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Editorial on the Research Topic

Bioinformatics applied to neuroscience

Genetics and molecular biology studies have revealed many new associations between

the most diverse diseases, pointing to the involvement of a wide range of pathways. This

increasing volume of data through interdisciplinary lenses andmethods can provide insights

into pathophysiologic mechanisms in several diseases. Therefore, new methods have arisen

to analyze the data provided by these studies. Bioinformatics has emerged as a necessary

discipline, revolutionizing this field and providing tools to jointly study DNA variants,

gene expression, epigenetic marks, and biological networks. Biological public databases

and computational tools are essential to develop data-driven approaches for understanding

human diseases. This Research Topic contains 15 articles presenting current bioinformatics

approaches applied to understanding the biological underpinnings of psychiatric and

neurological conditions.

Dong et al. analyzed the association of immune and Parkinson’s disease (PD)-related

genes through protein-protein interaction networks, using co-expression data. Modular

clustering analysis was also performed to identify central core genes, and the findings were

validated by analyzing the expression of specific key genes. In summary, the authors were

able to show strong correlations between immune- and PD-related genes, which could

have the potential for diagnostic and therapeutic approaches. The integration between

differential gene expression, weighted gene co-expression network analysis (WGCNA), and

neurodegenerative disorders were also the topics studied by Chen et al. and He et al. The first

study focused on PD, and their results also pointed to immune-related hub genes and the

PD pathogenesis, which were presented as key modules in the WGCNA. He et al. focused

on interconnected expression analysis and a machine learning model, through a random

forest algorithm. They proposed seven hub genes that could confer the theoretical basis for

studying biomarkers in Alzheimer’s disease.
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Other two studies used machine learning models to identify

biomarkers in psychiatry and neurological conditions. Liu et

al. proposed a diagnostic model of major depressive disorder

(MDD) using machine learning. Data consisted of differentially

expressed genes in MDD individuals and healthy controls. Most

genes were involved in immune pathways and response to

external stimuli. A robust diagnostic model was created through

random forest and artificial neural network machine learning

algorithms and potential driver genes were identified, as C3AR1,

BST2, TREM1, BTG3, LY6E, and IER5. Bai et al. also used

machine learning methods to identify potential biomarkers but

in intracerebral hemorrhage (ICH). They examine the expression

profiles of circRNAs in the peripheral blood and identify their

potential functions using bioinformatic tools. Three circRNAs,

named hsa_circ_0005505, circERBB2 and circCHST12, were

identified as promising biomarkers for ICH based on machine

learning algorithms.

Tian et al. studied for the first time the epigenetic role

of m7G-regulated genes in ischemic stroke. Based on previous

studies on m7G, the expression of 34 m7G key regulatory

genes was searched in the datasets from the Gene Expression

Omnibus (GEO), including patients and controls. Two widely used

machine learning algorithms, random forest (RF) and support

vector machine (SVM) were subsequently used to identify eight

key regulators of m7G. Five of the eight key regulators were

significantly different in the middle cerebral artery occlusion

model and quantitative polymerase chain reaction validations. In

summary, their findings suggest that EIF3D, CYFIP2, NCBP2,

DCPS, and NUDT1 genes may serve as potential diagnostic

biomarkers for ischemic stroke and could predict clinical risk.

Another study by Shu et al. also used the middle cerebral artery

occlusion model. They identified 15 differentially expressed genes

related to the three types of programmed cell death (apoptosis,

pyroptosis, and necroptosis) in transcriptome signatures of

brain tissue samples from mice subjected to middle cerebral

artery occlusion/reperfusion (MCAO/R). They conclude that these

processes and the crosstalk among them might be involved in

ischemic stroke and that the key nodes and regulatory axes

identified in this study might play vital roles in regulating the

above processes.

Ischemic stroke and epigenetics were also the object of study

of other researchers. Zhang et al. evaluated the regulators of RNA

methylation in ischemic stroke and suggested therapeutic targets

by applying WGCNA followed by quantitative PCR analysis in an

animal model; finally, the authors performed molecular docking

to predict the interaction with the hub genes and drug molecules,

which identified GPNMB and chloroquine as potential targets.

WGCNA was also applied in the study conducted by Yu et al.

that evaluated chromatin regulators in ischemic stroke; the analysis

pointed to four immune biomarkers (DPF2, LMNB1, MLLT3,

and JAK2), which were validated through quantitative PCR and

evaluated in regard to molecular docking. In a different approach,

Yang et al. also evaluated immune biomarkers in ischemic stroke by

studying the hub shared genes between the condition and major

depressive disorder; differentially expressed genes were analyzed

and it was found that innate immunity genes were upregulated

whilst acquired immunity genes were downregulated.

Zhu et al. conducted a two-sample Mendelian randomization

study to evaluate the association between C-Reactive Protein (CRP)

levels and risk of Amyotrophic Lateral Sclerosis. Amyotrophic

Lateral Sclerosis data were extracted from GWAS performed in

people of European ancestry and included 20,806 cases and 59,804

controls. Six Mendelian randomization methods were selected,

including the inverse variance weighted (IVW), weighted median,

MR-Egger, MRPRESSO, simple mode, and weighted mode test.

Fifty-seven independent SNPs were found to be associated with

CRP. However, there was no significant causal relationship between

genetically predicted CRP levels and disease risk (OR = 1.123,

95% CI = 0.963–1.309, p = 0.139), which is a relevant result

since it excludes the possible association between CRP levels and

Amyotrophic Lateral Sclerosis in the European population.

Autophagy was another important topic addressed. Xiao

et al. investigated combinations of DGE with enrichment and

systems biology analysis in intracerebral hemorrhage datasets. They

suggested four autophagy-related genes, IL1B, STAT3, NLRP3, and

NOD2, as key factors associated with intracerebral hemorrhage. In

another study by Ma et al. autophagy was studied in the context

of Alzheimer’s disease through multi-omics analysis. They studied

the novel ubiquitin-binding receptor, Chaperonin containing TCP1

subunit 2 (CCT2), which promotes aggrephagy, a process in

which autophagy selectively degrades protein aggregates. All the

datasets used in the study were obtained from the Gene Expression

Omnibus database. The CCT2-high-associated genes screened by

Pearson coefficients were enriched in protein folding, autophagy,

and messenger RNA stability regulation pathways. The logistic

prediction model screened in this study is a favorable candidate for

predicting potential biological targets and small molecule inhibitors

for Alzheimer’s disease treatment.

Finally, two studies evaluated the role of circRNAs in

neurologic conditions. The first study by Wang et al. evaluated

competitive endogenous RNA regulatory networks in postoperative

cognitive dysfunction (POCD). In their study, the authors

extracted the transcriptomic signatures in the hippocampus of

POCD mice derived from Gene Expression Omnibus (GEO)

datasets in order to identify the circRNA, miRNA, and mRNA

expression profiles of POCD mice compared with controls,

respectively. A set of differentially expressed RNAs, including

119 circRNAs, 33 miRNAs, and 49 mRNAs were identified.

Transcript validation by qPCR confirmed the enhanced expression

of circ_0001634, circ_0001345, and circ_0001493. A regulatory

network was constructed using circRNA-miRNApairs andmiRNA-

mRNA pairs, resulting in a competing endogenous RNA regulatory

network composed of three circRNAs, three miRNAs, and six

mRNAs. The hub mRNAs in the network were further found to

be involved in the hormone catabolic process and regulation of

the canonical Wnt signaling pathway, revealing their crucial role

in POCD.

The second circRNA study evaluated the potential value of

differentially expressed circular RNAs derived from circulating

exosomes in the pathogenesis of rat spinal cord injury (SCI). SCI

remains a catastrophically injured condition for humans, thereby

bringing severe social and economic burdens. The study by Zan

et al. analyzed differentially expressed circRNAs derived from

circulating exosomes in SCI rats in comparison with the control
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rats. Subsequently, functional enrichment analyses including

kyoto encyclopedia of genes and genomes (KEGG) pathway and

gene ontology (GO) were performed to evaluate the possible

biological functions of upregulated as well as downregulated

circRNAs involved in SCI. Five upregulated circulating circRNAs

including and five downregulated circulating circRNAs were

verified through reverse transcription-polymerase chain reaction.

They also constructed a circRNA-miRNA-mRNA gene interaction

network to predict the possible functionalities of circRNAs in

SCI through anticipating specific interactive miRNAs. Their

main findings suggest the possible involvement and functional

significance of circRNAs in SCI.

The manuscripts included in this Research Topic show the

diversity of bioinformatics tools that could be applied to investigate

intriguing questions in the neuroscience field. They could direct

more precise in vitro analyses and provide interesting findings to

clarify the pathogenesis of complex diseases, as well as to suggest

novel biomarkers and treatment options.

Author contributions

CR: Conceptualization, Supervision, Writing—original draft,

Writing—review and editing. JS: Conceptualization, Supervision,

Writing—original draft, Writing—review and editing. MR-M:

Supervision, Writing—review and editing. TK: Conceptualization,

Supervision, Writing—original draft, Writing—review and editing.

Funding

This work has been supported in part by Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance

Code 001, Fundação de Amparo à Pesquisa do Rio Grande

do Sul (FAPERGS), Conselho Nacional de Desenvolvimento

Científico e Tecnológico (CNPq) grant no. 23/2551-0000115-2, and

FIPE/HCPA grant no. 2022-0567. TK is the recipient of a CNPq

scholarship (grant no. 150181/2023-0). MR-M is the recipient of a

CNPq scholarship grant (grant no. 308075/2021-8).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeuroscience 03 frontiersin.org7

https://doi.org/10.3389/fnins.2023.1276346
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Association Between C-Reactive
Protein and Risk of Amyotrophic
Lateral Sclerosis: A Mendelian
Randomization Study
Yahui Zhu1,2, Mao Li1,2, Jinghong Zhang1,2 and Xusheng Huang1,2*

1Medical School of Chinese PLA, Beijing, China, 2Department of Neurology, The First Medical Center, Chinese PLA General
Hospital, Beijing, China

Background: Until now, the relationship between C-reactive protein (CRP) levels and
amyotrophic lateral sclerosis (ALS) risk has not been fully established. It is necessary to
assess whether there is a causal relationship between C-reactive protein levels and
ALS risk.

Objective andMethods:We aimed to determine whether CRP has causal effects on risk
of ALS. In this present study, summary-level data for ALS (20,806 cases and 59,804
controls) was obtained from large analyses of genome-wide association studies. For
instrumental variables, 37 single nucleotide polymorphisms that had been previously
identified to be related to CRP levels were used, including 4 SNPs of conservative CRP
genetic variants and 33 SNPs of liberal CRP genetic variants. MR estimates were
calculated using the inverse-variance weighted method, supplemented by MR-Egger,
weighted median, and MR-PRESSO methods.

Results: There was no significant causal relationship between genetically predicted CRP
levels and ALS risk (OR = 1.123, 95% CI = 0.963–1.309, p = 0.139) and results for the
conservative CRP instruments were consistent (OR = 0.964, 95% CI = 0.830–1.119, p =
0.628). Pleiotropic bias was not observed in this study.

Conclusions: This study suggests that genetically predicted CRP levels may not be a
causal risk factor for ALS.

Keywords: amyotrophic lateral sclerosis, mendelian randomization, C-reactive protein, single-nucleotide
polymorphisms, causal relationship

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease characterized by motor
neuron axonal degeneration, with an average survival of 3–5 years after symptom onset (Turner
et al., 2013). Serum C-reactive protein (CRP) is a biomarker of systemic inflammation (Koenig et al.,
1999) and has also been considered a biomarker of neurodegeneration (Luan and Yao., 2018). The
previous studies have found elevated levels of serum C-reactive protein in ALS patients (Ryberg et al.,
2010) (Cui et al., 2020), but Huang et al. suggests no significant difference of CRP levels in ALS
patients when compared to controls (Huang et al., 2020). Several studies have evaluated the role of
CRP as a prognostic marker in ALS and the relationship between CRP and disease progression/
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survival rate. One study suggests that ALS patients with elevated
CRP levels have faster disease progression than those with lower
CRP levels and that serum CRPmay be a prognostic biomarker in
ALS (Lunetta et al., 2017). However, the other study showed no
association of serum CRP with survival rate (De Schaepdryver
et al., 2020). ALS usually occurs in middle-aged people, and this
age group is often accompanied by other complications, which
may affect CRP level. Since data on the association of CRP levels
with ALS are often derived from observational studies, which
could be subject to potential confounding bias and reverse causes,
such as chronic diseases, cardiovascular risk factors and so on, it is
unclear whether CRP levels are a risk factor for ALS.

Mendelian randomization (MR) is a novel method to evaluate
the causal relationship between risk factors and diseases using
genetic variation in observational studies (Davies et al., 2018).
Due to the random assignment of genes at conception, genetic
variants predate disease development and are not influenced by
environmental risk factors. Thus, MR overcomes the core
deficiencies of observational studies, minimizing confounding
bias and reverse causality, allowing the assessment of potential
causality (Walker et al., 2017).

Here, we performed a two-sample Mendelian randomization
to further understand the causal effects of C-reactive protein
levels on the risk of ALS. In this study, single nucleotide
polymorphisms (SNPs) related to CRP levels were used as
instrumental variables.

MATERIALS AND METHODS

As all analyses were performed using publicly available genome-
wide association study (GWAS) summary data, no additional
ethical permission was required from institutional research ethics
committees. This study followed the Strengthening the Reporting
of Observational Studies in Epidemiology Using Mendelian
Randomization (STROBE-MR) guide (Skrivankova et al., 2021).

Study Design
In general, MR studies must satisfy three principal assumptions,
as shown in Figure 1, which is a flow chart of our research design.
Both the second and third hypotheses are designed to ensure
independence from pleiotropy, as described in some previous
studies (He et al., 2020) (Zhang H. et al., 2020).

C-Reactive Protein Genetic Variants
We selected two sets of CRP genetic variants as instrumental
variables, including conservative CRP genetic variants (Wensley
et al., 2011) and liberal CRP genetic variants (Ligthart et al., 2018).

Wensley et al. (Wensley et al., 2011) used detailed information
about the composition of the CRP gene to select a set of SNPs
(rs3093077, rs1205, rs1130864, and rs1800947) that fully covers
the common variations of CRP gene in populations of European
descent (that is, minor allele frequency ≥0.05 and an r2 threshold
of ≥0.8). The 4 SNPs (rs3093077, rs1130864, rs1205 and

FIGURE 1 | The flow chart of the MR study design.
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rs1800947) were at the CRP locus and used as conservative CRP
instrumental variables.

Liberal CRP instrumental variables were extracted from a
pooled analysis of GWAS by using data from 88 studies
comprising 204,402 European individuals. The GWAS meta-
analyses of CRP revealed 58 distinct genetic loci (p < 5 ×
10–8). The lead variants at the distinct loci explained up to
7.0% of the variance in circulating amounts of CRP. In this
study, serum CRP levels were measured using standard
laboratory techniques. The authors excluded individuals with
autoimmune disease, taking immunomodulators, or C-reactive
protein levels four standard deviations or more from the mean.
Analyses were adjusted for age, sex, population substructure, and
correlation. Liberal CRP instrumental variants represented that
SNPs were extracted from CRP GWAS dataset mentioned above
and at the distinct genetic loci, such as C6orf173, FABP1, IL1R1
and so on.

Amyotrophic Lateral Sclerosis
Genome-Wide Association Study Dataset
The current study was based on publicly available ALS GWAS
summary statistics data, including 20,806 ALS cases and 59,804
controls in people of European ancestry (Nicolas et al., 2018). In
the study, Nicolas et al. undertook a large-scale GWAS involving
12,663 patients diagnosed with ALS and 53,439 control subjects
and incorporated into a meta-analysis with GWAS involving
12,577 ALS cases and 23,475 control subjects (van Rheenen et al.,
2016). After imputation and quality-control measures, variants
from 20,806 ALS cases and 59,804 control samples were available
for association analysis. All ALS patients included in the case
cohort were diagnosed by neurologists specializing in ALS
according to the El Escorial criteria (Brooks, 1994).

We compared the sources of participants in the CRP GWAS
dataset and ALS GWAS dataset. Since the participants were from
different studies or consortiums, we thought that the probability
of overlapping samples between CRP GWAS and ALS GWAS
was small.

Mendelian Randomization Analysis
Conservative CRP instrumental variablesrs were rs3093077,
rs1130864, rs1205 and rs1800947. For liberal CRP
instrumental variables, we first identified significant SNPs(p <
5 × 10–8) related to C-reactive protein from the summary analysis
of GWAS. SNPs for CRP were clumped using standard
parameters (clumping window of 10000 kb, r2 cutoff value of
0.001) to discard variants in linkage disequilibrium (LD). Here, 57
independent SNPs were found to be associated with CRP. If SNPs
were absent in the ALS GWAS dataset and for which proxies (r2 >
0.9) were not available by searching the online website SNiPA
(http://snipa.helmholtzmuenchen.de/snipa3/), these unavailable
SNPs would be excluded from downstream analysis.
Subsequently, to satisfy the second assumption, we used the
PhenoScanner tool (Kamat et al., 2019) to examine whether
selected SNPs were associated with potential confounders
affecting ALS. When using the PhenoScanner tool, the
threshold for genome-wide significance was set at p < 5 ×

10–8. In addition, we applied MR Steiger filtering (Hemani
et al., 2017) to test the causal direction of the obtained SNPs
on exposures and outcomes. We excluded SNPs with “FALSE”
results because these SNPs mainly affected the outcomes, not
exposures. Finally, we assessed the power of remaining SNPs
using the F statistics (F = beta2/se2) for each SNP. SNPs with less
statistical power would be removed to avoid weak instrumental
variables (F statistics <10) (Chen L. et al., 2021).

Pleiotropy analyses were mainly based on three different
statistical methods, including the MR-Egger intercept test
(Verbanck et al., 2018), MR Pleiotropy RESidual Sum and
Outlier (MR-PRESSO) global test (Verbanck et al., 2018), and
the heterogeneity test using Cochran’s Q statistic (Greco et al.,
2015). Statistically significant differences for the above analyses
were set at p value < 0.05. In addition, we depicted funnel plots to
visualize any heterogeneity of effect estimates. Asymmetry about
the vertical line is indicative of the heterogeneity.

Six MR analysis methods were selected including the inverse-
variance weighted (IVW), weighted median, MR-Egger, MR-
PRESSO, simple mode, and weighted mode test. The random-
effects IVW method, the main method of the study, essentially
assumed a zero intercept and performed a weighted regression of
the SNP-exposure effects with the SNP-outcome effects. The MR
Egger method provided more conservative causal estimates in the
presence of pleiotropy and was less likely to produce exaggerated
test statistics (Burgess and Thompson, 2017). Even when up to
50% of the information in the analysis came from invalid IVs, the
weighted median method could provide valid estimates (Bowden
et al., 2016). The MR-PRESSOmethod was used to detect outliers
that might bias the results and to assess whether causal estimates
change after removing outliers (Verbanck et al., 2018). In
addition, we performed a leave-one-SNP-out analysis. In this
analysis, we systematically removed one SNP at a time, assessing
the impact of potentially pleiotropic SNPs on causal effects.
Estimates were expressed as odds ratio (OR) and 95%
confidence interval (CI) per unit increase in natural log-
transformed genetically predicted CRP levels (mg/L). Statistical
analysis was performed in version R4.1.2 (TwoSampleMR and
MR-PRESSO packages). The signifcance threshold was p
value < 0.05.

Power Analysis
The proportion of CRP variance was explained by each
instrument SNP R2, which was calculated using the following
formula:R2 = 2β2MAF (1–MAF) (Park et al., 2010). Where MAF
represents the minor allele frequency of the instrument SNP, and
β denotes the effect size for SNP. The statistical power was
calculated using the web-based tool mRnd, where the two-
sided type-I error rate α was 0.05 (Brion et al., 2013).

RESULTS

Conservative CRP Genetic Variants With
Amyotrophic Lateral Sclerosis
Of the 4 SNPs, only 1 was shown to be significantly associated
with the risk of ALS (OR = 0.796, 95% CI = 0.639–0.992, p =
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0.043) and the other 3 SNPs were showed no association with the
risk of ALS (Figure 2). Overall, there was no evidence to suggest a
causal association between CRP levels and ALS risk in the analysis
using IVW method with an OR of 0.964 (95% CI = 0.830–1.119,
p = 0.628). The results were consistent in the analyses using
weightedmedian andMR Egger methods (Figure 3). The detailed
characteristics of the 4 SNPs was showed in Table 1.

Heterogeneity was not observed using Cochran Q statistic
based on IVW (p = 0.102) and MR-Egger (p = 0.519). The MR
Egger intercept (intercept = -0.092, SE = 0.042, p = 0.158) showed
no horizontal pleiotropy. In PhenoScanner database, none of the
4 SNPS were observed to be associated with other traits, diseases
or risk factors.

Liberal CRP Genetic Variants With
Amyotrophic Lateral Sclerosis
A total of 57 independent SNPs were found to be associated
with CRP. Rs644234 was excluded in downstream analysis
because it was not available in ALS data. Since rs2794520 was
at the CRP locus, in order to reduce horizontal pleiotropy, we
would analyze the effect of rs2794520 and other 55 SNPs on ALS
risk separately.

Rs2794520 explained 1.48% variance of CRP. For rs2794520,
we did not observe a causal relationship between CRP levels and
ALS risk (OR = 0.949, 95% CI = 0.813–1.108, p = 0.505).

For the 55 SNPs, harmonising CRP and ALS, the following
SNPs for being palindromic with intermediate allele frequencies
were excluded: rs10778215 and rs11108056. When using the
PhenoScanner tool, we excluded 20 SNPs that were associated
with confounders, which were proved to be causally associated
with ALS such as low density lipoprotein (LDL), total cholesterol
(Chen et al., 2018), type 2 diabetes (T2DM) (Chen H. et al., 2021),
childhood body mass index (Zhang L. et al., 2020), neutrophil
count, white blood cell count (Li et al., 2020), systolic blood
pressure and diastolic blood pressure (Xia et al., 2022). The
remaining SNPs were all with true causal direction identified
by the MR Steiger filtering. The F statistics for each SNP were
greater than the statistical threshold of 10, indicating sufficient
validity for all SNPs. Thus, the MR analysis of ALS included 33
SNPs related to CRP. The detailed characteristics of the SNPs was
showed in Supplementary Table S1. All these 33 genetic variants
could explain 1.55% variance of CRP.

Cochran Q statistic based on IVW (p = 0.491) and MR-Egger
(p = 0.613) showed no evidence of heterogeneity and the
symmetry of the funnel plot supported that (Figure 4). The
MR Egger intercept (intercept = 0.011, SE = 0.006, p = 0.077)
suggested no horizontal pleiotropy for instrumental variables,
and the MR-PRESSO global test (p = 0.482) supported that. The
MR-PRESSO outlier test did not identify outlier SNPs. Therefore,
the selected 33 SNPs associated with CRP were used as
instrumental variables for the downstream MR analysis.

For the 33 SNPs, there was no evidence of a causal
relationship between genetically predicted CRP levels and
ALS risk, with p values >0.05 in the analysis using IVW
approach with an OR of 1.123 (95% CI = 0.963–1.309, p =
0.139). The other analyses, MR Egger (OR = 0.838, 95% CI =
0.591–1.188, p = 0.329), weighted median (OR = 1.018, 95% CI

FIGURE 2 | The effect of single conservative CRP genetic variants on
ALS. OR, odds ratio; CI, confidence interval.

FIGURE 3 | The effect of overall conservative CRP genetic variants on ALS. OR, odds ratio; CI, confidence interval.

TABLE 1 | The characteristics of the selected conservative CRP instrumental variables.

SNP Effect Allele Other Allele Association with CRP Amyotrophic Lateral Sclerosis

EAF β SE β SE P

rs3093077 C A 0.0716 0.21 0.018 0.0356 0.0272 0.1913
rs1205 C T 0.6899 0.18 0.01 −0.0109 0.0144 0.4501
rs1130864 A G 0.327 0.13 0.008 −0.0296 0.0146 0.04302
rs1800947 C G 0.9429 0.26 0.015 0.0178 0.033 0.5905

SNPs, single nucleotide polymorphisms; EAF, effect allele frequency; SE, standard error.
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= 0.795–1.304, p = 0.885) and MR-PRESSO (OR = 1.123, 95%
CI = 0.964–1.307, p = 0.146) methods supported these results
(Table 2; Figure 5 and Figure 6). In the leave-one-out
analysis, we did not observe a single SNP of CRP to have
an influence on the association (Figure 7).

Power Analysis
For liberal CRP genetic variants with ALS, our MR study had
80% power to detect an OR of 1.191 or higher per SD increase
in C-reactive protein levels for ALS with an alpha of 5%.

DISCUSSION

Until now, the relationship between C-reactive protein levels and
ALS risk has not been fully established. Hence, it is necessary to
clarify the causal relationship between CRP levels and ALS risk in
order to develop effective therapeutic and preventive measures. In
our study, we selected 4 SNPs and 33 SNPs as conservative CRP
instrumental variables and liberal CRP instrumental variables
and obtained their corresponding summary statistics in the ALS
GWAS dataset. After that, we evaluated the causal link of CRP
levels with ALS risk by MR analysis. Our study showed no causal
effects between CRP levels and ALS risk. CRP levels might not
increase or reduce the risk of ALS.

Inflammation is involved in the pathogenesis of central
nervous system neurodegenerative diseases, including ALS
(Stephenson et al., 2018). The neuroinflammation of ALS is
predominantly characterized by activation of microglia and
astrocytes innate immune sensing pathways to the central
nervous system (McCauley and Baloh, 2019). CRP, as a
biomarker of low-grade inflammation, has been proposed to
play a role in the development of ALS. However, a recent
study showed that compared to controls, patients with ALS
had lower CRP levels before diagnosis until 1 year after

FIGURE 4 | Funnel plot assessing heterogeneity. Blue line represents the inverse-variance weighted estimate, and dark blue line represents the MR-Egger
estimate. SE, standard error; IV, instrumental variable.

TABLE 2 | The causal association of CRP levels with ALS risk.

Method N SNPs OR 95%CI p Value

IVW 33 1.123 0.963–1.309 0.139
MR-Egger 33 0.838 0.591–1.188 0.329
Weighted median 33 1.018 0.795–1.304 0.885
MR-PRESSO (raw, 0 outlier) 33 1.123 0.964–1.307 0.146
simple mode 33 1.133 0.715–1.795 0.598
weighted mode 33 1.002 0.770–1.303 0.990

SNPs, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; IVW,
inverse-variance weighted; MR-PRESSO, MR, Pleiotropy RESidual Sum and Outlier.
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diagnosis. After that, ALS patients had higher CRP levels when
compared to controls. This study suggested that C-reactive
protein was involved in the disease course of ALS, but perhaps
only in the later disease stages (Cui et al., 2020). Therefore, this
study also supports our findings to a certain extent. That is,
C-reactive protein may not be a risk factor for the development of
ALS. Although persistent inflammation is thought to be a
contributor in the development of ALS, inflammation may
promote the development of ALS through inflammatory

mediators other than C-reactive protein. Hence, there is no
clear causal relationship between C-reactive protein levels and
ALS risk.

One of the advantages of our study is that the use of MR analysis
reduces potential confounding factors and reverse causality,
minimizing bias from the traditional observational studies. To our
knowledge, this is the first study to investigate the causal relationship
between CRP and ALS risk using genetic variation. In addition, the
large sample size of this study and the inclusion of multiple SNPs as

FIGURE 5 | The effect of liberal CRP genetic variants on ALS. OR, odds ratio; CI, confidence interval; MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier.

FIGURE 6 | Scatter plots of genetic associations of CRP with ALS risk. The slopes of each line represent the causal association for each method.
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instrumental variables improve statistical power, which increases the
ability to identify weak associations. Finally, no pleiotropy is observed
in this study, and these models produce similar conclusions,
suggesting the robustness of the findings.

Our study also has some limitations. First, since this study used
summary-level data, the possibility of a non-linear association
between CRP levels and the risk of ALS cannot be completely
ruled out. Second, as this study was based on pooled-level data,
we could not conduct a more detailed subgroup analysis. Therefore,
in further studies, the opportunity to obtainmore detailed data on the
individual-level, such as patient’s age, gender, and so on, will help us
further understand the causal relationship between CRP levels and
the risk of ALS in each subgroup.We look forward to the opportunity
for authors of the publicly available GWAS to share individual-level
data for further research. Third, bi-directional MR analysis was not
carried out. For ALS as exposure, we identified significant SNPs (p <
5 × 10–8) associated with ALS from the summary analysis of GWAS.
Then, SNPs for ALS were clumped using standard parameters
(clumping window of 10000 kb, r2 cutoff value of 0.001) to
discard variants in linkage disequilibrium (LD). Here, 6
independent SNPs associated with ALS were found. However,
only one SNP (rs3849938) in the CRP (outcome) GWAS dataset
was available. We considered that the number of instrumental

variables was too small for MR analysis, so bi-directional MR
analysis was not carried out. In addition, since all participants
(including CRP levels and ALS) are of European ancestry, this
study may not be available in other ethnic groups, making it
difficult to extrapolate the research results to other ancestries.
Hence, the findings should be further replicated in other ancestries.

To conclude, we found no evidence to support a causal
relationship between CRP levels and the risk of ALS. In the
future, we expect a larger GWAS database and individual-level
data to be available. Meanwhile, additional studies are also
expected to further confirm our findings.
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Identification of Immune-Related Hub
Genes in Parkinson’s Disease
Lin Chen1, Yong Wang2, Juan Huang1, Binbin Hu1 and Wei Huang1*
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Background: Parkinson’s disease (PD) is a common, age-related, and progressive
neurodegenerative disease. Growing evidence indicates that immune dysfunction plays
an essential role in the pathogenic process of PD. The objective of this study was to explore
potential immune-related hub genes and immune infiltration patterns of PD.

Method: The microarray expression data of human postmortem substantia nigra samples
were downloaded from GSE7621, GSE20141, and GSE49036. Key module genes were
screened via weighted gene coexpression network analysis, and immune-related genes
were intersected to obtain immune-key genes. Functional enrichment analysis was
performed on immune-key genes of PD. In addition to, immune infiltration analysis was
applied by a single-sample gene set enrichment analysis algorithm to detect differential
immune cell types in the substantia nigra between PD samples and control samples. Least
absolute shrinkage and selection operator analysis was performed to further identify
immune-related hub genes for PD. Receiver operating characteristic curve analysis of the
immune-related hub genes was used to differentiate PD patients from healthy controls.
Correlations between immune-related hub genes and differential immune cell types were
assessed.

Result:Our findings identified four hub genes (SLC18A2, L1CAM, S100A12, andCXCR4)
and seven immune cell types (neutrophils, T follicular helper cells, myeloid-derived
suppressor cells, type 1 helper cells, immature B cells, immature dendritic cells, and
CD56 bright natural killer cells). The area under the curve (AUC) value of the four-gene-
combined model was 0.92. The AUC values of each immune-related hub gene (SLC18A2,
L1CAM, S100A12, and CXCR4) were 0.81, 0.78, 0.78, and 0.76, respectively.

Conclusion: In conclusion, SLC18A2, L1CAM, S100A12, and CXCR4 were identified as
being associated with the pathogenesis of PD and should be further researched.

Keywords: Parkinson’s disease, weighted gene coexpression network analyses (WGCNA), LASSO, immune cell, hub
genes

INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disease. The condition is characterized
by motor symptoms, comprising bradykinesia, resting tremor, rigidity, and nonmotor symptoms,
including olfactory loss, autonomic dysfunction, depression, cognitive impairment, and insomnia. In
2016, more than 6million people suffered PDworldwide, and the number of PD patients is estimated
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to increase with population age (GBD 2016 Parkinson’s Disease
Collaborators, 2018). The major pathological features of PD are
progressive loss of dopaminergic neurons in the substantia nigra
and aberrant α-synuclein aggregation called Lewy bodies (Kalia
and Lang, 2015). The exact etiology of sporadic PD remains
unknown.

Growing evidence supports that immune dysfunction plays an
essential role in the pathogenic process of PD. A nationwide
epidemiological study from Sweden involving 310,522 patients
with autoimmune disorders showed that 932 patients developed
subsequent PD after follow-up; patients with an autoimmune
disease had a 33% overall excess risk of PD (Li et al., 2012). A
nested case–control study published in 2022 demonstrated that
people with rheumatoid arthritis using immunosuppressant
treatments were associated with a potentially decreased risk of
developing PD (Paakinaho et al., 2022). Imaging of
neuroinflammation with [11C] (R)-PK11195 PET showed that
microglial activation is higher in PD patients than in healthy
controls, confirming a link between neuroinflammation and the
pathological process in PD (Gerhard et al., 2006). The levels of
activated immune cells and proinflammatory cytokines are
increased in the brain or cerebrospinal fluid of patients with
PD (Mogi et al., 1996; Brodacki et al., 2008; Zhang et al., 2016;

Schröder et al., 2018; Lin et al., 2019) and in the substantia nigra
of the MPTP-induced PD animal model (Hébert et al., 2003).
Hence, regulation of immune function might provide a potential
therapeutic strategy to improve the prognosis of PD.

We focused on identifying potential immune-related hub
genes and immune infiltration patterns of PD. The immune-
related hub genes and immune infiltration patterns of PD were
identified by bioinformatics analysis in this article.Weighted gene
coexpression network analysis (WGCNA) was performed to
obtain key module genes. A dataset of immune-related genes
was acquired from an article (https://www.sciencedirect.com/
science/article/pii/S2211124716317090), which is representative
of 28 peripheral immune cell types. The immune-related genes
and key module genes were intersected to obtain immune-key
genes, and then, functional enrichment analysis was applied to
immune-key genes of PD. In addition to, immune infiltration
analysis was performed between PD samples and control samples
using the single-sample gene set enrichment analysis (ssGSEA)
algorithm to explore the differential immune cell types in the
substantia nigra. Least absolute shrinkage and selection operator
(LASSO) analysis was used to discover the immune-related hub
genes, and receiver operating characteristic (ROC) curve analysis
of immune-related hub genes was used to differentiate PD

FIGURE 1 | Flowchart of this study.
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patients from healthy controls. The correlations between
immune-related hub genes and differential immune cell types
were analyzed. The expression levels of immune-related hub
genes were verified in GSE20164. The immune-related hub
genes and immune infiltration patterns of PD can be regarded
as new therapeutic targets for PD.

MATERIALS AND METHODS

Data Processing
The workflow of this study is described as a flowchart in Figure 1.

The RNA microarray data of human postmortem substantia
nigra samples were downloaded from the GSE7621, GSE20141,
and GSE49036 datasets of the Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/). These datasets were analyzed using
Affymetrix Human Genome U133 Plus 2.0 Array on the platform
of GPL570 (HG-U133_Plus_2). There were a total of 66 samples,
including 41 samples from PD patients and 25 samples from
healthy controls as a control group (Table 1). Using the ComBat
function from the “sva” package of R software version 4.1.0, batch
effects of the expression data were removed.

Weighted Gene Coexpression Network
Analysis
All genes (20,791 genes) of the datasets were analyzed using the
“WGCNA” package. First, the variances of all genes were
calculated and ranked from high to low, and genes with
variance beyond quartiles of all variances were chosen for
further analysis (5,198 genes). In a subsequent manner, we
performed hierarchical cluster analysis of all samples to
remove the abnormal samples. The Pearson correlation
coefficient between every two genes was calculated to
construct a similarity matrix. Then, we chose the soft
thresholding power value from 1 to 20 based on the
pickSoftThreshold function to build scale-free topology. We
checked the scale-free topology based on the connection
degrees k and p(k). Via dynamic tree cutting to construct
coexpression modules, the highly correlated genes were
classified into the same module, and each module contained at
least 30 genes. The module eigengene (ME) value of each module
was calculated. Furthermore, the correlation coefficient and p
value between the ME value and phenotype of clinical traits (type
of disease, PD vs. control) were calculated. When the p value was
less than 0.05, the modules associated with PD were considered
key modules. Module membership (MM) was the correlation
between a gene and its module. Gene significance (GS) is the
relationship between a gene and a clinical trait.

Immune Infiltration Analysis
ssGSEA was used to quantify the infiltration levels of 28 immune
cells by converting each sample’s gene expression profile into an
immune gene set enrichment profile. Both the PD and control
samples were fit into immune infiltration analysis via the ssGSEA
algorithm using the “GSEA” R package to calculate the infiltration
abundance of immune cells in the substantia nigra. The
differential immune cells between the two groups were
screened (p value < 0.05).

Identification of Immune-Key Genes and
Functional Enrichment Analysis
A widely recognized immune-related gene dataset of
28 peripheral immune cell types was used to investigate
(Charoentong et al., 2017). This dataset included 782 immune-
related genes. Immune-related genes and key module genes
screened via WGCNA were intersected to obtain immune-key
genes. Functional enrichment analysis was performed on
immune-key genes to explore the potential biological
implications. GO enrichment and KEGG pathway analysis
were performed using the “clusterProfiler” and “GOplot” R
packages. The BH method was used for p value adjustment in
both GO enrichment and KEGG pathway analysis. The results of
functional enrichment analysis were considered significantly
enriched if the p adjust value < 0.05. In addition to, the top
5 GO terms and top 10 KEGG pathways are shown visually in the
bubble chart.

Identification of Immune-Related Hub
Genes Using LASSO Logistic Regression
LASSO analysis was used to select the best features for high-
dimensional data on account of its strong predictive value
and low correlation. We used LASSO analysis to further
identify immune-related hub genes for PD. The LASSO
model was established using the “glmnet” R package,
which could distinguish PD patients from controls. The
expression levels of immune-key genes and clinical traits
(type of disease, PD vs. control) were applied to build a
LASSO logistic regression. ROC curve analysis of the
immune-related hub genes was used to differentiate PD
patients from healthy controls using the “pROC” R
package. Furthermore, the correlations between immune-
related hub genes and differential immune cell types were
assessed.

Validation of Hub Genes
To verify the expression difference of the immune-related hub
genes between PD and controls, the GSE20164 dataset was
used for validation. There were six PD patients and five
controls in this dataset. The expression difference of hub
genes in GSE20164 is shown with a boxplot using the
draw_boxplot function “tinyarray” package. The
Kruskal–Wallis test was used to compare the expression
levels of hub genes between the PD and control samples.
Statistical significance was set at p < 0.05.

TABLE 1 | The number of samples for PD and controls in included datasets.

Tissue GSE Platform PD Controls

Substantia nigra GSE7621 GPL570 16 9
GSE20141 10 8
GSE49036 15 8
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RESULTS

Identification of Gene Coexpression
Modules
With the purpose of more precise following analysis,
20,791 genes were obtained after removal of batch effects
using ComBat, an empirical Bayes method (Supplementary
Figure S1). The top 5,198 most varied genes from a total of
66 samples were selected to construct the coexpression
network. All samples passed the cut-off line with a height
of 120 followed by hierarchical clustering, and the clinical
characteristic heatmap was drawn (Figure 2A). The soft
thresholding power was selected as 5 based on the criteria
of scale-free topology, with a scale-free R2 value of 0.98 and a
slope value of −1.7 (Figures 2B,C). Modules with divergences
of less than 25% and fewer than 30 genes were merged into
larger modules. Finally, four coexpression modules were
determined (Figure 2D). The gray module consisting of
non-coexpressed genes was considered an invalid module,
which was excluded from the following analysis. There were

3,734 genes in the turquoise module, 521 genes in the blue
module, 343 genes in the brown module, and 600 genes in the
gray module.

Calculation of Module-Trait Correlations
According to the ME values of the obtained modules, the
correlations between these modules and clinical traits (PD vs.
control) were performed. The turquoise module revealed the
highest correlation with PD (r = −0.31, p = 0.01) and was selected
as the key module for further analysis (Figure 3A). The
relationship between MM and GS was evaluated in the key
modules, for which the correlation coefficient was 0.61 (p <
0.001), as depicted in Figure 3B. The heatmap of the
eigengene network suggested that the turquoise module is
highly related to the clinical trait status (Figure 3C).

Immune Infiltration Analysis in PD
The infiltration abundance of 28 immune cell types in the
substantia nigra between PD and control samples was
calculated by the ssGSEA algorithm. The results revealed that

FIGURE 2 |WGCNA of GSE7621, GSE20141, and GSE49036. (A) Sample dendrogram and trait heatmap. (B) The values of soft-threshold power based on scale
independence and mean connectivity. The soft-threshold power was selected as 5 to satisfy the criteria of scale-free topology. (C) Check scale-free topology. The
correlation coefficient of the connection degree k and p(k) was 0.98, indicating scale-free topology was constructed. (D) Cluster dendrogram of genes. Each color
represented a module, and the gray module included the genes that could not be classified into any module.
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neutrophils, mast cells, T follicular helper (Tfh) cells,
plasmacytoid dendritic cells (DCs), myeloid-derived suppressor
cells (MDSCs), natural killer (NK) T cells, type 1 helper (Th1)
cells, effector memory CD8 T cells, immature B cells, immature
DCs, and CD56 bright NK cells were significantly different in PD
samples compared with control samples (Figure 4A). The
infiltration abundance of immature DCs decreased in PD
samples among differential immune cell types, whereas others
increased in samples of PD compared to control samples.
Furthermore, we performed principal component analysis

(PCA) of immune cell infiltration among 66 substantia nigra
samples. The PCA plot suggested that immune cell infiltration in
the PD group was significantly different from that in the control
group (Figure 4B).

Identification of Immune-Key Genes and
Functional Enrichment Analysis
The immune-related gene dataset of 28 peripheral immune cell
types was used for analysis, and 782 immune-related genes are

FIGURE 3 | Identification of key modules associated with PD. (A) Heatmap of correlations between MEs and phenotype of clinical traits (type of disease). Red
represented positive correlation and green represented negative correlation, and the corresponding p value was indicated in brackets. (B) GS and MM in the turquoise
module. (C) Heatmap of the eigengene network representing the relationships among the modules and the clinical trait status.
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shown in Supplementary dataset 1. A total of 129 immune-key
genes were acquired via the overlap of immune-related genes
and the key module genes (turquoise module), as displayed in
Figure 4C. Then, GO enrichment and KEGG pathway
enrichment analyses were performed on immune-key genes.
GO enrichment analysis revealed that these genes were largely
enriched in biological functions related to immune activities,
such as regulation of leukocyte cell–cell adhesion and T-cell
activation and cytokine binding (Figure 5A). KEGG pathway
enrichment analysis showed that these genes were mainly
involved in immune pathways, such as cell adhesion
molecules and Th17-, Th1-, and Th2-cell differentiation
(Figure 5B).

Immune-Related Hub Gene Screening and
Correlation Analysis of Hub Genes and
Immune Cells
To identify immune-related hub genes for PD, the expression
levels of the immune-key genes and clinical traits (PD vs.
control) in all samples were used to build the LASSO model
(Figure 6A). A total of 129 immune-key genes were fit into
LASSO logistic regression. According to the value of the lambda
minimum criteria, four immune-related hub genes (SLC18A2,
L1CAM, S100A12, and CXCR4) were identified to have nonzero
regression coefficients (Figure 6B). The relationship among
immune-related hub genes showed that SLC18A2 was
positively correlated with L1CAM and negatively correlated
with S100A12 and CXCR4; L1CAM was negatively correlated
with S100A12 and CXCR4; and S100A12 was positively

correlated with CXCR4 (Figure 6C). The correlations
between 4 immune-related hub genes and 11 differential
immune cell types were assessed (Figure 6D). SLC18A2 had
a strong correlation with immature DCs (correlation
coefficient = 0.82) and a moderate correlation with MDSCs,
neutrophils, and Tfh cells (correlation coefficients
were −0.35, −0.39, and −0.32, respectively). L1CAM had a
moderate correlation with immature B cells, immature DCs,
MDSCs, Tfh cells, and Th1 cells (correlation coefficients
were −0.40, 0.56, −0.37, −0.42, and 0.34, respectively). There
was a strong correlation between S100A12 and neutrophils
(correlation coefficient = 0.72) and a moderate relationship
with immature DCs, MDSCs, and Tfh cells (correlation
coefficients were −0.31, 0.35, and 0.38, respectively). CXCR4
was moderately related to MDSCs (correlation
coefficient = 0.40).

ROC Curve Analysis of Immune-Related
Hub Genes
We compared the expression levels of immune-related hub genes
in 66 samples, including 41 PD and 25 healthy control samples.
The expression levels of SLC18A2 and L1CAM were significantly
downregulated, and S100A12 and CXCR4 were significantly
upregulated in PD samples compared with control samples
(Figure 7A). ROC curve analysis of the immune-related hub
genes was performed to differentiate PD patients from healthy
controls. As shown in Figure 7B, the area under the curve (AUC)
value of the four-gene-combined model was 0.92. The AUC
values of each immune-related hub gene (SLC18A2, L1CAM,

FIGURE 4 | The immune cell infiltration analysis of substantia nigra between PD patients and healthy controls. (A) The landscape of immune cell infiltration in PD and
healthy controls. There were eleven immune cells with significant difference (neutrophil, mast cell, T follicular helper cell, plasmacytoid dendritic cell, MDSC, natural killer
T cell, type 1 helper cell, effector memory CD8 T cell, immature B cell, immature dendritic cell, and CD 56 bright natural killer cell). (B) Principal component analysis for
immune cell infiltration in PD and healthy controls. (C) Venn diagram of genes screened via WGCNA and immune-related genes dataset. ns, p > 0.05, *p < 0.05,
**p < 0.01, ***p < 0.001.
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S100A12, and CXCR4) were 0.81, 0.78, 0.78, and 0.76, respectively
(Figures 7C–F).

Validation of Immune-Related Hub Genes in
GSE20164
The expression levels of immune-related hub genes were verified
in GSE20164. In GSE20164, there were six PD patients and five
healthy controls. Figure 8 shows that the expression of SLC18A2
and L1CAM was significantly downregulated and CXCR4 was
significantly upregulated in PD patients. There was no significant
difference in S100A12.

DISCUSSION

PD was previously regarded as a movement disorder, but PD is
now thought to be a multisystem disorder with notable
neuroinflammation and immune dysfunction. Inflammatory
manifestations that have been identified in PD patients include
intestinal dysbiosis and inflammation, elevated circulating
proinflammatory cytokine levels, innate and adaptive immune
cell activation, blood–brain barrier breakdown allowing

peripheral immune cell infiltration of the central nervous
system, and chronic neuroinflammation (Tansey et al., 2022).
In this study, via bioinformatics analysis, we explored the
potential immune-related hub genes and immune infiltration
patterns in the substantia nigra of PD patients, which
provided new potential therapeutic biomarkers for PD.

Three datasets, GSE7621, GSE20141, and GSE49036, were
included in our research. WGCNA established four distinct
coexpression modules, among which the turquoise module was
significantly related to the pathogenesis of PD. There were
3,734 genes in the turquoise module. The overlap of
782 immune-related genes and the turquoise module genes
included 129 immune-key genes. GO and KEGG enrichment
analyses demonstrated that immune-key genes focused on
immune activities and pathways, including regulation of
leukocyte cell–cell adhesion, regulation of T-cell activation,
and Th17-, Th1-, and Th2-cell differentiation.

The immune infiltration analysis revealed eleven differential
infiltrative immune cell types in the substantia nigra between PD
and control samples: neutrophils, mast cells, Tfh cells,
plasmacytoid DCs, MDSCs, NK T cells, Th1 cells, effector
memory CD8 T cells, immature B cells, immature DCs, and
CD56 bright NK cells. Based on LASSO logistic regression, four

FIGURE 5 | GO and KEGG pathways enrichment analysis of immune-key genes. (A) GO-BP, GO-CC, and GO-MF. (B) KEGG pathway. The color of the bubble
represents the p value, and the size of the bubble represents the number of genes.
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FIGURE 6 | Identification of immune-related hub genes via LASSO model. (A) Tuning parameter (lambda) selection in the LASSO regression model. The vertical
lines were drawn at the optimal values byminimum criteria and 1-SE criteria, and we selectedminimum criteria to construct themodel. (B) The LASSO coefficient profiles.
(C) The relationship among immune-related hub genes. (D) The relationship between immune-related hub genes and immune cells. *p < 0.05, **p < 0.01.

FIGURE 7 | Expression of immune-related hub genes and ROC curve of immune-related hub genes. (A) Expression of hub genes in 41 PD and 25 healthy control
samples. (B) The ROC curve of four immune-related hub genes. (C–F) The ROC curve of each immune-related hub gene. ns, p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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hub genes were finally screened: SLC18A2, L1CAM, S100A12, and
CXCR4.

SLC18A2 (also known as VMAT2, vesicular monoamine
transporter 2) is expressed in both the peripheral and central
nervous systems. VMAT2 takes up dopamine into intracellular
vesicles. It was reported that dysfunction of VMAT2 proteins can
result in cytoplasmic dopamine accumulation and lead to
dopaminergic neuron death. Furthermore, VMAT2 mRNA
levels were significantly reduced in PD patients versus healthy
controls (Sala et al., 2010). L1CAM (cell adhesion molecule L1) is
a transmembrane protein expressed in the brain and peripheral
nerves that plays an important role in the development of the
nervous system, cell adhesion, and synaptic plasticity. A study
showed that the expression levels of L1CAMmRNA decreased in
α-syn-treated cells (Sugeno et al., 2016). S100A12 (S100 calcium
binding protein A12) is an inflammation-associated protein
expressed in neutrophils, macrophages, and epithelial cells and
is related to Alzheimer’s disease (Shepherd et al., 2006), brain
injury (Petrone et al., 2017), cancer, and so on. CXCR4, which is
expressed in the central nervous system, is a chemokine receptor
implicated in immune activity, microglia recruitment, and
neurodevelopmental processes. Emerging evidence indicates
that CXCR4 is associated with neurodegenerative diseases,
such as PD and progressive supranuclear palsy (Bonham et al.,
2018). Postmortem brains showed that the expression levels of
CXCR4 in the substantia nigra and striatum of PD patients were
higher than those in controls, accompanied by an increase in
activated microglia (Shimoji et al., 2009). Moreover, CXCR4
expression in the circulating mononuclear cells of PD patients
is increased in comparison with that in controls (Bagheri et al.,
2018).

In addition, we performed ROC curve analysis of immune-
related hub genes to differentiate PD patients from healthy
controls. The AUC value of the four-gene-combined model
was 0.92. The AUC values of each immune-related hub gene
were all above 0.75, indicating that these four hub genes might be
signature genes of PD.

The correlations between 4 hub genes and 11 immune cells
were evaluated. We discovered that neutrophils, Tfh cells,
MDSCs, Th1 cells, immature B cells, immature DCs, and
CD56 bright NK cells had moderate or strong correlations
with hub genes, indicating that these immune cells are closely
related to the pathogenesis of PD.

Oxidative injury is a characteristic feature of
neurodegenerative diseases. Peripheral blood neutrophils are
the predominant sources of reactive oxygen species. A study
reported that oxidative stress levels in circulating neutrophils
were higher in patients with PD than in controls. This research
also revealed that mitochondrial mass and function were altered
in neutrophils of patients with PD (Vitte et al., 2004). In another
study, neutrophil counts were higher in PD patients than in
healthy persons (Akıl et al., 2015).

Tfh cells, which are a subtype of CD4+ T cells, are relevant to
B-cell differentiation, germinal center formation and humoral
immune responses. Tfh cells in PD patients were significantly
higher than those in controls (Zhao et al., 2020). In addition to,
IL-4 was identified as a cytokine of Tfh cells and may participate
in the degeneration of dopamine neurons in patients with PD
(Bok et al., 2018).

MDSCs play an important role in the pathogenesis of cancers
and inflammatory and autoimmune diseases. According to
research findings, MDSCs inhibit inflammatory responses by
suppressing CD4+ T-cell activation (Ostanin and Bhattacharya,
2013). The circulating MDSCs of newly diagnosed PD patients
were higher than those of healthy controls and exhibited a pro-
neuroinflammatory effect in PD (Chen et al., 2017).

Th1 cells are a subtype of CD4+ T cells. Flow cytometric
analysis revealed that Th1 and regulatory T cells were increased in
the midbrain tissue of a PD mouse model (Williams et al., 2021).
The Th1 cytokines IFNγ and TNF have been shown to be
increased in PD patient blood (Sulzer et al., 2017; Kustrimovic
et al., 2018). A study published in 2009 suggested that CD4+ T
and CD8+ T cells infiltrated specifically in the substantia nigra in
the brains of PD patients (Brochard et al., 2009).

Peripheral immature B cells are an important member of the
immune system, producing natural antibodies and regulating
CD4+ T-cell responses (Lee et al., 2015). Dysfunction of
immature B cells may contribute to autoimmune diseases.
Emerging evidence suggests that B cells contribute to the
pathogenesis of PD (Sabatino et al., 2019). B cells might be
reduced in patients with PD (Bas et al., 2001; Stevens et al.,
2012).

DCs are professional antigen-presenting cells related to the
pathogenesis of neuroinflammation. DCs are recruited to the
brain across the blood–brain barrier. A study revealed that
immature DCs adhered to activated endothelial cells more
avidly than mature DCs (Arjmandi et al., 2009).

NK cells are primarily divided into two major subsets
(CD56 dim and CD56 bright) in humans. In the central
nervous system, the majority of NK cells in cerebrospinal fluid
are CD56 bright cell subsets (Han et al., 2014). CD56 bright NK
cells modulate immune responses through cytokine production
(Poli et al., 2009). Circulating NK cell counts increased in PD
patients in contrast with non-PD controls (Mihara et al., 2008). In

FIGURE 8 | Expression of hub genes in GSE20164. ns, p > 0.05, *p <
0.05, **p < 0.01.
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addition to, NK cells can internalize and degrade α-syn aggregates
(Earls and Lee, 2020).

In this study, we discovered four immune-related hub genes
(SLC18A2, L1CAM, S100A12, and CXCR4) and seven peripheral
immune cell types (neutrophils, Tfh cells, MDSCs, Th1 cells,
peripheral immature B cells, DCs, and NK cells) that are closely
related to the pathogenesis of PD. The immune-related hub genes
were mainly associated with biological pathways, including the
dopaminergic neurotransmitter release cycle, developmental
biology (such as axon guidance), and immune and
inflammatory activity. Mounting evidence indicates that
immune dysfunction is involved in the pathogenesis of PD.
The physiological function of the axon guidance pathway
includes neuronal network formation during central nervous
system development and the maintenance and plasticity of
neural synapses (Bae et al., 2021). Abnormal axon-guidance-
molecule signaling can lead to loss of connectivity and eventually
trigger PD (Lin et al., 2009; Tomiyama, 2011). In addition,
peripheral immune cells infiltrate the brain, possibly because
of blood–brain barrier breakdown, which may affect
neuroinflammation in the central nervous system by
modulating microglial and astrocyte functions. Microglia and
astrocytes are central to neuronal function and health. Activation
of microglia can transform neuroprotective astrocytes to
neurotoxic astrocytes, inducing loss of neuroprotective
function, and overactivated microglia can result in cerebral
inflammation and neuronal injury (Tan et al., 2020).

There were several limitations in our study that should be
acknowledged. First, our findings require in vitro experiments to
verify the results. Second, samples from early-stage or prodromal
PD patients and animal models are required to explore immune-
related hub genes, which can provide diagnostic biomarkers and
timely drug intervention. In future investigations, we will focus
on the mechanism of SLC18A2, L1CAM, S100A12, and CXCR4
and explore early diagnostic biomarkers in PD.

CONCLUSION

Using bioinformatics analysis, immune-related hub genes in the
substantia nigra of PD patients were identified. SLC18A2,

L1CAM, S100A12, and CXCR4 were regarded as candidate
genes for further investigation. Our study provides immune-
related genes involved in the pathogenesis of PD and
promising therapeutic targets for PD.
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Identification of programmed
cell death-related gene signature
and associated regulatory axis in
cerebral ischemia/reperfusion
injury

Jun Shu, Lu Yang, Wenshi Wei* and Li Zhang*

Department of Neurology, Cognitive Disorders Center, Huadong Hospital Affiliated to Fudan
University, Shanghai, China

Background: Numerous studies have suggested that programmed cell death

(PCD) pathways play vital roles in cerebral ischemia/reperfusion (I/R) injury.

However, the specific mechanisms underlying cell death during cerebral I/R

injury have yet to be completely clarified. There is thus a need to identify the

PCD-related gene signatures and the associated regulatory axes in cerebral I/R

injury, which should provide novel therapeutic targets against cerebral I/R

injury.

Methods: We analyzed transcriptome signatures of brain tissue samples from

mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and

matched controls, and identified differentially expressed genes related to the

three types of PCD(apoptosis, pyroptosis, and necroptosis). We next performed

functional enrichment analysis and constructed PCD-related competing

endogenous RNA (ceRNA) regulatory networks. We also conducted hub

gene analysis to identify hub nodes and key regulatory axes.

Results: Fifteen PCD-related genes were identified. Functional enrichment

analysis showed that they were particularly associated with corresponding

PCD-related biological processes, inflammatory response, and reactive

oxygen species metabolic processes. The apoptosis-related ceRNA

regulatory network was constructed, which included 24 long noncoding

RNAs (lncRNAs), 41 microRNAs (miRNAs), and 4 messenger RNAs (mRNAs);

the necroptosis-related ceRNA regulatory network included 16 lncRNAs,

20 miRNAs, and 6 mRNAs; and the pyroptosis-related ceRNA regulatory

network included 15 lncRNAs, 18 miRNAs, and 6 mRNAs. Hub gene analysis

identified hub nodes in each PCD-related ceRNA regulatory network and seven

key regulatory axes in total, namely, lncRNAMalat1/miR-181a-5p/Mapt, lncRNA

Malat1/miR-181b-5p/Mapt, lncRNA Neat1/miR-181a-5p/Mapt, and lncRNA

Neat1/miR-181b-5p/Mapt for the apoptosis-related ceRNA regulatory

network; lncRNA Neat1/miR-181a-5p/Tnf for the necroptosis-related ceRNA

regulatory network; lncRNAMalat1/miR-181c-5p/Tnf for the pyroptosis-related

ceRNA regulatory network; and lncRNAMalat1/miR-181a-5p for both

necroptosis-related and pyroptosis-related ceRNA regulatory networks.
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Conclusion: The results of this study supported the hypothesis that these PCD

pathways (apoptosis, necroptosis, pyroptosis, and PANoptosis) and crosstalk

among them might be involved in ischemic stroke and that the key nodes and

regulatory axes identified in this study might play vital roles in regulating the

above processes. This may offer new insights into the potential mechanisms

underlying cell death during cerebral I/R injury and provide new therapeutic

targets for neuroprotection.

KEYWORDS

apoptosis, pyroptosis, necroptosis, cerebral ischemia/reperfusion (I/R) injury,
competing endogenous RNA (ceRNA) network

1 Introduction

Ischemic stroke is one of the leading causes of long-term

severe disability and death worldwide, which is usually caused by

a permanent or transient local reduction in blood supply to the

brain (Campbell and Khatri, 2020; Mendelson and Prabhakaran,

2021). Currently, the most effective strategy for ischemic stroke

patients is to restore cerebral blood flow in a timely manner

through drugs and surgery (Herpich and Rincon, 2020).

However, injury to brain tissue caused by ischemia and

hypoxia is further aggravated following the short-term

recovery of blood perfusion, which is known as cerebral

ischemia/reperfusion (I/R) injury. The mechanism by which

cerebral ischemia/reperfusion injury occurs has not been fully

elucidated. Nonetheless, a growing body of evidence suggests that

the overproduction of ROS and activation of inflammation and

immune responses might be involved, which ultimately trigger

cell death, including apoptosis, necroptosis, and pyroptosis

(Eltzschig and Eckle, 2011; Jurcau and Simion, 2021). There is

thus a need for a comprehensive understanding of the

mechanisms underlying cell death during cerebral ischemia/

reperfusion (I/R) injury to rescue injured cells, especially

injured neurons in the brain, and seek new neuroprotective

therapies.

Multiple cell death pathways are currently believed to be

involved in cell death in ischemic stroke, among which apoptosis,

pyroptosis, and necroptosis are three key programmed cell death

(PCD) pathways (Tuo et al., 2022). Apoptosis can be triggered

through the intrinsic and/or extrinsic pathway and may

contribute to a significant proportion of neuron death

following cerebral ischemia/reperfusion (Radak et al., 2017;

Datta et al., 2020). Meanwhile, necroptosis is a newly

discovered mechanism of cell death that is mainly regulated

by receptor-interacting protein kinase 1 (RIPK1), receptor-

interacting protein kinase 3 (RIPK3), and mixed-lineage

kinase domain-like pseudokinase (MLKL) (Liao et al., 2020).

Increasing studies have suggested that necroptosis participates in

the pathogenesis of various diseases including ischemia stroke.

Studies have also indicated that the inhibition of necroptosis can

exert neuroprotective effects after cerebral I/R in mice by

reducing cerebral infarct volume and improving motor and

cognitive function (Deng et al., 2019; Yao et al., 2021).

Pyroptosis is a kind of inflammatory programmed cell death

that is characterized by rapid plasma-membrane rupture and the

release of proinflammatory intracellular contents as well as

cytokines (Yu et al., 2021). Pyroptosis was reported to be

triggered by certain inflammasomes and activating caspases

and executed by gasdermin family members (Dong et al.,

2018). Accumulating evidence has shown that these three

PCD pathways participate in the pathogenesis of ischemic

stroke and that their inhibition could attenuate ischemic brain

injury (Tuo et al., 2022). Recently, further evidence has also

shown significant crosstalk among the three PCD pathways

(Banoth et al., 2020; Zheng et al., 2020; Karki et al., 2021).

