotherapy and

chemotherapy of GC.

Results: We identified 3 key PRlncRNAs (PVT1, CYMP-AS1 and AC017076.1)

and testified the difference of their expression levels in GC tumor tissues

and neighboring non-malignant tissues (p < 0.05). PRlncRNAs risk model

was able to successfully estimate the prognosis of GC patients, and lower

rate of survival was seen in the high-GC risk group relative to the low-GC

risk group (p < 0.001). Other digestive system tumors such as pancreatic

cancer further validated our risk model. There was a dramatic difference

in TMB level between high-GC and low-GC risk groups (p < 0.001). Immune

cell infiltration analysis and ESTIMATE score evaluation demonstrated that
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the risk model can be adopted as an indicator of TME status. Besides, the

expressions of immunodetection site genes in different risk groups

were remarkably different (CTLA-4 (r = −0.14, p = 0.010), VISTA (r = 0.15,

p = 0.005), and B7-H3 (r = 0.14, p = 0.009)). PRlncRNAs risk model

was able to effectively establish a connection with the sensitivity of

chemotherapeutic agents.

Conclusion: The 3 PRlncRNAs identified in this study could be utilized to predict

disease outcome in GC patients. It may also be a potential therapeutic target in

GC therapy, including immunotherapy and chemotherapy.

KEYWORDS

gastric cancer, lncRNA, immunotherapy, TCGA, LASSO regression, pyroptosis,
prognosis

Introduction

Gastric cancer (GC) is a critical public health issue that

should not be underestimated (Smyth et al., 2020).

According to the latest estimates of the International

Agency for Research on Cancer 2020, the number of new

cases of GC reached 1,089,000 worldwide in 2020, and GC

has become the fifth most frequent cancer and the fourth

most frequent cause of cancer death globally, seriously

threatening human health. There are many factors that

affect the development of GC including H. pylori

infection, age, gender, and dietary-behavior, etc.,

(Gonzalez et al., 2013; Oliveira et al., 2015; Praud et al.,

2018; Kumar et al., 2020; Poorolajal et al., 2020). Therefore,

there is still a long way to go in terms of GC prevention.

Besides, the prognosis of GC, particularly at the advanced

stage, is poor, and there is no reliable approach for

estimating the prognosis of GC subjects.

Pyroptosis, which triggers strong inflammation by

releasing dangerous molecules and inflammatory cytokines

consisting of interleukin (IL) -18, IL-1β, etc., (Zhou and

Fang, 2019), is a kind of necrotic and inflammatory

programmed cell death resulting from facilitating caspase-

1 activation (Broz and Dixit, 2016; Man et al., 2017;

Rathinam et al., 2019; Wang et al., 2020). Pyroptosis is

mainly mediated by inflammatory vesicles and excessive

pyroptosis can lead to various inflammatory diseases.

Pyroptosis and inflammation are important in mediating

infectious diseases, immune disorders, etc. Numerous

investigations in recent years have established that

pyroptosis is remarkably linked to tumorigenesis (Ma

et al., 2018; Wang et al., 2019; Zhou and Fang, 2019; Fang

et al., 2020).

Long non-coding RNAs (lncRNAs) are a subclass of RNA

molecules whose transcripts exceed 200 nucleotides in length

(Ponting et al., 2009). Generally, they do not encode proteins,

but can participate in protein-coding gene modulation as

RNAs at various levels, consisting of epigenetic modulation,

transcriptional modulation, and post-transcriptional

modulation. Most lncRNAs have a conserved secondary

structure, sheared form, and subcellular localization,

which are important for lncRNAs to perform their

functions. Although the majority of lncRNAs are

expressed at a low level compared to messenger RNA

(mRNA), many lncRNAs are of great importance in

regulating cellular homeostasis and gene expression and

have a central role in cellular processes, biological

development and disease progression (Chen et al., 2018).

Because lncRNA expression is very tissue-specific, it has the

potential to be utilized as diagnostic along with prognostic

biomarkers as well as therapeutic targets for some cancers

(Deng et al., 2017; Chen et al., 2018; Li Y. et al., 2021).

Recently, it has been shown that lncRNAs can be

involved in modulating the process and progress of GC.

Some lncRNAs can promote cancer, and conversely, some

lncRNAs can suppress cancer, but the detailed mechanism

is not clear (Sun et al., 2016; Wei and Wang, 2017; Ren et al.,

2020). Similarly, the role of pyroptosis in cancer also has

some duality (Kolb et al., 2014). LncRNA plays an

important role in pyroptosis, which can unbalance the

inflammasome and lead to cell pyroptosis. It can also

regulate pyroptosis through mediating different signaling

pathways (Wan et al., 2020; Xu et al., 2020). Some studies

have demonstrated the predictive value of pyroptosis-

related long noncoding RNAs (PRlncRNAs) for the

prognosis of cancer patients. This indicated a possible

important role of PRlncRNAs in tumors (Lu et al., 2022).

Given the limited amount of research on PRlncRNAs in GC,

we started investigating whether PRlncRNAs may be

employed as diagnostic, as well as prognostic indicators

for the prevention along with treatment of GC.

Based on the TCGA database and quantitative real-time

polymerase chain reaction (qRT-PCR), we screened for

PRlncRNAs that play an important role in GC prognosis.
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We then constructed a risk model to further predict the

prognosis of GC patients, and explored the predictive

significance of the model in immunotherapy and

chemotherapy, thereby providing a more reliable scientific

basis for its use as a prognostic marker as well as an indicator

of treatment response for GC patients.

FIGURE 1
Flowchart of this study.
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Materials and methods

Data collection

The original gene expression data (375 samples of GC tissues

along with 32 samples of para-cancerous tissues) were obtained

from the TCGA data resource (https://portal.gdc.cancer.gov).

The original clinical data of the GC subjects were also

abstracted from the TCGA data resource. Corresponding

clinical information consisted of age, family history, gender,

grade, pathological stage, along with vital status. The clinical

characteristics of the subjects are shown in Supplementary Table

S1. All our data were abstracted from TCGA, thus, approval from

the Ethics Committee was not required. This research work was

in full compliance with the guidelines for the NIH TCGA human

subject protection and data access policies. The flowchart of this

study was shown in Figure 1.

PRlncRNAs co-expressed with
pyrophosis-related encoding genes

A total of 50 pyrophosis-linked encoding genes (mRNAs)

were abstracted from literature and the Molecular Signatures

Database of Gene Set Enrichment Analysis (GSEA, http://www.

gsea-msigdb.org/). Firstly, we screened out the differentially

expressed lncRNAs in the tumor group and the adjacent

normal group by the limma R package. Then co-expressed

lncRNAs were assessed via creating a pyrophosis-linked

mRNA-lncRNA co-expression network on the basis of the

criteria of |Correlation Coefficient| > 0.4 and p < 0.

001 through Pearson correlation analysis by the cor. test

function. Finally, lncRNAs that are both differentially

expressed and significantly co-expressed with pyroptosis-

related genes are PRLncRNAs.

LASSO cox regression analysis

Herein, the prognostic worthiness of these PRlncRNAs were

screened by univariate along with multivariate Cox regression

assessment firstly. Then, we created an efficient Risk Assessment

Model by the least absolute shrinkage and selection operator

(LASSO) Cox regression assessment via the glmnet package in R

for modeling. We adopted the Glmnet package to explore the

penalty parameter lambda through the cross-verification and

uncovered the optimal lambda value. The optimal values of the

penalty parameter were assessed by 1000-round cross-

verification. We chose the most suitable lncRNA group to

create a risk model. The median value of the risk score was

adopted as the cut-off point. Herein, the patients were stratified

into high-GC and low-GC risk groups. The risk score was

calculated on the basis of a linear combination of the

coefficients resulting from the LASSO regression model

multiplied with the expression value of each selected lncRNA

(coef: coefficient; expr: expression; lncRNAn: The nth lncRNAs):

Risk score = coef (lncRNA1) *expr (lncRNA1) +coef (lncRNA2) *expr

(lncRNA2) +. . .+coef (lncRNAn) *expr (lncRNAn).

Evaluation of the risk model

The area under the curve (AUC) for two-year, three-year, as

well as five-year overall survival was estimated via the time-

dependent receiver operating characteristic (ROC) curve, and the

accuracy for survival estimation of the risk model was assessed

with the survival package in R. To assess the effect of the risk

model on patients’ rates of survival, we used univariate along

with multivariate independent prognostic analysis.

We utilized independent prognostic criteria to create a

prognosis nomogram via the R “rms” package in order to

provide a quantitative tool for forecasting the rate of survival

in the TCGA GC data set. Afterwards, a calibration curve was

generated to check if the estimated survival outcome (two-year,

three-year, and five-year survival) matched the observed

outcome.

GSEA analysis of prognostic lncRNAs and
risk groups in the model

Gene Set Enrichment Analysis (GSEA) is a very powerful

enrichment analysis method that can perform GSEA analysis

against data from a variety of databases, including common

Gene Ontology (GO) databases, Kyoto Encyclopedia of Genes

and Genomes (KEGG) databases, etc., (Powers et al., 2018).

Herein, we assessed the potential molecular mechanisms of

prognostic lncRNAs, the cellular processes enriched in high-

GC and low-GC risk groups on the basis of the KEGG library

in GSEA software 4.1.0. The visualization of the results was

carried out by R.

Correlation analysis between the model
and TMB

The total number of non-synonymous mutations in every

coding region of the tumor genome was characterized as Tumor

mutation load (TMB), which included the total number of gene

coding errors, base substitution insertions, and deletions (Lv

et al., 2020; Zhang et al., 2020). In this work, we abstracted the

somatic mutation information via a Perl script, after which TMB

value was determined via dividing the number of somatic

mutations. R was utilized to merge the patient’s TMB

information with the risk scores. We investigated the TMB

levels of patients in different risk categories and the
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association between TMB and riskscore. Then we assessed the

rates of survival of patients with varied TMB levels.

Immune cell infiltration analysis and
ESTIMATE score evaluation

Cell-type Identification by Estimating Relative Subsets of

RNA Transcripts (CIBERSORT) is a deconvolving algorithm-

based analytical resource for estimating the composition and

number of immune cells in mixed cell (Newman et al., 2015). To

accurately assess the composition of immune cells in the tumor

microenvironment, we utilized the CIBERSORT algorithm to

calculate and quantify tumor-infiltrating immune cells from

RNA sequencing data to analyze whether different types of

immune cells infiltrate differently in the high-GC risk and

low-GC risk groups.

In this research work, the immunoscore for every patient was

computed with the ESTIMATE approach utilizing the “estimate”

R package. ESTIMATE is a popular enrichment algorithm, which

was extensively utilized in medical studies (Liu et al., 2021a; Liu

et al., 2021b; Liu et al., 2021c). The abundance ratio matrix of

22 immune cells for each sample was acquired by cell type

identification by estimating relative sub-sets of RNA

transcripts (CIBERSORT: https://cibersort.stanford.edu/). The

algorithm of 1,000 permutations was employed. Only samples

having a CIBERSORT p of < 0.05 were incorporated in the

subsequent analysis of comparing differential immune invasion

levels between the sub-groups categorized by risk scores.

Correlation analysis between the model
and immunotherapy

The immune checkpoint is a key regulator of the immune

system’s ability to suppress or stimulate systemic function

(Gibney et al., 2016; Topalian et al., 2016). Immune

checkpoint blockade (ICB) therapy is used to unblock the

suppressive effect of tumor cells on immune cells by blocking

the interaction between immune checkpoint expressing tumor

cells and immune cells, thus restoring effective T cell function

(Pardoll, 2012; Patel and Minn, 2018; Wei et al., 2018). We

adopted the limma package to analyze whether the expression of

common immune checkpoint genes (CTLA-4, B7-H3, VISTA,

PD1, PD-L1, etc.) differed in high-GC and low-GC risk group,

and thus to assess the significance of this risk model in assessing

the benefits of immunotherapy.

To further assess the relationship of the risk scores with

clinical chemotherapy, we predicted the sensitivity of

chemotherapeutic agents and analyzed the differences in

chemotherapy drug sensitivity between high-GC and low-GC

risk groups. We utilized the “pRRophetic” R package to predict

the drugs’ half-maximal inhibitory concentration (IC50) on the

basis of the Cancer Cell Line Encyclopedia (CCLE) by ridge

regression.

GC samples collection and quantitative
real-time polymerase chain reaction

A total of 40 pairs of GC tissues and Para cancerous tissues

were acquired from Zhongda Hospital, Southeast University, and

authorized by the Ethics Committee of Zhongda Hospital,

Southeast University. All subjects signed an informed consent

form. All the tissues were collected following surgical excision

from individuals who had never undergone prior radiotherapy or

chemotherapy. Then, we stored these samples at −80°C for

further use.

We extensively assessed the expression of predictive

lncRNAs in GC tissues and neighboring non-tumorous tissues

via qRT-PCR. Isolation of total RNA from GC tissues was done

with the TRIzol reagent (Invitrogen, Carlsbad, United States).

After that, generation of cDNA was done with the

PrimeScriptTM RT reagent kit (TAKARA). The qPCR

reaction constituted a 20 μL mixture, comprising diluent

cDNA 1 μL, 2x RealStar Power SYBR Mixture (GenStar,

China) 10 μL, DEPC water 8.2 μL, forward primers (FP) and

reverse primers (RP) 0.4 μL, respectively. The reaction was

carried on the StepOnePlus PCR System (Applied Biosystems,

United States) for 40 cycles (95°C for 15 s, 60°C for 30 s, and 72°C

for 30 s) following a 2 min pre-denaturation at 95°C. Relative

transcript expression was computed with the 2−ΔΔCt approach

and standardized to GAPDH. All primers were synthesized by

Sangon Biotech (Shanghai, China). The sequence of the primers

is as follows: GAPDH FP: TCAAGATCATTGCTCCTCCTGAG;

RP: ACATCTGCTGGAAGGTGGACA, PVT1 FP: TCCACT

CACTTTGGCCTTTC; RP: AGGTGAACACAGAGCACCAA,

CYMP-AS1 FP: GAGGTGGTCCTGAGGTTCAA; RP: ACC

TTTGTCGGTGCTAGTGC, AC017076.1 FP: AAGTTGAGG

TGGCCCTGAAT; RP: TTTAGCTCACATCTGTCCAGTCA.

Statistical analysis

All statistical analyses and visualization were impelemented

in R software 4.1.1 (https://www.r-project.org/), including R

packages limma, pheatmap, igraph, reshape2, ggpubr, glmnet,

forestplot, survival, survminer, timeROC, rms, foreign, utils, org.

Hs.eg.db, clusterProfiler, enrichplot, vioplot, ggExtra, plyr, grid,

gridExtra, pRRophetic, etc. Wilcoxon test was adopted for the

comparisons between two groups. Survival analysis was done

with the survival along with survminer R packages. The limma

package was adopted to estimate the mean and variance of gene

expression, immune cell infiltration levels, drug sensitivity, etc. in

different subgroups to perform a variance analysis through a

linear model. The Kaplan Meier method and the log-rank test
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were adopted for survival analysis and survival distribution

comparisons. Logistic LASSO regression, univariate along with

the multivariate Cox regression analysis were implemented to

screening for effective prognosis-linked genes. Forest map was

drawn by the R language ggforest package. p-value less than 0.

05 was regarded as statistical significance.

Results

Identification and screening of
pyrophosis-related lncRNAs

We have obtained 50 pyrophosis-related genes through

searching literature and GSEA database (Supplementary Table

S2). Based on the transcriptome dataset of GC cohort

downloaded from TCGA database, we performed co-expressed

analysis and constructed pyrophosis-related mRNA-lncRNA co-

expression network. There were 29 lncRNAs strongly associated

with pyrophosis-related genes (Figure 2A). Then, univariate Cox

regression analysis was conducted on these 29 lncRNAs. A total

of 8 lncRNAs were identified according to the criterion of p <
0.05 (Figure 2B). Subsequent multivariate Cox regression

analysis indicated that only 3 lncRNAs (PVT1, p = 0.004;

CYMP. AS1, p < 0.001; AC017076.1, p = 0.020) exhibited

significant prognostic value for GC. In addition, the boxplot

and heatmap showed that the expressions of these 3 lncRNAs

were all higher in tumor samples than in adjacent normal

samples (Figures 2C–E).

Functional and pathway enrichment
assessment of the 3 pyrophosis-related
lncRNAs signature

To further clarify the possible biological processes

involved in the 3 lncRNAs, we analyzed the pathways in

which they were enriched by GSEA. The result showed that

the low expression of PVT1 was mainly associated with these

signaling pathways, including ECM receptor interaction,

calcium signaling pathway, drug metabolism cytochrome

p450, focal adhesion etc.; its high expression mainly

focused on RNA polymerase, pyrimidine metabolism,

spliceosome and so on (Figure 2F). Notably, CYMP.

AS1 and AC017076.1 had no significant enrichment

pathways corresponding to its high expression, while at low

FIGURE 2
(A) Co-expression network of the pyroptosis-related mRNAs-lncRNAs was constructed and visualized using R. (B) The forest showed the HR
(95% CI) and p-value of selected lncRNAs by univariate Cox regression analysis. (C–E) Visualization of the expression levels of lncRNAs with
prognostic value expressed in human GC tumor tissues and adjacent normal tissues. (F–H) Represents the significantly enriched KEGG pathways of
lncRNA PVT1, CYMP-AS1, and AC017076.1 in different expression level, respectively. GC, gastric cancer.
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expression CYMP-AS1 affected N_glycan biosynthesis, base

excision repair, selenoamino acid metabolism, pyrimidine

metabolism, etc. (Figure 2G). Similarly, the low expression

of AC017076.1 was related to these basic cellular metabolic

processes (Figure 2H).

The establishment of prognostic risk score
model

We applied Lasso Cox regression to the 3 lncRNAs and found they

are all highly related to survival time of GC patients (Figures 3A,B). We

calculated the risk scores of each GC patient with the LASSO Cox

regression model based on the expression levels and the coefficients of

these 3 lncRNAs. Risk score = (-0.0820120141988985*expression level of

PVT1) + (0.717013150171401*expression level of CYMP-AS1) +

(0.834152964623546*expression level of AC017076.1). According to

the median risk score, All GC patients were divided into the high-risk

(high risk score) or the low-risk (low risk score) group.

In addition, Kaplan-Meier survival curve was constructed to

assess the associations between the expression levels of the 3-

PRlncRNAs signature and overall survival (OS), As the Kaplan-

Meier survival curve shows in Figure 3C, samples of high-risk group

exhibited poorer OS than those of low-risk group (p < 0.001),

suggesting that the prognostic signature of risk score is effective.

Time dependent ROC analysis demonstrated that the prognostic

accuracy of the 3-PRlncRNAs signature was 0.601 at 2-year, 0.613 at

3-year, and 0.706 at 5-year (Figure 3D). The risk curve and scatterplot

were drawn to show the risk score and survival status of each GC

patient. The risk coefficient and mortality of patients in the high-risk

group were higher than those in the low-risk group (Figures 3E,F).

Univariate and multivariate cox regression
analyses of the prognostic ability of the
risk model

Univariate and multivariate Cox regression analysis were

employed to estimate whether our model was a clinically

independent prognostic factor for GC patients. The risk scores of

the 3-PRlncRNAs signature and clinicopathological characteristics,

including age, gender, grade, pathological tumor stage, were used as

variables. Based on the GC cohort, univariate analysis indicated that

the risk score (p < 0.001), age (p = 0.023), and pathological tumor

stage (p = 0.008) were significantly associated with OS (Figure 4A).

Subsequent multivariate analysis displayed that the risk score (p <
0.001), age (p = 0.004), pathological tumor stage (p = 0.008), gender

(p = 0.048), and grade (p = 0.033) were significantly correlated with

OS (Figure 4B). The results demonstrated that the risk score,

pathological tumor stage and age were the optimal independent

prognostic factors that could be used to predict the survival rate in

GC patients. Especially, the prognostic 3-PRlncRNAs signature

FIGURE 3
Construction of a 3-PRlncRNAs risk model and its predictive worthiness for GC subjects on the basis of TCGA data resource. (A) Logistic LASSO
regression analisis on the optimum lncRNAs to create the final estimationmodel. The total number of lncRNAs is provided at the top of the figure. The
deviation in partial likelihood is displayed versus log lambda. Dotted vertical lines designate the optimal values. (B) Profiles of the core lncRNA’s
LASSO coefficients. The total number of lncRNAs is indicated at the top of the figure. Each curve corresponds to a certain key lncRNA, and the
number next to it indicates the lncRNA’s serial number. (C) Kaplan-Meier survival analysis of the high-GC risk and low-GC risk groups based on the
risk model andmedian risk score in GC patients. (D) The receiver operating characteristic (ROC) curve of the risk model for two-year, three-year, and
five-year survival prediction. (E) The risk curve for each sample was on the basis of the risk score. (F) The scatterplot depicting each sample’s survival
status. The green and red dots, respectively, signify survival and death. GC, gastric cancer; OS, overall survival. *p < 0.05; **p < 0.01; ***p < 0.001.
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showed a higher significance in being an independent prognostic

predictor for GC patients.

External verification of the 3-PRlncRNAs
signature in other cancers of digestive
system

To estimate whether the prognostic 3-PRlncRNA signature had

similar predictive values in different cohorts, we calculated the risk score

for each sample according to the coefficients of these 3 PRlncRNAs to

predict OS in other digestive system tumors from TCGA. A total of

177 pancreatic cancer (PC) patients were divided into a low-risk group

and a high-risk group by the optimal cutoff value, and theOS of the PC

patients in the low-risk group was significantly higher than that of the

patients in the high-risk group (log-rank p < 0.05; Figure 4C). The 3-

PRlncRNA signature constructed with the PC cohort also displayed a

pretty accuracy in predicting the 2- year, 3- year, and 5-year OS, with

AUC values of 0.584, 0.649 and 0.724 (Figure 4D).

Construction of a nomogram for
predicting survival

To offer a clinically applicable and quantitative tool for

predicting the prognosis of GC patients, we further

FIGURE 4
(A,B) Forest plot for the univariate (A) andmultivariate (B)Model of the risk score along with clinicopathological variables on the basis of the Cox
proportional hazard regression. Kaplan-Meier curve (C) and the receiver operating characteristic (ROC) curve (D) of the relationship between risk
score and OS of PANC patients. (E) Nomogram for prognosis in subjects with GC based on risk score along with the clinical data. (F–H) The
nomogram’s calibration curve. Perfect prediction is represented by a dashed line at 45°. GC, gastric cancer; PANC, pancreatic cancer; OS,
overall survival. *p < 0.05; **p < 0.01; ***p < 0.001.
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constructed a prognostic nomogram to predict the survival

probability at 2-year, 3-year, and 5-year based on the TCGA

GC cohort. Six independent prognostic parameters,

including age, gender, grade, stage, family history and risk

score, were enrolled in the prediction model (Figure 4E). The

calibration curve of the prognostic nomogram showed good

agreement between prediction and observation

(Figures 4F–H).

Functional and pathway enrichment
assessment of high and low risk groups

To investigate whether biological processes and pathways

differed between the high and low risk groups, we performed GO

and KEGG enrichment analysis. The results showed that the high

and low risk groups exhibited differences in some basic cellular

biological activities, including DNA replication, nucleotide

metabolism, primary immunodeficiency, nucleosome

assembly, protein−DNA complex assembly, etc. (Figures 5A,B).

Correlation of the 3-PRlncRNA signature
with immune cell infiltration

Considering the close relationship between pyroptosis and

immunity, we explored the difference in immune cell infiltration

between the two groups. Based on the ESTIMATE algorithm, we

calculated the stromal score, immune score and ESTIMATEscore

of each GC sample. Higher ESTIMATEscore (p = 0.003) were

observed in the high-risk group compared with the low-risk

group (Figure 5D), illustrating the different composition of

tumor microenvironment in different risk groups. We further

analyzed the abundance of 22 immune cells in the tumor

microenvironment in the two groups. As the results shown in

Figure 5C, in the high-risk group, the proportions of B cells

memory (p = 0.044), T cells follicular helper (p = 0.013),

Macrophages M1 (p < 0.001) and T cells CD4 memory

activated (p = 0.019) were decreased, while the proportions of

Monocytes (p = 0.006) and Neutrophils (p = 0.030) were

increased compared with those in the low-risk group. High

and low risk groups showed differential immune cells

FIGURE 5
(A,B) Functional enrichment analysis of the two risk groups by GSEA. (C,D) Assessment of the correlation between the risk score of the GC
patients and the complex immune infiltration level. (C) Violin plot displayed the distribution of diverse immune cell invasions in the high-GC risk and
low-GC risk groups. (D) The ESTIMATE Score in different risk groups. The red group designates the high-GC risk group, whilst the blue group
represents the low-GC risk group. GC, gastric cancer.
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expression, which suggested that the 3-PRlncRNAs signature

may be associated with prognosis by influencing the infiltration

of immune cells in GC.

Potential of the 3-PRlncRNAs signature as
a predictor of response to immunotherapy

We selected six immune checkpoint genes that are

clinically popular to assess the potential of risk models as

indicators of immunotherapy response. The results showed

that the risk score was significantly correlated with the

expression of CTLA-4 (r = -0.140, p = 0.010), VISTA (r =

0.150, p = 0.005), and B7-H3 (r = 0.140, p = 0.009) (Figures

6A–H). These observed associations between our 3-

PRlncRNAs signature and immunotherapy-related

biomarkers indicated that GC patients in different group

may have different sensitivity to immune checkpoint

inhibitors.

TMB was negatively associated with risk
score and may predict patients’ survival
probability

We analyzed the correlation of the 3-PRlncRNAs signature with

TMB. Our result presented a markedly higher level of TMB in the

low-risk group than the high-risk group (p < 0.001) (Figure 6I).

Consistently, correlation analysis showed that patientswith highTMB

levels had lower risk scores than those with low TMB levels (r =

-0.230, p < 0.001) (Figure 6J). Moreover, in Kaplan-Meier survival

analysis, GC patients with high TMB levels had significantly higher

survival rates than those with low TMB levels (p = 0.003) (Figure 6K).

3-PRlncRNAs signature was predictive to
chemotherapy

In addition to exploring the relationship between risk

models and immunotherapy, we further investigated

FIGURE 6
Correlation assessment of the immune checkpoint genes with GC patients’ risk score. (A–E) Exhibited the expression level of immune
checkpoint genes in high- and low-GC risk groups. (F–H) Exhibited the correlation between the expression level of immune checkpoint genes and
the risk score of GC patients. (I) A boxplot demonstrated the different TMB level in high-GC and low-GC risk groups. (J) The correlation of TMB with
risk score. (K) Kaplan-Meier survival analysis of the high-GC and low-GC TMB groups in GC patients. GC, gastric cancer.
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whether risk models could be applied to the clinical use of

drugs, especially chemotherapeutic drugs. Thus, we analyzed

the differences in the sensitivity of ten chemotherapeutic

agents, which have been widely used in the clinical

treatment of tumors in recent years, in high and low risk

groups. The results demonstrated a significant difference in

the sensitivity of Tipifarnib (p < 0.001), Mitomycin (p <
0.001), Methotrexate (p < 0.001), Lenalidomide (p = 0.026),

Lapatinib (p = 0.044), Embelin (p = 0.009), Doxorubicin (p =

0.003), Dasatinib (p = 0.039), Cytarabine (p = 0.040),

FIGURE 7
The correlation analysis of the sensitivity of chemotherapeutic agents with GC patients’ risk score. (A–K)Represented eleven chemotherapeutic
agents’ IC50 in different risk groups. The green and red boxes represent low-GC risk and high-GC risk group, respectively. GC, gastric cancer.

FIGURE 8
(A–C) The expression of lncRNA PVT1, CYMP-AS1, and AC017076.1 in tumor tissues and normal para cancerous tissues of GC patients,
respectively. GC, gastric cancer.
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Gemcitabine (p < 0.001) and Camptothecin (p < 0.001) in the

high and low risk groups, which may be of critical use in the

treatment of tumors, especially GC (Figures 7A–K).

Quantitative real-time polymerase chain
reaction of GC samples

We compared the expression levels of these 3 lncRNAs in

40 pairs of GC tumor tissue and normal para cancerous tissue

samples. qRT-PCR was conducted to validate the expression level

of these lncRNAs in frozen tissues. Expectedly, all the 3 lncRNAs

were upregulated in GC tumor tissues than in normal para

cancerous tissues (n = 40, PVT1, p < 0.001; CYMP. AS1, p <
0.001; AC017076.1, p < 0.001) (Figures 8A–C).

Discussion

As one of the most frequent malignant tumors in the world,

GC seriously affects people’s health. Although the growth in the

incidence of GC has slowed in recent years, it still poses a

significant disease burden, due in large part to the poor

treatment outcomes as well as poor prognosis and low overall

cure rate (Pinheiro et al., 2014; Luo et al., 2017; Machlowska et al.,

2020; Sexton et al., 2020). Pyroptosis constitutes an inflammatory

programmed cell death mediated by multiple inflammatory

vesicles that play a pivotal role in a variety of diseases, for

instance atherosclerosis (Xu et al., 2018), inflammation-related

diseases (Crusz and Balkwill, 2015), tumors (Wang et al., 2019;

Ruan et al., 2020), etc. . Some pyroptosis related genes, including

the well-known gasdermin (GSDM), have been found can

remarkably regulate the gastric carcinogenesis (Zhang et al.,

2019; Li et al., 2020). lncRNAs have been widely studied in

tumors, and different lncRNAs play different biological roles in

tumors and can regulate its development and progression

through multiple pathways (Sun et al., 2016; Wei and Wang,

2017; Wei et al., 2020). It has been shown that lncRNAs can

mediate cellular pyroptosis through certain mechanisms and

further act on cancer cells. Many investigations have been

conducted to establish the signature of PRlncRNAs to predict

the prognosis of tumor patients in breast (Lv et al., 2021; Ping

et al., 2021), ovarian (Tan et al., 2021), melanoma (Wu L. et al.,

2021), lung (Lin et al., 2021), endometrial (Chen et al., 2021),

liver cancers (Wu Z. H. et al., 2021) etc., but they have rarely been

found in GC. Therefore, we started to establish a validated

PRlncRNAs biomarker to predict the survival status and

treatment outcome of GC patients.

A total of 50 pyroptosis genes were obtained by reviewing

literature and searching the GSEA pyroptosis gene set (Zhou and

Fang, 2019; Ren et al., 2020; Xiang et al., 2021). Then we

performed the co-expression correlation analysis of these

50 pyroptosis genes based on the TCGA GC transcriptome

data, and after the strict screening criteria, we obtained

PRlncRNAs significantly associated with pyroptosis related

genes. Based on these PRlncRNAs and TCGA GC cohort, we

built an effective risk model by logistic LASSO regression.

Logistics LASSO regression is a technique for selecting

variables while fitting a high-dimensional generalized linear

model (Wang et al., 2007; Lee et al., 2016). It was undertaken

to reduce the number of variables and effectively avoid

overfitting, as well as to choose the most appropriate lncRNAs

for modeling. Cross-verification was adopted to establish the

ideal lambda value for the penalty parameter. We obtained a risk

model for three PRlncRNAs by creating a penalty function via

logistic LASSO regression (PVT1, CYMP-AS1, and

AC017076.1). The model separated the GC cohort into high-

GC and low-GC risk groups. The low-GC risk group had a much

greater survival rate. Cox analysis, univariate along with

multivariate, validated that the 3-PRlncRNAs risk model is an

independent predictor of disease outcomes in GC subjects. It is of

interest that there is already a study on the lasso model of

PRlncRNAs construction (Xu et al., 2022). However, we found

that the component lncRNAs of this model were different from

the lncRNAs we used. Our obtained pyroptosis related genes

were comprehensive and pyroptosis related lncRNAs were

screened by stricter criteria. Furthermore, we did not exclude

the GC data in the TCGA data resource to ensure the integrity

and randomization of the clinical data as much as possible.

What`s more, we examined the expression of prognostic

lncRNAs in pairs of GC tissues from hospital using qRT-PCR

to initially validate our model. In addition, we tried to find other

tumor cohorts in the TCGA database to validate the reliability as

well as the applicability of our risk model. PC, like GC, is a cancer

of the digestive system. PC is severely lethal and poses a very high

threat to human health (Morrison et al., 2018). Similarly, when

we placed PC patients into our risk model, patients in the low-

risk group showed a longer survival time. These consistent results

further make our model more convincing.

Plasmacytoma variant translocation 1 (PVT1) is a common

lncRNA located in a cancer-related region chr8q24.21 region,

consisting of 1716 nucleotides (Lu et al., 2017; Onagoruwa et al.,

2020). Many reports have confirmed that PVT1 plays an

indispensable role in GC (Li et al., 2016; Xu et al., 2017). The

expression level of PVT1 is remarkably elevated and may

promote the proliferation as well as migration of GC cells by

activating STAT3-mediated signaling pathways (Zhao et al.,

2018; Niu et al., 2020). Herein, we established that

PVT1 expression was remarkably increased in GC tissues,

which is consistent with previous studies. Wu et al.

demonstrated that CYMP-AS1 can be used as a biomarker for

GC (Wu H. et al., 2021), which further makes our model more

convincing. However, AC017076.1 was less studied. We found

the potential of AC017076.1 as a survival signature by using lasso

algorithm. The value of AC017076.1 as an indicator needs to be

further explored and verified.
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The tumor microenvironment (TME) is a complex and

integrated system. It consists of tumor cells, the surrounding

immune cells, inflammatory cells, stromal cells, nearby

mesenchymal tissue, microvasculature, various cytokines, and

chemokines (Lei et al., 2020). Tumors are remarkably linked to

TME, which can influence its microenvironment through

releasing cell signaling molecules, enhancing tumor

angiogenesis, as well as inducing immune tolerance.

Interestingly, immune cells infiltrating in the

microenvironment can influence the development, growth and

even progression of tumor (Cassim and Pouyssegur, 2019;

Hinshaw and Shevde, 2019). Pyroptosis plays a pivotal role in

TME and thus may affect tumor progression. Cytokines

produced by pyroptosis can regulate immune cells and thus

affect the immune system (Li L. et al., 2021). In GC, immune

cell infiltration is also critical for tumor immune

microenvironment (Perrone et al., 2008). Consistently, we

found that in the GC cohort of TCGA, the infiltration of

B cells memory, T cells CD4 memory activated, T cells

follicular helper, Monocytes, Macrophages M1, and

Neutrophils had significant differences in the high- and low-

GC risk groups. The ESTIMATE algorithm was adopted to

estimate the stromal score and immune score of tumor

samples based on transcriptomic data. The stromal score

along with immune score represented the abundance of

stromal and immune cells, respectively. These two scores were

summed to obtain the ESTIMATE score, which can be used to

estimate tumor purity (Yoshihara et al., 2013). In our study, the

ESTIMATE score was remarkably higher in the high-GC risk

group than in the low-GC risk group, indicating that tumor

purity was higher in the high-GC risk group.

Therapeutic strategies of tumor include traditional surgery,

radiotherapy, and chemotherapy, as well as targeted therapy,

tumor vaccine and immunotherapy, which have emerged in

recent years (Smyth et al., 2020). Immunotherapy of tumor is a

treatment method that applies immunological principles and

methods to specifically remove tumor lesions and inhibit tumor

growth by activating immune cells in the body and enhancing the

body’s anti-tumor immune response. Immunotherapy can break the

tumor immune tolerance and overcome the immune escape

mechanism (Petitprez et al., 2020). In recent years,

immunotherapy has shown great development potential in

antitumor clinical applications and is gradually becoming the

future direction of tumor therapy. Common immune checkpoint

genes, including PD-1 (Peng et al., 2020), PD-L1 (Topalian et al.,

2020), CTLA-4 (Rowshanravan et al., 2018), VISTA(Rowshanravan

et al., 2018), and B7-H3 (Du et al., 2019), are targets of immune

checkpoint inhibitors. They are widely used in antitumor therapy and

have produced good clinical effects. In our study, the expression levels

of CTLA-4,VISTA, andB7-H3were significantly different in the high

and low risk groups, suggesting that our risk model may be closely

related to immunotherapy for GC, and that patients with high

expression of immune checkpoint genes may be more sensitive to

these checkpoint inhibitors. Studies have shown that the efficiency of

mono-immunotherapy is just 15–20% (Gettinger et al., 2018). And

the combination of immune checkpoint inhibitors is a trend in the

future, as it is more effective in overcoming resistance to

immunotherapy and significantly enhances efficacy (Pollack et al.,

2018; Heinhuis et al., 2019). PD-1 and PD-L1 showed no statistical

significance in the high and low risk groups. We built a hypothesis

that potential synergistic effects may emerge when PD-1 and PD-L1

were combined with CTLA-4, VISTA, or B7-H3, etc. Certainly, this

hypothesis requires more research to prove it.

TMB represents the total number of mutations per

megabase (Mut/Mb) in DNA sequenced in a given cancer.

TMB is an indicator of the efficacy of immunotherapy and

higher TMB may be associated with better outcomes with

immune checkpoint inhibitor therapy (Topalian et al., 2016;

Chan et al., 2019; Negrao et al., 2021). Many studies have

found that the expression of common immune checkpoint

genes PD-1, PD-L1, and CTLA-4 is synchronized with TMB,

and high PD-1 expression levels corresponds to high TMB

(Cristescu et al., 2018; Hellmann et al., 2018; Samstein et al.,

2019). Similarly, in this study, the expression level of TMB was

consistent with that of CTLA-4, so we think that the level of

TMB could be fully considered when designing immunotherapy,

which may be more beneficial to improve the clinical outcome.

Pyroptosis modulates immune cells in TME. LncRNAs can

regulate immune genes and play important roles in immune cell

growth, differentiation, migration, and immune responses. Both

pyroptosis and lncRNAs have important effects on the immune

microenvironment in tumors and may contribute to the effects of

immunotherapy. Therefore, we tried to investigate whether

immunotherapy-related PRlncRNAs could be linked to TMB. We

found a significant difference of TMB in different risk groups,

suggesting that the 3-PRlncRNAs model might be effective in

identifying different levels of TMB. Then, we explored the

correlation between TMB and risk scores, which were negatively

correlated. TMB can be used as an indicator to predict survival rate of

tumor patients, a higher TMB often predicts a better prognosis

(Samstein et al., 2019). This may be due to the higher sensitivity

of patients with high TMB to immunotherapy, which in turn

improves prognosis. The strong link between TMB and

immunotherapy and prognosis, once proven, will be very

beneficial for clinical interventions outcomes and the OS of cancer

patients. Our study initially verified this, butmore in-depth theoretical

and clinical studies are needed to confirm the feasibility of this

conjecture.

We have already mentioned that chemotherapy is one of the

most basic and traditional treatments for tumors, and it is widely

used in clinical practice. However, there is a major problem of

resistance in chemotherapeutic drugs, which makes the

therapeutic effect much less effective (Wu et al., 2014;

Dallavalle et al., 2020). We therefore analyzed the role of the

risk model in differentiating chemosensitivity. The IC50 of

several common chemotherapeutic agents showed a significant
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difference in different risk groups, including Camptothecin,

Gemcitabine, Methotrexate, Mitomycin. C etc.

However, our study also has some limitations. Firstly, the

clinical data downloaded from the TCGA database for GC

patients was not perfect. For example, some clinical

information had lots of censored values, which made our

analysis possibly biased to some extent. Secondly, some

crucial clinical information was not provided, especially

treatment measures the patient has received, which is

important to the prognosis of patients. Above all, most of our

study is database mining and analysis, with only a few clinical

samples to initially validate our results, we need more clinical

prognostic data to support our conclusions.

Conclusion

In conclusion, we obtained 29 lncRNAs co-expressed by

50 pyroptosis genes. Then by univariate and multivariate Cox

regression analysis and lasso algorithm, we finally constructed a

risk model of 3-PRlncRNAs, which can effectively predict the

survival rate of GC patients. We constructed a prognostic

Nomogram based on the 3-PRlncRNAs model and

clinicopathological parameters, which provides an accurate

and effective means to assess the prognosis of GC patients. In

addition, the 3-PRlncRNAs model was expected to be an

emerging tool for immunotherapy effect assessment, which

will bring great benefits to individualized treatment and

medical decision making. Although we applied qRT-PCR for

preliminary validation, further studies are needed to explore the

prognostic value of the 3-PRlncRNAs signature and to confirm

our conclusions, as most of our study was based on

bioinformatics analysis carried out on retrospective data.
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N1-methyladenosine
methylation-related metabolic
genes signature and subtypes for
predicting prognosis and
immune microenvironment in
osteosarcoma
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N1-methyladenosine methylation (m1A), as an important RNA methylation

modification, regulates the development of many tumours. Metabolic

reprogramming is one of the important features of tumour cells, and it plays

a crucial role in tumour development and metastasis. The role of RNA

methylation and metabolic reprogramming in osteosarcoma has been widely

reported. However, the potential roles and mechanisms of m1A-related

metabolic genes (MRmetabolism) in osteosarcoma have not been currently

described. All of MRmetabolism were screened, then selected two

MRmetabolism by least absolute shrinkage and selection operator and

multifactorial regression analysis to construct a prognostic signature.

Patients were divided into high-risk and low-risk groups based on the

median riskscore of all patients. After randomizing patients into train and

test cohorts, the reliability of the prognostic signature was validated in the

whole, train and test cohort, respectively. Subsequently, based on the

expression profiles of the two MRmetabolism, we performed consensus

clustering to classify patients into two clusters. In addition, we explored the

immune infiltration status of different risk groups and different clusters by

CIBERSORT and single sample gene set enrichment analysis. Also, to better

guide individualized treatment, we analyzed the immune checkpoint expression

differences and drug sensitivity in the different risk groups and clusters. In

conclusion, we constructed a MRmetabolism prognostic signature, which may

help to assess patient prognosis, immunotherapy response.

KEYWORDS

N1-methyladenosine methylation, metabolism, osteosarcoma, immune infiltration,
immunotherapy
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Introduction

Osteosarcoma (OS) is a primary malignant bone tumour,

which derived from mesenchymal cells and occurred mostly in

adolescents. Currently, the treatment of osteosarcoma is mainly

combined with neoadjuvant chemotherapy before and after

surgery. However, over the past three decades, there has been

limited improvement in the prognosis of OS (Gianferante et al.,

2017). Therefore, the search for biomarkers that allow early

diagnosis of OS has become a hot research topic and an

imperative in the field of oncology.

Chemical modification of RNA is an important branch of

epigenetics, and more than 100 chemical modifications of RNA

have been identified (Boccaletto et al., 2018). The common

internal modifications in mRNA include N6-adenylation

(m6A), N1-adenylation (m1A), and cytosine hydroxylation

(m5C) (Han et al., 2021). RNA methylation plays an essential

role in almost all steps of mRNA metabolism, and it’s

dysregulation is highly correlated with the occurrence and

progression of tumours. Aberrant methylation of oncogenes in

tumour cells has great potential for early tumour diagnosis.

Metabolic reprogramming, an important feature of tumour

cell, is an adaptive change of tumour cells to meet their

proliferation and metastasis. Inhibition of tumour cell

metabolic processes, including inhibition of glycolysis and

amino acid metabolism, is an emerging starvation therapy in

recent years (Kerk et al., 2021; Stine et al., 2022). Khodaei et al.

(2022) systematically described the generation of effective

immunotherapies by regulating the energy metabolism of

immune cells. In addition, Lee U. et al. (2022) found that the

interaction between metabolic pathways and Hippo signaling

pathways could affect the effect of antitumour drugs and drug

resistance. A few of studies had reported the potential value of

RNA methylation and metabolism-related genes in predicting

the prognosis of OS (Liu et al., 2021; Wu Y. et al., 2022; Li et al.,

2022). However, it remains to be elucidated whether and how

m1A regulates metabolism in OS, and the relationship between

m1A-related metabolic genes (MRmetabolism) and survival in

OS has never been explored.

In this study, we analyzed the mRNA expression matrix of

OS and normal adipose tissue from the UCSC Xena website to

develop a prognosis signature based on two MRmetabolism. We

also investigated the correlation of the signature with clinical

characteristics, tumour immune microenvironment (TIM) and

drug sensitivity.

Materials and methods

Data collection

The mRNA expression matrix and clinical data were

obtained from the UCSC Xena website (http://xena.ucsc.edu/),

including 85 tumour samples and 85 randomized adipose tissue

samples. m1A methylation genes were obtained from a previous

report (Zhang and Jia, 2018). Metabolism-related genes were

obtained by c2. cp.kegg.v7.5.1. symbols.gmt, which was

downloaded from the GSEA website (http://www.gsea-msigdb.

org/gsea/index.jsp).

Screening m1A methylation-related
metabolic genes

The “limma” (Wettenhall and Smyth, 2004) and “survival”

(van Dijk et al., 2008) packages were used to obtain differentially

expressed and prognosis-related metabolic genes and to analyze

their correlation with m1A methylation genes (|Pearson R| >
0.4 and p < 0.05).

Construction and validation of
m1A-related metabolic gene signature

Based on the expression profile of MRmetabolism and

clinical information, the least absolute shrinkage and selection

operator (LASSO) and multivariate Cox (multi-Cox) regression

analysis were used to develop a prognostic signature (Bunea et al.,

2011). The LASSO regression model was as follows: risk Score =

Ʃ [Exp (mRNA) × coef (mRNA)].

Subsequently, we divided all patients into high-risk and low-

risk groups with the median value of riskscore in the entire

cohort. Next, we randomized all patients into training and test

group in a ratio of 3:1. Then, to verify the prognostic ability of the

riskscore, Kaplan-Meier (K-M) survival analysis and the time-

dependent receiver operating characteristic (ROC) analysis were

performed in the whole cohort, training cohort and test cohort,

respectively.

Functional analysis

The curated gene set (kegg.v7.4. symbols.gmt and c5.

all.v7.5.1. symbols.gmt) and “clusterProfiler” (Yu et al., 2012)

were used to identify significantly enriched pathways between the

low-risk and high-risk groups.

Evaluation of immune cell infiltration and
immune checkpoints

We investigated the relationship between riskscore and

tumour-infiltrating immune cells (TIIC) by the CIBERSORT

algorithm and TIMER2.0 (http://timer.cistrome.org/). The

ESTIMATE, immune and stromal scores for the two risk

groups were also analyzed. We also investigated the
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expression levels of immune checkpoints in high-risk and low-

risk groups. In addition, the drug sensitivity was calculated in

the two risk groups by “pRRophetic” package (Geeleher et al.,

2014).

Consensus clustering based on
MRmetabolism

Using the “ConsensusClusterPlus” (Geeleher et al., 2014)

package, K-means was applied to cluster patients into two

clusters and to further investigate the differences of prognosis,

TIIC, immune checkpoint expression and drug sensitivity in the

two clusters.

Results

Identification m1A methylation-related
metabolic gene

The difference between OS samples and adipose tissue

samples was analyzed, we obtained 5,390 differentially

expressed mRNAs (|Log ₂ FC| > 1 and p < 0.05). Meanwhile,

through the survival analysis, we found 809 mRNAs associated

with prognosis. Subsequently, through the GSEA website,

941 mRNAs were obtained to be associated with metabolic

pathways in OS. By Venn diagram, 18 metabolism-related

genes are differentially expressed and correlated with

prognosis (Figure 1A). Subsequently, correlation analysis was

FIGURE 1
Identification of m1A methylation-related metabolic genes. (A) The intersection among clusters metabolism-related genes, survival-related
genes, and differentially expressed genes. (B) The Sankey diagram of m1A methylation-related genes and metabolism-related genes. (C) The forest
plot of four MRmetabolism was plotted by univariate Cox regression analysis. (D) The heatmap of differential expressions of four MRmetabolism.
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performed, four MRmetabolism (ACAT1, TDO2, PHOSPHO1,

and CHST13) were obtained (|Pearson R| > 0.4 and p < 0.05)

(Figure 1B). The four MRmetabolism were performed univariate

Cox (uni-Cox) regression analysis and the differential expression

was visualized as a heatmap (Figures 1C,D).

Construction and validation of the
MRmetabolism signature

Based on the expression of four MRmetabolism in the

whole cohort, the following equation was established by

LASSO and multi-COX regression analysis (Figures 2A,B):

riskscore = (−0.654436269446519* TDO2) +

(0.259855036675258* CHST13). We calculated the

riskscore for each patient. Then, 85 patients were

randomized into the train group (65 samples) and the text

group (20 samples) in a ratio of 3:1. Based on the median

value of riskscore in the whole cohort, we divided the patients

into high-risk and low-risk groups. Principal component

analysis (PCA) showed that patients with different

riskscore were divided into two parts (Figure 2C). The

survival status and riskscore were assessed in the whole,

train and text cohort, respectively, (Figures 2D–I). We also

FIGURE 2
Establishment of prognosis signature. (A,B) The LASSO regression model was constructed. (C) PCA of OS samples according to the riskscore.
(D–I) The distribution of the riskscore and survival status of patients in the whole, train and text cohort, respectively. (J–L) The heatmap of differential
expressions of two MRmetabolism between high-risk and low-risk groups.
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analysis the expression of two MRmetabolism in the whole,

train and text cohort, respectively, (Figure 2J-L).

Subsequently, we found that the prognosis of low-risk group is

better than that of high-risk group by K-M survival in the whole,

train and text cohort (Figures 3A–C). The AUCs for 2-, 4-, and 6-

year survival were 0.783, 0.766, and 0.712 in the whole cohort,

respectively, (Figure 3D). The AUCs for 2-, 4-, and 6-year survival

were 0.739, 0.722, and 0.717 in the train cohort, respectively,

(Figure 3E). The AUCs for 2-, 4-, and 6-year survival were 0.960,

1.000, and 0.624 in the text cohort, respectively, (Figure 3F). We

performed uni-Cox and multi-Cox regression analyses, implying

that riskscore, as a high-risk factor, was significantly correlated

with overall survival (Figures 3G,H). A nomogram, including

clinicopathological variables and riskscore, was also constructed

to predict the prognosis of patients at 2, 4, and 6 years (Figure 3I).

Calibration curve showed that predicted survival times at 2, 4, and

6 years were consistent (Figure 3J).

GSEA enrichment analysis

GSEA was used to conduct Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis and Gene Ontology

(GO) analysis. ABC transporters signaling pathway,

oxidative phosphorylation, ribosome, and steroid

biosynthesis were significantly associated with the high-

risk group (Figures 4A, B). Cytokine-cytokine receptor

interaction, immune effector process, adaptive immune

response based on somatic recombination of immune

receptors built, adaptive immune response and activation

FIGURE 3
Evaluate the prognostic ability of the signature. (A–C) Kaplan–Meier survival estimates of overall survival of patients by the signature in the
entire, train and cohorts, respectively. (D–F) The entire, train and cohorts of ROC curve analysis, respectively. (G,H) Univariate and multivariate
analyses the signature. (I) A nomogram included clinical features and riskscore for predicting the overall survival of patients with OS at 2-, 4-, and 6-
years. (J) Calibration curves for 2-, 4-, and 6-years forecasts of nomogram.
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of immune responses were significantly associated with the

low-risk group (Figures 4C, D). Thus. we hypothesize that

m1A may be involved in OS development and progression

through immune-related pathways.

The role of MRmetabolism in tumour
immune microenvironment and
immunotherapy

IIC in each sample obtained by “CIBERSORT” algorithm,

and then analyze the differences of TIIC in the two risk groups

(Figure 5A). We also found that riskscore was positively

correlated with B cells naive, macrophages M0 and T cells

gamma delta, while was negatively correlated with mast cells

resting, monocytes and CD8 T cells (Figures 5B–G). We

further analyzed by different immune filtration platforms.

Although the algorithms of each platform are different, we

can conclude that a large number of immune cells are

concentrated in low-risk group (Figure 5H). Then, we

explored the relationship between riskscore and immune

status by ssGSEA. The results showed that CD8 T cells,

neutrophils, Tfh, Th2 cells, B cells, and NK cells were

associated with a high degree of infiltration in low-risk

group (Figure 5I). APC co inhibition, CCR, check-point,

HLA, inflammation-promoting, parainflammation, T cell co

inhibition, and Type II IFN reponse were enriched in the low-

risk group (Figure 5J). In addition, the low-risk group had

higher ESTIMAT, immune and stromal score. All of these

indicated that the low-risk group had a higher immune

infiltration status (Figure 5K-M). Therefore, we

hypothesized that the low-risk group was in an immune

activation state relative to the high-risk group.

Immune checkpoint inhibitors (ICIs) are an emerging

and effective therapeutic strategy for a variety of tumours.

While most studies suggest that immune checkpoints are

used by tumour cells to evade immune destruction, others

suggest that immune checkpoint expression positively

correlates with the efficacy of immunotherapy (Marin-

Acevedo et al., 2021; Lu et al., 2022). Therefore, we aimed

to verify the ability of MRmetabolism in predicting the

effective of immunotherapy. The expression of CD44,

FIGURE 4
GSEA analysis. (A,B) KEGG analysis in the high-risk and low-risk groups. (C,D) GO analysis in the high-risk and low-risk groups.
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NRP1, TNFSF14, CD200R1, and LAIR1 was higher in the low-

risk group than in the high-risk group (Figure 6A). And

BTNL2 and TNFRSF25 were highly expressed in the high-

risk group. In addition, we could find that the IC50 of the

40 drugs applied to OS treatment was different between the

high and low risk groups (p < 0.05) (Figure 6B). This implies

that we can select the appropriate immune checkpoint

inhibitors and drugs for patients.

FIGURE 5
Difference of tumour immune microenvironment between high-risk and low-risk groups. (A) The differential infiltration of tumour immune
cells between high-risk and low-risk groups. (B–G) The correlation between riskscore with immune cell types, including B cells naive, macrophages
M0 and T cells gamma delta, mast cell resting, monocyte and CD8 T cell. (H) The immune cell bubble of risk groups. (I,J) Single-sample gene set
enrichment analysis of immune status between low-risk and high-risk groups. (K–M) The difference of tumor immune microenvironment
(ESTMATE, immune, and stromal score) between high-risk and low-risk groups.
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FIGURE 6
Predict the best immune checkpoint inhibitors and drugs for two risk groups. (A) The expression of immune checkpoints in the two risk groups.
(B) The difference of sensitivity of drugs between high-risk and low-risk groups.
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Identification of molecular phenotypes
related to MRmetabolism

Based on the expression profiles of the two MRmetabolisms,

we performed consensus clustering. By increasing the clustering

variable (k) from 2 to 9, we found that the intra-group correlation

is highest and the inter-group correlation is lowest when k = 2

(Figure 7A). Consensus cumulative distribution function (CDF)

plots show that the CDF reaches an approximate maximum

when k = 2 and the classification is robust (Figures 7B–D).

Principal component analysis (PCA) was performed to verify

that the two clusters were well differentiated (Figure 7E). K-M

survival curve showed that Cluster one patients had a better

overall survival than Cluster 2 (Figure 7F). The Sankey diagram

showed that most patients with low-risk were Cluster 1, while

most patients with high-risk group were Cluster 2 (Figure 7G).

FIGURE 7
Consensus clustering of two MRmetabolism. (A) Consensus clustering matrix for k = 2. (B) Consensus clustering CDF with k = 2–9. (C) The
tracking plot for different k. (D) The area under the CDF curve for different k. (E) PCA of OS samples according to the clustering. (F) The survival
estimates of the two clusters. (G) The Sankey diagram of the two risk groups and the two clusters. (H) The differential infiltration of tumour immune
cells in the two clusters. (I) The difference of sensitivity of drugs in the two clusters.
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The differences of immune cell infiltration in the two clusters

showed that B cells naïve, macrophages M0 and T cells gamma

delta were highly infiltrated in Cluster 2, while CD8 T cells,

monocytes, and dendritic cells activated had a high degree of

infiltration in Cluster 1 (Figure 7H). In addition, we found that

Cluster 2 had a high ESTIMAT and stromal score. CD44 and

VTCN1 were highly expressed in Cluster 1. CD200, CD276,

ADORA2A, TNFRSF14, and TNFSF15 were highly expressed in

Cluster 2. In addition, we could find that the IC50 of the 28 drugs

applied to OS treatment was differential between Cluster one and

Cluster 2 (Figure 7I).

Discussion

Osteosarcoma is the most common primary malignant bone

tumour in adolescents. With the rapid changes in science and

technology, medical technology is constantly being updated.

However, the prognosis of patients with OS has not been greatly

improved (Gill and Gorlick, 2021). Untimely early diagnosis and

lack of individualized treatment are mainly responsible for the high

mortality rate of patients. The identification of reliable biomarkers of

sensitivity is essential to improve the prognosis of patients with

osteosarcoma.

To maintain the proliferation and metastasis, tumour cells

usually undergo metabolic reprogramming (Holbert et al., 2022).

In addition, dysregulation between metabolize and immune cells

can lead to immune escape of tumour cells (DePeaux and

Delgoffe, 2021). Tumour cells preferentially consume glucose

and produce lactate through aerobic glycolysis, the latter causing

a decrease in the pH of the tumour microenvironment, which in

turn hinders cytokine production and T-cell lytic activity (Judge

and Dodd, 2020). In addition, lactate can polarize macrophages

to a tolerogenic M2-like phenotype (DePeaux and Delgoffe,

2021). Targeting metabolic pathways has been reported to

enhance the efficacy of tumour immunotherapy (Wu H. L.

et al., 2022b; Khodaei et al., 2022).

m1A methylation can affect tumour progression. m1A

demethylation induced by ALKBH3 can promote protein

synthesis in tumour cells (Ueda et al., 2017). The prognosis of

breast or ovarian tumour could be affected by the stability of

macrophage colony-stimulating factor 1, which was regulated

through m1A demethylation (Woo and Chambers, 2019). There

are few reports about the effects of m1A on metabolism-related

pathways and tumours. Therefore, we propose to explore the role

of metabolism-related genes regulated by m1A in OS, which may

be a new direction for its treatment.

In our study, we identified the regulatory relationships of

three m1A genes and four metabolism-related genes in OS.

Among them, ACAT1 can promote epithelial mesenchymal

transition of tumour cells and sensitivity to chemotherapeutic

drugs (Han et al., 2022; Ueno et al., 2022). TDO2 increases

glycolysis through activation of the Kyn-AhR pathway to

promote tumour cell growth (Lee R. et al., 2022). The

migration and invasion of hepatoma cells could be regulated

through the Wnt5a pathway (Liu et al., 2022). Subsequently, we

screened two RMmetabolism (TDO2 and CHST13) to structure

the prognosis signature after LASSO and multi-Cox regression

analysis. The results of survival analysis showed that the low-risk

group had a better prognosis than the high-risk group, and the

riskscore was an independent predictor of OS.

GSEA results showed that the high-risk group was closely

associated with ABC transporters, oxidative phosphorylation,

ribosome, and steroid biosynthesis. As the upregulation of

oxidative metabolism in tumour cells could cause hypoxia and

consequently immunosuppression, it has been proposed to

improve immune efficacy by inhibiting oxidative

phosphorylation (Liu and Curran, 2020; Boreel et al., 2021).

Kang et al. (2021) systematically described the mechanism and

treatment of ribosomes in tumour and disease. Many malignant

and autoimmune diseases can be treated with small molecule

inhibitors and monoclonal antibodies by targeting sphingolipid

metabolism (Kang et al., 2021). The signaling pathways that

inhibit steroid synthesis are potential drug targets for the

development of novel tumour immunotherapies (Mahata

et al., 2020). What is more, the enrichment function of low-

risk group is closely related to immune function.

It has been shown that tumour cells and immune cells have

common metabolic requirements and nutritional deficiencies in

the tumour microenvironment (Scharping et al., 2016; Renner

et al., 2017). Next, we assessed the immune status of the two risk

populations. We assessed the immune cell infiltration status of

each patient by the CIBERSORT algorithm and ssGSEA. The

result showed that the low-risk group could be described as

immune activated, while the high-risk group could be described

as immunosuppression.

Molecular subtypes have been previously reported to be

associated with tumour immunosuppression and

microenvironment. Different subtypes have different immune

status, resulting in different prognosis and immunotherapeutic

response. Therefore, we divided the patients into two groups by

the two RMmetabolism. Then, performed K-M survival analysis and

immune status assessment, we found that Cluster 1was in an immune

activated state and had a better prognosis compared to Cluster 2.

Finally, we found that the high-risk population was highly

sensitive to AZD8055, Camptothecin, Elesclomol, GW.441756,

MS.275, S. Trityl.L.cysteine, SB590885, and Sorafenib. Low-risk

populations had high sensitivity to AP.24534, Bexarotene,

CHIR.99021, GSK269962A, JNJ.26854165, JNK. Inhibitor.VIII,

Lapatinib, Midostaurin, Pazopanib, SB.216763, and Shikonin.

These findings can be applied in the clinic to improve guidance

for individualized treatment.

In summary, we constructed a prognostic model for OS

patients based on two RMmetabolism to provide prognostic

assessment and immune analysis for OS patients and provide

new directions for targeted therapy for OS.
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Long non-coding RNAs (lncRNAs) remodel the tumor immune

microenvironment (TIME) by regulating the functions of tumor-infiltrating

immune cells. It remains uncertain the way that TIME-related lncRNAs (TRLs)

influence the prognosis and immunotherapy response of colorectal cancer

(CRC). Aiming at providing survival and immunotherapy response predictions, a

CRC TIME-related lncRNA signature (TRLs signature) was developed and the

related potential regulatory mechanisms were explored with a comprehensive

analysis on gene expression profiles from 97 immune cell lines, 61 CRC cell lines

and 1807 CRC patients. Stratifying CRC patients with the TRLs signature,

prolonged survival was observed in the low-risk group, while the patients in

the high-risk group had significantly higher pro-tumor immune cells infiltration

and higher immunotherapy response rate. Through the complex TRLs-mRNA

regulation network, immunoregulation pathways and immunotherapy

response pathways were found to be differently activated between the

groups. In conclusion, the CRC TRLs signature is capable of making

prognosis and immunotherapy response predictions, which may find

application in stratifying patients for immunotherapy in the bedside.
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colorectal cancer, tumor microenvironment, tumor immune microenvironment, long
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Introduction

Colorectal cancer (CRC) ranks as the third most common

cancers and the second most common cause of cancer-related

deaths worldwide (Siegel et al., 2019), and the overall 5-years

relative survival rate for CRC patients is approximately 64%

(Miller et al., 2019). Though significant advances have beenmade

in the treatment of CRC, the recurrence rate remains high in

patients received standard chemotherapy and surgery (Ahiko

et al., 2021; Fang et al., 2021; Kim et al., 2021). Recently,

immunotherapy has emerged as a novel treatment approach

and achieved exciting results in some cancer types (Doki et al.,

2022; Makker et al., 2022; Schmid et al., 2022). For CRC, anti-

programmed death 1 (anti-PD-1) antibodies, such as

pembrolizumab and nivolumab, and CTLA-4 inhibitor

ipilimumab were approved by FDA (Pan et al., 2021). Though

a subset of patients with mismatch repair deficiency or high

microsatellite instability CRC benefit a lot from immune

checkpoint blockade therapy (Pan et al., 2021), the overall

response rate of immunotherapy remains low in all cases of

CRC and there were difficulties in stratifying suitable patients for

immunotherapy (Chen et al., 2021). Widely used biomarkers for

immunotherapy response prediction, such as impaired DNA

mismatch repair deficiency and microsatellite instability (MSI)

(Cortes-Ciriano et al., 2017), only have moderate accuracy, and

there are still a portion of CRC patients with MSI/mismatch

repair deficiency tumors do not respond to the treatment

(Gibney et al., 2016; Cohen et al., 2020). Therefore, it is of

vital importance to develop effective methods to predict CRC

prognosis and immunotherapy response.

In recent years, tumor microenvironment (TME) was

identified to have an huge impact on the behavior and

characteristics of cancer (Li et al., 2007). TME is made up of

noncellular components, such as extracellular matrix and types

of signaling molecules, and non-tumor cellular components,

including epithelial, smooth muscle, immune cells and other

types of cells in the tumor niche (Li et al., 2007; Valkenburg et al.,

2018). The crosstalk between tumor cells and non-tumor cells

was found taking an active part in regulating the development

and therapeutic responses of cancer (Zhang et al., 2020a). Among

cells of TME, different types of tumor infiltrating immune cells

build up tumor immune microenvironment (TIME). Tumor

infiltrating lymphocytes, such as B cells, CD4 positive T

helper cells, CD8 positive cytotoxic T lymphocytes and

regulatory T cells (Tregs), are communicating and cooperating

with other tumor infiltrating immune cells including

macrophages, natural killer cells and dendritic cells (Zhang

et al., 2020b). Significantly influencing the survival and the

immunotherapy response of patients (Zhang et al., 2020b),

TIME is essential in the progress and the treatment of CRC.

Defined to be non-coding RNAs longer than 200 nucleotides

in length (Cao, 2014), long non-coding RNA (lncRNAs) are

important regulators of multiple biological processes, including

cell proliferation (Xiong et al., 2019), apoptosis (Huang et al.,

2019), differentiation, tumorigenesis (Bhan and Mandal, 2014),

metastasis (Tian et al., 2019), cell cycle regulation (Wu et al.,

2018), epithelial-mesenchymal transition (Wang et al., 2019a)

and drug resistance (Wei et al., 2019) by forming RNA-RNA,

RNA-DNA, RNA-protein interactions and serving as competing

endogenous RNAs (ceRNA) in a variety of regulatory

mechanisms (Yao et al., 2019). Actually, emerging evidence

has implicated that lncRNAs are key coordinators and

regulators within tumor infiltrating immune cells that build

up the complex “ecosystem” of TIME, associating with

recruitment, infiltration, differentiation, activation and pro-/

anti-tumor function in those infiltrating immune cells (Sage

et al., 2018; Xu et al., 2019; Zhang et al., 2020b; Zhang et al.,

2021). By mediating and regulating important mechanisms and

processes of immune response in the microenvironment (Bhan

and Mandal, 2014; Zhou et al., 2019), lncRNAs within the tumor

infiltrating immune cells occupy a central role in immunity

regulation of the TIME, as well as in the development,

progression and maintenance of many human tumors

(Denaro et al., 2019), suggesting that TIME related lncRNAs

TABLE 1 Clinical characteristics of training and testing cohorts.

Training Testing 1 Testing 2

Age

<65 y 192 243 293

≥65 y 326 352 400

Sex

Female 233 273 334

Male 286 322 359

Location

Left 310 335 227

Right 209 260 188

TNM Stage

I 32 103 77

II 253 216 348

III 200 174 239

IV 34 83 29

MMR

MSI 71 181 52

MSS 405 411 137

CMS Subtype

CMS1 86 65 138

CMS2 215 196 248

CMS3 62 64 109

CMS4 112 110 145

Trianing: cohortGSE39582.

Testing cohort 1: TCGA-COAD and TCGA-READ.

Testing cohort 2: GSE14333, GSE17538, GSE33113, GSE37892 and GSE39084.

Location: location of tumor [right colon or left colon (rectum included)].

MMR, mismatch repair; MSI, microsatellite instability; MSS, microsatellite stable; CMS,

consensus molecular.
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(TRLs) could be potential diagnostic markers and therapeutic

targets in CRC.

In this study, we developed a prognostic TRLs signature for

prognosis and immunotherapy response predictions. The

performance of model was validated with multiple independent

cohorts, proving its potential to serve as a reliable predictor for

patient survival and an indicator for immunotherapy.

