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Editorial on the Research Topic
Machine learning for biological sequence analysis

1 Introduction

Biomacromolecules, primarily proteins, DNA, and RNA, are crucial for vital physiological
processes. Biomacromolecules can generally be represented by sequences, comprising series of
strings, which are referred to as bio-sequences and represent the primary structures of proteins,
DNA, and RNA. The development of sequencing technologies, particularly next-generation
sequencing and tandem mass spectrometry, has led to the production of vast amounts of bio-
sequence data. It is established that structure generally determines function; in particular,
determination of tertiary structure is critical for functional analysis of biomacromolecules.
Nevertheless, determination of the tertiary structure of bio-sequences is relatively difficult;
therefore, directly obtaining functional information from primary structures (i.e., bio-
sequences) is extremely challenging and an important problem that requires urgent resolution.

Machine learning technologies, based on statistical theory and data mining, provide new
tools for bio-sequence analysis that are effective for biological function analysis of genes and
proteins, as well as determining relationships between primary structure and function. There
are two basic problems in the use of machine learning in this context that have yet to be
satisfactorily resolved. One is how to extract sufficient and effective features from bio-
sequences. Usually, bio-sequences comprise series of strings that must be converted into
numerical vectors before input into machine learning models, a process referred to as feature
extraction. Only by effectively extracting the hidden numerical features in primary structure
sequences can they be successfully mined by the machine learning model and achieve optimal
function recognition. The other problem is that of data imbalance, which refers to the fact that
the ratio of positive to negative sample sequences are not 1 to 1; in actual application, there are
generally fewer positive than negative samples. To obtain the best results, machine learning
models often need to be trained with balanced data, and unbalanced data will greatly affect
training of machine learning models and their application in real-world scenarios. At present,
some methods have been proposed to solve the problem of data imbalance, but they still cannot
satisfactorily solve this fundamental issue. In this Research Topic, we focus on the two
challenges described above, as well as collating the results of recent research on related
Research Topic. The total of 12 articles can be divided into three categories, as follows:
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9 papers on the identification of functions and interactions based on
bio-sequences, 1 paper on a bioinformatics tool recommendation
platform, and 2 papers on biomarker mining and analysis.

2 Identification of functions and
interactions of bio-sequences

Identification of the biological functions of macromolecular
sequences directly from their primary structures has been a hotspot
in the application of machine learning. We collected 9 papers related
to this Research Topic, which explore a variety of feature extraction
techniques and machine learning methods for different bio-sequences,
and achieved the most advanced accuracy in corresponding function
identification.

Sucrose transporter (SUT) is a transmembrane protein that occurs
widely in plant species and has important roles in sucrose transport
and sucrose-specific signal transduction. Chen et al. built a model
named ISTRF, based on a random forest algorithm, to identify SUT
proteins by constructing an in-house dataset comprising SUT and
non-SUT sequences, then using feature extraction tools including:
protein amino acid composition, transition, and distribution;
position-specific scoring matrix (PSSM) composition; and
k-separated-bigrams-PSSM. They also applied the Borderline-
SMOTE algorithm to solve the problem of data imbalance. ISTRF
achieved an independent test accuracy of 96.1%.

Moonlighting proteins are present in many animals, plants, and
microorganisms and play important roles in signal transduction, cell
growth and motility, tumor suppression, DNA synthesis and repair,
and metabolism of biological macromolecules. Chen et al. used linear
discriminant analysis (LDA) and a support vector machine ensemble
with bagging (bagging-SVM) to build a bioinformatics tool that can
effectively identify moonlighting proteins. The tool uses three
embedded features to encode proteins, a linear discriminant
method for feature selection, and a SVM as the classifier. The
authors found that the LDA method can effectively screen out
sequence features identifying moonlight proteins, and that the
bagging-SVM is superior to a classic SVM algorithm, achieving
accuracy of 93.25%.

As a good substitute for antibiotics, antimicrobial peptides
(AMPs) can effectively kill bacteria in organisms, resulting
numerous therapeutic effects, such as antibacterial, wound healing,
antioxidant, and immune regulation activities. Dong et al. proposed a
deep learning model that fuses multiple sequence feature
representations (four types) as input to identify AMPs. They
adopted a convolutional layer structure and fully connected layers
to construct a deep learning network; model accuracy was 97.8%.

Vesicle transporters are membrane proteins that function by
regulating the interaction of specific molecules with vesicle
membranes. Fan et al.established a hypergraph regularized K-local
hyperplane distance nearest neighbor machine learning model to
distinguish vesicle transporters from non-vesicle transporters [4].
The sequence encoding feature used by this model is PsePSSM.
The research showed that the classifier outperformed traditional
classifiers and achieved an accuracy of approximately 84%.

Protein-protein interactions (PPIs) are fundamental to deep
understanding of proteome functional mechanisms and are highly
valuable in medical applications of novel diagnostic and therapeutic
targets. Yang et al. developed a new tool for PPI data and functional

analysis [5]. A key feature of the tool is that each protein involved in a
PPI is encoded using Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway annotations. The tool uses
minimum absolute shrinkage and selection operators, gradient
boosting machines, maximum correlation, and minimum
redundancy to rank features for importance analysis. Then, the
most significant features were selected as critical functional items
identified by PPI.

Pseudouridine is an abundant RNAmodification that can affect RNA
stability and immunoreducibility, among other characteristics, and its
mutation is associated with numerous malignancies, including lung and
gastric cancers. Zhang et al.proposed a new machine learning model,
PseU-ST, to identify RNA pseudo-uridine modification sites in Homo
sapiens, Saccharomyces cerevisiae, and Mus musculus. They used six
feature extraction methods to encode RNA, and chi-square analysis for
feature selection. In addition, stacking ensemble learning was applied. The
accuracy values of PseU-ST for data fromH. sapiens, S. cerevisiae, andM.
musculus were approximately 94%, 88%, and 89%, respectively.

Inspired by the hypothesis that pathogen-derived immunological
epitopes can mediate CD8+ T cell-associated host adaptive immune
responses, Hu et al. used available positive and negative CD8+ T cell
epitope (TCE) data to propose a novel predictor, CD8TCEI-EukPath,
to detect CD8+ TCEs in eukaryotic pathogens. The authors aimed to
develop a method to enable rapid screening of epitope-based vaccine
candidates. CD8TCEI-EukPath integrated three hybrid features,
adopted an MRMD tool for feature selection, and used a
LightGBM classifier to distinguish CD8+ TCEs from non-CD8+

TCEs, thereby achieving accuracy values of approximately 79% and
78% in cross-validation and independent testing, respectively.

The success of a transformer model with a unique self-attention
mechanism in natural language processing inspired Mai et al. to use it
to predict and analyze promoters in Synechococcus sp. and
Synechocystis sp. They named the tool, TSSNote-CyaPromBERT,
and it facilitates large dataset extraction, model training, and
promoter prediction from public dRNA-seq datasets. The model of
TSSNote-CyaPromBERT achieved an area under the receiver
operating curve value of 0.92 for distinguishing promoter and non-
promoter nucleotides, as well as relatively good performance in cross-
species verification testing. Monte Carlo sampling and attention score
visualizations can be used to explain the model behavior.

Histone modifications affect various chromatin-dependent
processes, including DNA replication, repair, and transcription.
Chen et al. proposed a new deep learning model, TransferChrome,
with the aim of solving the problem of inaccurate gene expression
prediction across cell lines, based on use of a self-attention mechanism
to predict the effects of histone modifications on gene expression, and
used a transfer learning model to achieve cross-cell gene expression
prediction. The authors trained and tested TransferChrome on
56 different cell lines from the REMC database, and achieved a
mean area under the curve score of 84.79%.

3 Mining of disease-related markers

COVID-19 triggers a complex immune response, where CD8+

T cells play a particularly important role in controlling disease severity.
The mechanisms underlying the regulatory effects of CD8+ T cells on
COVID-19 remain poorly studied. Lu et al. applied single-cell omics
data to target three CD8+ T cell subtypes and three COVID-19 disease
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states, using CD8+ T single cell data expression profiles, combined
with multiple feature selection methods, to screen out biomarkers,
including ZFP36, DUSP1, TCR, and IL7R, among other molecules.
They proposed that these genes can be confirmed to play an
immunomodulatory role in the processes of infection with and
recovery from COVID-19 disease. Simultaneously, the authors used
the characteristics of CD8+ T cell subtypes to establish a machine
learning model that can distinguish COVID-19 disease severity.

Discovering tumor markers related to cancer has long been a focus
of considerable research attention. Zhao et al. analyzed the expression
level of KRAS, a signal transduction protein that binds to GTP in the
MAPK pathway. To assess the tumor microenvironment, they used
22 immune-infiltrating cell expression datasets to calculate immune
and stromal scores. They also used 33 tumor expression datasets to
construct a PPI network by establishing KRAS, immune checkpoint,
and interacting genes. By performing gene set enrichment analysis,
they generated results suggesting that KRAS may be a reliable
prognostic biomarker for diagnosing patients with cancer that can
be incorporated into tumor-targeted drugs.

4 An online platform for
recommendation of bioinformatics tools

How to choose a suitable tool for structural variation analysis of
bio-sequence data is a particularly interesting problem. Numerous
bioinformatics tools have been developed, but their applicability to
real data and universality are serious concerns, and it is unrealistic to
test each tool individually. Wang et al. noticed this problem and
developed a meta-learning framework to establish the relationship
between data features and bioinformatics tool performance. Using
random forest analysis, the authors identified the relationships
between 8 selected data features and the optimal caller, and used
these relationship to recommend callers. Testing the algorithm of the
automatic recommendation tool constructed showed that the
applicable samples varied among different callers. Hence, different
tools are often suitable for various types of bio-sequencing data
analyses. The accuracy of recommended tools was maintained
above a mean of 80%, which is far superior to random selection or
fixed selection strategies. The authors also built an online website and
provided the source code.

In conclusion, the papers discussed in this Research Topic
demonstrate significant roles for machine learning techniques in
various bio-sequence analysis applications, and we sincerely hope
that this Research Topic will be widely read and benefit readers. In
particular, this Research Topic collates insightful explanations and
applications that can contribute to developments and advances in
biology. Finally, we wish to convey our appreciation for all the efforts
of the authors, reviewers, and staff of the Frontiers in Genetics editorial
office.
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Identification of Vesicle Transport
Proteins via Hypergraph Regularized
K-Local Hyperplane Distance Nearest
Neighbour Model
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The prediction of protein function is a common topic in the field of bioinformatics. In recent
years, advances in machine learning have inspired a growing number of algorithms for
predicting protein function. A large number of parameters and fairly complex neural
networks are often used to improve the prediction performance, an approach that is
time-consuming and costly. In this study, we leveraged traditional features and machine
learning classifiers to boost the performance of vesicle transport protein identification and
make the prediction process faster. We adopt the pseudo position-specific scoring matrix
(PsePSSM) feature and our proposed new classifier hypergraph regularized k-local
hyperplane distance nearest neighbour (HG-HKNN) to classify vesicular transport
proteins. We address dataset imbalances with random undersampling. The results
show that our strategy has an area under the receiver operating characteristic curve
(AUC) of 0.870 and a Matthews correlation coefficient (MCC) of 0.53 on the benchmark
dataset, outperforming all state-of-the-art methods on the same dataset, and other
metrics of our model are also comparable to existing methods.

Keywords: transport proteins, protein function prediction, hypergraph learning, local hyperplane, membrane
proteins

1 INTRODUCTION

Proteins are the basis of most life activities and perform important functions in different biochemical
reactions. Proteins with different amino acid sequences and folding patterns have different functions.
Understanding the factors that influence protein function has practical biological implications.
Therefore, protein function prediction has been an important topic since the birth of bioinformatics.
In recent years, machine learning-based protein function prediction methods have been widely used
in many studies (Shen et al., 2019; Zhang J. et al., 2021; Zulfiqar et al., 2021; Ding et al., 2022b; Zhang
et al., 2022), such as drug discovery (Ding et al., 2020c; Chen et al., 2021; Song et al., 2021; Xiong et al.,
2021), protein gene ontology (Hong et al., 2020b; ZhangW. et al., 2021), DNA-binding proteins (Zou
et al., 2021), enzyme proteins (Feehan et al., 2021; Jin et al., 2021), and protein subcellular localization
(Ding et al., 2020b; Su et al., 2021; Wang et al., 2021; Zeng et al., 2022). In this study, we propose a
novel method to identify vesicular transporters with machine learning.

Vesicular transport proteins are membrane proteins. The cell membrane separates the cell’s
internal environment from the outside and controls the transport of substances into and out of the
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cell. Different substances enter and leave cells in different ways,
and the transport of macromolecular substances is called
vesicular transport. In vesicular transport, cells first surround
substances and form vesicles. Vesicles move within cells and
release their contents through vesicle rupture or membrane
fusion. The process of vesicle transport exists widely in life
activities. Vesicular transport proteins play an important role
in vesicle transport by regulating the interactions of specific
molecules with the vesicle membrane. In biology, there have
been many studies on vesicular transport proteins, such as
(Cheret et al., 2021; Li et al., 2021; Fu T. et al., 2022). Many
human diseases are associated with abnormal vesicle transport
proteins, such as those described in (Buck et al., 2021; Mazere
et al., 2021; Zhou et al., 2022).

With the development of protein sequencing technology, an
increasing number of vesicle transport protein sequences have
been discovered. The need to rapidly identify vesicle transporter
protein sequences conflicts with traditional experimental
techniques, which are costly and time-consuming. Therefore, it
is imperative to develop a fast and efficient computational
method. To date, there have been few studies on the
computational identification of vesicle transport proteins.

Computational identification of protein, RNA and DNA
sequences has similar steps, and their processes can be described
as two steps of feature extraction and classification. In 2019, Le et al.
proposed a method (Vesicular-GRU) to identify vesicle transporters
using position-specific scoring matrix (PSSM) features and a neural
network classifier based on a convolutional neural network (CNN)
and gated recurrent unit (GRU) and released the dataset used in their
study (Le et al., 2019). In 2020, Tao et al. (Tao et al., 2020) attempted

to classify vesicular transport proteins with fewer feature dimensions.
Their model used the composition part of the method of
composition, transition, and distribution (CTDC) features and a
support vector machine (SVM) classifier. After dimensionality
reduction with the Maximum Relevance Maximum Distance
(MRMD) method, they obtained a comparatively satisfactory
accuracy with fewer feature dimensions on the Le et al. dataset.

In our study, we propose a new model to identify vesicular
transporters using pseudo position-specific scoring matrix
(PsePSSM) features and a classifier called hypergraph
regularized k-local hyperplane distance nearest neighbour
(HG-HKNN). The main contributions of our work are as
follows: 1) a better identification model of vesicle transport
protein, with fewer feature dimensions and better results than
the state-of-the-art model; and 2) a classifier called HG-HKNN
that combines hypergraph learning (Zhou et al., 2006; Ding et al.,
2020a) with k-local hyperplane distance nearest neighbours
(HKNN) (Vincent and Bengio, 2001; Liu et al., 2021). The
flowchart of our study is illustrated in Figure 1.

2 MATERIALS AND METHODS

2.1 Dataset
The dataset we use to build and evaluate the model is the
benchmark dataset released by Le et al. (Le et al., 2019). In the
construction of the benchmark dataset, experimentally validated
vesicular transport proteins were screened from the universal
protein (UniProt) database (Consortium, 2019) and the gene
ontology (GO) database (Consortium, 2004).

FIGURE 1 | Flowchart of our model.
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For the positive dataset, the authors collected protein
sequences by searching the UniProt database for the keyword
“vesicular transport” or the gene ontology term “vesicular
transport”. Likewise, for the negative dataset, the authors
collected a set of universal protein (membrane protein)
sequences and excluded vesicular transporters from them.
Next, protein sequences annotated by biological experiments
were selected in the original dataset, and all protein sequences
that were not validated experimentally were filtered out. The
authors then eliminated homologous sequences on the positive
and negative datasets, respectively, with a 30% cut-off level by the
basic local alignment search tool (BLAST) clustering (Johnson
et al., 2008). The BLAST clustering ensures that any two
sequences in the dataset have less than 30% pairwise sequence
similarity. Finally, protein sequences with noncanonical amino
acids (X, U, B, Z) were removed from the dataset.

The benchmark dataset contains 2533 vesicular transport
proteins and 9086 non-vesicular transport proteins, and the
dataset is divided into a training set and a test set. The
training set consists of 2144 vesicular transporters and
7573 non-vesicular transporters, and the test set consists of
319 vesicular transporters and 1513 non-vesicular transporters.
We perform random undersampling (RUS) on the training set to
balance the proportions of positive and negative samples. In
random undersampling, we randomly select a sample from the
class with more samples in the training set to represent its class,
and repeat until there are the same number of vesicular transport
proteins and non-vesicular transport proteins in the training set.
The randomly undersampled training set has 2214 positive
samples and 2214 negative samples. The details of the dataset
are listed in Table 1.

2.2 Feature Extraction
The feature type we use is PsePSSM (Chou and Shen, 2007), and
the PSSM profile used to build PsePSSM is directly downloaded
from the open-source data of Le et al. (Le et al., 2019). The
authors of (Le et al., 2019) constructed these PSSM profiles by
searching all sequences one by one in the non-redundant (NR)
database with BLAST software. The PSSM matrix is an Lp20
matrix similar to the following formula (Zhu et al., 2019). Each
PSSM matrix corresponds to a protein sequence.

PPSSM �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1→1 E1→2 / E1→20

E2→1 E2→2 / E2→20

..

. ..
. ..

. ..
.

Ei→1 Ei→2 / Ei→20

..

. ..
. ..

. ..
.

EL→1 EL→2 / EL→20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

In this formula, L is the length of the protein sequence. Ei→j

represents the relationship between the amino acid at position i of
the protein sequence and the amino acid of type j in the
homologous sequence. j is the amino acid type number
ranging from 1 to 20. The PSSM matrix contains the position-
specific frequency information of amino acids in the protein
homologous sequences, which is used to decode the evolutionary
information of proteins. Compared with other protein
information (such as amino acid frequency and
physicochemical properties), the PSSM matrix of proteins not
only contains the information of the proteins in the dataset but
also contains the motif information of the protein homologous
sequences in the NR database. However, the dimension of the
PSSMmatrix is too large, so further PsePSSM feature extraction is
required.

The PsePSSM feature we use is a (ξ + 1)*20 dimension feature,
which can be calculated with this formula:

Pξ
PsePSSM � [�E1/�E20G

1
1/G1

20/Gξ
1/Gξ

20]T . (2)
where �Ej is the average value of each column of the PSSMmatrix,
and the calculation of Gξ

j can be expressed by the following
formula:

Gξ
j �

1
L − ξ

∑L−ξ
i�1

[Ei → j − E(i+ξ) → j]2 (j � 1, 2,/, 20; ξ < L).
(3)

Gξ
j is the correlation factor obtained by coupling the ξ th-most

contiguous PSSM scores along the protein chain with amino acid
type j. Clearly, �Ej and G0

j are the same. Note that the maximum
value of ξ must be less than the length of the shortest protein
sequence in the benchmark dataset. The value of ξ we choose is 6,
so Pξ

PsePSSM is a feature vector with 140 dimensions. When ξ
increases, the evaluation metric first increases and then decreases
and reaches the maximum value when ξ is 6.

2.3 Method for Classification
The hypergraph regularized k-local hyperplane distance nearest
neighbour model (HG-HKNN) is a new classifier that combines
the k-local hyperplane distance nearest neighbour algorithm
(HKNN) and hypergraph learning.

2.3.1 HKNN
In the HKNN (Vincent and Bengio, 2001) workflow, multiple
hyperplanes are constructed first, each hyperplane corresponds to
a class in the training set, and the hyperplane is constructed by the
k samples of the same class that is closest to the test sample. Then,
the HKNN predicts the class of the test sample by comparing the
distance between the test sample and the hyperplanes and assigns
the test sample to the class corresponding to the nearest
hyperplane (Ding et al., 2022c). Figure 2 shows a sketch of an
HKNN, where sample x obtains its class by comparing the
distances to hyperplane 1 and hyperplane 2.

In class c, when x represents the test sample, the hyperplane
can be expressed as the following formula:

TABLE 1 | Details of the dataset used in our study.

Original Train Set Train Set (RUS) Test Set

Vesicular transport 2533 2214 2214 319
Non-vesicular transport 9086 7573 2214 1513
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LHc
k(x) �

⎧⎨⎩pc | pc � �N
c +∑k

i�1
αc
i V

c
i , α

c
1...k ∈ Rk

⎫⎬⎭. (4)

where k means that k nearest neighbour samples are taken to
construct the hyperplane, and the i -th sample in class c can be
expressed asNc

i (i from 1 to k). Let �Nc represent the centre ofNc
i ,

and let Vc
i � Nc

i − �Nc, where αci is an undetermined parameter;
then, pc is a point on this hyperplane.

The mean squared distance of the test sample x to each
hyperplane can be expressed as follows:

(LHc
k(x))2 � ���������x − �N

c −∑k
i�1
αc
i V

c
i

���������
2

+ λ∑k
i�1
(αci )2. (5)

where λ is the regularization parameter of αci , which is used to
reduce the complexity of the model. αc is obtained by minimizing
the distance. Finally, the classification result of the HKNN can be
judged by the following formula:

c � argminc

���������x − �N
c −∑k

i�1
αc
i V

c
i

���������
2

. (6)

HKNN has relatively good performance on unbalanced
datasets because the same number of samples are selected in
each class. However, since the distribution of samples cannot be
fully expressed by a hyperplane, the performance of the HKNN is
disturbed by the distribution of samples.

2.3.2 Hypergraph Learning
In machine learning, we can express the similarity between two
samples by calculating the inner product of the features of the two
samples to form a pairwise similarity matrix (Yang et al., 2020).
However, the relationship between samples cannot simply be
determined by pairwise similarity. Therefore, hypergraphs (Zhou
et al., 2006) are proposed to express the relationship between
three or more samples.

In a hypergraph, each hyperedge consists of multiple vertices.
Figure 3 is a hypergraph and its association matrix H. In our

study, each hyperedge weights 1. When hyperedge ej contains
vertex vi, then Hij is 1; otherwise, it is 0.

Formally, the association matrix H, the degree of each
hyperedge, and the degree of each vertex can be expressed as:

H(v, e) � { 1, if v ∈ e
0, if v ∉ e

, (7a)

δ(e) � ∑
v∈V

H(v, e), (7b)
d(v) � ∑

e∈E
H(v, e). (7c)

The Laplacian matrix of a hypergraph association matrix H
can be calculated as:

LH � I −D−1
2

v HAD−1
e HTD−1

2
v . (8)

where Dv and De are the diagonal matrices formed by d(v) and
δ(e), respectively, and A is the same as the identity matrix I in
our study. We construct the association matrix H with the k
-nearest neighbour algorithm proposed by Zhou et al. (Zhou
et al., 2006). Given a set of samples, we choose the k nearest
neighbours of each sample and construct a hyperedge
containing these k vertices. Finally, we construct N
hyperedges for a dataset of N samples.

2.3.3 HG-HKNN
The HG-HKNN rewrites the mean squared distance from the test
sample x to each hyperplane in the HKNN into the following
form:

(LHc
k(x))2 � ���������ϕ(x−) −∑k

i�1
αciϕ(Vc

i )���������
2

+ λ∑k
i�1
(αc

i )2
+μ∑k

p�1
∑k
q�1

wc
p,q(αc

p − αcq)2. (9)

The kernel trick (Hofmann, 2006; Ding et al., 2019) is used to
solve this problem, and the map ϕ maps the feature space to
higher dimensions. x

− � x −N
− c

is a simple rewrite. The third term
in this formula is the Laplacian regularization term, which
improves classification performance by smoothing the feature
space (Ding et al., 2021). μ is the Laplacian regularization
parameter, and wc

p,q is the similarity between the p -th nearest
and the q -th nearest samples in the k samples in class c, which is

FIGURE 2 | Sketch of an HKNN.

FIGURE 3 | A hypergraph and its association matrix H.
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calculated by the kernel function (Ding et al., 2022a). K(x, y) �
ϕ(x), ϕ(y) represents the kernel function, which is the radial
basis function (RBF) in our study.

By minimizing the distance and making the partial derivative
of (LHc

k(x))2 with respect to αc zero, then the solution of αc is
obtained as follows:

z((LHc
k(x))2)

zαc � 0,

(ϕ(Vc)Tϕ(Vc) + λI + μL)αc � ϕ(Vc)Tϕ(x−),
αc � (ϕ(Vc)Tϕ(Vc) + λI + μL)−1ϕ(Vc)Tϕ(x−),
αc � (K(Vc, Vc) + λI + μL)−1K(Vc, x

−).
(10)

We construct the hypergraph and use the Laplacian matrix of
the hypergraph to replace the Laplacian matrix in the above
formula:

αc � (K(Vc, Vc) + λI + μLH)−1K(Vc, x
−). (11)

Note that the original Laplacian matrix contains pairwise
similarities between samples, while our hypergraph Laplacian
matrix contains more complex relationships between
samples.

Now the distance from sample x to the c -th hyperplane can be
expressed as follows:

distancec �
���������ϕ(~x) −∑k

i�1
αc
iϕ(Vc

i )2���������,
� (ϕ(�x) − ϕ(Vc)αc)T(ϕ(�x) − ϕ(Vc)αc),
� (K(x− , x−) − 2(αc)TK(Vc, x

−) + (αc)TK(Vc, Vc)αc).
(12)

Finally, we assign the test sample x to class c:

c � argminc(distancec). (13)
We define the prediction score as follows:

scorec �
��������
distancec

√
∑C

i�1
��������
distancei

√ , i � 1, 2, . . . , C. (14)

The process of HG-HKNN is listed in Algorithm 1

Algorithm 1. Algorithm of HG-HKNN

3 RESULTS AND DISCUSSION

3.1 Evaluation
In this section, we will introduce the evaluation methods and
metrics we use. We use positive to describe vesicular transport
proteins and negative to describe non-vesicular transport
proteins. We optimize the parameters with cross-validation
(CV) on the training set and then evaluate our model on the
test set.

Cross-validation sets aside a small portion of the dataset for
validating the model, while the rest of the dataset is used for
training the model (Zhang D. et al., 2021; Lv et al., 2021; Yang
et al., 2021; Zheng et al., 2021; Li F. et al., 2022; Li X. et al., 2022).
The leave-one-out cross-validation (LOOCV) is a classic cross-
validation method (Qiu et al., 2021). LOOCV takes only one
sample in the dataset at a time for validation and uses other
samples in the dataset to train the model. Until all samples are left
out once for validation, the leave-one-out method obtains
statistical values for multiple results. However, the leave-one-
out method is too time-consuming, so we adopted another cross-
validationmethod: k -fold cross-validation (K-CV). K-CV divides
the dataset into k subsets. Each time, one of the subsets is taken
for validation, and the remaining k − 1 subsets are used for
training the model. In this way, k prediction results are
obtained, and we take the average of these k results as the
result of k -fold cross-validation.

The evaluation indicators we take include sensitivity,
precision, specificity, accuracy (ACC), Matthews correlation
coefficient (MCC), and area under the receiver operating
characteristic curve (AUC), which have been widely used in
previous studies (Hong et al., 2020a; Tang et al., 2020; Pan
et al., 2022; Song et al., 2022).

sensitivity � TP

TP + FN
, (15a)

precision � TP

TP + FP
, (15b)

specificity � TN

TN + FP
, (15c)

ACC � TP + TN

TP + FN + FP + FN
, (15d)

MCC �
1 − ((FN

TP
+ FN) + (FP

TN
+ FP))����������������������������������������(1 + (FP − FN

TP
+ FN))(1 + (FN − FP

TN
+ FP))√ .

(15e)
where TP, FP, TN, and FN represent true positives, false positives,
true negatives, and false negatives, respectively. In addition, the
AUC is obtained by integrating the receiver operating
characteristic curve (ROC) (Fu J. et al., 2022). The ROC curve
plots sensitivity and specificity at different classification
thresholds (Tzeng et al., 2022). The more meaningful ones are
AUC and precision since our test set is a class-imbalanced dataset.
In our model, we perform 10-fold cross-validation on a training
set of 4428 samples (2214 positive and 2214 negative). The binary

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9603885

Fan et al. HG-HKNN

12

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


classification threshold is set to the default 0.5. Finally, the trained
model is evaluated on the test set, which has 319 positive samples
and 1513 negative samples.

3.2 Parameter Tuning
In this section, we describe the parameter tuning process for
our model. Classification metrics are largely influenced by
parameter tuning. The HG-HKNN has five parameters: k, λ,
μ, γ, and kH. k represents the number of neighbour samples
selected when constructing the hyperplane. λ is the
regularization parameter in L2 regularization and μ is the
Laplacian regularization parameter. γ is a parameter in the
radial basis function. kH is the number of neighbours used to
construct the hypergraph.

We first adjust the k parameters among them. We set k, μ and
γ to be 0.2, 0.2 and 0.2, respectively, and kH to be 2. We perform
10-fold cross-validation for different values of k, and the best
parameter k is determined to be 650; the details are shown in
Table 2.

For λ, μ, γ and kH, we adopt the grid search method for
parameter tuning. The grid search method enumerates the
possible values of each parameter, combines the possible
values of all parameters into groups, and then trains the
model with each group of parameters to obtain the best set of
parameters. In our grid search, the possible values of λ, μ and γ are
all 0.1, 0.2, 0.4, and 0.8, and the kH values in the hypergraph range
from 2 to 10. The best parameters for choosing λ, μ and γ are 0.4,
0.4 and 0.4, respectively. The best parameter kH is 2, and the best
AUC is 0.8309.

In our dataset, the dimension of features is much smaller than
the number of samples, which is regarded as a sign that the
dataset is linearly inseparable. On linearly inseparable datasets,
the RBF kernel generally performs better than the linear or
polynomial kernel. Formally, the Laplacian kernel is similar to
the RBF kernel, and they usually have similar performance, but
the Laplacian kernel function requires additional computational
cost. We regard the type of kernel function used by HG-HKNN as

an additional hyperparameter and conduct comparative
experiments. The details of the experimental results are shown
in Table 3. The results show that the RBF kernel has the best
performance.

3.3 Comparison With Traditional Machine
Learning Methods
In the previous section, we have chosen the best parameters for
our model. Our model is trained with traditional PsePSSM
features, with nothing special in feature extraction. In this
section, to highlight the effect of our proposed classifier HG-
HKNN, we train some models with different traditional machine
learning classifiers, the same training set, and the same PsePSSM
feature extraction method. We perform 10-fold cross-validation
on these models and compare the evaluation metrics of these
models with ours. Note that the only difference between these
models is the classifier.

We implement and train these models with the programming
language’s built-in library of functions. With the help of the
parameter optimization function, we can automatically train the
SVM model with the best evaluation metrics. After parameter
tuning, the parameters in the other models are as follows: K � 20
in the k-nearest neighbour model(KNN), ntrees � 60 in the
random forest model (RF), and k � 30 and λ � 10 in HKNN.
Table 4 shows the comparison of our model with other
traditional machine learning models in 10-fold cross-validation.

Among them, the prediction effect of HKNN is better than
that of the KNN algorithm. Intuitively explained in principle,
although the classical K-nearest neighbour algorithm can fit the
training samples well, it does not work well for the unseen
samples located near the decision boundary. This is the
overfitting problem of the KNN algorithm, and overfitting is
more obvious in small data sets. HKNN constructs a hyperplane
for k-nearest neighbour samples and then compares the distances
between the test sample and the hyperplanes. The construction of
the hyperplane can be analogous to adding more sample points to
the k-nearest neighbours, which will reduce the interference of
extreme samples on the decision boundary. Therefore, compared
with KNN, the HKNN model has a smoother decision boundary,
avoiding the disadvantage of overfitting in KNN.

Our proposed HG-HKNN model outperforms the other
models on almost all metrics at the same level of comparison.
By introducing Laplacian regularization in manifold learning, the
HG-HKNN model incorporates local similarity information in
the feature space into the construction process of the hyperplane.

TABLE 2 | Details in parameter tuning of k.

k AUC ACC Precision Specificity

200 0.8127 0.7256 0.7677 0.8035
350 0.8241 0.7319 0.7897 0.8311
500 0.8284 0.7362 0.7940 0.8338
650 0.8292 0.7398 0.7954 0.8333
800 0.8287 0.7425 0.7927 0.8265
950 0.8279 0.7437 0.7840 0.8134

TABLE 3 | Comparison of classification metrics among different kernels.

Kernel Type AUC MCC ACC Precision Specificity

Linear 0.7618 0.3739 0.6719 0.7833 0.8686
Polynomial 0.8021 0.4664 0.7322 0.7519 0.7687
Laplacian 0.8243 0.5153 0.7575 0.7592 0.7597
RBF 0.8309 0.5099 0.7538 0.7760 0.7922

TABLE 4 | Comparison of classification metrics among different models.

Techniques AUC MCC ACC Precision Specificity

KNN 0.7824 0.4189 0.7078 0.6886 0.6519
RF 0.8019 0.4576 0.7285 0.7267 0.7231
SVM 0.8091 0.4820 0.7405 0.7466 0.7502
HKNN 0.8203 0.4976 0.7484 0.7442 0.7371
OG-HKNN 0.8289 0.4944 0.7446 0.7843 0.8130
HG-HKNN 0.8309 0.5099 0.7538 0.7760 0.7922
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Compared with the HKNN model, the HG-HKNN model not
only reduces the disturbance of extreme samples to the decision
boundary, but also preserves the local similarity information in
the feature space. In the HG-HKNN model, we replace the
ordinary graph with a hypergraph for Laplacian regularization.
Hypergraph learning allows us to represent feature space local
structures with more complex relationships than just pairwise
similarity relationships. This further improves the performance
of our HG-HKNN model. To highlight the effect of hypergraph
learning, we add an ordinary graph regularized HKNN model
(OG-HKNN) to our comparison, and the details are also listed in
Table 4. The parameter tuning process of the OG-HKNN model
is the same as that of the HG-HKNN. The best parameters for
choosing λ, μ, γ and k are 0.2, 0.8, 0.4 and 350, respectively. The
experimental results show that the AUC, MCC and ACC of the
HG-HKNN model are better than the OG-HKNN model.

One disadvantage of our model is that HG-HKNN increases
computation time and memory usage compared to HKNN. In
terms of memory usage, the storage of hypergraphs, Laplacian
matrices, and kernel matrices in HG-HKNN increases memory
usage. In terms of operating efficiency, we conduct experiments
on the test set with the same parameter k � 20, HKNN completes
the computation in 362 milliseconds, while HG-HKNN
completes the computation in 640 milliseconds. Such
computational time cost is acceptable, especially considering
the performance of HG-HKNN and time-consuming deep
learning models in vesicle transporter identification.

3.4 Comparison With Previous Techniques
In this section, we aim to compare our model with previous
techniques to highlight the performance of our proposed model
on benchmark datasets. After optimizing the parameters with
cross-validation, we obtain the optimal values of each parameter
in HG-HKNN, where λ is 0.4, k is 650, γ is 0.4, μ is 0.4, and the
value of kH in the hypergraph part is 2.With these parameters, we
no longer perform cross-validation on the training set but instead
feed the entire training set into our model and then evaluate our
final model on the test set. Among the metrics, the AUC is 87.0%,
and the MCC is 0.53. Compared with the existing state-of-the-art
Vesicular-GRU method with an AUC of 86.1% and MCC of 0.52,
our model has higher AUC and MCC values, fewer feature
dimensions (140 dimensions) and fewer parameters.

We compare our model with several other existing methods,
among which the GRU model is a prediction method using
traditional PSSM features and GRU and BLAST is a general-
purpose protein prediction tool (Johnson et al., 2008). BLSTM is a

commonly used prediction method in protein research (Li et al.,
2020). The state-of-the-art method Vesicular-GRU (Le et al.,
2019), a prediction method based on 1D CNN and GRU, is also
listed in the comparison. The details of the comparison are shown
in Table 5.

The meaning of the indicators has been described in the
previous section. Experimental results show that our model
achieves the best AUC and MCC metrics on this imbalanced
benchmark dataset. Deep learning is involved in most of the
methods in the comparison. The black box is an unavoidable
problem for deep learning-based methods, and it is difficult to
intuitively understand which factors lead to the predicted
results. In deep learning models, researchers need to
optimize a large number of parameters to improve the
performance of the network, and these parameters are
directly tuned through back-propagation of the prediction
results, resulting in overfitting and the curse of
dimensionality. The neural network in the Vesicular-GRU
model has hundreds of thousands of parameters, which
makes the Vesicular-GRU model a potential risk of
overfitting on the training set. Our HG-HKNN has only five
parameters, and the performance of our model is mainly
attributable to hypergraph regularization and hyperplane
rather than fitting to the parameters. Local hyperplane
models have better performance on imbalanced datasets
because the same number of samples are selected in each
class. Like many biological sequence datasets, the vesicle
transporter dataset is a typically imbalanced dataset, which
is where the local hyperplane model excels. Furthermore, HG-
HKNN applies kernel tricks to handle high-dimensional
features, avoiding the curse of dimensionality. Although
there is an increase in time and memory usage compared to
HKNN, our model is faster relative to deep learning models
trained with huge parameters via backpropagation. With only
five parameters, our model avoids the black box, overfitting
and curse of dimensionality problems in deep learning and
makes predictions faster, and the performance of our model is
equal to or higher than all the mentioned techniques, especially
in terms of MCC and AUC.

4 CONCLUSION

In this study, we propose a novel approach for predicting
vesicular transport proteins. The existing methods are
typically performed with complex neural networks or by

TABLE 5 | Comparison of our model with other existing technologies.

Techniques AUC MCC ACC Sensitivity Precision Specificity

GRU 0.848 0.44 79.2 70.8 44.0 81.0
BLSTM 0.846 0.46 84.6 54.2 55.8 90.9
BLAST 0.82 0.43 83.6 54.1 52.8 89.8
Vesicular-GRU 0.861 0.52 82.3 79.2 48.7 82.9
HG-HKNN 0.870 0.53 84.1 72.1 53.2 86.7
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extracting a large number of features. Our method classifies
vesicular transport proteins with PsePSSM features and our
proposed HG-HKNN model. We completed the prediction of
vesicle transporters with only 140-dimensional features and
5 parameters with satisfactory results. Experimental results
show that our method has the best AUC of 0.870 and MCC of
0.53 on the benchmark dataset and outperforms the state-of-the-
art method (Vesicular-GRU) in ACC, MCC and AUC. Other
metrics of our model are also comparable to other methods. A
traditional machine learning computational model is used in our
approach, avoiding some of the drawbacks of deep learning.
Compared with another study (Tao et al., 2020) using
traditional machine learning on the same dataset, their study
achieved 72.2% accuracy and 0.34 MCC with 21-dimensional
CTDC features after MRMD (He et al., 2020) dimensionality
reduction, while our model achieves 84.1% accuracy and
0.53 MCC with 140-dimensional PsePSSM features.
Furthermore, like CTDC features, the classical features we used
imply that amino acids have a certain regularity in the arrangement
of the protein sequence. Since PSSM matrix information is a
commonly used motif representation, our study may help
scholars to judge whether an unknown protein is a vesicle
transporter.

The proposed method also has the following limitations: 1)
In the case of large parameter k, the prediction takes a long time;
2) Our model uses the PsePSSM feature without incorporating
sequence information for prediction; and 3) Feature selection
and dimensionality reduction are not performed in our model.
For the first limitation, parallel optimization can be used to solve
the problem of computation time. For the second question,
adding sequence features such as amino acid frequency or
composition of k-spaced amino acid pairs (CKSAAP) to our
model may further improve the prediction accuracy. For the

third question, the dataset can be processed with feature
selection and dimensionality reduction tools that remove
redundant features. The results of this study can provide a
basis for further studies in computational biology to identify
vesicle transport proteins with classical features and traditional
machine learning classifiers.
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CD8TCEI-EukPath: A Novel Predictor
to Rapidly Identify CD8+ T-Cell
Epitopes of Eukaryotic Pathogens
Using a Hybrid Feature Selection
Approach
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Computational prediction to screen potential vaccine candidates has been proven to be a
reliable way to provide guarantees for vaccine discovery in infectious diseases. As an
important class of organisms causing infectious diseases, pathogenic eukaryotes (such as
parasitic protozoans) have evolved the ability to colonize a wide range of hosts, including
humans and animals; meanwhile, protective vaccines are urgently needed. Inspired by the
immunological idea that pathogen-derived epitopes are able to mediate the CD8+ T-cell-
related host adaptive immune response and with the available positive and negative CD8+

T-cell epitopes (TCEs), we proposed a novel predictor called CD8TCEI-EukPath to detect
CD8+ TCEs of eukaryotic pathogens. Our method integrated multiple amino acid
sequence-based hybrid features, employed a well-established feature selection
technique, and eventually built an efficient machine learning classifier to differentiate
CD8+ TCEs from non-CD8+ TCEs. Based on the feature selection results, 520 optimal
hybrid features were used for modeling by utilizing the LightGBM algorithm. CD8TCEI-
EukPath achieved impressive performance, with an accuracy of 79.255% in ten-fold
cross-validation and an accuracy of 78.169% in the independent test. Collectively,
CD8TCEI-EukPath will contribute to rapidly screening epitope-based vaccine
candidates, particularly from large peptide-coding datasets. To conduct the prediction
of CD8+ TCEs conveniently, an online web server is freely accessible (http://lab.malab.cn/
~hrs/CD8TCEI-EukPath/).

Keywords: eukaryotic pathogens, T-cell epitopes, machine learning, hybrid features, LightGBM

INTRODUCTION

Pathogen-derived antigen epitopes displayed on the surface of host antigen-presenting cells can be
presented by major histocompatibility complex (MHC) molecules (also called human leukocyte
antigen in humans) to the different subsets of T cells. Typically, MHC-I molecules present relatively
fixed peptide lengths (usually 8–11 residues) to CD8+ T cells, thereby activating cytotoxic T
lymphocytes to destroy invading pathogens (Trolle et al., 2016), whereas MHC-II molecules
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with an open peptide-binding groove have the ability to recognize
peptides of highly variable lengths (usually 9–22 residues) that
activate CD4+ helper or regulatory T cells (Holland et al., 2013).
Obviously, antigen epitopes that trigger CD8+ T cells or CD4+

T cells bear essential differences during the process of host
adaptive immune responses. Therefore, identifying what
pathogen peptides will be presented to specific T cells is
critical information for understanding infectious etiologies,
developing diagnostic assays, and designing epitope-based
vaccines against infectious agents.

Conventional approaches for T-cell epitope identification have
depended entirely upon experimental technologies and experiences
and are obviously time-consuming and costly. As a result, alternative
computational approaches to implement antigen epitope
identification have become powerful methods in immunology and
vaccinology research and have significantly decreased the
experimental load associated with epitope identification (Brusic
et al., 2004; Zhang et al., 2012). To date, most T-cell epitope
prediction tools have been developed using machine learning
algorithms to train various experimental data, which are generally
available in specialized epitope databases, such as the Immune
Epitope Database (IEDB) (Vita et al., 2019). Since the first
computational approach for epitope prediction was introduced
more than 30 years (Sette et al., 1989), the performance of
prediction methods in recent years has obtained significant
advancement with the accumulation of positive epitope data, the
development of machine learning algorithms, and the reduction of
computational cost. These advancements are seen in the development
of machine learning models to identify T-cell epitopes in various
infectious agents, including pathogenic prokaryotes (such as bacteria)
(Pamer et al., 1991; Nagpal et al., 2018; Zadeh Hosseingholi et al.,
2020), viruses (Bukhari et al., 2021; Sharma et al., 2021; Xu et al.,
2021), and pathogenic eukaryotes (such as parasitic protozoans)
(Goodswen et al., 2014; Goodswen et al., 2021).

Among infectious agents, eukaryotic pathogens have evolved
into several distinct phylogenetic lineages and bear resourceful
abilities to affect a wide range of hosts, including humans and
animals, resulting in significant effects on the aspects of global
public health and considerable economic loss to the agricultural
community (Haldar et al., 2006). Since a high level of MHC
polymorphism in infected hosts and a large number of unknown
functional proteins exist in eukaryotic pathogens (Hu et al.,
2022), this undoubtedly produces challenges for T-cell epitope
identification. Although presently some available software
systems for in silico T-cell epitope prediction have been
developed, including the NetCTL server (Larsen et al., 2005),
the NetMHCpan server (Jurtz et al., 2017), and the MHCflurry
server (O’Donnell et al., 2018), there is no guarantee that all these
tools produce good quality predictions (Resende et al., 2012;
Bordbar et al., 2020; Zawawi et al., 2020). Moreover, a general
analysis of MHC-peptide binding prediction, overlooking specific
patterns of MHC-presented peptides recognized by different
types of T-cell receptors, may lead to lower predictive accuracy.