Against this background, the concept of PANoptosis was

proposed, which is defined as a proinflammatory PCD

pathway with key features of pyroptosis, apoptosis, and/or

necroptosis that cannot be accounted for by any of these PCD

pathways alone (Malireddi et al., 2020; Wang and Kanneganti,

2021). PANoptosis is regulated by the cytoplasmic multimeric

protein complex called the PANoptosome, which can participate

in the three PCD pathways in parallel (Samir et al., 2020).

PANoptosis has been implicated in various conditions,

including infection, sterile inflammation, and cancer (Karki

et al., 2020; Zheng et al., 2020; Place et al., 2021). A recent

study that collected, integrated, and analyzed reports on research

on cerebral I/R indicated that PANoptosis is observed in

ischemic brain injury (Yan et al., 2022). Despite efforts to

reveal the role of PCD pathways in cerebral I/R injury, the

mechanisms underlying the involvement of the three PCD

pathways in cerebral I/R injury are extremely complicated and

remain largely unknown.

In this study, we collected PCD (apoptosis, pyroptosis, and

necroptosis)-related genes based on previous literature and

related databases, and analyzed transcriptome signatures of

brain tissue samples from mice subjected to middle cerebral

artery occlusion/reperfusion (MCAO/R) and matched controls

to identify differentially expressed genes related to the three types

of PCD. We then performed functional enrichment analysis of

these differentially expressed PCD-related genes and their

potential regulatory axes to explore their potential biological

functions and regulatory mechanisms. This bioinformatic
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analysis might provide new insights into the potential

mechanisms underlying cell death during cerebral I/R injury

and new therapeutic targets for neuroprotection.

2 Materials and methods

2.1 Collection of datasets and
programmed cell death-related genes

We searched the Gene Expression Omnibus (GEO)

database (Barrett et al., 2013) (https://www.ncbi.nlm.nih.gov/

geo) using the following terms: “cerebral ischemia–reperfusion

OR cerebral ischemia OR ischemia stroke” AND “Mus

musculus.” We included the gene expression profiling of

adult mouse brain tissues after transient focal ischemia at

24 h of reperfusion and matched control samples. Then two

datasets, GSE131193 and GSE58720, were downloaded for

analysis. The dataset GSE131193 based on the

GPL19057 platform is an mRNA high-throughput

sequencing series that includes data on contralateral and

ipsilateral brain tissues from mice subjected to transient

middle cerebral artery occlusion (tMCAO) at different

reperfusion timepoints (24 h and 7 days) and matched sham-

operated mice. We selected a subset comprising three ipsilateral

brain tissues after transient focal ischemia at 24 h of reperfusion

and three matched sham-operated mice for analysis. The

dataset GSE58720 based on the GPL10787 platform contains

microarray gene expression data of brain tissue samples from

three MCAO-operated mice at 24 h of reperfusion and three

matched sham-operated mice.

For apoptosis-related genes (ARGs), 101 ARGs were

downloaded from Reactome Pathway Database (https://

reactome.org/) (Jassal et al., 2020) and two were extracted

from the literature, thus 103 ARGs were collected

(Supplementary Table S1); for necroptosis-related genes

(NRGs), twenty-seven NRGs were downloaded from

Reactome Pathway Database, eighty-two NRGs were extracted

from the literature, after removing the overlapping genes, ninety-

three NRGs were obtained (Supplementary Table S2); for

pyroptosis-related genes (PRGs), twenty PRGs were

downloaded from Reactome Pathway Database, sixty-seven

PRGs were extracted from the literature, after removing the

overlapping genes, seventy-eight PRGs were obtained for

further study (Supplementary Table S3).

2.2 Screening strategy for differentially
expressed programmed cell death-related
genes

Differentially expressed genes (DEGs) of the microarray

dataset GSE58720 were identified with NCBI’s GEO2R tool

(https://www.ncbi.nlm.nih.gov/geo/geo2r/) using the Limma

package. For the sequencing dataset GSE131193, the

processed count matrix data was downloaded and

differential analysis between tMCAO-operated mice and

their matched control was conducted using the “lmFit” and

“eBayes” functions in the Limma package (Ritchie et al., 2015).

A p-value < 0.05 and |log2 fold change (FC)| > 1 were regarded

as cut-off criteria for significant DEGs. The common DEGs in

common between the GSE58720 dataset and the

GSE131193 dataset were intersected with PCD (apoptosis,

necroptosis, and pyroptosis)-related genes, respectively, to

obtain apoptosis-related DEGs (ARDEGs), necroptosis-

related DEGs (NRDEGs), and pyroptosis-related DEGs

(PRDEGs). The above results were visualized using the

online tool Jvenn (http://jvenn.toulouse.inra.fr/app/index.

html) (Bardou et al., 2014).

2.3 Functional enrichment analysis

To obtain a better understanding of the biological

mechanisms of the differentially expressed PCD-related genes,

functional enrichment analysis, including Gene Ontology (GO)

and pathway enrichment analysis, were performed using

Metascape (http://metascape.org) (Zhou et al., 2019). The

Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa et al., 2017), Reactome (Jassal et al., 2020), and

WikiPathways (Martens et al., 2021) databases were used for

pathway annotations.

2.4 Construction of PCD-related ceRNA
networks

To explore the potential regulatory mechanisms of these

differentially expressed PCD-related genes, we constructed

intricate competing endogenous RNA (ceRNA) networks.

First, target microRNAs (miRNAs) of the obtained

differentially expressed PCD-related genes were predicted by

four independent online databases: TargetScan (Agarwal et al.,

2015) (v7.2, http://www.targetscan.org/vert_72/), miRTarBase

(Huang et al., 2020) (v8.0, http://mirtarbase.mbc.nctu.edu.tw/

php/index.php), StarBase (Li et al., 2014) (http://starbase.sysu.

edu.cn/), and miRWalk (Sticht et al., 2018) (http://mirwalk.

umm.uni-heidelberg.de/). Only the miRNAs that were shared

by any three or all four databases were regarded as eligible.

Next, target long noncoding RNAs (lncRNAs) of the above-

obtained miRNAs were predicted by StarBase and the LncBase

module of the DIANA tool (http://carolina.imis.athena-

innovation.gr/) (Karagkouni et al., 2020). Only the lncRNAs

that were shared between the two databases were regarded as

eligible. Finally, we selected lncRNA–mRNA interactions and

miRNA–mRNA interactions that shared the same miRNAs to
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construct the ceRNA network and visualized it using Cytoscape

software (Shannon et al., 2003) (Version 3.8.0, http://

cytoscape.org).

2.5 Hub gene analysis

The cytoHubba plugin was applied to screen out the top ten

genes of the above three ceRNA regulatory networks through

seven different algorithms: MCC, Degree, Edge Percolated

Component (EPC), EcCentricity, Closeness, Radiality, and

Betweenness (Chin et al., 2014). UpSet R package was used to

extract the overlapping genes obtained by the above seven

different algorithms and visualize them (Conway et al., 2017).

These overlapping genes were confirmed as the hub nodes.

3 Results

3.1 Identification of differentially
expressed PCD-related genes

A flow chart of this study is shown in Figure 1. We first

analyzed the two datasets GSE58720 and GSE131193 to identify

the common DEGs in MCAO/R-operated mice at 24 h of

reperfusion compared with matched controls. Then, we

FIGURE 1
Flowchart of the analytical steps of this study.
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identified the common DEGs that overlapped with PCD

(apoptosis, necroptosis, and pyroptosis)-related genes to

obtain differentially expressed PCD-related genes (DEARGs,

DENRGs, DEPRGs). A total of six DEARGs (Figure 2A), nine

DENRGs (Figure 2B), and ten DEPRGs (Figure 2C) were

identified. The six DEARGs included Cd14, Zbp1, Tnfrsf10b,

Bax, Mapt, and Pycard, among which Cd14, Zbp1, Tnfrsf10b,

Bax, and Pycard were upregulated in the dataset GSE58720 but

downregulated in the dataset GSE131193, whileMapt showed the

opposite pattern (Table 1). The nine DENRGs included Cxcl1,

Zbp1, Il1b, Tnf, Ripk3, Tnfrsf10b, Mlkl, Pycard, and Bax (Table 1)

and the ten DEPRGs included Cd14, Zbp1, Il1b, Mefv, Tnf, Il1rn,

Anxa2, Ccr5, Pycard, and Bax (Table 1). All of these DENRGs

and DEPRGs were upregulated in the dataset GSE58720 but

downregulated in the dataset GSE131193. We also attempted to

identify the common genes among the above three kinds of

differentially expressed PCD-related genes and found that three

genes, namely, Zbp1, Bax, and Pycard, overlapped among the

three sets of differentially expressed PCD-related genes. Cd14

was in common between DEARGs and DEPRGs, Tnfrsf10b was

in common between DEARGs and DENRGs, while Il1b and Tnf

were in common between DENRGs and DEPRGs (Figure 2D and

Table 1).

3.2 Functional enrichment analysis

To further explore the potential functions of DEARGs,

DENRGs, and DEPRGs, functional enrichment analysis was

performed using the online database Metascape. The results of

GO analysis revealed that the DEARGs were particularly

associated with the positive regulation of cell death, apoptotic

signaling pathway, negative regulation of mitochondrial

membrane potential, extrinsic apoptotic signaling pathway via

death domain receptors, positive regulation of interleukin-8

production, membrane rafts, and left-handed Z-DNA binding

(Figure 3A and Table 2). The DENRGs were mainly associated

with programmed necrotic cell death, response to virus, positive

FIGURE 2
Identification of differentially expressed programmed cell death (PCD)-related genes. (A) Differentially expressed apoptosis-related genes
(DEARGs) were identified by determining the overlap of datasets GSE58720 and GSE131193with apoptosis-related genes. (B)Differentially expressed
necroptosis-related genes (DENRGs) were identified by determining the overlap of datasets GSE58720 and GSE131193 with necroptosis-related
genes. (C) Differentially expressed pyroptosis-related genes (DEPRGs) were identified by determining the overlap of datasets GSE58720 and
GSE131193 with pyroptosis-related genes. (D) The overlapping genes were identified among DEARGs, DENRGs, and DEPRGs.
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regulation of apoptotic process, necroptotic process, defense

response, release of cytochrome c from mitochondria,

cytosolic calcium ion concentration, reactive oxygen species

metabolic process, and regulation of interferon-gamma

production (Figure 3B and Table 3). The DEPRGs were

particularly involved in the positive regulation of

inflammatory response, tumor necrosis factor production,

fever generation, interleukin-8 production, regulation of

interleukin-1-mediated signaling pathway, regulation of

neurogenesis, negative regulation of membrane potential and

neural precursor cell proliferation, and inflammatory response to

antigenic stimulus (Figure 3C and Table 4).

Moreover, regarding the results of pathway analysis, these

revealed that the DEARGs were mainly associated with

apoptosis, necroptosis, lipids and atherosclerosis, caspase

activation via death receptors in the presence of ligand

influenza A, legionellosis, activation, translocation and

oligomerization of BAX, and the Mapk signaling pathway

(Figure 4A and Table 2). The DENRGs were particularly

involved in necroptosis, lipids and atherosclerosis, TNF

signaling pathway, legionellosis, cytosolic DNA-sensing

pathway, RIPK1-mediated regulated necrosis, TRAIL

signaling, Kaposi sarcoma-associated herpesvirus infection,

and the NLRP3 inflammasome (Figure 4B and Table 3). The

DEPRGs were particularly associated with Salmonella infection,

Yersinia infection, tuberculosis, CLEC7A/inflammasome

pathway, viral protein interaction with cytokine and cytokine

receptor, transfer of LPS from LBP carrier to CD14, and

neutrophil degranulation (Figure 4C and Table 4).

3.3 Construction of PCD-related ceRNA
networks

To clarify the potential molecular regulatory mechanisms of

these differentially expressed PCD-related genes, we then

constructed PCD-related ceRNA regulatory networks of

lncRNA–miRNA–mRNA. First, four independent online

databases, namely, TargetScan, miRTarBase, StarBase, and

miRWalk, were used to predict the interactions between miRNAs

and mRNAs. Only the miRNAs that were shared by any three or all

four of the databases were regarded as eligible. A total of

133 miRNA–mRNA interactions for apoptosis-related ceRNA

regulatory networks, 91 miRNA–mRNA interactions for

necroptosis-related ceRNA regulatory networks, and

70 miRNA–mRNA interactions for pyroptosis-related ceRNA

regulatory networks were obtained based on the above methods.

Next, target lncRNAs of the above-obtainedmiRNAswere predicted

by StarBase and the LncBase module of the DIANA tool; only the

lncRNAs that were shared between the two databases were regarded

as eligible. A total of 107 lncRNA–miRNA pairs for apoptosis-

related ceRNA regulatory networks, 58 lncRNA–miRNA pairs for

necroptosis-related ceRNA regulatory networks, and

49 lncRNA–miRNA pairs for pyroptosis-related ceRNA

TABLE 1 Differentially expressed PCD-related genes.

Gene
symbol

Gene name Expression in
GSE58720

Expression in
GSE131193

Belong to which
kind of PCD
related genes
(DEARGs,
DENRGs, DEPRGs)

Bax BCL2-associated X protein upregulated downregulated DEARG, DENRG, DEPRG

Pycard PYD and CARD domain containing upregulated downregulated DEARG, DENRG, DEPRG

Zbp1 Z-DNA binding protein 1 upregulated downregulated DEARG, DENRG, DEPRG

Tnfrsf10b tumor necrosis factor receptor superfamily,
member 10b

upregulated downregulated DEARG, DENRG

Il1b interleukin 1 beta upregulated downregulated DENRG, DEPRG

Tnf tumor necrosis factor upregulated downregulated DENRG, DEPRG

Cd14 CD14 antigen upregulated downregulated DEARG, DEPRG

Mapt microtubule-associated protein tau downregulated upregulated DEARG

Cxcl1 chemokine (C-X-C motif) ligand 1 upregulated downregulated DENRG

Ripk3 receptor-interacting serine-threonine kinase 3 upregulated downregulated DENRG

Mlkl mixed lineage kinase domain-like upregulated downregulated DENRG

Mefv Mediterranean fever upregulated downregulated DEPRG

Il1rn interleukin 1 receptor antagonist upregulated downregulated DEPRG

Anxa2 annexin A2 upregulated downregulated DEPRG

Ccr5 chemokine (C-C motif) receptor 5 upregulated downregulated DEPRG

Note: PCD, programmed cell death; DEARG, differentially expressed apoptosis-related gene. DENRG, differentially expressed necroptosis-related gene; DEPRG, differentially expressed

pyroptosis-related gene.
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regulatory networks were identified. Then, the ceRNA networks

were constructed using the miRNAs shared between the lncRNAs

and mRNAs according to the ceRNA hypothesis. The apoptosis-

related ceRNA regulatory network included 152 edges and 69 nodes

(including 24 lncRNAs, 41 miRNAs, and 4 mRNAs) (Figure 5A).

The necroptosis-related ceRNA regulatory network included

82 edges and 42 nodes (including 16 lncRNAs, 20 miRNAs, and

6 mRNAs) (Figure 5B). Finally, the pyroptosis-related ceRNA

regulatory network included 69 edges and 39 nodes (including

15 lncRNAs, 18 miRNAs, and 6 mRNAs) (Figure 5C).

3.4 Hub gene analysis

The cytoHubba plugin was used to identify hub nodes of each

of these PCD-related ceRNA regulatory networks based on the

above methods. In the hub gene analysis, five hub nodes, namely,

the mRNA Mapt, miR-181a-5p, miR-181b-5p, and the lncRNAs

Malat1 and Neat1, were identified in the apoptosis-related

ceRNA regulatory network (Figure 6A) and these hub nodes

formed four ceRNA regulatory pathways, namely, lncRNA

Malat1/miR-181a-5p/Mapt, lncRNA Malat1/miR-181b-5p/

Mapt, lncRNA Neat1/miR-181a-5p/Mapt, and lncRNA Neat1/

miR-181b-5p/Mapt (Figure 6B). Hub nodes in the necroptosis-

related ceRNA regulatory network included mRNA Tnf, miR-

181a-5p, lncRNA Malat1, lncRNA Xist, and lncRNA Neat1

(Figure 6C). These hub nodes formed two ceRNA regulatory

pathways, namely, lncRNA Malat1/miR-181a-5p/Tnf and

lncRNA Neat1/miR-181a-5p/Tnf (Figure 6D). Hub nodes in

the pyroptosis-related ceRNA regulatory network included the

mRNA Tnf, miR-181a-5p, miR-181c-5p, lncRNA Malat1, and

lncRNA Xist (Figure 6E); these hub nodes formed two ceRNA

FIGURE 3
Gene Ontology (GO) enrichment analysis of these differentially expressed programmed cell death (PCD)-related genes. (A) Significantly
enriched GO terms of differentially expressed apoptosis-related genes (DEARGs). (B) Significantly enriched GO terms of differentially expressed
necroptosis-related genes (DENRGs). (C) Significantly enriched GO terms of differentially expressed pyroptosis-related genes (DEPRGs).
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regulatory pathways, namely, lncRNA Malat1/miR-181a-5p/Tnf

and lncRNA Malat1/miR-181c-5p/Tnf (Figure 6F).

3.5 Validation of hub nodes in the
programmed cell death-related ceRNA
regulatory networks

To validate the hub nodes in these PCD-related ceRNA

regulatory networks, we searched the literature and found that

they were abnormally expressed in ischemic stroke. Shi et al. (Shi

et al., 2021) found that the levels of acetylated tau (ac-MAPT)

and phosphorylated tau (p-MAPT) increased in rats subjected to

MCAO/R compared with that in the sham group. The protein

and mRNA levels of total-tau (T-MAPT) showed no significant

differences between the sham and MCAO/R groups. Basurto-

Islas et al. (Basurto-Islas et al., 2018) observed higher

phosphorylation of tau and total tau in MCAO/R mice. Other

studies also reported that the hyperphosphorylation of tau

increases during MCAO/R in animal models (Dong et al.,

2014; Fujii et al., 2017). Tnf was also reported to be

significantly upregulated in MCAO/R animal models and

OGD/R cell models (Li et al., 2019; Zhang et al., 2021a; Zhou

et al., 2021). Moreover, it was reported that miR-181a-5p was

highly expressed in serum of ischemic stroke patients, brain

tissues of MCAO/R mice, and an oxygen-glucose-deprivation/

reoxygenation (OGD/R) N2a cell model (Ouyang et al., 2012;Wu

et al., 2017; Song et al., 2021). Studies also reported that miR-

181b-5p and miR-181c-5p expression was significantly decreased

in cerebral ischemia in vivo and in vitro (Deng et al., 2016; Ma

et al., 2016; Zhang et al., 2018; Meng et al., 2020). Accumulating

evidence has also revealed that expression of the lncRNA

Malat1 was upregulated after MCAO/R in rats and mice and

OGD/R in different cells including primary neuronal cells, HT-

22 cells, mouse astrocyte cells, and brain vascular endothelial cells

(Xin and Jiang, 2017; Zhang et al., 2021b; Jia et al., 2021; Tan

et al., 2021). Moreover, a recent study reported that the lncRNA

Malat1 significantly increased in the blood of ischemic stroke

patients compared with the level in normal controls (Tan et al.,

2021). Furthermore, several studies reported that the lncRNA

Neat1 was increased in an MCAO/R animal model, an OGD/

R-induced cell model, and ischemic stroke patients (Ni et al.,

2020; Zhang et al., 2021c; Jin et al., 2021). Another recent study

reported that expression of the lncRNA Neat1 was significantly

decreased in OGD/R-induced BV-2 and N2a cells compared with

that in control cells (Zhou et al., 2022). The lncRNA XIST was

also reported to be highly expressed in an MCAO/R-treated

animal model and an OGD/R-treated cell model (Zhang et al.,

2021d; Wang et al., 2021; Xiong et al., 2021). Wang et al. also

reported that the lncRNA XIST was upregulated in brain tissues

under MCAO/R treatment and in OGD/R-treated PC12 cells

(Wang et al., 2021). Furthermore, Xiong et al. found that XIST

was significantly highly expressed in SH-SY5Y cells after OGD/R

treatment (Xiong et al., 2021). Finally, another study identified

that XIST expression was upregulated in the brain tissues of an

I/R mouse model and OGD/R-induced N2a cells (Zhang et al.,

2021d). The findings of these previous studies are in accordance

with our results, indicating the robustness of our analysis.

TABLE 2 Functional enrichment analysis of differentially expressed apoptosis-related genes (DEARGs).

Signifcant enriched GO terms of DEARGs

Category Term Description p value Gene symbols

GO Biological Processes GO:0010942 positive regulation of cell death 0.0000 Bax,Mapt, Tnfrsf10b,Zbp1,Pycard

GO Biological Processes GO:0097190 apoptotic signaling pathway 0.0000 Bax,Mapt, Tnfrsf10b,Pycard

GO Biological Processes GO:0010917 negative regulation of mitochondrial membrane potential 0.0000 Bax,Mapt

GO Biological Processes GO:0008625 extrinsic apoptotic signaling pathway via death domain receptors 0.0000 Bax,Tnfrsf10b

GO Biological Processes GO:0032757 positive regulation of interleukin-8 production 0.0001 Cd14,Pycard,Bax

GO Cellular Components GO:0045121 membrane raft 0.0001 Cd14,Mapt, Tnfrsf10b

GO Molecular Functions GO:0003692 left-handed Z-DNA binding 0.0006 Zbp1,Bax

Signifcant enriched pathways of DEARGs

Reactome Gene Sets R-MMU-109581 Apoptosis 0.0000 Bax,Cd14,Mapt, Tnfrsf10b

KEGG Pathway mmu04217 Necroptosis 0.0000 Bax,Tnfrsf10b,Zbp1,Pycard

KEGG Pathway mmu05417 Lipid and atherosclerosis 0.0000 Bax,Cd14,Tnfrsf10b,Pycard

Reactome Gene Sets R-MMU-140534 Caspase activation via Death Receptors in the presence of ligand 0.0000 Cd14,Tnfrsf10b

KEGG Pathway mmu05164 Influenza A 0.0000 Bax,Tnfrsf10b,Pycard

KEGG Pathway mmu05134 Legionellosis 0.0001 Cd14,Pycard,Zbp1

Reactome Gene Sets R-MMU-114294 Activation, translocation and oligomerization of BAX 0.0006 Bax,Cd14,Mapt

WikiPathways WP493 Mapk signaling pathway 0.0009 Cd14,Mapt
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4 Discussion

Accumulating evidence supports the involvement of PCD

pathways in the pathogenesis of ischemic stroke and highlights

the importance of each form of cell death. However, the specific

mechanisms underlying them remain incompletely clarified.

There is also currently a lack of specific neuroprotective drugs

in clinical practice. Nonetheless, increasing studies have

indicated significant crosstalk among these PCD pathways.

Therefore, we applied bioinformatic analysis to identify

differentially expressed PCD-related genes during cerebral I/R

injury and investigated their potential regulatory axes by

constructing ceRNA networks. This may contribute to

elucidating the molecular mechanisms behind these PCD

pathways and provide a basis for developing novel therapeutic

targets against cerebral I/R injury.

A total of six DEARGs, nine DENRGs, and ten DEPRGs were

identified in this study. Among them, three genes, namely, Bax,

Zbp1, and Pycard, overlapped among these three sets of genes,

indicating that they may play key roles in the crosstalk among

these PCD pathways. The protein encoded by the Bax gene

belongs to the BCL2 protein family and is regarded as the

fundamental effector of the intrinsic apoptotic pathway (Spitz

and Gavathiotis, 2022). Numerous studies have indicated that

Bax-dependent initiation and activation of subsequent apoptotic

pathways play critical roles in ischemic brain injury (Li et al.,

2021; Tu and Hu, 2021). In addition, it has been suggested that

inhibition of Bax function may provide a new strategy for

neuroprotection and functional improvement against cerebral

ischemia (Han et al., 2011). Recently, some studies also reported

that Bax is a key regulator of caspase-independent necroptosis

and pyroptosis (Cabon et al., 2012; Hu et al., 2020). However,

whether Bax is involved in necroptosis and pyroptosis in cerebral

ischemia–reperfusion injury has remained unclear, so further

research on this issue is needed. The gene Pycard encodes the

adaptor protein ASC, which comprises two protein–protein

interaction domains: an N-terminal PYRIN-PAAD-DAPIN

domain (PYD) and a C-terminal caspase-recruitment domain

TABLE 3 Functional enrichment analysis of differentially expressed necroptosis-related genes (DENRGs).

Signifcant enriched GO terms of DENRGs

Category Term Description p value Symbols

GO Biological
Processes

GO:0097300 programmed necrotic cell death 0.0000 Bax,Tnf,Ripk3,Mlkl,Il1b,Tnfrsf10b,Pycard,
Cxcl1

GO Biological
Processes

GO:0009615 response to virus 0.0000 Bax,Tnf,Ripk3,Zbp1,Pycard, Mlkl

GO Biological
Processes

GO:0043065 positive regulation of apoptotic process 0.0000 Bax,Il1b,Tnf,Tnfrsf10b,Ripk3,Zbp1,Pycard

GO Biological
Processes

GO:0031349 positive regulation of defense response 0.0000 Cxcl1,Il1b,Tnf,Zbp1,Pycard, Ripk3,Bax

GO Biological
Processes

GO:0032649 regulation of interferon-gamma production 0.0000 Il1b,Tnf,Ripk3,Pycard,Zbp1,Bax,Cxcl1,Mlkl

GO Biological
Processes

GO:0060545 positive regulation of necroptotic process 0.0000 Ripk3,Zbp1,Bax

GO Biological
Processes

GO:0090200 positive regulation of release of cytochrome c from
mitochondria

0.0001 Bax,Pycard, Ripk3

GO Biological
Processes

GO:0007204 positive regulation of cytosolic calcium ion concentration 0.0003 Bax,Cxcl1,Il1b

GO Biological
Processes

GO:2000379 positive regulation of reactive oxygen species metabolic
process

0.0005 Cxcl1,Ripk3

Signifcant enriched pathways of DENRGs

KEGG Pathway mmu04217 Necroptosis 0.0000 Bax,Il1b,Tnf,Tnfrsf10b,Ripk3,Zbp1,Pycard, Mlkl

KEGG Pathway mmu05417 Lipid and atherosclerosis 0.0000 Bax,Cxcl1,Il1b,Tnf,Tnfrsf10b,Pycard

KEGG Pathway mmu04668 TNF signaling pathway 0.0000 Cxcl1,Il1b,Tnf,Ripk3,Mlkl

KEGG Pathway mmu05134 Legionellosis 0.0000 Cxcl1,Il1b,Tnf,Pycard, Ripk3,Tnfrsf10b

KEGG Pathway mmu04623 Cytosolic DNA-sensing pathway 0.0000 Il1b,Ripk3,Zbp1,Pycard

Reactome Gene Sets R-MMU-
5213460

RIPK1-mediated regulated necrosis 0.0000 Tnfrsf10b,Ripk3,Mlkl,Tnf

Reactome Gene Sets R-MMU-75158 TRAIL signaling 0.0022 Tnfrsf10b

KEGG Pathway mmu05167 Kaposi sarcoma-associated herpesvirus infection 0.0040 Bax,Cxcl1

Reactome Gene Sets R-MMU-844456 The NLRP3 inflammasome 0.0044 Pycard, Cxcl1
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(CARD) (Hoss et al., 2017). Previous studies demonstrated that

ASC was upregulated in an ischemic stroke model and played a

key role in cerebral ischemia–reperfusion injury by participating

in the inflammatory response and cell death, including apoptosis,

necroptosis, and pyroptosis (Meng et al., 2019; Liang et al., 2020;

Xu et al., 2021a). The gene Zbp1 encodes Z-DNA binding protein

1 with two Zα domains, which is a critical innate immune sensor

of not only viral RNA products but also endogenous nucleic acid

ligands (Zhang et al., 2020). Previous studies showed that

Zbp1 plays a role in the innate immune response by binding

to foreign DNA and inducing type I interferon production (Jiao

et al., 2020). In addition, in response to influenza virus infection,

it could induce cell death in the form of pyroptosis, apoptosis,

and necroptosis, that is, PANoptosis (Zheng and Kanneganti,

2020). However, the role of Zbp1 in cerebral I/R injury remains

unknown. Recent studies demonstrated that Zbp1 and ASC are

components of the PANoptosome (Zheng and Kanneganti, 2020;

Lee et al., 2021). Yan et al. (Yan et al., 2022) also indicated that

PANoptosis is observed in ischemic brain injury. Based on

previous related studies, we speculated that these three genes

might be components of the PANoptosome and be involved in

PANoptosis in cerebral I/R injury. Our study further confirmed

previous findings supporting the hypothesis that these three

genes might be involved in PANoptosis and crosstalk among

apoptosis, necroptosis, and pyroptosis in cerebral I/R injury, thus

providing new targets for neuroprotection.

Functional enrichment analyses were performed to obtain

a more in-depth understanding of the differentially expressed

PCD-related genes. The results showed that these genes were

not only particularly associated with corresponding PCD-

related biological processes and pathways, but also involved

in other biological processes and pathways, such as

inflammatory response and reactive oxygen species

metabolic process. This indicates that these genes have

different functions under particular circumstances and that

there might be crosstalk among these biological processes.

These results are in line with previous studies that revealed

significant crosstalk between PCD and inflammatory response

(Jayaraj et al., 2019).

In recent years, increasing studies have suggested that the

regulatory network composed of lncRNAs, miRNAs, and

mRNAs plays a critical role in the mechanisms underlying

cerebral ischemia–reperfusion injury (Xu et al., 2021b). To

better understand the molecular regulatory mechanisms of

these differentially expressed PCD-related genes, we

constructed PCD-related ceRNA regulatory networks and

TABLE 4 Functional enrichment analysis of differentially expressed pyroptosis-related genes (DEPRGs).

Signifcant enriched GO terms of DEPRGs

Category Term Description p value Gene symbols

GO Biological Processes GO:0050729 positive regulation of inflammatory response 0.0000 Ccr5,Il1b,Tnf,Mefv,Zbp1,Pycard,Cd14,Il1rn

GO Biological Processes GO:0031622 positive regulation of fever generation 0.0000 Ccr5,Il1b,Tnf,Mefv,
Pycard,Il1rn,Bax,Anxa2,Zbp1

GO Biological Processes GO:0032757 positive regulation of interleukin-8 production 0.0000 Cd14,Il1b,Tnf,Pycard,Ccr5,Il1rn,Anxa2,Bax

GO Biological Processes GO:2000659 regulation of interleukin-1-mediated signaling pathway 0.0000 Il1rn,Zbp1,Bax,Tnf,Pycard,Il1b

GO Biological Processes GO:0032760 positive regulation of tumor necrosis factor production 0.0000 Cd14,Ccr5,Pycard,Bax,Il1b,Anxa2

GO Biological Processes GO:0045837 negative regulation of membrane potential 0.0000 Bax,Il1rn,Anxa2

GO Biological Processes GO:0050767 regulation of neurogenesis 0.0000 Anxa2,Ccr5,Il1b,Tnf,Cd14,Mefv

GO Cellular
Components

GO:0061702 inflammasome complex 0.0000 Mefv, Pycard

GO Biological Processes GO:2000178 negative regulation of neural precursor cell proliferation 0.0001 Ccr5,Il1b,Bax,Tnf,Mefv

GO Biological Processes GO:0002437 inflammatory response to antigenic stimulus 0.0002 Il1rn,Tnf,Ccr5,Il1b,Anxa2

Signifcant enriched pathways of DEPRGs

KEGG Pathway mmu05132 Salmonella infection 0.0000 Bax,Anxa2,Cd14,Il1b,Tnf,Pycard,Zbp1,Ccr5

KEGG Pathway mmu05135 Yersinia infection 0.0000 Il1b,Tnf,Mefv, Pycard

KEGG Pathway mmu05152 Tuberculosis 0.0000 Bax,Cd14,Il1b,Tnf,Ccr5

Reactome Gene Sets R-MMU-
5660668

CLEC7A/inflammasome pathway 0.0000 Il1b,Pycard,Zbp1,Ccr5,Il1rn,Tnf

KEGG Pathway mmu04061 Viral protein interaction with cytokine and cytokine
receptor

0.0009 Ccr5,Tnf

Reactome Gene Sets R-MMU-166020 Transfer of LPS from LBP carrier to CD14 0.0010 Cd14

Reactome Gene Sets R-MMU-
6798695

Neutrophil degranulation 0.0015 Anxa2,Cd14,Pycard
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performed hub gene analysis to identify key nodes in these

networks. The gene Mapt was found to be a hub node of the

apoptosis-related ceRNA regulatory network. It can encode

several isoforms of tau protein as a result of complex,

regulated alternative splicing of its messenger RNA (Zhang

et al., 2009). Mapt transcripts are differentially expressed in

the nervous system, depending on the stage of neuronal

maturation and neuron type. Mapt gene mutations have been

shown to be associated with several neurodegenerative disorders

(Michalicova et al., 2020). In recent years, increasing evidence has

demonstrated that Mapt plays a role in ischemic stroke. In

addition, Basurto-Islas et al. (Basurto-Islas et al., 2018) found

that a large amount of hyperphosphorylated MAPT (Ser262/356)

was colocalized with apoptotic cells in MCAO/R-treated mice.

Moreover, Fujii et al. (Fujii et al., 2017) illustrated that the

knockout of MAPT reduced infarct area and alleviated

symptoms of neurological deficit. A recent study also showed

that astragaloside IV exerted neuroprotective effects in rats with

cerebral ischemia/reperfusion (CIR) injury, probably through the

Sirt1/Mapt pathway (Shi et al., 2021). In this study, the gene Tnf

was identified as a hub node in both the necroptosis-related

ceRNA regulatory network and the pyroptosis-related ceRNA

regulatory network. This gene encodes the multifunctional

proinflammatory cytokine TNF-α, which belongs to the tumor

necrosis factor (TNF) superfamily (Watters and O’Connor,

2011). It can bind to its surface receptors and functions

through their activation. Generally, TNF is a classical activator

of necroptosis that binds to its receptor to recruit RIPK1, which

interacts with RIPK3 to form necrosome and phosphorylate

MLKL to mediate necroptosis in the absence of caspases-8

(Green, 2019). Studies have shown that the level of TNF-α
was elevated in ischemic stroke and it has been implicated in

cerebral I/R injury, exerting effects by regulating the

inflammatory response and PCD pathways including

FIGURE 4
Pathway enrichment analysis of these differentially expressed programmed cell death (PCD)-related genes. (A) Significantly enriched pathways
of differentially expressed apoptosis-related genes (DEARGs). (B) Significantly enriched pathways of differentially expressed necroptosis-related
genes (DENRGs). (C) Significantly enriched pathways of differentially expressed pyroptosis-related genes (DEPRGs).
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apoptosis, necroptosis, and pyroptosis (Hallenbeck, 2002;

Maddahi et al., 2011), which is consistent with our results.

Many studies have demonstrated that the inhibition of TNF

signaling pathways may have neuroprotective effects against

cerebral I/R injury. For example, Zhang et al. showed that

preconditioning with Carbonisatus significantly decreased the

FIGURE 5
Construction of programmed cell death (PCD)-related ceRNA regulatory networks. (A) Apoptosis-related ceRNA regulatory networks. (B).
Necroptosis-related ceRNA regulatory networks. (C) Pyroptosis-related ceRNA regulatory networks. Red color denotes differentially expressed
programmed cell death (PCD)-related genes, yellow color denotes eligible target miRNAs of these PCD-related genes, and green color denotes
eligible target lncRNAs of miRNAs. The size of nodes represented closeness score calculated by cytoHubba plugin.
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levels of TNF-α and IL-6, reduced ischemic lesion volume, and

improved neurological deficits in MCAO/R rats (Zhang et al.,

2021a).

MicroRNAs (miRNAs) are conserved small regulatory

noncoding RNAs of about 20–22 bp in length. They can

regulate protein expression by binding to the 3′ untranslated
region (3′UTR) of their target genes, degrading or inhibiting

their expression (Krol et al., 2010). Numerous studies have

shown that miRNAs are involved in the regulation of PCD

pathways in many diseases, including ischemic stroke

(Ghafouri-Fard et al., 2020). The hub gene analysis in this

study demonstrated that mir-181a-5p was a hub node in all of

the above-mentioned three PCD-related ceRNA networks, and

that mir-181b-5p was a hub node of the apoptosis-related

ceRNA regulatory network and mir-181c-5p was a hub node

of the pyroptosis-related ceRNA regulatory network. miR-

181a-5p, miR-181b-5p, and miR-181c-5p all belong to the

miR-181 family and their aberrant expression has been

associated with various diseases including stroke,

neurodegeneration, and cancer (Indrieri et al., 2020).

Previous studies suggested that the miR-181 family

participates in the regulation of a range of biological

processes including cell proliferation (Huo et al., 2016),

apoptosis (Zhang et al., 2018), autophagy (Guo et al., 2019),

and immune and inflammatory responses (Hutchison et al.,

2013; Lu et al., 2019). Moreover, several studies have

demonstrated that the inhibition of miR-181a-5p played a

neuroprotective role in cerebral ischemic injury, as evidenced

by reductions in cell apoptosis, pyroptosis, and cerebral

infarction area (Moon et al., 2013; Stary et al., 2017; Yan

et al., 2020; Song et al., 2021). However, the roles of miR-

181b-5p and miR-181c-5p in cerebral ischemia have remained

controversial. Peng et al. showed that downregulated miR-181b

played a neuroprotective role against ischemic injury through

negatively regulating HSPA5 and UCHL1 protein levels (Peng

et al., 2013). In addition, Zhang et al. suggested that the

downregulation of miRNA-181b protects against cerebral

ischemic injury via the inhibition of NF-κB-mediated

inflammatory and apoptotic responses (Zhang et al., 2018).

In contrast, another two reports demonstrated the possible

neuroprotective effects of increased miR-181b in ischemia-

caused neuronal cell apoptosis and mechanical repair of

FIGURE 6
Hub gene analysis of three programmed cell death (PCD)-related ceRNA regulatory networks. (A) Hub nodes in the apoptosis-related ceRNA
regulatory network that were shared by seven different algorithms. (B) Key ceRNA regulatory pathways for apoptosis-related ceRNA regulatory
network. (C) Hub nodes in the necroptosis-related ceRNA regulatory network that were shared by seven different algorithms. (D) Key ceRNA
regulatory pathways for necroptosis-related ceRNA regulatory network. (E)Hub nodes in the pyroptosis-related ceRNA regulatory network that
were shared by seven different algorithms. (F) Key ceRNA regulatory pathways for pyroptosis-related ceRNA regulatory network. Red color denotes
differentially expressed programmed cell death (PCD)-related genes, yellow color denotes miRNAs, and green color denotes lncRNAs.
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brain tissue (Deng et al., 2016; Liu et al., 2016). Most studies

supported the assertion that miR-181c-5p plays a positive role

in brain injury caused by cerebral ischemia–reperfusion and

that its overexpression can inhibit brain injury caused by

ischemic stroke through regulating proliferation,

inflammatory response, and apoptosis of neuronal cells

(Zhang et al., 2019; Cao et al., 2020; Bu et al., 2021).

However, in two other studies, the opposite conclusions were

drawn. Specifically, Ma et al. (Ma et al., 2016) found a positive

correlation between the NIHSS score and miR-181c level, and

showed that plasma miR-181c concentration was positively

correlated with the number of neutrophils and blood platelet

count and negatively correlated with the number of

lymphocytes. They also found that miR-181c promoted the

apoptosis of BV2 and Neuro-2a cells and aggravated brain

ischemia–reperfusion injury in a mouse model of stroke via the

modulation of pro- and anti-apoptotic proteins. Moreover, a

recent study showed that downregulated miR-181c ameliorated

cerebral ischemic injury via increasing the expression of c-Fos

and its downstream genes (Meng et al., 2020). Taken together,

these findings indicated that mir-181a-5p, miR-181b-5p, and

miR-181c-5p are all involved in the mechanism of cerebral I/R

injury, but might play different roles depending on the specific

target gene to which they bind.

lncRNAs are the most abundant noncoding RNAs

(ncRNAs). They are greater than 200 bp in length, lack

protein-coding function, and are associated with a variety of

neurological diseases including ischemic stroke (Wu et al.,

2013; Bao et al., 2018). Our hub analysis identified the

lncRNA Malat1 as a hub node in all three PCD-related

ceRNA regulatory networks, which is consistent with

previous studies, indicating its critical role in regulating

PCD pathways. Malat1 is known as a long intergenic

noncoding RNA and is highly abundant in the nervous

system. Accumulating evidence has indicated that this

lncRNA plays vital roles in regulating various physiological

processes, including apoptosis, autophagy, immune and

inflammatory responses, and endothelial dysfunction of

ischemic stroke (Wang et al., 2022). The expression of

Malat1 was also found to be upregulated in ischemic stroke,

while its downregulation was shown to improve the

neurological deficit score and reduce neuronal apoptosis and

the size of cerebral infarction by regulating miR-211-5p to in

turn regulate the expression of COX-2 (Tan et al., 2021). Other

studies also demonstrated that the inhibition of

Malat1 expression could protect against cerebral I/R injury

by alleviating neuronal apoptosis, endoplasmic reticulum

stress, and inflammation (Shi et al., 2019; Cao et al., 2020;

Jia et al., 2021). Moreover, it was reported that Malat1 was

highly expressed in OGD/R-induced astrocyte injury models,

and that its silencing protected against cerebral

ischemia–reperfusion injury by downregulating AQP4 levels

via miR-145 (Wang et al., 2020). In contrast, some studies

supported the neuroprotective role of Malat1 in cerebral

ischemia–reperfusion injury. For example, Xin et al. (Xin

and Jiang, 2017) found that Malat1 could protect human

brain vascular endothelial cells from OGD/R-induced

apoptosis via a PI3K-dependent mechanism. Another study

showed that mice with lncRNA Malat1 KO presented larger

brain infarct size and worse neurological scores, indicating that

Malat1 plays critical protective roles in ischemic stroke via anti-

apoptotic and anti-inflammatory effects in the brain

microvasculature (Zhang et al., 2017). Accumulating

evidence has also indicated that Malat1 is an important

regulator of pyroptosis in various diseases (Song et al., 2019;

Shu et al., 2021). However, the specific roles and mechanisms

by which Malat1 regulates pyroptosis and necroptosis in

cerebral ischemia–reperfusion injury have remained unclear.

In addition, the lncRNAMalat1/miR-181a-5p/Mapt regulatory

axis, lncRNAMalat1/miR-181b-5p/Mapt regulatory axis, and

lncRNA Malat1/miR-181a-5p/Tnf regulatory axis were not

previously reported to be involved in cerebral I/R injury, so

they need further investigation. In this study, the lncRNA

Neat1 was also identified as a hub node in both apoptosis-

related and necroptosis-related ceRNA regulatory networks.

Recently, increasing evidence has shown that this lncRNA plays

an essential role in physiological and pathological responses in

ischemic stroke (Ni et al., 2020; Jin et al., 2021). Li et al. (Li et al.,

2020) found that the expression of Neat1 was elevated in

patients with ischemic stroke compared with that in

controls, and that lncRNA Neat1 expression positively

correlated with NIHSS score and inflammatory factors and

could predict an increased risk of recurrence/death. Ni et al. (Ni

et al., 2020) also showed that Neat1 knockdown alleviated

OGD/R-induced apoptosis and increased neuronal viability.

Another study demonstrated that Gastrodin significantly

alleviated cerebral I/R injury by regulating the lncRNA

Neat1/miR-22-3p axis; it also showed that the

overexpression of Neat1 promoted neuronal pyroptosis

(Zhang et al., 2021c). Previous studies also reported that the

downregulation of Neat1 could exert anti-inflammatory effects

in cerebral I/R injury (Han and Zhou, 2019; Jin et al., 2021).

Taken together, these findings indicate that the lncRNA

Neat1 might play crucial roles in PCD pathways and

inflammation in cerebral I/R injury and is a potential

therapeutic target. Another lncRNA identified as a hub node

in both necroptosis-related ceRNA and pyroptosis-related

regulatory networks is Xist. Previous studies confirmed that

Xist contributes to cerebral I/R injury through modulating cell

apoptosis, ROS production, and inflammation. Wang et al. also

demonstrated that the silencing of XIST protected against

cerebral I/R injury by inhibiting neuronal deficit and

inflammation via the miR-362/ROCK2 axis (Wang et al.,

2021). In addition, Xiong et al. reported that XIST reduced

cell viability and induced cell apoptosis via modulating miR-

486-5p and GAB2, which promoted cerebral I/R injury (Xiong
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et al., 2021). Another two studies also indicated that

knockdown of XIST inhibited brain injury by suppressing

apoptosis and ROS production (Zhang et al., 2021d; Weng

et al., 2021). Moreover, a recent study illustrated that Xist was

involved in the regulation of pyroptosis in MCAO/R-treated

rats and OGD/R-treated rat brain microvascular endothelial

cells (Guo et al., 2022). Nevertheless, the molecular roles and

regulatory mechanisms of XIST in necroptosis and pyroptosis

in cerebral I/R injury have not been fully elucidated and require

further research.

In summary, we analyzed datasets GSE131193 and

GSE58720 to identify PCD-related genes signature and

potential regulatory axes in cerebral I/R injury and the results

were validated through previous work. To our knowledge, this

was the first study to focused on PCD (apoptosis, necroptosis,

and pyroptosis)-related genes and potential regulatory axes in

cerebral I/R injury, which might have profound significance for

ischemia stroke. We identified hub nodes and seven key ceRNA

regulatory axes that has never been reported before in ischemia

stroke, which may contribute to elucidating the molecular

mechanisms and provide a basis for developing novel

therapeutic targets against cerebral I/R injury. Further in vivo

and in vitro studies should be conducted to verify these

regulatory axes.

There were several limitations to this study that should be

acknowledged. First, the PCD (apoptosis, necroptosis, and

pyroptosis)-related genes included in this study were mainly

identified in previous studies, so some unreported related genes

may have been ignored or excluded. Second, both lncRNAs and

miRNAs were obtained by online database prediction because

neither lncRNA nor miRNA datasets on adult mouse brain

tissues after transient focal ischemia at 24 h of reperfusion

and matched control samples were available. In future studies,

if available, lncRNA and miRNA datasets should be analyzed

simultaneously to increase the reliability of the results. Third, the

selected datasets were performed in different laboratories and

therefore, the differences in sample preparation, sample

collection methods, and microarray platforms might influence

the results. Finally, our hypothesized potential binding affinity

among lncRNAs, miRNAs, and mRNAs should be subjected to

further experimental investigation.

5 Conclusion

Taken together, our findings indicated that these PCD

pathways (apoptosis, necroptosis, pyroptosis, and PANoptosis)

and crosstalk among them might be involved in ischemic stroke.

And the key nodes and regulatory axes identified in this study

might play vital roles in regulating the above processes, which

may offer new insights into the potential mechanisms underlying

cell death during cerebral I/R injury and provide new therapeutic

targets for neuroprotection.
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Background: Identifying new biomarkers of major depressive disorder (MDD)

would be of great significance for its early diagnosis and treatment. Herein,

we constructed a diagnostic model of MDD using machine learning methods.

Methods: The GSE98793 and GSE19738 datasets were obtained from the

Gene Expression Omnibus database, and the limma R package was used

to analyze differentially expressed genes (DEGs) in MDD patients. Gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses were performed to identify potential molecular functions

and pathways. A protein-protein interaction network (PPI) was constructed,

and hub genes were predicted. Random forest (RF) and artificial neural

network (ANN) machine-learning algorithms were used to select variables and

construct a robust diagnostic model.

Results: A total of 721 DEGs were identified in peripheral blood samples of

patients with MDD. GO and KEGG analyses revealed that the DEGs were

mainly enriched in cytokines, defense responses to viruses, responses to biotic

stimuli, immune effector processes, responses to external biotic stimuli, and

immune systems. A PPI network was constructed, and CytoHubba plugins

were used to screen hub genes. Furthermore, a robust diagnostic model was

established using a RF and ANN algorithm with an area under the curve of

0.757 for the training model and 0.685 for the test cohort.

Conclusion: We analyzed potential driver genes in patients with MDD and built

a potential diagnostic model as an adjunct tool to assist psychiatrists in the

clinical diagnosis and treatment of MDD.

KEYWORDS

major depressive disorder, machine learning, random forest, artificial neural network,
bioinformatics analysis
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Introduction

Major depressive disorder (MDD) is a general chronic
psychiatric disorder affecting people of all ages, which can
ultimately lead to chronic disability, financial difficulties, and
shortened life expectancy (Murray and Lopez, 1997; Zhdanava
et al., 2021). In recent years, as increasing importance has been
placed on the treatment of mental illness, the proportion of
patients seeking treatment for MDD rose from 43.5% in 2007–
2008 to 52.9% in 2015–2016 (Rhee et al., 2020). In China, MDD
is the most common mood disorder, with a lifetime prevalence
of 3.4% and a prevalence of 2.1% at 12 months (Huang et al.,
2019). However, the misdiagnosis rate of MDD can reach as
high as 78%, and misdiagnosis often leads to improper treatment
(Fernández et al., 2010). The early identification of MDD is
particularly important; therefore, it is of great significance to
identify new and feasible biomarkers for the early diagnosis and
treatment of MDD.

Obtaining peripheral blood biomarkers is a more
convenient and practical method of diagnosis than brain
imaging or biopsy. Recently, many studies have focused on the
use of mRNA expression data from peripheral blood groups
to investigate the differential characteristics between patients
with MDD and healthy populations. For example, Woo et al.
(2018) analyzed gene expression in peripheral blood of 38
patients with MDD and 14 healthy controls and identified
seven differentially expressed genes (DEGs). Spijker et al.
(2010) studied the peripheral blood of 21 patients with MDD
and 21 healthy control participants and found significant
differences in the expression levels of CAPRIN1, CLEC4A,
CKRT23, MLC1, PLSCR1, PROK2, and ZBTB16, indicating
that this signature could distinguish patients with depression
from healthy individuals. Therefore, a predictive diagnostic
model based on mRNA expression could help us understand
the potential pathophysiology of MDD and may further support
clinical decisions.

Currently, machine learning is increasingly applied in the
medical field and has come to play an important role in the
diagnosis and prognosis in the fields of oncology, neurology, and
cardiology. For example, Ciobanu et al. (2020) used a random
forest (RF) approach to predict depression and suicide risk
in 39 patients with depression and 87 healthy controls using
blood methylation and transcriptomic data, with an accuracy
of 87.3% in distinguishing between the two groups. Bill et al.

TABLE 1 The information of datasets.

Dataset Platform Organism Tissue Sample

Normal Disease

GSE19738 GPL6848 Homo Sapiens Blood 34 33

GSE98793 GPL570 Homo Sapiens Blood 64 128

used a regularization gradient enhancement machine to classify
microarray gene expression data in the blood of 1581 patients
with MDD and 369 controls, with an average area under the
curve (AUC) of 0.64 (Qi et al., 2021). An artificial neural
network (ANN) model has further been applied in the diagnosis
of many asymptomatic and early diseases (He et al., 2020)
using a neural network classifier to the voice of patients with
depression. The control group variables were analyzed, and
the diagnostic accuracy rate was between 82.40 and 93.02%
(Navarro et al., 2019). ANNs can accurately predict the positive
or negative effects of Alzheimer’s disease and Mycobacterium
tuberculosis, with a total accuracy of 93.8 and 94% (Khan et al.,
2019; Swietlik and Bialowas, 2019). However, no ANN-related
diagnostic model has been applied to construct an auxiliary
peripheral blood diagnostic model for patients with MDD.

In this study, we obtained the MDD-related datasets,
GSE98793 and GSE19738, and analyzed DEGs in patients
with MDD. Functional analyses, including gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG), were performed to investigate the enriched molecular
functions and pathways. Machine learning algorithms,
including RF and ANN, were used for variable selection and
diagnostic model construction. Based on these results, we
compared the discrimination and accuracy of single genes and
diagnostic models for MDD.

Materials and methods

Data collection and data processing

The GSE98793 and GSE19738 datasets were searched from
the Gene Expression Omnibus database1 using the following
keywords: “MDD, blood, normal” [All Fields] AND “Homo
sapiens” AND “Expression profiling by array” [All Fields].
The screening standards for microarray datasets included
the following: reference to profiles of gene expression with
genome-wide whole blood; containing samples from patients
with MDD and healthy controls; all included samples were
not treated with drugs; the number of samples was greater
than 40. Eventually, GSE98793 (Leday G. G. R. et al., 2018)
and GSE19738 (Spijker et al., 2010) were screened for in-
depth investigation. The GSE98793 dataset was provided by
Kelly et al., who examined a total of 192 peripheral blood
samples, including 128 from MDD patients and 64 from healthy
volunteers. And Affymetrix Human Genome U133 Plus 2.0
Array was used to test. GSE19738 data set was provided by
Spijker, using the chip Agilent-012391 Whole Human Genome
Oligo Microarray G4112A. They detected 132 peripheral blood
samples in total from 34 healthy volunteers and 33 MDD

1 https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1

Before and after box diagram of standardization of GSE19738 and GSE98793 datasets. (A) The flow chart of this study. (B) Box diagram of the
GSE19738 dataset before correction; (C) Box diagram of the GSE98793 dataset before correction; (D) Box diagram of the GSE19738 dataset
after correction; and (E) Box diagram of the GSE98793 dataset after correction; Red represents the MDD samples, and blue represents the
normal samples.

patients, respectively. The information for patients with MDD
and healthy participants was provided in Table 1.

Differential expression analysis

The limma package in R software was used for standardized
processing of the datasets to eliminate changes in gene
expression caused by experimental techniques, and the
normalized data were used for subsequent analysis. Differential
analysis was carried out on the GSE19738 dataset, and the cutoff
value was set to | log2FC| > 1, adj. P < 0.05.

Functional enrichment analysis and
protein-protein interaction network

To explore the function and pathways of the identified
DEGs, GO and KEGG pathway enrichment analyses were
performed using the clusterProfiler R package. Statistical
significance was set at P < 0.05. The protein-protein
interaction (PPI) network between the DEGs was analyzed
using the STRING database2. The interaction score was set

2 https://string-db.Org
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FIGURE 2

DEG identification of the GSE19738 dataset. (A) DEGs of peripheral blood samples from patients with MDD and healthy controls were obtained
from the DEG heat map constructed from the GSE19738 dataset. Horizontal coordinate blue represents the control group, red represents the
experimental group, blue indicates low expression, and red indicates high expression. (B) Volcano diagram, black indicates genes with no
differential expression, blue indicates down-regulated genes, and red indicates up-regulated genes. (C) GO enrichment analysis. The outer
circle represents the number of GO term, the outer circle number represents all genes in GO term, and the inner circle number represents the
number of enriched genes. The inner circle pie chart represents the percentage of genes that are enriched. (D) KEGG pathways. The outer circle
represents the KEGG ID, the outer circle number represents all genes in the KEGG pathway, and the inner circle number represents the number
of genes enriched in the pathway. The inner circle pie chart represents the percentage of genes that are enriched. DEGs, differentially expressed
genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

to 0.900 (highest confidence), and the nodes in the network
were randomly clustered using the k-means algorithm
to reveal potential regulatory relations between nodes.
Subsequently, the ten most significant hub genes were screened
using cytoHubba.

Variable selection and diagnostic
model construction

The RF algorithm is a classifier that contains multiple
decision trees. It uses the RF package for analysis and sorts genes
according to their importance. Genes with high importance
were extracted from the list of different genes for visualization.

After the MDD characteristic genes were screened using
the RF algorithm, information redundancy was removed by
collinearity analysis. Taking the threshold of the Spearman Rho
absolute value as >0.5, the parameters with collinearity were
removed, and the model was further constructed using an ANN.

The ANN consists of the following three layers: the input,
hidden, and output layers of six, five, and two neurons,
respectively. An ANN software simulator was used to solve the
return of the mission, including the forecast revision numbers.
The network’s answer to each test case ranged from 0 to 1.
The level of activation and inhibition of the output neurons is
automatically selected by the stimulator of the ANN to minimize
losses. The error function of the ANN was chosen as the sum
of the square of the prior given value and the actual value of
the output neuron. GSE19738 and GSE98793 were used as the
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TABLE 2 GO enrichment analyses results.

GO ID Description Number P value Q value

GO: 0034341 Response to
interferon-gamma

37 1.46E-24 4.15E-22

GO: 0051607 Defense response to virus 49 3.74E-32 2.36E-29

GO:0009615 Response to virus 58 5.70E-35 4.63E-32

GO:0019221 Cytokine-mediated
signaling pathway

80 2.27E-32 1.61E-29

GO:0098542 Defense response to
other organism

61 1.42E-24 4.15E-22

GO:0045087 Innate immune response 104 8.81E-42 1.25E-38

GO:0001817 Regulation of cytokine
production

69 2.04E-25 6.84E-23

GO:0001816 Cytokine production 69 3.01E-25 9.51E-23

GO:0034097 Response to cytokine 107 2.77E-39 2.62E-36

GO:0051707 Response to other
organism

88 7.14E-30 3.11E-27

GO:0043207 Response to external
biotic stimulus

88 7.66E-30 3.11E-27

GO:0071345 Cellular response to
cytokine stimulus

93 1.43E-31 8.12E-29

GO:0009607 Response to biotic
stimulus

91 8.60E-31 4.45E-28

GO:0006952 Defense response 147 2.56E-47 1.46E-43

GO:0002252 Immune effector process 99 4.33E-30 2.05E-27

GO:0006955 Immune response 160 1.07E-45 3.03E-42

GO:0002682 Regulation of immune
system process

110 8.62E-26 3.06E-23

GO:0002376 Immune system process 185 1.02E-42 1.93E-39

GO:0009605 Response to external
stimulus

139 7.34E-26 2.78E-23

GO:0006950 Response to stress 208 1.86E-39 2.12E-36

training and test groups, respectively. GSE19738 was used in the
initial receiver operating characteristic (ROC) curve analysis,
ANN model predictive value of the MDD model. The GSE98793
dataset was used to test the model. The code is provided in
Supplementary material 1 and Supplementary material 2.

Immune cell infiltration analysis and
correlation analysis

CIBERSORT3 and the LM22 characteristic gene matrix were
used to predict the proportion of 22 immune cells in all samples
of the dataset. The CIBERSORT package was used to assess the
abundance of 22 immune cells in the GSE19738 dataset. Using
the median prediction index of the ANN model as the cutoff
value, the samples were divided into high-and low-score groups,
and the differences in immune cell infiltration among the 22
groups were analyzed.

3 http://CIBERSORT.stanford.edu/

TABLE 3 KEGG enrichment analyses results.

KEGG ID Description Number P value Q value

ko04668 TNF signaling pathway 16 4.09E-08 1.39E-06

ko04064 NF-kappa B signaling
pathway

19 1.94E-07 5.11E-06

ko04216 Ferroptosis 11 9.06E-09 3.58E-07

ko04217 Necroptosis 24 8.24E-12 9.77E-10

ko04621 NOD-like receptor
signaling pathway

27 2.20E-13 5.22E-11

ko04380 Osteoclast differentiation 20 2.17E-10 1.71E-08

ko05164 Influenza A 22 1.40E-09 8.30E-08

ko05169 Epstein-Barr virus
infection

27 4.83E-09 2.29E-07

ko05162 Measles 18 6.86E-08 2.03E-06

ko05160 Hepatitis C 18 2.47E-07 5.85E-06

ko04620 Toll-like receptor
signaling pathway

13 4.66E-06 9.21E-05

ko04625 C-type lectin receptor
signaling pathway

13 4.66E-06 9.21E-05

ko05145 Toxoplasmosis 13 7.74E-06 1.41E-04

ko05321 Inflammatiory bowel
disease (IBD)

10 1.31E-05 2.07E-04

ko05167 Kaposi
sarcoma-associated
herpesvirus infection

17 1.31E-05 2.07E-04

ko05134 Legionellosis 9 1.80E-05 2.67E-04

ko04978 Mineral absorption 9 2.74E-05 3.82E-04

ko05161 Hepatitis B 15 3.21E-05 4.23E-04

ko04062 Chemokine signaling
pathway

16 6.01E-05 7.50E-04

ko04920 Adipocytokine signaling
pathway

9 8.36E-05 9.90E-04

Results

Identification of differentially
expressed genes and enrichment
analyses

A flowchart of this study is shown in Figure 1A.
Figures 1B–E shows data distribution before and after
standardization of data sets GSE19738 and GSE98793. First,
compared to healthy participants, 721 genes were differentially
expressed in the peripheral blood samples of patients with
MDD. Among them, 404 DEGs were upregulated, and 317
DEGs were downregulated. The corresponding volcano and
heat maps are shown in Figures 2A,B.