Materials and methods

Data collection

Datasets of colorectal cancer cases
Transcriptome and clinical data of CRC cases were obtained

from the Gene Expression Omnibus (GEO database, https://www.

ncbi.nlm.nih.gov/geo/). Data collected from GEO was analyzed by

Affymetrix Human Genome U133 2.0 Plus GeneChip Set platform.

Clinical information and transcriptional profiles were downloaded

from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.

gov/). Finally, excluding cases with incomplete clinical information,

519 cases of GSE39582 (Marisa et al., 2013) served as training

cohort, 595 cases of TCGA CRC and 693 cases of GSE14333

(Jorissen et al., 2009), GSE17538 (Smith et al., 2010; Freeman et

al., 2012; Williams et al., 2015; Chen et al., 2019), GSE33113 (de

Sousa et al., 2011; Kemper et al., 2012), GSE37892 (Laibe et al., 2012)

and GSE39084 (Kirzin et al., 2014) were used as two independent

testing cohorts. The summary of clinical information of the three

cohorts was shown in Table 1.

Datasets of immune cell lines and colorectal
cancer cell lines

Representing 17 different immune cell types, transcriptional

profiles of 97 non-treated immune cell lines of healthy volunteers

are collected from GEO database (Supplementary Table S1).

Transcriptional profiles of 61 CRC cell lines were obtained

from Cancer Cell Line Encyclopedia (CCLE, https://sites.

broadinstitute.org/ccle/datasets) project. The downloaded

transcription profiles of immune cell lines and CRC cell lines

were all originally analyzed by Affymetrix Human Genome U133

2.0 Plus GeneChip Set platform.

Data preprocessing
The downloaded GEO and CCLE transcriptional profiles

were based on the Affymetrix Human Genome U133 2.0 Plus

GeneChip Set. Probe information of the chip was reannotated by

NetAffx Annotation Files (HG-U133_Plus_2 Annotations

release 36, https://www.affymetrix.com/support/technical/

byproduct.affx?product=hg-u133-plus), Gencode files (Long

non-coding RNA gene annotation release 38, https://www.

gencodegenes.org/human/) and Refseq files (Refseq H_sapiens

annotation, https://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/

annotation/) to find out probes that matched long non-coding

RNAs, which were labeled as “lncRNA” in Gencode or “long

non-coding RNA” in Refseq. Among 50,000 probes of the gene

chip, only 2,287 probes had Ensembl ID or Refseq ID annotated

as “lncRNA” or “long non-coding RNA”, which corresponded to

1892 unique lncRNA Ensembl IDs. Similar methods were also

applied on the transcriptional profiles of TCGA to obtain the

lncRNAs and their expression profiles. Finally, the shared

1724 lncRNAs were identified and the corresponding lncRNA

expression matrixes were therefore established (Figure 1).

Prognostic TRLs signature development

Identification of TRLs
The following three steps built up a workflow for identifying

TRLs. First, utilizing the gene transcription profiles of immune cells,

the top 10% expressed lncRNAs in each immune cell type were

identified as immune-related lncRNAs. Second, tissue specificity

index (TSI) (Yanai et al., 2005) was calculated across 17 immune cell

FIGURE 1
Flow chart of this study. First, TRLs of the CRCwere identified.
Second, TRLs signature was established utilizing Lasso regression.
Third, TRLs signature was assessed on independent datasets and
the related biological mechanisms were explored.
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types to identify universally expressed immune-related lncRNAs in

all the immune cells of TIME. Ranging from 0 to 1, the smaller the

TSI is, the more consistent the particular lncRNA expressing across

all types of immune cells. Here, lncRNAs with TSI smaller than

0.3 were selected, so that universally high-expressed lncRNAs in all

types of immune cells were identified. Third, using limma package

(Ritchie et al., 2015), lncRNAs upregulated in immune cell lines and

downregulated in CRC cell lines (logFoldChange >1.0 and adjusted

p < 0.05) were recognized as lncRNAs expressing in immune cells

rather than in the tumor cells. In other words, these lncRNAs were

mainly expressed in the TIME,whichwere regarded as TIME related

lncRNAs. Step by step, universally high-expressed lncRNAs in the

immune cells of TIME were identified, namely TRLs in this study

(Figure 1).

Development and validation of the TRLs
signature

The prognostic value of each TRL was evaluated by univariate

Cox proportional hazards regression analysis with the training set.

TRLs with p < 0.1 were selected as candidates for the construction of

the signature.Utilizing the LASSO regression analysis (Supplementary

Figure S1), the TRLs signature was established based on the training

cohort, and the risk score formula was generated as follows

Risk score � ∑
i
Coef f icient(TRLi)*Expression(TRLi)

Considering their risk scores, patients were divided into low-risk

group and high-risk group with a cutoff value calculated by Youden

index. Using the survival package (Terry, 2022) and survminer

package (Kassambara et al., 2021), the Kaplan-Meier survival curve

combined with log-rank test was used to compare the survival

difference between the two groups. Using the same cutoff value,

the prognostic value of the lncRNA signature was further investigated

in two independent testing cohorts (Figure 1).

Independent prognostic role of the TRLs
signature

To investigate whether the signature could be independent of

other clinical parameters, including risk group, age, sex, stage,

location of the tumor, microsatellite stability (MSS) or

microsatellite instability (MSI) status and consensus molecular

subtypes (CMS) (Guinney et al., 2015), univariate and

multivariate Cox regression analyses were performed, and p <
0.05 were considered as statistically significant.

Differentially expressed gene (DEG) analys
and gene set enrichment analysis (GSEA)

DEGs between the low-risk group and high-risk group were

identified using the Limma package with age, sex and TNM stage

factors adjusted (Ritchie et al., 2015). DEGs were visualized with

pheatmap package in R. Log-fold-change> 0.5 and adjusted p-value<
0.05 were cutoff value for DEG analysis. Based on the results of DEG

analysis and gene set collections of Molecular Signatures Database

(MSigDB), GSEA was performed with clusterProfiler package (Yu

et al., 2012) andHTSanalyzeR2 package (Wang et al., 2011). Pathways

and gene sets from “curated gene sets” collection (C2), “ontology gene

sets” collection (C5) and “immunologic signature gene sets” collection

(C7) are used to perform the GSEA.

The TRLs signature lncRNA-mRNA
regulation network

LncRNAs associated RNA interactions, which included

information about lncRNAs and their target mRNAs in the

regulatory network, were collected from four different manually-

curated and experimentally-supported RNA databases, including

starBase v2.0 (Li et al., 2014), LncACTdb 2.0 (Wang et al., 2019b),

LncTarD (Zhao et al., 2020) and LnCeCell (Wang et al., 2021). Over

1,000 pairs of lncRNA–target mRNA involving lncRNAs in the

TRLs signature were selected. Spearman correlation analysis were

applied to calculate the correlation coefficients between the

expression of 10 lncRNAs of the signature and the expression of

their target mRNAs based on transcription profiles of immune cell

lines. Selecting the top 30 most correlated target mRNAs for each

lncRNA, a regulatory network of the TRLs signature was

constructed and visualized with Cytoscape software (version

3.8.2). The correlated target mRNAs were analyzed with GSEA

to find out the targeted pathways, process of which was the same as

above.

Tumor immune infiltration analysis

Tumor purity and the infiltration level of stromal cells

(StromalScore) and immune cells (ImmuneScore) were estimated

by ESTIMATE package (Yoshihara et al., 2013). The fraction of

tumor infiltrating immune cells in each sample, such as B cells,

T cells, dendritic cells, macrophages, neutrophils and so on, were

estimated by CIBERSORT algorithm (Newman et al., 2019). The

fractions of 22 types of tumor infiltrating immune cells were

calculated by Cibersort algorithm. Among them, nine types of

immune cells playing important roles in the effect and regulation

of the tumor immunology, including different types of T cells, NK

cells and macrophages, were chosen to displayed in the figure. The

correlations between risk score and StromalScore, ImmuneScore,

tumor purity, fractions of immune cells were explored to identify

whether the TRLs signature could be a reliable indicator in the

CRC TIME.

TRLs signature in immunotherapy
response prediction

The expression level of immune checkpoint blockade

therapy associated genes, such as PD-1 (PDCD1), PD-L1

Frontiers in Genetics frontiersin.org04

Hu et al. 10.3389/fgene.2022.993714

152

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.993714


FIGURE 2
The prognostic value of the TRLs signature for colorectal cancer. Waterfall plots showed the distribution of survival status for patients of
different TRLs signature risk groups in the training cohort (A), testing cohort 1 (C) and testing cohort 2 (E). Kaplan–Meier curves of DFS according to
risk groups in the training cohort (B), testing cohort 1 (D) and testing cohort 2 (F). DFS: disease-free survival.
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(CD274), PD-L2 (PDCD1LG2), are closely related to the

response of immunotherapy. The correlations between risk

score and the expression of those key genes were investigated

(p < 0.05). GSE165252, a dataset containing immunotherapy

response information and transcriptional profiles of pre-

treatment CRC tissues, was download from GEO and

served as an external dataset to verify the TRLs signature’s

capacity of predicting immunotherapy treatment response.

Receiver operating characteristic (ROC) curve was therefore

performed and the area under the ROC curve (AUC) was also

calculated by pROC package.

Statistical analysis

All statistical analyses were performed with R (version

4.1.0). T tests and Wilcoxon tests were performed for

differential gene expression analyses and differential

immune cell infiltration analysis. The Kaplan-Meier

survival curve with log-rank test was used to compare the

survival difference between the two groups. Univariate and

multivariate Cox regression models were utilized to validate

the prognosis value of the TRLs signature and other clinical

parameters in patients of CRC. Pearson correlation analysis

were applied to perform the correlation analyses of the study.

DeLong test was employed to calculate the confidence

intervals for the AUC values of the ROC curves.

Results

The construction of prognostic TRLs
signature

Clinical data and gene expression data of 1807 CRC

patients from multiple datasets were collected and divided

into three cohorts (Table 1). A total of 1724 unique lncRNAs

were identified from downloaded transcription profiles, and

TABLE 2 Univariate and multivariate Cox regression analyses.

Univariate cox regression Multivariate cox regression

Hazard ratio p Hazard ratio p

Training cohort

Risk group 2.63 (1.90–3.63) 1.10E-09 2.18 (1.53–3.12) 1.60E-05

Age 1.02 (1.00–1.03) 7.20E-03 1.01 (1.00–1.03) 3.20E-02

Sex 1.37 (1.01–1.85) 4.00E-02 1.44 (1.05–1.99) 2.50E-02

Stage 1.89 (1.52–2.34) 5.70E-09 1.77 (1.41–2.23) 1.10E-06

Location 0.95 (0.71–1.28) 7.50E-01 NA NA

MSS/MSI 0.68 (0.42–1.10) 1.10E-01 NA NA

CMS subtypes 1.19 (1.03–1.38) 2.00E-02 1.07 (0.92–1.25) 3.60E-01

Testing cohort 1

Risk group 1.60 (1.19–2.16) 1.80E-03 1.40 (1.04–1.91) 2.90E-02

Age 1.01 (1.00–1.02) 2.20E-01 NA NA

Sex 1.08 (0.81–1.45) 6.00E-01 NA NA

Stage 2.15 (1.80–2.56) 9.00E-19 2.12 (1.78–2.53) 3.10E-17

Location 1.12 (0.83–1.49) 4.60E-01 NA NA

MSS/MSI 1.13 (0.83–1.53) 4.50E-01 NA NA

CMS subtypes 1.15 (0.98–1.36) 9.30E-02 NA NA

Testing cohort 2

Risk group 1.64 (1.19–2.26) 2.50E-03 1.58 (1.14–2.18) 5.70E-03

Age 0.99 (0.98–1.00) 1.90E-01 NA NA

Sex 1.03 (0.75–1.40) 8.80E-01 NA NA

Stage 2.31 (1.86–2.87) 3.00E-14 2.26 (1.82–2.81) 1.10E-13

Location 0.86 (0.57–1.28) 4.50E-01 NA NA

MSS/MSI 0.92 (0.46–1.83) 8.10E-01 NA NA

CMS subtypes 1.10 (0.94–1.29) 2.20E-01 NA NA

Cox regression analyses were performed with DFS, data.

Location: location of tumor [right colon or left colon (rectum included)].

MSI, microsatellite instability; MSS, microsatellite stable; CMS, consensus molecular subtypes of colorectal cancer.
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60 lncRNAs were found to be universally high-expressed in

the immune cells of TIME. Among the 60 TRLs, 18 lncRNAs

were found to be prognostic markers for the survival of CRC

patients and were selected for the construction of the

signature. Using LASSO regression analysis

(Supplementary Figure S1), a 10 TRLs signature was

established, and the risk score of each patient was

calculated. The corresponding coefficients of the TRLs

were listed in the Supplementary Table S2. The flowchart

of the whole study was showed in Figure 1.

FIGURE 3
Identification and gene enrichment analysis of 56 DEGs between two risk groups. (A) A heatmap of 56 DEGs. (B) Bubble chart of the top
20 enriched MSigDB pathways of the DEGs. (C–E) Gene set enrichment plots of cancer immune escape related pathways and cancer
immunotherapy related pathways. MSigDB pathways: C2, C5 and C7 pathways collection of the Molecular Signatures Database.
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The prognostic value of the TRLs signature

Based on the cut-off value calculated by Youden index and

the risk score of each patient, patients were divided into a high-

risk group and a low-risk group in both training cohort and

independent testing cohorts (Figures 2A,C,E). Kaplan-Meier

curves with log-rank test (Figures 2B,D,F) and the univariate

Cox regression analysis (Table 2) showed that the high-risk

patients had significant shorter disease-free survival (DFS)

than the low-risk patients in both training cohort (hazard

ratio (HR) = 2.63, 95% confidence interval (CI) = 1.9–3.63,

p < 0.001) and testing cohorts (testing cohort 1: HR = 1.6,

95% CI = 1.19–2.16, p = 0.002; testing cohort 2: HR = 1.64, 95%

CI = 1.19–2.26, p = 0.002). Additionally, multivariate Cox

regression analysis were also performed in the training and

testing cohorts to examine whether the TRLs signature was an

independent prognostic factor in CRC. Taking into consideration

the risk group and other clinical or pathological

parameters which were found significant in the previous

univariate Cox regression, the results of multivariate Cox

regression (Table 2) showed that risk group was an

independent prognostic factor for DFS prediction in both

training cohort (HR = 2.18, 95% CI = 1.53–3.12; p < 0.001)

and testing cohorts (testing cohort 1: HR = 1.40, 95% CI =

1.04–1.91, p < 0.05; testing cohort 2: HR = 1.58, 95% CI =

1.14–2.18, p < 0.0001). It indicated that the TRLs signature was a

promising predictor of prognosis for CRC patients, which had

the potential to find clinical application.

FIGURE 4
LncRNA-mRNA regulation network. The relationship between 10 TRLs of the signature (orange node) and their most correlated target mRNAs
(blue nodes) was shown. The size of the nodes represented the average expression of lncRNAs andmRNAs in the immune cells, and the width of the
lines represented the correlation between the expression of the lncRNAs and the expression of their targets.
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The relationship between TRLs signature
and immune pathways

Between the low-risk group and high-risk group, 56 DEGs were

identified. The expression of 56 DEGs, score group and

corresponding clinical, molecular and pathological features of each

patient were visualizedwith a heatmap and a volcano plot (Figure 3A;

Supplementary Figure S2). Based on DEGs and the clusterProfiler

package, the top 20 enriched pathways were shown in (Figure 3B). It

showed that immune-related pathways involving CD8 positive

T cells, CD4 positive T cells and T lymphocytes were among the

top ones, suggesting that the TRLs signature risk score correlated

closely with immune cells and immunity-related regulation. High-

risk group were enriched in the pathway of tumor immune escape

(Figure 3C), implying that immune escape might be one of the

reasons contributing to the worse prognosis of the high-risk group. It

was also found that low-risk group were enriched in genes sets that

down-regulated in CTLA4 expressing CD4 positive cells and

exhausted CD8 positive T cells, suggesting that patients of the

low-risk group were not the potential target of immunotherapy

(Figures 3D,E).

The complex LncRNA-mRNA regulation
network

Providing an insight into the complex regulatory mechanism

of 10 TRLs of the signature, the most correlated lncRNA-target

mRNA in the immune cells of the TIME were visualized with a

network based on four manually-curated and experimentally-

supported lncRNA-target mRNA interaction databases

(Figure 4). Analyzing target mRNAs with GSEA, multiple

pathways related to immunoregulatory mechanisms and

immune cells were enriched, indicating that TRLs of the

signature exerted a great impact on the TIME and tumor-

related immune response (Table 3).

Tumor immune environment
characterization

Assessed with ESTIMATE algorithm, the infiltration level of

stromal cells (StromalScore) and immune cells (ImmuneScore)

were significantly higher in high-risk group (p < 0.05 and p <
0.001, respectively), while significant lower tumor purity was

observed in the low-risk group (p < 0.001, Figures 5A–C). The

results of CIBERSORT immune infiltration analysis showed that

the fraction of M2 macrophages and Tregs was significantly

higher in the TIME in both training and testing cohorts (Figures

5D–F). In summary, the tumor tissue of the high-risk group was

associated with pro-tumor TIME and greater degree of pro-

tumor immune cells infiltration.

The TRLs signature prediction in
colorectal cancer immunotherapy

The expression of immunotherapy targets, such as PD-1

(PDCD-1), PD-L1 (CD274) and PD-L2 (PDCD1LG2), were

evaluated in both risk groups. Both PD-1 and PD-L2 were

significantly upregulated in high-risk group (Figures 6A,B),

suggesting the potential role of the TRLs signature in

stratifying CRC patients for immune checkpoint inhibitor

therapy. Meanwhile, immunotherapy dataset GSE165252,

which was originally about atezolizumab (a PD-L1 inhibitor)

treating esophageal adenocarcinoma, was used as an external

dataset to verified the signature’s ability of making

immunotherapy response predictions. As a result, an AUC

value of 0.70 (95% CI = 0.51–0.88) was achieved (Figure 6C),

and higher proportion of responders was also observed in the

high-risk group (Figure 6D). The TRLs signature was capable of

predicting immunotherapy response, suggesting that patients of

the high-risk group would get more rewards from the anti-PD-1/

PD-L1 therapy.

TABLE 3 Gene set enrichment analysis of TRLs targets.

LncRNA Enriched Pathways/Pathways Related
Cells

ENSG00000255145 IL-22 signaling; CD4 T cell; interferon; effector CD8 T cell

ENSG00000268001 T cell migration; lymphocyte migration

ENSG00000184224 Abnormality of the abdominal wall

ENSG00000185332 NKT cell activation; CD8 T cell

ENSG00000251562 IL-4 signaling; CD4 T cell; CD8 T cell; B cell; Treg cell; macrophage; monocyte; NK cell; dentric cell

ENSG00000267532 B cell; dentric cell; macrophage; monocyte; B cell

ENSG00000224870 IL-4 signaling; CD8 T cell; Treg cell; macrophage; B cell; CD4 T cell

ENSG00000231177 Memory CD8 T cell; naïve CD8 T cell; effector CD8 T cell; Treg cell; monocyte; B cell; CD4 T cell

ENSG00000270066 CD4 T cell; B cell; macrophage; interleukin 4/6/12/13/27/35/37 signaling; NKT cell; Treg cell; NK cell; dentric cell; CD8 T cell

ENSG00000278249 CD4 T cell; B cell; macrophage; interleukin 4/6/12/13/27/35/37 signaling; NKT cell; Treg cell; NK cell; dentric cell; CD8 T cell
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Discussion

In recent years, lncRNAs have attracted extensive attention and

there are a great number of studies about the relationship between

lncRNAs of the TIME and characteristics of the tumor, including the

prognosis, TME and anti-tumor immunity. A large number of

lncRNAs are expressing different patterns in types of cancer

including CRC (Bhan et al., 2017; Deng et al., 2017) and

regarded as a vital player in tumorigenesis, anti-cancer immune

response and immunotherapy (Yu et al., 2018). The TIME and its

regulation are sculpted by tumor infiltrating immune cells, and

lncRNAs of the tumor infiltrating immune cells plays an important

role in this procedure (Denaro et al., 2019), indicating that the

lncRNAs of CRC TIME has an unique value in prognostic and

guiding patient stratification for immunotherapy. Here, a TRLs

signature of CRC was established and verified in independent

cohorts, providing distinct survival and immunotherapy response

prediction for low and high-risk groups.

By forming a complex regulation network, TRLs of the

signature modified the expression patterns of multiple target

genes in the tumor infiltrating immune cells of TIME, especially

genes related to immunoregulatory mechanisms and pathways. A

previous study reported that lncRNA MALAT1

(ENSG00000251562 of the TRLs signature) promotes tumor

FIGURE 5
Evaluation of tumor immune infiltration in both risk groups. (A–C) Comparisons of tumor purity, immune score and stromal score between
low-/high-risk groups. (D–F)Difference of tumor infiltrating immune cells in two risk groups among three cohorts. p < 0.0001 ****, p < 0.001 ***, p <
0.01 **, p < 0.05 *, not significant: ns.
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angiogenesis in thyroid cancer by regulating functions of

macrophage in the TIME (Huang et al., 2017). Due to the

difference in the gene expression pattern between the high

and low-risk groups controlled by multiple TIME lncRNA-

based mechanisms, the infiltration, activation, function and

fate of tumor infiltrating immune cells differ between the risk

groups (Huarte and Rinn, 2010; Batista and Chang, 2013; Uthaya

Kumar and Williams, 2020). Here, a significantly greater degree

of pro-tumor immune infiltration was found in the high-risk

group, especially M2 macrophage cells and Tregs, which

impaired anti-tumor immunity, promoted tumor progression

and contributed to tumor immune escape and poor prognosis

(Bader et al., 2020; Zeng et al., 2020). As a result, profound

changes in the niche the led to significant alterations in the gene

expression profiles and behaviors of the tumor, bringing about

different courses and outcomes of disease between low-risk

group and high-risk group.

Having the power to rewrite the regulation network in the

tumor-infiltrating immune cells and the TIME (Uthaya Kumar

andWilliams, 2020; Wells et al., 2020), lncRNAs also take part in

controlling the immune surveillance, drug resistance and the

efficacy of immunotherapy (Pi et al., 2021). Many studies have

shown that immune-related lncRNAs were capable of predicting

the response for immune checkpoint inhibitor therapy (Jiang

et al., 2020; Sun et al., 2020; Ma et al., 2021; Xu et al., 2021; Zhou

et al., 2021). Consistent with the reported findings, the CRC TRLs

signature provided us with immunotherapy treatment

indications, showing that patients of the high-risk group were

associated with higher expression of cellular receptors targeted by

immune checkpoint inhibitor therapy and favorable response

towards immunotherapy, which is of great help to stratify CRC

patients for immunotherapy (Bateman, 2021).

There are some limitations that should be acknowledged.

First, as a retrospective study, the model was trained and

validated on existing datasets, indicating that TRLs signature

needs to be further validate on large prospective cohorts. Second,

the major limitation of the study was the lack of experimental

validation. Although the model performed well in survival and

FIGURE 6
TRLs signature predicting immunotherapy response. (A,B) Difference of crucial immune checkpoint genes expression levels between low-/
high-risk group. (C) The ROC curve for predicting anti-PD-L1 immune checkpoint blockade therapy response of the TRLs signature. (D)Difference of
anti-PD-L1 immune checkpoint blockade therapy response rates between low-/high-risk groups. PDCD1: PD-1. CD274: PD-L1. PDCD1LG2: PD-L2.
p < 0.001 ***, p < 0.01 **, p < 0.05 *, not significant: ns.
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immunotherapy response prediction, the underlying biological

functions of the signature’s TRLs and the complicated regulation

mechanisms between TRLs and their target mRNAs the in the

TME were not fully understood, which should be further studied

with cellular and molecular experiments.

In summary, not only provides distinct survival prediction

and insights into the TIME for the two risk groups, our TRLs

signature also gives doctors with immunotherapy treatment

indications, suggesting that the patients of low-risk group may

have a chance to live longer and patients of high-risk group could

benefit more from the immunotherapy.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Author contributions

Study design and conception were proposed by FG and X-JW;

writing and revision of paper were done by CH, DC, FG, and

X-JW; data analyses and interpretation was conducted by CH

and DC; data management was done by CH, M-EZ, DF, and C-L;

data acquisition was done by M-YL, Z-PH, and WW. All authors

interpreted the results and revised themanuscript. All authors read

and approved the final manuscript.

Funding

This study was supported by the National Key Clinical

Discipline, the National Natural Science Foundation of China

(No. 82002221, FG), The Sixth Affiliated Hospital of Sun Yat sen

University Start-up Fund for Returnees (No.

R20210217202501975, FG), Guangzhou Basic and Applied

Basic Research Fund (No. 202102020820, FG), the Sun

Yat-sen University 100 Top Talent Scholars Program–China

(No. P20190217202203617, FG), National Natural Science

Foundation of China (No. 81972212, XW), Natural Science

Foundation of Guangdong Province, China (No.

2019A1515010063, XW), the program of Guangdong

Provincial Clinical Research Center for Digestive Diseases

(2020B1111170004, XW), Guangzhou Key Research and

Development Project (No. 202206080008, XW).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.993714/full#supplementary-material

References

Ahiko, Y., Shida, D., Kudose, Y., Nakamura, Y., Moritani, K., Yamauchi, S., et al.
(2021). Recurrence hazard of rectal cancer compared with colon cancer by adjuvant
chemotherapy status: A nationwide study in Japan. J. Gastroenterol. 56 (4),
371–381. Epub 20210221. doi:10.1007/s00535-021-01771-6

Bader, J. E., Voss, K., and Rathmell, J. C. (2020). Targeting metabolism to improve
the tumor microenvironment for cancer immunotherapy. Mol. Cell 78 (6),
1019–1033. Epub 2020/06/20. doi:10.1016/j.molcel.2020.05.034

Bateman, A. C. (2021). Immune checkpoint inhibitor therapy in colorectal
cancer-the role of cellular pathology. Int. J. Surg. Pathol. 29 (6), 584–591. Epub
20210618. doi:10.1177/10668969211025844

Batista, P. J., and Chang, H. Y. (2013). Long noncoding rnas: Cellular address
codes in development and disease. Cell 152 (6), 1298–1307. doi:10.1016/j.cell.2013.
02.012

Bhan, A., and Mandal, S. S. (2014). Long noncoding rnas: Emerging stars in gene
regulation, epigenetics and human disease. ChemMedChem 9 (9), 1932–1956. Epub
2014/03/29. doi:10.1002/cmdc.201300534

Bhan, A., Soleimani, M., and Mandal, S. S. (2017). Long noncoding rna and
cancer: A new paradigm. Cancer Res. 77 (15), 3965–3981. Epub 2017/07/14. doi:10.
1158/0008-5472.CAN-16-2634

Cao, J. (2014). The functional role of long non-coding rnas and epigenetics. Biol.
Proced. Online 16, 11. Epub 2014/10/03. doi:10.1186/1480-9222-16-11

Chen, M. S., Lo, Y. H., Chen, X., Williams, C. S., Donnelly, J. M., Criss, Z. K., 2nd,
et al. (2019). Growth factor-independent 1 is a tumor suppressor gene in colorectal
cancer. Mol. Cancer Res. 17 (3), 697–708. Epub 20190103. doi:10.1158/1541-7786.
MCR-18-0666

Chen, S. J., Wang, S. C., and Chen, Y. C. (2021). The immunotherapy for
colorectal cancer, lung cancer and pancreatic cancer. Int. J. Mol. Sci. 22 (23), 12836.
Epub 20211127. doi:10.3390/ijms222312836

Cohen, R., Rousseau, B., Vidal, J., Colle, R., Diaz, L. A., Jr., and Andre, T.
(2020). Immune checkpoint inhibition in colorectal cancer: Microsatellite
instability and beyond. Target. Oncol. 15 (1), 11–24. doi:10.1007/s11523-
019-00690-0

Frontiers in Genetics frontiersin.org12

Hu et al. 10.3389/fgene.2022.993714

160

https://www.frontiersin.org/articles/10.3389/fgene.2022.993714/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.993714/full#supplementary-material
https://doi.org/10.1007/s00535-021-01771-6
https://doi.org/10.1016/j.molcel.2020.05.034
https://doi.org/10.1177/10668969211025844
https://doi.org/10.1016/j.cell.2013.02.012
https://doi.org/10.1016/j.cell.2013.02.012
https://doi.org/10.1002/cmdc.201300534
https://doi.org/10.1158/0008-5472.CAN-16-2634
https://doi.org/10.1158/0008-5472.CAN-16-2634
https://doi.org/10.1186/1480-9222-16-11
https://doi.org/10.1158/1541-7786.MCR-18-0666
https://doi.org/10.1158/1541-7786.MCR-18-0666
https://doi.org/10.3390/ijms222312836
https://doi.org/10.1007/s11523-019-00690-0
https://doi.org/10.1007/s11523-019-00690-0
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.993714


Cortes-Ciriano, I., Lee, S., Park, W. Y., Kim, T. M., and Park, P. J. (2017). A
molecular portrait of microsatellite instability across multiple cancers. Nat.
Commun. 8, 15180. Epub 20170606. doi:10.1038/ncomms15180

de Sousa, E. M. F., Colak, S., Buikhuisen, J., Koster, J., Cameron, K., de Jong, J. H.,
et al. (2011). Methylation of cancer-stem-cell-associated wnt target genes predicts
poor prognosis in colorectal cancer patients. Cell Stem Cell 9 (5), 476–485. doi:10.
1016/j.stem.2011.10.008

Denaro, N., Merlano, M. C., and Lo Nigro, C. (2019). Long noncoding rnas as
regulators of cancer immunity.Mol. Oncol. 13 (1), 61–73. Epub 2018/12/01. doi:10.
1002/1878-0261.12413

Deng, H., Wang, J. M., Li, M., Tang, R., Tang, K., Su, Y., et al. (2017). Long non-
coding rnas: New biomarkers for prognosis and diagnosis of colon cancer. Tumour
Biol. 39 (6), 1010428317706332. Epub 2017/06/24. doi:10.1177/1010428317706332

Doki, Y., Ajani, J. A., Kato, K., Xu, J., Wyrwicz, L., Motoyama, S., et al. (2022).
Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma.
N. Engl. J. Med. 386 (5), 449–462. doi:10.1056/NEJMoa2111380

Fang, L., Yang, Z., Zhang, M., Meng, M., Feng, J., and Chen, C. (2021). Clinical
characteristics and survival analysis of colorectal cancer in China: A retrospective
cohort study with 13, 328 patients from southern China. Gastroenterol. Rep. 9 (6),
571–582. Epub 20211117. doi:10.1093/gastro/goab048

Freeman, T. J., Smith, J. J., Chen, X., Washington, M. K., Roland, J. T., Means, A.
L., et al. (2012). Smad4-Mediated signaling inhibits intestinal neoplasia by
inhibiting expression of beta-catenin. Gastroenterology 142 (3), 562–571.e2.
Epub 20111122. doi:10.1053/j.gastro.2011.11.026

Gibney, G. T., Weiner, L. M., and Atkins, M. B. (2016). Predictive biomarkers for
checkpoint inhibitor-based immunotherapy. Lancet. Oncol. 17 (12), e542–e551.
doi:10.1016/S1470-2045(16)30406-5

Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C.,
et al. (2015). The consensus molecular subtypes of colorectal cancer. Nat. Med. 21
(11), 1350–1356. Epub 2015/10/13. doi:10.1038/nm.3967

Huang, J. K., Ma, L., Song, W. H., Lu, B. Y., Huang, Y. B., Dong, H. M., et al.
(2017). Lncrna-Malat1 promotes angiogenesis of thyroid cancer by modulating
tumor-associated macrophage Fgf2 protein secretion. J. Cell. Biochem. 118 (12),
4821–4830. Epub 20170613. doi:10.1002/jcb.26153

Huang, W., Su, G., Huang, X., Zou, A., Wu, J., Yang, Y., et al. (2019). Long
noncoding rna Pcat6 inhibits colon cancer cell apoptosis by regulating anti-
apoptotic protein arc expression via Ezh2. Cell Cycle 18 (1), 69–83. Epub 2018/
12/21. doi:10.1080/15384101.2018.1558872

Huarte, M., and Rinn, J. L. (2010). Large non-coding rnas: Missing links in
cancer? Hum. Mol. Genet. 19 (R2), R152–R161. Epub 20100820. doi:10.1093/hmg/
ddq353

Jiang, W., Zhu, D., Wang, C., and Zhu, Y. (2020). An immune relevant signature
for predicting prognoses and immunotherapeutic responses in patients with
muscle-invasive bladder cancer (mibc). Cancer Med. 9 (8), 2774–2790. Epub
20200225. doi:10.1002/cam4.2942

Jorissen, R. N., Gibbs, P., Christie, M., Prakash, S., Lipton, L., Desai, J., et al.
(2009). Metastasis-associated gene expression changes predict poor outcomes in
patients with dukes stage B and C colorectal cancer. Clin. Cancer Res. 15 (24),
7642–7651. doi:10.1158/1078-0432.CCR-09-1431

Kassambara, A., Kosinski, M., and Biecek, P. (2021). Survminer: Drawing survival
curves using “Ggplot2”. R package version 0.4.9. https://CRAN.R-project.org/
package=survminer.

Kemper, K., Versloot, M., Cameron, K., Colak, S., de Sousa e Melo, F., de Jong,
J. H., et al. (2012). Mutations in the ras-raf Axis underlie the prognostic value of
Cd133 in colorectal cancer. Clin. Cancer Res. 18 (11), 3132–3141. Epub 20120410.
doi:10.1158/1078-0432.CCR-11-3066

Kim, H. G., Kim, H. S., Yang, S. Y., Han, Y. D., Cho, M. S., Hur, H., et al. (2021).
Early recurrence after neoadjuvant chemoradiation therapy for locally advanced
rectal cancer: Characteristics and risk factors. Asian J. Surg. 44 (1), 298–302. Epub
20200725. doi:10.1016/j.asjsur.2020.07.014

Kirzin, S., Marisa, L., Guimbaud, R., De Reynies, A., Legrain, M., Laurent-Puig, P.,
et al. (2014). Sporadic early-onset colorectal cancer is a specific sub-type of cancer:
A morphological, molecular and Genetics study. PLoS One 9 (8), e103159. Epub
20140801. doi:10.1371/journal.pone.0103159

Laibe, S., Lagarde, A., Ferrari, A., Monges, G., Birnbaum, D., Olschwang, S., et al.
(2012). A seven-gene signature aggregates a subgroup of stage ii colon cancers with
stage iii. OMICS 16 (10), 560–565. Epub 20120823. doi:10.1089/omi.2012.0039

Li, H., Fan, X., and Houghton, J. (2007). Tumor microenvironment: The role of
the tumor stroma in cancer. J. Cell. Biochem. 101 (4), 805–815. Epub 2007/01/18.
doi:10.1002/jcb.21159

Li, J. H., Liu, S., Zhou, H., Qu, L. H., and Yang, J. H. (2014). Starbase V2.0:
Decoding mirna-cerna, mirna-ncrna and protein-rna interaction networks from

large-scale clip-seq data.Nucleic Acids Res. 42, D92–D97. Database issueEpub 2013/
12/04. doi:10.1093/nar/gkt1248

Ma, B., Jiang, H., Luo, Y., Liao, T., Xu, W., Wang, X., et al. (2021). Tumor-
infiltrating immune-related long non-coding rnas indicate prognoses and response
to Pd-1 blockade in head and neck squamous cell carcinoma. Front. Immunol. 12,
692079. Epub 20211019. doi:10.3389/fimmu.2021.692079

Makker, V., Colombo, N., Casado Herraez, A., Santin, A. D., Colomba, E., Miller,
D. S., et al. (2022). Lenvatinib Plus pembrolizumab for advanced endometrial
cancer. N. Engl. J. Med. 386 (5), 437–448. Epub 20220119. doi:10.1056/
NEJMoa2108330

Marisa, L., de Reynies, A., Duval, A., Selves, J., Gaub, M. P., Vescovo, L., et al.
(2013). Gene expression classification of colon cancer into molecular subtypes:
Characterization, validation, and prognostic value. PLoS Med. 10 (5), e1001453.
Epub 20130521. doi:10.1371/journal.pmed.1001453

Miller, K. D., Nogueira, L., Mariotto, A. B., Rowland, J. H., Yabroff, K. R., Alfano,
C. M., et al. (2019). Cancer treatment and survivorship statistics, 2019. Ca. Cancer
J. Clin. 69 (5), 363–385. Epub 2019/06/12. doi:10.3322/caac.21565

Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer,
F., et al. (2019). Determining cell type Abundance and expression from bulk tissues
with digital cytometry. Nat. Biotechnol. 37 (7), 773–782. Epub 2019/05/08. doi:10.
1038/s41587-019-0114-2

Pan, W., Zhao, J., Zhang, S., Chen, X., Liang, W., and Li, Q. (2021). Towards
exertion of immunotherapeutics in the treatment of colorectal cancer; adverse sides,
challenges, and future directions. Int. Immunopharmacol. 101, 108337. Epub
20211111. doi:10.1016/j.intimp.2021.108337

Pi, Y. N., Qi, W. C., Xia, B. R., Lou, G., and Jin, W. L. (2021). Long non-
coding rnas in the tumor immune microenvironment: Biological properties
and therapeutic potential. Front. Immunol. 12, 697083. doi:10.3389/fimmu.
2021.697083

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015).
Limma powers differential expression analyses for rna-sequencing and microarray
studies. Nucleic Acids Res. 43 (7), e47. Epub 2015/01/22. doi:10.1093/nar/gkv007

Sage, A., Ng, K., Marshall, E., Enfield, K., Stewart, G., Martin, S., et al. (2018).
Ma24.06 long non-coding rna expression patterns delineate infiltrating immune
cells in the lung tumour microenvironment. J. Thorac. Oncol. 13 (10), S443–S444.
doi:10.1016/j.jtho.2018.08.524

Schmid, P., Cortes, J., Dent, R., Pusztai, L., McArthur, H., Kummel, S., et al.
(2022). Event-free survival with pembrolizumab in early triple-negative breast
cancer. N. Engl. J. Med. 386 (6), 556–567. doi:10.1056/NEJMoa2112651

Siegel, R. L., Miller, K. D., and Jemal, A. (2019). Cancer statistics, 2019. Ca. Cancer
J. Clin. 69 (1), 7–34. Epub 2019/01/09. doi:10.3322/caac.21551

Smith, J. J., Deane, N. G., Wu, F., Merchant, N. B., Zhang, B., Jiang, A., et al.
(2010). Experimentally derived metastasis gene expression profile predicts
recurrence and death in patients with colon cancer. Gastroenterology 138 (3),
958–968. Epub 20091113. doi:10.1053/j.gastro.2009.11.005

Sun, J., Zhang, Z., Bao, S., Yan, C., Hou, P., Wu, N., et al. (2020). Identification of
tumor immune infiltration-associated lncrnas for improving prognosis and
immunotherapy response of patients with non-small cell lung cancer.
J. Immunother. Cancer 8 (1), e000110. doi:10.1136/jitc-2019-000110

Terry, T. (2022). A package for survival analysis in R. R package version 3, 3

Tian, L., Zhao, Z. F., Xie, L., and Zhu, J. P. (2019). Taurine up-regulated
1 accelerates tumorigenesis of colon cancer by regulating mir-26a-5p/mmp14/
P38 mapk/hsp27 Axis in vitro and in vivo. Life Sci. 239, 117035. Epub 2019/11/08.
doi:10.1016/j.lfs.2019.117035

Uthaya Kumar, D. B., andWilliams, A. (2020). Long non-coding rnas in immune
regulation and their potential as therapeutic targets. Int. Immunopharmacol. 81,
106279. Epub 20200212. doi:10.1016/j.intimp.2020.106279

Valkenburg, K. C., de Groot, A. E., and Pienta, K. J. (2018). Targeting the tumour
stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 15 (6), 366–381. Epub
2018/04/14. doi:10.1038/s41571-018-0007-1

Wang, L., Cho, K. B., Li, Y., Tao, G., Xie, Z., and Guo, B. (2019). Long noncoding
rna (Lncrna)-Mediated competing endogenous rna networks provide novel
potential biomarkers and therapeutic targets for colorectal cancer. Int. J. Mol.
Sci. 20 (22), E5758. Epub 2019/11/21. doi:10.3390/ijms20225758

Wang, P., Guo, Q., Hao, Y., Liu, Q., Gao, Y., Zhi, H., et al. (2021). Lncecell: A
comprehensive database of predicted lncrna-associated cerna networks at single-
cell resolution. Nucleic Acids Res. 49 (D1), D125–D133. Epub 2020/11/22. doi:10.
1093/nar/gkaa1017

Wang, P., Li, X., Gao, Y., Guo, Q., Wang, Y., Fang, Y., et al. (2019). Lncactdb 2.0:
An updated database of experimentally supported cerna interactions curated from
low- and high-throughput experiments. Nucleic Acids Res. 47 (D1), D121–D127.
Epub 2018/11/27. doi:10.1093/nar/gky1144

Frontiers in Genetics frontiersin.org13

Hu et al. 10.3389/fgene.2022.993714

161

https://doi.org/10.1038/ncomms15180
https://doi.org/10.1016/j.stem.2011.10.008
https://doi.org/10.1016/j.stem.2011.10.008
https://doi.org/10.1002/1878-0261.12413
https://doi.org/10.1002/1878-0261.12413
https://doi.org/10.1177/1010428317706332
https://doi.org/10.1056/NEJMoa2111380
https://doi.org/10.1093/gastro/goab048
https://doi.org/10.1053/j.gastro.2011.11.026
https://doi.org/10.1016/S1470-2045(16)30406-5
https://doi.org/10.1038/nm.3967
https://doi.org/10.1002/jcb.26153
https://doi.org/10.1080/15384101.2018.1558872
https://doi.org/10.1093/hmg/ddq353
https://doi.org/10.1093/hmg/ddq353
https://doi.org/10.1002/cam4.2942
https://doi.org/10.1158/1078-0432.CCR-09-1431
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
https://doi.org/10.1158/1078-0432.CCR-11-3066
https://doi.org/10.1016/j.asjsur.2020.07.014
https://doi.org/10.1371/journal.pone.0103159
https://doi.org/10.1089/omi.2012.0039
https://doi.org/10.1002/jcb.21159
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.3389/fimmu.2021.692079
https://doi.org/10.1056/NEJMoa2108330
https://doi.org/10.1056/NEJMoa2108330
https://doi.org/10.1371/journal.pmed.1001453
https://doi.org/10.3322/caac.21565
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1016/j.intimp.2021.108337
https://doi.org/10.3389/fimmu.2021.697083
https://doi.org/10.3389/fimmu.2021.697083
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.jtho.2018.08.524
https://doi.org/10.1056/NEJMoa2112651
https://doi.org/10.3322/caac.21551
https://doi.org/10.1053/j.gastro.2009.11.005
https://doi.org/10.1136/jitc-2019-000110
https://doi.org/10.1016/j.lfs.2019.117035
https://doi.org/10.1016/j.intimp.2020.106279
https://doi.org/10.1038/s41571-018-0007-1
https://doi.org/10.3390/ijms20225758
https://doi.org/10.1093/nar/gkaa1017
https://doi.org/10.1093/nar/gkaa1017
https://doi.org/10.1093/nar/gky1144
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.993714


Wang, X., Terfve, C., Rose, J. C., and Markowetz, F. (2011). Htsanalyzer: An R/
bioconductor package for integrated network analysis of high-throughput screens.
Bioinformatics 27 (6), 879–880. Epub 2011/01/25. doi:10.1093/bioinformatics/btr028

Wei, L., Wang, X., Lv, L., Zheng, Y., Zhang, N., and Yang, M. (2019). The
emerging role of noncoding rnas in colorectal cancer chemoresistance. Cell. Oncol.
42 (6), 757–768. Epub 2019/07/31. doi:10.1007/s13402-019-00466-8

Wells, A. C., Pobezinskaya, E. L., and Pobezinsky, L. A. (2020). Non-coding rnas
in Cd8 T cell biology. Mol. Immunol. 120, 67–73. Epub 20200218. doi:10.1016/j.
molimm.2020.01.023

Williams, C. S., Bernard, J. K., Demory Beckler, M., Almohazey, D., Washington,
M. K., Smith, J. J., et al. (2015). Erbb4 is over-expressed in human colon cancer and
enhances cellular transformation. Carcinogenesis 36 (7), 710–718. Epub 20150427.
doi:10.1093/carcin/bgv049

Wu, K., Xu, K., Liu, K., Huang, J., Chen, J., Zhang, J., et al. (2018). Long noncoding
rna Bc200 regulates cell growth and invasion in colon cancer. Int. J. Biochem. Cell
Biol. 99, 219–225. doi:10.1016/j.biocel.2018.04.001

Xiong, W., Qin, J., Cai, X., Xiong, W., Liu, Q., Li, C., et al. (2019). Overexpression
Linc01082 suppresses the proliferation, migration and invasion of colon cancer.
Mol. Cell. Biochem. 462 (1-2), 33–40. doi:10.1007/s11010-019-03607-7

Xu, M., Xu, X., Pan, B., Chen, X., Lin, K., Zeng, K., et al. (2019). Lncrna satb2-as1
inhibits tumor metastasis and affects the tumor immune cell microenvironment in
colorectal cancer by regulating Satb2. Mol. Cancer 18 (1), 135. Epub 2019/09/08.
doi:10.1186/s12943-019-1063-6

Xu, Q., Wang, Y., and Huang, W. (2021). Identification of immune-related lncrna
signature for predicting immune checkpoint blockade and prognosis in
hepatocellular carcinoma. Int. Immunopharmacol. 92, 107333. Epub 20210121.
doi:10.1016/j.intimp.2020.107333

Yanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shklar, M., Ophir, R.,
et al. (2005). Genome-wide midrange transcription profiles reveal expression level
relationships in human tissue specification. Bioinformatics 21 (5), 650–659. Epub
2004/09/25. doi:10.1093/bioinformatics/bti042

Yao, R. W., Wang, Y., and Chen, L. L. (2019). Cellular functions of long
noncoding rnas. Nat. Cell Biol. 21 (5), 542–551. Epub 2019/05/03. doi:10.1038/
s41556-019-0311-8

Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-Garcia,
W., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat. Commun. 4, 2612. Epub 2013/10/12. doi:10.1038/ncomms3612

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). Clusterprofiler: An R package
for comparing biological themes among gene clusters. OMICS 16 (5), 284–287.
Epub 2012/03/30. doi:10.1089/omi.2011.0118

Yu, W. D., Wang, H., He, Q. F., Xu, Y., and Wang, X. C. (2018). Long noncoding
rnas in cancer-immunity cycle. J. Cell. Physiol. 233 (9), 6518–6523. Epub 2018/03/
27. doi:10.1002/jcp.26568

Zeng, D., Ye, Z., Wu, J., Zhou, R., Fan, X., Wang, G., et al. (2020). Macrophage
correlates with immunophenotype and predicts anti-Pd-L1 response of urothelial
cancer. Theranostics 10 (15), 7002–7014. Epub 2020/06/20. doi:10.7150/thno.46176

Zhang, W. L., Liu, Y., Jiang, J., Tang, Y. J., Tang, Y. L., and Liang, X. H. (2020).
Extracellular vesicle long non-coding rna-mediated crosstalk in the tumor
microenvironment: Tiny molecules, huge roles. Cancer Sci. 111 (8), 2726–2735.
Epub 2020/05/22. doi:10.1111/cas.14494

Zhang, Y., Liu, Q., and Liao, Q. (2020). Long noncoding rna: A dazzling dancer in
tumor immune microenvironment. J. Exp. Clin. Cancer Res. 39 (1), 231. Epub 2020/
11/06. doi:10.1186/s13046-020-01727-3

Zhang, Z., Yan, C., Li, K., Bao, S., Li, L., Chen, L., et al. (2021). Pan-cancer
characterization of lncrna modifiers of immune microenvironment reveals
clinically distinct de novo tumor subtypes. NPJ Genom. Med. 6 (1), 52. Epub
20210617. doi:10.1038/s41525-021-00215-7

Zhao, H., Shi, J., Zhang, Y., Xie, A., Yu, L., Zhang, C., et al. (2020). Lnctard: A
manually-curated database of experimentally-supported functional lncrna-target
regulations in human diseases. Nucleic Acids Res. 48 (D1), D118–D126. Epub 2019/
11/13. doi:10.1093/nar/gkz985

Zhou, M., Zhang, Z., Bao, S., Hou, P., Yan, C., Su, J., et al. (2021). Computational
recognition of lncrna signature of tumor-infiltrating B lymphocytes with potential
implications in prognosis and immunotherapy of bladder cancer. Brief. Bioinform.
22 (3), bbaa047. doi:10.1093/bib/bbaa047

Zhou, Y., Zhu, Y., Xie, Y., and Ma, X. (2019). The role of long non-coding rnas in
immunotherapy resistance. Front. Oncol. 9, 1292. Epub 2019/12/19. doi:10.3389/
fonc.2019.01292

Frontiers in Genetics frontiersin.org14

Hu et al. 10.3389/fgene.2022.993714

162

https://doi.org/10.1093/bioinformatics/btr028
https://doi.org/10.1007/s13402-019-00466-8
https://doi.org/10.1016/j.molimm.2020.01.023
https://doi.org/10.1016/j.molimm.2020.01.023
https://doi.org/10.1093/carcin/bgv049
https://doi.org/10.1016/j.biocel.2018.04.001
https://doi.org/10.1007/s11010-019-03607-7
https://doi.org/10.1186/s12943-019-1063-6
https://doi.org/10.1016/j.intimp.2020.107333
https://doi.org/10.1093/bioinformatics/bti042
https://doi.org/10.1038/s41556-019-0311-8
https://doi.org/10.1038/s41556-019-0311-8
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1002/jcp.26568
https://doi.org/10.7150/thno.46176
https://doi.org/10.1111/cas.14494
https://doi.org/10.1186/s13046-020-01727-3
https://doi.org/10.1038/s41525-021-00215-7
https://doi.org/10.1093/nar/gkz985
https://doi.org/10.1093/bib/bbaa047
https://doi.org/10.3389/fonc.2019.01292
https://doi.org/10.3389/fonc.2019.01292
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.993714


Glossary

lncRNA long non-coding RNA

TIME tumor immune microenvironment

CRC colorectal cancer

TRL tumor immune microenvironment related long non-

coding RNA

LASSO Least absolute shrinkage and selection operator

HR hazard ratio;

CI confidence interval

PD-L1 programmed cell death 1 ligand 1

PD-L2 programmed cell death 1 ligand 2

PD-1 programmed cell death 1

TME tumor microenvironment

Treg regulatory T cell

ceRNA competing endogenous RNA

GEO Gene Expression Omnibus

TCGA The Cancer Genome Atlas

COAD colon adenocarcinoma

READ rectum adenocarcinoma

CCLE Cancer Cell Line Encyclopedia

TSI tissue specificity index

MMR mismatch repair

MSS microsatellite stability

MSI microsatellite instability

CMS consensus molecular subtypes

DEG differentially expressed gene

GSEA gene set enrichment analysis

MSigDB Molecular Signatures Database

ROC receiver operating characteristic

AUC area under the curve

DFS disease-free survival

CTLA4 cytotoxic T-lymphocyte associated protein 4.
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Integrated identification of key
immune related genes and
patterns of immune infiltration in
calcified aortic valvular disease: A
network based meta-analysis

Li-Da Wu1†, Feng Xiao1†, Jin-Yu Sun2†, Feng Li1, Yu-Jia Chen1,
Jia-Yi Chen1, Jie Zhang1, Ling-Ling Qian1 and Ru-Xing Wang1*
1Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi,
China, 2Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China

Background: As the most prevalent valvular heart disease, calcific aortic valve

disease (CAVD) has become a primary cause of aortic valve stenosis and

insufficiency. We aim to illustrate the roles of immune related genes (IRGs)

and immune cells infiltration in the occurrence of CAVD.

Methods: Integrative meta-analysis of expression data (INMEX) was adopted to

incorporate multiple gene expression datasets of CAVD from Gene Expression

Omnibus (GEO) database. By matching the differentially expressed genes

(DEGs) to IRGs from “ImmPort” database, differentially expressed immune

related genes (DEIRGs) were screened out. We performed enrichment

analysis and found that DEIRGs in CAVD were closely related to

inflammatory response and immune cells infiltration. We also constructed

protein–protein interaction (PPI) network of DEIRGs and identified 5 key

DEIRGs in CAVD according to the mixed character calculation results.

Moreover, CIBERSORT algorithm was used to explore the profile of

infiltrating immune cells in CAVD. Based on Spearman’s rank correlation

method, correlation analysis between key DEIRGs and infiltrating immune

cells was performed.

Results: A total of 220 DEIRGs were identified and the enrichment analysis of

DEIRGs showed that they were significantly enriched in inflammatory

responses. PPI network was constructed and PTPN11, GRB2, SYK, PTPN6

and SHC1 were identified as key DEIRGs. Compared with normal aortic valve

tissue samples, the proportion of neutrophils, T cells CD4 memory activated

and macrophages M0 was elevated in calcified aortic valves tissue samples, as

well as reduced infiltration of macrophages M2 and NK cells activated.

Furthermore, key DEIRGs identified in the present study, including PTPN11,

GRB2, PTPN6, SYK, and SHC1, were all significantly correlated with infiltration of

various immune cells.
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Conclusion: This meta-analysis suggested that PTPN11,GRB2, PTPN6, SYK, and

SHC1might be key DEIRGs associated with immune cells infiltration, which play

a pivotal role in pathogenesis of CAVD.

KEYWORDS

immune-related genes, calcific aortic valve disease, immune cells, immune infiltration,
CIBERSORT

Introduction

Calcific aortic valve disease (CAVD), the most common

cardiovascular valve disease, has become a major reason for

aortic valve stenosis and insufficiency, especially in the elderly

(Tsimikas et al., 2018). It is reported that over 30% of individuals

beyond the age of 65 have echocardiography evidence of CAVD

(Otto and Prendergast, 2014). With the progression of CAVD,

aortic valve stenosis affects almost 3% of people over 65 years of

age and in nearly 8% of people over 75 years of age. Considering

the prolonged life expectancy, the worldwide CAVD burden is

projected to be 4.5 million dollars in 2030 (Vahanian et al., 2012).

Currently, surgical therapy remains the only effective therapeutic

method against CAVD, which is limited in terms of high costs,

perioperative complications, and the complications of life-long

anticoagulation therapy (Myasoedova et al., 2018).

CAVD is a progressive disease, including three stages. Valve

endothelial cells injury, lipid deposition, and inflammation

constitute an initiation stage. In the next stage, valve

interstitial cells differentiation and microcalcification are

promoted by collagens and bone-matrix proteins deposition.

Finally, valvular osteogenesis occurs through activation of

various specific molecular signals (Liu and Xu, 2016).

Recently, inflammation and immunity has been found to be

important to the progression of CAVD. In the aortic valve, nearly

15% of the cells come from hematopoietic sources. With the

infiltration of T lymphocytes, B lymphocytes and macrophages

into the aortic valve after inflammation, this number increases

greatly, so as to promote further inflammation response (Bartoli-

Leonard et al., 2021). It is of great value to evaluate immune cells

infiltration and find key immune related genes (IRGs) that

regulate the infiltration of immune cells for elucidating the

molecular mechanism of CAVD.

Integrative meta-analysis of expression data (INMEX) has

been widely used in integrating gene expression profiles (Xia

et al., 2013). In the present meta-analysis, INMEXwas adopted to

integrate all datasets of CAVD from Gene Expression Omnibus

(GEO) database (GSE12644, GSE83453, and GSE51472) and

identify differentially expressed genes (DEGs) in CAVD.

Subsequently, we screened out differentially expressed

immune related genes (DEIRGs) through matching

2,484 IRGs from ImmPort database to DEGs (Fu et al., 2021).

Gene ontology (GO) and kyoto encyclopedia of genes and

genomes (KEGG) analysis was conducted to explore the

biological meaning of the DEIRGs and the immune-related

molecular mechanisms underlying CAVD. CIBERSORT, a

widely used algorithm, can assess infiltrating immune cells

according to different gene expression patterns (Newman

et al., 2015). Accumulating studies have adopted CIBERSORT

to evaluate immune cells infiltration in many different diseases

(Zhang et al., 2019; Deng et al., 2020; Liu et al., 2020).

CIBERSORT was firstly used to investigate the infiltration of

22 immune cells in aortic valve tissue samples from patients with

CAVD in this meta-analysis. In addition, we constructed protein-

protein interaction (PPI) network and identified key DEIRGs of

CAVD. The correlation between each key DEIRGs and

infiltrating immune cells was studied respectively to explore

its role in CAVD.

Materials and methods

Inclusion of eligible datasets

We conducted literature search in GEO database. Search

keywords were “CAVD” or “calcific aortic valve disease” or

“aortic valve calcification” containing in all fields. A total of

68 researches were screened out. Two independent researchers

(Jia-Yi Chen and Li-Da Wu) searched and reviewed the titles,

abstracts, and full texts to determine the inclusion. The inclusion

criteria are as follows: 1) adult patients with CAVD; 2) at least

6 samples included in each group; 3) genomic data of patients

with CAVD and normal individuals were detected by microarray

or next generation sequencing. As shown in Table 1, all of the

datasets of CAVD in GEO database were included in our meta-

analysis, including GSE12644 (Bossé et al., 2009), GSE51472

(Ohukainen et al., 2015), and GSE83453 (Guauque-Olarte et al.,

2016). The CAVD microarray datasets in GEO database (Barrett

et al., 2013) were downloaded via “GEO query” package in R

3.6.3 software (Davis and Meltzer, 2007). Stenotic aortic valve

tissue samples without calcification were excluded for the

accuracy of the present meta-analysis focusing on CAVD.

GSE12644, based on GPL570 platform, includes 10 aortic

valve samples from normal individuals and 10 aortic valve

samples from patients with CAVD (Bossé et al., 2009).

GSE51472, also performed by GPL570 platform, includes

5 aortic valve samples from normal individuals and 5 aortic

valve samples from patients with CAVD (Ohukainen et al.,

2015). GSE83453, based on GPL10558, includes 8 aortic valve

samples from normal individuals and 10 aortic valve samples
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from patients with CAVD (Guauque-Olarte et al., 2016). The

basic information of the patients included in this meta-analysis

was also downloaded from the GEO database. Considering the

difficulty of obtaining aortic valve samples in the clinic and the

age-dependent and gender-dependent clinical features of CAVD,

all of the aortic valve samples included in this meta-analysis were

derived from elderly male individuals. The mean age of patients

in the control group was 58.8 ± 2.01 years, and that in the CAVD

group was 62.8 ± 1.48 years, the difference was not statistically

significant.

Quality assessment and removal of batch
effects among different datasets

Log2-transformation and background correction were

performed on the gene expression profiles using the “linear

models for microarray data (limma)” package (Ritchie et al.,

2015). After the normalization process, all of the microarray

probes were translated to official gene names in INMEX. For

multiple probes that detected a single gene, we use their average

expression values. In the era of omics and big data, the

integration of data (the same disease or condition) tested in

different batches, platforms, using different techniques, and

under different laboratory conditions will become the norm.

However, different batches of datasets may have batch effects due

to abiotic factors, which may have a serious impact on the test

results and even lead to wrong conclusions. There are several

methods for removing the batch effect of gene expression data,

including ComBat method, surrogate variable analysis method,

distance weighted discriminant method and ratio-based method.

Considering the datasets included in the present meta-analysis

were based on different platforms and different experimental

conditions, ComBat option was used to remove batch effect and

visualize the results of principal component analysis (PCA).

Moreover, each gene expression value from different batches

were adjusted by the normalization procedure of “central

standardization,” also known as “mean centering.” The

specific method of “central standardization” is to subtract

from the mean value of each gene so that the mean value of

each gene expression value in the transformed dataset was 0.

Through the normalization procedure of “central

standardization,” gene expression values were transformed to

the appropriate range so as to avoid the fluctuation of small value

variables being masked by large value variables.

Network based meta-analysis and
identification of differentially expressed
immune related genes

Following the PRISMA guidelines (Moher et al., 2009),

INMEX was used to integrate gene expression datasets of

CAVD through network-based meta-analysis (Xia et al.,

2013). Moreover, the random effect model was selected in this

study considering the heterogeneity among different datasets

(Xia et al., 2013). Pattern extractor tool in INMEX was used to

construct a heatmap of the top 100 DEGs. By matching

2,484 IRGs from the ImmPort database to DEGs, we screened

out DEIRGs in aortic valve tissue samples from patients with

CAVD (Li et al., 2014).

Assessment of immune cells infiltration

In this meta-analysis, CIBERSORT algorithm was firstly used

to assess the infiltration of 22 types of immune cells in aortic

valve tissue samples from patients with CAVD (Newman et al.,

2015). Actually, CIBERSORT algorithm has been employed to

evaluate immune cells infiltration in many different diseases,

such as osteoarthritis (Deng et al., 2020), high-grade serous

ovarian cancer (Liu et al., 2020), and breast ductal and lobular

carcinoma (Zhang et al., 2019). For the accuracy of evaluation,

the p value of CIBERSORT results adopted in the present study

are less than 0.05. In each sample, the proportions of various

immune cells were visualized using R software. Moreover, we also

TABLE 1 Characteristics of the datasets included in the integrated analysis.

GEO ID Platform Citation Region Normal CAVD

GSE12644 GPL570; Affymetrix Human Genome U133 Plus
2.0 Array

Bossé Y, et al. Circ Cardiovasc Genet, 2009;2(5):489-498. PMID:
20031625

Quebec,
Canada

10 10

Derbali H, et al. Am J Pathol, 2010;176(6):2,638-2,645. PMID:
20382708

GSE51472 GPL570; Affymetrix Human Genome U133 Plus
2.0 Array

Ohukainen P, et al. Ann Med, 2015;47(5):423-429. PMID:
26203686

Oulu, Finland 5 5

Rysä J, et al. Genom Data, 2016;7:107-108. PMID: 26981379

GSE83453 GPL10558; Illumina HumanHT-12
V4.0 expression beadchip

Guauque-Olarte S, et al. Physiol Genomics, 2016;48(10):749-
761. PMID: 27495158

Quebec,
Canada

8 10

GEO, gene expression omnibus; CAVD, calcific aortic valve disease.

Frontiers in Genetics frontiersin.org03

Wu et al. 10.3389/fgene.2022.971808

166

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.971808


carried out PCA analysis based on the dataset of relative fractions

of immune cells infiltration in each sample calculated by

CIBERSORT (rows: the relative fractions of immune cells

infiltration; columns: aortic valve tissue samples). PCA

analysis adopted the method of multivariate statistical

distribution analysis with characteristic quantities. Generally,

this operation can be regarded as a method to expose the

internal structure of data so as to better explain the variables

of data. Of note, principal component analysis used orthogonal

transformation to linearly transform the specific data values of

immune cell infiltration, and then projected them into the values

of multiple linearly uncorrelated variables. Samples were

clustered according to the values of the first two linearly

uncorrelated variables. “ggplot2” package in R software was

adopted to perform PCA analysis based on immune cells

infiltration and draw a PCA clustering plot. A correlation

heatmap was created by “corrplot” package, also based on the

dataset of relative fractions of immune cells infiltration in each

sample calculate by CIBERSORT, to describe the correlation

between 22 types of immune cells, correlation coefficient and p

value were used to evaluate the strength and significance of

correlation. For a specific type of immune cell, the difference in

immune cells infiltration levels between aortic valve samples

from patients with CAVD and normal individuals were

represented by a violin plot established by “vioplot” package.

Enrichment analysis of differentially
expressed immune related genes

To explore the biological functions of DEIRGs and roles of

DEIRGs in immune cells infiltration in CAVD, the “clusterProfler”

package (Wu et al., 2021) was adopted to conduct GO and KEGG

pathway enrichment analysis. The enrichment terms were rendered

as a network plot and visualized by Metascape software for

elucidating the correlation among them (Zhou et al., 2019).

Enrichment analysis was also performed based on DisGeNET

(Pinero et al., 2017) and TRRUST (Han et al., 2018) database to

further explore roles of DIREGs in CAVD. DisGeNET is a database

of gene-disease associations, which collects one of the largest publicly

available collections of genes and human diseases-related variants.

TRRUST is a visual and manually annotated transcriptional

regulatory network database. TRRUST not only contains target

genes corresponding to transcription factors, but also contains

regulatory relationships among transcription factors.

Protein–protein interaction network and
identification of key differentially
expressed immune related genes

The STRING database is a widely used database for protein-

protein interactions (PPIs). This database can be applied to

2031 species, containing 9.6 million proteins and 13.8 million

PPIs. At present, STRING database is widely used to study the

interaction network between proteins, which helps to find the

core regulatory genes in PPIs network (Zhao et al., 2018; Bajpai

et al., 2020; Liu et al., 2021). The STRING software (Szklarczyk

et al., 2019) was adopted to construct PPI network of DEIRGs,

which was visualized by Cytoscape software 3.8.1 (Shannon et al.,

2003). According to previously published studies, we chose the

confidence value of 0.9 and the maximum number of

connections of 3 to screen out relatively reliable protein

interaction relationships on the basis of preserving protein

correlations as much as possible (Wang et al., 2021;

Ramadhani et al., 2022; Yadalam et al., 2022). Cytohubba is a

plug-in of Cytoscape software for identifying hub gene nodes

(Chin et al., 2014). It provides multiple analysis algorithms to

calculate hub genes in protein interaction network diagrams.

Among them, the mixed character calculation algorithm is a

relatively accurate method that has been proved to predict

important targets (Chin et al., 2014). Mixed character

calculation algorithm is a method to judge the importance of

hub genes by evaluating the node degree, betweenness centrality

in the PPI network. The specific calculation method of MCC is as

follows: given a node v, the MCC of v is defined as

MCC (v) � ∑C∈S(v)(|C| − 1)!, where S(v) is the collection of

maxima l cliques which contain v, and (|C|-1)! is the product

of all positive integers less than |C|. If there is no edge between the

neighbors of the node v, then MCC(v) is equal to its degree (Chin

et al., 2014). Furthermore, using Cytoscape plugin software

“cytoHubba,” the top 5 hub DEIRGs were screened out based

on mixed character numeration.

Correlation analysis between key
differentially expressed immune related
genes and infiltrating immune cells

The correlation between the expression values of key DEIRGs

and the relative fractions of immune cells infiltration was

analyzed using spearman method in R software, and the

package of “ggplot2” was employed to visualize the correlation

analysis results Figure 1.

Results

Differentially expressed genes and
differentially expressed immune related
genes screening between calcified and
normal aortic valves

We performed principal component analysis (PCA) to

evaluate whether the batch effects were successfully removed

among different datasets included in the present meta-analysis.
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In Figure 2B, the PCA plot demonstrated that batch effect among

GSE12644, GSE83453 and GSE20681 was successfully removed.