Given the wealth of state-of-the-art machine learning algorithms
available and public experimental data, it is necessary to keep
comparing the performance of different methods reciprocally and
develop effective tools for the identification of T-cell epitopes in

pathogen biology research. In the present study, based on MHC-I
T-cell peptides collected from the IEDB database and experimentally
validated neoantigen epitopes available fromprevious Review articles,
we developed a novel machine learning-based method to identify
CD8+ T-cell immunogenic epitopes in eukaryotic pathogens. Our
method adopted the best hybrid feature descriptor and classifier to
establish a prediction model and finally achieved an accuracy of
79.255% in ten-fold cross-validation and an accuracy of 78.169% in
the independent test. Finally, a user-friendly web server named
CD8TCEI-EukPath was developed, which will be helpful for
scientists to rapidly screen epitope-based vaccine candidates from
a plethora of mass spectrometry peptidome data.

METHODS AND MATERIALS

Dataset Preparation
Eukaryotic pathogens (Eukpaths), such as protozoans and fungi, are
important causative agents that cause serious infectious diseases in
humans and animals; however, there is a lack of systematic collection
of Eukpath-derived antigenic epitopes associated with the host
immune response. Additionally, many previous works have
pointed out that stringent datasets are considered important for
the performance of a predictive model. In particular, peptide
sequences for most T-cell epitopes (TCEs) usually have a short
length, which easily leads to biased estimates if peptide sequences in a
dataset have high similarity.

The present study collected datasets concerning positive
and negative CD8+ TCEs available from the IEDB database
(http://www.iedb.org/), following the search strategy:
Eukaryote T-cell and class I MHC restriction (accessed on
15 October 2021). After data processing, 809 TCEs and
1,715 non-TCEs for Eukpaths were retained as positive and
negative datasets, respectively. A detailed description of
Eukpaths is included in Supplementary Table S1. In
addition, we also obtained 371 experimentally determined
peptide sequences for host CD8+ T cells that are described in
the latest Review articles, in which have gave a detailed list
regarding peptide sequences in three important parasites
[i.e., Plasmodium falciparum (Heide et al., 2019),
Toxoplasma gondii (Javadi Mamaghani et al., 2019), and
Trypanosoma cruzi (Ferragut et al., 2021)] and, eventually,
a total of 1,180 TCEs were reorganized as the positive dataset.

Before dividing the positive and negative datasets into training
and testing sets, we performed data preprocessing, such as
removing repeat sequences and sequences with high sequence
identity. Repeat peptide sequences in the positive sample were
removed using SeqKit software (Shen et al., 2016), and peptide
sequences in positive and negative samples with more than 90%
sequence identity were removed using the CD-HIT Suite server
(Huang et al., 2010). Finally, a total of 706 TCEs from the positive
dataset were retained, and an equal number of non-TCEs were
randomly selected from negative datasets.

Regarding machine learning, training datasets are used to
train a predictive model, and based on evaluation through
testing sets, an optimal classifier was selected. We randomly
selected 80% of datasets from both positive and negative
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samples as training sets and the remaining 20% as testing sets.
Note that the training and testing sets can be downloaded from
http://lab.malab.cn/~hrs/CD8TCEI-EukPath/download.html.

An Overview of the Established Predictor
A modeling overview of the proposed approach is illustrated in
Figure 1. CD8TCEI-EukPath allows users to utilize a large
volume of peptide sequences, such as peptide-coding datasets
available from mass spectrometry peptidomics, to serve as input
sequences. First, each sequence is subjected to the feature

representation based on the proposed hybrid feature scheme.
Regarding machine learning modeling, hybrid feature
identification is a useful approach for improving prediction
performance and has been extensively applied to the
identification of specific peptide sequences, such as
anticancer T-cell antigen epitopes (Wei et al., 2018; Beltran
Lissabet et al., 2019; Charoenkwan et al., 2020; Jiao et al.,
2021). The detailed hybrid feature representation method can
be seen in the subsequent Section 2.3. Then, hybrid features
for each sequence are transmitted to the well-trained

FIGURE 1 | A technology roadmap of the machine learning model proposed in this study.
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prediction model. In the final evaluation of the models, we
choose the LightGBM (LGBM) classifier as the optimal
training model. Eventually, the LGBM-based model will
give an estimated score in the prediction results to
differentiate TCEs from non-TCEs. If the prediction
possibility of more than 50% is considered to indicate the
true TCE and lower values indicate non-TCEs, the prediction
possibility is calculated with a range from 0 to 100%.

Feature Extraction
Protein or peptide sequences are composed of amino acids. In
the standard amino acid alphabet, 20 different amino acids
can be represented as {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W, and Y}. To establish a machine learning model, an
essential step is to extract amino acid features from protein or
peptide sequences, typically regarding structural and
physicochemical properties of amino acids through a
transformation from sequence to numerical vector (Chen
et al., 2018; Chen et al., 2020; Chen et al., 2021). In this
study, the iLearnPlus platform (Chen et al., 2021) was used to
conduct feature extraction of the peptide sequence, as
described below.

1) Amino Acid Composition (AAC). AAC is a commonly used
descriptor that has been successfully applied to protein
classification and anticancer peptide prediction (Bhasin and
Raghava, 2004; Wei et al., 2018; Jiao et al., 2021). AAC is
encoded based on calculating the occurrence frequency of
each amino acid in a peptide sequence. The frequencies of
AAC can be calculated as follows:

where N(i) represents the number of amino acid type i, L
represents the length of a peptide sequence, and f(i) is the
calculated composition frequency for a specific amino acid type i.

2) Adaptive Skip Dinucleotide Composition (ASDC). The ASDC
descriptor is a modified dipeptide composition proposed by
Wei et al., 2017a andWei et al., 2017b. This descriptor has the
advantage that it not only fully considers the relevant
information between adjacent residues but also considers
the intermediate residue. For a given protein or peptide
sequence, this descriptor can generate 400-dimensional
feature vectors (fv) that are presented by:

ASDC � (fv1, fv2, fv3, . . . , fv400)
fvi � ∑M−1

k�1 N
k
i∑400

i�1∑M−1
k�1 N

k
i

f(i) � N(i)
L , i ∈ {A, C, D. . .Y}

In the formula, fvi indicates the occurrence frequency of all
possible dipeptide pairs with ≤ M−1 intervening amino acids.

3) Combined Composition, Transition, and Distribution
(CCTD). The CCTD features represent a global
description of amino acids’ structural or
physicochemical attributes, such as hydrophobicity,

normalized van der Waals volume, polarity,
polarizability, charge, secondary structures, and solvent
accessibility of a peptide sequence (Dubchak et al., 1995;
Tomii and Kanehisa, 1996; Dubchak et al., 1999). The
CCTD contains three descriptors, namely, composition
(C), transition (T), and distribution (D).

• Composition: The composition descriptor computes the
percentage frequency of polar (RKEDQN), neutral
(GASTPHY), and hydrophobic (CLVIMFW) residues
in a given peptide sequence. It can be calculated as
follows:

C � N(i)
L

, i ∈ {polar, neutral, or hydrophobic residues}
N (i) represents the number of amino acid type i in the

encoded sequence, and L represents the length of the peptide
sequence.

• Transition: The transition descriptor indicates the
percentage frequency of amino acids that transition
between the three groups, i.e., polar, neutral, and
hydrophobic groups. The formula can be defined as follows:

T(i, j) � N(i, j) +N(j, i)
L − 1

i, j ∈ {(polar, neutral), (neutral, hydrophobic), (hydrophobic, polar)}
whereN(i, j) andN(j, i) represent the number of dipeptides that
appeared in ‘i, j’ and ‘j, i’, respectively, and L represents the length
of a peptide sequence.

• Distribution: The distribution descriptor describes the
distribution of amino acids for each of the three groups
(polar, neutral, and hydrophobic) in the sequence. There
are five descriptor values for each group, and they are the
corresponding position fractions in the entire sequence
concerning first residues, 25% residues, 50% residues, 70%
residues, and 100% residues.

4) Grouped Di-Peptide/Tri-Peptide Composition (GDTPC).
The 20 different amino acids can be categorized into five
classes, including aliphatic group–g1 (GAVLMI), aromatic
group–g2 (FYW), positively charged group–g3 (KRH),
negatively charged group–g4 (DE), and uncharged
group–g5 (STCPNQ), according to their
physicochemical properties, such as hydrophobicity,
charge and molecular size of amino acids in a peptide
sequence (Lee et al., 2011). In this study, the grouped di-
peptide composition (GDPC) and the grouped tri-peptide
composition (GTPC) are combined to present the feature
vector in the peptide sequence. The GDPC is a variation of
the di-peptide composition descriptor and can generate 25
descriptors (Chen et al., 2018; Chen et al., 2021). It is
defined as follows:

f(i, j) � Nij

L − 1
, i, j ∈ {g1, g2, g3, g4, g5}

where Nij is the number of dipeptides coded by amino acid type
groups i and j, and L represents the length of a peptide sequence.
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The GTPC is also a variation of the tri-peptide composition
descriptor, and a total of 125 descriptors can be generated for a
given peptide sequence (Chen et al., 2018; Chen et al., 2021). It is
defined as follows:

f(i, j, s) � Nijs

L − 1
, i, j, s ∈ {g1, g2, g3, g4, g5}

where Nijs is the number of tripeptides coded by amino acid type
groups i, j, and s, and L represents the length of a peptide sequence.

Feature Selection
Feature selection is an important process that can effectively
reduce the number of redundant variables and the computational
cost as well as solve overfitting problems in machine learning
modeling. A variety of feature selection tools have been developed
and applied to the identification of peptide sequences (Wang
et al., 2013; Zou et al., 2016; Jung et al., 2019; He et al., 2020; Meng
et al., 2020; Mostafa et al., 2020). For the first method applied to
the optimal feature selection, we decided to utilize the MRMD

FIGURE 2 | Analysis of amino acid sequence features. (A) Length distribution of the positive CD8+ T-cell epitopes. The horizontal axis represents the length of
amino acids, and the vertical axis represents the number of epitopes in positive samples. (B) Distribution features of amino acid types with respect to the positive and
negative CD8+ T-cell epitopes. The horizontal axis represents the twenty amino acids, and the vertical axis represents the occurrence frequency of an amino acid in all
sequences.
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tool (http://lab.malab.cn/soft/MRMD3.0/index.html) (Zou et al.,
2016; He et al., 2020) following the PageRank strategy. MRMD is
a feature ranking method based on function distance calculated
by Pearson’s correlation coefficient to measure the independence
of every feature and generates a sub-feature set with a low
redundancy but strong relevance with the target class. The
second method was the LGBM algorithm (Ke et al., 2017),
which was used to select the best feature subsets based on the
ranking of feature significance calculated by the LGBM classifier.
Finally, the features selected by the MRMD and LGBM methods
were used for modeling.

Classifier Selection
In this study, eight popular machine learning algorithms were
used, including Bagging, decision tree (DT), neighbors
(KNN), light gradient boosting machine (LGBM), logistic
regression (LR), GaussianNB (NB), random forest (RF) and
support vector machines (SVM), to select a suitable algorithm
for machine learning modeling. These algorithms are built
into the scikit-learn toolkit package (Pedregosa et al., 2011),
which can run in the Python program. Based on the feature
selection matrix generated from the MRMD program, with
regard to the eight algorithms, default hyperparameters were
used for the initial evaluation during the process of
classification performance. Additionally, we optimized the
hyperparameters and selected the three most suitable
classifiers, namely, RF, LGBM, and Bagging, for further
comparative analysis. The best parameters were determined
by grid search techniques, and the detailed settings are
compiled in Supplementary Table S2.

Performance Evaluation and Methods
For each predictive model, the quality was evaluated by
measurement metrics for ten-fold cross-validation and an
independent test method. In terms of measurement metrics,
we used four standard evaluation metrics, namely, sensitivity
(Se), specificity (Sp), accuracy (Acc), and Matthew correlation

coefficient (MCC), to evaluate a model’s performance. These
metrics were formulated as follows:

Se � TP

TP + FN
× 100%

Sp � TN

TN + FP
× 100%

Acc � TP + TN

TP + TN + FN + FP
× 100%

MCC � TP × TN − FP × FN��������������������������������������������(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)√
where TP, TN, FP, and FN indicate the sample numbers of
true positives, true negatives, false-positives, and false
negatives, respectively. The Se of a test is also called the
true positive rate and refers to the proportion of samples
that are correctly classified as positive samples in the dataset
among all real positive samples. The Sp of a test is also called
the true negative rate and is the proportion of samples that are
correctly classified as negative samples in the dataset among
all real negative samples. Another two metrics, Acc and MCC,
can comprehensively evaluate the performance of a predictor
on balanced data. The Acc metric represents the ratio of a
sample number of correct predictions to all numbers of input
samples, but the MCC metric takes the ratio of positive and
negative elements into account. Therefore, for unbalanced
data, MCC would display a better predictive quality than Acc
(Chicco and Jurman, 2020).

Additionally, the area under the receiver operating
characteristic (auROC, or AUC) curve was introduced to
evaluate the performance of a predictor. The auROC curve
is plotted with a true positive rate on the Y-axis and the false-
positive rate on the X-axis, with values ranging from 0 to 1.
Having the auROC curve near the upper left or an auROC
curve value = 1 reflects perfect prediction, while having an
auROC curve value of 0.5 suggests random prediction of
a model.

TABLE 1 | The accuracy (Acc) results of a single feature descriptor classified by different machine learning algorithms.

Feature descriptors Classifiers and Acc values (%)

Bagging DT KNN LGBM LR NB RF SVM

Ten-fold cross-validation AAC 71.454 66.667 68.174 73.670 65.160 65.603 73.670 67.730
ASDC 72.252 65.160 67.642 75.443 66.223 66.755 74.468 74.291
CTDC 67.199 62.145 66.933 68.528 64.628 61.259 68.351 68.351
CTDT 66.667 60.638 64.805 67.996 63.032 60.372 67.908 66.401
CTDD 71.986 64.982 69.326 75.089 66.312 66.401 72.606 68.883
GDPC 64.894 59.309 60.638 65.514 59.929 57.624 66.223 63.209
GTPC 67.287 62.057 63.564 68.174 60.284 59.663 68.528 65.071

Independent test AAC 76.408 67.606 73.592 76.056 66.901 65.493 74.648 67.606
ASDC 75.352 65.845 69.366 76.761 67.254 69.014 75.704 74.296
CTDC 72.535 63.028 66.197 70.070 67.254 63.380 73.944 71.479
CTDT 65.493 60.915 65.141 65.141 66.197 60.211 68.662 64.085
CTDD 69.014 62.324 66.197 72.183 68.662 66.901 72.887 70.775
GDPC 63.028 50.704 59.859 64.789 61.268 61.972 67.254 65.141
GTPC 66.197 59.859 65.141 72.887 63.380 63.028 68.662 66.197

The best Acc values to reflect the performance of different classifiers were highlighted in bold font.
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RESULTS AND DISCUSSION

Analysis of Peptide Sequence Features
In terms of peptide length, antigen epitopes that are presented to
CD8+ T cells by MHC-I molecules are typical peptides between 8
and 11 amino acids in length, and occasionally a few
noncanonical lengths overstep this range (Trolle et al., 2016).

Additionally, the sequence characteristics of T-cell epitopes
should largely reflect the specific binding ability to the MHC
allele in the process of eliciting immune responses induced by
pathogen infection. Motivated by these observations, we first
investigated the length distribution of positive T-cell epitope
sequences. The results are illustrated in Figure 2A, which
shows the main distribution of sequence length is 9-mer

TABLE 2 | The classification results of different hybrid feature combinations detected by the LGBM classifier.

Hybrid features Ten-fold cross-validation Independent test

Acc (%) MCC Se (%) Sp (%) Acc (%) MCC Se (%) Sp (%)

AAC + ASDC + CCTD + GDTPC 79.255 0.585 77.837 80.674 78.169 0.563 78.873 77.465
ASDC + CCTD + GDTPC 78.103 0.562 76.596 79.610 76.056 0.521 77.465 74.648
AAC + ASDC + CCTD 77.660 0.553 76.064 79.255 77.113 0.542 76.056 78.169
AAC + CCTD + GDTPC 77.305 0.546 76.596 78.014 75.352 0.507 74.648 76.056
ASDC + CCTD 77.482 0.550 76.950 78.014 76.761 0.535 78.169 75.352
AAC + CCTD 76.684 0.534 75.887 77.482 75.352 0.507 76.056 74.648
ASDC + GDTPC 76.152 0.523 74.468 77.837 75.704 0.515 72.535 78.873
CCTD + GDTPC 76.064 0.522 74.468 77.660 77.465 0.550 78.873 76.056
AAC + ASDC 75.621 0.512 75.000 76.241 72.535 0.451 70.423 74.648
AAC + GDTPC 74.911 0.499 73.227 76.596 77.817 0.556 76.761 78.873
CCTD 75.621 0.513 74.645 76.596 74.648 0.495 78.873 70.423
GDTPC 69.592 0.392 68.262 70.922 72.535 0.451 71.831 73.239

The best metric values were highlighted in bold font.

TABLE 3 | A comparison of classification results by a pairwise combination of two feature selection techniques (MRMD and LGBM) and three optimal classifiers (LGBM, RF,
and Bagging).

Method Ten-fold cross-validation Independent test

Acc (%) MCC Se (%) Sp (%) Acc (%) MCC Se (%) Sp (%)

MRMD + LGBM 79.255 0.585 77.837 80.674 78.169 0.563 78.873 77.465
LGBM + LGBM 78.457 0.569 78.014 78.901 77.113 0.542 77.465 76.761
MRMD + RF 75.887 0.518 73.404 78.369 74.648 0.493 72.535 76.761
LGBM + RF 75.355 0.507 74.645 76.064 74.648 0.493 73.944 75.352
MRMD + Bagging 73.316 0.466 72.163 74.468 75.352 0.507 73.239 77.465
LGBM + Bagging 74.202 0.484 72.695 75.709 75.704 0.514 76.056 75.352

The best metric values were highlighted in bold font.

FIGURE 3 | A comparison of the AUC curve in ten-fold cross-validation (A) and independent test (B). Results were by a pairwise combination of two feature
selection techniques (MRMD and LGBM) and three optimal classifiers (LGBM, RF, and Bagging).
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peptides and that much longer peptides reach a length of up to 35
aa. As shown in Figure 2B, we also observed significant
preferences in terms of amino acid appearance frequency
between TCEs and non-TCEs, especially for leucine (L).
Previous evidence has demonstrated that L is an important
amino acid to mediate the adaptive immune response;
specifically, L can play a role in T-cell activation and
proliferation of immune cells (Ananieva et al., 2016). This
implies that the preference of L in positive TCEs is essential
feature information, in which the role of L not only serves as a
biological activator of T-cell immunity but also may contribute to
discriminating TCEs from non-TCEs.

Initial Evaluation of a Single Feature
Descriptor on Different Classifiers
In our scheme on feature learning, we evaluated the performance
of individual feature descriptors by the utilization of eight
extensively used machine learning classifiers, i.e., Bagging, DT,
KNN, LGBM, LR, NB, RF, and SVM. These models were
evaluated thoroughly by ten-fold cross-validation, and their
performances were compared reciprocally. A detailed
summary of these evaluation results is compiled in
Supplementary Table S3, and the Acc values of all classifiers
are shown in Table 1. Given that each descriptor has a fair
comparison with the eight classifiers, as shown in Table 1, we
noticed that in each feature descriptor, there were three classifiers,
namely, Bagging, LGBM, and RF, that had better performances
than other classifiers (the best Acc values are highlighted in bold
font). In the results of ten-fold cross-validation, the LGBM
classifier had the best performance on five feature descriptors
(AAC, ASDC, CTDC, CTDT, and CTDD), followed by the RF
classifier on three feature descriptors (AAC, GDPC, and GTPC);
however, in the individual test result, there were four feature
descriptors (CTDC, CTDT, CTDD, and GDPC) on the RF

classifier that had the best performance, followed by two
feature descriptors (ASDC and GTPC) on the LGBM classifier
and one feature descriptor (AAC) on the Bagging classifier.
Remarkably, the feature descriptor ASDC worked on the
LGBM classifier and was able to obtain the best prediction
results in both ten-fold cross-validation and the independent
test, with Acc values of 75.443% and 76.761%, respectively.
Therefore, the LGBM classifier can be chosen as the most
suitable classifier for model deployment, if only a single
feature descriptor is being considered.

Comparison of Hybrid Multisource Features
on Different Classifiers
Compared to machine learning techniques, in general, the
sequence feature is a more critical element to achieve high
accuracy in biological sequence classification, especially for the
extensive applications of combining hybrid multisource features
in machine learning modeling (Zhang et al., 2016; Mohan et al.,
2019; Charoenkwan et al., 2020; Ao et al., 2021; Jiao et al., 2021).
Based on the feature descriptors mentioned in Section 3.2, we
combined similar feature types as a hybrid group, including
CTDC + CTDT + CTDD (CCTD) and GDPC + GTPC
(GDTPC), and the performances of four groups (AAC, ASDC,
CCTD, and GDTPC) were compared thoroughly on the eight
classifiers using ten-fold cross-validation. The detailed prediction
results are summarized in Supplementary Table S2, and we
reconfirmed that LGBM is a satisfactory classifier to differentiate
TCEs from non-TCEs. To compare the performances of various
hybrid features, as shown in Table 2, the prediction results of the
LGBM classifier were generated based on the ten-fold cross-
validation and independent test. Strikingly, the majority of
prediction results of LGBM using hybrid features had an Acc
value of more than 75%, which indicated that the prediction
ability was greatly improved when compared to the single

FIGURE 4 | The optimal feature sets selected by LGBM feature importance ranking (A) and a well-established MRMD strategy (B). The horizontal axis represents
the number of selected features, and the vertical axis represents the accuracy value calculated by the LGBM classifier.
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features. We also observed from Table 2 that the ten-fold cross-
validation results of the AAC + ASDC + CCTD + GDTPC
combination in particular, with metric values of 79.255% Acc,
0.585 MCC, 77.837% Se, and 80.674% Sp outperformed all the
single or hybrid features, and therefore, this combination feature
was selected for the subsequent analyses.

MRMD Serves as a Powerful Feature
Selection Technology That Determines the
Optimal Feature Space
Various feature selection technologies can be used for
representation learning features. In the present study, we
compared two feature selection technologies (MRMD and
LGBM) by calculating the feature importance values,
including the PageRank-based value for MRMD and Gini-
based feature importance value for LGBM. Among the feature
list results obtained by the two methods, we selected the top
520 features and employed the incremental feature selection
(IFS) strategy to determine the optimal feature vector spaces,
which are subsequently predicted on LGBM, RF, and Bagging
classifiers.

As shown in Table 3, the ten-fold cross-validation results
suggested that the MRMD + LGBM combination yielded the best
prediction capability, with 79.255% Acc, 0.585 MCC, and 80.674%
Sp, compared to the other five models (LGBM + LGBM, MRMD +
RF, LGBM + RF, MRMD + Bagging, and LGBM + Bagging), except
that the Se ofMRMD+LGBMof 77.837%was lower than that of the
LGBM+ LGBMmodel; however, an independent test indicated that
the MRMD + LGBM model was better than the other five
combinations in all metrics. Furthermore, a separate AUC curve
analysis is shown in Figure 3 and further illustrated that theMRMD
+ LGBM model with an AUC value of 0.840 in ten-fold cross-
validation and an AUC value of 0.836 in the independent test
outperformed the other five models.

The optimal feature vector spaces detected by the IFS
strategy suggested that the maximum accuracy of the LGBM
+ LGBM model was 78.457% with 89 features, which was less
than the maximum accuracy of the MRMD + LGBM model of
79.255% with 420 features Figure 4. In the case of evaluating
the computational cost of both models and considering the
stability and robustness of the models, the MRMD + LGMB
combination was finally selected as the best strategy for
modeling and webserver development.

User Guide of the Established Webserver
A user-friendly web server called CD8TCEI-EukPath was
developed, and the users can freely enter the homepage via the
link http://lab.malab.cn/~hrs/CD8TCEI-EukPath/. The prediction
interface can be accessed by clicking the “Prediction” or
“CD8TCEI-EukPath” hyperlink, where the users can utilize
amino acid sequences (FASTA format) to identify whether the
input sequences are CD8TCEs or non-CD8TCEs. Briefly, the users
should use short peptide sequences (generally 8–11 aa in length),
paste the FASTA sequences in the left box, and click the “Submit”
button for calculation. Immediately, the prediction results will be
shown in the right box, which includes the protein name, predicted

epitope (yes or no), and probability of belonging to CD8+ TCEs. If
starting a new task, the users can click the “Resubmit” button and/
or click the “Clear” button and paste new sequences to conduct
computational predictions. Note that the computing resources of
the webserver are limited for high-volume predictions, and the
maximum number of sequences should be 1,000 at a time. In
addition, using the established model, we also provided the
prediction results of five important pathogen species
(Plasmodium, Toxoplasma, Trypanosoma, Leishmania, and
Giardia) based on the available mass spectrometry peptidome
data obtained from the ProteomeXchange database (http://www.
proteomexchange.org/). These prediction results can be
downloaded freely from our web server and need to be further
evaluated by MHC-peptide binding predictions and biological
experiments.

Conclusion
By comparing the performances of various single feature
descriptors and hybrid feature descriptors using eight
different classifiers, we selected a set of best features (AAC
+ ASDC + CCTD + GDTPC) and a satisfactory classifier
(LGBM) for machine learning modeling. Following the
state-of-the-art feature selection strategy of MRMD 3.0, we
developed an effective sequence-based predictor named
CD8TCEI-EukPath, capable of rapidly identifying
eukaryotic pathogen-derived antigen epitopes for host CD8+

T cells from large peptide-coding datasets. As a first sequence-
based predictor to identify T-cell epitopes in eukaryotic
pathogens, CD8TCEI-EukPath achieved 79.255% Acc in
ten-fold cross-validation and 78.169% Acc, 0.563 MCC,
78.873% Se and 77.465% Sp in the independent test.
Meanwhile, a user-friendly web server was developed in the
present work. We believe that this tool is helpful for scientists
to evaluate the immunogenicity of a given peptide sequence
before performing biological experiments. The current tool
only applies to the identification of CD8+ T-cell epitopes in
eukaryotic pathogens. In future works, we will apply deep
representation learning features and state-of-the-art
classification algorithms for CD4+ T-cell epitope and B-cell
epitope prediction. By leveraging machine learning models to
develop auxiliary tools, their combinations will assist in the
development of peptide-based vaccines.
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A method for identifying
moonlighting proteins based on
linear discriminant analysis and
bagging-SVM

Yu Chen, Sai Li and Jifeng Guo*

College of Information and Computer Engineering, Northeast Forestry University, Harbin, China

Moonlighting proteins have at least two independent functions and are widely

found in animals, plants and microorganisms. Moonlighting proteins play

important roles in signal transduction, cell growth and movement, tumor

inhibition, DNA synthesis and repair, and metabolism of biological

macromolecules. Moonlighting proteins are difficult to find through

biological experiments, so many researchers identify moonlighting proteins

through bioinformatics methods, but their accuracies are relatively low.

Therefore, we propose a new method. In this study, we select SVMProt-

188D as the feature input, and apply a model combining linear discriminant

analysis and basic classifiers inmachine learning to studymoonlighting proteins,

and perform bagging ensemble on the best-performing support vector

machine. They are identified accurately and efficiently. The model achieves

an accuracy of 93.26% and an F-sorce of 0.946 on the MPFit dataset, which is

better than the existing MEL-MP model. Meanwhile, it also achieves good

results on the other two moonlighting protein datasets.

KEYWORDS

moonlighting proteins, protein recognition, machine learning, linear discriminant
analysis, bagging-SVM

1 Introduction

With the continuous expansion of proteomic data and the continuous study of protein

functions by researchers, multifunctional proteins have gradually attracted people’s

attention. Among multifunctional proteins, people have found a new type of protein

that can perform multiple functions autonomously without partitioning these into

separate domains, and they are called moonlighting proteins (MPs) (Huberts et al.,

2010). Under the influence of certain specific factors, such as cell localization, cell type,

substrate or different cofactor, moonlighting proteins can switch their executive functions

(Jeffery, 1999). At present, moonlighting proteins have been found in a variety of animals,

plants and microorganisms, and a large number of studies have shown that moonlighting

proteins play an important role in organisms. They can be used as enzymes for catalytic

reactions, as well as secreted cytokines, transcription factors and DNA stabilizers.

Through the study of moonlighting proteins, it is found that they can play an
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important role in the development of new therapies for some

diseases (Jeffery, 2018). For example, moonlighting proteins can

be used as targets for active medicines in the treatment of

hepatitis B virus, cancer, and bacterial infections (Adamo

et al., 2021; Zakrzewicz and Geyer, 2022). Due to the excellent

performance of moonlighting proteins in disease treatment, the

discovery of new moonlighting proteins is of great significance

for solving many medical problems. Therefore, the prediction of

moonlighting proteins has become a hot research direction.

At present, there are several online available moonlighting

protein databases that can obtain protein sequences. Jeffery’s

laboratory manually collected some strict moonlighting proteins

from peer journals, and built a searchable and Internet-based

MoonProt database, which has been updated to MoonProt 3.0

(Chen C. et al., 2021). Luis et al. constructed a multi-functional

protein database MultitaskProtDB, designed to provide a free

online database for researchers using bioinformatics methods to

predict multifunctional proteins, and has been updated to

MultitaskProtDB-II (Franco-Serrano et al., 2018). Bo et al.

established PlantMP, the first plant moonlighting protein

database, enabling researchers to conveniently collect and

process plant-specific raw data (Su et al., 2019).

Based on these public moonlighting protein databases,

researchers have constructed several models to predict

moonlighting proteins. In 2016, Khan and Kihara et al.

developed a moonlighting protein prediction model called

MPFit, which achieved 98% accuracy when protein gene

ontology (GO) annotations were available, and 75%

accuracy using omics features when no GO annotations

were available (Khan and Kihara, 2016). In 2017, Khan

et al. proposed a new solution: they built DextMP based on

three types of textual information of proteins (title, abstracts

from literature and function description in UniProt) and

machine learning classifier, achieving 91% accuracy (Khan

et al., 2017). In 2021, Li et al. proposed a multimodal deep

ensemble learning architecture called MEL-MP. Firstly, they

extracted four sequence-based features: primary protein

sequence information, evolutionary information, physical

and chemical properties, and secondary protein structure

information; secondly, they selected a specific classifier for

each feature; finally, they applied stacked ensemble to

integrate the output of each classifier. The method showed

excellent predictive performance, which achieved an F-score

of 0.891 (Li et al., 2021). In the same year, Shirafkan et al.

constructed a new moonlighting protein dataset to identify

MPs and non-MPs through the SVMmethod of SAAC feature,

and established a well-judged scheme to detect outlier

proteins (Shirafkan et al., 2021). Liu et al. believed that an

appropriate method was needed to identify plant

moonlighting proteins, so they used the combination of

Tri-Peptide composition (TPC) and XGBoost to construct

IdentPMP, which was a plant moonlighting protein prediction

tool (Liu et al., 2021).

For MPFit and DextMP, although high accuracy can be

obtained, GO annotations and text information of protein

samples need to be provided, which is very restrictive. Other

experiments have shortcomings such as relatively low model

accuracy and low efficiency due to the complexity of the model

(Li et al., 2021; Shirafkan et al., 2021). In order to solve the above

problems, we propose a new scheme. Firstly, we extract the

SVMProt-188D feature, which contains information of protein

composition and eight physicochemical properties that are

effective in showing the properties of moonlighting proteins

(Zou et al., 2016). Secondly, linear discriminant analysis

(LDA) is used to reduce the dimensionality of the feature set

to achieve separation of positive and negative samples. Finally,

bagging ens is performed on SVM to classify moonlighting

proteins. The main contributions of this paper are as follows:

1) We propose a method combining LDA and Bagging-SVM to

classify moonlighting proteins. 2) We conduct extensive

experiments on MPFit dataset, Shirafkan’s dataset, and plant

moonlighting protein dataset, and the model achieves excellent

performance on these datasets.

2 Materials and methods

Our research is mainly divided into four parts: benchmark

dataset acquisition; feature extraction; model construction;

model evaluation. The experimental process is shown in

Figure 1. Firstly, we use MPFit as the benchmark dataset (a).

Secondly, we extract SVMProt-188D as a feature and compare

the classification results of this feature with Pse-AAC and Pse-

PSSM (b). Thirdly, we combine LDA with Bagging-SVM for

protein classification, and compare the classification results with

other base classifiers to verify the superiority of the classifier (c).

Finally, we use multiple datasets to validate our method and

compare the classification results with state-of-the-art models to

demonstrate the effectiveness of our method (d).

2.1 Benchmark dataset

In this study, we use the benchmark dataset constructed by

Khan and Kihara et al. (MPFit dataset) [9]. The dataset contains

268 MPs and 162 non-MPs. The positive examples in the dataset

are derived from 268 proteins with Uniprot ID extracted from

MoonProt database, and their biological origins are shown in

Table 1(Mani et al., 2015). Screening of suitable proteins from

four genomes of human, E. coli, yeast and mouse as negative

example of moonlighting proteins (single-function proteins).

The screening criterias are as follows: 1) target protein with at

least eight GO term annotations; 2) when clustering GO terms in

the biological process (BD) category using a semantic similarity

score threshold between 0.1 and 0.5, no more than one cluster is

obtained at each threshold; 3) there is nomore than one cluster of
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FIGURE 1
The pipeline of our experiment, (A) benchmark dataset acquisition; (B) feature extraction; (C) model construction; (D) model evaluation.

TABLE 1 Composition of the benchmark dataset.

Organism MPs Non-MPs

Number Percentage (%) Number Percentage (%)

Human 45 16.8 60 37.0

Escherichia coli 30 11.19 16 9.88

Yeast 27 10.1 34 20.9

Mouse 11 4.1 52 32.1

Other 155 57.81 0 0.0

Total 268 100 162 100
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GO terms for molecular function (MF) with semantic similarity

scores between 0.1 and 0.5. After removing non-MPs with more

than 25% similarity to MPs, 162 negative samples were obtained

(Table 1) (Khan and Kihara, 2016). This dataset has been used in

several experiments on moonlighting protein prediction and is

very authoritative in the field (Khan and Kihara, 2016; Khan

et al., 2017; Li et al., 2021; Shirafkan et al., 2021). Therefore, it is

suitable as the benchmark dataset for this study. Also, we have

conducted experiments on the state-of-the-art dataset of

Shirafkan et al. (2021).

2.2 Feature extraction

Feature extraction is a crucial step in the process of

identifying proteins. This process is the conversion of the

amino acid sequence of a protein into discrete data of a certain

length, and the representation of a sample of the protein by

features composed of discrete data. At present, a variety of

features have been used in the study of protein classification,

such as amino acid composition, positional information,

physicochemical properties, evolutionary information and

secondary structure. Pse-AAC, SVMProt-188D and Pse-

PSSM reflect positional information, physicochemical

properties and evolutionary information respectively, which

is important for protein recognition. Therefore, we choose

these three features as the feature vectors of this study. The

details are as follows.

2.2.1 Pse-AAC
Since the amino acid composition does not take into account

the influence of sequence order information, the researchers

propose the feature of pseudo-amino acids (Pse-AAC). The

feature combines regular amino acid composition (frequency

of occurrence of 20 amino acids) with a set of discrete sequence

correlation factors, which are primarily used to address the

problem that sequence information cannot be directly

incorporated into the prediction algorithm due to different

lengths of amino acid sequences (Chou, 2001; Ding et al.,

2009; Tang et al., 2016; Awais et al., 2021). The specific

descriptions are as follows.

X � [x1/x20, x20+1/x20+λ]T

Where X represents Pse-AAC, x1 to x20 represent the regular

amino acid composition, and x20+1 to x20+λ represent the

information of sequence order. xi in X is expressed as follows.

xi �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fi∑20

j�1fj + ω∑λ

k�1θk
(1≤ i≤ 20)

ωθi−20∑20

j�1fj + ω∑λ

k�1θk
(20 + 1≤ i≤ 20 + λ)

Where fi is the frequency of occurrence of the 20 amino

acids, θk is the k-layer sequence correlation factor, and ω is the

weighting factor for sequence order effects, ω = 0.05 in our

study. The λ components can be defined by the user at will

(Yan et al., 2020). In this experiment, hydrophilic,

hydrophobic, mass, pK1, pK2, pI, rigidity, flexibility, and

irreplaceability are added, resulting in a 65-dimensional

feature vector.

2.2.2 SVMProt-188D
The SVMProt-188D includes the frequency of 20 amino

acids (i.e., “ACDEFGHIKLMNPQRSTVWY”) and eight

physical and chemical properties (hydrophobicity, normalized

van der Waals volume, polarity, polarizability, charge, secondary

structure, solvent accessibility, and surface tension) (Cai et al.,

2003). The details are shown in Table 2, and will be introduced

separately below.

The frequency of 20 amino acids can be calculated by the

following formula:

Fi � Ni

L
, (i � A,C,D, . . . , Y)

WhereNi is the number of amino acid type i, and L is the length

of a protein sequence.

Eight physicochemical properties are studied on the

composition, transition, and distribution of amino acids, and

each property is divided into three groups (Dubchak et al., 1995;

Wang et al., 2017; Xiong et al., 2018; Zou et al., 2019).

2.2.2.1 Composition

Taking the hydrophobicity attribute as an example,

“RKEDQN” is polar, “GASTPHY” is neutral, and

“CVLIMFW” is hydrophobic. The frequency of each group

can be expressed as:

Ci � Ni

L
, i ∈ {polar, neutral, hydrophobic}

2.2.2.2 Transition

The transition from polar group to neutral group is the

frequency of polar residue following neutral residue or neutral

residue following polar residue. The transition between

neutral group and hydrophobic group, and the transition

between hydrophobic group and polar group have similar

definitions. It can be expressed by the following formula:

T(i1, i2) � N(i1, i2) +N(i2, i1)
L − 1

,

(i1, i2) ∈ {(polar, neutral), (neutral, hydrophobic), (hydrophobic, polar)}

2.2.2.3 Distribution

The distribution represents the position of the first, 25%, 50%,

75%, and last of each group category in the amino acid sequence.
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2.2.3 Pse-PSSM
Inspired by Pse-AAC signatures, and combining with

evolutionary information, Chou et al. proposed a new

signature, Pse-PSSM (Chou and Shen, 2007; Wang et al.,

2020). The original PSSM profile PPSSM was generated by

running the position-specific iterative basic local alignment

search tool (PSI-BLAST) against Uniref50 database, and

setting the E-value to 0.001 for 3 iterations (Ding et al., 2014).

PPSSM � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ E1→1 / E1→20

..

.
1 ..

.

EL→1 / EL→20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Where Ei→j represents the score of the amino acid residue at

the i-th position of the protein sequence being changed to amino

acid residue type j during the evolutionary process, L is the length

of the protein sequence, k from 1 to 20 indicate the 20 natural

amino acid types. Implement the following standardised

procedures:

Ei→j �
E0
i → j − 1

20∑20
k�1E

0
i → k������������������������

1
20∑20

u�1(E0
i → j − 1

20∑20
k�1E

0
i → k)2√

In order to make the dimension size of the PSSM descriptors

consistent, the following operations are performed:

PPSSM � [E1, E2,/, E20]T
Ej � 1

L
∑L
i�1
Ei→j

Where Ej is the average score of the i-th amino acid in the

protein sequence P over the course of biological evolution. In

order to preserve sequence order information, the concept of

pseudo-amino acid composition is used to obtain the final 40-

dimensional Pse-PSSM by considering the correlation between

two amino acids Ei→j.

Pξ
Pse−PSSM � [E1, E2,/, E20, G

ξ
1, G

ξ
2,/, Gξ

20]T

Gξ
j �

1
L − ξ

∑L−ξ
i�1

[Ei → j − E(i+ξ) → j]2

2.3 Feature selection

Linear discriminant analysis (LDA) is a feature selection

technique (Arjmandi and Pooyan, 2012; Xie et al., 2018; Yang

et al., 2020; Chen Y. et al., 2021). It can effectively reduce the

feature dimension and reduce the error caused by redundant data.

The idea of LDA is to project samples from high-dimensional space

onto low-dimensional space where the distance between samples of

the same category is minimized and the distance between samples of

different categories is maximized, thus making the samples more

easily distinguishable and obtaining better classification results.

Therefore, this study uses LDA for dimensionality reduction. The

diagram of LDA applied to a binary classification algorithm is shown

in Figure 2.

2.3.1 The linear discriminant analysis process is
as follows

Suppose we have N protein samples which can be denoted as

{(x1, y1), (x2, y2),/, (xn, yn)}, where xi is the features of the

protein sample and yi is the label of the protein sample,

yi ∈ (0, 1) . Our aim is to find a projection line W such that

the projection Y � WTxi of sample xi on the line minimizes the

intra-class distance and maximizes the inter-class distance.

Firstly, calculate the mean vector for each class:

μj �
1
Nj

∑
x∈Xj

x(j � 0, 1)
WhereNj is the number of samples of class j andXj is the set of

samples of class j, μj is the mean vector of the j-th class of samples.

Then, calculate the within-class scatter matrix SW:

SW � ∑
0

+∑
1

� ∑
x∈X0

(x − μ0)(x − μ0)T + ∑
x∈X1

(x − μ1)(x − μ1)T

TABLE 2 Eight physical and chemical properties of the 188-dimensions.

Attribute Division

hydrophobicity Polar:RKEDQN Neutral:GASTPHY Hydrophobicity:CVLIMFW

Normalized van der waals volume Small:GASCTPD Medium:NVEQIL Large:MHKFRYW

polarity Low:LIFWCMVY Medium:PATGS High:HQRKNED

polarizability Low:GASDT Medium:GPNVEQIL High:KMHFRYW

charge Positive:KR Neutral:ANCQGHILMFPSTWYV Negative:DE

Secondary structure Helix:EALMQKRH Strand:VIYCWFT Coil:GNPSD

Solvent accessibility Buried:ALFCGIVW Exposed:RKQEND Intermediate:MPSTHY

Surface tension Large:GQDNAHR Medium:KTSEC Small:ILMFPWYV
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Where∑j is the covariance matrix of samples of class j (strict lack

of covariance matrix of the numerator), expressed by the

following formula:

∑
j

� ∑
x∈Xj

(x − μj)(x − μj)T(j � 0, 1)
Calculating the between-class scatter matrix SB:

SB � (μ0 − μ1)(μ0 − μ1)T
Finally, the optimization objective is:

arg max J(W) � WTSBW

WTSWW

Simplify the above formula to get the target projection

line Wp:

Wp � arg max{WTSBW

WTSWW
} � S−1W(μ0 − μ1)

The original set of samples is projected onto the one-

dimensional space W to obtain the 1-dimensional feature

vector after dimensionality reduction (Chen Y. et al., 2021).

2.4 Classifier

In the experiments, we use six popular base classifiers,

including K-nearest-neighbor (KNN) (Deng et al., 2016),

Decision Tree (DT) (Safavian and Landgrebe, 1991),

Multilayer Perceptrons (MLP) (Lee et al., 2020), Random

Forests (RF) (Breiman, 2001), XGBoost (Chen et al., 2016;

Chen et al., 2020) and Support Vector Machine (SVM).

Experimental parameters for all classifiers can be found in

Supplementary Table S1. After evaluation on the benchmark

dataset, the support vector machine works best, and can avoid

overfitting when the number of samples is small (Gong et al.,

2021). Through bagging ensemble of SVM, the model

performance is further improved.

SVM is a type of supervised learning proposed by Vladimir

Vapnik and is widely used in machine learning, computer vision

and data mining, such as image recognition, text classification

and protein sequence classification (Zhao et al., 2015; Ding et al.,

2017; Manavalan et al., 2018; Zhang et al., 2019). In binary

classification problems, the main idea of SVM is to find a

segmentation hyperplane that maximizes the distance of the

segmentation hyperplane from the nearest point. Given a

training sample xi ∈ RP, i = 1, . . . , n, and a vector y ∈ {0, 1}n,

FIGURE 2
The diagram of LDA applied to a binary classification algorithm.
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our goal is to find w ∈ RP and b ∈ R for a given prediction

sign(wTϕ(x) + b) that predicts correctly for most samples. In

this experiment, we use the SVC algorithm for classification and

set the kernel function to linear function and the penalty

parameter C to 1.0.