By analyzing the GO and KEGG pathway enrichment
analyses, MDD peripheral blood raises the biological function
of genes. The results of GO annotation revealed that the
DEGs mainly comprised genes related to cytokines, defense
responses to viruses, responses to biotic stimuli, immune
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FIGURE 3

(A) Protein-protein interaction network of DEGs constructed using cytoscape. (B) The top 10 hub genes were explored using CytoHubba.

effector processes, and responses to external biotic stimuli
(Figure 2C). Prior studies have suggested that abnormal
cytokine homeostasis may be related to the pathogenesis of
MDD and that cytokine profiles may be used to distinguish
patients with MDD (Petralia et al., 2020). KEGG signal pathway
enrichment analysis results showed that the DEGs were mainly
enriched in the immune system, cell growth and death,
development, and infectious diseases (Figure 2D). MDD is
associated with proinflammatory activation of the peripheral
innate immune system, coupled with relative inactivation of
the adaptive immune system (Leday G. et al., 2018). Several
growth factors have been shown to play important roles in cell
survival, growth, programmed death, and neuroplasticity and
are associated with MDD (Li et al., 2021). The detailed data are
presented in Tables 2, 3.

Construction of protein-protein
interaction network

To further understand the relationship between DEGs at
the protein level, we built a PPI network using the STRING
database, which contains 487 nodes and 886 edges (Figure 3A).
CytoHubba plugins were used to screen the top 10 hub genes,
namely BST2, STAT2, GBP2, IFI35, IFI6, XAF1, IFIT5, IFITM1,
IRF9, and ISG20 (Figure 3B). Among them, dysregulation
of the GBP2 gene could indicate a relationship between cell
surface receptors and intracellular effectors that can transmit

extracellular information into cells, as well as an intracellular
signal transduction protein (Jiang et al., 2015). Furthermore, the
proteins encoded by IFI6 may play an important role in the
regulation of apoptosis and restrict various viral infections by
targeting different stages of the viral life cycle (Sajid et al., 2021).

Random forest screening of
characteristic genes and major
depressive disorder diagnostic model
construction and validation

Using the identified DEGs, we further screened MDD-
related characteristic genes using the RF algorithm. Six
characteristic genes related to MDD were screened according
to a gene score of >3 (Figures 4A,B). Also, we tested the
correlation between these genes, and found there was no
significant covariance between them (Supplementary Table 1).
Furthermore, based on the features of the six MDD-related
genes, we built an ANN model. The MDD diagnostic model
constructed using the ANN includes the input, hidden, and
output layers, as shown in Figure 4C. Among them, the
dimension of the input vector is six, and the dimensions of the
output vector of the control and disease. Based on the scoring
values of the ANN model, ROC analysis was performed on the
model to verify its accuracy. As shown in Figure 5, the AUC was
0.757 in the training set, indicating good accuracy. In addition,
the accuracy of the model was further tested using the GSE98793
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FIGURE 4

(A) Random forest tree. (B) MeanDecreaseGini. (C) Artificial Neural Network model. Healthy stands for healthy group, and MDD stands for MDD
group.

dataset, and the AUC of the test set was 0.685, indicating the high
accuracy of the model.

Immune infiltration and correlation
analysis

To analyze the relationship between the ANN model and
immune cell infiltration, the CIBERSORT algorithm was used
to calculate the proportion of immune cell infiltration in the
peripheral blood of the healthy and MDD groups. In the
immune analysis, we drew the immune landscape of infiltrated
immune cells of patients with MDD and normal volunteers
(Figure 6A). We found that a variety of immune cells were
significantly correlated in the disease group (Figures 6B,C).
However, we did not find any significant differences in the

immune cells between the MDD and normal groups. This may
be related to the sources of the specimens used in this study.

Discussion

Patients with depression have a high rate of misdiagnosis;
as such, it is important to find new and feasible biomarkers to
facilitate the early diagnosis and treatment of MDD. Previous
studies have reported a variety of algorithms used to construct
diagnostic models for patients with MDD. However, at present,
there are no reports on the application of ANNs to construct
auxiliary peripheral blood diagnostic models for patients with
MDD. Here, we tried to find diagnostic markers related to
MDD and applied ANN machine learning methods to construct
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FIGURE 5

Receiver operating characteristic curves for the artificial neural network. The AUC curve of GSE19738 training cohort is on the left, and the AUC
curve of GSE98793 testing cohort is on the right.

diagnostic models to explore better diagnostic models for
patients with MDD that are suitable for different populations.

We identified 404 DEGs in the peripheral blood of patients
with MDD compared to healthy controls. Through enrichment
analysis of GO and KEGG pathways, we further identified that
the biological functions of upregulated genes in the peripheral
blood of patients with MDD mainly targeted cytokines, defense
response to viruses, response to biotic stimulus, immune
effector process, response to external biotic stimulus, response
to external stimulus and immune system, cell growth and
death, development, infectious diseases, and other pathways.
We constructed a PPI network to screen out the top 10
hub genes, namely BST2, STAT2, GBP2, IFI35, IFI6, XAF1,
IFIT5, IFITM1, IRF9, and ISG20. Moreover, we selected the
following six characteristic genes in order of importance by
RF algorithm: C3AR1, BST2, TREM1, BTG3, LY6E, and IER5.
C3AR1 is a critical regulator of central immune homeostasis
in tau pathology whose signaling operates intracellularly in
human CD4 + cells and participates in several T-cell functions
(Arbore et al., 2016). Litvinchuk et al. (2018) showed that
the expression of the C3a receptor (C3AR1) is positively
correlated with cognitive decline and Braak staging in human
Alzheimer’s disease brains. BST2 has been identified as a marker
of immunomodulatory bone marrow mesenchymal stem cell
cloning, as well as an effective inhibitor of enveloped virus
release (James et al., 2015). TREM-1 is an activating receptor
expressed at high levels in neutrophils and monocytes that
infiltrate human tissues infected with bacteria. Furthermore, it is
upregulated in peritoneal neutrophils of patients with microbial
sepsis and mice with experimental lipopolysaccharide-induced
shock (Bouchon et al., 2001). Chronic stress contributes to
the development of psychiatric disorders, including anxiety

and depression. Mouse hippocampal RNA sequences showed
that stress increases the TREM1 pathway associated with
inflammation (DiSabato et al., 2021). Monocytes are in a
pro-inflammatory state in patients with severe psychiatric
disease. The expression of TREM-1 is significantly increased
in monocytes of patients with SCZ and BD and tends to
be overexpressed in patients with major depression (Weigelt
et al., 2011). Regulating the imbalance in TREM1 expression
ameliorates depression-like behaviors and impairment of
learning and memory in rats (Fang et al., 2019). In addition,
Rosie Owens suggested that neuroinflammatory conditions that
alter the balance of TREM1 expression may be important
factors affecting microglial inflammation and homeostasis
activity and may be associated with neuroinflammation and
neurodegenerative disease (Owens et al., 2017). BTG3 is a
member of the anti-proliferative protein family. IER5 may
play an important role in mediating the cellular response
to mitogenic signals (Williams et al., 1999). Savitz et al.
found using genome-wide expression analysis of peripheral
blood mononuclear cells that IER5 was differentially expressed
between 29 unmedicated depressed patients with a mood
disorder (8 bipolar disorder and 21 MDD) compared to
24 healthy controls (Savitz et al., 2013). These differentially
upregulated genes were closely related to MDD and mental and
neurological diseases.

Based on the application of the above six characteristic genes
using the ANN method, we successfully established an ANN
model and further calculated the infiltration of two groups
of immune cells in peripheral blood. In the training set, the
AUC was 0.757, indicating good accuracy. The accuracy of
the model was further tested, and the AUC of the test set
was calculated to be 0.685. The reason of that the AUC is
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FIGURE 6

Evaluation and correlation analysis of immune cell infiltration. (A) Panoramic view of 22 immune cell infiltrates in peripheral blood samples;
(B, C) High and low expression group of immune cell infiltration difference.

less than 0.7 may be due to the small sample size in the test
set. At present, many studies have reported the application of
RF, support vector machine, k-nearest neighbors (kNN), and
naive bayesian (NB) algorithms to build diagnostic models
for patients with MDD. These studies have reported high
classification accuracies ranging from 70 to 100% (Yi et al.,
2012; Yu et al., 2016; Bhak et al., 2019). In particular, Zhao
et al. compared different machine learning approaches using
the same data set which also used by us. It was found that
compared with other methods, such as SVM, RF, kNN, NB, SVM
could distinguish MDD from healthy controls more accurately
(Zhao et al., 2021). Overall, compared with previous studies,
our model evaluation provides new ideas for the application of
peripheral blood in aiding diagnostic machine learning. ANNs
are the most common form of neuromorphic computing, and
breakthrough progress has been made in many areas. Neural
networks are composed of multiple layers, each made up of a
collection of cells called artificial neurons that are connected by
artificial synapses (Subbulakshmi Radhakrishnan et al., 2021).

One difference in our study is that upregulated differential genes
are used in the analysis of differences between patients with
MDD and control groups as clinical indicators tend to focus
more on increased indicators, and upregulated genes can be
more effectively applied to the analysis of blood indicators in
outpatient and inpatient patients. In previously reported studies,
although cross-validation from the same dataset can also be used
for model validation, compared with the external validation with
completely independent data, the previous experiments do not
reflect the universality or replicability of the model (Steyerberg
and Harrell, 2016). In this study, we used previously unused
datasets to calculate the AUC of the classifier.

In this study, an ANN was used for the first time to
establish an auxiliary diagnosis model of MDD, which provides
a new method for MDD diagnosis using machine learning and
could help clinicians reduce the misdiagnosis rate of MDD.
However, this study had several limitations. First, the data
used in this study were obtained from public databases. They
did not provide comprehensive clinical information, such as
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age, sex, and BMI, which should be controlled. Meanwhile,
transcriptome data are the main data in GEO database in
the field of mental disorder, other types of data such as
genomic and proteomic data, are lacking. Second, compared
with traditional methods, such as logistic regression, the ANN
method cannot obtain an image of the patient score for each
variable. Third, the sample size of this study was relatively
small; the more samples the machine learning model is subjected
to, the more similar the sample sources are, and the more
accurate the model is constructed. Fourth, due to the relatively
small sample size of mental diseases in the public database,
the potential transcriptome biomarkers for mental disorders
was not well studied, so further comparison was not conducted
between MDD and other mental disorders. In addition, the
MDD samples we selected were not divided into subtypes
and may have different clinical characteristics. As such, the
representativeness and extensibility of the model will be limited
to some extent. In future research, we will further explore the
differential gene of MDD, expand the sample size, collect our
own data, consider the influence of clinical features and subtypes
of MDD. In order to find better diagnostic models for patients
with MDD, we will compare more machine learning method
such as SVM, RF, kNN, NB, etc. And continue to optimize and
improve the model design to provide more reliable auxiliary
tools for the diagnosis of MDD.

Conclusion

In conclusion, we adopted a popular machine learning
algorithm, RFs, and ANNs to filter the characteristics of patients
with MDD and construct a diagnostic model. This model was
then verified in an external test set. This validation established
that this model could clearly distinguish between patients
with MDD and healthy controls. This model could serve as
a potential adjunct tool to help psychiatrists make clinical
diagnoses and treatment plans.
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Background: Alzheimer’s disease (AD) is themost common formof dementia in

old age and poses a severe threat to the health and life of the elderly. However,

traditional diagnostic methods and the ATN diagnostic framework have

limitations in clinical practice. Developing novel biomarkers and diagnostic

models is necessary to complement existing diagnostic procedures.

Methods: The AD expression profile dataset GSE63060 was downloaded from

the NCBI GEO public database for preprocessing. AD-related differentially

expressed genes were screened using a weighted co-expression network and

differential expression analysis, and functional enrichment analysis was

performed. Subsequently, we screened hub genes by random forest,

analyzed the correlation between hub genes and immune cells using

ssGSEA, and finally built an AD diagnostic model using an artificial neural

network and validated it.

Results: Based on the random forest algorithm, we screened a total of seven

hub genes from AD-related DEGs, based on which we confirmed that hub

genes play an essential role in the immune microenvironment and successfully

established a novel diagnostic model for AD using artificial neural networks, and

validated its effectiveness in the publicly available datasets GSE63060 and

GSE97760.

Conclusion: Our study establishes a reliable model for screening and

diagnosing AD that provides a theoretical basis for adding diagnostic

biomarkers for the AD gene.

KEYWORDS

Alzheimer’s disease, immune infiltration, biomarkers, random forest, artificial neural
networks

Introduction

Relevant studies have shown that in 2018 the prevalence of dementia is about

50 million people worldwide and is expected to triple by 2050 (Scheltens et al., 2021).

Alzheimer’s disease (AD), the most common form of dementia, is a significant threat to

the health and lives of older adults, with initial symptoms of memory loss, decreased
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verbal skills, and impaired logical thinking (Sabayan and

Sorond, 2017). The onset of AD is insidious, and some

pathophysiological changes are thought to occur years or

even decades before the clinical diagnosis of dementia

(Morris, 2005). It was not until 2011 that the concept of the

preclinical stage of AD was explicitly introduced in the NIA-AA

diagnostic criteria for Alzheimer’s disease (Sperling et al., 2011).

The introduction of this concept is critical and suggests that

interventions can be made in the preclinical stage of AD to

ultimately delay the disease’s progression.

The latest NIA-AA AD diagnostic framework-ATN

framework (Jack et al., 2018), officially published in 2018, is

considered promising for the early identification of disease

development in the preclinical phase of AD. In this framework,

the diagnosis of AD is determined by the biomarkers Aβ and tau.

Still, the framework is currently only used for scientific research

and is not widely used in the clinic. Therefore, how identifying and

diagnosing early becomes an urgent problem for us.

Genetic factors are considered a significant risk for

Alzheimer’s disease, accounting for 60%–80% of the disease

(Gatz et al., 2006). In addition to the well-known APEε4 risk

alleles, there are many genes involved in AD that we do not

recognize (Jansen et al., 2019). Second-generation sequencing

technology has revealed the potential of some of these genes in

the development of AD, such as SORL1 (Holstege et al., 2017),

ABC47 (Bossaerts et al., 2021), TREM2, and R47H (Cheng-

Hathaway et al., 2018; Sudom et al., 2018). With the development

of science and technology, bioinformatics analysis has been

widely used in diseases. Weighted co-expression networks

(WGCNA) have become the most prevalent gene screening

tool. They have been validated in numerous conditions by

constructing free-scale gene co-expression networks to explore

the association between clinical features and genes with co-

expression patterns. In addition, some machine learning

algorithms have been gradually introduced into medical

research. Random Forest (RF) algorithms have been applied

in acute myeloid leukemia (Shi and Xu, 2019), ALS (Hothorn

and Jung, 2014), and cardiovascular diseases (Yang et al., 2020).

Artificial neural networks have also demonstrated their powerful

functions in medical research applications. Some scholars have

validated diagnostic models for ulcerative colitis and heart failure

(Li et al., 2020; Tian et al., 2020). Using WGCNA combined with

machine learning to analyze AD biological data to find AD

susceptibility genes may be a breakthrough.

In this study, we identified datasets of AD serological sources

in the GEO database, used WGCNA with differential expression

analysis to screen out differentially expressed genes (DEGs)

between AD and normal control samples from them, and

applied the random forest algorithm to screen out hub genes,

constructed an artificial neural network AD diagnostic model,

and further analyzed the role of hub genes in the immune

microenvironment to provide early identification and

intervention of AD and a better understanding of the

molecular immune mechanisms provide new perspectives. The

technical route is shown in Figure 1.

Materials and methods

Download and processing of expression
spectrum data

In this study, the AD gene expression profile datasets

GSE63060, GSE63061, and GSE97760 were downloaded from

Gene Expression Omnibus (Table 1). The annotation

information of the microarray probes was obtained through

the soft annotation list of the corresponding platform.

Multiple probes corresponding to the same gene symbol may

be encountered during the annotation of probe data. We use the

average probe expression as the gene expression level. The

process is annotated through a Perl language script (https://

www.perl.org/).

Principal component analysis

To analyze the distribution of samples in the expression

profiling dataset GSE63060 and the differences in gene

expression between samples. We first performed a z-score on

the expression spectrum, further performed dimensionality

reduction analysis using the prcomp function to obtain the

reduced matrix, and visualized the results. The results of PCA

(Figure 2) show that there is little variability between the AD and

CTL groups, so constructing a diagnostic model is necessary. We

have invoked the R package stats (version 3.6.0) for the above

procedure.

Differential expression analysis

We performed differential expression analysis on the

expression profiling dataset GSE63060 for differential

expression genes between the AD and CTL groups with the R

package limma (version 3.40.6) (Ritchie et al., 2015). The

significance criteria for DEGs were set to FoldChang >1.2 and

adjusted p-value < 0.05. Heatmaps of DEGs were implemented

by the pheatmap package (version 1.0.12), and differentially

expressed genes were represented by volcano maps

constructed by the ggplot2 package (version 3.3.5).

Construction of weighted gene co-
expression network analysis

First, the obtained expression profile matrix was read in.

The MAD value, also known as median absolute deviation,
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was calculated separately for each gene. The first 50% of

genes with the smallest MAD values were eliminated. The

goodSampleGenes function of the R package WGCNA was

used to eliminate outlier genes and samples, on which the

scale-free co-expression network was further constructed.

The genes were then hierarchically clustered to identify

modules. Pearson’s correlation analysis determined

correlations between clinical phenotypes and the resulting

modules. Among all the obtained modules, we selected the

most correlated modules with the normal control group

(CTL group) and AD group for further analysis. The

genes in the key modules were those that met the

following criteria: gene significance (GS) > 0.1 and

module membership (MM) > 0.8.

Overlapping weighted co-expression
networks-related module genes with
differential expression genes

The 200 Differential Expression genes obtained from the

differential expression analysis overlapped with the WGCNA

correlation module genes. Venn (Bardou et al., 2014) diagrams

were used to visualize the results.

FIGURE 1
Technology route. Abbreviations: AD, Alzheimer’s Disease; CTL, Healthy Control; WGCNA, Weighted Gene Co-expression Network Analysis;
ANN, Artificial Neural Network.

TABLE 1 Dataset information from the GEO database.

Location Dataset ID Platform Type Number

Blood GSE63060 GPL6947 Microarray 104 control vs. 145 AD

Blood GSE63061 GPL10558 Microarray 134 control vs. 139 AD

Blood GSE97760 GPL16699 Microarray 10 control vs. 9 AD
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Screening for hub genes using random
forest

Random forest models for differentially expressed genes

were constructed using the randomForest package (version

4.6–14). First, the number of decision trees needed to achieve

the highest model accuracy in cross-validation was

calculated based on the expression matrix of differentially

expressed genes. Second, the random forest model was

constructed. The importance value scores of dimensions

were obtained from the random forest model using the

Gini coefficient method. Genes with an importance value

greater than two were identified as hub genes for subsequent

analysis. The hub genes were clustered, and heatmaps were

drawn with the pheatmap package (version 1.0.12).

Correlation analysis between hub genes
and immune characteristics

To determine the role of hub genes in the immune

microenvironment, we analyzed the correlation between

them and immune cell infiltration by applying the ssGSEA

approach to analyze the proportion of 28 different immune

cell distributions and infiltration scores in each sample of the

dataset GSE63060. Pheatmap package (version 1.0.12) was

used to map the immune cell distribution maps. Further, the

voplot package (version 0.3.7) was used to present the

differences in immune cell infiltration scores between the

CTL and AD groups. Finally, we used the Spearman

correlation test to assess the correlation between hub genes

and immune cells and visualized the results using the

ggplot2 package (version 3.3.5).

Construction and validation of artificial
neural network models

The hub genes expression matrix obtained was extracted,

and the data were first scaled by Min-Max processing. An

artificial neural network model was constructed using the R

package Neuralnet (version 1.44.2). The parameters were set

FIGURE 2
Principal component analysis.

FIGURE 3
(A) The differential expression analysis results are shown in
the volcano plot. Where the x-axis represents log2 (fold change)
and the y-axis represents -log10 (adjust p. value). Green triangles
represent downregulated genes, red triangles represent
upregulated genes, and black dots represent genes with no
obvious differential expression. (B) Heatmap of the top
50 differentially expressed genes. Each column in the graph
represents a sample, each row represents a gene, and the
expression status of the genes is indicated from high to low in
brown to green, respectively, and at the top of the heat map, blue/
red represents the AD group/CTL group, respectively.
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FIGURE 4
WGCNA of AD dataset GSE63060. (A) Scale-free index for analyzing the power of various soft thresholds. The horizontal coordinate represents
the power of soft thresholds, and the best soft threshold is marked with an asterisk. (B) Average connectivity of various soft thresholds. (C)
Identification of co-expressed gene modules. A dendrogram of all differentially expressed genes was clustered based on a measure of gene
similarity. Cut lines of modules were identified, and a different color indicated each module. (D) Heat map of the correlation between modules
and clinical phenotypes. Each row represents a module; each column represents a clinical trait. Each cell indicates the correlation between the

(Continued )
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to five hidden layers, the neural network algorithm obtained

the gene weight information, and the disease classification

score Neural AD was obtained using “Gene Expression” ×

“Gene_Weight.” The model was visualized using the software

package NeuralNetTools (version 1.5.2). Finally, the

classification performance of the artificial neural network

model was evaluated using the pROC package (version

1.18.0) and the ggplot2 package (version 3.3.5) to calculate

the AUC scores and plot the ROC curves. Two independent

datasets, GSE63060 and GSE97760, were used to validate the

accuracy of the artificial neural network model, while ROC

curves were plotted and the area under the curve AUC was

calculated.

Results

Differential expression analysis

The volcano plot (Figure 3A) shows that after differential

expression analysis, we screened 200 differential expression genes

(Supplementary Material S1), including 179 downregulated

genes and 21 upregulated genes. The heat map (Figure 3B)

shows the expression status of the top 50 differential

expression genes.

Construction of weighted gene co-
expression network analysis and
identification of core modules

Before performing the analysis, we first processed all pairs of

genes using the Pearson correlation matrix and the average

linkage method. Then, a weighted adjacency matrix is

constructed, which is built by a power function, and we

usually use the formula.

A mn � |C mn|β

Where C_mm is the Pearson correlation coefficient between gene

m and gene n, and A_mn is the adjacency relationship between

gene m and gene n. An important parameter in the construction

of the weighted adjacency matrix is the soft threshold parameter

β, which effectively emphasizes correlations between genes and,

at the same time, penalizes weak correlations between genes. This

study determines the soft threshold parameter as 6 (Figures

4A,B). Immediately after, we transformed this adjacency into

a TOMmatrix (topological overlap matrix), which better reflects

the connectivity and adjacency between genes, and 1-TOM was

defined as the difference between genes. To group genes with

similar expression characteristics into the same module, we

clustered genes in an average linkage hierarchy based on the

dissimilarity measure of the TOM matrix. We set the minimum

number of genes in the gene dendrogram to 30. We chose a cut

line for the module dendrogram, calculated the similarity of

module feature genes, and merged some similar modules to

better delineate the modules (Figure 4C). After a series of

calculations, we finally obtained 20 co-expression modules

and visualized the correlation between modules and clinical

FIGURE 5
A total of 134 DEGs were screened for further analysis. Red
represents 335 genes in the module with the strongest correlation
to the CTL group, blue represents 284 genes in the module with
the strongest correlation to the AD group, and the green
represents 200 genes obtained from differential expression
analysis. Abbreviations: AD (Alzheimer’s Disease), CTL (Healthy
Control), DEGs (Differential Expressed Genes).

FIGURE 4
module and the clinical phenotype. The corresponding cor value and p-value are labeled therein. The brown and dark green modules have the
strongest correlation with AD, and the brown module and plum1 module have the strongest correlation with CTL.(E) Correlation between module
membership (MM) and gene significance (GS) in the AD correlation module. r denotes the absolute correlation coefficient between GS and MM.(F)
Correlation between module membership (MM) and gene significance (GS) in the CTL correlation module. r denotes the absolute correlation
coefficient between GS and MM. Abbreviations: WGCNA (Weighted Gene Co-expression Network Analysis), AD (Alzheimer’s Disease), CTL (Healthy
Control).
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FIGURE 6
The GO and KEGG enrichment analysis results of 134 DEGs are shown as bubble and circle plots. (A) Shows the top 10 significantly enriched BP
(biological process). (B) Shows the top 10 enriched CC (cellular component) considerably. (C) The top 10 enriched MF considerably (molecular
function) are shown. (D) The top 10 significantly enriched KEGG pathways. In the bubble plot of GO and KEGG enrichment analysis, the x-axis
represents the GeneRatio, the y-axis represents the -log10 (FDR) value, the bubble size represents the number of genes, and the color shades
represent the size of the FDR value. The linkage between the left and right sides indicates the correlation between DEGs and terms. Abbreviations:
DEGs (Differential Expressed Genes), GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes).
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FIGURE 7
(A) Plot of decision tree versus error. The x-axis represents the number of decision trees; the y-axis represents the error. (B) Screening of hub
genes by Gini coefficient method. The X-axis represents the importance index, the y-axis represents the DEGs, and all DEGs are ranked according to
the “mean reduction Gini coefficient.” The higher the value, the closer the relationship between the gene and the disease.

FIGURE 8
The clustering heatmap shows the clustering results of the seven hub genes screened by the random forest algorithm in the GSE63060 dataset.
The brown color represents the highly expressed genes in the samples, the green color represents the lowly expressed genes in the samples, the blue
color at the top of the heat map represents the AD group samples, and the red color represents the CTL group samples.
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FIGURE 9
Immune infiltration landscape between AD and CTL obtained by ssGSEA analysis. (A) Heat map summarizing the scores of immune cell
infiltration between AD patients and non-AD patients. (B) Violin plot showing the difference in immune cell infiltration between AD (red) and CTL
(blue), p < 0.05, was considered statistically significant. (C) Shows the correlation between hub genes and immune cells. The colors from brown to
green represent the change from positive to negative correlations, respectively. More asterisks and darker colors of the modules represent
stronger correlations.
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features using the form of a heat map (Figure 4D). Notably, the

grey module was considered a set of genes that could not be

assigned to any module. From the correlation heat map of clinical

phenotypes and modules, we could learn that the brown module

negatively correlated with age and AD groups. In contrast, the

genes in the mediumpurple3 module were differentially

expressed between genders. The correlation between modules

and clinical features was used to estimate the association of

modules with features. Two methods were used to identify the

key modules of the network. In the first method, Pearson

correlation coefficients were calculated between the ME of

each module and each clinical trait, allowing the identification

of modules significantly associated with traits (p<0.05). In the

second approach, the Pearson correlation coefficient [gene

significance (GS)] between the expression level of each gene

and each clinical trait was calculated; then, the mean absolute

value GS of all genes in the module was calculated. The larger the

mean total value, the stronger the correlation between the

module and the clinical trait.

Also, we plotted the scatter plot of GS and MM correlations

for each module (Figure 4E). Combining Figure 4D as well as

Figures 4E,F, we can see that the brown module (cor = −0.21, p =

1.1e-4) and the dark greenmodule (cor = 0.14, p = 9.8e-3) had the

highest correlations with the AD group, and a total of 284 genes

were extracted from these two modules (Supplementary Material

S2). In contrast, the brown module (cor = 0.47, p = 4.3e-19) and

the plum1 module (cor = −0.28, p = 3.4e-7) had the highest

correlation with the CTL group, with a total of 335 genes

extracted in the same way (Supplementary Material S3). The

effect of clinical phenotype on module genes was also considered

in the extraction of genes.

Overlapping weighted co-expression
networks-related module genes with
differential expression genes

We overlapped the genes derived from the genes obtained in

the WGCNA analysis (335 genes in the CTL group-related

module and 284 genes in the AD group-related module) and

the 200 differentially expressed genes obtained in the differential

expression analysis, and a total of 134 DEGs were screened for

further analysis. The results were visualized by the Venn diagram

(Figure 5) and recorded in the table (SupplementaryMaterial S4).

Kyoto encyclopedia of genes and
genomes and gene ontology enrichment
analysis for overlapping differential genes

We performed GO and KEGG enrichment analysis on the

screened 134 DEGs. The results of our GO enrichment analysis

included BP (Figure 6A), CC (Figure 6B), and MF (Figure 6C).

GO-BP was mainly enriched in RNAmetabolic pathways such as

mRNA metabolic process, mRNA catabolic process, and RNA

catabolic process; GO-MF enrichment results showed DEGs

were primarily associated with nucleic acid binding, RNA

binding, structural constituent of ribosome, structural

molecule activity, oxidoreductase activity, acting on NAD (P)

H, and GO-CC analysis showed that these genes were

significantly enriched in ribosomal structures such as protein-

containing complex, ribonucleoprotein complex, catalytic

complex, etc. The results of GO enrichment (Supplementary

Material S5) indicate that DEGs play a role in ribosome function

and mitochondrial function.

The KEGG pathway shows (Figure 6D; Supplementary

Material S6)that DEGs are mainly involved in the “ribosome,”

“oxidative phosphorylation,” “thermogenesis,” “Parkinson’s

disease,” “NAFLD,” and “Alzheimer’s disease” pathways.

Random forest screening for Alzheimer’s
disease hub genes

We imported the expression profile files of 134 differentially

expressed genes into the random forest model. Before

calculation, firstly, we set the random seed to 123,456 and

calculate the number of decision trees needed to achieve the

highest accuracy of the model in cross-validation. The optimal

number of decision trees is 72 by operation. Next, we construct

the random forest model. Regarding parameter settings,

“importance” is the parameter for judging the importance of

variables, the “proximity” parameter is used to set the proximity

matrix for calculating the model, and “ntree” is used to set the

number of random forest decision trees. The importance score of

each gene in the random forest model was calculated using the

Gini coefficient method. Specifically, it is a method of decreasing

accuracy. The relationship between the random forest model

error and the number of decision trees is shown in the following

figures (Figures 7A,B). The genes with a better importance score

than two were selected as the hub genes for the subsequent

analysis. MRPL51, NDUFA1, NDUFS5, RPS25, SHFM1, RPA3,

and MAGOH, respectively. Among these genes, NDUFS5,

SHFM1, RPA3, and MAGOH have never been mentioned or

confirmed associated with AD development in studies.

We clustered the GSE63061 dataset and plotted a heat map

(Figure 8), confirming that the seven hub genes mentioned above

perform well in distinguishing between diseased and normal

samples.

Correlation analysis between hub genes
and immune characteristics

We quantified the immune infiltration scores of 28 immune

cells in the samples using the method of ssGSEA.We plotted heat
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FIGURE 10
Artificial neural network model building and ROC curve validation. (A) Visualization of the artificial neural network model has undergone
84,993 training sessions and contains five hidden layers and two output layers. (B) ROC curves of the training set GSE63060 dataset. (C) The
validation results of ROC curves in the validation set GSE63061 dataset. (D) The validation results of ROC curves in the validation set
GSE97760 dataset. The different color lines represent different genes.

Frontiers in Genetics frontiersin.org11

He et al. 10.3389/fgene.2022.968598

67

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.968598


maps showing the distribution of immune cells in different

samples and the infiltration scores (Figure 9A; Supplementary

Material S7). The discrepancy in immune cell infiltration

between the AD and CTL groups was then computed and

visualized the results. The results showed (Figure 9B;

Supplementary Material S8) that the proportion of

CD56dim.natural.killer. Cells, MDSC, Monocyte, Natural.

killer.T.cells, and Regulatory.T.cells were substantially higher

in the AD group than in the CTL group. And many cells had

lower fractions than normal patients, such as Activated.B.cells,

Activated. CD4.T.cells, Activated. CD8.T.cells, Gamma.

delta.T.cells, Effector. memory.CD4.T.cells, Central. CD4.T.cell.

We analyzed the correlation between immune cell infiltration

scores and hub genes using Spearman correlation to explore the

role played by hub genes in the immune microenvironment and

the corresponding mechanisms. The results are shown

(Figure 9C): the seven hub genes identified by the random

forest algorithm were strongly correlated with the level of

immune cell infiltration, suggesting that these genes may play

a role in the development of AD by regulating the immune

microenvironment.

Construction and validation of artificial
neural network models

First, the expression profile data of the seven hub genes

identified by the random forest algorithm were imported.

Normalization of the input data was used to normalize the

data. The input variables were normalized through the input

nodes, and the normalized values fell between 0 and 1, or −1 to 1.

We chose min-max (0,1) and performed the extrapolation.When

choosing the parameters, we set the number of hidden layers to 5.

There is no fixed rule for the number of hidden layers and the

number of input neurons. The number of neurons is generally

between two-thirds of the input layer size and one-third of the

output layer size. In this study, the number of neurons is set to 7.

The training and validation sets used to train the model are

created randomly from the input data set. The purpose of the

training set is to calculate the importance value score (gene

weights) for each candidate gene. And the validation set is used to

test the classification performance of the model scores using the

expression of genes and gene weights. Finally, the formula was

used.

neural AD � Gene Expression × GeneWeight

The disease neural network classification score neural AD is

obtained. The specific training process is as follows:① The initial

value of the network weights is set to 0, and the function of each

node estimates the target variable value of the data. ② Compare

the error between the actual and estimated values and readjust

the bias of each weight according to the error value. Step ① is

repeatedly executed until the error between the actual and

calculated values is minimized, at which point learning is

stopped to obtain the best weights. The model’s training

process went through a total of 84,993 steps, and the

termination condition (reaching the threshold) was the

absolute partial derivative of the error function < 0.01. The

output results of the artificial neural network model and the

weight information of the candidate genes are shown in the table

(Figure 10A; Supplementary Material S9). The accuracy of the

artificial neural network model is reflected by the AUC values of

the hub genes, and the larger the value, the higher the accuracy of

the model is proved. We calculated the AUC values of the hub

genes (Figure 10B): MRPL51 (0.87), NDUFA1 (0.86), NDUFS5

(0.85), RPS25 (0.82), SHFM1 (0.83) RPA3 (0.83), and

MAGOH (0.81).

In addition, to further validate the accuracy of the ANN

model, two independent datasets (GSE63061 and GSE97760)

were selected for analysis. During the validation of the ANN

model accuracy using the independent dataset GSE63061, we

calculated the AUC values of seven hub genes using the same

method (Figure 10C): MRPL51 (0.74), NDUFA1 (0.76),

NDUFS5 (0.76), RPS25 (0.74), SHFM1 (0.73), RPA3 (0.73),

and MAGOH (0.62). It is worth noting that the AUC values

of the above genes remained significant when validated using the

independent dataset GSE97760 (Figure 10D) for MRPL51 (0.69),

NDUFA1 (0.77), NDUFS5 (0.74), RPS25 (0.79), SHFM1 (0.80),

and RPA3 (0.86), and MAGOH (0.78). The validation results

confirm that the ANNmodel has good classification performance

for AD and normal samples.

Discussion

In this study, we used a combination of bioinformatics

analysis and machine learning to obtain differential genes

(DEGs) for AD serology and did GO and KEGG enrichment

analysis. We got the following results from the enrichment

analysis of the obtained DEGs. GO analysis showed that

DEGs were significantly enriched in ribosomal and

mitochondrial functions. The KEGG pathway leads that DEGs

are mainly involved in “ribosome,” “oxidative phosphorylation,”

“thermogenesis,” “Parkinson’s disease,” and “non-alcoholic fatty

liver disease (NAFLD)” and “Alzheimer’s disease” pathways.

Previous studies have confirmed the role of the ribosomal

(Ding et al., 2005; Nyhus et al., 2019) and oxidative stress

pathways (Simunkova et al., 2019; Butterfield and Mattson,

2020; Zhang et al., 2020) in AD development, which deserves

further exploration.

Then seven hub genes MRPL51, NDUFA1, NDUFS5, RPS25,

SHFM1, RPA3, and MAGOH were obtained by a random forest

algorithm. Among these seven hub genes, NDUFA1 and

MRPL51 were considered potential biomarkers of AD in

previous bioinformatics analyses (Li et al., 2018; Liu et al.,

2021). NDUFA1 is an essential component of the human
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respiratory chain complex I. It is involved in mitochondrial

function and oxidative phosphorylation and is a critical

coding gene in the human body. Some studies have confirmed

that partial deletion of respiratory chain function may impair

ATP synthesis and chronic increase of oxidative stress (Carelli

et al., 2002). A survey of optic neuropathy also suggested that

reduced gene expression of mitochondrial proteins leads to

neuronal degeneration (Qi et al., 2003). Both studies indicate

that downregulation of the NDUFA1 gene in the serum of AD

patients is likely to lead to impaired oxidative phosphorylation

and partial deficiency of mitochondrial function, which is

ultimately involved in the disease development of AD. In

other studies, it has been suggested that RPS25 and AIF1 may

also play a role in AD development (Sanfilippo et al., 2020; Wang

et al., 2021). In contrast, one study confirmed that RPS25 is a

therapeutic target for neurodegenerative diseases caused by

nucleotide repeat amplification, which indirectly confirms the

role of RPS25 in the pathophysiological process of AD (Yamada

et al., 2019). However, few studies have mentioned or established

the association of NDUFS5, SHFM1, RPA3, and MAGOH genes

with AD development. NDUFS5 is a member of the iron-sulfur

family of NADH dehydrogenases (ubiquinone) and encodes a

subunit of the mitochondrial respiratory chain complex I

(Wirth et al., 2016). Previous studies have highlighted the

role of mitochondrial dysfunction in AD (Cai and

Tammineni, 2017; Perez Ortiz and Swerdlow, 2019), leading

us to speculate that NDUFS5 may be involved in the

pathogenesis of AD by affecting mitochondrial function and

oxidative phosphorylation processes. SHFM1 encodes the 26S

proteasome subunit, one of the proteasome components. Earlier

studies have confirmed the role of the proteasome in inhibiting

neurodegeneration and that impaired proteasome function

occurs in the early stages of AD (Keller et al., 2000; Cecarini

et al., 2007). The differential expression of SHFM1 in AD

patients is likely to be a manifestation of proteasome

dysfunction, offering the possibility of its use as a biomarker

for early screening of AD. RPA3 is a protein-coding gene mainly

involved in DNA repair and DNA replication. It has been

shown that disruption of DNA repair may lead to increased

DNA damage in AD patients and increase the risk of AD,

providing a theoretical basis for RPA3 as a biomarker for AD.

MAGOH is a protein-coding gene involved in the development

of the nervous system. Little research has been done on this

gene, and further studies are needed to elucidate its potential

association with AD.

We further constructed a diagnostic model for AD using

artificial neural networks based on the above seven hub genes.

We validated the efficacy of the model in two publicly available

datasets. The bioinformatics analysis combined with the

machine learning approach is the innovation of this study,

and good results were obtained. The random forest (RF)

algorithm is an emerging and high precision machine

learning algorithm that has been widely used in numerous

fields, and of course, its role in the medical field is also

exact. RF algorithms have been used for clinical diseases,

such as using random forests to identify biomarkers for

glioblastoma to find potential targets for treatment (Li et al.,

2021), building COPD risk prediction models (Perret et al.,

2021), and detecting and predicting type 2 diabetes (Muneeb

and Henschel, 2021), all with good results. An artificial neural

network is a new type of algorithm derived from imitating the

structure and function of the human brain, which has the

characteristics of self-learning ability and high efficiency

compared with the traditional machine learning algorithm. It

has also found many applications in clinical settings. Studies

have been using artificial neural network models to accurately

predict the risk of liver failure after hepatectomy in patients

with hepatocellular carcinoma who underwent

hemihepatectomy (Mai et al., 2020). Artificial neural

networks have also been used in AD for a long time. Some

scholars have applied artificial neural networks to the diagnosis

of AD based on the information contained in the digital images

of SPECT cerebral blood flow assessment (Świetlik and

Białowąs, 2019). There is a precedent for combining two

machine learning algorithms to diagnose and predict diseases

(Mozafari et al., 2020; Xie et al., 2020). Still, it is noteworthy that

no research has yet used this combination of the two in the field

of AD (Feng et al., 2021). Therefore, combining random forests

and artificial neural networks to build AD diagnosis models is a

bold attempt and an excellent complement to the existing

diagnosis methods. At the same time, our study revealed AD

susceptibility genes that may be involved in the regulation of

mitochondrial function and ribosomal pathways. We hope that

their essential value will be reflected in future studies.

Meanwhile, immunoassays showed that hub genes are closely

related to immune cell infiltration, confirming that

dysregulation of the immune microenvironment plays an

essential role in the pathogenesis of AD.

However, there are limitations to this study. First, AD is

highly heterogeneous, which affects our understanding and

judgment of the disease (Jellinger, 1996). Second, some AD

patients have other neurodegenerative lesions in combination,

affecting the model’s accuracy. And the data sample used in this

study is still insufficient, and the sample size needs to be

increased and further studied and optimized. Biological

experiments for critical steps may be more revealing, but they

cannot be completed at this time for objective reasons. In

subsequent studies, we will continue to analyze these genes to

further their upstream and downstream pathways to understand

AD’s biomolecular mechanisms better.

Conclusion

Using bioinformatics analysis and machine learning algorithm

modeling, we uncovered potential biomarkers of AD based on
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immune cell infiltration while constructing a random forest and

artificial neural network AD diagnostic model. We confirmed its

excellent classification performance in two independent datasets.

This study nicely complements the existing tools for early

screening and diagnosis of AD and reveals AD susceptibility

genes that may be involved in the regulation of mitochondrial

function and ribosomal function; and also provides new

perspectives for a better understanding of molecular immune

mechanisms and finding drug targets.
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Ischemic stroke (IS) is a disease characterized by rapid progression and high

mortality and disability rates. Its pathophysiological process is inseparable from

immune dysfunction. Recently, chromatin regulators (CRs) have been

described as a class of enzymes that can recognize, form, and maintain the

epigenetic state of an organism, and are closely associated with immune

regulation. Nevertheless, the role of CR-related genes in IS has not been

fully elucidated. In this study, seven CR-related immune biomarkers in the

GSE58294 and GSE22255 datasets were identified by combining differential

gene expression analysis, weighted correlation network analysis, and single

sample gene set enrichment analysis. After experimental validation using

quantitative polymerase chain reaction, four genes (DPF2, LMNB1, MLLT3,

and JAK2) were screened as candidate immune biomarkers. These four

biomarkers demonstrated good predictive power in the clinical risk model

(area under the curve, 0.775). Molecular docking simulations revealed that

mevastatin, WP1066, cladribine, trichostatin A, mequitazine, and

zuclomiphene may be potential immunomodulatory drugs for IS. Overall,

the results of this study contribute to the identification of CR-related

immune therapeutics target in IS and provide an important reference for

further research.

KEYWORDS

ischemic stroke, immune infiltration, chromatin regulators, biomarker, bioinformatics

Introduction

Stroke is the second leading cause of death and disability, killing >5.5 million

individuals annually (Lindsay et al., 2019). Among stroke types, ischemic stroke (IS)

accounts for approximately 71–87% of cases and is caused mainly by blockage of

blood flow in the brain (Strong et al., 2007; Campbell et al., 2019). The current

treatment for IS focuses on achieving rapid reperfusion through intravenous

thrombolysis and/or endovascular thrombectomy. Although these treatments can
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FIGURE 1
The flowchart of data preparation and analysis.

Frontiers in Genetics frontiersin.org02

Yu et al. 10.3389/fgene.2022.992847

73

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.992847


reduce disability, patients continue to experience serious

economic and social burdens (Rochmah et al., 2021).

Recent studies have reported that IS can induce immune-

inflammatory responses, which in turn aggravate neurological

deficits and increase patient mortality (Yu et al., 2020). As

such, there is an urgent need to explore the influence of the

immune system on IS and to identify potential therapeutic

targets.

Chromatin regulators (CRs) are a class of enzymes with

special structural functions that can recognize, form, and

maintain the epigenetic state of the organism (Lu et al., 2018).

Somatic alterations or abnormal expression of CRs may lead to

fatal diseases including glioma, lung cancer, bladder cancer, and

other tumors. At the same time, CRs are also considered to be

important therapeutic targets in diseases such as colitis, and

congenital heart disease (Li et al., 2022; Linglart and Bonnet,

2022). In addition, recent research has also found that

modulation of these epigenetic genes could improve cellular

immune responses in immunotherapy (Belk et al., 2022).

Consequently, actively exploring the role of CR-related genes

will help to better understand the regulatory role of the immune

system in IS.

With the development of high-throughput sequencing and

gene chip technologies, bioinformatics can be used to conduct

extensive and in-depth analyses of messenger RNA (mRNA)

expression profiles of IS(Cao et al., 2021a). In this study, we

identified key CR-related immune biomarkers in the

GSE58294 and GSE22255 datasets by combining differential

gene expression analysis, weighted correlation network

analysis (WGCNA), and single-sample gene set enrichment

analysis (ssGSEA). After experimental validation of a middle

cerebral artery occlusion (MCAO) model, we evaluated the

accuracy of key immune therapeutics target in predicting the

occurrence of IS. Results of this study may provide a

theoretical molecular basis for the diagnosis and targeted

treatment of IS. A flow-diagram illustrating our research

process is presented in Figure 1.

Methods

Establishment of the MCAO model

Twelve specific pathogen-free male Sprague-Dawley rats

(weight 280 g) were provided by the Medical Experimental

Animal Center (Xi’an Jiaotong University). The Xian Jiaotong

University Medical College and Xian Jiaotong University

Experimental Animal Center approved all protocols

involving animal models or specimens. The rat MCAO

model was established based on the modified Zea-Longa

model, which removed coil occlusion after 2 h (Longa et al.,

1989). Thereafter, a total of 12 rats were randomly assigned to

sham and the IS groups (n = 6 each). Two hours after MCAO,

the neurobehavioral scores of the rats in each group were

evaluated according to the Longa scale (Longa et al., 1989).

Animals that did not exhibit neurological deficits after surgery

were excluded. After 3 days of reperfusion, three rats in each

group were euthanized using sodium pentobarbital

(30 mg/kg) injected through the tail vein. After the brains

were removed and sliced, specimens were placed in 2% TTC

(Solarbio Life Science, Beijing, China) and incubated at 37°C

for 30 min.

GEO dataset screening

Two publicly available GEO datasets, GSE58294 (Stamova

et al., 2014) and GSE22255 (Krug et al., 2012), were used to

identify differentially expressed genes (DEGs) between those

with IS and healthy individuals (Table 1). GSE58294 contains

the whole blood mRNA expression profiles of 69 IS patients and

23 healthy individuals, while GSE22255 contains data from 20 IS

patients and 20 healthy individuals.

Identification of DEGs and key module
genes

Statistical analysis was performed using R version 4.1.0 (R

Foundation for Statistical Computing, Vienna, Austria). To

analyze microarray data, the gene expression matrix was

quantile-normalized and log2-transformed after merging it

with the probe data (GPL570). Batch effects were removed

from the gene expression profiles by merging these two

matrices using the comBat algorithm in the sva package of R.

The “LIMMA” package was used to identify DEGs, and the filter

was |log2 (fold-change) > 0.4 and adjusted p-value < 0.05.

To explore interactions between genes, the “WGCNA”

package was used to perform WGCNA and identify the key

module. Thereafter, the “pickSoftThreshold” function was used

to obtain the optimal value of the adjacent function weighting

parameters, which were used as a soft threshold for subsequent

network construction. The related gene modules were then

constructed based on hierarchical clustering of the

dissimilarity measure. Finally, the correlation between each

module and the sample trait (presence or absence of IS) was

assessed. Modules with the highest correlation coefficients were

selected for further analysis.

Screening of CR-related biomarkers

A total of 870 CR-related genes was obtained from the

supplemental information published by Lu et al. (2018). To

identify CRs-related biomarkers, Venn analysis was used to

determine the intersection of the above three gene sets, DEGs,
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the key module genes derived from WGCNA, and CR-related

genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway, and disease enrichment (DO)

analyses were performed on DEGs using the “clusterProfiler”

package to identify the underlying pathogenesis and biological

pathways of IS.

Immune infiltration analysis

The degree of immune cell infiltration in each sample was

calculated using the ssGSEA algorithm. After downloading

the gene set data in “gmt” format with 29 immune-related

score, the “GSVA” package was used to score each sample in

GSE58294 and GSE22255. Subsequently, the differences in the

expression of 16 immune cells and 13 immune-related

functions between the IS and healthy samples were further

distinguished. Finally, Spearman’s correlation analysis was

performed to calculate the correlation coefficients between

the CR-related biomarkers obtained in the previous

step. Screening criteria for key immune biomarkers related

to IS were as follows: > 1/5 of immune cells and

function correlation; correlation coefficient, r > 0.3; and

p < 0.05.

Construction and validation of IS risk
models

Based on the median expression levels of polymerase chain

reaction (PCR)-validated immune biomarkers in the samples,

they were divided into high and low expression groups.

Subsequently, the “rms” package was used to build

nomogram model for predicting the incidence of IS.

Finally, the “ROCR” package was used to plot a receiver

operating characteristic (ROC) curve and a calibration

curve to evaluate the effectiveness of the risk model (Cao

et al., 2021b).

More importantly, these immune therapeutics target were

uploaded to the DSigDB database (http://dsigdb.tan-lab.org/

DSigDBv1.0/) to screen small-molecule compounds for IS

(Yoo et al., 2015). The screening criteria included p < 0.

05 and n ≥ 3. The molecular docking software AutoDock

Vina was used to simulate the docking between proteins and

polymers.

Quantitative real-time PCR

After 72 h of reperfusion, three rats from each group were

euthanized under anesthesia. Tissue samples were collected from the

ischemic penumbra of the rats and immediately stored in liquid

nitrogen. Total RNA was extracted from each sample using TRIzol

reagent (Invitrogen, United States). The extracted RNA was reverse

transcribed into complementary DNA using PrimeScriptTM RT

Master Mix (TaKaRa, Japan). The primer sequences are listed in

Table 2. RelativemRNA expression was calculated using the 2-ΔΔCt
method and compared to that of the control group (GAPDH

mRNA expression). Statistical comparisons were performed using

the student’s t-test; differences with p < 0.05 were considered to be

statistically significant.

3 Results

Identification of DEGs using the LIMMA
package

After the successful merging of GSE58294 and

GSE22255, 987 genes were differentially expressed, of

which 445 were upregulated and 542 were

TABLE 1 Detailed information of the gene expression matrixes and platform.

GEO dataset Platform Country Author Stroke Normal Type

GSE58294 GPL570 USA Stamova et al. 69 23 mRNA

GSE22255 GPL570 Portugal Krug et al. 20 20 mRNA

TABLE 2 Specific primers used for quantitative real-time PCR.

Primer Sequence

GAPDH-F GGTCGGTGTGAACGGATTT

GAPDH-R TGAACTTGCCGTGGGTAGA

JAK2-F ACACCTCTGATCCCTCAGC

JAK2-R GCGAATGATAAACAGGCAGGATG

MLLT3-F ACAACGAGGAGGAGTCTGATGAGG

MLLT3-R CACTGTCACTGCCGTCACTCAAG

LMNB1-F AGCTCTCTCCAAGTCCTTCTTCCC

LMNB1-R CACTACTGCTCGCCTCTGATTCTTC

GLYATL1-F GCAGTGAGAGGAGCCAACGATTC

GLYATL1-R ATCAGAGCCCAGGACACAGGAG

DPF2-F TAAGCCAGACACGGACCAGACTC

DPF2-R CAGTACGCAGCAGAGCCTCTAAAC

BRCA1-F CAGATCGAGAGTTGTGGTAGCAGTG

BRCA1-R TTGGCTCGTTCTTCTTGGCATCAG
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FIGURE 2
Differential expression analysis and functional enrichment analysis. (A) Cluster heatmap for DEmRNAs in GSE58294 and GSE22255 dataset.
Yellow represents high gene expression and purple represents low expression. (B) Volcano plot for DEmRNAs in GSE58294 and GSE22255 dataset.
(C) Disease enrichment analysis of DEGs. (D) GO functional enrichment analysis of DEGs. (E) KEGG pathway analysis of DEGs.
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downregulated. The DEGs results are presented in the form

of a heatmap and volcano plot (Figure 2A,B). DO analysis

revealed that the DEGs were specific to the occurrence of IS

(Figure 2C).

To better assess the function of the DEGs, GO functional

enrichment (Figure 2D) and KEGG pathway analyses (Figure 2E)

were performed. Biological processes (BP) included “lymphocyte

differentiation,” “activation of immune response,” “mononuclear

cell differentiation,” “immune response-regulating cell surface

receptor signaling pathway,” “immune response-regulating

signaling pathway,” which reflected that DEGs has a strong

correlation with immune function. In addition, cellular

components (CC) indicated that DEGs were involved in the

release of specific granules of immune cells, such as neutrophils,

while molecular functions (MF) indicated that DEGs were

involved in the metabolism of NAD+/NADH. In addition,

KEGG pathway analysis indicated that the DEGs were mostly

associated with three pathways: the NF-kappa B signaling

FIGURE 3
Identification of key modules genes and CRs related biomarkers (A) Outlier removal with “h > 75”. (B) Soft threshold setting according to R2 =
0.85. (C) The gene set is divided into 6 different modules. (D) The correlation of modules with IS occurrence. (E) The correlation between turquoise
module and IS gene significance. (F) The Venn plot of the three gene sets, DEGs, turquoise module genes and CRs-related genes.
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FIGURE 4
Immune infiltration analysis and immune biomarkers screening. (A) Immune infiltration heatmap in GSE58294 and GSE22255 dataset. (B)
Correlation heatmap of immune cells and immune function. (C) The expression difference of 16 immune cells between IS and healthy samples. (D)
the expression difference of 13 immune-related functions between IS and healthy samples (E) Screening for CRs-related immune biomarkers.
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pathway; primary immunodeficiency; and B cell receptor

signaling pathway.

Identification of turquoise genes and CRs-
related biomarkers

First, WGCNA was used to select genes with a

variance >25%, followed by sample cluster analysis to

eliminate outlier samples with h > 75 (Figure 3A). The

optimal soft threshold β = 9 was determined according to a

scale-free fitting index (R2) of 0.85 (Figure 3B). As shown in

Figures 3C,D, WGCNA identified six modules, of which the

turquoise module was strongly correlated with IS (module

feature correlation = 0.50). Moreover, correlation analysis

revealed that the correlation between module membership in

turquoise modules and gene significance for IS was 0.59, which

was statistically significant (Figure 3E). The intersection of the

three gene sets of DEGs, turquoise module genes, and CR-related

genes is shown in Figure 3F. A total of 11 overlapping biomarkers

related to CRs were identified for further analysis.

Immune infiltration analysis and immune
biomarker screening

According to the ssGSEA algorithm, the immune infiltration

scores of 16 immune cells and 13 immune-related functions in

132 samples were evaluated (Figure 4A). For immune cells,

B cells had a strong positive correlation (r = 0.64) with

follicular helper T cells, whereas neutrophils had a strong

negative correlation (r = −0.44) with T-helper one cells

(Figure 4B). For immune function, type-I interferon (IFN)

response had a strong positive correlation (r = 0.79) with

para-inflammation, and type-II IFN response had a strong

negative correlation (r = −0.38) with T cell co-inhibition.

Differences in immune cell content and immune function

between IS and healthy individuals were further explored

(Figures 4C,D). It was clearly shown that the proportion of

dendritic cells, macrophages, neutrophils, and regulatory

T cells was higher in the IS group than in the control

group, and the functions of antigen presenting cell (APC)

co-inhibition and type-II IFN response were better than those

of healthy individuals. Meanwhile, the proportion of B cells,

NK cells, plasmacytoid DC cells, T-helper cells, follicular

helper T cells, and tumor-infiltrating lymphocytes in the

control group were higher than those in the IS group, and

the functions of APC co-stimulation, checkpoint, cytolytic

activity, inflammation-promoting, and T cell co-stimulation

were greater than those of IS patients. Finally, seven of

11 DEGs (BRCA1, DPF2, GLYATL1, LMNB1, MLLT3,

JAK2, and UNK) were identified as immune biomarkers

based on correlation analysis (Figure 4E).

Validation of key immune biomarkers

As shown in Figures 5A,B, compared with the sham group,

the IS group exhibted obvious cerebral infarction lesions and

increased Longa scores, indicating that the MCAO model was

successful. During PCR validation of the seven immune

biomarkers, UNK was excluded due to its poor species

conservation between humans and rats. In the GEO

expression matrix, the mRNA expression levels of BRCA1,

DPF2, LMNB1, and JAK2 in the IS group were higher than

those in the control group, andMLLT3 andGLYATL1were lower

than those in the control group (Figure 5C). Real-time-qPCR

(Figure 5D) further demonstrated that the mRNA expression of

DPF2, LMNB1, MLLT3, and JAK2 was consistent with the

prediction of bioinformatics analysis and was statistically

significant (p < 0.05).

Construction of clinical risk models

The median expression levels of DPF2, LMNB1,MLLT3, and

JAK2 were 3.58, 3.93, 1.27, and 1.74, respectively, which were the

baseline levels in the multivariate logistic regression analysis.

Subsequently, the “rms” package was used to construct a

nomogram model for predicting the risk for IS, as shown in

Figure 6A. A ROC curve was used to evaluate the internal

validation results of the dataset, and its AUC was 0.775

(Figure 6B). Furthermore, good agreement between the

estimated values and actual observations was found with the

calibration curve.

Potential therapeutic compounds for IS

Using the DSigDB database, 34 small-molecule

compounds that may bind to LMNB1, MLLT3, and JAK2

were identified. Accordingly, the protein structures of

LMNB1, MLLT3, and JAK2 in the PDB database were

investigated. Following the calculation of binding energies,

the top 10% of the small-molecule compounds with the lowest

binding energies were retained. Among them, JAK2 may be

combined with mevastatin and WP1066 (Figure 7A,B),

LMNB1 may be combined with cladribine and trichostatin

A (Figure 7C,D), and MLLT3 may be combined with

mequitazine and zuclomiphene (Figure 7E,F).

Discussion

In the complex pathogenesis of IS, lymphoid organs are

activated, followed by stroke-induced immunosuppression to

reduce inflammatory damage (Lindsay et al., 2019;

Westendorp et al., 2022). From an epigenetic perspective,
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FIGURE 5
Validation of Key Immune biomarkers by MCAO models. (A) TTC staining in Sham group and IS group. (B) Longa scores in Sham group and IS
group. (C) Expression of CRs-related immune biomarkers in GSE58294 and GSE22255 datasets. (D) qPCR verifies the expression of CRs-related
immune biomarkers.
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CR-related biomarkers could help shed light on the

mechanisms of central nervous system and immune system

dysregulation in IS. In this study, we explored four CR-related

immune biomarkers associated with IS. To our knowledge,

this was the first study to use WGCNA to screen and identify

key immune therapeutics target based on CRs in patients who

experienced IS. We verified our conclusions using PCR with

the MCAO model. Our study provides a rationale and

promising research recommendations for the possible

epigenetic mechanism(s), treatment, and prognosis of this

lethal disease.

Epidemiological data suggest that post-stroke infection is the

leading cause of death and disability among patients, and is

associated with higher rates of recurrence and readmission

(Zhang et al., 2021). The down-regulation of immune system

function after IS reduces inflammation on the one hand, but on

the other, conversely increases the risk for infection (Qin et al.,

2020). Animal experiments have also shown that immune cell

therapy can produce significant beneficial effects by improving

infarct size and neurological scores in animal models.

Consistently, the GO and KEGG results of DEGs in our study

indicated that IS was closely associated with the activation of

FIGURE 6
A novel nomogram for predicting IS. (A) CRs-related immune biomarkers predict the occurrence of IS. (B) ROC curve for nomogram. (C) The
calibration curve for nomogram.
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immune response, immune response-regulating signaling

pathway, and primary immunodeficiency.

Given the close association between IS and the immune

system, we further dissected immune infiltration of the disease

using ssGSEA. According to analysis of the immune cell

infiltration landscape, the first step of an inflammatory

response following IS is the activation of resident microglia,

followed by the infiltration of peripheral immune cells such as

neutrophils and macrophages. These variations promote

neuroinflammation and tissue repair after ischemia. Nathan

(2006)showed that brain damage caused by IS was induced by

neutrophil-mediated oxidative stress and the release of

proteolytic enzymes. In addition, our findings also revealed

immunosuppression after IS, which is embodied in the

downregulation of B cells, NK cells, plasmacytoid DC cells,

T-helper cells, follicular helper T cells, and tumor-infiltrating

lymphocytes. Extensive literature suggests that

immunosuppression is associated with the post-stroke-induced

activation of the sympathetic and parasympathetic nervous

systems (Haspula and Clark, 2018; Zera and Buckwalter, 2020).

After validation by qPCR, we screened four biomarkers

(DPF2, LMNB1, MLLT3, and JAK2) that were most relevant

to immunity. These four biomarkers demonstrated good

predictive power in the clinical risk model (AUC, 0.775), and

FIGURE 7
Docking simulation of proteins and small molecule compounds. (A) JAK2 and Mevastatin. (B) JAK2 and WP1066. (C) LMNB1 and Cladribine. (D)
LMNB1 and Trichostatin (A). (E) MLLT3 and Mequitazine. (F) MLLT3 and Zuclomiphene.
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which may bring assistance for IS patients with negative MRI

imaging. Using a rat model of cerebral ischemia, Wang et al.

reported that the Jak2 inhibitor AG490 could improve

neurological deficits, cerebral infarction, edema, oxidative

stress, and inflammation (Wang et al., 2021). A recent study

also identified Jak2 as an immune-related gene involved in IS

pathophysiology (Wang et al., 2022). However, the roles ofDPF2,

LMNB1, and MLLT3 in IS remain to be explored.