In INMEX, random effect model was used to identify DEGs

according to the adjusted p value < 0.05. A total of 2,465 DEGs

were screened out, including 1306 up-regulated genes and

1159 down-regulated genes in aortic valve tissues from

patients with CAVD. The top 50 up-regulated DEIRGs and

top 50 down regulated DEIRGs across different datasets are

shown in a heatmap, hierarchal clustering is applied based on

complete linkage method (Figure 2A). A total of 220 DEIRGs

were finally selected after matching the DEGs to the IRGs from

ImmPort database (Figure 2C).

Immune cells infiltration analysis

Based on CIBERSORT algorithm, we firstly investigated the

infiltration of 22 types of immune cells in aortic valve tissues

from normal individuals and patients with CAVD. Figure 3A and

Figure 3B vividly illustrate the proportion of infiltrating immune

cells in aortic valve tissue samples from 23 normal individuals

and 25 patients with CAVD. Compared with normal aortic valve

tissue samples, the proportion of neutrophils, T cells

CD4 memory activated and macrophages M0 was significantly

elevated in the calcified aortic valves tissues, as well as reduced

infiltration of macrophages M2 and NK cells activated in the

calcified aortic valves tissues (Figure 4A). Because of the high

proportion of macrophages M2, we have created a separate

heatmap and a separate violin plot in supplementary materials

excluding macrophages M2 to better visualize the differences in

CAVD versus normal samples observed for the other immune

cells (Supplementary Figure S3). The results of correlation

analysis of different infiltrating immune cells showed that NK

cells resting and T cells CD8 have the strongest positive

correlation (r = 0.62; Figure 4B). However, mast cells resting

and NK cells resting have the most intensive negative correlation

(r = -0.66). According to the proportion of infiltrating immune

cells, PCA diagram revealed distinct group bias clustering,

indicating that immune cells infiltration of patients with

CAVD and normal individuals are significantly different

(Supplementary Figure S1).

Enrichment analysis of differentially
expressed immune related genes

We performed enrichment analysis of DEIRGs of CAVD

based on GO and KEGG databases. Figure 5A shows that the

FIGURE 1
Workflow of the present systematic review and meta-analysis. PPI, protein–protein interaction; GO, gene ontology; CAVD, calcific aortic valve
disease; DEIRGs, differentially expressed immune related genes; KEGG, kyoto encyclopedia of genes and genomes.
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biological processes were mainly enriched in positive regulation

of leukocyte migration, T cell activation, response to external

stimulus, cytokine production and cell chemotaxis. And the most

enriched cellular components included vesicle lumen, membrane

region, the external side of plasma membrane, membrane raft,

and membrane microdomain. The molecular functions were

mainly enriched in cytokine activity, cytokine binding,

cytokine receptor binding, receptor-ligand activity and

cytokine receptor activity. In Figure 5B, KEGG analysis shows

that NK cell mediated cytotoxicity and cytokine to cytokine

receptor interaction were most enriched, followed by JAK-

STAT pathway, chemokine, tuberculosis. The top 20 pathways

in KEGG enrichment analysis were shown in Figure 5C,

including leukocyte migration, cytokine signaling in the

immune system, lymphocyte activation, myeloid lymphocyte

activation and T cell receptor signaling pathway. In addition,

DisGeNET enrichment analysis also revealed that the DEIRGs

were significantly associated with inflammation, periodontitis,

infection, dermatitis and pneumonitis (Figure 5D). Then, we

screened out transcription factors associated with DEIRGs based

on the TRRUST database, including RELA, NFKB1, SP1, STAT3,

and JUN (Figure 5E).

Protein–protein interaction network
analysis

Figure 6A is the PPI network of DEIRGs, all of the

220 DEIRGs were included in the PPI network, and there

are 384 direct interactions. We also carried out an analysis of

our PPI network in the STRING database, the results were as

followed: number of nodes in the PPI network: 220; number

of edges in the PPI network (not the direct interactions but

the number of evidence supporting the interactions): 1931;

expected number of edges out of a set of randomly selected

degree-matched genes: 500; PPI enrichment p value: < 0.001.

Thus, the interactions among the 220 DEIRGs in this study

were more significant than the interactions among a

FIGURE 2
Identification of DEIRGs between aortic valve samples from patients with CAVD and normal individuals through network-based meta-analysis.
(A) Heatmap of top 50 up-regulated DEIRGs and top 50 down regulated DEIRGs across different datasets (according to fold changes), hierarchal
clustering is applied based on complete linkage method. (B) PCA plot after removing batch effect between GSE12644, GSE51472 and GSE83453. (C)
Venn plot of screening DEIRGs bymatching the 2,484 IRGs from ImmPort database to the 2,465 DEGs. CAVD, calcific aortic valve disease; IRGs,
immune related genes; DEGs, differentially expressed genes; DEIRGs, differentially expressed immune related genes.
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randomly selected set of genes that were matched in degree.

In addition, the high interconnectivity between nodes in the

PPI network indicates functional cohesion among proteins.

Therefore, there are a large number of interactions among the

220 DEIRGs, which may play important roles in various

biological processes leading to the development of CAVD.

CytoHubba software was adopted to identify the top 5 key

DEIRGs according to the core PPI network, including

PTPN11, GRB2, SYK, PTPN6, and SHC1 (Figure 6B). As

can be seen in Figure 6C, PTPN11 was statistically down-

regulated in the aortic valve tissues from patients with CAVD.

Whereas GRB2, SYK, PTPN6 and SHC1 were statistically up-

regulated in aortic valve tissues from patients with CAVD

(Figures 6D–G).

Correlation analysis of key differentially
expressed immune related genes and
immune cells infiltration

Results of the correlation analysis between the key DEIRGs

and infiltrating immune cells in aortic valve tissues indicated that

PTPN11 was intensively correlated with T cells CD4 naive (r =

0.394, p = 0.017), dendritic cells resting (r = 0.376, p = 0.024),

macrophages M1 (r = 0.367, p = 0.028) and negatively correlated

with T cells gamma delta (r = −0.406, p = 0.014), mast cells

resting (r = -0.354, p = 0.034).GRB2 had positive correlation with

mast cells activated (r = 0.487, p = 0.003), neutrophils (r = 0.418,

p = 0.011), plasma cells (r = 0.380, p = 0.022), macrophages M0

(r = 0.379, p = 0.023), B cells memory (r = 0.329, p = 0.049),

FIGURE 3
Summary of immune cells infiltration in calcified and normal aortic valve samples. (A) Barplot shows the relative fractions of 22 types of immune
cells in each sample. (B) Heatmap of the relative fractions of 22 subpopulations of infiltrating immune cells in each sample, green to red indicates an
increase in relative fractions of immune cells infiltration. CAVD, calcific aortic valve disease.
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dendritic cells resting (r = 0.349, p = 0.037) and negative

correlation with NK cells activated (r = −0.354, p = 0.034),

macrophages M2 (r = -0.453, p = 0.005), mast cells resting

(r = -0.515, p = 0.001). Of note, out of all the gene-immune

cell infiltration correlations, the one between GRB2 and resting

mast cells seems to be more important. SYK had positive

FIGURE 4
Evaluation of the difference in immune cells infiltration between aortic valve samples from patients with CAVD and normal individuals. (A) The
difference in the relative fractions of 22 subpopulations of immune cells between calcified and normal aortic valve samples. (B) Correlation heatmap
based on the Spearman’s rank correlation method shows the correlation between the relative fractions of 22 immune cells subpopulations, blue to
red indicates an increase in correlation coefficient. CAVD, calcific aortic valve disease; PCA: principal component analysis.

Frontiers in Genetics frontiersin.org08

Wu et al. 10.3389/fgene.2022.971808

171

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.971808


correlation with T cells CD4 memory activated (r = 0.450, p =

0.006), T cells gamma delta (r = 0.441, p = 0.007), macrophages

M0 (r = 0.358, p = 0.032) and negative correlation with NK cells

resting (r = -0.369, p = 0.026), Tregs (r = -0.383, p = 0.021).

PTPN6 was positively correlated with T cells CD4 memory

activated (r = 0.403, p = 0.014), neutrophils (r = 0.353, p =

0.034), macrophages M0 (r = 0.674, p < 0.001) and correlated

negatively with T cells follicular helper (r = −0.339, p = 0.042),

monocytes (r = −0.423, p = 0.009). SHC1 had positive correlation

with plasma cells (r = 0.452, p = 0.006), macrophages M0

FIGURE 5
Enrichment analysis of DEIRGs in CAVD. (A)GOenrichment analysis. (B) KEGG pathway enrichment analysis. (C) The network of enriched terms
and each node represents an enriched term. (D) Summary of enrichment analysis based on DisGeNET database. (E) Summary of enrichment analysis
based on TRRUST database. The light brown to dark brown gradient indicates an increase in -log10(P). Count: the number of genes enriched in each
term; DEIRGs, differentially expressed immune related genes; GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes.
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(r = 10.398, p = 0.016) and negative correlation with T cells

CD4 naive (r = −0.335, p = 0.046) (Figure 7).

Discussion

CAVD, a chronic progressive disease, develops gradually from

valvular sclerosis to valvular calcification, eventually leads to stenosis

of left ventricular outflow and severely disrupts hemodynamics

(Büttner et al., 2021). CAVD has become a major health

problem due to its high prevalence, high morbidity and mortality

rate. Due to the lack of effective drugs, aortic valve replacement

(AVR) or transcatheter aortic valve implantation (TAVI) are the

only available treatments for patients with CAVD (Myasoedova

et al., 2018). AVR is the traditional treatment for aortic valve disease.

However, AVR alone has a high in-hospital mortality rate,

approximately 3.4%. Despite TAVI becoming increasingly useful,

even for patients at low risk,most patients who undergo it are elderly

and frail and have a number of comorbid conditions. The

perioperative management of TAVI still presents great challenges.

More and more proofs verified that the pathological process

involved in CAVD is multifactorial, including aortic valve

endothelial cells damage, aortic valve fibrosis and aortic valve

calcification. Studies have demonstrated that inflammatory

response plays a pivotal role in development of CAVD (Cho

et al., 2018; Sikura et al., 2020).

One promising and rapidly evolving tactic to CAVD is the

application of multi-omics approaches to fully define disease

pathogenesis (Blaser et al., 2021). More and more researchers

have focused on changes in gene expression profiles in patients

with CAVD. Qiao et al. and Teng et al. investigated the potential

DEGs and pathways related to CAVD based on traditional

bioinformatic analysis (Teng et al., 2020; Qiao et al., 2022). In

addition, based on the WGCNA method, Sun et al. screened out

different functional gene modules related to CAVD. However,

roles of DEGs in the occurrence and development of CAVD has

not been further discussed, especially the relationship between

DEIRGs and immune cells infiltration (Sun et al., 2021). In the

present study, we aim to screen out key DEIRGs of CAVD based

on network bioinformatic analysis and explore the profile of

infiltrating immune cells in aortic valve tissues from patients with

CAVD in detail.

A total of 220 DEIRGs were identified in aortic valve tissue

samples from patients with CAVD after a detailed analysis of all

FIGURE 6
PPI network and identification of hub genes. (A) PPI network of DEIRGs in CAVD created by STRING website. The number of edges between
different proteins represents the number of evidences supporting the interaction relationship in STRING database. (B) Top 5 hub genes identified by
“cytoHubba” according to mixed character calculation and its core network. The essentiality of hub genes increases from yellow to red. (C–G) The
expression of PTPN11, GRB2, SYK, PTPN6 and SHC1 in calcified and normal aortic valve. PPI: protein-protein interaction; DEIRGs: differentially
expressed immune related genes; CAVD, calcific aortic valve disease.
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relevant datasets of CAVD in GEO database. GO analysis of the

DEIRGs revealed that leukocyte migration, receptor-ligand

activity, leukocyte cell-cell adhesion, myeloid leukocyte

migration and membrane raft and membrane microdomain

were significantly enriched. These biological processes and

molecular functions were closely related to immune cells

infiltration (Cho et al., 2018). Infiltrating immune cells could

release inflammatory and fibrotic cytokines and further aggravate

inflammatory response. DEIRGs are also involved in the

regulation of cytokine receptor activity, cytokine activity and

cytokine production in KEGG analysis. The inflammatory factors

secreted by invading inflammatory cells, such as IL-1β and NF-

κB, can promote extracellular matrix remodeling, lipid

deposition, fibrosis, ossification and calcification (Liu and

Pravia, 2010). These findings indicate that DEIRGs in CAVD

are involved in the inflammatory processes. In the “cytoHubba”

plugin, PTPN11,GRB2, SYK, PTPN6 and SHC1were identified as

top 5 key DEIRGs according to the results of mixed character

calculation.

Protein tyrosine phosphatase (PTP) is a kind of protein

phosphatases, including PTPN1, PTPN2, PTPN6, PTP11 and

PTPN22. PTPs function in various important biological

processes, including cell cycle and cell differentiation, by

carrying out phosphorylation and dephosphorylation of

tyrosine residues (Pulido et al., 2013). The role of PTPs in

inflammatory response and immune cells infiltration was

gradually revealed (Zhao et al., 2016; Xiao et al., 2019). In the

present study, PTPN11 was significantly down-regulated,

whereas PTPN6 was up-regulated in aortic valves from

patients with CAVD. PTPN11 have already been linked to

inflammation response, which can reduce the level of

Th1 cytokine through inhibiting the combination of

STAT1 and IFN-γ receptor (Tseng et al., 2012). Moreover,

studies have already demonstrated that PTPN11 gene variants

are closely associated ulcerative colitis (UC) but not Crohn’s

disease (CD) (Spalinger et al., 2015). Moreover, PTPN11 is an

important component in growth factor signaling pathway,

closely related to Egfr signaling and formation of valve

endothelial cells (Chen et al., 2000). Interestingly, patients

with PTPN11 mutation present significantly higher prevalence

of pulmonary valve stenosis, named Noonan syndrome (Brasil

et al., 2010). In addition, PTPN11 mutation has also been

demonstrated to be harmful to myocardial hypertrophy and

cardiac fibrotic remodeling through crosstalking with NF-κB
pathway and mTOR signaling (Schramm et al., 2012; Zhou

et al., 2020a). PTPN6, another phosphatase of PTPs, specially

expressed in the cytoplasm and prevented excessive

autoimmunity in IL-1 dependent inflammatory diseases and

FIGURE 7
Correlations between the expression values of key DEIRGs and the relative fractions of immune cells infiltration. (A–E) Correlation analysis of
the association between the expression values of PTPN11, GRB2, SYK, PTPN6, SHC1 and the relative fractions of immune cells infiltration based on
Spearman’s rank correlation method.
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pyroptosis dependent inflammatory diseases (Speir et al., 2020).

Studies have also demonstrated that PTPN6 significantly

ameliorates inflammatory disease by decreasing TNF-α, TGF-
β and IL-6 (Lin et al., 2020). In addition, PTPN6 is important in

preventing the harmful effects of pathogens on the host, which is

crucial for successful defense mechanisms against invading

microorganisms (Kanwal et al., 2013). PTPN6 is known as an

important negative regulator of inflammatory response and

significantly down regulated in aortic valve tissues from

patients with CAVD Table 2.

GRB2 is a 25kD adaptor protein that functions in modulating

and integrating signals from cell membrane surface receptors to

intracellular effector proteins (Dharmawardana et al., 2006).

Studies have demonstrated that GRB2 was up-regulated in

aortic valve tissues from patients with CAVD (Abazyan et al.,

2010). GRB2 is best known in the cardiovascular field for

activating Egfr tyrosine kinase and its downstream renin-

angiotensin system (Tari and Lopez-Berestein, 2001). Recent

studies also revealed that GRB2 was involved in the process of

development of T cells and Th cells. GRB2-knockout animals

have reduced T cells and more prone to inflammatory diseases

(Radtke et al., 2016).

Spleen-associated tyrosine kinase (SYK), a member of the

none receptor type tyrosine kinase family (Alhazmi, 2018). SYK

was also involved in numerous biological functions, including

cellular adhesion, vascular development, platelet activation and

relaying adaptive immune receptor signaling related to immune

cells infiltration (Kurosaki, 2000; Correll et al., 2006; Mocsai

et al., 2010). As a proinflammatory molecule, SYK has received

increasing attention in some diseases. Liang et al. demonstrated

that SYK was a crucial biomarker and closely related to the

occurrence of coronary heart disease (CHD) as an

proinflammatory factor (Liang et al., 2019). Researches on the

specific role of SYK in CAVD is helpful to better understand the

role of inflammatory response and immune cells infiltration in

patients with CAVD.

SHC1, a member of SHC family of adaptor proteins, and the

role of SHC1 in reactive oxygen species (ROS) production is

known to be related to development of atherosclerosis (Tomilov

et al., 2010; Miao et al., 2015). Recent evidence suggests that ROS

also plays an important role in the pathophysiology of CAVD by

inducing the differentiation of valvular stromal cells into

myofibroblasts and osteoblasts (Liu et al., 2019).

In this meta-analysis, CIBERSORT algorithm was firstly

performed to evaluate the profile of immune cells infiltration

in aortic valve tissues from patients with CAVD. We found

reduced infiltration of macrophages M2 and NK cells activated,

as well as increased infiltration of neutrophils, T cells

CD4 memory activated and macrophages M0. Imbalance of

M1 and M2 polarization in macrophages is known to be

critical in regulating the intensity of inflammatory responses.

Our results are identical to previous studies, showing that

calcified aortic valves have fewer macrophages M2 compared

with aortic valves from normal individuals (Zhou et al., 2020b).

In addition, our study has also shown that the macrophages

M0 population were significantly elevated in CAVD. Neutrophils

and C-reactive protein (CRP) are indirect blood markers that

roughly reflect the level of inflammation, which were elevated in

calcified aortic valves (Song et al., 2019). Moreover, T cells

CD4 memory activated and Tregs was also significantly

TABLE 2 Summary of the functions and known contributions of key DEIRGs in CAVD and other inflammatory diseases.

Gene
symbol

Full name Functions and known
contributions of key
DEIRGs in CAVD
and inflammatory diseases

PTPN11 Protein tyrosine phosphatase 11 PTPN11 is an important component in growth factor pathway and closely related to formation of valve endothelial
cells. Moreover, PTPN11 can reduce the level of Th1 cytokine through preventing combination of STAT1 and IFN-
γreceptor. PTPN11 is associated with inflammatory diseases, including pulmonary valve stenosis, ulcerative colitis,
inflammation induced-myocardial hypertrophy and cardiac fibrotic remodeling

GRB2 Growth factor receptor-bound
protein 2

GRB2 mainly functions in activating Egfr tyrosine kinase and its downstream renin-angiotensin system. GRB2 was
also involved in the process of development of T cells and Th cells. Studies have demonstrated that GRB2 was
significantly up-regulated in aortic valve tissues form CAVD patients

SYK Spleen-associated tyrosine kinase SYK is a member of the none receptor type tyrosine kinase family and involved in numerous biological functions.
As a proinflammatory molecule, SYK has become a crucial biomarker of coronary heart disease. However, the
relationship between SYK and aortic valve diseases still remains exclusive

PTPN6 Protein tyrosine phosphatase 6 PTPN6 specially expressed in the cytoplasm, it can prevent excessive autoimmunity in IL-1 dependent
inflammatory diseases. PTPN6 can ameliorate inflammatory diseases by decreasing TNF-α, TGF-β and IL-6 and
prevent the harmful effects of pathogens on the host. PTPN6 is known as an important negative regulator of
inflammatory response and down regulated in patients with CAVD.

SHC1 Src-homology 2 domain containing 1 SHC1 is a member of SHC family of adaptor proteins. SHC1 functions in production of reactive oxygen species.
Oxidative stress can cause inflammation and play an important role in the development of CAVD. SHC1mediated-
reactive oxygen species production is closely related to development of atherosclerosis and coronary heart disease

CAVD, Calcific Aortic Valve Disease.
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elevated in patients with CAVD. These results are consistent with

previous studies suggesting that calcified aortic stenosis is

characterized by chronic inflammation with infiltration of

immune cells (Steiner et al., 2012). We also studied the

correlation between key DEIRGs and infiltrating immune

cells, and found that PTPN1, GRB2, PTPN6, SYK and

SHC1 may play a key role in CAVD by modulating immune

cells infiltration.

There are several limitations of the present meta-analysis that

should be mentioned. Given the age-dependent and gender-

dependent clinical features of CAVD, all of the aortic valve

samples included in this meta-analysis were derived from

elderly male individuals. More aortic valve samples from

patients of different regions and ages are needed to investigate

the changes in gene expression profile of patients with CAVD.

Although 25 aortic valve samples from patients with CAVD and

23 aortic valve samples from normal individuals were included

for analysis, it might still be insufficient to identify the key DEGs

in CAVD. In addition, the paucity of confirmatory experiments is

another significant limitation. It is difficult to obtain aortic valve

tissue samples in clinic, especially the aortic valve tissue samples

in the control group from normal individuals. We are now trying

to overcome the current difficulties in obtaining aortic valve

tissue samples. In the near future, we will conduct Next

Generation Sequencing (NGS) in the collected aortic valve

tissue samples and further study the molecular mechanisms of

the occurrence and development of CAVD.

Conclusion

Above all, we found that PTPN11, GRB2, SYK, PTPN6 and

SHC1 are key immune related biomarkers of CAVD. Reduced

infiltration of macrophages M2 and NK cells activated, as well as

increased infiltration of neutrophils, T cells CD4 memory

activated and macrophages M0 were found in aortic valve

samples from patients with CAVD. Moreover, regulation of

PTPN11, GRB2, SYK, PTPN6 and SHC1 on immune cells

infiltration may play an important role in the occurrence and

development of CAVD. Further researches on roles of PTPN11,

GRB2, SYK, PTPN6, SHC1 and immune cells infiltration in

CAVD are needed whether it might be a new molecular

targeted therapy for patients with CAVD.
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Revealing prognostic and tumor
microenvironment
characteristics of cuproptosis in
bladder cancer by genomic
analysis
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China

Objectives: Bladder cancer (BLCA) is the most commonmalignant tumor in the

urinary system, while the prognosis of muscle-invasive bladder cancer (MIBC) is

poor. Cuproptosis might be a promising therapeutic approach to trigger tumor

cell death. This study aimed to figure out the role of cuproptosis in BLCA and

constructed a new cuproptosis scoring system to guide clinical diagnosis and

individualize treatments.

Methods: Consensus clustering was used to classify 490 patients with BLCA

from TCGA and GEO cohorts. Survival outcomes and functional enrichment

analyses were performed between the different subtypes. The cuproptosis

scoring system was constructed by LASSO-Cox analysis. ESTIMATE,

CIBERSORT, and ssGSEA were used to investigate the tumor

microenvironment (TME). Drug sensitivity was evaluated with pRRophetic. An

immunotherapy cohort was used to investigate the treatment response. The

cuproptosis scoring system was verified in our own cohort with quantitative

real-time PCR.

Results: An overview of 12 cuproptosis genes (CuGs) in the TCGA database was

depicted. Based on the mRNA expression profiles of CuGs, patients were

classified into two cuproptosis molecular patterns. Based on the differential

genes between the two cuproptosis patterns, the patients were classified into

two cuproptosis gene clusters. There were distinct survival outcomes, signaling

pathways, and TME between the two subtypes. A 7-gene cuproptosis scoring

system was constructed. Patients with high cuproptosis scores showed worse

OS andmore immunosuppressing TME than those with low cuproptosis scores.

The two cuproptosis score groups had distinct mutation profiles. Patients with

high cuproptosis scores tended to be sensitive to chemotherapy drugs, but

insensitive to immune checkpoint inhibitors (ICIs) treatment.

Conclusion: This study depicted the landscape of cuproptosis in BLCA. We

constructed a cuproptosis scoring system to predict the prognosis of BLCA

patients. Therewere significant differences in survival outcomes, TME,mutation

profiles, and drug sensitivities in high and low cuproptosis score patients. The
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cuproptosis scoring system could help oncologists comprehensively

understand the tumor characteristic of BLCA and make individualized

treatment strategies.

KEYWORDS

bladder cancer, cuproptosis, prognosis, tumor microenvironment, risk score

Introduction

Bladder cancer (BLCA) is the most common malignant

tumor in the urinary system, with 573,278 new cases and

212,536 new deaths in 2020 worldwide (Sung et al., 2021).

According to the statistics, there will be about

81,180 estimated new cases and 17,100 estimated deaths of

both sexes in the United States in 2022 (Siegel et al., 2022).

For over 4 decades, adjuvant cisplatin-based combination

chemotherapy after radical surgery (RC) remains the primary

curative treatment choice for muscle-invasive bladder cancer

(MIBC) (Witjes et al., 2021), however, the 5-year survival of

regional and distant metastatic BLCA is only 28–39% and 5–6%

respectively (Siegel et al., 2022). Based on the results of some

clinical trials, immune checkpoint inhibitors (ICIs) were

investigated in advanced bladder cancer. Currently, 5 ICIs

(atezolizumab, pembrolizumab, nivolumab, durvalumab, and

avelumab) are approved by the US Food and Drug

Administration (FDA) for the treatment of patients with

advanced BLCA (Lobo et al., 2017). In addition,

understanding of molecular profiling of BLCA helped to

develop targeted therapies, such as fibroblast growth factor

receptor (FGFR) inhibitors. Erdafitinib, a pan-FGFR inhibitor,

is the most extensively studied and is currently the only FDA-

approved FGFR inhibitor to treat advanced BLCA (Patel et al.,

2020). However, only a small portion of patients can benefit from

immunotherapy and targeted therapy. Existing prognostic

predictive markers like Tumor-Node-Metastasis (TNM) stage

and biomarkers like programmed cell death-Ligand 1 (PD-L1)

expression level did not perform as well as expected (Powles et al.,

2018). So, it is urgent to find out a new predictive system to guide

clinical diagnosis and individualize treatments.

Copper is an essential cofactor for all organisms, but it

becomes toxic if concentrations exceed a threshold. Tsvetkov

et al. found that copper binds to lipoylated components of the

tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and

ultimately leading to a novel form of cell death termed cuproptosis

(Tsvetkov et al., 2022). The researchers performed a whole-

genome CRISPR–Cas9 screen and identified several key genes

involved in copper-induced cell death, including the ferredoxin1

(FDX1), lipoyl synthase (LIAS), lipolytransferase 1 (LIPT1),

dihydrolipoamide dehydrogenase (DLD), dihydrolipoamide

S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 subunit

alpha 1 (PDHA1), pyruvate dehydrogenase E1 subunit beta

(PDHB), ATPase copper transporting alpha (ATP7A), ATPase

copper transporting beta (ATP7B), solute carrier family

31 member 1 (SLC31A1), and dihydrolipoamide branched

chain transacylase E2 (DBT). The researcher observed that cells

undergoing mitochondrial respiration are particularly sensitive to

copper ionophores. Furthermore, FDX1 and lipoylated proteins

are highly correlated across a diversity of human tumors,

suggesting that cuproptosis could play an important role in

tumors with such a metabolic profile and induction of

cuproptosis might be a promising therapeutic approach to

trigger tumor cell death. However, the expression profile of the

little-known cuproptosis-related genes in tumors and their

association with patients’ prognosis remains unknown. The

tumor characteristics, tumor microenvironment (TME), and

drug sensitivity of patients with different cuproptosis genes

(CuGs) expression levels are still elusive.

In the present study, we depicted an overview of the CuGs in

BLCA patients in the TCGA database. Then cuproptosis

molecular patterns and cuproptosis gene clusters with distinct

survival and TME features were identified. We further

constructed a cuproptosis risk score system to predict survival

for each BLCA patient and evaluated the tumor characteristics,

TME features, and drug sensitivity of the patient with different

cuproptosis scores. The scoring system may give oncologists

guidance for prognosis prediction and clinical treatments.

Methods

Datasets

The RNA-seq and clinicopathological data were downloaded

from The Cancer Genome Atlas database (TCGA, https://portal.

gdc.cancer.gov) up to 20 April 2022, and the Gene Expression

Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo).

The external validation cohort to evaluate the response of ICI

was from the IMvigor210 study, a cohort of platinum-treated

locally advanced or metastatic urothelial carcinoma (mUC)

patients receiving anti-PD-L1 immunotherapy. The gene

expression profiles were normalized using the “limma” R

package. After excluding those without complete clinical data,

a total of 490 patients in the TCGA and GEO cohorts and

298 patients in the IMvigor210 cohort were included in this

study. The clinicopathological characteristics of the samples were

provided in Supplementary Data S1. CNV and somatic mutation

data were obtained from the TCGA database.
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Differential analysis

The differentially expressed genes (DEGs) between tumor

tissues and para-carcinoma tissues or between two cuproptosis

patterns was identified by using the “limma” R package with a

false discovery rate (FDR) < 0.05 in the cohorts and |logFC| > 1.

Consensus clustering analysis

Consensus clustering was applied to identify distinct

cuproptosis-related molecular patterns based on the expression of

cuproptosis genes and cuproptosis-related gene clusters based on

differential genes between the two cuproptosis patterns. The number

of unsupervised clusters, and their stability, were determined by the

consensus clustering algorithm using the “ConsensuClusterPlus”

package (Wilkerson andHayes, 2010). PCAwas applied to verify the

subtype assignments.

Function analysis

Gene set variation analysis (GSVA) was performed in heatmap

by using “GSVA” R package. “c2.cp.kegg.v7.4.symbols” was chosen

as reference. An adjusted p < 0.05 was considered to be significantly

enriched. Gene ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) were conducted using the “clusterProfiler” R

package.

Cuproptosis score model

LASSO algorithm was applied to construct cuproptosis score

models with the “glmnet” R package. Risk scores of the patients

were calculated according to the normalized expression level of

each gene and its corresponding regression coefficient. Then the

patients were divided into the high-risk group and low-risk group

based on the median values of the risk score. The receiver

operating characteristic (ROC) curve was used to evaluate the

predictive power of our models using the “survival”, “survminer”,

and “timeROC” R packages. “Survival” package was used to

perform the univariate and multivariate Cox regression analyses.

Based on the risk score and different clinical features (gender,

age, T stage), a nomogrammodel was established to predict the 1-

,3-, and 5-years survival for the patients using the “rms” and

“survival” packages (Fu and Song, 2021).

Estimation of the tumor
microenvironment

Single sample gene set enrichment analysis (ssGSEA) was

used to evaluate the infiltrated levels of 16 immune cell

subtypes between the two groups with “gsva” R package

(Yoshihara et al., 2013). Immune checkpoints were

extracted from previous studies and their expressions

between the two groups were compared by Wilcoxon test

(Morad et al., 2021). The CIBERSORT algorithm (https://

cibersort.stanford.edu/) was used to estimate the correlation

of the relative abundances of distinct immune cell types and

risk scores based on gene expression in tumor tissues (Gentles

et al., 2015).

Estimate

Stromal and immune scores of each sample were generated

by ESTIMATE algorithm (Yoshihara et al., 2013). The

ESTIMATE score was calculated based on the stromal and

immune scores, which was negatively correlated with tumor

purity.

Molecular classifier, tumor neoantigen
burden, microsatellite instability score,
and tumor mutation burden

Molecular subtypes and TNB data of the TCGA dataset were

extracted from supplementary data of a previous study

(Robertson et al., 2017). MSI score was obtained from the

TCGA database. TMB of the TCGA dataset was obtained

from UCSC Xena (http://xena.ucsc.edu/) and calculated by

(total count of variants)/(the whole lengths of exons).

Drug sensitivity evaluation

The sensitivity (relative IC50) of each patient to

chemotherapy drugs was estimated by the “pRRophetic” R

package based on Cancer Genome Project (CGP) data

(Geeleher et al., 2014). The response of each patient to ICI

was evaluated in the IMVigor210 cohort.

RNA extraction and quantitative real-
time PCR

Total RNA was extracted from patients’ tumor samples

using TRIzol (ThermoFisher, 15596026), then reversely

transcribed to cDNA by using PrimeScript RT Reagent Kit

(TaKaRa, RR014A). Quantitative real-time PCR (qPCR) was

performed using Universal Blue SYBR Green qPCR Master

Mix (Servicebio, G3326-15). The 2-△CT method was used for

data analyses. Primers for qRT-PCR were synthesized by

Biosune (Shanghai) and were shown in Supplementary

Table S1.
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Statistical analysis

Statistical analysis was conducted using R (version 4.0.3).

Comparisons between two groups were performed using

Wilcoxon rank-sum test. Kaplan- Meier curves were used for OS

analysis by log-rank test. Correlation coefficients were computed by

Spearman’s distance correlation analyses. All statistical p values were

two-sided and p < 0.05 was considered statistically significant.

Patients and specimens

A total of ten pairs of normal and bladder cancer tumor

samples and 20 tumor tissues were collected from patients in

Xinhua hospital affiliated to Shanghai Jiao Tong university

school of medicine. The detailed clinicopathological

characteristics of the patients were in Supplementary

Data S2.

FIGURE 1
AnOverview of Cuproptosis genes in the TCGA database. (A) The diagram of the study. (B)Heatmap of 12 CuGs expressions among normal and
tumor samples in the TCGA cohort. (C) Differential CuGs among normal and tumor samples in the TCGA cohort. (D) The landscape of mutation
profiles of the CuGs in 407 patients from the TCGA cohort. (E) The CNV frequency and location of the CuGs on chromosomes. (F) Forest plots
showing the results of the univariate Cox regression analysis of CuGs that were correlated with OS. (G) Expression correlation network of the
CuGs. Positive correlations were shown in red lines. Negative correlations were shown in blue lines. The risk factors were shown in purple circles,
while the favorable factors were shown in green circles. *p < 0.05, **p < 0.01. Abbreviations: TCGA, The cancer genome atlas; CuGs, cuproptosis
genes; CNV, copy number variation; OS, overall survival.
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Results

An overview of cuproptosis genes in the
TCGA database

The diagram of this study was shown in Figure 1A. For

clustering and developing a scoring system, BLCA patients from

the TCGA cohort and the GEO cohort (GSE31684) were

enrolled. Detailed clinical data could be found in

Supplementary Data S1. 12 cuproptosis-related genes (CuGs)

were chosen according to the previous studies (Tang et al., 2022).

Figure 1B showed their distribution among normal and tumor

samples in the TCGA cohort. DLST and ATP7A had a higher

expression in normal tissues, while SLC31A1 had a higher

expression in tumor tissues (Figure 1C). 42 of the

407 samples (about 10.32%) showed cuproptosis-related gene

mutations. Of these, ATP7B showed the highest frequency of

mutations. Most of the mutations were missense mutations

(Figure 1D). The copy number variation (CNV) frequency of

these CuGs and their locations on chromosomes were shown in

FIGURE 2
Cuproptosis-related molecular patterns with distinct survival and TME features. (A) The consensus score matrix of all the samples by
unsupervised clustering analysis based on the mRNA expression profiles of 12 CuGs. (B) Kaplan-Meier curves for the two cuproptosis molecular
patterns. (C) PCA of the two cuproptosis molecular patterns: pattern A (blue) and pattern B (orange). (D) Heatmap showed the clinical features and
expression of CuGs of the two patterns. (E) Boxplot showed different immune cell infiltration between the two patterns by ssGSEA analysis. (F)
Boxplot showed different immune checkpoints expression between the two patterns. *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: TME, tumor
microenvironment; CuGs, cuproptosis genes; PCA, principal component analysis; ssGSEA, single sample gene set enrichment analysis.
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Figure 1E. 4 of the CuGs (DLST, DLAT, PDHB, SLC31A1) were

associated with overall survival (OS) by the univariate Cox

regression analysis (p < 0.05) (Figure 1F). Figure 1G showed

that the CuGs all had positive expression correlation. Except for

LIPT1, all the CuGs were risk factors of OS in BLCA.

Cuproptosis molecular patterns with
distinct survival and TME features in BLCA

Based on the mRNA expression profiles of 12 CuGs in TCGA

and GSE31684, patients were classified into two molecular patterns

(A: n = 162, B: n = 328) by unsupervised clustering analysis

(Figure 2A, Supplementary Figure S1, Supplementary Data S3).

Patients in cuproptosis pattern A had a significant better overall

survival than those in pattern B (Figure 2B). Principal component

analysis (PCA) enabled us to visualize that the patient in different

molecular patterns could be distinguished well (Figure 2C). Different

clinical features and expression of CuGs of the two patterns were

shown in Figure 2D. Patients with longer survival time in pattern A

had lower expression of CuGs, confirming that most CuGs were risk

factors of OS in BLCA. The correlation between the molecular

patterns and tumor immune microenvironment was also

evaluated. ssGSEA analysis showed significant difference in

immune cell infiltration between the two patterns. Natural killer

cell (NK), monocytes, Type 17 T helper cell (Th17) showed higher

infiltration in pattern A. However, immune-suppressing cells like

immature dendritic cell (DC), regulatory T cell (Treg) and type

2 T helper cell (Th2) showed higher abundance in pattern B, which

might contribute to the poor outcome of patients in pattern B

(Figure 2E). To further explore the immune statuses, we

compared the expression of the immune checkpoints between the

two patterns. Surprisingly, all the immune checkpoints including

CD274 (also named PD-L1), Programmed Cell Death Protein

1 Ligand 2 (PDCD1LG2, also named PD-L2), Programmed Cell

Death Protein 1 (PDCD1, also named PD1), Cytotoxic T lymphocyte

antigen-4 (CTLA4), T cell immunoglobulin and mucin domain-3

protein (Tim-3, also named HAVCR2), Lymphocyte-activation gene

3 (LAG-3), T cell immunoglobulin and ITIM domain (TIGIT),

CD28, Inducible T cell costimulatory (ICOS), B- and

T-lymphocyte attenuator (BTLA), TNF receptor super-family

member 18 (TNFRSF18, also named GITR), TNF receptor super-

family member 4 (TNFRSF4, also named OX40), TNF receptor

super-familymember 9 (TNFRSF9, also named 4-1BB), CD40 ligand

(CD40LG) showed higher expression in pattern B (Figure 2F).

Enrichment analysis of differential genes
between cuproptosis-related molecular
patterns

To further understand the biological behaviors between the

two cuproptosis patterns, differential expression analysis was

conducted. 10 down-regulated genes and 369 up-regulated genes

were identified (|logFC| >1, fdr <0.05) (Figure 3A). Then the

differential genes were sent to gene set variation analysis (GSVA)

enrichment analysis (Figure 3B). Pattern A showed higher

activities of lipid biosynthesis and metabolism, like

arachidonic acid metabolism, linoleic acid metabolism, and

steroid hormone biosynthesis. While pattern B showed higher

activities on the TCA cycle, Lysine degradation, and cell cycle.

Consistently, GO and KEGG analysis also showed enrichment in

nuclear division and cell cycle, which might be a possible target

for patients who had high expression of CuGs (Figures 3C,D).

Prognostic and TME characteristics
between two cuproptosis gene clusters in
BLCA

Based on the differential genes between the two cuproptosis

patterns, unsupervised clustering was performed, and the

patients were newly classified into two gene clusters (A: n =

313 B: n = 177) (Figure 4A, Supplementary Figure S2,

Supplementary Data S4). The heatmap visualized the

expression of the differential genes between two gene clusters

and two cuproptosis patterns (Figure 4B). PCA confirmed that

the two gene clusters could be completely distinguished

(Figure 4C). Patients in cluster A had significant longer

overall survival time than those in cluster B (Figure 4D).

Figure 4E exhibited the expression of CuGs between the two

gene clusters. Most CuGs were expressed lower in cluster A. To

further assess the TME difference between the two gene clusters,

the expression of immune checkpoints was also analyzed. In

cluster B, all the immune checkpoints showed higher expression,

indicating a more immuno-suppressing TME (Figure 4F).

Generation of the cuproptosis scoring
system to predict survival of BLCA patients

To better apply these subtypes to clinical outcome prediction

and treatments, we established a prognostic model to calculate a

specific score for every patient. Univariate Cox regression and

multi-variate cox regression analysis identified 7 differential

genes associated with OS between the two cuproptosis

patterns. Then the patients were randomly assigned to two

groups, i.e., the training group (n = 245) and the validation

group (n = 245) (Supplementary Data S5). LASSO Cox

regression analysis was applied to establish the prognostic

model using the expression profile of the 7 genes. The

cuproptosis risk score was calculated by the following formula

for each patient: 0.199 * expression level of PRMT5 + 0.147 *

expression level of CNN3 + 0.143 * expression level of TM4SF1 +

0.099 * expression level of DSC3 + 0.082 * expression level of

ALDH1A1 - 0.161 *expression level of CXCL11–0.065 *
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expression level of HMGCS2. Then the patients in the training

group were divided into a high-risk group (n = 122) or a low-risk

group (n = 123) according to the median cut-off value of the

cuproptosis risk score. Figure 5A showed the interaction of

cuproptosis score and the survival outcomes in the

cuproptosis patterns and the gene clusters. Patients in

cuproptosis pattern B and gene cluster B had higher

cuproptosis scores (Figures 5B,C). In the high cuproptosis risk

group, CuGs showed higher expression (Figure 5D). The Kaplan-

Meier curve indicated that patients in the high-risk group had

significantly worse overall survival (Figure 5E), which was

consistent with the CuGs expression and the former

molecular cluster and gene cluster results. The higher

cuproptosis score was associated with the poor outcome

(Figure 5F). The area under the curve (AUC) of the

prognostic model was 0.728 at 1 year, 0.707 at 3 years, and

0.736 at 5 years, suggesting that the cuproptosis risk score had

a reliable capacity for predicting the prognosis of BLCA patients

(Figure 5G). In univariate Cox regression analyses, the

cuproptosis score was significantly associated with OS (HR =

1.728, 95% CI = 1.506–1.982, p < 0.001) (Figure 5H). After

adjusting for other confounding factors, the cuproptosis score

was confirmed to be an independent predictor for OS in

multivariate Cox regression analyses (adjusted HR = 1.681,

95% CI = 1.459–1.938, p < 0.001) (Figure 5I).

Validation of the cuproptosis scoring
system for BLCA

To validate the cuproptosis scoring system, the same strategy

was applied in the validation cohort. The Kaplan-Meier curve

also indicated a worse OS in the high-risk group (Figures 6A,B).

The AUC at 1-, 3-, 5- years were 0.665, 0.607, and 0.585,

suggesting the reliability of the model (Figure 6C). In

univariate Cox regression analyses, the risk score was

significantly associated with OS (HR = 1.268, 95% CI =

1.076–1.494, p = 0.005) (Figure 6D). The risk score was still

proved to be an independent predictor for OS inmultivariate Cox

regression analyses (adjusted HR = 1.232, 95% CI = 1.040–1.458,

p = 0.015) (Figure 6E). After combined with the other three

indexes, a novel nomogram was constructed. For a specific

bladder cancer patient in clinical practice, the 1-, 3-, and 5-

years survival probability could be predicted based on his/her

FIGURE 3
Enrichment analysis of differential genes between cuproptosis-related molecular patterns. (A) Volcano plot showed the differential genes
between cuproptosis-related molecular patterns. Up-regulated genes in pattern B were shown in red and down-regulated genes were shown in
green. Genes of no significance were shown in black. (B) GSVA enrichment analysis of the differential genes. (C) GO enrichment analysis of BP, CC,
and MF results ranked by gene ratio. (D) KEGG pathway analysis of the differential genes. Abbreviations: GSVA, gene set variation analysis; GO,
gene ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, kyoto encyclopedia of genes and genomes.
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age, gender, tumor grade, and risk score (Figure 6F). As shown in

Figure 6G, the nomogram-predicted OS was very close to the

observed OS, suggesting the accuracy of the nomogram. AUC of

the nomogram at 1-, 3-, 5- years was 0.756, 0.746, and 0.745 in all

the patients, which was better than only using the T stage (AUC

at 1-, 3-, 5- years was 0.653, 0.670, 0.672) (Supplementary

Figure S3).

High cuproptosis score was associated
with immunosuppressing TME in BLCA

We further probed into the TME and other tumor

characteristics of the patients in high and low-risk groups to

find out what caused the poor outcome of patients with high

cuproptosis scores. Using CYBERSORT analysis, we found that

FIGURE 4
Prognostic and TME characteristics between two cuproptosis gene clusters in BLCA. (A) The consensus score matrix of all the samples by
unsupervised clustering analysis based on the differential genes between the two cuproptosis patterns. (B) Heatmap depicted the clinical features
and expression of differential genes between the two gene clusters. (C) PCA of the two gene clusters: cluster A (blue) and cluster B (orange). (D)
Kaplan-Meier curves for the two gene clusters. (E,F) Boxplots showed different CuGs (E) and immune checkpoints (F) expression between the
two gene clusters. *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: TME, tumor microenvironment; BLCA, bladder cancer; PCA, principal
component analysis; CuGs, cuproptosis genes.
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FIGURE 5
Generation of the cuproptosis scoring system to predict survival of BLCA patients. (A) Alluvial diagram of two cuproptosis patterns, two gene
clusters, cuproptosis scores, and survival status. (B,C) Boxplot depicted the differences in cuproptosis scores between the cuproptosis patterns (B)
and gene clusters (C). (D) Boxplot showed the different CuGs expression in the two risk groups. (E) Kaplan-Meier survival analysis for patients in high-
and low-risk groups in the training cohort. (F) The distribution of the risk scores, OS statues, and the correlations betweenOS and risk scores. (G)
ROC curve of the cuproptosis risk scoring system for prediction of OS in the training cohort. (H) Results of the univariate Cox regression analyses
regarding OS in the training cohort. The risk score was significantly associated with the OS. (I) Results of the multivariate Cox regression analyses
regarding OS in the training cohort. The risk score was an independent prognostic factor. *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: CuG,
cuproptosis genes; OS, overall survival; ROC, receiver operating characteristic.

Frontiers in Genetics frontiersin.org09

Zhang et al. 10.3389/fgene.2022.997573

187

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.997573


cuproptosis score was positively correlated with eosinophils,

neutrophils, and macrophage M2, while it was negatively

correlated with plasma cells, activated CD4 memory T cells, and

CD8 cells (Figures 7A–F). Furthermore, ESTIMATE was used to

analyze the abundance of immune cells and stromal cells. Patients

in the high cuproptosis score group had distinct higher stromal (p <
0.001) and immune scores (p < 0.05) than those in the low

cuproptosis score group. The ESTIMATE score was significantly

higher in the high-risk group (p < 0.001), which suggested a lower

tumor purity in the high-risk group (Figure 7G). Immune

FIGURE 6
Validation of the cuproptosis scoring system for BLCA. (A) Kaplan-Meier survival analysis for patients in high- and low-risk groups in the
validation cohort. (B)The distribution of the risk scores, OS statues, and the correlations between OS and risk scores. (C) ROC curve of the
cuproptosis risk scoring system for prediction of OS in the validation cohort. (D) Results of the univariate Cox regression analyses regarding OS in the
validation cohort. The risk score was significantly associated with the OS. (E) Results of the multivariate Cox regression analyses regarding OS in
the validation cohort. The risk score was an independent prognostic factor. (F) Nomogram for the prediction of 1-,3-, 5-years survival probability in
patients with BLCA. The red line showed the score of one patient as an example. (G) Calibration curves of nomograms in terms of the agreement
between predicted and observed 1-, 3-, and 5- years OS. Abbreviations: OS, overall survival; ROC, receiver operating characteristic; BLCA, bladder
cancer.
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checkpoints showed higher expression in the high-risk group

(Figure 7H). MSI scores showed no difference between the two

groups (Figure 7I). However, the high-risk group had lower

neoantigen load (Figure 7J), and patients with high-risk scores

had lower tumor mutation burden (Figure 7I). Taken together, the

high-risk group had a more immunosuppressing TME.

FIGURE 7
High cuproptosis score is associated with immunosuppressing TME in BLCA. (A–F) Correlation of risk score with immune cell infiltration
analyzed by CYBERSORT. (G) Violin plots showed the difference in stromal score, immune score, and ESTIMATE score in high- and low-risk groups.
(H) Boxplots exhibited the expression of the immune checkpoint in high- and low-risk groups. (I,J) Violin plots showed the MSI score (I) and
neoantigen load (J) in high- and low-risk groups. (K) Correlation of risk score with tumor mutation burden. *p < 0.05, **p < 0.01, ***p < 0.001.
Abbreviations: TME, tumor microenvironment; BLCA, bladder cancer.
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Different mutation profiles between
cuproptosis risk groups

The waterfall plot showed the mutations of most-

concerned genes in BLCA according to the previous

research between the high-risk group and low-risk group

(Figures 8A,B). Mutations of these genes are closely related

to the tumor character and final outcome. In the low-risk

group, KDM6A, ELF3, TP53, ERCC2, and FGFR3 showed

higher mutation frequency, which was more like the luminal,

luminal infiltrated, and luminal papillary subtypes according

to the 2017 TCGA clustering, which had a relatively better

outcome. While in the high-risk group, TP53 and RB1 showed

higher mutation frequency, which was more similar to the

basal squamous subtype, which had higher immune-

checkpoints expression but poor immune response

(Robertson et al., 2017). The risk score distribution of

TCGA patients in five TCGA subtypes was shown in

Figure 8C. The consistency of the cuproptosis risk groups

with the TCGA subtypes proved the reliability of the

cuproptosis scoring system.

The roles of the cuproptosis scoring
system on response to chemotherapy,
targeted therapy, and immunotherapy

To give guidance for clinical treatment, we next compared

the differences in the estimated relative half maximal inhibitory

concentration (IC50) levels of several commonly used targeted-

therapy drugs and chemotherapy drugs using pRRophetic

package. As shown in Figure 9A, among the tyrosine kinase

inhibitors (TKIs), the low-risk group tended to be more sensitive

to Axitinib and Gefitinib. Although patients in the high-risk

FIGURE 8
Mutation difference between cuproptosis risk groups. (A,B) The waterfall plot showed the mutations of most-concerned genes in BLCA
according to the previous research in the low-risk group (A) and high-risk group (B). The characteristic genes in each group were emphasized in red.
(C) The alluvial diagram showed the relationship of cuproptosis risk groups and 2017 TCGA clustering. Abbreviations: BLCA, bladder cancer; TCGA,
The cancer genome atlas.
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group had poor survival, they tended to be more sensitive to the

chemotherapy drugs that are frequently used in BLCA except for

Methotrexate. Since former GO and KEGG analysis showed that

TCA cycle and cell cycle might be possible targets for patients

who had high expression of CuGs, other cell cycle targeted drugs

and TCA cycle targeted drugs were also evaluated, and proved to

FIGURE 9
Drug sensitivity evaluation in cuproptosis risk groups. (A) An overview of roles of the cuproptosis scoring system on response to chemotherapy,
targeted therapy, and immunotherapy. Drugs with lower IC50 in the low-risk group were shown in red. Drugs with lower IC50 in the high-risk group
were shown in black. Except for ICI, the drug sensitivities were evaluated by the pRRophetic package. (B–I) Boxplots showed the drug sensitivities of
chemotherapy drugs that are frequently used in BLCA treatment in high- and low-risk groups. (J) Boxplot showed the response of ICI evaluated
in high- and low cuproptosis risk patients in the IMvigor210 cohort. (K) Kaplan-Meier curves for high and low cuproptosis risk group patients in
IMvigor210 cohort. **p < 0.01. Abbreviations: IC50, half maximal inhibitory concentration; BLCA, bladder cancer; ICI, immune checkpoint inhibitor.
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be more sensitive in high-risk group (Figures 9A–I). Since the

tumor immune microenvironment showed a distinct difference

between the two risk groups, the response of ICI was also

predicted using the IMvigor210 cohort, a cohort of platinum-

treated locally advanced or metastatic urothelial carcinoma

(mUC) patients receiving anti-PD-L1 immunotherapy. Using

the same grouping strategy, the high-risk group patients in the

IMvigor210 cohort showed a significantly higher proportion of

non-response (Figure 9J). The Kaplan-Meier curve indicated that

patients in the high-risk group had significantly worse overall

survival, which was an external validation of the cuproptosis

scoring system (Figure 9K). These data proved that the

cuproptosis scoring system could successfully estimate drug

sensitivity and guide clinical practice.

Detection of mRNA expression of the
CuGs by qPCR

To further verify the results, we detected the mRNA relative

expression of the differentially expressed CuGs in 10 pairs of

normal and tumor tissues by qPCR. Consistently, the results

showed that DLST and SLC31A1 were expressed differentially

between normal tissues and tumor tissues (Figures 10A,B). While

the expression of ATP7A did not show any difference

(Figure 10C). We also detected the CuGs which were

correlated with OS (p < 0.05 in univariate Cox regression) in

another 20 tumor tissue from BLAC patients. As shown in

Figures 10D–F, patients with an OS longer than 5 years had

lower expression of DLST, SLC31A1, and PDHB compared with

FIGURE 10
Verification of mRNA relative expression of the CuGs by qPCR (A–C) mRNA relative expression of DLST, SLC31A1, and ATP7A in 10 pairs of
normal and tumor tissues of BLCA. (D–G) mRNA relative expression of DLST, SLC31A1, PDHB, and DLAT in 20 tumor tissues of BLCA. ns no
significance, *p < 0.05, **p < 0.01. Abbreviations: CuGs, cuproptosis genes; qPCR, quantitative real-time PCR; BLCA, bladder cancer.
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those who had an OS less than 5 years. Although the expression

of DLAT did not show a significant difference, the trend can still

be seen (Figure 10G). More samples may be required for further

validation.

Discussion

In this study, we revealed the expression profile, mutation

frequency of the CuGs, and their correlation with OS in BLCA

patients. Besides, we comprehensively analyzed the survival

outcomes, signaling pathways, and TME features of different

cuproptosis molecular patterns and cuproptosis gene clusters.

Furthermore, the cuproptosis score system was established to

assess the prognosis, tumor characteristics, TME feature, and

drug sensitivity of every patient, which could help oncologists

make more individualized treatment strategies.

In BLAC TCGA datasets, we could see DLST, encoding the

essential component of the PDH complex, and ATP7A, encoding

the important copper exporter showed a higher expression in

normal tissues. While SLC31A1, which encodes the copper

importer had a higher expression in tumor tissues. The results

pointed out that copper is more likely to accumulate in tumor

tissues and induce cuproptosis. However, except for LIPT1, all

the CuGs were risk factors of OS in BLCA. Higher SLC31A1 was

not correlated with better OS, which implied that the OS of

patients could not be simply predicted depending on the

expression of the single CuG. Further clusters are needed to

predict the prognosis of patients more accurately.

Based on the mRNA expression profiles of 12 CuGs, we

developed two cuproptosis molecular patterns for BLCA.

Patients in cuproptosis pattern A had a significantly better

overall survival than those in pattern B. There were significant

differences in immune cell infiltration and immune statuses

between the two patterns. Pattern B showed a more

immunosuppressing TME. Function analysis of the differential

genes between the cuproptosis molecular patterns revealed that

pattern B showed higher activities on the TCA cycle and cell

cycle, implying that inducing cuproptosis and targeting the cell

cycle might be effective for these patients.

According to the DEGs between the two cuproptosis

patterns, two gene clusters with unique prognostic and TME

characteristics were constructed. Patients in cluster A who had

lower CuGs expression observed a significant longer overall

survival time than those in cluster B.

By using LASSO Cox regression, a cuproptosis scoring

system was generated to calculate a specific cuproptosis score

for every patient. Patients with high cuproptosis scores had

higher CuGs expression and exhibited worse overall survival.

ROCs proved its reliability for predicting the 1-, 3-, and 5-years

survival rates of BLCA patients. After adjusting for other

confounding factors, the cuproptosis score was confirmed to

be an independent predictor for OS in BLCA patients. Since the

cuproptosis score was correlated to the prognosis of BLCA, a

nomogram was constructed combined with other

clinicopathological characteristics to predict survival for every

patient. ROCs showed that the prediction efficiency of the

nomogram was better than using only traditional prediction

markers, such as T stage or tumor grade.

TME has been increasingly accepted to play an integral and

indispensable role in tumor anatomy and physiology. TME

consists of stromal cells, immune cells, and the factors that

they release around tumor cells (Cao et al., 2021). The

relationship of cuproptosis with TME has not been studied

yet. Our data revealed that a higher cuproptosis score was

associated with immunosuppressing TME in BLCA, featured

by higher infiltration levels of eosinophils, neutrophils, and M2,

while lower infiltration levels of plasma cells, activated

CD4 memory T cells, and CD8 cells. ESTIMATE algorithm

showed that patients in the high cuproptosis score group had

distinct higher stromal and immune scores than those in the low

cuproptosis score group. Immune checkpoints also showed

higher expression in the high cuproptosis score group. These

indicated that CuGs could be correlated to the reconstruction of

TME, hence influencing tumor growth and prognosis. Patients

with high TMB and neoantigen burden tend to have better

responses to immune therapies. Our data also revealed that

patients with high cuproptosis scores had lower neoantigen

load and TMB, which might be associated with their lower

response to ICIs and worse overall survival.

An unbiased consensus clustering identified five MIBC

molecular subtypes according to the mRNA expression profile

based on the TCGA database. The molecular subgroup classes

included luminal, luminal-infiltrated, basal-squamous, neuronal,

and luminal-papillary, each having a distinct mutation profile

and clinical outcomes (Robertson et al., 2017). So, we further

probed into the mutation profile of patients with different

cuproptosis scores to explore the relationship between the

cuproptosis scoring system and TCGA molecular subtypes.

Intriguingly, there were distinct mutation profiles in high and

low cuproptosis score groups. In the low score group, the

mutation profile was more similar to the luminal, luminal

infiltrated, and luminal papillary subtypes, while in the high

score group was more similar to the basal squamous subtype

according to the 2017 TCGA clustering. To prove this, the risk

score distribution of TCGA patients in five TCGA subtypes was

applied according to the previous study. The results showed the

consistency of the cuproptosis scoring system and the TCGA

subtypes.

Since the TME was distinct, patients in different cuproptosis

score groups might have different drug sensitivity. Despite the

unfavorable survival outcome. Our data showed that patients

with high cuproptosis scores tended to be more sensitive to the

chemotherapy drugs that are frequently used in BLCA except for

Methotrexate. Other cell cycle targeted drugs and TCA cycle

targeted drugs could also be efficient in patients with high
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cuproptosis scores. A combination of these chemotherapy drugs

and targeting cuproptosis might improve the prognosis of these

patients. Response to ICIs was also evaluated. We found that

patients with high cuproptosis scores showed significantly poorer

response to ICIs treatments and worse overall survival. This

indicated that the cuproptosis score could successfully predict

drug sensitivity, thus helping oncologists make treatment

decisions.

The prognostic values of the cuproptosis score have been

validated in both internal and external datasets. The cuproptosis

score system also worked in cohorts from our hospital. However,

the current study still had some limitations. The prognosis

prediction potency of the cuproptosis scoring system needed

to be validated in a larger BLCA cohort in the real world.

Although the drug sensitivities of frequently used

chemotherapy drugs were evaluated, potential drugs such as

cuproptosis targeted drugs and TCA cycle targeted drugs,

which were not included in the pRRophetic package could not

be assessed. The response of ICI was only evaluated in UC

patients receiving PD-L1 immunotherapy. More validations in

BLCA cohorts experiencing PD-1 immunotherapies are

required.

Conclusion

Taken together, this study depicted the landscape of

cuproptosis in BLCA. We identified two cuproptosis

molecular patterns and two cuproptosis gene clusters, with

distinct survival outcomes, signaling pathways, and TME. We

constructed a cuproptosis scoring system to predict the prognosis

of BLCA patients. There were significant differences in TME,

mutation profile, and drug sensitivities in high and low

cuproptosis score patients. The cuproptosis scoring system

could help oncologists comprehensively understand the tumor

characteristic of BLCA and make individualized treatment

strategies.
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Progress in research on the role
of exosomal miRNAs in the
diagnosis and treatment of
cardiovascular diseases

Jinyu Xu, Weitie Wang, Yong Wang, Zhicheng Zhu, Dan Li,
Tiance Wang and Kexiang Liu*
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Cardiovascular diseases are the most common diseases threatening the health

of the elderly, and the incidence and mortality rates associated with

cardiovascular diseases remain high and are increasing gradually. Studies on

the treatment and prevention of cardiovascular diseases are underway.

Currently, several research groups are studying the role of exosomes and

biomolecules incorporated by exosomes in the prevention, diagnosis, and

treatment of clinical diseases, including cardiovascular diseases. Now, based

on the results of published studies, this review discusses the characteristics,

separation, extraction, and identification of exosomes, specifically the role of

exosomal miRNAs in atherosclerosis, myocardial injury and infarction, heart

failure, aortic dissection, myocardial fibrosis, ischemic reperfusion, atrial

fibrillation, and other diseases. We believe that the observations noted in this

article will aid in the prevention, diagnosis, and treatment of cardiovascular

diseases.

KEYWORDS

exosomes, cardiovascular, cardio, miRNA, treatment

1 Introduction

Cardiovascular diseases affect the quality of life of the affected patients and are

associated with a high mortality rate. Recently, many studies have reported that the

incidence andmortality rate associated with cardiovascular diseases is increasing annually

and that they are the most common diseases that affect adults, in particular, middle-aged

adults. The annual mortality percentage due to cardiovascular diseases has reached

30–40% (Ragusa et al., 2015), which surpasses that caused by cancer, and is expected to

increase in the next decade. Therefore, treatment of cardiovascular diseases has always

been the focus of clinical research. Recent studies have revealed that exosomes contribute
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to the physiological and pathological mechanisms of

cardiovascular diseases (Wang Y. et al., 2019; Mashouri et al.,

2019) by transmitting signals between cells; in particular, the

exosomal miRNAs regulated the expression of various signaling

pathway members. We have reviewed the role of exosomes and

exosomal miRNAs in cardiovascular diseases (Zheng et al., 2021),

but there was lack of relevant reports at that time. Therefore, we

have reviewed the progress in the research on the role of

exosomal miRNAs in the pathogenesis, diagnosis, treatment,

and other aspects of cardiovascular diseases in this article.

2 Overview of exosomes

Exosomes are a subpopulation of cell-secreted extracellular

vesicles; the process begins with cell membrane invagination, and

exosomes are then secreted by the cell after incorporating active

factors such as proteins and nucleic acid fragments. The earliest

exosomes were called small extracellular vesicles, which were

found by Johnstone et al. (1987) while studying reticulocytes. In

1987, they were renamed as exosomes, and in 2018, the

international scientific community uniformly defined the size

of the exosomes to be about 30–100 nm. Exosomes are enclosed

by a relatively stable lipid bilayer, and they appear as flat cup-

shaped balls under the electron microscope (Edgar, 2016; Pathan

et al., 2019; Tschuschke et al., 2020). The formation of exosomes

(Figure 1) includes three steps: initially, the cytoplasmic

membrane is found in the early inner body, which is again

formed in the advanced inner body to the inner bud, and finally

secreted out of the cells. This process relies on the endosomal

sorting complex required for transport (ESCRT). Most types of

cells, such as smooth muscle cells, stem cells, lymphocytes,

platelets, and fat cells, secrete exosomes. Exosomes contain

biomolecules such as nucleic acids (mRNA, miRNA, and

DNA), lipids, and proteins (heat shock proteins such as

HSP60, transmembrane 4 superfamily (TM4SF), and CD63)

depending on the type and state of the cells secreting them.

They are extensively distributed in various body fluids, such as

blood, cerebrospinal fluid, and pleural effusion, and circulate in

the body, participating in the exchange of cytochemical

information (Wang X. et al., 2019). The biomolecular cargo in

the exosomes changes under different pathological conditions,

such as hypoxia and inflammation (Vizoso et al., 2017). The lipid

bilayer membrane structure of the exosome is relatively stable,

protecting itself and its labile cargo of proteins and RNAs from

the body fluid. In summary, exosomes have a wide range of

characteristics (Wang X et al., 2018) and play important roles in

the exchange of cellular information (Wei et al., 2021). As they

reflect the pathophysiological state of source cells, they may be

used for the prevention, diagnosis, and even treatment of

cardiovascular diseases.

3 Separation and extraction of
exosomes

The settling factors in a solution vary with substances, which

determine the centrifugal speed at which they can be precipitated.

Differential centrifugation is commonly used for obtaining

exosomes. Centrifugal speeds of 300 × g, 2,000 × g, and

10,000 × g are used to remove cells and debris, while

apoptotic bodies and large vesicles are eventually obtained at

100,000 × g; combining this with a 0.22-μm or 0.45-μm aperture

filter can increase purity, if necessary, and the pellet obtained can

FIGURE 1
Formation of exosomes. Initially, the cytoplasmic membrane is in the early inner body, which is again formed in the advanced inner body to the
inner bud and finally secreted out of the cells.
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be resuspended in phosphate-buffered saline to obtain pure

exosomes (Jeppesen et al., 2014; Momen-Heravi, 2017)

(Figure 2). The advantage of this method is that highly pure

preparations of lipoprotein particles and proteins can be

obtained at a low cost; however, the method is time-

consuming. In addition, the structure of the exosomes is

destroyed by the centrifugal shear. Purification of exosomes

requires appropriate sample viscosity, rotor, and rotation

radius (O’Brien et al., 2018). Therefore, density gradient

centrifugation is now used for purifying exosomes. The

density gradient is gradually increased from the top to the

bottom of the centrifuge tube using a common medium such

as iodixanol. The specific operation is divided into the equivalent

gradient centrifugal method and rate zone centrifugal method

based on the density of particles in each of the density gradient

zones and the settlement rate of different particles, respectively

(Doyle and Wang, 2019).

Polymers such as polyethylene glycol are used to form amesh

structure in the solution, which increases the binding force of the

hydrophobic protein and lipid molecules and disengages them

from the solution. As lectins of exosomal glycoproteins combine

with sugar chains, the dispersibility and solubility of the

exosomes may change, and they can be obtained via

centrifugation at low speed (Ramirez et al., 2018; Wang et al.,

2021). This method is simple and time-saving, and the exosomes

are less damaged. However, the purity of the exosomes is low; in

particular, when the exosomal fluid component is complex, the

proteins present in the liquid, such as fibrinogen, and lipoprotein

particles, and part of the bubble precipitate together, rendering

separation challenging, which may affect the results of the study

(Helwa et al., 2017). Therefore, samples are pretreated with

protease K to increase the purity of exosomes (Moon et al.,

2019). Nonetheless, this method is not preferred for extracting

exosomes.

Ultracentrifugation and pressure ultrafiltration are time-

saving and efficient methods for extracting exosomes

(Figure 3). The principle is based on the size of the exosomes,

and the sample is separated using a special aperture filter, which

removes molecules such as proteins, while retaining the

exosomes (Li et al., 2017). Low purity of the exosomes

obtained is also the disadvantage of this method because

substances with a diameter similar to that of the exosomes are

also intercepted at the same time; in addition, the ultrafiltration

efficiency may be affected if the ultrafiltration membrane is

blocked or cracked (Ding et al., 2021). Therefore, the non-

symmetric flow field separation method is used, in which the

force field is applied in different directions, and the filtrate,

flowing at different speeds, is formed at an angle with the

filter membrane during the flow. This considerably reduces

the chances of filter membrane blockage. In addition, a

combination of different detection methods can achieve sub-

selected sorting of different vesicles (Zhang and Lyden, 2019; Lin

et al., 2020; Yang et al., 2020). However, improvements in the

amount of time required for the procedure and yield are still

required.