Bagging is a common ensemble learning method that

integrates the prediction results of multiple base classifiers

into the final strong classifier prediction result. Its integration

strategy is to obtain training subsets by sampling from the

original sample set, and each training subset trains a model.

Finally, the classification results of samples are obtained by

voting strategy (Breiman, 1996; Zaman and Hirose, 2008).

2.5 Performance assessment

We used these indicators to evaluate the performance of the

experiment: accuracy (ACC), Precision, Recall, F-score and AUC

(area of ROC curve) (Wei et al., 2017; Shan et al., 2019; Basith

et al., 2020; Zhang et al., 2020; Wang et al., 2021). These

evaluation indicators are the results of the confusion matrix

calculation obtained from the experiment, and the calculation

formulas are as follows:

ACC � TP + TN

TP + TN + FP + FN

Precision � TP

TP + FP

Recall � TP

TP + FN

F − score � 2
1

Precision + 1
Recall

� 2pPrecisionpRecall
Precision + Recall

Where TP represents the number of correctly predicted MPs, TN

represents the number of correctly predicted non-MPs, FP

represents the number of incorrectly predicted MPs as non-

MPs, and FN represents the number of incorrectly predicted

non-MPs as MPs.

3 Results and discussion

3.1 Performance evaluation of different
feature extraction

To ensure the accuracy of the experimental results, the 10-

fold cross-validation (i.e., The training samples are divided into

ten folds, nine of which are adopted for training, one of which is

adopted for testing. The process repeats 10 times and the average

value is taken as the final result.) is applied on the benchmark

dataset. To select suitable input data, Pse-AAC, SVMProt-188D

and Pse-PSSM are experimented with multiple classifiers

respectively (Table 3). It is clear from the table that the

SVMProt-188D performs best on all indicators, with the most

accuracy rates exceeding 90% (Figure 3). In contrast, Pse-AAC

and Pse-PSSM don’t perform as well as SVMProt-188D. From

this, we hypothesize that: On the one hand, MPs can change their

functions under certain conditions, such as substrate

concentration or cofactor change, and there are great

differences in physicochemical properties between them and

non-MPs; on the other hand, SVMProt-188D is a linear

feature of the protein, which can be easily identified by the

classifier after LDA.

3.2 Performance evaluation of different
classifiers

Six classifiers from scikit-learn are used in this study for

comparison experiments, namely KNN, DT, MLP, RF,

XGBoost, and SVM. From the data, SVM obtains an

accuracy rate of 92.7907%, which is the highest accuracy

rate. Despite the unbalanced benchmark dataset used in this

experiment, with 268 positive and 162 negative samples, the

classifier achieves high scores of 0.943, 0.942 and 0.925 on the

three metrics of percision, F-score and AUC (Figure 4). The

MLP is second only to the SVM and also achieves high scores in

various metrics. Of these, surprisingly, DT obtains the highest

recall value, 0.946. Because we use accuracy as the main metric,

SVM is the most suitable classifier for this experiment.

Furthermore, we compare this model with the model

without LDA (Figure 5). From the figure, we can observe

that the LDA dimensionality reduction method has greatly

improved the experimental results, proving that it is very

effective in the identification of MPs.

3.3 Comparison of Bagging-SVM and
single SVM

The above experiments prove that the combination of

SVMProt-188D and support vector machine has the best

effect. Based on the excellent performance of bagging

ensemble algorithm in the field of machine learning, we use

bagging to integrate SVM and verify the classification

performance of the integrated model (Chen and

Association for Computing Machinery, 2018; Kaur et al.,

2019; Raihan-Al-Masud and Mondal, 2020). The results are

shown in Table 4 (The experimental results of bagging

integration with all classifiers can be obtained from the

Supplementary Figures S1, S2). As can be seen from the

table, ACC, Precision, Recall, F-score and AUC all

improved, which indicates that Bagging-SVM is effective

for the classification of moonlighting proteins. Bagging-

SVM can reduce the error caused by a single support

vector machine to the experimental results, improving the

stability of the model, and have stronger convincing.
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3.4 Comparison with other methods

We compare with the more current MP classification models,

including Khan’s MPFit (Khan and Kihara, 2016), Li’s MEL-MP(Li

et al., 2021) and Shirafkan’s method (Shirafkan et al., 2021). The

results of the comparison are shown in Table 5 (Where ’*’ is for data

not given in the comparison papers). The experimental results for all

three models above are obtained with the MPFit dataset, mostly

using 10-fold cross-validation. Therefore, they are very suitable for

comparison with our model. As can be observed from the table, our

TABLE 3 The results of 10-fold cross-validation using a variety of classifiers and hybrid features.

Feature Method ACC (%) Precision Recall F-score AUC

Pse-AAC KNN 87.4419 0.885 0.923 0.901 0.863

DT 87.2093 0.892 0.909 0.898 0.865

MLP 88.8372 0.898 0.931 0.912 0.878

RF 85.3488 0.883 0.887 0.883 0.847

XGB 86.0465 0.891 0.891 0.888 0.856

SVM 87.907 0.9 0.913 0.904 0.872

SVMProt-188D KNN 91.3953 0.919 0.944 0.931 0.906

DT 91.1628 0.918 0.946 0.929 0.906

MLP 92.5581 0.939 0.941 0.939 0.922

RF 89.3023 0.917 0.911 0.912 0.891

XGB 89.5349 0.92 0.911 0.914 0.893

SVM 92.7907 0.943 0.942 0.942 0.925

Pse-PSSM KNN 85.8514 0.886 0.886 0.884 0.848

DT 84.4189 0.884 0.868 0.872 0.839

MLP 86.5116 0.917 0.868 0.888 0.869

RF 82.5581 0.858 0.862 0.858 0.815

XGB 84.186 0.869 0.883 0.873 0.833

SVM 87.6744 0.921 0.883 0.898 0.879

FIGURE 3
The accuracy of different features in each classifier.
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model outperforms the other prediction methods on all the

remaining evaluation indicators except for the AUC. In

particular, the F-score of 0.946 is 5.4% higher than the second

highest, MEL-MP (F-score = 0.892).

3.5 Performance on other MPs datasets

To verify that our model can effectively classify moonlighting

proteins, we obtain a state-of-the-art moonlighting protein

dataset from Shirafkan’s paper, which includes 215 positive

samples and 136 negative samples (Shirafkan et al., 2021).

Similarly, feature extraction is performed on this dataset to

obtain SVMProt-188D features, and then, using 10-fold cross-

validation, classification is performed on our model. In order to

verify the generalization ability of our model, MPFit dataset is

used as the training set and Shirafkan’s dataset is used as the

independent testing set to conduct the experiment again. The

experimental results are shown in Table 6. Method 1 is the result

of 10-fold cross-validation, and method 2 is the result of

independent testing. On this dataset, we still obtain an

accuracy rate higher than 91%, and the other four indicators

also achieve high scores, proving that our model has a strong

generalization ability.

To verify that the model can effectively classify plant

moonlighting proteins, we obtain the Uniprot ID of the

plant moonlighting protein dataset from Liu et al. and

obtain protein sequences from the corresponding databases

according to the UniprotID (Liu et al., 2021). In order to

compare with IdentPMP, 10-fold cross-validation is used on

the same dataset, and the experimental results are shown in

Figure 6. On the dataset of plant MP, the accuracy of 94.9692%

is obtained by 10-fold cross-validation, far exceeding

IdentPMP in F-score and AUC.

FIGURE 4
ROC curves of different classifiers on SVMProt-188D.
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4 Conclusion

In this paper, we propose a method for identifyingmoonlighting

proteins based on bagging-SVM ensemble learning classifier. Firstly,

feature extraction is carried out on the collected benchmark dataset,

and after comparison, SVMprot-188D is selected. Then, we use the

feature selection method of LDA to reduce the dimension of the

FIGURE 5
The performance of the model after and before the implementation of LDA.

TABLE 4 The results of Bagging-SVM and Single SVM.

Method ACC (%) Precision Recall F-score AUC

SVM 92.7907 0.943 0.942 0.942 0.925

Bagging_SVM 93.2558 0.944 0.949 0.946 0.928

TABLE 5 Comparison with other methods.

Method ACC (%) Precision Recall F-score AUC

MPFit 75 * * 0.784 *

MEL-MP * 0.895 0.893 0.892 0.947

Shirafkan’s 81.7 0.813 * 0.802 0.806

Our 92.7907 0.943 0.942 0.942 0.925

TABLE 6 The results of other dataset on our model.

Method ACC (%) Precision Recall F-score AUC

Method1 91.1746 0.91 0.949 0.929 0.901

Method2 91.4530 0.907 0.958 0.932 0.902

FIGURE 6
The performance of the plant MPs dataset on our model.
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feature. Finally, the Bagging-SVM ensemble learning algorithm is

used to construct the prediction model. The experimental results

show that our model achieves good results in various indicators and

is superior to the current advancedmodels. In order to prove that our

model has strong generalization ability, we also use the dataset in

Shirafkan’s paper to conduct experiments, and the accuracy rate has

exceeded 91%. In addition, plant MPs are found to be equally

applicable to our method, which is a great improvement

compared with the previous experimental method. However, the

depth of machine learning model is relatively shallow. In the future,

we will try to use deep learning model to identify MPs, and hope to

make new breakthroughs in this field.
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Protein–protein interactions (PPIs) are extremely important for gaining mechanistic

insights into the functional organization of the proteome. The resolution of PPI

functions can help in the identification of novel diagnostic and therapeutic targets

withmedical utility, thus facilitating the development of newmedications. However,

the traditional methods for resolving PPI functions are mainly experimental

methods, such as co-immunoprecipitation, pull-down assays, cross-linking, label

transfer, and far-Western blot analysis, that are not only expensive but also time-

consuming. In this study, we constructed an integrated feature selection scheme for

the large-scale selection of the relevant functions of PPIs by using the Gene

Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

annotations of PPI participants. First, we encoded the proteins in each PPI with

their geneontologies andKEGGpathways. Then, the encodedprotein featureswere

refined as features of both positive and negative PPIs. Subsequently, Boruta was

used for the initial filtering of features to obtain 5684 features. Three feature ranking

algorithms, namely, least absolute shrinkage and selection operator, light gradient

boosting machine, and max-relevance and min-redundancy, were applied to

evaluate feature importance. Finally, the top-ranked features derived from

multiple datasets were comprehensively evaluated, and the intersection of

results mined by three feature ranking algorithms was taken to identify the

features with high correlation with PPIs. Some functional terms were identified

in our study, including cytokine–cytokine receptor interaction (hsa04060), intrinsic

component of membrane (GO:0031224), and protein-binding biological process

(GO:0005515). Our newly proposed integrated computational approach offers a

novel perspective of the large-scale mining of biological functions linked to PPI.

KEYWORDS

protein-protein interaction, gene ontology, KEGG pathway, enrichment, feature
analysis

OPEN ACCESS

EDITED BY

Quan Zou,
University of Electronic Science and
Technology of China, China

REVIEWED BY

Yue Zhang,
Harbin Engineering University, China
Xu Liu,
Guangxi University, China

*CORRESPONDENCE

Tao Huang,
tohuangtao@126.com
Yu-Dong Cai,
cai_yud@126.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 04 August 2022
ACCEPTED 22 August 2022
PUBLISHED 12 September 2022

CITATION

Yang L, Zhang Y-H, Huang F, Li Z,
Huang T and Cai Y-D (2022),
Identification of protein–protein
interaction associated functions based
on gene ontology and KEGG pathway.
Front. Genet. 13:1011659.
doi: 10.3389/fgene.2022.1011659

COPYRIGHT

© 2022 Yang, Zhang, Huang, Li, Huang
and Cai. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 12 September 2022
DOI 10.3389/fgene.2022.1011659

41

https://www.frontiersin.org/articles/10.3389/fgene.2022.1011659/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1011659/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1011659/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1011659/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1011659&domain=pdf&date_stamp=2022-09-12
mailto:tohuangtao@126.com
mailto:cai_yud@126.com
https://doi.org/10.3389/fgene.2022.1011659
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1011659


1 Introduction

In living creatures, protein–protein interactions (PPIs) are

one of the basic formats of molecular interactions that regulate

various important biological functions, including cell

proliferation, differentiation, and apoptosis. Traditionally, PPIs

can be identified by using experimental methods, such as co-

immunoprecipitation, pull-down assays, cross-linking, label

transfer, and far-Western blot analysis (Hall, 2015; Evans and

Paliashvili, 2022; Lyu et al., 2022). Various significant PPIs have

been identified by using complex but accurate experiment-based

methods. The identified PPIs can be divided into two groups: 1)

PPIs that transport cell signals for downstream biological

functions. For example, 14-3-3 protein complexes have been

reported to interact as cell-signaling transporters with multiple

protein molecules via PPIs to regulate inflammatory effects

(Munier et al., 2021). 2) PPIs that establish stable complexes.

The stable complex of ferrtin is formed by two subunits: the

ferrtin heavy chain and the ferrtin light chain (Blankenhaus et al.,

2019). Interactions between these two subunits form the stable

ferrtin complex and further play a specific role in iron

metabolism (Neves et al., 2019).

Although experiment-based approaches have been widely

used to recognize various functional PPIs, they are not only

expensive but also time-consuming. With the establishment of

the PPI databases, advanced computational algorithms,

especially machine learning methods, have been introduced to

explore new PPIs and identify connections between biological

functions and PPIs (Balogh et al., 2022; Gao et al., 2022; Ieremie

et al., 2022). Three major aspects of PPIs have been widely

reported with the application of machine learning methods: 1)

Microbe–host protein interactions. Early in 2019, researchers

summarized the optimized methods for selecting features to

describe viral protein–host protein interactions; this effort

indicated that microbe–host interactions can be predicted by

using computational methods (Zheng et al., 2019). 2) Protein

interactions in human malignant diseases, such as cancer. In

2020, predicted PPIs were applied to recognize glioma stages; this

approach indicated that predicted PPIs can also predict disease

progression and thus extended the application of PPIs based on

machine learning models (Niu et al., 2020). 3) Predicted protein

interactions in drug development. Through the integration of

PPIs predicted by a machine learning method and drug physical

scoring (Guedes et al., 2021), newly identified PPIs were shown to

be robust for drug discovery and pharmalogical mechanism

exploration.

Therefore, machine learning methods become more and

more popular for new PPI recognition and PPI function

exploration. They have been deemed to be one of the major

novel tools for PPI studies. As introduced above, PPIs are one of

the basic approaches for molecular interactions regulating

essential biological functions in all living creatures. Machine

learning methods can help recognize key functional potentials

that can be attributed to PPIs. In this study, multiple machine

learning methods were employed to conduct the investigation.

First, each PPI was represented by lots of features derived from

gene ontology (GO) terms or Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways of two proteins in the PPI. Then,

several machine learning methods, including Boruta (Kursa and

Rudnicki, 2010), least absolute shrinkage and selection operator

(LASSO) regression (Tibshirani, 1996), light gradient boosting

machine (LightGBM) (Ke et al., 2017), and max-relevance and

min-redundancy (mRMR) (Peng et al., 2005), were adopted to

deeply analyze these features. Key features yielded by different

methods were integrated by a comprehensive evaluation method

to obtain most essential features. Their corresponding GO terms

and KEGG pathways, such as cytokine–cytokine receptor

interaction (hsa04060), intrinsic component of membrane

(GO:0031224), and protein-binding biological process (GO:

0005515), were analyzed to uncover their relationships to

PPIs. This study reflected the important and irreplaceable

roles of GO terms and KEGG pathways for PPIs.

2 Materials and methods

2.1 Data acquisition

All human PPIs used in this research were retrieved from

STRING (https://string-db.org/, version 9.1) (Franceschini

et al., 2013). These interactions were obtained through the

following sources: high-throughput experiments, genomic

context, (conserved) co-expression, and previous knowledge.

PPIs with “Experimental” scores greater than zero were

selected, which indicated that these PPIs had been

experimentally confirmed. 309,287 human PPIs involving

16,571 proteins were accessed. However, if all of this PPI

information was adopted, the subsequent calculations would

introduce significant noise due to redundant protein sequences

and unmanifested protein functions. The following screening

processes were performed to create a well-defined PPI dataset:

1) By applying CD-HIT (Fu et al., 2012), similar proteins were

excluded. The similarity of any two remaining proteins was less

than 0.25. 2) Proteins without GO terms or KEGG pathways

were also discarded. After the above filtering process,

6623 proteins and 70,392 pairs of PPIs were retained. These

PPI comprised the positive sample set.

Pairs of proteins without PPIs are also necessary to study

the specific function of PPIs. We randomly selected two

proteins from the 6623 proteins obtained through the above

screening to constitute pairs of PPIs. If the pair did not exist in

the positive sample set, it was treated as a negative sample.

Through random combination, 21,928,753 pairs can be

obtained, including 21,858,361 negative samples and

70,392 positive samples. However, the considerably higher

number of negative samples than that of positive samples
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indicated that the constructed dataset was extremely

imbalanced. Direct analysis of such imbalanced dataset

would produce bias. As the negative samples were 310 times

as many as positive samples, the negative samples were divided

into 310 subsets randomly and equally. Each subset was

combined with the positive sample set to form a balanced

learning dataset. As a result, 310 datasets for subsequent

analysis were created.

2.2 Representation of protein–protein
function associations

GO terms and KEGG pathways are well-known functional

information for deciphering and describing the molecular

functions, cellular components, and biological processes of

proteins or genes (Kanehisa et al., 2012; Gene Ontology

Consortium, 2015). As in our prior study, we used such

functional terms (GO terms and KEGG pathways) of proteins

to generate the representations of PPIs (Yuan et al., 2019; Zhang

et al., 2021). Based on the GO information of a protein p, it can be

encoded as

vGO(p) � [gp
1 , g

p
2 , . . . , g

p
n ]T, (1)

where n is the total number of GO terms (n = 17916 in this

study). gp
i equals 1 if the protein p is annotated by the i -th GO

term. Otherwise, gp
i equals 0. Likewise, p can be encoded as the

following vector using its KEGG pathway information

vkegg(p) � [kp1 , kp2 , . . . , kpm]T, (2)

where gp
i and kpi are also similar in value, and m stands for the

number of pathways (m = 279 in this study). For a PPI, we cannot

simply combine the features of two proteins when generating the

features of PPI because the order information of the PPI should

be excluded. We utilized the following scheme, which has been

employed in some studies (Chen et al., 2013; Ran et al., 2022), to

construct the feature vectors of PPIs. The feature vectors for GO

terms and KEGG pathways of a PPI consisting of p1 and p2 were

constructed by using the following scheme:

VGO(PPI) � vGO(p1) ⊗ vGO(p2)
� [gp1

1 + gp2
1 ,

∣∣∣∣gp1
1 − gp2

1

∣∣∣∣, . . . , gp1
n + gp2

n ,
∣∣∣∣gp1

n − gp2
n

∣∣∣∣]T,
(3)

VKEGG(PPI) � vKEGG(p1) ⊗ vKEGG(p2)
� [kp11 + kp21 ,

∣∣∣∣kp11 − kp21
∣∣∣∣, . . . , kp1m + kp2m ,

∣∣∣∣kp1m − kp2m
∣∣∣∣]T
(4)

By integrating above two feature vectors, we can finally

represent the feature vector of the PPI as follows:

V(PPI) � VGO(PPI) ⊗ VKEGG(PPI) � [ VGO(PPI)
VKEGG(PPI)] (5)

2.3 Feature filtering with boruta

A large number of features were used to describe PPIs by

using GO terms and KEGG pathways. Evidently, lots of features

were unrelated to distinguish positive and negative samples,

which must be filtered to reduce the noise in subsequent

calculations. Here, Boruta was adopted to exclude irrelated

features and retain relevant ones.

Boruta, a wrapper-based feature selection method, uses

random forest as the classifier to filter out a set of features

that are relevant to the target variable (Kursa and Rudnicki,

2010; Zhang et al., 2020; Chen et al., 2021; Ding et al., 2021; Zhou

et al., 2022). It is implemented through the following steps: 1)

The features are randomly shuffled and then stitch together with

the actual feature matrix to form a new feature matrix. 2) The

importance of the shuffled and actual features is obtained by

inputting the new feature matrix into the random forest. 3) The

actual features with importance greater than the maximum

importance of the shuffled features are retained. By iterating

the above steps several times, the important features are

identified by Boruta.

For this study, the Boruta program retrieved from https://

github.com/scikit-learn-contrib/boruta_py was used, which was

executed with its default parameters on each of 310 datasets.

2.4 Feature ranking algorithms

Through Boruta, some relevant features can be screened out.

However, their contributions for distinguishing positive and

negative samples were not same. They should be further

analyzed. Here, we ranked these features in accordance with

their importance by using three efficient feature ranking

algorithms: LASSO (Tibshirani, 1996), LightGBM (Ke et al.,

2017), and mRMR (Peng et al., 2005). These feature ranking

algorithms are briefly described as below.

In 1996, Tibshirani et al. proposed the LASSO algorithm,

which is primarily used to select variables (Tibshirani, 1996). The

LASSO method constructs a regression model by employing a

penalty function with coefficients, each of which corresponds to

one feature. The coefficients of features can be an indicator to

measure the importance of features. Accordingly, features can be

ranked based on their corresponding coefficients. In this study,

the LASSO package collected in Scikit-learn (Pedregosa et al.,

2011) was adopted and applied to all 310 datasets for generating

feature lists. Such obtained lists were called LASSO feature lists in

this study.

LightGBM is a gradient boosting decision tree algorithm that

was proposed by Ke et al., in 2017 (Ke et al., 2017; Ding et al.,

2022). This method consists of multiple decision trees, and the

weights of each tree are considered in the classification. The

importance of a feature is determined by the number of times it is

used in the constructed decision trees. Accordingly, features can
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be sorted in a list with the decreasing order of such times. The

present study used the LightGBM program downloaded from

https://lightgbm.readthedocs.io/en/latest/, which was performed

on 310 datasets. For convenience, the lists yielded by LightGBM

were called LightGBM feature lists.

The mRMR algorithm is a heuristic feature selection

method in which the original features are ranked in

accordance with a well-defined scheme (Peng et al., 2005;

Wang et al., 2018; Zhao et al., 2018; Chen et al., 2022). This

scheme considers that the importance of features is determined

by two aspects: relevance to target variable and redundancies to

other features. The feature with high relevance to target variable

and low redundancies to other features should be assigned a

high rank in the final feature list. A loop procedure determines

the rank of all features. In each round, the feature with greatest

difference between its relevance to target variable and

redundancies to already-selected features is selected and

appended to the list. This study adopted the mRMR

program obtained from http://home.penglab.com/proj/

mRMR/. It was executed on each of 310 datasets. The

generated lists were termed as mRMR feature lists.

2.5 Comprehensive evaluation of feature
lists

Given that the negative samples were randomly chosen and

divided into 310 datasets, the features that were selected by

Boruta from 310 datasets were distinctive. Given a certain

feature ranking algorithm described in Section 2.4, 310 feature

lists can be generated, denoted by F1, F2,/F310. Features

occurring in these lists were collected. For one feature f, its

rank in Fi was denoted by Ri(f). In particular, if the list did not

contain this feature. Its rank was denoted by 0. Furthermore,

count the number of lists containing feature f, denoted byN(f).
The importance of feature f was measured by the following

importance score

Importance score (f) � M(f)
W(f), (6)

where M(f) was the mean ranks of f, calculated by

M(f) � ∑310
i�1Ri(f)/N(f), and W(f) represented the

weight of f, defined as N(f) /310. The numerator in Eq. 6

considered the evaluation results yielded by the feature

ranking algorithm on different datasets, whereas the

denominator further considered the evaluation results of

Boruta on different datasets. Generally, a high weight,

i.e., the feature was selected by Boruta on many datasets,

suggested the feature was important. In this case, the penalty,

the reciprocal of weight, on the mean rank was small. Thus,

the smaller the importance score, the more important the

feature. All features were ranked in terms of the increasing

order of their importance scores. Under such operation,

310 feature lists were integrated into one feature list.

As three feature ranking algorithms were used, three

integrated feature lists can be obtained. Top 100 features in

each integrated list were picked up. The features that ranked high

in all three feature lists were most relevant to PPIs, which were

valuable for giving detailed analysis.

3 Results

This study utilized advanced machine learning methods to

investigate relevant functional terms of PPIs. The whole analysis

process is illustrated Figure 1. The results generated in each step

are then described in detail.

3.1 Results of boruta

Our data included 21,928,753 pairs of 6,623 proteins, where

70,392 were positive samples and rest 21,858,361 were negative

samples. Negative samples were divided into 310 parts, thereby

constructing 310 datasets. PPIs in each dataset were represented

by 17,916 features for GO terms and 279 features for KEGG

pathways. For each dataset, all features were analyzed by Boruta.

Relevant features were selected. Figure 2 shows the number of

selected features from each dataset. The number of selected

features ranged from 3200 to 3600 with the median of 3423.

The majority of datasets selected 3350–3500 features, suggesting

that these numbers did not differ considerably. The detailed

features selected from each dataset can be found in

Supplementary Table S1. Furthermore, we obtained

5684 different features by combining the selected features

derived from 310 datasets, which are provided in

Supplementary Table S2. Among these 5684 features,

226 features were about KEGG pathways, whereas

5458 features were about GO terms. These features were used

in the subsequent comprehensive assessment.

3.2 Results of feature ranking and
comprehensive evaluation

Several features were selected by Boruta on each dataset.

These features were further analyzed by each feature ranking

algorithm, resulting in one feature list. Accordingly, each

feature ranking algorithm generated 310 feature lists, which

were further integrated into one feature list by comprehensive

evaluation method described in Section 2.5. Each of 5684

features was assigned an importance score, which is listed in

Supplementary Table S3. The integrated feature list was

generated according to above score, which is also provided

in Supplementary Table S3.
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From each integrated feature list, top 100 features were

picked up for further analysis. The distribution of

100 features selected from each integrated list on GO

terms and KEGG pathways is provided in Figure 3. It can

be observed that features for GO terms were more than those

for KEGG pathways regardless of the feature ranking

algorithms. However, the quantities were not same. LASSO

identified much less features for GO terms than other two

methods. By using multiple algorithms, some common

functional terms can be discovered and exclusive terms

can be mined by a special algorithm. Comprehensive

analysis of functional terms identified by three algorithms

FIGURE 1
Flow chart of thewhole analytical process. A total of 21,928,753 pairs of PPIs acquired from the STRING database are divided into 70,392 positive
samples and 21,858,361 negative samples. The negative samples are randomly and equally divided into 310 subsets, yielding 310 datasets. Each
dataset is characterized by using GO terms and KEGG pathways. Subsequently, the features in each dataset are filtered and ranked by using Boruta,
LASSO, LightGBM, and mRMR. Finally, the features in 310 datasets are comprehensively evaluated. The intersection of the last three ranked
feature lists are taken to obtain essential functional terms that may be highly relevant to the PPI.
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can make the result more complete. In view of this, the

intersection operation was performed on the above three

feature subsets selected from the integrated feature lists. A

Venn diagram was plotted to show the intersections, as

illustrated in Figure 4. The detailed features contained in

three, two or one subsets are provided in Supplementary

Table S4. Eight features occurred in three subsets, which are

listed in Table 1. These features were identified and ranked

high by all three feature ranking algorithms, indicating they

may provide essential contributions for distinguishing

positive and negative samples. At the same time, their

corresponding GO terms and KEGG pathways can be used

to depict PPIs. Furthermore, 50 features were highly ranked

by two algorithms, i.e., they contained in two feature subsets.

They may also important for uncovering the essential

differences between PPIs and general protein pairs. As for

the features contained in one subset, i.e., they were identified

by one feature ranking algorithm, they can supplement some

exclusive differences between PPIs and general protein pairs,

which cannot be uncovered by other algorithms. In Section 4,

GO terms and KEGG pathways corresponding to some above

features would be discussed.

4 Discussion

By using the three feature ranking algorithms of LASSO,

LightGBM, and mRMR, we identified some essential biological

functional terms that were deemed to be associated with PPIs.

We discussed some PPI-associated functional terms identified

by using three, two or one algorithms, which are listed in

Table 2.

4.1 Key features found by all three feature
ranking algorithms

Eight biological functional terms were shown to be

associated with the PPIs, which were identified by all three

algorithms. The first GO term was intrinsic component of

FIGURE 2
Violin plot of the number of features selected by Boruta on
310 datasets. The numbers of selected features vary from 3200 to
3600, and 3350–3500 features are selected in majority datasets
(~88.06%). This result indicates that the numbers of selected
features are not considerably difference despite the different
negative samples in different datasets.

FIGURE 3
Distribution of top 100 features identified by each feature ranking algorithm on gene ontology (GO) terms and KEGG pathways. The identified
features for GO terms are more than those for KEGG pathways.
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membrane (GO:0031224). This term contained multiple

functional protein complexes, including anchored

component of membrane with PPIs between gp130 and IL-

6/IL-6R complex (Narazaki et al., 1993). The linkage of

multiple functional PPIs, such as predicted cellular

component, to the intrinsic component of membrane

validated the efficacy and accuracy of our analysis.

Another identified PPI-associated functional term was

cytokine–cytokine receptor interaction (hsa04060) (Dey

et al., 2009), which describes the interaction between

membrane-based receptors and soluble cytokines.

Considering that cytokines, such as the IL-2, IL-1 and IL-

17 family, are small effective soluble proteins, the interactions

between cytokines and their respective matched receptors are

functional PPIs.

4.2 Key features found by any two feature
ranking algorithms

Fifty features were identified by exact two algorithms,

which involved 48 biological functional terms. The first

predicted GO term was a general description of the

protein-binding biological process (GO:0005515). The

next predicted biological function was the cell cycle

(hsa04110). Recent publications have shown that cell cycle

biological processes involve multiple PPIs. The establishment

of PPI networks for the cell cycle in Saccharomyces cerevisiae

early in 2012 confirmed that the cell cycle involves multiple

PPIs (Alberghina et al., 2012; Lu et al., 2020). Further studies

on human beings and other eukaryotic creatures also

validated the role of such identified PPIs in human beings.

These PPIs included interactions between TP53 and MDM2

(Lu et al., 2020) and interactions among PDK1, AKT, and the

mTOR complex (Pennington et al., 2018). Therefore, the cell

cycle is an effective biological process that involves multiple

functional PPIs across different eukaryotic species.

4.3 Key features found by one of the
feature ranking algorithms

Although the remaining 176 features were identified by

only one algorithm, some of them may also be important.

These features were about 149 functional terms. GO:0043232

describes intracellular nonmembrane-bound organelle. Few

PPIs have been observed to be associated with intracellular

nonmembrane-bound organelles. Fewer PPIs may be related

to nonmembrane bound organelles than to intracellular

membrane-based subcellular structures because biological

FIGURE 4
Venn diagram of top 100 features in three integrated feature
lists obtained by mRMR, LightGBM, and LASSO methods. The
overlapping circles indicate the features that are identified by
different ranking algorithms. Eight features are identified and
ranked highly by all three feature ranking algorithms.

TABLE 1 Eight features with high ranks yielded by all three feature ranking algorithms.

Feature Description Group

abs (GO:0031224_1-GO:0031224_2) Intrinsic component of membrane Cellular Component

abs (GO:0044425_1-GO:0044425_2) Obsolete membrane part Cellular Component

abs (GO:0005615_1-GO:0005615_2) Extracellular space Cellular Component

abs (hsa04060_1-hsa04060_2) Cytokine-cytokine receptor interaction KEGG pathway

abs (GO:0071944_1-GO:0071944_2) Cell periphery Cellular Component

abs (GO:0007186_1-GO:0007186_2) G protein-coupled receptor Signaling pathway Biological Process

abs (hsa04514_1-hsa04514_2) Cell adhesion molecules KEGG pathway

hsa04060_1 + hsa04060_2 Cytokine-cytokine receptor interaction KEGG pathway
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processes generally involve PPIs, such as cell signaling,

immune recognition, and exosome intake, that all depend

on biomembrane systems. Therefore, although some pieces of

experimental evidence imply that intracellular

nonmembrane-bound organelles also involve some PPIs,

such as interactions between peptide synthetase and

related synthesized proteins (Jaremko et al., 2020).

All in all, as we have discussed above, the biological

functional terms predicted by multiple machine learning

algorithms have all been confirmed by recent publications

with solid experimental support. Therefore, our analyses

validated that machine learning algorithms are effective

tools for exploring the potential biological functions of

PPIs. The application of multiple machine learning

algorithms simultaneously may help recognize additional

potential PPI-associated functions, thus providing a novel

workflow for identifying the biological significance of PPIs.

5 Conclusion

In this research, an integrated feature selection method on GO

terms and KEGG pathways was established to distinguish significant

PPIs. First, Boruta was applied to obtain a set of features that were

highly correlated with PPI functions. Three efficient feature ranking

algorithms, namely, LASSO, LightGBM, and mRMR, were adopted

to rank the filtered features. The intersection of the top-ranked

features in three different feature ranking lists was performed to

extractmost essential GO terms andKEGGpathways. Some essential

PPI-associated functional terms, including cytokine–cytokine

receptor interaction, intrinsic component of membrane, and

protein-binding biological process, were identified. Furthermore,

the functional terms mined in our study were analyzed by

reviewing the literature.
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TABLE 2 Discussed gene ontology (GO) terms and KEGG pathways.

IDs of GO terms
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Description Number of algorithms
identified the functional
term

GO:0031224 Intrinsic component of membrane 3

hsa04060 Cytokine-cytokine receptor interaction 3

GO:0005515 protein binding 2

hsa04110 Cell cycle 2

GO:0043232 intracellular nonmembrane-bound organelle 1
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ISTRF: Identification of sucrose
transporter using random forest
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Sucrose transporter (SUT) is a type of transmembrane protein that exists widely

in plants and plays a significant role in the transportation of sucrose and the

specific signal sensing process of sucrose. Therefore, identifying sucrose

transporter is significant to the study of seed development and plant

flowering and growth. In this study, a random forest-based model named

ISTRF was proposed to identify sucrose transporter. First, a database

containing 382 SUT proteins and 911 non-SUT proteins was constructed

based on the UniProt and PFAM databases. Second, k-separated-bigrams-

PSSM was exploited to represent protein sequence. Third, to overcome the

influence of imbalance of samples on identification performance, the

Borderline-SMOTE algorithm was used to overcome the shortcoming of

imbalance training data. Finally, the random forest algorithm was used to

train the identification model. It was proved by 10-fold cross-validation

results that k-separated-bigrams-PSSM was the most distinguishable feature

for identifying sucrose transporters. The Borderline-SMOTE algorithm can

improve the performance of the identification model. Furthermore, random

forest was superior to other classifiers on almost all indicators. Compared with

other identification models, ISTRF has the best general performance andmakes

great improvements in identifying sucrose transporter proteins.

KEYWORDS

machine learning, biological sequence analysis, protein identification, sucrose
transporter, random forest

1 Introduction

Sucrose is a kind of disaccharide, which is formed by the condensation of fructose and

glucose molecules through dehydration and is widely found in various tissues of plants. In

the process of plant photosynthesis, carbon transport is mainly in the form of sucrose (Kühn

et al., 1999). Therefore, the distribution of sucrose directly affects the growth and yield of

plants (Aluko et al., 2021; Mangukia et al., 2021). In terms of physical properties, sucrose is a

non-reducing sugar, which can carry a large amount of carbon. In terms of chemical

properties, its properties are very stable, and it is not easy to combine with other compounds

during transportation, so it has a certain protective effect on carbon. In terms of biological

properties, due to the carbon in sucrose having a higher osmotic potential, the transport

speed of sucrose is faster in a sieve tube. Sucrose transporters affect the transport of sucrose,

which is mainly distributed in parenchyma cells, companion cells, and vacuolar membranes.

They are the mediators of sucrose transport from source leaves to the phloem. In addition,
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sucrose transporters also exist in sink organs, such as stems, seeds,

and fruits. Sucrose transporters can promote sucrose transport

under Pi starvation, salinity, and drought stress (Al-Sheikh Ahmed

et al., 2018). At present, many experts have carried out a lot of

research studies on sucrose transporters and found sucrose

transporters in a variety of plant species, such as rice (Aoki

et al., 2003), maize (Tran et al., 2017), grapevine, and tobacco

(Wang et al., 2019). Endler et al. (2006) discovered a new sucrose

transporter on the vacuolar membrane. They used liquid

chromatography–tandem mass spectrometry to analyze

tonoplast proteins and identified 101 proteins, including

sucrose transporters. By studying the sucrose transporter gene

RUSUT2 in blackberry, Yan et al. (2021) found that the sucrose

content of mature leaves of the transgenic tobacco is enhanced by

the overexpression of RUSUT2. At the same time, they found that

Rusut2 has transport activity and may participate in sucrose

transport during the growth and development of blackberry plants.

With the development of bioinformatics,more andmore scholars

usedmachine learningmethods to identify sugar transporters. Mishra

et al. (2014) developed a new model that incorporated the PSSM

profile, amino acid composition, and biochemical composition of

transporter proteins. The SVM algorithm was used as a classifier to

classify transporters. Based on Mishra’s experiments, Alballa et al.

(2020) used a series of features including position information,

evolutionary information, and amino acid composition to improve

the accuracy and MCC of transporter classification. Ho et al. (2019)

used word embedding technology to extract effective features from

protein sequences and then adopted traditional machine learning

methods to classify a variety of transporters (including sugar

transporters). It has been proved that machine learning can

effectively solve some problems of protein classification. All of the

above studies focused on sugar transporters, while Shah et al.

proposed to use natural language processing technology BERT to

carry out feature extraction of glucose transporters in sugar

transporters and classify three glucose transporters through an

SVM classifier (Shah et al., 2021). Using machine learning

methods to identify special proteins has become a trend, and a

machine learning frame has been employed to identify sugar

transporters. All these previous works guide us to build a frame

for identifying sucrose transporters. In this study, we constructed an

identification model named ISTRF to identify sucrose transporters.

First, a dataset is built. Second, protein sequences are encoded with

k-separated-bigrams-PSSM. Third, the Borderline-SMOTE algorithm

is used to augment the positive samples. Finally, the identification

model is trained by the random forest algorithm.

2 Materials and methods

2.1 Frame chart of ISTRF

In the study, we proposed a novel identification model called

ISTRF, the frame chart of which is shown in Figure 1. First of all,

the sucrose and non-sucrose transporter datasets are obtained

using sequence homology analysis technology based on the

Uniprot and Pfam databases, and then the CD-HIT program

was used to remove redundancy and delete the protein sequences

with more than 60% similarity. The sucrose transporter samples

are construed for the training identification model. Second, we

extracted the k-separated-bigrams-PSSM feature to represent

samples. Third, we augment the positive samples to balance

the training samples by using the Borderline-SMOTE

technology. Finally, we built a random forest-based classifier

that takes the balancing feature vectors as input. In the following

sections, the dataset, feature extraction, sample balancing, and

classifiers will be, respectively, introduced in detail.

2.2 Dataset

In this study, a self-built dataset is constructed and used. To

obtain a reliable experimental result, it is necessary to use a high-

quality benchmark data set, and then the initial data must be

processed strictly and standardly. UniProt (Consortium, 2019)

database is an authoritative protein database, in which we

searched by the keyword “sucrose transporter” to obtain the

initial positive sample data set. From the protein family database

PFAM (Mistry et al., 2021), families containing positive samples

were deleted, and the protein sequence with the longest length

was extracted from every remaining family as a negative sample

to construct the initial negative sample data set. Next, we

processed the initial data set. The first step was to delete the

protein sequences containing illegal characters; the second step

was to delete the protein sequences with a length less than 50; in

the third step, the CD-HIT (Fu et al., 2012) program was used to

remove redundancy and delete the protein sequences with more

than 60% similarity. We eventually obtained 382 SUTs and

9,109 non-SUTs. This data set is extremely unbalanced, so we

divided the negative sample data set into ten equally and took one

as the experimental data, which is 911 non-SUTs. We divided the

data set into an 80% training dataset and a 20% testing dataset

and constructed the dataset as shown in Table 1.

2.3 Feature extraction

In the process of protein identification, feature extraction is a

crucial step (Yang and Jiao, 2021). To improve the identification

performance of the model, we tried to extract features with high

identification and good specificity. In this study, we considered

this problem from two perspectives, namely, physicochemical

properties and evolutionary information. We tried three features

and their various combinations. Finally, the k-separated-

bigrams-PSSM which has the best performance according to

the experimental result is selected as the feature representation

method in our model.
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2.3.1 188D
188D includes the frequency of 20 amino acids and eight

physical and chemical properties (Cai et al., 2003).

The formula for calculating the frequency of 20 amino acids

is as follows:

Fi � Ni

L
, (i � A,C,D, . . . , Y),

where Ni is the number of amino acid type i, and L is the length of

a protein sequence.

The composition, transition, and distribution are used to

describe eight physicochemical properties of proteins (Xiong

et al., 2018; Zou et al., 2019; Masoudi-Sobhanzadeh et al.,

2021). Taking the hydrophobicity attribute as an example,

“RKEDQN” is polar, “GASTPHY” is neutral, and

“CVLIMFW” is hydrophobic. The frequency of each group

can be expressed as follows:

Ci � Ni

L
, i ∈ {polar, neutral, hydrophobic}.

FIGURE 1
Frame chart of ISTRF.

TABLE 1 Self-built dataset.

Dataset SUT Non-SUT

Training dataset 306 729

Testing dataset 76 182
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The transition from polar group to neutral group is the

frequency of polar residue following neutral residue or neutral

residue following polar residue. The transition between the

neutral group and hydrophobic group and the transition

between the hydrophobic group and polar group have similar

definitions. It can be expressed by the following formula:

T(i1, i2) � N(i1, i2) +N(i2, i1)
L − 1

, (i1, i2) ∈
{(polar, neutral), (neutral, hydrophobic), (hydrophobic, polar)}.

The distribution consists of five values, which are the first, 25, 50,

75, and 100% positions of each group of amino acid in the sequence.

2.3.2 PSSM composition
PSSM composition is a feature that describes the

evolutionary information of protein sequences, and it is

also used to identify a variety of proteins (Wang et al.,

2018; Ali et al., 2020; Qian et al., 2021). First, we run the

PSI-BLAST tool (Ding et al., 2014) against the

Uniref50 database with the e-value set to 0.001. We can

obtain the original PSSM profile. Then, we summed the same

amino acid rows together and divided the results by the

number of amino acids in the protein sequence. Finally, a

400-dimensional PSSM composition was obtained.

2.3.3 The k-separated-bigrams-PSSM
The k-separated-bigrams-PSSM is generated from the

original PSSM profile by column transformation. It

represents the transition probabilities from one amino acid

to another amino acid in a protein sequence (Wang et al.,

2020), and the interval of the two amino acids is K. N

represents the PSSM matrix, and L is the number of amino

acids in the protein sequence and also the number of rows in

the PSSM matrix. The transition from the m-th amino acid to

the n-th amino acid can be expressed by the following

formulas:

Tm,n(k) � ∑L−k
i�1

Ni,mNi+k,n,

where 1 ≤ m ≤ 20, 1 ≤ n ≤ 20, and 1 ≤ k ≤ K.

T(k) � [T1,1(k), T1,2(k), . . . , T1,20(k), T2,1(k), . . . ,
T2,20(k), . . . , T20,1(k), . . . , T20,20(k)].

For each k, T(k) is a 400-dimensional feature that represents

400 amino acid transitions. The k ranges from 1 to 11. When k is

set to 1, it represents the transition probabilities between

neighboring amino acids; when k is set to 2, it represents the

transition probabilities between amino acids with one amino acid

between them.We can obtain k-separated-bigrams-PSSM (k = 1)

and a PSSM-related transformation matrix through POSSUM

(Wang et al., 2017). The website is open, and users can easily

obtain the required features.

2.4 Sample balancing

The training dataset constructed in Section 2.2 is an

imbalance dataset, on which the classifier trained is biased to

identify the unseen sample as the majority class (Shabbir et al.,

2021). Therefore, we use the Borderline-SMOTE algorithm to

balance the feature set. The SMOTE (Chawla et al., 2002)

algorithm is an oversampling technique for synthesizing

minority classes. It uses the KNN algorithm to calculate the k

nearest neighbors of eachminority class sample, randomly selects

N samples, and performs random linear interpolation on the k

nearest neighbors to construct new minority class samples.