Another vital finding from our study was that several

potential therapeutic compounds for the treatment of IS

were identified. JAK2, LMNB1, MLLT3 and can bind to

mevastatin, WP1066, cladribine, trichostatin A,

mequitazine, and zuclomiphene. Clinical practice and

animal experiments further validated our predictions of

immunomodulatory drugs. Some studies have reported that

mevastatin, a HMG-CoA reductase inhibitor, can reduce

infarction damage (Amin-Hanjani et al., 2001).

WP1066 also demonstrated potential to ameliorate

ischemic brain injury in rats (Yu et al., 2020). A study by

Lingling et al. reported that trichostatin A exerts

neuroprotective effects by improving autophagy/lysosomal

dysfunction in neurons (Lingling et al., 2022).

It is important to note, however, that the present study had

some inherent limitations. First, it was based on

bioinformatics analysis and animal experiments, and the

results still need to be validated in rat whole blood and

clinical IS patients. Second, the sample size of IS patients

included in the study was limited. Although the risk model

constructed in this study demonstrated good performance, it

remains necessary to integrate more sample data to improve

the stability of the model. This study also suffered from the

inherent drawback of confounding bias in time and space,

which include race, region, and time period of IS patients.

Finally, the development of immunomodulatory drugs

represents a feasible treatment method for IS; however, this

needs to be verified in animal experiments, which in turn can

be applied to clinical settings.

Collectively, we identified four candidate genes as potential

therapeutics target for IS according to bioinformatics analysis

and qPCR, and further explored immunomodulatory drugs that

may bind to these immune genes related to CRs. Results of the

present study contribute to the discovery of CR-related immune

therapeutics target in IS and provide an important reference for

further research.
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Postoperative cognitive dysfunction (POCD) is a common postoperative

neurological complication in elderly patients. Circular RNAs (circRNAs) are

abundant in the mammalian brain and can probably regulate cognitive

function. However, the competitive endogenous RNA (ceRNA) regulatory

network in POCD remains illiterate. Transcriptomic signatures in the

hippocampus of POCD mice derived from the Gene Expression Omnibus

(GEO) dataset GSE190880, GSE95070, and GSE115440 were used to identify

the circRNA, miRNA, and mRNA expression profiles of POCD mice compared

with controls, respectively. A set of differentially expressed RNAs, including

119 circRNAs, 33 miRNAs, and 49 mRNAs were identified. Transcript validation

showed the enhanced expression of circ_0001634, circ_0001345, and

circ_0001493. A ceRNA regulatory network composed of three circRNAs,

three miRNAs, and six mRNAs was established. The hub mRNAs in the

ceRNA network were further found to be involved in the hormone catabolic

process and regulation of canonical Wnt signaling pathway, revealing

their crucial role in POCD. Finally, three miRNAs and four mRNAs were

verified by qRT-PCR. These results based on bioinformatics and PCR

array suggest that circ_0001634/miR-490-5p/Rbm47, circ_0001634/miR-

490-5p/Sostdc1, circ_0001634/miR-7001-5p/Sostdc1, circ_0001345/miR-

7001-5p/Sostdc1, and circ_0001493/miR-7001-5p/Sostdc1 may be novel

diagnostic biomarkers and therapeutic targets for POCD.
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postoperative cognitive dysfunction, competitive endogenous RNA network,
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Introduction

Postoperative cognitive dysfunction (POCD) is a
neurocognitive disorder such as acute or persistent impairments
in attention, learning, memory, and information processing
that occurs predominantly in geriatric patients who undergo
anesthesia and major surgery (Suwanabol et al., 2022).
The long-term impact of POCD is associated with a
worse overall quality of life, increased mortality, and a
heavy burden on society and families (Boone et al., 2020;
Tang et al., 2020). Recent evidence suggests that various
elements, such as aberrant expression of apolipoprotein E4
genotype, blood-brain barrier (BBB) compromise, surgery-
induced neuroinflammation, microglial activation, mitophagy
impairment, and iron accumulation (McDonagh et al., 2010;
Chen et al., 2020; Danielson et al., 2020; Wu et al., 2020;
Yang et al., 2020), are intimately involved in all stages of
postoperative cognitive decline. Despite major advances in
comprehending pathogenesis and prevention methods, the
overall curative effect remains inadequate. Consequently,
it is imperative to screen promising therapeutic targets for
POCD.

Circular RNA (circRNA), unlike conventional linear RNA,
is a subtype of endogenous non-coding RNAs with covalently
closed-loop structures that confer high resistance to degradation
(Chen, 2020). CircRNAs have been proposed to modulate
gene transcription, to act as microRNA (miRNA) or RNA-
binding protein (RBP) decoys, and to function as protein
scaffolds (Kristensen et al., 2019). However, the overwhelming
majority of circRNAs are thought to act as competing
endogenous RNAs (ceRNAs), which specify that circRNAs can
compete with mRNAs for binding to the shared miRNAs
and thereby indirectly modify gene expression at the post-
transcriptional level (Chen, 2020). The abundance of circRNAs
in the mammalian brain, particularly synaptoneurosomes, is
highlighted by RNA sequencing data (Rybak-Wolf et al.,
2015). Mounting evidence also suggests circRNAs play a vital
role in cognitive impairments such as Alzheimer impisease
(AD) (Dube et al., 2019). Downregulation of circCwc27
improved cognitive capacity in the AD mouse (Song et al.,
2022). Knockdown of circTshz2-2 alleviated obesity-induced
spatial memory decline via modulating BDNF/TrkB signaling
pathway (Yoon et al., 2021). CircPtk2 contributed to sepsis-
provoked cognitive dysfunction by serving as a sponge of
miR-181c-5p to facilitate HMGB1 expression (Li et al., 2021).
Niu et al. (2021) proposed that aerobic exercise mitigated
vascular cognitive impairment by activating circRIMS2/miR-
186/BDNF axis. Additionally, plasma circRNA-089763 is
positively correlated with the occurrence of POCD (Wang
et al., 2019; Zhou et al., 2020). A microarray analysis screened
210 differentially expressed circRNAs in POCD patients’
serum, such as circCPNE1, circUBE3B, and circITSN1 (Gao
et al., 2020). Another microarray profiling highlighted three

circRNAs (circ_22058, circ_44122, and circ_22673) as key
elements in POCD (Wu et al., 2021). Circ_009789- and
circ_004229-associated ceRNA networks were identified to
elucidate the mechanism underlying susceptibility to POCD in
aged mice (Zhang et al., 2022). CircShank3 may be involved
in dexmedetomidine-mediated protection against POCD via
targeting the p53 and NF-κB signaling pathways (Cao et al.,
2020). Nevertheless, the role of circRNAs in POCD remains
elusive.

MiRNAs are small (18–22 nucleotide long) non-
coding RNAs that trigger post-transcriptional repression
of gene expression by directly binding to the 3′-
untranslated region (UTR) of mRNAs, profoundly governing
neurodevelopment and neurodegeneration (Singh and
Yadav, 2020). Multiple aberrantly expressed miRNAs, such
as miR-124, miR-146a, and miR-381, were implicated in
the development of POCD (Chen et al., 2019a,b; Wang
et al., 2021). However, the underlying mechanisms of
miRNAs in the neuropathogenesis of POCD are still
unclear.

In this study, we extracted the differentially expressed
circRNAs, miRNAs, and mRNAs in POCD from Gene
Expression Omnibus (GEO) databases. According to the
flowchart diagram (Figure 1), circRNA-miRNA pairs
and miRNA-mRNA pairs were successively identified for
constructing a ceRNA regulatory network. Furthermore,
functional enrichment analysis and transcript validation
were implemented to identify the hub genes and interpret
potential regulatory mechanisms in the development of POCD.
The present findings may strengthen our understanding of
POCD.

Materials and methods

Expression microarray data

The circRNA dataset (GSE190880) was retrieved from the
GPL21826 platform and contained 3 pairs of hippocampus from
POCD and control mice (Ran et al., 2022). The miRNA dataset
(GSE95070) was retrieved from the GPL19117 platform and
contained 5 pairs of hippocampus from POCD and control
mice (Wei et al., 2017). Meanwhile, we also downloaded
the mRNA expression profiles from GSE115440 (GPL11533)
(Yang et al., 2019), including 3 pairs of hippocampus tissues
from POCD and control mice, to further construct the
ceRNA network about POCD. The profiles of these three
microarray datasets (GSE190880, GSE95070, and GSE115440)
regarding circRNAs, miRNAs, and mRNAs were listed in
Table 1. In these three microarray datasets, aseptic tibia
fracture in C57BL/6 male mice was applied to mimic
POCD.
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FIGURE 1

Workflow of the study design.

TABLE 1 The profiles of three microarray datasets from the GEO database.

Data source Series Platform Author Year Country Sample (POCD/control)

circRNA GSE190880 GPL21826 Ran 2021 China 3/3

miRNA GSE95070 GPL19117 Wei 2017 China 5/5

mRNA GSE115440 GPL11533 Mkrtchian 2018 Sweden 3/3

Identification of the differentially
expressed circular RNAs, microRNAs,
and mRNAs

Differentially expressed (DE) analysis between POCD and
control hippocampus samples were performed using GEO2R
(Barrett et al., 2013), an online program based on R language
that can analyze any GEO series to compare two groups of
data. The cut-off standard of DEcircRNAs was set to p < 0.05
and |logFC| > 1.5, the cut-off standard of DEmiRNAs was
set to p < 0.05 and |logFC| > 0.5, and the cut-off standard
of DEmRNAs was set to p < 0.05 and |logFC| > 1. Principal
component analysis (PCA) and heatmap (linkage method: row
clustering; distance measure: euclidean) were visualized using
the Xiantao search tool.1

Establishment of circular RNAs–
microRNA–mRNA network

The circRNA identification (ID) of DEcircRNAs were
first converted into the circRNA ID in the circBase (Glažar
et al., 2014),2 an online database that integrates thousands

1 https://www.xiantao.love/

2 http://www.circbase.org

of public circRNAs across five species and their genomic
profiles. Only genomic sequences in FASTA format of annotated
circRNAs were further analyzed using the circMIR1.0 software,
a forecasting instrument of circRNA-miRNA interactions based
on miRanda and RNAhybrid that can visualize the binding
sites of miRNA adsorption. Overlapping miRNAs between the
target miRNAs and DEmiRNAs screened in the GSE95070
were considered candidate miRNAs. Moreover, miRDB (Chen
and Wang, 2020)3 and Targetscan (McGeary et al., 2019)
(version 8.0)4 databases were used to predict the target mRNAs
of the candidate miRNAs. The Venn diagram drawn in the
Xiantao search tool was utilized to overlap the miRNA-
forecasted mRNAs and DEmRNAs in the GSE115440. Finally,
the ceRNA network was constructed using Cytoscape (Otasek
et al., 2019) (version 3.9.1), by integrating circRNA-miRNA
pairs and miRNA-mRNA pairs.

Functional classifications and pathway
enrichment analysis

The Gene Ontology (GO) project is an ontological
annotation resource that describes gene product function
based on multiple databases (Ashburner et al., 2000). Kyoto

3 http://www.mirdb.org/

4 https://www.targetscan.org
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Encyclopedia of Genes and Genomes (KEGG)5 is an integrated
tool that provides a new perspective on molecular-level
functions, diseases and drugs (Kanehisa et al., 2016). The
DAVID Knowledgebase6 is a bioinformatics data resource based
on a single-linkage method for the agglomeration of millions of
genes that can be entered into DAVID gene clusters (Huang da
et al., 2009a,b). GO annotation and KEGG pathway enrichment
analysis were implemented using the Xiantao search tool. A p-
value of <0.05 was set as the cut-off point.

Animals

Twelve-month-old C57BL/6 male mice weighing 25–35 g
were purchased from Hubei Provincial Center for Disease
Control and Prevention. Mice with ad libitum access to food
and water were housed in a colony room with a temperature
of 22–25◦C, a humidity of 50%, and a 12-h light/dark cycle.
The animals were acclimated to the environment for 7 days
before experimental manipulation. All experimental procedures
were approved by the Laboratory Animal Ethics Committee
in Renmin Hospital of Wuhan University (No. WDRM-
20210709).

Animal model of postoperative
cognitive dysfunction

The animals were randomly assigned to two groups:
the POCD group (n = 6) and control group (n = 6).
Intramedullary fixation for open tibial fracture under isoflurane
anesthesia has been widely used as a POCD model (Yang
et al., 2019). Briefly, mice were exposed to 3% isoflurane
for the anesthesia induction, followed by 1.5% isoflurane
in 100% oxygen for the maintenance. After shaving and
disinfecting the animal, a skin incision was made on the
lateral tibia, and a 0.3-mm intramedullary fixation pin was
inserted into the medullary cavity. Next, an osteotomy
was performed at the middle and distal third of the
bone, and the wound was closed with 5-0 Vicryl suture
(Ethicon, Somerville, NJ, USA). The entire procedure from
the induction to the end of surgery lasted 30 min. A warm
pad was utilized to keep the body temperature around 37◦C
throughout the surgery. Then, 2% lidocaine solution and
1% tetracaine hydrochloride mucilage was applied locally for
postoperative analgesia twice daily until 3 days after surgery.
The control group received 100% oxygen without surgery or
anesthesia.

5 http://https://www.kegg.jp

6 https://david.ncifcrf.gov/

Open field test

The open field test (OFT) was employed to assess the
locomotor activity of the mice 3 days after the surgery. The
apparatus was an opaque plastic cube box with a side length of
45 cm. Each mouse was gently placed in the central area and left
to move freely for 5 min. The total distance and time spent in the
center area were recorded using SuperMaze software (XinRuan
Information Technology, Shanghai, China).

Morris water maze

Spatial learning and memory was assessed using Morris
water maze test 4 days after the surgery. The apparatus was
a circular plastic pool of 120-cm diameter and 50-cm height
surrounded by four curtains. The pool was equipped with a
6-cm-diameter hidden platform placed in the center of the
fourth quadrant. Prior to the experiment, the pool was filled
with opaque water at around 25◦C to a depth of about 30 cm,
approximately 1 cm above the platform. Each mouse received
four daily trials with a 30-min intertrial interval for four
consecutive days to find the platform, and was randomly placed
at one of the four quadrants. Mice that failed to find the platform
within 90 s were manually directed to the platform. The escape
latency (time taken to reach the platform) in the four quadrants
on the same day was averaged. The platform was removed on
the fifth day to allow for probe trial. During the 90-s session,
the total time spent in target quadrant and the frequency of
crossing over the target quadrant were recorded. The swimming
trajectory of the animals were recorded automatically via
a video tracking system (XinRuan Information Technology,
Shanghai, China).

RNA extraction and quantitative
real-time polymerase chain reaction

Firstly, five circRNAs (circ_0001634, circ_0001345,
circ_0001493, circ_0000487, and circ_0001468) whose host
genes may be related to cognitive function were selected for
quantitative real-time polymerase chain reaction (qRT-PCR).
To verify the reliability and accuracy of the predicted ceRNA
network, three miRNAs (miR-6912-5p, miR-490-5p, and
miR-7001-5p), and four mRNAs (Rbm47, Sostdc1, Cdh3, and
Sfrp5) were selected for qRT-PCR. Total RNA was extracted
from the hippocampus tissue of the control and POCD group
using TRIpure reagent (ELK, Wuhan, China). For circRNAs
and mRNAs, cDNA was generated from template RNA using
EntiLinkTM Reverse Transcriptase Kit (ELK, Wuhan, China),
and analyzed with EnTurboTM SYBR Green PCR SuperMix
(ELK, Wuhan, China) using StepOneTM Real-Time PCR
system (Life Technologies, Carlsbad, CA, USA). The reaction
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procedure was as follows: 95◦C for 1 min, followed by 40
cycles of 95◦C for 15 s, 58◦C for 20 s and 72◦C for 45 s. For
miRNAs, cDNA was generated using EntiLinkTM 1st Strand
cDNA Synthesis Kit (ELK, Wuhan, China), and analyzed
with EnTurboTM SYBR Green PCR SuperMix (ELK, Wuhan,
China) using QuantStudio 6 Flex real-time PCR system (Life
Technologies, Carlsbad, CA, USA). The reaction procedure
was as follows: 95◦C for 30 s, followed by 95◦C for 10 s, 58◦C
for 30 s, and 72◦C for 30 s. The relative expression levels of
these RNAs were calculated via the 2−11Ct method. GAPDH
was used as an internal control gene for circRNA and mRNA
expression, while U6 was used as an internal control gene for
miRNA expression. The primers for these RNAs are shown as
Table 2.

Statistical analysis

Quantitative data were presented as the mean ± standard
deviation (SD) or median (range). GraphPad Prism version
9.0 (GraphPad Software Inc., San Diego, California, USA)
was used for statistical analyses. The statistical significance
between the two groups was determined using Student’s t-test
or non-parametric test. A p-value of <0.05 was considered
statistically significant.

Results

Isoflurane plus orthopedic surgery
caused postoperative cognitive
dysfunction in mice

The open feld test showed no statistical difference in the
total distance and duration of the central area between the
two groups, indicating that anesthesia/surgery did not affect
the locomotor activity of the mice (Figures 2A,B). To address
whether isoflurane/surgery impaired cognitive function in mice,
we performed Morris water maze to assess learning and memory
following orthopedic surgery. During hidden platform test,
the mice undergoing anesthesia/surgery showed significantly
longer escape latency on day 2, 3, and 4 than the untreated
control (Figure 2C). During the probe test, time spent in target
quadrant and platform crossing times in the mice undergoing
anesthesia/surgery were less than those in the control group
(Figures 2D–F). These results suggested that isoflurane plus
orthopedic surgery caused POCD.

Data preprocessing

The accuracy and reliability of microarray data were
evaluated using PCA. By comparing the distribution patterns of

FIGURE 2

Anesthesia/surgery impaired cognitive function in aged mice
(n = 6 per group). (A) The total distance in the OFT. (B) Time
spent in the center area in the OFT. (C) Escape latency to reach
the hidden platform during the 4-day training. Unpaired t-test,
**p < 0.01 compared to the control group; ##p < 0.01
compared to the first day in the control group; &&p < 0.01
compared to the first day in the POCD group. (D) The swimming
trajectory of the control and POCD mice during the probe test.
The red circle indicates the hidden platform, the red and blue
dot indicate the start and end of swimming, respectively.
(E) Time spent in the target quadrant during the probe test.
Unpaired t-test, **p < 0.01 compared to the control group.
(F) Platform crossing times during the probe test. Unpaired
t-test, **p < 0.01 compared to the control group.

all identified circRNAs (Figure 3A) and miRNAs (Figure 4A),
we could completely separate POCD samples from control
hippocampus.
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TABLE 2 The primer sequences used for qRT-PCR.

Sense Antisense

circ_0001634 CATGAGCAGTTTTCCTTCCCAG GGAGAGTGAGGTCACTAGAAACAG

circ_0001345 GACCAAGAGACTGGACGAGT GGAGAGCTTATTGTCAGAGTGTACA

circ_0001493 CAGCAAGCAGACATACCAC GTGCTCGTAGTGGTCTGGAC

circ_0000487 GTGTTCTGACAAAACACCTGAGG CTGTAATGGTGTCCAGGCAGTAAC

circ_0001468 GCTGACCTCAAACCAGAAAACAT GTTTCTTCACACTACAGAAGGCA

miR-6912-5p GGCTACAGGGAGGGTGCT CTCAACTGGTGTCGTGGAGTC

miR-490-5p GGCCCCATGGATCTCCA CTCAACTGGTGTCGTGGAGTC

miR-7001-5p GGAGGCAGGGTGTGAGC CTCAACTGGTGTCGTGGAGTC

Rbm47 ACCCAGCTACGTGTACTCCTGT GTTCATATCCTTTCTCCTGCTG

Sostdc1 CATTTCAGTAGCACTGGACTGG GCTCCAGTACTTTGTTCCATAGC

Cdh3 ATCAGCTCAAATCTAATAAGGACAG CCATAAAGCTCGTACTTGACAATCT

Sfrp5 GGGACCGAAAGTTGATTGG TGAATTTGACTGCAAACTTCATC

GAPDH TGAAGGGTGGAGCCAAAAG AGTCTTCTGGGTGGCAGTGAT

U6 CTCGCTTCGGCAGCACAT AACGCTTCACGAATTTGCGT

Circular RNA expression profiles in
postoperative cognitive dysfunction

In the GSE190880 dataset, a total of 119 DEcircRNAs
with thresholds of |logFC| > 1.5 and p < 0.05 were
detected in the hippocampus of POCD mice, of which 103
were up-regulated and 16 were down-regulated. Additionally,
76.47% of DEcircRNAs originated from exonic regions, while
8.40% originated from intronic regions. Sense-overlapping and
intergenic circRNAs accounted for 13.45 and 1.68%, respectively
(Figure 3B). Chromosomal distribution demonstrated that
DEcircRNAs are highly abundant in chr1-19 and chrX, but
absent in chr20 and chrY (Figure 3C).

GO and KEGG pathway analyses were used to categorize
and annotate the host genes of DEcircRNAs in order to further
characterize these in POCD. The enriched GO terms were
mainly associated with locomotory behavior (gene ratio = 8/105,
p = 2.06E-05), vesicle-mediated transport in synapse (gene
ratio = 8/105, p = 1.64E-05), regulation of synaptic transmission,
glutamatergic (gene ratio = 5/105, p = 2.63E-05), intrinsic
component of synaptic membrane (gene ratio = 9/106,
p = 1.69E-06), integral component of synaptic membrane (gene
ratio = 7/106, p = 7.67E-05), Schaffer collateral-CA1 synapse
(gene ratio = 6/106, p = 1.27E-05), guanyl-nucleotide exchange
factor activity (gene ratio = 7/106, p = 3.92E-05), calcium
ion transmembrane transporter activity (gene ratio = 6/106,
p = 4.49E-05), and cation:cation antiporter activity (gene
ratio = 3/106, p = 4.49E-05) (Figure 3D and Supplementary
Table 1). Moreover, KEGG pathway enrichment analysis
concluded that DEcircRNAs were principally enriched in
retrograde endocannabinoid signaling (gene ratio = 5/43,
p = 0.0007), dilated cardiomyopathy (gene ratio = 4/43,
p = 0.0010), and glutamatergic synapse (gene ratio = 4/43,
p = 0.0021) (Figure 3D and Supplementary Table 1). Ulteriorly,

the DEcircRNAs were blasted by circBase and 16 annotated
circRNAs were identified, of which 14 were up-regulated and
2 were down-regulated, as shown by the hierarchical clustering
heatmap (Figure 3E and Table 3).

Validation of differentially expressed
circRNAs

To validate the expression of DEcircRNAs, five circRNAs
whose host genes are possibly related to cognitive function
were selected for verification by qRT-PCR. The expression
of mmu_circ_0001634 (circFam53b), mmu_circ_0001345
(circFbxl5), and circ_0001493 (circIqsec1) were found to be
upregulated in the hippocampus of POCD mice, which was
consistent with the sequencing results. There was no significant
difference in the expression of mmu_circ_0000487 (circXrcc4)
between the two groups. Contrary to the sequencing result,
isoflurane/surgery obviously diminished mmu_circ_0001468
(circHipk2) expression (Figure 5). To unveil insights into the
potential functional mechanisms of circFam53b, circFbxl5, and
circIqsec1, we predicted 987 miRNAs interacting with circRNAs
and the putative binding domains with the aid of circMIR1.0
software (Figure 4B).

MicroRNA expression profiles in
postoperative cognitive dysfunction

A total of 33 significant DEmiRNAs with cut-off criteria
of |logFC| > 0.5 and p < 0.05 were screened in the
hippocampus of POCD mice. We identified 12 overlapping
DEmiRNAs by integrating GSE95070 data and predicted results,
of which five were upregulated and seven were downregulated
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FIGURE 3

Characteristics of differentially expressed circRNAs (DEcircRNAs) in postoperative cognitive dysfunction (POCD). (A) Principal component
analysis (PCA) of circRNA expression between POCD and control groups. (B) Genomic origin of the DEcircRNAs. (C) Chromosomal distribution
of the DEcircRNAs. (D) Functional classifications and pathway enrichment analysis (GO and KEGG) of the host genes of DEcircRNAs. The
horizontal axis denotes the proportion of the host genes in each cluster, and the vertical axis denotes biological process (BP), cellular
component (CC), molecular function (MF), and KEGG pathway, respectively. (E) Heatmap plots of the 16 circRNAs annotated by circBase.

(Figures 4B,C and Supplementary Table 2). According to the
ceRNA hypothesis that circRNAs could compete with mRNAs
for the same miRNAs, we predicted the mRNAs downstream of
12 miRNAs. The results reflected that 2,488 target genes of the
12 DEmiRNAs were acquired by the databases of miRDB and

TargetScan. Furthermore, a total of 49 significant DEmRNAs
were extracted in GSE115440. The Venn diagram revealed that
seven mRNAs were shared by the predicted genes of the above-
mentioned circRNA-targeted miRNAs and the DEmRNAs from
GSE115440 (Figure 4D and Supplementary Table 3).
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FIGURE 4

Characteristics of differentially expressed miRNAs (DEmiRNAs) in postoperative cognitive dysfunction (POCD). (A) Principal component analysis
(PCA) of miRNA expression between POCD and control groups. (B) The 12 DEmiRNAs were obtained by overlapping the 987 target miRNAs
binding to the three DEcircRNAs and the 33 DEmiRNAs identified in GSE95070. (C) The heatmap of the 12 overlapped DEmiRNAs. (D) The seven
DEmRNAs were obtained by overlapping the 2,488 target mRNAs binding to the 12 DEmiRNAs and the 49 DEmRNAs identified in GSE95070.

Construction of the competitive
endogenous RNA regulatory network
and experimental verification

A ceRNA regulatory network based on 3 circRNAs, 12
miRNAs, and 7 mRNAs was created to further investigate
the mechanisms by which circRNAs and miRNAs affect the
occurrence and development of POCD. Eventually, 10 circRNA-
miRNA pairs and 7 miRNA-mRNA pairs were identified,
which were composed of three circRNAs, three miRNAs,
and six mRNAs (Figure 6A). The enriched GO terms
were chiefly associated with the hormone catabolic process,
regulation of canonical Wnt signaling pathway, sperm midpiece,
catenin complex, dipeptidyl-peptidase activity, and chloride
ion binding. Moreover, the enriched KEGG pathway were
renin-angiotensin system and renin secretion (Figure 6B
and Supplementary Table 4). To substantiate the potential

interaction in the ceRNA, these three miRNAs and Wnt-related
genes were selected for verification by qRT-PCR. The enhanced
expression of miR-6912-5p, Rbm47 and Sostdc1 were observed
in the POCD group, while the expression of miR-490-5p, miR-
7001-5p, Cdh3, and Sfrp5 were significantly decreased in the
POCD group (Figures 6C,D).

Discussion

In our study, we outlined comprehensive transcriptome
profiles of POCD. A total of 119 circRNAs, 33 miRNAs,
and 49 mRNAs were identified as differentially expressed.
The circRNA-miRNA-mRNA triple regulatory network
consisted of three circRNAs, three miRNAs, and six mRNAs.
Biological process enrichment analysis revealed that the bulk
of DEmRNAs in the ceRNA network were involved in the

Frontiers in Neuroscience 08 frontiersin.org

92

https://doi.org/10.3389/fnins.2022.972918
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-972918 September 13, 2022 Time: 18:5 # 9

Wang et al. 10.3389/fnins.2022.972918

TABLE 3 Differentially expressed circRNAs annotated by circBase in POCD.

circRNA_ID circBase_ID Chrom Strand Location Type Gene LogFC P-value

circ_011823 circ_0000878 chr18 + 63,755,035–63,760,785 Exonic Wdr7 1.633 0.009

circ_009299 circ_0000607 chr15 − 68,165,752–68,170,223 Exonic Zfat 1.543 0.009

circ_007883 circ_0001634 chr7 − 132,759,388–132,779,385 Exonic Fam53b 1.596 0.032

circ_016800 circ_0000608 chr15 + 69,013,357–69,029,910 exonic Khdrbs3 1.526 0.005

circ_011539 circ_0000074 chr1 + 127,791,604–127,799,553 Exonic Ccnt2 1.546 0.001

circ_008286 circ_0000487 chr13 − 89,991,072–90,001,084 Exonic Xrcc4 1.506 0.028

circ_009389 circ_0001381 chr5 − 106,619,539–106,666,845 Exonic Zfp644 1.639 0.047

circ_009434 circ_0000037 chr1 − 52,708,163–52,709,755 Exonic Mfsd6 1.601 0.033

circ_011555 circ_0001345 chr5 − 43,758,221–43,773,659 Exonic Fbxl5 1.576 0.039

circ_009748 circ_0001838 chr9 − 106,952,311–106,978,774 Exonic Dock3 1.541 <0.001

circ_017841 circ_0001493 chr6 − 90,689,579–90,694,850 Exonic Iqsec1 1.506 0.039

circ_016934 circ_0001573 chr7 − 59,479,061–59,481,464 Sense overlapping Gm22632 2.078 0.007

circ_002179 circ_0001468 chr6 − 38,818,229–38,819,313 Exonic Hipk2 1.581 0.005

circ_016597 circ_0000290 chr11 + 75,390,071–75,391,227 Exonic Smyd4 1.560 0.018

circ_009489 circ_0001450 chr6 + 29,372,580–29,372,670 Intronic Calu −1.594 0.047

circ_011181 circ_0001731 chr8 − 122,908,667–122,916,045 Exonic Ankrd11 −1.668 0.035

FIGURE 5

Transcript verification of circRNAs whose host genes are likely to
be associated with cognitive function. Target cirRNA expression
were normalized to GAPDH expression (1Ct). Non-parametric
test, **p < 0.01 compared to the control group.

“hormone catabolic process” and “regulation of canonical
Wnt signaling pathway.” Transcript validation suggested
that circ_0001634/miR-490-5p/Rbm47, circ_0001634/miR-
490-5p/Sostdc1, circ_0001634/miR-7001-5p/Sostdc1,
circ_0001345/miR-7001-5p/Sostdc1, and circ_0001493/miR-
7001-5p/Sostdc1 axis were likely to participate in the
development of POCD.

The vast majority of circRNAs are derived from a single or
multiple exons of known coding genes and thereby located in
the cytoplasm (Kristensen et al., 2019). Our analysis showed that

up to 76.47% DEcircRNAs were from exons, and 14 out of 16
annotated circRNAs were of exon origin, which implied that
circRNAs probably function as competing endogenous RNAs
in the pathogenesis of POCD because the ceRNA network
merely exists in the cytoplasm (Chen, 2020). Enrichment
analysis showed the corresponding parental or host genes of
DEcircRNAs were implicated in synaptic plasticity and mainly
located in the Schaffer collateral-CA1 synapse, suggesting
circRNAs are extensively involved in the regulation of cognitive
function.

Circ_0001493, circ_0000487, circ_0001468, and
circ_0001345 are spliced from IQ motif and sec7 domain-
containing protein 1 (Iqsec1), x-ray repair cross complementing
4 (Xrcc4), homeodomain-interacting protein kinase 2 (Hipk2),
and F-box/LRR repeat protein 5 (Fbxl5), respectively, which
may be linked to neurocognitive disorders (Zhang et al., 2013;
Gerez et al., 2019; Liang et al., 2020; Briševac et al., 2021).
Moreover, circ_0001634 originates through back-splicing
events from Fam53b, which has been reported to regulate Wnt
signal transduction by altering β-catenin nuclear localization
(Kizil et al., 2014). Wnt signaling has been implicated in
the modulation of synaptogenesis, long-term potentiation
(LTP), and dendrite arborization (Narvaes and Furini, 2022).
Intranuclear accumulation of β-catenin marks activation of
canonical Wnt signaling that sequentially leads to enhance
the transcription of Wnt target genes via the interaction
between β-catenin and T-cell factor/lymphoid enhancer factor
(TCF/LEF) (Narvaes and Furini, 2022). Hu et al. (2016) found
that prolonged exposure to 3.6% sevoflurane could disrupt
BBB components via suppressing Wnt/β-catenin/Annexin A1
pathway in brain microvascular endothelial cells, indicating
that promoting β-catenin synthesis can alleviate POCD.
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FIGURE 6

Potential competing endogenous RNA (ceRNA) regulatory network, enrichment analysis of DEmRNAs in the ceRNA network, and qRT-PCR
validation of three miRNAs and four mRNAs. (A) The ceRNA regulatory network includes three circRNAs, three miRNAs, and six mRNAs. The
orange color indicates circRNAs, the blue color indicates miRNAs, and the green color indicates mRNAs (Triangle and V denote upregulation
and downregulation, respectively). (B) Functional classifications and pathway enrichment analysis (GO and KEGG) of DEmRNAs in the ceRNA
network. The right half part indicates enriched biological process (BP), cellular component (CC), molecular function (MF), and KEGG pathway;
the left half part indicates the genes involved in the corresponding BP, CC, MF, and pathways. GO:0042447, hormone catabolic process;
GO:0060828, regulation of canonical Wnt signaling pathway; GO:0097225, sperm midpiece; GO:0016342, catenin complex; GO:0008239,
dipeptidyl-peptidase activity; GO:0031404, chloride ion binding; mmu04614, renin-angiotensin system; mmu04924, renin secretion. (C,D)
Quantitative RT-PCR validation of miR-6912-5p, miR-490-5p, miR-7001-5p, Rbm47, Sostdc1, Cdh3, and Sfrp5. Target miRNA expression were
normalized to U6 expression, and mRNA expression were normalized to GAPDH expression (1Ct). Non-parametric test, *p < 0.05, **p < 0.01
compared to the control group.

Hence, these five circRNAs were selected for verification.
Quantitative RT-PCR array revealed that the augmented levels
of circ_0001634, mmu_circ_0001345, and circ_0001493 were
consistent with the sequencing results.

Based on ceRNA hypothesis that a protein-coding RNA
and a non-coding RNA compete for the same miRNA
through the shared miRNA response elements (MREs),
miRNA serves as a bridge for circRNA-induced translation
and/or stabilization of the mRNAs (Chen, 2020). In our

study, miR-6912-5p, miR-490-5p, and miR-7001-5p were
screened as hub nodes to compete with three circRNAs for
governing the expression of six mRNAs. GO classification
and enrichment analysis uncovered that cadherin 3 (Cdh3),
secreted frizzled related protein 5 (Sfrp5), and sclerostin domain
containing 1 (Sostdc1) in the ceRNA network participate
in the regulation of the canonical Wnt signaling pathway.
PCR analysis showed that anesthesia/surgery increased the
expression of miR-6912-5p, RNA binding motif protein 47
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(Rbm47), and Sostdc1 in the hippocampus, while decreased the
expression of miR-490-5p, miR-7001-5p, Cdh3, and Sfrp5. Due
to a positive expression correlation between genes and their
corresponding circRNAs, circ_0001634/miR-490-5p/Rbm47,
circ_0001634/miR-490-5p/Sostdc1, circ_0001634/miR-7001-5p
/Sostdc1, circ_0001345/miR-7001-5p/Sostdc1, and circ_000149
3/miR-7001-5p/Sostdc1 axis might be existent in the
pathogenesis of POCD. Pei et al. (2022) found that CircFAM53B,
highly homologous to mmu_circ_0001634, impeded glioma
cell apoptosis through sponging miR-532-3p, suggesting a
potential role in neurological disorders. Interestingly, circFbxl5
(homologous with circ_0001345) could function as a miR-146a
sponge in mouse cardiomyocyte (Li et al., 2022b), and miR-
146a has been proven to ameliorate surgery-induced cognitive
decline (Chen et al., 2019a). Accordingly, it is speculated that
depletion of circ_0001345 may be an emerging therapeutic
perspective on POCD. Most notably, miR-490-5p has been
shown to ameliorate stroke-induced neurological dysfunction
by repressing cyclin-dependent kinases 1 (CDK1) (Skovira et al.,
2016; Ding et al., 2021), revealing a cognition-protective role for
miR-490-5p. Rbm47, a central mediator of mRNA alternative
splicing and stability, has been elaborated to suppress Wnt
activity in cancer cells via maintaining AXIN1 or DKK1 mRNA
stability (Vanharanta et al., 2014; Shen et al., 2020). Moreover,
Sostdc1 has been documented to negatively modulate Wnt
signaling (Li et al., 2022a). These imply that inhibition of Rbm47
or Sostdc1 may mitigate postoperative neurocognitive disorder.

Nonetheless, some limitations of this study must be
considered. First, these three datasets are retrieved from
different platform and samples, which certainly reduces
confidence in the regulator-target pairs outlined. Second, the
ideal scenario would be the same logFC threshold and adjusted
p-value. However, adjusted p-value is either absent (GSE190880)
or greater than 0.9 (GSE95070 and GSE115440), which may
be attributed to the relative small sample size and unknown
distribution of their genomic data. There are many DEcircRNAs
but few DEmiRNAs in the case of p < 0.05 and |logFC| o > 1.0.
Hence, p-value and different logFC thresholds were employed
for screening DERNAs, as previously described (Wang et al.,
2022). Third, limited RNA ID information of other datasets
available such as GSE165798 (Wu et al., 2021) hampers the
integration of multiple datasets. Finally, the circRNA-miRNA
and miRNA-mRNA interaction relationships in the ceRNA
network were both based upon a prediction algorithm that
required further experimental verification.

In summary, a ceRNA regulatory network in the
hippocampus of POCD mice included three circRNAs,
three miRNAs, and six mRNAs. Through comprehensive
bioinformatic analysis, the present study broadens our horizon
on the occurrence and progression of POCD.
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Ischemic stroke (IS) is one of themajor causes of death and disability worldwide,

and effective diagnosis and treatment methods are lacking. RNA methylation, a

common epigenetic modification, plays an important role in disease

progression. However, little is known about the role of RNA methylation

modification in the regulation of IS. The aim of this study was to investigate

RNA methylation modification patterns and immune infiltration characteristics

in IS through bioinformatics analysis. We downloaded gene expression profiles

of control and IS model rat brain tissues from the Gene Expression Omnibus

database. IS profiles were divided into two subtypes based on RNA methylation

regulators, and functional enrichment analyses were conducted to determine

the differentially expressed genes (DEGs) between the subtypes. Weighted gene

co-expression network analysis was used to explore co-expression modules

and genes based on DEGs. The IS clinical diagnosis model was successfully

constructed and four IS characteristic genes (GFAP, GPNMB, FKBP9, and

CHMP5) were identified, which were significantly upregulated in IS samples.

Characteristic genes were verified by receiver operating characteristic curve

and real-time quantitative PCR analyses. The correlation between characteristic

genes and infiltrating immune cells was determined by correlation analysis.

Furthermore, GPNMB was screened using the protein-protein interaction

network, and its regulatory network and the potential therapeutic drug

chloroquine were predicted. Our finding describes the expression pattern

and clinical value of key RNA methylation modification regulators in IS and

novel diagnostic and therapeutic targets of IS from a new perspective.
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characteristic gene, epigenetics, immune infiltration, ischemic stroke, RNA
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Introduction

Ischemic stroke (IS) is a serious cerebrovascular disease

characterized by a high disability rate and mortality, imposing

a massive burden on society (Zhou et al., 2019). Current evidence

shows that the focus of IS treatment is emergency intervention

and long-term secondary prevention (Herpich and Rincon,

2020). However, owing to the narrow therapeutic window and

hemorrhage-related complications, the clinical treatment options

for IS are very limited and only a minority of patients benefit

(Henderson et al., 2018). Therefore, effective diagnostic

biomarkers and treatments are urgently needed to improve

early diagnosis, reduce mortality, and improve prognosis of IS.

Several studies have been performed to improve the

understanding of the molecular mechanisms of IS based on

microarray and bioinformatics analysis. A previous study

isolated 10 hub genes and five key miRNAs between IS and

normal control groups by analyzing two datasets (GSE58294 and

GSE16561) (Yang et al., 2022). Li et al. (2020) studied IS from the

perspective of immune regulation and identified immune-related

gene expression modules and hub genes in the peripheral blood

of patients with IS, which might become important targets for

immunotherapy of IS. However, these studies merely identified

differentially expressed genes (DEGs), without exploring the

detailed molecular mechanisms and potential drug molecules.

As a research hotspot in recent years, the post-transcriptional

chemical modification of RNA is rapidly emerging as a pivotal

player in regulating gene expression. To date, more than

170 types of RNA modifications have been identified that

modify coding and noncoding RNAs, which account for more

than 50% of methylations (Boccaletto et al., 2022). RNA

methylation, an abundant and widely studied epigenetic

modification, plays an important role in modulating multiple

biological functions (Zhou et al., 2020). The occurrence of RNA

methylation is reversible and dynamically regulated by groups of

proteins called RNA-modifying proteins, including “writers”

(methyltransferases), “erasers” (demethylases), and “readers”

(methyl binding proteins) (Zaccara et al., 2019). N1-

methyladenosine (m1A), N6-methyladenosine (m6A), and 5-

methylcytosine (m5C) are common types of eukaryotic RNA

methylation modifications (Xu et al., 2021), among which m6A

RNA methylation has been reported to be highly enriched in the

mammalian brain and closely associated with the pathological

mechanism of IS (Yu et al., 2021). For instance, Xu S. et al. (2020)

found that lnc-D63785 m6A methylation leads to the

accumulation of miR-422a and neuronal death in an oxygen-

glucose deprivation/reperfusion model. Moreover, as one of the

m6A “readers,” YTHDC1 has been found to alleviate brain injury

through the PTEN/Akt pathway and provide a potential

therapeutic target for treating IS (Zhang Z. et al., 2020).

However, as new types of RNA methylation, the relationship

between m1A- and m5C-related regulators and IS has not been

reported, and their mechanisms need to be further explored.

A growing body of research has confirmed that the immune

microenvironment plays a vital role in IS (Zera and Buckwalter,

2020; Liu et al., 2021). Following IS, peripheral immune cells

migrate through the broken blood-brain barrier to the damaged

area and activate host immune cells, such as microglia (Chavda

et al., 2021). Infiltrated inflammatory cells and the activated

immune response lead to the dysfunction of the immune

microenvironment, which dramatically hinders neurological

functional recovery (Shi et al., 2022). Further evidence

indicates that RNA methylation modifications are involved in

immune regulation, especially in the tumor immune

microenvironment. For example, m5C regulators have been

shown to promote the expression and infiltration of CD8+

T cells and are associated with poor prognosis in patients

with lung squamous cell carcinoma (Pan et al., 2021). The

m6A-binding protein YTHDF1 facilitates tumor immune

escape by impairing the cross-presentation of tumor

neoantigens and cross-priming of CD8+ T cells (Han et al.,

2019). However, the role of RNA methylation regulators in

immune infiltration in IS have yet to be explored.

In this study, we first comprehensively analyzed the

GSE97537 dataset to identify differentially expressed RNA

methylation-related regulators (m1A, m6A, and m5C) and

evaluate immunocyte infiltration in IS and control samples,

and we identified IS-related subtypes. Gene ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses were performed to identify

DEGs between subtypes. Weighted gene co-expression

network analysis (WGCNA) was used to identify the co-

expressed genes and modules. Then, we constructed a clinical

diagnostic model of IS and identified characteristic genes.

Protein-protein interaction (PPI) networks, transcription

factor (TF) correlation, competing endogenous RNA (ceRNA)

networks, and potential drug molecules for IS therapy were

identified based on characteristic genes. Our study may

provide insight into the role of RNA methylation in

pathogenesis and immune infiltration in IS.

Materials and methods

Data acquisition and preprocessing

Gene expression profile data, focusing on ischemic

reperfusion, were obtained from the Gene Expression

Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). In

total, 22 samples from GSE97537 (7 IS and five control rat

samples) (Wang et al., 2015) and GSE61616 (5 IS and five

control rat samples) were selected. The same platform,

GPL1355, was used for the two datasets. Detailed information

from GSE97537 and GSE61616 is listed in Supplementary Table

S1. RNA methylation-related regulators from previous studies,

including 11 m1A methylation regulators (Gao et al., 2021),
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21 m5C methylation regulators (Chen et al., 2020), and 23 m6A

methylation regulators (Zhao et al., 2017; He et al., 2019) were

collected. The “Affy” package (Ritchie et al., 2015) was utilized to

normalize gene expression values from the two datasets. Nextly

Log2 transformation was also carried out. Principal component

analysis (PCA) was performed to detect the distribution of

samples in the two groups. GSE97537 was considered the

primary analysis dataset and training set. GSE61616 was

chosen as the testing set to check the diagnostic ability of this

diagnosis model.

Screen of RNA methylation regulators

The differential expression analysis and visualization of m1A,

m5C, and m6A methylation regulators between IS samples and

control samples were performed using the “limma” and “pheatmap”

packages. The “RCircos” package (Zhang et al., 2013) in R, which

can display the chromosomal location of DEGs, was used. Next, the

correlation and interaction between DEGs of m1A, m5C, and m6A

methylation regulators were calculated based on the Pearson

algorithm. Gene interaction networks showing these factors were

drawn using the “Corrplot” package.

Infiltration characteristics of the immune
microenvironment in IS

CIBERSORTx (https://cibersort.stanford.edu/), an R tool for

the deconvolution of expression matrices of immune cell

subtypes, was designed by combining linear support vector

regression and immune infiltration theory (Chen et al., 2018).

We used the CIBERSORTx algorithm to profile the landscape of

22 types of immune cells in the immune microenvironments of

the IS and normal groups according to gene expression levels in

datasets. The correlation among immune cells was considered

very influential to understand immune pathway and function.

Therefore, the correlation coefficients between immune cells

were calculated by Spearman analysis and visualized through

heatmaps. Statistical differences in the proportion of infiltrating

immunocytes between IS and control groups were calculated by

Wilcoxon test using R software (v. 3.5.1).

Identification of IS-related molecular
subtype

Consensus clustering was performed using the

“ConsensusClusterPlus” package (Wilkerson and Hayes, 2010)

to identify IS subgroups based on differentially expressed RNA

methylation regulators. By combining consensus cumulative

distribution function (CDF) plots, delta area plots, tracking

plots, and clustering heatmaps, the optimal number of clusters

was identified. These clusters were defined as IS-related

molecular subtypes.

GO and KEGG enrichment analyses

The “limma” package was used to screen DEGs between the

subtypes. The cut-off criteria for statistical significance were

adjusted p value (Padj) < 0.05 and logFC >1. GO analysis

(Ashburner et al., 2000) is a major bioinformatics tool

designed for complex functional enrichment analyses,

composed of annotations of biological process (BP), molecular

function (MF), and cellular component (CC). KEGG (Kanehisa

and Goto, 2000), an integrated database resource, is used to

understand high-level functions and utilities of biological

systems from genomic and molecular-level information. GO

annotation and KEGG pathway enrichment analyses of DEGs

were performed using the “clusterProfiler” package (Yu et al.,

2012). Results with a false discovery rate <0.05 were considered

statistically significant. The pathway with the highest enrichment

of DEGs in KEGG analysis was visualized using the “Pathview”

package (Luo and Brouwer, 2013).

Gene set enrichment analysis (GSEA) and
gene set variation analysis (GSVA)

GSEA, an analytical method based on the entire gene expression

matrix, was conducted to derive the significant differences in

biological processes between the IS subtypes. Reference gene sets,

“c2. all.v7.5.2. entrez.gmt,” were downloaded from the Molecular

Signature Database (Liberzon et al., 2015). Padj < 0.05 and |

normalized enrichment score| > 1 were considered to indicate

statistical significance. GSVA, a nonparametric unsupervised

analysis method, was used to evaluate different pathways

enriched in the different samples. In our study, GSVA was

performed using the “GSVA” package (Hänzelmann et al., 2013).

WGCNA

WGCNA is a systems biology method that can be used to

identify modules of highly correlated genes among different

samples and identify candidate biomarkers or potential

therapeutic targets based on the association of modules to one

another and to phenotype (Yue et al., 2016). The top 1,000 genes

in gene expression data of IS samples, which were ranked by

median absolute deviation (MAD), were analyzed using the

“WGCNA” package (Langfelder and Horvath, 2008). Then, we

removed outliers and set an optimal soft threshold. The settings

of minModuleSize = 25 and set height = 0.15 were used to obtain

the final co-expression modules. Finally, genes in the most

important modules were screened.
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Construction of a diagnostic model

To identify characteristic genes associated with IS and

analyze their diagnostic ability, least absolute shrinkage and

selection operator (LASSO) regression was performed. A

diagnostic model was constructed based on the training

dataset, GSE97537. Further validation of this model was

performed on the GSE61616 dataset. Receiver operating

characteristic (ROC) curves drawn using the “ROCR” package

(Sing et al., 2005) were used to illustrate the diagnostic ability of

this model on the test set.

Correlation analysis between
characteristic genes and immune cell
infiltration

The expression levels of characteristic genes associated with

IS and immune cell infiltration score were integrated. Spearman

correlation analysis was used to determine the correlation

between characteristic genes and immunocyte fractions.

Detailed results were displayed as a lollipop plot.

Establishment of an animal model and RT-
qPCR

All experimental procedures were approved by the Animal

Experimental Ethics Committee of Tianjin Medical University

General Hospital. Male C57BL/6J mice (aged 6–8 weeks,

20–25 g) were used to establish the middle cerebral artery

occlusion (MCAO) animal model. Specific operations and

evaluation methods are detailed in a previous study (Espinosa

et al., 2020). Sham-operated mice underwent the same surgical

procedures except for the occlusion of the middle cerebral artery.

Twenty-4 hours after reperfusion, mice were sacrificed by

euthanasia and the cerebral cortex of the lesioned side was

removed from the mice. Total RNA was extracted from the

cortex using TRIzol reagent (Invitrogen, Carlsbad, CA,

United States ) and used as a template for reverse

transcription into cDNA using a cDNA synthesis kit (Thermo

Scientific, Waltham, MA, United States ). Then, RT-qPCR

amplification was carried out. GAPDH was used for

normalization. Primer sequences are shown in Supplementary

Table S2.

Construction of protein-protein
interaction networks and hub gene
regulatory networks

PPI networks were constructed in the Search Tool for the

Retrieval of Interacting Genes (STRING) online database (http://

string-db.org; v. 10.5). Visualization was performed in Cytoscape

(v. 3.9.0) (Shannon et al., 2003). Maximal clique centrality

(MCC) was calculated using CytoHubba (Chin et al., 2014), a

Cytoscape plugin. Genes with the highest MCC value were

selected as hub genes.

Prediction of ceRNA network

The ENCODE database (https://www.encodeproject.org/)

(Davis et al., 2018) was used to screen possible TFs of the hub

gene. To explore the potential relationship between the hub gene

and various noncoding RNAs, we constructed a ceRNA network

using Cytoscape. The interaction information between mRNA

and miRNA and between miRNA and lncRNA were predicted

using miRTarBase (Huang et al., 2022) and StarBase database (Li

et al., 2014), respectively.

Construction of drug-gene network and
molecular docking

We used the Comparative Toxicogenomics Database

(Davis et al., 2021) (http://ctdbase.org/) to predict drug

molecules that might be useful in the treatment of IS by

targeting hub genes. Cytoscape was used to visualize the

interaction network between hub genes and drug molecules.

According to the targeting relationship and reference scores of

these potential components, a potential therapeutic drug was

identified. PubChem (https://pubchem.ncbi.nlm.nih.gov/)

and PDB (http://www.rcsb.org/) databases (Burley et al.,

2017), which contain three-dimensional structures of small

molecules and large-sized proteins, were searched and

detailed structures for drug and hub mRNA and proteins

were obtained. Autodock (v. 4.2.6) and Pymol (v. 2.3.0) were

used to calculate and visualize the results of docking for drugs

and mRNA/proteins. To verify docking results, YASARA was

utilized through another algorithm (Krieger and Vriend,

2014). I Mutant3.0 was also utilized to identify function of

important binding location.

Statistical analysis

All data processing and analyses were completed in R

software (v. 4.1.1). Statistical significance between non-

normally distributed variables was analyzed using the Mann-

Whitney U test (Wilcoxon rank sum test). Correlation

coefficients among different genes were calculated using

Pearson correlation analysis. Spearman correlation analysis

was used to calculate the correlation coefficients between

different immune cells and with genes. p < 0.05 was

considered to indicate statistically significant results.
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Results

Analysis flow chart and data preprocessing

The analysis flow chart of this study is shown in Figure 1.

Gene expression data of the two datasets were normalized to

eliminate the batch effect (Supplementary Figures S1A, B).

According to the results of PCA, IS samples and control

samples were well-classified (Supplementary Figures S1C, D).

Expression profile and chromosomal
localization of m1A, m5C, and m6A
regulators in IS.

DEGs of m1A, m5C, and m6A regulators (readers, writers,

and erasers), with significant differences, were clearly separated

in the heatmap according to groups (Supplementary Figure S2A).

Detailed chromosomal locations of DEGs (6 m1A regulators,

15 m5C regulators, and 13 m6A regulators) were displayed using

a chromosomal circle diagram (Supplementary Figure S2B–D).

m1A-related genes were mainly located on chromosomes 1, 3, 8,

11, and 14; m5C-related genes were mainly located on

chromosomes 2, 3, 19, and 18; and m6A-related genes were

mainly located on chromosomes X, 17, and 7. The correlation

and interaction among DEGs are exhibited in Figures 2A–C.

DEGs belonging to m1A, m5A, and m6A could be linked in each

network.

Immunocyte infiltration and correlation in
IS and control samples

The CIBERSORTx algorithm was used to calculate the

abundance ratios of 22 types of immune cells, and cells with

abundance ratios of 0 were removed in the subsequent analysis

(Figure 3A). The correlation coefficients between immune cells

were analyzed. Positive relationships were observed between

M0 macrophages and follicular helper T cells and between

gamma delta T cells and resting mast cells. Negative

relationships were observed between regulatory T cells and

follicular helper T cells, M1 macrophages and resting NK

cells, and M2 macrophages and M0 macrophages (Figure 3B).

Significant differences in the proportion of immune cells between

IS and control samples were calculated. Differences in naïve

B cells, memory B cells, follicular helper T cells, activated NK

FIGURE 1
Protocol flowchart.
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cells, M0 macrophages, activated mast cells, neutrophils (p <
0.05), and T cells regulatory (Tregs) (p < 0.01) between IS and

control samples were significant (Figure 3C).

Identification of IS subtypes based on the
RNA methylation-related regulators

Gene expression profiles of 34 differentially expressed

RNA methylation-related regulators were constructed to

investigate the IS molecular subtypes. The CDF plots,

delta area plots, and tracking plot Supplementary Figure

S3A–C) were used to assess the appearance of different k

values. Three kinds of selection on k (k = 2, 3, 4) and the

probable separating subtypes in ConsensusClusterPlus are

separately shown in Supplementary Figure S3D–F. The

optimal division was reached when k = 2, thus, two IS

subtypes were identified.

GO functional enrichment analysis and
KEGG pathway analysis

GO functional enrichment analysis and KEGG pathway

analysis were performed on 28 DEGs between the IS subtypes

to obtain more detailed information on their potential

functions and correlated pathways. According to the results

of GO functional enrichment analysis, the DEGs were mainly

FIGURE 2
Correlation between differentially expressed genes. Correlation network diagram of differentially expressedm1A regulators (A), m5C regulators
(B), and m6A regulators (C) in ischemic stroke samples.
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enriched in BP: regulation of neurotrophin TRK receptor

signaling pathway, neurotrophin signaling pathway,

transmission of nerve impulse, and regulation of ion

transmembrane transport; in CC: postsynaptic membrane;

and in MF: protein tyrosine kinase activity (Figure 4A).

Hypertrophic cardiomyopathy, selected as the pathway with

the highest score in KEGG analysis, is shown in

Supplementary Figure S4. The overall results of GO and

KEGG analysis are shown in Table 1, 2.

GSEA and GSVA

The top three pathways with the highest and lowest normalized

enrichment score are shown in Figure 4B (highest:

LEIN_NEURON_MARKERS, MIKKELSEN_MEF_HCP_WITH_

H3K27ME3, and KIM_ALL_DISORDERS_CALB1_CORR_UP;

lowest: MCLACHLAN_DENTAL_CARIES_UP, REACTOME_

RRNA_PROCESSING, and VERHAAK_GLIOBLASTOMA_

MESENCHYMAL). The overall results of GSEA are shown in

Table 3. The top 10 enrichment results in GSVA with the

highest MAD are shown in Figure 4C.

WGCNA

The “WGCNA” package in RStudio was used to identify

co-expressed genes and modules. The clustering results based

on characters showed good clustering, with no outlier samples

were detected (Supplementary Figure S5A). In total, five

modules were identified in WGCNA (Supplementary Figure

S5B). By comparing the correlation between module genes

and the two IS subtypes, blue modules with the largest

correlation difference were identified as the most important

modules (Figure 5A). DEGs in blue modules were

subsequently analyzed.

FIGURE 3
Analysis of immune infiltration in ischemic stroke (IS). (A) Overall expression of 20 infiltrating immune cell types in IS and control groups. (B)
Correlation heat map of immune infiltrating cells. (C) Differential expression of infiltrating immune cells between the groups.
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FIGURE 4
Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA) and gene set variation analysis
(GSVA) of DEGs between two IS subtypes. (A) Items with minimum Padj of GO enrichment analysis (biological processes, cellular components, and
molecular functions) and KEGG pathway enrichment. (B) Clustering of the top three pathways with the highest and lowest normalized enrichment
scores in GSEA. (C)Heatmap of the top 10 enrichment results with the highest median absolute deviation of GSVA; red represents upregulation
and blue represents downregulation.
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Construction of clinical diagnostic model

Datasets GSE97537 and GSE61616 were regarded as the

training and testing sets, respectively. With the increase of

parameter λ, the selected characteristic parameters decreased

and absolute value of coefficients increased (Supplementary

Figure S5C). After the simulation and selection of

characteristic parameters, two models were obtained

(optimal model and minimalist model) (Supplementary

Figure S5D). We selected the minimalist model to

construct the diagnostic model and identified four genes as

characteristic genes of IS, namely, GFAP, GPNMB, FKBP9,

and CHMP5. Then, model scores of IS and control groups in

the two datasets were analyzed, and the results showed

significant differences between two groups (Wilcoxon test,

p < 0.05) (Figures 5B,C). The ROC curves of the training and

testing sets were plotted to determine the area under the curve

(AUC) value to verify the accuracy of the diagnostic model.

The AUC values were 1 and 0.748, respectively

(Figures 5D,E).

TABLE 1 GO enrichment analysis.

GO Enrichment Results

Category ID Description BgRatio pvalue p.adjust qvalue geneID Count

BP GO:
0038179

neurotrophin signaling pathway 43/17859 0.000022 0.02064 0.015211 Wasf1/Ntrk3/Agt 3

BP GO:
0051386

regulation of neurotrophin TRK receptor signaling
pathway

16/17859 0.000188 0.076186 0.056146 Wasf1/Agt 2

BP GO:
0019226

transmission of nerve impulse 96/17859 0.000247 0.076186 0.056146 Cacng3/Ntrk3/Agt 3

BP GO:
0048011

neurotrophin TRK receptor signaling pathway 31/17859 0.000721 0.157632 0.116168 Wasf1/Agt 2

CC GO:
0045211

postsynaptic membrane 322/18211 0.006574 0.158162 0.12973 Cacng3/Ntrk3/
Lzts1

3

CC GO:
0043235

receptor complex 395/18211 0.011483 0.158162 0.12973 Cacng3/Ntrk3/
Tyro3

3

CC GO:
0014069

postsynaptic density 425/18211 0.013980 0.158162 0.12973 Cacng3/Rnf112/
Lzts1

3

CC GO:
0031209

SCAR complex 12/18211 0.014405 0.158162 0.12973 Wasf1 1

MF GO:
0004714

transmembrane receptor protein tyrosine kinase
activity

106/16532 0.000361 0.020574 0.017646 Ntrk3/Tyro3/Matk 3

MF GO:
0019199

transmembrane receptor protein kinase activity 123/16532 0.000558 0.020574 0.017646 Ntrk3/Tyro3/Matk 3

MF GO:
0004713

protein tyrosine kinase activity 124/16532 0.000571 0.020574 0.017646 Ntrk3/Tyro3/Matk 3

MF GO:
0016247

channel regulator activity 145/16532 0.000901 0.021156 0.018146 Cacng3/Fxyd7/Agt 3

TABLE 2 KEGG enrichment analysis.

KEGG Enrichment Results

ID Description BgRatio pvalue p.adjust qvalue geneID Count

rno05410 Hypertrophic cardiomyopathy 91/8947 0.0014946 0.023111 0.01509998 Cacng3/Agt 2

rno05414 Dilated cardiomyopathy 94/8947 0.0015939 0.023111 0.01509998 Cacng3/Agt 2

rno04722 Neurotrophin signaling pathway 120/8947 0.0025834 0.024973 0.01631621 Ntrk3/Matk 2

rno04261 Adrenergic signaling in cardiomyocytes 148/8947 0.003903 0.028296 0.01848773 Cacng3/Agt 2
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Correlation analysis between
characteristic genes and immune cell
infiltration

The correlation of characteristic genes and immunocyte

fractions was determined by Spearman correlation analysis

and the results are displayed as a lollipop plot

(Figures 6A–D).