Exosomes possess a special membrane protein, which can be

used to extract exosomes using an immune-affinity membrane

(Li et al., 2017). This method works on the principle of

FIGURE 2
Separation and extraction of exosomes. Centrifugal speeds of 300 × g, 2,000 × g, and 10,000 × g are used to remove cells and debris, while
apoptotic bodies and large vesicles are eventually obtained at 100,000 × g.
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antigen–antibody recognition, in which the specific antigen is

attached to the membrane via magnetic beads. However, this

method is expensive and low-yielding and has hence not been

used widely. Exosomes can be extracted using various other

methods, such as chromatography, molecular sieve analysis,

and the emerging microfluidic technique, each of which has

its own characteristics, advantages, and disadvantages. In the

clinic, we always use a combination of multiple methods to

improve the efficiency and purity of the exosomes.

4 Identification of exosomes

After extraction, the exosomes have to be identified for

downstream experiments. The identification methods vary

depending on the physical and chemical properties of the

exosomes (including size, morphology, concentration, and

protein markers present).

We have mentioned that exosomes are cup-shaped and

30–100 nm in diameter. This feature can be used in

nanoparticle tracking analysis, dynamic light scattering, and

adjustable resistance pulse sensing. The exosomes in the

sample move according to the principle of particle Brownian

movement, as well as their size and of the surrounding medium

on the exosomes (Tang et al., 2021). The advantage of this

method is that it is time-saving, although the specificity is

poor. Thus, proteins and exosomes of similar sizes cannot be

distinguished. A transmission electron microscope or scanning

electron microscope can also be used to identify the “cup”

structure of the exosomes (Jung and Mun, 2018).

The most common method involves identification of specific

protein markers harbored by exosomes using nano-fluorescent

activated cell sorting (FACS) and Western blotting. In nano-

FACS, because of fluorescent antigen–antibody reactions,

exosome vesicles linked to beads can be sorted using flow

cytometry. Previously, we have mentioned that exosomes

harbor HSP60, TM4SF, CD63, CD9, CD81, and other specific

protein markers. Thus, they can be identified by detecting the

expression of specific proteins using Western blotting (Huang L.

H et al., 2021). The disadvantage of this method is that it is time-

consuming; however, impurities in the preparation can be

avoided, and the exosomes can be identified accurately. At the

same time, the concentration of the exosomes can be determined.

5 Function and application of
exosomes

As mentioned previously, exosomes are formed as a result of

cytoplasmic invagination and efflux. Previously, scientists

believed that exosomes cleared cellular debris such as

biomolecules that are not required by the cells. Currently,

exosomes are known to regulate apoptosis and participate in

immune response via the nuclear factor kappa-B (NF-κB)
signaling pathway (Lindenbergh et al., 2018; Lu et al., 2018;

Aghabozorgi et al., 2019; Lindenbergh et al., 2019; Li and Wang,

2021; Lindenbergh et al., 2020).

Exosomes can also mediate pathological processes, which is

why they are being actively researched. Exosomes contribute to

the pathogenesis of many diseases. Currently, their role in cancer

is being extensively studied. Tumor-derived exosomes carry

information such as nucleic acids and proteins and play

important roles in the development and metastasis of tumors

(Ruivo et al., 2017; Kogure et al., 2020). Exosomes were used

clinically based on their functions and characteristics. First,

exosomes can protect their cargo (miRNAs and proteins)

(Kumar et al., 2020) because of their phospholipid bilayer

structure. At the same time, they are widely distributed in the

body and have long half-lives (Nam et al., 2020). In addition,

exosomes are small; hence, they have strong penetration power

FIGURE 3
Ultrafiltration. The principle is based on the size of the exosomes, and the sample is separated using a special aperture filter, which removes
molecules such as proteins, while retaining the exosomes.
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(Szabo and Momen-Heravi, 2017) and can freely shuttle between

cells and evade phagocytic effects (Figure 4). Second, the specific

protein markers incorporated by the exosomes play an important

role in the diagnosis of diseases. For example, Taylor and Gercel-

Taylor (2008) first proposed that exosomal miRNA-21 can act as

a marker of ovarian cancer and even determine the progress of

the disease. The therapeutic effects of exosomes vary with their

type and concentration (Beltrami et al., 2017; Chuppa et al., 2018;

Powers et al., 2020).

As exosomes can regulate apoptosis, they can be used for

therapy. The biomolecules (nucleic acid information and

proteins) incorporated by the exosomes can be suppressed or

promoted for treating diseases. For example, Rong et al. (2016)

have shown that the inhibition of T lymphocyte proliferation can

be reduced by suppressing the expression of exosomal TGF-β,
thereby inhibiting tumor metastasis. In summary, the application

prospects of exosomes are broad, and the application of miRNAs

in cardiovascular diseases has been discussed subsequently.

6 Role of exosomal miRNAs in
cardiovascular diseases

Since their discovery, various signaling molecules have been

found in exosomes. In particular, exosomal miRNAs transmit

information between cardiac cells via endocytosis and fusion.

The exosomal miRNAs participate in transcriptional regulation

and affect the occurrence and development of various diseases,

especially cardiovascular diseases (Figure 5). The high incidence

and mortality associated with cardiovascular diseases have

boosted research on their treatment and prognosis. Many

studies have reported the involvement of exosomal miRNAs

in cardiovascular diseases (Table 1), such as atherosclerosis

and heart failure.

6.1 Role of exosomal miRNAs in
atherosclerosis

Atherosclerosis is the most common and important

cardiovascular disease. It is a chronic progressive

inflammatory reaction with no symptoms in the early stage.

With deterioration of symptoms, lipids are deposited inside the

blood vessels and the vascular wall stiffens, which reduces

vascular compliance, resulting in vascular wall damage (Heo

and Kang, 2022). Recent studies have shown that exosomes

participate in vascular calcification by enabling information

exchange between cells and play an important role in vascular

atherosclerosis (Zhang and Huang, 2021). In particular, the

miRNAs present in exosomes are one of the main agents that

regulate atherosclerosis. The main pathological process of

vascular calcification involves an increase in the expression of

FIGURE 4
Pathway and mechanism of exosomal miRNAs. In ECs, miRNA genes are transcribed into primary miRNAs (pri-miRNAs) initially and then form
precursor miRNAs (pre-miRNAs) processed by the Drosha complex. Because of the exportin5 complex, the pre-miRNAs are exported into the
cytoplasm. Finally, through the digestion of the Dicer complex, the pre-miRNAs become mature. Mature miRNAs are sorted into exosomes
depending on the nSMase2-dependent pathway, the hnRNP pathway, etc.
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osteogenesis-related genes (Yang et al., 2019). According to a

report, miR-146a in macrophages can promote the calcification

of vascular smooth muscles by inducing oxidative stress,

promoting the wrap of macrophages up the vascular wall and

reducing cell migration (Nguyen et al., 2018; Zhang YG. et al.,

2019). The exosomes produced by bone marrow mesenchymal

stem cells transfected with miR-146a lowered the expression of

the gene encoding thioredoxin-interacting protein, thereby

partially inhibiting calcification (Wang Y. et al., 2018).

Another study showed that the exosomes harboring miR-223

were released by platelets (Lazar et al., 2021). After entering

smooth muscle cells, the exosomes regulated the proliferation

and migration of cells, affecting the progress of endothelial

inflammation and atherosclerosis. The use of indophenol can

reduce the expression of miR-223, limiting the development of

atherosclerosis (Shi et al., 2020).

In addition, several reports show that exosomes influence the

expression of anti-inflammatory and proinflammatory factors

FIGURE 5
Exosomal miRNAs which are related to cardiovascular diseases. There are various miRNAs in the exosomes, and they depend on the special
pathway to affect the diseases.

TABLE 1 Exosomal miRNAs related to cardiovascular diseases.

Cardiovascular
diseases

Related exosomal miRNAs References

Atherosclerosis miR-146a, miR-223, miR-16, and miR-21 Nguyen et al., 2018; Zhang et al., 2019b; Wang X. et al., 2018

Myocardial injury and
infarction

miR-17, miR-324, miR155, miR-1, miR-208a, and miR-192 Sun et al., 2019; Pan et al., 2019; Hu et al., 2019; Han et al., 2020; Wang
et al., 2017; Li et al., 2018; Vanni et al., 2017

Heart failure miR-21, miR-146a, miR-425, miR-744, and miR92b-5p Cheng et al., 2022; Qiao et al., 2019; Ma et al., 2018; Emanueli et al., 2016;
Wu et al.,2018

Aortic dissection miR-155, hsa-miR-26a-5p, miR-320, miR-146a-5p, miR-134–5p,
miR-223–3p, miR-599, hsa-miR-182–5p, and miR-145

Choi et al., 2018; Aschacher et al., 2022; Liao et al., 2018; Ji et al., 2019;
Xue et al., 2019; Aschacher et al., 2021; Wang et al., 2019a; Mimler et al.,
2019; Wu et al., 2019

Myocardial fibrosis miR-21–5p, miR-294, miR-24, miR-125b-5p, and miR-146a Frangogiannis, 2019; Gollmann-Tepeköylü et al., 2020; Moghaddam
et al., 2019

Ischemia reperfusion miR-342–5p, miR-30a, miRNA-181a, miR-148a, miR-150, miR-21,
and miR-126

Hou Z. et al., 2019; Chen et al., 2017; Jia et al., 2017; Wen et al., 2018;
Zhou H. et al., 2019; He et al., 2020

Atrial fibrillation miR-1, miR-328, miR-29a-3p, miR-320d, miR-486–5p, miR-107,
miR-103a-3p, miR-223–5p, miR-223–3p, miR -3126–5p, and miR-
27b-3p

Terentyev et al., 2009; Park et al., 2017; Lu et al., 2010; Zhao et al., 2016;
Mun et al., 2019; Wang et al., 2019b; Liu et al., 2020
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via the NF-κB pathway, which can affect atherosclerosis. Lu et al.

(2019) found that exosomes transmit inflammatory cytokines

and miRNAs to the receptor cells and activate the NF-κB
pathway, which can cause endothelial inflammation and

atherosclerosis. Shi et al. (2019) found that exosomes

containing serum HSP27 and NF-κB were activated by the

receptor, promoting the release of IL-10, thereby inhibiting

atherosclerosis. Gao et al. (2016) found that the exosomes

from bone marrow dendritic cells increased endothelial

inflammation by mediating tumor necrosis factor (TNF-α)
release via the NF-κB pathway. Exosomes harboring miR-16

and miR-21 can inhibit the NF-κB pathway, thereby inhibiting

the endothelial inflammatory reaction induced by TNF-α, which
can retard the progress of atherosclerosis (Li et al., 2019).

Therefore, exosomal miR-146a and miR-223 may be the

molecular targets for treatment of atherosclerosis, and

regulation of the NF-κB pathway may be potentially used for

retarding atherosclerosis.

6.2 Role of exosomal miRNAs in
myocardial injury and infarction

As atherosclerosis aggravates, the coronary artery narrows,

and the coronary blood flow is suddenly interrupted. As a result,

the downstream blood flow is blocked and the myocardial supply

and demand balance is disrupted. The inflammatory substances

from the atherosclerotic plaque destroy the integrity of fiber caps.

Blocking causes myocardial damage, which in turn induces

cardiomyocyte apoptosis. Myocardial infarction is one of the

main causes of heart remodeling and failure and is associated

with high incidence and death rates (Lazar et al., 2018). Coronary

angioplasty can repair the damaged myocardium after

myocardial infarction to only a certain extent. Recently, many

reports have shown that exosomal miRNAs can regulate the

damage and apoptosis of cardiomyocytes, participating in the

process of myocardial infarction and finally promoting

intercellular communication between cells (Cheng et al.,

2020). Thus, they play important roles in the pathophysiology

of myocardial infarction and affect the diagnosis and treatment

of the disease.

During acute myocardial infarction, the cardiomyocyte-

derived exosomes are in an oxygen-deficient state and contain

miRNAs, such as miR-17 andmiR-324. Li et al. (2019) found that

miR-17 can activate the PI3K/Akt and TIMP1/

2→MMP9 pathways. This reduces the lesion area of

myocardial infarction and enhances the cardiac response to a

certain extent. At the same time, they can affect metalloprotease

expression, induce the formation of capillaries, and enhance

repair and tolerance to hypoxia (Hu et al., 2019; Pan et al.,

2019; Sun et al., 2019). Han et al. (2020) found that miR-324

induced apoptosis and inhibited cell proliferation by regulating

the expression of caspase-3 and p-P38-MAPK. In addition, by

regulating the TNF-α and NF-κB signaling pathways and the

protein levels of TNF-α, miR-324 can alleviate the damage caused

by cardiomyocyte hypoxia (Huang S et al., 2021). Furthermore,

some exosomes can improve cardiac function after

cardiomyocyte infarction, while some may also increase

myocardial injury after myocardial infarction (Mao et al.,

2019). In mouse models of myocardial infarction, Wang et al.

(2017) observed that the exosomal miR-155 derived from

macrophages was significantly upregulated. The exosomal

form of this miRNA inhibits fibroblast proliferation and

promotes cardiac inflammatory response during myocardial

infarction. In experiments where exosomal miR-155 was

inhibited or knocked out, the progression of myocardial

infarction was studied more deeply.

Studies have shown that exosomal miRNAs are highly related

to the progression of myocardial infarction. The number of

molecules incorporated by the exosomes released by

cardiomyocytes varies with the changes in cell culture

conditions. Currently, troponin is the commonly used index

of cardiomyocyte damage; however, for acute patients, the

troponin level peaks 12 h after the attack (Youn et al., 2019).

In contrast, some highly specific miRNAs, such as miR-1, miR-

208a, and miR-192, appear rapidly in the blood after the attack

(Li et al., 2018). In particular, the expression of miR-1 decreases

after myocardial infarction, while the area of myocardial

infarction increases. At the same time, the level of miR-1 in

the patient’s serum decreases significantly (Wang S. et al., 2019).

Moreover, the levels of miR-208a change significantly 4 h after

acute myocardial infarction (Vanni et al., 2017). Therefore,

considering the specific expression of the exosomes after

myocardial infarction, as well as their ability to repair the

damaged myocardium after myocardial infarction, the

prospects of using exosomes in the diagnosis, treatment, and

prognosis of myocardial infarction appear promising.

6.3 Role of exosomal miRNAs in heart
failure

Heart failure is a complex which is the final outcome of

cardiovascular diseases, and the incidence and death rate

associated with which are higher in the elderly. Despite the

current treatment regimen, the 5-year survival rate is still less

than 50% (Snipelisky et al., 2019). Hence, the treatment of heart

failure is a global public health issue. Ventricular remodeling,

which includes cardiomyocyte hypertrophy, interstitial fibrosis,

and activation of the renin–angiotensin system, is the basic

pathological manifestation of heart failure. The compensation

performance of cardiac hypertrophy leads to cardiac blood filling

and discharge. Clinical symptomsmay be absent or maymanifest

as asthma, edema, and other obvious dysfunctions in severe

cases. Several studies have shown that exosomes play an

important part in the diagnosis and treatment of heart failure,
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especially in those without any symptoms (Xue et al., 2020). At

the same time, miRNAs in the exosomes can affect the

pathological process to mediate ventricular remodeling. In

particular, miRNAs can modulate cell proliferation and

participate in cardiomyocyte stress. In addition, they can

change the local microenvironment and promote vascular

regeneration and reformation of damaged myocardial tissue.

Hence, exosomes and miRNAs may affect the treatment of

heart failure.

Exosomes secrete many types of miRNAs, among which,

miR-21 has been studied in cases of heart failure. Activation of

the renin–angiotensin system is one of the mechanisms of heart

failure. Angiotensin IIS is significantly upregulated, which can

lead to heart failure. Changes in the level of miR-21 can inhibit

myocardial hypertrophy and simultaneously delay the

myocardial hypertrophy caused by angiotensin II (Cheng

et al., 2022). Qiao et al. (2019) compared the matrix cells of

healthy cardiac tissue with those from the cardiac tissue of

patients with heart failure and found that the level of miR-21

in the healthy cardiac tissue was higher than that in the diseased

tissue. miR-21 regulates the procedural cell deaths caused by

apoptosis in cardiomyocytes. Further studies have confirmed that

miR-21 can promote angiogenesis and cardiomyocyte survival by

inhibiting the activity of phosphatase tension protein (PTEN)

and enhancing the activity of the protein kinase B (PKB) in vivo

(Zhu et al., 2019). Therefore, it was believed that an increase in

the expression of miR-21 in patients with heart failure may

indicate conduciveness to the treatment of patients with heart

failure. However, we found that excessive exosomes may also

promote cardiac hypertrophy (Nie et al., 2018). Therefore, the

therapeutic effect of exosomes and miRNAs has to be extensively

assessed via detailed experimental verification.

Methods of diagnosing heart failure are also constantly

improving. Currently, the most popular biomarkers of heart

failure include BNP and N-terminal proBNP (NT-proBNP),

which have higher sensitivity (Rørth et al., 2020). However,

the specificity of these markers is limited, and age, default

state of an individual, and other diseases such as right

ventricular lesions and myocardial infarction may affect

interpretation based on these markers, as a result of which

diagnosis of heart failure may be influenced or even delayed

to some extent. Studies have shown differences in expression

levels of exosomes and miRNAs in the plasma of patients with

heart failure. For example, the miR-146a level increased, while

miR-21, miR-425, and miR-744 levels decreased. In addition, the

exosomal miRNAs in vascular endothelial fibroblasts are

inhibited; hence, the expression levels of miRNAs in the

circulatory system can reflect the condition of cardiac

fibroblasts (Ma et al., 2018). Emanuel et al. (2016) have

shown that the expression of miR-146a in the exosomes of

patients with heart failure correlated well with the level of

cardiac troponin I (cTn-I). Wu et al. (2018) have observed a

correlation between the miR92b-5p level and cardiac

atrioventricular size in echocardiography. This suggested that

the level of miR92b-5p increased with a decrease in left ventricle

function. Therefore, use of the combination of miRNAs and

other diagnostic methods, such as echocardiography or

laboratory tests, may be one of the directions in translational

research on exosomes.

6.4 Role of exosomal miRNAs in aortic
dissection

Aortic dissection is one of the most dangerous cardiovascular

diseases. Its rapid onset, high mortality rate, and poor prognosis

severely affect the quality of life of the patients. Currently, in

addition to symptom-based diagnosis, diagnosis of aortic

dissection relies on the inspection of the aorta computed

tomography angiography, although it is time-consuming,

expensive, and associated with risk of kidney damage. At the

same time, because of fluctuation in blood pressure during

transportation, the risk of aortic dissection or rupture

increases. Therefore, a highly sensitive, specific, and time- and

effort-saving diagnostic method is required.

Phenotypic transformation of vascular smooth muscle cells

in the middle aortic layer and its role in the pathogenesis of aortic

dissection are being investigated. In addition, how the miRNAs

incorporated by exosomes affect the phenotypic transformation

of vascular smooth muscle cells is being actively researched. At

present, the expression of at least five miRNAs, including miR-

155, has been found to be significantly reduced in patient serum.

Hsa-miR-155–5p regulates the expression of target genes and

those related to the smooth muscle cells via the NF-κB signaling

pathway. In this way, it induces phenotypic transformation and

changes cell morphology, proliferation, and migration (Choi

et al., 2018). Hsa-miR-26a-5p regulates BMP/

SMAD1 signaling to targeted genes via receptor activation

factors and tissue growth factors (Aschacher et al., 2022).

Another study found that the miR-320 series was also

involved in the migration and proliferation of cells, which in

turn affected the function of endothelial cells and smooth muscle

cells in the aorta (Liao et al., 2018). In the presence of high shear

stress, hsa-miR-320d promotes apoptosis of cells by inhibiting

the proliferation and migration of smooth muscle cells and

endothelial cells, thereby maintaining the tension of the blood

vessel wall (Ji et al., 2019). The research found that the level of

miR-146a-5p in the plasma of patients with aortic dissection was

significantly higher than that in healthy blood vessels (Xue et al.,

2019). Furthermore, miR-134–5p is a key regulator that controls

the phenotypic conversion and migration of smooth muscle cells

and simultaneously participates in the progression of aortic

dissection (Wang ZF. et al., 2019). In addition, miR-223–3p

derived from the platelets acts as an endocrine genetic signal that

reduces the blood vessel density after it enters the endothelium

and vascular smooth muscle cells (Wang H. et al., 2019;
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Aschacher et al., 2021). Studies have shown that TGFB2 is the

target of miR-599 in smooth muscle cells, while SEMA and

TWIST2 are the target genes of hsa-miR-182–5p in smooth

muscle cells. They prevent intima formation by inhibiting

proliferation and migration during aortic dissection, (Mimler

et al., 2019; Wu et al., 2019). In addition, miR-145, which is

mainly expressed in vascular smooth muscle cells, is one of the

core factors regulating vascular phenotype conversion.

Therefore, if exosomal miRNAs that are specifically expressed

in the aortic dissection are identified, there will be a breakthrough

in the diagnosis, treatment, and prevention of aortic dissection.

6.5 Role of exosomal miRNAs in
myocardial fibrosis

Myocardial fibrosis involves alterations in normal tissue

structure due to changes in myocardial collagen fiber dynamics,

including excessive accumulation and increase in the

concentration of the fiber, or changes in the fiber components.

Normal cardiac fiber cells secrete the extracellular matrix that

provides a stable stent structure for the heart. Myocardial cells

undergo necrosis during myocardial infarction. The myocardial

fibroblasts are activated to cardiac fibroblasts, which then increase

fiber synthesis. Fiber synthesis results in the formation of scar

tissue, which replaces the original myocardial cells. Studies have

shown that the inflammatory factors activated by the death of

cardiomyocytes are closely related to the necrosis of activated

myocardial fibroblasts. Some exosomalmiRNAsmay be associated

with the activity of inflammatory factors, and they may affect the

activation and hyperplasia of myocardial fibroblasts (Hohn et al.,

2021). Furthermore, some of the exosomal miRNAs can perform

biological functions such as resistance to cardiac apoptosis and

reduction in collagen production, thereby reducing myocardial

fibrosis to some extent (Ferguson et al., 2018).

The level of miR-21 can affect the hypertrophic growth of

cardiomyocytes. Possibly, the exosomes that contain miR-21 can

reduce apoptosis of myocardial cells and endothelial cells to a

certain extent, thereby reducing the activation of myocardial

fibroblasts into cardiac fibroblasts. While some cardiomyocytes

undergo necrosis, the exosomes expressing low levels of miR-

21–5p are released, following which they relay information via the

phosphatase and tensin homolog/threonine kinase 1 (PTEN/AKT)

and phosphatase pathways to induce near-normal cardiomyocyte

apoptosis. At the same time, cardiomyocytes are constantly

activating and proliferating into cardiac fibroblasts

(Frangogiannis, 2019). In addition, apoptosis of cardiomyocytes

was reduced when exosomes rich in miR-21–5p were co-cultured

with cardiomyocytes, and the activation and hyperplasia of

myocardial fibroblasts also declined accordingly. At the same

time, the content of caspase-3 in cardiomyocytes also decreased.

A study found that miR-19a-3p present in exosomes derived from

endothelial cells can activate the AKT and extracellular-signal-

regulated kinase (ERK) pathway, which can significantly reduce

myocardial fibrosis (Gollmann-Tepeköylü et al., 2020). A similar

function has been observed for other exosomal miRNAs, such as

miR-294, miR-24, and miR-125b-5p (Moghaddam et al., 2019). A

recent study showed that scar formation and inhibition of fibrosis

after injecting exosomes rich in miR-146a or miR-21 into a mouse

model differed considerably from those in the control

group. Therefore, the inhibitory and therapeutic effects of

exosomes and miRNAs on myocardial fibrosis require more in-

depth investigations.

6.6 Role of exosomal miRNAs in
ischemia–reperfusion

Ischemia–reperfusion injury refers to the injury after

reperfusion treatment using balloon, stent, and coronary

artery bypass grafting. As a result of these procedures, certain

events such as reperfusion arrhythmia, myocardial stunning, and

microvascular dysfunction occur in the ischemic myocardium.

These may further aggravate to myocardial injury. A large

number of studies have shown that the miRNAs present in

exosomes can play a positive protective role by regulating

various processes, such as apoptosis, inflammation, autophagy,

and oxidative stress, to reduce ischemia–reperfusion injury (Bei

et al., 2017; Zhang M. et al., 2019).

The most fundamental way of improving ischemia–reperfusion

injury is to reduce cardiomyocyte death and cardiac dysfunction.

Hou Z. et al. (2019) found that in the hypoxia reoxygenation model,

the expression of caspase-9 and protein JNK2 decreased significantly

because of the upregulation of miR-342–5p. Release of lactate

dehydrogenase was inhibited, which increased cell viability. At

the same time, Chen et al. (2017) have shown that the level of

miR-30a in the exosomes increased after ischemia–reperfusion due

to induction of hypoxia-inducible factor-1α (HIF-1α), whereas the
activity of autophagy-associated proteins, Atg12 and beclin-1, and

cardiomyocyte death decreased accordingly.

In addition to reducing cardiomyocyte death, the

inflammatory response also plays an important role in

ameliorating ischemia–reperfusion injury. In the presence of

ischemia–reperfusion, monocytes in peripheral blood and blood

circulation gradually gathered at the damaged myocardium and

transformed into M1 and M2 macrophages under the effect of

differentiation promoting factors to promote inflammation or

anti-inflammation (Shiraishi et al., 2016; Li et al., 2019). During

the repair of myocardial injury in ischemia–reperfusion, Jia et al.

(2017) found that completely inhibiting the formation of

M1 macrophages was not ideal, while reducing the number of

the M1 type and increasing that of M2 macrophages effectively

alleviated ischemia–reperfusion injury. Hence, regulating the level

of M2 macrophages is critical for reducing ischemia–reperfusion

injury. At the same time, Wen et al. (2018) showed that injecting

exosomes derived from stem cells highly expressing miRNA-181a
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into the ischemia–reperfusion animal models promoted TREG

polarization of peripheral blood mononuclear cells because of

reduction in c-Fos protein level. Therefore, the targeting ability

of exosomes and the immunosuppressive effect of the miRNAs

harbored by the exosomes can be utilized for alleviating ischemic

reperfusion injury. In addition, studies have shown that miR-148a

can inhibit the activation of the NLRP3 inflammasome, mainly by

lowering the expression of thioredoxin and its interacting protein

and intervening in the TLR4/NF-κB signal pathway.

Furthermore, studies have shown that oxidative stress also

contributes to ischemia–reperfusion injury and that oxidation

stress is closely related to the exosomal miRNAs. Multiple reports

have shown that miR-150, miR-21, miR-126, and other exosomal

miRNAs, which participate in the ischemia–reperfusion injury

procession, were induced by oxidation stress (Kura et al., 2020).

In summary, exosomes are important carriers of information that can

be exchanged between cells because of their good biocompatibility

and high stability. The miRNAs secreted from the stem cells’

exosomes can be absorbed by the cardiac cells directly and can be

used for the treatment of ischemia–reperfusion injury. Thus,

exosomal miRNAs will be the next generation of therapeutics in

the future (Zhou H et al., 2019; He et al., 2020).

6.7 Role of exosomal miRNAs in atrial
fibrillation

The onset of atrial fibrillation is closely related to changes in

electrophysiology and the function of ion channels, especially the

calcium and kalium channels. Mutations in genes related to the

potassium ion channel and occurrence of ectopic excitatory focus

contribute to atrial fibrillation (Yao et al., 2021). Furthermore,

atrial fibrillation is related to the size of the atrioventricular block

and the degree of fibrosis. As mentioned previously, miRNAs

present in exosomes regulate myocardial fibrosis; therefore,

miRNAs are also necessarily related to atrial fibrillation.

Terentyev et al. (2009) have shown that miR-1 present in the

exosomes is related to the opening of the atrial muscle voltage-

gated calcium and kalium. The kalium opens when miR-1

expression decreases, which may promote the occurrence of

atrial fibrillation. However, when the expression of miR-1

increases, more calcium ions flow into the atrial cells and

promote atrial fibrillation. Park et al. (2017) observed that

exosomes expressing miR-1 can reduce myocardial systolic

dysfunction caused by atrial fibrillation in experimental

models. Atrial fibrillation can shorten the duration of the

action potential and lead to loss of the L-type calcium ion

channel and calcium ion transient amplitude, whereas the

modified exosomes effectively prevented this change. Lu et al.

(2010) demonstrated that miR-328 was significantly upregulated

in patients with atrial fibrillation, which caused electrical

remodeling by the calcium ion channel encoded by the L-type

genes, CACNAIC and CACNBI, to promote atrial fibrillation.

Knocking down the expression of this miRNA reduced the

occurrence of atrial fibrillation. Zhao et al. (2016) found that

miR-29a-3p and the CACNA1C pathway were negatively

regulated. As miR-29a-3p exerts strong and direct inhibitory

effects on atrial muscles, modified exosomes expressing miR-

29a-3p may be used as a therapeutic for atrial fibrillation.

Using microarray analysis, Mun et al. (2019) found that the

serum levels of exosomal miRNAs, such as miR-320d, miR-

486–5p, miR-107, and miR-103a-3p, were significantly increased

in cases of atrial fibrillation. Results of the multivariable analysis

revealed an independent correlation between certain miRNAs

present in exosomes and atrial fibrillation. In addition, Wang

J. et al. (2019) and Liu et al. (2020) found that the expression of

more than 39 miRNAs in the exosomes of patients with atrial

fibrillation differed from that in healthy controls, including

21 significantly upregulated miRNAs, two of them are miR-

223–5p and miR-223–3p, which are related to the heart, and the

expression was verified using qPCR. At the same time, two

miRNAs were significantly downregulated, namely, miR-

3126–5p and miR-27b-3p. A study showed that the expression

of miR-320d in cardiomyocytes of patients with atrial fibrillation

increases apoptosis and inhibits cell viability via the

STAT3 pathway. Transmission of miR-320d mimics via stem

cells can change their effects on cardiomyocytes. Another study

showed that injection of exosomes that expressed miR-27b-3p

into experimental models reduced the activity of the Wnt/β-
catenin pathway to control atrial fibrillation (Lv et al., 2019).

In addition, studies have revealed that exosomal miRNAs are

associated with the severity of atrial fibrillation. Comparison of

patients with paroxysmal atrial fibrillation, persistent atrial

fibrillation, and permanent atrial fibrillation indicated that the

increase and decrease in the expression of miRNAs were

inconsistent. In patients with persistent atrial fibrillation, the

expression of some miRNAs such as miRNA-103a, miRNA-

107, miRNA-320d, and miRNA-486 increased. However, their

expression in patients with paroxysmal atrial fibrillation decreased.

In summary, these studies provide insights regarding the

prevention, mechanism of action, and severity of atrial

fibrillation, as well as its prognosis and therapy (Huang Z et al.,

2021). Gradually, as more miRNAs are discovered, the potential of

therapeutic intervention with exosomes as carriers will amplify.

7 Role of exosomal miRNAs in other
vascular diseases

In addition, the application of exosomal miRNA in other

vascular diseases is also the international research highlights,

which includes vascular Alzheimer’s disease (AD). At present, a

large number of studies showed that one of the typical

pathological changes of AD is the deposition of amyloid beta

(Aβ). Aβ is produced during the amyloid precursor protein

(APP) hydrolysis by β-secretory enzymes and γ-secretory
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enzymes (Yuyama and Igarashi, 2017). Research showed that the

exosomal miRNAs are sensitive to the hydrolysis of Aβ. At the
same time, it can penetrate blood barriers freely and directly act

on the central nervous system. In AD patients, dysregulated

miRNAs such as miR-101–3p and miR-106b could affect the

expression of APP and other proteins. Then, they produced Aβ to
aggravate the progress of AD (Iwata et al., 2014; Lin et al., 2018;

Liu et al., 2014). In addition, dysregulated miR-132 and miR-212

could affect the synthesis and phosphorylation of tau protein,

which affected the pathological process of AD. Smith et al. (2015)

showed that miR-132 deficiency was relevant to autophagy

dysfunction and long-term memory loss. After miR-132 is

transferred into the neuron through exosomes, it could

significantly improve memory impairment. In summary, many

studies found that exosomal miRNA played an active role during

the treatment of AD. In addition, exosomes and their miRNAs

are stable, which could freely penetrate blood barriers and exist in

the peripheral blood. They are simpler and more sensitive to the

diagnosis of AD than MRI or cerebrospinal fluid markers, which

have great potential in the early diagnosis and prevention of AD.

8 Expectations

The role of exosomal miRNAs in the development of

cardiovascular diseases is beginning to be understood. In future,

exosomes will have extensive application prospects in the

diagnosis, treatment, and prevention of cardiovascular diseases.

At the same time, research on exosomes is still in the preliminary

stage, and the limitations of such studies are also obvious. The

complex and expensive purification technology of exosomes

hinders their universal application. For certain diseases, the role

of exosomal miRNAs remains a double-edged sword, which can

aggravate the progress of the diseases if not properly controlled.

Targeted transport of exosomal miRNAs also has to be developed.

With advancements in medical development and research, we

believe that exosomal miRNAs will be used for improving public

health and that they will play critical roles in the prevention,

diagnosis, and treatment of diseases.
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Background: Parkinson’s disease (PD) is a neurodegenerative disease

commonly seen in the elderly. On the other hand, cuprotosis is a new

copper-dependent type of cell death that can be observed in various diseases.

Methods: This study aimed to identify potential novel biomarkers of Parkinson’s

disease by biomarker analysis and to explore immune cell infiltration during the

onset of cuprotosis. Gene expression profiles were retrieved from the GEO

database for the GSE8397, GSE7621, GSE20163, and GSE20186 datasets. Three

machine learning algorithms: the least absolute shrinkage and selection

operator (LASSO), random forest, and support vector machine-recursive

feature elimination (SVM-RFE) were used to screen for signature genes for

Parkinson’s disease onset and cuprotosis-related genes (CRG). Immune cell

infiltration was estimated by ssGSEA, and cuprotosis-related genes associated

with immune cells and immune function were examined using spearman

correlation analysis. Nomogram was created to validate the accuracy of

these cuprotosis-related genes in predicting PD disease progression.

Classification of Parkinson’s specimens using consensus clustering methods.

Result: Three PD datasets from the Gene Expression Omnibus (GEO) database

were combined after eliminating batch effects. By ssGSEA, we identified three

cuprotosis-related genes ATP7A, SLC31A1, and DBT associated with immune

cells or immune function in PD and more accurate for the diagnosis of

Parkinson’s disease course. Patients could benefit clinically from a

characteristic line graph based on these genes. Consistent clustering analysis

identified two subtypes, with the C2 subtype exhibiting higher immune cell

infiltration and immune function.

Conclusion: In conclusion, our study reveals that several newly identified

cuprotosis-related genes intervene in the progression of Parkinson’s disease

through immune cell infiltration.
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Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disease after Alzheimer’s disease, affecting

1.2% of individuals over the age of 65 (Hickman et al., 2018).

It is more common in older adults, with an average age of onset of

about 60 years, and aging is the greatest risk factor for the

development of Parkinson’s disease (Collier et al., 2011).

Parkinson’s disease (PD) is a debilitating motor coordination

disorder caused by the degeneration of dopamine neurons in the

substantia nigra (SN) (Ballance et al., 2019). The main clinical

manifestations are resting tremors, bradykinesia, myotonia, and

postural gait disturbances (Hammond et al., 2019). Other motor

dysfunctions include gait and postural changes, speech and

swallowing difficulties, and changes in expression (Zhang

et al., 2021). In recent years it has been increasingly noted

that non-motor symptoms such as depression, constipation,

and sleep disturbances are also common complaints in

patients with Parkinson’s disease, and they can have an even

greater impact on a patient’s quality of life than motor symptoms

(Cederroth et al., 2019). More research is needed on how to

prevent motor complications. The exact cause of Parkinson’s

disease remains unclear, and genetic factors, environmental

factors, aging, and oxidative stress may all be involved in the

degenerative death process of PD dopaminergic neurons (Fung

et al., 2017). Therefore, early identification of molecular

biomarkers of PD is crucial to initiate timely treatment before

the onset of motor symptoms.

Copper is an essential trace element that plays an important

role in maintaining human life activities, and mechanisms

involving copper may represent potential therapeutic targets

for different pathologies, and significant changes in its levels

in the body may be a potential pathogenic factor in Parkinson’s

disease (Atrian-Blasco et al., 2017). Reduced binding of copper to

ceruloplasmin in PD patients, resulting in elevated free copper

levels, has been shown to be associated with oxidative stress and

neurodegeneration (Ajsuvakova et al., 2020). A recent study

identified a new mode of cell death that is dependent on and

regulated by copper ions in the cell body: cuprotosis. By directly

binding to the lipid acylated components of the tricarboxylic acid

cycle pathway, copper ions lead to abnormal aggregation of lipid

acylated proteins and loss of iron-sulfur cluster proteins,

resulting in proteotoxic stress and ultimately cell death

(Tsvetkov et al., 2022). Dysregulation of copper homeostasis

may trigger cytotoxicity, and changes in intracellular copper

levels can ultimately affect the development and progression

of neurological diseases (Genoud et al., 2020; Li et al., 2020). In

contrast, inhibition of copper transporter protein attenuated α-
synuclein-mediated pathological changes in Parkinson’s patients

and reduced the increase in proteogenic fibrillation and oxidative

stress (Davies et al., 2014; Gou et al., 2021). Also, abnormal

tricarboxylic acid cycle function is closely associated with the

development of Parkinson’s disease, especially dopamine

neurons are much more dependent on mitochondrial

metabolism than other cell types (Supandi and van Beek,

2018; Cai et al., 2019). This suggests that inhibiting the

occurrence of cuprotosis in neurons through drugs may be a

strategy to combat Parkinson’s disease.

In addition, there is growing evidence that the immune

system is allied to neuronal death and PD pathogenesis.

Recent studies have demonstrated that early stages of

Parkinson’s disease progression can be confirmed by detecting

immune cell components in the blood, leading to earlier

detection and confirmation of the disease (Farmen et al.,

2021). Microglia are the brain’s resident immune cells, and

activated microglia correlate directly with the clinical and

pathological severity of Parkinson’s disease (Lanskey et al.,

2018). Current research also includes the function of various

immune cells, such as NK cells (Earls and Lee, 2020) and T cells

(Yeapuri et al., 2022), but there is still a gap in how these cells play

a role in the progression of cuprotosis in PD.

Currently, microarray technology and integrated

bioinformatics analysis have been widely used to identify

potential novel biomarkers and their roles in various diseases

to further explore the pathogenesis and develop potential

therapeutic approaches (Zhao et al., 2021). In contrast, there

have not been any studies on cuprotosis-related forms of

Parkinson’s disease. In this study, four datasets (GSE8397,

GSE7621, GSE20163, and GSE20186) were combined into one

integrated dataset by the SVA method to eliminate batch

differences. To explore the immune cell or immune function

correlation of CRGs with PD, ssGSEA was used to study immune

infiltration in PD, and consistency clustering analysis was

performed to identify pathway differences in cuprotosis-

related gene groupings. We believe our findings will provide

greater insight into the characterization of cuprotosis progression

in PD and provide potential prognostic biomarkers to design

rational therapeutic regimens.

Materials and methods

Raw data acquisition

Five PD datasets (GSE8397, GSE7621, GSE20163, GSE20186,

and GSE42966) were downloaded from the NCBI Gene

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/

). The above five datasets are all gene expression arrays,

GSE7621 generated using GPL570 (HG-U133_Plus_2)

Affymetrix Human Genome U133 Plus 2.0 Array. GSE8397,

Frontiers in Genetics frontiersin.org02

Zhao et al. 10.3389/fgene.2022.1010361

211

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1010361


GSE20164, and GSE20186 generated via GPL96 (HG-U133A)

Affymetrix Human Genome U133A Array was generated.

GSE42966 was generated by GPL4133 Agilent-014850 Whole

Human Genome Microarray 4 × 44K G4112F. The dataset of

GSE8397 included 24 nigrostriatal (SN) samples from PD

patients and 15 nigrostriatal samples from normal subjects;

GSE20163 contained nine nigrostriatal samples from PD and

eight nigrostriatal samples from control subjects; GSE7621 used

nine normal nigrostriatal samples from controls and

16 nigrostriatal samples from 16 Parkinson’s disease patients;

GSE20186 contained 14 PD nigrostriatal samples and five control

samples. GSE42966 served as the validation group and included

four Braak3 nigrostriatal samples from patients and five

Braak4 patient samples.

Selection of characteristic genes

Three machine learning algorithms: LASSO regression

analysis, random forest, and SVM-RFE (Sanz et al., 2018)

were used to screen for eigengenes. LASSO was implemented

as a dimensionality reduction method to perform variable

screening and complexity adjustment while fitting a

generalized linear model. LASSO analysis was implemented

with a penalty parameter utilizing a 10-fold cross-verification

via the “glmnet” package (Engebretsen and Bohlin, 2019).

Recursive feature elimination (RFE) in the random forest

algorithm is a supervised machine learning method for

ranking cuprotosis-associated genes in Parkinson’s disease.

Predictive performance is estimated by tenfold cross-

validation and genes with relative importance >0.25 are

identified as feature genes. SVM-RFE is a small-sample

learning method that essentially bypasses the traditional

process of induction to deduction and enables efficient

“transductive inference” from training to prediction

samples, simplifying the usual classification and regression

problems.

Data processing and identification of
differentially expressed genes

The four raw datasets were pre-processed by affy in R,

including background calibration, normalization, and

log2 transformation (Irizarry et al., 2003). When multiple

probes correspond to a common gene, their average values

were taken as their expression values. In addition, the R

package “sva” was used to eliminate batch effects (Buus et al.,

2017). The limma package was applied to the four GEO cohorts

as a way to screen for differentially expressed cuprotosis-related

genes. p-values < 0.05 and |log2 Fold change (FC)|>0.2 were set

as cut-off points for DEGs (Ritchie et al., 2015). When

performing differential analysis of the two PD subtypes, FDR

values <0.05 and |logFC|>1 of DEGs were considered to be

significantly different.

Functional enrichment analysis

Functional enrichment analysis, including both Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) analyses, was performed by the

“clusterProfiler” package in R software. The BH method was

utilized to adjust the p-value. Single-sample gene set enrichment

analysis (ssGSEA) was used to calculate the infiltration score of

16 immune cells and 13 immune-related pathways by the “gsva”

package in R software (Rooney et al., 2015). Finally, we also

examined the correlation between cuprotosis-related genes and

immune cells and immune function in Parkinson’s disease

samples.

Gene set enrichment analysis

Gene set enrichment analysis is a computational method

used to test whether genes show statistically significant and

consistent changes between two biological states. The most

significant relevant signaling pathways are identified by

10,000 alignment tests. A corrected p-value of less than

0.05 and a false discovery rate (FDR) of less than 0.05 was

used as criteria. Finally, we selected the top 5 KEGG pathways for

statistical analysis and ridge mapping using the R package

“clusterPro”.

Consensus clustering

Consensus clustering is used to calculate how many

unsupervised classes there are in a dataset. The consensus

clustering (CC) method was used. Based on the ICI

characteristics, we used the R package “ConsensusClusterPlus”

(Wilkerson and Hayes, 2010) to classify Parkinson’s patients in

GSE8397, GSE7621, GSE20163, and GSE20186 into different ICI

clusters. These results are displayed after being run 1,000 times to

verify the accuracy and reproducibility of the program, and we

use the heat map function of the R language. Consensus matrix

plots, consensus cumulative distribution function (CDF) plots,

the relative change in area under the CDF curve, and trace plots

were used to find the optimal number of clusters.

Gene set variation analysis

GSVA is a non-parametric unsupervised analysis method

that is mainly used to assess the results of gene set enrichment in

microarrays and transcriptomes. It is mainly used to assess
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FIGURE 1
Identification of Parkinson’s onset and cuprotosis-related genes in the combined expression profile of the GEO cohort. (A–D) Heat map
showing differentially expressed CRGs for the GSE8397, GSE7621, GSE20163, and GSE20186 cohorts. (E) PCA plot showing the combinatorial
expression profile of the GEO cohort. (F) PCA plot showing the combined expression profile of the GEO cohort after batch effect.
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whether different metabolic pathways are enriched between

samples by converting the gene expression matrix between

samples into the expression matrix of gene sets between

samples (Hoang et al., 2019). Fifty signature gene sets were

selected from MSigDB as reference sets. The GSVA package

and its ssGSEA function were used to obtain the GSVA score for

each gene set. The GSVA score indicates the absolute enrichment

of each gene set. The Limma package was used to compare the

differences in GSVA scores per genome between subtypes.

Statistical analysis

All analyses were performed using R version 4.1.1, 64-bit6,

and its support package. The nonparametric Wilcoxon rank sum

test was used to test the relationship between two groups of

continuous variables. Correlation coefficients were examined

using spearman correlation analysis. In all statistical

investigations, p < 0.05 was considered statistically significant.

The “rms” package was used to merge the characteristic genes to

create a nomogram. Calibration curves were used to assess the

accuracy of the nomogram. The clinical utility of the column line

graphs was evaluated by decision curve analysis. PCA plots were

described using the ggplot2 package.

Results

Identification of CRGs

First, using the limma package to perform differential

analysis of CRGs in the four GEO cohorts PD and control,

respectively (Figures 1A–D), we found that DLD, DLAT, and

DBT were differentially expressed in GSE7621, NFE2L2, DLD,

MTF1, GLS, DLAT, PDHA1, PDHA1, and LIPT1 were

differentially expressed in GSE8397. SLC31A1, FDX1, and

ATP7A were differentially expressed in GSE20163, while

NLRP3, LIAS, and DBT were differentially expressed in

GSE20186. To investigate the role of cuprotosis-related genes

in the progression of Parkinson’s disease, we combined the

expression profiles of 38 normal brain substantia nigra and

62 brain substantia nigra specimens from the GSE8397,

GSE7621, GSE20163, and GSE20186 cohorts of Parkinson’s

patients (Figure 1E), which were batch processed for

subsequent analysis (Figure 1F).

Assessment of the microenvironment in
Parkinson’s disease

We quantified the ssGSEA enrichment scores for different

immune cell subpopulations, related functions or pathways in

PD, and normal controls. The abundance of immune cells and

immune functions in each sample is shown in the heat map

(Figure 2A). Figures 2B,C show the correlation heat map between

immune cells and immune function, with the darker red color

representing a larger association between the two. We compared

ssGSEA scores between PD and normal groups and showed that

B cells, mast cells, NK cells, and regulatory T cells were more

abundant in normal brain substantia nigra tissue, while

macrophages, pDCs, and Tfh were more abundant in PD

substantia nigra (Figure 2D). Human leukocyte antigen, MHC

class_I, and type II interferon responses were higher in the PD

group (Figure 2E), while APC_co_inhibition,

APC_co_stimulation, and T_cell_co-stimulation were enriched

in the normal group.

We then collected 17 reported cuprotosis-related genes, and

we showed the correlation between these genes and immune

pathways in ssGSEA results using a heat map (Figure 2F). We

found that the vast majority of CRGs act in the immune

microenvironment of PD.

Selection of characteristic genes via least
absolute shrinkage and selection
operator, random forest, and support
vector machine-recursive feature
elimination algorithms

Three machine learning algorithms were applied to select

signature genes among genes associated with Parkinson’s disease

onset and cuprotosis. Five variables, ATP7A, SLC31A1, DLAT,

PDHB, and DBT, were identified as diagnostic markers for PD by

the LASSO regression operation (Figures 3A,B). Figure 3C

represents the effect of the number of decision trees on the

error rate. The x-axis represents the number of decision trees,

while the y-axis represents the error rate. The error rate is usually

stable when we use about 104 decision trees. For the random

forest algorithm, 11 signature genes with relative importance

scores greater than two were identified, including DBT, ATP7A,

NLRP3, LIAS, DLAT, SLC31A1, DLST, PDHA1, ATP7B, LIPT1,

and FDX1 (Figure 3D). For the SVM-RFE algorithm, the error

was minimized when the number of features was 10, including

DBT, ATP7A, LIAS, NLRP3, DLST, SLC31A1, DLAT, ATP7B,

MTF1, and PDHA1 (Figure 3E). After the intersection, four

common signature genes, ATP7A, SLC31A1, DLAT, and DBT,

were finally identified (Figure 3F).

Diagnostic efficacy of characteristic genes

In the four combined GEO cohorts, the expression of the

three characteristic genes ATP7A, SLC31A1, and DBT was lower

in PD than in normal controls (Figure 4A, p < 0.05), while DLAT

was not significantly different in the two groups. In contrast, in

the comparison between stage IV and V Parkinson’s disease

Frontiers in Genetics frontiersin.org05

Zhao et al. 10.3389/fgene.2022.1010361

214

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1010361


FIGURE 2
Immune cell infiltration analysis. (A) Heat map of immune cells and immune function in PD group and normal control group. (B,C) Correlation
matrix of immune cells and immune function. The red color indicates a positive correlation, the blue color indicates a negative correlation, and the
darker color indicates a stronger correlation. (D,E)Comparison of the degree of immune cell infiltration and immune function between the PD group
and normal control group. (F) Correlation analysis of cuprotosis-related genes and immune cells as well as immune function. *p < 0.05, **p <
0.01, ***p < 0.001, ns no significance.
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patients, probably due to the small sample size, only ATP7A was

significantly different in the two groups (Figure 4B, p < 0.05),

suggesting what seems to indicate their potential role in

Parkinson’s onset and progression. Based on the results of the

analysis of variance, we estimated the diagnostic performance of

the three signature genes. The AUC values of the ROC curves for

the signature genes were 0.683 for ATP7A (Figure 4C), 0.717 for

DBT (Figure 4D), and 0.811 for SLC31A1 (Figure 4E),

respectively. With GSEA, we evaluated the signaling pathways

involved in the signature genes. Our results show that ATP7A

(Figure 4F) is associated with steroid hormones, DBT is mainly

associated with Alzheimer’s disease (Figure 4G), and SLC31A1

(Figure 4H) is associated with axon guidance, calcium signaling

pathways, and Long-term potentiation.

Establishment of nomogram for
predicting Parkinson’s disease

When these three variables were integrated into one

variable, the AUC of the ROC curve was 0.752 (Figure 5A).

This suggests that the three characteristic CRGs have good

diagnostic efficiency in predicting Parkinson’s disease

progression. Columnar line graphs were constructed to

diagnose Parkinson’s disease by integrating trait genes and

clinical traits (Figure 5B). In the column line graph, each

trait gene corresponds to a score, and the total score is

obtained by summing the scores of all trait genes. The total

score corresponds to the different risks of Parkinson’s. The

calibration curves showed that the column line plot was able to

accurately estimate the prediction of Parkinson’s onset

(Figure 5C). As shown in the decision curve analysis,

patients with Parkinson’s can benefit from the column line

graph (Figure 5D).

Identification of immune-associated
cuprotosis genes subtypes in parkinson’s
disease

PD samples were clustered by the consensus clustering

method based on the expression profiles of three cuprotosis

FIGURE 3
Selection of signature genes among genes associated with Parkinson’s onset and cuprotosis. (A) Ten cross-validations of adjusted parameter
selection in the LASSO model. Each curve corresponds to one gene. (B) LASSO coefficient analysis. Vertical dashed lines are plotted at the best
lambda. (C) Relationship between the number of random forest trees and error rates. (D) Ranking of the relative importance of genes. (E) SVM-RFE
algorithm for feature gene selection. (F) Venn diagram showing the feature genes shared by LASSO, random forest, and SVM-RFE algorithms.
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signature genes. The optimal number of subtypes was 2 as

determined by consensus matrix plots, CDF plots, relative

changes in regions under the CDF curve, and trace plots

(Figures 6A–D). The two immune subtypes were named

C1 and C2. PCA demonstrated significant differences

between the subtypes (Figure 6E). The heat map (Figure 6F)

shows the differential gene expression in the two immune

subtypes.

Different immunological characteristics of
the two subtypes

As shown in Figures 7A,B, the C2 subtype had higher

immune functions such as B_cells, DCS, Neutrophils, TIL and

Treg, APC_co_stimulation, CCR, and Check-point than the

C1 subtype. Most of the immune checkpoint genes such as

CTLA4 and CD28 were also expressed more in the

FIGURE 4
Characterized gene expression, diagnostic efficacy, and enrichment analysis. (A) Box line plot depicting trait gene expression in Parkinson’s
disease and normal controls. (B) Box line plot depicting trait gene expression in braak3 and braak4 phases. (C–E) ROC curves for estimating the
diagnostic performance of the signature genes. (F–H)GSEA identifies themajor signaling pathways involved in signature genes. *p < 0.05, **p < 0.01,
***p < 0.001.
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C2 subtype than in the C1 subtype (Figure 7C). GSVA results

showed that TNFA_SIGNALING signals, G2/M cell cycle

checkpoints, and E2F transcriptional genes (Figure 7D) were

higher in the C2 subtype than in the C1 subtype. Overall,

C2 could be identified as an immune subtype and C1 as a

non-immune subtype.

Discussion

Parkinson’s disease is a severe neurodegenerative disorder.

The typical pathology of Parkinson’s disease is characterized by

the loss of dopaminergic neurons in the dense substantia nigra

and the aggregation of alpha-synuclein, forming Lewy vesicles

and Lewy synapses. However, the exact pathogenesis of PD is

currently unknown. To our knowledge, no previous studies have

examined the correlation between CRG and the development of

Parkinson’s disease. Surprisingly, many CRGs are differentially

expressed between the nigrostriatal and normal brain tissue in

Parkinson’s disease, and most of these genes are significantly

associated with immune function and likely influence the staging

of Parkinson’s disease, suggesting a potential role of cuprotosis in

Parkinson’s disease.

Investigations have found a higher incidence of Parkinson’s

disease in areas with higher copper emissions. But the role of

copper in Parkinson’s disease is controversial, as some evidence

suggests the need to increase copper levels, while other results

suggest the opposite (Baldari et al., 2020). The main role of

copper is mediated by its ability to trigger, maintain and even

enhance free radical production. In general copper binding to α-

FIGURE 5
Construction of column line graph based on Characteristic CRGs. (A)The ROC curves estimating the diagnostic performance of characteristic
genes. (B) Construction of column line graph integrating Characteristic CRGs for PD. in the column line graph, each variable corresponds to a score,
and the total score can be calculated by summing the scores of all variables. (C)Calibration curves to estimate the prediction accuracy of the column
line graphs. (D) Decision curve analysis showing the clinical benefit of column line graphs.
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synuclein triggers increased proteogenic fibrillation and

oxidative stress (Gou et al., 2021). However, under the

influence of copper cyanobactin (Prohaska, 2011), the

reduction of copper may be associated with iron

accumulation, while iron deposition and consequent

ferroptosis may be an important mechanism of dopaminergic

neuronal death in PD (Wang et al., 2022). In an interesting

in vitro study (Spencer et al., 2011), complexes formed by

dopamine oxidation products with copper caused severe

damage to DNA. By injecting copper sulfate directly into the

substantia nigra of mice, a decrease in dopamine, an increase in

oxidative stress, and a loss of immune response were directly

induced (Yu et al., 2008). This also suggests that the inhibition of

cuprotosis combined with immunotherapy will be the focus of

treatment for Parkinson’s patients.

An investigation pointed out that the enrichment of

senescent cells in tissues is associated with disorders of tissue

homeostasis, including Alzheimer’s and Parkinson’s, and that

copper accumulation is a common feature of senescent cells

in vitro (Masaldan et al., 2018). In addition to this, ferroptosis

inhibitors (iron chelators) have demonstrated good clinical relief

of PD symptoms, whereas the clinical translation of copper

chelators in PD has not progressed (Nunez and Chana-

Cuevas, 2018). Treatment strategies for Parkinson’s disease

must be adopted with caution due to the delicate balance of

copper homeostasis.

Among the 38 PD and 62 normal samples in the GSE8397,

GSE7621, GSE20163, and GSE20186 datasets, we selected three

signature genes (ATP7A, SLC31A1, and DBT) based on three

machine learning algorithms. These three genes were

differentially expressed in the PD and control groups and

most likely influenced the Braak staging of PD. All this

evidence can indicate the role of the signature genes in

Parkinson’s disease. The signature genes involved in this study

include ATP7A, SLC31A1, and DBT. ATP7A is widely

recognized as a copper-transporting ATPase due to mutations

in its gene that cause impaired copper transport and further cause

the neurological genetic disorder Menkes disease (Li et al., 2018).

ATP7A is involved in axonal growth, synaptic integrity, and

neuronal activation and has an important role in the root of

FIGURE 6
Construction of two subpopulations based on cuprotosis-related genes in the GEO cohort. (A) Heat map of the consensus matrix at k = 2. (B)
Consensus CDF at k = 2–9. (C) Relative change in area under the CDF curve. (D) Trace plot of sample classification when k = 2–9. (E) 3DPCA plot
showing that cuprotosis-associated genes effectively classify Parkinson’s patients into two subgroups (C1 and C2). (F)Heat map showing differential
gene expression in the two immune subtypes.
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stability for neurological function (Kaler, 2011). The SLC31A1

(solute carrier family 31 member 1) gene, also known as CTR1

(copper transporter protein 1), encodes a high-affinity copper

transporter protein in cell membranes that act as a homotrimer

to influence dietary copper uptake. Its more studied in tumors,

such as pancreatic cancer (Yu et al., 2019), colorectal cancer

(Barresi et al., 2016), and lung cancer (Barresi et al., 2016), as a

means of copper depletion affecting the prognosis of cancer

patients. DBT is a component of the branched-chain α-keto acid
dehydrogenase complex, and its deficiency allows the

accumulation of branched-chain amino acids and their

harmful derivatives in the body (Podebrad et al., 1999). An

association between Alzheimer’s disease and Parkinson’s

disease and the 2-oxoglutamate dehydrogenase gene has been

reported (Hengeveld et al., 2002).

We constructed two isoforms from three cuprotosis genes

based on machine learning and immune expression profiles. The

C2 subtype exhibited higher immune cell infiltration and

immune function compared to the C1 subtype. Therefore, our

classification reflects the immune status of Parkinson’s disease,

which may help in the diagnosis and treatment of PD. Although

machine learning algorithms can identify cuprotosis-related

genes in the characterization of Parkinson’s immune

progression, experiments are still needed to further elucidate

the mechanisms of the characterized genes.

Conclusion

Our results identified three characteristic cuprotosis-related genes

ATP7A, SLC31A1, and DBT involved in the immune process of

Parkinson’s disease. In addition, Parkinson’s disease samples were

classified into immune and non-immune subtypes by a new

molecular classification. However, little is known about the

relationship between specific genes and PD, and must be

performed in vitro and in vivo to verify our conjectures. This

FIGURE 7
The two subtypes have different immunological features and molecular mechanisms. (A,B) Comparison of the degree of immune cell
infiltration and immune function between the two subtypes. (C) Box plot showing the mRNA expression of signature genes in the two subtypes. (D)
Heat map showing the level of enrichment of the set of signature genes in the two subtypes. *p < 0.05; **p < 0.01 and ***p < 0.001.
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study provides important information to elucidate the physiological

and pathological processes of cuprotosis in PD. Overall, our findings

may contribute to the design of better immunotherapies for

Parkinson’s disease based on the mechanisms of cuprotosis.
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A novel anoikis-related
prognostic signature associated
with prognosis and immune
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Background: Clear cell renal cell carcinoma (ccRCC) is the most common

histological subtype of renal cell carcinoma (RCC). Anoikis plays an essential

function in tumourigenesis, whereas the role of anoikis in ccRCC remains

unclear.

Methods: Anoikis-related genes (ARGs) were collected from the MSigDB

database. According to univariate Cox regression analysis, the least absolute

shrinkage and selection operator (LASSO) algorithm was utilized to select the

ARGs associated with the overall rate (OS). Multivariate Cox regression analysis

was conducted to identify 5 prognostic ARGs, and a risk model was established.

The Kaplan-Meier survival analysis was used to evaluate the OS rate of ccRCC

patients. Gene ontology (GO), Kyoto encyclopedia of genes and genomes

(KEGG), and Gene set enrichment analysis (GSVA) were utilized to investigate

the molecular mechanism of patients in the low- and high-risk

group. ESTIMATE, CIBERSOT, and single sample gene set enrichment

analysis (ssGSEA) algorithms were conducted to estimate the immune

infiltration landscape. Consensus clustering analysis was performed to divide

the patients into different subgroups.

Results: A fresh risk model was constructed based on the 5 prognostic ARGs

(CHEK2, PDK4, ZNF304, SNAI2, SRC). The Kaplan-Meier survival analysis

indicated that the OS rate of patients with a low-risk score was significantly

higher than those with a high-risk score. Consensus clustering analysis

successfully clustered the patients into two subgroups, with a remarkable

difference in immune infiltration landscape and prognosis. The ESTIMATE,

CIBERSORT, and ssGSEA results illustrated a significant gap in immune

infiltration landscape of patients in the low- and high-risk group. Enrichment

analysis and GSVA revealed that immune-related signaling pathways might

mediate the role of ARGs in ccRCC. The nomogram results illustrated that the

ARGs prognostic signature was an independent prognostic predictor that

distinguished it from other clinical characteristics. TIDE score showed a
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promising immunotherapy response of ccRCC patients in different risk

subgroups and cluster subgroups.

Conclusion: Our study revealed that ARGs play a carcinogenic role in ccRCC.

Additionally, we firstly integrated multiple ARGs to establish a risk-predictive

model. This study highlights that ARGs could be implemented as a stratification

factor for individualized and precise treatment in ccRCC patients.

KEYWORDS

clear cell renal cell carcinoma, anoikis-related genes, risk model, immune infiltration
landscape, prognosis, consensus clustering

Introduction

Renal cell carcinoma (RCC) is the most common

malignancy in the urinary system, affecting over

430,000 newly diagnosed cases and 170,000 deaths in

2020 worldwide (Sung et al., 2021). Clear cell renal cell

carcinoma (ccRCC) is the most common histological

subtype, occurring in approximately 75% of RCC (Choueiri

and Motzer, 2017). Although new strategies have greatly

improved life expectancy and quality of life in patients with

advanced ccRCC, the prognosis of metastatic RCC patients is

still unsatisfactory, with the 5-year survival rate remaining less

than 15% (Klatte et al., 2018). Therefore, investigating novel

diagnostic biomarkers and prognostic model is vital for the

clinical management of ccRCC.

Disruption of cell-cell attachment or cell-ECM attachment

leads to a form of apoptosis called “anoikis” (Raeisi et al.,

2022). This process can eliminate misaligned or shed cells

under physiological or pathological conditions, contributing

to the realization of tissue homeostasis. Anoikis is involved in

several pathological processes, including carcinogenesis. After

a continuous separation process from each other or the ECM,

cancer cells metastasize, migrate to remote endpoints,

reattach, and proliferate in new sites, resulting in tumor

spread and loss of surgical opportunities (Guan, 2015).

Cancer cells employ several mechanisms to eliminate

anoikis, promoting their invasiveness and metastasis. By

promoting oncogenic signals that induce pro-survival

pathways, or changes in the acidic environment in the

tumor microenvironment and reactive oxygen species

(ROS) generation, cancer cells have a great impact on

promoting anti-anoikis (Wang C. et al., 2019; Hu et al.,

2019; Vander Linden and Corbet, 2019). Anoikis also has

potential therapeutic value in RCC. In ccRCC, interference

with TIM-3 protein expression can attenuate the invasion

ability by aggravating anoikis (Yu et al., 2017). Knockdown of

anoikis-related protein Tryptophan 2,3-dioxygenase (TDO2)

inhibits the proliferation and invasion of RCC cells and may

be a promising marker for RCC targeted therapy (Pham et al.,

2021). Quinazolines trigger anoikis in RCC by targeting the

focal adhesion survival signaling, resulting in potent

antitumor effects (Sakamoto et al., 2011). Recent studies

have shown that the ECM deprivation system (EDS) based

on Fibronectin (FN) -targeted self-assembling peptide can

effectively inhibit renal cell carcinoma by reversing anoikis

resistance (Wang et al., 2022). However, there is no effective

RCC risk prediction model based on anoikis to reflect the

impact of anoikis-related genes on prognosis

comprehensively.

In this study, following the exploration of The Cancer

Genome Atlas database (TCGA) database, the correlation

between ARGs and clinicopathological characteristics of

ccRCC patients was systematically investigated. A novel risk

model was established based on 5 prognostic ARGs, and the

capability of ARGs in predicting the prognosis of patients with

ccRCC was further evaluated. Moreover, the immune infiltration

of ccRCC patients and the possible signaling pathways involved

were comprehensively explored in this study. This study aimed to

provide novel insights and perspectives into a new potential

therapeutic strategy and antitumor targets for ccRCC.

Materials and methods

Data collection

The transcriptome matrix and clinical materials were

downloaded from The Cancer Genome Atlas database

(TCGA) (https://portal.gdc.cancer.gov/). The samples

without survival time or the survival time less than 0 were

excluded, and a total of 525 ccRCC samples were included for

the subsequent analysis in this study. Perl scripts were utilized

to extract the transcriptome matrix of each ccRCC sample and

merged for further analysis. The symbol of mRNAs was

annotated using the ensembles human genome browser

GRCh38. p13 (http://asia.ensembl.org/index.html). Clinical

materials, including age, gender, grade, stage, and TMN

stage were collected from the TCGA database via Perl

scripts. All information and clinical matrix involved were

downloaded from the public database. Approval from the

ethics committee and written informed consent from

patients were not required.
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Identification of anoikis-related genes and
risk model construction

The anoikis-related genes (ARGs) were collected from the

Molecular Signatures Database (MSigDB database) (https://

www.gsea-msigdb.org/gsea/). A total of 34 ARGs were

identified to evaluate the prognosis value for ccRCC

(Supplementary Table S1). According to the univariate Cox

regression analysis, the least absolute shrinkage and selection

operator (LASSO) algorithm was utilized to select the ARGs

associated with the overall survival (OS) rate via the R package

“glmnet”. Next, a multivariate Cox regression analysis was

conducted to select the ARGs which could independently

predict the prognosis for ccRCC, and a risk model was

established based on the prognostic ARGs. The risk model

was constructed according to the ARGs prognostic signature

using the formula: (0.719 x the expression of CHEK2) + (−0.171 x

the expression of PDK4) + (−0.725 x the expression of ZNF304) +

(0.413 x the expression of SNAI2) + (0.479 x the expression of

SRC). Based on the median risk score, the samples with ccRCC

were divided into low-risk and high-risk groups. The Kaplan-

Meier survival curve was employed to evaluate the OS rate of

ccRCC patients in the low- and high-risk group using a log-rank

algorithm via R package “survival”. Principal component analysis

(PCA) score plot was used to investigate the distribution pattern

of the patients in the low- and high-risk group via the R package

“ggplot2”.

Internal validation of risk model

Based on the ARGs, 525 ccRCC samples in the TCGA

database were classified into the training cohort and test

cohort with a ratio of 7:3 based on R package “caret” (Tsiliki

et al., 2015). A total of 368 samples were divided into training

cohort and 157 samples were divided into test cohort. The risk

score of each sample was calculated according to the formula, and

the samples were divided into low- and high-risk group

according to the median risk score in the both cohorts.

Independent prognosis analysis of risk
model

Univariate and multivariate Cox regression analysis were

utilized to evaluate the independence of the risk model via the R

package “survival”. The nomogram model was established of the

clinicopathological characteristics and risk score via the R

package “rms”. Based on the Cox regression analysis, all

variates were calculated and evaluated the 1-. 3-, and 5-year

survival probability of ccRCC. Calibration diagram was a

common parameter to assess the accuracy of nomograms. R

package “pROC” was used to evaluate the diagnostic accuracy of

the risk score and clinicopathological characteristics for ccRCC.