However, it does not consider the position of the adjacent

majority class samples, which usually leads to the

phenomenon of sample overlap and affects the classification

effect (Chen et al., 2021). Borderline-SMOTE (Han et al.,

2005) is an improved oversampling algorithm based on

SMOTE. Because the boundary samples are more likely to be

misclassified than those far from the boundary, the algorithm

only oversamples the boundary samples of the minority class. In

the Borderline-SMOTE algorithm, we used the KNN algorithm

with k = 5 to balance the feature set of sucrose transporters, so

that the 306 SUTs and 729 non-SUTs in the training set were

expanded to 729 SUTs and 729 non-SUTs.

2.5 Classifier

In this study, we tried a lot of classification algorithms such as

SVM, naive Bayes, SGD, and random forest (Ao et al., 2022).

Eventually, we selected the random forest as our classifier based

on the experimental results shown in Section 3.3. These machine

learning algorithms can be implemented by the WEKA (Holmes

et al., 1994; Garner, 1995) software. WEKA is an open data

mining platform that can perform data processing such as

classification, regression, and clustering. It contains a variety

of machine learning algorithms and is simple to operate.

SVM is a supervised learning algorithm and is implemented

by the SMO (sequential minimal optimization) algorithm in

WEKA (Vapnik, 2006). The classical SVM algorithm has been

applied to many problems of bioinformatics, especially in binary

classification (Manavalan et al., 2018; Zhang et al., 2019; Ao et al.,

2021; Zeng et al., 2021). The main idea is to find an optimal

segmentation hyperplane and measure the maximum geometric

distance between the nearest sample and the hyperplane so as to

divide the data set correctly. The SMO algorithm is an improved

support vector machine algorithm that aims to improve the

efficiency of the support vector machine. It breaks the large

quadratic programming (QP) problem into many smaller QP

problems and avoids the problem that the time-consuming

numerical QP optimization is used in the inner loop (Platt, 1998).

Naive Bayes is a very classical and simple classification

algorithm (Cao et al., 2003). The idea of the algorithm is also
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very simple. For a given sample to be classified, the probability

that it belongs to the positive sample and the negative sample is

solved firstly. And then the sample will be classified into the

category with the higher probability. It assumes that each input

variable is independent. Although real life cannot meet this

assumption, it is still valid for most complex problems.

Stochastic gradient descent (SGD) is often used to learn

linear classifiers under convex loss functions such as logistic

regression and support vector machines (Bottou, 2010). The SGD

algorithm is proposed to solve the problem that batch gradient

descent needs to use all the samples for each parameter update,

and the speed is slow when the number of samples is large. The

characteristic of the SGD algorithm is that in each iteration, a

group of samples is randomly chosen for training. After N

iterations, it finds out the coefficient which leads to the

minimum error of these models.

Random forest is based on the idea of ensemble learning,

and it integrates multiple decision trees to obtain classification

results (Breiman, 2001). First of all, select k samples repeatedly

and randomly from the original training sample set N to

generate a new training sample set. Then, n decision trees

are generated using the training sample set as input. These

decision trees form a random forest. Each decision tree is a

classifier. As many decision trees as there are, there are as many

classification results. Finally, the random forest integrates the

classification results of n decision trees and identifies the class

with most votes as the classification result of the sample.

Because of this randomness, the random forest has a good

anti-noise capability and is very suitable for processing high-

dimensional data and avoiding overfitting. In many studies,

random forest has shown a good classification effect (Lv et al.,

2019; Ru et al., 2019; Ao et al., 2020; Lv et al., 2020; Petry et al.,

2020; Zhang et al., 2021a).

2.6 Measurement

We used five indicators to evaluate the performance of our

identification model: sensitivity (SN), specificity (SP), accuracy

(ACC), Marshall correlation coefficient (MCC), and F-measure

(Basith et al., 2020; Zhang et al., 2021b; Lee et al., 2021). These

evaluation indicators were the results of the confusion matrix

calculation obtained from the experiment, and the calculation

formula is as follows:

SN � TP

TP + FN

SP � TN

TN + FP

ACC � TP + TN

TP + TN + FP + FN

MCC � (TP × TN) − (FP × FN)																																												(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√

FR � TP

TP + FP

F −Measure � 2 × SN × PR

SN + PR

where TP represents the number of correctly predicted sucrose

transporters, TN represents the number of correctly predicted

non-sucrose transporters, FP represents the number of

incorrectly predicted sucrose transporters as non-sucrose

transporters, and FN represents the number of incorrectly

predicted non-sucrose transporters as sucrose transporters.

3 Results and discussion

3.1 Performance of different features

As shown in the frame chart of ISTRF in Section 2.1, our

model extracted the k-separated-bigrams-PSSM feature to encode

samples. To prove the effectiveness of our feature extraction

method, we conducted experiments to compare the

performance of different feature extraction algorithms.

Specifically, we selected 188D, PSSM composition, k-separated-

bigrams-PSSM, and their combinations. 188D feature reflected the

frequency of 20 amino acids and eight physical and chemical

properties, while PSSM composition and k-separated-bigrams-

PSSM reflected the evolutionary information of protein

sequences. We used the random forest as a classifier and did

not apply Borderline-SMOTE to the extracted feature, and the

experimental results of different features on 10-fold cross-

validation are shown in Table 2. Bold values in the table

indicate the best results. According to the number of indicators

with the highest value, the number of k-separated-bigrams-PSSM

is 4, the number of combinational features of 188D and

k-separated-bigrams-PSSM is 4, and the number of other

features and combinational features is lower or equal to 1. The

k-separated-bigrams-PSSM has fewer feature numbers than the

combination of 188D and k-separated-bigrams-PSSM; therefore,

the former has the best performance according to the number of

indicators with the highest value. According to the indicator of

ACC and MCC, k-separated-bigrams-PSSM still has the highest

value, and it verified that k-separated-bigrams-PSSM has the best

general performance. Considering the indicator of SN, our used

k-separated-bigrams-PSSM also has themaximum value. It verifies

that our feature extraction method has better performance than

other methods in predicting sucrose transporter protein from

positive examples. Considering the indicator of SP, our feature

extraction method is slightly lower than the combinational feature

of PSSM composition and k-separated-bigrams- PSSM and is

equal to or higher than other methods. However, the indicators

of SN, MCC, and ACC of our feature extraction method are

obviously larger than the combinational feature of PSSM

composition and k-separated-bigrams-PSSM, which verify that

Frontiers in Genetics frontiersin.org05

Chen et al. 10.3389/fgene.2022.1012828

54

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1012828


the combinational feature of PSSM composition and k-separated-

bigrams-PSSM trends to identify a protein as a non-sucrose

transporter protein. Based on the fact that training data are an

unbalanced data set in which negative samples are larger than

positive ones, our feature extraction method is less affected by

unbalanced data. After balancing the training data, the SN of our

feature method is larger than the combinational feature of PSSM

composition and k-separated-bigrams-PSSM, and the detailed

experimental results are shown in Section 3.2. Therefore, from

the overall perspective, our method obviously performs better than

all other methods.

To further illustrate that our feature extraction method also

has better performance using other classifiers, we also conducted

experiments on different features using an SGD classifier. Table 3

shows the experimental results. As we can see from Table 3, our

feature extraction method has better performance than other

methods according to the number of indicators with the highest

value or ACC indicator or MCC indicator. All in all, our feature

extraction method performs better than other feature extraction

methods.

3.2 Experiments on sample balancing

As shown in the frame chart of ISTRF in Section 2.1, the

sucrose transporter database built in this study has more negative

samples than positive ones, and it is an imbalanced dataset that

influences the classification performance of the machine learning

TABLE 2 Result of various feature extraction methods using random forest without Borderline-SMOTE on 10-fold cross-validation.

Feature SN SP ACC MCC F-measure

188D 0.895 0.970 0.948 0.874 0.910

PSSM composition 0.876 0.967 0.940 0.855 0.896

k-separated-bigrams-PSSM 0.925 0.973 0.958 0.900 0.929

188D + PSSM composition 0.895 0.973 0.950 0.878 0.913

188D + k-separated-bigrams-PSSM 0.925 0.973 0.958 0.900 0.929

PSSM composition + k-separated-bigrams-PSSM 0.908 0.978 0.957 0.897 0.927

188D + PSSM composition + k-separated-bigrams-PSSM 0.918 0.973 0.957 0.895 0.926

Bold values in the table indicate the best results.

TABLE 3 Result of various feature extraction methods using SGD without Borderline-SMOTE on 10-fold cross-validation.

Feature SN SP ACC MCC F-measure

188D 0.866 0.951 0.926 0.821 0.873

PSSM composition 0.873 0.956 0.931 0.834 0.883

k-separated-bigrams-PSSM 0.964 0.952 0.956 0.897 0.928

188D + PSSM composition 0.902 0.959 0.942 0.861 0.902

188D + k-separated-bigrams-PSSM 0.912 0.952 0.940 0.857 0.900

PSSM composition + k-separated-bigrams-PSSM 0.905 0.967 0.949 0.877 0.913

188D + PSSM composition + k-separated-bigrams-PSSM 0.912 0.960 0.946 0.870 0.909

Bold values in the table indicate the best results.

TABLE 4 Result of various features using random forest with Borderline-SMOTE on 10-fold cross-validation.

Feature SN SP ACC MCC F-measure

188D 0.989 + 9.4 0.937–3.3 0.963 + 1.5 0.927 + 5.3 0.964 + 5.4

PSSM composition 0.982 + 10.6 0.952–1.5 0.967 + 2.7 0.935 + 8 0.968 + 7.2

k-separated-bigrams-PSSM 0.986 + 6.1 0.970–0.3 0.978 + 2 0.956 + 5.6 0.978 + 4.9

188D + PSSM composition 0.982 + 8.7 0.952–2.1 0.967 + 1.7 0.935 + 5.7 0.968 + 5.5

188D + k-separated-bigrams-PSSM 0.984 + 5.9 0.945–2.8 0.964 + 0.6 0.929 + 2.9 0.965 + 3.6

PSSM composition + k-separated-bigrams-PSSM 0.984 + 7.6 0.957–2.1 0.971 + 1.4 0.941 + 4.4 0.971 + 4.4

188D + PSSM composition + k-separated-bigrams-PSSM 0.985 + 6.7 0.949–2.4 0.967 + 1 0.935 + 4 0.968 + 4.2
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algorithm. We adopted Borderline-SMOTE to augment the

positive samples, and finally the number of positive samples is

equal to negative samples. To verify that Borderline-SMOTE is

effective for our model, we, respectively, conducted experiments

using random forest and SGD on the basis of different features

with Borderline-SMOTE. Experimental results are shown in

Tables 4 and 5. The first number is the experimental result

using Borderline-SMOTE, the second number is the percentage

of increase or decrease relative to one without Borderline-SMOTE,

and the plus sign denotes an increase, while theminus sign denotes

a decrease. By comparing Table 4 with Table 2, we can see that the

performance of features using Borderline-SMOTE is better than

features not using Borderline-SMOTE in all indicators except

indicator SP. The same conclusion is also obtained by

comparing Table 5 with Table 3. In general, the features of

Borderline-SMOTE can improve classification performance.

To further verify that our model can use Borderline-

SMOTE to improve the classification performance, that is,

Borderline-SMOTE is effective in our model. We compared

the performance of our model with Borderline-SMOTE and

TABLE 5 Result of various features using SGD with Borderline-SMOTE on 10-fold cross-validation.

Feature SN SP ACC MCC F-measure

188D 0.966 + 10 0.909–4.2 0.938 + 1.2 0.877 + 5.6 0.939 + 6.6

PSSM composition 0.975 + 10.2 0.938–1.8 0.957 + 2.6 0.914 + 8 0.958 + 7.5

k-separated-bigrams-PSSM 0.997 + 3.3 0.942–1 0.970 + 1.4 0.941 + 4.4 0.971 + 4.3

188D + PSSM composition 0.985 + 8.3 0.931–2.8 0.958 + 1.6 0.918 + 5.7 0.959 + 5.7

188D + k-separated-bigrams-PSSM 0.985 + 7.3 0.931–2.1 0.958 + 1.8 0.918 + 6.1 0.959 + 5.9

PSSM composition + k-separated-bigrams-PSSM 0.984 + 7.9 0.951–1.6 0.967 + 1.8 0.945 + 6.8 0.968 + 5.5

188D + PSSM composition + k-separated-bigrams-PSSM 0.988 + 7.6 0.940–2 0.964 + 1.8 0.928 + 5.8 0.965 + 5.6

FIGURE 2
Results of the model with or without Borderline-SMOTE on 10-fold cross-validation.
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without Borderline-SMOTE on 10-fold cross-validation, and

the experimental result is shown in Figure 2. Except for a slight

decrease in SP, all other indicators improved by 2.0–6.1% in

Figure 2, especially the indicator SN, which improved to its

maximum. The decrease of SP verified that Borderline-SMOTE

avoids our model being biased to classifying samples into

FIGURE 3
ROC curve with or without Borderline-SMOTE. (A) ROC curve without Borderline-SMOTE. (B) ROC curve with Borderline-SMOTE.

FIGURE 4
Results of the model with or without Borderline-SMOTE on the test dataset.
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negative samples. The increase of SN verified that Borderline-

SMOTE improves our model’s identification ability of positive

samples. The improvement of indicators of ACC, MCC, and

F-measure verified that Borderline-SMOTE improved our

model performance from a general perspective. Furthermore,

the ROC curves of our model are plotted in Figure 3, and it can

be seen that ISTRF with Borderline-SMOTE is superior to

ISTRF without Borderline-SMOTE in the prediction of

sucrose transporter protein.

To further evaluate the performance of Borderline-SMOTE

in an unseen data set, we conducted experiments on the unseen

data set. We used the testing set containing 76 sucrose

transporters and 182 non-sucrose transporters to verify the

model, and the experimental result is shown in Figure 4. By

comparing the twomodels without and with Borderline-SMOTE,

it was found that the latter performs better, which proves once

again that Borderline-SMOTE improves the performance of our

model.

3.3 Performance of various classifiers

As shown in the frame chart of ISTRF, we adopt random forest

as a classifier to train the identification model. To verify that

random forest has a better performance than other classifiers, we

compared random forest with SVM,NB, and SGD. Table 6 showed

the experimental result of 10-fold cross-validation using the

k-separated-bigrams-PSSM feature without the Borderline-

SMOTE as input. Table 7 showed the experimental result of

10-fold cross-validation using the k-separated-bigrams-PSSM

feature with the Borderline-SMOTE as input.

In Table 6, although the random forest classifier is slightly

lower than BN on the SN indicator, it is obviously superior to the

other four indicators. According to the number of indicators with

the highest value, random forest obtained the four highest values

and performs better than the compared classifiers. It is seen in

Table 7 that random forest also performs better than the

compared classifiers. All in all, random forest is effective in

identifying sucrose transporter proteins.

3.4 Comparison with existing methods

To further evaluate the performance of ISTRF, our model is

compared with the existing prediction method BioSeq-Analysis

(Liu et al., 2019). The online address for this method is http://

bioinformatics.hitsz.edu.cn/BioSeq-Analysis/PROTEIN/Kmer/.

The SVM and random forest algorithms are used in the BioSeq-

Analysis prediction method. We compared them separately. The

prediction results are shown in Table 8. It can be seen from

Table 8 that our identification model outperforms the compared

models on the indicators of ACC, MCC, and SN. It verified that

our identification model performs better in general.

4 Conclusion

A large number of experiments have proved that sucrose

transporters play an important role in plant growth and crop

yield. Therefore, the identification of sucrose transporters has

become particularly important. With the rapid development of

high-throughput sequencing technology, protein sequences can be

easily obtained. In contrast, traditional biochemical technology

needs a lot of human, material, and financial resources, and the

identification of proteins through bioinformatics methods has

become a popular trend. In this study, we introduced

k-separated-bigrams-PSSM as the input feature, random forest

as the classifier, and the Borderline-SMOTE algorithm to balance

the training set. We achieved 0.978 accuracy, 0.986 SN, 0.970 SP,

0.956 MCC, and 0.978 F-measure on the training set. In order to

verify the effectiveness of the model, the testing set was used for

experiments, and the accuracy was 0.961. In the future, we will

continue to find breakthroughs, optimize the experimental model,

and strive to obtain better results.

TABLE 6 Result of various classifiers using k-separated-bigrams-PSSM
feature without Borderline-SMOTE on 10-fold cross-validation.

Classifier SN SP ACC MCC F-measure

SVM 0.948 0.944 0.945 0.872 0.911

NB 0.984 0.782 0.842 0.703 0.786

SGD 0.964 0.952 0.956 0.897 0.928

RF 0.925 0.973 0.958 0.900 0.929

Bold values in the table indicate the best results.

TABLE 7 Result of various classifiers using k-separated-bigrams-PSSM
feature with Borderline-SMOTE on 10-fold cross-validation.

Classifier SN SP ACC MCC F-measure

SVM 0.997 0.877 0.937 0.880 0.940

NB 0.989 0.774 0.881 0.781 0.893

SGD 0.997 0.942 0.970 0.941 0.971

RF 0.986 0.970 0.978 0.956 0.978

Bold values in the table indicate the best results.

TABLE 8 Experimental result of using different methods.

Model ACC MCC SN SP

ISTRF 0.961 0.907 0.934 0.973

BioSeq-SVM 0.9457 0.8694 0.9079 0.9615

BioSeq-RF 0.938 0.8505 0.8026 0.9945

Bold values in the table indicate the best results.
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KRAS encodes K-Ras proteins, which take part in the MAPK pathway. The

expression level of KRAS is high in tumor patients. Our study compared

KRAS expression levels between 33 kinds of tumor tissues. Additionally, we

studied the association of KRAS expression levels with diagnostic and

prognostic values, clinicopathological features, and tumor immunity. We

established 22 immune-infiltrating cell expression datasets to calculate

immune and stromal scores to evaluate the tumor microenvironment. KRAS

genes, immune check-point genes and interacting genes were selected to

construct the PPI network. We selected 79 immune checkpoint genes and

interacting related genes to calculate the correlation. Based on the 33 tumor

expression datasets, we conducted GSEA (genome set enrichment analysis) to

show the KRAS and other co-expressed genes associated with cancers. KRAS

may be a reliable prognostic biomarker in the diagnosis of cancer patients and

has the potential to be included in cancer-targeted drugs.

KEYWORDS

KRAS, tumor stage, cell infiltration, functional enrichment analysis, tumor
microenvironment, prognostic biomarker

1 Introduction

Cancer is a severe life-threatening disease that affects a large number of patients

worldwide (Cao et al., 2021). Breast cancer has become the most common cancer in new

possibilities, followed by prostate cancer, lung cancer, etc. (Wang et al., 2021). KRAS was

first recognized in the Kirsten rat sarcoma virus, which encodes the p21 protein to induce

virus transformation (Scolnick et al., 1979). The proteins of KRAS are located in the cell

membranes, and on its C-terminus, there is an isoprene group (Welman et al., 2000).

KRAS protein encodes the GTPase enzyme, which is a part of theMAPK pathway and acts

as a switch on/off of transformation between GTP (guanosine triphosphate) and GDP

molecules (Tsuchida et al., 1982). In mammalian cells, KRAS has two kinds of protein

products, K-Ras4A and K-Ras4B, which are encoded by alternative exon4 (Welman et al.,

2000). Many studies have observed that KRAS effectors affect the interactions of cells and

their extracellular environment, which could also regulate cell growth, cell motility and
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cell metabolism (Tang et al., 2018; Gu et al., 2021; Hu et al., 1990;

Hu et al., 2020; Yu et al., 2018).

KRAS is a signal transducer protein that binds to GTP in the

MAPK pathway; the mutation of KRAS has been discovered in a

quarter of human cancers (Pantsar, 2020). Based on the data in

COSMIC, missense mutations of KRAS frequently occur in

pancreatic, colorectal and lung cancers (Forbes et al., 2011; Ao

et al., 2021; Li et al., 2021; Luo et al., 2021; Yu et al., 2021).

Homozygous deletions of KRAS are the most frequent genetic

alteration in pancreatic epithelial adenocarcinoma (PDAC),

which results in cell metastasis and the transformation of

cancer tumors (Chang et al., 2014). The proto-oncogenes are

closely related to multiple cancers, such as cardio-facio-

cutaneous syndrome (Niihori et al., 2006), ductal carcinoma

of the pancreas (Hartman et al., 2012), leukemias (Singh et al.,

2021), mucinous adenoma (Hartman et al., 2012), and noonan

syndrome (Ando et al., 2021). The sequences of mutations in

KRAS affect the function of genes, oncogenes, tumor-

suppressor genes and stability genes and are the critical

element for tumorigenesis (Vogelstein and Kinzler, 2004).

KRAS mutations have been well characterized in 30%–50%

of colorectal cancers (Andreyev et al., 2001). KRAS proteins are

activated when transmembrane receptors are present, which

include serine/threonine kinase, GTP enzyme activating

protein (GAP), phosphatidylinositol 3-kinase (PI3K) and

GEF (Shields et al., 2000). The abnormal activation of GTP

binding of mutated KRAS protein leads to the unregulated

growth of downstream cells (Arrington et al., 2012). Mutations

at codon 12 and position 2 (GGT-GAT) of KRAS appear to be

most common in colorectal cancer (Capella et al., 1991). The

wild-type allele of KRAS is a suppressor in mouse lung cancer

(Westcott et al., 2015).

Mutation sites of the KRAS gene have to be considered to

be an effective way to develop new cancer treatment schemes

(Hu et al., 2022a). Efforts to utilize KRAS and related genes as

targets to explore drugs for cancer have been undertaken for

years, and inhibitor drugs to block KARSG12C have been

developed (Xu et al., 2022). RAF1 could be an essential

target to block KRAS mutant cancers (Drosten and

Barbacid, 2020). EFGR-inhibiting drugs suppress the KRAS

expression level in A549 lung cancer cells to inhibit cell

proliferation (Zarredar et al., 2019).

Possibility, KRAS may be considered a genetic diagnosis

potential biomarker of multiple malignant neoplastic diseases.

First, we compared the survival data of patients with 33 kinds of

tumors. Second, we analyzed the KRAS expression level with the

characteristics of tumor patients, tumor stage, tumor

microenvironment, and immune cell infiltration of 33 kinds of

tumors; finally, we investigated the molecular mechanisms by

GO and KEGG analysis. This study explores the molecular

relationships between KRAS genes and cancer, which is

crucial for developing new biomarkers and effective

prevention and treatment of tumors.

2 Materials and methods

2.1 Data sets collection and process

We obtained 33 kinds of tumors sequencing

datasets(10,327 tumor samples and 730 normal samples)

somatic mutation and survival data from the UCSC Xena

database (http://xena.ucsc.edu/). Subsequently, we used R

language to convert the gene ID, extract the transcription data

and analyze the differential expression of genes, analyze and

draw, and the packages involved were R (version 4.2.1), BiomaRt

(version 2.52.0, Functional Annotation Retrieval), dplyr (version

2.52.0, Data manipulation) and ggpubr (version 0.4.0, Data

visualization).

2.2 Correlation analysis between KRAS
expression and prognosis of tumor
patients

In this experiment, we used existing data to investigate the

survival status information from the UCSC Xena database, which

contained 10,327 tumor samples and 730 normal samples. We

gathered the survival status, which included disease-specific

survival (DSS), disease-free interval (DFI) and progression-

free interval (PFI) status data and time information for

prognostic analysis. We divided the differentially expressed

KRAS data into high-value and low-value groups.

Furthermore, the prognostic value in 33 tumors was

calculated by the Kaplan–Meier survival estimate method. The

R packages utilized for this analysis were limma (version 3.9,

Analyzing microarray and RNA-seq data), survival (version 3.3-

1, Survival analysis), survminer (version 0.4.9, Drawing survival

curves) and forestplot (version 2.0.1, Advanced Forest plot using

‘grid’ graphics).

2.3 Correlation analysis of KRAS gene
expression and tumor stage, tumor
mutation burden and microsatellite
instability

Stage information containing the diagnostic and prognostic

value of cancers was downloaded from the UCSC Xena

database(http://xena.ucsc.edu/); approximately 8,099 tumor

samples were divided into 3-4 stages. The limma and ggpubr

packages of R were introduced to calculate the KRAS expression

quantity and show the relevance between KRAS genes and tumor

stage. Approximately 11,057 samples combined with KRAS

expression data were used for TMB analysis by the Spearman

correlation test. The fmsb(version 0.7.3, Medical and Health Data

Analysis) package was used to create a correlation radar plot. We

calculated the microsatellite instability (MSI) scores combined
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with the KRAS expression data by the Spearman correlation test,

and a rader plot between tumors and KRAS genes was created.

The fmsb package was used to create a correlation radar plot.

2.4 Correlation analysis of KRAS gene
expression and the tumor
microenvironment

The tumor microenvironment (TME) is considered to be

the cells, tissues and matrix around a tumor; immune cells

and stromal cells are considered diagnostic indicators of

cancer development. We utilized ESTIMATE for predicting

tumor purity by calculating stromal and immune cell

infiltration (Yoshihara et al., 2013). Approximately

11,057 samples from 33 tumors were used to construct

expression matrix data of KRAS genes. We calculated

correlation between TME, MSI and expression data, tested

by Spearman test methods.

2.5 Correlation analysis of KRAS gene
expression and immune cell infiltration

We conducted CIBERSORT (https://

cibersortstanfordedu/) to estimate the infiltration

percentage of 22 immune cell types in tumors (Newman

et al., 2015). According to the tumor expression data

matrix file, we estimated the immune scores of all the

tumor samples. Filtering through data from tumors, we

approximate the correlation between cell infiltration levels

and gene expression levels by Spearman’s correlation test.

2.6 Protein–protein interaction networks,
correlation ofKRASwithmarker genes and
analysis of gene enrichment

The KRAS genes interacted with other tumor-associated

genes may help us understand tumorigenesis molecular

mechanisms. We selected 33 KRAS coexpressed genes to

construct protein–protein interaction (PPI) networks on the

STRING database (https://www.string-db.org/) (Szklarczyk

et al., 2019; Yu et al., 2020). We selected 79 immune

checkpoint genes and interacting related genes to calculate the

correlation. Based on the 33 tumor expression datasets, we

conducted GSEA (genome set enrichment analysis) to show

the KRAS and other coexpressed genes associated with

cancers. This research utilized the KEGG database (https://

www.kegg.jp/) and the GO database to enrich the genes

(FDR <0.5).

3 Results

3.1 Transcriptional data of KRAS in
33 pancancer

We obtained the transcription datasets, somatic mutations of

33 cancer tumors from TCGA, and the survival data from the

UCSC Xena database. The transcription data contained

11,057 samples which included tumor samples and normal

samples. When we compared the differences between normal

and tumor tissues, in most tumor tissues the expression levels of

KRAS were higher than normal tissues. A total of 12 kinds of

tumor tissues has significant difference in KRAS expression

levels, of which 9 tumor tissues BRCA (Breast invasive

carcinoma), CHOL (Cholangiocarcinoma), COAD (Colon

adenocarcinoma), KIRC (Kidney renal clear cell carcinoma),

LUAD (Lung adenocarcinoma), LUSC (Lung squamous cell

carcinoma), READ (Rectum adenocarcinoma), STAD

(Stomach adenocarcinoma), and UCEC (Uterine Corpus

Endometrial Carcinoma) had an extremely significant

difference; meanwhile, 3 tumor tissues (GBM (Glioblastoma

multiforme), LIHC(Liver hepatocellular carcinoma), and

THCA(Thyroid carcinoma) had a significant difference

(Figure 1). These results indicated that cancer could lead to

the abnormal expression of KRAS.

3.2 The prognostic value of the KRAS gene
across cancers

We analyzed the prognostic value of each tumor sample

according to the KRAS expression levels with different tumors.

High KRAS expression levels were associated with overall

survival (OS) in ACC, LUAD, PAAD and UCEC (Figure 2A);

poor disease-specific survival (DSS) in ACC, LUAD and PAAD

(Figure 2B); poor disease-free interval (DFI) in ACC, LUAD,

PAAD and STAD (Figure 2C); and poor progression-free

interval (PFI) in adrenocortical carcinoma (ACC), LUAD,

PAAD, STAD and uveal melanoma (UVM) (Figure 2D).

To evaluate how effective KRAS is in single cancer, we

calculated p values to analyze the association of clinical data

with single cancers. High KRAS expression levels correlated with

OS in ACC, ESCA, KIRC, PAAD and THYM of 0.01, 0.01, 0.001,

0.022, 0.035 and 0.005, respectively (Figures 3E–J); correlated

with poor DSS in ACC, ESCA, KIRC, KIPP, MESO and PAAD by

0.002, 0.036, 0.004, 0.010, 0.038 and 0.039, respectively (Figures

2K–P); correlated with poor DFI in ACC, LGG, LUAD, OV and

PAAD by 0.026, 0.005, 0.004 m 0.046 and 0.001, respectively

(Figures 2Q–U); and correlated with poor PFI in ACC, CESC,

KIRC, KIPP, PAAD and SARC by 0.005, 0.028, 0.001, 0.007,

0.020 and 0.042, respectively (Figure 2 V-AA).
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3.3 The relationships between KRAS
expression levels with clinicopathological
features

We explored the connection between the clinicopathological

characteristics and various tumor stages according to KRAS

expression levels in different pathology grades. These data

suggest that high KRAS expression levels had effects at severe

stages; correlation analysis showed in ACC, COAD, ESCA,

KIRC, KIRP, LIHC, MESO, SKCM and STAD (Figures 3A–I).

In addition, high KRAS expression levels showed a correlation

with TMB in 14 tumors: BLCA, COAD, HNSC, LIHC, LUAD,

LUSC, LUSC, PAAD, OV, PRAD, SARC, STAD, THYM, UCEC

and UVM (Figure 3J); high KRAS expression levels showed a

correlation with MSI in 8 tumors: BRCA, COAD, DLBC, READ,

SKCM, STAD, TGCT and UCEC (Figure 3K).

3.4 The relationships between KRAS
expression levels and tumor
microenvironment

A total of 22 immune-infiltrating cells were introduced to

analyze the tumor microenvironment by 33 tumor expression

data. Looking at Figure 4A, it is apparent that the immune scores

of ACC, CESC, GBM, HNSC, KIRC, KIRP, LGG, LUAD, LUSC,

TGCT and UCEC were negatively associated with KRAS

expression; from Figure 4B above we can see that the stromal

scores in THCA showed a causal negative relationship with

KRAS expression levels, and GBM, LGG, LUSC, TGCT and

UECE showed a causal negative relationship with KRAS

expression levels.

3.5 The associations of KRAS expression
levels with tumor immune cell infiltration
levels

We established 22 cell expression datasets based on the

immune-infiltrating levels to explore the potential effect of

KRAS expression levels on the tumor immune cell infiltration.

The results of the correlational analysis are shown in Figure 5; we

could demonstrate that higher expression levels of KRAS were

positively correlated with the infiltration levels of follicular helper

T cells, activated memory CD4 T cells, activated dendritic cells,

activated NK cells, naïve B cells, resting plasma cells, resting mast

cells, resting CD4 T cells and follicular helper T cells, which were

negatively correlated with the infiltration levels of activated NK

cells, plasma cells, CD8 T cells, regulatory T cells (Tregs),

M2 macrophages, M0 macrophages, memory B cells, activated

memory T cells, memory CD4 T cells, activated NK cells,

CD8 T cells, neutrophils, and monocytes in tumor cancers.

High KRAS expression levels were positively correlated with the

infiltration level of follicular helper T cells in BLCA. High KRAS

FIGURE 1
The KRAS expression level in cancer patients. Thirty-three kinds of tumor cancers. Expression of KRAS in tumors were performed by ggpubr
(version 4.0.4) package of R (***p < 0.001, **p < 0.01, *p < 0.05).
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FIGURE 2
The relationship between the expression of KRAS and the prognosis of patients with 33 kinds of cancers in the TCGA database. (A,E–J) OS
(overall survival) (B,K–P) DSS (disease-specific survival) (C,Q–U) DFI (disease-free interval) (D,V–AA) PFI (progression-free interval).
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expression levels were positively correlated with the infiltration

level of resting CD4 T cells in BRCA. High KRAS expression levels

were negatively correlated with the infiltration levels of activated

NK cells, plasma cells, CD8 T cells and regulatory T cells (Tregs) in

BRCA. High KRAS expression levels were positively correlated

with the infiltration level of resting CD4 T cells in CESC. High

KRAS expression levels were negatively correlated with the

infiltration levels of M2 macrophages in CESC. High KRAS

expression levels were positively correlated with the infiltration

level of activated dendritic cells and resting CD4 T cells in COAD.

High KRAS expression levels were negatively correlated with the

infiltration levels of M0 macrophages in COAD. High KRAS

expression levels were positively correlated with the infiltration

level of activated memory CD4 T cells in DLBC. High KRAS

expression levels were negatively correlated with the infiltration

levels of memory B cells in ESCA. High KRAS expression levels

were negatively correlated with the infiltration levels of activated

memory CD4 T cells in GBM. High KRAS expression levels were

positively correlated with the infiltration level of naïve B cells,

plasma cells and memory CD4 T cells resting in HNSC. High

KRAS expression levels were negatively correlated with the

infiltration levels of activated NK cells and CD8 T cells in

HNSC. High KRAS expression levels were positively correlated

with the infiltration level of M2 macrophages, resting memory

CD4 T cells, resting MAST cells and neutrophils in KIRC. High

KRAS expression levels were negatively correlated with the

infiltration levels of regulatory T cells (Tregs), CD8 T cells and

plasma cells in KIRC. High KRAS expression levels were positively

correlatedwith the infiltration level of restingmast cells and resting

memory CD4 T cells in KIRP. High KRAS expression levels were

negatively correlatedwith the infiltration levels of regulatory T cells

(Tregs) in KIRP. High KRAS expression levels were positively

correlated with the infiltration level of memory resting memory

CD4T cells in LAML.HighKRAS expression levels were positively

correlated with the infiltration levels of memory-activated

CD4 T cells in LUAD. High KRAS expression levels were

positively clinically relevant to the infiltration levels of memory

B cells in LUSC. High KRAS expression levels were negatively

clinically relevant to the infiltration levels of neutrophils in LUSC.

High KRAS expression levels were negatively correlated with the

infiltration levels of activated NK cells in OV. High KRAS

expression levels were positively correlated with the infiltration

FIGURE 3
The relationship between KRAS expression level and pathological characteristics of tumor patients. (tumor mutation burden, microsatellite
instabilitiy). (A–I) Relationship of KRAS expression level and stage grade. (J) Tumor mutation burden (TMB). (K) Microsatellite instability (MSI). *p <
0.05. **p < 0.01, ***p < 0.001.

Frontiers in Genetics frontiersin.org06

Zhao et al. 10.3389/fgene.2022.1024920

66

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1024920


levels of memory CD4 T cells resting in PAAD. High KRAS

expression levels were negatively correlated with the infiltration

levels of plasma cells in PAAD. High KRAS expression levels were

positively correlated with the infiltration levels of naïve B cells,

M1 macrophages and resting memory CD4 T cells in PRAD. High

KRAS expression levels were negatively correlated with the

infiltration levels of memory B cells, activated NK cells and

CD8 T cells in PRAD. High KRAS expression levels were

negatively correlated with the infiltration levels of dendritic cells

resting in READ. High KRAS expression levels were negatively

correlated with the infiltration levels of resting mast cells in SARC.

High KRAS expression levels were positively correlated with the

infiltration levels of activated memory CD4 T cells and resting

CD4 T cells in SKCM. High KRAS expression levels were

negatively correlated with the infiltration levels of regulatory

T cells (Tregs) in SKCM. High KRAS expression levels were

negatively correlated with the infiltration levels of Mococytes in

STAD. High KRAS expression levels were positively correlated

with the infiltration levels of naïve B cells and memory CD4 T cells

activated in THCA. High KRAS expression levels were negatively

correlated with the infiltration levels of M2 macrophages and NK

cells activated in THCA. High KRAS expression levels were

FIGURE 4
Relationships between KRAS expression and tumor microenvironment. (A) Immune score, (B) Stromal score.
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negatively correlated with the infiltration levels of restingmast cells

and CD8 T cells in THYM. High KRAS expression levels were

positively correlated with the infiltration levels of activated

dendritic cells, resting memory CD4 T cells, and follicular

helper T cells in UCEC. High KRAS expression levels were

negatively correlated with the infiltration levels of activated NK

cells, plasma cells, CD8 T cells and regulatory T cells (Tregs).

3.6 Functional enrichment analysis of
KRAS

KRAS is a signal transducer protein that binds to GTP in the

MAPK pathway, and mutations have been found in a quarter of

cancers. We fabricated the PPI network using the STRING

database based on KRAS and KRAS-related genes (Figure 6A).

FIGURE 5
Relationships between KRAS expression and different types of immune cells infiltration level in tumors.
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Furthermore, we utilized the genes from the PPI network to

analyze the association with KRAS expression. The results

indicate that the great mass of immune checkpoint genes and

KRAS-related genes were correlated with 33 kinds of tumor

cancers (Figure 6B).

We utilized GSEA to discuss the molecular circadian

mechanism in multiple cancers. KRAS expression was

involved in more than 96 kinds of GO (Gene Ontology)

pathways in 33 tumor cancers (Figure 7A). In ACC, high

expression levels of KRAS proteins were involved in epidermal

development, neural signal response and sensory perception of a

smell. In BLAC, high KRAS expression levels affect the cellular

amidemetabolic process, mRNA binding sites, cell migration and

cell keratinization. Furthermore, high KRAS gene expression

levels were related to the detection of chemical stimuli in

COAD, DLBC, ESCA, LIHC, LUAD, LUSC, PCPG, READ,

SKCM, STAD and THYM. KRAS proteins could be involved

in mRNA binding in LUAD, UCEC, DLBC, ESCA, LIHC, LUSC,

PRAD and SKCM. High KRAS expression levels were involved in

recognizing and characterizing the olfactory stimulus signal in

BRCA, COAD, DLBC, ESCA, LUAD, LUSC, READ, SKCM,

STAD and THYM. On the other hand, KRAS is an essential

member of keratinocyte differentiation in LIHC, OV and PAAD.

The production of the immunoglobulin complex was due to the

high KRAS expression in CHOL, PRAD, UVM, HNSC and

UVM. Intermediate filament formation was related to high

KRAS expression in CESC, LIHC, PAAD and OV. The result

demonstrated that KRAS genes were involved in the formation of

amyloid fibrils in LAML and MESO.

Interestingly, KEGG analysis promoted revealed the

expression levels of KRAS genes involved in more than

20 kinds of pathways in 7 tumors. Increased KRAS expression

is involved in the calcium signaling pathway in LUSC, OV,

READ and STAD. In LUSC and READ, antigen processing

and presentation seemed to have a correlation with high

KRAS expression levels. Neuroactive ligand–receptor

interactions are also effected in LGG, OV and STAD. High

KRAS expression levels promoted ascorbate and alternate

metabolism in HNSC and LGG (Figure 7B). There are many

other GO ontology and KEGG pathways related to KRAS

expression.

4 Discussion

The RAS gene family is one of the most widely studied

families of cancer-related genes. Previous studies have shown

that KRAS is the most common mutation of the three altered

genes (Wennerberg et al., 2005). KRAS-related carcinogenic

mutations are prevalent in human cancer, occurring in 17%–

25% of all cancers. The results indicated that cancer could lead to

the abnormal expression of KRAS in tumor tissues. In addition,

FIGURE 6
KRAS protein-protein network and expression relationships between KRAS and related genes. (A) PPI network for KRAS-interaction genes. (B)
Correlation between KRAS expression and related genes (immune checkpoint genes and interacted related genes) expression.
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we analyzed the KRAS expression levels on different pathology

grades; high expression levels of KRAS genes affected the degree

of tumor deterioration at serious stages, and correlation analysis

showed in ACC, COAD, ESCA, KIRC, KIRP, LIHC, MESO,

SKCM and STAD. Many studies have shown that KRAS has an

essential relationship with the occurrence of cancer (Roberts and

Stinchcombe, 2013). Therefore, KRAS has the potential to be

introduced as a prognostic factor in many tumors.

TMB was calculated by the number of noninherited

mutations, which are considered to be an important genetic

feature to evaluate tumor tissue (Merino et al., 2020). As a

genomic biomarker that predicts a good response to an

immune checkpoint inhibitor (Kim et al., 2019). MSI is

generated from impaired DNA mismatch repair, which occurs

during gene duplication (Buecher et al., 2013). MSI p roduction is

not random, and different target genes will lead to different

phenotypes and pathologies and affect the pathogenesis of many

kinds of cancer (Imai and Yamamoto, 2008). In addition, high

KRAS expression levels showed a correlation with TMB in

14 tumors: BLCA, COAD, HNSC, LIHC, LUAD, LUSC,

LUSC, PAAD, OV, PRAD, SARC, STAD, THYM, UCEC and

UVM; with MSI in BRCA, COAD, DLBC, READ, SKCM, STAD,

TGCT and UCEC. TMB and MSI are relatively new biomarkers,

and there is still a need to perform more studies.

RAS mutations participating in the production of human

cancer cells have been studied in many types of research.

FIGURE 7
GSEA enrichment analysis of KRAS (A) Go enrichment analysis in various tumors. (B) KEGG enrichment analysis in various tumors.
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Nevertheless, its potential mechanism and molecular regulatory

mechanism need to be further clarified (Hu et al., 2022b). KRAS

mutation is considered to be one of the most common genome

variation in non-small cell lung cancer and is associated with a

clinical background and pathological features (Suda et al., 2010).

The pro-tumor inflammation caused by KRAS is associated with

immune regulation, which leads to immune escape in the TME

(Hamarsheh et al., 2020). The immune and stromal scores

reflected the proportion of cancer cells in tumor tissue; we

established 22 kinds of expression datasets by immune-

infiltrating cells. Our research suggested that KRAS was

associated with immunotherapeutic effects and cell viability in

multiple tumors and had excellent potential as a cancer-

targeted drug.

KRAS has been reported as a biomarker in multiple cancers

(Petrelli et al., 2013; Siddiqui and Piperdi, 2010; Yang et al.,

2013). In our study, the KRAS expression levels in various tumor

cells were associated with prognosis and immune cell infiltration.

From the GO ontology and KEGG pathways, the expression of

KRAS plays an essential role in different stages of cancers with

multiple functions. We found that KRAS interacts with several

cancer-related genes from the PPI network, but their mechanism

needs further study. Based on our study, KRAS may be a reliable

prognostic biomarker for cancer patients in the course of

diagnosis and treatment.

5 Conclusion

We studied the novel cancer-related gene KRAS, which

belongs to the RAS gene family, in 33 kinds of tumors. This

study has shown that KRAS were significantly different in

12 tumor tissues compared to normal tissues. Furthermore, the

second significant finding was that the prognostic value of OS, DSS

and DFI and DSS correlated with KRAS expression levels in 4, 3,

4 and 6 kinds of tumors, separately. In addition, KRAS expression

levels were associated with tumor mutation burden (TMB) and

microsatellite instability (MSI) in 14 and 8 tumors. As for

22 immune infiltrating cells, immune and stromal scores

showed 11 and 6 kinds of tumors correlated with KRAS

expression levels based on the tumor purity. The PPI network

and functional enrichment participate in different biological

metabolic pathways. Go and KEGG enrichment analysis

revealed that KRAS was connected with more than 96 GO

pathways in 33 tumor cancer cells and more than 20 kinds of

KEGG pathways in 7 tumors, indicated that KRAS expression was

involved in epidermal development, neural signal response,

sensory perception of a smell, metabolic process, mRNA

binding sites, cell migration and cell keratinization in multiple

tumors. Our study suggested that KRAS may be a promising

prognostic biomarker for cancer diagnosis and treatment.
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The global outbreak of the COVID-19 epidemic has become a major public

health problem. COVID-19 virus infection triggers a complex immune response.

CD8+ T cells, in particular, play an essential role in controlling the severity of the

disease. However, the mechanism of the regulatory role of CD8+ T cells on

COVID-19 remains poorly investigated. In this study, single-cell gene

expression profiles from three CD8+ T cell subtypes (effector, memory, and

naive T cells) were downloaded. Each cell subtype included three disease states,

namely, acute COVID-19, convalescent COVID-19, and unexposed individuals.

The profiles on each cell subtype were individually analyzed in the same way.