Characteristic genes were verified by RT-
qPCR

AnMCAOmouse model was established to simulate IS, and RT-

qPCR was performed to verify the expression of the four characteristic

genes in the cerebral cortex of MCAO and Sham-operated mice. The

expression of GFAP, GPNMB, FKBP9, and CHMP5 was significantly

higher inMCAO than in Sham-operated samples (p< 0.05) (Figure 7).

TABLE 3 GSEA analysis results.

GSEA Analysis Results

ID setSize enrichmentScore NES pvalue p.adjust qvalues rank

LEIN_NEURON_MARKERS 59 0.814076967 2.241206 1.30E-10 1.08E-08 7.07E-09 1,584

MIKKELSEN_MEF_HCP_WITH_H3K27ME3 440 0.601882423 2.074171 1.00E-10 8.41E-09 5.53E-09 1,670

KIM_ALL_DISORDERS_CALB1_CORR_UP 468 0.567695316 1.970307 1.00E-10 8.41E-09 5.53E-09 1968

WP_SYNAPTIC_VESICLE_PATHWAY 47 0.744183724 1.96983 1.02E-05 0.000171 0.00011 1869

REACTOME_ION_HOMEOSTASIS 52 0.736104382 1.947812 5.60E-06 0.000108 7.07E-05 1727

POOLA_INVASIVE_BREAST_CANCER_UP 194 -0.739888555 -2.17464 1.00E-10 8.41E-09 5.53E-09 1744

REACTOME_INTERLEUKIN_10_SIGNALING 42 -0.903693749 -2.19738 1.00E-10 8.41E-09 5.53E-09 516

VERHAAK_GLIOBLASTOMA_MESENCHYMAL 169 -0.76491492 -2.20585 1.00E-10 8.41E-09 5.53E-09 1,481

REACTOME_RRNA_PROCESSING 135 -0.785930466 -2.21597 1.00E-10 8.41E-09 5.53E-09 1958

MCLACHLAN_DENTAL_CARIES_UP 169 -0.783539634 -2.25956 1.00E-10 8.41E-09 5.53E-09 1,083

FIGURE 5
Weighted gene co-expression network analysis and the construction of diagnostic model. (A) Heat map of correlations between modules and
samples. (B)Differences in model scores between ischemic stroke (IS) and control groups in training set. (C)Differences in model scores between IS
and control groups in the testing set. (D) Corresponding receiver operating characteristic (ROC) curves and area under the curve (AUC) values in the
training set. (E) Corresponding ROC curves and AUC values in testing set.
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Construction of PPI network and hub gene
regulatory network

The STRING database was used to construct the PPI network

of characteristic genes associated with IS (Figure 8A). The

interactions between genes were imported into Cytoscape, and

the MCC value of each gene was calculated by CytoHubba.

GPNMB, which had the highest MCC value, was identified as

a hub gene (Figure 8B). The interaction network between

GPNMB and TFs was obtained using the ENCODE database

(Figure 8C). An miRNA, has-miR-26b-5p, was predicted to

interact with GPNMB, and lncRNAs related to has-miR-26b-

5p were further predicted. Subsequently, the ceRNA network of

GPNMB was constructed based on these prediction results

(Figure 8D).

Drug-mRNA network and molecular
docking

In total, 241 drug molecules were predicted as potential drugs

targeting GPNMB (Supplementary Figure S6). Putative

GPNMB-drug interaction networks are shown in Figure 8E.

The binding energy between chloroquine and GPNMB in

most possible mode, of the lowest binding energy, was

-5.6 kcal/mol, less than -5 kcal/mol, indicating small molecules

were capable of binding with protein receptor to an extent. A

hydrogen bond existed between alanine in GPNMB and small

drug molecules with a distance of 3.2 Å. This specific bond was

observed as basic interaction in the docking pocket area.

According to results of YASARA software, the most possible

docking mode was shown in (Figure 8F). Binding location

FIGURE 6
Correlation between characteristic ischemic stroke genes GFAP (A), GPNMB (B), FKBP9 (C), and CHMP5 (D) and infiltrating immune cells.
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between two algorithms were the same, both of hydrogen bond

with ARG215. I-Mutant 3.0 web server, assessing the influence of

one amino acid dot mutation on GPNMB protein through free

energy stability change (DDG) was utilized for ARG 215 (Fang

et al., 2019). The average DDG was -0.73 kcal/mol. According to

reference criteria, DDG < -0.5, indicating large decrease of

protein structure stability (Lim et al., 2021). In our article,

ARG 215 was hydrogen binding location, results of mutation

revealing the important function of this location.

Discussion

Stroke, as a sudden disorder of cerebral blood circulation, has

emerged as the second leading cause of death and disability

worldwide owing to the lack of early diagnosis and effective

treatment. IS the most prevalent form of stroke, accounting for

approximately 75–80% of cases (Krishnamurthi et al., 2018).

Increasing evidence supports the involvement of epigenetic

alterations in the pathogenesis of IS (Stanzione et al., 2020).

However, as one of the most ubiquitous epigenetic modifications

in mammalian cells, the role of RNA methylation modification in

the regulation of IS remains unclear. To determine the role of RNA

methylation-related regulators (m1A, m6A, and m5C) in the

pathogenesis and immune microenvironment of IS, we

determined the overall expression of RNA methylation regulators

and immune infiltration in rat IS gene sets and divided IS into two

molecular subtypes according to the expression levels of RNA

methylation regulators. An IS clinical diagnosis model was

successfully constructed and four upregulated characteristic genes

were identified, which were significantly negatively correlated with

the degree of Treg infiltration. Furthermore, we identified a hub gene

by PPI network analysis and predicted its regulatory networks and

the potential therapeutic drug, chloroquine.

FIGURE 7
Expression of GFAP (A), GPNMB (B), FKBP9 (C), and CHMP5 (D) in ischemic stroke brain tissue determined by RT-qPCR. *p < 0.05, **p < 0.01,
***p < 0.001.
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Two IS molecular subtypes were constructed based on the

differentially expressed RNA methylation-related regulators

between IS and normal samples, and 28 DEGs were identified

between them. GO analysis revealed that these DEGs were

engaged in BP of regulation of neurotrophin TRK receptor

signaling pathway, neurotrophin signaling pathway,

transmission of nerve impulse, and regulation of ion

transmembrane transport, which have been referred to as the

main mechanisms of IS (Li et al., 2021; Zhu et al., 2022).

Additionally, the protein products of these DEGs are mainly

distributed in the postsynaptic membrane and primarily involved

in regulating protein tyrosine kinase activity. A previous study

has revealed that protein tyrosine kinase activity, which is closely

associated with various synaptic and cellular functions in the

brain, is upregulated in IS (Takagi, 2014). Pathway enrichment

assessments determined that the top four enriched pathways

were hypertrophic cardiomyopathy, dilated cardiomyopathy,

neurotrophin signaling pathway, and adrenergic signaling in

cardiomyocytes. We speculated that DEGs may influence the

occurrence and progression of IS through these potential

pathways. Furthermore, GSEA and GSVA results showed that

IS was influenced by the inflammation and immune regulation

pathway, which is consistent with the current theory that

inflammation and immune responses play key roles in the

regulatory network of IS (Endres et al., 2022).

In this study, we constructed a diagnostic model of IS and

identified four characteristic genes (GFAP, GPNMB, FKBP9, and

CHMP5) with good diagnostic value. The results of RT-qPCR

showed that these four characteristic genes were significantly

upregulated in a mouseMCAOmodel, which verified our results.

Glial fibrillary acidic protein (GFAP), an intermediate filament

protein only produced by astrocytes, is a well-established marker

of astrocyte activation in central nervous system (CNS) diseases

(Sayad et al., 2022). Growing evidence suggests the potential

clinical application value of blood GFAP levels in numerous

neuroinflammatory and neurodegenerative diseases, as they can

be used to detect even subtle injury to the CNS (Abdelhak et al.,

2022; Heimfarth et al., 2022). A previous study has shown that IS

can induce the transformation of astrocytes into a neurotoxic

A1 phenotype and increase GFAP expression (Zhang et al.,

2022). Amalia, 2021 reported that GFAP is highly expressed

in cerebrospinal fluid and serum from patients with IS,

demonstrating its potential as a reliable biological marker to

help diagnose IS. Our results revealed a similar expression

tendency of GFAP as these reports.

Glycoprotein nonmetastatic melanoma protein B (GPNMB)

is a type-I transmembrane protein, also known as dendritic cell

heparan sulfate proteoglycan integrin-dependent ligand, that has

been demonstrated to be overexpressed in numerous cancers and

is associated with a metastatic phenotype (Huang et al., 2021). It

FIGURE 8
Protein-protein interaction (PPI) network, transcription factor (TF) correlation network, competing endogenous RNA (ceRNA) network and
drug-molecular docking of the hub gene. (A) PPI network; each node represents a different gene. (B)Maximal clique centrality (MCC) value of each
genewas calculated. The deeper the color the higher, theMCC value of genes. (C) TF correlation network of the hub gene. Red represents genes and
green represents TFs. (D) ceRNA network of the hub gene. Red represents miRNA, blue represents mRNA, and green represents lncRNA. (E)
Docking results between GPNMB and chloroquine in Autodock. Hydrogen bond between two was marked in yellow dotted line. (F) Docking results
of YASARA. Binds marked in yellow represent hydrogen bind.
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has been reported that tumor endothelial cells can induce tumor-

infiltrating CD8 T cell exhaustion and promote the escape of

cancer cells from immune surveillance by upregulating the

expression of GPNMB (Sakano et al., 2022). Furthermore,

GPNMB plays an important role in various diseases in

addition to cancer by regulating inflammation and immune

responses. GPNMB can negatively regulate macrophage

inflammatory capacity via the inhibition of NF-κB signaling

by binding to CD44 (Prabata et al., 2021). In a cellular

amyotrophic lateral sclerosis model, it has been shown that

GPNMB exerts neuroprotective effects by binding to Na/

K-ATPase, an ion pump and receptor that modulates

neuroinflammation (Ono et al., 2016). Consistent with our

results, Nakano et al. (2014) have demonstrated that GPNMB

is upregulated after ischemic reperfusion, and the overexpression

of GPNMB has neuroprotective effects against IS, although the

mechanism has not been fully characterized.

FK506-binding protein 9 (FKBP9), a member of the

immunophilin family FKBPs, binds to the immunosuppressive

drug tacrolimus (FK506) (Ghartey-Kwansah et al., 2018).

FKBP9 is widely expressed in multiple human organs and

tissues and involved in the regulation of various physiological

processes. It has been reported that FKBP9 is associated with

metastasis and poor prognosis in a variety of cancers (Annett

et al., 2020). For example, Xu H. et al. (2020) demonstrated that

FKBP9 is upregulated in human glioblastoma samples and

promotes malignant phenotypes by regulating unfolded

protein response signaling. Additionally, FKBP9 is closely

related to physiological functions such as T cell activation and

plays an important role in immune system regulation (Jiang et al.,

2020).

Charged multivesicular body protein 5 (CHMP5), a

component of the endosomal sorting complex required for

transport-III, is responsible for the final conversion of late

endosomal multivesicular body to lysosomes (Shim et al.,

2006). CHMP5 is a multifunctional protein with potential

roles in cellular signaling. It was previously reported that

CHMP5 has antiapoptotic functions because silencing

CHMP5 induces apoptosis by caspase cascade activation (Mo

et al., 2018). Additionally, CHMP5 prevents Bcl-2, a widely

recognized apoptosis suppressor gene that intrinsically

regulates apoptosis, from deleterious oxidation by reactive

oxygen species (ROS) formation (Adoro et al., 2017).

Furthermore, it has been shown that CHMP5 has a key role

in T-cell receptor signaling and its deficiency affects T-cell

receptor expression on the cell surface (Wi et al., 2016).

However, the role of CHMP5 in IS has not been studied to date.

In terms of the immune response, the infiltration of Tregs

was significantly lower in IS samples than in control samples.

This result is consistent with the previous findings of Noh et al.

(2018), indicating that Tregs are closely related to the

pathogenesis of IS. Tregs are an important subpopulation of T

lymphocytes that are involved in resisting immune response

overactivity, maintaining immune homeostasis, and regulating

inflammation (Wang et al., 2021). In Figure 3, immune

infiltration levels were evaluated through Cibersort algorithm.

Total eight types of immune cells were found to be of statistical

significance, Treg cells were the most significant among them. In

Figure 6, Several species of immune cells including Eosinophils,

Treg and so on were of significant correlation relationship (|

Correlation coefficient| > 0.5) with four characteristic genes.

Treg, being of the most significant statistical meanings

between IS and control, were closely negatively related with

all characteristic genes. Activation of Treg has been verified to

slow down the process of progress of IR through reducing IFN-

γin the IR microenvironment (Hu et al., 2013). GPNMB protein

could bind to heparan sulphate-like structures, blocking the

activation of T cells (Chung et al., 2013). These are consistent

with our results.

Our study showed that the four IS RNA methylation-related

characteristic genes were significantly negatively correlated with

the degree of Tregs infiltration, indicating that these genes

participate in the immune regulation of IS. M0 macrophage is

another important cell type in immune infiltration, was found to

secret interleukin-1βaccompanying with the progress of early IR

(Mabuchi et al., 2000). Thus, accumulation of interleukin-1βcan
promote the development of follicular helper T cells (Kobayashi

et al., 2017), been seen as a bridge linking M0 macrophages with

follicular helper T cells in our study.

We built a PPI network and identifiedGPNMB as a hub gene.

miRNAs are a class of small, single-stranded noncoding RNAs

that regulate target gene expression on a post-transcriptional

level (Correia de Sousa et al., 2019). In our study, miR-26b-5p

was predicted to act on GPNMB, and the expression of GPNMB

in IS samples was upregulated. Previous studies have shown that

miR-26b-5p is associated with various disease states, such as

tumors, inflammation, autoimmune disease, and IS. For example,

a bioinformatics analysis reported that miR-26b-5p can be

recognized as a potential biomarker for IS (Barrera-Vázquez

et al., 2022). Additionally, Xiao et al. (2021) have observed that

miR-26b-5p is downregulated in the brain of an MCAO rat

model and that the overexpression of miR-26b-5p reduces

apoptosis and the inflammatory response. Another study has

shown that miR-26b-5p alleviates IS injury by negatively

regulating the expression of Smad1, which promotes apoptosis

and inflammation by increasing the level of ROS in cells

(Shangguan et al., 2020). The findings of these reports are

consistent with our results.

Finally, we predicted potential drug molecules that may bind

to GPNMB, and the most prominent was chloroquine.

Chloroquine, an established drug originally used for the

treatment of malaria, has been reported to have anti-

inflammatory and immunomodulatory properties (Silva et al.,

2021). Recently, several studies have shown that chloroquine

pretreatment can alleviate brain injury in IS through a variety of

mechanisms, including the inhibition of the inflammatory
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response by lowering myeloperoxidase activity and inflammatory

cytokine gene expression (Cui et al., 2013; Zhang Y. P. et al.,

2020) and alleviation of neuronal injury by restoring ganglioside

homeostasis (Caughlin et al., 2019). Gabriel et al. (2014) reported

that chloroquine can effectively increase Gpnmb transcription in

mice as a lysosomal stress inducer. All these reports are mostly

consistent with our analysis.

There were some limitations to this study. First, single

microarray analysis may be associated with high false-positive

rates, and it is necessary to integrate multiple individual datasets

in future studies to improve the reliability of the results. Second,

although the clinical diagnostic model constructed in this study

showed high accuracy, the sample sizes of the training and

validation sets were small, resulting in insufficient statistical

efficacy. Performing cross-validation internally and increasing

the sample size for external validation in future studies would be

beneficial. Finally, our research was retrospective, and a large

number of prospective studies are needed to validate the results.

In conclusion, this study is the first to comprehensively

analyze the correlations between RNA methylation-related

regulators and IS and immune infiltration. We identified two

highly heterogenous RNA methylation subtypes in IS, with

significantly different BP and MF. An IS clinical diagnosis

model was constructed and four characteristic genes with

effective diagnostic value were identified using bioinformatics

methodologies (such as WGCNA and LASSO regression).

GPNMB was identified as a hub gene by PPI network

analysis, and its regulatory networks and binding to the

potential therapeutic drug chloroquine may provide guidance

for clinical diagnosis and treatment. Overall, our study may

provide insight into the potential molecular mechanisms

underlying IS and a new basis for optimizing the clinical

diagnosis and treatment of patients with IS.
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Spinal cord injury (SCI) remains one kind of devastating neurological damage,

and specific molecular mechanisms involved need to be understood deeply.

Currently, circular RNAs (circRNAs), as a newly discovered type of non-coding

RNAs (ncRNAs), have been under active investigation. Through functional

interactions with disease-associated microRNAs (miRNAs), exosome-derived

circRNAs have been extensively implicated in various organ pathogenesis.

Nevertheless, the functional involvement of circulating circRNAs in SCI onset,

progression as well as repair remains poorly explored until now. Of note, there

still lacks clinical and experimental evidence in this regard. To obtain some

relevant knowledge in this field, this study was originally designed to have a

general overview of differentially expressed circRNAs derived from circulating

exosomes in SCI rats in comparison with the control rats. It turned out that

709 types of downregulated circRNAs and 346 kinds of upregulated circRNAs

were preliminarily screened out. Functional enrichment analyses including

kyoto encyclopedia of genes and genomes (KEGG) pathway and gene

ontology (GO) were performed to evaluate the possible biological functions of

upregulated as well as downregulated circRNAs involved in SCI. Furthermore,

five types of upregulated circulating circRNAs including chr4:208359914–

208362182+, chr15:20088296–20092102+, chr1:175098934– 175134845–,

chr1:175099657– 175128203–, and chr1:175104454– 175134845–, and plus

five kinds of downregulated circulating circRNAs including chr11:74154652–

74159524–, chr12:45412398– 45412635–, chr7:137630261– 137648924–,

chr6:6280974–6281188+, and chr4:225251864–225254087+, were verified

through reverse transcription-polymerase chain reaction (RT-PCR). At

last, taking these differentially expressed circRNAs in the center, the

circRNA-miRNA-mRNA gene interaction network was constructed to

predict the possible functionalities of circRNAs in SCI through anticipating
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specific interactive miRNAs, giving new insights into how circRNAs contribute

to this pathological process. Taken together, these findings suggest the

possible involvement and functional significance of circRNAs in SCI.

KEYWORDS

spinal cord injury, exosome, ncRNA, circRNA, miRNA, mRNA, ceRNA

Introduction

Spinal cord injury (SCI) remains a catastrophic injured
condition for humans, and causes impaired mobility and even
permanent neurological deficits, thereby bringing serious social
and economic burdens (Ahuja et al., 2017; David et al., 2019;
Zipser et al., 2022). Given that there is still a lack of effective
therapies for SCI until now, fundamental research is under
active investigation in order to provide some promising targets
for controlling SCI progression, exacerbation as well as recovery
(Yamazaki et al., 2020; Kopper and Gensel, 2021). In terms
of mechanisms, the pathological changes of the injured spinal
cord are characterized by traumatic injury, ischemia, chronic
neuroinflammation, and redox imbalance (Anjum et al., 2020;
Alcántar-Garibay et al., 2022). Recently, non-coding RNAs
(ncRNAs), for example, microRNAs (miRNAs) and long non-
coding RNAs (lncRNAs), have been identified as pivotal players
in SCI (Kimura et al., 2021; Liu et al., 2022). Of note, the
knockdown of certain lncRNAs such as TUG1, XIST, and
ZFAS1 has shown a beneficial effect on SCI development
through mouse as well as rat model studies (Chen Y. et al.,
2021; Wu et al., 2021; Zhong et al., 2021), indicating the
functional involvement and preclinical significance of these
ncRNAs in SCI.

Distinct from traditional linear RNAs, circular RNAs
(circRNAs), as a new class of ncRNAs, are more stable, not
easy to degrade, and not affected by RNA exonuclease due
to their unique closed annular structure (Saaoud et al., 2021;
Liu and Chen, 2022). In the functional sense, circRNAs have
been found to regulate transcription, splicing, cytoplasmic
mRNA stability and translation, interference with signaling
pathways, etc. Of interest, circRNAs contain plenty of miRNA
binding sites and thereby act as miRNA sponges, further
counteracting the inhibitory effects of miRNAs on their target
genes and meanwhile upregulating their corresponding target
gene expression (Liu and Chen, 2022; Misir et al., 2022). This
regulatory process involves the competing endogenous RNA
(ceRNA) mechanism. Especially, the translation of circRNAs
can produce some novel isoforms of proteins, which further
determines their clinical significance in human diseases (Wen
et al., 2022).

On the one hand, exosomes, as mediators of cell-to-cell
communication as well as vehicles of circRNAs and other

ncRNAs, are key regulators in specific molecular signaling
(Isaac et al., 2021). On the other hand, circRNAs are one
class of the most abundant components in exosomes (Li et al.,
2021; Jafari et al., 2022). Therefore, exosomal circRNAs attract
much attention from researchers in the context of SCI. In a
similar vein, Han et al. (2022) gave a comprehensive review
about separated/cooperative biological functions of circRNAs
and exosomes, highlighting the potential of these exosomal
circRNAs in disease states. So far, exosomal circRNAs have
been found to participate in tumorigenesis, and cardiovascular
inflammation as well as metabolic disorders through targeting
the corresponding miRNA-mediated axis (Li et al., 2021; Lin
et al., 2021). Even so, the role of exosomal circRNAs in the
injured spinal cord has not been well elucidated, which needs
to be explored further.

For this reason, we mainly focus on circulating exosome-
derived circRNAs in this study, and aim to investigate their
potential role and relevant functions in the context of SCI. To
this end, we utilized rat SCI model and collected exosomes,
procedures and results of which have been well described
in our recently published paper (Li et al., 2023). Based on
this, exosomal circRNAs were obtained, functional enrichment
analyses including kyoto encyclopedia of genes and genomes
(KEGG) pathway and gene ontology (GO) ontology were
performed, and several differentially expressed circRNAs were
confirmed through reverse transcription-polymerase chain
reaction (RT-PCR). Furthermore, the interaction network of
circRNA-miRNA-mRNA would better explain the predicted
functions of exosomal circRNAs in the injured spinal cord based
on the ceRNA mechanism.

Materials and methods

Rat spinal cord injury model
establishment and exosome extraction
and identification

The successful establishment of rat SCI model, the isolation
of blood exosomes, and the identification of exosomes were
detailedly described in our recently published paper (Li et al.,
2023). In brief, six adult female rats were randomly divided
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into two groups, the experimental group (EG) in which SCI
surgery was performed on rats, and the control group (CG) in
which the skin was injured on rats. Both cohorts of rats were
maintained under the same feeding conditions before and after
surgery. After 24 h, blood was collected and exosomes were
extracted by using the density gradient centrifugation. Then,
the classical characteristics of isolated exosomes were verified
through Western blot, electron microscopy, and nanoparticle
tracking analysis (NTA). Related data on this part would be
referred to our previous publication (Li et al., 2023).

Exosomal RNA isolation

According to the manufacturer’s protocol, Trizol
reagent (Thermo Fisher Scientific, Waltham, MA, USA)
was used to obtain high-quality RNA from circulating
exosomes. Concentrations of different RNA samples were
measured through using Nanodrop Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Then
the quantitative control as well as the integrity control
were performed for isolated RNA prior to experiments
in the next step.

In the process of quantitative control, the purity of RNA
was evaluated by using OD260/OD280 values. The final results
would be considered as "Pass", if these OD260/OD280 values are
within the range between 1.8 and 2.1, suggesting isolated RNA
has high quality and can be used further.

Regarding the integrity control, 1% agarose gel (Thermo
Fisher Scientific, Waltham, MA, USA) was utilized to assess the
integrity of isolated RNA in this study.

RNA library construction and RNA
sequencing

Prior to RNA library construction, ribosomal RNA (rRNA)
needs to be completely removed from total RNA. To this
end, NEBNext rRNA Depletion Kit (New England Biolabs,
Ipswich, MA, USA) was used according to the producer’s
protocol. Following this, the RNA library was then constructed
through using NEBNext R© UltraTM II Directional RNA Library
Prep Kit (New England Biolabs, Ipswich, MA, USA) according
to the standard procedures. Furthermore, RNA library was
quality-controlled and then quantified via a BioAnalyzer 2100
system (Agilent Technologies, Santa Clara, CA, USA). In
the end, circRNA sequencing was conducted on an illumina
HiSeq sequencer from Cloud-Seq Biotech (Shanghai, China).
All raw data were uploaded to GEO repository as the
GSE213561 study (GSM6589180; GSM6589181; GSM6589182;
GSM6589183; GSM6589184; GSM6589185), and the link is as
follows: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE213561.

RNA sequencing data analysis

As described in the above part, raw data which
contain original paired-end reads were initially acquired
from Illumina HiSeq 4000 systems (Cloud-Seq Biotech,
Shanghai, China). Through using Cutadapt software,1

3′ adaptor was modified, and low-quality reads were
removed in order to keep high-quality reads for further
analysis (Han et al., 2020). To display relative levels
of these circulating circRNAs, these modified reads
were analyzed. HISAT2 software2 was used to make an
alignment of these pre-selected reads to the human reference
genome. Next, according to gene transfer format (GTF)
files which were obtained from the Ensembl database,3

the expression levels of circRNAs, characterized by
the fragments per kilobase of exon model per million
mapped fragments (FPKM), were calculated via Cuffdiff
software (Trapnell et al., 2010). Following this, specific
fold changes and corresponding P-values were calculated
based on the FPKM index, and differentially expressed
circRNAs from circulating exosomes were eventually
determined.

Moreover, in order to predict their probably involved
pathways and functional processes, KEGG pathway analysis4

and GO analysis5 were performed for circulating upregulated
as well as downregulated circRNAs, respectively (Kanehisa and
Sato, 2020). The value –log10(P-value) was calculated and
presented as the enrichment score. For both KEGG pathway and
GO analysis, fold change > 2 and P-value < 0.05 were taken as
the threshold of the differential expression of these circRNAs.

Determination of differentially
expressed circular RNAs through
reverse transcription-polymerase
chain reaction

Next, we would like to separately verify the top ten
dysregulated circulating circRNAs in SCI rats, which were
revealed by RNA sequencing previously. To this end,
RT-PCR was utilized here to show the relative levels of
these 10 circulating exosomal circRNAs from both group
rats. As mentioned in the above part, Trizol reagent was
used to isolate RNA, and then cDNA was synthesized
by utilizing SuperScriptTM IV First-Strand synthesis kit
(Thermo Fisher Scientific, Waltham, MA, USA). For RT-
PCR process, SYBR Green master mix (CloudSeq, Shanghai,

1 https://cutadapt.readthedocs.io/

2 http://daehwankimlab.github.io/hisat2/

3 http://www.ensembl.org/

4 http://www.genome.jp/kegg

5 http://www.geneontology.org
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China) was additionally employed. Primer 5.0 software
(PREMIER Biosoft, Palo Alto, CA, USA) was used to
design all primer sequences for circRNA targets as well as
the housekeeping gene, i.e., glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). All primers were purchased
from CloudSeq Biotechnology (Shanghai, China). The
primer sequences are shown in Table 1. All raw data were
acquired by QuantStudio 5 Real-Time PCR System (Thermo
Fisher Scientific, Waltham, MA, USA), and further 2−11Ct

method was applied to show the relative expression of these
circulating circRNAs. Given that most of differentially expressed
circRNA are novel, we used their chromosome locations to
name them.

Construction of
circRNA-miRNA-mRNA network

Considering the importance of functional interactions
among circRNAs, mRNAs and miRNAs during the gene
regulation, the upstream as well as the downstream on
the genome of these differential expressed circRNAs
were extended in order to find functional genes near
these circRNAs. To this end, corresponding miRNAs
were predicted through employing miRNA target

prediction software miRanda6 based on these differentially
expressed circRNAs, and then potential mRNAs were
further anticipated by applying Targetscan7 as well
as miRDB8 (Sun et al., 2020). In the end, circRNA-
miRNA-mRNA interaction network was established and
visualized via Cytoscape9 (Zhao et al., 2021), where these
differentially expressed circRNAs from circulating exosomes
were centered.

Statistical analysis

GraphPad Prism 8 software was utilized to make statistical
analyses for these experimental results. Data were shown
as means ± standard deviation (SD) from more than
three statistical independent experiments. To compare the
statistical significances among different groups, t-test of
two independent samples was utilized, respectively. When
P-value < 0.05, the difference was regarded as statistically
significant. Especially, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001,
∗∗∗∗P < 0.0001.

6 http://cbio.mskcc.org/microrna_data/miRanda-aug2010.tar.gz

7 https://www.targetscan.org/vert_80/

8 http://www.mirdb.org/

9 https://cytoscape.org/

TABLE 1 The primer sequences for circular RNA (circRNA) identification.

Genes Sequences

1 chr11:74154652–74159524– Forward CATCTCCTACGCTTGCCTGA

Reverse CCAGAGAAACAAAGTGGCACG

2 chr12:45412398–45412635– Forward GAGACGAACCCAACCTGGTG

Reverse CGTGCCCTCCAAAATTGTACC

3 chr4:208359914–208362182+ Forward ACTGGTGTGAATACTCGGCG

Reverse CTGTATGGGGCAATTCCGGT

4 chr7:137630261–137648924– Forward TCATGGGCAGTGGGATCTTG

Reverse GCAGTGAATAGAGATGCCCGA

5 chr15:20088296–20092102+ Forward TGTGTGAGGCCTTGGTTTGA

Reverse CCACAAGTCCGTATCTTTGGC

6 chr1:175098934–175134845– Forward ACCTGGGCAAGGAATTCACC

Reverse GTGGTACTTGTGAGCCAGGG

7 chr1:175099657–175128203– Forward TCCACTGTGACAAGCTGCAT

Reverse GAATTCCTTGCCCAGGTGGT

8 chr1:175104454–175134845– Forward TTATGATGGGCCACCACCTG

Reverse GTGGTACTTGTGAGCCAGGG

9 chr6:6280974–6281188+ Forward ACTCCTGGAGAACTCGGGAT

Reverse CCAGCTGCTACTTGCTCAGT

10 chr4:225251864–225254087+ Forward GGAGCTGGAGAAGGACTTGG

Reverse CCTCTTGCCATTGTCCGTGA

11 GAPDH Forward GACATGCCGCCTGGAGAAAC

Reverse AGCCCAGGATGCCCTTTAGT
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Results

Expression profile analysis of circular
RNAs derived from circulating
exosomes

The experimental design of this study was shown in
Figure 1. Part data of preliminary work including SCI rat model
establishment and exosome identification were presented in our
recently published paper (Li et al., 2023).

Through enrichment analyses, a total of 709 types of
circRNAs were found to be downregulated whereas 346 kinds
of circRNAs were shown to be upregulated in SCI rats in
comparison with the control rats. In this experiment, three
SCI rats and plus three control rats were included. Through
the normalization as FPKM, the heat map of differentially
expressed circRNAs from circulating exosomes including 15
kinds of downregulated circRNAs and 7 kinds of upregulated
circRNAs was especially visualized (Figure 2A), suggesting
that there exists a significantly different expression pattern of
circulating exosomal circRNAs between SCI rats and the control
rats (P < 0.05). In a similar vein, the volcano plots demonstrated
consistent changes of differentially expressed circRNAs in SCI
rats (Figure 2B). Taken together, these data give the first
impression that some circulating circRNAs display differential
expression in SCI rats.

Enrichment analyses of potentially
upregulated circular RNAs

To further speculate their specific functional activities
and involved signaling pathways in the context of SCI,
both GO analysis and KEGG analysis were next carried out
in this study. Figures 3, 4 together demonstrated the top
enriched GO terms and KEGG pathways for these differentially
expressed cicRNAs. Especially, upregulated circRNAs were
analyzed in Figure 3, and downregulated circRNAs were
analyzed in Figure 4. These results together provide an
overview of these probably involved cellular components,
biological processes, and molecular functions as well as signaling
pathways for differentially expressed circRNAs in SCI rats
(Figures 3, 4), which may offer some meaningful indications for
future research.

The top five enriched biochemical pathways for upregulated
circRNAs were African trypanosomiasis, Malaria, non-small
lung cancer, small cell lung cancer, and purine metabolism,
as demonstrated by KEGG pathway analysis based on located
genes (Figure 3A). On the other hand, GO enrichment
analysis showed that these upregulated circRNAs were
enriched in plenty of biological processes associated with
inflammation, cellular components, and molecular functions.
The top five enriched terms of biological process were oxygen

transport, negative regulation of proteolysis involved in
cellular protein catabolic process, negative regulation of
proteolysis, negative regulation of protein catabolic process,
and negative regulation of proteasomal ubiquitin-dependent
protein catabolic process (Figure 3B). The top four enriched
terms of cellular component were hemoglobin complex,
cytosolic part, cytosol, and cytoplasmic part (Figure 3C).
At last, oxygen transporter activity, oxygen binding, heme
binding, tetrapyrrole binding, and transition metal ion
binding were the top five enriched terms of molecular
function (Figure 3D). Of special interest, the potential
involvement of some circRNAs in tumors may indicate the
potency of circRNA-elicited microenvironment changes in
inflammatory processes.

Enrichment analyses of potentially
downregulated circular RNAs

The top eight enriched biochemical pathways were
GABAergic synapse, ErbB signaling pathway, mRNA
surveillance pathway, T cell receptor signaling pathway,
glutamatergic synapse, thyroid hormone signaling pathway,
axon guidance and RNA transport, as demonstrated by
KEGG pathway analysis based on located genes (Figure 4A).
In addition, GO enrichment analysis showed that these
downregulated circRNAs were enriched in plenty of biological
processes associated with inflammation, cellular components,
and molecular functions. The top five enriched terms of
biological process were transcription from RNA polymerase II
promoter, RNA metabolic process, regulation of transcription,
DNA-templated, and positive regulation of T cell activation
(Figure 4B). The top five enriched terms of cellular component
were SWI/SNF superfamily-type complex, SWI/SNF complex,
proteasome complex, pericentric heterochromatin, and npBAF
complex (Figure 4C). At last, transcription factor binding
transcription factor activity, transcription factor activity,
RNA polymerase II activating transcription factor binding,
protein binding transcription activity, and protein-lysine
N-methyltransferase activity were the top five enriched terms
of molecular function (Figure 4D). In combination with data
for upregulated circRNAs, these bioinformatics data together
suggest there are different pathways and functions involved for
these dysregulated circRNAs.

Verification of differentially expressed
circular RNAs through reverse
transcription-polymerase chain
reaction

As addressed in the above part, several significantly
upregulated and downregulated circRNAs were preliminarily
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FIGURE 1

The flowchart of this study.

FIGURE 2

The expression profile of differentially expressed circular RNAs (circRNAs) in spinal cord injury (SCI) rats is identified. (A) Heat map of
differentially expressed circRNAs from circulating exosomes. (B) Two-dimensional presentation for cluster analysis of differentially expressed
circRNAs from circulating exosomes. Red represents relatively high expression, green represents relatively low expression, and black represents
the average expression. P < 0.05, fold change > 2.0.

selected through RNA sequencing (Figure 2). Later on, the
potential roles of these circulating circRNAs in SCI rats
were predicted via KEGG and GO analyses (Figures 3, 4).

Therefore, we would like to take advantage of qRT-PCR
assay, to verify whether these candidate circRNAs are
significantly dysregulated indeed. It turned out that there
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FIGURE 3

Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and gene ontology (GO) function analysis of upregulated circular RNAs
(circRNAs) from circulating exosomes. (A) KEGG pathway analysis of upregulated circRNAs from circulating exosomes. (B–D) GO function
analysis of upregulated circRNAs from circulating exosomes. (B) Biological process analysis of upregulated circRNAs from circulating exosomes.
(C) Cellular component analysis of upregulated circRNAs from circulating exosomes. (D) Molecular function analysis of upregulated circRNAs
from circulating exosomes.

were a total of ten kinds of differentially expressed circRNAs,
which were further verified by qRT-PCR in this study.
Quantification results displayed that the relative expression of
chr4:208359914–208362182+, chr15:20088296–20092102+,
chr1:175098934– 175134845–, chr1:175099657– 175128203–,
and chr1:175104454– 175134845–, was significantly elevated
in SCI rats in comparison with the control rats (Figure 5A).
By contrast, the relative levels of chr11:74154652– 74159524–,
chr12:45412398– 45412635–, chr7:137630261– 137648924–,
chr6:6280974–6281188+, and chr4:225251864–225254087+
were dramatically diminished in SCI rats compared to the
controls (Figure 5B). Moreover, the detailed information
of these ten candidate circRNAs is summarized in Table 2.
Given that most of differentially expressed circRNA are
novel and the gene symbol of three kinds of circRNA is
the same, we named them according to their chromosome
locations. Relevant predicted pathway information of each

circRNA can be checked through circBase10 (Table 2). These
quantitative results not only provide some promising targets
for future in vivo and in vitro research, but also validate the
expression profile of circulating circRNAs indicated by RNA
sequencing.

Construction of
circRNA-miRNA-mRNA interaction
network to predict functions of
differentially expressed circular RNAs

Based on ceRNA mechanism, we would like to take
advantage of circRNA-miRNA-mRNA interaction network

10 http://www.circbase.org/
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FIGURE 4

Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and gene ontology (GO) function analysis of downregulated circular RNAs
(circRNAs) from circulating exosomes. (A) KEGG pathway analysis of downregulated circRNAs from circulating exosomes. (B–D) GO function
analysis of downregulated circRNAs from circulating exosomes. (B) Biological process analysis of downregulated circRNAs from circulating
exosomes. (C) Cellular component analysis of downregulated circRNAs from circulating exosomes. (D) Molecular function analysis of
downregulated circRNAs from circulating exosomes.

to anticipate potential functions of circRNAs in the injured
spinal cord. As shown in Figure 6, five kinds of upregulated
circRNAs as well as five kinds of downregulated circRNAs
verified by RT-PCR were chosen and centered in this network.
These circRNAs could co-express and interact with 37 miRNAs
which are indicated by red triangles and 145 mRNAs which
are indicated by blue boxes (Figure 6). All these upregulated
circRNAs had four to six target miRNAs, as exemplified by
chr4:208359914–208362182+ which has five target miRNAs
including rno-miR-26b-3p, rno-miR-17-1-3p, rno-miR-
3068-5p, rno-miR-3564, and rno-miR-20b-3p (Figure 6).
In the meanwhile, these downregulated circRNAs such as
chr11:74154652– 74159524–, chr12:45412398– 45412635–,
chr7:137630261– 137648924–, chr6:6280974–6281188+,
and chr4:225251864–225254087+ had three to six target
miRNAs generally (Figure 6). Thus, these bioinformatics
data together imply the potential important functions of the

above-mentioned circulating circRNAs in regulating other
genes.

Discussion

In the current study, bioinformatics analyses of rat
specimens revealed 709 downregulated circRNAs and 346
upregulated circRNAs from circulating exosomes in SCI rats
in comparison with the control rats, and RT-RCR further
confirmed their differential expression. These results together
highlight the potential involvement of exosomal circRNAs in
injured spinal cord.

In fact, there have been plenty of published studies revealing
differentially expressed circRNAs during different stages of
SCI (Qin et al., 2019; Wu et al., 2019; Liu et al., 2020;
Peng et al., 2020). Liu et al. (2020) found that 1101 circRNAs
were upregulated and 897 circRNAs were downregulated at
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FIGURE 5

Differentially expressed circular RNAs (circRNAs) from circulating exosomes are verified by reverse transcription-polymerase chain reaction
(RT-PCR). (A) The relative expression levels of upregulated circRNAs, including chr4:208359914–208362182+, chr15:20088296–20092102+,
chr1:175098934– 175134845–, chr1:175099657– 175128203–, and chr1:175104454–175134845–. (B) The relative expression levels of
downregulated circRNAs, including chr11:74154652– 74159524–, chr12:45412398– 45412635–, chr7:137630261– 137648924–,
chr6:6280974–6281188+, and chr4:225251864–225254087+. ∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗∗ P < 0.0001.

TABLE 2 Basic information of differentially expressed circular RNAs (circRNAs).

Source Position Genomic length Strand Best transcript Gene symbol Catalog Regulation

PMID:
25714049

chr11:74154652–74159524 4,872 – XM_003
751063

Lrch3 Exonic Down

PMID:
25714049

chr12:45412398–45412635 237 – XM_003
751198

Med13l Exonic Down

PMID:
25714049

chr4:208359914–208362182 2,268 + NM_0011
06614

Setd5 Exonic Up

PMID:
25714049

chr7:137630261–137648924 18,663 – NM_13
8832

Slc38al Exonic Down

Novel chr15:20088296–20092102 3,806 + NM_02
1774

Fhit Intronic Up

Novel chr1:175098934–175134845 35,911 – NM_03
3234

Hbb Sense overlapping Up

Novel chr1:175099657–175128203 28,546 – NM_03
3234

Hbb Sense overlapping Up

Novel chr1:175104454–175134845 30,391 – NM_03
3234

Hbb Sense overlapping Up

Novel chr6:6280974–6281188 214 + XM_592846 Loc103
692

Exonic Down

Novel chr4:225251864–225254087 2,223 + – – Intergenic Down

the immediate stage of SCI. Furthermore, they identified
eight out of ten candidate circRNAs through RT-PCR, such
as rno_circRNA_011494 and rno_circRNA_009608, which
displayed different levels of dysregulated expression in SCI
rats in comparison with the control group, suggesting several
possible targets for early intervention of SCI (Liu et al.,

2020). In a similar vein, Wu et al. (2019) displayed a more
broad expression profile of spinal cord-derived circRNAs at
seven time points including immediate and chronic phases.
Of note, they especially focused on exonic circRNA_01477,
and demonstrated silencing of circRNA_01477 ameliorated
astrocyte proliferation and migration through in vitro functional
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FIGURE 6

Potential value of differentially expressed circular RNAs (circRNAs) from circulating exosomes is predicted based on the circRNA-miRNA-mRNA
interaction network. This interaction network is centered by 10 kinds of differentially expressed circRNAs, as indicated by yellow polygons. These
circRNAs could co-express and interact with 37 miRNAs which are indicated by red triangles, and 145 mRNAs which are indicated by blue boxes.

assay. Mechanistically, circRNA_01477 depletion was associated
with significantly reduced miRNA-423-5p expression (Wu
et al., 2019), indicating that circRNA_01477/miR-423-5p may
contribute to SCI progression. Taken together, the important
role of circRNAs in SCI has been well established.

In the functional sense, circRNAs have been extensively
implicated in SCI through multiple mechanisms, as
systematically reviewed by Sámano et al. (2021) recently.
Through SCI mouse as well as rat models, circular RNAs have
been found to regulate proliferation and migration of vascular
endothelial cells, angiogenesis, neuronal cell apoptosis, and
neuroinflammation, based on ceRNA pattern (Zhao et al.,
2020; Chen J. et al., 2021; Xie et al., 2021; Ye et al., 2021).
Among these reported circRNAs, circRNA_014301 showed a

pro-inflammatory effect and a pro-apoptotic property upon
lipopolysaccharide (LPS) stimulation, which could be reversed
by its silencing in PC12 cells (Xie et al., 2021). It suggests the
suppression of circRNA_014301 may be a promising strategy
to control SCI progression. By contrast, circ-HIPK3 was found
to be downregulated in SCI rats and further circ-HIPK3/miR-
558/DPYSL5 axis protects against neuronal cell apoptosis in
injured spinal cord (Zhao et al., 2020). Moreover, Chen Y.
et al. (2021) found another novel circRNA-2960, which could
aggravate inflammatory response and induce apoptosis through
downregulating miRNA-124 at the lesion site. More recently,
Qi et al. (2022) identified circ-Ctnnb1 as a potent regulator of
neuronal injury in SCI through the Wnt/β-catenin signaling
pathway. Collectively, there have been plenty of well-studied
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circRNAs in the context of SCI so far, and these circRNAs
functionally contribute to SCI progression and even recovery.

However, the majority of current mechanistic studies
utilized the spinal cord as the major specimen source and
thereby investigated spinal cord-derived circRNAs after injury
(Liu et al., 2020; Peng et al., 2020; Chen J. et al., 2021), as
discussed in the above part. In addition to the spinal cord
itself, circulating mediators from blood including inflammatory
factors and bioactive lipids are also considered as important
regulators for SCI development (Francos-Quijorna et al., 2017;
David and López-Vales, 2021). On the one hand, sudden
injury of spinal cord could induce inflammation, a complex
response that contributes to secondary damage and even severe
functional loss (Hellenbrand et al., 2021; Liu et al., 2021).
On the other hand, exosomal circRNAs can participate in
multiple inflammatory processes, such as NLRP3 inflammasome
activation (Li M. et al., 2020), macrophage polarization and
inflammation (Song et al., 2022), autoimmune response (Lodde
et al., 2020). Given the importance of circRNAs in inflammation,
we are curious about whether circulating circRNAs contribute
to SCI. However, there are no relevant data yet. Therefore,
our study for the first time addressed the potential value
of circulating exosomal circRNAs in SCI progression. Newly
identified differentially expressed circRNAs would be promising
candidates for early intervention and treatment of SCI.

Of note, we applied enrichment analyses including KEGG
pathway, GO, and interaction network prediction in this
study, which are well established to anticipate potent genes
involved in SCI (Li Z. et al., 2020; Chen Q. et al., 2021). Top
enriched biochemical pathways and GO terms of dysregulated
circRNAs could provide us some meaningful hints for further
mechanistic study. More importantly, the circRNA-miRNA-
mRNA interactive network sheds light on the functional
involvement of circRNAs in SCI development (Peng et al.,
2020; Tong et al., 2021; Wang et al., 2021). Our data
demonstrated these differentially expressed circRNAs could co-
express and interact with 37 miRNAs and 145 mRNAs. Previous
studies have identified several circRNA-miRNA pairs in SCI,
such as circAbca1/miR-135b, circRNA_01477/miR-423-5p, circ-
HIPK3/miR-558 (Wu et al., 2019; Zhao et al., 2020; Wang et al.,
2021). In this study, we also constructed the interaction network,
which was centered by 10 kinds of differentially expressed
circRNAs. These circRNAs could co-express and interact with
37 types of miRNAs, and 145 types of mRNAs. In combination
with the previously published study, these bioinformatics results
together kick off functional research of circulating exosomal
circRNAs in this field.

In the meanwhile, we acknowledge that there exist several
limitations in our study. Even though the expression profile of
circulating circRNAs has been mapped in this study, we did
not go deeper considering any kind of circRNA. Apparently,
in vitro functional assays and pharmacological investigations
are called for further mechanistic exploration. In addition,

concerning differences in circRNAs among species, the clinical
significance of human circRNAs in patients should be clarified.
Furthermore, solid experimental evidence for the interaction
between circRNAs and corresponding miRNAs would bring
new avenues for targeting SCI pathological process.

In conclusion, our data identify several circulating exosomal
circRNAs in SCI rats, which show a differential expression
pattern. These circRNAs are predicted to be involved in different
pathways and functional processes, and thereby contribute to
SCI development, providing some potential targets for future
research on SCI.
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Background: The roles and potential diagnostic value of circRNAs in

intracerebral hemorrhage (ICH) remain elusive.

Methods: This study aims to investigate the expression profiles of circRNAs

by RNA sequencing and RT–PCR in a discovery cohort and an independent

validation cohort. Bioinformatics analysis was performed to identify the

potential functions of circRNA host genes. Machine learning classification

models were used to assess circRNAs as potential biomarkers of ICH.

Results: A total of 125 and 284 differentially expressed circRNAs (fold

change > 1.5 and FDR < 0.05) were found between ICH patients and healthy

controls in the discovery and validation cohorts, respectively. Nine circRNAs

were consistently altered in ICH patients compared to healthy controls. The

combination of the novel circERBB2 and circCHST12 in ICH patients and

healthy controls showed an area under the curve of 0.917 (95% CI: 0.869–

0.965), with a sensitivity of 87.5% and a specificity of 82%. In combination with

ICH risk factors, circRNAs improved the performance in discriminating ICH

patients from healthy controls. Together with hsa_circ_0005505, two novel

circRNAs for differentiating between patients with ICH and healthy controls

showed an AUC of 0.946 (95% CI: 0.910–0.982), with a sensitivity of 89.1%

and a specificity of 86%.
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Conclusion: We provided a transcriptome-wide overview of aberrantly

expressed circRNAs in ICH patients and identified hsa_circ_0005505 and

novel circERBB2 and circCHST12 as potential biomarkers for diagnosing ICH.

KEYWORDS

intracerebral hemorrhage, RNA sequencing, circular RNA, biomarkers, machine
learning algorithms

Introduction

Stroke causes high levels of mortality and disability
globally. Intracerebral hemorrhage (ICH) is a deadly stroke
subtype with an estimated annual incidence of 16 per 100,000
persons worldwide (Wilkinson et al., 2018). ICH accounts for
approximately 23.8% of stroke cases in China, compared with
Western countries, where it accounts for 10–15% of stroke cases,
causing a median fatality ratio of 40.4% per month (Qureshi
et al., 2009; Benjamin et al., 2017). The diagnosis of stroke
is often made with computed tomography (CT) or magnetic
resonance imaging (MRI), and although most patients are
hospitalized with typical neurological symptoms, it is difficult
to distinguish ICH from ischemic stroke (IS) in the super acute
period (Hankey, 2017). Thus, identifying potential biomarkers
for the early prediction and diagnosis of ICH is important.

Non-coding RNAs (ncRNAs) have been extensively studied
in the pathophysiology of cerebrovascular diseases (Weng
et al., 2022). Changes in RNA levels during stroke have the
potential to aid stroke diagnosis and provide insight into
stroke diagnosis and management (Montaner et al., 2020).
Emerging evidence has revealed that ncRNA expression profiles
are altered in the peripheral blood of patients with ICH
(Kim et al., 2019; Li et al., 2019; Cheng et al., 2020).
CircRNAs are a novel class of ncRNAs that are produced
in eukaryotic cells during posttranscriptional processes; these
covalently closed RNAs lack a free 3′ or 5′ end and are
resistant to exonuclease digestion (Kristensen et al., 2019). Thus,
circRNAs are promising diagnostic and prognostic biomarkers
for many human diseases because of their stability, specificity
and abundance in human blood (Jeck and Sharpless, 2014;
Zhang et al., 2018). Growing evidence has demonstrated that
circRNAs are implicated in a variety of pathological conditions,
including coronary artery disease (Cardona-Monzonis et al.,
2020), acute ischemic stroke (Liu Y. et al., 2022) and cancers
(Kristensen et al., 2022). Moreover, the expression of circRNAs
was found to be significantly altered in IS (Tiedt et al., 2017;
Dong et al., 2020; Li et al., 2020; Lu et al., 2020; Ostolaza
et al., 2020; Zuo et al., 2020), and these studies implied that
aberrantly expressed circRNAs may be novel biomarkers for
IS diagnosis and prognosis. Our previous study revealed that
circRNA profiles were significantly altered in hypertensive
ICH patients compared to hypertensive subjects without

ICH and found that hsa_circ_0001240, hsa_circ_0001947 and
hsa_circ_0001386 were potential biomarkers for predicting and
diagnosing hypertensive ICH (Bai et al., 2021). In addition,
circRNA expression is significantly altered in rat brain tissue
after ICH (Dou et al., 2020; Zhong et al., 2020), indicating
that circRNAs are novel clinical biomarkers for ICH. However,
comprehensive circRNA expression profiles and their potential
diagnostic value in the peripheral blood of ICH patients remain
elusive.

Artificial intelligence techniques such as machine learning
tools have been increasingly used in precision diagnosis
(Chang et al., 2021). Machine learning algorithms are artificial
intelligence techniques used to select the best model from a set
of alternatives to fit a set of observations (Li, 2018). Machine
learning has remained a fundamental and indispensable tool due
to its efficacy and efficiency in both feature extraction of relevant
biomarkers and the classification of samples as validation of the
discovered biomarkers (Ledesma et al., 2021).

In this study, we investigated the expression profile of
circRNAs in peripheral blood cells from patients with ICH,
patients with IS and healthy controls by RNA sequencing in
the discovery and validation cohorts. The significantly altered
circRNA host genes were examined with Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses to characterize the potential functions. We
further validated the altered circRNAs by quantitative reverse
transcription-PCR (RT–PCR) analysis of all samples. Logistic
regression models were performed to identify whether circRNAs
were independent factors for ICH. Additionally, we performed
Spearman’s correlation analysis to investigate the correlation
between ICH risk factors and candidate circRNAs. Furthermore,
machine learning classification algorithms and ROC curves were
used to assess circRNAs as potential biomarkers of ICH.

Materials and methods

Study design and sample collection

We recruited 64 patients with ICH, 59 patients with IS
and 50 sex- and age-matched healthy controls between 2014
and 2019 from two individual cohorts for RNA sequencing.
In the discovery cohort, 44 patients with ICH, 43 patients
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with IS and 31 healthy controls were enrolled from Cangzhou
Central Hospital between 2014 and 2017. In the validation
cohort, 20 patients with ICH were enrolled from the Affiliated
Hospital of Hebei University, 16 patients with IS were enrolled
from General Hospital of Ningxia Medical University, and
19 healthy control subjects were enrolled from the Tsinghua
University Hospital between 2017 and 2019. Patients with
ICH were diagnosed by professional neurologists based on
their histories and examinations, and ICH was confirmed by
CT or MRI. Healthy controls without a history of stroke
or cardiovascular events were selected. The demographic and
clinical characteristics of the study population were obtained
through a face-to-face survey and by checking hospital records
or medical examination records. The exclusion criteria included
autoimmune diseases, cardiac disease, liver diseases, renal
diseases, cancer or a history of stroke and cerebral infarction
with hemorrhagic transformation. This study was reviewed and
approved by the Human Ethics Committee, Fuwai Hospital
(Approval No. 2016-732), and conducted in accordance with
the principles of Good Clinical Practice and the Declaration
of Helsinki. Written informed consent was obtained from all
participants or their legal proxies.

RNA isolation and sequencing

RNA was isolated from human peripheral blood
and used to perform RNA sequencing by Annoroad

Gene Technology Company Ltd. (Beijing, China), as
previously described (Bai et al., 2021). Total RNA from all
samples was isolated with an RNeasy Mini kit (QIAGEN).
An Agilent 2100 RNA Nano 6000 Assay Kit (Agilent
Technologies, CA, USA) was used to measure RNA
integrity. The libraries were constructed using an RNA
integrity number ≥7.5 and a 28S:18S rRNA ratio ≥ 1.8.
Ribo-ZeroTM Gold Kits (Illumina, San Diego, CA, USA)
were utilized to eliminate all ribosomal RNAs from total
RNA. RNase R (Epicenter, Madison, WI, USA) digestion
was used to eliminate linear RNAs. The purified circRNAs
were subjected to the NEB Next Ultra Directional RNA
Library Prep Kit for Illumina (NEB, Ipswich, USA)
according to the manufacturer’s instructions. The obtained
libraries were subjected to paired-end sequencing with
150 bp reads performed on the Illumina PE150 platform.
The sequence depth was approximately 15G. The raw
sequencing data were analyzed using Q30 statistics from
FastQC, and clean reads were obtained by removing
adaptor-polluted and low-quality reads. The RNA-seq
data have been deposited into the Genome Sequence
Archive (Chen T. et al., 2021) in the National Genomics
Data Center (CNCB-NGDC Members and Partners,
2022), China National Center for Bioinformation/Beijing
Institute of Genomics, Chinese Academy of Sciences (GSA-
Human: HRA001807), which are publicly accessible at
https://ngdc.cncb.ac.cn/gsa-human.

TABLE 1 Demographics and characteristics of the discovery and validation cohorts.

Discovery cohort Validation cohort

Control
(n = 31)

ICH
(n = 44)

IS
(n = 43)

P-value Control
(n = 19)

ICH
(n = 20)

IS
(n = 16)

P-value

Age, y 58.9± 5.3 55.9± 7.2 57.4± 5.5 0.09 57.2± 7.0 56.7± 7.1 57.2± 7.7 0.86
Men,% 17 (54.8) 24 (54.5) 21 (48.8) 0.83 10 (52.6) 10 (50) 8 (50) 0.98
BMI, kg/m2 24.8± 2.9 26.1± 6.6 27.6± 6.9 0.09 24.9± 2.4 25.8± 6.8 25.0± 2.6 0.90
SBP, mmHg 125.7± 10.1 137.4± 17.6 138.6± 13.6 < 0.001 120.3± 9.7 171.2± 25.7 150.6± 19.4 < 0.001
DBP, mmHg 79.2± 4.3 87.9± 10.7 91.8± 16.6 < 0.001 77.6± 9.1 103.7± 13.3 89.3± 13.9 < 0.001
HDL-C, mmol/L 1.4± 0.3 1.1± 0.3 1.1± 0.2 < 0.001 1.3± 0.3 0.9± 0.5 1.0± 0.3 0.007
LDL-C, mmol/L 2.9± 0.7 2.4± 0.8 2.3± 0.8 < 0.001 2.9± 0.9 2.8± 0.8 2.7± 0.9 0.82
TC, mmol/L 5.5± 1.0 4.5± 1.0 4.5± 1.0 < 0.001 4.5± 1.0 4.3± 0.9 4.9± 1.3 0.23
TG, mmol/L 1.4± 0.8 1.5± 0.9 1.6± 0.6 0.41 1.2± 0.5 1.4± 0.6 2.3± 1.5 0.004
GLU, mmol/L 6.0± 1.8 6.3± 1.6 5.9± 1.3 0.17 5.3± 0.6 5.5± 1.7 6.0± 1.1 0.21
Smoking,% 0.95 0.92
Never 19 (61.3) 28 (63.7) 26 (60.5) 13 (68.4) 14 (70) 11 (68.7)
Former 4 (12.9) 5 (13.6) 8 (18.6) 3 (15.8) 2 (10) 2 (12.5)
Current 8 (25.8) 11 (22.7) 9 (20.9) 3 (15.8) 4 (20) 3 (18.8)
Drinking,% 0.98 0.96
Non-drinker 20 (64.5) 28 (63.6) 27 (62.8) 11 (57.9) 12 (60) 10 (62.5)
Drinker 11 (35.5) 16 (36.4) 16 (37.2) 8 (42.1) 8 (40) 6 (37.5)

Data are expressed as the mean± standard deviation or n (%).
BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; TC, Total cholesterol; TG, Triacylglycerol; HDL-C, High-density lipoprotein cholesterol; LDL-C,
Low-density lipoprotein cholesterol; GLU, Glucose; ICH, Intracerebral hemorrhage; IS, ischemic stroke.
Statistical comparisons for percentages were performed using the chi-square test. Comparisons between means or medians were performed using one-way ANOVA.
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Differential expression analysis

The differential expression circRNA analysis was performed
as previously described (Bai et al., 2021). Briefly, CIRI2 (Gao
et al., 2018) was used to detect paired chiastic clipping signals
according to the mapping of reads. The reads were mapped
to the reference genome1 using the BWA-MEM method. Back-
spliced junction reads were integrated and measured by spliced
reads per billion mapping to quantify circRNA. Differential
expression analysis was performed using the DESeq2 R package
(Wang et al., 2010) and edgeR (Robinson et al., 2010).
Fold differences of each circRNA were calculated to identify
differentially expressed circRNAs between ICH patients and
healthy controls (or IS patients) by Student’s t-test. A P
value was assigned to each circRNA and adjusted by multiple
testing using the Benjamini–Hochberg method for controlling
the false discovery rate (FDR). The differentially expressed
circRNAs were defined as those with a fold change ≥ 1.5 and
FDR < 0.05.

Bioinformatics analysis

Volcano plots and hierarchical clustering using heatmaps
were generated based on the normalized values of differentially
expressed genes using the R package. Venn diagrams were
used to present the consistently differentially expressed genes
in the discovery and validation cohorts. GO enrichment and
KEGG analyses were performed to determine the biological
functions and pathways of differentially expressed circRNA host
genes. P values were calculated using Fisher’s exact test with the
hypergeometric algorithm.

Quantitative real-time polymerase
chain reaction validation

To validate the expression levels of differentially expressed
circRNAs identified by RNA-seq, the candidate circRNAs
were selected for further validation of expression levels by
quantitative RT–PCR. Total RNA was incubated with RNase R
or RNase-free water as a control at 37◦C for 30 min to purify
the circRNAs. After incubation, cDNA synthesis was completed
using 1 µg of total RNA and a Transcriptor First Stand
cDNA Synthesis Kit (Takara, Dalian, China), and Taq premix
(Takara, Dalian, China) was added to start PCR according
to the manufacturer’s protocol. The products were used for
Sanger sequencing. Quantitative RT–PCR was performed using
SYBR Master Mix (Yeasen, Shanghai, China) on the ViiA
7 Real-time PCR System (Applied Biosystems) according to

1 http://www.ensembl.org/index.html

the manufacturer’s instructions. The circRNA primers were
designed to overlap the back-spliced junction using the NCBI
Primer-BLAST website.2 The primers used in this study are
listed in Supplementary Table 7. The relative expression
of the corresponding genes was quantified and normalized
to that of GAPDH.