The prognostic capability of the risk model at 1-, 3-, and 5- years

was validated using time-dependent receiver operating

characteristic (ROC) analysis via R package “timeROC”.

Consensus clustering analysis

Based on the 5 prognostic ARGs, the consensus clustering

was performed with max K = 9 via R package

“ConsensusClusterPlus.” The clustering was established on the

grounds of partitioning around medoids with “euclidean”

distances, and 1000 verifications were performed. Next,

according to the optimal classification of K = 2–9, the patients

with ccRCC were cluster into different molecular subtypes for

further analysis.

Immune microenvironment landscape
and drug sensitivity analysis

The estimation of stromal and immune cells was evaluated

using the ESTIMATE algorithm. The stromal, immune, and

ESTIMATE scores of ccRCC were estimated using the R

package “estimate”. CIBERSORT algorithm was utilized to

estimate the fraction of 22-type immune cells based on

“CIBERSORT R script v1.03”. A single sample gene set

enrichment analysis (ssGSEA) algorithm was performed to

assess the proportion of 23-types of immune cells via the

“GSVA” R package. The immune function score of each

patient was estimated via the “GSVA” R package. Tumor

Immune Dysfunction and Exclusion (TIDE) scores of each

ccRCC sample were analyzed via the TIDE database (http://

tide.dfci.harvard.edu/login/). Drug sensitivity (IC50) was a vital

indicator for evaluating drug response to treatment. Based on the

Genomics of Drug Sensitivity in Cancer (GDSC) database, the

antineoplastic drugs response of each ccRCC sample in the low-

and high-risk was predicted via R package “pRRophetic.” All

statistical analyses were visualized via the “ggplot2” R package.

Differential expression analysis and
functional enrichment analysis

The R package “limma” was conducted to identify the

differential expression genes (DEGs) in low- and high-risk

group with the threshold set at |Fold Change| ≥ 2 and

P-value < 0.05. Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) analysis were utilized to enrich

the DEGs into the biological process and signaling pathways

using the “clusterProfiler” R package (Yu et al., 2012). The

activity of Hallmark terms of each ccRCC sample was

conducted using R package “GSVA”.
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Statistical analysis

In this study, all statistical analysis were performed using the

R software (version 4.1.0) and Perl scripts. Spearman-ranked

correlation analysis was used to evaluate the association of the

prognostic ARGs and immune cells, with P-value < 0.05 was

considered significantly different. Differential functions were

analyzed using the Wilcoxon rank-sum test between the two

groups, and statistical significance was set at P-value < 0.05.

Results

Risk model construction based on the
anoikis-related genes prognostic
signature in clear cell renal cell carcinoma

A novel risk model was developed to evaluate the prognostic

value of ARGs in ccRCC. As shown in Figures 1A,B, according to

the univariate Cox regression analysis, 9 ARGs associated with

the OS rate were identified via the least absolute shrinkage and

selection operator (LASSO) analysis. Based on the multivariate

Cox regression analysis, 5 ARGs which could independently

predict the prognosis for ccRCC were selected to establish the

risk model. The ccRCC patients were ranked according to the

median risk score and divided into the low- and high-risk

group. The scatter dot plot suggested that the risk score was

inversely correlated with the survival time for ccRCC (Figure 1C).

Kaplan-Meier survival curve analysis illustrated that the OS rate

of patients with the low-risk score was significantly higher

compared to those of patients with high-risk score

(Figure 1D). Principal component analysis (PCA) result

illustrated a remarkable separation of patients in the low- and

high-risk group based on the ARGs prognostic signature

(Figure 1E). The expression of the 5 prognostic ARGs in the

low- and the high-risk group were visualized in a heatmap

diagram, and the results showed that the patients with high-

risk score had higher expression of CHEK2, SRC, and SNAI2,

FIGURE 1
Risk model construction based on the ARGs prognostic signature in ccRCC. (A) Univariate Cox regression analysis of the ARGs. (B) LASSO
regression analysis shows the minimum lambda and optimal coefficients of the prognostic ARGs. (C) Distribution of the ARGs prognostic signature
and the scatter dot plots shows the correlation of the risk score and survival time. (D) The Kaplan-Meier survival curve analysis shows the OS rate of
patients in the low- and high-risk group. (E) Principal component analysis shows a significant distribution of patients in the low- and high-risk
group based on the ARGs prognostic signature. (F)Heatmap diagram displays the expression of the prognostic ARGs in the low- and high-risk group.
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whereas the expression of PDK4 and ZNF304 were higher in the

low-risk group (Figure 1F).

Validation of the anoikis-related genes
prognostic signature in training cohort
and test cohort

An internal validation was conducted to evaluate the

accuracy and independence of the ARGs prognostic

signature in predicting the prognosis for patients with

ccRCC. The patients with ccRCC were randomly classified

into the training cohort and test cohort with a ratio was 7:3.

According to the ARGs prognostic signature, the patients were

ranked and classified into the low- and high-risk group in both

cohorts. As shown in Figures 2A,C, the scatter dot plot

illustrated that the risk score was inversely associated with

survival time for patients in the training cohort and test

cohort. Kaplan-Meier survival curve results indicated that

the patients with low-risk score had higher OS rate

compared to those with high-risk score in both cohorts

(Figures 2B,D). The results of PCA suggested that the

ARGs prognostic signature could clearly distinguish the

patients ccRCC in the low- and high-risk group based on

the ARGs prognostic signature in both cohorts (Figures 2E,G).

The heatmap diagram suggested that the expression of

CHEK2, SRC, and SNAI2 were significantly higher in the

high-risk group, but the expression of PDK4 and ZNF304

were lower in the high-risk group in both cohorts (Figures

2F,H). These results demonstrate that the risk model

construction based on the ARGs prognostic signature could

accurately evaluate the prognosis of patients with ccRCC.

Kaplan-Meier survival analysis of anoikis-
related genes prognostic signature in
different clinicopathological
characteristics

A classification subgroup analysis was performed to

investigate the prognostic value of the ARGs prognostic

signature in different clinicopathological characteristics.

According to the ARGs prognostic signature, the patients with

ccRCC were classified into the low- and high-risk group among

FIGURE 2
Risk model construction based on the 5 prognostic ARGs of ccRCC patients in the training cohort and test cohort. (A) Distribution of the ARGs
prognostic signature and the correlation analysis between the survival time and prognostic signature in training cohort. (B) Kaplan-Meier survival cure
analysis of patients with low- and high-risk score in training cohort. (C) Distribution of the ARGs prognostic signature and the correlation analysis
between the survival time and prognostic signature in test cohort. (D) Kaplan-Meier survival cure analysis of patients with low- and high-risk
score in test cohort. (E) PCA analysis of patients with ccRCC in training cohort based on the ARGs prognostic signature. (F) Heatmap diagram shows
the expression of the 5 prognostic ARGs in training cohort. (G) PCA analysis of patients with ccRCC in test cohort based on the ARGs prognostic
signature. (H) Heatmap diagram shows the expression of the 5 prognostic ARGs in test cohort.
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the different clinicopathological characteristics. As shown in

Figure 3, the Kaplan-Meier survival curve analysis suggested

that the OS rate of patients with the low-risk score was

significantly higher compared to those patients with high-risk

group in gender (female vs. male), age (age <65 vs. age ≥65), stage
III-IV, grade (grade I-II vs. grade III-IV), N 0, M (M 0 vs. M1), T

(TI-II vs. T III-IV), whereas due to the sample size of patients in

stage I-II and N1, the OS rate in stage I-II and N 1 was similar of

the patients. These results demonstrate that the risk score based

on the ARGs could accurately evaluate the prognosis of ccRCC

patients relative to clinicopathological characteristics.

Risk model based on the anoikis-related
genes prognostic signature was an
independent prognosis indicator

Univariate and multivariate Cox regression analyses were

utilized to evaluate the risk score based on the ARGs as an

independent prognosis predictor for ccRCC. Univariate Cox

regression analysis showed that age (hazard ratio (HR) = 1.021,

p = 0.023), grade (HR = 2.299, p < 0.001), stage (HR = 1.898, p <
0.001), T (HR = 1.989, p < 0.001), M (HR = 4.166, p < 0.001), N

(HR = 2.982, p = 0.001), and risk score (HR = 1.215, p < 0.001)

were closely correlated with OS rate in ccRCC (Figure 4A).

Multivariate Cox regression analysis result indicated that age

(HR = 1.032, p = 0.002) and risk score (HR = 1.130, p = 0.003)

were an independent prognosis indicator for ccRCC

(Figure 4B). The time-dependent ROC curve showed that

the AUC of 1-, 3-, and 5- years was 0.765, 0.718, and 0.736,

respectively (Figure 4C). A novel nomogram model was

established to accurately predict the 1-, 3-, and 5-year

survival probability of ccRCC based on the ARGs signature

and clinicopathological characteristics (Figure 4D). The ROC

curve showed that the AUC of risk score was 0.765, suggesting a

satisfactory stability of the ARGs prognostic signature

(Figure 4E). The calibration curve indicated that the 1-, 3-,

and 5-year’s OS rate predicted by nomogramwas consisted with

the actual OS rate (Figure 4F). These results demonstrate that

the risk score based on the ARGs is an independent prognosis

predictor and could accurately evaluate the survival probability

of ccRCC patients relative to clinicopathological characteristics.

FIGURE 3
Correlation analysis of the ARGs prognostic signature and different clinicopathological characteristics. The OS rate of patients with ccRCC in
the low- and high-risk group among the (A) Female; (B)Male; (C) Age <65; (D) Age ≥65; (E) Stage I-II; (F) Stage III-IV; (G)Grade I-II; (H)Grade III-IV; (I)
N 0; (J) N 1; (K) M 0; (L) M 1; (M) T I-II; (N) T III-IV.
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Functional enrichment analysis of the
differential expression genes

Multiple enrichment methods were utilized to investigate the

potential molecular mechanism of DEGs in the low- and high-

risk group. The DEGs in the low- and high-risk groups were

illustrated in a volcano diagram, and the result showed that most

of DEGs were upregulated in the high-risk group (Figure 5A).

GSVA analysis results illustrated the hallmark signaling

pathways of the DEGs for each patient in the low- and high-

risk group (Figure 5B). GO enrichment analysis revealed that the

DEGs were enriched in immune-related biological processes,

such as defense response to bacterium, humoral immune

response, and immunoglobulin production (Figure 5C). KEGG

analysis result suggested that cytokine-cytokine receptor

interaction was significantly enriched of the DEGs

(Figure 5D). These findings demonstrate that immune-related

signaling pathways may mediate the role of the ARGs in

tumourigenesis of ccRCC.

Consensus clustering and immune
microenvironment landscape analysis

Consensus clustering analysis was employed to cluster the

ccRCC patients into different subgroups based on the

5 prognostic ARGs. The heatmap showed an optimal

classification of the ccRCC patients with the K = 2, with

275 samples in Cluster A and 250 samples in Cluster B

(Figure 6A). The PCA score plot illustrated a remarkable

separation between Cluster A and Cluster B based on the

5 prognostic ARGs (Figure 6B). The Kaplan-Meier survival

curve indicated that the patients in Cluster A had a lower OS

rate than those patients in Cluster B (Figure 6C). The

FIGURE 4
Independent prognosis analysis of the ARGs prognostic signature. (A) Univariate Cox regression analysis and (B) multivariate Cox regression
analysis shows the correlation of the OS rate and risk score, and clinicopathological characteristics. (C) Time-dependent ROC curve shows the AUC
at 1-, 3-, and 5-year (D) Nomogram construction based on the ARGs prognostic signature and clinicopathological characteristics. (E) ROC curve
shows the accuracy of the risk score and clinicopathological characteristics. (F) Calibration curve shows the accuracy of the nomogram-
predicted OS and actual OS.
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ESTIMATE algorithm was utilized to investigate the immune

microenvironment landscape in Cluster A and Cluster B, and

the results showed that the patients in the Cluster had higher

ESTIMATE, immune scores, but lower tumor purity (Figures

6D–G). TIDE result revealed that the patients in Cluster B had

lower TIDE score, suggesting a better potential

immunotherapy response for ccRCC patients in the Cluster

B (Figure 6H). Moreover, ssGSEA and CIBERSORT

algorithms were performed to evaluate the immune

infiltration landscape of patients with ccRCC in Cluster A

and Cluster B. As shown in Figure 6I, the CIBERSORT

algorithm showed that the proportion of T cells CD8,

Plasma cells, T cells follicular helper, T cells regulatory

(Tregs), NK cells activated, and macrophages M0 were

higher in patients in Cluster A, whereas the fraction of

T cells CD4 memory resting, NK cells resting, monocytes,

macrophages M1, and mast cells resting were higher of

patients in Cluster B. The result of ssGSEA suggested that

the proportion of most immune cells were significantly higher

in patients in Cluster a, but the proportion of eosinophil and

neutrophil were lower in patients in Cluster A (Figure 6J).

Collectively, these results illustrate that the ARGs are

associated with prognosis and could indicate the immune

response and immune infiltration landscape in ccRCC.

Correlation analysis of the anoikis-related
genes prognostic signature and immune
infiltration landscape

Multiple immune assessment algorithms were employed to

estimate the immune infiltration landscape of patients in the low-

and high-risk group. The ESTIMATE results showed higher

stromal, immune, and ESTIMATE scores, and lower tumor

purity of patients in the low-risk group (Figures 7A–D).

ssGSEA algorithm result suggested that the fraction of most

immune cells was significantly higher in the high-risk group,

whereas the fraction of eosinophil, immature dendritic cell, and

neutrophil were higher in the low-risk group (Figure 7E). The

CIBERSORT result revealed that the patients with low-risk score

had higher proportion of T cells CD4 memory resting, NK cells

resting, monocytes, macrophages M1, macrophages M2,

dendritic cells activated, and mast cells resting, but lower

proportion of B cells memory, plasma cells, T cells CD8,

T cells CD4 memory activated, T cells follicular helper, T cells

regulatory (Tregs), and macrophages M0 (Figure 7F).

Correlation analysis was conducted to investigate the

association between prognostic ARGs and immune infiltration

landscape. The correlation analysis result showed a remarkable

association between prognostic ARGs and 22-type immune cells

FIGURE 5
Functional enrichment analysis of DEGs in the low- and high-risk group. (A) Volcano diagram shows the DEGs with the threshold set at |FC| ≥
2 and P-value < 0.05. (B) GSVA analysis of hallmark signaling pathway for each ccRCC patient in the low- and high-risk group. (C) GO enrichment
analysis shows the biological process of DEGs. (D) KEGG enrichment analysis shows the enrichment signaling pathways of DEGs.
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as calculated by CIBERSORT, such as CHEK2 and SRC were

positively correlated with T cells follicular helper, T cells CD8,

and macrophages M0 (Figure 8A). Moreover, ZNF304 was

negatively correlated with most of the 23-type immune cells,

but positively correlated with neutrophil, eosinophil, and mast

cell; SNAI2 was positively associated with the 23-type immune

cells; CHEK2 and SRCwere positively correlated with most of the

23-type immune cells (Figure 8B). Considering the remarkable

difference in immune infiltration landscape for ccRCC patients,

the response to immunotherapy was further evaluated of patients

in the low- and high-risk group. TIDE result revealed that the

patients with low-risk score had lower TIDE score, suggesting a

better response to immunotherapy of patients in the low-risk

group (Figure 8C). The immune function score result showed

that the patients with high-risk score had higher immune

function score, such as cytolytic activity, check point, and

HLA (Figure 8D). Taken together, these results demonstrate

that the risk model based on the ARGs prognostic signature is

correlated with the immune infiltration landscape and

immunotherapy response of patients with ccRCC.

Drug sensitivity analysis

Targeted therapy is a vital strategy in the clinical

management of ccRCC. In the subsequent analysis, several

FIGURE 6
Consensus clustering of ccRCC patients and immune microenvironment landscape analysis. (A) Consensus clustering heatmap shows the
optimal classification of ccRCC samples with K = 2. (B) PCA analysis shows a significant distribution pattern of patients in Cluster A and Cluster B. (C)
The Kaplan-Meier survival curve shows theOS rate of patients in Cluster A and Cluster B. (D) ESTIMATE score. (E) Immune score. (F) Tumor purity. (G)
Stromal score. (H) TIDE score. (I) The fraction of 22-type immune cells in low- and high-risk group. (J) The proportion of 23-type immune cells
in low- and high-risk group.
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potential antineoplastic drugs were identified which may benefit

the treatment of ccRCC. As shown in Figure 9, the drug

sensitivity analysis results suggested that the IC50 of Cisplatin,

Vinblastine, Tivozanib, Linifanib, and Masitinib were

significantly higher in the low-risk group, whereas the IC50 of

Rapamycin, Ruxolitinib, Saracatinib, and Parthenolide were

higher in the high-risk group. These above results

demonstrate a promising response to the antineoplastic drug

of patients with ccRCC in different risk subgroups, providing a

novel insight into the precisely targeted therapy for ccRCC

patients.

Discussion

Since the prognosis for metastatic or advanced ccRCC

patients remains unsatisfactory, early diagnosis and risk

stratification for improving the survival time of patients with

ccRCC is essential. Here, 5 ARGs were identified as being

associated with OS rate for ccRCC, and a novel risk model

was established to successfully evaluate the prognosis of

ccRCC. Involved immune infiltration landscape and drug

sensitivity analysis were further evaluated.

As a tumor suppressor protein that plays a role in the

p53 signaling pathway, CHEK2 has been reported to be

associated with carcinogenesis in several tumor types,

including RCC (Boonen et al., 2022). Several studies have

demonstrated an association between CHEK2 germline

mutations and RCC. In a NGS sequencing study of

254 patients with advanced RCC, 41 carriers of pathogenic

germline mutations in kidney cancer or other cancer-related

genes were identified (Carlo et al., 2018). Of these, the CHEK2

germline mutation found in 9 patients (3.4%) exceeded the most

common change in RCC-related mutations. Similar results were

obtained in another study, which identified 7 out of 229 (3.1%)

mutation carriers with germline CHEK2 variants in patients with

metastatic ccRCC (Ged et al., 2020). In patients with early-onset

RCC, CHEK2 germline mutation was also the most common

change found before the age of 60 years (19/844) (Hartman et al.,

2020). Although there is now increasing evidence that CHEK2

FIGURE 7
Immune infiltration landscape of patients in the low- and high-risk group. (A–D) Stromal, immune, ESTIMATE scores and tumor purity. (E) The
fraction of 23-type immune cells of patients in the low- and high-risk group. (F) The proportion of 22-type immune cells of patients in the low- and
high-risk group.
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germline mutations are associated with an increased risk of RCC,

larger case-control studies in patients with RCC are needed to

confirm and refine the magnitude of the associated risk

(Stolarova et al., 2020).

SRC encodes a tyrosine-protein kinase and has shown its

impact on the regulation of embryonic development and cell

growth. In RCC, SRC leads to distal lung metastasis through

glycolytic reprogramming (Zhang et al., 2021). Furthermore,

SRC contributes to the emergence of malignant phenotypes in

renal cancer cells, particularly due to the resistance of BCL-XL

to apoptosis and angiogenesis stimulated by SRC-STAT3-

VEGF signaling (Chatterjee et al., 2022). These results

suggest that SRC contributes to the emergence of malignant

phenotypes in renal cancer cells, which are in line with our

data that SRC is highly-expressed in high-risk

group. Concerning the protein encoded by this gene is a

tyrosine-protein kinase, further research on SRC has the

potential for clinical application.

SNAI2 encodes a member of the Snail family of C2H2-type

zinc finger transcription factors, which is involved in epithelial-

mesenchymal transitions (EMT) and has antiapoptotic activity

(Shang et al., 2022). Our data showed SNAI2 high expression was

correlated with worse outcomes in RCC patients. In the

carcinogenesis process, SNAI2 has been reported to take active

part in metastasis, progression, differentiation, and drug

sensitivity in multiple cancer types (Jin et al., 2022; Mazzu

et al., 2022; Sorin et al., 2022). In ccRCC, by facilitates the

EMT, SNAI2 promotes cancer cell migration and invasion

(Jiang et al., 2019). Since EMT has been shown to be an

important factor in tumor progression, its facilitator SNAI2

may have an even more important role in RCC carcinogenesis

(Fiori et al., 2019).

PDK is the enzyme responsible for phosphorylating pyruvate

dehydrogenase and the metabolic switch from mitochondrial

respiration to cytoplasmic glycolysis (Heinemann-Yerushalmi

et al., 2021; Querfurth et al., 2022). PDK4 is decreased in a

FIGURE 8
Correlation analysis of the prognostic ARGs and immune infiltration landscape. (A,B) The heatmap shows the correlation of the prognostic ARGs
and immune cells. (C) TIDE score. (D) Immune function score.
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variety of cancers, such as gastric cancer, prostate cancer, breast

cancer, lung cancer and liver cancer, and may be associated with

the inhibition of cell proliferation and induction of apoptosis (Liu

et al., 2021). The function of PDK4 has not been previously

reported in RCC. Our data show similar results in RCC. More

recently, it has been suggested that this switch plays a key role in

increasing drug resistance. By reprogramming drug metabolism,

PDK4 has been reported to modulate chemoresistance, including

5-fu and cisplatin (Woolbright et al., 2018; Wang J. et al., 2019;

Yu et al., 2021). The differences in drug resistance between

subgroups we demonstrated may be related to metabolic

differences due to differences in PDK4 expression levels.

ZNF304 plays a key role in the regulation of cell survival,

proliferation, apoptosis, and differentiation during development

by transcriptional silencing of genes. As one of the key anoikis

players, ZNF304-integrin axis has been shown to fight against

anoikis during tumor development and promote a variety of

proto-cancer pathways important for cell survival, migration, and

invasion in ovarian cancer (Aslan et al., 2015). However, in contrast,

our data showed the expression of ZNF304 was relatively low in

high-risk ccRCC patients. Lower levels of ZNF304 were associated

with poorer survival. In vitro experiments also showed that down-

regulation of ZNF304 affected mir-183-5p/FOXO4 axis and further

inhibited cell growth in ccRCC, while overexpression of ZNF304

inhibited growth (Ren et al., 2021). Given the contradictory roles of

its target, mir-183-5p, in different tumor types, this may depend on

the biological function differences of the targets in different cancer

species.

FIGURE 9
Drug sensitivity analysis of patients in the low- and high-risk group. Distribution of IC50 values in the low- and high-risk group among (A)
Cisplatin, (B) Vinblastine, (C) Tivozanib, (D) Rapamycin, (E) Ruxolitinib, (F) Linifanib, (G) Saracatinib, (H) Parthenolide, and (I) Masitinib.
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RCC is considered to be an immunogenic tumor, and a large

number of immune cells, such as tumor-infiltrating lymphocytes,

can be detected in the tumor tissue (Nakayama et al., 2018).

Therefore, the use of immunotherapy to produce an effective

immune response to the tumor to delay the development of

cancer is considered to be effective in RCC (Sendur, 2022).

According to our immune infiltration analysis results, high-

risk RCC had an immune microenvironment consisting of

higher levels of CD8+ T cells, CD4+ T cells, and lower

M2 macrophages. It is also suggested that immunotherapy is

more beneficial in high-risk RCC patients. In addition, in our

results, immunosuppressive cells (MDSC and Treg) were

significantly elevated in the high-risk group. Multiple

therapeutic approaches have provided evidence of immune

priming in RCC by reducing Treg levels and have been used

in the clinical. Antiangiogenic agents have been shown to delay

tumor progression not only by impounding angiogenesis in the

tumor microenvironment, but also by suppressing the immune

response of immunosuppressive cytokines and cells, such as Treg

cells (Tartour et al., 2011; Doleschel et al., 2021). TKI also causes

the immune initiation of Treg decline through the regulation of

VEGF (Tallima et al., 2021). Therefore, our results support that

patients in the high-risk group may benefit more from

immunotherapy.

Extracellular matrix (ECM) is essential for various biological

functions during tumor progression, including the induction of

anoikis resistance and cell adhesion- mediated drug resistance

(Wang et al., 2022). Our data show significant differences in

susceptibility to chemotherapeutic agents in different risk

stratifications after risk modeling with anoikis-associated

genes. Additionally, in this study, TIDE analysis was used to

test the interaction between candidate genes and cytotoxic T cell

function and the extent to which it affects the risk of death. The

high-risk group had higher TIDE levels. Higher tumor TIDE

prediction scores were associated not only with poor immune

checkpoint suppression therapy but also with poor patient

survival under anti-PD1 and anti-CTLA4 therapy (Chen et al.,

2021). In patients with advanced RCC, the combination of

ipilimumab (anti-CTLA-4 antibody) and nivolumab (anti-PD-

1 antibody) was compared with the previous sunitinib (VEGF-

TKI), resulting in a significant improvement in treatment.

However, more than half of the patients could not achieve the

long-term response to PD-1-related treatment (Motzer et al.,

2018). Therefore, it is important to further screen suitable RCC

patients for PD-1 treatment. In this study we have provided

preliminary evidence for anoikis future in vivo and in vitro

experiments will be necessary to further verify the efficacy of

anoikis against immune checkpoint inhibitors.

In the present study, we established a novel model based on

prognostic ARGs and preliminarily evaluated the efficacy of risk

model in predicting the prognosis of ccRCC patients. We also

preliminarily describe the guiding significance of the model for

chemoresistance and immune-related therapy. In addition,

immune infiltration landscape analysis and functional

enrichment analysis were evaluated, which preliminarily

demonstrated the association between the risk model and the

immunosuppressive microenvironment. However, there are still

some shortcomings in this study. The results based on

bioinformatics in this paper are not verified by in vitro

experiments. In the next step, we will experimentally verify

the significance of anoikis in RCC. In conclusion, our findings

provide novel insights and perspectives into a new potential

therapeutic strategy and antitumor targets for ccRCC.
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Tumorigenesis is a multifaceted process, where multiple physiological traits

serving as cancer’s distinctive characteristics are acquired. “Hallmarks of

cancer” is a set of cognitive abilities acquired by human cells that are pivotal

to their tumor-forming potential. With limited or no protein-coding ability, non-

coding RNAs (ncRNAs) interact with their target molecules and yield significant

regulatory effects on several cell cycle processes. They play a “yin” and “yang”

role, thereby functioning both as oncogenic and tumor suppressor and

considered important in the management of various types of cancer entities.

ncRNAs serve as important post-transcriptional and translational regulators of

not only unrestricted expansion andmetastasis of tumor cells but also of various

biological processes, such as genomic mutation, DNA damage, immune

escape, and metabolic disorder. Dynamical attributes such as increased

proliferative signaling, migration, invasion, and epithelial–mesenchymal

transition are considered to be significant determinants of tumor

malignancy, metastatic dissemination, and therapeutic resistance.

Furthermore, these biological attributes engage tumor cells with immune

cells within the tumor microenvironment to promote tumor formation. We

elaborate the interaction of ncRNAs with various factors in order to regulate

cancer intra/intercellular signaling in a specific tumormicroenvironment, which

facilitates the cancer cells in acquiring malignant hallmarks. Exosomes

represent a means of intercellular communication and participate in the

maintenance of the tumor hallmarks, adding depth to the intricate,

multifactorial character of malignant neoplasia. To summarize, ncRNAs have

a profound impact on tumors, affecting their microcirculation, invasiveness,

altered metabolism, microenvironment, and the capacity to modify the host

immunological environment. Though the significance of ncRNAs in crosstalk

between the tumor and its microenvironment is being extensively explored, we

intend to review the hallmarks in the light of exosome-derived non-coding

RNAs and their impact on the tumor microenvironment.
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Introduction

A continuous physiochemical balance between various parts

of the body is sought after by all living organisms. The body

maintains homeostasis by the release of a variety of vesicles,

including apoptotic bodies, shed microvilli, microparticles,

ectosomes, and exosomes, comprising a wide variety of

components (Mathieu et al., 2019). Exosomes are produced

within multi-vesicular bodies (MVBs) or multi-vesicular

endosomes and are secreted upon their fusion with the

plasma membrane (McKelvey et al., 2015). The majority of

“normal cell” types, such as mast cells, dendritic cells,

reticulocytes, epithelial cells, B-cells, trophoblastic cells, and

neural cells and a variety of malignant cell types produce

exosomes (40–150 nm diameters) (Kalluri and LeBleu, 2020).

Exosomes were initially considered conduits for evacuation of

waste products from cell, but recent scientific investigations

consistently show their involvement in a myriad of critical

physiologic processes (Rajagopal and Harikumar, 2018). Upon

budding off from the cell, the exosomal contents are guarded

from the detrimental extracellular conditions by their sturdy lipid

membrane (Steinbichler et al., 2017). Exosomes as nomadic

vesicles alter the function and phenotype of the recipient cell

via trafficking to distant and proximal sites and can target

recipient cells owing to the molecules on their surface

(Brinton et al., 2015). Exosomes can be internalized by cells

through endocytosis and/or phagocytosis once they are in close

proximity to a cell, in addition to triggering signaling through

receptor–ligand interaction. Additionally, upon fusion of the

exosome with the recipient’s membrane, their payload is

released into the cytosol of the recipient cell (Horibe et al., 2018).

Exosomes can either be a part of tumor cell secretions or stromal

cell secretions, depending on their origination in the tumor

microenvironment (Penfornis et al., 2016). They are erratically

released in large quantities by cancer cells, which serve as a

reflection of the stromal cells’ phenotypic condition. The content

of exosomes changes dynamically as the tumor progresses (Tzaferi

et al., 2021). Within the tumor microenvironment, the secretion of

exosomes by tumors promotes crosstalk or communication between

tumor cells and cells like fibroblasts, endothelial cells, mesenchymal

stromal cells, cancer stem cells, and immune cells (López de Andrés

et al., 2020). Exosome internalization by recipient cells appears to be

a cell-type-specific process, and the degree of internalization is likely

dependent on the recipient cell’s phagocytic capacity (Milane et al.,

2015). Exosomes can trigger target cells in the following ways—1)

direct stimulationmediated by surface-expressed ligands, 2) through

transfer of receptors from tumor cells to target cells, 3) through

horizontal transfer of genetic material to target cells, and 4) through

direct stimulation mediated by receptor-mediated endocytosis

(Teng and Fussenegger, 2021). Exosomal movement between

cells and the tumor microenvironment may exert a profound

biological effect, accelerating the development of tumors and

metastatic spread via the release of growth factors, cytokines,

proteins, lipids, and non-coding RNAs (ncRNAs) (Steinbichler

et al., 2017).

Hanahan and Weinberg codified the concept that normal

cells transform progressively to the neoplastic stage via acquiring

particular hallmarks eventually (Hanahan and Weinberg, 2011).

Recent reports suggest about the eight different hallmarks

acquired during tumorigenesis, namely, proliferation

(evading), growth suppression, viability, immortality,

angiogenesis, motility, energy metabolism, and immune

evasion (Gutschner and Diederichs, 2012). The anomalous

state of neoplasia, which offers a mechanism for cancer cells

and tumors to adopt these functional properties, has led to the

addition of a new concept, portrayed as “enabling

characteristics.” In this way, along with the aforementioned

eight hallmarks, genomic instability and tumor-promoting

inflammation considered enabling characteristics, reflected

upon molecular and cellular pathways through which the

hallmarks are acquired (Hanahan, 2022). A deeper insight of

cancer propagation and acquirement hallmarks suggests the role

of cancer cell-derived exosome-based payloads (Meehan and

Vella, 2016). For the scope of this review, we have assessed

the potential of non-coding RNA-loaded exosomes in

modulation of cancer hallmarks (Figure 1).

Exosomal biogenesis and
composition

Within multi-vesicular bodies, inward budding of the late

endosomal membrane produces intraluminal vesicles

(exosomes) with varied payloads, which are emancipated into

FIGURE 1
Exosomal ncRNAs are involved in the hallmarks of cancer.
Perturbed ncRNAs may act as oncogenes by promoting hallmarks
of cancer or as tumor suppressors by constraining them.
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the extracellular environment upon fusion with the cellular

membrane (Théry et al., 2002).

Exosomal biogenesis primarily entails three phases: initially,

invagination of the plasma membrane forms an early endosome,

enclosing endocytic payloads like soluble and cell surface

proteins (Barile and Vassalli, 2017) (Figure 2). To foster the

development of endosomes, the endosomal sorting complex

required for transport (ESCRT) mechanism is considered a

critical circuitry for the formation of MVEs and release of

exosomes (Baietti et al., 2012). The ESCRT comprises four

complexes, namely, ESCRT-0, I, II, and III. While ESCRT-I

and ESCRT-II are in control of squishing the membrane to

generate a stable membrane neck, ESCRT-0 assembles ubiquitin

cargo proteins into lipid domains. Vesicular neck segmentation

and ESCRT-III severance and salvaging are triggered by

association of the VPS4 complex into ESCRT-III. An activated

ALIX protein may recruit ESCRT-III proteins to endosomes,

while TSG101 has been associated to exosome release (Vella et al.,

2008). Numerous publications have also established that lipids

and related proteins are used during exosome synthesis and cargo

loading in an ESCRT-independent mechanism (Hessvik and

Llorente, 2018).

The process of RNA loading inside exosomes is believed to be

lipid-dependent and necessitates the presence of a set of

independent lipids and cargo domains. Particular sequences of

nucleotides, like those found in lipid rafts, hydrophobic

FIGURE 2
Release of exosomes from donor cells and uptake by recipient cells, with an enlarged view of the exosomal content. Exosomes released from
donor cells carry cargos of proteins, lipids, and genetic materials and can be taken up by recipient cells, reprogramming the recipient cells upon
transfer of their bioactive compounds.
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TABLE 1 Tumor-promoting and tumor-suppressing roles of exosomal ncRNAs in hallmarks of cancer.

Cancer hallmark ncRNA Cancer Target Role Reference

Tumor
promoter

Tumor
suppressor

Evading growth suppressors and
sustaining proliferative signaling

miR-1246 Breast CCNG2 ✓ Li et al. (2017)

miR-96 Lung LMO7 ✓ Wu et al. (2017)

hsa-miR199a-3p Neuroblastoma NEDD4 ✓ Ma et al. (2019)

miR-143-3p Lung ITM2B ✓ Zhou et al.
(2020)

miR-9-3p Bladder ESM1 ✓ Cai et al. (2019)

miR-133b Bladder DUSP1 ✓ Cai et al. (2020)

miR-144 NSCLC CCNE1 ✓ Liang et al.
(2020)

miR-744 HCC PAX2 ✓ Wang et al.
(2019)

miR-375-3p Bladder FZD8 ✓ Li et al. (2020)

miR-204-5p Breast, glioma, lung,
and gastric

RAB22A and Bcl2 ✓ Yao et al.
(2020)

lncRNA HOTAIR Lung miR-203 ✓ Zhang et al.
(2020)

lncRNA UFC1 NSCLC EZH2/PTEN miR-124 ✓ Zang et al.
(2020)

lncRNA ZFAS1 Gastric miR-1236 ✓ Pan et al. (2017)

lncRNA FAL1 HCC miR-182-5p/FOXO3 ✓ Li et al. (2018)

lncRNA LBX1-AS1 OSCC miR-106a-5p ✓ Ai et al. (2021)

lncRNA
HAND2-AS1

Breast miR-17 ✓ Xing et al.
(2021)

lncRNA PTENP1 Bladder ✓ Zheng et al.
(2018)

circMAN2B2 HCC miR-217 ✓ Fu et al. (2020)

circARHGAP10 NSCLC miR-638 ✓ Fang et al.
(2022)

circNRIP1 Gastric miR-149-5p ✓ Zhang et al.
(2019)

circ-0051443 HCC miR-331-3p ✓ Chen et al.
(2020)

hsa_circ_0072309 Gastric PPARγ/PTEN ✓ Guo et al.
(2022)

Resisting cell death miR-205 Ovarian VEGFA ✓ Wang et al.
(2019)

miR-4535 Melanoma ATG13 ✓ Liu et al. (2022)

miR-224-5p Breast HOXA5 ✓ Wang et al.
(2021)

miR-25 HCC SIK1 ✓ Fu et al., (2022)

miR-181d-5p Breast CDX2 and HOXA5 ✓ Wang et al.
(2020)

miR-148b-3p Bladder Wnt/β-catenin ✓ Shan et al.
(2021)

miR-1910-3p Breast MTMR3 ✓ Wang et al.
(2020)

miR-451a HCC LPIN1 ✓ Zhao et al.
(2019)

lncRNA
CEBPA-AS1

Gastric CEBPA/BCL miR-15a/
16 and BCL-2

✓ Piao et al.
(2020)

(Continued on following page)
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TABLE 1 (Continued) Tumor-promoting and tumor-suppressing roles of exosomal ncRNAs in hallmarks of cancer.

Cancer hallmark ncRNA Cancer Target Role Reference

Tumor
promoter

Tumor
suppressor

lncRNA
LINC00461

Myeloma miR-122-5p/XIAP ✓ Deng et al.
(2019)

lncRNA SBF2-AS1 Pancreatic miR-580-3p/WEE1 ✓ Yin et al. (2020)

lncRNA
LINC00470

GBM YBOX3/P21 ✓ Ma et al. (2021)

lncRNA SNHG9 PTC ULK1 miR-153/ATG5 ✓ Wen et al.
(2021)

lncRNA H19 Bladder ✓ Guo et al.
(2022)

lncRNA OIP5-AS1 Osteosarcoma ✓ Li et al. (2021)

circRNA_400068 Renal miR-210-5p/SOCS1 ✓ Xiao and Shi.,
2020

circ-PVT1 Gastric miR-30a-5p/YAP1 ✓ Yao et al.
(2021)

circ-UBE2Q2 Gastric STAT3 ✓ Yang et al.
(2021)

circRELL1 Gastric EPHB3/miR-637 ✓ Sang et al.
(2022)

Enabling replicative immortality miR-185 Fibro sarcoma POT1 ✓ Li et al. (2020)

miR-22 Cervical MYCBP ✓ Konishi et al.
(2020)

lncRNA TERRA Colon Telomerase ✓ Wang et al.
(2015)

circWHSC1 Ovarian MUC1 and hTERT ✓ Zong et al.
(2019)

Inducing angiogenesis miR-141 Lung GAX ✓ Wang et al.
(2021)

miR-23a Gastric PTEN ✓ Du et al. (2020)

miR-619-5p NSCLC RCAN1 ✓ Kim et al.
(2020)

miR-1290 HCC SMEK1 ✓ Wang et al.
(2021)

miR-210 HCC SMAD4 and STAT6 ✓ Lin et al. (2018)

miR-9 NPC MDK ✓ Lu et al. (2018)

lncRNA
RAMP2-AS1

Chondrosarcoma miR-2355-5p/VEGFR2 ✓ Cheng et al.
(2020)

lncRNA UCA1 Pancreatic miR-96-5p/AMOTL2/
ERK1/2

✓ Guo et al.
(2020)

lncRNA FAM225A ESCC miR-206/NETO2 and
FOXP1

✓ Zhang et al.
(2020)

circRNA-100338 HCC NOVA2 miR-29a ✓ Huang et al.
(2020)

circRNA-29 Gastric ✓ Li et al. (2021)

Activating invasion and metastasis miR-208a Osteosarcoma PDCD4 ✓ Qin et al. (2020)

miR-1246 OSCC DENND2D ✓ Sakha et al.
(2016)

miR-92a-3p HCC PTEN ✓ Yang et al.
(2020)

miR-3940-5p CRC ITGA6 ✓ Li et al. (2021)

miR-3607-3p Pancreatic IL-26 ✓ Sun et al. (2019)

Prostate miR-361-5p/FOXM1 ✓

(Continued on following page)
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TABLE 1 (Continued) Tumor-promoting and tumor-suppressing roles of exosomal ncRNAs in hallmarks of cancer.

Cancer hallmark ncRNA Cancer Target Role Reference

Tumor
promoter

Tumor
suppressor

lncRNA
HOXD-AS1

Jiang et al.
(2021)

lncRNA PCGEM1 Gastric SNAI1 miR-326/FSCN1 ✓ Piao et al.
(2021)

lncRNA
LINC01711

ESCC ✓ Xu et al. (2021)

circ-0004277 HCC ZO-1 miR-133a/GEF-
H1/RhoA

✓ Zhu et al.
(2021)

circ-133 CRC miR-653-5p/PAX6 ✓ Yang et al.
(2020)

circ007293 PTC miR-338/MACC1/MET/
AKT or ERK

✓ Lin et al. (2021)

circ-PDE8A PDAC ✓ Li et al. (2018)

Reprogramming of energy
metabolism

miR-105 Breast MYC ✓ Yan et al.
(2018)

miR-155 and
miR-210

Melanoma OXPHOS ✓ Shu et al. (2018)

miR-21-5p Ovarian PDHA1 ✓ Zhuang et al.
(2021)

lncRNA SNHG3 Breast miR-330/PKM ✓ Li et al. (2020)

ciRS-122 Colorectal miR-122/PKM2 ✓ Wang et al.
(2020)

circ_0094343 Colorectal TRIM67 ✓ Li and Li., 2022

Evading immune destruction and
tumor-promoting inflammation

miR-1468-5p Cervical HMBOX1-SOCS1 ✓ Zhou et al.
(2021)

miR-1290 Gastric Grhl2/ZEB1/PD-L1 ✓ Liang et al.
(2021)

miR-222 CRC ATF3 ✓ Li et al. (2021)

miR-675-3p Gastric CXXC4 ✓ Li et al. (2020)

miR-21 Glioma PEG3 ✓ Yang et al.
(2020)

miR-15a CRC KDM4B and HOXC4 ✓ Liu et al. (2021)

miR-186 Neuroblastoma TGFβ1 ✓ Neviani et al.
(2019)

lncRNA SNHG16 Breast miR-16–5p ✓ Ni et al., (2020)

lncRNA SNHG10 CRC INHBC ✓ Huang et al.
(2021)

lncRNA
KCNQ1OT1

CRC PD-L1 ✓ Xian et al.
(2021)

lncRNA TUC339 HCC CXCR miR-34/mir-
449-5p

✓ Li et al. (2018)

lncRNA ARSR RCC ✓ Zhang et al.
(2022)

circUHRF1 HCC TIM-3/miR-449c-5p
miR-934/SHP2

✓ Zhang et al.
(2020)

circUSP7 NSCLC miR-324-5p/TGFBR1/
Smad3

✓ Chen et al.
(2021)

circGSE1 HCC S100A11 miR141-3p/
GLS1

✓ Huang et al.
(2022)

circ_6790 PDAC ✓ Gao et al.
(2022)

circTRPS1 Breast ✓ Yang et al.
(2022)
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modifications, or sphingosine, have an increased affinity for the

phospholipid bilayer (Wei et al., 2021). The binding of proteins

or other molecules to lipid rafts, which are rich in cholesterol,

sphingolipids, and glycosylphosphatidylinositol-anchored

proteins, may increase their secretion through exosomes (de

Gassart et al., 2003). Intraluminal vesicle (ILV) production

also takes place due to the presence of ceramide,

lysophosphatidic, and glycosphingolipid molecules on the

limiting membrane. Stimulation of S1P receptors promotes

the conciliation of tetraspanin sorting into ILVs (Yue et al.,

2020; He et al., 2022). Ceramide kinase and ceramidase could

metabolize ceramide into sphingosine and sphingosine-1-

phosphate (S1P). Tetraspanin-enriched micro-domains, which

are membrane micro-domains, abundant in transmembrane and

cytoplasmic signal proteins, are organized by the tetraspanin

superfamily, comprising membrane proteins with

transmembrane domains (Ogretmen, 2018). Lack of ESCRT

machinery may cause the sorting of cargo into ILVs and

variation in the amount and size of ILVs (Raiborg and

Stenmark, 2009), thus implying that exosome biogenesis may

involve both ESCRT-dependent and -independent processes in a

cohesive way.

Exosomes are usually characterized by electron microscopy

(SEM/TEM/CryoEM), atomic force microscopy (AFM),

dynamic light scattering (DLS), nanoparticle tracking analysis

technology (NTA), fluorescence correlation spectroscopy (FCS),

resistive pulse sensing, western-blot, enzyme-linked

immunosorbent analysis (ELISA), and flow cytometry. The

vesicular constituent of exosomes includes proteins, DNA

(mtDNA, ssDNA, and dsDNA), and RNA (mRNA, miRNA,

lncRNA, and circRNA) of the host origin and even genetic

material of malignant cells and pathogens. Of these, the

encapsulated proteins can be classified into two broad

categories, namely, specific and non-specific proteins (Patil

and Rhee., 2019). The majority of non-specific proteins (like,

annexins, flotillins, MHC I and II, and heat shock proteins 70/90)

arise from parental cell cytoplasmic and conserved membrane

proteins essential for the formation and functioning of exosomes.

Specific proteins have been found to be correlated with their

origin; for example, exosomes derived from the T lymphocyte

possess granular enzymes and perforin proteins on their surface

(Mashouri et al., 2019). Notably, exosomes possess a wide array

of RNAs that are responsible for execution of various biological

functions. Among these, the non-coding RNAs, once regarded as

junk, regulate the gene expression of the critical biological

processes at the genomic and transcriptomic levels (Yue et al.,

2020). The ESCRT proteins recruit several non-coding RNAs to

be encapsulated into the exosomes. With the advent of NGS

technologies, the exosomes derived from different biological

fluids like saliva, CSF, plasma cells, serum, and urine were

found to possess snRNAs, circRNAs, snoRNAs, piRNAs,

miRNAs, lncRNAs, transfer RNAs, and ribosomal RNAs

(Cheng J. et al., 2020). In contrast to the free form of

ncRNAs, exosomes safeguard the encapsulated ncRNAs from

enzymatic degradation, facilitating the execution of their

biological functions. Some ncRNAs integrate functionally into

a variety of important cell growth pathways. Their context-

dependent deregulation in cancer suggests that ncRNAs play

both oncogenic and tumor suppressive roles. (Fan et al., 2018) (as

shown in Table 1).

ncRNA Biogenesis

ncRNAs are a class of functional regulatory RNA molecules

lacking the ability to code for proteins (Ferreira and Esteller,

2018). They are classified according to length (small: 18–200 nt;

long: more than 200 nt) or by function (housekeeping ncRNAs,

including rRNAs and tRNAs) and regulatory transcripts like

miRNA, lncRNA, and circRNA. Substantial mounting evidences

suggest that non-coding RNAs, considered ‘dark matter of the

genome,’ control several critical biological processes through

careful manipulation of key biochemical pathways (Diederichs

et al., 2016).

miRNA biogenesis initiates with transcription of genes into

large primary transcripts mediated by RNA polymerase II/III

during or post-transcription. The discovered miRNAs until

now are categorized broadly into three types, namely,

intragenic, intergenic, and exonic (Liu et al., 2019). The

regulation of intra and exo-genic miRNA is dependent on

the host promoter and is processed from introns and exons,

while for intragenic miRNAs, the transcription process is

independent of the host and regulated by their own

promoters. Canonically, miRNAs are transcribed by introns

of coding or non-coding transcripts, and few miRNAs are

transcribed by exonic regions. Initially, transcription of

miRNA genes leads to generation of 5′ capped and 3′
polyadenylated pri-miRNA transcripts. Subsequent

processing of pri-miRNA is orchestrated by the

microprocessor complex [comprising DiGeorge syndrome

critical region 8 (DGCR8—an RNA binding protein) and

DROSHA (a ribonuclease III enzyme] inside the nucleus.

DGCR8 mediates recognition of GGAC and other specific

motifs within the pri-miRNA, and DROSHA mediates the

digestion of pri-miRNAs, consequently generating stem-

loop-like structures termed as pre-miRNAs (O’Brien et al.,

2018). The export of pre-miRNA from the nucleus to cytosol

is mediated by the exportin5/RAN/GTP complex and is cleaved

by the DICER/TRBP/PACT complex favoring the formation of

an miRNA duplex. The miRNA duplex is then loaded into the

RISC complex in order to unwind the duplex structure with the

incorporation of argonaute protein. After unwinding of the

duplex, the mature miRNA is incorporated into RNA-induced

silencing complex and guides the complex toward target mRNA

for gene silencing or translation repression (Rani and Sengar,

2022).
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Non-canonically, miRNA biogenesis falls into two categories,

namely, Drosha/DGCR8-independent and Dicer-independent

process. Within these groups, different plausible combinations

of the proteins, namely, Drosha, Dicer, Exportins, and Argonaute

involved in canonical pathways are utilized for the transcription.

In the Drosha/DGCR8-independent pathway, the miRNAs

termed as mirtrons are generated via the splicing-dependent

process, replacing the microprocessor step from the introns of

host mRNA (Titov and Vorozheykin, 2018). Post splicing, the

lariat is de-branched and refolds into a stem-loop-like structure,

resembling a pre-miRNA. These are transported to the cytoplasm

via exportin 5 without the cleavage by Drosha. In the Dicer-

independent mechanism, Drosha processes miRNAs from

endogenous short-hairpin RNA transcripts. Owing to the fact

that these pre-miRNAs lack the requisite length to serve as dicer

substrates, the maturation process within the cytoplasm requires

the presence of AGO2. As a result, the subsequent loading of pre-

miRNA into AGO2 and splicing of the 3p strand is facilitated.

The maturation step is accomplished by the 3′–5′, shortening of
the 5p strand (Stavast and Erkeland, 2019; Treiber et al., 2019).

Long non-coding RNAs (lncRNAs) are quintessential RNA-

like molecules with 3′ poly(A) tail and 5’methyl cytosine capping

that are transcribed by RNA Pol II (Quinn and Chang, 2016).

They are classified according to their wide range of features.

Based on chromosomal position—sense, antisense, bidirectional,

intronic, and intergenic; based on their function—signals,

decoys, guides, and scaffolds, and based on their subcellular

localization, lncRNAs are categorized into nuclear, cytoplasmic,

and mitochondrial lncRNAs (Wu et al., 2017; Dahariya et al.,

2019).

The biosynthesis of lncRNAs is akin to that ofmRNA, along with

some mechanical differences. The lncRNA transcriptional process

includes 5’-capping, 3’-polyadenylation, RNA-editing processes,

regular and alternative splicing mechanisms, and patterns of

transcriptional activation. It has been shown that the vast majority

of lncRNAs adhere to the canonical structure, implying that they are

all capped, polyadenylated, and spliced (Chen, 2016). Some non-

canonical mechanisms may also play a role, such as the formation of

circular structures, capping by snoRNA-protein (snoRNP)

complexes, and cleavage by ribonuclease P (RNase P), which

results in mature 3′ ends (Xing and Chen, 2018). The production

of lncRNAs is controlled by a wide variety of epigenetic changes and a

variety of different regulators.

circRNAs can stem from either the exons or the introns of a gene,

which then leads to the production of distinct categories of circRNAs:

exonic, intronic, and exon–intronic. Exonic circRNAs are produced

following a process called pre-mRNA splicing. During this process,

the 3′ splice donor is joined to the 5′ splice acceptor, which results in
the development of an exonic circRNA (Lu, 2020). Under certain

conditions, it will merely consist of a single exon, while in others, the

beginnings of an upstream exon will be spliced onto the end of a

downstream exon. Afterward, the interceding RNA is circularized,

leading to the generation of circRNAs from multiple exons (Ragan

et al., 2019). On the other hand, if the intron that is located between

the exons is preserved, the circular transcript that results is called

exon–intron circRNA. The last possibility is that intronic circRNAs

are generated from intron lariats that are degradation-resistant by de-

branching enzymes. Intronic circRNAs are distinguished from exonic

circRNAs by the presence of a singular characteristic 2′–5′ linkage
within their structure (Barrett et al., 2015). The generation of intronic

circRNAs is dependent on the presence of GU-rich sequences in close

proximity to the 5′ splice site and C-rich sequences in close proximity

to the branch point in the gene. During back-splicing, the two

segments will initially come together to form a circle.

Subsequently, the exonic and intronic sequences found in the

binding region will be removed by the spliceosome, and the

trailing introns will be brought together to produce intronic

circRNA (Qu et al., 2015).

Exosomal ncRNAs in regulating
cancer hallmarks

Evading growth suppressors and
sustaining proliferative signaling

Aberrant cell proliferation is the most crucial hallmark of

cancer. Any abnormality in the cell cycle of the given cell

population is the prominent cause of tumorigenesis (Fouad

and Aanei, 2017). Mechanistically, cell cycle progression is

regulated by both intracellular and extracellular signal

molecules, in order to achieve the balance between cell

proliferation and cell cycle arrest (Liu et al., 2021). The cells

become cancerous when cell growth or division becomes

uncontrolled.

miRNAs
miRNAs are often stable within exosomes because they are

not degraded by RNAse enzymes. miRNAs transported by

exosomes can influence tumor growth and participate in

different processes of tumorigenesis and tumor development.

Exosomal miR-1246 induces a tumor-promoting phenotype,

positively correlated with enhanced cell proliferation by

directly targeting CCNG2 expression via binding to its 3′UTR
(Li et al., 2017). miR-96 is increased in lung tissues and serum

exosomes isolated from lung cancer patients and is positively

correlated with cancer risk, promoting its progression. LMO7 is

the direct target of miR-96, whose overexpression reverses the

promoting effect of miR-96 in lung cancer (Wu et al., 2017).

Exosomal hsa-miR 199-3p has the ability to enhance the

proliferative nature of cancer by downregulating the

NEDD4 level in neuroblastoma, indicating that exosomal hsa-

miR199a-3p might be associated in the future development of

novel therapeutic strategies for neuroblastoma (Ma et al., 2019).

Granulocytic myeloid-derived suppressor cells (G-MDSCs)

profusely secrete exosomes in the lung cancer tissues, which
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promotes cell proliferation ensuing in cancer progression.

G-MDSC-derived exosomes, loaded with miR-143-3p, targets

the 3ʹ-untranslated region (UTR) of integral membrane protein

2B (ITM2B), and hence, overexpression of miR-143-3p induces

cell proliferation by suppressing ITM2B transcription and

activating the PI3K/Akt signaling pathway (Zhou et al., 2020).

Along with the oncogenic miRNAs, certain exosomal

miRNAs have been found to exert tumor-suppressive effects.

The potential regulatory role of miR-9-3p in bladder cancer has

been deciphered, and miR-9-3p delivered from bone marrow-

derived mesenchymal stem cell (BMSC)-secreted exosomes is

found to exert antitumor effects by suppressing a tumor

promoter gene ESM1 (Cai et al., 2019). The exosomal miR-

133b targets DUSP1 and, thereby, inhibits bladder cancer (BC)

proliferation (Cai et al., 2020). miR-144 derived from bone

marrow mesenchymal stem cell (BMMSC) exosomes can

decrease the levels of CCNE1 and CCNE2, hence repressing

the proliferation of NSCLC (Liang et al., 2020). miR-744 has

downregulated exosomal expression in hepatocellular carcinoma

(HCC). Moreover, PAX2, an overexpressed gene, is directly

targeted by miR-744 and downregulated miR-744, aids in the

propagation of HCC cells. Specifically, the propagation of HCC

cells got substantially suppressed upon treatment with miR-744-

loaded exosomes (Wang et al., 2019). The miRNA profile of BC-

derived exosomes validated the aberrant expression of exosomal

miRNAs. In a recent study, miR-375-3p was notably

downregulated and suppressed in BC by blocking the Wnt/β-
catenin pathway and the level of the downstream molecules like

cyclin D1 and c-Myc, thereby repressing BC cell growth by

targeting FZD8 (Li et al., 2020). miR-204-5p is suggested to

be a powerful pan-cancer suppressor, and reestablishing its levels

may be a potential cancer treatment strategy (Yao et al., 2020).

lncRNAs
lncRNAs have been linked to human cancers and may

function in carcinogenesis and cancer progression (Wei et al.,

2017). The mechanism of action of lncRNAs varies depending

on the circumstances; nevertheless, recent research suggests

the importance of the interaction between lncRNAs and

microRNAs. The exosomal lncRNA HOTAIR has been

postulated to be a putative target treatment for lung cancer.

It promotes proliferation of lung cells through sponging miR-

203 (Zhang et al., 2020). The lncRNA UFC1, transmitted via

exosomes, possibly binds to EZH2 to inhibit PTEN levels and

stimulate the PI3K/Akt signaling pathway, hence promoting

the tumorigenesis of non-small cell lung cancer (NSCLC)

(Zhang et al., 2020). The exosome-delivered lncRNA

ZFAS1 can promote gastric cancer (GC) progression. It

indicates that ZFAS1 is a potent diagnostic and prognostic

biomarker for GC (Pan et al., 2017). lncRNA FAL1 functions

as an oncogenic lncRNA and enhances cancer progression

by acting as a ceRNA of miR-1236 in HCC cells (Li et al.,

2018).

Accumulating evidence has shown that lncRNAs could

function as either an oncogenic or a tumor suppressor gene.

The exosomal LBX1-AS1 has been reported as a tumor

suppressor. It suppresses oral squamous cell carcinoma

(OSCC) cells by invading through the miR-182-5p/

FOXO3 pathway. RBPJ, a recombination signal binding

protein, is frequently exploited as an activation marker of

Notch signaling. The LBX1-AS1/miR-182-5p/FOXO3 pathway

is stimulated and tumor growth is inhibited by macrophage-

derived exosomes with overexpressed RBPJ (Ai et al., 2021).

lncRNA HAND2-AS1 suppresses the progression of triple-

negative breast cancer by regulating the release of MSC-

derived exosomes, which have encapsulated miR-106a-5p

(Xing et al., 2021). Exosomes derived from normal cells

transfer PTENP1 that inhibits bladder cancer progression. It

suggests that exosome-derived PTENP1mediates normal cell-to-

bladder cell communication during BC tumorigenesis (Zheng

et al., 2018).

circRNAs
circRNAs belong to a class of covalent circular endogenous RNAs

formed by the 3′ splice donor of pre-mRNAcovalently linked to the 5’

splice acceptor in the reverse order. The circRNAs play a crucial role

in the progression of a diverse range of cancers. They interact with

miRNAs by stable complementary binding and serve as efficient

miRNA sponges, thereby modulating post-transcriptional expression

of downstream target genes.Moreover, circRNA could be delivered to

tumor cells or normal cells by exosomes and have a regulatory role in

tumor progression. Through the expression profile of HCC tissues,

circMAN2B2 was shown to be highly expressed and closely related

with the prognosis of HCC patients. Furthermore,

circMAN2B2 sponges miR-217, which will be able to overexpress

the MAPK1 signaling pathway and enhance HCC progression (Fu

et al., 2021). circARHGAP10 has been shown to be elevated in both

NSCLC cells and serum-derived exosomes. Exosomal transfer of

circARHGAP10 promotes the proliferation of NSCLC via the miR-

638/FAM83F axis (Fang et al., 2022). In another study, circNRIP1 has

been shown to function as a sponge for miR-149-5p in order to

regulate the level of AKT1 and subsequently play a tumor-promoting

role in GC (Zhang et al., 2019).

Numerous circRNAs have been discovered to have tumor-

suppressive properties against a number of cancers. For example,

exosomal circ-0051443 has been reported to sponge miR-331-3p in

order to suppress BAK1 and halt HCC progression (Chen et al.,

2020). The circular RNA, namely, hsa_circ_0072309 prevents

progression of GC cells by inhibiting PI3K/AKT signaling via

activating PPARγ/PTEN signaling (Guo et al., 2022).

Resisting cell death

Apoptosis, the programmed cell death, can be provoked by

both intrinsic and non-cell autonomous signals that sense
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abnormality in various cell cycle processes (Hersey and Zhang,

2003). It involves the regulated deterioration of the chromosomes

and other crucial cellular organelles by specialized enzymes (like

caspases), the shriveling and disintegration of the cell, and its

endocytosis by surrounding cells or tissue-surveilling phagocytes

(Hanahan and Weinberg, 2016). Necroptosis, conceptualized as

the gradual breakdown of a dying cell, could be triggered under

different conditions, like oxygen and energy distress, viral

infection, and inflammation (Gong et al., 2019). During

necroptosis rupture, the dying cells release their contents and

their remains which are left behind, which act as immunogenic

debris that is able to attract (or aggravate) an immune

inflammatory response (Najafov et al., 2017). The cell death

program operative during autophagy functions as an organelle

recycling system that helps cells cope with challenges such as

nutrition destitution (White, 2015). These three distinct cell

death-triggering mechanisms must be variably evaded or

dampened by cancer cells in order to continue their

proliferative expansion and phenotypic evolution to states of

intense malignancy. Oncogenic and tumor-suppressive exosomal

ncRNAs may act as both a promoter and inhibitor of these cell

death mechanisms.

miRNAs
miR-205 might function as a proto-oncogene in ovarian

cancer progression. Ovarian cancer cell SKOV3 cell-derived

exosome shuttle miR-205 could attenuate the apoptosis of

receptor SKOV3 cells via regulating VEGFA (Wang et al.,

2019). Melanoma stem cells deliver their exosomal miR-4535

to melanoma parental cells (MPCs), where it amplifies metastatic

colonization of MPCs by inhibiting the autophagy pathway (Liu

et al., 2022). Human umbilical cord mesenchymal stem cells

(hUCMSC)-derived exosomal miR-224-5p modulates breast

cancer autophagy in cells by involving HOXA5 (Wang et al.,

2021). Silencing of exosomal miR-25 released from cancer cells

targets SIK1 and promotes the apoptotic sensitivity of liver

cancer stem cells in order to promote HCC tumorigenesis (Fu

et al., 2022). Exosomes released from cancer-associated

fibroblasts (CAFs) loaded with miR-181d-5p could be taken

up by breast cancer cells and impair apoptosis via

downregulating CDX2 and HOXA5 (Wang et al., 2020). CAF-

exosomal miR-148b-3p has been reported to reduce apoptosis in

bladder cancer cells. This effect can be reverted by PTEN

overexpression by downregulation of the Wnt/β-catenin
pathway (Shan et al., 2021).

miR-1910-3p has a tumor-suppressive role as it could be

transported via exosomes to mammary epithelial cells and breast

cancer cells, where it results in suppression of the MTMR3 level,

and activates the NF-κB and wnt/β-catenin signaling pathway,

hence promoting autophagy in cancer cells (Wang et al., 2020).

Ectopic expression of miR-451a is able to perturb HCC growth

and tumor angiogenesis via apoptosis, both in vitro and in vivo,

with LPIN1 being its target gene (Zhao et al., 2019).

lncRNAs
Exosome-encapsulated lncRNA CEBPA-AS1 could inhibit

tumor apoptosis and works as a non-invasive biomarker in GC

(Piao et al., 2020). Mesenchymal stromal cell (MSC)-secreted

extracellular vesicles promote multiple myeloma carcinogenesis via

lncRNALINC00461, that has substantially enhanced levels in patients

with multiple myeloma. LINC00461 enhances progression and

inhibits apoptosis of multiple myeloma cell lines. It exerts its effect

via modulating miR-15a/16 and BCL-2 (Deng et al., 2019).

Knockdown of lncRNA SBF2-AS1 in exosomes produced by

M2 macrophages promotes miR-122-5p expression and decreases

XIAP levels, indicating lncRNA SBF2-AS1 could inhibit apoptosis by

modulating XIAP via miR-122-5p in pancreatic cancer (Yin et al.,

2020). LINC00470 plays an oncogenic role in glioblastoma

multiforme (GBM)-derived exosome by binding to miR-580-3p,

regulating the levels of WEE1 and activating the PI3K/AKT/

mTOR pathway. Hence, it inhibits autophagy and enhances the

progression of glioma cells (Ma et al., 2021).

Certain lncRNAs could promote cell death of tumor cells by

inducing autophagy, apoptosis, or/and necrosis and, hence, play

a tumor-suppressive role. SNHG9 is overexpressed lncRNA in

papillary thyroid cancer (PTC) cell-derived exosome, where it

enhances cell apoptosis, while, on the other hand, it inhibits cell

autophagy of normal thyroid epithelial cell nthy-ori-3 via the

YBOX3/P21 pathway (Wen et al., 2021). Tumor-associated

macrophages (TAM)-exosomes consist of high levels of

lncRNA H19, which significantly enhances autophagy in

bladder cancer cells when treated with TAM-exosomes (Guo

et al., 2022). In osteosarcoma, exosomal lncRNAOIP5-AS1 could

promote autophagy via miR-153 and ATG5 (Li et al., 2021).

circRNAs
Exosomal circRNA_400068 exerts an oncogenic effect via

inhibiting apoptosis and, thereby, boosting the progression of

renal cell carcinoma through the miR-210-5p/SOCS1 axis (Xiao

and Shi, 2020). Exosomal circ-PVT1 functions in cisplatin

resistance by regulating apoptosis and autophagy through the

miR-30a-5p/YAP1 axis in GC (Yao et al., 2021). Similarly,

circRNA UBE2Q2 enhances the malignancy of GC through

negative regulation of STAT3-mediated autophagy and

glycolysis (Yang et al., 2021). Decreased circRELL1 is related

with an advanced tumor node metastasis (TNM) stage and a

bleak outcome while elevated circRELL1 promotes EPHB3 to

suppress GC autophagy by acting as a sponge of miR-637 in vitro

and in vivo (Sang et al., 2022).

Enabling replicative immortality

Cellular senescence, which restricts the cell division number,

functions as a barrier to cancer progression. This natural process,

known as the Hayflick phenomenon, is associated with aging,

resulting in telomere shortening (Calcinotto et al., 2019). Cancer
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cells are widely believed to have circumvented this brake and,

hence, have unlimited replicative potential. Telomerase, which

inserts telomeric repeats to the termini of telomeric DNA, is

overexpressed in most of human malignancies and results in an

unlimited replication potential (Loaiza and Demaria., 2016).

miRNAs
Human telomerase reverse transcriptase (hTERT), a c-Myc

target gene, facilitates cancer cell immortality by promoting the

generation of telomeric DNA. miR-185, a newly discovered pro-

senescence miRNA present in human serum, when secreted via

exosomes, targets POT1 to promote telomere dysfunction and

cellular senescence. Moreover, the enhanced expression of miR-

185 causes telomere dysfunction in cancer cells and primary

human somatic cells (Li et al., 2020). In cervical cancer cells,

telomerase is found to be linked with the regulation of radio-

sensitivity by downregulating hTERT. Cervical cancer cells may

be radio-sensitized by administration of exosomal miR-22.

Overexpressing miR-22 expression via transfection results in

the reduction of the MYCBP gene expression and consequent

suppression of hTERT, and hence, enhancement of radio-

sensitivity in cervical cancer cells (Konishi et al., 2020). Upon

administration of exosomal miR-22 to the SKG-II cells, the

expression of MYCB and hTERT is markedly reduced and is

correlated with increased radio-sensitivity.

lncRNAs
A known lncRNA, TERRA (telomeric repeat-containing

RNA) regulates replicative immortality by inhibiting

telomerase. TERRA is transcribed from telomeric ends and

serves as a tumor suppressor, which can negatively regulate

the activity of telomerase. A cell-free form of TERRA

(cfTERRA) composed of a nucleoprotein component of

extracellular microvesicular exosomes in cancer cell culture

and human blood plasma has been reported. These cfTERRA-

harboring exosomes were found to induce inflammatory

cytokines in peripheral blood mononuclear cells (PBMCs)

(Wang et al., 2015).

circRNAs
circWHSC1, a highly expressed exosomal circular RNA in

ovarian cancer, can act as a pro-tumorigenic circular RNA. It is

capable of adsorbing miR-145 and miR-1182 and, thereby,

upregulating the levels of downstream targets MUC1 and

hTERT, enhancing cancer cell proliferation and invasion.