Irrelevant features in the profiles were first excluded by the Boruta method. The

remaining features for each CD8+ T cells subtypewere further analyzed byMax-

Relevance and Min-Redundancy, Monte Carlo feature selection, and light

gradient boosting machine methods to obtain three feature lists. These lists

were then brought into the incremental feature selection method to determine

the optimal features for each cell subtype. Their corresponding genes may be

latent biomarkers to determine COVID-19 severity. Genes, such as ZFP36,

DUSP1, TCR, and IL7R, can be confirmed to play an immune regulatory role

in COVID-19 infection and recovery. The results of functional enrichment

analysis revealed that these important genes may be associated with

immune functions, such as response to cAMP, response to virus, T cell

receptor complex, T cell activation, and T cell differentiation. This study

further set up different gene expression pattens, represented by

classification rules, on three states of COVID-19 and constructed several

efficient classifiers to distinguish COVID-19 severity. The findings of this

study provided new insights into the biological processes of CD8+ T cells in

regulating the immune response.
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1 Introduction

Caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has

cumulatively infected more than 400 million people. It is

mainly transmitted in the population through close contact,

and typical clinical symptoms are fever and cough (Sanyal,

2020). SARS-CoV-2 enters host cells through endocytosis by

binding to angiotensin-converting enzyme 2 (ACE2) receptor

on the cell surface (Samudrala et al., 2020). Several variants

have emerged, and the main ones are Alpha, Beta, Gamma,

Delta, Lambda, and Omicron (Araf et al., 2022; Fiolet et al.,

2022).

Viral infections involve a complex immune response

process, in which T lymphocytes, especially CD8+ T cells,

are crucial to the control and clearance of acute infections.

CD8+ T lymphocytes can selectively kill infected cells by

mediating adaptive cytotoxic T cell responses, thereby

eliminating the virus (Westmeier et al., 2020). CD8+ T cells

exert cytotoxic effects mainly through target cell lysis and

cytokine release (Slifka and Whitton, 2000). In the target cell

lysis pathway, target cells are lysed through the Fas/FasL

pathway or perforin, whereas the cytokine pathway is

associated with IFNγ and TNFα. Strong CD8+ T cell

responses specific to SARS-CoV-2 are associated with

worse disease severity; SARS-CoV-2 infection results in a

decrease in CD8+ T cell frequency, which becomes more

pronounced with increasing infection severity (Chen et al.,

2020). SARS-CoV-2-specific CD8+ T-cell responses are rarely

detected in patients with fatal COVID-19 (Dan et al., 2021)

because of CD8+ T-cell depletion after overactivation, which

ultimately reduces the host cellular immune response to the

virus (Zheng et al., 2020; Gong et al., 2021).

Cellular immunity involves the transformation of naive,

effector, and memory T cells. The proportion of CD8+ T cell

subsets correlates with COVID-19 severity (Westmeier et al.,

2020). Patients with moderate COVID-19 have a significantly

increased proportion of effector CD8+ T cells and effector

memory CD8+ T cells than healthy subjects and severely

infected patients (Fenoglio et al., 2021), whereas naïve CD8+

T cells are reduced in old people and negatively correlated with

patient age (Westmeier et al., 2020). Naïve CD8+ T cells

correlated with age and differed across infection status

(unexposed, acute, and recovering patients) (Grifoni et al.,

2020). In contrast, studies between groups of COVID-19

patients showed that those with severe infection exhibited

higher levels of naive CD8+ T cells and lower levels of effector

CD8+ T cells and effector memory CD8+ T cells compared with

patients with mild infection (Fenoglio et al., 2021), which may

imply a defective cytotoxic lymphocyte response in severe

infections. In addition, in COVID-19 patients, the dominant

effector CD8+ T cells were GzmA, GzmB, and perforin triple-

positive cells, compared with uninfected individuals; patients

expressing effector CD8+ T cells that produce multiple virulence

molecules exhibited milder symptoms (Westmeier et al., 2020),

which may indicate a potential protective mechanism.

As the viral infection subsides, some T cells differentiate into

memory T cells. Memory T cells can persist in patients for long

periods of time; thus, they play a protective role in preventing

viral reinfection (Nguyen et al., 2019). Compared with non-

hospitalized patients, hospitalized patients did not have a higher

frequency of memory CD8+ T cells, and the proportion tended to

be stable over time (Grifoni et al., 2020). SARS-CoV-2-specific

memory CD8+ T cells were related to less severe COVID-19

during infection, because SARS-CoV-2 memory T cells can limit

the accumulation of SARS- CoV-2 and viral load, thereby

reducing COVID-19 disease severity (Kotturi et al., 2007;

Francis et al., 2022). As CD8+ T cells are crucial to the

infection of SARS-CoV-2, studying the characteristics of

different types of CD8+ T cells in different infection states

provides a useful reference for finding potential targets for

treatment.

In this study, several computational methods were used to

investigate the gene expression profiles of three subtypes of

CD8+ T cells (effector, memory and naïve T cells) related to

COVID-19. Three disease states: unexposed, acute, and

convalescent, were included in the profiles on each cell

subtype. The profiles on each cell subtype were individually

analyzed in the same way. First, the profiles were analyzed by

Boruta feature selection method (Kursa and Rudnicki, 2010)

to exclude irrelevant gene features. Then, three feature

ranking algorithms: Max-Relevance and Min-Redundancy

(mRMR) (Peng et al., 2005), Monte Carlo feature selection

(MCFS) (Draminski et al., 2008), and light gradient boosting

machine (LightGBM) (Ke et al., 2017), were used to examine

remaining features, resulting in three feature lists. Each list

was fed into the incremental feature selection (IFS) method

(Liu and Setiono, 1998) to extract essential gene features,

construct efficient classifiers and set up classification rules.

The essential genes can be latent biomarkers and the rules can

indicate different expression patterns on three COVID-19

states, deepening our understanding on COVID-19.

2 Materials and methods

2.1 Datasets

The gene expression profiles of three subtypes of CD8+ T cells

related to COVID-19, including effector, memory, and naïve
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T cells, were obtained from the GEO database by accessing a

number of GSE188429 (Francis et al., 2022). These expression

profiles were obtained by isolating CD8+ T cells from individual

peripheral blood mononuclear cells (PBMCs) and quantifying

mRNA expression in the cells by single-cell transcriptome

sequencing techniques. CD8+ T cell responses in PBMCs from

three cohorts were studied, as follows: acute COVID-19,

convalescent COVID-19, and unexposed individuals. A total

of 145,293 cell samples were included in these profiles and the

number of samples under different cohorts for each CD8+ T cell

subtype is shown in Table 1. After filtering low expression and

low variance genes, 1046 genes were kept and deemed as features

in this study. We used the processed data in h5ad file acquired

from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE188429 for detailed analysis. For the next round of

machine learning computations, the datasets for each of the

three different cell subtypes were studied independently.

2.2 Boruta feature selection

Lots of gene features were used to represent each cell in three

subtypes of CD8+ T cells. Evidently, only a few of them are highly

related to distinguish the states of COVID-19. It is essential to

discover them. This task can be completed by some feature

analysis methods. Here, the Boruta feature selection method

(Kursa and Rudnicki, 2010) was adopted first to exclude

irrelevant features.

The Boruta feature selection method is a feature selection

wrapper algorithm, which can be used to assess the importance of

features using a tree classifier (e.g., random forest (RF) (Breiman,

2001)) and hence reject irrelevant features. The approach

particularly creates a shadow feature at random for each

original feature and then compares them with the original

features in terms of their importance generated by RF. An

original feature is selected when it is statistically more

important than the shadow features. Selected features are

removed from the current dataset and the dataset containing

remaining features is processed in the next round. Above

procedures repeat several times until the number of rounds

reaches the predefined value.

The present study used the Boruta program available at

https://github.com/scikit-learn-contrib/boruta_py to analyze

the datasets individually for three cell subtypes. It was run

with default parameters.

2.3 Feature ranking methods

Important features can be extracted through Boruta.

However, their importance was not clear. Three feature

analysis methods followed to investigate selected features,

including mRMR (Peng et al., 2005), MCFS (Draminski et al.,

2008) and LightGBM (Ke et al., 2017).

2.3.1 mRMR
The mRMR uses mutual information as a metric to achieve

the maximum correlation between features and class labels as

well as the minimum redundancy between features. After mRMR

analysis, features are ranked in a list. The list is produced by

repeatedly selecting a feature with maximum correlation to class

labels and minimum redundancy to already-selected features.

For convenience, this list was called the mRMR feature list.

2.3.2 MCFS
TheMCFSmethod is another effective feature selection method

in machine learning. The method evaluates the importance of

features by constructing a number of decision trees. Trees are set

up on some randomly generated feature groups and sample sets.

According to the occurrence of each feature in all trees, a relative

importance (RI) score is computed and assigned to the feature to

indicate its importance. With the decreasing order of RI scores,

features are ranked in a list, named MCFS feature list.

2.3.3 LightGBM
The LightGBM represents ensemble learning algorithms and

is a distributed gradient-boosting framework based on decision

tree algorithm. As the algorithm is based on a tree classifier, it can

be used to evaluate the importance of a feature by counting its

frequency in all trees. Likewise, features are ranked in a list with

the decreasing order of their frequencies. Such list was termed as

LightGBM feature list.

In this investigation, the mRMR program used is obtained

from http://home.penglab.com/proj/mRMR/. As for the MCFS

program, the software developed by Draminski et al. (2008) was

adopted, which can be accessed at http://www.ipipan.eu/staff/m.

TABLE 1 Sample size for the different categories under the datasets for three cell subtypes.

Cell subtype Acute COVID-19 Convalescent COVID-19 Unexposed individuals Total

Effector T cells 4832 23542 21288 49662

Memory T cells 6527 22031 28257 56815

Naïve T cells 5204 21504 12108 38816
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draminski/mcfs.html. The LightGBM program was implemented

using the LightGBM library in python, which is available at

https://lightgbm.readthedocs.io/en/latest/. The default

parameters were used in all above three programs.

2.4 Incremental feature selection

After feature ranking, three feature lists for one subtype of CD8+

T cells were obtained. However, it was not easy to determine the

optimal features from these feature lists. In this step, the IFS method

(Liu and Setiono, 1998) was employed to determine the optimal

features in each list for a given classification algorithm. The

procedures were described as below. When the step size was set

to 1, the IFSmethod first generated a succession of feature subsets in

away that the first feature subset contained the first feature in the list,

and the second feature subset included the top two features, and so

on. For each feature subset, a classifier was built based on samples

represented by features in this subset. All classifiers’ performance

was tested using 10-fold cross-validation (Kohavi, 1995). Finally,

based on the performance indicators of each classifier, the classifier

with the best performance can be obtained. Such classifier was called

the optimal classifier and features used in this classifier were termed

as the optimal features.

2.5 SMOTE

As shown in Table 1, the sizes of different categories in the

gene expression profiles were of great differences, i.e., the profiles

were imbalanced, which may lead to the unstable performance of

the classifier on different categories. Therefore, the synthetic

minority oversampling technique (SMOTE) algorithm (Chawla

et al., 2002) was adopted to tackle this problem. It works by

linearly synthesizing new samples for minority categories using

the k-nearest neighbors concept, thereby ensuring that the

FIGURE 1
A diagram of the computational framework used in this study. We first analyzed the 3 T cell expression profiles of COVID-19 by different feature
selectionmethods inmachine learning. Then, we used the incremental feature selectionmethod to determine the optimal features, build the optimal
classifiers, and extract the important classification rules. The critical features obtained were enriched by GO and KEGG analysis to uncover their
biological implications.

FIGURE 2
Performance of different classification algorithms with
different number of features under the mRMR feature lists. (A)
effector T cells, (B)memory T cells, (C) naïve T cells. Random forest
provided the best performance on effector and memory
T cells, whereas k-nearest neighbor yielded the best performance
on naïve T cells.
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quantity of samples from different categories is almost equal.

This study used the SMOTE program available at https://github.

com/scikit-learn-contrib/imbalanced-learn and executed it with

default parameters.

2.6 Classification algorithms

As mentioned above, the IFS method needs a classification

algorithm. For wide tests, three classification algorithms:

k-nearest neighbors (kNN) (Cover and Hart, 1967), RF

(Breiman, 2001), and decision tree (DT) (Safavian and

Landgrebe, 1991), were attempted. These algorithms were

widely used to tackling various medical problems (Chen et al.,

2021; Chen et al., 2022; Ding et al., 2022; Li et al., 2022; Ran et al.,

2022; Tang and Chen, 2022; Wu and Chen, 2022; Zhou et al.,

2022; Wu and Chen, 2023).

2.6.1 kNN
This algorithm is one of the most classic classification

algorithms in machine learning. For a test sample, kNN

calculates its distance to all training samples and finds k

nearest training samples. According to the classes of these

training samples, the class of the test sample is determined.

Generally, the majority voting is adopted to make the

decision.

2.6.2 RF
RF is a classic algorithm in ensemble learning that first

resamples N subsets from the original dataset based on the

FIGURE 3
Performance of different classification algorithms with
different number of features under the MCFS feature lists. (A)
effector T cells, (B)memory T cells, (C) naïve T cells. Random forest
provided the best performance on effector and memory
T cells, whereas k-nearest neighbor yielded the best performance
on naïve T cells.

FIGURE 4
Performance of different classification algorithms with
different number of features under the LightGBM feature list. (A)
effector T cells, (B)memory T cells, (C) naïve T cells. Random forest
provided the best performance on effector and memory
T cells, whereas k-nearest neighbor yielded the best performance
on naïve T cells.
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bagging strategy and uses each subset to train a decision tree

classifier. Each tree is constructed by randomly selecting features.

For a test sample, each tree gives its prediction. RF integrates

these predictions with majority voting. Compared with decision

trees, RF is more accurate and has a high generalization

capability.

2.6.3 DT
This algorithm is quite different from kNN and RF. Although

above two algorithms can provide high performance, their

principles are hard to be understood. In this regard, DT has

its special merits. The classification procedures of DT are

completely open. In this case, it is possible for us to

understand its classification principle. Besides the tree form,

DT can also be represented by a set of if-then rules, each of

which contains a group of conditions and one result. The

conditions may indicate a special pattern for the result, giving

insights to understand essential differences of various categories.

In this study, all three abovementioned algorithms were

implemented via the scikit-learn library. These programs were

performed by using their default parameters.

2.7 Performance measurement

For multi-class classification, overall accuracy is the most

widely used measurement. It is defined as the proportion of

corrected predicted samples among all samples. However,

such measurement is not perfect when the dataset is

imbalanced. In this case, Mathews Correlation Coefficient

(MCC) (Matthews, 1975; Jurman et al., 2012; Liu et al.,

2021; Pan et al., 2022; Wang and Chen, 2022; Yang and

Chen, 2022) is more accurate to evaluate the performance

of classifiers. It can be computed by

MCC � cov(X,Y)����������������
cov(X,X)cov(Y, Y)√ (1)

where X indicates the binary matrix of the true classes of all

samples, Y represents the binary matrix of the predicted classes of

all samples, and cov(.) denotes the correlation between two

matrices.

Besides, F1 score was used to evaluate the performance of

classifiers on each category in this study. The F1 score for one

category can be computed by

F1 score � 2 × TP

2 × TP + FN + FP
(2)

where TP, FN and FP stand for the true positive, false negative

and false positive of such category. In detail, TP is the number of

accurately predicted samples in this category, FN is the number

of wrongly predicted samples in this category and FP is the

number of samples that belong to other categories but are

predicted to be in this category. The F1 scores on all

categories can be integrated to give an overall evaluation on

classifiers’ performance. Generally, there are two forms to make

integrations. The first one is the direct mean of F1 scores on all

categories. Suchmeasurement is called macro F1. The second one

further considers the weights of categories, i.e., the weighted

mean of F1 scores on all categories. It is called weighted F1.

As different measurements can induce different results, a

major measurement should be determined in advance. Here, we

selected weighted F1 as the major measurement.

2.8 Biological function enrichment

Through the above computational analysis, some important

genes can be discovered from the profiles on each subtype of

CD8+ T cells. To uncover the biological meanings behind these

genes, the gene ontology (GO) and KEGG enrichment analysis

was employed. The clusterProfiler 4.0 tool (Wu et al., 2021) was

adopted to conduct the enrichment analysis. The threshold on

p-value was set to 0.05 for selecting enriched GO terms and

KEGG pathways.

TABLE 2 Detailed performance of the optimal classifiers obtained by using the mRMR, MCFS, and LightGBM methods for three cell subtypes.

Cell subtype Feature ranking method Classification
algorithm

Number of features ACC MCC Macro F1 Weighted F1

Effector T cells mRMR RF 95 0.809 0.670 0.748 0.806

MCFS RF 45 0.815 0.688 0.776 0.815

LightGBM RF 55 0.823 0.698 0.787 0.822

Memory T cells mRMR RF 239 0.821 0.694 0.786 0.818

MCFS RF 95 0.824 0.704 0.798 0.823

LightGBM RF 33 0.834 0.724 0.815 0.833

Naïve T cells mRMR kNN 29 0.841 0.755 0.826 0.845

MCFS kNN 37 0.844 0.761 0.828 0.849

LightGBM kNN 23 0.863 0.787 0.847 0.867
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FIGURE 5
Performance of the optimal classifiers for three CD8+ T cells subtypes on three categories. (A) effector T cells, (B) memory T cells, (C) naïve
T cells. The optimal classifiers on the LightGBM feature lists were better than those on other two feature lists.

FIGURE 6
Intersection results of the optimal feature sets based on different feature lists yielded by three feature ranking methods for three CD8+ T cells
subtypes. (A) effector T cells, (B) memory T cells, (C) naïve T cells.
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3 Results

In this study, we first downloaded COVID-19 expression

profiles for three CD8+ T cells subtypes, including effector,

memory, and naïve T cells from GEO. Irrelevant features in

the dataset on each CD8+ T cells subtype were excluded using

Boruta, and the retained features were ranked by using mRMR,

MCFS, and LightGBM in three feature ranking lists. These

feature lists were then used to identify the optimal features

and extract classification rules using the IFS method. The

entire computational framework is shown in Figure 1.

3.1 Results of feature selection on CD8+

T cells expression profiles

For the expression profiles on each CD8+ T cells subtype, the

Boruta method was first adopted to remove irrelevant features.

252 features remained for effector T cells. For memory and naïve

T cells, 241 and 153 features were kept, respectively. These

selected features were analyzed by mRMR, MCFS, and

LightGBM, respectively, resulting in three feature lists for each

CD8+ T cells subtype. These lists are provided in Supplementary

Tables S1–S3.

3.2 Recognition of key features to
distinguish COVID-19 severity on CD8+

T cells with the IFS method

Through the above step, three feature lists (mRMR, MCFS

and LightGBM feature lists) were obtained for each CD8+ T cells

subtype. However, important features for the classification task

are still difficult to determine. Therefore, the IFS method was

used to find the optimal features and construct the optimal

classifiers, which constructed a series of classifiers and

calculated their performance metrics. The IFS results for the

three CD8+ T cells subtypes using different feature lists are

provided in Supplementary Tables S4–S6. The IFS curves were

plotted to observe the trend of the classifiers’ performance,

measured by weighted F1, under the changing of feature

numbers, as shown in Figures 2–4.

For the IFS results on the mRMR feature lists of three CD8+

T cells subtypes (Supplementary Table S4), the IFS curves are

shown in Figure 2. For the effector T cells, DT, kNN and RF

reached the highest performance when the first 249, 14 and

95 features were used with weighted F1 values of 0.731, 0.746 and

0.806 (Figure 2A). For the memory T cells, three classification

algorithms yielded the maximum weighted F1 values of 0.736,

0.789 and 0.818 when first 155, 21 and 239 features were adopted

(Figure 2B). As for the naïve T cells, the highest weighted

F1 values for three classification algorithms were 0.786, 0.845,

and 0.842 (Figure 2C), which were obtained by using top 61,

29 and 25 features in the list. Clearly, for effector and memory

T cells, RF provided better performance than DT and kNN,

whereas kNN was best for the naïve T cells. Accordingly, we can

construct the optimal RF classifiers for effector and memory

T cells, and the optimal kNN classifier for the naïve T cells based

on the mRMR feature lists. The overall performance of the above

optimal classifiers, measured by ACC, MCC and macro F1, is

listed in Table 2. ACC and MCC values were all no less than

0.8 and 0.67, respectively, indicating the good performance of

these classifiers.

Of the IFS results on the MCFS feature lists of three CD8+

T cells subtypes (Supplementary Table S5), Figure 3 shows the

IFS curves. For the effector T cells, RF achieved the highest

weighted F1 of 0.815 using the first 45 features (Figure 3A). Other

two classification algorithms provided the highest weighted

F1 values of 0.731 and 0.760 when top 240 and 40 features

were adopted. For the memory T cells, the IFS curves of three

classification algorithms reached the highest points with the top

107, 26 and 95 features with weighted F1 values of 0.740,

0.799 and 0.823 (Figure 3B). For the naïve T cells, kNN

obtained the highest weighted F1 of 0.849 using the first

TABLE 3 Details of the optimal DT classifiers obtained for each cell subtype under different feature ranking methods and the number of rules
extracted.

Cell subtype Feature ranking method Number of features Weighted F1 Number of rules

Effector T cells mRMR 249 0.731 5394

MCFS 240 0.731 5412

LightGBM 98 0.741 5810

Memory T cells mRMR 155 0.736 6371

MCFS 107 0.740 6404

LightGBM 33 0.753 6959

Naïve T cells mRMR 61 0.786 3930

MCFS 44 0.786 4045

LightGBM 33 0.797 3931
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37 features (Figure 3C). DT and RF yielded the highest weighted

F1 values of 0.786 and 0.845 when top 44 and 28 features were

used. It was interesting that the performance of three

classification algorithms on the MCFS feature lists was similar

to that on the mRMR feature lists. RF was best on effector and

memory T cells, whereas kNN was best on the naïve T cells.

Likewise, three optimal classifiers can be built on three CD8+

T cells subtypes based on the MCFS feature lists. Their detailed

overall performance is also listed in Table 2. ACC and MCC

values were all higher than 0.81 and 0.68, respectively, suggesting

high performance of these classifiers.

For the IFS results on the LightGBM feature lists of three

CD8+ T cells subtypes (Supplementary Table S6), IFS curves are

illustrated in Figure 4. For the effector T cells, DT/kNN/RF

achieved the maximum weighted F1 of 0.741/0.791/0.822 when

the first 98/41/55 features were used (Figure 4A). For thememory

T cells, DT/kNN/RF peaked at 33/29/33 features with a weighted

F1 value of 0.753/0.833/0.833 (Figure 4B). For the naïve T cells,

DT/kNN/RF gained the maximum weighted F1 value of 0.797/

0.867/0.854 when the first 33/23/27 features were used

(Figure 4C). It was surprising that RF was still better than DT

and kNN on effector and memory T cells, and kNN was still

better than DT and RF on the naïve T cells, similar to the results

on mRMR and MCFS feature lists. This also increased the

reliability of our results. Likewise, three optimal classifiers on

three CD8+ T cells subtypes can be set up based on the LightGBM

feature lists. Table 2 lists the detailed overall performance of these

classifiers. ACC and MCC values were all higher than 0.82 and

0.69, respectively, indicating their high performance.

In Table 2, the overall performance of nine optimal classifiers

on different feature lists and cell subtypes is provided. We further

extracted their performance on three categories (acute,

convalescent and unexposed), measured by F1 score, which

are shown in Figure 5. It can be observed that on each cell

subtype, optimal classifier on the LightGBM feature list always

provided the highest performance on all categories, generally

followed by the optimal classifiers on the MCFS and mRMR

feature lists. Such results also conformed to their overall

performance (Table 2). Furthermore, all classifiers generally

yielded best performance on unexposed individuals, followed

by convalescent and acute COVID-19.

For each CD8+ T cells subtype, three optimal classifiers were

constructed based on three feature lists. The features used in

these classifiers (i.e., optimal features) can be obtained,

comprising three optimal feature sets. It is interesting to

investigate the intersection of these three optimal feature sets

using Venn diagrams. The Venn diagrams are provided in

Figure 6. The detailed intersection results are shown in

Supplementary Table S7. It can be observed that there were

23 important features in three optimal feature sets for effector

T cells (Figure 5A). For thememory T cells, 30 important features

were included in three optimal feature sets (Figure 5B). The three

optimal feature subsets under the naïve T cells had 14 essential

features intersected (Figure 5C). The biological mechanisms of

these important feature genes are described in the Section 4.

3.3 Classification rules for important
features in the CD8+ T cells profiles

On each CD8+ T cells subtype, DT always provided the

lowest performance under a given feature list. The performance

FIGURE 7
Distribution of rules yielded by decision trees on three categories in three CD8+ T cells subtypes. (A) effector T cells, (B)memory T cells, (C) naïve
T cells.
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is listed in Table 3. However, it has the special merit that is not

shared by kNN and RF. From the constructed DT, several

classification rules can be obtained, which implies the special

patterns on each category. Thus, we further employed DT to

investigate profiles on three CD8+ T cells subtypes. As

mentioned in Section 3.2, the optimal features for DT can be

found by executing IFS method on different feature lists of three

CD8+ T cells subtypes. With these optimal features, DT was

applied on all samples to learn a large tree, from which a group

of classification rules were obtained. These classification rules

on three CD8+ T cells subtypes and three feature lists are shown

in Supplementary Table S8. The number of rules on each CD8+

FIGURE 8
Results of the functional enrichment analysis on the optimal genes for different feature lists in the effector T cells. TopGO terms ((A): mRMR, (C):
MCFS, and (E): LightGBM) and KEGG pathways ((B): mRMR, (D): MCFS, (F): LightGBM) are shown.
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T cells subtype and feature list is listed in Table 3. A fair number

of rules were obtained, which provides informative reference

for revealing the relationships between expression patterns of

key feature genes and three categories. For each rule set, some

rules were for acute COVID-19, whereas others were for

convalescent COVID-19 or unexposed individuals. The

FIGURE 9
Results of the functional enrichment analysis on the optimal genes for the different feature lists in the memory T cells. Top GO terms ((A):
mRMR, (C): MCFS, and (E): LightGBM) and KEGG pathways ((B): mRMR, (D): MCFS, (F): lightGBM) are shown.
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number of rules for each category is illustrated in Figure 7. It

can be observed that convalescent COVID-19 was always

assigned most rules, whereas the rules on unexposed

individuals were the second most on effector and memory

T cells, and acute COVID-19 was assigned the second most

rules on Naïve T cells.

FIGURE 10
Results of the functional enrichment analysis on the optimal genes for the different feature lists in the naïve T cells. Top GO terms ((A): mRMR,
(C): MCFS, and (E): LightGBM) and KEGG pathways ((B): mRMR, (D): MCFS, (F): lightGBM) are shown.

Frontiers in Genetics frontiersin.org12

Lu et al. 10.3389/fgene.2022.1053772

85

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1053772


3.4 Immune functions for genes identified
in the optimal feature sets

To explore the biological functions and pathways involved in the

essential genes for each CD8+ T cells subtype, we performedGO and

KEGG enrichment analyses on the genes in the optimal feature sets

obtained under each feature ranking list for each subtype of CD8+

T cells. The results are provided in Supplementary Tables S9–S11.

The top five GO terms and KEGG pathways from the enrichment

results are shown in Figures 8–10. For the effector T cells, the main

biological functions enriched are response to virus, homeostasis of

number of cells, T cell receptor complex, and signaling pathways,

including apoptosis and salmonella infection (Figure 8). For the

memory T cells, the enrichment results contain T cell activation,

lymphocyte differentiation, mononuclear cell differentiation, and

signaling pathways, such as apoptosis and TNF signaling pathway

(Figure 9). For the naïve T cells, the enrichment results were for GO

terms, such as response to cAMP, response to organophosphorus,

and signaling pathways, e.g., B-cell receptor signaling pathway and

TNF signaling pathway (Figure 10). These critical biological

functions and signaling pathways are developed in the Section 4.

4 Discussion

For each CD8+ T cell subtype, we obtained three sets of

features that are important to distinguish the disease state of

patients with COVID-19 through three feature ranking

algorithms and IFS method. Next, we conducted GO and

KEGG enrichment analyses for all the genes in the three

groups of features to facilitate our interpretation of these key

genes. We discussed genes to confirm their important roles in

COVID-19 according to existing studies. The main discussion

results of each cell subtype were organized as follows.

4.1 Functional analysis of the key features
of CD8+ effector T cells

The effector CD8+ T cells that respond to antigen stimulation

proliferate and differentiate. Some will eventually differentiate

into memory CD8+ T cells. Among the features that can

distinguish CD8+ Effector T cells in different stages of

COVID-19 infection, we found that they mainly contain

cytotoxic genes (GZMA, GZMK, and PRF1), T cell receptor

(TCR)-related genes (TRBV4.2 and TRBV7.2), cytokine-related

genes (IFITM2, IL7R, and IL32), and others. At the same time,

our functional enrichment results also showed the relationship

between these genes and immune killing, as follows: GO:0009615

(response to virus), GO:0042101 (T cell receptor complex), GO:

0140375 (immune receptor activity), and hsa04210 (apoptosis).

CD8+ effector T cells are essential for adaptive immunity against

COVID-19 virus infection, and the cytotoxic response intensity of

CD8+ Effector T cells also corresponds to different stages of antiviral

immunity. Patients with COVID-19 infection have higher levels of

GZMs and PRF1 than healthy controls; they also have characteristic

expression changes during infection recovery (Wen et al., 2020;

Westmeier et al., 2020). During viral infection, TCRs recombine to

generate a functional and highly diverse TCR repertoire crucial for

CD8 effector T cells to identify and kill infected cells (Luo et al.,

2021). Therefore, the dynamic changes of genes, such as TRBV4.2,

TRBV7.2 (TCR components), and IL7R (associated with V(D)J

recombination), may be related to different periods of infection.

Other genes, such as FITM2, reportedly restrict the entry of COVID-

19 virus into cells (Winstone et al., 2021), but its expression in CD8+

Effector T cells and its dynamic characteristics at different stages of

infection have not been studied.

4.2 Functional analysis of the key features
of CD8+ memory T cells

There are two types of CD8+ memory T cells, namely, effector

memory T cells (Tem) and central memory T cells (Tcm). CD8+

Tcmmainly reside in secondary lymphoid organs and can rapidly be

converted into effector cells upon antigen stimulation, whereas

CD8+ Tem is mainly distributed in peripheral tissues and can

respond rapidly to stimulation by producing effector cytokines.

In different stages of infection, CD8+ Memory T cells have

different activation, proliferation, and secretion states

(Tavukcuoglu et al., 2021). GO/KEGG enrichment analysis for

the features in our results also revealed that many genes were

associated with T cell differentiation and effector activity, such as:

GO:0042110 (T cell activation), GO:0030217 (T cell differentiation),

hsa04062 (chemokine signaling pathway), and hsa04061 (viral

protein interaction with cytokine and cytokine receptor). In these

genes, features associated with cellular activation and differentiation

(B2M, IL7R, ZFP36, ZFP36L1, ZFP36L2, CD8A, KLF6, and

LGALS1) may be related to the function of CD8+ memory

T cells at different stages of infection, whereas features associated

with cell chemotaxis (SELL, CCL5, CXCR4, and NFKBIA) could be

linked to the recruitment of CD8+ memory cells (Xiong et al., 2020).

The COVID-19 virus may also escape the immune system through

chemokines (Khalil et al., 2021), suggesting that the expression of

chemokines may be associated with the different stages of infection.

4.3 Functional analysis of the key features
of CD8+ naïve T cells

The GO enrichment results of key genes show that they are

related to the response to multiple stimuli, such as: GO:0071216

(cellular response to biotic stimulus) and GO:0051591 (response to

cAMP). cAMP has been shown to play an important role in the initial

activation and effector differentiation of naïve CD8+ T cells

(Linnemann et al., 2009). At different stages of infection in
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COVID-19 patients, naïve CD8+ T cells responded to different levels

of antigenic stimulation (Wen et al., 2020; Fenoglio et al., 2021), which

resulted in different proportions and activation states of naïve CD8+

T cells; this phenomenonmay help distinguish different disease states.

In addition, a correlation was found between the proportion of naive

CD8+ T cells and infection severity (Moderbacher et al., 2020).

At the gene expression level, some genes showed important roles

in differentiating infection stages and were identified by all three

feature ranking algorithms. Among these genes, the protein product

of the ZFP36 gene belongs to the zinc finger family and has been

linked to the regulation of gene expression and cellular response to

growth factor stimulation. Studies on COVID-19 showed that

ZFP36 inhibited T cell activation, and proliferation during viral

infection and the expression level of ZFP36 changed dramatically

during infection (Xiong et al., 2020). DUSP1 was downregulated in

COVID-19 infection and may be associated with enhanced MAPK

pathway activation and steroid resistance (Sharif-Askari et al., 2021).

Our features also contained some inflammatory genes (FOS, JUN,

and KLF6), which may be related to the inflammatory state at

different disease stages; these genes have different expression levels

during COVID-19 infection and recovery (Wen et al., 2020).

5 Conclusion

In this study, the single-cell RNA-Seq datasets under three

subtypes of CD8+ T cells (effector, memory, and naïve T cells)

related to COVID-19 infection, convalescent, and unexposed were

deeply investigated. Several advanced computational methods were

applied on these datasets. Essential genes, interpretable classification

rules and efficient classifiers were obtained. The former two results

can deepen our understanding on the mechanism of the regulatory

role of CD8+ T cells on COVID-19. The last one can be useful tools

to distinguish patients’ COVID-19 severity in terms of CD8+ T cells.
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Antimicrobial peptides (AMPs) are alkaline substances with efficient bactericidal

activity produced in living organisms. As the best substitute for antibiotics, they

have been paid more and more attention in scientific research and clinical

application. AMPs can be produced from almost all organisms and are capable

of killing a wide variety of pathogenic microorganisms. In addition to being

antibacterial, natural AMPs havemany other therapeutically important activities,

such as wound healing, antioxidant and immunomodulatory effects. To

discover new AMPs, the use of wet experimental methods is expensive and

difficult, and bioinformatics technology can effectively solve this problem.

Recently, some deep learning methods have been applied to the prediction

of AMPs and achieved good results. To further improve the prediction accuracy

of AMPs, this paper designs a new deep learning method based on sequence

multidimensional representation. By encoding and embedding sequence

features, and then inputting the model to identify AMPs, high-precision

classification of AMPs and Non-AMPs with lengths of 10–200 is achieved.

The results show that our method improved accuracy by 1.05% compared to

the most advanced model in independent data validation without decreasing

other indicators.

KEYWORDS

deep learning, feature encoding, feature embedding, N-gram encoding, antimicrobial
peptides

1 Introduction

Antimicrobial peptides (AMPs) are host defense molecules produced by the innate

immune system in a variety of organisms and have many advantages, such as rapid killing,

low toxicity, and broad activity (Fjell et al., 2009), and their drug resistance is relatively

low. About 50% of the amino acids in AMP are hydrophobic, and they can adopt an

amphiphilic structure, which enables them to interact with and penetrate cell membranes,

which then lead to disruption of membrane potential, changes in membrane permeability,

and permeation of metabolites leakage, eventually leading to bacterial cell death (Kumar
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et al., 2018). AMPs not only exhibit synergy with antibiotics, but

may also synergize with the immune system (Pasupuleti et al.,

2012). At present, there are corresponding drug-resistant

pathogenic strains of conventional antibiotics, and the drug-

resistant problem of pathogenic bacteria has increasingly

threatened people’s health. Finding new antibiotics is an

effective way to solve the drug-resistant problem. The

characteristics of high antibacterial activity, broad antibacterial

spectrum, and wide selection range are considered to be an

effective way to solve the problem of drug resistance

(Hancock and Sahl, 2006). Given the multiple advantages of

AMPs, there is an urgent need to identify new AMPs.

In recent years, the rapid development of bioinformatics has

provided a rational design method for the acquisition of AMPs.

We can predict AMPs based on their sequence information. At

present, the research on sequence classification algorithms

mainly focuses on the combination of classification algorithms

and biological sequence features. Various applied machine

learning models have also been applied in AMPs prediction,

for example, support vector machines (SVM) (Lata et al., 2010;

Meher et al., 2017; Agrawal et al., 2018; Gong et al., 2021; Zou

et al., 2021; Zhang Q. et al., 2022), random forest (RF) (Bhadra

et al., 2018; Veltri, 2015; Nakayama et al., 2021; Yang et al., 2021;

Ao et al., 2022; Lv et al., 2022a), discriminant analysis (DA)

(Thomas et al., 2010; Waghu et al., 2016), Hidden Markov (Fjell

et al., 2009), k-nearest neighbors (Xiao et al., 2013), etc. The core

problem of such methods is how to perform feature extraction on

protein sequences, which is greatly affected by the feature

extraction method, which limits the maximum performance of

the model. In addition, artificial feature engineering is often

required when machine learning builds a classification model. In

this process, important information is likely to be lost. Deep

learning methods that have developed rapidly in recent years can

effectively solve this problem.

Deep learning methods can automatically learn features

from the raw data through convolution operations, avoiding the

loss of data features. Various deep learning methods have been

applied in protein sequence classification, such as bidirectional

long short-term memory network (Bi-LSTM) (Tng et al., 2021;

Zhang Y. et al., 2022; Zhang et al., 2022c; Li et al., 2022; Qiao

et al., 2022; Wang et al., 2022), two-dimensional convolutional

neural network (2D CNN) (Le et al., 2021), deep residual

network (ResNet) (Xu et al., 2021), graph convolutional

network (GCN) (Chen et al., 2021), deep neural network

(DNN) (Gao et al., 2019; Han et al., 2019; Le et al., 2019;

Hathaway et al., 2021), and Recurrent Neural Network (RNN)

FIGURE 1
The workflow.
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(Zheng et al., 2020; Yun et al., 2021). These research methods

have generally achieved good classification results and have

attracted increasing attention. In the prediction of AMPs, deep

learning methods have also received attention, such as deep

neural network (DNN) (Veltri et al., 2018; Su et al., 2019; Fu

et al., 2020; Yan et al., 2020), bidirectional long short-term

memory network (Bi-LSTM) (Sharma et al., 2021a; Xiao et al.,

2021; Sharma et al., 2022), and Transformer (Zhang et al.,

2021). These models all demonstrate the superiority of deep

learning in AMPs prediction.

Whether it is a machine learning method or a deep

learning method, the first step of these methods is to

represent protein sequences as machine-readable and to

encode biological sequences with features, that is, to map

biological sequences to digital sequences using digital signal

processing methods. It is widely used in biological sequence

classification. As an important biological sequence analysis

method, biological sequence encoding has been studied by

many scholars, for example, the interaction of protein

sequences (Moretta et al., 2020; Khabbaz et al., 2021; Wani

et al., 2021; Söylemez et al., 2022), sparse coding (binary

coding) (Spänig and Heider, 2019; Akbar et al., 2021; Jain

et al., 2021; Ren et al., 2022). In addition, pre-trained models

in natural language processing (NLP) have been used in

protein sequence analysis, for example, the word2vec

method (Zhang et al., 2019; Dao et al., 2021) and the

N-gram method (Li et al., 2018; Wu and Yu, 2021) showed

excellent performance in prediction.

The AMPs classification methods are usually based on

machine learning or deep learning consider the interaction

between protein sequences and represents the sequences as a

matrix, ignoring the upstream and downstream information of

the sequences, and the prediction accuracy will be reduced during

the classification process. In this paper, deep learning-based

feature combinations of N-gram encoding, K-space amino

acid pair composition (CKSAAP), position-weighted amino

acid composition (PWAA), and raw sequence number

encoding were selected to predict AMPs. The CKSAAP

encoding effectively describes the short-range interactions

between amino acids, the PWAA encoding determines the

positional information of amino acids in the protein sequence,

and considers the upstream and downstream information of the

protein sequence, and the N-gram encoding enhances the

expression of the protein sequence and reduces the training

process. Information is lost. It not only considers the

interaction and positional weight of amino acids in the

protein sequence but also combines the upstream and

downstream information in the sequence and enhances the

expression of the AMPs sequence, avoiding the above

problems and improving the prediction performance. To

evaluate the model, we use a 10-fold cross-validation method.

Figure 1 shows our workflow.

2 Materials and methods

2.1 Baseline datasets

In this study, we used the dataset of (Sharma et al., 2021b),

which collected AMPs data belonging to 13 phyla and

41 kingdoms (animal kingdom) categories from NCBI and

StarPepDB databases and obtained Non-AMPs data from the

UniProt database. This dataset considers all AMPs of suitable

TABLE 1 Statistics for datasets.

Total Cross-validation Independent

AMPs 10,187 6,657 3,530

Non-AMPs 10,422 6,773 3,649

FIGURE 2
Bi-gram encoding process.
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length in the animal kingdom to train the model. After the data is

de-redundant, the dataset finally consists of 10,187 AMPs and

10,422 Non-AMPs, shown in supplementary materialthe, which

contains about 65% of AMPs and non-AMPs. AMPs were used

as the cross-validation dataset to train our model, and the rest

contained about 35% of AMPs and non-AMPs as independent

datasets for evaluating model performance, whose composition is

shown in Table 1.

2.2 Encoding method of sequence

2.2.1 Raw sequence encoding
Protein is composed of 20 kinds of amino acids, each

amino acid is represented by a character, and the sequences

represented by these 20 kinds of characters contain important

biological genetic information. The raw sequence encoding,

that is, mapping the sequence to a set of numbers, reflects the

selection bias of the AMPs sequence at each amino acid

position. If given a protein sequence of length n,

S � (s1, s2, . . . , sn), where si ∈ {A, R, N, D, C, Q,
E, G, H, I, L, K, M, F, P, S, T, W, Y, V }, i � 1, 2, . . . , n, then

the sequence S can be expressed as a one-dimensional vector of length

n. For example, a protein sequence FLPKLFAKITKKNMAHIRC

with a length of 19 can be used as a vector

[5, 1 0, 1 3, 9, 1 0, 5, 1, 9, 8, 1 7, 9, 9, 1 2, 1 1, 1, 7, 8, 1 5, 2]1 9.
The maximum length of protein sequences in the dataset used in

this paper is 200, so we set the sequence coding dimension to

200, and all sequences shorter than 200 are filled with 0 at

the end.

2.2.2 Composition of k-space amino acid pairs
(CKSAAP) encoding

CKSAAP is a coding scheme based on the interaction

between amino acid pairs, which has been widely used in

protein prediction (Yuan et al., 2022). CKSAAP can represent

amino acids as a combination of multiple amino acid pairs

with spacing K (Chen et al., 2011), reflecting the short-range

FIGURE 3
Model architecture diagram.
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interaction between amino acid pairs. If K = 0, there are

400 residue pairs with spacing 0 (AA, AC, AD, AE, . . ., YY).

The eigenvector can be calculated by Eq. 1:

( NAA

NTotal
,
NAC

NTotal
,
NAD

NTotal
,
NAE

NTotal
, . . . ,

NYY

NTotal
)

400

(1)

Where, NTotal = L-K-1, NTotal represents the total number of

residue pairs in the protein sequence, L represents the

sequence length, and K represents the amino acid spacing.

For example, when the sequence length is 200 and K = 0, 1, 2,

3, the values of NTotal are 199, 198, 197, and 196. In this paper,

we take K as 0, 1, 2, 3, 4, and 5, so the total dimension of this

feature is 2,400.

2.2.3 Position weighted amino acid composition
(PWAA) encoding

To determine the position information of amino acids in

the protein sequences, we used the PWAA method for

encoding. Given amino acid residue ai (i = 1, 2, 3,..., 20),

we can calculate the positional information of ai in a protein

sequence by Eq. 2:

Ci � 1
L(L + 1)∑L

j�−Lxi,j(j +
∣∣∣∣j∣∣∣∣
L
)(j � −L, . . . , q, . . . , L) (2)

Where L represents the data of upstream residue or downstream

residue at the central site of the protein sequence fragment, if ai is

the residue at the jth position of the protein sequence fragment,

then x (i, j) = 1, otherwise x (i, j) = 0. Generally, the closer ai is to

the center position (position 0), The smaller the absolute value of

Ci. The PWAA encoding involves 20 kinds of amino acid

residues, so this method encodes a dimension of 20.

2.2.4 N-gram encoding
N-gram is a statistical language model, which can be applied

to protein sequence analysis to enhance the expression of protein

sequences (Sharma and Srivastava, 2021). We treat each amino

acid residue of a protein sequence of length L-N+1 as a word and

each sequence as a sentence. In this study, our data length is

short, and the Bi-gram (binary model) and tri-gram (ternary

model) we used are enough to enhance the expression of AMPs

sequences. For an raw sequence of length n S= (s1, s2, . . . sn), Bi-

gram can be expressed as S2=(s1s2,s2s3, . . . ,s(n-1)sn), whose length

is n-1, and the coding process is shown in Figure 2. Similarly, Tri-

gram can be expressed as S3=(s1s2s3,s2s3s4, . . . ,s(n-2)s(n-1)sn),

whose length is n-2. To align the encoding length of the

N-gram, we set the encoding length of the N-gram to 200,

and the encodings shorter than 200 are padded with 0 at the

end, so the dimensions of the Bi-gram and Tri-gram are

200 respectively.