Performance evaluation of candidate
biomarkers with classification
algorithms

To evaluate the applicable biomarkers for ICH, we used
mutual information (MI) (Blokh and Stambler, 2017) and
random forest (RF) algorithms (Ambale-Venkatesh et al., 2017;
Kawakami et al., 2019) to screen circRNA biomarker signatures
according to the expression levels in all samples. To assess the
diagnostic values of the specific circRNAs, we used six machine
learning classification algorithms (Chang et al., 2021; Chen Y.
et al., 2021; Liu D. et al., 2022), support vector machine (SVM),
RF, K-nearest neighbor (KNN), logistic regression (LR), decision
tree (DT) and Gaussian naive Bayes (GNB), to discriminate ICH
patients from healthy controls or IS patients according to the
expression levels of circRNAs by Python packages. To ensure the
stability and accuracy of the classifiers, we used 10-fold cross-
validation; 90% of the data were used for the training set, and
10% were used for the test set. We calculated five measurements,
including sensitivity, specificity, accuracy, positive predictive
value (PPV), and negative predictive value (NPV) (Shu et al.,
2020). The ROC curve was illustrated based on sensitivity
and 1-specificity scores. For each area under the curve (AUC)
value, the 95% CI was computed with 1000 stratified bootstrap
replicates.

Statistical analysis

Statistical analysis was performed using SPSS 21.0 (IBM
Corp., NY, USA). The sample distribution was determined
using the Kolmogorov–Smirnov normality test. For parametric
data, the two-tailed unpaired Student’s t-test was used
to determine differences between two groups. The data
are represented as the means ± standard deviations or
medians (interquartile range). Statistical comparisons for
percentages were performed using chi-square statistical analysis.
In the RNA sequencing analysis, differentially expressed
RNAs were selected if there were significant differences
(fold change > 1.5 and FDR < 0.05) between the ICH
patients and healthy controls (or IS patients) using Student’s
t-test. Logistic regression models were used to evaluate

2 https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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FIGURE 1

Differentially expressed circRNAs between intracerebral hemorrhage (ICH) patients and healthy controls in the discovery and validation cohorts.
(A,B) The volcano plot of circRNA expression profiles in ICH patients and controls (fold change ≥ 1.5 and FDR < 0.05) in the discovery (n = 44
vs. 31) (A) and validation (n = 20 vs. 19) (B) cohorts. Red dots represent upregulated genes, and blue dots represent downregulated genes.
(C) The bar diagram shows the circRNA distribution in the chromosomes between 44 ICH patients and 31 healthy controls in the discovery
cohort. The red columns represent upregulated circRNAs, while blue columns represent downregulated circRNAs. (D) The bar diagram shows
the circRNA distribution in the chromosomes between 20 ICH patients and 19 healthy controls in the validation cohort. The red columns
represent upregulated circRNAs, while blue columns represent downregulated circRNAs. (E) The bar diagram and pie chart show the
differentially expressed circRNA distribution in the chromosome region (exonic, intronic, intergenic, alternate exon, overlapping exon and
antisense) in 44 ICH patients compared with 31 healthy controls in the discovery cohort. (F) The bar diagram and pie chart show the
differentially expressed circRNA distribution in the chromosome region (exonic, intronic, intergenic, alternate exon, overlapping exon and
antisense) in 20 ICH patients compared with 19 healthy controls in the validation cohort.

whether circRNAs were independent predictive factors for
ICH. Spearman’s correlation analysis was performed to
investigate the correlation between ICH risk factors and
circRNAs. The net reclassification index (NRI) and integrated

discrimination improvement (IDI) were calculated to evaluate
the effect of the candidate biomarkers as previously described
(Wu et al., 2020). P < 0.05 was considered indicative of
statistical significance.
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Results

CircRNA expression profiles were
significantly altered in intracerebral
hemorrhage patients

The characteristics and demographics of the cohorts
of ICH patients, IS patients and healthy controls are
shown in Table 1. In RNA sequencing, the significantly
differentially expressed circRNAs were determined by a
fold change > 1.5 and FDR < 0.05 by DESeq2 methods.
In total, 125 circRNAs were significantly altered between

patients with ICH and controls, including 63 upregulated
circRNAs and 62 downregulated circRNAs in the discovery
cohort (Figure 1A and Supplementary Table 1), and 284
circRNAs were significantly altered between patients with
ICH and healthy controls in the validation cohort, including
218 upregulated circRNAs and 66 downregulated circRNAs
(Figure 1B and Supplementary Table 2). Additionally, the
circRNAs were distributed across all chromosomes in both
cohorts (Figures 1C,D). There were 107 circRNAs produced
by classic exon back-splicing, 3 alternate exons, 5 introns,
7 overlapping exons, and 3 intergenic circRNAs detected
between ICH patients and controls in the discovery cohort

FIGURE 2

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of significantly altered circRNA host genes.
(A) The top 10 biological process terms from GO enrichment analysis of differentially expressed circRNA host genes. (B) The top 10 KEGG
pathway analyses of differentially expressed circRNA host genes.
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(Figure 1E), and 240 circRNAs produced by classic exon
back-splicing, 13 alternate exons, 14 introns, 13 overlapping
exons, 3 antisense and 1 intergenic circRNA were detected

between ICH patients and controls in the validation cohort
(Figure 1F). Moreover, we observed that 302 and 395 circRNAs
were significantly altered between ICH and IS patients in the

FIGURE 3

Consistently differentially expressed circRNAs between intracerebral hemorrhage (ICH) and controls or hypertension (HTN) in the discovery and
validation cohorts by DESeq2 and edgeR methods. (A) Venn diagram showing consistently altered circRNAs (fold change ≥ 1.5 and FDR < 0.05)
in ICH patients compared with controls in the discovery (n = 44 vs. 31) and validation cohorts (n = 20 vs. 19) with both the DESeq2 and edgeR
methods. (B) Venn diagram showing consistently altered circRNAs (fold change ≥ 1.5 and FDR < 0.05) in ICH compared with HTN in the
discovery (n = 44 vs. 42) and validation cohorts (n = 20 vs. 18) with both the DESeq2 and edgeR methods. (C) Venn diagram showing the
common altered circRNAs (fold change ≥ 1.5 and FDR < 0.05) in the ICH patients compared with healthy controls and ICH compared with HTN
in both cohorts. Hierarchical clustering of nine consistently differentially expressed circRNAs between ICH patients and healthy controls in the
discovery (n = 44 vs. 31) (D) and validation (n = 20 vs. 19) (E) cohorts. Blue represents downregulated circRNAs, red represents upregulated
circRNAs, and white represents no changes in circRNA expression. The column represents a sample, and each row represents a single circRNA.
The red color label represents the ICH group, and the green color label represents the healthy control group. The label color scales indicate the
circRNA relative expression levels in the ICH and control groups.

TABLE 2 The consistently altered circRNAs in intracerebral hemorrhage (ICH) patients compared with controls.

Location circRNA ID Discovery Validation Up/Down Host gene Type

FC FDR FC FDR

chr7:48541721-48542148: + hsa_circ_0001707 3.038 2.4E-04 3.817 2.1E-09 up Null Intronic

chrX:147733519-147744289: + hsa_circ_0091669 1.827 0.005 2.138 1.4E-06 up AFF2 Exonic

chr12:66597490-66622150: + hsa_circ_0005505 2.903 0.007 7.329 2.8E-10 up IRAK3 Exonic

chr5:49694940-49707217: – hsa_circ_0001481 1.850 0.012 2.803 3.9E-06 up EMB Exonic

chr12:94562928-94580249: + hsa_circ_0027725 2.179 0.037 2.281 4.9E-07 up PLXNC1 Exonic

chr7:2477438-2483381: + circCHST12 0.334 0.007 0.395 5.5E-07 down CHST12 Alternate exon

chr19:18648410-18649246: – hsa_circ_0000914 0.510 0.010 0.595 4.6E-06 down FKBP8 Exonic

chr17:37866065-37872192: + circERBB2 0.278 0.020 0.184 1.7E-10 down ERBB2 Exonic

chr19:48185232-48198731: + circGLTSCR1 0.183 0.037 0.275 1.3E-05 down GLTSCR1 Exonic

FC, fold change; FDR, false discovery rate.
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discovery and validation cohorts, respectively (Supplementary
Figures 1A,B).

Gene ontology enrichment and kyoto
encyclopedia of genes and genomes
pathway analyses of circRNA host
genes

To assess the potential regulatory mechanism of
differentially expressed circRNAs in host gene transcription
after ICH, we performed GO and KEGG pathway analyses
of the host genes of the altered circRNAs in the two cohorts.
The top GO terms in the biological process category indicated
that the host genes were involved in the regulation of GTPase
activity, covalent chromatin modification, histone modification,
regulation of dendrite development and lipid phosphorylation
(Figure 2A). KEGG pathway analysis showed that the host
genes were mainly involved in the MAPK signaling network,
B-cell receptor signaling, ERBB receptor signaling network,
thyroid hormone synthesis and lysine degradation (Figure 2B).

Consistently altered circRNAs in the
discovery and validation cohorts

To elucidate the underlying mechanism by which the
circRNAs affected ICH more specifically, we screened the
common circRNAs in the two cohorts by both DESeq2 and
edgeR methods (Supplementary Tables 1–4) and found that
9 circRNAs overlapped between the ICH patients and controls
(Figure 3A). Similarly, there were 4 consistent circRNAs
between ICH and hypertension (HTN) in our previous study
(Figure 3B) (Bai et al., 2021); 2 of them were consistently altered
in the two comparison groups, including hsa_circ_0027725 and
a novel circRNA (host gene ERBB2) we named circERBB2
(Figure 3C).

The nine consistently altered circRNAs included five
upregulated circRNAs and four downregulated circRNAs. The
five upregulated circRNAs in ICH were hsa_circ_0001707,
hsa_circ_0091669, hsa_circ_0005505, hsa_circ_0001481 and
hsa_circ_0027725; the 4 downregulated circRNAs in ICH were
hsa_circ_0000914 and three novel circRNAs that we named
according to their host genes, circCHST12 (host gene CHST12),
circERBB2 and circGLTSCR1 (host gene GLTSCR1) (Table 2).
The 9 circRNA expression variants are shown with hierarchical
clustering heatmaps in the discovery and validation cohorts
(Figures 3D,E), which indicated that the circRNA expression
profiles in ICH patients were distinct from those in healthy
control groups.

Likewise, we detected 20 consistent circRNAs
between ICH and IS patients in the two cohorts by
both DESeq2 and edgeR methods (Supplementary

Figure 1C). Notably, 3 circRNAs were in the
intersection between ICH versus controls (9 consistent
circRNAs) and ICH versus IS (20 consistent circRNAs),
including circERBB2, circCHST12 and hsa_circ_0005505
(Supplementary Figure 1D).

Investigation of the nine circRNAs as
independent predictors of
intracerebral hemorrhage

To further explore the potential value of candidate
circRNAs as ICH biomarkers, logistic regression models
were performed to identify whether nine circRNAs could
be predictors of ICH occurrence. As shown in Table 3,
after adjusting for age, sex, body mass index (BMI),
systolic blood pressure (SBP), diastolic blood pressure
(DBP), total cholesterol (TC), triacylglycerol (TG), high-
density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C), smoking and alcohol
consumption, per unit of increase in hsa_circ_0001707,
hsa_circ_0091669, hsa_circ_0005505, hsa_circ_0001481
and hsa_circ_0027725, the odds ratios for ICH occurrence
were 2.23 (95% CI: 1.294–3.842; P = 0.004), 3.372 (95%
CI: 1.665–6.867; P = 0.001), 2.216 (95% CI: 1.363–3.316;
P = 0.001), 4.750 (95% CI: 2.054–10.985; P < 0.001)
and 2.156 (95% CI: 1.170–3.974; P = 0.014), respectively.
In addition, the adjusted ORs were 0.009 (95% CI:
0.001–0.097; P < 0.001), 0.160 (95% CI: 0.051–0.507;
P = 0.002), 0.019 (95% CI: 0.002–0.157; P < 0.001) and
0.122 (95% CI: 0.037–0.410; P = 0.001) per unit increase in
circCHST12, hsa_circ_0000914, circERBB2 and circGLTSCR1,
respectively.

TABLE 3 Logistic regression analysis to identify circRNAs as
independent predictive factors of intracerebral hemorrhage (ICH).

circRNA ID Adjusted risk factors Up/DownHost gene

OR 95% CI P-value

hsa_circ_0001707 2.230 1.294–3.842 0.004 up Null

hsa_circ_0091669 3.372 1.655–6.867 0.001 up AFF2

hsa_circ_0005505 2.216 1.363–3.316 0.001 up IRAK3

hsa_circ_0001481 4.750 2.054–10.985 < 0.001 up EMB

hsa_circ_0027725 2.156 1.170–3.974 0.014 up PLXNC1

circCHST12 0.009 0.001–0.097 < 0.001 down CHST12

hsa_circ_0000914 0.160 0.051–0.507 0.002 down FKBP8

circERBB2 0.019 0.002–0.157 < 0.001 down ERBB2

circGLTSCR1 0.122 0.037–0.041 0.001 down GLTSCR1

Risk factors included SBP, systolic blood pressure; DBP, diastolic blood pressure;
TG, triacylglycerol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol, smoking and alcohol consumption; ICH,
intracerebral hemorrhage; OR, odds ratio; CI, confidence interval.
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Validation of the differentially
expressed circRNAs by quantitative
real-time polymerase chain reaction

To verify the novel circRNAs circERBB2 and circCHST12
are really circular form, we first blasted the sequences and
confirmed the back-splice junction sites and assayed them by
RT–PCR with divergent primers. Next, Sanger sequencing was
performed to illustrate the junction site. The results showed
that circERBB2, located at chr17:37866065-37872192 (genomic
length: 6127 bp, spliced sequence length: 939 bp), was derived
from exons 9–16 of the ERBB2 gene (Figure 4A). circCHST12,
located at chr7:2477438-2483381 (genomic length: 5943 bp,
spliced sequence length: 5943 bp), was derived from exon 1
and partial exon 2 of the CHST12 gene (Figure 4B). RT–qPCR
analysis of total RNA after RNase R or control treatment
indicated that circERBB2 and circCHST12 were resistant, while

ERBB2, CHST12 and GAPDH mRNA transcripts were degraded
(Figures 4C,D). These data established that circERBB2 and
circCHST12 are two bona fide circRNAs.

Next, to confirm the expression of circRNAs in the high-
throughput results, we selected three upregulated circRNAs
(hsa_circ_0001707, hsa_circ_0005505 and hsa_circ_0027725)
and three downregulated circRNAs (hsa_circ_0000914,
circERBB2 and circCHST12) of the above consistently altered
circRNAs for further validation by RT–qPCR in all samples. The
expression levels of these circRNAs were consistent with the
RNA sequencing results, including three upregulated circRNAs
and three downregulated circRNAs that were significantly
altered in patients with ICH compared with control subjects
(Figures 5A–F). Moreover, the expression levels of circERBB2,
circCHST12 and hsa_circ_0005505 were also significantly
altered between ICH and IS patients (Figures 5G–I). These
results were consistent with the levels obtained by RNA
sequencing, supporting the accuracy and reliability of the data.

FIGURE 4

Identification of novel circular RNAs circERBB2 and circCHST12. (A,B) Schematic diagrams and Sanger sequencing illustrated the back-splice
junction site of circERBB2 (A) and circCHST12 (B). (C) RT–qPCR showed the expression of GAPDH, ERBB2, circERBB2, CHST12 and circCHST12
administered RNase R or mock control (n = 6 per group). (D) Representative agarose gel pictures showing the relative expression of GAPDH,
ERBB2, circERBB2, CHST12, and circCHST12 administered RNase R or mock control. Data are presented as the mean ± standard deviation. ∗∗∗

p < 0.001. ns: no significant. Statistical significance was assessed using unpaired two-tailed Student’s t-test.
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FIGURE 5

Validation of circRNA expression levels by quantitative real-time polymerase chain reaction (RT–qPCR). (A–F) RT–qPCR results validated the
expression levels of candidate circRNAs in all samples between 64 intracerebral hemorrhage (ICH) patients and 50 healthy controls.
(A) hsa_circ_0005505, (B) hsa_circ_0027725, (C) hsa_circ_0001707, (D) hsa_circ_0000914, (E) circERBB2 and (F) circCHST12. (G–I) RT–qPCR
results validated the expression levels of hsa_circ_0005505 (G), circERBB2 (H) and circCHST12 (I) between 64 ICH patients and 59 ischemic
stroke (IS) patients. The data are presented as the median (interquartile range). ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001. Statistical significance was assessed
using the Mann–Whitney U test.

Performance evaluation of the
candidate circRNAs with classification
algorithms

To evaluate applicable biomarkers for ICH, we used mutual
information (MI) and random forest (RF) algorithms to screen
circRNA marker signatures according to the expression levels in

all samples. We obtained the signature of the top 10 circRNAs in
the two algorithms and found 4 circRNAs [hsa_circ_0005806,
circERBB2, circCHST12, circFBRS (host gene FBRS)] in the
intersection (Supplementary Table 5). However, there was
no significant difference in hsa_circ_0005806 or circFBRS
expression levels between the ICH patients and controls in
the validation cohort (Supplementary Figure 2). Finally, we
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focused on evaluating the diagnostic value of circERBB2
and circCHST12 as potential ICH biomarkers in further
statistical analysis.

Furthermore, six different classifier algorithms were
executed to assess the validity of the candidate circRNAs.
By using 10-fold cross-validation, the average performance
measurement values of the candidate circRNAs in ICH were
computed and are summarized in Table 4. The six machine
learning classifiers based on test accuracies and AUCs in the
training set and validation set are presented in Figure 6. The
RF provides greater accuracy values of 0.995 and 0.910 than the
other five classifiers in the training and test sets between ICH
and controls, respectively (Figures 6A,B). We also evaluated
the performance of the circERBB2 and circCHST12 signatures
for discriminating ICH from IS patients and observed that the
RF had the highest value of 0.989 in the training set and the
SVM had the highest value of 0.779 in the test set (Figures 6C,D
and Supplementary Table 6). These results indicate that the
combination of the circERBB2 and circCHST12 signatures is
capable of identifying ICH with high accuracy according to
expression levels.

Correlation of the circERBB2 and
circCHST12 expression levels with
clinical characteristics

Additionally, we performed Spearman’s correlation analysis
to test the correlation of the expression levels of circCHST12

and circERBB2 with ICH patient clinical characteristics. The
results showed that the circERBB2 expression levels positively
correlated with HDL-C and negatively correlated with SBP,
DBP and alcohol consumption in ICH patients (P < 0.05);
the circCHST12 expression levels positively correlated with
LDL-C and negatively correlated with SBP, DBP, glucose, white
blood cells and alcohol consumption (P < 0.05) (Table 5).
These results indicated that circERBB2 and circCHST12 may be
involved in the pathogenesis of ICH.

Evaluation of the diagnostic value of
circERBB2 and circCHST12 in
intracerebral hemorrhage patients

Receiver operating curve (ROC) analysis was performed
to explore the potential diagnostic value of circERBB2 and
circCHST12. The signatures of circERBB2 for differentiating
between patients with ICH and healthy control subjects showed
an AUC of 0.883 (95% CI: 0.811–0.937) with a sensitivity of
68.2% and a specificity of 92%; the signatures of circCHST12
showed an AUC of 0.838 (95% CI: 0.769–0.908) with a sensitivity
of 93% and a specificity of 71.6% (Figure 7A). The combination
of circERBB2 and circCHST12 for differentiating between
patients with ICH and healthy controls showed an AUC of
0.917 (95% CI: 0.869–0.965), with a sensitivity of 87.5% and a
specificity of 82% (Figure 7A). We next performed a multifactor
risk logistic regression model, the combination of circERBB2
and circCHST12 together with the risk factors (age, sex, BMI,

TABLE 4 Classification performance for the two-circRNA signatures between intracerebral hemorrhage (ICH) patients.

Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%) AUC

RF

Training set 100 100 100 100 100 0.995(0.983–1)

Test set 80.83 74.81 78.48 80.10 77.48 0.910(0.857–0.963)

KNN

Training set 91.71 81.32 87.26 86.66 88.33 0.938(0.894–0.982)

Test set 80.56 69.63 76.89 78.08 72.62 0.827(0.753–0.901)

DT

Training set 100 100 100 100 100 0.995(0.983–1)

Test set 77.03 69.81 73.26 78.21 66.48 0.734(0.644–0.824)

LR

Training set 86.35 76.82 82.28 83.16 80.99 0.906(0.852–0.960)

Test set 84.03 72.64 80.38 80.62 76.33 0.883(0.822–0.944)

GNB

Training set 90.90 65.11 79.79 77.48 84.41 0.897(0.840–0.954)

Test set 90.14 63.98 79.62 77.46 82.17 0.882(0.821–0.943)

SVM

Training set 93.25 64.25 80.75 77.51 87.90 0.902(0.846–0.957)

Test set 88.89 63.98 79.62 76.78 85.83 0.885(0.825–0.945)

ICH, intracerebral hemorrhage; RF, random forest; KNN, K-nearest neighbor; LR, logistic regression; DT, decision tree; GNB, Gaussian naive Bayes; SVM, support vector machine; PPV,
positive predictive value; NPV, negative predictive value; AUC, area under the curve.
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FIGURE 6

Receiver operating curve (ROC) plot of the six classifier performances based on AUC in the training set and test set. (A,B) ROC plot of the six
classifier performances based on AUC in the training set (A) and test set (B) for discriminating intracerebral hemorrhage (ICH) from healthy
controls. (C,D) ROC plot of the six classifier performances based on AUC in the training set (C) and test set (D) for discriminating ICH from
ischemic stroke (IS) patients. SVM, support vector machine; RF, random forest; KNN, K-nearest neighbor; LR, logistic regression; DT, decision
tree; GNB, Gaussian naive Bayes.

SBP, DBP, TC, TG, HDL-C, LDL-C, smoking and alcohol
consumption) showed that the AUC was increased to 0.980 (95%
CI: 0.959–1), the sensitivity was 93.8%, and the specificity was
96% (Figure 7B). The addition of circERBB2 and circCHST12
to the previously known risk factors improved the predictive
ability, with an NRI of 20.3% and IDI of 23.7% (P < 0.001). The
AUC of circERBB2 and circCHST12 for differentiating between
ICH and IS patients was 0.765 (95% CI: 0.682–0.847); the
sensitivity was 57.6%, and the specificity was 85.9% (Figure 7C).

hsa_circ_0005505 was upregulated in both ICH compared
with controls and ICH compared IS patients. Furthermore,
we evaluated the diagnostic values of the two novel circRNA
combinations of hsa_circ_0005505 for identifying ICH. The
combination of hsa_circ_0005505, circERBB2 and circCHST12
for differentiating between patients with ICH and healthy
controls showed an AUC of 0.946 (95% CI: 0.910–0.982), with
a sensitivity of 89.1% and a specificity of 86% (Figure 7A);
the AUC was 0.799 (95% CI: 0.722–0.875), with a sensitivity

of 59.3% and a specificity of 89.5% for differentiating between
patients with ICH and IS patients (Figure 7D). These
results indicate that hsa_circ_0005505, novel circERBB2 and
circCHST12, individually or combined, serve as potential
diagnostic biomarkers for identifying ICH (Figure 8).

Discussion

In the present study, we first investigated the circRNA
profiles in the peripheral blood of ICH patients and healthy
controls by using RNA sequencing in two independent cohorts.
Functional analysis indicated that the differentially expressed
circRNAs are involved in many pathophysiologic processes
of ICH. By using two independent analysis strategies, we
obtained nine circRNAs that were consistently altered in
both cohorts, including five upregulated circRNAs and four
downregulated circRNAs. Furthermore, based on machine
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TABLE 5 Correlation between baseline characteristic and circRNA
levels in intracerebral hemorrhage (ICH) patients.

Parameters circERBB2 circCHST12

Coefficient P-value Coefficient P-value

Age, y 0.143 0.128 −0.018 0.850

Sex (male) 0.017 0.895 0.022 0.814

BMI, kg/m2 0.044 0.646 0.103 0.274

SBP, mmHg −0.373 < 0.001* −0.240 0.010*

DBP, mmHg −0.418 < 0.001* −0.309 0.001*

HDL-C, mmol/L 0.190 0.043* 0.153 0.104

LDL-C, mmol/L 0.157 0.096 0.224 0.016*

TC, mmol/L 0.165 0.079 0.016 0.419

TG, mmol/L −0.085 0.367 −0.164 0.182

GLU, mmol/L −0.06 0.525 −0.273 0.003*

UA, µmol/L 0.193 0.097 0.218 0.060

TBIL, µmol/L −0.023 0.846 0.001 0.992

BUN, mmol/L −0.027 0.817 0.094 0.442

WBC, 109/L −0.283 0.014* −0.366 0.001*

Smoking −0.063 0.504 −0.153 0.104

Alcohol consumption −0.215 0.022* −0.307 0.001*

ICH, Intracerebral hemorrhage; BMI, Body mass index; SBP, Systolic blood pressure;
DBP, Diastolic blood pressure; TC, Total cholesterol; TG, Triacylglycerol; HDL-C,
High-density lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; GLU,
Glucose; UA, Uric acid; TBIL, Total bilirubin; BUN, Blood urea nitrogen; WBC, White
blood cell. *p < 0.05.

learning classification, we screened two candidates, circERBB2
and circCHST12, to explore their diagnostic value as potential
biomarkers in ICH patients. The AUC was 0.917 (95% CI: 0.869–
0.965), with a sensitivity of 87.5% and a specificity of 82% for
distinguishing between ICH patients and healthy controls. In
combination with ICH risk factors, the AUC was 0.980 (95% CI:
0.959–1), sensitivity was 93.8% and specificity was 96% in ICH
diagnosis. Moreover, logistic regression analysis and Spearman’s
correlation test demonstrated that downregulation of circERBB2
and circCHST12 may be independent risk factors for ICH.
Additionally, the expression level of circERBB2 correlated with
SBP and HDL-C; circCHST12 expression levels correlated
with LDL-C, SBP, DBP and white blood cells, indicating
that circERBB2 and circCHST12 might be heavily involved
in the pathology of ICH. Our data show that circERBB2
and circCHST12 may be novel biomarkers for ICH diagnosis.
Together with hsa_circ_0005505, circERBB2 and circCHST12
showed high accuracy for identifying ICH. A previous study
revealed that hsa_circ_0005505 was upregulated in ruptured
intracranial aneurysm tissues, promoted proliferation and
migration and suppressed apoptosis of vascular smooth
muscle cells in vitro (Chen X. et al., 2021), indicating that
hsa_circ_0005505 may be associated with the pathological
process of cerebrovascular diseases.

Intracerebral hemorrhage (ICH) is a multifactorial disease
with high incidence and mortality that imposes a large

socioeconomic burden. Identifying novel potential biomarkers
for the early diagnosis of ICH would be part of risk prediction.
CircRNAs are produced by host gene back-splicing, and closed
RNAs without a free 3′ or 5′ end are resistant to exonuclease
digestion (Jeck and Sharpless, 2014), which makes them more
stable and better biomarkers of human disease. Furthermore,
circRNAs are highly expressed in many tissues, particularly
the human brain, and in blood (Patop et al., 2019). There is
growing evidence that the circRNA expression profile is altered
in IS (Dong et al., 2020; Ostolaza et al., 2020; Zuo et al.,
2020; Liu Y. et al., 2022), indicating that circRNAs have the
potential to serve as biomarkers and therapeutic targets in IS.
Moreover, the circRNA expression profiles were altered in rat
brain tissues after ICH (Zhong et al., 2020; Bai et al., 2021).
However, the changes in circRNA expression in the peripheral
blood of ICH patients remain unclear. Our previous study
demonstrated that hsa_circ_0001240, hsa_circ_0001947 and
hsa_circ_0001386 were promising biomarkers for predicting
and diagnosing hypertensive ICH (Bai et al., 2021). In this
study, we first investigated whether circRNA profiles were
significantly altered between ICH patients and healthy controls,
which provides new insights into understanding the epigenomic
mechanisms of ICH.

In this study, we found that circERBB2 may serve as
a novel biomarker in ICH diagnosis. Previous studies have
identified blood biomarkers, such as glial fibrillary acid protein
(GFAP), retinol binding protein 4 and N-terminal pro B-type
natriuretic peptide, that distinguish IS from ICH with moderate
accuracy (Bustamante et al., 2021) and metabolic biomarkers
for ICH diagnosis (Zhang et al., 2021). The AUCs of S100
and IL6 were 0.65 and 0.59 (Bhatia et al., 2020), respectively,
and GFAP had a sensitivity of 78% and a specificity of 95%
between ICH and IS (Kumar et al., 2020). ncRNAs have been
identified as critical novel regulators of cardiovascular risk
factors and cell functions and are thus important candidates
to improve diagnostics and prognosis assessment (Poller et al.,
2018). In the present study, we identified that the AUC of
circERBB2 was 0.883 for distinguishing between ICH patients
and healthy controls, with a sensitivity and specificity of
68.2% and 92%, respectively. The signatures of circCHST12
showed an AUC of 0.838 with a sensitivity of 93% and
a specificity of 71.6%. The combination of circERBB2 and
circCHST12 with ICH risk factors increased the predictive
value for the identification of ICH. These findings were
better than the diagnostic value of three previously identified
circRNAs [hsa_circ_0001240 (AUC = 0.808), hsa_circ_0001947
(AUC = 0.798) and hsa_circ_0001386 (AUC = 0.806)] in ICH
(Bai et al., 2021). Additionally, we observed that downregulation
of circERBB2 was positively associated with HDL-C and
negatively correlated with SBP and DBP. Lowering blood lipids
was associated with an increased risk of ICH (Sun et al., 2019),
and high blood pressure was found to be the most prevalent
stroke risk factor (Feigin et al., 2016; Wang et al., 2017). Thus,
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FIGURE 7

Evaluation of the circRNA diagnostic value in ICH patients. (A) Receiver operating characteristic (ROC) curves were calculated using the
expression levels of circERBB2, circCHST12 and hsa_circ_0005505 for differentiating patients with intracerebral hemorrhage (ICH) and healthy
controls (n = 64 vs. 50). (B) ROC curves of combining circERBB2 and circCHST12 with ICH risk factors to differentiate patients with ICH and
healthy controls in all samples (n = 64 vs. 50). (C) ROC curves of combining circERBB2 and circCHST12 for differentiating patients with ICH and
IS patients in all samples (n = 64 vs. 59). (D) ROC curves of two novel circRNAs, circERBB2 and circCHST12, combined with hsa_circ_0005505
for differentiating patients with ICH and IS patients in all samples (n = 64 vs. 59).

we speculate that a decrease in circERBB2 expression levels
might correlate with an increased risk of ICH occurrence. These
findings indicate that circERBB2 might play vital roles in the
pathogenesis and pathology of ICH.

The protein ERBB2 is a member of a family of epidermal
growth factor receptors that are involved in aberrant signaling
and cell migration, growth, adhesion, and differentiation
(Strickler et al., 2022). A previous study demonstrated that
circERBB2 (chr17: 39,708,320–39,710,481; length: 676 bp)
serves as an important regulator of cancer cell proliferation and
has the potential to be a new therapeutic target for gallbladder
cancer (Huang et al., 2019) and breast cancer (Huang Y. et al.,
2021). Our study identified circERBB2 (chr17: 37,866,065–
37,872,192; genomic length: 6127 bp, spliced sequence length:
939 bp), which is a novel back-splicing circRNA that has
never been reported thus far, at a different chromosomal

position. Carbohydrate sulfotransferases (CHSTs) are a class
of key enzymes that contribute to tissue remodeling. CHST12
is a significant member of the CHST family, and a previous
study demonstrated that CHST12 may be a novel biomarker
for glioblastoma; it regulates cell proliferation and mobility
via the WNT/β-catenin pathway (Wang et al., 2021). One
study reported that hsa_circ_0134005 (chr7:2472197-2477555;
genomic length: 5358 bp, spliced sequence length: 5358 bp) is
derived from the CHST12 gene (Rybak-Wolf et al., 2015). This
study identified circCHST12 (chr7:2477438-2483381; genomic
length: 5943 bp, spliced sequence length: 5943 bp) derived from
exon 1 and partial exon 2 of the CHST12 gene, which is a novel
back-splicing circRNA that has never been reported thus far at a
different chromosomal position.

CircRNAs are involved in the translational and
transcriptional regulation of the pathological mechanisms
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FIGURE 8

Work flow. The diagram of the data analysis process in this study.

of many disorders (Shan et al., 2017; Aufiero et al., 2019).
CircRNAs can act as miRNA sponges and are expected to
influence downstream miRNA function, further regulating
the expression levels of target mRNAs (Hansen et al., 2013).
We performed GO and KEGG analyses to investigate the
enrichment of differentially expressed circRNAs. Functional
analysis demonstrated that the circRNA host genes were mainly
involved in GTPase activity, covalent chromatin modification,
histone modification, the MAPK signaling pathway and the
ERBB signaling pathway. Activation of the MAPK signaling
pathway is involved in the progression of injury following ICH
(Ding et al., 2020; Guo et al., 2020). Recently, research identified
that knockdown of circERBB2 suppressed the PDGF-BB-
induced proliferation, migration, and inflammatory response
of human airway smooth muscle cells via miR-98-5p/IGF1R
signaling (Huang J. Q. et al., 2021). The phenotype of smooth
muscle cells transforming from a contractile to a synthetic
phenotype plays an essential role in the onset of brain vascular
pathological progression (Bennett et al., 2016; Rho et al., 2017).
In this study, we speculated that the downregulation of the
novel circERBB2 in ICH patients might contribute to the
pathogenesis of ICH via the phenotype of smooth muscle cell
transformation.

Notably, there are some limitations of this study. First,
we should perform a larger multicenter study with more
participants to externally validate the candidate biomarkers.

Second, further studies should be performed to explore how
hsa_circ_0005505, circERBB2 and circCHST12 contribute
to the pathogenesis and development of ICH with cell- or
animal-based experiments. Additionally, our study lacked
follow-up information for ICH patients, and the prognostic
value of these candidate circRNAs should be assessed in
subsequent studies. We expect that hsa_circ_0005505,
circERBB2 and circCHST12 will provide new insights for
a better understanding of the pathogenesis of ICH and help
to improve the diagnosis and prognostic assessment of ICH in
clinical practice.

Conclusion

In this study, we provided a transcriptome-wide overview of
aberrantly expressed circRNAs in the peripheral blood of ICH
patients and identified hsa_circ_0005505 and novel circERBB2
and circCHST12 as promising biomarkers for diagnosing ICH
based on machine learning algorithms.
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Experimental verification and
comprehensive analysis of m7G
methylation regulators in the
subcluster classification of
ischemic stroke

Yunze Tian1,2†, Beibei Yu1†, Boqiang Lv1, Yongfeng Zhang1,
Longhui Fu1, Shijie Yang1, Jianzhong Li2* and Shouping Gong1*
1Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an,
China, 2Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiao Tong University,
Xi’an, China

Background: Ischemic stroke (IS) is a fatal cerebrovascular disease involving

several pathological mechanisms. Modification of 7-methylguanosine (m7G)

has multiple regulatory functions. However, the expression pattern and

mechanism of m7G in IS remain unknown. Herein, we aimed to explore the

effect of m7G modification on IS.

Methods: We screened significantly different m7G-regulated genes in Gene

Expression Omnibus datasets, GSE58294 and GSE22255. The random forest

(RF) algorithm was selected to identify key m7G-regulated genes that were

subsequently validated using the middle cerebral artery occlusion (MCAO)

model and quantitative polymerase chain reaction (qPCR). A risk model was

subsequently generated using key m7G-regulated genes. Then,

“ConsensusClusterPlus” package was used to distinguish different m7G

clusters of patients with IS. Simultaneously, between two m7G clusters,

differentially expressed genes (DEGs) and immune infiltration differences

were also explored. Finally, we investigated functional enrichment and the

mRNA–miRNA–transcription factor network of DEGs.

Results: RF and qPCR confirmed that EIF3D, CYFIP2, NCBP2, DCPS, andNUDT1

were keym7G-related genes in IS that could accurately predict clinical risk (area

under the curve = 0.967). NCBP2 was the most significantly associated gene

with immune infiltration. Based on the expression profiles of these key m7G-

related genes, the IS group could be divided into two clusters. According to the

single-sample gene set enrichment analysis algorithm, four types of immune

cells (immature dendritic cells, macrophages, natural killer T cells, and TH1 cells)

were significantly different in the two m7G clusters. The functional enrichment

of 282 DEGs between the two clusters was mainly concentrated in the

“regulation of apoptotic signaling pathway,” “cellular response to DNA

damage stimulus,” “adaptive immune system,” and “pyroptosis.” The miR-

214–LTF–FOXJ1 axis may be a key regulatory pathway for IS.
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Conclusion: Our findings suggest that EIF3D, CYFIP2, NCBP2, DCPS, and

NUDT1 may serve as potential diagnostic biomarkers for IS and that the

m7G clusters developed by these genes provide more evidence for the

regulation of m7G in IS.

KEYWORDS

ischemic stroke, modification of 7-methylguanosine, immunity, consensus clustering,
transcription factor

1 Introduction

Ischemic stroke (IS) is the most common cerebrovascular

disease, with high mortality and morbidity. It affects

approximately 15 million people worldwide, of which

approximately 5 million die and 5 million are disabled for

life (Maida et al., 2020). In recent years, with the aging of the

population, the risk of IS has greatly increased, resulting in

great pain and economic burden to patients (Matsuzono

et al., 2021). Currently, studies in this area mainly focus

on the regulation of pathological mechanisms, including

apoptosis, inflammation, oxidative stress, and calcium

overload (Feske, 2021). Multiple genes and regulatory

methods are involved in IS, such as phosphorylation signal

transduction and RNA methylation modification (Zhang

et al., 2020). Identifying key genes and intervening in their

regulation can improve the IS prognosis and provide newer

ideas for its treatment.

Recently, the role of RNA modifications in gene regulation

has received increasing attention. More than 150 RNA

modification methods have been discovered, of which

methylation modifications are the most abundant (Chen et al.,

2019). Methylation modifications include 1-methyladenosine, 5-

methyluridine, 5-methylcytidine (m5C), and G methylation of

m1G, m2G, and m7G, 2′-O-ribonucleoside, and N6-

methyladenosine (m6A) (Yang et al., 2021). Modification of

7-methylguanosine (m7G) is one of the most common base

modifications in post-transcriptional regulation. It is widely

distributed in the 5′ cap region of tRNA, rRNA, and

eukaryotic mRNA (Tomikawa, 2018). Zhao et al. (Zhao et al.,

2021) found that m7G-regulated genes are differentially

expressed and induce angiogenesis in other ischemic diseases.

In addition, m7G-regulated genes play an irreplaceable role in

many diseases, such as tumors and gastrointestinal diseases (Dai

et al., 2021). However, the exact regulatory role of m7G-regulated

genes in IS remains unclear.

To the best of our knowledge, this is the first study to

explored the epigenetic role of m7G-regulated genes in IS.

After screening using machine learning, we identified five

m7G-regulated genes involved in IS using the middle cerebral

artery occlusion (MCAO) animal model, which were clearly

clustered IS patients into two m7G clusters, and the immune

infiltration of each cluster was further analyzed. Through

functional enrichment and the mRNA–miRNA–transcription

factor (TF) network, we further revealed the biological

functions and regulation modes of different m7G clusters.

This study provides a novel m7G cluster method that

extensively participates in the regulation of IS occurrence and

treatment.

2 Methods

2.1 Data collection

Two IS-related mRNA expression profiling datasets,

GSE58294 and GSE22255, were downloaded from the Gene

Expression Omnibus (GEO) database using the R package

“GEOquery.” GSE58294 contains 92 samples, including

23 control samples and 69 IS samples, whereas

GSE22255 contains 20 patients with IS and 20 healthy

individuals. These samples were all detected by

GPL570 probe (Affymetrix Human Genome U133 Plus

2.0 Array). The “normalizeBetween-Arrays” function of the

“limma” package was used to normalize the expression matrix.

The gene probes were annotated using official symbols. We

calculated the mean values if multiple gene probes matched

the same gene.

2.2 Establishment of the middle cerebral
artery occlusion (MCAO) model

In total, 200–240 g Sprague–Dawley rats were purchased

from the Animal Experiment Center of Xi’an Jiaotong

University. Rat MCAO model was established, as previously

developed and described (Longa et al., 1989). In brief, the

external carotid artery of the rat was carefully isolated and an

incision was made. A suture (RWD, Shenzhen, China) with a

head diameter of approximately 0.34 ± 0.01 mm was inserted

from the incision in the external carotid artery into the

internal carotid artery up to the middle cerebral artery.

Two hours later, the suture was removed and the wound

was sutured. After 3 days, the rats were euthanized. The rat

brain was snap-frozen, cut into 2-mm coronal slices, and

immersed in 2, 3, 5-triphenyl tetrazolium chloride (TTC)

solution in a 37°C water bath for 30 min. Images were

taken using a digital camera after dyeing.
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2.3 Machine learning screens 7-
methylguanosine (m7G) key genes
between healthy individuals and patients
with ischemic stroke (IS)

Based on previous studies on m7G, 34 m7G key regulatory

genes were included in this study as study objects, including

DCP2, AGO2, CYFIP1, CYFIP2, DCPS, EIF3D, EIF4A1, EIF4E,

EIF4E1B, EIF4E2, EIF4E3, EIF4G3, GEMIN5, IFIT5, LARP1,

LSM1, METTL1, NCBP1, NCBP2, NCBP2L, NCBP3, NSUN2,

NUDT1, NUDT10, NUDT11, NUDT16, NUDT16L1, NUDT3,

NUDT4, NUDT4B, NUDT5, NUDT7, SNUPN, and WDR4

(Tomikawa, 2018; Chen et al., 2022). Differences in the

expression patterns of these genes between patients and

controls were detected using the Wilcoxon test, with a

selection criterion of p < 0.05. Spearman correlation analysis

was performed on these differentially expressed genes (DEGs),

and their chromosomal locations were marked. This study

utilized two widely used machine learning algorithms, random

forest (RF) and support vector machine (SVM), to identify key

regulators of m7G between patients with IS and controls by the

“randomForest” package. The algorithm with the smaller

residual was considered to be a more precise algorithm and

was used. The R package “pROC” was used to calculate the area

under the curve (AUC) and evaluate the accuracy of the two

algorithms.

2.4 Quantitative real-time polymerase
chain reaction

Total RNAwas extracted from the ischemic penumbra of rats

and from the same site in the control group using TRIzol

(Invitrogen, USA). After reverse transcription, real-time PCR

was performed on genes with significant m7G differences. The

primer sequences for these genes are listed in Table 1.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was

used as the internal reference gene. The results are expressed

as relative mRNA expression at cycle thresholds and normalized

by parallel amplification of the endogenous control GAPDH. The

relative mRNA expression level (target mRNA/GAPDH value) of

the control group was set as 100%, and the mRNA values of the

other groups were converted into fold changes after comparison

with the control group.

2.5 Establishment and validation of clinical
prediction models

The expression of the five m7G-related genes was packed by

the “datadist” function of the “rms” package, and subsequently,

the model was fitted using the “lrm” function. The “nomogram”

function was used to build a suitable model and draw a

nomogram by these risk genes. The total score of the

nomogram was the sum of the corresponding scores assigned

to each differential gene, and the score corresponded to the

corresponding disease risk. The higher the score, the higher the

risk of gene-induced IS development. Internal validation using

the “caret” package and Bootstrap self-sampling method to

derive the consistency index (C-Index). The calibration,

clinical decision analysis, and receiver operating characteristic

(ROC) curves were used to further evaluate the accuracy of the

risk model.

2.6 Cluster analysis of patients with IS by
m7G-regulated genes

Cluster analysis was used to distinguish different IS patient

classifications based on the regulation of key m7G genes. The R

package “ConsensusClusterPlus” was used to classify patients

with IS into different subgroups according to experimentally

validated m7G key regulatory genes. In this study, the PAM

algorithm and spearman distance were used as parameters, and

the sampling was repeated 1,000 times for a more stable

classification. The number of clusters was determined using a

cumulative distribution function. The “Rtsne” package was used

TABLE 1 Specific primers used for quantitative real-time PCR.

Primer name Sequence

GAPDH-F TGCCACTCAGAAGACTGTGG

GAPDH-R TTCAGCTCTGGGATGACCTT

NCBP2-F AGCGTGTGGGTTCTGTTTCGTG

NCBP2-R CATACTGCCTGCCCTCCTTAAAGC

CYFIP1-F GATGGTGGAGAGGATTCGCAAGTTC

CYFIP1-R CTGGCTAGGGACTGGTGGATGG

NUDT1-F TACTACAGCCTCAGCGAGTTCTCC

NUDT1-R TCCCTCTTAGCCCCATCCTCAATG

DCPS-F AAGCAGGCGTTGGCAATGGTAC

DCPS-R TCCCCAGAGTCCTCATTCACCTTC

NSUN2-F CGCTGCTATCTGCTCGTCCATC

NSUN2-R CTGTGAGTCTAGGAATGCTGGATGC

CYFIP2-F CCACCACCAACTGAAGGACATCATC

CYFIP2-R TCTATGAGGAGGCAGAACAGGATGG

EIF4E3-F GAGTGTGCCTCGAACCTGAAGAAG

EIF4E3-R TGGTCGCCTCTCTCCTCTCATTAAG

EIF3D-F CAACAAGCAGGTCATCCGAGTCTAC

EIF3D-R CCTCCTCTTCCTCCTCATCCTCTTC
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to display the distribution of samples for different clusters. The

expression of m7G key regulatory genes was compared between

the two clusters using the Kruskal–Wallis test.

2.7 Predicting the immune properties of
m7G key regulatory genes

The single-sample gene set enrichment analysis (ssGSEA)

algorithm was used to assess the immune infiltration of samples

and genes by the “gsva” package. This study analyzed 23 immune

cell types using ssGSEA. These included activated B cells,

activated CD4 T cells, activated CD8 T cells, activated

dendritic cells, CD56 bright natural killer (NK) cells,

CD56 dim NK cells, eosinophils, gamma delta T cells,

immature B cells, immature dendritic cells, myeloid-derived

suppressor cells (MDSCs), macrophages, mast cells,

monocytes, NK T cells, NK cells, neutrophils, plasmacytoid

dendritic cells, regulatory T cells, T follicular helper cells, type

1 T helper cells, type 17 T helper cells, and type 2 T helper cells.

The infiltrating immune cell abundance scores in two different

patient clusters were compared using the Kruskal–Wallis test. A

heatmap was drawn by the “pheatmap” package to show the

correlation between five m7G key regulatory genes and these

immune cells and to select a key gene that best represents the

cluster analysis.

2.8 Enrichment analysis

After cluster analysis, the DEGs between the two clusters

were screened by the “limma” package, and the screening

conditions were as follows: |log2 (fold change)| > 0.5,

adjustment p-value < 0.05. Metascape (https://metascape.org/

gp/index.html) is an excellent tool for pathway and biological

function enrichment analysis. These genes were functionally

enriched using Metascape, with output options, including

Gene Ontology (GO) biological processes, canonical pathways,

Kyoto Encyclopedia of Genes and Genomes pathway, and

Reactome gene sets.

2.9 Construction of the
mRNA–miRNA–transcription factor (TF)
network

The STRING database (https://cn.string-db.org/) can be used

to assess protein–protein interactions (PPIs). The DEGs between

the two m7G clusters were inputted into the STRING database to

construct a PPI network. After forming the PPI network, we

performed cluster analysis on the PPI network using MCODE of

Cytoscape and explored the cluster with the highest MCODE

score as the key genes network. The possible binding miRNAs of

the key genes were predicted using the TargetScan (https://www.

targetscan.org/) and miRTarBase databases (https://www.

mirbase.org/). Predicted transcription factors (TF) may bind

to key genes in the Enrichr database (https://maayanlab.cloud/

Enrichr/). Finally, Cytoscape 3.7.2 was used to construct the

mRNA–miRNA–TF network.

2.10 Statistical analyses

R version 4.0.2 was applied for all statistical analyses.

Between-group comparisons were made using the

independent samples t-test and Mann–Whitney U test. All

analyses were based on two-tailed tests, and statistical

significance was set at p < 0.05.

3 Results

3.1 Expression patterns and differences of
m7G-regulated genes in IS

We explored the differential expression of 34 m7G-

regulated genes in IS and found that 11 genes were

significantly differentially expressed. Among these, CYFIP1,

EIF4E2, and EIF4E3 were significantly upregulated in IS,

whereas CYFIP2, DCPS, EIF3D, GEMIN5, NCBP2, NSUN2,

NUDT1, and SNUPN were significantly downregulated

(Figures 1A, B). To explore whether these m7G-regulated

genes played a key role in IS, we assessed the correlation

between these genes (Figure 1C). In IS, DCPS and NUDT1

showed a high positive correlation (r = 0.67), and EIF3D and

EIF4E3 showed a high negative correlation (r = –0.60). This

suggested that m7G-regulated genes play an important role in

IS. We further marked the location of these genes on the

chromosomes (Figure 1D).

3.2 Machine learning and m7G key gene
screening

The machine learning algorithm was used to further screen

for m7G key regulatory genes. We compared two machine

learning algorithms and found that the residual of RF was

significantly smaller than that of SVM (Figures 2A, B). In the

ROC curve, the RF algorithm (AUC = 1) also showed better

accuracy than SVM (Figure 2C). Therefore, the RF algorithm was

selected as the machine learning algorithm in this experiment.

When the number of trees was 93, the machine learning error of

the RF algorithm was the smallest (Figure 2D). Finally, eight

genes with an importance score greater than 3 were selected:

CYFIP1, CYFIP2, DCPS, EIF3D, EIF4E3, NCBP2, NSUN2, and

NUDT1 (Figure 2E).
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FIGURE 1
Expression patterns and differences of m7G-regulated genes in IS. (A) Boxplot of 34 m7G genes expression between control and IS. (B)
Heatmap of 11 differentials expressed m7G genes between control and IS. Red represents high expression and blue represents low expression. (C)
Correlations of m7G DEGs in IS. Blue represents positive correlation and red represents negative correlation. (D) Chromosomal positions of m7G
DEGs. *p < 0.05, **p < 0.01, ***p < 0.001. IS: ischemia stroke; con: control; DEGs: differentially expressed genes.
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3.3 Expression profiles of m7G-regulated
genes in the MCAO model

To explore the expression of m7G-regulated genes in IS,

we constructed a MCAO model. We used rat brain tissue for

TTC staining 3 days after modeling to verify the success of the

modeling. A clear white infarct appeared in the left cerebral

hemisphere of the model group, whereas the whole brain of

the control group showed a red active state (Figure 3A). Eight

screened m7G-regulated genes were verified using qPCR. The

results showed that EIF3D, CYFIP2, NCBP2, DCPS, and

NUDT1 exhibited significant differences in the MCAO

model, which was consistent with the differential analysis

of the expression profile dataset (Figure 3B). These results

confirm that these m7G-regulated genes play a significant

regulatory role in IS.

3.4 Establishment of a clinical prediction
model

We established a clinical predictionmodel to evaluate the risk

and correlation between five key m7G-regulated genes in IS. Our

nomogram showed the risk of developing IS for each gene

(Figure 3C). The internal validation of the model using

Bootstrap self-sampling method with 1,000 samples yielded a

model C-Index of 0.888. A calibration curve was used to further

confirm the accuracy of the model, which showed that the

FIGURE 2
Machine learning screens m7G key regulatory genes. (A) Boxplot of residual in RF and SVM. (B) Reverse cumulative distribution of residual in RF
and SVM. (C) ROC curve of RF and SVM. (D) Random forest screening of DEGs. (E) Screening for candidate m7G-regulated genes by RF. RF: random
forest; SVM: support vector machine; ROC: receiver operating characteristic; DEGs: differentially expressed genes.
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prediction model had a good accuracy (Figure 3D). The decision

analysis curve also showed that m7G could predict the risk of

disease more accurately (Figures 3E, F). The ROC curve (AUC =

0.967, 95% CI 0.932–1.000) further supported these results

(Figure 3G). In conclusion, we used a clinical predictive

model to accurately assess the risk of m7G-regulated genes in IS.

3.5 Cluster of patients with IS according to
m7G key regulatory genes

Based on the five validated key regulatory genes of m7G, we

performed cluster analysis on patients with IS. The tracking plot

showed that it was prudent to divide the patients into two clusters

FIGURE 3
Experimental validation and clinical predictionmodels. (A) TTC verification ofMCAOmodel. (B)Validation of quantitative real-time PCR analysis.
(C)Nomogram of m7G key regulatory genes for predicting IS. Calibration curve (D), Clinical decision analysis (E,F) and ROC curve (G) of nomogram.
TTC: 2, 3, 5-triphenyl tetrazolium chloride; MCAO: middle cerebral artery occlusion; IS: ischemia stroke; ROC: receiver operating characteristic.
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for accuracy (Figures 4A, B).We displayed the expression profiles

of five m7G key regulatory genes according to these two clusters

and found that their expression levels varied significantly in

different clusters (Figure 4C). Principal component analysis

(PCA) revealed that this clustering method could completely

and accurately distinguish patients with IS (Figure 4D).

Therefore, we accurately clustered patients with IS according

to the expression patterns of m7G-regulated genes.

3.6 Immune infiltration signatures of m7G
clusters

We used the ssGSEA algorithm to evaluate the level of immune

cell infiltration between different clusters to explore the differences

in their immune microenvironment characteristics. We found that

the four types of immune cell infiltration were significantly different

between the two clusters: immature dendritic cells, macrophages,

NK T cells, and type1 T helper cells (Figure 5A). The correlation of

the five m7G-regulated genes experimentally identified with

immune cell infiltration was also calculated (Figure 5B). Among

them, the correlation of NCBP2 was the most evident, with a

maximum positive correlation coefficient of 0.58 and a

maximum negative correlation coefficient of –0.69. Therefore,

NCBP2 may play a critical role in immune cell infiltration. As

shown in Figure 5C, among the cells with different NCBP2

expression levels, there were more cell types with significant

differences in immune infiltration, including activated B cells,

activated CD4 T cells, activated CD8 T cells, activated dendritic

cells, eosinophils, MDSC, macrophages, plasmacytoid dendritic

cells, mast cells, NK cells, neutrophils, and type 2 T helper cells.

3.7 Enrichment among different m7G
clusters

To explore the characteristics of the biological functions

under different m7G gene expression patterns, we performed

FIGURE 4
Cluster analysis of IS by m7G key regulatory genes. (A) Sample distribution for k = 2–9. (B) Consensus clustering matrix with k = 2. (C)Heatmap
of m7G key regulatory genes between clusters. Red represents high expression and blue represents low expression. (D) PCA analysis between
clusters. Group A and group B represent two clusters of IS patients divided according to the expression of m7G key regulatory genes. PCA: principal
component analysis.

Frontiers in Genetics frontiersin.org08

Tian et al. 10.3389/fgene.2022.1036345

154

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1036345


FIGURE 5
Immune infiltration analysis of two m7G clusters. (A) Differences in immune infiltration abundances between two m7G clusters. Group A and
group B represent two clusters of IS patients divided according to the expression ofm7G key regulatory genes. (B) Immune cell infiltration correlation
heatmap of m7G key regulatory genes. Red represents positive correlation and blue represents negative correlation. (C) Immune infiltration analysis
between clusters with different NCBP2 expression levels. Group Low and group High represent cell clusters with low and high NCBP2
expression, respectively. *p < 0.05, **p < 0.01, ***p < 0.001. IS: ischemia stroke.
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biological functions and pathway enrichment analysis.

Specifically, we screened 282 DEGs between the two m7G

clusters (Supplementary Table S1). Metascape was used for

the enrichment analysis (Figure 6A). The results showed that

in the “GO Biological Processes” analysis, the “regulation of

apoptotic signaling pathway” and “cellular response to DNA

damage stimulus,” the mechanisms closely related to IS

pathogenesis, were enriched in 12 and 17 genes, respectively.

In the “Reactome Gene Set” analysis, the genes enriched in the

two IS-related pathways of “adaptive immune system” and

“pyroptosis” were 20 and 4 genes, respectively. This indicates

that m7G-regulated genes are closely related to IS in terms of

biological functions.

3.8 Construction of the
mRNA–miRNA–TF network

DEGs between the two m7G clusters were used to build a PPI

network to explore the interaction relationship between genes. There

were 254 nodes and 274 edges in this PPI network (Supplementary

Figure S1). After further identification of keymodules and hub genes

using MCODE, a PPI network with 9 nodes and 26 edges was

identified, which included LTF, LCN2, ELANE, RNASE3, CTSG,

DEFA4, OLFM4, and CEACAM8 (Figure 6B). We combined

“Targetscan” and “miRTarBase” databases to successfully predict

21 miRNAs that may bind to key regulatory genes of m7G. Next, we

showed the mRNA–miRNA–TF networks (Figure 6C). Among

them, LTF had the largest number of nodes and edges and may

bind to 18 miRNAs and 19 TFs. This indicates that LTF plays an

important regulatory role in IS.

4 Discussion

In this study, we discovered the epigenetic and immune

microenvironmental regulatory mechanisms of m7G in IS.

First, we screened out the differentially expressed m7G

regulatory genes in IS. Second, we identified that EIF3D,

CYFIP2, NCBP2, DCPS, and NUDT1 were five key m7G-

FIGURE 6
Functional enrichment and mRNA–miRNA–TF networks. (A) Pathway and process enrichment analysis of DEGs between m7G clusters. (B) PPI
network of DEGs between m7G clusters. (C) mRNA–miRNA–TF networks of DEGs between m7G clusters. TF: transcription factor; PPI:
protein–protein interactions; DEGs: differentially expressed genes.
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regulated genes differentially expressed in IS according to the RF

algorithm and qPCR of the MCAO model. The risk impact of

these genes on developing IS was assessed separately, and

patients with IS were divided into two clusters based on these

genes. Finally, immune infiltration between the two clusters and

the functional enrichment and regulatory network of differential

genes were also revealed.

IS is a complex disease that involves multiple molecular

mechanisms and methylation modifications. Chokkalla et al.

(Chokkalla et al., 2019) found that regulation of m6A methylation

is involved in IS development and can be considered an important

marker of IS. Zhang et al. (Zhang et al., 2020) found that YTH

domain-containing 1 acts as an m6A reader and alleviates IS by

promoting the activation of the AKT signaling pathway. However,

studies on m7G and IS are limited. Therefore, our study provides

evidence for epigenetic studies on methylation and IS.

We screened keym7G-regulated genes in IS and further verified

this using the rat MCAO model by qPCR, which greatly improved

the accuracy of the screening. These genes included EIF3D, CYFIP2,

NCBP2, DCPS, and NUDT1. EIF3D and NUDT1 have been shown

to play important regulatory roles in tumor and immune infiltration

(Huang et al., 2019; Huang et al., 2022). CYFIP2 has been shown to

play vital regulatory role in the central nervous system (Schaks et al.,

2020).NCBP2 andDCPS are believed to be involved in neurogenesis,

which may inextricably be associated with IS (Singh et al., 2020;

Salamon et al., 2022). However, the specific mode of regulation

between them and the IS has not yet been studied. Therefore, our

study successfully confirmed their close correlation with IS using an

animal model.

Machine learning and clinical predictions are excellent tools for

bioinformatics analysis, enabling accurate assessment of disease

regulatory mechanisms and risks. The algorithm we used, RF,

has been used for long-term outcome prediction of mortality and

morbidity in patients with stroke. Heo et al. (Heo et al., 2019) found

that the RF algorithm can also predict the long-term prognosis of IS.

Our study not only selected the key genes with the RF algorithm but

also proved that RF was more suitable for our study, which provides

evidence for the precise selection of the appropriate machine

learning. Nomograms have been widely used in clinical

prediction models of stroke. Yuan et al. (Yuan et al., 2020) used

a nomogram to accurately predict the risk of stroke using multiple

risk factors, including hypertension, diabetes, and smoking. Our

study further refines the risk factors for genes, providing a more

precise theoretical basis for the prevention and treatment of stroke

through molecular mechanisms.

Our studymakes the first attempt to cluster patients with IS into

two defined clusters based on m7G key gene expression profiles, as

well as presents novel methodologies for identifying different types

of patients with IS and their precise treatment. In addition, we

analyzed the differences in immune infiltration between the two

clusters. Li et al. (Li et al., 2022) clustered patients with liver cancer

by m7G-regulated gene expression patterns. In our study, the

immune infiltrating cells with significant differences between the

different clusters were immature dendritic cells, macrophages, NK

T cells, and type 1 T helper cells. Therefore, we confirmed thatm7G-

regulated genes have profound effects on immune cell infiltration

and play different immune regulatory roles in various diseases. We

also found that these differences in immune cell infiltration were

closely related to NCBP2.

Differential m7G gene expression profiles between clusters were

screened and functionally enriched and mRNA–miRNA–TF

networks were established. Several reports have suggested that

LCN2 can mediate the phagocytosis of astrocytes to trigger

demyelination, which exacerbates IS (Wan et al., 2022). The

critical role of the miR-214–LTF–FOXJ1 axis was also observed

in our study. Although LTF is believed to mediate neuronal

ferroptosis in hemorrhagic stroke, it has rarely been reported in

IS (Zhao et al., 2018). MIR-214 attenuates neuronal apoptosis and

ferroptosis in IS, and FOXJ1 is believed to induce neurogenesis

(Devaraju et al., 2013; Lu et al., 2020). Therefore, we hypothesized

that the miR-214–LTF–FOXJ1 axis may play an important

regulatory role in IS, thus becoming an important molecular

target for the prevention and treatment of IS. However, the

specific role of this axis has not yet been verified, which may

become the focus of our next study.