Furthermore, peritoneal mesothelial cells serve as recipient

cells and take up circWHSC1-rich exosomes (Zong et al., 2019).

Inducing angiogenesis

Tumor cells acquire the trait to induce angiogenesis to fulfill

their elevated need for nutrients and oxygen, which would

otherwise be limited by the intrinsic diffusion limit of oxygen

and nutrients (Aguilar-Cazares, et al., 2019). By producing new

blood vessels, tumor cells not only ensure they get oxygen and

nutrients but also eliminate toxic metabolic waste and initiate the

hematogenous metastatic process (Zuazo-Gaztelu and

Casanovas, 2018). Angiogenesis induction is a crucial step in

tumor development and progression and is fueled by a variety of

cancer cell-derived signaling molecules. Exosomes impart both

pro- and anti-angiogenic characteristics by modulating cellular

contents and acting as cancer cell disposal units (Ludwig and

Whiteside, 2018).

miRNAs
As a member of the miR-200 family, miR-141 governs a

number of biological processes in both healthy and diseased

situations. It does so by binding to specific targets and controlling

distinct signaling pathways, particularly in areas like angiogenesis

and tumorigenesis. Tumor exosome-encapsulated miR-141

facilitates angiogenesis and malignant development of lung

cancer, with its target being GAX (Wang et al., 2021).

Exosome-encapsulated miR-23a inhibited PTEN, accelerating

the growth of GC by increasing angiogenesis (Du et al., 2020).

miR-619-5p loaded in NSCLC-derived exosomes enhances

angiogenesis and malignancy by inhibiting RCAN1 (Kim

et al., 2020). miR-1290 packaged in exosomes can be

transferred to endothelial cells and downregulate SMEK1,

which in turn, results in increased tumor angiogenesis via a

VEGFR2-mediated action (Wang et al., 2021). miR-210,

encapsulated in hepatoma cell exosomes, may be delivered to

endothelial cells and induce pro-angiogenesis effects via targeting

SMAD4 and STAT6 (Lin et al., 2018).

In contrast, certain exosomal miRNAs are known to be

negatively associated with angiogenesis and exert an

antitumor effect. In nasopharyngeal carcinoma (NPC)

carcinogenesis, tumor exosome-associated miR-9 possesses an

extracellular anti-angiogenic function. Exosomal miR-9

suppresses angiogenesis in NPC via targeting MDK and

modulating the PDK/AKT pathway (Lu et al., 2018).

lncRNAs
lncRNA RAMP2-AS1 participates in the genesis and

proliferation of malignant tumors. Chondrosarcoma cell-

derived exosomal lncRNA RAMP2-AS1 is shown to facilitate

angiogenesis through the miR-2355-5p/VEGFR2 axis (Cheng

et al., 2020). The hypoxic microenvironment drives tumor

cells to generate exosomes and enhance tumor angiogenesis.

In the hypoxic tumor microenvironment, the expression of

lncRNAs varies, and some of them can be contained in

exosomes. lncRNA UCA1 is elevated in exosomes released by

hypoxic pancreatic cells and can be delivered to HUVECs,

boosting angiogenesis by modulating the miR-96-5p/

AMOTL2/ERK1/2 axis (Guo et al., 2020). Exosome-derived

FAM225A has been suggested to be a therapeutic target for
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esophageal squamous cell carcinoma (ESCC) patients. It

upregulates the NETO2 and FOXP1 levels by acting as a

sponge of miR-206 and accelerating ESCC progression and

angiogenesis (Zhang et al., 2020).

circRNAs
Exosomal circRNA-100338 is elevated in highly malignant

hepatocellular carcinoma (HCC) cells compared with low

metastatic ones. It improved the metastatic capability of HCC

cells and promoted angiogenesis of human umbilical vein

endothelial cells (HUVECs) (Huang et al., 2020). Internalized

circRNA-100338 interacts with NOVA2, an RNA-binding

protein that regulates vascular formation, in HUVECs

transfected with biotin-labeled circRNA-100338. The plasma

levels of circ-29 in GC patients are elevated as compared to

those of normal humans. The elevated circ29 acts as a

competitive endogenous RNA (ceRNA) by combining with

miR-29a to enhance the highly malignant phenotypes of

HUVEC cells by the VEGF pathway, while downregulated

circ29 is found to have the opposite effect (Li et al., 2021).

Activating invasion and metastasis

Invasion and metastasis is a multi-stage process, involving

neoplastic cell ingression into the vasculature, persistence in the

circulation, subsequent invasion, and eventually colonization of

remote organs, cancer cell dispersal, and stabilization in the

microenvironment in order to facilitate tumor progression

(Fares et al., 2020). Numerous research works have indicated

that the tumor cells interact with one another, and the

neighboring stromal cells may result in the development and

progression of metastatic tumor. This invasion–metastasis

cascade encompasses a variety of biological alterations that

facilitates cancer cell penetration into healthy tissues prior to

intravasation into blood and lymphatic vessels (Krakhmal et al.,

2015). Exosomal ncRNAs play a critical function in the tumor

microenvironment and the procedure of promoting and

impeding malignant tumor metastasis (Fan et al., 2018).

miRNAs
miR-208a encapsulated in exosomes derived from BMSCs

has been shown to foster the malignant phenotype of

osteosarcoma cells. PDCD4 is the target of miR-208a, as it is

elevated, and the ERK1/2 signaling pathway is suppressed after

being treated with miR-208a inhibitor-loaded exosomes (Qin

et al., 2020). The exosomes loaded with miRNA released from

malignant oral squamous cell carcinoma (OSCC) cells promote

cell growth, migration, and invasion of cancer cells. By

specifically targeting DENND2D expression via binding to its

3′UTR, exosomal miR-1246 was showcased as a metastasis-

supporting characteristic, which involves enhanced invasion in

OSCC (Sakha et al., 2016). The plasma levels of exosomal miR-

92a-3p are diminished post tumor resection, and its high

exosomal level is strongly correlated with HCC metastasis,

implying that exosomal miR-92a-3p can serve as a dynamic

and effective diagnostic biomarker for HCC (Yang et al., 2020).

Exosomes produced from high-metastatic HCC communicate

metastatic capacity to recipient cancer cells by transmitting miR-

92a-3p. Through selective suppression of the tumor suppressor

gene PTEN, miR-92a-3p-activates Akt/Snail, thereby promoting

EMT and carcinogenesis of HCC.

miR-3940-5p behaves as a tumor suppressor. Exosomes from

mesenchymal stem cells deliver miR-3940-5p to colorectal cancer

cells (CRCs), resulting in ITGA6 downregulation and TGF-β1
signaling impairment, and ultimately, the decline in invasive and

metastatic potential of CRC cells and tumors (Li et al., 2021). It is

found that miR-3607-3p is concentrated in the natural killer

(NK) cell-derived exosomes and transferred to pancreatic cancer

(PC) cells. It is demonstrated to suppress proliferation, invasion,

and migration of PC cells by using IL-26 as a direct target (Sun

et al., 2019).

lncRNAs
In consistence with various studies, it has been indicated that

exosomal lncRNAs play a role in the invasion and metastasis of

numerous cancers. Castration-resistant prostate cancer cell-

secreted exosomes were found to be directly internalized into

prostate cancer (PCa) cells, transferring HOXD-AS1 and

modulating the miR-361-5p/FOXM1 axis (Jiang et al., 2021).

HIF-1α elevates the PCGEM1 levels under hypoxic conditions,

and it can be enveloped into exosomes, which promotes GC cell

invasiveness and metastatic potential. PCGEM1 is able to

maintain the stability and SNAI1 from getting degraded.

SNAI1 facilitates EMT and, hence, enhances the invasion and

metastatic potential of GC (Piao et al., 2021). Elevated levels of

lncRNA LINC01711 in ESCC tissues are linked with poor

prognosis. The progression and migration of ESCC cell lines

is inhibited by silencing LINC01711. It is established as a ceRNA

that represses miR-326 and upregulates the expression of fascin

actin-bundling protein 1 (FSCN1) and hence improves the

incidence and progression of ESCC (Xu et al., 2021).

circRNAs
The circular RNA hsa-circ-0004277 encourages

epithelial–mesenchymal transition (EMT) in peripheral cells

and a malignant phenotype in hepatocellular carcinoma. It

has been demonstrated that the circ-0004277-exosome from

HCC cells increases circ-0004277 expression in HL-7702 cells,

induces invasiveness, and boosts the EMT process (Zhu et al.,

2021). Hypoxia-derived exosomal circ-133 in CRC is delivered

into normoxic cancer cells and enhances cell migration via the

miR-133a/GEF-H1/RhoA axis (Yang et al., 2020). Exosomal

circ007293 can be transported to papillary thyroid carcinoma

(PTC) cells and participate in altering PTC cell malignant

phenotypes. Exosomal circ007293 inhibits miR-653-5p activity
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via acting as a sponge for miR-653-5p, and hence, enhancing

PAX6 levels in PTC cells and increasing tumor cell metastasis

and EMT (Lin et al., 2021). Exosomal circ-PDE8A stimulates

tumor invasion by miR-338/MACC1/MET/AKT or ERK

pathways. Circulating tumor-secreted circ-PDE8A can be

secreted into the bloodstream via exosome transfer, and

plasma exosomal circ-PDE8A is associated with tumor

invasion and prognosis in patients with pancreatic ductal

adenocarcinoma (PDAC) (Li et al., 2018).

Reprogramming of energy metabolism

Cancer cells routinely modify their metabolism in order to

generate adenosine triphosphate (ATP) promptly for boosting

macromolecular synthesis and maintaining an optimum

homeostatic redox balance (Martinez-Outschoorn et al.,

2017). Unlike normal cells, tumor cells display different

metabolic characteristics, involving excessive glucose uptake,

a greater reliance on aerobic glycolysis, elevated glutamine

uptake and glutaminolysis, and altered lipid metabolism

(Vander Heiden and DeBerardinis, 2015). The primary

objective of metabolic reprogramming in cancer cells is to

maintain balanced energy expenditure and enable biomass

production in order to facilitate cancer cell proliferation

(Pavlova and Thompson, 2016).

miRNAs
Exosomal miR-105 is stimulated by the oncoprotein MYC in

cancer cells and promotes MYC signaling in CAFs to drive a

metabolic program. It enables CAFs to demonstrate varied

metabolic characteristics in response to alterations in the

metabolic environment. In ample availability of nutrients, miR-

105-reprogrammed CAFs increase glucose and glutamine

metabolism to fuel neighboring cancer cells. Upon encountering

a decrease in nutrient levels and the build-up of metabolic

byproducts, the CAFs aid in conversion of lactic acid and

ammonium into energy-rich metabolites to detoxify metabolic

wastes. Thus, miR-105-directed metabolic reprogramming of

stromal cells promotes tumor growth by controlling the

metabolic environment (Yan et al., 2018). Researchers explored

whether melanoma-derived exosomes could alter normal human

adult dermal fibroblast (HADF) metabolism, hence adding to

optimal pre-metastatic niche conditions. Their observation of

enhanced glycolysis and diminished OXPHOS in normal HADF

in contact with human melanoma-derived exosomes (HMEX) and

enhancement of the “Warburg effect” is in consistence with results

regarding the capacity of tumor exosomes to reprogram stromal

cells. They demonstrated that HMEX and specifically its

microRNAs miR-155 and miR-210 are able to remodel the

metabolism of stromal fibroblasts in order to promote aerobic

glycolysis (Shu et al., 2018). Pyruvate dehydrogenase E1 subunit

alpha 1 (PDHA1) is reduced dramatically in cisplatin (DDP)-

resistant SKOV3 and DDP-resistant ovarian tumor tissues,

whereas miR-21-5p is considerably enhanced as compared to

controls. Moreover, miR-21-5p is highly elevated in SKOV3/

DDP exosomes relative to SKOV3 exosomes. It has been

indicated in a study that SKOV3/DDP exosome therapy reduced

the cisplatin sensitivity of SKOV3 cells and increased cell survival

and glycolysis through PDHA1 inhibition via exosomal miR-21-

5p. This miRNA fromDDP-resistant SKOV3OC cells was reported

to induce glycolysis and suppress chemosensitivity of its progenitor

SKOV3 cells via targeting PDHA1 (Zhuang et al., 2021).

lncRNAs
Malignant cells and CAFs established a network of

interactions inside the microenvironment of a tumor. The

findings established by a group of researchers suggest a novel

metabolic modulatory role of CAF–exosomal lncRNA in breast

malignancies by demonstrating that the SNHG3/miR-

330 signaling axis altered the metabolism and proliferation of

breast tumor cells by altering PKM at the post-transcriptional

level (Li et al., 2020).

circRNAs
Generally, metastatic neoplasms, like colorectal cancer

(CRC), depend on ATP synthesis via aerobic glycolysis for

accelerated growth. From a panel of dysregulated circRNAs,

ciRS-122 has been projected to sponge miR-122 in drug

resistance-resistant CRC cells. Furthermore, the ciRS122 level

in serum exosomes has been verified to be positively linked with

chemoresistance. Exosomes could deliver ciRS-122 from drug-

resistant cells to drug-sensitive cells, where glycolysis and drug

resistance are augmented by inhibiting miR-122 and

upregulating PKM2. Furthermore, the suppression of ciRS-122

significantly decreases glycolysis and reverses oxaliplatin

resistance in CRC (Wang et al., 2020).

circ_0094343 is considerably downregulated in CRC and

when transported by exosomes, it plays a suppressive function

against the aggressiveness of HCT116 cells. It sponges miR-766-

5p, which targets and regulates TRIM67. Moreover, mechanistic

validation indicated that circ_0094343 can repress HCT116 cell

proliferation, clone formation, glycolysis, and chemotherapy

resistance through the miR-766-5p/TRIM67 axis (Li and Li, 2022).

Evading immune destruction and
promoting tumor inflammation

Due to its ability to evade immune detection and generate an

immunosuppressive environment, cancer can hinder attempts to

mount a robust antitumor response. Immune escape, according

to the immune-editing notion, is essential for tumor survival

(Vinay et al., 2015). Tumor immune escape (TIE) mechanisms

include abnormalities in tumor antigen presentation that allow

tumors to avoid immune system identification, perturbations in
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the tumor death pathway to enhance resistance to cytotoxic

immune responses and metabolic aberrations to promote

tumor evasion, and establishment of stem cell-like phenotypes

in order to avoid immune-based detection and elimination

(Shimizu et al., 2018). Moreover, TIE is influenced by various

cytokines in the tumor microenvironment (TME), aberrant

expression of immunological checkpoint molecules on tumor

or immune cell surfaces, and certain immunosuppressive cells.

These characteristics may combine to facilitate TIE, causing a low

rate of response to immunotherapy in many cancers (Muenst

et al., 2016). Exosomal ncRNAs involved in TIE are currently

emerging as attractive prospective targets for anticancer

treatment. Several investigations have found that exosomal

ncRNAs play a crucial role in TIE (Chen et al., 2019).

miRNAs
Despite their role as a barrier to the effector arm of the

antitumor immune response, the immunosuppressive mechanism

of lymphatic endothelial cells during tumorigenesis within the

microenvironment is poorly defined. The intercellular crosstalk

within the TME has been attributed to exosome-derived

miRNAs. A decrease in CD8+ T cell immunity by activation of

JAK2/STAT3 signaling is triggered by the exosomal microRNA

miR-1468-5p, released by cervical cancer cells. The microRNA

augmented the PD-L1 expression and vascularization within the

lymphatic system by suppressing HMBOX1-SOCS1 expression.

The findings lend credence to a mechanism for the growth of

tumors dependent on lymphatic immunosuppression (Zhou et al.,

2021). Similarly, miR-1290 encapsulated within the GC cell-derived

extracellular vesicle and lowered the proliferation of T cells by

modulation of the Grhl2/Zeb1/PD-1 axis, facilitating the immune

evasion (Liang et al., 2021).

MSCs are capable of suppressing the immune system and aiding

tumor cells in evading immunological responses. An interaction

strategy between colorectal cancer cells and MSC-EVs has been

presented, in which miR-222 originating from MSC-EVs commits

the post-transcriptional regulation on ATF3, which, therefore,

activates the AKT pathway and encourages the tumorigenesis of

CRC and immune evasion (Li S. et al., 2021). Gastric cancer (GC)

extracellular vesicle (EV) encapsulated miR-675-3p aid in the

immune evasion of GC cells by repression of CXXC4 and

boosting the expression of PD-L1 via the MAPK signaling

pathway. The favorable cytokine profile in the TME triggers the

rapid amplification of activated cytotoxic NK cells, which is

perceived as an important prognostic indication (Li et al., 2020).

Moreover, miR-21 conveyed by BMDM exosomes accelerates

glioma cell growth and inhibits apoptosis by limiting PEG3

(paternally expressed gene 3). This further facilitates immune

escape of glioma cells by increasing the tumor burden and

expression of PCNA and Ki67, prominent nuclear markers to

demonstrate proliferative phase of the cell cycle, and decreasing

the CD8+ T cell population in glioma. Depleting miR-21 or

reintroducing PEG3 reinstated the proliferative capacity of CD8+

T cells and boosted the cell cytotoxicity and IFN-γ levels, while

decreasing the activity of cancer cells and the level of TGF-β1, as
demonstrated by Yang et al. (2020).

Several miRNAs with tumor-suppressing ability act to regulate

the immune suppressive trait of cancer. Adipose-derived

mesenchymal stem cells (adMSCs) have immunomodulatory

property and the ability of triggering de novo regulatory T cells.

Exosomes derived by adMSCs encapsulating miR-15a are taken by

CRC cells, resulting in a decline of the KDM4B and HOXC4 levels,

which in turn reduces the production of PD-L1 that prevents CRC

cells from immune evasion. Additionally, this cascade of actions also

inhibits CRC cell malignancy by stifling their proliferation, invasion,

and metastasis (Liu et al., 2021). Based on the findings, tumor

suppressor miR-186 entrapped in NK cell-derived exosomes has

diminished levels in high-risk neuroblastoma. The longevity and

motility of MYCN-amplified neuroblastoma cells are impaired by

ectopic delivery ofmiR-186 toNK cells and neuroblastoma cells, and

TGF-dependent suppression of NK cytotoxicity is averted.

Irrespective of the activation status of NK cells, the exosomes

generated by them are capable of eliminating MYCN-amplified

neuroblastoma cell proficiently, apparently suggesting that the miR-

186 level is accountable for the cytotoxic effect, and NK exosomes

are resilient to TGF-β1-dependent suppression (Neviani et al., 2019).

lncRNAs
γδT cells act as a prominent constituent of tumor-infiltrating

lymphocytes (TILs) in breast cancer. The subpopulation

CD73+γδT1 cells remain the major regulatory T cells (Tregs)

in breast cancer. The expression of SMAD5 in γδT1 cells gets

upregulated via transfer of exosomal lncRNA SNHG16 that

serves as a ceRNA by acting as a sponge of miR-16–5p and,

hence, potentiates the TGF-β1/SMAD5 pathway to enhance

CD73 levels (Ni et al., 2020).

NK cells are an innate part of the immune system and are in

command of eradicating cancer cells either directly or by

sequestering cytokines upon activation. In malignancies, like

ESCC, NK cell functionality is repressed or dysfunctional, leading

to immune escape (Kim., 2007). Exosomes released by metastatic

CRC cells have a proven role in immunologically dampening NK

cells, as well as a strategy to accomplish this goal. The consequences

of exosomes on NK cells have been determined by tracking their

proliferative ability, cytotoxic capacity, secretion of interferons (IFN-

γ), and perforin and granzyme B expression levels. Employing next-

generation sequencing, the vital lncRNAs within exosomes and the

genes they influence have been traced out. Secreted exosomes by

CRC cells have indeed been demonstrated to transmit the lncRNA

SNHG10 that impairs NK cell activity and enhances tumor growth.

To stimulate the TGF-signaling pathway, it facilitated the

production of inhibin subunit beta C (INHBC), which in

response suppressed NK cytotoxicity (Huang et al., 2021).

Numerous studies have shown PD-1 as the predominant

inhibitory receptor in tumor immunology. Exosomal participation

in the KCNQ1OT1/miR-30a-5p/USP22 axis-mediated control of
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PD-L1 provides a deeper understanding of immune escape of CRC.

The expression of lncRNA KCNQ1OT1 was found to be markedly

increased simultaneously in both, exosomes generated from tumor

cells and tumor tissues. The lncRNA KCNQ1OT1 supports

colorectal tumorigenesis by modulating PD-L1 ubiquitination and

limiting CD8+ T-cell response via the autocrine effect of CRC

exosomes (Xian et al., 2021). The prominent lncRNA TUC339,

overexpressed in exosomes derived of HCC cells, promotes HCC

cellular proliferation and obstructs cell adherence with an

extracellular matrix on transmission to adjacent tumor niche via

exosomes. On the basis of recent evidences, the transfer of lncRNA to

the immune cells like macrophages has been promulgated via

exosomes, leading to alteration in their phenotype. For example,

in macrophages, lncRNA TUC339 modulates cytokine secretion,

phagocytic activity, and polarization toward the M1/M2 state (Li

et al., 2018). In a recent study, exosomes secreted by renal cell

carcinoma (RCC) encases lncARSR, which leads macrophages to

polarize fromM1 toM2, to secrete cytokines, engage in phagocytosis,

and initiate angiogenesis, hence substantially contributing in the

development of malignancies. Additionally, by serving as competing

endogenous RNA for miR-34/miR-449-5p, lncARSR encourages

polarization of macrophages by activating the STAT3 pathway

(Zhang et al., 2022).

circRNAs
PD1 is a negative costimulatory receptor that is important for

suppressing T-cell activation and is associated with SHP2. In

addition, SHP2 plays an imperative role in oncogenic KRAS-

driven malignancies, promoting tumor development. Enhanced

circUSP7 levels blunt the clinical efficiency of anti-PD-1 therapy

orchestrated via the exosomal circUSP7/miR-934/SHP2 axis. In

NSCLC patients, circUSP7 promotes tumor progression and is

critical for immune evasion (Chen et al., 2021). Similarly,

circGSE1 facilitates immunological escape of HCC by facilitating

the proliferative ability of Tregs via modulating the miR-324p/

TGFBR1/Smad3 axis (Huang et al., 2022). Correspondingly, in

patients with HCC, enhanced levels of circUHRF1 imply NK cell

malfunction and a poor clinical outlook. CircUHRF1 restricts NK

cell-derived IFN-γ and TNF-α secretion and is predominantly

secreted in plasma exosomes of HCC patients. Elevated levels are

linked to lower the NK cell percentage and tumor infiltration.

Furthermore, circUHRF1 inhibits NK cell function by elevating

TIM-3 levels by the inhibition of miR-449c-5p (Zhang et al., 2020).

By serving as a miR-141-3p sponge, exosomal hsa-circ-0085361

(circTRPS1) has been associated with metastatic spread of bladder

cancer cells. GLS1-mediated glutaminemetabolismwas revealed to be

implicated in circTRPS1-mediated perturbations via integrated

metabo-transcriptomics study. Exosomal-circTRPS1 secreted by

knocked-down breast cancer cells hindered the exhaustion of

CD8+ T lymphocytes and impeded breast cancer cell’s propensity

to become malignant. Therefore, it might be concluded that the

circTRPS1/miR-141-3p/GLS1 axis regulates the equilibrium of

intracellular reactive oxygen species (ROS) generation and

exhaustion of CD8+ T cell via breast cancer exosomes (Yang et al.,

2022). It has also been suggested that exosome-encapsulated

circ_6790 released from MSC downregulates S100A11 in PDAC

cells and, thereby aids in immune evasion. Along with the antitumor

effects of circ_6790-loaded exosomes derived from BM-MSC, their

supporting role in enhancing the killing effects of activated T cells has

been demonstrated. Such exosomes diminished the levels of PD-L1

and CTLA-4 in PDAC cells co-cultured with exosomes and T cells in

addition to reducing the secretion of IFN-γ and TNF-α (Gao et al.,

2022).

Conclusion

Initially, cancer hallmarks were defined as the attainment of

functional abilities that enable cancer cells to survive, proliferate, and

metastasize. Later on, it has been found that exosomes facilitate

information exchange among cells facilitating tumor cell development

and progression. Recent years have seen a surge in studies focusing on

exosomal ncRNAs, revealing important functions of these molecules

in the progression of cancer and suggesting potential new uses for

them.Among the several ncRNAs,miRNAs, lncRNAs, and circRNAs

are considered the mainstream regulatory molecules. Exosomal

ncRNAs play a role in oncogenic spread, immunological

regulation, and the establishment of pre-metastatic niches.

In this review, we have called attention to the biological attributes

of exosomes and showcased an extensive update about the roles of

exosomal ncRNAs in tumor hallmarks, especially growth, metastasis,

angiogenesis, replicative immortality, cell death,metabolic regulation,

and immune modulation. The exosomal ncRNA interacts with the

promoter or enhancer region and modulates the gene expression.

The released ncRNAsmay act as a tumor promoter in one cancer and

as a tumor suppressor in another sort of cancer. This finding

highlights the possibility that the roles and expression patterns of

at least certain exosomal ncRNAs in cancer development and

advancement are context-dependent. Concentrating on their roles

as tumor suppressor and tumor promoter genes, here, we examine

the functional relationship between exo-ncRNAs implicated in

cancer development and progression.

It should be noted that a range of exosomal constituents can

be exploited as a biomarker (diagnosis and prognosis) and

treatment target of cancer. Several exosomes encapsulated

ncRNAs can serve as predictive markers of associated cancers.

Endogenous ncRNAs contained within circulating exosomes

may also serve as a source of valuable information and can be

targeted by a specialized treatment protocol. It may help in

designing specific drugs and other specific inhibitors that are

closely related to these RNAs, aiding in advancement toward

personalized treatment regimens.

In addition to breakthroughs in mechanistic research, a key

difficulty in the clinical setting that needs attention is the

limitation of potentially harmful RNAs and the optimization

of medication doses for exosomal therapy. Another uncharted
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concern in the sector is the quest to guarantee the quality and

safety of new methodology applied for the isolation and

utilization of exosomes. As we gain a greater understanding of

the nature of exosomes, diagnostic and therapeutic tools are also

advancing. Future research will most likely focus on in vivo

models and clinical applications to help resolve these challenges.

Exploratory research in this emerging segment is anticipated to

provide knowledge that is highly clinically relevant and has the

capability to positively transform the lives of cancer patients.
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Background: Head and neck squamous cell carcinoma (HNSCC) is the seventh

most common type of cancer worldwide. Its highly aggressive and

heterogeneous nature and complex tumor microenvironment result in

variable prognosis and immunotherapeutic outcomes for patients with

HNSCC. Neurotrophic factor-related genes (NFRGs) play an essential role in

the development of malignancies but have rarely been studied in HNSCC. The

aim of this studywas to develop a reliable prognosticmodel based onNFRGs for

assessing the prognosis and immunotherapy of HNSCC patients and to provide

guidance for clinical diagnosis and treatment.

Methods: Based on the TCGA-HNSC cohort in the Cancer Genome Atlas

(TCGA) database, expression profiles of NFRGs were obtained from

502 HNSCC samples and 44 normal samples, and the expression and

prognosis of 2601 NFRGs were analyzed. TGCA-HNSC samples were

randomly divided into training and test sets (7:3). GEO database of 97 tumor

samples was used as the external validation set. One-way Cox regression

analysis and Lasso Cox regression analysis were used to screen for

differentially expressed genes significantly associated with prognosis. Based

on 18 NFRGs, lasso and multivariate Cox proportional risk regression were used

to construct a prognostic risk scoring system. ssGSEAwas applied to analyze the

immune status of patients in high- and low-risk groups.

Results: The 18 NFRGs were considered to be closely associated with HNSCC

prognosis and were good predictors of HNSCC. The multifactorial analysis

found that the NFRGs signature was an independent prognostic factor for

HNSCC, and patients in the low-risk group had higher overall survival (OS) than

those in the high-risk group. The nomogram prediction map constructed from

clinical characteristics and risk scores had good prognostic power. Patients in
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the low-risk group had higher levels of immune infiltration and expression of

immune checkpoints and were more likely to benefit from immunotherapy.

Conclusion: The NFRGs risk score model can well predict the prognosis of

HNSCC patients. A nomogram based on this model can help clinicians classify

HNSCC patients prognostically and identify specific subgroups of patients who

may have better outcomes with immunotherapy and chemotherapy, and carry

out personalized treatment for HNSCC patients.

KEYWORDS

head and neck squamous cell carcinoma, neurotrophic factor, prognostic signature,
nomogram, tumor microenvironment, immunotherapy

1 Introduction

Head and neck cancer is the seventh most common type of

cancer in the world, with a high incidence in Southeast Asia,

Brazil, and Central Europe (Kaidar-Person et al., 2018). An

estimated 700,000 new cases in 2018 augur well for a serious

prognosis, of which 350,000 are expected to be fatal (Bray

et al., 2018). At present, the treatment of HNSCC has been

based on various treatment methods, such as chemotherapy,

radiotherapy, and photodynamic therapy, and the survival

rate of HNSCC patients within 5 years after early disease

treatment is 70–90% (Lim et al., 2017). However, due to its

highly invasive and heterogeneous nature, the prognosis of

patients with HNSCC remains poor (Liang et al., 2021). At the

same time, most cases of HNSCC are diagnosed at an advanced

stage with poor medical treatment and require surgery to

dismember the organs needed to speak and swallow

(Hashim et al., 2019). For individuals in countries with

limited access to tertiary care centers, survival rates are

30%–40% (Sinha et al., 2003; Attar et al., 2010;

Pruegsanusak et al., 2012; Nandakumar and Nandakumar,

2016). Although the recurrence rate is unacceptably high

after the patient recovers. In fact, nearly half of oral cancer

patients will have a recurrence (Kademani et al., 2005; Koo

et al., 2006; Haddad and Shin, 2008), and the 5-year survival

rate in this condition is 35%–45%, which is frustrating

(Kademani et al., 2005; Bell et al., 2007). To quell these

adverse consequences, and to recognize that HNSCC is one

of the most inflammatory tumor microenvironments (TME)

of all solid tumors, treatment of head and neck cancer has

begun to shift to immunotherapy (Horton et al., 2019). Now

immunotherapy has become a model for cancer treatment and

has received widespread attention as a precision medicine

program for the treatment of solid malignancies (Xie et al.,

2017). Since risk stratification based solely on tumor size,

lymph node and distant metastases (TNM staging), and

histological grade are not sufficient to predict prognosis in

patients with HNSCC, such as squamous cell carcinoma of the

tongue versus squamous cell carcinoma of the oral cavity,

therefore there is an urgent need for more accurate models that

predict prognosis (Kim et al., 2017; Gao et al., 2022). Nerve

growth (Tumor neurogenesis) in the tumor

microenvironment has recently been shown to be critical

for cancer progression. Neurotrophic factors such as nerve

growth factor (NGF), and brain-derived neurotrophic factor

(BDNF), are considered drivers of neurogenesis during

development and regeneration, playing a key role in the

crosstalk between tumor cells and nerves (Gao et al., 2018).

Studies have shown that nerves release neurotransmitters to

promote tumor growth, and tumors secrete neurotrophic

factors from each other, stimulate nerve growth and tumor

cells to stimulate proliferation, survival, migration, and/or

invasion, and favor tumor angiogenesis, while neurotrophic

growth factors secreted by cancer cells can also drive the

growth of nerves in solid tumors (Jobling et al., 2015;

Chopin et al., 2016; Griffin et al., 2018). The effect of

growing nerves on tumors has also been studied in other

cancers, such as tumor cells and nerve endings such as

laryngeal cancer and colorectal cancer by secreting and

absorbing neurotrophic factors; Causing peripheral invasion

(PNI) and promoting tumor progression (Hou et al., 2021;

Zhang et al., 2022a). Tumor denervation of prostate, stomach,

and pancreatic cancers reduces tumor growth and invasion;

The presence of nerves is associated with metastasis and

increased tumor grading (Rowe et al., 2020). Some studies

have shown that BDNF protects neuroblastoma cells from

chemotherapeutic agent-induced cytotoxicity. In the Triple-

Negative Breast Cancer (TNBC) brain metastasis model,

BDNF was shown to autocrine regulate the expression of

the BDNF-tumor cell trophic carnosine kinase receptor B

(TrkB) gene, thereby increasing the migration activity of

cells (Zimmer, 2021). Nerve growth factor (NGF) from

cancer cells causes increased nerve density in the tumor

microenvironment (Rowe et al., 2020), while nerve cells

expressing nerve growth factor (NGF) receptors of NTRK1

(TRKA) and NGFR (p75NTR) were found, and it was thought

that there was a correlation between a large amount of NGF

produced by cancer cells and the presence of nerves (p = 0.02)

(Griffin et al., 2020). NGF has a promoting effect on various

cancers, and anti-NGF has been shown to reduce tumor
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proliferation (Ye et al., 2011). In addition, we also found that

NGF has the potential to selectively affect the proliferation of

breast cancer cells rather than normal breast epithelial cells, so

NGF may be the best treatment target for specific cancer types;

The effect of NGF on cancer cells varies depending on the

expression status of TrkA and/or p75NTR and varies with the

use of chemotherapy drugs, and may have a greater impact on

immune or drug therapeutic effects (Noh et al., 2017). This

neurotrophic effect of NGF in cancer may be associated with a

large number of human malignancies as well as other

neurotrophins and may have an effect on cancer pain

(Griffin et al., 2018).

In recent years, with the development of molecular biology

techniques and bioinformatics, new biomarkers have the

potential to become effective and specific prognostic factors

for different types of cancer, including HNSCC. As far as we

know, although there are a large number of studies exploring

the mechanism and role of neurotrophic factors in various

cancers, research on determining the prognosis of HNSCC as a

target for immunotherapy through neurotrophic factor-

related genes is still a blank. In view of the fact that its

value and mechanism in the diagnosis and prognosis of

HNSCC have not yet been clarified, this study used the

TCGA-HNSC dataset to comprehensively analyze the

relationship between the expression differences of NFRGs

and the prognosis of HNSCC and screened out 18 reliable

NFRGs. On this basis, we further constructed a prognostic

model based on NFRGs, made a risk-scoring formula, and

analyzed the correlation between the prognosis model and the

immune microenvironment, gene mutation burden, and

immunosuppressive point therapy, as well as the sensitivity

of chemotherapy drugs. Through the comprehensive analysis

of genomic data and clinically relevant data, we aim to

demonstrate the value of NFRGs in predicting the

prognosis of patients with HNSCC and improving the

diagnosis of patients with HNSCC, and exploring more

effective personalized treatment options.

2 Materials and methods

2.1 Data sources

We downloaded the TCGA-HNSC cohort from the TCGA

database (https://portal.gdc.cancer.gov/), which includes

502 HNSCC samples and 44 normal samples. Of these,

501 HNSCC samples with complete clinical information were

included in the follow-up analysis. The sample size of HNSCC

patients at the M stage varied greatly. This stage was

consequently excluded from the analysis. Based on relevant

clinical information, the HNSCC cohort was randomly

divided into training risk groups and test risk groups using

the cart R software package. The ratio is 7:3. The model is

externally validated using the GSE41613 dataset collected in

GEO (Gene Expression Omnibus) as a validation set (N = 97).

2.2 Model construction

The model was constructed using univariate Cox regression

analysis to screen for prognostically associated neurotrophic

factor-related genes in the HNSCC cohort. Subsequently,

neurotrophic factor-related genes (p < 0.05) significantly

associated with prognosis in patients with HNSCC were

incorporated into the Least Absolute Shrinkage and Selection

Operator (LASSO) COX regression models, and the key genes

and their regression coefficients were determined using the R

package “glmnet” (Friedman et al., 2010). The risk fraction is

generated using the following formula: risk fraction =

ExpressionmRNA1 × CoefmRNA1 + ExpressionmRNA2 ×

CoefmRNA2 +. . ExpressionmRNAn × CoefmRNAn。

2.3 Model formulas

The risk score of all patients is calculated according to the

output model equation, and then the optimal cut-off value is

calculated using the R packet “survminer” all HNSCC patients

are divided into high-risk and low-risk groups, and the survival

curves of high-risk and low-risk groups are plotted. PCA analysis

using R software and “pec” R packages are used to calculate the

c-index. Time-dependent ROC curve analysis was performed

using the “survivalROC” R package to assess the predictive power

of genetic traits.

2.4 Independent prognostic analysis and
nomogram predictive model construction

Univariate Cox regression and multivariate Cox regression

analysis were used to assess whether the risk score was an

independent prognostic factor. Using the “rms” R packet, a

line plot was constructed using risk score, age, tumor stage,

and model gene expression to predict the overall survival at 1, 3,

and 5 years in HNSCC patients in the TCGA dataset.

2.5 Immunoassay of risk signatures

Currently recognized methods, including XCELL (Aran et al.,

2017; Aran, 2020), TIMER (Chen et al., 2018; Li et al., 2020),

QUANTISEQ (Finotello et al., 2019; Plattner et al., 2020),

MCPCOUNT (Dienstmann et al., 2019), EPIC (Racle et al.,

2017), CIBERSORT (Chen et al., 2018; Zhang et al., 2022b) and

CIBERSORT-ABS (Tamminga et al., 2020) is used to measure

immune infiltration scores. Spearman correlation analysis was
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used to explore the correlation between risk fraction and immune

cells. To distinguish the immune infiltrative status of patients in the

high-risk and low-risk groups, we used a single-sample GSEA

(ssGSEA) method to calculate the immune cell characteristics of

patients with HNSCC. At the same time, we collected 19 inhibitory

immune checkpoints with therapeutic potential from Auslander’s

study to compare their differences between high- and low-risk

groups (Auslander et al., 2018). We obtained the gene set

associated with cancer-immune circulation from the website

developed by Xu et al (http://biocc.hrbmu.edu.cn/TIP/) Xu et al

(2018). and the gene set that was positively correlated with the

clinical response to the anti-PD-L1 drug (atezolizumab) from the

research features of Mariathasan (Mariathasan et al., 2018). Using

the GSVA algorithm (Hänzelmann et al., 2013)to calculate the

enrichment scores of genetic signatures positively correlated with

the cancer immune cycle and immunotherapy between the high-risk

and low-risk groups, the p-value <0.05 was considered to have a

significant difference’. The ggcor’R software package is used to

analyze the correlation between risk scores and the two genetic

traits described above.

2.6 Somatic mutation analysis

We downloaded the mutation data available to patients with

TCGA-HNSC from the TCGA Data Portal (https://portal.gdc.

cancer.gov/). Somatic mutation data is stored in mutation

annotation format (MAF), and we analyze mutation data

from HNSCC samples using maftools (Mayakonda et al.,

2018). We calculated the individual tumor mutation burden

(TMB) score for each HNSCC patient and explored the

relationship between risk score and TMB. The TMB score is

calculated as follows: (Total Mutation/Total Coverage Base) ×

10̂6 (Robinson et al., 2017).

2.7 Drug sensitivity

The treatment response of patients in the high- and low-risk

groups was assessed using the pRRophetic R software package,

which was determined by each HNSCC patient in Cancer Drug

Susceptibility Genomics (GDSC) (https://www.cancerrxgene.

org/)and Cancer Therapeutics Response Portal (CTRP)

(https://portals.broadinstitute.org/ctrp/) determined by the

semi-maximum inhibitory concentration (IC50) (Geeleher

et al., 2014).

2.8 Statistical analysis

Statistical analysis is carried out using R software v4.1.3.

p-values < 0.05 are considered statistically significant, and FDR

(false detection rate) q < 0.05 is considered statistically

significant.

3 Results

3.1 Identification of candidate NFRGs

Figure 1 shows the flow chart of the study protocol. To find

biomarkers that can effectively predict the prognosis of HNSCC,

we developed a risk score model based on neurotrophic factor-

related genes to assess the prognosis of HNSCC patients. Clinical

information and mRNA expression of 546 HNSCC samples were

collected and downloaded from The Cancer Genome Atlas

(TCGA). The gene set of neurotrophic factors was obtained

from the Genecard database, which contains 2601 genes. A

heat map was created based on the difference in mRNA

expression between tumor samples (n = 502) and normal

samples (n = 44) (Figure 2A). The differential expression

analysis of genes based on |log2FC|>0.5 was performed on

HNSCC tumor tissues by applying the “limma” R package,

and 562 genes with up-regulated expression and 152 genes

with down-regulated expression were obtained (Figure 2B).

We performed univariate Cox analysis of differentially

expressed NFRGs by the “survival” R package and extracted

305 prognostically relevant NFRGs (p < 0.05). Next, we subjected

these 305 NFRGs to lasso regression analysis and obtained

31 NFRGs (Figures 2C,D), and further downscaled these high-

dimensional data by a multifactorial Cox proportional risk

regression model, and finally identified 18 NFRGs, namely

TGFB1, IL10, CDKN2A, ADIPOQ, EPO CHAT, LPL, TAC1,

CTSG, CYP2D6, DES, RNASE3, PGK1, SFRP1, TRIB3, TMEFF2,

GRIA3, and EFNB2. And the corresponding regression

coefficients coef were obtained as 0.2934, −0.9684, −0.0727,

0.3209, −0.3963, 0.3167, 0.1622, 1.5022, −0.1324, −0.4854,

0.0532, 0.8230, 0.3546, −0.0934, 0.3191 0.9016, −0.4756 and

0.2471. In multivariate Cox analysis, the linear prediction

model was built based on 18 NFRGs weighted by their

regression coefficients. 18 NFRGs weighted by their

correlation coefficients were given by the formula: risk score

as = (0.2934 × TGFB1 expression level) + (−0.9684 ×

IL10 expression level) + (−0.0727 × CDKN2A expression

level) + (0.3209 × ADIPOQ expression level)+(−0.3963 × EPO

expression level) + (0.3167 × CHAT expression level) + (0.1622 ×

LPL expression level) + (1.5022 × TAC1 expression level) +

(−0.1324 × CTSG expression level)+(-0.4854 ×

CYP2D6 expression level) + (0.0532 × DES expression level)

+ (0.8230 × RNASE3 expression level) + (0.3546 ×

PGK1 expression level) + (−0.0934×SFRP1 expression level) +

(0.3191 × TRIB3 expression level) + (0.9016 ×

TMEFF2 expression level) + (−0.4756 × GRIA3 expression

level) + (0.2471 × EFNB2 expression level).
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FIGURE 1
Workflow of the study.

FIGURE 2
Identification of candidate NFRGs. (A)Heatmap of the difference inmRNA expression between tumor samples and normal samples. (B)Volcano
map of NFRGs with differential expression. (C) Adjustment of parameters and (D) cross-validation in the LASSO model.
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3.2 Validating the accuracy of the NFRGs
model to predict patient prognosis

To verify the accuracy of the prognostic model we

constructed, patients included in the study (n = 546) were

randomly divided into training cohorts and test cohorts (train:

test = 7:3). In the training cohort, mortality in surviving HNSCC

patients increased with increased risk (Figures 3A,B). We then

constructed a time-dependent receiver operation characteristics

(ROC) curve and found that both the ROC curve of the GEO

cohorts and the ROC curve of the TCGA cohorts show that the

performance of the prognostic signature we constructed is very

prominent (Figures 3C–F). At the same time, the survival curve

was constructed to analyze the prognosis differences between the

high-risk and low-risk groups, and it was found that the

prognosis of high-risk patients was worse than that of low-

risk patients in both test and training cohorts (p < 0.001).

3.3 PCA correlation analysis

In the TCGA and GEO cohorts, we divided the samples into

high and low-expression groups based on median risk scores,

respectively, and then performed PCA analysis based on model

genes versus neurotrophic factor-related genes to obtain PCA

plots of neurotrophic factor genes versusmodel genes in the GEO

cohorts (Figure 4A,B) and the TCGA cohorts for the sum group

(Figures 4C,D), test group (Figures 4E,F) and training group

(Figures Figure4G,H) of the neurotrophic factor genes with the

PCA plot of the model genes (Figures 4C,D). The results showed

FIGURE 3
Validating the accuracy of the NFRGs model to predict patient prognosis (A,B) Partial likelihood deviation map. Time-dependent ROC curve of
HNSCC patients (C) in the GEO cohort; (D) in the TCGA all cohort; (E) in the TCGA test cohort; (F) in the TCGA train cohort. K-M survival curve of
HNSCC patients (G) in the GEO cohort; (H) in the TCGA all cohort; (I) in the TCGA test cohort; (J) in the TCGA train cohort.
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FIGURE 4
PCA correlation analysis in TCGA andGEOCohorts. In GEOCohort: (A) PCA plots of neurotrophic factor genes; (B) PCA plots ofmodel genes. In
TCGA Cohort: (C) PCA plots of neurotrophic factor genes in the sum group; (D) PCA plots of model genes in the sum group; (E) PCA plots of
neurotrophic factor genes in the test group; (F) PCA plots of model genes in the test group; (G) PCA plots of neurotrophic factor genes in the training
group; (H) PCA plots of model genes in the training group.
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that the high-risk and low-risk groups were most clearly

differentiated among the model gene groups.

3.4 Combining clinical characteristics to
build nomograms

Considering that the constructed risk model of NFRGs was

significantly associated with the prognosis of HNSCC patients,

to further determine whether the prognostic characteristics

constructed based on the 18 NFRGs could be used as an

independent factor to predict prognosis, we combined the

OS of HNSCC patients with their clinical characteristics for

univariate and multivariate Cox analyses. According to the

results of univariate analysis, T (p = 0.005), N (p < 0.005),

Stage (p = 0.003), and risk score (p = 0.003) were significantly

associated with the prognosis of HNSCC patients (Figure 5A).

Subsequent multifactorial Cox analysis was performed, and

the risk score remained a reliable, independent risk predictor

(p < 0.001) (Figure 5B). To expand the clinical application and

usability of the constructed NFRGs risk model for HNSCC, we

constructed nomograms based on age, grade, stage, T, N, and

FIGURE 5
Independent prognostic analysis of risk scores and clinical parameters. Univariate (A) and multivariate (B) COX regression analysis of the
signature and different clinical features. (C)Nomogram for predicting 1-year, 3-year, and 5-year OS of patients with HNSCC. (D)The calibration curve
of the constructed nomogram of 1- year, 3- year, and 5-year survival. (E) Multi-index ROC analysis in the test cohort. (F) Decision curve analysis.
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risk score as a means of predicting 1-, 3-, and 5-year

prognostic survival probabilities. In addition, the model

results showed that the risk score had the greatest influence

on predicting OS and also indicated that the risk model based

on 18 NFRGs genes could better predict the prognosis of head

and neck squamous cell carcinoma (Figure 5C). The

calibration curves also showed satisfactory agreement

between predicted and observed values in terms of the

probability of 1-year, 3-year, and 5-year OS (Figure 5D).

The NFRGs risk score model (AUC = 0.756) was more

predictive of HNSCC prognosis than the traditional age

and tumor grading and clinicopathological characteristics

(Figure 5E). Consistent with this result, our model had

the highest net benefit, indicating that our NFRGs risk

model is more influential in clinical decision-making

(Figure 5F).

FIGURE 6
Correlation analysis of risk scores and clinicopathological features and signatures based on 18 NFRGs (A) heat maps (B) gender, (C) age, (D) N
stages, (E) M stages, (F) T stages, (G) tumor grades, (H) pathological stages.
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3.5 Correlation analysis of NFRGs risk
scores with clinicopathological features

The heat map shows the association between the gender,

age, grade, stage, T, N, and risk score of 18 NFRG genes found

in the prognostic risk model and the samples of all head and

neck squamous cell carcinoma patients in the TCGAs

(Figure 6A). At the same time, to examine the correlation

between the risk model and the clinical pathological

characteristics of patients with HNSCC, the risk score of

each subgroup was compared by the Wilcoxon test in terms

of age, tumor grade, stage, T stage, M stage, N stage, and

gender. The results showed that the risk score was significantly

correlated with tumor grade (p < 0.05), T stage (p < 0.05), and

stage (p < 0.05) but not with age, M stage, N stage, and gender.

(Figures 6B–H).

3.6 Clinical subgroup analysis of the
NFRGs risk model

To further understand whether there are differences in the

prognosis of patients in different clinical subgroups, we collated

clinical data from the entire TCGA sample. Subsequently, the

samples were divided into different subgroups according to age

(>65 and≤65 years), gender (male and female), tumor grade

(grade I-II and III-IV), pathological N stage (N0 and N1-3,

pathological stage (I-III and III-IV) and pathological T stage

(T1-2 and T3-4) for further stratified survival analysis (Figure 7).

The results showed that in all subgroups, patients in the high-risk

group had significantly lower OS than the low-risk group

(Figures 7A–L). These results suggest that our NFRGs risk

model also has a reliable predictive value for the prognosis of

different clinical subgroups of HNSCC.

FIGURE 7
Prognostic power of the NFRGs riskmodel for overall survival for multiple HNSCC subtypes. (A) Age >65 years. (B) Age≤65 years. (C) Female. (D)
Male. (E) Grade I-II. (F) Grade III-IV. (G) N0. (H) N1-3. (I) Stage I-III. (J) Stage III-IV. (K) T1-2. (L) T3-4.
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3.7 NFRGs signature performs better than
other signatures in prognosis prediction

To further demonstrate whether our constructed NFRGs

signature has accurate predictive power for HNSCC patients,

we compared it with four published prognostic signatures,

namely the Fang signature, Liu signature, Song signature, and

Sun signature. To ensure the comparability of the signatures, we

calculated risk scores for each HNSCC sample in the entire

TCGA cohort using the same method and transformed the risk

scores across the four signatures according to the previous

method. Although these four signatures effectively divided

HSNCC patients into two subgroups with significantly

different prognoses, time-dependent ROC curve analysis

showed that these four signatures had lower AUC values at 1-

, 3-, and 5-year survival than our NFRGs signature (Figures

8A–E). In addition, Figure 8F shows that our NFRGs signature

had the highest C-index (AUC = 0.712). All these results suggest

that our constructed NFRGs signature has a more prominent

predictive performance.

FIGURE 8
Comparison of theNFRGs signaturewith othermodels (A) KM curves and ROCs for NFRGs signature. (B–E) KM curves and ROCs for riskmodels
constructed by others. (F) C-indexes for five risk models.
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FIGURE 9
NFRGs risk score predicts tumor microenvironment and immune cell infiltration. (A) Immune cell bubble plots. (B) Immune cell and immune
function ssGSEA scores between high and low-risk groups. (C) TME component analysis. (D) Immune checkpoint differences between high- and
low-risk groups. (E) ICB response signature differences between high and low-risk groups. (F) Differences in immune steps with tumor between
high- and low-risk groups. (G) Correlation between risk score and ICB response signature. (H) Correlation of risk scores with each step of the
tumor immunization cycle. *p < 0.05; **p < 0.01; ***p < 0.001.

Frontiers in Genetics frontiersin.org12

Peng et al. 10.3389/fgene.2022.1010044

269

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1010044


3.8 NFRGs risk score predicts tumor
microenvironment (TME) and immune cell
infiltration

Immune features of TME include the expression levels of

immune checkpoint inhibitors (ICIs), infiltration of tumor-

infiltrating immune cells (TIICs), and activity of the cancer

immune cycle (Fan et al., 2021). First, we investigated the risk

score based on XCELL, TIMER, QUANTISEQ,

MCPCOUNTER, CIBERSORT, CIBERSORT- ABS, and EPIC

algorithms and explored the correlation between risk score and

infiltrating immune cell abundance (Figure 9A). Subsequently,

we performed a comparison of one-sample GSEA (ssGSEA)

scores for immune cells and immune function, with the vast

majority of immune cells and immune function scoring

significantly greater in the low-risk group than in the high-

risk group (Figure 9B).

The results suggest that this NFRGs risk score model may

significantly inhibit or enhance the expression of specific

immune cell types and immune function, thus affecting the

response to immunotherapy. In addition, as infiltrating

immune cells are an important component and one of the

characteristics of the tumor microenvironment (TME),

changes in the expression of immune cell types can lead to

changes in TME composition, so we analyzed the TME

composition of HNSCC samples using ESTIMATE. The

results showed that the immune score (p < 0.001) as well as

the ESTIMATE score (p < 0.01) were higher in the low-risk

group compared to the high-risk group, indicating that the

overall immune level and immunogenicity of the tumor

microenvironment were higher in the low-risk group

(Figure 9C). Given the importance of checkpoint-based

immunotherapy, further differences in immune checkpoint

expression were found between the two groups. Eight immune

checkpoint genes were found to be significantly upregulated in

the low-risk group, including IDO1, CTLA-4, PD-1, TIGIT,

CEACAM1, KIR3DL, and BTLA. ADORA2A (Figure 9D).

Based on these results, it can be suggested that risk scores

can guide clinicians in the use of immune checkpoint-targeted

drugs. Since the immune microenvironment mediates ICB

responses, we further analyzed the differences in ICB

response signatures between high and low-risk groups and

found that in the low-risk group, Systemic lupus

erythematosus, Viral carcinogenesis, Base excision repair,

p53 signaling pathway, Proteasome, and microRNAs in

cancer risk scores were higher in the low-risk group than in

the high-risk group, and there were no significant differences

in other ICB response signatures (Figure 9E). Meanwhile, the

correlation between NFRGs risk scores and ICB-related

positive signatures was analyzed, and no significant

correlation was found between them (Figure 9G).

Subsequently, to further refine the immune profile of the

HNSCC tumor microenvironment, we also performed a

differential analysis of tumor immune step risk scores

between high and low-risk groups. In the low-risk group,

upregulation of activity was observed for most steps in the

cycle, including priming and activation (step 3), transport of

immune cells to the tumor (step 4) (T-cell recruiting,

CD4 T-cell recruiting, CD8 T-cell recruiting, Th1 cell

recruiting, DC cell recruiting, Th22 cell recruiting,

macrophage recruiting, NK cell recruiting, Th17 cell

recruiting, B-cell recruiting, Th2 cell recruiting, Treg cell

recruiting), Infiltration of immune cells into tumors (Step

5), Recognition of cancer cells by T cells (Step 6), Killing of

cancer cells (Step 7) (Figure 9F). Simultaneous correlation

analysis between risk score and tumor immune cycle steps

revealed that only priming and activation (step 3), DC cell

recruiting, and Th22 cell recruiting were significantly

negatively correlated with risk score (Figure 9H).

3.9 Mutation analysis and biological
functional enrichment analysis

We analyzed and visualized somatic mutation data from

HNSCC patients by distinguishing between high-risk and low-

risk groups. The top three mutated genes in high-risk patients

were TP53 (72%), TTN (40%), and MUC16 (19%); the top three

mutated genes in low-risk patients were TP53 (60%), TTN

(34%), and SYNE1 (19%) (Figures 10A,B). It has been shown

that different mutational statuses and expression patterns of

wild type may lead to different clinical outcomes of the immune

response, with wild-type TP53 patients having a higher

sensitivity to radiotherapy for HNSCC (Cao et al., 2019). In

addition, TP53 mutations are more likely to occur in HPV-

negative HNSCC and less common in HPV-positive HNSCC

(Helman et al., 2014), possibly suggesting that TP53 acts as an

indicator of radiotherapy sensitization target and HPV typing

in patients with HNSCC, which has great value for clinical

studies. To elucidate the potential biological pathways

associated with our risk genes, we performed Gene set

enrichment analysis (GSEA) (Figures 10C,D) and Gene Set

Variation Analysis (GSVA) using the Kyoto Gene and

Genome Encyclopedia (KEGG) pathway database on risk

group samples (Figure 10E) for Kyoto genes; the results

showed that highly activated gene sets in the high-risk group

were associated with RNA polymerization and degradation as

well as cell cycle, cancer-related pathways. We subsequently

obtained pathways that were significantly enriched in the

high and low-risk groups. Among them, the expression of

gene sets associated with primary immunodeficiency

pathways was significantly downregulated in the low-risk

group. These functional enrichment results also confirm

the correlation between the immune microenvironment

and gene expression differences analyzed in the previous

sections.
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FIGURE 10
Mutation analysis and biological function enrichment analysis (A)Mutation analysis of high-risk group (B)Mutation analysis of low-risk group (C)
Enrichment pathway of high-risk significantly up-regulated gene set (D) Enrichment pathway of low-risk significantly down-regulated gene set (E)
Heat map of difference in enrichment scores between high- and low-risk groups.
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3.10 Multi-omics mutation characteristics
and drug susceptibility analysis of NFRGs

To further explore the biological mechanism of abnormal

expression of these 18 target genes, we analyzed them from

different omics levels such as genome level and copy number

level. Single nucleotide site variation (SNV) results showed that

the Nonsense_Mutation of NFRGs was the most common

variant classification in the TCGA-HNSC cohort, while the

most prevalent variant type was single nucleotide

FIGURE 11
Multi-omics mutation characteristics and drug sensitivity analysis of NFRGs. (A,B)Classification of mutations in HNSCC andmutation incidence
of NFRGs. (C) The proportion of different types of copy number variation in NFRGs. (D and E) The distribution of copy number variant amplification
and deletion in homozygous mutations versus heterozygous mutations. (F) Correlation analysis of copy number variation and expression of NFRGs.
(G,H) Correlation analysis of expression of NFRGs with the sensitivity of chemotherapeutic drugs in CTRP and GDSC cohorts. (I) Analysis of the
role of expression activity of NFRGs in the regulation of cancer-related pathways.
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polymorphism (SNP). Compared to other SNV categories, C>T
has the highest frequency (Figure 11A). And the mutation

occurred in 131 patients with HNSCC, with CDKN2A having

the highest mutation frequency (Figure 11B). Subsequently, the

analysis of copy number variation (CNV) was carried out to

summarize the ratio of homozygous mutations to heterozygous

mutations in NFRGs copy number variations in the sample

(Figure 11C), In addition, we counted the two mutations

separately, and the results showed that the amplification of

homozygous mutations in the sample was mainly ADIPOQ,

while CDKN2A was mainly characterized by copy number

deletion, and the amplification of heterozygous mutations was

mainly ADIPOQ, while the LPL was mainly copy number

deletion (Figures 11D,E). In addition, the Speedman

correlation coefficient analysis between copy number variation

and gene expression was carried out, and it was found that the

copy number variation of IL10 was down-regulated in HNSCC,

while CDKN2A, EFNB2, TRIB3, PGK1, EPO were upregulated

(Figure 11F), Therefore, abnormal gene expression may be the

result of a combination of single nucleotide variation and copy

number variation. In addition, we obtained significant

correlations between the expression differences of NFRGs and

the drug sensitivity of the Cancer Therapeutics Response Portal

(CTRP) and Genomics of Drug Sensitivity in Cancer (GDSC)

databases (Figures 11G,H). This means that the expression of our

risk profile genes can be used as a predictor of drug sensitivity to

chemotherapy in patients or as a target for future drug

sensitization. Finally, we explore the relationship between the

expression of NFRGs and the activity of cancer-related pathways.

It can be seen that under the regulation of 18 genes, the cell cycle,

RTK, and TSCmTOR pathways of patients with HNSCC are

inhibited, while the DNA-Damage, EMT, apoptosis, Hormone

AR, and Hormone ER pathways are activated or inhibited

(Figure 11I).

3.11 TIDE and drug susceptibility analysis
based on NFRGs

Among the 10 immunotherapeutic agents applied in the

treatment of HNSCC, the low-risk group included AZ628

(p = 1.4e-05), BMS-509744 (0.00015), Dasatinib (p = 7.1e-05),

Mitomycin C (p = 8.2e-05), Pyrimethamine (p = 7.7e- 06),

Roscovitine (p = 0.00022), Sorafenib (p = 0.00045), WH-4-023

(p = 1.1e-07), IC50 were higher compared to the high-risk group

(Figures 12A–C,E–I). In addition, we found that two other

chemical or targeted drugs, KIN001-135 (P = 2e-05), and

Z-LLNIe-CHO (p = 2.5e-06), had lower IC50 in the low-risk

group (Figures 12D,J). Based on the risk score, we can further

study the immunotherapy response of patients with HNSCC and

enhance precise drug therapy. In addition, we use the Tumor

Immunocompromise and Exclusion (TIDE) algorithm to predict

the likelihood of immunotherapy risk models. The TIDE in the

low-risk group was significantly higher than those in the high-

risk group (p < 0.05) (Figure 12K), indicating that the higher the

likelihood of immune evasion in the low-risk group, suggesting

that patients were less likely to benefit from ICI (immune

checkpoint inhibitor) therapy.

4 Discussion

HNSCC is a common malignancy caused by abnormal

squamous cells. With more research on HNSCC, the role of

nerves in the development of tumorigenesis has been reflected, in

which neurotrophic factors are involved in the mutual

communication between cancer cells and the nervous system

to promote tumor progression and gradually be concerned

(Cervantes-Villagrana et al., 2020). Perineural invasion (PNI)

and perineural spread (PNS) are considered to be the critical

links of tumor growth andmetastasis (Albo et al., 2011; Roh et al.,

2015; Rademakers et al., 2017). Some studies have shown that

cancer cells stimulate the growth of nerve fibers by secreting

neurotrophic factors, thus completing PNI and PNS. What is

exciting is that the growing nerve fibers can also promote tumor

growth and cancer cell proliferation, thus forming positive

feedback (Lu et al., 2017; Zhang et al., 2022c). Neurotrophic

factors are also widely studied in HNSCC. Many clinical studies

have shown that the local recurrence rate of patients with PNI is

23–36%, while that of patients without PNI is 9–5% (Fagan et al.,

1998; Tai et al., 2013; Pinto et al., 2014). Another study showed

that TrkB, as a high-affinity receptor for BDNF and NT-4, is

highly expressed in HNSCC and that TrkB receptor blockers can

inhibit the proliferation of cancer cells in vitro (Kupferman et al.,

2010; Dudás et al., 2011). At the same time, the interaction

between BDNF and TrkB is also believed to regulate tumor cell

invasion and drug resistance, leading to poor prognosis. It may be

the action mechanism of TrkB receptor blockers (Dudás et al.,

2019). However, there is a lack of systematic study of the value of

the neurotrophic factor family in predicting tumor prognosis.

This study constructed a polygenic model based on

neurotrophic factor-related genes. Subsequently, we conducted

a validation analysis of the constructed NFRGs risk scoring

model and found that it can effectively assess the prognosis of

patients with HNSCC. The risk score of each patient was

calculated based on the expression levels of the 18 NFRGs

screened out, and the risk group was divided into high and

low-risk groups according to the median risk score. The

nomogram was then constructed in combination with clinical

pathological factors, and the calibration curve showed a

satisfactory agreement between the predicted and observed

values in terms of 1-year, 3-year, and 5-year OS. At the same

time, with traditional clinical indicators such as age, sex, tumor

grade, histological staging, etc., the prognosis of HNSCC can be

predicted. Taken together, our model has the highest net return,

suggesting that our NFRGs risk model is more influential in
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clinical decision-making, and clinicians can tailor anti-tumor

personalized treatment based on nomogram results.

In our modeling genes, it has been shown that transforming

growth factor β-inducible protein (TGFB1) can inhibit tumor

progression by promoting apoptosis (Skonier et al., 1992; Zhao

et al., 2002). It has also been proposed that TGFB1 may influence

the behavior of oral squamous cell carcinoma through

mechanisms such as involvement in tumor fibrosis, epithelial-

mesenchymal transition (EMT), and extracellular matrix

remodeling (Donohoe et al., 2017; Hu et al., 2019), but few

studies have reported on the role of TGFB1 in HNSCC. We note

that HNSCC can promote Th2-skewed response by regulating

IL-10 expression and secretion in the tumor microenvironment

(Jewett et al., 2006; Young, 2006; Johnson et al., 2014) and that

IL-10 has been shown to inhibit IFN-α production in HNSCC

(Caruntu et al., 2022), which may lead to antitumor poor

therapeutic efficacy. In addition, based on mouse models,

CDKN2A could inhibit p53R172H-induced metastasis in

HNSCC, and patients with HNSCC with both high-risk

p53 mutations and pure CDKN2A deletions had the worst

clinical outcomes (Li et al., 2016). Erythropoietin (EPO) is

commonly thought to alleviate anemia in patients after

radiotherapy. However, clinical trials have demonstrated

worse tumor control in HNSCC patients treated with EPO

and found that EPO can promote lymphatic tract metastasis

in HNSCC through mediated activation of JAK-STAT signaling,

thereby enhancing tumor aggressiveness, which is detrimental to

patient prognosis (Lai et al., 2005). The mechanism of action of

other NRFGs in HNSCC remains to be elucidated.

Extensive characterization of TME is crucial for establishing

reliable prognostic markers and new advanced modern HNSCC

treatment regimens (Elmusrati et al., 2021); we are very

interested in immune function and expression of immune

cells in the tumor microenvironment, so we conducted

immune cell infiltration, TME components, ssGSCA, and

other analysis, and found that the low-risk group was higher

FIGURE 12
Differences in IC50 of immunotherapy drugs by risk score (A) AZ628, (B) BMS-509744, (C) Dasatinib, (D) KIN001-135, (E) Mitomycin C, (F)
Pyrimethamine, (G) Roscovitine, (H) Sorafenib (I)WH-4-023 (J) Z-LLNle-CHO . (K) TIDE score differences between high- and low-risk groups. *p <
0.05; **p < 0.01; ***p < 0.001.
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than the high-risk group in terms of immune cells and immune

function. This suggests that our risk model can distinguish the

cold-heat tumor subtype from patients with HNSCC and

suggests that the hot tumor subtype has a better prognosis.

Immune checkpoints have attracted much attention as one of

the important features of TME. Some clinical studies have shown

that immune checkpoint inhibitors (ICI), such as Nivolumab and

Pembrolizumab, have good antitumor effects in HNSCC (Qiang

et al., 2021). By using monoclonal antibodies against immune

checkpoints (ipilimumab against CTLA-4, or nivolumab and

pembrolizumab against PD1), cancer immunotherapy effectively

releases tumor-induced immune system brakes to restart cancer

immune circulation (Tan et al., 2017). However, the

heterogeneous phenotypes present in HNSCC exhibit different

genetic aberrations in complex mutational environments, which

makes their response to targeted therapies limited (Elmusrati

et al., 2021). According to previous clinical trials, the response

rate of recurrent or metastatic HNSCC to PD-1/PD-L1 inhibitors

was only 13.3–22%. Therefore, it is crucial to select patients who

can respond effectively to ICIs (Guo et al., 2021). The analysis of

differences in immune checkpoint activity between high and low-

risk groups showed that NFRGs models were able to distinguish

patients with differences in important immune checkpoint

activity, and using these immune checkpoints as targets for

immunotherapy may lead to better immunotherapy outcomes,

providing guidance for decision-making before clinical

immunotherapy. Among them, programmed death ligand 1

(PD-L1) as an immune checkpoint protein in the cancer

immune cycle is highly expressed in the low-risk group, which

may indicate that tumor cells in low-risk patients rely on the PD-

1/PD-L1 signaling pathway to evade immune monitoring, and

PD-1 monoclonal antibodies may have a good effect on patients

in the low-risk group. Upregulation of inhibitory immune

checkpoints such as PD-1 is a key feature of inflamed TME

(Spranger et al., 2013), which may imply that low-risk patients

are in an inflammatory microenvironment. In addition, we found

that CD276 was highly expressed in the high-risk group,

upregulated in HNSCC and helped tumor cells evade immune

surveillance (Li et al., 2022), consistent with our predicted results.