FIGURE 4
Benchmark dataset protein sequence length statistics.
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2.3 Deep learning model

Our deep learning model consists of three parts: encoding

layer, embedding layer, and convolutional layer. The model

architecture is shown in Figure 3.

We convert protein sequences into numerical vectors using

CKSAAP, PWAA, N-grams, and the numerical encoding of the

raw sequence and then pass these vectors into the embedding

layer. The embedding layer converts the sparse vector into a

dense vector and reduces the dimension of the vector to facilitate

the processing of the upper neural network. The processing

process of the embedding layer can be represented by the

following matrix operations. The first matrix represents the

input feature matrix, the middle matrix represents the weight

of this layer, and the multiplied result matrix represents the

dimension-reduced feature matrix.

[ 0 1 0 0 ] × ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2
4

5
2

7
1

2 8 5
3 6 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � [ 4 2 1 ]
The convolution layer convolutes the embedded matrix E

with N parallel convolution blocks, which can be composed of a

set of triples {(sk, qk, rk)}(k=1,..., N), where sK represents the size of

the convolution filter, qk represents the number of convolution

filters in the convolution block, and rk represents the activation

FIGURE 5
sequence logo diagram.
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function corresponding to the convolution block. The

convolution direction is one-dimensional convolution along

the direction of the sequence, and the convolution block will

output a set of feature maps {Zk ∈ R(l−sk+1) × qk }k�1, ...,N , the

convolution block k can be expressed by Eq. 3:

Zk(m, q) � ak(∑e

i�0∑sk

j�0C(i, j, k) × E(i,m + j)) (3)

Where, q = 1, . . . , qk, C∈ Re×sk×qk contains the weight tensors of

all qk convolution filters in this convolution block. ak is the

activation function, and we use Rectified Linear Unit (ReLU) as

the activation. Zk (m, q) is the feature map Zk of the (m, q)th

element in the training phase.

Global average pooling integrates global spatial information,

while CKSAAP and PWAA codes encode protein sequences as

sparse matrices (with many 0s). Choosing global average pooling

may reduce the accuracy of prediction, while global pooling can

preserve more Boundary information. Therefore, after obtaining

each feature map, we perform a global maximum pooling

operation to reduce the number of features in the training

phase to prevent overfitting. The vector hk can be calculated

by Eq. 4:

hk � [max Zk(: , 1); max Zk(: , 2); . . . ; max Zk(: , qk)] (4)

Finally, the vector h = [h1; h2; . . .; hN] is obtained by fully

connecting all hk, and the prediction results are output.

Because the learning rate is greatly affected by the output

error, the cross-entropy loss function has a larger parameter

adjustment range in the early stage of model training, which can

make the model training converge faster. To improve the

classification efficiency, we use the binary cross-entropy

function as our loss function, which can be expressed by Eq. 5:

Loss � − 1
N
∑N

i�1yi × log(p(yi)) + (1 − yi) ×log(1 − p(yi)) (5)

Where, y represents the binary label 0 or 1, and p(y) represents the

probability that the output belongs to the y label. If the predicted

value p(y) approaches 1, then the value of the loss function should

approach 0. Conversely, if the predicted value p(y) approaches 0 at

this point, the value of the loss function should be very large.

2.4 Model evaluation

To objectively evaluate the performance of this method,

we train the model using a 10-fold cross-validation method,

which randomly divides the negative and positive samples

into k (k = 10) equal-sized subsamples. Among the k

subsamples, one sub-sample is reserved as validation data

for testing the model, and the remaining k-1 subsamples are

used as training data (Lv et al., 2022b; Zhang et al., 2022d).

Then repeat the cross-validation process for K (k = 10) times

(folds), and each sub-sample is used only once as

validation data.

To evaluate the precision of the results, we use 7 metrics of

accuracy (Acc), sensitivity (Sn), precision (Pr), specificity (Sp),

F1 score (Fs), balance accuracy (Ba), and area under the curve

(AUROC) on independent datasets, as shown in Formulas 6 to 12.

Acc � TP + TN

TP + FN + TN + FP
(6)

Sn � TP

TP + FN
(7)

Pr � TP

TP + FP
(8)

Sp � TN

TN + FP
(9)

TABLE 2 Comparison of different combination feature coding methods.

Coding Acc(%) Sn(%) Pr (%) Sp(%) Fs(%) Ba (%) AUROC(%)

Seq + CKSAAP 96.36 97.34 95.36 95.42 96.34 96.38 99.38

Seq + PWAA 95.10 98.20 92.66 91.86 95.35 95.03 99.17

Seq + Bi-gram 97.57 98.48 96.83 96.62 97.65 97.55 99.64

Seq + Tri-gram 96.94 98.11 95.73 95.83 96.90 96.97 99.49

Seq + CKSAAP + PWAA + Bi-gram + Tri-gram 98.11 99.15 97.21 97.02 98.17 98.08 99.74

Note: the best performance on a metric is marked in bold.

FIGURE 6
Comparison of different combination feature coding
methods.
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Fs � 2 × Sn × Pr

TN + FP
(10)

Ba � Sn + Pr

2
(11)

AUROC � ∫TPRd(FPR) (12)

Where, TP is the true positive, FP is the false positive, TN is the

true negative, FN is the false negative, TPR is the true positive and

FPR is the false positive.

3 Results and discussion

3.1 Sequence composition analysis based
on benchmark datasets

All proteins are made up of 20 amino acid residues, but the

frequency of amino acid residues in each protein varies and the

lengths of the amino acid sequences that make up the protein vary.

During model training, the composition of peptides in the

benchmark dataset is very important to analyze the properties of

antimicrobial peptides. By counting the centralized peptide lengths

of the AMPs and Non-AMPs data, the peptide lengths of our AMPs

and Non-AMPs data sets are between 10 and 200, and most of the

peptides are below 100 in length, as shown in Figure 4.

To analyze the sequence consisting of the benchmark dataset,

we counted the occurrence frequency of different amino acids at

each sequence position. Since the length of AMPs sequences is

mainly concentrated in 10–100, we only draw the sequence logo

diagram of the first 100 positions, as shown in Figure 5. It can be

seen from the figure that specific amino acids belonging to AMPs

and Non-AMPs have different positional preferences. In the

AMPs sequence, the positions 22–42 are often occupied by

glutamic acid (E), and in the Non-AMPs sequence, the

positions 22–42 are often occupied by glutamic acid (E). The

positions 4–33 are often occupied by leucine (L), and this

difference may be due to their belonging to different protein

families.

FIGURE 7
Comparing ROC curves with different feature codes. Note: (B) is a partially enlarged view of (A).

TABLE 3 Performance comparison of different models.

Methods Acc(%) Sn(%) Pr (%) Sp(%) Fs(%) Ba (%) AUROC(%)

AMPFUN 54.76 53.85 54.01 55.63 53.93 54.74 64.26

AMP Scanner vr.2 81.71 90.40 76.61 73.31 82.94 81.85 89.37

CAMPR3-ANN 71.64 63.71 74.87 79.31 68.84 71.51 71.51

CAMPR3-RF 70.20 70.40 69.43 70.02 69.91 70.21 74.15

CAMPR3-SVM 74.45 75.98 73.12 72.98 74.52 74.48 76.60

CAMPR3-DA 68.85 67.28 68.72 70.38 67.99 68.83 72.75

ADAM 74.15 67.85 76.86 80.24 72.07 74.04 74.04

ANIAMPpred 96.82 94.99 98.50 98.60 96.71 96.79 99.30

Our model 97.87 98.39 97.46 97.32 97.92 97.85 99.73

Note: performance values of other methods come from Sharma. The best performance on a metric is marked in bold.
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3.2 Comparison of feature coding
methods for different combinations

To study the prediction effect of different feature encodings, we

conducted experiments on the combination of these three feature

encodings with the original sequences based on the verification set.

We treat the Bi-gram and Tri-gram encodings as independent

feature encoding methods, and finally, combine all the features

for experiments, so we did five sets of comparative experiments.

CKSAAP encoding and PWAA encoding only extract amino acid

combination and position information. The feature encoding is a

sparse matrix with many 0 elements. When it is used alone, the

prediction accuracy is relatively low, so the original sequence

encoding is added to the experiment to make up. The

experimental results are shown in Table 2.

It can be found by observation that in the combination with

the original sequence, Bi-gram encoding has the best prediction

effect, and the sizes of various indicators after combination are

most similar to Bi-gram encoding. Bi-gram encoding combines

two adjacent amino acids to enhance sequence expression.

Compared with Tri-gram encoding, Bi-gram encoding has

stronger local association expression. PWAA encoding has the

worst prediction effect and the various indicators are not as

balanced as the other three encoding methods. This encoding

method considers the upstream and downstream information of

the sequence and does not consider the interaction between amino

acids. It has only 20 dimensions and is a sparse matrix, which

contains data Relatively few, even if there is a supplementary

prediction effect encoded by the raw sequence, the effect is not

good enough. CKSAAP encoding describes short-range

interactions between amino acids. Although its form is also a

sparse encoding, it has higher dimensions and more information,

so the prediction effect is better than PWAA encoding. The

prediction results of this study are most affected by Bi-gram

encoding and less affected by PWAA encoding. After we

combine these kinds of codes, the prediction effect is improved.

As can be seen from Figure 6, this feature combination combines

the advantages of these kinds of feature codes and considers the

interaction of amino acids in protein sequences, position weights,

and upstream and downstream information. And it is not affected

by the imbalance of PWAA encoding indicators.

To judge the recognition ability of various encoding

combinations for AMPs, we plotted the ROC curves of

various combinations, as shown in Figure 7.

3.3 Comparison with other methods

To prove the effectiveness of our method, we compared the

prediction results of the method proposed in this paper with

other most advanced models (AMPFUN (Chung et al., 2020),

AMP Scanner vr.2 (Veltri et al., 2018), CAMPR3 (Waghu et al.,

2016), ADAM (Lee et al., 2015), ANIAMPpred (Sharma et al.,

2021b)) based on independent test sets. The results are shown in

Table 3 and Figure 8. It can be seen from the figure that the

performance of ANIAMPpred and the method proposed in this

paper is far superior to other models. In terms of PR and SP

indicators, ANIAMPpred is slightly higher than our method, but

we are the highest in other indicators. The accuracy of our model

is 1.05% higher than that of the most advanced method.

4 Discussion

In this paper, we combine CKSAAP, PWAA, N-gram, and

raw sequence encoding and apply a deep learning approach to

predict AMPs. First, we analyzed the benchmark dataset and

compared the differences. Then, we separately evaluated and

analyzed the prediction effects of CKSAAP, PWAA, N-gram

encoding, and raw sequence encoding combination. Finally, we

compare state-of-the-art methods, and the results show that this

method has the best performance. We combined CKSAAP,

PWAA, N-gram encoding, and original sequence encoding,

which not only considered the interaction between amino

acids commonly used by other methods, but also considered

the upstream and downstream information ignored by other

methods, and enhanced the AMPs sequence. Therefore, this

method has better performance.

Our method achieves high-precision classification of AMPs

based on protein sequence information and yields good

performance. But AMPs may have undesirable properties as a

drug, including instability and toxicity. In studies of synthesizing

and modifying AMPs, even small changes can alter the function

of AMPs. This method can only identify AMPs and does not

consider the functional characteristics of AMPs. Further research

can be carried out according to the functions of AMPs, which will

help to better understand the mode of action of AMPs and

predict their activities.

FIGURE 8
Performance comparison of different models.
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Development of an integrated
platform for highly accurate
promoter prediction and
visualization of Synechococcus
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sp. through a state-of-the-art
natural language processing
model BERT
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University, Yongin-si, South Korea

Since the introduction of the first transformer model with a unique self-

attention mechanism, natural language processing (NLP) models have

attained state-of-the-art (SOTA) performance on various tasks. As DNA is

the blueprint of life, it can be viewed as an unusual language, with its

characteristic lexicon and grammar. Therefore, NLP models may provide

insights into the meaning of the sequential structure of DNA. In the current

study, we employed and compared the performance of popular SOTA NLP

models (i.e., XLNET, BERT, and a variant DNABERT trained on the human

genome) to predict and analyze the promoters in freshwater

cyanobacterium Synechocystis sp. PCC 6803 and the fastest growing

cyanobacterium Synechococcus elongatus sp. UTEX 2973. These freshwater

cyanobacteria are promising hosts for phototrophically producing value-added

compounds from CO2. Through a custom pipeline, promoters and non-

promoters from Synechococcus elongatus sp. UTEX 2973 were used to train

themodel. The trainedmodel achieved an AUROC score of 0.97 and F1 score of

0.92. During cross-validation with promoters from Synechocystis sp. PCC

6803, the model achieved an AUROC score of 0.96 and F1 score of 0.91. To

increase accessibility, we developed an integrated platform (TSSNote-

CyaPromBERT) to facilitate large dataset extraction, model training, and

promoter prediction from public dRNA-seq datasets. Furthermore, various

visualization tools have been incorporated to address the “black box” issue

of deep learning and feature analysis. The learning transfer ability of large

language models may help identify and analyze promoter regions for newly

isolated strains with similar lineages.
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Introduction

A classic problem in bioinformatics is the challenge of

predicting promoters (Zhang et al., 2022). Promoter regions

are DNA regions where RNA polymerase binds to initiate the

transcription process, the first step in the central dogma of

molecular biology (Butler and Kadonaga, 2002). Owing to

their essential role in regulating and determining the timing

and expression levels of genes needed for vital functions, the

prediction and in-depth functional analysis of promoters have

been of interest to biologists. Previously, owing to the complexity

of cis-regulation networks and lack of data, attempts at

developing promoter prediction tools were inadequate

(Bhandari et al., 2021). However, recent advancements in

machine learning and deep learning have successfully

leveraged genomic data. To date, many groups have

successfully constructed promoter prediction tools using

traditional machine learning methods, knowledge-based

position matrix weight (Huerta and Collado-Vides, 2003;

Burden et al., 2005; Rangannan and Bansal, 2010; Di Salvo

et al., 2018) through support vector machines, and artificial

neural networks for this logistic regression task (Gordon et al.,

2003; da Silva et al., 2006; Mann et al., 2007; Towsey et al., 2008;

He et al., 2018; Liu et al., 2018; Rahman et al., 2019; Xiao et al.,

2019; Zhang et al., 2019; Li et al., 2021). Convolutional neural

networks (CNN) and recurrent neural network (RNN)-based

architectures (long short-term memory, gated recurrent units)

have recently become the most popular choices for promoter

classification (Nguyen et al., 2016; Le et al., 2019; Oubounyt et al.,

2019; Amin et al., 2020; Zhu et al., 2021). CNN-based models

depend on predetermined kernel size designs to extract and

generalize local features; therefore, they might fail to capture

long-range contexts. To overcome this limitation, some research

groups have integrated RNN-based models to retrieve long-term

dependencies. By design, LTSM computations from RNNs are

processed sequentially and depend on the outputs of the previous

hidden states for the next state to maintain the sentence structure

and context; however, this, in turn, leads to the vanishing

gradient problem. These limitations pose difficulties and may

restrict the scalability and flexibility of constructed models when

applied to other species.

Since its first appearance in 2017, the transformer

architecture, with its unique self-attention mechanism, has

revolutionized the natural language processing (NLP) field

and achieved SOTA performance in various machine learning

tasks (Vaswani et al., 2017). As these transformers perform well,

they have made their way to other branches (e.g., computer

vision) (Wu et al., 2020; Arnab et al., 2021; Zhou et al., 2021) that

were previously dominated by CNNs, and they are now also used

in multimodal learning for content generation (Tsai et al., 2019;

Yu et al., 2019; Dzabraev et al., 2021). Transformer-based models

are versatile and can be incorporated into different architectures

owing to their robustness and flexibility through their learning-

transfer capability. Considering the sequential nature of DNA,

which can be regarded as a natural language with unique

grammar and lexicon, transformer-based models are

particularly well suited for supervised classification tasks.

Therefore, adopting a different approach in the current

study, we employed and compared transformer-based models

for the promoter prediction problem. To date, most of the

currently constructed models have been designed for popular

species with curated regulatory databases such as humans, fruit

flies, mice, Escherichia coli, and yeasts (Oubounyt et al., 2019;

Rahman M et al., 2019; Li et al., 2021). However, there is still

considerable interest in integrating deep-learning techniques for

promoter analysis in other (less popular) species. For example,

cyanobacteria are an ancient and diverse group of photo-

oxygenic prokaryotes with ample potential for the

photosynthetic production of value-added chemical

compounds from the greenhouse gas CO2. Many

cyanobacterial species with a high potential for valorizing CO2

are still being isolated and characterized every year. Some of the

most notable genera were Synechocystis and Synechococcus.

These model organisms can convert CO2 into various useful

products (Luan et al., 2019; Sarnaik et al., 2019; Lin et al., 2020;

Pattharaprachayakul et al., 2020; Qiao et al., 2020; Taylor and

Heap, 2020; Kato and Hasunuma, 2021; Roh et al., 2021; Santos-

Merino et al., 2021). Although they have been characterized and

researched for a few decades, the application of deep learning for

promoter prediction specifically in cyanobacteria is still lacking.

Therefore, in this study, we used the promoters of Synechococcus

elongatus sp. UTEX 2973, the fastest growing cyanobacterium for

model training and testing (Song et al., 2016; Mueller et al., 2017).

We further conducted cross-validation of the promoters of the

model organism Synechocystis sp. PCC 6803 to test whether the

models also work on related species (Ikeuchi and Tabata 2001).

Combined with knowledge-based analysis, in-depth model

characterization may help tackle the “black box” problem of

deep-learning models.

To facilitate the development and incorporation of SOTA

transformer-based promoter prediction tools, we reconstructed a

pipeline (using TSSNote and PromBERT Google Colab

notebooks) to compute and extract the promoters of public

differential RNA-seq (dRNA-seq) datasets from the National

Center for Biotechnology Information Sequence Read Archive

(NCBI SRA) database and used them for model training. dRNA-

seq is an RNA sequencing technique that allows the

determination of TSS at 1 bp resolution by enriching primary
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transcripts (Bischler et al., 2015). In contrast to conventional

differential expression RNA-seq (RNA-seq), dRNA-seq requires

additional treatments and more expensive and complex

procedures, making these datasets rather limited. Transfer

learning is a core advantage of large-parameter language

models. We expect that, with fine-tuning, transformer-based

promoter models can be good approximators for other related

species. To improve the accessibility to researchers with and

without expertise in machine learning, separate modules of the

pipeline for promoter extraction, model training, promoter

prediction, and visualization were ported into the cloud-based

platform Google Colab. We demonstrated that, even without the

advantage of the pre-training phase, transformer-based models,

such as bidirectional encoder representations from transformers

(BERT) and XLNET, are capable of highly accurate promoter

prediction for Synechocystis and Synechococcus species solely

through a context-wise self-attention mechanism (Devlin

et al., 2018; Yang et al., 2019).

Materials and methods

Datasets

Raw dRNA-seq datasets for Synechocystis sp. PCC 6803 and

Synechococcus elongatus sp. UTEX 2973 and for Synechocystis

sp. PCC 6714 were downloaded from the NCBI SRA database,

and genomic DNA sequence assemblies were downloaded from

the NCBI RefSeq database (Table 1).

Independent E. coli promoter datasets for benchmarking

were obtained from https://github.com/chenli-bioinfo/promoter.

Available data and local and Google Colab versions of

TSSNote-CyaPromBERT are available at https://github.com/

hanepira/TSSnote-CyaPromBert.

Constructing promoter extracting module
from dRNA-seq datasets

Because one of the objectives of the current work is to create a

cloud-computing-based pipeline that can be applied without

strong hardware requirements, we implemented algorithms in

a Colab notebook for TSS prediction based on changes in read

coverage, in a similar manner to TSSpredator (Dugar et al., 2013)

but with more flexibility for customizations. This promoter

extracting module (TSSNote) takes SRA ids for TEX (+) and

TEX (-) treatments and fasta from NCBI as inputs and conducts

alignment by HISAT2 and read coverage extraction through

SAMTools. HISAT2 enables soft-clipping alignment, through

which adapters do not interfere with the read alignment.

SAMTools are then used to extract read coverage from the

plus and minus strands for later computations. The read

coverage files from both TEX (+) enrichment and TEX (-)

were used to locate and compute the potential TSSs enriched

by TEX treatment. Because the quality of dRNAseq datasets is

dependent on experimental procedures, after calculating

potential TSSs, users can filter TSSs based on the read

coverage cut-off or coverage change cut-off. BAM files can be

downloaded into local drives for manual observation and

curation using NGS genome browsers. The overall design is

illustrated in Figure 1, and the detailed workflow of the

TSSNote is shown in Figure 2.

Read coverage change at a specific location is calculated by

the following function:

△xi � xi+1 + c

xi + c

Where: xi = coverage depth at position i xi + 1 = coverage depth

at position i + 1 Δxi = change factor from xi to xi + 1 c =

calibration constant to prevent division zero (0.01).

Promoter and non-promoter sequences
extraction

Promoters were extracted directly upstream from the

predicted TSSs. For promoter sequences, ribosomal RNA

depletion in dRNAseq experiments may not be 100%;

therefore, further trimming methods were implemented.

We tested the TSSs identified by TSSNote based on the

wildtype dataset with the TSSs proposed in the original

publication (Tan et al., 2018). Even though the

TABLE 1 Datasets employed in this study.

Species SRA accession number Condition TEX treatment

Synechococcus elongatus sp. UTEX2973 SRR6334749, SRR6334750 Primary transcripts under normal condition TEX (+)

SRR6334747, SRR6334748 Control under normal condition TEX (-)

Synechocystis sp. PCC 6803 SRR1019366, SRR1019365 Primary transcripts under exponential and stationary phase TEX (+)

SRR1019368, SRR1019367 Secondary reads from 10 different conditions TEX (-)

Synechocystis sp. PCC 6714 SRR1019241 Primary reads from stationary phase TEX (+)

SRR1019242 Secondary reads from 10 different conditions TEX (-)
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implementation method was different, many of the predicted

TSSs were consistent. By setting constraints more stringent,

through expression strength and degree of changes, more than

90% of the TSSs identified in the wildtype dataset were also

found in the original proposed TSSs concatenated from

multiple conditions. Therefore, filtered promoter datasets

extracted from strongly expressed and enriched TSSs

should be sufficiently reliable. As deep-learning models

require a large amount of data for accurate generalization,

we believe that the flexibility offered by TSSNote can be

crucial. Furthermore, read counts and fold-changes in read

coverage can provide more information to group and filter

promoters based on promoter strength. It can be used

independently or together with existing tools for better

analysis. In the current work we lowered the constraints to

take into account the potential spurious transcriptional events

and weak promoters of other sigma factor groups which would

be filtered by the method used in the original publication. The

good performance on cross validation and clear pattern

enrichment indicate that the model has successfully learned

key features from the extracted promoters for promoter

recognition task.

The non-promoter sequences were extracted from the “non-

promoter” regions. Specifically, Non-promoter sequences were

FIGURE 1
Overall scheme for constructing and developing TSSNote and CyaPromBERT. TSSNote facilitates downloading raw dRNA-seq datasets from
NCBI SRA database and conducts alignment, sorting, and filtering for extracting promoters and non-promoters. These sequences are later used to
train a BERT model for the task of promoter prediction. Randomly generated DNA sequences with similar size to promoter length are added to
reduce biases, and overfitting is used to improve the model’s robustness. The trained model is capable of promoter prediction, regional
scanning, and visualization at base-pair level.
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FIGURE 2
Detailed flowchart of TSSNote operation to extract TSSs, promoters, and non-promoter sequences.
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sampled from the downstream of TSSs. If the distance between

two neighboring TSSs is larger than 2 times the sequence length,

that interval region is marked and used for sampling non

promoter sequences. We further added 10% randomly

generated sequences to increase noise and reduce overfitting.

The non-promoter sequences then are shuffled, and a portion of

the non-promoter sequences was used at the ratio 1:

1 promoter–non-promoter for model training.

Model training

The TSSs of each species from different datasets was

extracted and concatenated for model construction using

Python wrapper TSSNote, which was written in Python 3.9 as

a user-friendly pipeline to conduct raw data gathering using SRA

toolkits 3.0 (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?

view=software) and Entrez-direct (Kans 2022), sequence

indexing, read alignment by HISAT2 (Kim et al., 2019),

strand sorting, and read coverage calculation by SAMtools

(Danecek et al., 2021). Promoter sequences were extracted

from the calculated TSSs using the Biopython package (Cock

et al., 2009).

To construct CyaPromBert and evaluate the performance of

different transformer-based models, Pytorch 1.11.0 and Pytorch-

lightning 1.6.4 (Paszke et al., 2019). Transformer-based models

were constructed using base models from huggingface’s

transformer library 4.18.0 (Wolf et al., 2020).

The probability was calculated by the sigmoid function:

S(x) � 1
1 + e − x

The performance of the models was evaluated by precision,

recall, F-1, and AUPRC, AUROC scores.

Precision � tp

tp + fp

Recall � tp

tp + fn

F1 � 2tp
2tp + fp + fn

Where: tp = true positive fp = false positive fn = false negative

The area under the precision-recall curve (AUPRC) is

calculated from the average precision score and AUROC is

the area under the receiver operating characteristics.

Binary cross entropy was used as the loss function.

BCELoss � − 1
N

∑N
i�1
(yi*log (pi) + (1 − yi)*log (1 − pi))

Attention weight visualization libraries, BERTviz 1.4.0, and

Captum 0.5.0, were implemented to improve visualization and

interpretability (Vig 2019; Kokhlikyan et al., 2020). Both

TSSNote and the models were first developed and trained on a

local workstation equipped with an NVIDIA RTX 3070 before

porting and testing on the Google Colab cloud computing service.

Results and discussion

Selecting the best performing SOTA
transformer-based model for promoter
prediction

The transformer-based architecture has demonstrated

that, with sufficient data, matrix multiplications, linear

layers, and layer normalization, the deep-learning model

can achieve SOTA machine translation tasks without

relying on CNN and RNN (Vaswani et al., 2017). BERT

and XLNET are two of the most popular transformer-

based language models (Devlin et al., 2018; Yang et al.,

2019). Fundamentally, these large-language models are

stacks of encoding modules from the original transformer

model. However, they are pre-trained differently and use

different tokenizers. BERT is an autoencoding-based

model, whereas XLNet employs an autoregressive method

similar to the famous GPT models from OpenAI (Floridi and

Chiriatti 2020). These differences reflect the capability to

capture the semantic context for prediction in masked

language prediction pretraining, and thus they can affect

the performance of the model. However, the corpora, on

which both BERT and XLNet were trained, are far different

from the genomic DNA sequences; therefore, they might not

have pretraining advantages. Thus, we also compared a

different variant of BERT (DNABERT) pretrained on

human genomic DNA at different kmer lengths (from

three to five nucleotides) (Ji et al., 2021). The DNABERT

models outperformed previous CNN-based models for TATA

and non-TATA promoter prediction tasks in eukaryotes. To

improve the resolution, we trained a byte-level byte-pair-

encoding (BPE) tokenizer at a length of one nucleotide (or

kmer 1). The operating mechanism is illustrated in Figure 3

and the performance results are listed in Table 2 and Figure 4.

For this particular promoter prediction task (using binary

cross entropy as the loss function and F1 score as the key

determinants to evaluate model performance), both XLNet-

base and BERT-base using a one kmer length byte-level BPE

tokenizer had the best performance compared to the default

tokenizers or tokenizer at different lengths. Both XLNet+1bp

tokenizer and BERT+1bp tokenizer achieved AUROC scores of

0.97 and 0.977, and F1 scores of 0.92 and 0.93 respectively. These

twomodels exhibited comparable performance. However, during

training and testing, XLNet used more computing resources than

BERT; therefore, we selected the BERT-base + 1bp tokenizer for

further investigation. The corpora in which these two base

models were pretrained did not contain genomic databases.

They should not benefit from the pre-training process for the
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promoter prediction task. The high performance can be

attributed to context awareness (context-based embedding) of

the position and composition of the tokens (nucleotides) through

the self-attention mechanism. We further tested the performance

of the BERT-base + 1bp tokenizer and DNABERT5 + 1bp

tokenizer. The results further show that there are no

differences in performance. These findings also confirmed

that, during training for promoter prediction tasks using

BERT, the choice of tokenizer influenced the performance.

Surprisingly, the DNABERT variants trained in the genomic

context performed worse than the BERT-base + 1bp tokenizer.

Longer kmer lengths might provide a better context and have

more meaningful biological values for interpretation (Ji et al.,

2021); however, the F1 scores of the pretrained DNABERT 3, 4,

and five were lower than those of BERT-base and XLNet with the

1bp tokenizer. One possible explanation for this finding is that

the 1bp tokenizer better captured nuances at the single-

nucleotide level interactions in the training dataset. As the

promoter datasets in the current study were extracted solely

from TSSs and were not grouped in transcriptional factor classes,

less information is required to make decisions. This model may

significantly favor specific nucleotides at certain fixed positions.

Using tokenizers with longer kmer lengths (for the case of

DNABERT) might be better for other genomic applications or

designs that require larger curated datasets with expected long-

range interactions within those genomic sequences. This is

particularly relevant if the model is pre-trained or fine-tuned

by permutation and masked language modeling first on the

genomic data of the target species. We further tested the

influence of promoter length on model performance; however,

increasing the promoter length to 200bp did not change the

performance of any of the tested models (data not shown).

FIGURE 3
The detailed model architecture of PromBERT for promoter prediction. DNA sequences of fixed length are tokenized using a custom 1bp
tokenizer and fed into 144 attentionmodules. Based on the final tensors in the pooling layer, the classifier calculates the probabilities of promoter and
non-promoter using the sigmoid function. Backpropagation was conducted using binary cross entropy loss.

TABLE 2 Performance of popular transformer-based NLP models for promoter prediction.

Model and
tokenizer

AUROC Precision F1 score Support

Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter Promoter Non-
promoter

XLNET 0.926 0.925 0.85 0.84 0.85 0.85 1018 1019

XLNET + 1bp
tokenizer

0.97 0.97 0.92 0.92 0.92 0.92 1018 1019

BERT-base 0.941 0.942 0.84 0.89 0.87 0.87 1001 1036

BERT-base + 1bp
tokenizer

0.977 0.977 0.92 0.95 0.93 0.93 1001 1036

DNABERT3 + kmer 3 0.944 0.944 0.9 0.84 0.86 0.88 1008 1029

DNABERT4 + kmer 4 0.944 0.944 0.88 0.86 0.87 0.87 1028 1009

DNABERT5+ kmer 5 0.956 0.956 0.9 0.89 0.89 0.89 1031 1006
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Evaluating model performance compared
to existing promoter prediction models
using independent datasets from E. coli

To evaluate the robustness of the proposed BERT-base +1bp

tokenizer for promoter prediction task, we conducted model

training using an independent dataset for σ70 promoters for

model benchmarking from a previous study (Zhang et al., 2022).

We compared the performance of our model with two

promoter prediction webservers iPro70-FMWin (Rahman

et al., 2019) and iPromoter-2L2.0 (Liu et al., 2018) which

were reported to have very high accuracy for σ70 promoters.

The results showed that those three models performed equally

well on the benchmarking dataset with F1 scores around 91%.

Our model performed slightly better across promoter and non-

promoter tag (Table 3). Since iPro70-FMWin also provides

probability scores, we compared the AUPRC scores of this

model with our Eco70PromBERT-1bp (Figure 5). Our model

had a better AUPRC score of 0.967 compared to 0.953 from

iPro70-FMWin.

The results illustrated the robustness of BERT-base + 1bp

tokenizer for promoter prediction task in general. Considering

that both iPro70-FMWin and iPromoter-2L2.0 were designed

specifically to extract sequence features with various

customizations for promoter classification to achieve SOTA

performance. The plug-and-play characteristic of large

language models like BERT would be better for scalability and

broader applications.

Interpreting the model’s behavior through
Monte Carlo sampling and attention score
visualization

Interpreting deep-learning (DL) models is another important

aspect of model validation. One of the main issues concerning

deep-learning models is the “black box” problem, where users

might not know how DL models process and compute the

outputs for reverse engineering and understanding. This

problem is particularly difficult for large parameter models

FIGURE 4
Average precision scores of the tested transformer-based models.

TABLE 3 Performance of Eco70PromBERT and popular promoter predictionmodels for E.coli using an independent dataset (σ70 promoters and non-
promoters).

Model and
tokenizer

AUROC Precision F1 score Support

Promoter Non-
promoter

Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter

Eco70PromBERT
(BERT-base + 1bp
tokenizer)

0.92 0.90 0.91 0.91 0.91 0.91 110 108

iPro70-FMWin 0.90 0.90 0.93 0.88 0.90 0.91 110 108

iPromoter-2L2.0 0.91 0.91 0.90 0.92 0.91 0.91 110 108
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such as NLP models (e.g., BERT). Specifically, the BERT-base

model used in this study consists of 86.8 million trainable

parameters from 144 attention modules (12 layers ×

12 heads). The use of attention scores to visualize token

weights is a commonly used method for improving model

understanding. We employed integrated libraries for

interpretability, namely BERTviz and Captum, to gain more

insight into CyaPromBERT behavior and key features

determining true promoters or non-promoters.

From the BERTviz model view and Captum, it appeared that

a large number of self-attention modules focused on -10 element

and occasionally on -35 element for sequences classified as

promoters (Figure 6 and Figure 7). This is understandable, as

the training dataset consists of all promoters from different sigma

factor groups. In prokaryotes, the promoter regions are AT-rich

and depend on the differences between their local structural

properties and flanking sequences. The AT-rich -10 element

plays a conserved role in DNA unwinding and facilitates

transcription. Therefore, the constructed model could capture

this local interaction context for promoter classification. Not all

attention modules were utilized in the trained model; non-

operational modes were observed in several layers and

attention heads (cross-attention pointing to <s> and </s >
tokens).

To estimate the closeness of the classifier to the real

consensus of the -10 element, we defined a simple Monte

Carlo generator using the constructed CyaPromBERT model

as the discriminator. The pseudo-random generator

generated fixed-length DNA sequences (50 nucleotides)

until an expected number of sequences (500 sequences)

passed the discriminator (cutoff value ≥0.99). Using this

enrichment method, a recognition motif of the

GnTAAAATT region was identified with a strong

emphasis on thymine at the -11 and adenine at the

-10 and -9 positions followed by two thymine bases at

-6 and -5 (Figure 7C), which is similar to the consensus

motif of the extended -10 element GnTATAAT of the

extended -10 element previously reported in E. coli

(Feklistov and Darst 2011). Further stretching of GGG

was similar to that of the discriminator element in E. coli.

Reversed enrichment using Monte Carlo sampling did not

yield any motifs for non-promoter sequences. Promoters

recognized by sigma factor groups have preferred motifs;

however, crosstalk between groups does occur due to

similarity of the transcriptional factors (Figure 7B). Group

1 (SigA), from the model cyanobacterium Synechocystis

sp. PCC 6803 has consensus motifs similar to RpoD from

E. coli (-35 element TTCACA and -10 element TATAAT),

whereas the promoters recognized by sigma factor group 2

(SigB,C,D,E,F) have only a consensus motif of TATAAT for

the -10 element. Group 3 (sigF,G,H,I) has dissimilar motifs

of the -32 element TAGGC and -12 element GGTAA

(Imamura and Asayama 2009). Therefore, the trained

model CyaPromBERT potentially learned and gave better

attention scores to nucleotide matching the enriched motif to

distinguish promoter-like and non-promoter sequences.

FIGURE 5
Model performance based on receiver operating characteristic curves tested on an independent promoter datasets from E. coli. (A) iPro70-
FMWin (B) Eco70PromBERT- (BERT-base + 1bp tokenizer trained on promoter datasets from E. coli).
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Cross-species validation through
Synechocystis sp. PCC 6803 and
Synechocystis sp. PCC 6714 datasets

As stated above, one of the main objectives of the current

work was to use the limited dRNA-seq datasets of some model

organisms that are closely related to the organisms of interest

to construct curated models capable of high-performance

inferencing for species with similar lineages by taking

advantage of the learning transferability of deep-learning

models. Therefore, we further validated the trained

model using promoter and non-promoter datasets prepared

from Synechocystis sp. PCC 6803 using TSSNote. They were

from a different genus than Synechococcus elongatus sp. UTEX

2973. The trained model performed well on promoter

prediction tasks using datasets consisting of

2840 sequences from Synechocystis sp. PCC 6803, with an

AUROC score of 0.961 and F1 score of 0.91 (Table 4). A slight

reduction in performance compared with that of

Synechococcus elongatus sp. UTEX 2973 may be due to

overfitting or differences in genomic preferences between

the two species. Additionally, we trained similarly a

promoter prediction model from Synechocystis sp. PCC

6803 and cross validated it with a closely related species

Synechocystis sp. PCC 6714. The performance was similar

but F1 scores of 0.89 were lower than those from Synechocystis

sp. PCC 6803 (Table 5). However, it should be noted that the

quality of datasets for Synechocystis sp. PCC 6714 was not

high, leading to more noisy data. Regardless, the results still

demonstrated the capability of maintaining good

performance in cross-species promoter prediction from

similar lineages.

FIGURE 6
Visualization tools for model interpretability. (A) Heatmap based on attention scores of nucleotides (tokens) across 12 layers. (B) Heatmap
illustrating cross-attention scores of nucleotides (tokens) in the last three layers. In the example heatmap, the self-attention modules focused on
-10 element and some positions in the -35 element.
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The limitations of the pipeline and the
trained model

Despite the fast construction and relatively high

performance, a few limitations were present in the current

work. First, for TSSNote, the quality and accuracy of

promoter extraction depend on the quality of raw dRNAseq

datasets and their experimental designs. The quality and

performance of the trained model also depend on the quality

of the inputs; therefore, selecting suitable parameters and

preparing good datasets are the most important part of this

pipeline.We tested the pipeline on datasets of the model acetogen

Eubacterium limosum (Song et al., 2018). The pipeline produced

a model with F1 scores of 0.88 and AUROC scores of 0.89.

However, when we tested the pipeline on more dated datasets of

other species, the trained models did not perform well. Second,

FIGURE 7
Motif analysis using attribution weights and reverse enrichment through Monte Carlo sampling. (A) Class attributions visualization of a few
strong promoters in Synechococcus elongatus sp. UTEX 2973 and a non-promoter sequence. (B) Transcription factor groups in Synechocystis sp.
PCC 6803. The relatively conserved region two in group 1 and group 2 retains a motif similar to the consensus -10 element TATAAT. (C) The motif
learned by the trained model discovered by Monte Carlo sampling.
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despite the high performance of the test datasets and cross-

validation, the trained model still suffers from false positives in

the regional scanning mode. Thus, the results should be

interpreted as the most potential locations, and further

analyses for decision-making should be conducted. There are

several possible explanations for this finding. To capture most

promoters of the genera Synechocystis and Synechococcus

through the learned pattern, the model focused solely on the

interrelationship and composition of nucleotides in the

-10 element. Therefore, the model may be confused with AT-

rich promoter-like sequences. Another explanation is that

transcription is a complex biological process, which is

influenced by multiple factors, such as protein–DNA

interactions and protein–protein interactions (DNA-binding

proteins, transcription factors, enhancers, competition of

sigma factors for the holoenzyme RNA polymerase), and the

topographical state of the genome (chromosome folding states).

The tertiary structures of chromosomes can greatly influence

functional DNA-related processes, such as transcription and

DNA replication (Dorman, 2019; Szabo et al., 2019). Such

interactions cannot be fully captured with sequential

information, which is another limitation of the current work.

Regardless, the transformer architecture is a powerful building

block for the construction of multimodal models; therefore,

future incorporation of additional data reflecting cis/trans

interactions and/or other neural networks may improve the

accuracy and reduce false positives to make the model more

deterministic. The pipeline and model in the current work may

be used for constructing a fast and accessible promoter prediction

and screening tool using a deep-learning approach, which can

help reduce the time needed for downstream analyses.

Conclusion

With the rapid evolution and continuous development of

next-generation sequencing techniques, an unprecedented vast

amount of high-quality biological data has become increasingly

accessible to researchers. This ever-expanding source of

genomic data is a valuable, yet underexplored, reservoir of

knowledge that can provide valuable insights into the

mystery of life. Recently, methodological and computational

advancements have enabled systematic and high-throughput

approaches to elucidate the biological meanings of DNA

sequences, in addition to traditional knowledge-based

analysis. The traditional method for promoter identification

involves dRNA-seq or 5′-CAGE experiments. However, despite

the growing number of high-quality RNA-seq datasets, dRNA-

seq experiments are still limited and expensive. In the current

study, we applied and compared the performance of various

TABLE 4 Cross validation the performance of CyaPromBERT trained on Synechococcus elongatus sp. UTEX 2973 for a distantly related species
Synechocystis sp. PCC 6803.

Species AUROC Precision F1 score Support

Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter

Synechococcus sp.
UTEX 2973

0.98 0.98 0.92 0.95 0.93 0.93 1001 1036

Synechococcus sp.
PCC 6803

0.96 0.96 0.88 0.94 0.91 0.91 1407 1433

TABLE 5 Cross validation the performance of CyaPromBERT trained on Synechocystis sp. PCC 6803 for a closely related species Synechocystis
sp. PCC 6714.

Species AUROC Precision F1 score Support

Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter Promoter Non-promoter

Synechococcus sp.
PCC 6803

0.97 0.97 0.91 0.92 0.91 0.92 364 378

Synechococcus sp.
PCC 6714

0.96 0.96 0.91 0.88 0.89 0.89 330 330
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SOTA transformer-based models for promoter prediction of

Synechococcus elongatus sp. UTEX 2973 and Synechocystis

sp. PCC 6803. The model achieved an AUROC score of 97%

and an F1 score of 92% in the validation dataset of the

promoters extracted from Synechococcus elongatus

sp. UTEX 2973 and had an AUROC score of 96% and

F1 score of 91% when cross-validated using 7000 promoters

from Synechocystis sp. PCC 6803. This finding illustrated

that core promoter features are conserved in related

species, and the dRNA-seq dataset of one model

organism is sufficient to construct a curated promoter

prediction model.

Precise promoter prediction is essential to understand the

regulatory mechanisms of genes and operons. A key advantage

of this study is that it can rapidly identify potential

promoter sequences and regions from genomic data with high

precision. The model is integrated with the visualization libraries

BERTviz and Captum to visualize cross-attention weights, allowing

closer observation of base-pair interactions. To increase accessibility

to other researchers, both themodels and pipeline were ported to the

cloud-computing service Google Colab. The pipeline developed

(TSSNote and PromBERT) in this study can be applied to other

species and lineages to develop fast promoter prediction tools. As

transformer architecture has become increasingly popular for

multimodal learning, the implementation and analysis of BERT

behavior in the context of genomics is another case study for

developing more robust implementations of transformers for

biological application.
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Predicting gene expression from
histone modifications with
self-attention based neural
networks and transfer learning

Yuchi Chen, Minzhu Xie* and Jie Wen

College of Information Science and Engineering, Hunan Normal University, Changsha, China

It is well known that histone modifications play an important part in various

chromatin-dependent processes such as DNA replication, repair, and

transcription. Using computational models to predict gene expression based

on histone modifications has been intensively studied. However, the accuracy

of the proposed models still has room for improvement, especially in cross-cell

lines gene expression prediction. In the work, we proposed a new model

TransferChrome to predict gene expression from histone modifications

based on deep learning. The model uses a densely connected convolutional

network to capture the features of histone modifications data and uses self-

attention layers to aggregate global features of the data. For cross-cell lines

gene expression prediction, TransferChrome adopts transfer learning to

improve prediction accuracy. We trained and tested our model on

56 different cell lines from the REMC database. The experimental results

show that our model achieved an average Area Under the Curve (AUC)

score of 84.79%. Compared to three state-of-the-art models,

TransferChrome improves the prediction performance on most cell lines.

The experiments of cross-cell lines gene expression prediction show that

TransferChrome performs best and is an efficient model for predicting

cross-cell lines gene expression.