This study has its own limitations. First, only vivo experiments

but no vitro cell experiments were performed. This may be

improved in subsequent studies. Second, although we

innovatively discovered the miR-214–LTF–FOXJ1 axis, this could

not be verified by basic experiments. Third, although wewere able to

establish detailed predictions on the mediation network of m7G, we

did not further explore therapeutic drugs based on this, which is

insufficient for clinical guidance. In addition, we still need to obtain

more clinical data from patients as an analysis basis to augment the

accuracy of assessment and prediction.
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role of CCT2 in the induction of
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Xueting Ma1, Yuxin Feng1, Xiangyu Quan1, Bingyu Geng1,
Guodong Li2, Xueqi Fu1 and Linlin Zeng1*
1Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University,
Changchun, China, 2Department of General Surgery, The Second Hospital of Jilin University,
Changchun, China

Chaperonin containing TCP1 subunit 2 (CCT2) is essential in various

neurodegenerative diseases, albeit its role in the pathogenesis of Alzheimer’s

disease (AD) remains elusive. This study aimed to evaluate the role of CCT2 in

Alzheimer’s disease. First, bioinformatics database analysis revealed that CCT2

was significantly downregulated in patients with Alzheimer’s disease and

associated with autophagic clearance of β-amyloid. The 789 differentially

expressed genes overlapped in AD-group and CCT2-low/high group, and

the CCT2-high-associated genes screened by Pearson coefficients were

enriched in protein folding, autophagy, and messenger RNA stability

regulation pathways. These results suggest that CCT2 is significantly and

positively associated with multiple pathways linked to autophagy and

negatively associated with neuronal death. The logistic prediction model

with 13 key genes, such as CCT2, screened in this study better predicts

Alzheimer’s disease occurrence (AUC = 0.9671) and is a favorable candidate

for predicting potential biological targets of Alzheimer’s disease. Additionally,

this study predicts reciprocal micro RNAs and small molecule drugs for hub

genes. Our findings suggest that low CCT2 expression may be responsible for

the autophagy suppression in Alzheimer’s disease, providing an accurate

explanation for its pathogenesis and new targets and small molecule

inhibitors for its treatment.

KEYWORDS

alzheimer’s disease, autophagy, CCT2, microRNA, logistic model

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease responsible for 60–80% of

dementia cases, which is characterized by memory loss and reduced cognitive function

(Liu et al., 2020). This report indicates that neuronal fibrous tangles caused by Tau

hyperphosphorylation in neurons, sedimentation of amyloid beta (Aβ) plaques (Ma et al.,

2022), apoptosis of numerous neurons, and loss of neural synapses all contribute to AD.

Drugs approved by the FDA for AD are designed to improve the quality of life of patients

with the disease albeit may not play an effective therapeutic role in the treatment of AD
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(2020 AD facts and figures, 2020). AD-related therapeutic drugs

based on Aβ starch spot and Tau protein have not made

significant progress (Kopeikina et al., 2011); thus, the

development of the specific pathogenesis of AD requires

further research and exploration. It has been reported that the

chaperonin containing TCP1 subunit 2 (CCT2) is poorly

expressed in AD; however, the relationship between CCT2

and AD remains elusive (Yuan et al., 2019), implying that

there is some link between CCT2 gene expression and the

occurrence of AD.

Aggrephagy, a process in which autophagy selectively degrades

protein aggregates, is important for removing intracellular toxic

protein aggregates and is a key target for the treatment of aggregate-

related diseases such as neurodegenerative diseases. Several studies

have reported that autophagy deficiency occurs in the early stages of

AD (Vaillant-Beuchot L et al., 2021; Roca-Agujetas V et al., 2021).

Autophagy is important in the production and metabolism of Aβ,
and its dysfunction may contribute to the progression of AD (Li

et al., 2017). Traditional ubiquitin-binding receptors (P62, NBR1,

and TAX1BP1) can mediate aggrephagy and other types of

ubiquitin-related selective autophagy (Zellner S et al., 2021). The

novel ubiquitin-binding receptor, CCT2, promotes autophagic

clearance of various toxic protein aggregates associated with

neurodegenerative diseases (Zhang and Klionsky., 2022). Similar

to the conventional ubiquitin-binding receptors, CCT2 binds to

LC3 and protein aggregates. CCT2 binds protein aggregates in a

ubiquitin-independentmanner through its apical domain, laying the

groundwork for CCT2-specific aggregate recognition. Research has

indicated that conventional autophagy receptors degrade liquid

aggregates whereas CCT2 degrades solid aggregates (Ma et al.,

2022). Consequently, CCT2 is more likely than autophagy

receptors to function and become an AD drug target in

pathological states. CCT2 mediates aggrephagy as a monomer,

exposing the VLIR domain of the binding site to LC3. The

presence of aggregates inhibits the formation of the Chaperonin

complex, thus, releasing more CCT2 monomers to promote

aggregate clearance (Khaminets et al., 2016; Johansen and

Lamark, 2020; Gatica et al., 2018). Full-length tau protein has

been reported to preferentially be degraded by macrophage

whereas caspase-cleaved tau, tauΔC, which is more likely than

natural proteins to aggregate and cause neurotoxicity, is

preferentially degraded by autophagy and can turnover faster

than the full-length tau. Thus, the autophagy degradation

pathway is important in inhibiting the formation of pathological

manifestations of AD and has the potential to be a novel target for its

treatment (Zare-Shahabadi et al., 2015).

Therefore, this study aimed to investigate the changes in the

expression level of CCT2 in patients with AD and its possible

pathway involved in autophagy and predict the possible micro

RNA targets. Our study may help researchers investigate how

CCT2 affects AD via autophagy, contributing to the

understanding of disease causes, mechanisms, and treatments.

Materials and methods

Data acquisition

All the datasets used in this study were obtained from the

Gene Expression Omnibus database (https://www.ncbi.nlm.

nih.gov/geo/) (Barrett et al., 2013). The AD transcriptome

datasets screened from the database included brain tissue

sequencing samples, GSE33000, GSE44768, GSE44770, and

GSE44771, based on the GPL 4372 platform, peripheral

blood samples of patients with AD, GSE140829, based on

GPL5988 platform, and serum microRNA (miRNA)

sequencing samples, GSE120584, based on the

GPL21263 platform. GSE33000, which included 310 patients

with AD and 157 controls, was used to explore the potential role

of CCT2 in AD. GSE44768, GSE44770, and GSE44771 were

obtained from the cerebellum, frontal cortex, and visual cortex,

respectively, and included 129 patients with AD and

101 controls. GSE140829 included 204 patients with AD and

249 controls to validate the model and explore CCT2 expression

in different tissues. GSE120584 included 1,021 patients with AD

and 288 controls and was used to probe the possible messenger

RNA (mRNA)-miRNA interaction networks. Component

differences were observed using principal component

analysis (PCA) plots drawn by the FactoMineR and

factoextra packages. The data in GSE33000 was normalized

using the normalizeBetweenArrays function in the Limma

package (Ritchie et al., 2015), and the first group was

retained for duplicated genes in the sequencing data.

Screening of differential genes (DEGs) and
associated genes

LmFit, eBayes from the limma package, and the topTable

function were used to identify differentially expressed genes

DEGs between AD-con and CCT2-low/high expression

groups. According to the false discovery rate (FDR), p ≤
0.05 was statistically significant, and log2fold change (FC) was

used to comprehensively analyze the upregulated and

downregulated genes.

For the AD-con group, we selected the first 30% genes with

larger |logFC| under the p ≤ 0.05 condition as the DEGs. Further,

we divided all patients with AD into high-and low-expression

groups based on the median of CCT2, and under the p ≤
0.05 condition, |logFC| the larger top 10% genes were selected

as DEGs in the CCT2-low/high group. DEGs were intersected

between AD-con and CCT2-low/high groups for further analysis.

Cor function was used for the raw data, and Pearson

correlation analysis was performed between CCT2 and other

genes. If p-value was ≤0.05 and the gene was positively associated
with CCT2, it was selected as the related gene.
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Functional enrichment analysis

CCT2 and 460 genes with the strongest positive correlation

with CCT2 were uploaded to the online Fdatabase—Database for

Annotation, Visualization, and Integrated Discovery, 2021

(Sherman et al., 2022; Huang et al., 2009)—for analysis. The

official gene symbol was selected as the identifier, and the species

was Homo sapiens. This was followed by Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis. The top eight pathway are

displayed in ascending order of p-value (p ≤ 0.05).

Gene set enrichment analysis (GSEA)

The differential expression analysis results of the limma package

were analyzed byGSEA using the gseKEGG and gseGO functions of

the clusterProfiler package in R (Wu et al., 2021), and biological

process (BP) GO terms and KEGG pathways that may be related to

AD and CCT2 expression were explored. p ≤ 0.05 and |

NES| >1 indicated significant differences.

Gene set variation analysis (GSVA)

Gene sets related to autophagy and protein folding were

obtained from the GSEA website (http://www.gsea-msigdb.org/

gsea/index.jsp) (Subramanian et al., 2005; Mootha et al., 2003).

Before standardization, theGSVApackage in Rwas used to calculate

the functional enrichment scores of all AD groups in the

GSE33000 dataset, and the parameters were set as default

(Hänzelmann et al., 2013). Results were visualized by drawing

heatmaps using the pheatmap package in R, and Pearson

correlation analysis was used to determine the correlation

between CCT2 and autophagy and protein folding processes.

Further, the top ten genes with the strongest positive and

negative correlation with CCT2 were drawn to exhibit their

correlation with CCT2 using data from the HADb database

(http://www.autophagy.lu/index.Autopophagy-related gene sets of

html) (Moussay et al., 2011) and circos package (Krzywinski et al.,

2009). Relevant gene sets from different stages of autophagy were

selected for GSVA analysis; Pearson correlation analysis was used to

calculate its correlation coefficient; the corrgrampackagewas used to

construct matrix plots.

Construction of the protein-protein
interaction (PPI) network and
identification of the hub genes

The DEGs from the AD-con groups intersected with the CCT2

low-high groups, and 295 upregulated and 494 downregulated genes

were removed as co-DEGs and uploaded to the online database

(STRING version 11.0, https://cn.string-db.org/) (Szklarczyk et al.,

2021) to predict the PPI network, with the default parameters. The

PPI interaction network was further drawn using Cytoscape, and

36 hub genes associated with CCT2 were removed using the

MCODE plugin.

Logistic model construction and receiver
operating characteristic (ROC) curve
analysis

The least absolute shrinkage and selection operator (LASSO) is a

compression estimation method that has a strong factor screening

ability (Tibshirani,1997; Zou et al., 2019). The hub genes were

intersected using Pearson’s analysis results (|r|≥0.65, p ≤0.05) to

obtain 26 genes, and the expression profiles of these genes were used

to construct the LASSO model, with 13 genes whose regression

coefficient was not zero. These geneswere used to construct a logistic

regression model using the glmnet package. This model had the

following formula: index = EXGene1×Coef1 + EXGene2×Coef2 +

EXGene3×Coef3+. . .. . . (Coef was the regression coefficient,

derived from the logistic regression (Domínguez-Almendros

et al., 2011); EXGene was the gene expression level).

Further, data from the GSE33000 dataset were randomly

assigned to the test set (30%) and validated with those of the

GSE44768, GSE44770, GSE44771, and GSE140829 datasets, and

the ROC curve was drawn using the pROC package.

CCT2 expression and single-cell
correlation analysis in different brain
tissues

Using the online database, AlzDate (http://www.alzdata.org/)

(Xu et al., 2018; Zhang et al., 2019) and the Single Cell Expression

tool, CCT2 expression in single cells was obtained. Using the

Differential Expression tool, the differential expression of CCT2

in multiple databases was obtained.

MicroRNA-mRNA interaction network
analysis

MicroRNA is a type of single-stranded RNA molecule that is

encoded by endogenous genes and binds to mRNA inside cells to

inhibit protein translation. Exploring the interaction between

miRNA and its target genes can provide a reference for

investigating the disease causes and therapeutic methods.

Databases for predicting gene-miRNA interactions include

MiRDB, miRWalk, RNA22, and RNAInter (Chen and Wang,

2020; Dweep et al., 2011; Miranda et al., 2006; Lin et al., 2020).

They were used to predict the miRNA interactions with hub

genes, and the results were cross-checked to improve prediction
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accuracy. Simultaneously, serum miRNA sequencing samples

(GSE120584) were analyzed for differential expression using the

limma package, and miRNAs with p ≤ 0.05 were considered

differentially expressed. Additionally, the differentially expressed

miRNAs that interacted with hub genes were visualized using the

Cytoscape software.

Related drug prediction
Drug development has always prioritized research on drugs for

AD. Numerous effective drugs are ineffective in AD treatment as

they cannot cross the blood-brain barrier (BBB) whereas small-

molecule drugs have natural advantages in crossing the BBB.

CCT2 has been reported to be used as a target of small-

molecule drugs in the treatment of neurodegenerative diseases.

Consequently, the prediction of CCT2-related DEGs serves as a

reference for AD therapy. The Drug Signatures database

(DSigDB) on the Enrichr website was used in this study to

identify relevant targeted drugs for DEGs (Chen EY et al.,

2013; Kuleshov et al.,., 2016; Xie Z et al., 2021). The results

were reviewed and displayed (Kuleshov et al., 2016).

FIGURE 1
Differential expression analysis. (A) Principal component analysis (PCA) plot demonstrating differences among groups, with Alzheimer’s disease
(AD) in red and con in green. (B) Boxchart before and after standardization—the upper figure is before standardization; the following figure is after
standardization. (C) Chaperonin containing TCP1 subunit 2 (CCT2) was downregulated in AD (p = 1.26e-22, logFC = -0.07632). (D) Heatmap of the
top 50 upregulated and downregulated genes between AD and control. (E) Volcano plot of AD-con, with upregulated genes in red and
downregulated genes in blue. (F) Volcano plot of CCT2-low/high, with upregulated genes in red and downregulated genes in blue.
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Results

Identification of the DEGs in AD

To investigate the differences in gene transcriptome

between AD and normal controls, we conducted the

following analysis. First, the PCA chart demonstrated that

there are significant differences between AD and con groups in

GSE33000, allowing for subsequent analysis (Figure 1A).

Boxchart displayed standardized data, eliminating intra-

group differences (Figure 1B). Second, we observed that

CCT2 was significantly downregulated in AD, p = -1.26e-

22 and logFC = -0.07632 (Figure 1C), which suggested that

the low CCT2 expression is associated with AD. There were

4,381 DEGs in AD, with 2,152 upregulated and

2,229 downregulated genes (Figure 1E), among which the

top 50 upregulated and 50 downregulated genes are

indicated in the heatmap (Figure 1D). However, the CCT2-

low group had 1,273 DEGs compared with the CCT2-high

group, of which 561 were upregulated and 712 were

downregulated (Figure 1F). A total of 789 genes were either

upregulated or downregulated in the AD-con and CCT2 low-

high groups, which may be associated with both CCT2

expression and AD.

FIGURE 2
Chaperonin containing TCP1 subunit 2 (CCT2) was closely related to the process of β-amyloid formation and clearance in AD. (A–C) Biological
processes (BP), cellular components (CC), and molecular functions (MF) were enriched in gene sets that were positively associated with CCT2 in
Pearson’s test, whose credibility gradually increases from blue to red, and the size of the circle exhibits the number of genes contained in the
corresponding pathway. (D) The signaling pathways (Kyoto Encyclopedia of Genes and Genomes (KEGG)) were enriched in the gene set that
was positively associated with CCT2 in Pearson’s test, whose credibility gradually increased from blue to red, and the size of the circle exhibits the
number of genes contained in the corresponding pathway.
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CCT2 downregulation was linked to
protein misfolding and neurodegenerative
diseases

Four hundred and sixty genes with the strongest positive

correlation with CCT2 were selected using Pearson correlation

analysis to explore the relevant biological functions of CCT2. GO

and KEGG analyses were performed according to the above-

mentioned gene sets. Genes associated with CCT2 in biological

processes (BP) are primarily enriched in protein folding

pathways, regulation of telomere protein localization related to

the Cajal body, and regulation of mRNA stability (Figure 2A).

FIGURE 3
Correlation of Chaperonin containing TCP1 subunit 2 (CCT2) expression with autophagy and other gene sets. (A) Biological processes (BP) of
Alzheimer’s disease (AD) enrichment. (B) BP of CCT2-low enrichment. (C) The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
enriched in AD. (D) The KEGG pathway enriched in CCT2-low. (E) Heatmaps display the enrichment scores for CCT2 expression and related
pathways in GSE33000; samples are arranged in CCT2 ascending order, and bar and line plots on the right indicate the analyzed R and p-values.
(F) Autophagy-related genes positively associated with CCT2, as indicated in red. (G) Autophagy-related genes negatively associated with CCT2, as
indicated in blue. (H) Correlation of CCT2 with autophagy-related gene sets, the correlation coefficient is presented in the lower left and
simultaneously in the upper right, red for positive correlation and green for the negative correlation.
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Additionally, the most relevant cellular components (CC) of

CCT2 and its related genes included cell cytoplasm and T

complex proteins (Figure 2B) and were related to exosomes

(Figure 2C), whose molecular function (MF) was protein

binding and folding, RNA binding, and ribosome

composition. Moreover, the most related signaling pathway

(KEGG) was mainly associated with various

neurodegenerative diseases, including AD, and autophagy

(Figure 2D). These findings indicated that downregulating

CCT2 in patients with AD may be significant for snRNP

formation, mRNA splicing, protein folding, and clearance of

misfolded proteins by autophagy. Thus, CCT2 was associated

with the production and clearance of amyloid proteins, and a

possible cause of AD was CCT2 downregulation.

CCT2 positively regulates the occurrence
of multiple autophagy and reduces
neuronal death

The transcriptomic data was analyzed using GSEA and

GSVA. In GSEA, the Janus kinase (JAK)-signal transducer

and activator of transcription (STAT) signaling pathway

and the Notch signaling pathway were significantly enriched

in the AD group compared to the con group; however, there

was a contrasting observation in proteasome and animal

autophagy (Figure 3A). Meanwhile, there was a similar trend

in the CCT2-low/high group (Figure 3B). Additionally,

compared with the con group, glial cell development and

differentiation and angiogenesis-related pathways were

significantly enriched in AD, opposing the observation in

protein catabolism and neuronal development (Figure 3C),

with a similar trend in the CCT2-low/high group (Figure 3D).

This suggests that the downregulation of CCT2may be a cause of

AD. It has been proven that the accumulation of amyloid protein

can affect the production of angiogenic factors (Skaaraas et al.,

2021).

In AD progression, CCT2 may alleviate amyloid aggregation

by promoting normal protein folding and autophagy. Thus, the

method used by the study was GSVA for calculating the

enrichment score of CCT2 expression levels for several

pathway and BP. These include neuronal death regulation,

mitochondrial autophagy, chaperone-mediated autophagy,

peroxisomal autophagy, and other related pathway. BP such

as protein folding and its decomposition. The enrichment

score indicated that CCT2 was positively correlated with

most autophagy-related BP and protein folding; however,

it was reversed in the negative regulation of neuronal

death and the negative regulation of mitochondrial autophagy.

(Figure 3E). These results indicate that high CCT2 expression

can inhibit neuronal death while enhancing mitophagy,

which is considered to be the target of AD treatment (Xie

et al., 2022).

Since CCT2 was observed to be involved in AD, we

investigated its relationship with the expression levels of some

important autophagy-related genes. The results indicated that

CCT2 expression was positively correlated withMAPK8, HSPA8,

NCKAP1, RAB11A, and RAB1A (Figure 3F), and negatively

associated with BAX, MAPK3, ITGB4, ATG16L2, and ERBB2

(Figure 3G). Using the Pearson matrix diagram (Figure 3H), high

CCT2 expression revealed a significant and positive correlation

with autophagy formation, macroautophagy, and autophagy

mediated by molecular chaperones and a negative correlation

with the mTOR pathway. This validates that CCT2

downregulation affects normal autophagy for clearing Tau and

Aβ, thus, causing AD.

The logistic model was constructed for AD
prediction

Through ppi network analysis, we screened 36 hub genes

from co-DEGs, including CCT2, ACTR2, CLTA et al. Using the

results obtained from the PPI network analysis (Supplementary

Figure one to two), we extracted the expression profiles of the hub

genes to construct a predictive model. Using LASSO regression,

12 genes were selected with non-zero regression coefficients and

value of lambda. min = 0.003690707 (Figures 4A,B). CCT2 was

further used to construct logistic regression prediction models as

follows: risk score = (4.0041× ARAF- 1.9746× ACTR2- 5.8043×

ATP5F1+ 15.7535× ATP6V1A+ 9.4168× ATP6V1C1- 15.9159×

CA10–1.8964× GNG11 + 4.0073× NRXN1- 10.1124× PPFIA2+

4.2734× PPP1R1B- 11.3482× PPP2CA- 4.1251× RAN+ 2.2023×

CCT2). The heatmap indicated the relationship between

prediction score and disease, age, and related genes

(Figure 4C). The ROC curve indicates that the area under

curve (AUC) is 0.9671 and 0.9700 (Figure 4D,E) in the

training and validation sets, respectively. In the external

validation set (GSE44768, GSE44770, GSE44771, and

GSE140829), AUC values were 0.9681, 0.9724, 0.923, and

0.6342 for prefrontal samples, hippocampal samples, cerebellar

samples, and whole blood samples, respectively (Figure 4F),

indicating that the model has high accuracy in AD prediction.

Additionally, CCT2 was expressed in all cell types in the

human brain (Figure 4G) and significantly downregulated in

various brain regions (Figure 4H), indicating that CCT2 and its

related genes are significantly correlated with AD and have broad

prospects as a biomarker.

Transcriptome was combined with micro
RNA omics analysis

There are several studies suggesting that miRNA acts on

target genes through exosomes and thus affects

neurodegenerative diseases (Lydie et al., 2013; Jiang et al.,
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2019). We used four miRNA databases for joint prediction

(Figure 5A), among which three were predicted for CCT2,

including miR-196b-3p, miR-4778–3p, and miR-6740–3p,

where miR-6740–3p was significantly different in blood

samples (Figure 5B). Thus, miR-6740–3p may inhibit CCT2

translation by binding to its transcript, which may be a

potential cause of AD. We analyzed all 36 hub genes in the

same way, and the mRNA-miRNA interaction network

revealed that the majority of the miRNAs corresponding to

the downregulated genes in AD were upregulated, confirming

FIGURE 4
A logistic model for identifying Alzheimer’s disease (AD) and the expression of Chaperonin containing TCP1 subunit 2 (CCT2) in different tissues
and cells. (A–B) Least absolute shrinkage and selection operator (LASSO) model. (C) Heatmap demonstrates changes in category, age, and gene
expression as predictive scores rise. (D) Receiver operating characteristic (ROC) curve analysis of the training set (GSE33000). (E) ROC curve analysis
of the validation set (GSE33000). (F) The ROC curve analysis of the external validation set (GSE44768, GSE44770, GSE44771, and GSE140829).
(G) CCT2 expression observed in various cells of the brain. (H) CCT2 was significantly downregulated in various brain regions of patients with AD.
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that the interaction network had a good predictive value

(Figure 5C).

Small-molecule drug prediction based on
the hub genes

CCT2 may be a novel target for AD therapy, thus, the

protein-drug interactions must be predicted. Since

macromolecular drugs are difficult to cross the blood-brain

barrier, we used the DSingDB database for model gene

prediction to identify ten viable small molecule drugs.

Additionally, they were sorted and displayed based on the

p-value (Table 1).

Some studies have shown that Amantadine may have a new

beneficial effect on axial symptoms of Parkinson’s disease (PD)

patients with subthalamic nucleus deep brain stimulation (Chan

et al., 2013). Additionally, Reserpine is an antihypertensive agent

FIGURE 5
The mRNA-miRNA interaction network. (A) Four databases—miRDB, miRWalk, RNA22, and RNAInter—were combined for CCT2-targeting
miRNA prediction. (B) The boxplot demonstrates the expression level of miR-6740–3p in the serum samples (GSE120584) (logFC = 0.38540845, p =
2.34E-16). (C) The interaction network presents the hub genes and their corresponding miRNA, with octagon nodes representing genes and other
shapes representing miRNA. Upregulation is indicated in red; downregulation is indicated in green.
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TABLE 1 List of drugs recommended for treating AD by targeting CCT2

Name p-value Chemical formula Structure

Amantadine HL60 3.55E-05 C10H17N

Flupentixol HL60 7.71E-05 C23H25F3N2OS

Flunixin HL60 4.36E-04 C14H11F3N2O2

Cefotiam PC3 4.88E-04 C18H23N9O4S3

Primidone PC3 0.001139 C12H14N2O2

Clopamide HL60 0.00128 C14H20ClN3O3S

Hesperidin PC3 0.001862 C28H34O15

Reserpine TTD 0.014852 C33H40N2O9

Enkephalin 0.016133 C28H37N5O7

Caffeic acid PC3 0.018692 C9H8O4
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whose action is attributed to its ability to inhibit the vesicle

monoamine transporter VMAT, thereby reducing the level of

bioamine neurotransmitters in synaptic vesicles. One study

found that reserpine improves Aβ toxicity in caenorhabditis

elegans model of AD (Arya et al., 2009). Similarly, several

small-molecule drugs seem to be associated with AD. Elevated

enkephalins cause neuronal and behavioral disorders in

transgenic mouse models of AD (Meilandt et al., 2008).

Caffeic acid slows the development of AD by increasing

cognitive function, alleviating brain damage, and inhibiting

the AD-induced increase in AChE activity and nitrite

production (Wang et al., 2016).

Discussion

AD has gradually grown to be one of the most significant

diseases of this century as a typical neurodegenerative

condition affecting the elderly. Over 50 million people

worldwide currently suffer from dementia, with AD

accounting for 60–80% of all dementia cases (Porsteinsson

et al., 2021). Acetylcholinesterase inhibitor (AChEI) is a

common drug for the treatment of AD; however, it can

only treat its symptoms and have some side effects (Lane

et al., 2018). Studies have reported that AD is caused by

abnormal folding of Aβ protein, and the neurofibrillary

tangles are caused by excessive phosphorylation of Tau

(Kozlov et al., 2017), which is accompanied by neuronal

apoptosis, which is irreversible. Therefore, the onset of AD

is usually irreversible (Ganzer, 2007).

Previous studies have demonstrated the eukaryotic

chaperone tailless complex polypeptide one ring complex

and its eight subunits can prevent the formation of protein

aggregates (Behrends et al., 2006; Noormohammadi et al.,

2016). A recently published paper has demonstrated that

CCT2 binds to protein aggregates, recruits autophagosomes

to endocytose, and degrades Tau (Ma et al., 2022). Therefore,

our study used the transcriptome sequencing dataset of AD

prefrontal cells to explore the regulatory mechanism of CCT2

in AD. We observed that CCT2 was significantly

downregulated in patients with AD, suggesting that the

CCT2 downregulation may be a contributing factor for AD.

By considering the intersection of AD-con and CCT2-low/

high, we identified the common DEGs. Further, using PPI

network analysis, 36 hub genes of co-DEGs were screened out,

including CCT2, ACTR2, and TCIRG1. Among them, MYT1L

was observed to induce cell reprogramming into cholinergic

neurons and provide a strategy for treating AD (Liang et al.,

2018). ATP6V1A is involved in AD via the synaptic vesicle

cycle, phagosome, and oxidative phosphorylation

downregulation (Zhou et al., 2021). Additionally, VDAC1

has been observed to impact AD occurrence by regulating

mitochondrial function (Shoshan-Barmatz et al., 2018).

This indicates a strong correlation between hub genes

and AD occurrence. Since CCT2 is also closely related

to these genes, it may play an important role in the

regulation of hub genes, providing a reference for future

research.

However, functional enrichment analysis revealed that the

genes positively correlated with CCT2, selected by Pearson

correlation coefficient, were associated with telomerase, Cajal

body positioning, mRNA splicing, protein folding, and MAPK

activity, indicating that the genes highly associated with CCT2

are involved in the entire process of transcription and

translation. This is also consistent with the mechanism of

co-regulation of protein homeostasis by a molecular

chaperone and aggregate autophagy reported in a study by

Ma et al. (Ma et al., 2022). Meanwhile, the MAPK signaling

pathway is believed to function during the early stages of AD

(Johnson and Bailey, 2003), and the pathway enrichment

analysis revealed that it is related to multiple

neurodegenerative diseases and autophagy in animals

whereas autophagic deficiency is a widely recognized cause

of AD (Reddy and Oliver, 2019; Fang et al., 2019).

Meanwhile, GSEA analysis of the DEGs and GSVA

analysis of the CCT2-related genes revealed that CCT2

affects autophagy. GSEA analysis demonstrated that the

JAK-STAT pathway, the Notch signaling pathway,

angiogenesis, and development and differentiation of glial

cells were enriched in AD-con. At the same time, CCT2-

low/high groups whereas proteasome, animal autophagy,

protein breakdown, and neuronal development were not

enriched. Several pathways have been reported to correlate

with AD occurrence. For example, the JAK-STAT signaling

pathway has been reported to play a potential role in the

molecular mechanism regulating cellular autophagy (Chen

et al., 2021). The Notch pathway is linked to autophagy (Ko

et al., 2020), and angiogenesis is also believed to promote AD

(Vagnucci and Li, 2003). Additionally, there is evidence that

the AD and the CCT2-low expression groups can clear Aβ and
Tau by inhibiting proteasomes and autophagy (Bonet-Costa

et al., 2016). In contrast, GSVA revealed that the expression

level of CCT2 was negatively associated with neuronal death,

suggesting that high CCT2 expression can inhibit neuronal

death. Furthermore, the CCT2 expression level was

significantly and positively correlated with mitophagy,

macroautophagy, pexophagy, protein folding, and protein

metabolism; however, the R-value for mitophagy was

relatively low, possibly since CCT2 does not directly affect

mitophagy. This is consistent with the first report of CCT2-

mediated aggregate elimination and indicates that CCT2 can

regulate the levels of Aβ and Tau by regulating protein folding

and promoting autophagy. Increasing evidence suggests that

autophagy plays a role in scavenging abnormal proteins, thus,

affecting the clearance of Aβ and Tau when autophagy

activation is hampered (Dou et al., 2020). Hence, autophagy
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dysfunction plays a crucial role in the pathological process of

AD (Li et al., 2010).

We also analyzed the correlation between CCT2 and

autophagy-related genes, and top ten autophagy genes with

the strongest positive correlation included BNIP3,HSPA8, and

MAPK8 etc. Whereas those with the strongest negative

correlation included ATG16L2, ATG9B, and BAX etc. This

indicates that CCT2 may affect autophagy by interacting with

genes that are highly associated with autophagy. The

autophagy gene set correlation analysis revealed that CCT2

is positively correlated with the initiation stage of autophagy,

macroautophagy, and chaperone-mediated autophagy, which

also suggested that CCT2 may affect the occurrence of

autophagy via some mechanism. We also observed the

inhibition of the mammalian target of the rapamycin

(mTOR) pathway. Additionally, high expression of mTOR-

inhibiting autophagy has been demonstrated in

neurodegenerative diseases (Zhu et al., 2019).

During the construction of the clinical prediction model,

we used LASSO regression to screen for genes with regression

coefficients greater than zero and then combined these genes

with CCT2 to build the logistic model. The model performed

well with high AUC values in the prefrontal cortex, visual

cortex, and hippocampus; however, it performed poorly in

whole blood samples, which could be attributed to the fact that

the brain tissue samples were used to construct the model.

Some of the genes involved in the model have been observed to

be involved in AD, of which CCT2 is significantly

downregulated in AD, PPP1R1B can regulate cAMP

response element-binding protein (CREB) phosphorylation,

and CREB dysfunction is one of the causes of AD (Cho

et al., 2015) whereas NRXN1 is involved in memory

recovery in rats by affecting synaptic plasticity (Zhang

et al., 2021). The ROC curve revealed that the model had

high AUC values in the training, test, and external validation

sets; thus, the expression of these genes can be used as a

biomarker for AD. Online database analysis also demonstrated

that CCT2 is expressed in various brain cells, with neuronal

cells having the highest levels of expression. CCT2 expression,

in contrast, was significantly reduced in various brain regions,

including the entorhinal cortex, hippocampus, frontal cortex,

and frontal cortex, providing further evidence that low

CCT2 expression is one of the mechanisms of AD

pathogenesis.

The study also investigated the causes of low CCT2 expression

and observed that gene mutations, DNA methylation, and miRNA

may cause changes in gene expression, causing AD (Qin et al., 2020;

De Jager et al., 2014; Akhter and Bekris, 2019). Thus, we aimed to

explore the miRNA interacting with hub genes, most of which had

the opposite expression profile of their target genes in AD. For

example, miR-6740–3p, which interacts with CCT2, is significantly

upregulated in AD (logFC = 0.38540845, p = 2.34E-16) and miR-

661, which interacts with HPCAL4, NECAP1, CLTA, and GNAI2,

has been observed to be involved in AD via metabolic and stress

pathways (Hojati et al., 2021). The miR-501–3p, which interacts

with CADM2, may impact AD by regulating cell division (Hara

et al., 2017); hsa-miR-107, which interacts withACTR2,AMPH, and

RAN, targets Aβ precursor protein (APP) and influences AD

(Hébert et al., 2008). This study can assist researchers in

screening for appropriate miRNA and validating their biological

functions to obtain effective biological results. (The specific

pathways by which most miRNAs affect AD are currently

unknown, albeit the mRNA-miRNA interaction network serves

as a reference for AD diagnosis and treatment. Similarly, the

prediction of the last small-molecule drugs provides a point of

reference for targeting CCT2 to treat AD.

Conclusion

Using bioinformatic analysis, this study used multiple

datasets and revealed that the low expression of CCT2 in AD

may be responsible for the inhibition of autophagy in AD. The

PPI network was used to screen out potential AD biomarkers

with diagnostic value, and the mRNA-miRNA interaction

network was constructed to predict the potential miRNA.

These findings contribute to our understanding of the

pathogenesis of AD and provide new guidelines for the

treatment and diagnosis of the disease.
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Identification of immune signatures
in Parkinson’s disease based on
co-expression networks

Xiaolin Dong, Yanping Li, Qingyun Li, Wenhao Li and Gang Wu*

Department of Neurology, The Affiliated Yan’An Hospital of Kunming Medical University, Kunming, Yunnan,
China

Parkinson’s disease (PD) is a common neurodegenerative disease in middle-aged and
elderly people, and there is less research on the relationship between immunity and PD.
In this study, the protein-protein interaction networks (PPI) data, 2747 human immune-
related genes (HIRGs), 2078 PD-related genes (PDRGs), and PD-related datasets
(GSE49036 and GSE20292) were downloaded from the Human Protein Reference
Database (HPRD), Amigo 2, DisGeNET, and Gene ExpressionOmnibus (GEO) databases,
respectively. An immune- or PD-directed neighbor co-expressed network construction
(IOPDNC)was drawnbasedon theGSE49036dataset andHPRDdatabase. Furthermore,
a PD-directed neighbor co-expressed network was constructed. Modular clustering
analysis was performed on the genes of the gene interaction network obtained in the
first step to obtain the central core genes using the GraphWeb online website. The
modules with the top 5 functional scores and the number of core genes greater than
six were selected as PD-related gene modules. The Gene Ontology (GO) and Kyoto
Encyclopedia ofGenes andGenomes (KEGG) enrichment analyses of differentmodule
genes were performed. The single sample Gene Set Enrichment Analysis (ssGSEA)
algorithm was used to calculate the immune cell infiltration of the PD and the normal
samples. The quantitative Reverse Transcription Polymerase Chain Reaction (qRT-
PCR) was performed to investigate the expression of module genes. An IOPDNC and
PD-directed neighbor co-expressed network (PDNC network) were constructed.
Furthermore, a total of 5 immune-PD modules were identified which could
distinguish between PD and normal samples, and these module genes were
strongly related to PD in protein interaction level or gene expression level. In
addition, functional analysis indicated that module genes were involved in various
neurodegenerative diseases, such as Alzheimer disease, Huntington disease, Parkinson
disease, and Long-term depression. In addition, the genes of the 6 modules were
significantly associated with these 4 differential immune cells (aDC cells, eosinophils,
neutrophils, and Th2 cells). Finally, the result of qRT-PCR manifested that the
expression of 6 module genes was significantly higher in normal samples than in
PD samples. In our study, the immune-related geneswere found to be strongly related
to PD and might play key roles in PD.

KEYWORDS

Parkinon’s disease, bioinformatics analysis, co-expression network, immunity, diagnostic
markers

Introduction

PD is the second most common neurodegenerative disease after Alzheimer’s disease
(Del Rey et al., 2018). According to the report, the incidence rate is about 1%–2% (Tarsy,
2012) in the elderly over 60. The typical symptoms are static tremor, slow movement,
increased muscle tone, abnormal postural gait, and some non-motor symptoms such as
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insomnia and constipation. The main pathological manifestations
of the disease are degeneration and loss of nigra dopaminergic
neurons and abnormal accumulation of α-synuclein (α-syn) (Kalia
and Lang, 2016). However, the occurrence of disease also involves
the influence of the environment and epigenetics, so additional
research on these underlying factors is required (Elsworth, 2020).

By analyzing the mRNA expression levels of inflammatory
mediators, it was found that the intensity of inflammation in PD
nigra was notably increased (Pajares et al., 2020).
Neuroinflammatory markers include reactive CNS myeloid cells,
T lymphocytes, and increased proinflammatory cytokines/
chemokines in the blood, cerebrospinal fluid (CSF), and brain
parenchyma of the patients (Marras et al., 2018). These
inflammatory markers change with elevated levels of T cells and
autoantibodies (anti-α-syn and anti-GM1-gangliosides) in
peripheral blood and CSF of PD patients. The accumulation of
α-syn triggers an immune response characterized by inflammation
(Kline et al., 2021). In rat studies, overexpression of α-syn was
found to cause microglial activation and release of inflammatory
factors (IFN-γ and resolvin D1) (Krashia et al., 2019). Moreover, α-
syn can trigger neuronal autoantigen presentation (Cebrián et al.,
2014), which relies on MHC I and MHC II. There are a large
number of drugs that have been proven to be effective in the
treatment of PD. These drugs mainly include anti-melanin
antibodies (Double et al., 2009), α-syn-related drugs
(Yanamandra et al., 2011; Horvath et al., 2017; Huang et al.,
2019), and GM1 ganglioside-related immune responsers (Zappia
et al., 2002). All these studies suggest that the pathogenesis and
progression of PD may be related to the immune response.

In recent years, with the development of bioinformatics
analysis, many significant advances have been made in a wide
range of diseases. Several potentially therapeutic drugs (Sun
et al., 2016) and key pathways (Zhang et al., 2012) have been
identified by bioinformatics in PD. As the genes and the proteins
they encode play key roles in physiological activities, it would be
useful to study their networks in the disease. In our study, the
association between immunity and PD was systematically analyzed
using bioinformatics techniques based on the construction of co-
expression network, providing a new perspective for the treatment
and research in PD.

Materials and methods

Data source

The high-confidence protein-protein interaction (PPI) data with
score >10000 were downloaded from the Human Protein Reference
Database (HPRD, http://www.hprd.org/). The 2747 immune-related
genes (HIRGs) were downloaded from the Amigo 2 database (http://
amigo.geneontology.org/amigo) with immune as the key word. The
2078 PD-related genes (PDRGs) were downloaded from the DisGeNET
database (https://www.disgenet.org/search). The FPKMexpression profiles
of GSE49036 and GSE20292 datasets were downloaded from the Gene
Expression Omnibus (GEO) database. In the GSE49036 dataset, 8 normal
and 14 PD samples were selected for data analysis, and 15 normal and
11 PD samples of GSE20292 dataset were selected for validation analysis.
The clinical characteristics of GSE20292 and GSE49036 datasets were
shown in Supplementary Table S1.

Construction of an immune- or PD-directed
neighbor co-expressed network construction
(IOPDNC)

The fragments per kilobase of transcript per million fragments
mapped (FPKM) values of gene expression in the GSE49036 dataset
were log2-transformed, and the Pearson correlation of the two
genes was calculated using the R package psych (version 2.1.9).
Then, according to a threshold of |Pearson coefficient value| >
0.7 and FDR <0.05 to obtain the correlation among genes.
Furthermore, based on the correlation between the filtered
genes, mapped into the protein interaction network of the
HPRD database, the common network was selected. The
common network was drawn using Cytoscape software (version
3.8.2) (Shannon et al., 2003). According to the high connectivity
score of genes in the common network, the number of four types of
genes (PD, immune-PD, immune, and others) was counted. The
Veen online tool (http://www.bioinformatics.com.cn/static/others/
jvenn/example.html) was used to draw a Venn diagram of the
correlation of protein-interacting genes, PDRGs, and immune
genes. The R package ggplot (version 2.3.3.2) (Villanueva, 2019)
was applied to draw a histogram of the four gene categories.

Dissecting PD and immune-associated gene
features in network

Based on the above-mentioned high connectivity score of genes
in the common network, the core genes of PD-related genes were
extracted, including PD and immune-PD genes, and their
connected genes. Next, only the PD genes and their direct-acting
genes were extracted as core genes. Subsequently, the number of
four types of genes (PD, immune-PD, immune, other) were
counted, and visualized by ggplot (Version 2.3.3.2) package
(Villanueva, 2019). Notably, the immune-PD genes were both
immune-related genes and PD-related genes. In the interaction
network where the core gene was only PD gene, the correlation of
different types of genes was calculated. Finally, the expression data
of all genes in the network (the core genes are only the PD genes)
were extracted and compared with the core genes. Wilcoxon rank-
sum test was applied to compare the coexpression correlation
coefficients between different gene groups (immune, immune-
PD, PD, and other genes). Subsequently, to investigate the level
of interaction between different gene groups with neighbors,
cumulative distribution function (CDF) was utilized to assess the
degree of the expression correlation for each gene group. The
Pearson correlations of genes and the genes that related to the
corresponding core genes were calculated, and the R package
pheatmap was used to draw correlation heatmaps.

Module cluster analysis and validation of its
classification power

Modular clustering analysis was performed on the genes in the
IOPDNC to obtain the central core genes using the GraphWeb
online website (https://biit.cs.ut.ee/graphweb/). Subsequently, the
number of core genes (i.e. PD-related genes) was adjusted to six in
the GraphWeb database, with the rest set to default, and the
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modules with top five functional score values were selected as PD-
related gene modules. Then, the R package ConsensusClusterPlus
(version 1.54.0) (Wilkerson and Hayes, 2010) was used to perform
consistent clustering analysis on the genes with the top 5 functional
scores in the module, and the appropriate K value was selected
based on the clustering results. In the external validation set
GSE20292 dataset, the expression levels of modular genes were
extracted in the same way and the accuracy of our screening of
modular genes was validated against the same consistent clustering
criteria.

Functional enrichment analysis and pathway
enrichment analysis of modular genes

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of different module
genes were analyzed using the R package Clusterprofiler package
(version 4.0.2) (Wu et al., 2021). According to the significance
threshold p < 0.05 and count value, the enrichment analysis of
each module was carried out separately, and the ggplot (version
2.3.3.2) was used for plotting. According to the website of Pathview
(https://pathview.uncc.edu/), the immune-related pathway
hsa04650 was selected to visualize the most immune-related
pathways in the module.

Differential analysis of immune cell infiltration
by modular genes

Based on the 24 immune cell sets, the single sample Gene Set
Enrichment Analysis (ssGSEA) algorithm was used to calculate the
immune cell infiltration of the PD and normal samples, and the rank
sum test was used to analyze the immune differences between the PD
and normal samples of cell infiltration.

Blood samples correlation

Peripheral blood mononuclear cells (PBMC) samples from eight
normal samples and eight PD patients was collected using vacuum
blood tubes containing EDTA anticoagulant in accordance with
clinical blood collection techniques. Each PBMC sample was gently
shaken repeatedly and loaded into a 4°C thermostat and transferred to
the laboratory for subsequent manipulation according to biosafety
requirements.

The quantitative reverse transcription
polymerase chain reaction (qRT-PCR) analysis

The total RNA of 16 PBMC samples (8 normal samples and 8 PD
samples) was extracted to verify the results of the bioinformatics
analysis. The top 1 gene of each module (module 1, module 2,
module 3, module 4, module 5, and module all) was selected for qRT-
PCR experiments. The total RNA of 16 samples was extracted with
TRIzol Reagent (Life Technologies-Invitrogen, Carlsbad, CA,
United States). Then, these total RNA were reverse transcription
into cDNA with the SureScript-First-strand-cDNA-synthesis-kit
(Genecopoeia, Guangzhou, China) prior to qRT-PCR. The primers
of these genes for qPCR were as follows:

PSMB7-For:CATGGGTTCTGGCTCCTTGG; PSMB7-Rev:CTGGT
CCCCTTCTTGTTGGG; GRIN1-For:CAAGAAGGAGTGGAATGGG
ATG; GRIN1-Rev:GCTCGTTGTT TATGGTTAGCGG; NME1-For:CAA
CCCTGCAGACTCCAAGC; NME1-Rev:GGTGAAACCACAAGCCG
ATC; SIN3B-For:ACCCTGCCACCTACAACGG; SIN3B-Rev:TTGTCA
GAGGCGAC TGTATGTTTA; HABP4-For:GAGGCAGGCAGACTTC
ACAGHABP4-Rev:CGAACTCCACATCCACCCAT; STX1A-For:CAAT
GTGGAACACGCGGTAG; STX1A-Rev: ACAGTGGAGGCGATG
ACGAT.

The expression was uniformized to the internal reference GAPDH
and computed employing the 2−ΔΔCt method.

FIGURE 1
The immune- or PD-directed neighbor co-expressed network (IOPDNC network). (A) The global IOPDNC network was constructed to identify a
common network by the GSE49036 dataset and HPRD database. (B) The histogram chart of the common genes in the IOPDNC network. (C) The Venn
diagram showed the intersections of immune-related genes, PD-related genes, and common network genes.
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Western blotting

RIPA Lysis Bufferb (Servucebui) containing a protease inhibitor
(Servucebio) was utilized to obtain the protein from tissues,
subsequently, immunoblotting was performed. The bicinchoninic
acid (BCA) quantification kit was applied to determine protein
concentration of the cell lysates. The protein samples were loaded
and separated by SDS-PAGE and shifted to PVDF membranes

(Millpore, Sigma). Membranes were incubated with specific
primary antibodies against PSMB7 (cst), GRIN1 (Affinity), NME1
(Affinity), SIN3B (Affinity), HABP4 (Proteintech), STX1A (BOSTER),
and β-Actin (Proteintech) after blocked with 5% nonfat dry milk at
4 °C. Furthermore, secondary antibodies (IgG) were incubated at room
temperature for 60 min and visualized using an ECL system. The
dilution factors of the primary and secondary antibodies were shown
in Supplementary Table S2.

FIGURE 2
The properties of PD-directed neighbor co-expressed network (PDNC network). (A) The global PDNC network. (B) A sub-network was extracted from
the PDNC network which comprised only PD genes and their linked genes. (C) A Venn diagram showed the intersections of PD-related genes, immune-
related genes, and common network genes from the sub-network. (D) The histogram chart of the common genes included 5 immune-related genes, 51 PD-
related genes, 5 immune-PD associated genes, and 26 other genes from the sub-network. (E) The violin plots of the Pearson correlations of the pairwise
genes in the four gene categories. Wilcoxon rank-sum test was applied to compare the coexpression correlation coefficients between different gene groups.
(F) The cumulative distribution curves of co-expression values (Pearson correlations) for diverse gene types. The vertical axis indicatd the degree of the
expression correlation for each gene group. (G) The heatmap suggested the corrections between PD genes and their linked genes, Horizontal axis represents
PD genes linked genes, vertical axis represents PD genes, and red squares indicated |Pearson coefficient value| > 0.7.

Frontiers in Genetics frontiersin.org04

Dong et al. 10.3389/fgene.2023.1090382

176

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1090382


Results

The construction of IOPDNC

A total of 1022077 gene relationship pairs were selected from the
GSE49036 dataset. Then, the common network with 416 nodes and
281 edges was obtained from the GSE49036 dataset and HPRD
database (Figure 1A, Supplementary Table S3). Among the
common network genes of Figure 1A, the number of immune
genes was 63; the number of PD genes was 77; the number of
immune-PD genes was 39; the number of other genes were 237
(Figure 1B). Genes with high protein interaction connectivity
scores were selected, and a Venn diagram of protein-interacting
genes associated with PD and immune genes was drawn. There
were 39 intersection genes between 2078 PD genes, 2740 immune
genes, and 416 common network genes (Figure 1C). The results

indicated that immune-related genes played a vital role in the
IOPDNC network. Together, these results suggested that immune-
related genes might be important contributors for PD.

Dissecting PD and immune-associated gene
features in the network

The core genes of PD, immune-PD genes, and their linked genes
were extracted from the network of 3.1. Then, a network of these genes
was constructed with 130 nodes and 91 nodes (Figure 2A,
Supplementary Table S4). The genes whose core genes only were
PD and the genes that were directly affected by PD were extracted to
construct a network that including 87 nodes and 60 edges (Figure 2B,
Supplementary Table S5). Totally five common genes were detected
between 2078 PD genes, 2740 immune genes, and 87 core genes

FIGURE 3
Detection of PD-related clusters and validation of their classification power. (A) Important clusters of modules were generated in the IPGDNC network.
(B–G) The consensus cluster heatmap, cumulative distribution function (CDF) plot, delta area plot, gene expression heatmap, gene correlation heatmap, and
gene expression box plot of modules including module 1 (B), module 2 (C), module 3 (D), module 4 (E), module 5 (F), and the common genes (G).
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(Figure 2C). Furthermore, the number of genes in the four gene
categories (PD, immune-PD, immune, and other genes) that the
core genes only were PD of the PD gene interaction network were
accounted (Figure 2D). Among the protein-interaction network, the
number of immune genes was 5; the number of PD genes was 51; the
number of immune-PD genes was 5; the number of other genes was 26
(Figure 2D). Moreover, there were significant differently expressed
correlations between different gene groups, except immune-PD and
PD genes (p = 0.39) (Figure 2E). In the PD genes and its linked genes,
the correlation of immune genes, immune-PD genes and other genes
was significant (Figure 2F). The correlation between PD genes and its
linked genes was significant with |Pearson coefficient value| > 0.7 and
FDR <0.05 (Figure 2G). Totally, the results showed that there were
topological interactions and expression patterns among the correlations
between PD- and immune-related genes.

Module cluster analysis and validation of its
classification power

Themodules with top 5 functional scores were selected (Figure 3A,
Supplementary Table S6). In the all of 5 modules, 25 PD genes,

11 immune genes, 5 immune-PD genes, and 46 other genes were
contained.

In these 6 modules, the genes were divided into 2 clusters when the
K = 4, and the expression of these module genes were higher in cluster
1 (Figures 3B–G). In these modules, the expression levels of module
genes except PSMB1, KARS, TERT, ZBTB16, NFKB1, MAPKAPK2,
MAP3K3, MAP2K4, IRS2, IQGAP1, HDAC1, EPB41L3, C1QBP,
BRCA1, BAG2, FYN, MAPK6, MAP3K2, and FNY in the PD
group were higher than that in the control group.

The samemethod was used to validate the accuracy of the screened
module genes in the external validation set GSE20292 data set
(Figure 4). These genes have better representation and can screen
out patients at different stages. These results demonstrated that the
model genes could distinguish PD and control samples well.

Functional enrichment analysis of modular
genes

Module 1 genes were enriched in 104 GO BPs (including 12 GO
CCs, 7 GO MFs) and 8 KEGG pathways, and these GO terms and
KEGG pathways were mainly related to various metabolic

FIGURE 4
Validation of the classification power by GSE20292 data set. The consensus cluster heatmap, cumulative distribution function (CDF) plot, delta area plot,
gene expression heatmap, gene correlation heatmap, and gene expression box plot of sixmodules includingmodule 1 (A), module 2 (B), module 3 (C), module
4 (D), module 5 (E), and common genes (F).
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processes, complexes, and disease pathways (Supplementary
Figures S1A, B). Module 2 genes were enriched in 303 GO BPs,
55 GO CCs, 12 GO MFs, and 7 pathways, and these GO terms and
KEGG pathways were mainly related to various cell migration,
protein binding, and disease pathways (Supplementary Figures
S1A, B). Module 3 genes were enriched in 60 GO BPs, 17 GOs
CC, 51 GO MFs, and 2 KEGG pathways, and these GO terms were
mainly related to various telomere. The KEGG pathways were base
excision repair and non-homologous end-ioining (Supplementary
Figures S1A, B). Module 4 genes were enriched in 198 GO BPs,
35 GO CCs, 32 GO MFs, and 32 KEGG pathways, and these GO
terms and KEGG pathways were mainly related to various protein
binding, response to stimulus and disease pathways
(Supplementary Figures S1A, B). Module 5 genes were enriched
in 141 GO BPs, 30 GO CCs, 35 GO MFs, and 12 KEGG pathways,
and these GO terms and KEGG pathways were mainly related to
various response to stimulus and signaling pathways
(Supplementary Figures S1A, B). All of the 5 module genes was
enriched in 312 GO BPs, 80 GO CCs, 68 GO MFs, and 49 KEGG
pathways, and these GO terms and KEGG pathways were mainly
related to various protein binding and disease pathways
(Supplementary Figures S1A, B). Additionally, the natural killer
(NK) cell mediated cytotoxicity pathway was showed in Figure 5,
Fyn, Vav and PKC were significantly enriched.

Differential analysis of immune cell infiltration
by module genes

To explore the differences in immune cell infiltration between the
control and PD samples, the ssGSEA algorithm was performed. There

were significant differences in aDC, eosinophils, neutrophils, and
Th2 cells between the control and PD samples (Figure 6A). In
addition, the genes of the 6 modules were significantly associated
with these 4 differential immune cells (Figure 6B).

Validation the expression of six module genes
by qRT-PCR and western blot

The mRNA and protein expression of 6 module genes were
significantly higher expressed in the normal samples than that in
the PD samples (Figure 7 and Figure 8), the detailed statistical results
for qRT-PCR and western blot were shown in Supplementary Table S7
and Supplementary Table S8, the original bar charts of western blot
were shown in Supplementary Figure S2. These results confirm that
these module genes could act as potential diagnostic markers for PD.

Discussion

At present, the research on PD biomarkers has been gradually in-
depth, but there is still no global study and recognition of some
immune-related features. In this study, we explored the function and
mechanism of immune-related genes in PD from a global perspective
by integrating gene expression profiles from interaction networks and
GEO databases.

The crosstalk between the peripheral immune system and
neuroinflammation plays an important role in the pathogenesis of
PD (Pajares et al., 2020). In our study, modular genes were mainly
enriched in some stimulus-related categories and disease-related
pathways. For example, the total module is enriched in Pathways

FIGURE 5
The map of natural killer (NK) cell mediated cytotoxicity signaling pathway. Red: up-regulation, grey: no significant difference.
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of neurodegeneration - multiple diseases, Spinocerebellar ataxia, Prion
disease, Alzheimer disease (AD), Huntington disease, PD, Long-term
depression, and other disease pathways. Therefore, we speculated that
the identified modules and genes played an important role in the
development and progression of PD. It also further justified our typing
of PD based on these genes. It has been suggested that genes involved
in regulating substantia nigra development were enriched in RAC1+
NK cells and these cells showed increased brain infiltration in 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD
mice (Guan et al., 2022). Moreover, NK cells are also present in

the brain parenchyma of mouse models of PD (Earls et al., 2020). NK
cells can reduce synuclein burden in vitro, and systemic depletion of
NK cells in a preclinical mouse model of PD results in increased
pathological α-syn burden in numerous brain regions, including the
striatum, SNpc, and brainstem (Peng et al., 2019). In the natural killer
(NK) cell-mediated cytotoxicity pathway, Fyn, Vav, and PKC were
significantly enriched. Among them, Fyn is a tyrosine
phosphotransferase of Src family non-receptor kinases, which is
mainly related to immune regulation, cell proliferation, and brain
development (Guglietti et al., 2021). In previous studies, Fyn was

FIGURE 6
Immune cell infiltration analysis. (A) ssGSEA algorithm was performed to calculate the infiltration levels of 24 immune cell types in PD and normal
samples. (B) The correlation heatmaps of 6 module genes with differential immune cells. * represented p < 0.05, ** indicated p < 0.01, ns represented no
significant difference, red indicated positive correlation, blue indicated negative correlation.
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confirmed to be a major upstream regulator of proinflammatory
signaling pathway involving BDNF/TrkB, PKCδ, MAPK, AMPK,
NF-κB, Nrf2, and NMDAR axis. Fyn is also being used as a
potential signaling node for the development of novel anti-

neuroinflammatory drug candidates for the treatment of PD and
other related neurodegenerative diseases (Peng et al., 2019). For
example, saracatinib, a non-selective Fyn inhibitor, has been tested
in clinical trials to treat PD (Angelopoulou et al., 2021). The protein

FIGURE 7
Verification of the mRNA expression of six modular genes by qRT-PCR and Western blot.

FIGURE 8
Verification of the protein expression of six modular genes by Western blot. (A) The grayscale values six of modular genes in PD and normal samples by
Western blot. (B) The mages of six modular genes in PD and normal samples by Western blot.
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kinase C (PKC) family is a phospholipid-dependent serine/threonine
kinase (Kishimoto et al., 1980). The protein kinase family consists of
more than 15 subgroups and 500 kinases whose expression affects the
progression of various diseases, including neurodegenerative diseases
(Zisopoulou et al., 2013; Jha et al., 2015; Crawley et al., 2017). PKCα
inhibits the expression of peroxisome proliferator-activated receptor C
coactivator 1(PGC-1) by inducing miR-129–2 in neural tube defect
(NTD) embryonic mouse models, and the overexpression of PGC-1
protects neurons from mitochondrial dysfunction under oxidative
stress in PD (Mudò et al., 2012).

There is growing evidence linking the immune system to neuronal
death and the pathogenesis of PD. Previous studies have shown that
detection of immune cell components in the blood can identify the
early stages of PD progression, leading to earlier detection and
confirmation of PD (Farmen et al., 2021). Activated microglia
(brain’s resident immune cells) correlate directly with the clinical
and pathological severity of PD (Lanskey et al., 2018). Through
immune infiltration analysis executed by the ssGSEA algorithm, we
discovered that aDC and Th2 cells were significantly decreased in PD
samples, and eosinophils and neutrophils cells were significantly
upregulated in PD samples. But there is still a gap in how these
cells play a role in the progression of cup-like lesions in Parkinson’s
disease, however, this provided a basis and direction to further unravel
the immune-related mechanisms of PD.

The top1 gene was selected from the 6 modules for qRT-PCR and
Western blot validation. NME1 was a protein with serine/threonine
specific protein kinase activity (Yu et al., 2021). NME1 has been shown
to play an important role in neuronal growth by increasing
mitochondrial respiration and preventing α-synuclein and LRRK2-
induced degeneration. In PD treatment, NME1 can promote neurite
growth in PD cell models and restore damaged mitochondrial
respiration and cellular pathways (Anantha et al., 2022). GRIN1
(encoding NMDAR subunit n-methyl-D-aspartate 1) gene has been
shown to be closely associated with neurodevelopmental disorders
(Platzer et al., 1993), and its polymorphism has also been
demonstrated as a potential biomarker for reducing the risk of PD
in previous studies (Wu et al., 2010). The module genes such as the
expression of NME1, SIN3B, HABP4, STX1A, SIN3B, HABP4, and
STX1A could distinguish PD and normal samples, indicating these
genes may become promising candidate genes for PD.

In conclusion, these results indicated strong correlations between
immune- and PD-related genes not only in terms of network structures
but also in expression patterns. According to the differential expression
and functional enrichment analyses, some immune-related genes may
have the potential as diagnostic and therapeutic biomarkers for PD.
However, there still have two main limitations in this study. Firstly, this
study was a retrospective study based on a public database with limited
sample sizes. Second, the important genes andmechanisms in this study
need further experimental studies to be validated. Altogether, we have
revealed the association between immunity and PD through systematic
network studies and bioinformatics approaches, providing a theoretical
basis for further studies on the pathogenesis of PD and clinical
therapeutic targets.

Conclusion

In summary, all the results presented here indicate a strong
association between immune and PD-related genes not only in

network structure but also in expression patterns. After analyzing
the expression patterns and functions of the genes in the five modules,
we believe that these genes have potential as molecular diagnostic
markers.
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Background: Stroke and depression are the two most common causes of
disability worldwide. Growing evidence suggests a bi-directional relationship
between stroke and depression, whereas the molecular mechanisms
underlying stroke and depression are not well understood. The objectives of
this study were to identify hub genes and biological pathways related to the
pathogenesis of ischemic stroke (IS) and major depressive disorder (MDD) and to
evaluate the infiltration of immune cells in both disorders.

Methods: Participants from the United States National Health and Nutritional
Examination Survey (NHANES) 2005–2018 were included to evaluate the
association between stroke and MDD. Two differentially expressed genes
(DEGs) sets extracted from GSE98793 and GSE16561 datasets were intersected
to generate common DEGs, which were further screened out in cytoHubba to
identify hub genes. GO, KEGG, Metascape, GeneMANIA, NetworkAnalyst, and
DGIdb were used for functional enrichment, pathway analysis, regulatory network
analysis, and candidate drugs analysis. ssGSEA algorithm was used to analyze the
immune infiltration.