In 4-nitroquinoline-induced mouse HNSCC, cancer stem cells

(CSCs) use the immune checkpoint molecule CD276 (B7-H3) to

evade immune surveillance (Elmusrati et al., 2021). Since mRNA

expression profile data from HNSCC patients receiving

immunotherapy was not available, the potential of this

signature to predict immunotherapy responses was indirectly

assessed, which could lead to deviations from the actual situation.

Therefore, in the future, it should be validated in conjunction

with data from HNSCC patients receiving immunotherapy.

Our NFRGs risk scoring model is a good predictor of

prognosis for patients with HNSCC, and nomograms based

on this model can help clinicians personalize treatment for

HNSCC. Experimental studies of neurotrophic factor-related

molecular mechanisms and related clinical cohort studies can

be carried out in the future, which have great clinical value and

may provide a reliable direction for precision medicine.
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Autophagy pathway involves maintaining intracellular homeostasis by regulating the
degradation of cytoplasmic components. Disfunction of autophagic process has
been confirmed to be critical mechanism in many diseases, including cancer,
inflammation, infection, degeneration and metabolic disorders. Recent studies
have shown that autophagy is one of the early events in acute pancreatitis.
Impaired autophagy promotes the abnormal activation of zymogen granules and
results in apoptosis and necrosis of exocrine pancreas. Furthermore, multiple signal
paths involve progression of acute pancreatitis by regulating autophagy pathway.
This article provides a comprehensive review of the recent advances in epigenetic
regulation of autophagy and the role of autophagy in acute pancreatitis.

KEYWORDS

acute pancreatitis, autophagy, N6-methyladenosine, mechanism, advance

1 Introduction

Acute pancreatitis (AP) is one of the most common gastrointestinal emergency events with
varying clinical courses, ranging from self-limiting disorder to severe disease (Boxhoorn et al.,
2020). Standard management of AP has been updated considerably in the past 10 years, the
comprehensive and tailored treatments of multidisciplinary teams reduced both morbidity and
mortality (Mederos et al., 2021). However, this unpredictable and potentially lethal disease
remains a huge challenge for gastroenterologists owing to its complex and unclear pathogenesis.

To date, significant progress has been made in exploration of the pathophysiological
mechanisms of AP. Acinar cell toxins and intraductal events can both trigger a series of
intracellular responses including pathological calcium signaling, mitochondrial dysfunction,
premature trypsinogen activation, endoplasmic reticulum stress, impaired unfolded protein
response (Lee and Papachristou, 2019). However, deep insight and better understanding of
molecular mechanism of acute pancreatitis are far away from well-illustrated.

Autophagy is a highly conserved decomposition process through which cytoplasmic
materials such as damaged organelles and unwanted macromolecular substances can be
degraded in the lysosomes, and the degradation products are recycled to maintain cellular
homeostasis (Mizushima and Levine, 2020). The degradation phenomenon of intracellular
components was firstly described by several scientists in 1950s and 1960s (Clark, 1957; Ashford
and Porter, 1962; De Duve, 1963). In 1963, Christian de Duve named the degradation process as
autophagy officially in the CIBI Foundation Symposium on Lysosomes (De Duve, 1963). Since
then, numerous studies reported that the molecular pathway of autophagy has a universal and
vital function in a wide range of human diseases, including cancer, inflammation, infection,
neurodegeneration and metabolic disorders.

In recent years, accumulative researches have uncovered the relevance between AP and
autophagy. The feature of autophagy in both experimental and human pancreatitis is the
accumulation of vacuoles accompanied by increased LC3-II, p62 and decreased LAMP-2 (Helin
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et al., 1980; Koike et al., 1982; Mareninova et al., 2015). Studies proved
that the vacuoles are mainly autophagosomes and autolysosomes,
which are larger than that in basal and starvation-induced autophagy
(Mareninova et al., 2009). Autophagy blockade through disruption of
genes encoding ATG5, ATG7, LAMP-2 or IKK α stimulates activation
in acinar cells of the proinflammatory transcription factors, such as
NF-κB and STAT3, resulting in upregulation of cytokines and
chemokines and inflammatory cell infiltration in the pancreas
(Yang et al., 2016; Habtezion et al., 2019). Actually, abundant basal
and starvation-induced autophagy has been confirmed to exist in
mouse exocrine pancreas and be far more variable than in other organs
(Mizushima et al., 2004). Basal autophagy maintains pancreatic acinar
cell homeostasis and protein synthesis and prevents ER stress
(Antonucci et al., 2015). Perspective from physiological function,
pancreatic acinar cells secrete ample digestive enzymes and
zymogens. Furthermore, In AP rodent models, lysosomal markers
accumulate in the ZG-enriched subcellular fraction, which indicates
that autophagy may play a role in regulating the fate of zymogen
granules (Mareninova et al., 2009). In this review, we describe recent
progress in the role and regulation of autophagy in AP. Additionally,
we discuss the potential applications of autophagy signaling molecules
in AP.

2 Process and regulation of autophagy
pathway

Autophagic flux, the entire process of autophagy, mainly includes
the origination of autophagosomes, the formation of autolysosomes
and degradation of materials (Gukovskaya et al., 2017). In the process
of autophagy, membrane dynamics is the core link initiated by

autophagy-related genes (ATG). The hallmark of autophagy
biogenesis is the formation of the double-membrane vesicular
autophagosome. About 30 ATG proteins have been found
involving the process of autophagosome biogenesis. There are six
functional group of protein complex in mammal (Nakatogawa, 2020):
(Boxhoorn et al., 2020) ULK complex; (Mederos et al., 2021); Atg9/
ATG9-containing vesicles; (Lee and Papachristou, 2019); PI3K
complex I; (Mizushima and Levine, 2020); ATG2–WIPI complex;
(Clark, 1957); ATG16L1 complex; (De Duve, 1963); Atg8-family
protein lipidation system (Mizushima and Levine, 2020).
Subsequently, the membrane of autophagosome precursor will
expand and form a closed-loop encapsulating the cytoplasm
component. The lysosome then fuses with the outer membrane of
autophagosomes and release many hydrolases to degrade the inner
autophagosomal membrane and encysted materials (Levine and
Kroemer, 2019).

In many diseases, autophagosome could be successfully generated
through typical autophagy pathway, but the fusion of autophagosomes
with lysosomes and degradation of substrate is impaired. This process
is termed as incomplete autophagy flux (Zhang et al., 2022).

The nuclear regulatory network of autophagy is extremely
complex (Figure 1). Recent studies have indicated that
transcriptional control of autophagy plays a vital role in autophagy
flux. Transcription factors, including FOXO family, E2F family,
p53 and Ume6 complex, regulate the expression of ATG in
different stages (Füllgrabe et al., 2014). It is currently recognized
that TFEB and ZKSCAN3 are major antagonistic factors during
autophagy. The nucleocytoplasmic translocation of TFEB
significantly affects the biogenesis and function of lysosomes
positively regulating autophagy, as well as upregulating autophagy
genes including LC3 and SQSTM1 (Yan, 2022). Contrary to TFEB,
several studies identified that ZKSCAN3 is the major transcriptional
repressor of autophagy by targeting biogenesis and fusion of
autophagosome and lysosome in cultured cells (Chauhan et al.,
2013; Barthez et al., 2020; Pan and Valapala, 2021). However, in
vivo mouse model, ZKSCAN3 did not serve anticipated effects on
autophagy (Pan et al., 2017). One possible reason for this difference is
that ZKSCAN3 may regulate autophagy by multiple mechanisms in
different types of models or exist various regulatory pathways between
normal tissue and tumor cells.

N6-methyladenosine (m6a) is associated with growth, occurrence
and progression of disease and drug resistance of cancer cells. A study
found that METTL3-mediated m6a methylation inhibited autophagy
via decreasing stability of ATG5 mRNA to sustain porcine blastocyst
development (Cao et al., 2021). In addition, scholars have provided
evidence on the negative association between METTL14-mediated
decreased autophagy and testosterone synthesis in Leydig cells, which
indicated that m6a modification-mediated autophagy involved in
body growth and development (Chen et al., 2021).

The effects of m6a modification on different diseases may be
various by acting on diverse targets. METTL3 attenuates
ATG7 mRNA stability in a YTHDF2-dependent manner and thus
inhibits autophagy in osteoarthritis mouse models (Chen et al., 2022).
Furthermore, the expression level of lysosomal protein Rubicon can be
elevated by METTL3-mediated m6a modification, which inhibits the
fusion of autophagosome and lysosome and then promotes the
development of non-alcoholic fatty liver disease in mice (Peng
et al., 2022). Similarly, in myocardial ischemia/reperfusion mouse
model, METTL3 motivates RNA-binding protein HNRNPD to

FIGURE 1
The roles of autophagy in AP. VMP1 promotes autophagy via
NFE2L2/Nrf2 pathway; ERRγ promotes autophagy by reducing
mitochondrial dysfunction and ER stress; Nrf2 promotes excessive
autophagy through the p62–Keap1–Nrf2 signaling pathway;
SNAP23 and STX2 promote autophagy by triggering SNARE complex;
store-operated Ca2+ entry (SOCE) triggers calcium overload and
activated TFEB via calcineurin activation, thereby enhanced autophagy;
activation of AMPK relieved accumulation of autophagy by up-
regulating SIRT1; Galectin-9 binds to Asn175 of Lamp2 and poly-LacNAc
moieties to maintain lysosome function; long non-coding RNA FENDRR
positively regulates autophagy through epigenetic suppression of
ATG7 by binding PRC2; CypD maintains mitochondrial membrane and
positively regulate lysosomal function and autophagy; microRNAs
(miRNA) promote the initial stages of autophagy.
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combine with TFEB pre-mRNA and subsequently restrains the
expression of TFEB, while ALKBH5 plays an opposite role (Song
et al., 2019). METTL14 promotes the translation of DNA damage-
binding protein two and suppresses ultraviolet B radiation-induced
skin tumorigenesis (Yang et al., 2021). METTL14 aggravates podocyte
injury and glomerulopathy progression through m6a-dependent
downregulating of Sirt1 (Lu et al., 2021). Knockdown of WTAP
increased stability of LKB1 mRNA to decrease phosphorylation of
AMPK, thereby promoting autophagy in hepatocellular carcinoma
(HCC) (Li et al., 2021).

Furthermore, study has proved that FTO directly targets
ATG5 and ATG7 mRNA in a YTHDF2-dependent way and
positively regulate autophagy and adipogenesis (Wang et al.,
2020a). Interaction has been confirmed between FTO and
autophagy. In arsenic-associated human skin lesions, arsenic-
mediated autophagy inhibition increased the stability of FTO
proteins, and then accumulated FTO further inhibited autophagy
through downregulating ATG5 and ATG7, increasing
phosphorylation of AMPK, and decreasing phosphorylation of the
mTOR (Cui et al., 2021).

Recent studies have confirmed that m6a modification involved in
autophagy and regulated the sensitivity of cancer cells to anti-cancer
drugs (Paramasivam and Priyadharsini, 2021). RNA-seq shows that
m6a modification may induce autophagy activation through
stabilizing BECN1 mRNA (Shen et al., 2021). In non-small cell
lung cancer cells, METTL3 can positively regulate autophagy
through targeting ATG5, ATG7, LC3, and SQSTM1 and thus
modulate gefitinib resistance (Liu et al., 2020). Study observed
significantly downregulated METTL3 in human sorafenib-resistant
HCC and then identified that METTL3-mediated FOXO3 mRNA
stabilization was associated with blocked autophagy which enhanced
sorafenib resistance of HCC (Lin et al., 2020). Downregulation of
METTL14 increased autophagy viamTOR signaling pathway, thereby
sensitizing pancreatic cancer cells to cisplatin (Kong et al., 2020).

3 Autophagy and acute pancreatitis

3.1 Impaired autophagy in AP

According to the different modes of material delivery to the
lysosomes, three types of autophagy have been described:
macroautophagy, microautophagy and chaperone-mediated
autophagy (CMA) (Ichimiya et al., 2020). Macroautophagy is
studied most deeply and may be the only one detected in normal
exocrine pancreas and in pancreatitis (Gukovskaya et al., 2017).

Moreover, differing in the way how autophagosome phagocytoses
the degradation targets, non-selective and selective autophagy are
described. In the former, cytoplasmic components around the site of
autophagosome biogenesis are encapsulated randomly in
autophagosomes usually induced by starvation. Nevertheless, in
selective autophagy, autophagosomes actively engulf certain
substances identified by autophagy proteins, such as mitophagy
and ER-phagy. Both selective and non-selective autophagy each
seem to be activated in AP (Gukovskaya et al., 2017).

3.1.1 Increased autophagosomes in AP
The significant feature of AP is the accumulation of large vacuoles

in acinar cells (Gukovskaya et al., 2017). AP does not block

autophagosome formation, but rather stimulates it. TEM and
immunogold-TEM studies show that two morphologically different
vacuoles were found in AP acinar cells, namely autophagosome,
double-membrane vacuoles, containing intact sequestered material,
and autolysosome, containing partially degraded substrate. The
significantly increased expression of LC3, ATG5 and
ATG7 demonstrate that autophagosome is activated and related to
vacuoles accumulation in AP acinar cells (Mareninova et al., 2009).

Vacuole membrane protein 1(VMP1) was considered to be related
to autophagosome biogenesis in acinar cell. Recent study reveals that
observably increased levels of LC3-II and SQSTM1 in VMP1 KOmice,
which promote inflammation, acinar-to-ductal metaplasia, and
fibrosis in mice pancreas. In addition, loss of acinar cell
VMP1 leads to spontaneous pancreatitis in mice through ER stress
and activation of the NFE2L2/Nrf2 pathway (Wang et al., 2021a).
Furthermore, a study shows that CCK-treated human pancreas slice
decreased STX2 levels provoking amylase secretion and autophagic
vacuole formation by enhancing Atg16L1/CHC complex assembly
(Dolai et al., 2018).

The nuclear translocation of Nrf2 promotes excessive autophagy
in severe acute pancreatitis-related acute lung injury through the
p62–Keap1–Nrf2 signaling pathway in mice (Kong et al., 2021).
Loss of estrogen-related receptor γ (ERRγ) result in mitochondrial
dysfunction and further increases autophagosome accumulation and
ER stress in pancreatic acinar cells (Choi et al., 2022).

Recently, microRNAs (miRNA) have been proven to regulate
the initial stages of autophagy in AP (Yuan et al., 2021). MiR-141
can restrain the formation of autophagosomes in AP through
binding to the 3′UTR region of HMGB1, resulting in decreased
expression of downstream protein beclin-1 (Zhu et al., 2016). MiR-
148a inhibits initial autophagy by down-regulating the interleukin-
6 (IL-6)/Signal Transducers and Activators of Transcription 3
(STAT3) signaling pathway (Miao et al., 2019). Additionally,
miR-181 b can activate the mTOR/Akt signaling pathway, and
then inhibits the expression of beclin-1 and LC3 (Liu et al.,
2018a). MiR-155 contributes to the accumulation of
autophagosomes by inhibiting Rictor and MAP3K7 binding
protein two which negatively regulated Beclin-1 (Wan et al.,
2019; Zhang et al., 2020). MiR-375 inhibits autophagy and
promotes inflammation and the apoptosis of rat pancreatic
acinar cells via targeting ATG7 (Zhao et al., 2020). MiR-92b-3p
attenuates inflammation and autophagy by targeting TRAF3 and
suppressing MKK3-p38 pathway in caerulein-induced AR42 J cells
(Sun et al., 2020). ATG7-enhanced impaired autophagy exacerbates
AP by promoting regulated necrosis via the miR-30b-5p/CAMKII
pathway (Ji et al., 2022).

Furthermore, study found that long non-coding RNA FENDRR
regulates autophagy through epigenetic suppression of ATG7 by
binding PRC2 in AP (Zhao et al., 2021).

3.1.2 Disfunction of lysosomes in AP
The central physiologic function of the pancreatic acinar cell is to

synthesize, transport, store and secrete digestive enzymes. Recent
studies demonstrate that the functions of lysosomes are deranged
in pancreatitis and underlie the mechanisms involved in impaired
autophagy of AP. It is widely noticed by TEM that zymogen contents
and lysosomal contents locate in a common compartment (Saluja
et al., 1987; Saluja et al., 1989). The lysosomes containing cathepsin B
fuse with the vacuoles containing trypsin and trypsinogen, and then
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transform trypsinogen into trypsin. This physiological process relies
on a stable lysosomal membrane and sufficient activity of hydrolase
(Zhang et al., 2021). Unstable lysosomal vacuoles would rupture and
release trypsin and cathepsin B into cytoplasm, thus resulting in
apoptosis or necrosis.

Multiple studies show that lysosomes formation decreased in
cerulein-treated mouse pancreatic acinar cells according to
downregulated LAMP one and LAMP 2, which stabilize lysosomal
membrane and protect the cytoplasm from acid hydrolases (Saftig and
Klumperman, 2009; Wang et al., 2019). LAMP proteins are protected
from decomposition by acid hydrolases due to highly glycosylated
molecular structure and relatively stable hydrolases complexes.
Research has shown that experimental pancreatitis leads to changes
in Cat B maturation which result in cutting of luminal part of LAMP
molecule close to the transmembrane domain (Mareninova et al.,
2015).

Normal activities of lysosomal hydrolases including cathepsins
B and L also decreased in experimental pancreatitis (Mareninova
et al., 2009; Gukovsky and Gukovskaya, 2010). The mechanism
may be lack of mature cathepsins, accumulation of intermediate
forms and the formation of abnormal activity of hydrolase
complexes. It has been proved that Cat B transforms
trypsinogen into trypsin, while Cat L degrade trypsinogen and
trypsin. Cathepsin B-deficient mice do not show pathologic
trypsinogen activation in response to caerulein stimulus. The
imbalance between enhanced Cat B-mediated conversion of
trypsinogen to trypsin and the of inefficient degradation of
trypsin and trypsinogen by Cat L may provoke accumulation of
trypsin in pancreatitis (Mareninova et al., 2009).

TFEB, a master regulator of lysosomal biogenesis, has been
confirmed to be associated with the pathogenesis of experimental
pancreatitis (Wang et al., 2019; Wang et al., 2020b). cerulein activated
MTOR and increased the levels of phosphorylated TFEB, as well as
improving pancreatic proteasome activities that led to accelerated
TFEB degradation resulting in decreased number and function of
lysosomes in mouse pancreas. It has been proved that store-operated
Ca2+ entry (SOCE) triggered calcium overload and activated TFEB via
calcineurin activation, thus promoting transcriptional activation of
multiple autophagy-associated genes (Zhu et al., 2018). This indicated
interaction between Ca2+ signaling pathway and autophagy flux. In
addition, food restriction determines the susceptibility of mouse
model to coxsackievirus infection and pancreatitis by regulating
TFEB and autophagy (Alirezaei et al., 2021).

Study shew that AMPK and SIRT1 were downregulated during AP
occurrence and activation of AMPK relieved accumulation of
autophagy vacuoles and inhibited inflammation reaction by up-
regulating SIRT1 in AP (Wang et al., 2021b).

Galectin-9 binds to Asn175 of Lamp2 and poly-LacNAc moieties to
maintain lysosome function in highly secretory cells including
intestinal Paneth cells and pancreatic acinar cells (Sudhakar et al.,
2020). Galectin-9 knockout cells showed more abnormal lysosomes
with partial degradation materials, increased accumulation of LC3 and
Lamp2, more autophagic vacuoles, and higher lysosomal pH that was
associated with impaired lysosomal hydrolase activity. MiR-352
obstructed the autophagy process through targeting the mRNA of
LAMP-2 and Cat L1, which resulted in dysfunction of lysosomes and
the abnormal activation of trypsin (Song et al., 2018).

Recent study indicates that dysregulation of mannose-6-
phosphate (M6P) pathway mediates disorder of lysosome and

autophagy and affects cholesterol metabolism (Mareninova et al.,
2021). GNPTAB gene that code the key enzyme of M6P pathway
regulates the lysosomal system and autophagy in exocrine pancreas.
GNPTAB knockout perturbed processing of cathepsins and the
maturation of lysosomes, thus diminishing lysosomal proteolytic
capacity. In addition, Gnptab deficiency increases total and free
cholesterol in acinar cell and result in unbalanced distribution of
cholesterol in mitochondria and lysosomes. More interestingly,
Gnptab ablation also causes increased levels of serum amylase and
lipase, inflammation, as well as parenchymal necrosis of mice pancreas
(Mareninova et al., 2021).

Pancreatitis stimuli motivates SNAP23 connection with the
STX17 SNARE complex required for autolysosome formation.
SNAP23-KD-induced blockade of autophagosome-lysosome fusion
by inhibiting SNARE complex which mediates fusion of these two
vesicles in experimental pancreatitis rather than physiological
starvation. SNAP23-KD prominently disrupted autophagosome
STX17 and reduced binding with lysosomal VAMP8 (Dolai et al.,
2021).

Mitochondrial dysfunction is an early event in human AP or
experimental pancreatitis. The abnormal opening of the permeability
transition pore cause the loss of mitochondrial membrane potential
(Mukherjee et al., 2016). Furthermore, the activity of F-ATP synthase
decreases obviously in AP (Biczo et al., 2018). Cyclophilin D (CypD)
was found to be one of the switches of permeability transition pore.
Lack of CypD restores the polarity of mitochondrial membrane and
positively regulate lysosomal function and autophagic flux in rodent
models of pancreatitis (Mukherjee et al., 2016), which indicate the
relationship between mitochondria and autophagy pathway.

3.2 Genetic and pharmacologic model of
autophagy in AP

To explore the association between autophagy, valuable genetic
model has been applied in practice. Transgenic green fluorescent
protein conjugated LC3 mice (GFP-LC3) is the most classic tool. A
recent study compared GFP-LC3 mice with wild-type mice (WT) and
found that the expression of GFP-LC3 significantly increased
endogenous LC3-II levels in exocrine pancreas by down-regulating
the expression of ATG4B, as well as the formation of autophagosome
increased 3-fold (Mareninova et al., 2020). However, this physiological
interference of GFP-LC3 makes no obvious difference in liver, lung,
and spleen.

Gene knockout models also are widely used. Many scholars
observed that spontaneous pancreatitis occurs in mice with
autophagy pathway related genes ablation including deficiency of
ATG5, ATG7 and LAMP (Diakopoulos et al., 2015; Mareninova
et al., 2015). Regardless of any level of autophagy flux, homeostasis
of acinar cell will be disrupted and then induce spontaneous
pancreatitis, manifested as inflammation and fibrosis in gene
ablation models (Diakopoulos et al., 2015). It is worth noting
that the genetic model itself might have effects on quality of
researches.

In addition, pharmacologic inhibitors of autophagy have been
widely used to manipulate autophagy. Chloroquine (CQ) increases
endogenous LC3-II both in normal pancreas and AP model of mice,
thereby regulating basal autophagy of pancreas tissue (Wang et al.,
2019). Bafilomycin, a lysosomal inhibition, is usually used to regulate
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lysosomal functions (Mareninova et al., 2020). However, rare study
focuses on if medicine could relieve inflammation of pancreas by
autophagy pathway.

3.3 Therapy targeting autophagy

Taking intervention from perspectives of autophagy has caught
the eyes of scientists in recent years (Table 1). Several autophagy
regulators including small-molecule autophagy modulators
(rapamycin, wortmannin, chloroquine, and 3-methyladenine),
inhibitors of PI3K-AKT-MTOR signaling axis, AMPK activators,
lysosomal inhibitors and autophagy-targeting compounds have
been discovered and applied to cancer, neurodegenerative and
metabolic diseases (Mizushima and Levine, 2020; Kocak et al.,
2022). However, the low specificity to autophagy and multiple
pharmacological effects of these compounds remained great
challenges for scholars. Application of Autophagy regulator in AP
is rarely reported. 3-methyladenine, a VPS34 inhibition, decreased the
levels of inflammatory cytokines in AP model mice by modulating
autophagy flux which is related with the activation of NF-κB signaling
pathway and the caspase-1-IL-1β pathway (Mareninova et al., 2020).
However, there is rare experimental data or clinical trial in human due
to lack of established human pancreatic acinar cell line and accepted
methods to separate human primary pancreatic acinar cells from
pancreas.

So, it is still unclear whether timely intervention on autophagy
could terminate progressive destruction of pancreatic acinar cells
and relieve the cascade of inflammatory. To date, establishing a
predictive biomarker to monitor autophagy in AP is meaningful for
developing new autophagy modulators. In addition, organ
specificity also needs to be considered prudently to reduce side
effects.

4 Summary

Although the roles of autophagy in AP have received more
attention of scholars in recent years, the specific mechanism of
autophagy flux changes in AP remain unclear. Proper basal

autophagy may positively maintain cellular homeostasis, the role
of impaired or excessive autophagy in AP is worth exploring
further. In addition, current researches have suggested the
involvement of epigenetic regulation of autophagy pathway in
several diseases. M6a modifications show key roles in
modulating autophagy, but few relative studies focus on the
epigenetic regulation of autophagy in AP. Elucidating the
mechanisms underlying the different stages of autophagic flux
dysfunctions will provide us new insights in uncovering
potential molecular targets to treat or alleviate the severity of
pancreatitis.
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TABLE 1 Application of approved autophagy modulators in diseases.

Agents Targets Effect on
autophagy

Diseases References

Temsirolimus、Everolimus MTOR Enhanced autophagy Cancer Kwitkowski et al. (2010), Cives and Strosberg
(2018)

Metformin、Resveratrol AMPK Enhanced autophagy Cancer, neurodegenerative
diseases

Wang et al. (2018), Pineda-Ramírez et al. (2020)

Chloroquine、
Hydroxychloroquine

Lysosomal lumen
alkalizer

Suppressed autophagy Cancer Boya et al. (2003), Ding et al. (2011)

Azithromycin 50S ribosomal subunit Suppressed autophagy Infection Renna et al. (2011)

Tioconazole ATG4A/ATG4B Suppressed autophagy Cancer Liu et al. (2018b)

Nicardipine Calcium channels Suppressed autophagy Hypertension Ochi et al. (2015)
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The pathogenesis of Chronic Obstructive Pulmonary Disease (COPD) is implicated in
airway inflammation, oxidative stress, protease/anti-protease and emphysema.
Abnormally expressed non-coding RNAs (ncRNAs) play a vital role in regulation of
COPD occurrence and progression. The regulatory mechanisms of the circRNA/
lncRNA-miRNA-mRNA (competing endogenous RNA, ceRNA) networks might
facilitate our cognition of RNA interactions in COPD. This study aimed to
identified novel RNA transcripts and constructed the potential ceRNA networks of
COPD patients. Total transcriptome sequencing of the tissues from patients with
COPD (COPD) (n = 7) and non-COPD control subjects (Normal) (n = 6) was
performed, and the expression profiles of differentially expressed genes (DEGs),
including mRNAs, lncRNAs, circRNAs, and miRNAs, were analyzed. The ceRNA
network was established based on the miRcode and miRanda databases. Kyoto
Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), Gene Set
Enrichment Analysis (GSEA), and Gene set variation analysis (GSVA) were
implemented for functional enrichment analysis of DEGs. Finally, CIBERSORTx
was extracted to analyze the relevance between hub genes and various immune
cells.The Starbase and JASPAR databases were used to construct hub-RNA binding
proteins (RBPs) and lncRNA-transcription factor (TF) interaction networks. A total of
1,796 mRNAs, 2,207 lncRNAs, and 11 miRNAs showed differentially expression
between the lung tissue samples from the normal and COPD groups. Based on
these DEGs, lncRNA/circRNA-miRNA-mRNA ceRNA networks were constructed
respectively. In addition, ten hub genes were identified. Among them, RPS11,
RPL32, RPL5, and RPL27A were associated with the proliferation, differentiation,
and apoptosis of the lung tissue. The biological function revealed that TNF–α via
NF–kB and IL6/JAK/STAT3 signaling pathways were involved in COPD. Our research
constructed the lncRNA/circRNA-miRNA-mRNA ceRNA networks, filtrated ten hub
genes may regulate the TNF-α/NF-κB, IL6/JAK/STAT3 signally pathways, which
indirectly elucidated the post-transcriptional regulation mechanism of COPD and
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lay the foundation for excavating the novel targets of diagnosis and treatment in COPD.

KEYWORDS

chronic obstructive pulmonary disease (COPD), circular RNA (circRNA), long non-coding RNA
(IncRNA), MicroRNA (miRNA), messenger RNA (mRNA), competing endogenous RNAs (ceRNA)
network

Introduction

Chronic obstructive pulmonary disease (COPD) is a public health
challenge related to disability and mortality worldwide (Niu et al.,
2022). According to the report of World Health Organization, COPD
affects approximately 400 million people and has become the third
main cause of mortality in the world (Lozano et al., 2012; Labaki and
Rosenberg, 2020). COPD is characterized by an abnormal airway in
chronic bronchitis and a substantial reduction in solid lung texture in
emphysema (Rabe and Watz, 2017), eventually leading to irreversible
airflow limitation and persistent respiratory symptoms (Labaki and
Rosenberg, 2020). According to previous studies (Yuan et al., 2017;
Hikichi et al., 2019), COPD is associated with various risk factors,
including environmental deterioration, genetic factors and airway
inflammation. Cigarette smoke (CS) has long been recognized as
the main risk factor for the occurrence of lung disease. CS can
induce persistent inflammatory responses in the airway and only a
part of life-long smokers will develop COPD. In addition, some non-
smokers can develop COPD, and many people diagnosed with airway
restriction in childhood may develop COPD later in life (Singh et al.,
2018). Accordingly, individual differences and hereditary
susceptibility play an important role in the pathogenesis of COPD.
However, the pathogenesis of COPD has not been clarified
(Cortopassi et al., 2017; Vogelmeier et al., 2020).Therefore, this
study aimed to detect the regulatory mechanisms of the ceRNA
integration networks in COPD.

Over the past decades, non-coding RNAs (ncRNAs) have been
considered as controversial molecules. Whereas, owing to the rapid
development of high-throughput sequencing and RNA analysis
techniques, ncRNAs have been suggested to participate in the
pathophysiological processes of various diseases (Guttman and
Rinn, 2012; Castel and Martienssen, 2013). More than 90% of
human transcripts are RNA transcripts, and these transcripts are
thought to be ncRNAs (Li et al., 2017). These ncRNAs can be
divided into microRNAs (miRNAs), long non-coding RNAs
(lncRNAs), and circular RNAs (circRNAs) (Esteller, 2011).

LncRNAs can transcribe over 200 nucleotides via RNA
polymerase II, but do not encode proteins (Rinn and Chang, 2012).
LncRNAs have been demonstrated to regulate different epigenetic,
transcriptional, and post-transcriptional functions, and play an
integral part in the process of lung diseases, including COPD
(Kopp and Mendell, 2018; Devadoss et al., 2019). CircRNAs are
another class of endogenous ncRNAs possessing covalently closed
loop structures that lack 5′ caps and 3′ poly A tails (Zhang et al., 2018).
For circRNAs, due to their stability and histological specificity, the
mechanisms and functions are still unclear. However, increasing
number of reports suggested that circRNAs could be recognized as
ideal biomarkers for clinical applications (Verduci et al., 2021).

In addition, recent studies revealed a hypothesis regarding
competing endogenous RNAs (ceRNAs), indicating that these
RNA transcripts (including mRNA, lncRNA, pseudogenes, and
circRNA) may act as natural miRNA sponges by competing for

the same miRNA response elements (MERs) to regulate relevant
mRNA expression induced by the ceRNA network (Salmena et al.,
2011; Tay et al., 2014). On the basis of many studies, ceRNA
regulation has a significant effect on the emergence and
progression of COPD. For example, in COPD tissues, the low-
expressed lncRNA, SNHG5, is closely involved in low-forced
expiratory volume in one second (FEV1%) in patients via the
miR-132/PTEN axis, which regulates human bronchial epithelial
cell inflammation and apoptosis in COPD (Shen et al., 2020).
LINC00987 can regulate lipopolysaccharide-induced apoptosis,
oxidative stress, inflammation, and autophagy via the let-7b-5p/
SIRT1 axis (Wang et al., 2020), resulting in the amelioration of
COPD. CircTMEM30A is highly expressed in COPD patients with
lung cancer, the circTMEM30A/hsa-miR-130a-3p axis regulates
TNF-α and promotes the malignant progression of COPD with
primary lung cancer (Ding and Dong, 2021). Circ-OSBPL2
promotes apoptosis, inflammation, and oxidative stress in
HBECs in smoking-associated COPD through the miR-193a-5p/
BRD4 axis, indicating that the potential of circ-OSBPL2 to act as a
diagnostic biomarker for smoking-induced COPD (Zheng et al.,
2021).

ceRNAs represent a new post-transcriptional regulatory
mechanism involved in the emergence and progression of various
conditions (Guttman and Rinn, 2012; Castel and Martienssen, 2013;
Meng et al., 2017). Based on several investigations, the lncRNA-
miRNA-mRNA and circRNA-miRNA-mRNA ceRNA networks are
associated with COPD progression (Liu et al., 2022). However, only
few reports have revealed the overall expression profiles of lncRNAs,
circRNAs, miRNAs, mRNAs and the regulatory mechanism of
pivotal lncRNA or circRNA-miRNA-mRNA ceRNA regulatory
networks in smoking-induced COPD. In addition, due to the
difficulty of collecting clinical samples, most bioinformatics
analyses are performed with samples from public databases rather
than their own clinical samples. Therefore, comprehensive analyses
are needed to identify more reliable biomarkers for the occurrence
and development of COPD.

In the present study, lung resection specimens from patients with
COPD (COPD) (n = 7) and non-COPD control subjects (Normal)
(n = 6) were chosen. Whole transcriptome sequencing (RNA
sequencing [RNA-seq]) was performed to screen differentially
expressed lncRNAs, circRNAs, miRNAs, and mRNAs. In addition,
we constructed the lncRNA-mRNA-miRNA and circRNA-mRNA-
miRNA networks through bioinformatics analysis respectively. Relied
on the Kyoto Encyclopedia of Gene and Genomes pathway
enrichment analysis (KEGG), Gene Ontology analysis (GO), Gene
set variation analysis (GSVA), and Gene set enrichment analysis
(GSEA), the crucial pathways involved in COPD were detected. To
further explore the mechanism of different mRNA expression, a
protein-protein (PPI) network, hub-RBP (RNA binding protein)
and immune infiltration analyses were carried out. Overall, these
ceRNA networks may contribute to the discovery of novel
biomarkers for COPD.
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Materials and methods

Sample collection and the ethics committee

Lung resection specimens were collected from 20 patients with
solitary pneumonic tumors who underwent pneumonectomy at the
Department of Thoracic Surgery, General Hospital of Ningxia Medical
University between June 2020 and December 2020, in accordance with
the Declaration of Helsinki. Fresh non-neoplastic lung tissue should be
at least 5 cm from the neoplastic lesion. The enrolled patients were
divided into two groups: In the present study, lung resection
specimens from patients with COPD (COPD) (n = 7) and non-
COPD control subjects (Normal) (n = 6). Patients were diagnosed
based on the Global Initiative for Chronic Obstructive Lung Disease
(GOLD) (Guo et al., 2018; Zhu et al., 2021). The characteristics of the
participants are shown in Table 1.

The study inclusion criteria for patients with COPD were as
follows: (Niu et al., 2022): a post-bronchodilator forced expiratory
volume in 1 s (FEV1)/forced vital capacity (FVC) rate lower than 0.70,
which “verifies the existence of constant airflow restriction”; (Labaki
and Rosenberg, 2020) age >40 and <80 years, current smoker with a
history of cigarette smoking (more than 20 pack-years); (Lozano et al.,
2012) patients with stable clinical condition that are not receiving
chemotherapy or radiotherapy. The exclusion criteria for patients with
COPD were as follows: (Niu et al., 2022): patients companied with
lung metastasis or other organs tumors, including stomach, intestine,
liver, pancreas, kidney, etc; (Labaki and Rosenberg, 2020) patients
with other lung and systemic diseases, such as asthma, bronchitis,
interstitial lung diseases, and cardiac, hepatic, or renal diseases;
(Lozano et al., 2012) patients who inhaled or received oral

glucocorticoids for 3 months before surgery and those who used
biomass fuel and have a history of occupational exposure. Age-
and sex-matched non-smokers without COPD and smokers with
COPD served as controls.

This study was approved by the Ethics Committee of the General
Hospital of Ningxia Medical University (Grant No.KYLL-2021-418).
Each participant provided written informed consent.

Whole transcriptome resequencing and data
quality control

Total RNA was extracted from frozen lung tissues using Trizol
Reagent (Invitrogen, Life Technologies, United States). The Qubit®

RNA Assay Kit for Qubit® 2.0 Fluorometer (Life Technologies, CA,
United States) and NanoPhotometer® spectrophotometer (IMPLEN,
CA, United States) were separately used to determine the
concentration and purity of the total RNA. Subsequent
experiments were performed with total RNA samples that met the
following criteria: RNA integrity number (RIN) > 7.0 and 28S/18S
ratio >1.8. First, the small RNA sequencing library was created using
the NEB Next Multiplex Small RNA Library Prep Set (Illumina, San
Diego CA, United States), as recommended by the manufacturer.
Thereafter, a complementary DNA (cDNA) library of lncRNA was
established following ribosomal RNA (rRNA) removal using the
Epicenter Ribo-zeroTM rRNA Removal Kit (Epicenter,
United States). rRNA with no residue was purified by ethanol
precipitation. Sequencing libraries were produced using rRNA-
depleted RNA and the NEBNext UltraTM Directional RNA Library
Prep Kit for Illumina (NEB, United States), according to the

TABLE 1 Characteristics of subjects in this study.

Characteristic Non-COPD (Normal) Patients with COPD(COPD) p

n 6 7

Gender (M/F), n (%) 0.005

F 5 (83.3%) 0 (0%)

M 1 (16.7%) 7 (100%)

Smoking history (pack-years), n (%) 0.043

0 6 (100%) 0 (0%)

22 0 (0%) 1 (14.3%)

25 0 (0%) 2 (28.6%)

30 0 (0%) 1 (14.3%)

33.75 0 (0%) 1 (14.3%)

45 0 (0%) 1 (14.3%)

50 0 (0%) 1 (14.3%)

Age (Years), mean ± SD 53.83 ± 6.59 60.14 ± 11.82 0.272

BMI (kg/m2), median (IQR) 23.75 (23.38, 24.04) 25 (24.1, 25.85) 0.445

FEV1 (L), median (IQR) 3.12 (2.77, 3.4) 2.66 (2.54, 2.81) 0.198

FEV1 (% predicted), mean ± SD 117.67 ± 14.72 94.71 ± 19.93 0.040

FEV1/FVC (%), mean ± SD 80.33 ± 1.21 64.42 ± 3.69 <0.001
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manufacturer’s recommendations. Finally, all products were cleaned
(AMPure XP system), and library quality was evaluated using the
Agilent Bioanalyzer 2,100 system. Paired-end sequencing of individual
libraries was performed on an Illumina HiSeq sequencer platform
(Illumina).

Raw data (raw reads) in fastq format were initially processed using
bcl2fastq or in-house Perl scripts. Clean data (clean reads) were
acquired at this step by expurgating reads containing adapters,
reads containing ploy-N, with 5′ adapter contaminants, without 3′
adapter or the insert tag, containing ploy A, T, G, or C, and low-quality
reads from the original data. Simultaneously, the Q20, Q30, and GC
content of the clean data were determined. High-quality and clean
data were the basis of the entire downstream calculations.

Identification of differentially expressed
genes

The R package “Deseq2” (Love et al., 2014) was used to identify
differentially expressed genes between non-smokers without COPD
and smokers with COPD tissues, and these genes were called
differentially expressed lncRNAs (DElncRNAs), circRNAs
(DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs),
respectively. The screening criteria for differential genes were |
log2FC| > 1 and p-value <.05. Genes with logFC >1 and
p-value <.05 were identified as upregulated genes, while those with
logFC <−1 and p-value <.05 were identified as downregulated genes.
The result is visualized into volcano map and heatmap by R package
ggplot2 and pheatmap respectively.

Construction of a ceRNA regulatory network

Based on the regulatory mechanism of ceRNA networks, lncRNAs
and circRNAs can act as miRNA sponges to combine miRNAs and
regulate downstream target mRNAs. In this study, DEmiRNAs were
employed as the center of the ceRNA network. First, target genes of
DEmiRNAs were obtained using four databases: miRDB (Chen and
Wang, 2020), miTarBase (Huang et al., 2020), miRanda, and
TargetScan (Agarwal et al., 2015). Genes in no less than three
databases were indicated as the target genes for these DEmiRNAs,
and only the overlapping portions of the genes were used to construct
the miRNA-mRNA relationship. The miRcode database (Jeggari et al.,
2012) was used to screen the miRNA-circRNA pair mutual effects,
which were then combined with the miRNA-mRNA interaction pairs
to set up the DElncRNA-DEmiRNA-DEmRNA ceRNA network using
Cytoscape (Shannon et al., 2003) software What’s more, the miRanda
database was used to determine the connection between the
DElncRNAs and DEmiRNAs. The DEcircRNA-DEmiRNA were
correlated with the miRNA-mRNA interaction pairs to construct
the DEcircRNA-DEmiRNA-DEmRNA ceRNA network using
Cytoscape software.

GO and KEGG enrichment analyses of
DEmRNAs

GO (Gene Ontology, 2015) is a database resource for understanding
the superior functions and availability of biological systems, including

biological process (BP), cellular component (CC), and molecular
function (MF), from large-scale molecular datasets produced using
molecular-level information, especially genome sequencing and other
high-throughput experimental techniques. KEGG (Kanehisa and Goto,
2000) is an extensively used database for storing information on
genomes, biological pathways, diseases, and medicines. The R
software package, clusterProfiler (Yu et al., 2012), was used to
perform GO functional annotation and KEGG pathway enrichment
analyses of DEmRNAs in the ceRNA networks. The significance levels
of interest in the KEGG pathways and BPs in GO were p-value<0.05.

Gene set enrichment analysis (GSEA)

GSEA (Subramanian et al., 2005) (http://software.broadinstitute.
org/gsea/index.jsp) is a genome-wide expression profile chip data
analysis method for identifying functional enrichment through a
comparison of genes and predefined gene sets. A gene set is a set
of genes that share localization, pathways, functions, or other
characteristics. GSEA can be used to assess related pathways and
molecular mechanisms in smokers with COPD.We obtained the “hall.
v7.2. symbols.gm” gene set in the MSigDB (Liberzon et al., 2015)
database (v7.5.1) and performed GSEA on the differentially expressed
mRNAs using the R package for GSEA. A false discovery rate (FDR) <.
25 was considered to indicate obvious enrichment.

Gene set variation analysis (GSVA)

The R package, GSVA (Hanzelmann et al., 2013), was used to
determine the scores of the relevant pathways underpinned by the
gene expression matrix of every sample using single-sample gene set
enrichment analysis (ssGSEA), and differentially screened many
functions (or pathways) using the limma package (Ritchie et al., 2015).

Construction and analysis of the protein-
protein interaction (PPI) network

PPI analysis of known differentially expressed genes and predicted
PPIs was performed using the STRING database (Szklarczyk et al.,
2015) (http://string-db.org; version11.5).

The Cytoscape software (version 3.6.1) Network Analyzer was
used to calculate the node degree. cytoHubba (Chin et al., 2014) is a
Cytoscape plug-in used to study the hub genes of the PPI network.

Combined PPI pairs with a confidence value of 0.9 were retrieved,
and data from the PPI table were inputted into the Cytoscape software
to create a visual PPI network. By employing the MCODE (Version
2.0.0) plug-in in the software to select hubmodules in the PPI network,
the GOSemSim (Yu et al., 2010) package was applied to conduct a
Friends analysis on the first two core clusters. The cytoHubba plugin
was also used to study hub genes in the PPI network.

Quantitative real-time PCR (qRT-PCR) for
identification of hub genes

Total RNA was isolated from non-smokers without COPD
(Normal) (n = 5) and smokers with COPD (COPD) (n = 5) using
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TRIzol reagent (Invitrogen, Life Technologies, United States), and
cDNA was derived using the RevertAid First Strand cDNA Synthesis
Kit (Thermo Scientific, United States). qRT-PCR was conducted using
the CFX Connect Real-time PCR system (Bio-RAD, United States)
and the TB Green® Premix Ex Taq™ II (Tli RNaseH Plus) kit (Takara
Bio, Japan), according to the instructions. The housekeeping gene,
GAPDH, was used for normalization. All primer sequences are shown
in Supplementary Table S1. Data represent the average of three
independent replicates.

Immune infiltration analysis

CIBERSORTx (Chen et al., 2018) deconvolves the transcriptome
expression matrix, which is based on the theory of linear support
vector regression, to predict the composition and richness of immune
cells in mixed cells. The gene expression matrix data were uploaded to
CIBERSORTx, and combined with the LM22 eigengene matrix.
Samples with p < .05 were filtered, and the immune cell infiltration
matrix was obtained. The R language ggplot2 package was used to
draw histograms to represent the distribution of 22 types of immune
cell infiltration in every sample. For the two study groups, a boxplot
was generated to demonstrate the relative abundance of immune cell

infiltration. The correlation between the expression of key genes and
the content of various types of immune cells was also analyzed.

Construction of the RBP-gene and TF-target
gene

RNA binding proteins (RBPs) play a vital role in gene regulation.
Currently, most RNAs bind to proteins to form RNA-protein
complexes, except a few RNAs that can function as ribozymes alone.
RBPs play a key role in the regulation of life activities, such as RNA
synthesis, alternative splicing, modification, transportation, and
translation. Consequently, analyzing the interaction between RNA
and protein is key for evaluating the function of RNA. The starBase
(Li et al., 2014) database is based on high-throughput CLIP-Seq and
degradome experimental data. The database contains miRNA-ncRNA,
miRNA-mRNA, RBP-RNA, and RNA-RNA data. RBPs can recognize
special RNA binding domains and interact with RNA in cells, which
belong to a type of post-transcriptional protein, and can participate in
the control of RNA splicing, transport, sequence editing, intracellular
localization, and translation. In this study, the hub-RBP network was
constructed using the starBase database (https://starbase.sysu.edu.cn/)
and visualized using Cytoscape software.

FIGURE 1
Flow chart of the overall analysis to explore the biological characteristics of COPD by bioinformatics methods.
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Transcription factors (TFs) control gene expression by
interacting with target genes during the post-transcriptional stage.
To analyze the regulatory effect of TFs on hub genes, specific binding
of TFs to gene regulatory regions is an important approach for the
regulation of gene expression. TF prediction was performed using the
JASPAR database (JASPAR 2018) (Vlieghe et al., 2006) and
TFBSTools software (3.3.2) (Tan and Lenhard, 2016), and the
binding sites of TFs within the region 2,000 bp upstream of the
start site of each lncRNA and 500 bp downstream, direction and

scoring results were provided. The hub-TF interaction networks
were visualized using Cytoscape software.

Statistical analysis

All calculations and statistical analyses were carried out at
https://www.r-project.org/ (version 4.0.2). For the comparison of
two groups of continuous variables, an independent Student’s t-test

FIGURE 2
Differential expression analysis. (A,B,E), Volcano plot of differentially expressed mRNA, lncRNA, and miRNA analysis. (C,D,F), Heatmap presentation of
differential mRNAs, lncRNAs, and miRNAs.
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was used to estimate the statistics of normally distributed variables,
and the Mann-Whitney U test (Wilcoxon rank sum test) was used
to analyze the differences between non-normally distributed
variables. All statistical p values were two-sided, and p < .05 was
considered statistically significant.

Results

Identification of DEGs in COPD

A total of 13 individuals participated in the study, including 6 in
the normal and 7 in the COPD group (Table 1). The analysis strategy
and procedure used in this study are illustrated in Figure 1.

A total of 1,796 DEmRNAs were identified, of which 796 were
upregulated and 1,000 were downregulated. A total of
2,207 DElncRNAs were identified, of which 1,245 were
upregulated and 962 were downregulated. Finally,
11 DEmiRNAs were identified, among which 5 were upregulated
and 6 were downregulated. Volcano plots (Figures 2A, B, E) and
heat maps (Figures 2C, D, F) of the DEGs were generated to
visualize the difference between the COPD group and the
normal group.

Construction and analysis of the ceRNA
network

Based on the expression profiles of miRNAs, lncRNAs, and
mRNAs for COPD patients and normal participants, we
established a lncRNA-miRNA-mRNA ceRNA network, which
contained a total of 5 miRNA, 51 mRNA and 7 lncRNA nodes

(Figures 1–3). Furthermore, a circRNA-miRNA-mRNA ceRNA
network based on the expression profiles of miRNA, circRNA,
and mRNA in COPD patients and normal participants was
constructed. The ceRNA network contained 19 miRNA,
169 mRNA, and 10 circRNA nodes (Figures 2, 3).

PPI network and hub gene identification

A PPI network associated with DEmRNAs was constructed
through the STRING database, visualizing the interaction
relationship, which included 616 nodes and 1,424 edges.
(Figure 4). The first two hub modules in the PPI network,
Cluster1 (MCODE score = 12.667) and Cluster2 (MCODE
score = 10.6) were selected using MCODE in the software
(Figures 5A, B). Cluster1 contains 13 genes, of which 4 genes
expression up-regulation were RPS27, DOCK4, RPL27A, RPL35A,
the 9 genes expression down-regulated were RPS11, RPL23, RPL3,
RPS21, FAU, RPLP0, RPL5, RPL13A, and RPL32 (Figure 5A).
Cluster2 contains 10 genes, of which 5 were up-regulated,
namely NOP58, NOP56, FTSJ3, UTP6, RSL1D1, and 5 were
down-regulated, namely KRR1, NSA2, FCF1, NOC4L, UTP14C
(Figure 5B). We further used the GOSemSim package to
perform Friends analysis on the genes in the first two hubs, and
the results suggested that the KRR1 was more important
(Figure 5C). We then used the cytoHubba plugin to analyze the
MCC algorithm to select the top 10 genes, namely RPS21, RPL32,
RPL35A, FAU, RPLP0, RPS11, RPL27A, RPL23, RPL5, RPL13A as
core genes (Figure 5D). We verified the mRNA levels of the top
10 hub genes in the COPD group, and we found that expression of
8 hub genes (RPLP0, RPL5, RPL32, RPL13A, FAU, RPL32, RPS21
and RPS11) was significantly downregulated in COPD tissues

FIGURE 3
Interaction network of mRNA-miRNA-lncRNA and mRNA-miRNA-circRNA. The interaction network of differentially expressed mRNA-miRNA-lncRNA
and mRNA-miRNA-circRNA, in which the yellow node is miRNA, the green node is lncRNA, the blue node is mRNA, and the red node is circRNA.
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compared to the normal tissue consisted with the prediction results
(Figures 6A–J).

Construction of the RBP-genes and TF-target
gene network

We applied starBase database to construct a mRNA-RBP
network, which comprised 7 mRNAs (FAU, RPS21, KRR1,
NOP56, RPL5, RPL23, RPLP0) and 127 RBPs, of which
RPL5 interacted with 118 RBPs, RPLP0 with 106 RBPs,
RPL23 with 115 RBPs, FAU with 90 RBPs, RPS21 with RBPs,
KRR1 with 103 RBPs and NOP56 with 114 RBPs (Figure 7A). We
subsequently constructed a TF-lncRNA network consisting of
100 lncRNAs and 231 TFs using JASPAR database and
TFBSTools software (Figure 7B). The top 10 TFs were
ZNF354C, RHOXF1, SHOX, ISX, LHX9, RAX2, MZF1, PDX1,
FOXL1, UNCX. Among them, ZNF354C was the transcription

factor that interacted with the most lncRNAs (97 lncRNAs) in
the TF-lncRNA network. (Figure 7B).

Functional enrichment analysis of DEmRNAs

To study the relationship between DEmRNAs and BPs, MFs,
CCs, biological pathways, and diseases, we first performed
functional enrichment analysis of DEmRNAs (Figures 8A–G;
Supplementary Tables S2, S3). DEmRNAs were the most
abundant in BPs, such as nucleotide-excision repair,
transcription-coupled nucleotide-excision repair, cell junction
organization, cell junction assembly, and control of actin
filament-based process (Figure 8E). Further, the DEmRNAs
were enriched in CCs, such as focal adhesion, cell-substrate
adherens junction, cell-substrate junction, cell-cell junction,
ATPase complex (Figure 8F). Small GTPase binding, Ras
GTPase binding, ubiquitin protein ligase binding, ubiquitin-like

FIGURE 4
Protein-protein interaction network. Protein-protein interaction analysis of DEGswas performed using STRING data, and the interaction relationshipwas
visualized. The larger the circle,the higher the fold of differential expression. Blue indicates genes with down-regulated expression and red indicates genes
with up-regulated expression.
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protein ligase binding, cadherin binding, and other MFs were
identified (Figure 8G).

Next, KEGG pathway enrichment analysis was performed on
DEmRNAs. Based on the results, the DEmRNAs were abundant in
biological pathways, such as base excision repair, ferroptosis,
Yersinia infection, and human T-cell leukemia virus 1 infection
(Figure 8D).

GSEA and GSVA

To determine the impact of gene expression levels on disease,
GSEA was performed to analyze the relationship between gene
expression and the BPs, CCs, and MFs. GSEA revealed that the
most significantly enriched gene sets were negatively correlated
with the COPD group, which included the TNF-α signaling via
NF-κB, interferon gamma response, inflammatory response,
unfolded protein response, mtorc1 signaling, estrogen response late,
IL6/JAK/STAT3 signaling. Interestingly, these phenotype
characteristics are thought to be associated with the progressions of
COPD (Figures 9A–H; Supplementary Table S4).

The results of GSVA suggested that COPD group was mainly
enriched in KEGG pathogenic Escherichia coli infection, prion
diseases, regulation of autophagy, mismatch repair,

glycosphingolipid biosynthesis lacto and neolacto series,
antigen processing and presentation, porphyrin and
chlorophyll metabolism, primary bile acid biosynthesis,
riboflavin metabolism, glutathione metabolism, metabolism of
xenobiotics by cytochrome p450, drug metabolism cytochrome
p450, sphingolipid metabolism, retinol metabolism, and
other biologically related functions and signaling pathways
(Figure 9I).

Immune infiltration analysis

In this study, the gene expression matrix data were analyzed
for immune cell infiltration, and filtered an immune cell
infiltration matrix (p < .05) that revealed the distribution of
immune cells (Figure 10A). The differences in immune cell
infiltration between the normal group and COPD group were
analyzed, the proportions of Eosinophils, M1 Macrophages,
activated memory CD4+ T cells, resting NK cells and resting
memory CD4+ T cells were higher in normal group. In
addition, activated NK cells had a higher proportion of
infiltration in COPD group (Figure 10B).

At the same time, the correlation between the infiltration of
various immune cells and hub genes in the COPD group was

FIGURE 5
Key analysis of differences between COPD and Normal. (A,B), MCODE plugins selected the first two hub modules in the PPI network, where blue
indicates up-regulated genes and red indicates down-regulated genes. (C), Friends analysis of genes in the first two clusters was performed using the
GOSemSim package, with similarity scores on the abscissa and gene names on the ordinate, where geneswith higher scoresweremore important. (D), For the
top ten Hub genes in the PPI network analyzed by the CytoHubba plug-in, darker colors indicate higher MCC scores.
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analyzed (Figures 11A–F). There was a positive correlation between
FAU gene expression and T cells regulatory (Tregs) in the COPD
group (Figure 11A). RPL5 was negatively correlated with Neutrophils
(Figure 11B). RPL5 was negatively correlated with T cells follicular

helper (Figure 11C). RPLP0 was negatively correlated with T cells
CD4 naive (Figure 11D). RPL10 was negatively correlated with B-cell
memory (Figure 11E) and RPS21 was negatively correlated with
CD4 naive T cells (Figure 11F).

FIGURE 6
Ten differential expression Hub genes. (A-J), RT-qPCR was used to verify the hub genes between COPD group and Normal group. “**” p<0.01.
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Discussion

COPD is a heterogeneous disease in which chronic
bronchiolitis and emphysema are the most prominent
phenotypes and remain the leading causes of death worldwide
(Mirza et al., 2018). With the evolution of the high-throughput
sequencing technology and bioinformatics analysis, the ceRNA
network hypothesis may illustrates the occurrence and
progression of disease partially. Despite an increasing number
of studies on ceRNA networks, it was not been fully elaborated
about the molecular mechanisms of COPD (Salmena et al., 2011;
Gong et al., 2020; Chen et al., 2022). In the present study, we
utilized the whole transcriptome sequencing analysis of two
groups (seven patients with COPD and six non-COPD control
subjects), screened out 1,796 DEmRNAs (796 upregulated
and 1,000 downregulated), 2,207 DElncRNAs
(1,245 upregulated and 963 downregulated), and 11 DEmiRNA
(five upregulated and six downregulated).

To date, the functions of most lncRNAs and circRNAs remain
unclear. Consequently, the construction of a ceRNA network of
lncRNAs/circRNA-miRNAs-mRNAs could provide help for the
prediction of the functions of lncRNAs/circRNAs. According to the
ceRNA co-expression network, 7 lncRNA-5miRNA-51mRNA and
10circRNA-19miRNA-169mRNA ceRNA networks were selected
for further investigation respectively. LncRNAs regulate gene
expression at different levels, including epigenetic,
transcriptional, and post-transcriptional, which can act as
miRNA sponges and interfere with miRNA-mediated
degradation of target mRNA (Quinn and Chang, 2016; Kopp
and Mendell, 2018). For example, the lncRNA, NORAD, is

upregulated in non-small cell lung cancer (NSCLC) and
accelerates the progression of NSCLC by enhancing tumor cell
proliferation by targeting the miRNA-455/CDK14 axis (Wang
et al., 2021). Similarly, the expression of the NORAD was
notably increased in cancer tissues and cells compared with that
in normal tissues and cells in NSCLC, which regulates the
proliferation, migration, and invasion capabilities of NSCLC
cells by targeting the miR-520a-3p/PI3k/Akt/mTOR signaling
pathways (Wan et al., 2020). Wang et al. revealed that the
lncRNA, EBLN3P, was upregulated in lung adenocarcinoma cell
lines (A549 and NCI-H23), inhibiting A549 cell viability and
promoting apoptosis via the miR-655-3p/Bcl-2 axis (Wang and
Yin, 2022). CircRNA is a covalently closed loop-like structure that
is highly specific to the eukaryotic transcriptome and can be used as
a microRNA sponge, a splicer, and for transcribed gene expression
(Qu et al., 2015). Subsequently, out of the 10 DEcircRNAs from
circRNA-miRNA-mRNA ceRNA network in this study, only
1 DEcircRNAs had reported to be associated with lung diseases.
Yang et al. reported that hsa_circ_0003162 is significantly down-
regulated in lung adenocarcinoma, indicating that it may be
involved in the progression of lung adenocarcinoma (Liu et al.,
2021). However, none of the other 9 circRNAs have been reported,
which need further in vitro and in vivo experiments, might serve as
novel potential biomarkers for COPD. Thus, these ceRNA
networks indicate that our bioinformatics approach can
effectively identify the potential functions of lncRNAs and
circRNAs. To sum up, our results are consistent with most
current studies focusing on lncRNA or circRNA-miRNA pairs
and hopefully provide useful information for future research
on COPD.

FIGURE 7
mRNA-RBP and TF-lncRNA networks. (A), Diagram of the interaction network between key mRNA genes and RBPS, where pink circle node represent
RBPS and blue nodes represent the corresponding mRNAs. (B), network diagram of the interaction between lncRNA and TF transcription factors, where the
yellow is the differential lncRNA and the purple node represents the TF.
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FIGURE 8
GO and KEGG enrichment analysis. (A), network diagram of GO and KEGG functional enrichment of differential mRNAs. (B), GO analysis dot plot of
differential mRNA, abscissa is -log (p.adjust), ordinate is GO terms. (C), Chordal diagram of KEGG analysis. The quadrangle corresponding to the differentially
expressed genes on the left shows downregulated expression in blue and upregulated expression in red. (D), KEGG enrichment Pathway map of differential
genes, the horizontal axis is gene ratio, the vertical axis is Pathway name, the node size represents the number of genes enriched in the pathway, and the
node color represents p.value. (E–G), are the visualization results of functional enrichment of BP, CC andMF, respectively. The outer circle is the GO terms, the
red dot indicates the up-regulated genes, the blue dot indicates the down-regulated genes, the quadrate color indicates the z-score of GO terms, and the
blue indicates that the z-score is negative, which means that the corresponding GO terms are more likely to be inhibited. Red indicates that the z-score is
positive and is more likely to be activated in the corresponding GO terms.
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In our research, the STRING database was used to generate PPI
with DEmRNAs, which were keeping a high degree of consistency
with confirmatory experiment. The mRNAs including RPL5,
RPL11, RPL27A and RPL32 are significantly informative. As far

as we know, most ribosome proteins (RPs) are connected with cell
growth, proliferation, differentiation and apoptosis. Liao et al.
reported that ribosomal protein L5 (RPL5) and ribosomal
protein L11 (RPL11) synergistically guide RNA-induced

FIGURE 9
GSEA and GSVA analysis. (A), GSEA analysis showed fivemain biological functions. (B-H) and GSEA analysis suggested that themain enriched pathways in
the case group COPD group. (I), Heat map presentation of GSVA analysis.
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silencing complexes (RISCs) into c-Myc mRNA and degrade their
mRNA, thereby inhibiting the activity of c-Myc in human lung
adenocarcinoma cells (H1299) (Liao et al., 2013). Park et al.
reported that under stimulation, RPL5 further inhibits the
upsurge and promotes apoptosis of NSCLC cells by inhibiting
c-Myc (Park et al., 2021). Xie et al. found that silencing of
RPL32 causes RPL5 and RPL11 to be transferred from the
nucleus to the nucleoplasm, leading to the accumulation of
p53 and inhibition of lung cancer proliferation (Xie et al.,
2020). The expression of RPS27a in LUAD was also found to be
upregulated, suggesting that the expression of RPS27a may be
related to LUAD progression and poor prognosis (Li et al.,
2022). These results are consistent with our research. Thus, we
speculated that RPL5, RPL11, RPL27A and RPL32 might have
influence on the pathogenesis of COPD by regulating the above
phenotypes, which expected to be potential biomarkers for COPD.
Overall, comprehensive analysis of hub genes in COPD may offer
new perspectives on the pathogenesis of COPD.

Furthermore, the biological function of DEmRNAs was
identified grounded on GO annotation and KEGG pathway
enrichment analysis. The nucleotide-excision repair, base

excision repair, Ferroptosis, Yersinia infection, Human T-cell
leukemia virus 1 infection were related to the pathophysiologic
mechanism of COPD. Then, we performed GSEA and GSVA
analyses to further elucidate the underlying mechanisms. The
GSVA heatmap result revealed that the activity of glutathione
metabolism, metabolism of xenobiotics by cytochrome p450, drug
metabolism cytochrome p450 was enhanced in smokers with
COPD samples, whereas regulation of autophagy was impeded.
GSEA result revealed relatively high enrichment of TNF-α viaNF-
κB, interferon gamma response, inflammatory response, IL6/JAK/
STAT3 signaling pathways in smokers with COPD patients.
Among which TNF-α via NF-κB play a significant role in
COPD pathology. TNF-α is an important pro-inflammatory
cytokine produced by different immune inflammatory cells
(such as epithelial cells) in response to stimulation. In COPD,
TNF-α recruit inflammatory cells producing inflammatory
mediators, which activated airway inflammation response
caused airway oxidation and hyperreactivity. Chen et al.
suggested that TNF-α stimulates interleukin-6 (IL-6) and
interleukin-8 (IL-8) generation, activating the nuclear factor-κB
(NF-κB) pathway by the degradation of IκB-α and the

FIGURE 10
Analysis of immune infiltration. (A), component analysis of immune cells in COPD and control samples; (B), Differential analysis of the composition of
various immune cells in the samples of COPD group and control group. The meanings represented by different asterisks explain significant differences. *
indicates that the difference is statistically significant, “*” p < 0.05; “**” p < 0.01.
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phosphorylation and nuclear migration of NF-κB p65, highlight
the role of TNF-α in the pathogenesis of chronic inflammation,
suggesting that TNF-α may be a promising target for the
treatment of airway inflammatory diseases especially COPD
(Brightling et al., 2008; Herfs et al., 2012; Chen et al., 2020),
which were consistented with our study. The JAK/STAT pathway
is activated by a variety of pro-inflammatory cytokines, such as IL-
6, IL-11, and IL-13, which are upregulated in different lung
diseases (Montero et al., 2021). Eskiler G et al. revealed that
IL-6-mediated Janus kinase (JAK)/signal sensor and
transcriptional activator 3 (STAT3) pathways are indispensable
in cancer cachexia, such as lung cancer via the induction of a
systemic inflammatory response. Johnson et al. revealed that the
IL6/JAK/STAT3 pathway is abnormally activated in many types of
cancer, which is often associated with poor clinical prognosis
(Johnson et al., 2018). All these above views indicated that TNF-α
via NF-κB and IL6/JAK/STAT3 signaling pathways were
implicated with pathogenesis of COPD.

Despite this, our study had some limitations. First, owing to the
small sample size used in this study, it is impossible to
comprehensively summarize the COPD transcriptome. Thus, the
sample size and male to female ratio should be expanded for further
analysis. Second, due to the limitations of the current environment,
although we are also interested in the comparison for ceRNA
networks between patients with lung tumor vs. no tumor COPD

patients, However, no similar samples have been collected, and no
similar public transcriptome data of lung tumor vs. no tumor COPD
patients have been searched in public databases, so it cannot be done
at present. Our next step is to collect such samples as much as
possible and then perform whole-transcriptome sequencing. Third,
because smoking is a risk factor for inducing COPD and most COPD
patients are combined with smoking, our focus in this study was
biased to whether the patient developed COPD and to search for
possible biomarkers of COPD. Next, we will continue to collect
samples, focus on whether COPD patients smoke and control
subjects smoke, and further study the pathological mechanisms of
smoking in the occurrence and development of COPD. Moreover,
RNA regulatory networks are only based on bioinformatics
predictions, lacking actual experiments to verify, which requires
in vivo animal experiments and in vitro cell models for in-depth
investigation. Finally, although several crucial signaling pathways
were identified, a series of molecular experiments may help to
demonstrate the possible phenotype and pathway regulation of
these predictive genes in COPD.