KEYWORDS

gene expression, histone modification, deep learning, transfer learning, convolutional
neural network

Introduction

Understanding the patterns of gene regulation has been one of the major focuses of

biological research. A variety of biological factors are thought to be involved in the

regulation of gene expression. The regulatory factors usually include transcription factors,

cis-regulatory elements, and epigenetic modifications. As a type of epigenetic

modifications, histone modification plays an important role in gene expression

regulation (Gibney and Nolan, 2010). Nucleosome is the building block of a

chromosome, which consists of an octamer of histones and 147 base pair (bp) DNA

wrapping around the octamer. Since histone is a core component of the nucleosome,
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histone modifications directly affect the structure of chromatin

and control the expression intensity of nearby genes. Recently, a

great number of researches have shown that histone

modifications have a great impact on gene expression,

chromosome inactivation, replication, and cell differentiation

(Krajewski, 2022; Lin et al., 2022). There are a variety of

histone modification marks at different chromosomal

locations, and there may be a set of “codes” of histone

modifications to control gene expression (Peterson and Laniel,

2004). Due to the high-throughput sequencing technologies, a

huge amount of histone modifications data and gene expression

data are available, and using computational algorithms to predict

gene expression based on histone modifications is feasible.

To date, a variety of computational methods have been used

to predict gene expression based on gene regulatory factors. For

example, Beer and Tavazoie, (2004) used Bayesian networks to

predict gene expression from DNA sequences. Ouyang et al.

(2009) used a linear regression model to predict gene expression

based on 12 transcription factors. Zeng et al. (2020) combined the

information of proximal promoter and distal enhancer to predict

gene expression. In 2010, Karlić et al.(2010) found histone

modification levels and gene expression are well correlated,

and derived quantitative models to predict gene expression

from histone modifications. Li et al. (2015) used a machine

learning method to predict gene expression in lung cancer

from multiple epigenetic data such as CpG methylation,

histone H3 methylation modification and nucleotide

composition. In 2016, Singh et al. (Singh et al., 2016) used a

convolutional neural network (CNN) DeepChrome to predict

gene expression based on five critical histonemodificationmarks.

To improve prediction accuracy, they (Singh et al., 2017)

integrated attention mechanism into a neural network and

proposed a prediction model AttentiveChrome. Temporal

Convolutional Network (Zhu et al., 2018; Kamal et al., 2020)

is also utilized to predict the gene expression from histone

modifications. In 2022, Hamdy et al. (2022) proposed three

variations of CNN models called ConvChrome.

Though the above methods have achieved good

performances, there are still room for improvement, and some

recently emerging technologies have provided some ways. When

models are trained and tested on different cell lines which is

knowns as cross-cell lines prediction, the model performance is

always compromised. For example, compared to training and

testing on the same cell line dataset, the average prediction

accuracy of DeepChrome trained on other cell lines is 2.3%

lower. Because of the large variety of cell lines, it is difficult to

obtain histone modification data and gene expression data for all

types of cell lines. Therefore predicting gene expression using

models trained on other cell lines is useful and in urgent need.

Transfer learning is a machine learning technique in which a

model trained on a specific task is reused as part of the training

process for another similar task (Tan et al., 2018). Transfer

learning allows training and prediction using the dataset from

different sources with similar characteristics and significantly

reduces dataset bias. Transfer learning has achieved great success

in prediction tasks that require learning transfer features (Sun

et al., 2022; Zhu et al., 2022). In the field of bioinformatics,

transfer learning enables existing trained models to efficiently

work on similar datasets that are lack of labels, which reduces the

cost of biological experiments.

In the paper, we propose a neural network model

TransferChrome with self-attention mechanism and transfer

learning to predict gene expression based on histone

modifications data. TransferChrome uses neural network

layers with self-attention mechanism to capture global

contextual information of data. In order to correct the data

bias of cross-cell lines gene expression prediction, we used

transfer learning. The experimental results show that

TransferChrome achieved an average Area Under the Curve

(AUC) score of 84.79%, which is better than other 3 state-of-the-

art similar models. The cross-cell lines prediction experiments

also show that TransferChrome outperforms other models.

Materials and method

Data collection and processing

The experimental data comes from the Roadmap Epigenome

Project (REMC) (Kundaje et al., 2015), which consists of 56 cell

lines’ histone modifications data and the corresponding

normalized RPKM expression data of 17170 samples. Same as

DeepChrome (Singh et al., 2016), five histone modification

marks that play important roles in gene expression were

selected for our experiments. These 5 marks include

H3K4me3, H3K4me1, H3K36me3, H3K27me3, and

H3K9me3. Their functional categories are summarized in

Table 1. Each sample in the dataset represents a gene. The

data of one sample include the five histone modification

marks signal within 10000bp upstream and downstream of

the transcription start sites (TSSs) of the corresponding gene.

According to DeepChrome (Singh et al., 2016), the 10000 bp

is equally divided into 100 bins and the histone modifications

data of one sample is encoded into an n × mmatrix x, where n is

TABLE 1 Five core histone modification marks and their functional
categories.

Histone mark Associated regions Functional category

H3K27me3 Polycomb repression Repressor mark

H3K36me3 Transcribed regions Structural mark

H3K4me1 Enhancer regions Distal mark

H3K4me3 Promoter regions Promoter mark

H3K9me3 Heterochromatin regions Repressor mark
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the number of histone modification marks and m is the number

of bins (see Figure 1). The histone sequencing data provided by

REMC were quantified by BEDTools into histone modification

signals. Therefore, xi,j represents the signal of the j-th histone

modification mark in the i-th bin.

Since the normalization of training data can speed up

the convergence of model training and allows the model to fit

the data better (Singh and Singh, 2020), the z-score

method is used to normalize the data for each histone

modification mark as Eq. 1. In Eq. 1, x̂i,h represents the

normalized signal of h-th histone modification mark in the i-

th bin. �xh and σh denote the mean and standard deviation of

the signals of the h-th histone modification mark of all genes

in a cell line.

x̂i,h � xi,h − �xh

σh
(1)

According to previous studies (Singh et al., 2016), each gene

is assigned a label based on its expression value. The median of

expression values of all genes in a given cell line is denoted as t. If

the expression value of a gene is higher than or equal to t, it is

labeled with 1; otherwise it is labeled with 0.

FIGURE 1
The data structure representing histone modifications.

FIGURE 2
The model structure of TransferChrome.
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To avoid interfering from adjacent genes, those genes whose

TSSs are within 5000 bp downstream of previous kept genes’

TSSs are deleted. At last there are 17170 genes remained.

Design of neural network model

As shown in Figure 2, TransferChrome is composed of

multiple modules: a feature extraction module, a label

classification module and a domain classification module. The

feature extraction module is used to calculate the latent features

of data. It includes a dense-conv block, a 1D convolutional layer,

a 1D max pooling layer, two self-attention layers, and a linear

layer (also called fully connected layer or dense layer). The label

classification module predicts a gene expression label. It includes

three linear layers. The domain classification module predicts a

domain label, which includes a gradient reversal layer (GRL) and

two linear layers. It learns transfer features, which allows the

model to achieve better performance in cross-cell lines gene

expression prediction.

Dense-connected convolutional layer for
extracting local features of data

To make the model better capture the features of the data, we

optimized the convolutional neural network in the feature

extraction module. The convolutional neural network uses

feature detectors, also known as convolution kernals or filters to

capture data’s features. According to its size, a convolution kernal

will aggregate all the information in the receptive field to extract a

corresponding feature. By increasing the number of convolutional

layers, a model can learn more complex features. However, the

deepened network structure easily ignores the features captured by

earlier convolutional layers, which usually represent the simple but

also basic features of the data. Densely Connected Convolutional

Networks (DenseNet) (Huang et al., 2017) uses a method called

dense connectivity pattern enhances the reusability of features.

Compared with the classic Convolutional Network, DenseNet

connects convolutional layers densely so that the feature

extracted by each layer could be used repeatedly. DenseNet

performs a deep supervision and strengthen the weights of

features captured by earlier convolutional layers. Inspired by

DenseNet, a dense-conv block that contains several densely

connected convolutional layers is used to extract features in our

model. A dense-connected convolutional layer is a convolutional

layer which connected to all other convolutional layers directly. It

means that the input of a dense connected convolutional layer not

only comes from its adjacent convolutional layer, but also from

other preceding layers. The dense-conv block allows the model to

learn the complex features of the data while also ensuring that the

low-level convolutional layer retains a greater influence in the

model’s decision-making.

Let xl be the output of the lth densely connected

convolutional layer. The input of the lth dense connected

convolutional layer contains the outputs of all the previous

l−1 layers as Eq. 2 shows.

xl � H x0, x1, . . . . . .xl−1[ ]( ) (2)
[x0, x1, . . .. . .xl−1] refers to the concatenation of the feature-maps

output from preceding layers. The composite function H

concludes a rectified linear unit (RELU) and 1D convolutional

layer.

In TransferChrome, the dense-conv block consists of three

dense-connected convolutional layers (kernal number = 32, 16,

8 and kernal length = 5, 5, 5). The dense-conv block is followed by

a convolutional layer (kernal number = 50 and kernal length = 5)

and a max-pooling layer (kernal length = 2). A dropout layer is

added after each convolutional layer and the dropout rate is 0.4.

The output of the max-pooling layer is input into a following self-

attention layer.

Self-attention layer for aggregating global
information

Regulatory factors at different locations may interact and act

on gene expression together. Therefore effective integration of

upstream and downstream information in the genome usually

leads to better computational results (Ji et al., 2021). The

Transformer (Vaswani et al., 2017) is an efficient neural

network model which has achieved good results in many

fields such as natural language processing (Devlin et al., 2019)

and image recognition (Dosovitskiy et al., 2021). The self-

attention mechanism used in Transformer can effectively

integrate data’s global features. The self-attention mechanism

also has been widely adopted in the field of Bioinformatics (Avsec

et al., 2021; Ji et al., 2021). For example, the researchers used this

mechanism to significantly improve the regulatory elements

prediction from genomic DNA sequences (Avsec et al., 2021).

Previous experiments (Singh et al., 2017, 2016) have illustrated

that histone modifications closer to gene’s TSS have greater

influence in the gene expression. We add self-attention

mechanism to the model, and use a position encoding

function to concatenate input data with relative distance

information. The relative distance information contains the

relative distance between each point and the TSS point, and

the output of the position encoding function is denoted by x.

TransferChrome contains two self-attention layers to capture

the long-distance dependence. The function of each self-

attention layer is as Eqs 3–6.

Q � convq x( ) (3)
K � convk x( ) (4)
V � convv x( ) (5)

Attention Q,K,V( ) � softmax QKT( )V (6)
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Each self-attention layer uses three one-dimensional

convolutional layers (kernal length = 1) convq, convk, and

convv to calculate a query matrix Q, a key matrix K and a

latent variable matrix V, respectively. The number of output

channels of convq and convk is half of the number of input

channels, and the number of output channels of convv is equal to

the number of input channels. Then the self-attention layer

calculate data’s attention score matrix QKT by multiplying

(matmul) Q and K. Finally, the attention score matrix will be

normalized by a softmax function, and multiplied with V. At the

end of the feature extraction module, there is a linear layer

following the last self-attention layer. The feature extraction

module outputs a low-dimensional feature vector. Then the

feature vector is inputted into the label classification module

and the domain classification module at the same time.

Label classification module and domain
classification module

The label classification module predicts the gene expression

label of the sample, which is the main task of our model. It is a

binary classification task with 0 and 1 represent low expression

and high expression, respectively. According to Long et al. (2015)

and Ganin and Lempitsky (2015), domain adaption can improve

prediction accuracy in transfer learning. Therefore,

TransferChrome uses a domain classification module for

cross-cell lines prediction. It contains a GRL and two linear

layers. GRL acts as an identity transform in the forward

propagation of the model. In the backward propagation, GRL

takes the gradient from the subsequent layer andmultiplies it by a

parameter −λ with λ > 0 and passes it to the preceding layer.

The domain classification module predicts whether the

sample belongs to the target domain or the source domain.

Source domains are the cell lines whose genes have gene

expression labels, and the cell lines whose gene have no

known gene expression information are called target domains.

It is also a binary classification task with 0 and 1, where

0 indicates that the sample is from the target domain and

1 indicates that the sample is from the source domain. In

cross-cell lines prediction, we try to extract those features that

can not be used to discern the data domain.

Model training

For model training, we chose cross entropy as the loss

function:

L � − y logŷ + 1 − y( )log 1 − ŷ( )[ ]. (7)

LetGf and θf be the function and the parameters of the feature

extraction module, respectively. Let Gd (Gy) and θd (θy) be the

function and the parameters of the domain (label)

classification module, respectively. For the single cell line

gene expression prediction task, the optimization goal of

model training is to minimize the loss Ly of the label

classification module without considering the domain

classification module.

For the cross-cell lines gene expression prediction task, we

train TransferChrome using the complete dataset from a source

domain and a part of the dataset from a target domain to capture

transfer features in different cell lines, and aim to minimize the

objective function in Eq. 8.

E θf, θy, θd( )
� ∑N

i�1
Ly Gy Gf xi; θf( ); θy( ), yi( )

−λ∑N
i�1

Ld Gd Gf xi; θf( ); θd( ), di( )
� ∑N

i�1
Li
y θf, θy( ) − λ∑N

i�1
Li
d θf, θd( ),

(8)

where Ld is the loss function of the domain classification module.

In the training process, stochastic gradient descent (SGD) is

used to update θy and θd to minimize the label classification loss

Ly and Ld. In the backward propagation, the first layer GRL of the

domain classification module reverses the gradient by

multiplying a negative number −λ and backward propagates it

to the feature extraction module. After the model training, Gf is

expected to extract transfer features in different cell lines. In the

training process, the learning rate is set to 0.001, momentum is

0.85, and weight decay is 0.001.We set themax training epochs to

200 and adopted early stop strategy.

In the following single-cell line prediction experiments, each

cell line data was partitioned into a training set, a validation set

and a test set as DeepChrome (Singh et al., 2016). For cross-cell

lines prediction, we used the source domain data and half of the

target domain data to train our model, and used the other half of

the target domain data as the test set.

Experiments

Comparison with other existing state-of-
the-art methods

To evaluate the effectiveness of TransferChrome, we

compared it with three state-of-the-art models (DeepChrome,

AttentiveChrome, and ConvChrome_CNN1D). DeepChrome

(Singh et al., 2016) is a convolutional neural network. It

consists of a convolutional layer (convolution kernal size is

10, the number of convolution kernals is 50), a max pooling

layer (convolution kernal size is 10), and two fully connected

layers (the number of units is 900, 125). AttentiveChrome (Singh

et al., 2017) is a recurrent neural network that uses two attention

mechanisms. ConvChrome (Hamdy et al., 2022) includes three
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variations of CNNmodels, among which ConvChrome_CNN1D

achieved the best performance. In the experiments, all models

used the same five types of core histone modifications from the

REMC project to predict gene expression. In the experiments of

single-cell gene expression prediction, we did not use the domain

classification module of TransferChrome and only used the label

classification module. DeepChrome was implemented and

trained according to Singh’s paper (Singh et al., 2016). For

AttentiveChrome, we used the trained model downloaded

from http://kipoi.org/models/AttentiveChrome/. Because

FIGURE 3
Single cell line gene expression prediction performance comparison on 56 cell lines of the models.

TABLE 2 The minimum, mean, maximum, and median of the AUC
scores of single cell line gene expression prediction of the models
on 56 cell lines.

Min Mean Max Median

TransferChrome 0.7972 0.8479 0.9289 0.8449

ConvChrome 0.7820 0.8399 0.9061 0.8386

DeepChrome 0.6871 0.8003 0.9236 0.8019

AttentiveChrome 0.7221 0.8093 0.9197 0.8216

FIGURE 4
The performance comparison of different versions of TransferChrome: TransferChrome_cross, TransferChrome_uncross and
TransferChrome_origin.
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ConvChrome’s code and data are not available, We implement

ConvChrome_CNN1Dwith PyTorch.We used the AUC score as

our evaluation metric. Experimental results on 56 cell lines are

shown in Figure 3 and Table 2, compared with the other models,

TransferChrome improved the prediction accuracy on most cell

lines. TransferChrome has a significant improvement in average

AUC compared to DeepChrome and AttentiveChrome.

Compared with ConvChrome, TransferChrome also has better

performance.

Cross-cell lines gene expression
prediction performance comparison

For the performance comparison in cross-cell lines gene

expression prediction, we arbitrarily selected a cell line (E085)

as the source domain and each one of other cell lines as the

target domain. Figure 4 and Table 3 show the experimental

results. In Figure 4 and Table 3, TransferChrome_cross means

that TransferChrome was trained and tested on different cell

lines. TransferChrome_uncross and TransferChrome_origin

did not use the domain classification module, and

TransferChrome_origin was trained and tested on the same

cell lines, while TransferChrome_uncross was trained and

tested on different cell lines. Table 3 shows the

performance comparison of TransferChrome, DeepChrome

and ConvChrome in cross-cell lines gene expression

prediction. In Table 3, DeepChrome and ConvChrome

indicate that the models were trained and tested on the

same cell line, while DeepChrome_uncross and

ConvChrome_uncross indicate that those models were

trained with E085 cell line’s data but were tested on other

cell lines.

The results have shown that the average AUC of

TransferChrome_uncross trained in a E085 cell line and

tested on another dropped by 2.9% compared to those of

TransferChrome_origin trained and tested on a same cell line.

Similarly, the average AUCs of DeepChrome_uncross and

ConvChrome_uncross dropped by 2.6% and 2.9% compared

to those of DeepChrome and ConvChrome, respectively.

Though TransferChrome_cross did not achieve the same

effect as TransferChrome_origin, the average AUC drop is

reduced to 1.5%, which showed that using domain

classification module indeed improves the performance in

cross-cell lines prediction.

Contributions of dense connectivity
pattern and different position encoding
functions

We carried experiments to see whether dense connectivity

pattern and different position encoding functions have obvious

impact on the performance of TransferChrome. A total of 9 cell

lines out of 56 with worst (E079, E084, E112), median (E114,

E120, E128), and best (E116, E117, E123) AUC scores were

selected for ablation experiments.

TABLE 3 Comparison of the minimum, mean, maximum, and median
of the AUC scores of TransferChrome, DeepChrome and
ConvChrome in single cell line and cross-cell lines gene expression
predictions.

Min Mean Max Median

TransferChrome_origin 0.7972 0.8479 0.9289 0.8449

TransferChrome_uncross 0.7672 0.8185 0.8950 0.8182

TransferChrome_cross 0.7866 0.8330 0.9156 0.8300

DeepChrome 0.6871 0.8003 0.9236 0.8019

DeepChrome_uncross 0.6652 0.7737 0.8951 0.7710

ConvChrome 0.7820 0.8399 0.9061 0.8386

ConvChrome_uncross 0.7571 0.8111 0.8791 0.8076

FIGURE 5
The performance comparison of different versions of TransferChrome: TransferChrome, TransferChrome_α and TransferChrome_β on 9 cell
lines (E079, E084, E112, E114, E120, E128, E116, E117, E123).
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We compared three TransferChrome model variations to

discuss the contribution of different position encoding functions.

The position encoding function adopted by TransferChrome

calculates the relative distance between TSS and bins.

TransferChrome_α use sinusoidal position encoding (Vaswani

et al., 2017) as the position function. Sinusoidal position

encoding function calculates position information with a mix

of sine and cosine functions. TransferChrome_β is the

TransferChrome without adding position information. The

experimental results are shown in Figure 5.

Histone modifications at different positions have different

importance for gene expression prediction. Since

TransferChrome_β ignores sequence position information,

TransferChrome_β performance worser than TransferChrome

and TransferChrome_α. Meanwhile, histone modifications

which are close to TSS might have more significant effect on

gene expression (Cheng et al., 2011). Accordingly, bins near to

TSS should be assigned with higher weights for gene expression

prediction (Singh et al., 2016). TransferChrome makes good use

of relative distances between bins and TSS and performs better

than TransferChrome_α.

We also conducted comparative experiments to discuss the

contribution of the dense connectivity pattern and convolutional

layer kernal numbers. As shown in Figure 6, four

TransferChrome model variations are compared.

TransferChrome has a dense-conv block, which has three

dense-connected convolutional layers with different kernal

numbers (32, 16, 8). TransferChrome_1 changes the structure

of the dense-conv block. Dense-conv block of

TransferChrome_1 uses three dense connected convolutional

layers with 50 kernals. TransferChrome_2 and

TransferChrome_3 do not use dense-conv block.

TransferChrome_2 only has a convolutional layer with

50 kernals. TransferChrome_3 uses three convolutional layers

with 50 kernals. Figure 6 shows the experimental results of above

models. On 3 cell lines E079, E084 and E112, Transferchrome

and TransferChrome_1 perform significantly better than others.

TransferChrome uses fewer kernals than TransferChrome_1 but

achieves a similar performance.

Conclusion and discussion

We proposed a new model called TransferChrome to

predict gene expression levels based on histone

modifications. TransferChrome uses self-attention

mechanism to capture the long-distance dependence, and

to learn hidden information features from the histone

modifications data. Furthermore, TransferChrome adopts

dense connectivity pattern to improve the feature exaction

ability of convolutional neural network. Experimental results

on the benchmark dataset of 56 cell lines showed that

TransferChrome performed better than other 3 similar

state-of-the-art models. To improve cross-cell lines gene

expression prediction performance, TransferChrome uses

transfer learning. Transfer learning makes the model

capable of learning common features among different cell

lines and reduces the data biases of different cell lines. Our

experiments demonstrated that TransferChrome achieved

the best accuracy in cross-cell lines gene expression

prediction. We believe that it is useful to use transfer

learning to improve cross-cell lines prediction accuracy.

So far, gene expression prediction methods from histone

modification data are mostly based on the five core histone

modification marks. In future work, we will use more

information from the histone modification data to predict

gene expression. We also intend to increase the

interpretability of the model in order to analyze the

contribution of different histone modification marks on

gene expression prediction.

FIGURE 6
The performance comparison of different versions of TransferChrome: TransferChrome, TransferChrome_1, TransferChrome_2 and
TransferChrome_3 on 9 cell lines (E079, E084, E112, E114, E120, E128, E116, E117, E123).
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Is an SV caller compatible with
sequencing data? An online
recommendation tool to
automatically recommend the
optimal caller based on data
features
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A lot of bioinformatics tools were released to detect structural variants from the

sequencing data during the past decade. For a data analyst, a natural question is

about the selection of a tool fits for the data. Thus, this study presents an

automatic tool recommendation method to facilitate data analysis. The optimal

variant calling tool was recommended from a set of state-of-the-art

bioinformatics tools by given a sequencing data. This recommendation

method was implemented under a meta-learning framework, identifying the

relationships between data features and the performance of tools. First, the

meta-features were extracted to characterize the sequencing data and meta-

targets were identified to pinpoint the optimal caller for the sequencing data.

Second, ameta-model was constructed to bridge themeta-features andmeta-

targets. Finally, the recommendation was made according to the evaluation

from the meta-model. A series of experiments were conducted to validate this

recommendation method on both the simulated and real sequencing data. The

results revealed that different SV callers often fit different sequencing data. The

recommendation accuracy averaged more than 80% across all experimental

configurations, outperforming the random- and fixed-pick strategy. To further

facilitate the research community, we incorporated the recommendation

method into an online cloud services for genomic data analysis, which is

available at https://c.solargenomics.com/via a simple registration. In addition,

the source code and a pre-trained model is available at https://github.com/

hello-json/CallerRecommendation for academic usages only.

KEYWORDS

sequencing data analysis, bioinformatics tool, software recommendation, structural
variant caller, meta-learning framework
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1 Introduction

In genomics and bioinformatics, calling structural variants

(SVs) from sequencing data is a somewhat straightforward topic

(Handsakeret al., 2011; Northcott et al., 2012; English et al., 2014;

Cao et al., 2014; Guan and Sung, 2016; Chiang et al., 2017). Tens

of review papers (Seo et al., 2016; Fang et al., 2019; Kosugi et al.,

2019; Amarasinghe et al., 2020; Luan et al., 2020; Zhao et al.,

2020; Zook et al., 2020; De Coster et al., 2021; Guo et al., 2021)

highlight SVs as important biomarkers and routinely identify

them in various fields. Therefore, many SV callers have been

developed to detect SVs (Stancu et al., 2017; Gong et al., 2018;

Sedlazeck et al., 2018; Wenger et al., 2019; Jiang et al., 2020).

These callers used different strategies. Read pairs and depth

approaches (Kosugi et al., 2019) primarily use the discordant

alignment and depth features of paired-end reads that encompass

or overlap an SV. The split read approach (English et al., 2014)

primarily uses split alignment features of single- or paired-end

reads that span an SV breakpoint. The assembly approach (Seo

et al., 2016) detects SVs primarily by aligning assembled contigs

with entire or unmapped sequencing reads to the reference

sequence.

In summary, different strategies investigate various variant

signals (values and/or distributions) in sequencing data and can

deal with diverse sequencing data with different signals and their

distributions. Furthermore, some empirical studies (Luan al.,

2020; Kosugi et al., 2019; Guo et al., 2021) have been

conducted to validate this phenomenon. A set of popular

callers is compared on some benchmarking datasets in these

studies, and the results showed that most callers have an edge for

specific data.

In such instances, using the signal distributions in a given

sequencing data to select the proper caller for diverse sequencing

data makes sense. However, these signal distributions are usually

ambiguous. When faced with a practice SV calling problem, it is

difficult for users, especially non-experts, to decide which caller

to use. Three simple approaches are commonly used in practice.

First, choose one at random (random-pick strategy). Second,

select one that is familiar or popular (fixed-pick strategy). Finally,

consult an expert who will analyze the relationship between the

sample and the SV caller’s performance and make a

recommendation based on their experience. The first two

approaches are straightforward, but their efficacy cannot be

guaranteed. The last one can sometimes boost effectiveness.

However, there are very few such experts available to meet

real-world demands.

Consequently, selecting appropriate SV callers becomes an

urgent issue. As different SV callers explore different

distributions (or patterns in some approaches) in sequencing

data tomake decisions, these distributions in sequencing data can

affect the caller’s performance. It is logical to use some signal

distributions for SV caller selection. Thus, this study proposes an

automatic SV caller recommendation method. The SV caller

selection problem is established under a meta-learning

framework in the method, with calling SVs from the

sequencing data as the learning problem and caller selection

as the meta-learning problem (Rendell and Cho, 1990; Ilchenkov

and Pendryak, 2015; Morais et al., 2016; Sousa et al., 2016; Cruz

et al., 2017; Vilalta and Drissi, 2022). The goal is to use meta-

learning to improve the performance of the learning problem.

Specifically, the meta-features are collected to reflect the

sequencing data’s features, which attempt to reflect the hidden

distributions or patterns in the sequencing data. Themeta-targets

are identified to indicate the most appropriate SV caller for the

given data, and a meta-model is then built to mine the

relationship between the meta-features and meta-target. When

confronted with an SV caller section problem for a given

sequencing data, the meta-features of the data are collected

and fed into the constructed meta-model, and the meta-model

specifies the final decision on the recommended a SV caller.

Since third-generation sequencing is becoming the major

sequencing technology for SV detection (Luan al., 2020;

Amarasinghe et al., 2020; Zook et al., 2020; Fang et al., 2019),

this study focuses on the SV caller recommendation method on

the third-generation sequencing data. A series of experiments are

conducted on both simulated and real sequencing data to validate

the performance of the recommendation. Compared to the

random- and fixed-pick strategies, this recommendation

method always selects a better caller, with an average

recommendation accuracy of more than 80%. To the best of

our knowledge, this study is one of the first automatic

recommendation methods for bioinformatics tools for

analyzing sequencing data. It can accurately recommend the

best caller fits for the available sequencing data. This model is

thought to be quite valuable for data analysts. To further facilitate

the research community, we incorporated the recommendation

method into an online cloud services for genomic data analysis,

which is available at https://c.solargenomics.com/via a simple

registration. In addition, the source code and a pre-trained model

is available at https://github.com/hello-json/

CallerRecommendation for academic usages only.

2 Methods

2.1 Overview of the methods

The historical datasets in this specific meta-learning problem

are the sequencing datasets with benchmarks, while the new

dataset is the sequencing data to be detected. This meta-learning

problem mines the potential relationship between meta-features

and meta-target (appropriate callers) from sequencing datasets

with benchmarks and recommends appropriate callers for the

sequencing data to be detected based on this relationship.

A function f is created to map meta-features of the

sequencing datasets to appropriate callers. The best function
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f* � argmin f{ } L f( )( ) (1)

is obtained by minimizing the loss function L based on caller

performance on historical SVs calling problems. L is a function

that measures the difference between the recommended and

appropriate callers. Thus, the meta-learning function for the SV

caller selection problem P can be formalized as follows: find the

meta-learning function f(m(x)) to the caller space C for a given

sequencing data x ∈ P with meta-features m(x) ∈ M. The chosen

caller c maximizes the performance mapping y(c(x)) ∈ Y. That is,

f m x( )( ) → C: max y c x( )( ){ } ∈ Y x ∈ P, m x( ) ∈ M( ) (2)

where P, M, C, and Y represent the problem space (sequencing

dataset), meta-feature space (meta-feature set), caller space (SV

caller set), and performance space (caller performance interval),

respectively. Furthermore,m(x) and c(x) are themeta-features and

the appropriate callers of x, respectively. Usually, themost important

element is determining which caller outperforms the others. Thus, f

can be improved further to map the features of P to the best caller.

Figure 1 shows an abstract model of the SV caller selection problem.

According to the above analysis, a classification algorithm can

build the meta-model in the SV caller recommendation method.

This classification algorithm learns the relationship between the

meta-features of each sequencing data in historical datasets and the

optimal caller and then applies this relationship to map the detected

sequencing data to its optimal caller. Consequently, the framework

created in this study for the recommendationmethod is divided into

three sections, namely, extracting data features and identifying the

optimal caller, modeling the relationship between data features and

the optimal caller, and recommending the optimal caller. Figure 2

shows the framework of this method.

2.2 Metadata collections

As shown in Figure 2, the first step of the SV caller

recommendation method is metadata collection, which is

FIGURE 1
Abstract model of the SV caller selection problem.

FIGURE 2
Computational pipeline for automatically recommending the optimal SV caller according to the features of sequencing data.
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divided into two stages, i.e., meta-feature extraction and meta-

target identification.

2.2.1 Meta-feature extraction
The meta-features in this context are those sequence

alignment and map (SAM)/binary alignment and map

(BAM)files features that can effectively differentiate the

performance of SV callers. The SAM/BAM file in

sequencing data analysis is a sequence text file that

contains the sequencing reads with information aligned to

the reference genome. The statistical and information theory-

based method is currently the most widely used meta-feature

extraction method, which extracts meta-features such as

dataset sizes, attribute types, numbers of attributes, mean,

and variance (Brazdil et al., 2003; Pise, 2013; Ali et al., 2018;

Wang et al., 2019). However, sequencing data is a unique type

of data in that a single read or statistical information about

reads contains little information, and the set of sequencing

reads is mapped to a region that contains the most

information. Therefore, this method does not perform well

with sequencing data. For example, even if SAM/BAM files are

very close in size or even have the same number of reads, the

information they contain may be completely different due to

the different bases of reads.

According to bioinformatics research, read length,

sequencing depth, base quality, mapping quality, and insert

size significantly impact caller performance (Kosugi et al.,

2019; Wang et al., 2019; Zook et al., 2020; Chen et al., 2021).

However, these features are used to call SVs, whereas meta-

features are now required to effectively differentiate the

performance of SV callers. As a result, there are several

useless features here. According to this study’s testing, some

features, such as read length and sequencing depth, are useful,

while others are not. Furthermore, some review studies have

proposed some sequencing data features, such as the size of SVs

and the proportion of SVs in tandem repeat regions, which have

been shown to differentiate the performance of SV callers

(Kosugi et al., 2019; Zook et al., 2020; Guo et al., 2021).

For example, Picky (Gong et al., 2018) uses an assembly

approach to produce read alignment by stitching the segments

from LAST with a greedy seed-and-extend strategy and can thus

handle large SVs by assembling them as distinct contigs.

However, when the sequencing depth is low, the assembly

junctions are ambiguous, i.e., some of the haplotype sequences

(particularly contigs of SV alleles) are missing, which may affect

SV calling recall. Sniffles (Sedlazeck al., 2018) uses a split read

approach to identify SVs by putative variant scoring using several

features based on NGMLR alignment results and thus can

identify SVs even when the sequencing depth is low.

However, due to the lack of assembly, it is difficult to identify

large SVs from ambiguous alignments for Sniffles.

Therefore, based on this study’s experiments and review

papers, features that can effectively differentiate the

performance of SV callers while eight avoiding over-

fittings were ultimately chosen. In this context, these are

known as meta-features. They were distributed on the

SAM/BAM file levels (datasets levels) and the variant

signature levels (instance levels). The average length of

reads and the average sequencing depth are SAM/BAM

file-level meta-features. The proportion of SVs in tandem

repeat regions, the proportion of short SVs (50–200 bp), the

proportion of middle SVs (200–1,000 bp), the proportion of

large SVs (>1,000 bp), read variant burden (the number of

SVs that one read can traverse), and the proportion of regions

with high read variant burden are among the variant

signature level meta-features. Table 1 summarizes the

selected meta-features.

This study creates a new meta-feature extraction method,

called the variational signature-based meta-feature estimation

algorithm, to extract the above features from the sequencing

datasets. This is a fast scanning algorithm. It simply needs to

estimate the features described above rather than accurately

detect the SVs. Thus, while the proposed algorithm may be

slightly inaccurate, it has been experimentally proven to affect

caller recommendations. The algorithm can extract

information from the SAM/BAM file level and variant

signature levels. Meta-features, such as sequencing depth,

can be obtained from SAM files using samtools. Meta-

features were extracted for variant signatures by setting a

sliding window and grabbing softclip reads with breakpoint

information. Specifically, the loci with variant signatures and

the size of SVs can be estimated as follows:

1) Cluster all the reads from the input SAM/BAM file with

softclips.

2) Divide the reads with softclips into two categories based on

whether the softclip is at the beginning or at the end of the

reads.

3) Determine the variant loci of each category according to the

cigar value of each read.

TABLE 1 Meta-features extracted to characterize sequencing data.

Level Meta-features

SAM/BAM file level Average length of reads

Average sequencing depth

Variant signature level Proportion of SVs in tandem repeat regions

Proportion of short SVs

Proportion of middle SVs

Proportion of large SVs

Read variant burden

Proportion of regions with high read variant burden
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4) Determine the distance between pairs of breakpoints as an

estimated value of the size of SVs.

Algorithm 1 presents the pseudocode of meta-feature

extraction. The algorithm’s input was the SAM/BAM file F,

while the output was the meta-feature, MF. The tandem

repeat regions used in this study were annotated in the

hg19 annotation file, which can be downloaded from UCSC

Genome Browser (http://hgdownload.soe.ucsc.edu/goldenPath/

hg19/database/rmsk.txt.gz) (Zook et al., 2016).

Algorithm 1. Meta-feature extraction

Lines one to six of Algorithm 1 initialize the f, tr, softclips,

breakpoint arrays, and readlen_sum. The f array saves the reads in

the SAM/BAM file, the tr array saves regions in the tandem repeat

regions file, the softclips array saves softclip reads, the breakpoint

array saves softclip reads breakpoints, and the readlen_sum is used

to save the total length of reads. In pseudocode lines six to seven,

SAM/BAM file F and the tandem repeat regions file TR are read in

and saved in arrays f and tr, respectively.

In pseudocode line 8, the depth function calculates the

sequencing a depth, which is then assigned to depth. The

pseudocode lines 9–18 traverse each read length separately,

update the readlen_sum value, save softclips in the softclips

array, and calculate the average length of softclip reads. The

pseudocode lines 19–22 traverse each softclip reads separately,

calculate breakpoints, and save them in the breakpoint array. The

pseudocode lines 23–27 calculate the short_sv, middle_sv, large_

sv, rvb, high_rvb, and sv_tr using the caculateSVSize,

caculateRVB, caculateHigh_rvb, and caculateSv_tr functions,

respectively, where short_sv, middle_sv, large_sv, rvb, high_

rvb, and sv_tr denote the proportion of short SVs, the

proportion of middle SVs, the proportion of large SVs, read

variant burden, the proportion of regions with high read variant

burden, and the proportion of SVs in tandem repeat regions,

respectively. Finally, the meta-feature, MF, is saved on line 27 and

returned on line 28.

2.2.2 Meta-target identification
This step involves tagging meta-targets representing the

best of the callers. In turn, each caller was run on each

sequencing data and then ranked based on their

performance, and the best was chosen as the meta-target

for that data. Algorithm 2 provides the pseudocode of

meta-target identification. The algorithm’s inputs include

the long-read sequencing dataset as D, the set of SV callers

as C, and the caller performance evaluation metric M. The

algorithm’s output is the meta-target set as T.

Algorithm 2. Meta-target identification
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In Algorithm 2, the Eval_Metric and rank arrays are used in

lines 1 and 2. The Eval_Metric array is used to save the

performance evaluation values, whereas the rank array is used

to save the ranks of callers based on their performance evaluation

values. In pseudocode lines 3–15, the meta-target T is identified

for each long-read sequencing dataset in D. For a long-read

sequencing dataset di , its label is saved in li and then removed

from di lines 4 and 5. In lines 6–10, each caller ci, di is called

using the SV caller ci. And the calling results are evaluated in

terms of the metric M. The evaluation result is added to Eval_

Metric. Eval_Metric is sorted in descending order in line 11.

Ranks of SV callers according to their performance in terms of

Eval_Metric are saved in rank. The meta-target is then obtained

and saved in T in lines 12–14. Finally, the meta-target set T is

returned at line 16. The meta-feature and meta-target are saved

after the above meta-feature extraction and meta-target

identification. Users can specify different meta-targets based

on their requirements.

2.2.3 Meta-model construction and
recommendation

The features of each data were obtained, and the best caller

for that data using the steps outlined above was determined. That

is, the meta-features and meta-targets are available. In this case,

one meta-feature is a vector pi (mf1 , mf2 , mf3 ,... mfn ), and

corresponding to this meta-feature, there is a meta-target, where

i = 1, 2,..., m, and m is the number of training samples. All

samples constitute a dataset that can be used to train a

classification model. Therefore, the classifier was used to learn

the relationship between the meta-features and meta-targets, and

then the meta-model was built as the recommendation model.

Finally, the RandomForest algorithm was used to build the

classifier after considering the relevance of the features and

effectiveness of the model.

This step above results in the automatic recommendation

model. When users need to make caller recommendations based

on the new long-read sequencing data, they first extract the data’s

meta-features from the SAM/BAM file. They then determine

whether the number of data in the historical dataset with meta-

features similar to the new long-read sequencing data is greater

than 100. If not, they generate 100 semi-simulated data based on

the meta-features of the real new long-read sequencing data and

add them to the historical dataset to retrain the recommendation

model. If yes, the extracted meta-features are fed into the

recommendation model. Finally, the model will output the

recommendation results of the new long-read sequencing data

based on the meta-targets that users have specified.

3 Results

This section conducts experiments to verify the necessity and

efficacy of the proposed recommendation method:

Question 1. Necessity: Does the matching degree between

the SV caller and the signal distributions significantly impact SV

caller performance?

This is an important question. The influence of the matching

degree between the detection strategy and the signal distributions

determines the necessity of the research on the recommendation

method. A fixed or randomly selected SV caller can be used if it

exerts minimal influence on the SV caller performance.

Question 2. Effectiveness: How effective is the proposed

caller recommender?

This is also an important question. Suppose the matching

degree between the SV caller and the signal distributions exerts a

non-negligible influence on the SV calling performance. In that

case, the performance of the proposed SV caller recommendation

method determines whether it can be used in practice.

3.1 Experiment setup

3.1.1 Benchmark datasets and candidate long-
read sequencing data SV callers

The small number of real long-read sequencing datasets with

benchmarks that can be analyzed is insufficient to construct a

historical dataset. Using the PBSIM simulator, 768 simulated

long-read sequencing datasets were generated (Yukiteru al., 2013)

(https://github.com/yukiteruono/pbsim2). Specifically, various SVs

were planted on chromosome 1, and reads ranging in lengths from

1,000 to 25,000 bps with varying sequencing depths were generated

(10–150 X). For each sample, the density of the SVs was varied by

varying the distance between the SVs. Furthermore, the proportion

of variations in the tandem repeat region was altered by varying the

number of SVs within the tandem repeat region of the genome. True

called SVs are defined as the called SVs that significantly overlap

with the reference SVs by proportions (≥80%).
Five state-of-the-art SV callers, namely, NanoSV (Stancu

et al., 2017) (https://github.com/mroosmalen/nanosv), Picky

(https://github.com/TheJacksonLaboratory/Picky), Sniffles

(https://github.com/fritzsedlazeck/Sniffles), PbSV (Wenger

et al., 2019) (https://github.com/PacificBiosciences/pbsv), and

CuteSV (Jiang et al., 2020) (https://github.com/tjiangHIT/

cuteSV), were implemented on the simulated datasets as the

candidate callers. Each of these callers has advantages due to their

different strategies. For example, Picky can handle large SVs well

by assembling reads as distinct contigs due to the assembly

approach it adopts, while the assembly approach performs

poorly when the sequencing depth is too low due to the lack

of reads. However, due to the split read approach (alignment-

based approach), NanoSV, PbSV, Sniffles, and CuteSV can detect

SVs even at a low sequencing depth, but they cannot handle large

SVs due to lack of read assembling. As another example, Sniffles

and CuteSV are appropriate for dense SVs and SVs in repeat-rich

regions. Because the sequencing data contain many sequencing

errors, particularly for long reads, they have also designed error
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event filtering mechanisms in their algorithms, which greatly

improve the detection of SVs in repeat-rich regions and dense

SVs or even nested SVs. However, Picky, NanoSV, and PbSV

cannot handle these SVs due to the lack of an error event filtering

mechanism. Each caller in the experiments used the default

parameters and the alignment tool recommended by the caller

developer.

3.1.2 Metrics to evaluate the performance of SV
callers

F-measure, precision, and recall are important metrics for

evaluating bioinformatics analysis methods, and they are

frequently discussed in bioinformatics methodology studies

(Kosugi et al., 2019). Therefore, these three metrics were

chosen to evaluate the performance of SV

callers. Precision, recall, and f-measure are calculated as follows:

precision � TP

Call
(3)

recall � TP

Ref
(4)

f −measure � 2 × precision × recall

precision + recall
(5)

where TP, Call, and Ref are the numbers of true positives, called

SVs, and the corresponding reference SVs, respectively.

3.1.3 Evaluating the performance of the
recommendation method

The performance of the recommended SV caller is an

important evaluation metric (Song et al., 2012). Therefore,

recommendation accuracy (RA) is used to evaluate the RA of

the proposed recommendation method, reflecting the difference

in performance between the recommended optimal SV caller and

the real optimal SV caller. During the implementation of the

experiments, a leave-one-out cross-validation method was used

to calculate RA values.

For a given long-read sequencing data s, let CallerR be the

recommended SV caller, CallerO the most optimal SV caller, and

CallerW the worst caller. RA is defined as follows:

RA s( ) � PCallerR s( ) − PCallerW s( )
PCallerO s( ) − PCallerW s( ) (6)

Where PX(Y) denotes the performance of SV caller X on long-

read sequencing data Y.

3.2 Necessity of the proposed
recommendation method

The f-measure, precision, and recall values of the five SV

callers were compared on different long-read sequencing data to

evaluate the extent of performance differences between them, as

shown in Figure 3.

As shown in Figure 3, the standard deviation values are non-

negligible compared to the expected values for any meta-targets,

indicating a significant difference in the performances of SV

callers.

FIGURE 3
Differences between the various SV callers. In (A), (B), and (C),
the values of the three performance evaluation metrics,
i.e., f-measure, precision, and recall, were calculated for each of
the five callers on 768 long-read sequencing datasets. For
each dataset, expectation values for one of the three performance
evaluationmetrics were calculated and shownwith red lines, while
the standard deviation values are shownwith blue lines in the three
subfigures, where the abscissa denotes the number of the long-
read sequencing datasets and the ordinate denotes the
corresponding performance evaluation metric value.
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Although the performance of SV callers varies significantly,

this recommendation method of research is unnecessary if there

is one SV caller who always has the best performance. Therefore,

the number of long-read sequencing datasets that each SV caller

ranks as top one was further compared, as shown in Figure 4.

As shown in Figure 4, the different SV callers rank top one on

a certain number of long-read sequencing datasets, and the best

performing SV caller can only account for about half of the

overall, indicating that the optimal SV caller varies for different

long-read sequencing datasets.

3.3 Effectiveness of the proposed
recommendation method

This section presents the proposed method’s

recommendation results regarding RA. Furthermore, it also

presents the recommendation performance on real long-read

sequencing datasets.

3.3.1 Recommendation accuracy
In this subsection, the recommendation method’s potential

usefulness was demonstrated in real practice by comparing the

RA values of the recommended SV caller with those of fixed and

randomly selected SV callers. The RA describes the performance

of the recommended SV caller compared with the best and worst

SV caller, which is important in evaluating the usefulness of the

SV caller recommendation method. Figure 5 shows the

experimental results for the RA value.

As shown in Figure 5, the fixed-pick strategy performs

differently for different SV callers. The random-pick strategy has

poor performance. The recommended SV caller methods are better

and more stable than the random-pick and fixed-pick strategies.

3.3.2 Hypothesis test for recommendation
accuracy

The above analysis discovered that the proposed SV caller

recommendation method improves the RA values of the

random- and fixed-pick strategies. To test whether the

FIGURE 4
Number of long-read sequencing datasets that each SV caller
ranks as top 1. The number of times each caller achieved the top
one in the three performancemetrics of f-measure, precision, and
recall for 768 long-read sequencing datasets was calculated
in (A), (B), and (C). In each subfigure, the sectors of different colors
represent different callers, and the sector’s size indicates the
proportion of different callers achieving the top 1. The number
marked in each sector is the number of long-read sequencing
datasets on which the performance of the SV caller in terms of the
performance evaluation metric value ranks top 1.

FIGURE 5
Recommendation accuracy values for three different
performance evaluation metrics. The results of the three different
performance evaluation metrics are displayed on three different
colored bars. The abscissa indicates the five fixed SV callers, a
randomly selected SV caller, and the recommended SV caller in
order. The ordinate is the recommendation accuracy value.
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improvement is statistically significant, the Scott-Knott effect size

difference test (Chakkrit al., 2017) was applied (https://github.

com/klainfo/ScottKnottESD), allowing the RA values of different

methods to be divided into different groups with non-negligible

differences. Figure 6 shows the Scott-Knott effect size difference

test results.

Figures 6A, B show that the SV caller recommendation

method has superior and more stable performance advantages,

whereas Figure 6C shows that in the recommendation scheme

with recall as the meta-target, the difference between the

recommendation method’s performance and that of fixed with

NanoSV is insignificant. Therefore, the following WinDrawLoss

analysis experiments were conducted to compare the winners

and losers between the different methods.

3.3.3 WinDrawLoss analysis for
recommendation accuracy

From the above experiments, the difference in performance

between the recommendation method and that of fixed with a

specific SV caller is insignificant in the recommendation scheme

with recall as the meta-target. Therefore, as presented in Table 2,

the WinDrawLoss analysis of the different methods was

conducted, showing the number of wins, draws, and losses of

different methods on different datasets.

As presented in Table 2, in each case, the number of wins for

the recommended method is much higher than the number of

losses. In other words, the proposed SV caller recommendation

method has significant advantages over other methods.

3.3.4 Evaluating the recommendation accuracy
on real long-read sequencing datasets

To further test the performance of the proposed method on real

data, all publicly available triple sequencing data were used with

benchmarks. Specifically, the real long-read sequencing data from

the well-studied NA12878 individual were used by the Ashkenazim

Jewish andChinese trios to assess the recommendation performance

of the proposed SV caller recommendation method (Gong al., 2018;

Zook al., 2016). Subreads datasets of the NA12878 individual

(HG001), the Ashkenazim Jewish trio son (HG002), the

Ashkenazim Jewish trio father (HG003), the Ashkenazim Jewish

FIGURE 6
Hypothesis test results of RA values. In (A), (B), and (C), X1-X7 denote the five fixed SV callers, a randomly selected SV caller, and the
recommended SV caller in that order. The ordinate represents the recommendation accuracy values. Subfigures (A), (B), and (C) represent the
recommendation schemes with f-measure, precision, and recall as meta-targets, respectively. The points on the bar graph give the average
recommendation accuracy values. The length of the bars reflects the method’s stability. The greater the average recommendation accuracy
value, the better the recommendation method; the shorter the bars, the more stable the recommended method. Furthermore, no statistical
difference existed between bars of the same color, whereas a significant difference existed between bars of different colors.
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trio mother (HG004), the Chinese trio son (HG005), the Chinese

trio father (HG006), and the Chinese trio mother (HG007) were

downloaded from GIAB (https://ftp-trace.ncbi.nlm.nih.gov/giab/

ftp/data/).

The experimental results showed that the proposed SV caller

recommendation method achieved the RA values of 86.05%,

64.28%, and 95.92% for meta-targets f-measure, precision, and

recall, respectively, and the RA remained above 80% on average.

3.3.5 Threats to validity
A possible threat to the validity of this study lies in whether

the simulated data used in the empirical study are representative

of the broader datasets. Preferring to choose as many real datasets

with benchmarks and well-known published simulator pbsim as

possible is the primary way for this study to avoid sample bias.

3.4 The online recommendation tool

To further facilitate the research community, we incorporated

the recommendation method into an online cloud services for

genomic data analysis. This cloud system supports user-friendly

online Web UI operation, eliminating the heavy work of setting up

the running environment. More than 40 bioinformatics analysis

tools are integrated on this, with functions covering eight categories

including data statistics, data processing, format conversion, data

comparison, visualization, table processing, plotting, and advanced

tools to meet individual analysis needs.

After logged into the cloud system at https://c.solargenomics.

com/, users can search for this recommendation tool in the

frequently used tools search box. Then, input the fastq file to be

analyzed in the file input box and click the submit button, as

shown in Figure 7. After the program is finished, you can see the

recommended variant calling tool for that data in the task menu,

as shown in Figure 8. Currently, the cloud system is collaborated

with a PacBio Partner in China, and we are seeking for further

collaborations on the cloud systems with English services. In

addition, the source code and a pre-trained model is available at

https://github.com/hello-json/CallerRecommendation for

academic usages only.

4 Discussion

Other options for selecting meta-features and the

classification algorithm may be available in the proposed

recommendation method. Thus, these issues are discussed

here. Two widely used classification evaluation metrics,

i.e., f-measure and area under the receiver operating

characteristic (AUC), were used to evaluate the classification

accuracy of the method. Furthermore, a tenfold cross-validation

method was used to fully utilize the dataset for the experiments.

First, the recommendation performance of recommendation

models built from meta-features extracted using this study’s

variational signature-based meta-feature estimation algorithm

was compared to the traditional meta-feature extraction method

and a combination of the two meta-feature extraction methods,

as shown in Figure 9. As shown in Figure 9, the performance of

recommendation methods built with different meta-features

varies with the recommendation model built with this study’s

variational signature-based meta-features having the best

performance and being the most stable.

Next, the recommendation performance of recommendation

models built using different classification algorithms was

compared, as shown in Figure 10. As shown in Figure 10, the

TABLE 2 WinDrawLoss Analysis on RA Values.Subtables (A), (B), and (C)
represent the recommendation schemes with f-measure, precision, and
recall as meta-targets. In each subtable, each line represents the
recommended SV caller being compared with the five fixed SV callers and a
randomly selected SV caller, and each column represents the number of
wins, draws, and losses, respectively.

(A)

f1score Win Draw Loss

fixed-pick_nanosv 596 134 38

fixed-pick_picky 735 6 27

fixed-pick_sniffles 701 35 32

fixed-pick_pbsv 233 491 44

fixed-pick_cutesv 590 137 41

random-pick 579 157 32

(B)

Precision Win Draw Loss

fixed-pick_nanosv 727 22 19

fixed-pick_picky 721 16 31

fixed-pick_sniffles 483 189 96

fixed-pick_pbsv 153 550 65

fixed-pick_cutesv 478 249 41

random-pick 533 185 50

(C)

Recall Win Draw Loss

fixed-pick_nanosv 71 654 43

fixed-pick_picky 669 77 22

fixed-pick_sniffles 736 28 4

fixed-pick_pbsv 385 371 12

fixed-pick_cutesv 672 93 3

random-pick 500 247 21
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FIGURE 7
The online recommendation tool input page.

FIGURE 8
The online recommendation tool output page.
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recommendation performance of the models built using different

multi-classification algorithms differs significantly. Among these,

the RandomForest algorithm achieves optimal values for

f-measure and AUC performance evaluation metrics. The

experimental results are consistent with the theoretical

analysis in the method section.

5 Conclusion

Many bioinformatics approaches provide powerful algorithmic

tools to investigate sequencing data in greater depth. However,

quickly selecting the tool that best fits the data form among these

state-of-the-art approaches becomes a real and practical level

problem. An automatic recommendation method is designed and

presented to facilitate the data analysts in selecting the best SV caller

based on the sequencing data available. To the best of our

knowledge, this is among the first recommendation methods for

bioinformatics tools for analyzing sequencing data, and it has the

potential to aid the research community.

The proposed method is designed under a meta-learning

framework. This is acceptable because identifying the

relationships between the data features and the performance

of callers is a meta-learning problem. Eight data features

distributed at the file and signature levels were selected. The

relationship between the features and the optimal caller was then

identified through a classification algorithm, RandomForest, and

this relationship was used for the caller recommendation. A

series of experiments validated the performance and advantages

of the automatic recommendation, whatever it takes to

recommend the optimal caller with the highest f-measure,

precision, or recall. The experimental results also confirmed

that different SV callers often fit different samples (sequencing

FIGURE 9
Recommendation performance of different
recommendation models constructed with different meta-
features. (A) and (B) show the comparison results of different
meta-features on f-measure and AUC performance
evaluation metrics, respectively, where “Statistical” denotes the
traditional meta-features, “MutationInfo” denotes the variational
signature-basedmeta-features, and “All” denotes the combination
of two meta-features. The ordinate indicates the values of the
corresponding performance evaluation metrics.

FIGURE 10
Recommendation performance of recommendation models
constructed by different classification algorithms. (A) and (B) show
the comparison results of different classification algorithms on
f-measure and AUC performance evaluation metrics,
respectively. The abscissa represents ten commonly used multi-
classification algorithms based on different principles. The
different colored bars for each multi-classification algorithm
indicate their recommendation performance for each SV caller
and overall. The ordinate is the performance evaluation metric
values.
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data). The RA was maintained above 80% on average, which was

much better than the random-pick and fixed-pick strategies.
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PseU-ST: A new stacked
ensemble-learning method for
identifying RNA pseudouridine sites

Xinru Zhang, Shutao Wang, Lina Xie and Yuhui Zhu*

Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China

Background: Pseudouridine (Ψ) is one of the most abundant RNA modifications
found in a variety of RNA types, and it plays a significant role in many biological
processes. The key to studying the various biochemical functions andmechanisms of
Ψ is to identify theΨ sites. However, identifyingΨ sites using experimental methods is
time-consuming and expensive. Therefore, it is necessary to develop computational
methods that can accurately predict Ψ sites based on RNA sequence information.

Methods: In this study, we proposed a new model called PseU-ST to identify Ψ sites
in Homo sapiens (H. sapiens), Saccharomyces cerevisiae (S. cerevisiae), and Mus
musculus (M. musculus). We selected the best six encoding schemes and four
machine learning algorithms based on a comprehensive test of almost all of the
RNA sequence encoding schemes available in the iLearnPlus software package, and
selected the optimal features for each encoding scheme using chi-square and
incremental feature selection algorithms. Then, we selected the optimal feature
combination and the best base-classifier combination for each species through an
extensive performance comparison and employed a stacking strategy to build the
predictive model.

Results: The results demonstrated that PseU-ST achieved better prediction
performance compared with other existing models. The PseU-ST accuracy scores
were 93.64%, 87.74%, and 89.64% on H_990, S_628, and M_944, respectively,
representing increments of 13.94%, 6.05%, and 0.26%, respectively, higher than
the best existing methods on the same benchmark training datasets.

Conclusion: The data indicate that PseU-ST is a very competitive prediction model
for identifying RNA Ψ sites in H. sapiens, M. musculus, and S. cerevisiae. In addition,
we found that the Position-specific trinucleotide propensity based on single strand
(PSTNPss) and Position-specific of three nucleotides (PS3) features play an important
role in Ψ site identification. The source code for PseU-ST and the data are obtainable
in our GitHub repository (https://github.com/jluzhangxinrubio/PseU-ST).
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RNA pseudouridine site identification, sequence analysis, computational methods, machine
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1 Introduction

Pseudouridine (Ψ) is one of the most abundant RNA
modifications found in many RNAs, such as rRNA, mRNA, tRNA,
and snRNA et al. (Charette and Gray, 2000). Research on Ψ has been
developing since its discovery in 1957. Many studies have shown that
Ψ plays a key role in several bioprocesses, including the maintenance
of RNA construction stability (Boo and Kim, 2020), the metabolism of
RNA (Carlile et al., 2014; Schwartz et al., 2014), and the RNA-protein
or RNA-RNA interactions (Basak and Query, 2014). Previous studies
also found that Ψmutations are related to many cancers, such us lung
and stomach cancer (Itoh et al., 1989; Penzo et al., 2017; Cao et al.,
2021). The key to studying the various biochemical functions and
mechanisms ofΨ is to identify theΨ sites. However, identifyingΨ sites
using experimental methods is time-consuming and expensive
(Adachi et al., 2019). Therefore, it is necessary to develop
computational methods which can accurately predict Ψ sites based
on the RNA sequence information.

In recent years, many computational predictors of Ψ sites have
been developed to complement experimental studies. Li et al. (2015)
established the first computational model to predict Ψ sites in S.
cerevisiae and H. sapiens, named PPUS, using support vector machine
(SVM) algorithms. Similarly, Chen et al. (2016) established a SVM
model called iRNA-PseU by combining the encoding schemes of
pseudo-nucleotide composition and nucleotide chemical property
(NCP) to predict Ψ sites in 2016. Subsequently, He et al. (2018)
developed another SVM classifier called PseUI, which extracts RNA
sequence features using five different encoding schemes. Tahir et al.
(2019) established a convolutional neural network (CNN) model,
named iPseU-CNN, which employs the binary encoding scheme.
In 2020, Liu et al. (2020) proposed XG-PseU using eXtreme
Gradient Boosting (XGBoost) algorithms to predict Ψ sites. In the
same year, Bi et al. (2020) created an ensemble model called
EnsemPseU, which integrates random forest (RF),SVM, Naïve
Bayes (NB), XGBoost, and k-nearest neighbours (KNN). Lv et al.
(2020) developed an RF-based method called RF-PseU, which applies
a light gradient boosting machine (lightGBM) algorithms to identifyΨ
sites. Mu et al. (2020) presented a layered ensemble model designated
as iPseU-Layer, which applies classic RF to predict Ψ sites. Then, Li
et al. (2021b) proposed a computational model called Porpoise, which
selects four optimal types of features and fed them into a stacked
model to predict Ψ sites. Zhuang et al. (2021) proposed PseUdeep, a
deep learning framework, and Wang et al. (2021) proposed a feature
fusion predictor named PsoEL-PseU in the same year; however, their
performance are unsatisfactory. The accuracy scores of the best
existing methods mentioned above are 79.70%, 81.69%, and 89.34%
in H. sapiens, S. cerevisiae, and M. musculus, respectively, so there is
still much opportunity for improvement.

In this study, we proposed a new model called PseU-ST to identify
Ψ sites in H. sapiens, S. cerevisiae, and M. musculus. First, we
thoroughly tested almost all of the available RNA sequence
encoding schemes in the iLearnPlus software package with seven
most popular machine learning algorithms and selected the best six
types of encoding schemes and four machine learning algorithms (Cui
et al., 2022). We then sorted the feature importance of the six encoding
schemes separately using chi-square and selected the optimal features
for each encoding scheme using incremental feature selection (IFS)
algorithms. We used the cross-validation tests to evaluate and select
the optimal feature and base-classifier combinations for each species.

Next, we employed a stacking strategy to establish a predictive model.
The results demonstrated that PseU-ST achieved better prediction
performance compared with other existing models. Therefore, PseU-
ST is a highly competitive prediction model for identifying RNA Ψ
sites in H. sapiens, S. cerevisiae, and M. musculus.

2 Materials and methods

2.1 The framework of PseU-ST

The general framework design of PseU-ST is shown in Figure 1.
The framework of PseU-ST had five major steps. Step 1, we saved the
training datasets and the independent test datasets from online
databases (Chen et al., 2016). Step 2, we thoroughly tested almost
all of the available RNA sequence encoding schemes in the iLearnPlus
software package with seven most popular machine learning
algorithms and selected the best six encoding schemes and four
algorithms. Step 3, we sorted the feature importance of the six
encoding schemes separately using chi-square and selected the
optimal features for each encoding scheme using IFS algorithms.
We then built models using different combinations of optimal
features and selected the optimal feature combinations for each
species. Step 4, we built RF, SVM, Gaussian Naive Bayes (GaNB),
and logistic regression (LR) models separately using the optimal
feature combination selected in the forward step as the preliminary
base-classifier; LR was used as the meta-classifier, and we built a series
of stacked models by using different base-classifier combinations and
selected the best base-classifier combination for each species. Step 5,
we compared the predictive performance of the optimised stacked
model in 5-fold cross-validation and independent tests with those of
other existing models.

2.2 Dataset collection

Chen et al. (Chen et al., 2016) collected datasets from RMBase
(Sun et al., 2016) to identify Ψ sites by machine learning methods.
First, RNA fragments with uridine (U) in the center were collected
by sliding the (2ξ + 1)-tuple nucleotide window along the RNA
sequences; when the center of RNA sample is confirmed asΨ site by
experiment, it is considered positive, otherwise it is negative. Then,
the samples with ≥60% paired sequence identity were screened out
with any other samples in the same class using CD-HIT software,
and the negative and positive subsets were made to have the same
size using a random-picking procedure. The training datasets
contained three datasets, they were H_990 (H. sapiens), M_944
(M. musculus), and S_628 (S. cerevisiae), while there were only two
species, namely H_200 (H. sapiens) and S_200 (S. cerevisiae) in the
independent testing datasets. Both the training and independent
testing datasets had half-positive and half-negative samples. In
addition, Chen et al. evaluated the performance of the predictor in
identifying Ψ sites with different ξ values and found that when ξ =
10, the accuracy of H. sapiens orM. musculus reached a peak value,
whereas that of S. cerevisiae reached a peak value when ξ = 15. Thus,
the RNA sequence lengths in H_990 and M_944 were both 21 nt,
and that in S_628 was 31 nt. The RNA sequence lengths in H_
200 and S_200 were 21 and 31 nt, respectively. In recent years, the
models mentioned in the introduction have all used the same
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datasets. In our study, we built the PseU-ST models using the same
datasets. Detailed information on these datasets is presented in
Table 1. Benchmark datasets were downloaded from http://lin-
group.cn/server/iRNAPseu/data.

2.3 Feature extraction

In the computational model construction, feature extraction is a
critical step. In our study, we thoroughly tested almost all of the
available RNA sequence encoding schemes in the iLearnPlus software
package (Chen et al., 2021). Then, according to their predictive
performance, the best six encoding schemes were selected to
determine the optimal feature combinations, including enhanced
nucleic acid composition (ENAC), binary features, NCP, position-
specific trinucleotide propensity based on single-strand (PSTNPss),
position-specific of two nucleotides (PS2), and position-specific of
three nucleotides (PS3) (Chen et al., 2017).

2.3.1 Enhanced nucleic acid composition
ENAC calculates the nucleic acid composition based on fixed

length window (the default value is 5) of the sequence, the
window slides from the 5′end of the RNA sequence to the 3′ end
continuously, and encodes the RNA sequence into equal length feature
vectors.

2.3.2 Binary feature (also called one-hot)
In binary encoding, four-dimensional binary vectors are used

to represent nucleotides, for example, the A, C, G, and U in RNA

are encoded to (1 0 0 0), (0 1 0 0), (0 0 1 0), and (0 0 0 1),
respectively.

2.3.3 Nucleotide chemical property
According to the differences of chemical bonds and chemical

structures, the four nucleotides of RNA sequences (ACGU) are
classified into three different classes, as shown in Table 2.

Based on their different chemical properties, we can use three-
dimensional coordinates to encode A, C, G, and U, they are encoded as
(1,1,1), (0,0,1), (0,1,0), and (1,0,0), respectively.

2.3.4 Position-specific trinucleotide propensity
based on single strand

The PSTNPss encodes DNA or RNA sequences using statistical
rule. Generally, there were 43 (i.e. 64) trinucleotides, for example,
AAA, AAC, AAG, UUU (TTT). Thus, for a given RNA sequence of

FIGURE 1
The overall framework of PseU-ST. There are five major steps, including dataset collection, feature extraction, feature selection, stacked model
optimisation, and model evaluation.

TABLE 1 Training and independent dataset information.

Species Datasets Length (bp) Positive samples Negative samples

H. sapiens H_990 (training) 21 495 495

H_200 (testing) 21 100 100

S. cerevisiae S_628 (training) 31 314 314

S_200 (testing) 31 100 100

M. musculus M_44 (training) 21 472 472

— — — —

TABLE 2 Chemical structure of each nucleotide (Chen et al., 2015).

Chemical property Class Nucleotides

Ring Structure Purine A, G

Pyrimidine C, U

Functional Group Amino A, C

Keto G, U

Hydrogen Bond Strong C, G

Weak A, U
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L-bp length, the position specificity of trinucleotide is defined as a 64 ×
(L-2) Matrix:

Z �
Z1,1 Z1,2 / Z1,L−2
Z2,1 Z2,2 / Z2,L−2
..
. ..

.
1 ..

.

Z64,1 Z64,2 / Z64,L−2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

where

Zi,j � F+ 3meri
∣∣∣∣ j( ) − F− 3meri

∣∣∣∣ j( ), i � 1, 2, . . . , 64; j � 1, 2, . . . , L − 2

(2)
F+(3mer i |j) and F

− (3mer i |j) respectively indicate the occurrence
frequency of the ith trinucleotide (3meri) at the jth position in the
positive (S+) and negative (S−) datasets, and where 3mer1 = AAA,
3mer2 = AAC, and 3mer64 = UUU. Thus, an L-bp-long RNA sequence
is denoted as:

S � ∅1,∅2, . . . ,∅L−2[ ]T (3)
where T is the transpose operator and ∅u is expressed as:

∅u �
Z1,u , whenNuNu+1Nu+2 � AAA
Z2,u , whenNuNu+1Nu+2 � AAG

..

.

Z64,u , whenNuNu+1Nu+2 � UUU

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (4)

Thus, in our study, the samples are denoted by 21–2 = 19 PSTNPss
features in H_990 and M_944, and the samples are coded by 31–2 =
29 PSTNPss features in S_628.

2.3.5 Position-specific of two nucleotides (PS2) and
position-specific of three nucleotides (PS3)

There are 16 (i.e. 4 × 4) pairs of adjacent paired nucleotides, e.g. AA/
AT/AG ...; therefore, a single variable representing such a paired nucleotide
can be encoded as 16 binary variables and becomes binary. For example,
AA is expressed as (1000000000000000), AC is (0100000000000000) . . .,
and AAC is (10000000000000000100000000000000). PS3 is encoded by
three adjacent nucleotides (4 × 4 × 4 = 64) in a similar manner.

2.4 Feature selection

A helpful method to remove redundancy and avoid over-fitting
in computational modelling is feature selection as it plays a crucial
role in improving the model performance (Jones et al., 2021; Suresh
et al., 2022). To effectively represent sequences, in this study, we
first sorted the feature importance of the six encoding schemes
separately using a chi-square test and selected the optimal feature
set for each of them using IFS algorithms (Lv et al., 2020; Zhang
et al., 2021). Subsequently, we determined the optimal feature
combinations. We trained the optimal features of the six
encoding schemes using the best four algorithms selected in the
stacking ensemble learning model section and ranked them
according to accuracy (ACC). Then, we used the first-ranked
feature to build the PseU-ST model, added the second feature to
build a new model, and then added the third feature until all
obtained features were added. Finally, we selected the optimal
feature combinations for each species.

2.5 Stacking ensemble learning models

The stacking strategy can combine information from multiple
classifiers to generate a more stable stacking model. It is a very useful
integrated learning method that has been successfully applied to
bioinformatics (Mishra et al., 2019; Li et al., 2021a). The “mlxtend”
package in python (Raschka, 2018) provides a stacking cross-
validation algorithm, which prepares input data for meta-level
classifier by extending the standard stacking cross-validation
algorithm. Moreover. The stacking strategy can be implemented
using this algorithm. The stacking strategy can minimise the
generalisation error rate of several predictive models (Su et al.,
2020) and effectively avoids over-fitting (Sherwani et al., 2021). In
this study, we employed a stacking strategy to establish a predictive
model for RNAΨ sites. The stacking learning strategy has two major
steps. Step 1, we built a series of classifiers, called base-classifiers. Step
2, we used the outputs obtained in the previous step of the base-
classifiers as the input to train another classifier, called meta-classifiers.

In our study, we assessed the seven most popular algorithms: RF,
LR, SVM, GaNB, Adaptive Boosting (AdaBoost), XGBoost, and
Gradient Boosting Decision Tree (GBDT). RF is an integrated
learning algorithm based on a decision tree. It can obtain accurate
and stable predictions by building multiple decision trees and merging
them. RF is one of the commonly used algorithms in bioinformatics
(Lv et al., 2020; El Allali et al., 2021; Yin et al., 2021). LR is a generalised
linear classification algorithm, it uses the sigmod function for non-
linear mapping of all data to limit the prediction value to [0,1] and
reduces the prediction range to classify samples. LR is a common
machine learning method (Wei et al., 2020; Li and Wang, 2021; Zhu
et al., 2021). SVM is another linear classification algorithm that is one
of the most popular algorithms in computational biology (Chen et al.,
2016; He et al., 2018). The decision boundary of SVM is to find an
optimal separating hyperplane to segment samples. GaNB classifies
sample data using probability and statistical methods based on the
Bayesian theorem, assuming that the feature conditions are
independent of each other. GaNB is also a commonly used
algorithm (Yan et al., 2020; Shah et al., 2022). AdaBoost, XGBoost,
and GBDT are all boostingmodels. They learn using different methods
and form a strong classifier. They are widely used in bioinformatics

FIGURE 2
The accuracy of the fourmodels trained using the best six encoding
schemes for H. sapiens, S. cerevisiae, and M. musculus.
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(Liu et al., 2020; El Allali et al., 2021; Jayashree et al., 2022; Niu et al.,
2022).

For each algorithm, we selected default parameters for training.
For example, we set the tree numbers as 100 and the tree range as 100:
1000:100 for RF. For SVM, the kernel function selected rbf, the penalty
parameter selected 1.0, and the penalty range and gamma range was
1.0:15.0:1.0 and −10.0:5.0:1.0, respectively. For XGBoost, the booster
parameter selected gbtree, the max depth was set as 3, and the penalty
range was 3:10:1. Based on these parameters, we selected the best four
algorithms for training the stacked models through an extensive
performance comparison. Subsequently, we trained the optimal
feature combinations of the three species that were previously
determined using the best four algorithms as the candidate base
classifier. We trained the stacked models using LR as the meta-
classifier, and we evaluated the different combinations of base
classifiers to select the best base-classifier combination as the final
model.

2.6 Evaluation metrics

We used several widely used performance metrics to evaluate and
compare the function of PseU-ST and other existing methods. The
metrics are sensitivity (Sn), specificity (Sp), accuracy (ACC),
Matthew’s Correlation Coefficient (MCC), and area under the

receiver operating curve (AUC) (Mu et al., 2020; Li et al., 2021a;
Zhuang et al., 2021). Sn, Sp, ACC, and MCC are defined as follows:

Sn � TP
TP + FN

(5)

Sp � TN
FP + TN

(6)

ACC � TP + TN
TP + TN + FP + FN

(7)

MCC � TP × TN − FP × FN�������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√

(8)
where TP, TN, FP, and FN represent the true positive, true negative,
false positive, and false negative, respectively. We drew receiver
operating characteristic (ROC) curves with 1-Sp as abscissa and Sn
as ordinate and calculated AUC values.

3 Results and discussion

3.1 Determine the optimal feature
combinations

First, we thoroughly tested almost all of the RNA sequence
encoding schemes available in the iLearnPlus software package
with seven widely used machine learning algorithms, and built
models for each algorithm with default parameters. Then, the best
six encoding schemes and four machine learning algorithms were
selected to build the stacked models. The best six encoding schemes
were ENAC, binary feature, NCP, PSTNPss, PS2, and PS3, and the best
four algorithms were LR, RF, SVM, and GaNB. For each algorithm, we
trained six separate classifier features and ranked them according to
the ACC. The ACC of each model is shown in Figure 2.

As shown in Figure 2, RF achieved the highest ACC for H_990 and
M_944, whereas LR reached the highest ACC for S_628. The PSTNPss
and PS3 features formed more contributions to model than the other
features. For H_990 and M_944, the RF model trained using PSTNPss
features outperformed the other features. Whereas the LR model
trained using PS3 features outperformed the other features for S_
628. Overall, the contributions to the model performance of the six
features were PSTNPss > PS3 > PS2 > binary > ENAC > NCP for H.
sapiens, PS3 > PSTNPss > PS2 > binary > ENAC > NCP for S.

FIGURE 3
The accuracy curves forH. sapiens (A), S. cerevisiae (B), andM.musculus (C) of the position-specific of three nucleotides encoding schemes. (Due to the
excessive dimensions of position-specific of three nucleotides features, 1000 features were selected for drawing for convenience).

FIGURE 4
The performances of the four base-classifiers for H. sapiens, S.
cerevisiae, and M. musculus.
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cerevisiae, and PSTNPss > PS3 > ENAC > PS2 > binary > NCP forM.
musculus. However, no single type of feature consistently
outperformed other features for any species, and no single
algorithm consistently outperformed other algorithms for any
species. We can see that a single model using a single feature is
unsatisfactory; therefore, we may need to integrate learning strategies
to improve model performance.

In the experiment, we found that the PS3 features made a
considerable contribution to the model performance, and the
feature vector dimensions of PS3 were particularly high, up to
more than 1000 dimensions. In theory, the more features, the more
likely it is to provide features with strong discrimination ability in
limited training samples. However, too many features may cause
redundancy and “dimension disaster” (Suresh et al., 2022), which
will lead to a long training time of the model and the risk of over-
fitting, and reduce the generalisation ability of the model. Feature
selection can remove some redundant features, reduce training time,

select truly relevant features, and enhance the prediction performance
of the model (Jones et al., 2021; Zhang et al., 2021; Suresh et al., 2022).

Based on the LR algorithm, we employed a chi-square test and the
IFS strategy to determine the optimal features (Dao et al., 2019; Lv
et al., 2020; Zhang et al., 2021) were employed. We first ranked the
feature importance of the six encoding schemes using a chi-square test
separately, then set a whole ranked features set, named F: F = {f 1, f 2, ...f

n−1, f n}, where n represent the features number. We tested the training
dataset using the IFS by performing 5-fold cross-validation tests. In
each iteration, IFS added a feature in F to the preliminary feature
subset to build n feature subsets. When the highest ACC value was
achieved, optimal feature subsets were obtained. The ACC curves for
H. sapiens, S. cerevisiae, andM. musculus of PS3 encoding schemes are
shown in Figure 3. When the number of features was the top 124, 276,
and 115, we obtained the best predictive accuracies of 71.62%, 80.57%,
and 76.86% for identifying Ψ sites in H. sapiens, S. cerevisiae, and M.
musculus, respectively (Figure 3).

TABLE 3 The performances of the base-classifier combinations for the three species.

Species Base classifiers
combination

5-Fold cross- validation Independent testing

ACC
(%)

MCC
(%)

Sn
(%)

Sp
(%)<

AUC
(%)

ACC
(%)

MCC
(%)

Sn
(%)

Sp
(%)

AUC
(%)

H. sapiens RF + LR 93.64 87.28 94.34 92.93 98.56 89.00 79.02 97.00 81.00 96.51

RF + LR + SVM 93.43 86.88 94.34 92.53 98.42 86.50 73.84 94.00 79.00 95.47

RF + LR + SVM + GaNB 92.93 85.88 93.94 91.92 98.41 86.00 74.17 97.00 74.00 95.56

S. cerevisiae RF + LR 87.74 75.49 86.94 88.54 95.95 83.50 67.00 83.00 84.00 89.00

RF + LR + SVM 87.74 75.49 86.94 88.54 95.25 82.50 65.00 82.00 83.00 87.64

RF + LR + SVM + GaNB 88.06 76.13 86.94 89.17 95.17 81.50 63.00 81.00 82.00 86.48

M. musculus RF + LR 89.60 79.21 90.66 88.54 96.20

RF + LR + SVM 87.47 74.96 88.32 86.62 95.29

RF + LR + SVM + GaNB 87.37 74.74 88.11 86.62 95.28

Notes: Bold values indicate the best performance in terms of the corresponding measure.

FIGURE 5
Receiver operating characteristic curves for the base classifiers and the stacked models of different base-classifier combinations during 5-fold cross-
validation. The vertical coordinate is the true positive rate (sensitivity), while the horizontal coordinate is the false positive rate (1-specificity). [(A)H. sapiens, (B)
S. cerevisiae and (C) M. musculus].
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The ACC curves of the ENAC, binary, NCP, and PS2 encoding
schemes are shown in Supplementary Figures S1–4. The optimal
features are: the top 46 from 80 of ENAC, top 23 from 84 of binary,
top 34 from 63 of NCP, and top 100 from 320 of PS2 forH. sapiens, the
top 21 from 120 of ENAC, top 40 from 124 of binary, top 37 from 93 of
NCP, and top 116 from 480 of PS2 for S. cerevisiae, and the top 17 from
80 of ENAC, top 49 from 84 of binary, top 44 from 63 of NCP, and top
63 from 320 of PS2 for M. musculus. The feature dimension of the
PSTNPss is small; therefore, all PSTNPss features are selected.

Next, we examined the best combination of features. We used the
first-ranked feature to build the PseU-STmodel, added the second feature
to build a new model, and then the third feature, until all of the obtained
features were added. The performances of the feature combinations forH.
sapiens, S. cerevisiae, and M. musculus are displayed in Supplementary
Table S1. The optimal feature combination was PS3 + PSTNPss for S.
cerevisiae, and that for M. musculus was PSTNPss + PS3, which both
achieved the best performance of all metrics in either 5-fold cross-
validation or independent testing (Supplementary Table S1). For H.

TABLE 4 Performance comparison of PseU-ST and other existing methods on the same benchmark training datasets.

Species H. sapiens S. cerevisiae M. musculus

Method ACC (%) MCC (%) Sn (%) Sp (%) ACC (%) MCC (%) Sn (%) Sp (%) ACC (%) MCC (%) Sn (%) Sp
(%)

PseU-ST 93.64 87.28 94.34 92.93 87.74 75.49 86.94 88.54 89.60 79.21 90.66 88.54

PseUdeep 66.99 35.00 74.47 60.71 72.73 45.00 61.75 78.13 72.45 44.00 66.70 77.36

PsoEL-PseU 70.80 42.00 66.90 74.70 80.30 62.00 69.10 91.40 76.50 53.00 82.20 70.80

Porpoise 78.53 58.45 89.11 67.94 81.69 63.38 81.21 82.17 77.75 55.55 77.83 77.67

iPseU-Layer 79.70 60.00 71.18 88.22 80.08 60.00 77.92 81.82 89.34 79.00 84.68 93.76

RF-PseU (10-
fold)

64.30 29.00 66.10 62.60 74.80 49.00 77.20 72.40 74.80 50.00 73.10 76.50

RF-PseU (LOO) 64.00 29.00 65.90 62.60 75.80 52.00 78.20 73.40 74.50 48.00 72.70 75.20

EnsemPseU 66.28 33.00 63.46 69.09 74.16 49.00 73.88 74.45 73.85 48.00 75.43 72.25

XG-PseU 65.44 31.00 63.64 67.24 68.15 37.00 66.84 69.45 72.03 45.00 76.48 67.57

iPseU-CNN 66.68 34.00 65.00 68.78 68.15 37.00 66.36 70.45 71.81 44.00 74.79 69.11

PseUI 64.24 28.00 64.85 63.64 65.13 30.00 62.74 67.52 70.44 41.00 74.58 66.31

iRNA-PseU 60.40 21.00 61.01 59.80 64.49 29.00 64.65 64.33 69.07 38.00 73.31 64.83

Notes: 10-fold–10-fold cross-validation; LOO—leave-one-out cross-validation. Bold values indicate the performance of PseU-ST.

TABLE 5 Performance comparison of PseU-ST and other existing methods on the same independent test datasets.

Species H. sapiens S. cerevisiae

Method ACC (%) MCC (%) Sn (%) Sp (%) ACC (%) MCC (%) Sn (%) Sp (%)

PseU-ST 89.00 79.02 97.00 81.00 83.50 67.00 83.00 84.00

PseUdeep 66.18 33.00 73.53 58.82 80.88 62.00 77.45 84.31

PsoEL-PseU 75.50 51.00 76.00 75.00 82.00 64.00 83.00 81.00

Porpoise 77.35 55.13 82.30 72.40 83.50 67.27 88.00 79.00

iPseU-Layer 71.00 43.00 63.00 79.00 72.50 45.00 68.00 77.00

RF-PseU (10-fold) 75.00 50.00 78.00 72.00 77.00 54.00 75.00 79.00

RF-PseU (LOO) 74.00 48.00 74.00 74.00 74.50 49.00 70.00 79.00

EnsemPseU 69.50 39.00 73.00 66.00 75.00 51.00 85.00 65.00

XG-PseU 67.50 35.00 68.00 67.00 71.00 42.14 75.00 67.00

iPseU-CNN 69.00 40.00 77.72 60.81 73.50 47.00 68.76 77.82

PseUI 65.50 31.00 64.85 68.00 68.50 37.00 65.00 72.00

iRNA-PseU 61.50 23.00 58.00 65.00 60.00 20.00 63.00 57.00

Notes: 10-fold–10-fold cross-validation; LOO—leave-one-out cross-validation. Bold values indicate the performance of PseU-ST.
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sapiens, PSTNPss + PS3 achieved the best performance in 5-fold cross-
validation, but the MCC and Sn of PSTNPss + PS3 + PS2 were better in
independent testing, the ACC and Sp of PSTNPss + PS3 + PS2 + binary +
ENAC were better in independent testing, but just 0.28%, 1.00%, 0.5%,
and 7% higher, respectively. Therefore, PSTNPss + PS3was selected as the
optimal feature combination for H. sapiens.

3.2 Evaluation of the base-classifier
combinations

We built integrated learning models using the stacking strategy.
First, we built the RF, LR, SVM, and GaNB models separately as the
candidate base classifier using the optimal feature combination
selected in the forward step, namely, PSTNPss + PS3 for H.
sapiens, PS3 + PSTNPss for S. cerevisiae, and PSTNPss + PS3 for
M. musculus. We compared the performance of the four models for
each species and ranked them according to ACC. The performances of
the four models for each species are exhibited in Figure 4. The order of
best performance the four models for each species was RF, LR, SVM,
and GaNB (Figure 4). The performances of the RF models were good,
but there was obvious over-fitting inH. sapiens and S. cerevisiae, so we
employed the stacking strategy. We trained the stacked model using
LR as the meta-classifier to determine the optimal base-classifiers. We
assessed three different base-classifier combinations, which were RF +
LR, RF + LR + SVM, and RF + LR + SVM + GaNB. The performances
of the three combinations for each species is listed in Table 3. For H.
sapiens, the combination of RF + LR achieved the best performance of
all metrics in either cross validation or independent testing (Table 3).
For M. musculus, the combination of RF + LR achieved the optimal
performance of all metrics in cross validation too. For S. cerevisiae, the
combination of RF + LR + SVM + GaNB achieved the best
performance for almost all of the metrics in cross validation, but
the performance of RF + LR had the best performance for all metrics in
independent testing. Comparing the performance of the two
combinations, it was found that in cross validation, the ACC,
MCC, and Sp of RF + LR + SVM + GaNB were 0.32%, 0.64%, and
0.63% higher than those of RF + LR, but the AUC was lower by 0.78%,
and the Sn was equal. In independent testing, the performance of RF +
LR was better than that of RF + LR + SVM + GaNB in terms of all
performance metrics, with ACC, MCC, Sn, Sp, and AUC being 2.00%,
4.00%, 2.00%, 2.00%, and 2.52% higher, respectively. Therefore, RF +
LR was selected as the optimal base-classifier combination for S.
cerevisiae.

We further drew ROC curves to assess the performance of base
classifiers and stacked models of different combinations. As seen in
Figure 5, in cross validation, the combination of RF + LR reached the
optimal performance of the AUC in all three species, H. sapiens, S.
cerevisiae, and M. musculus, which is 98.56%, 95.95%, and 96.20%,
respectively. Taken together, we selected RF + LR as the optimal base-
classifier combination for the stacked model and named this stacked
model PseU-ST.

3.3 Comparison with the other existing
methods

To further examine the performance of PseU-ST, we compared it
with other existing methods using the same benchmark training, listed
in Tables 4, 5. As shown in Table 4, compared with other existing
methods using the same training datasets, PseU-ST performed best in
three important measures across all three species, that is, ACC, MCC,
and Sn. For H_990, the ACC and MCC of PseU-ST were 13.94% and
27.28% higher, respectively, than those of the second-best method,
iPseU-Layer. The Sn of PseU-ST was 5.23% higher than that of the
second-best method, Porpoise. For S_628, the ACC, MCC, and Sn of
PseU-ST were 6.05%, 12.11%, and 5.73% higher, respectively, than
those of the second-best method, Porpoise. For M_944, the ACC,
MCC, and Sn of PseU-ST were 0.26%, 0.21%, and 5.98% higher,
respectively, than those of the second-best method, iPseU-Layer. In
addition, for H_990, the Sp of PseU-ST was 4.71% higher than that of
the second-best method, iPseU-Layer.

To examine if PseU-ST models are subjected to over-fitting, we
performed independent testing on independent test datasets to
validate the models. The performance comparison of PseU-ST and
other existing methods is presented in Table 5. As indicated, PseU-ST
performed the best in all four measures for H_200. The ACC, MCC,
and Sn of PseU-ST was 11.65%, 23.89%, and 14.70% higher,
respectively, than those of the second-best method, Porpoise, and
the Sp of PseU-ST was 2.00% higher than that of the second-best
method, iPseU-Layer.

Besides, there was little difference between the prediction
performance of independent and cross validation tests, for instance,
the ACC and MCC of PseU-ST on H_200 was 89.00% and 79.02%,
respectively, which is close to those of H_990 (93.64% and 87.28%,
respectively). PseU-ST obtained an ACC of 83.5% andMCC of 67.00%
on S_200, which are also very close to those of S_628 (87.74% and
75.49%, respectively), and there was no over-fitting.

FIGURE 6
Top 20 features of PseU-ST ranked according to feature scores for predicting RNA Ψ sites of (A) H. sapiens, (B) S. cerevisiae, and (C) M. musculus.
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In summary, compared with other existing models, PseU-ST
achieved better prediction performance and had obvious
advantages. PseU-ST is a highly competitive model for
identifying RNA Ψ sites in H. sapiens, S. cerevisiae, and M.
musculus.

3.4 The interpretation of model

To interpret the feature importance for the performance of the
PseU-ST models. We ranked the features in the model of all three
species according to feature scores and mapped the top 20 ranked
features of each species in Figure 6. The PSTNPss features played
an important role in the PseU-ST models; the top three
important features for all three species models were PSTNPss
features, and their scores were significantly higher than those of
other features (Figure 6). This indicates that the PSTNP features
plays a crucial role in PseU-ST models and makes more
contributions to the performance of PseU-ST. Owing to the
large proportion of PS3 features in the PseU-ST models, the
contribution of these features to the prediction performance
cannot be ignored.

4 Conclusion

In our study, a novel stacked ensemble-learning method named
PseU-ST (available at https://github.com/jluzhangxinrubio/PseU-ST)
was developed to identify RNA Ψ sites in H. sapiens, S. cerevisiae, and
M. musculus with a more stable and accurate performance. We
thoroughly evaluated almost all of the RNA sequence encoding
schemes available in the iLearnPlus software package and tested
seven most popular machine learning algorithms to determine the
optimal feature and best base-classifier combinations. Finally, we
developed an optimised model for each of the three species. Owing
to the adoption of a stacking strategy and the employ of optimal
feature selection algorithms, PseU-ST achieved better performance on
either cross-validation or independent tests compared with the other
existing models. In addition, we interpreted the feature importance for
the PseU-ST models, in which PSTNPss features were shown to play
an important role.

The strategies used in this study are universal and they can be
employed to predict other DNA/RNAmodification sites, such as DNA
N4-methylcytosine and 5-methylcytosine sites. We believe PseU-ST
will be a powerful tool for promoting a community-wide works for
identifying Ψ sites and supplying high-quality identified Ψ sites for
biological validation.
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