In conclusion, whole-transcriptome sequencing provided all-
side data for lncRNA, circRNA, miRNA, and mRNA from COPD
samples, discovered lots of differentially expressed RNAs and
significant pathways. Based on these ncRNAs, we conducted a
series of analyses, which may contribute to discover potential
biomarkers in the occurrence and development of COPD, and

FIGURE 11
Correlation analysis between hub genes and immune cells. (A), There was a positive correlation between FAU expression and immune cells T cells
regulatory (Tregs) in COPD group. (B), RPL5 gene expression was negatively correlated with Neutrophils (C), RPL5 gene expression was negatively correlated
with T cell follicular helper. (D), RPLP0 gene expression was negatively correlated with the immune cell component CD4 naive T cells. (E), RPL10 gene
expression was negatively correlated with B cell memory. (F) and RPS21 gene expression were negatively correlated with CD4 naive T cells.
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provide possible therapeutic targets for the diagnosis and prognosis
of COPD.
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Integrated genomic analysis
defines molecular subgroups in
dilated cardiomyopathy and
identifies novel biomarkers based
on machine learning methods

Ling-Fang Ye1, Jia-Yi Weng2* and Li-Da Wu3*
1Changzhi People’s Hospital, Changzhi, Shanxi, China, 2Department of Cardiology, The Affiliated Suzhou
Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University,
Suzhou, China, 3Nanjing Medical University, Nanjing, China

Aim: As the most common cardiomyopathy, dilated cardiomyopathy (DCM) often
leads to progressive heart failure and sudden cardiac death. This study was designed
to investigate the molecular subgroups of DCM.

Methods: Three datasets of DCM were downloaded from GEO database (GSE17800,
GSE79962 and GSE3585). After log2-transformation and background correction with
“limma”package inR software, the three datasetsweremerged into ametadata cohort.
The consensus clustering was conducted by the “Consensus Cluster Plus” package to
uncover the molecular subgroups of DCM. Moreover, clinical characteristics of
different molecular subgroups were compared in detail. We also adopted Weighted
gene co-expression network analysis (WGCNA) analysis based on subgroup-specific
signatures of gene expression profiles to further explore the specific gene modules of
each molecular subgroup and its biological function. Two machine learning methods
of LASSO regression algorithm and SVM-RFE algorithm was used to screen out the
genetic biomarkers, of which the discriminative ability of molecular subgroups was
evaluated by receiver operating characteristic (ROC) curve.

Results: Based on the gene expression profiles, heart tissue samples from patients with
DCMwere clustered into threemolecular subgroups. No statistical differencewas found
in age, body mass index (BMI) and left ventricular internal diameter at end-diastole
(LVIDD) among three molecular subgroups. However, the results of left ventricular
ejection fraction (LVEF) statistics showed that patients from subgroup 2 had a worse
condition than the other group. We found that some of the gene modules (pink, black
and grey) in WGCNA analysis were significantly related to cardiac function, and each
molecular subgroup had its specific genemodules functions in modulating occurrence
and progression of DCM. LASSO regression algorithm and SVM-RFE algorithmwas used
to further screen out genetic biomarkers of molecular subgroup 2, including TCEAL4,
ISG15,RWDD1,ALG5,MRPL20, JTB and LITAF. The results of ROCcurves showed that all
of the genetic biomarkers had favorable discriminative effectiveness.

Conclusion: Patients from different molecular subgroups have their unique gene
expression patterns and different clinical characteristics. More personalized
treatment under the guidance of gene expression patterns should be realized.

KEYWORDS

dilated cardiomyopathy, WGCNA, molecular subgroups, lasso algorithm, SVM-RFE
algorithm
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Introduction

Dilated cardiomyopathy (DCM) is the most common type of
cardiomyopathy and a leading cause of death in the cardiovascular
field, which is characterized by enlargement of the ventricle and
reduced cardiac function (Fatkin et al., 2019). DCM can develop
into severe congestive heart failure progressively and threaten the
survival of patients. Although tremendous progress has been made in
the treatment field of DCM in the past decades, the morbidity and
mortality of DCM still remain high (Jefferies and Towbin, 2010). At
present, the etiology and pathogenesis of DCM are still unclear. Most
of DCM cases were thought to be sporadic, but at least 40%–60% of
DCM cases are now found to be familiar. Pedigree analysis showed
that most of families with DCM had autosomal dominant inheritance,
while a few had autosomal recessive inheritance, mitochondrial
inheritance and X-linked inheritance. It is of clinical significance to
identify the underlying the genetic mechanisms of DCM, which will
improve the prognosis of patients with DCM.

With the development of gene sequencing technologies, the public
gene expression profile databases, such as TCGA database and GEO
database, provide us an opportunity to better understand the
underlying genetic mechanisms of DCM. Bioinformatics analysis
can identify the differentially expressed genes (DEGs) of DCM and
uncover the specific biological functions of DEGs, which plays a
crucial role in developing clinical therapeutic measures and new
drugs (Cordero et al., 2008). Xiao et al. used dataset of DCM
(GSE3585) downloaded from GEO database to screen out the
DEGs of DCM patients compared with control group and
identified the hub genes (CTGF, IGFBP3, SMAD7, INSR, CTGF,
IGFBP3) significantly related to DCM by establishing protein-
protein interaction (PPI) network (Zhang et al., 2017). In addition,
Huang et al. also analyzed the DCM heart tissue samples from the
GEO database (GSE79962) using weighted gene co-expression
network analysis (WGCNA) method, and identified gene modules
that are related to the progression of DCM (Kang et al., 2020).

Molecular classification was first proposed in various cancer
researches to reveal the heterogeneity between patients with the same
tumor, shifting tumor classification from traditional morphology to
molecular features-based molecular typing. Considering patients in
different molecular subgroups often have different clinical
manifestations and prognosis, molecular classification is helpful in
judging prognosis and guiding treatment of diseases (Travaglino et al.,
2020a; Travaglino et al., 2020b; Naso et al., 2021). In recent years, more
andmore researchers have focused on the molecular classification among
chronic diseases rather than tumors, such as idiopathic pulmonary
fibrosis (IPF), coronary artery disease (CAD) and hepatitis B virus
(HBV) infection (Ainali et al., 2012; Zhang et al., 2021a; Zhang et al.,
2021b). CAD is a leading cause of death in cardiovascular field. To
investigate the molecular features of patients with CAD in different

molecular subgroups, Peng et al. also performed molecular subgroups
analysis and classified 352 patients with CAD into three molecular
subgroups based on datasets downloaded from GEO database. They
found that patients in different molecular subgroups of CAD not only
showed different gene expression patterns, but also different clinical
characteristics (Ainali et al., 2012). As a complex inherited disease
similar to cancer, DCM also exhibited clinical heterogeneity.
Nevertheless, the molecular subgroups of DCM have not been
reported. Therefore, we carried out this work to conduct molecular
classification of patients with DCM, looking for specific gene modules
in each molecular subgroup and exploring the relationship between each
molecular subgroup and clinical features. Many studies have analyzed the
gene expression profiles related to DCM. However, most of the previous
studies screened out differentially expressed genes (DEGs) between DCM
patients and control individuals, but ignored the existed differences in
gene expression profiles among DCM patients. In the present study, we
further classified DCM patients into molecular subgroups based the gene
expression patterns, and revealed that patients from different subgroups
exhibited different clinical characteristics. Artificial intelligence (AI) is a
new technical science that researches and develops theories, methods,
technologies and application systems for simulating, extending and
expanding human intelligence (Ghazal et al., 2022). Medicine is one of
the earliest applications of AI, including disease diagnosis and the
selection of the best surgical procedures (Goyal et al., 2022). Machine
learning is an important branch of artificial intelligence and has been
widely used in screening characteristic genes and risk factors of diseases
(Dai et al., 2022; Liu et al., 2022; Wu et al., 2022). We also used machine
learning methods to screen characteristic genes in subgroups in an
attempt to correlate gene expression profiles with clinical features in
patients with DCM.

Methods

Data collection

Three gene expression datasets of DCM were downloaded from
GEO database (http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al.,
2013) via the “GEO query” package in R software (version 4.1.1,
http://r-project.org/) (Davis and Meltzer, 2007), including GSE17800
(Liu et al., 2022), GSE79962 (Dai et al., 2022), and GSE3585 (Barrett
et al., 2013). GSE17800 was performed on the GPL570 platform and
included heart tissue samples from 40 DCM patients and eight control
individuals (Ameling et al., 2013). GSE79962 was performed by
GPL6244 platform and included nine DCM samples and
11 control samples (Matkovich et al., 2017). GSE3585 was based
on the platform GPL96, which includes heart tissue samples from
seven DCM patients and five control individuals (Barth et al., 2006).
The detailed characteristics of datasets was shown in Table 1.

TABLE 1 Characteristics of the datasets included in the analysis.

GEO ID Platform Citation Region Control DCM

GSE41177 GPL570; Affymetrix Human Genome U133 Plus 2.0 Array Ameling et al. (2013) Greifswald, Germany 8 40

GSE79962 GPL6244; Affymetrix Human Gene 1.0 ST Array Matkovich et al. (2017) St. Louis, USA 11 9

GSE3585 GPL96; Affymetrix Human Genome U133A Array Barth et al. (2006) Heidelberg, Germany 5 7

GEO: Gene Expression Omnibus; DCM: dilated cardiomyopathy.
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Data processing

Gene expression matrices of GSE17800, GSE79962, and
GSE3585 were established by R software. Then, we employed the
“limma” package to conduct log2-transformation and background
correction, and merged three datasets into a metadata cohort for
further analysis (Davis and Meltzer, 2007). Considering the integrated
datasets were based on different platforms and different experiment
conditions, it is of significance to remove the batch effect. The “SVA”
package was adopted for removing batch effects (Yeh et al., 2013).
Moreover, each gene expression value from different batches were
adjusted by the normalization procedure of “central standardization,”
also known as “mean centering” using “Combat” package. Finally, the
“ggplot2” package was adopted to conduct principal component
analysis (PCA) and draw PCA-plot based on the top two principal
components in PCA (Ito and Murphy, 2013).

Consensus clustering

The consensus clustering of DCM samples from GSE17800,
GSE79962, and GSE3585 was conducted by the “Consensus Cluster
Plus” package (Wilkerson and Hayes, 2010). We set 10 as the
maximum value of cluster groups. The consistency score (greater
than 0.7 in all clusters) and cumulative distribution function (CDF)
was used to determine the number of cluster groups.

Comparing the clinical features among
molecular groups

Clinical characteristics were also obtained by “GEO query”
package (Subramanian et al., 2007; Nidheesh et al., 2017). To
obtain the difference of clinical features among different molecular
subgroups, the clinical characteristics of the three subgroups were
compared in detail. We adopted the Pairwise Wilcoxonʼs rank-sum
test to investigate whether there were differences in age, BMI, LVEF
and LVIDD among three subgroups. The analysis of variance for age,
molecular subgroup and their interaction was also conducted to
validate whether the factor of molecular subgroup classification is
an independent indicator that can predict severity of DCM.

WGCNA analysis

WGCNA method is an effective tool to identify co-expression
modules related to specific biological function (Langfelder and
Horvath, 2008). We adopted WGCNA according to the subgroup-
specific signatures to determine potential gene modules that can
represent the functions of each molecular subgroup of DCM. In
the scale-free network, the best soft-threshold power was
determined by maximal R2. Moreover, we used the average method
and the dynamic method to conduct hierarchical clustering analysis.
After merging of similar modules, the module classification of genes
were ultimately established. Correlation analysis between WGCNA
modules and clinical characteristics was also performed using
Spearmanʼs method.

Enrichment analysis

The “clusterProfler” package (Wu et al., 2021) was used to perform
GO and KEGG pathway enrichment analysis among different
modules to further investigate the biological meaning of different
modules and its roles in occurrence and progression of DCM. We
downloaded the gene group reference of KEGG pathway from
MSigDB database (Kanehisa and Goto, 2000; Kanehisa et al., 2019).
The filter was set as p-value < 0.05 in KEGG analysis.

Identification of biomarkers based on
machine learning methods

We adopted two machine learning methods of LASSO regression
algorithm and SVM-RFE algorithm to screen out biomarkers of
molecular subgroup of DCM. “glmnet” package was employed to
conduct LASSO regression algorithm, which is a linear regression
model and widely used to screen characteristic genes or elements most
closely related to disease occurrence (Zhang et al., 2014). SVM-RFE is
another machine learning algorithm, which has also been widely used
for classification and regression analysis. We used SVM-RFE
algorithm based on “e107” package to identify genes with high
discriminative power (Leavey et al., 2018). Genes identified by both
algorithms were eventually selected as biomarkers.

Evaluation of discriminative power of the
biomarkers

We created receiver operating characteristic (ROC) curve by the
“pROC” package, and area under curve (AUC) value was adopted to
determine the discriminative power.

Results

Removal of batch effect

The detailed characteristics of the datasets included in the analysis,
including GSE17800, GSE79962 and GSE3585, was shown in Table 1.
A total of 11,779 genes were jointly detected by both microarray
platforms of the dataset. Principal component analysis (PCA) was
performed to validate whether the batch effect among the datasets
included in this study was successfully removed. PCA-plot was drawn
based on the top two principal components (PCs) in PCA. Before the
process of batch effect removing, heart samples from patients with
DCM were clustered by batches, indicating that there was significant
batch effect caused by different platforms and different experiment
conditions among the datasets (Figure 1A). In addition, the
distribution range of specimens on the horizontal (PC1) and
vertical (PC2) axes is 100 and 200, respectively, with a large
variation rate. After removing of batch effect between GSE17800,
GSE79962 and GSE3585, including samples of controls and patients
with DCM, the PCA-plot based on PCA of the normalized meta-
cohort data revealed that the batch effect between GSE17800,
GSE79962, and GSE3585 was clearly removed. Of note, the batch
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effect between samples of controls and patients with DCM was also
removed (Figure 1B).

Consensus clustering of DCM cases

After the batch effect was successfully removed, the merged
dataset was employed to conduct molecular subgroup analysis by
consensus clustering. The cluster consensus score of each subgroup
was higher than 0.7 only in the three categories (Figure 2A). In
addition, CDF curve showed that the CDF score was the largest in
the three categories (Figure 2B). Both evidences suggested that three
molecular subgroups were more robust than others in DCM patients.
Therefore, heart tissue samples would be clustered into three
molecular subgroups according to the consistency score and the
CDF curve. In the consensus matrix, we observed that there is a
high similarity of gene expression patterns within each molecular
subgroup (Figure 2C). Ultimately, we adopted consensus clustering
algorithm to divide 56 heart tissue samples from patients with into
three molecular subgroups based on the gene expression patterns.

The differences of clinical characteristics in
the three molecular subgroups

DCM cases in subgroup 1, subgroup 2, and subgroup 3 had
different gene expression patterns. To further investigate the
clinical characteristics of three groups, the age, BMI, LVEF, and
LVIDD were analyzed in detail in DCM cases from

GSE17800 dataset. We found that patients in subgroup 2 had
lower LVEF than patients in subgroup 1 and subgroup 3 with
statistical difference (Figure 3A). However, the results of age, BMI,
and LVIDD statistics showed that there was no significant difference
among three groups (Figures 3B–D). As a result, not only did gene
expression differs, but the severity of the disease also varied among
three subgroups of DCM cases. As shown in Table 2, the analysis of
variance (ANOVA) on age and our molecular classification was
performed, indicating that the molecular classification in the
present study was an age-independent indicator for the severity
of DCM.

WGCNA analysis

Based on Pairwise differential expression analysis, we identified
605, 697, and 1,557 specific differentially expressed genes in subgroups
1, subgroups 2, and subgroups 3 compared with other subgroup
(Benjamin-Hochberg adjusted p < 0.05, absolute difference of
mean > 0.2) (Table 3). We also compared the gene expression
profile of each molecular subgroup with that of control individuals.
There was 1,236, 1,388, and 2,617 differentially expressed genes in
subgroups 1, subgroups 2, and subgroups 3 compared with the control
individuals (Table 3). To further reveal the differences in gene
expression patterns and the resulting functional differences among
molecular subgroups of DCM, WGCNA was performed based on the
specific differentially expressed genes in each group. We carried out
WGCNA analysis based on topological overlaps and scale-free
network and created a hierarchical clustering tree based on the

FIGURE 1
PCA plots of the gene expression datasets. The points of the PCA plots visualize the samples based on the top two PC (PC1 and PC2) without (A) and with
(B) the removal of batch effect between GSE17800, GSE79962 and GSE3585. PCA, Principal component analysis; PC, principal components.
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dynamic-hybrid cut (Figure 4A). According to the results of scale-free
topology criterion, we selected 8 as the soft-thresholding power (R2 =
0.89; Figure 4B). Ultimately, a total of nine co-expressed modules were
identified for further research. Figure 4C shows the cluster
dendrogram of the modules and the clustering of module
eigengenes was shown in Figure 4D. Figure 5 shows the identified
nine WGCNA modules, of which the corresponding subgroups are
shown in Table 3. To further study the relationship between WGCNA
modules and clinical features of patients with DCM, the correlation
coefficients between WGCNA models and clinical features were
calculated. As shown in Figure 5, age was correlated positively with
module blue, and negatively correlated with module brown, module
black, module turquoise, module red and module pink. LVEF was

positively correlated with module pink, and negatively corelated with
module black and module grey. BMI was positively corelated with
module grey, module blue, module brown, and module black, and
negatively corelated with module pink and module yellow. These
results show that the WGCNA modules was associated with clinical
features of patients with DCM. Moreover, we performed GO
functional enrichment analysis based on the genes in different
WGCNA modules. Figure 6 shows the biological process terms
enriched in different modules. The abscissa represents the elder
brother module, and the ordinate represents the item of functional
enrichment analysis. A triangle means statistically significant. The
enriched terms in cellular component and molecular function are
shown in Supplementary Figures S1, S2. Detailed results of GO

FIGURE 2
Consensus clustering analysis based on gene expression profiles of DCM patients. (A). The barplots of consistency scores of each cluster; (B). The CDF
scores of the different categories; (C). The heatmap represents the consensus matrix with cluster count of 3, which was determined by the CDF scores and
consensus scores of subgroups. DCM, dilated cardiomyopathy; CDF, cumulative distribution function.

TABLE 2 Analysis of variance for classification of subgroups, age, and their interactions.

Df Sum square Mean square F value Pr (>F)

Subgroup 2 411.4 205.6 6.03 0.006pp

Age 1 0.5 0.53 0.016 0.902

Subgroup and age interaction 2 32.3 16.13 0.473 0.63

Residuals 34 1159.8 34.11

Df: degree of freedom. Significant codes: “ppp” 0.001, “pp” 0.01, “p” 0.05.
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enrichment analysis were shown in Supplementary Tables S1–S3. We
also conducted KEGG pathway analysis and identified pathways
enriched in different WGCNA modules (Figure 7). Detailed results
of KEGG enrichment analysis were shown in Supplementary Table S4.
Above all, these results of enrichment analysis demonstrated each
molecular subgroup had its specific functional gene modules that
could function in modulating DCM onset or progression.

Identification of biomarkers based on
machine learning algorithms

Considering the patients in subgroup 2 hadmore severe condition,
two machine learning algorithms of LASSO regression and SVM-RFE
algorithm were adopted to screen out biomarkers. According to the
specific differentially expressed genes in subgroup 2, we screened out
28 key gene significantly related to molecular classification using
LASSO algorithm (Figure 8A). In addition, 28 genes were identified

as biomarkers based on the SVM-RFE algorithm (Figure 8B). The
seven overlapping genes, including TCEAL4, ISG16, RWDD1, ALG5,
MRPL20, JTB and LITAF, were finally selected as biomarkers
(Figure 9A). All of the DEGs of subgroup 2 with detailed p-value
and adjust p-value was shown in Supplementary Table S5.

Diagnostic effectiveness of biomarkers

ROC curve was adopted to evaluate the diagnostic effectiveness of
biomarkers of subgroup 2. The results of ROC curve indicated that all
of the biomarkers have a favorable diagnostic effectiveness in
discriminating DCM cases in subgroup 2, with an AUC of 0.979
(95%CI 0.932–1.000) in TCEAL4, AUC of 0.869 (95%CI 0.750–0.968)
in ISG15, and AUC of 0.939 (95% CI 0.850–0.996) in RWDD1,AUC of
0.955 (95% CI 0.888–1.000) in ALG5, AUC of 0.874 (95% CI
0.701–1.000) in MRPL20, AUC of 0.966 (95% CI 0.917–0.998) in
JTB and AUC of 0.953 (95% CI 0.888–0.996) in LITAF (Figures

FIGURE 3
The comparison of clinical characteristics among the different molecular subgroups. (A). Box plot displays LVEF of each subgroup; (B). Box plot displays
age of each subgroup; (C). Box plot displays BMI of each subgroup; (D). Box plot displays LVIDD of each subgroup. BMI, bodymass index; LVEF, left ventricular
ejection fraction; LVIDD, left ventricular internal diameter at end-diastole.

TABLE 3 The number of differentially expressed genes by case-control and case-case comparisons and weighted gene co-expression analysis modules in each subgroup.

Subgroups The specific genes were compared with the
normal group

The specific genes were compared with each
subgroup

Modular

Subgroup 1 1236 605 Red and yellow

Subgroup 2 1388 697 Black, blue, green and
grey

Subgroup 3 2617 1557 Pink, turquoise and
brown
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9B–H). The expression levels of the biomarkers among different
molecular subgroups were shown in Figures 10A–G.

Discussion

In this study, three gene expression profiles of heart tissue samples
from patients with DCM and control individuals from GEO database
were analyzed in detail. For the first time, we merge the three datasets
as a metadata cohort and successfully clustered the DCM cases into
three molecular subgroups according to the gene expression profile of
DCM. The consensus clustering process based on CDF score and
cluster consensus score guaranteed that our molecular subgroup
classification was robust. Furthermore, significant correlation
between clinical conditions and molecular subgroups was observed.
Patients in subgroup 2 had lower LVEF comparing with the other two
subgroups. In addition, molecular subgroups-specific functional
modules and pathways were also analyzed through WGCNA
method. These results taken together showed that the molecular
classification of DCM was associated with clinical features of
patients with DCM and patients in different molecular subgroups
should receive personalized treatment.

Molecular subgroup classification based on gene expression
patterns has provided great help for clinical diagnosis and
treatment, especially in the field of cancer research. Zhang et al.
(2014) reported that the stem-like signatures were significantly
activated in patients with colon cancer from molecular subtype C.

In recent years, more and more researchers have focused on the
molecular classification among chronic diseases rather than tumors.
For example, IPF is one of the idiopathic interstitial pneumonias with
high mortality and morbidity. Zhang et al. (2021a) conducted a
molecular subgroups analysis for patients with IPF according to
gene expression profiles, and revealed the potential molecular
features of different types of IPF. CAD is a leading cause of death
in cardiovascular field. To investigate the molecular features of
patients with CAD in different molecular subgroups, Peng et al.
also performed molecular subgroups analysis and classified
352 patients with CAD into three molecular subgroups based on
datasets downloaded from GEO database. They found that patients in
different molecular subgroups of CAD not only showed different gene
expression patterns, but also different clinical characteristics (Ainali
et al., 2012). At present, the hepatitis B virus (HBV) infection is a
public health threat worldwide. Patients infected with HBV in
different molecular subgroups showed significantly differences in
clinical features, such as degree of liver fibrosis and liver index. Of
note, the immune cells infiltration in liver tissue samples from patients
with HBV of different are also different (Zhang et al., 2021b).
Understanding the gene expression patterns of diseases, especially
inherited diseases and studying the clinical characteristics of different
molecular subtypes are very important for the precise treatment of
each patient. Moreover, psoriasis, pre-eclampsia, Alzheimerʼs disease
and myelodysplastic syndrome were also found association between
the clinical variables and transcriptional differences or subtypes (Aibar
et al., 2016; Leavey et al., 2018). These studies provide a deeper

FIGURE 4
Sample clustering and network construction of the weighted co-expressed genes. (A) Clustering dendrogram heart tissue samples from patients with
DCM and control individuals. (B) the scale-free index and the mean connectivity for various soft-thresholding powers. (C) Dendrogram clustered based on a
dissimilarity measure. Gene expression similarity is assessed by a pair-wise weighted correlation metric and clustered based on a topological overlap metric
into modules. Each color below represents one co-expression module, and every branch stands for one gene. (D) Cluster dendrogram of modules.
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understanding of diseases and indicate the significance of precise
medicine. In the present study, we collected gene expression datasets
of DCM from GEO database and conducted an integrated
bioinformatics analysis, aiming to uncover the molecular subgroups
according to genes expression patterns.

In particular, patients in subgroup 2 tended to have a more serious
condition than patients from subgroup 1 and subgroup 3. The results
of age, BMI, and LVIDd statistics showed that there was no significant
difference among three groups. Therefore, DCM patients should be
distinguished by the molecular classification and receive more
personalized treatment.

Compared to previous studies, the functional modules and
pathways identified by WGCNA method were also connected with
specific molecular subgroup of DCM (Zhou et al., 2020; Huang et al.,
2021; Li et al., 2021). We found that the specific differential expression
genes in subgroup 2 were mostly in the black, blue, green and grey
WGCNA module. Considering the black module had a significant
negative correlation with LVEF, the enrichment analysis of black
module demonstrated that valine, leucine and isoleucine degradation
signaling pathway, nucleotide metabolism signaling pathway and
ubiquitin mediated proteolysis signaling pathway may contribute to
the negative correlation with cardiac function. The change of
metabolism is an important feature of DCM. Optimizing
myocardial energy metabolism is one of the important means to

treat DCM (Mak et al., 2021). Of note, branched chain amino
acids (BCAAs) are collectively referred to as leucine, valine and
isoleucine. BCAAs can be regarded as one of the most important
nutritional supplements and are the most characteristic energy source
for the oxidation and utilization of myocardial amino acids. Although
BCAAs accounts for only 2% of myocardial ATP production, it plays
an important role in regulating insulin pathway and mammalian
rapamycin like target protein (mTOR) signaling pathway (Jo et al.,
2022). In addition, BCAAs can continuously activate mTOR signal
and damage insulin signal transduction through insulin receptor
substrate, and abnormal BCAAs metabolism can cause the
accumulation of BCAAs metabolites and eventually lead to insulin
resistance (Cuomo et al., 2022). Studies have shown that eating a
mixture rich in BCAAs can prolong the average life span of mice and
increase mitochondrial biogenesis in mouse myocardium and skeletal
muscle (Valerio et al., 2011). However, the increase of plasma BCAAs
level in patients is considered to be an early predictor of the
development of DCM. The accumulated BCAAs can activate
mTOR signal and accelerate the occurrence and development of
myocardial hypertrophy (Caragnano et al., 2019). Protein
phosphatase PPC2m and branched-chain alpha-ketoacid
dehydrogenase (BCBDK) are important targets to improve BCAA
metabolism, which is crucial for BCAA oxidation and promote
BCAAs oxidation. The risk of heart failure in PPC2m knockout

FIGURE 5
Heatmap of the correlation between modules and clinical features of patients with DCM.
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mice was significantly increased. Enhancing BCAAs oxidation and or
reducing the level of BCAA in blood have cardioprotective effects in
heart failure. In addition, BCBDK inhibitor BT2 can improve the
oxidation capacity of BCAA in heart failure, reduce the accumulation
of BCAA, and reduce the infarct area of cardiac ischemia reperfusion
injury (Li et al., 2017). Nucleotide is the basic structural unit of genetic
material nucleic acid and has a variety of biological functions. In
addition to being the raw material for nucleic acid synthesis, it also

constitutes energy substances, such as ATP, GTP, CTP, etc., (Barvík
et al., 2017). Nucleotide is also involved in metabolism and
physiological regulation, for example, cAMP is an important
second messenger substance in the body and participates in signal
transduction (Mani, 2022). In view of the important physiological
significance of nucleotide, its abnormal situation in the process of
metabolism often causes serious consequences. In recent years, a series
of genetic diseases, including DCM, caused by abnormal nucleotide

FIGURE 6
Heatmap of the enriched biological processes in GO analysis for each WGCNA module.
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metabolism have been found (Pant et al., 2018). Ubiquitination refers
to the process in which ubiquitins (a class of low molecular weight
proteins) classify proteins in cells under the action of a series of special
enzymes, select target proteins from them, and modify the target
proteins specifically (Kolla et al., 2022). DCM are associated with
cardiac remodeling, where the ubiquitin-proteasome system (UPS)
holds a central role. Different levels of UPS components, E3 ligases,
and UPS activation markers were observed in myocardial tissue from
control individuals and patients affected by DCM, suggesting

differential involvement of the UPS in the underlying pathologies
(Shukla and Rafiq, 2019). Therefore, Attention to the role of metabolic
abnormalities in dilated cardiomyopathy is important to identify
therapeutic targets for patients with different molecular pressure
groups. We also screened out biomarkers of molecular subgroup 2,
including TCEAL4, ISG15, RWDD1, ALG5,MRPL20, JTB, and LITAF,
based on two machine learning methods of LASSO regression and
SVM-RFE algorithm. However, the accuracy of its predictions requires
further validation in a larger population and roles of the biomarkers in

FIGURE 7
Heatmap of the enriched pathways in KEGG analysis for each WGCNA module.
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DCM still need to further investigate. A limitation of this study should
be noted. The development of DCM is a complex process, although a
total of 56 participants were included, the input data might still be
insufficient to identify and validate biomarkers. In addition, the

56 participants included in the study came from various regions
with different genetic variation, diet, physical activity and so on.
Therefore, the conclusions in the present study still need more
external validations.

FIGURE 8
Identification of biomarkers of molecular subgroup 2 using machine learning algorithms. (A) Identification of biomarkers of molecular subgroup 2 via
LASSO algorithm; (B) Identification of biomarkers of molecular subgroup 2 via SVM-RFE algorithm.

FIGURE 9
Evaluation of the effectiveness of the biomarkers. (A) Venn plot of the overlapping genes identified by the LASSO algorithm and SVM-RFE algorithm.
(B–H) ROC curves of TCEAL4, ISG15, RWDD1, ALG5, MRPL20, JTB, and LITAF. ROC, receiver operating characteristic.
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Conclusion

In conclusion, our results showed that, through molecular
classification, more detailed disease characteristics and its relationship
with clinical features of patients withDCM should be noticed. In addition,
patients in different molecular subgroups should receive a more
personalized treatment. Similar to molecular classification in cancer,
more populations are needed to conduct further validation, moreover,
future research in DCM should also introduce multi-omics data to reveal
more precise molecular subgroups of DCM.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Author contributions

L-FY was involved in the experiment design. L-DW performed the
experiments and analyzed the data. L-FY wrote the manuscript. All
authors declare no conflicts of interest.

Funding

This research was funded by the National Natural Science
Foundation of China (Grant No. 82100360) and the tutorial system
of Suzhou (Grant No. Qngg2022021).

Acknowledgments

We acknowledge GEO database for providing their platforms and
contributors for uploading their meaningful datasets. And we thank all
participants involved in studies included in our present study. L-DW
sincerely acknowledged his fianceeMs. Nan Zhou for her love and care
in their daily life. Whish their love forever!.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2023.1050696/
full#supplementary-material

FIGURE 10
The comparison of expression levels of the biomarkers among control group and different molecular subgroups. (A–G) Expression levels of TCEAL4,
ISG15, RWDD1, ALG5,MRPL20, JTB, and LITAF among control group and different molecular subgroups.*p < 0.05.

Frontiers in Genetics frontiersin.org12

Ye et al. 10.3389/fgene.2023.1050696

313

https://www.frontiersin.org/articles/10.3389/fgene.2023.1050696/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1050696/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1050696


References

Aibar, S., Abaigar, M., Campos-Laborie, F. J., Sánchez-Santos, J. M., Hernandez-Rivas,
J. M., and Rivas, J. D. L. (2016). Identification of expression patterns in the progression of
disease stages by integration of transcriptomic data. BMC Bioinforma. 17 (15), 432. doi:10.
1186/s12859-016-1290-4

Ainali, C., Valeyev, N., Perera, G., Williams, A., Gudjonsson, J. E., Ouzounis, C. A., et al.
(2012). Transcriptome classification reveals molecular subtypes in psoriasis. BMC
Genomics 13, 472. doi:10.1186/1471-2164-13-472

Ameling, S., Herda, L. R., Hammer, E., Steil, L., Teumer, A., Trimpert, C., et al. (2013).
Myocardial gene expression profiles and cardio-depressant autoantibodies predict
response of patients with dilated cardiomyopathy to immunoadsorption therapy. Eur.
Heart J. 34 (9), 666–675. doi:10.1093/eurheartj/ehs330

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., et al.
(2013). NCBI geo: Archive for functional genomics data sets–update.Nucleic Acids Res. 41,
991–995. doi:10.1093/nar/gks1193

Barth, A. S., Kuner, R., Buness, A., Ruschhaupt, M., Merk, S., Zwermann, L., et al. (2006).
Identification of a common gene expression signature in dilated cardiomyopathy across
independent microarray studies. J. Am. Coll. Cardiol. 48 (8), 1610–1617. doi:10.1016/j.jacc.
2006.07.026

Barvík, I., Rejman, D., Panova, N., Šanderová, H., and Krásný, L. (2017). Non-canonical
transcription initiation: The expanding universe of transcription initiating substrates.
FEMS Microbiol. Rev. 41 (2), 131–138. doi:10.1093/femsre/fuw041

Caragnano, A., Aleksova, A., Bulfoni, M., Cervellin, C., Rolle, I. G., Veneziano, C., et al.
(2019). Autophagy and inflammasome activation in dilated cardiomyopathy. J. Clin. Med.
8 (10), 1519. doi:10.3390/jcm8101519

Cordero, F., Botta, M., and Calogero, R. A. (2008). Microarray data analysis and mining
approaches. Briefings Funct. Genomics & Proteomics 6 (4), 265–281. doi:10.1093/bfgp/
elm034

Cuomo, P., Capparelli, R., Iannelli, A., and Iannelli, D. (2022). Role of branched-chain
amino acid metabolism in type 2 diabetes, obesity, cardiovascular disease and non-
alcoholic fatty liver disease. Int. J. Mol. Sci. 23 (8), 4325. doi:10.3390/ijms23084325

Dai, K., Liu, C., Guan, G., Cai, J., and Wu, L. (2022). Identification of immune
infiltration-related genes as prognostic indicators for hepatocellular carcinoma. BMC
Cancer 22 (1), 496. doi:10.1186/s12885-022-09587-0

Davis, S., and Meltzer, P. S. (2007). GEOquery: A bridge between the gene expression
omnibus (GEO) and BioConductor. Bioinformatics 23 (14), 1846–1847. doi:10.1093/
bioinformatics/btm254

Fatkin, D., Huttner, I. G., Kovacic, J. C., Seidman, J. G., and Seidman, C. E.
(2019). Precision medicine in the management of dilated cardiomyopathy: JACC
state-of-the-art review. J. Am. Coll. Cardiol. 74, 2921–2938. doi:10.1016/j.jacc.
2019.10.011

Ghazal, P., Rodrigues, P. R. S., Chakraborty, M., Oruganti, S., and Woolley, T. E. (2022).
Challenging molecular dogmas in human sepsis using mathematical reasoning.
EBioMedicine 80, 104031. doi:10.1016/j.ebiom.2022.104031

Goyal, H., Sherazi, S. A. A., Gupta, S., Perisetti, A., Achebe, I., Ali, A., et al. (2022).
Application of artificial intelligence in diagnosis of pancreatic malignancies by endoscopic
ultrasound: A systemic review. Ther. Adv. Gastroenterol. 15, 17562848221093873. doi:10.
1177/17562848221093873

Huang, G., Huang, Z., Peng, Y., Wang, Y., Liu, W., Xue, Y., et al. (2021). Metabolic
processes are potential biological processes distinguishing nonischemic dilated
cardiomyopathy from ischemic cardiomyopathy: A clue from serum proteomics.
Pharmgenomics Pers. Med. 14, 1169–1184. doi:10.2147/PGPM.S323379

Ito, K., and Murphy, D. (2013). Application of ggplot2 to pharmacometric
graphics. CPT Pharmacometrics Syst. Pharmacol. 2 (10), e79. doi:10.1038/psp.
2013.56

Jefferies, J. L., and Towbin, J. A. (2010). Dilated cardiomyopathy. Lancet 375, 752–762.
doi:10.1016/S0140-6736(09)62023-7

Jo, S., Moon, H., Park, K., Sohn, C. B., Kim, J., Kwon, Y. S., et al. (2022). Design and
rationale for a comparison study of olmesartan and valsartan on myocardial
metabolism in patients with dilated cardiomyopathy (OVOID) trial: Study
protocol for a randomized controlled trial. Trials 23 (1), 36. doi:10.1186/s13063-
021-05970-7

Kanehisa, M., and Goto, S. (2000). Kegg: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 28 (1), 27–30. doi:10.1093/nar/28.1.27

Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tanabe, M. (2019). New
approach for understanding genome variations in KEGG. Nucleic Acids Res. 47 (D1),
D590–D595. doi:10.1093/nar/gky962

Kang, K., Li, J., Li, R., Xu, X., Liu, J., Qin, L., et al. (2020). Potentially critical roles ofNDUFB5,
TIMMDC1, and VDAC3 in the progression of septic cardiomyopathy through integrated
bioinformatics analysis. DNA Cell Biol. 39 (1), 105–117. doi:10.1089/dna.2019.4859

Kolla, S., Ye, M., Mark, K. G., and Rapé, M. (2022). Assembly and function of branched
ubiquitin chains. Trends Biochem. Sci. S0968-0004 (22), 759–771. doi:10.1016/j.tibs.2022.04.003

Langfelder, P., and Horvath, S. (2008). Wgcna: an R package for weighted correlation
network analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-2105-9-559

Leavey, K., Wilson, S. L., Bainbridge, S. A., Robinson, W. P., and Cox, B. J. (2018).
Epigenetic regulation of placental gene expression in transcriptional subtypes of
preeclampsia. Clin. Epigenetics 10, 28. doi:10.1186/s13148-018-0463-6

Li, A., He, J., Zhang, Z., Jiang, S., Gao, Y., Pan, Y., et al. (2021). Integrated bioinformatics
analysis reveals marker genes and potential therapeutic targets for pulmonary arterial
hypertension. Genes (Basel) 12 (9), 1339. doi:10.3390/genes12091339

Li, T., Zhang, Z., Kolwicz, S. C., Jr, Abell, L., Roe, N. D., Kim, M., et al. (2017). Defective
branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart
to ischemia-reperfusion injury. Cell Metab. 25 (2), 374–385. doi:10.1016/j.cmet.2016.11.005

Liu, B., Zhai, J., Wang, W., Liu, T., Liu, C., Zhu, X., et al. (2022). Identification of tumor
microenvironment and DNA methylation-related prognostic signature for predicting
clinical outcomes and therapeutic responses in cervical cancer. Front. Mol. Biosci. 9,
872932. doi:10.3389/fmolb.2022.872932

Mak, D., Ryan, K. A., and Han, J. C. (2021). Review of insulin resistance in dilated
cardiomyopathy and implications for the pediatric patient short title: Insulin resistance
DCM and pediatrics. Front. Pediatr. 9, 756593. doi:10.3389/fped.2021.756593

Mani, A. (2022). PDE4DIP in health and diseases. Cell Signal 94, 110322. doi:10.1016/j.
cellsig.2022.110322

Matkovich, S. J., Al Khiami, B., Efimov, I. R., Evans, S., Vader, J., Jain, A., et al. (2017).
Widespread down-regulation of cardiac mitochondrial and sarcomeric genes in patients
with sepsis. Crit. Care Med. 45 (3), 407–414. doi:10.1097/CCM.0000000000002207

Naso, J. R., Topham, J. T., Karasinska, J. M., Lee, M. K. C., Kalloger, S. E., Wong, H. L.,
et al. (2021). Tumor infiltrating neutrophils and gland formation predict overall survival
and molecular subgroups in pancreatic ductal adenocarcinoma. Cancer Med. 10 (3),
1155–1165. doi:10.1002/cam4.3695

Nidheesh, N., Abdul Nazeer, K. A., and Ameer, P. M. (2017). An enhanced deterministic
K-means clustering algorithm for cancer subtype prediction from gene expression data.
Comput. Biol. Med. 91, 213–221. doi:10.1016/j.compbiomed.2017.10.014

Pant, T., Dhanasekaran, A., Fang, J., Bai, X., Bosnjak, Z. J., Liang, M., et al. (2018).
Current status and strategies of long noncoding RNA research for diabetic
cardiomyopathy. BMC Cardiovasc Disord. 18 (1), 197. doi:10.1186/s12872-018-0939-5

Shukla, S. K., and Rafiq, K. (2019). Proteasome biology and therapeutics in cardiac
diseases. Transl. Res. 205, 64–76. doi:10.1016/j.trsl.2018.09.003

Subramanian, A., Kuehn, H., Gould, J., Tamayo, P., andMesirov, J. P. (2007). GSEA-P: A
desktop application for gene set enrichment analysis. Bioinformatics 23 (23), 3251–3253.
doi:10.1093/bioinformatics/btm369

Travaglino, A., Raffone, A., Mascolo, M., Guida, M., Insabato, L., Zannoni, G. F., et al.
(2020). TCGA molecular subgroups in endometrial undifferentiated/dedifferentiated
carcinoma. Pathol. Oncol. Res. 26 (3), 1411–1416. doi:10.1007/s12253-019-00784-0

Travaglino, A., Raffone, A., Stradella, C., Esposito, R., Moretta, P., Gallo, C., et al. (2020).
Impact of endometrial carcinoma histotype on the prognostic value of the TCGA molecular
subgroups. Arch. Gynecol. Obstet. 301 (6), 1355–1363. doi:10.1007/s00404-020-05542-1

Valerio, A., D’Antona, G., and Nisoli, E. (2011). Branched-chain amino acids,
mitochondrial biogenesis, and healthspan: An evolutionary perspective. Aging (Albany
NY) 3 (5), 464–478. doi:10.18632/aging.100322

Wilkerson, M. D., and Hayes, D. N. (2010). Consensus cluster Plus: A class discovery
tool with confidence assessments and item tracking. Bioinformatics 26 (12), 1572–1573.
doi:10.1093/bioinformatics/btq170

Wu, L. D., Li, F., Chen, J. Y., Zhang, J., Qian, L. L., and Wang, R. X. (2022). Analysis of
potential genetic biomarkers using machine learning methods and immune infiltration
regulatory mechanisms underlying atrial fibrillation. BMC Med. Genomics 15 (1), 64.
doi:10.1186/s12920-022-01212-0

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler 4.0: A
universal enrichment tool for interpreting omics data. Innov. (N Y) 2 (3), 100141. doi:10.
1016/j.xinn.2021.100141

Yeh, Y. H., Kuo, C. T., Lee, Y. S., Lin, Y. M., Nattel, S., Tsai, F. C., et al. (2013). Region-
specific gene expression profiles in the left atria of patients with valvular atrial fibrillation.
Heart rhythm. 10 (3), 383–391. doi:10.1016/j.hrthm.2012.11.013

Zhang, B., Wang, J., Wang, X., Zhu, J., Liu, Q., Shi, Z., et al. (2014). Proteogenomic
characterization of human colon and rectal cancer. Nature 513 (7518), 382–387. doi:10.
1038/nature13438

Zhang, C., Li, J., Yang, L., Xu, F., She, H., and Liu, X. (2021). Transcriptome classification
reveals molecular subgroups in patients with Hepatitis B virus. Comput. Math. Methods
Med. 2021, e5543747. doi:10.1155/2021/5543747

Zhang, H., Yu, Z., He, J., Hua, B., and Zhang, G. (2017). Identification of the molecular
mechanisms underlying dilated cardiomyopathy via bioinformatic analysis of gene
expression profiles. Exp. Ther. Med. 13 (1), 273–279. doi:10.3892/etm.2016.3953

Zhang, N., Guo, Y., Wu, C., Jiang, B., and Wang, Y. (2021). Identification of the
molecular subgroups in idiopathic pulmonary fibrosis by gene expression profiles.
Comput. Math. Methods Med. 2021, e7922594. doi:10.1155/2021/7922594

Zhou, J., Zhang, W., Wei, C., Zhang, Z., Yi, D., Peng, X., et al. (2020). Weighted
correlation network bioinformatics uncovers a key molecular biosignature driving the left-
sided heart failure. BMC Med. Genomics 13 (1), 93. doi:10.1186/s12920-020-00750-9

Frontiers in Genetics frontiersin.org13

Ye et al. 10.3389/fgene.2023.1050696

314

https://doi.org/10.1186/s12859-016-1290-4
https://doi.org/10.1186/s12859-016-1290-4
https://doi.org/10.1186/1471-2164-13-472
https://doi.org/10.1093/eurheartj/ehs330
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1016/j.jacc.2006.07.026
https://doi.org/10.1016/j.jacc.2006.07.026
https://doi.org/10.1093/femsre/fuw041
https://doi.org/10.3390/jcm8101519
https://doi.org/10.1093/bfgp/elm034
https://doi.org/10.1093/bfgp/elm034
https://doi.org/10.3390/ijms23084325
https://doi.org/10.1186/s12885-022-09587-0
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1016/j.jacc.2019.10.011
https://doi.org/10.1016/j.jacc.2019.10.011
https://doi.org/10.1016/j.ebiom.2022.104031
https://doi.org/10.1177/17562848221093873
https://doi.org/10.1177/17562848221093873
https://doi.org/10.2147/PGPM.S323379
https://doi.org/10.1038/psp.2013.56
https://doi.org/10.1038/psp.2013.56
https://doi.org/10.1016/S0140-6736(09)62023-7
https://doi.org/10.1186/s13063-021-05970-7
https://doi.org/10.1186/s13063-021-05970-7
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/gky962
https://doi.org/10.1089/dna.2019.4859
https://doi.org/10.1016/j.tibs.2022.04.003
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/s13148-018-0463-6
https://doi.org/10.3390/genes12091339
https://doi.org/10.1016/j.cmet.2016.11.005
https://doi.org/10.3389/fmolb.2022.872932
https://doi.org/10.3389/fped.2021.756593
https://doi.org/10.1016/j.cellsig.2022.110322
https://doi.org/10.1016/j.cellsig.2022.110322
https://doi.org/10.1097/CCM.0000000000002207
https://doi.org/10.1002/cam4.3695
https://doi.org/10.1016/j.compbiomed.2017.10.014
https://doi.org/10.1186/s12872-018-0939-5
https://doi.org/10.1016/j.trsl.2018.09.003
https://doi.org/10.1093/bioinformatics/btm369
https://doi.org/10.1007/s12253-019-00784-0
https://doi.org/10.1007/s00404-020-05542-1
https://doi.org/10.18632/aging.100322
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1186/s12920-022-01212-0
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.hrthm.2012.11.013
https://doi.org/10.1038/nature13438
https://doi.org/10.1038/nature13438
https://doi.org/10.1155/2021/5543747
https://doi.org/10.3892/etm.2016.3953
https://doi.org/10.1155/2021/7922594
https://doi.org/10.1186/s12920-020-00750-9
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1050696


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Highlights genetic and genomic inquiry relating 

to all domains of life

The most cited genetics and heredity journal, 

which advances our understanding of genes from 

humans to plants and other model organisms. 

It highlights developments in the function and 

variability of the genome, and the use of genomic 

tools.

Discover the latest 
Research Topics

See more 

Frontiers in
Genetics

https://www.frontiersin.org/journals/genetics/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Genes, diseases, immunity and immunogenomics
	Table of contents
	Editorial: Genes, diseases, immunity and immunogenomics
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Prediction of Prognosis and Immunotherapy of Osteosarcoma Based on Necroptosis-Related lncRNAs
	Introduction
	Materials and METHODS
	Data Collection
	Screening and Differential Expression Analysis of Necrotizing Apoptosis–Related lncRNAs
	Risk Modeling
	Independent Prognostic Analysis
	Construction of the Nomogram
	Functional Analysis
	Tumor Immune Assessment
	Predicting Potential Compounds for the Treatment of Osteosarcoma

	Results
	Prognosis-Related lncRNAs Co-expressed With Necroptosis
	Model Construction and Validation
	GSEA Enrichment Analysis
	Investigation of Immunological Factors and Drug Efficacy in the High-Risk Group

	Discussion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

	Characterization of Necroptosis-Related Molecular Subtypes and Therapeutic Response in Lung Adenocarcinoma
	Introduction
	Material and Methods
	Preparation of Lung Adenocarcinoma Datasets
	Mutational Characteristics of Necroptosis-Related Signatures in Lung Adenocarcinoma
	Identification of Consensus Clusters for Lung Adenocarcinoma
	Immunological Characteristics of Different Clusters in Lung Adenocarcinoma
	Establishment of the Necroptosis-Related Gene Score
	Relationship Between the mRNA Stem Index, Tumor Mutation Burden, and NRG Scores
	Identification and Validation of a Novel NRG-Related Nomogram

	Results
	Genetic Mutation and Prognostic Characteristics of NRGs in Lung Adenocarcinoma
	Identification of Necroptosis-Related Subtypes and Characteristics in Lung Adenocarcinoma
	Construction and Development of NRG Scores for the Prognosis of Lung Adenocarcinoma
	Correlation of Immunological Characteristics and NRG Scores
	Relationship Among mRNA Stem Index, Tumor Mutation Burden, and NRG Scores
	Evaluation and Validation of the Prognostic Model for Lung Adenocarcinoma

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Identification of NAD+ Metabolism-Derived Gene Signatures in Ovarian Cancer Prognosis and Immunotherapy
	Background
	Materials and Methods
	Ovarian Cancer Data Source and Preprocessing
	Ovarian Cancer Analysis Based on Online Database
	Construction and Verification of NAD+ Metabolism-Related Genes Signatures
	GSVA Enrichment Analysis
	Tumor Microenvironment Analysis
	Statistical Analysis

	Results
	Identification and Functional Enrichment Analysis of NAD+ Metabolism-Related Genes
	Analysis of the Relationship Between TP53 and NAD+ Metabolism-Related Genes
	Identification of NAD+ Metabolism-Related Genes-Related Subtypes in Ovarian Cancer Patients
	Identification of Functional Pathway Enrichment and Immune Cell Infiltration Between Different Subtypes
	Development and Verification of Risk Signatures Associated With NAD+ Metabolism-Related Genes in Ovarian Cancer
	The Relationship Between Risk Score and Tumor Microenvironment
	Application of Risk Score in Immunotherapy and Chemotherapy of Ovarian Cancer Patients

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Cuproptosis-Related lncRNAs are Biomarkers of Prognosis and Immune Microenvironment in Head and Neck Squamous Cell Carcinoma
	Introduction
	Materials and Methods
	Download and Processing of Transcriptomic Data, Mutation Data, and Clinical Information
	Generation and Assessment of the Cuproptosis-Related Long Noncoding RNA
	Prognostic Model Construction
	Validation of Risk Models
	Establish and Evaluate a Nomogram
	Exploration of the Relationship Between the Prognostic Risk Score and Clinical Stage
	Pathway Enrichment Analysis and Gene set Enrichment Analysis
	Estimation of Intratumoural Immune Cell Infiltration and Immunotherapy
	Evaluation of Drug Sensitivity
	Calculation of Tumor Mutation Burden Scores
	Statistical Analysis

	Results
	Data Processing
	Construction and Validation of the Cuproptosis-Related Long Noncoding RNAs Prognostic Marker
	Independence of the Cuproptosis-related lncRNAs Prognostic Marker in Predicting Overall Survival
	Relationship Between the Marker and the Clinical Features in Head and Neck Squamous Cell Carcinoma
	Pathway Enrichment Analysis and Gene Set Enrichment Analysis
	Estimation of Intratumoural Immune Cell Infiltration and Immunotherapy
	Tumor Mutational Burden of the Cuproptosis-related lncRNAs Prognostic Marker in Head and Neck Squamous Cell Carcinoma Samples
	Drug Sensitivity

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Structural-Guided Identification of Small Molecule Inhibitor of UHRF1 Methyltransferase Activity
	Introduction
	Materials and Methods
	Preparation of PDB Structures
	Data Retrieval and Ligand Preparations
	Receptor Grid Generation and Docking
	Molecular Dynamics Simulations
	In Silico Toxicity Analysis
	Cell Culture and Dose Determination
	Extraction of Genomic DNA
	Global Methylation (5 mC%) Level Determination

	Results
	Molecular Docking Studies
	Molecular Dynamics Simulation
	Analysis of In Silico Toxicity
	Global Methylation Level Reduced by Chicoric Acid

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	RNA-Seq Comprehensive Analysis Reveals the Long Noncoding RNA Expression Profile and Coexpressed mRNA in Adult Degenerative ...
	Introduction
	Materials and Methods
	Ethical Approval and Patient Consent
	Participants and Sample Collection
	RNA Extraction and Quality Control
	Construction of cDNA Libraries
	RNA Sequencing
	Identification of Differentially Expressed lncRNAs and mRNAs
	Construction of the lncRNA–mRNA Weighted Coexpression Network
	GO and KEGG Pathway Enrichment Analyses
	Protein–Protein Interaction Network Construction and Module Selection
	Quantitative Real-Time PCR Validation
	Statistical Analysis

	Results
	Overview of Differentially Expressed lncRNAs and mRNAs
	Functional Analysis of Differentially Expressed mRNAs
	Functional Analysis of Differentially Expressed lncRNAs
	lncRNA–mRNA Coexpression Networks
	Validation by Quantitative RT-PCR
	PPI Network

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	RNA sequencing and integrative analysis reveal pathways and hub genes associated with TGFβ1 stimulation on prostatic stroma ...
	1 Introduction
	2 Materials and methods
	2.1 Patient specimens and ethics statement
	2.2 Immunohistochemistry
	2.3 Isolation and culture of primary prostatic stromal cells
	2.4 RNA sequencing
	2.5 Statistical analysis

	3 Results
	3.1 TGFβ1 was upregulated in BPH stroma compared to NP stroma
	3.2 Differential gene expression of TGFβ1 treatment on PrSCs
	3.3 GO classification and enrichment analysis of DEGs
	3.4 KEGG pathway analysis of DEGs
	3.5 PPI network construction and hub gene selection

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	LncRNA DUXAP8 as a prognostic biomarker for various cancers: A meta-analysis and bioinformatics analysis
	Introduction
	Materials and Methods
	Literature Search and Selection
	Inclusion and Exclusion Criteria
	Data Extraction and Quality Assessment
	Analysis of DUXAP8 Expression in Cancer
	Survival Analysis
	Correlation of DUXAP8 Expression With Tumor Mutational Burden, Microsatellite Instability, DNA Methyltransferases, and Mism ...
	Pathway Analysis of DUXAP8
	Data Synthesis and Statistical Analysis

	Results
	Studies Characteristics
	Correlation of the DUXAP8 Expression Level With the Overall Survival
	Publication Bias and Sensitivity Analysis
	Subgroup Analysis of the Relationship Between DUXAP8 Expression Level and Overall Survival
	Multifaceted Prognostic Value of DUXAP8 in Pan-Cancers
	Correlation Analysis of DUXAP8 Expression and Clinicopathology
	Expression of DUXAP8 in Pan-Cancers
	Correlation of DUXAP8 Expression With Tumor Mutational Burden, Microsatellite Instability, DNA Methyltransferases, and Mism ...
	Pathway Analysis in Pan-Cancers

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Expression profiles and functions of ferroptosis-related genes in intimal hyperplasia induced by carotid artery ligation in ...
	1 Introduction
	2 Materials and methods
	2.1 Microarray data
	2.2 Protein–protein interaction (PPI) establishment and identification of hub genes
	2.3 Construction of microRNA (miRNA)-mRNA and TF-mRNA networks
	2.4 Carotid artery ligation model
	2.5 Real-time qPCR(RT-qPCR)
	2.6 Immunohistochemistry (IHC)
	2.7 Statistical analysis

	3 Results
	3.1 Ferroptosis-related DEGs in IH
	3.2 Functional enrichment analysis of ferroptosis-related DEGs
	3.3 PPI networks and prediction of TFs for DEGs in mouse
	3.4 Construction of miRNA-mRNA networks
	3.5 Hub gene validation

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	A prognostic signature of pyroptosis-related lncRNAs verified in gastric cancer samples to predict the immunotherapy and ch ...
	Introduction
	Materials and methods
	Data collection
	PRlncRNAs co-expressed with pyrophosis-related encoding genes
	LASSO cox regression analysis
	Evaluation of the risk model
	GSEA analysis of prognostic lncRNAs and risk groups in the model
	Correlation analysis between the model and TMB
	Immune cell infiltration analysis and ESTIMATE score evaluation
	Correlation analysis between the model and immunotherapy
	GC samples collection and quantitative real-time polymerase chain reaction
	Statistical analysis

	Results
	Identification and screening of pyrophosis-related lncRNAs
	Functional and pathway enrichment assessment of the 3 pyrophosis-related lncRNAs signature
	The establishment of prognostic risk score model
	Univariate and multivariate cox regression analyses of the prognostic ability of the risk model
	External verification of the 3-PRlncRNAs signature in other cancers of digestive system
	Construction of a nomogram for predicting survival
	Functional and pathway enrichment assessment of high and low risk groups
	Correlation of the 3-PRlncRNA signature with immune cell infiltration
	Potential of the 3-PRlncRNAs signature as a predictor of response to immunotherapy
	TMB was negatively associated with risk score and may predict patients’ survival probability
	3-PRlncRNAs signature was predictive to chemotherapy
	Quantitative real-time polymerase chain reaction of GC samples

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	N1-methyladenosine methylation-related metabolic genes signature and subtypes for predicting prognosis and immune microenvi ...
	Introduction
	Materials and methods
	Data collection
	Screening m1A methylation-related metabolic genes
	Construction and validation of m1A-related metabolic gene signature
	Functional analysis
	Evaluation of immune cell infiltration and immune checkpoints
	Consensus clustering based on MRmetabolism

	Results
	Identification m1A methylation-related metabolic gene
	Construction and validation of the MRmetabolism signature
	GSEA enrichment analysis
	The role of MRmetabolism in tumour immune microenvironment and immunotherapy
	Identification of molecular phenotypes related to MRmetabolism

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Predicting prognosis and immunotherapy response among colorectal cancer patients based on a tumor immune microenvironment-r ...
	Introduction
	Materials and methods
	Data collection
	Datasets of colorectal cancer cases
	Datasets of immune cell lines and colorectal cancer cell lines
	Data preprocessing

	Prognostic TRLs signature development
	Identification of TRLs
	Development and validation of the TRLs signature
	Independent prognostic role of the TRLs signature

	Differentially expressed gene (DEG) analys and gene set enrichment analysis (GSEA)
	The TRLs signature lncRNA-mRNA regulation network
	Tumor immune infiltration analysis
	TRLs signature in immunotherapy response prediction
	Statistical analysis

	Results
	The construction of prognostic TRLs signature
	The prognostic value of the TRLs signature
	The relationship between TRLs signature and immune pathways
	The complex LncRNA-mRNA regulation network
	Tumor immune environment characterization
	The TRLs signature prediction in colorectal cancer immunotherapy

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References
	Glossary

	Integrated identification of key immune related genes and patterns of immune infiltration in calcified aortic valvular dise ...
	Introduction
	Materials and methods
	Inclusion of eligible datasets
	Quality assessment and removal of batch effects among different datasets
	Network based meta-analysis and identification of differentially expressed immune related genes
	Assessment of immune cells infiltration
	Enrichment analysis of differentially expressed immune related genes
	Protein–protein interaction network and identification of key differentially expressed immune related genes
	Correlation analysis between key differentially expressed immune related genes and infiltrating immune cells

	Results
	Differentially expressed genes and differentially expressed immune related genes screening between calcified and normal aor ...
	Immune cells infiltration analysis
	Enrichment analysis of differentially expressed immune related genes
	Protein–protein interaction network analysis
	Correlation analysis of key differentially expressed immune related genes and immune cells infiltration

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Revealing prognostic and tumor microenvironment characteristics of cuproptosis in bladder cancer by genomic analysis
	Introduction
	Methods
	Datasets
	Differential analysis
	Consensus clustering analysis
	Function analysis
	Cuproptosis score model
	Estimation of the tumor microenvironment
	Estimate
	Molecular classifier, tumor neoantigen burden, microsatellite instability score, and tumor mutation burden
	Drug sensitivity evaluation
	RNA extraction and quantitative real-time PCR
	Statistical analysis
	Patients and specimens

	Results
	An overview of cuproptosis genes in the TCGA database
	Cuproptosis molecular patterns with distinct survival and TME features in BLCA
	Enrichment analysis of differential genes between cuproptosis-related molecular patterns
	Prognostic and TME characteristics between two cuproptosis gene clusters in BLCA
	Generation of the cuproptosis scoring system to predict survival of BLCA patients
	Validation of the cuproptosis scoring system for BLCA
	High cuproptosis score was associated with immunosuppressing TME in BLCA
	Different mutation profiles between cuproptosis risk groups
	The roles of the cuproptosis scoring system on response to chemotherapy, targeted therapy, and immunotherapy
	Detection of mRNA expression of the CuGs by qPCR

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Progress in research on the role of exosomal miRNAs in the diagnosis and treatment of cardiovascular diseases
	1 Introduction
	2 Overview of exosomes
	3 Separation and extraction of exosomes
	4 Identification of exosomes
	5 Function and application of exosomes
	6 Role of exosomal miRNAs in cardiovascular diseases
	6.1 Role of exosomal miRNAs in atherosclerosis
	6.2 Role of exosomal miRNAs in myocardial injury and infarction
	6.3 Role of exosomal miRNAs in heart failure
	6.4 Role of exosomal miRNAs in aortic dissection
	6.5 Role of exosomal miRNAs in myocardial fibrosis
	6.6 Role of exosomal miRNAs in ischemia–reperfusion
	6.7 Role of exosomal miRNAs in atrial fibrillation

	7 Role of exosomal miRNAs in other vascular diseases
	8 Expectations
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Machine learning-based characterization of cuprotosis-related biomarkers and immune infiltration in Parkinson’s disease
	Introduction
	Materials and methods
	Raw data acquisition
	Selection of characteristic genes
	Data processing and identification of differentially expressed genes
	Functional enrichment analysis
	Gene set enrichment analysis
	Consensus clustering
	Gene set variation analysis
	Statistical analysis

	Results
	Identification of CRGs
	Assessment of the microenvironment in Parkinson’s disease
	Selection of characteristic genes via least absolute shrinkage and selection operator, random forest, and support vector ma ...
	Diagnostic efficacy of characteristic genes
	Establishment of nomogram for predicting Parkinson’s disease
	Identification of immune-associated cuprotosis genes subtypes in parkinson’s disease
	Different immunological characteristics of the two subtypes

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	A novel anoikis-related prognostic signature associated with prognosis and immune infiltration landscape in clear cell rena ...
	Introduction
	Materials and methods
	Data collection
	Identification of anoikis-related genes and risk model construction
	Internal validation of risk model
	Independent prognosis analysis of risk model
	Consensus clustering analysis
	Immune microenvironment landscape and drug sensitivity analysis
	Differential expression analysis and functional enrichment analysis
	Statistical analysis

	Results
	Risk model construction based on the anoikis-related genes prognostic signature in clear cell renal cell carcinoma
	Validation of the anoikis-related genes prognostic signature in training cohort and test cohort
	Kaplan-Meier survival analysis of anoikis-related genes prognostic signature in different clinicopathological characteristics
	Risk model based on the anoikis-related genes prognostic signature was an independent prognosis indicator
	Functional enrichment analysis of the differential expression genes
	Consensus clustering and immune microenvironment landscape analysis
	Correlation analysis of the anoikis-related genes prognostic signature and immune infiltration landscape
	Drug sensitivity analysis

	Discussion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Exosome-encapsulated ncRNAs: Emerging yin and yang of tumor hallmarks
	Introduction
	Exosomal biogenesis and composition
	ncRNA Biogenesis
	Exosomal ncRNAs in regulating cancer hallmarks
	Evading growth suppressors and sustaining proliferative signaling
	miRNAs
	lncRNAs
	circRNAs

	Resisting cell death
	miRNAs
	lncRNAs
	circRNAs

	Enabling replicative immortality
	miRNAs
	lncRNAs
	circRNAs

	Inducing angiogenesis
	miRNAs
	lncRNAs
	circRNAs

	Activating invasion and metastasis
	miRNAs
	lncRNAs
	circRNAs

	Reprogramming of energy metabolism
	miRNAs
	lncRNAs
	circRNAs

	Evading immune destruction and promoting tumor inflammation
	miRNAs
	lncRNAs
	circRNAs


	Conclusion
	Author contributions
	Conflict of interest
	Publisher’s note
	References

	Identification and validation of neurotrophic factor-related genes signature in HNSCC to predict survival and immune landscapes
	1 Introduction
	2 Materials and methods
	2.1 Data sources
	2.2 Model construction
	2.3 Model formulas
	2.4 Independent prognostic analysis and nomogram predictive model construction
	2.5 Immunoassay of risk signatures
	2.6 Somatic mutation analysis
	2.7 Drug sensitivity
	2.8 Statistical analysis

	3 Results
	3.1 Identification of candidate NFRGs
	3.2 Validating the accuracy of the NFRGs model to predict patient prognosis
	3.3 PCA correlation analysis
	3.4 Combining clinical characteristics to build nomograms
	3.5 Correlation analysis of NFRGs risk scores with clinicopathological features
	3.6 Clinical subgroup analysis of the NFRGs risk model
	3.7 NFRGs signature performs better than other signatures in prognosis prediction
	3.8 NFRGs risk score predicts tumor microenvironment (TME) and immune cell infiltration
	3.9 Mutation analysis and biological functional enrichment analysis
	3.10 Multi-omics mutation characteristics and drug susceptibility analysis of NFRGs
	3.11 TIDE and drug susceptibility analysis based on NFRGs

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Association between autophagy and acute pancreatitis
	1 Introduction
	2 Process and regulation of autophagy pathway
	3 Autophagy and acute pancreatitis
	3.1 Impaired autophagy in AP
	3.1.1 Increased autophagosomes in AP
	3.1.2 Disfunction of lysosomes in AP

	3.2 Genetic and pharmacologic model of autophagy in AP
	3.3 Therapy targeting autophagy

	4 Summary
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Integrative analysis of the expression profiles of whole coding and non-coding RNA transcriptomes and construction of the c ...
	Introduction
	Materials and methods
	Sample collection and the ethics committee
	Whole transcriptome resequencing and data quality control
	Identification of differentially expressed genes
	Construction of a ceRNA regulatory network
	GO and KEGG enrichment analyses of DEmRNAs
	Gene set enrichment analysis (GSEA)
	Gene set variation analysis (GSVA)
	Construction and analysis of the protein-protein interaction (PPI) network
	Quantitative real-time PCR (qRT-PCR) for identification of hub genes
	Immune infiltration analysis
	Construction of the RBP-gene and TF-target gene
	Statistical analysis

	Results
	Identification of DEGs in COPD
	Construction and analysis of the ceRNA network
	PPI network and hub gene identification
	Construction of the RBP-genes and TF-target gene network
	Functional enrichment analysis of DEmRNAs
	GSEA and GSVA
	Immune infiltration analysis

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Integrated genomic analysis defines molecular subgroups in dilated cardiomyopathy and identifies novel biomarkers based on  ...
	Introduction
	Methods
	Data collection
	Data processing
	Consensus clustering
	Comparing the clinical features among molecular groups
	WGCNA analysis
	Enrichment analysis
	Identification of biomarkers based on machine learning methods
	Evaluation of discriminative power of the biomarkers

	Results
	Removal of batch effect
	Consensus clustering of DCM cases
	The differences of clinical characteristics in the three molecular subgroups
	WGCNA analysis
	Identification of biomarkers based on machine learning algorithms
	Diagnostic effectiveness of biomarkers

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Back Cover