Results: Among the 29706 participants from NHANES 2005–2018, stroke was
significantly associated with MDD (OR = 2.79,95% CI:2.26–3.43, p < 0.0001). A
total of 41 common upregulated genes and eight common downregulated genes
were finally identified between IS and MDD. Enrichment analysis revealed that the
shared genes were mainly involved in immune response and immune-related
pathways. A protein-protein interaction (PPI) was constructed, from which ten
(CD163, AEG1, IRAK3, S100A12, HP, PGLYRP1, CEACAM8, MPO, LCN2, and DEFA4)
were screened. In addition, gene-miRNAs, transcription factor-gene interactions,
and protein-drug interactions coregulatory networks with hub genes were also
identified. Finally, we observed that the innate immunity was activated while
acquired immunity was suppressed in both disorders.

Conclusion:We successfully identified the ten hub shared genes linking the IS and
MDD and constructed the regulatory networks for them that could serve as novel
targeted therapy for the comorbidities.
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Introduction

Stroke is the leading cause of death and disability, leading to
significant economic losses as a result of its functional impairments
(Meschia et al., 2014). Every year more than 795,000 people in the
United States (United States) have a stroke, of which 610,000 are
first-time strokes, whereas 185,000 patients have previously had a
stroke. The vast majority of stroke cases occur as a result of two
specific types of stroke (hemorrhagic and ischemic strokes).
United States strokes are dominated by ischemic strokes, which
account for 87% of all strokes (Barthels and Das, 2020). The
prevalence of depression is growing among the general
population, typically characterized by anhedonia and the inability
to experience pleasure. A variety of somatic symptoms
(psychological disturbance, fatigue, and weight fluctuations) as
well as cognitive symptoms (poor concentration and negative
cognitions) can accompany depression (Bucciarelli et al., 2020).
Depression is sub-categorized into major depressive disorder
(MDD) and dysthymia. Epidemiologic data indicates that the
average lifetime and 12-month prevalence estimates of MDD are
14.6% and 5.5% in high-income and 11.1% and 5.9% in the low-to
middle-income countries (Bromet et al., 2011).

Stroke patients aremore likely to suffer from depression than the
general population. Growing evidence suggests a bi-directional
relationship between stroke and depression: 1) depression is
associated with an increased risk of stroke (Pan et al., 2011;
Wassertheil-Smoller et al., 2018; Harshfield et al., 2020), and 2)
depression is particularly prevalent among stroke survivors
(Robinson and Jorge, 2016; Das and Rajanikant, 2018). The
prevalence of post-stroke depression (PSD) is estimated to be
29% at any time point up to 5 years following a stroke (Hackett
and Pickles, 2014). However, the mechanisms underlying the
association between depression and stroke are poorly
investigated. Biological factors such as alterations in ascending
monoamine systems, neuroplasticity, and glutamate
neurotransmission and an increasing of pro-inflammatory
cytokines were proposed to explain the mechanisms of PSD
(Robinson and Jorge, 2016). Moreover, multiple mechanisms
may play roles in depression contributing to stroke. First,
Smoking, obesity (Ho et al., 2008), and poor health behaviors
(i.e., poor diet, physical inactivity, and smoking) (Strine et al.,
2008) may increase stroke risk in depression patients. Second,
other major comorbidities, such as diabetes (Wesołowska et al.,
2018), atherosclerosis (Joynt et al., 2003), and hypertension (Patten
et al., 2009), accompanied by depression, are major risk factors for
stroke. Finally, the use of antidepressant medication may potentially
contribute to the occurrence of stroke events.

Apart from the above-mentioned mechanisms, genetic factors
are likely involved in the pathogenesis of depression and stroke.
Increased risk for depression in first-degree relatives of depression
probands was observed with an estimated odds ratio of 2.84 from a
meta-analysis of the highest-quality family studies (Sullivan et al.,
2000). The heritability of MDD has been found to be greater in
women (42%) than in men (29%) in a Swedish national twin study

(Kendler et al., 2006). There are multiple risk factor genes that were
thought to participate in the pathogenesis of depression with
extremely complex, polygenic, and epistatic inheritance patterns
(Zhao et al., 2019a). There is significant evidence that stroke has a
hereditary component based on studies of twins, siblings, and
families (Humphries and Morgan, 2004). Heritability for all IS is
estimated to be 37.9% (Bevan et al., 2012). The heritability of stroke
subtypes varies markedly, with 40.3% for large vessels and 32.6% for
cardioembolics but lower for cardioembolic small vessels (16.1%).
The genetic involvement in the pathogenesis of both stroke and
depression as well as the comorbidity frequency is not yet fully
established or whether common overlapping genes and biological
mechanisms are subserving both disorders.

A common transcription feature may provide new insights into
the pathogenesis of depression and stroke. This study aims to
identify hub genes and biological pathways related to the
pathogenesis of IS and MDD. Furthermore, as increasing
evidence points to the involvement of an immune response in
both disorders (Beurel et al., 2020; Iadecola et al., 2020), we
evaluate the immune cell infiltration and identify the common
immune cells.

Materials and methods

Dataset collection and processing

The data used in the present work was downloaded from the
National Health and Nutrition Examination Survey (NHANES)
(https://www.cdc.gov/nchs/index.htm) and the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)
based on a microarray or RNA-seq dataset of major depressive
disorder (MDD) and ischemic stroke (IS). The NHANES is a
research project aimed to assess the health and nutritional status
of adults and children in the United States, combining interviews
and physical examinations to provide vital and health statistics.
The GSE98793 microarray profile included 128 MDD whole
blood samples and 64 health samples at the platform of
GPL570 Affymetrix U133_Plus2.0 Genechips. The effect of
two batches in the GSE98793 dataset were removed by
applying removed BatchEffect function of the limma package
(Ritchie et al., 2015). The GSE76826 dataset is a microarray
profile at the platform of GPL17077 Agilent-039494 SurePrint
G3 Human GE v2 8 × 60 K Microarray 039381. The
GSE16561 microarray profile contained whole blood from
39 IS patients and was compared with 24 healthy control
subjects, measured using a GPL6883 Illumina HumanRef-8 v3.
0 expression beadchip. The GSE122709 dataset (including
10 peripheral blood mononuclear cells samples of IS patients
and five controls) is a RNA-sequencing dataset and measured at
GPL20795 HiSeq X Ten. When multiple probes were matched
with one gene, the probe with the highest expression values was
annotated in the homologous gene symbol based on the
annotation information on the platform.
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NHANES

Data of 70190 participants were available in NHANES 2005–2018.
Age, sex, race or ethnicity, education level, poverty, marital status,
smoking status, stroke, body mass index (BMI), waist circumference
and diabetes was included as variables in the analysis. Depression was
measured using the Patient Health Questionnaire (PHQ-9). Participants
with PHQ-9 total scores≥10 were considered as having MDD. After
excluding participants with missing data, 29706 participants were
included in our analysis. Continuous variables are presented as the
mean (standard deviation), and categorical variables are presented as the
frequency (percentage). The chi-square test or Student’s t-test were
performed to evaluate the differences between the non-exposure and
exposure condition on stroke andMDD. Logistic regressionmodels were
performed to calculate odds ratios (ORs) for stroke and MDD.

Identification of differentially expressed
genes (DEGs)

After the data standardization and normalization of datasets using
the normalizeBetweenArrays function in the “limma” R package, a
principal component analysis (PCA) was conducted by using the
“factoextra” R package. The DEGs between cases and healthy
controls were analyzed by using the “limma” R package. The criteria
of p-value <0.05 and |log fold change (FC)|> 0.2 were used to screen the
DEGs ofMDD and controls, and |log FC| > 0.5 were regarded as cut-off
criteria for significant DEGs for IS patients and controls. A volcano plot
and a heat map plot were performed by using the R software
ggplot2 package (Ginestet, 2011) and “ComplexHeatmap” (Gu et al.,
2016) to show significant DEGs, respectively.

Screening of communal DEGs ofMDD and IS

After having separately identified the DEGs of MDD and IS, we
intersected their DEGs to screen out the communal DEGs that may
participate in the pathogenesis of the two diseases. Only when the
DEGs had the same expression trends in both diseases were these
common genes kept. The processes were conducted and visualized
using the “ggVennDiagram” package (Gao et al., 2021). The
overlapped genes were further shown in two disorders with a
heat map from the perspective of logFC and p-value.

Function enrichment analysis

The “clusterProfiler” package (Yu et al., 2012) was used to enrich
the biological processes (BP), cellular components (CC), and molecular
function (MF) of Gene Ontology (GO) (Gene Ontology Consortium,
2015) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (Kanehisa and Goto, 2000) of common DEGs.

Protein-protein interaction (PPI) network

To detect potential relationships among the DEG-encoded
proteins common to both MDD and IS, a protein-protein

interaction (PPI) network was constructed using the Search Tool
for the Retrieval of Interacting Genes database (STRING, www.
string-db.org) (Szklarczyk et al., 2019). Low confidence of 0.15 was
set to findmore interactions between proteins. The other parameters
were set to the default values (i.e., a full STRING network for
nerwork type; evidence for meaning of network edges; and all
active interaction sources). The contructed network was imported
into Cytoscape to be visualized and further analyzed.

Selection and analysis of hub genes

In this work, we used six common algorithms MCC (Maximal
Clique Centrality), MNC (Maximum neighborhood component),
DMNC (Density of MaximumNeighborhood Component), Degree,
Closeness, and Betweenness) in the cytoHubba plugin of Cytoscape
to evaluate and identify hub genes. The detailed information about
the six algorithms were descripted in previous article (Chin et al.,
2014). The relationships among genes were calculated using
Pearson’s correlation methods. The GSE76826 and
GSE122709 datasets was applied to validate the expression levels
of hub genes.

Subsequently, a co-expression network of these hub genes was
constructed via GeneMANIA (http://www.genemania.org/)
(Warde-Farley et al., 2010), and their potential functional
processes were enriched using the Metascape tool (https://
metascape.org/) (Zhou et al., 2019a).

DEG-miRNA interaction analysis

NetworkAnalyst (https://www.networkanalyst.ca/) is an online
platform that aimed to provide a wide-range for meta-analyzing gene
expression data and constructing gene regulatory networks in a user-
friendlymanner (Zhou et al., 2019b). ThemiRTarBase database provided
comprehensive information on experimentally validated miRNA-target
interactions and was used to identify regulatory miRNAs that influenced
DEGs at the post-transcriptional level in NetworkAnalyst.

Recognition of transcription factors

Transcription factors influence target genes at a transcriptional
level. Using the Binding and Expression Target Analysis Minus
algorithm, ENCODE targeted the transcription factor of genes
derived from the ChIP-seq data. We adopted the ENCODE to
predict regulatory TFs of our hub genes.

Prediction of potential drugs of hub genes

The Drug–Gene Interaction Database (DGIdb) (http://www.
dgidb.org/) is an online database for identifying drug-gene
interaction by integrating the data from, for examplethe Drug
Target Commons, DrugBank, TTD, PharmGKB, and Chembl
and so on (Wagner et al., 2016). The common hub genes were
imported into the database to search for potential drugs. The drug-
gene interactions were visualized by the “ggalluvial” R package.
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Immune infiltration analysis

The enrichment for 28 immune infiltrating cells (Bindea et al., 2013)
in the MDD and IS was assessed using a single-sample gene set
enrichment analysis (ssGSEA) by using the “GSVA” R package
(Hänzelmann et al., 2013). The immune cells with the same
enrichment trends for both diseases and significant differences
between diseases and the healthy controls were identified as the
potential immune cells involved in the pathogenesis. The relationships
between hub DEGs and immune cells were also constructed.

Statistical analyses

R software (version R-4.1.0) performed all statistical
analyses. The Wilcoxon test was used for statistical analysis
between two groups. The relationships of genes with genes and
genes with immune cells were constructed by using Pearson’s
correlation method. A p-value less than 0.05 (p < 0.05) was
considered to indicate statistical significance. The significance
level is denoted as follows: *p < 0.05, **p < 0.01, and
***p < 0.001.

TABLE 1 Baseline characteristics and odds ratio of participants by stroke levels in NHANES (2005–2018).

Variables Stroke p-value1 OR 95% CI p-value2

No Yes

MDD <0.0001

No 26,216 (92.69) 916 (81.98) ref ref ref

Yes 2,366 (7.31) 208 (18.02) 2.79 2.79 (2.26,3.43) <0.0001

Age (years) 46.85 (46.37,47.32) 63.46 (62.32,64.59) <0.0001 1.07 1.07 (1.06,1.07) <0.0001

Poverty 3.06 (3.00,3.13) 2.34 (2.21,2.47) <0.0001 0.76 0.76 (0.72,0.80) <0.0001

BMI(kg.m2) 28.99 (28.83,29.16) 30.07 (29.51,30.64) <0.001 1.02 1.02 (1.01,1.03) <0.001

Waist-circumference (cm) 99.17 (98.73, 99.61) 104.53 (103.12,105.94) <0.0001 1.02 1.02 (1.01,1.02) <0.0001

Sex 0.01

Male 14,361 (49.61) 557 (44.51) ref ref ref

Female 14,221 (50.39) 567 (55.49) 1.23 1.23 (1.05,1.43) 0.01

Race <0.0001

Non-Hispanic White 12,584 (69.21) 566 (70.84) ref ref ref

Non-Hispanic Black 5,969 (10.48) 313 (14.75) 1.38 1.38 (1.19,1.59) <0.0001
Mexican American 4,352 (8.03) 103 (4.51) 0.55 0.55 (0.43,0.70) <0.0001
Other Hispanic 2,641 (5.20) 66 (2.83) 0.53 0.53 (0.38,0.74) <0.001
Other 3,036 (7.08) 76 (7.07) 0.98 0.98 (0.69,1.38) 0.89

Education level <0.0001

Less than 9th grade 2,629 (4.57) 148 (8.44) ref ref ref

9–11th grade 3,891 (10.01) 207 (15.23) 0.83 0.83 (0.63,1.09) 0.17

High school graduate 6,569 (23.11) 324 (31.87) 0.75 0.75 (0.60,0.93) 0.01

Some college 8,649 (31.94) 301 (27.00) 0.46 0.46 (0.36,0.58) <0.0001
College graduate 6,844 (30.36) 144 (17.46) 0.31 0.31 (0.24,0.41) <0.0001

Marital status 0.2

Unmarried 13,730 (44.15) 582 (46.82) ref ref ref

Married 14,852 (55.85) 542 (53.18) 0.9 0.90 (0.76,1.06) 0.20

Smoke <0.0001

Never 15,711 (54.93) 415 (38.18) ref ref ref

Former 6,909 (24.78) 417 (35.86) 2.08 2.08 (1.76,2.46) <0.0001
Now 5,962 (20.28) 292 (25.96) 1.84 1.84 (1.52,2.23) <0.0001

Diabetes <0.0001

No 23,538 (86.80) 665 (63.27) ref ref ref

Yes 5,044 (13.20) 459 (36.73) 3.82 3.82 (3.26,4.48) <0.0001
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Results

Association between stroke and MDD

Baseline characteristics and the results of logistic
regression analysis for stroke and MDD were shown in

Table 1 and Table 2. The results indicated that MDD was
significantly associated with an increased risk of stroke.
Compared with non-exposure condition, the odds ratios
(ORs) with 95% confidence intervals (CIs) for exposure
condition between stroke and MDD was 2.79 (2.26,3.43),
p < 0.0001.

TABLE 2 Baseline characteristics and odds ratio of participants by MDD levels in NHANES (2005–2018).

Variables MDD p-value1 OR 95% CI p-value2

No Yes

Stroke <0.0001

No 26,216 (97.53) 2,366 (93.41) ref ref ref

Yes 916 (2.47) 208 (6.59) 2.79 2.79 (2.26,3.43) <0.0001

Age (years) 47.37 (46.87,47.88) 46.54 (45.71,47.37) 0.08 1 1.00 (0.99,1.00) 0.08

Poverty 3.12 (3.05,3.18) 2.13 (2.02,2.24) <0.0001 0.68 0.68 (0.65,0.71) <0.0001

BMI(kg.m2) 28.90 (28.73,29.06) 30.54 (30.12,30.97) <0.0001 1.03 1.03 (1.02,1.04) <0.0001

Waist-circumference (cm) 99.06 (98.63, 99.49) 102.41 (101.36,103.47) <0.0001 1.01 1.01 (1.01,1.02) <0.0001

Sex <0.0001

Male 13,960 (50.56) 958 (36.20) ref ref ref

Female 13,172 (49.44) 1,616 (63.80) 1.8 1.80 (1.62,2.01) <0.0001

Race <0.0001

Non-Hispanic White 12,019 (69.60) 1,131 (65.15) ref ref ref

Non-Hispanic Black 5,730 (10.41) 552 (12.85) 1.32 1.32 (1.16,1.50) <0.0001

Mexican American 4,075 (7.96) 380 (7.60) 1.02 1.02 (0.85,1.22) 0.83

Other Hispanic 2,390 (4.96) 317 (7.19) 1.55 1.55 (1.27,1.89) <0.0001

Other 2,918 (7.07) 194 (7.21) 1.09 1.09 (0.89,1.33) 0.41

Education level <0.0001

Less than 9th grade 2,428 (4.43) 349 (7.73) ref ref ref

9–11th grade 3,568 (9.61) 530 (16.73) 0.96 0.96 (0.83,1.12) 0.64

High school graduate 6,259 (23.05) 634 (27.07) 0.65 0.65 (0.56,0.76) <0.0001

Some college 8,167 (31.61) 783 (34.22) 0.61 0.61 (0.52,0.72) <0.0001

College graduate 6,710 (31.30) 278 (14.25) 0.25 0.25 (0.20,0.32) <0.0001

Marital status <0.0001

Unmarried 12,644 (42.72) 1,668 (62.43) ref ref ref

Married 14,488 (57.28) 906 (37.57) 0.45 0.45 (0.40,0.50) <0.0001

Smoke <0.0001

never 15,111 (55.83) 1,015 (37.94) ref ref ref

former 6,743 (25.30) 583 (22.54) 1.31 1.31 (1.12,1.54) 0.001

now 5,278 (18.87) 976 (39.53) 3.08 3.08 (2.73,3.49) <0.0001

Diabetes <0.0001

No 22,299 (86.69) 1904 (79.52) ref ref ref

Yes 4,833 (13.31) 670 (20.48) 1.68 1.68 (1.48,1.90) <0.0001
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Identification of DEGs and communal DEGs
between MDD and IS

The flow diagram for this study is shown in Figure 1. To
uncover the interrelationships of IS with MDD, we first
analyzed the human gene expression datasets from the GEO
database to identify the dysregulated genes that stimulate MDD
and IS separate. PCA results showed that there were two
distinctive batches in GSE989793 in Supplementary Figure
S1A, and the batch effect was removed in Supplementary
Figure S1B. A volcano plot showed that a total of 336 DEGs
were identified based on the following criteria: |log2FC|
>0.2 and a p-value <0.05, including 194 that were
upregulated and 142 that were downregulated between MDD
patients and healthy controls in Figure 2A. These deregulated

genes are shown with a heat map in Figure 2B. The
GSE16561 dataset identified 360 upregulated and
295 downregulated genes taken from IS patient peripheral
blood with the cut-off of |log2FC|>0.5 and a p-value <0.05.
The deregulated genes were presented with a volcano and
heat map plot in Figures 2C, D, respectively. The PCA result
for IS patients and controls are shown in Supplementary
Figure S2.

We further overlapped the deregulated genes of MDD and IS
with the same expression trends. The Venn diagram showed that
41 common upregulated genes and eight common downregulated
genes were finally identified in Figures 3A, B. The differential
expression patterns in the two groups were presented with heat
map plots from the perspective of logFC and p-value in Figures 3C,
D, respectively.

FIGURE 1
Workflowof data analysis in our presentwork. MDD,major depressive disorder; DEGs, differentially expressed genes; ssGSEA, single sample gene set
enrichment analysis; TF, transcription factor; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction.
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Functional enrichment analysis

The biological processes (BP) results showed that the shared
genes were mainly enriched in neutrophil activation involved in
immune response, defense response to the bacterium, humoral
immune response, and reactive oxygen species metabolic process
(Figure 4A). In Figure 4B, we observed that these genes were
involved in the vesicle lumen, specific granule, and tertiary
granule cell component (CC). The molecular functions (MF)
of these shared DEGs were enriched in protein
heterodimerization activity and serine-related activity in
Figure 4C. The KEGG result showed that the primary
immunodeficiency, T cell receptor signaling pathway, and
antigen processing and presentation pathways were enriched
in Figure 4D.

Identification and analysis of hub common
DEGs

The shared genes were imported into the STRING database to
construct a protein-protein network (Supplementary Figure S3).
The network was further visualized in Cytoscape in Figure 5. The red

represents the upregulated DEGs, while the turquoise represents the
downregulated DEGs. The size of the node shows the degree of
interaction with other genes.

Next, we adopted six algorithms in the cytoHubb plugin of
Cytoscape to identify the hub genes. The top 20 genes in each
method were visualized in Supplementary Figure S4 and listed in
Table 3. We then intersected the 20 genes for each method, and ten
overlapped genes (CD163, AEG1, IRAK3, S100A12, HP, PGLYRP1,
CEACAM8, MPO, LCN2, and DEFA4) denominated as hub
communal DEGs were selected in Figure 6A. The detailed
descriptions of the hub genes were listed in Table 4, and that of
other DEGs were in Supplementary Table S1. The locations of the
10 genes in the corresponding chromosome are presented in
Figure 6B. The violin plot showed that the hub shared genes
were significantly expressed in MDD and IS with the same trend
in Figures 6C, D. The relationships among genes show that most
genes were significantly positively related to each other in MDD
(Figure 6E) and stroke (Figure 6F).

The diagnostic ablility of the hub genes inMDD (Figure 7A) and
IS (Figure 7B) were visualized with receiver operating characteristic
curves. The results shows that HP present the greatest diagnostic
value with AUC = 0.671 in MDD, while CD163 display the greatest
diagnostic value with AUC = 0.965 in IS.

FIGURE 2
Landscapes of differentially expressed genes (DEGs) in MDD and IS. A volcano plot (A) and heat map (B) show the DEGs in MDD. A volcano plot (C)
and heat map (D) show the DEGs in IS. MDD, major depressive disorder; IS, ischemic stroke.
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We further validated the epression of the ten hub genes in other
external datasets (Supplementary Figure S5). However, only
S100A12 was validated as the common differentially expressed
gene of the two disorders, which need to be verified by in vivo or
vitro experiments.

In Figure 8A, the co-expression network of hub genes was
constructed using the GeneMANIA website. In the complex PPI
network, the interaction of the co-expression accounted for 74.83%,
physical interactions for 22.14%, and colocalization for 3.04%. In
function analysis, these genes were involved in humoral immune
response, secretory granule lumen, cell killing, and regulation of
inflammatory response, which was almost consistent with the results
from the Metascape analysis (Figure 8B; Supplementary Table S2).
In Figure 8C and Supplementary Table S3, we also predicted the
potential diseases that the hub genes may be involved in through
gene-disease association information collected from the DisGeNET
database (Piñero et al., 2020) in Metascape. The results showed that
these genes participate in intravascular hemolysis, endotoxemia, and
bacterial infections.

Gene regulatory network analysis of Genes-
miRNAs and Genes-TFs

TarBase database was utilized to predict the miRNA of hub
genes. All hub shared genes were predicted for their interacted
miRNA, and a total of 28 miRNA were determined in Figure 9A. In
the gene-miRNA interaction network, LCN2 interacted with the

most miRNAs with 13 predicted, followed by HP and IRAK3 with
6 miRNAs. hsa-mir-27a-3p were located in a conspicuous place due
to interacting with five hub genes.

We also predicted the experimentally validated TFs of hub genes
using ENCODE database in Figure 9B. Only four hub genes
predicted their regulatory TFs. A total of 61 TFs were identified,
and LCN2 also had the most targeting nodes with 45 TFs, followed
by HP with 20 TFs.

The Sankey diagram showed the potential drugs that targeted
the hub genes from the DGIdb database (Figure 9C). A total of
30 drugs were predicted, and the detailed information were listed in
Supplementary Table S4. Of these, 21 drugs targeted MPO; five
drugs targeted S100A12, and 2 drugs each targeted HP and ARG1.
No potential drugs could be identified for LCN2, DEFA4, PGLYRP1,
CEACAM8, CS163, and IRAK3.

Immune cell infiltration analysis

Using the ssGSEA algorithm, we obtained the immune
infiltration of 28 immune cells in the MDD group, IS group, and
control group. The immune cells with significant differences
between cases and the healthy control group and the same trends
were regarded as the potential cells. A total of five immune cells
among these 28 types of cells, including activated B cell, activated
dendritic cell, effector memory CD8 T cell, macrophage, and natural
killer cell were identified, among which active B cell and effector
memory CD8 T cell were downregulated, whereas other cells were

FIGURE 3
Identification of shared DEGs betweenMDD and IS. (A)Overlapping the shared upregulated DEGs. (B)Overlapping the shared downregulated DEGs.
(C) A heat map indicates the shared DEGs from the perspective of log(Fold change). (D) A heat map indicates the shared DEGs from the perspective of the
p-value. MDD, major depressive disorder; IS, ischemic stroke.
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upregulated, implying the innate immunity was activated while
acquired immunity was suppressed in the two diseases (Figures
10A, B). Figures 10C, D also showed the strong relationships
between the hub gene and immune cells.

Discussion

Depression is a global health problem with a high prevalence
and the third leading cause of disability globally (Park and Zarate,
2019). The incidence of suicide associated with depression has been
increasing and is the 10th leading cause of death in the United States
Similarly, stroke, a neurological disorder characterized by blockage
of blood vessels, is a major cause of death and disability worldwide
(Johnston et al., 2009). Early studies indicated that depression
increased the risk of stroke. A prospective longitudinal study
showed that a history of depression was associated with an
increased risk of stroke by over twofold (Jackson and Mishra,
2013). Compared with participants with stable low/no depressive
symptoms, the participants with the stable high and remitted
depressive symptoms had a 2.14 and 1.66 elevated hazard risk of
stroke, respectively (Gilsanz et al., 2015). In addtion, post-stroke
depression (PSD) is one of the common and serious sequelae of
stroke. Folstein et al. (1977) first demonstrated that mood disorder is

FIGURE 5
PPI network showing the protein interaction for shared DEGs
between MDD and IS. The red color represents the commonly
upregulated genes. The blue color represents the common
downregulated genes. The size of the circle indicates the Degree
of the node. The PPI network was generated using STRING and
visualized in Cytoscape.

FIGURE 4
GO and KEGG enrichment analysis for shared DEGs between MDD and IS. (A–C) BP, CC, and MF of GO analysis were enriched for common DEGs.
(D) KEGG pathways of common DEGs. BP, biological processes; CC, cellular components; MF, and molecular functions.
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a more specific complication of stroke. Disability, anxiety, stroke
severity, depression pre-stroke, and cognitive impairment all play an
important role in PSD, according to a meta-analysis (Ayerbe et al.,
2013). Although the bi-directional relationship between stroke and
depression is recognized, the underlying mechanism remains a
provocative and unresolved question. Considering that stroke and
depression have genetic roots, as well as their frequent comorbidity,
we speculate shared genes and biological pathways for both stroke
and depression.

With the rapid development of sequencing technology, for the
first time, we explored the shared gene signatures and molecular
mechanisms between MDD and IS from transcriptome data. In our
study, we observe a total of 41 genes are simultaneously upregulated,
and eight genes are downregulated in both MDD and IS. Biological
enrichment analysis shows that these common genes are involved in
the immune response, cell killing, and defense response to the
bacterium. Moreover, the T cell receptor signaling pathway,
primary immunodeficiency, malaria, IL-17 signaling pathway,
and rap1 signaling pathway are enriched in the KEGG pathway
analysis. Ten overlapped genes (CD163, AEG1, IRAK3, S100A12,
HP, PGLYRP1, CEACAM8, MPO, LCN2, and DEFA4)
denominated as hub communal DEGs are identified. We observe
that the ten hub genes participate in the immune response and cell
killing processes. The gene-diseases analysis reveals that
intravascular hemolysis, endotoxemia, and bacterial infections are

correlated with these genes. Furthermore, we construct gene
regulatory networks with gene-miRNA, gene-TF, and gene-drugs,
which further provide targets for therapeutic interventions. Finally,
we depict the immune landscapes for both disorders and found that
five immune cells, including activated B cell, activated dendritic cell,
effector memory CD8 T cell, macrophage, and natural killer cell,
were significantly different in both diseases. Further analysis
indicates innate immunity may be activated whereas acquired
immunity may be suppressed.

There is consistently and robust evidence supporting the role of
inflammation in depression. The inflammatory response in MDD
patients was characterized by increased production of complement,
chemoattractors, and pro-inflammatory cytokines in peripheral
blood cerebrospinal fluid, and post-mortem brain samples (Miller
and Raison, 2016). Cytokines, which mediate the innate immune
response, including IL-1, tumor necrosis factor (TNF)-alpha,
C-reactive protein (CRP), and IL-6, from peripheral blood are
considered the most reliable biomarkers of inflammation in
patients with depression (Miller et al., 2009). In addition, by
inhibiting pro-inflammatory cytokines or their signaling
pathways, depressed mood can be improved and conventional
antidepressants better tolerated (Kenis and Maes, 2002; Bluthé
et al., 2006). Furthermore, by producing anti-inflammatory
cytokines (IL-2, IL-4, and IL-10) and/or activating T regulatory
(Treg) cells, the effects of immune response were also counter-

TABLE 3 The top20 genes identified by six different methods.

Rank MNC MCC DMNC Degree Closeness Betweenness

1 MMP9 MMP9 BPI MMP9 MMP9 MMP9

2 IL1R2 S100A12 CAMP IL1R2 IL1R2 CD8A

3 CD8A MPO OLFM4 CD8A CD8A IL1R2

4 S100A12 LCN2 LCN2 S100A12 S100A12 ITGA2B

5 MPO CAMP CEACAM8 MPO MPO S100A12

6 LCN2 ARG1 PGLYRP1 LCN2 LCN2 HK2

7 CD163 CD8A TCN1 CD163 CD163 THBS1

8 ARG1 PGLYRP1 IRAK3 ARG1 ARG1 ARG1

9 PGLYRP1 HP HP PGLYRP1 PGLYRP1 DEFA4

10 CEACAM8 IL1R2 MPO DEFA4 DEFA4 IRAK3

11 CAMP CEACAM8 CD163 CEACAM8 CEACAM8 MPO

12 DEFA4 CD163 KLRB1 CAMP CAMP FKBP5

13 HP BPI S100A12 HP HP LCN2

14 GZMA DEFA4 ARG1 IRAK3 IRAK3 CD163

15 IRAK3 IRAK3 DEFA4 GZMA GZMA HP

16 IFIT3 OLFM4 GZMA IFIT3 THBS1 IFIT3

17 THBS1 THBS1 IFI27 THBS1 IFIT3 MCEMP1

18 CEACAM6 GZMA GZMK CEACAM6 CEACAM6 PGLYRP1

19 OLFM4 CEACAM6 CD3G OLFM4 OLFM4 CEACAM8

20 RSAD2 MCEMP1 ITGA2B RSAD2 MCEMP1 ECHDC3
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balanced or compensated in MDD patients (Dowlati et al., 2010).
Growing evidence also revealed an intimate relationship between the
immune system and all stages of the ischemic cascade, from the
acute intravascular events induced by a blockage of the blood supply
to the parenchymal process causing brain damage (Iadecola and
Anrather, 2011; Endres et al., 2022). A recent review summarized
that pro-inflammatory interleukins (IL-1b, IL-6, IL-8, IL-12, IL-15,
IL-16, IL-20, IL-18, and IL-23/IL-17) and anti-inflammatory
interleukins (IL-2, IL-4, IL-10, IL-13, IL-19, and IL-33) were
involved in the pathogenesis of IS (Zhu et al., 2022). As

inflammation is common after stroke and depression,
immunological processes were proposed as the underlying
mechanism triggering PSD (Pascoe et al., 2011). Inflammatory
markers such as CRP, ferritin, and neopterin have been linked to
PSD development later in life (Becker, 2016). Our GO and KEGG
analysis demonstrates that the immune response is enriched in the
common DEGs and the ten hub genes of MDD and IS. Moreover, in
our immune infiltration analysis, the abundance of active B cells and
effector memory CD8 T cell decreases, while that of activated
dendritic cell, macrophage, and natural killer cell increases in

FIGURE 6
Identification of hub genes from PPI network. (A) A Venn diagram shows ten overlapped genes that were screened out by the six methods from the
top 20 genes of six methods in Cytohubba plug in Cytoscape. (B) The gene locations of the ten hub genes. (C) and (D) shows the expression levels of the
ten hub genes in MDD and IS, respectively. (E) and (F) depicted the correlations of the ten genes with each other in MDD and IS, respectively. Significance
level was denoted by *p-value <.05, **p-value <.01, ***p-value <.001.
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TABLE 4 The detailed information and descriptions of hub genes.

Gene name Ensembl id Gene description Chromosome Change

CD163 ENSG00000177575 CD163 molecule 12 UP

ARG1 ENSG00000118520 arginase 1 6 UP

IRAK3 ENSG00000090376 interleukin 1 receptor associated kinase 3 12 UP

S100A12 ENSG00000163221 S100 calcium binding protein A12 1 UP

HP ENSG00000257017 haptoglobin 16 UP

PGLYRP1 ENSG00000008438 peptidoglycan recognition protein 1 19 UP

CEACAM8 ENSG00000124469 CEA cell adhesion molecule 8 19 UP

MPO ENSG00000005381 myeloperoxidase 17 UP

LCN2 ENSG00000148346 lipocalin 2 9 UP

DEFA4 ENSG00000285318 defensin alpha 4 8 UP

FIGURE 7
The diagnostic abilities of the ten hub genes in MDD (A) and IS (B) with ROC curve. ROC, receiver operating characteristic.
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both disorders, which may provide new insight into the common
pathogenesis and immunotherapy for both diseases. Specifically, the
IL-17 signaling pathway was also observed in our biological function
annotation of shared genes. The IL-17 family is an evolutionarily old
cytokine family consisting of six members (IL-17A-F), dominantly
produced by immune cells of the adaptive and innate lymphocyte
lineages, including CD4+ Th17 cells, CD8+ Tc17 cells, γδT17 cells,
MAIT cells, and innate lymphoid cells ILC3 (Majumder and
McGeachy, 2021). It has been observed that IL-17 levels are high
in the central nervous system (CNS) during inflammatory
responses, including IS and MDD. Peripheral blood samples
from patients with IS show an increased expression of IL-17
compared with healthy individuals (Kostulas et al., 1999). High
plasma levels of IL-17 were also detected in MDD patients
(Waisman et al., 2015). Combined with our results, we speculate
that the IL-17 signaling pathway plays an important role in the
shared mechanisms of MDD and IS.

A PPI network analysis was conducted among the proteins
derived from shared DEGs to depict functional and physical
interactions between IS and MDD. By integrating with six

algorithms (MCC, MNC, DMNC, Degree, Closeness, and
Betweenness) in the cytoHubba plugin of Cytoscape, we identify
ten hub communal DEGs (CD163, AEG1, IRAK3, S100A12, HP,
PGLYRP1, CEACAM8,MPO, LCN2, and DEFA4), whichmay serve
as potential interventional targets.

CD163, the hemoglobin scavenger receptor, is a macrophage-
specific protein of the “alternative activation” phenotype and played
a major role in dampening the inflammatory response (Moestrup
and Møller, 2004). The upregulation of CD163 in monocytes was
observed in MDD patients compared with healthy controls (Simon
et al., 2021). However, in MDD in vitro experiments, sub-anesthetic
doses of ketamine, an antidepressant (Murrough et al., 2013),
program human monocytes into M2c-like macrophages (anti-
inflammatory phenotype) by inducing high levels of CD163 and
MERTK (Nowak et al., 2019). Compared with the CD14+ classical
subtype, CD163 expression was more pronounced in CD16+ non-
classical and intermediate monocytes after IS and may serve as a
potential biomarker of monocyte activation (Greco et al., 2021).
Moreover, the percentage of CD163+/CD16+ events 24 h after IS
was positively associated with stroke severity and disability. In our

FIGURE 8
The co-expression network and biological functions of hub genes. (A)Hub genes and their co-expression genes were analyzed viaGeneMANIA. (B)
The biological pathways were enriched for hub genes viaMetascape. (C) The potential diseases were participated by these hub genes from the DisGeNET
database.
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analysis, in comparison with the controls, the higher expression of
CD163 in both MDD and IS is observed, which may act as a shared
risk gene for IS and MDD.

The interleukin receptor-associated kinase (IRAK) family
[including IRAK-1, IRAK-2, IRAK-M (IRAK-3), and IRAK-4]
are involved in regulating Toll-like receptor (TLR) and
interleukin-1 (IL-1) signaling pathways. Interleukin one
receptor-associated kinase 3 (IRAK3) is a protein of 596 amino
acids with a molecular mass of 68 kDa and is limited to monocytes
and macrophages (Wesche et al., 1999). A recent genome-wide
association study (GWAS) identified a genome-wide significant
locus (rs11465988) in IRAK3 for esketamine efficacy of anti-
depression (i.e., percentage change in symptom severity score
compared with baseline). The potential roles of IRAK3 in IS
have also been discovered recently. The expression levels of
IRAK3 that may link natural killer cells to apoptosis were
upregulated in IS through bioinformatics analysis (Feng et al.,
2022). In experimental stroke mice, IRAK3 has neuroprotective
effects, and its deletion can exacerbate neurovascular damages
(Lyu et al., 2018). However, our results identify the enhanced
expression in both IS and MDD.

Myeloperoxidase (MPO) is a member of the superfamily of heme
peroxidases, that is, mainly found in neutrophils and monocytes. High
levels ofMPO have been detected in the serum of depressive patients in a
twin study (Vaccarino et al., 2008). InhibitingMPOactivity and serotonin
reuptake may be a potential new approach to MDD with inflammatory
syndrome (Soubhye et al., 2014).Moreover, a significant increase inMPO
mRNA expression was observed in peripheral blood cells from patients
with recurrent depressive disorder (rDD) compared to controls (Gałecki
et al., 2012; Talarowska et al., 2015). The expression of MPO was also
associated with the risk of IS (Wright et al., 2009). Concentrations of
serumMPO are increased after IS andwas associated with stroke severity
(Palm et al., 2018; Orion et al., 2020). Inhibiting MPO activity increased
cell proliferation and improved neurogenesis after IS (Kim et al., 2016;
Kim et al., 2019). Although MPO contributes to both IS and MDD, few
studies were conducted to explore the potential mechanism of IS
complicated with MDD. Our result may provide a bridge linking the
two disorders.

Lipocalin-2 (LCN2) is a member of the highly heterogeneous
lipocalin family of secretory proteins. The roles of LCN2 in IS and
depression have been proved recently (Zhao et al., 2019b; Vichaya
et al., 2019). A study demonstrated that the relationship between

FIGURE 9
Construction of the regulatory network for hub genes. (A) gene-miRNAs interactions. (B) gene-TFs interactions. (C) A Sankey diagram indicating the
potential drugs for hub genes. The circle nodes represent the hub genes. The square nodes represent miRNAs. The diamond nodes represent TFs. TF,
transcription factor.
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FIGURE 10
Identification of common immune cells between MDD and IS. (A) The abundance of the immune cell in MDD using the ssGSEA method. (B) The
abundance of the immune cell in IS using the ssGSEA method. The immune cells with red color indicate the significantly common immune cells. (C) and
(D) A heat map visualized the correlations between common immune cells and shared hub genes. Significance level was denoted by *p-value <.05, **p-
value <.01, ***p-value <.001.
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LCN2 and the process of PSD may be mediated via the P38 MAPK
pathway (Wei et al., 2021). Our study provides potential association
for LCN2 and comorbidity between depression and IS.

Haptoglobin encoded by HP participates in the process of
depression and stroke from the perspective of genetic and proteomic
levels (Maes et al., 1993; Kiga et al., 2008; Ijäs et al., 2013). Considering
few studies focusing on the intermediate role of haptoglobin between
depression and stroke, this study provides new insight and reference for
investigating its potential roles in the comorbidity, such as PSD.

Regulatory biomolecules may serve as potential interventional
targets in multiple complex illnesses. TFs play a key role in
regulating the ratio of transcription, and miRNAs handle gene
regulation and RNA silencing at the post-transcription level.
Given the crucial roles of the ten hub common genes, we also
analyze the TFs–gene, miRNAs-gene, and drugs-gene interaction to
find transcriptional, post-transcriptional, and therapeutic
regulators. mir-27a-3p, mir-146a-5p, mir-335-5p, and let-7b-5p
are identified to be interacting with at least three hub genes.
Furthermore, we discovered that TFs (such as ZNF197, KLF9,
KLF11, RERE, ARID4B, TFE3, and FOSL1) target LCN2 and HP
simultaneously. Finally, 31 candidate drugs were predicted, among
which 21 drugs target MPO. Combined with the above-mentioned
roles of MPO in both depression and stroke, these drugs may serve
as potential theraputics to treat the comorbidities.

Some limitations should be noted in our work. First, although the
gene expression profiling from both diseases are derived from the same
tissues, there is inadequate information regarding the blood sample
collection time for the studies. The disease course of depression and
stroke are different. Second, in this study, all the results were acquired by
bioinformatic analysis, and we have not conducted any in vivo or
in vitro experiments to verify the different expression levels. Hence, the
findings should be interpreted with caution.

Conclusion

We performed a bioinformatic analysis to identify overlapping
DEGs subserving both MDD and IS. The communal DEGs
participate in the immune response and cell killing processes.
Furthermore, ten hub DEGs (CD163, AEG1, IRAK3, S100A12,
HP, PGLYRP1, CEACAM8, MPO, LCN2, and DEFA4) were
screened out based on six algorithms (MCC, MNC, DMNC,
Degree, Closeness, and Betweenness). Immune infiltration
analysis shows that the innate immunity was activated whereas
acquired immunity was suppressed in both diseases. These findings
increase our understating of the association of IS with depression at
a transcriptional level. The final gene regulatory network may shed
light on novel therapeutic targets for both disorders.
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molecular mechanisms in
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Background: Intracerebral hemorrhage (ICH) is a stroke syndrome with high
mortality and disability rates, but autophagy’s mechanism in ICH is still unclear.
We identified key autophagy genes in ICH by bioinformatics methods and
explored their mechanisms.

Methods: We downloaded ICH patient chip data from the Gene Expression
Omnibus (GEO) database. Based on the GENE database, differentially
expressed genes (DEGs) for autophagy were identified. We identified key genes
through protein–protein interaction (PPI) network analysis and analyzed their
associated pathways in GeneOntology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG). Gene-motif rankings, miRWalk and ENCORI databases
were used to analyze the key gene transcription factor (TF) regulatory network and
ceRNA network. Finally, relevant target pathways were obtained by gene set
enrichment analysis (GSEA).

Results: Eleven autophagy-related DEGs in ICH were obtained, and IL-1B, STAT3,
NLRP3 andNOD2were identified as key genes with clinical predictive value by PPI
and receiver operating characteristic (ROC) curve analysis. The candidate gene
expression level was significantly correlated with the immune infiltration level, and
most of the key genes were positively correlated with the immune cell infiltration
level. The key genes are mainly related to cytokine and receptor interactions,
immune responses and other pathways. The ceRNA network predicted
8,654 interaction pairs (24 miRNAs and 2,952 lncRNAs).

Conclusion: We used multiple bioinformatics datasets to identify IL-1B, STAT3,
NLRP3 and NOD2 as key genes that contribute to the development of ICH.

KEYWORDS

intracerebral hemorrhage, autophagy, immune infiltration, bioinformatics analysis,
ceRNA network
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1 Introduction

Intracerebral hemorrhage (ICH) is a common stroke
syndrome, accounting for approximately 15% of strokes, and
nearly 50% of stroke-related deaths worldwide are related to
ICH (Feigin et al., 2009; Biffi et al., 2016). ICH is caused by the
sudden rupture of blood vessels caused by pathological
accumulation of blood in the brain parenchyma (Jia et al.,
2020). ICH injury is divided into primary and secondary
injuries, with the former being caused by direct mechanical
action of the hematoma (Fu et al., 2022). Edema around the
hematoma occurs within hours of ICH, disrupting the
blood–brain barrier and adjacent tissues and leading to
secondary damage (Li et al., 2020). Second, mitochondrial
dysfunction, neurotransmitter disturbance, microglial activation,
and the release of inflammatory mediators are also important
mechanisms for aggravating brain injury (Kim-Han et al.,
2006). The death of nerve cells after ICH is closely related to
the sequelae of ICH and death from ICH. Programmed cell death
(PCD) refers to the autonomous and orderly death of cells
controlled by genes to maintain the stability of the internal
environment. PCD is an active suicidal behavior of cells
(Huysmans et al., 2018). PCD, including autophagy, apoptosis
and pyroptosis, plays an important role in neuronal cell death after
ICH (Bobinger et al., 2018). Autophagy, as an important category
of PCD, has been identified in ICH, but its mechanism in
intracerebral hemorrhage remains unclear.

Autophagy is one of the important subcellular events
occurring from eukaryotic cells to mammals, and the process
of autophagy is highly conserved. Autophagy refers to the process
in which cells can wrap their intracellular contents under stress
and integrate with lysosomes to degrade into these contents into
biomacromolecules, which are reused by cells (Ohsumi, 2014).
Recent studies have shown that autophagy is closely related to the
occurrence of various neurological diseases (Moujalled et al.,
2021). In recent years, autophagy has been found to be closely
related to secondary brain tissue damage after ICH (Duan et al.,
2016; Zhang et al., 2021). After ICH occurs, thrombin is produced
in the blood coagulation process, while the hematoma gradually
degrades, releasing degradation products such as hemoglobin,
heme and iron that invade the surrounding brain tissue. When
iron overload and abnormal thrombin expression occur in brain
tissue, autophagy is activated and involved in the brain protection
process to reduce injury, remove harmful substances and
maintain intracellular environmental homeostasis. The
protective role of autophagy in ICH has been demonstrated
(Wang et al., 2020; Li et al., 2021). However, the
overactivation of autophagy, which activates microglia to
produce proinflammatory factors and damages neurons, leads
to the aggravation of secondary injury after ICH (Shi et al., 2018;
Zhang et al., 2021). In summary, autophagy is extremely
important for the progression of ICH, but the key genes
involved in this process are still not clearly known. The
diagnosis of the severity of ICH on the basis of autophagy-
related gene expression is also a clinical blind spot. The key
autophagy-related genes in ICH need to be identified.

To explore and identify potential biomarkers and the key
autophagy-related genes in ICH, we obtained microarray and gene

information from multiple databases and used the R statistical
programming language for analysis. We selected DEGs in
perihematomal tissue (PH) and contralateral normal tissue from
intracerebral hemorrhage patients obtained from multiple sources as
raw data. Then, four key genes were screened by analyzing the
interactions and relationships of DEGs highly related to autophagy
with the ROC curve method. Finally, we analyzed the impact of key
genes on the immunemicroenvironment and themechanisms by which
these genes are regulated by transcription factors and non-coding RNAs.
We innovatively used methods such as ceRNA network construction,
motif-TF annotation and xCell to analyze autophagy after ICH. These
results will contribute to the study of themechanism of secondary injury
following ICH and provide new ideas for the diagnosis and treatment of
ICH in the clinic.

2 Materials and methods

2.1 Data download

The NCBI GEO Database (http://www.ncbi.nlm.nih.gov/geo/)
is a repository of microarray, next-generation sequencing, and
other high-throughput sequencing data (Edgar et al., 2002). The
GSE24265 Series Matrix File was downloaded from the GEO public
database, noted by the GPL570 annotation file, of which the
expression profile data belonged to 11 samples, including the
perihematomal areas, gray matters, and white matters of
7 patients in the healthy control group and 4 patients with ICH
(Rosell et al., 2011). The GSE149317 Series Matrix File (only used
to verify the expression level of key genes) was downloaded from
the GEO public database, and the annotated File is GPL24688
(Yuan et al., 2020). The microarray data included 6 cases in the
healthy control group and 6 patients in the ICH group.We used the
R package limma to count the differentially expressed genes
between ICH patient and healthy control samples (Ritchie et al.,
2015). The screening conditions for differential genes were P.
Value < 0.05 and |logFC| > 1. Using the GeneCards database
(https://www.genecards.org/) (Stelzer et al., 2016),
7236 autophagy-related genes were obtained. The relevance
scores of 269 genes were greater than 3, and these genes were
chosen for analysis as an autophagy gene set. Another 1139 ICH-
related genes were also obtained from the database. The flow chart
of this study is shown in Figure 1.

2.2 Functional annotation

The R package clusterProfiler was used to comprehensively
explore the functional correlation of these differentially expressed
genes (Yu et al., 2012). GO and KEGGwere used for the evaluation of
relevant functional categories. GO andKEGG enriched pathways with
both p values and q-values less than 0.05 were considered significant
pathways. To comprehensively explore the functional correlation of
differentially expressed genes, we also used the Metascape database
(www.metascape.org) for gene annotation (Zhou et al., 2019). GO and
KEGG were used to analyze the potential pathways of the selected
genes. Min overlap ≥ 3 and p ≤ 0.01 were considered statistically
significant.
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2.3 Protein–protein interaction network
analysis

The protein–protein interaction (PPI) information of genes was
retrieved through the STRING database (Szklarczyk et al., 2021),
and the confidence scores were set to ≥0.4. Cytoscape software was
used to visualize the results, and the gene coexpression network was
obtained. The MCODE algorithm of Cytoscape identified densely
connected sets of genes in the PPI network.

2.4 Analysis of immune cell infiltration

Developed by the Dviraran team in 2017, xCell is a widely used
method to evaluate immune cell types in the microenvironment
(Aran et al., 2017). This method integrates the strengths of gene
enrichment analysis via deconvolution to assess 64 cell types that
include multiple adaptive and innate immune cells, hematopoietic
progenitor cells, epithelial cells, and extracellular stromal cells,
including 48 tumor microenvironment-related cells. With the R
package xCell, we analyzed the patient data to infer the relative
proportion of infiltrating immune cells and performed Pearson
correlation analysis on the level of immune cell infiltration.
Pearson correlation analysis was used to evaluate the immune
cell content and the expression level of some key genes.

2.5 Transcription factor regulatory network
analysis of key genes

The transcription initiation process of eukaryotes is very
complex and often requires the assistance of various protein
factors. TFs and RNA polymerase II form a transcription

initiation complex and participate in the process of
transcription initiation together. TFs can be divided into two
categories according to their function. The first category is
universal transcription factors, which, when acting together
with RNA polymerase II to form the transcription initiation
complex, can start transcription at the correct position. Another
category is cis-acting elements, which are sequences present in
sequences flanking genes that can affect gene expression. Cis-
acting elements include promoters, enhancers, regulatory
sequences, and inducible elements that participate in the
regulation of gene expression. The cis-acting element itself
does not encode any protein but provides an action site to
interact with the trans-acting factor. This analysis was mainly
performed using the R package cisTarget (https://resources.
aertslab.org/cistarget/), in which we used mm9-500bp-
upstream-7species.mc9nr.feather version 1.6.0 for the Gene-
motif rankings database. The main TFs were predicted by the
cisTarget function, when nesThreshold was 3, geneErnMethod
was aprox, and geneErnMmaxRank was 5000.

2.6 Gene set enrichment analysis

According to a predefined set of genes, GSEA is a statistical
procedure to rank genes according to their degree of differential
expression in two types of samples and then test whether the
predefined gene set is enriched at the top or bottom of the
ranking list (Subramanian et al., 2005). In this study, GSEA was
used to compare the discrepancies in signaling pathways between the
high expression group and the low expression group and to explore
the molecular mechanisms of the core genes of patients. The
number of substitutions was 1000, and the substitution type was
phenotype.

FIGURE 1
Flow chart.
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2.7 Analysis of the ceRNA network

Representing a new mode of gene expression regulation, ceRNA
has attracted much attention in the academic community in recent
years. Compared with the miRNA regulatory network, the ceRNA
network is more elaborate and complex, involving more RNA
molecules, including mRNAs, gene-coding pseudogenes, long non-
coding RNAs, and miRNAs. In addition, we combined four databases,
miRWalk, miRDB, TargetScan and ENCORI, to predict the interaction
between key mRNAs and non-coding RNAs. Moreover, we selected
coidentified targeted mRNAs for further analysis. Finally, ceRNA
networks were established with the combination of
mRNA–miRNA and miRNA–lncRNA interactions and visualized
with Cytoscape.

3 Results

3.1 Identification of Hub genes

We downloaded the GSE24265 dataset from the NCBI GEO
public database, which contained the data from a total of
11 individuals, including 7 in the healthy control group and 4 in
the disease group. Through comparison with the healthy control
group, we used the limma package to screen out a total of
341 upregulated genes and 144 downregulated genes in the
patient samples (Figure 2A). Among them, 11 autophagy-related
genes (all upregulated genes) were included (Figure 2B). Ultimately,
we used these 11 autophagy-related differentially expressed genes as
candidate gene sets for further analysis.

FIGURE 2
(A) The volcano plot of differentially expressed genes in the GSE24265 dataset. Red indicates the downregulation of differentially expressed genes,
green indicates the upregulation of differentially expressed genes, and the screening conditions for differentially expressed genes were P.Value <
0.05 and |logFC| > 1. (B) Venn diagram of differentially expressed genes and autophagy-related genes. (C) GO enrichment results of differentially
expressed genes, including BP, CC, and MF, sorted according to the number of genes enriched in the pathway. (D) KEGG enrichment results of
differentially expressed genes sorted according to the number of genes enriched in the pathway. (E) GO-KEGG enrichment analysis of differential genes
based on the Metascape database are shown above. The cluster networks composed of enriched pathways are shown below, where nodes sharing the
same cluster are usually close to each other.
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3.2 Functional enrichment analysis

We further performed pathway analysis on these 11 candidate
genes. GO enrichment analysis showed that these candidate
genes were mainly enriched in the positive regulation of
cytokine production and cytokine receptor binding pathways
(Figure 2C). KEGG enrichment analysis revealed that these
candidate genes were mainly enriched in pathways such as
lipid and atherosclerosis and the nucleotide-binding
oligomerization domain (NOD)−like receptor signaling
pathway (Figure 2D). The Metascape database was used for
further pathway analysis of candidate genes. The results
showed that these candidate genes were mainly enriched in
positive regulation of interleukin-1 beta production, the
regulation of interleukin-17 production and the regulation of
autophagy pathways (Figure 2E).

3.3 Identification of key genes and ROC
curve analysis

We foundmultiple protein interaction pairs among 11 candidate
genes through the STRING online database. Moreover, five key
genes, including IL1B, STAT3, IL6, NOD2 and NLRP3, were
obtained by MCODE analysis in Cytoscape (Figure 3A). Then,
we analyzed the expression levels of these five key genes in the
GSE149317 dataset and found that the expression levels of
interleukin-1beta (IL1B), signal transducer and activator of
transcription 3 (STAT3), nucleotide-binding oligomerization
domain containing 2 (NOD2) and NOD-1-like receptor pyrin
domain containing three (NLRP3) were significantly higher in the
ICH group than in the healthy control group (Figure 3B). The area
under the receiver operating characteristic curve (AUC) for the four
key genes was no less than 0.75 (Supplementary Figure S1). Based on

FIGURE 3
(A) Based on the Cytoscape software, the key clusters obtained by the protein interaction network MCODE algorithm, the orange genes are the key
genes in the cluster. (B) The GSE149317 dataset validates the 5-based expression, with blue for the control group and yellow for the ICH group. The test
method was ANOVA. (C) Relative percentages of 20 immune cell subsets per sample. On the horizontal axis, green is the healthy control group, and
purple is the patient group. (D) Pearson correlation between 20 immune cells; purple indicates a negative correlation, and red indicates a positive
correlation. The p value of the level of correlation is indicated by an asterisk: * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. (E) Pearson correlation
analysis of 11 candidate genes and 20 types of immune cells; purple indicates a negative correlation, and red indicates a positive correlation. (F) The
difference in immune cell content between healthy controls and ICH patients (yellow indicates healthy controls, and blue indicates ICH patients); p <
0.05 was considered statistically significant.
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the GSE24265 dataset, we once again analyzed the predictive power
of these key genes for ICH. The results showed that the AUCs of
IL1B, STAT3, NOD2 and NLRP3 were greater than 0.8
(Supplementary Figure S1).

3.4 Analyses of the immune
microenvironment

The immune microenvironment is mainly composed of
immune-related fibroblasts, immune cells, extracellular
matrix, various growth factors, inflammatory factors and
special physicochemical characteristics. The immune
microenvironment significantly affects the diagnosis, survival
outcome and clinical severity of disease. Analyzing the
relationship between core genes and immune infiltration in
the GSE24265 dataset, we further explored the potential
molecular mechanisms affecting disease progression. The
20 most significant immune factors in the Wilcoxon test were
selected for analysis. The research results showing the
proportion of immune cells and the correlation with
immunity are shown in Figures 3C, D. There were multiple
significant correlation pairs between the expression level of
candidate genes and the level of immune infiltration
(Figure 3E). In addition, the levels of endothelial cells and Ly
endothelial cells in the ICH group were higher than those in the
healthy controls (Figure 3F). We further explored the
relationship between key genes and immune cells and found

that key genes were mostly positively correlated with immune
cell infiltration levels. For example, Endothelial cells,
MicroenvironmentScore, aDC, ly Endothelial cells and
ImmuneScore were significantly positively correlated with
4 key genes, but CD8+ Tcm, iDC and pro B−cells were
significantly negatively correlated with key genes
(Supplementary Figure S2). We further obtained the
correlations between these key genes and different immune
factors from the TISIDB database, including
immunomodulators, chemokines and cell receptors
(Supplementary Figure S3). These data confirmed that these
key genes are closely related to immune cell infiltration levels
and play important roles in the immune microenvironment.

3.5 The correlation between key genes and
ICH-related genes

We obtained 1,139 ICH-related pathogenic genes through
the GeneCards database. Based on the GSE24265 dataset, we
analyzed the expression levels of the 4 key genes and the top
20 genes in the Relevance score from GeneCards. Statistical
analysis by ANOVA showed that the expression levels of these
disease-related genes were significantly different between the
healthy control group and the disease-related group. In
addition, the expression levels of key genes were significantly
correlated with the expression levels of multiple disease-related
genes (Supplementary Figure S4).

FIGURE 4
(A) Distribution of AUC values for enriched motifs, which were calculated from the recovery curves of key genes for motif ordering. (B–E) In the
figure, the red line is the mean value of the recovery curve of each motif, the green line is the mean + standard deviation, and the blue line is the recovery
curve of the current motif.
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3.6 Transcription factors of key genes

We applied these four key genes to the gene set for this analysis
and found that they are regulated by a common mechanism
including multiple transcription factors. Therefore, enrichment
analysis (Figure 4), motif-TF annotation and the selection of
important genes were performed for these transcription factors
using accumulative recovery curves. The analysis results showed
that the motif with the highest normalized enrichment score (NES:
7.70) was annotated as cisbp__M5082. Three genes were enriched in
this motif, namely, IL1B, NLRP3 and NOD2. We displayed all
enriched motifs and corresponding transcription factors of core
genes (Supplementary File S1)

3.7 GSEA of key genes

We investigated the specific signaling pathways enriched by the
4 key genes and explored the underlying molecular mechanisms by
which the core genes affect the progression of ICH. Some of these
highly significant pathways were selected to be displayed in detail
(Figure 5). The IL1B gene GO enrichment pathways were
ERYTHROCYTE DEVELOPMENT, INTRACILIARY
TRANSPORT INVOLVED IN CILIUM ASSEMBLY, etc. The
IL1B gene KEGG enrichment pathways were CYTOKINE-
CYTOKINE RECEPTOR INTERACTION, JAK STAT
SIGNALING PATHWAY, etc. The NLRP3 gene GO enrichment
pathways were COTRANSLATIONAL PROTEIN TARGETING
TO MEMBRANE, 2 OXOGLUTARATE METABOLIC
PROCESS, etc. The NLRP3 gene KEGG enrichment pathways
were CALCIUM SIGNALING PATHWAY, PENTOSE AND
GLUCURONATE INTERCONVERSIONS. The NOD2 gene GO
enrichment pathways were CELLULAR METABOLIC
COMPOUND SALVAGE, HISTONE H4 K16 ACETYLATION,
etc. The NOD2 gene KEGG enrichment pathways were

ANTIGEN PROCESSING AND PRESENTATION,
AUTOIMMUNE THYROID DISEASE, etc. The STAT3 gene GO
enrichment pathways were HEPATOCYTE DIFFERENTIATION,
MRNA TRANSCRIPTION, etc. The STAT3 gene KEGG
enrichment pathways were CALCIUM SIGNALING PATHWAY,
PENTOSE AND GLUCURONATE INTERCONVERSIONS, etc.

3.8 Further ceRNA interaction and mining

The possible miRNAs and lncRNAs of the 4 key genes were
obtained from the miRWalk database and ENCORI database,
respectively. First, the four key mRNA-related mRNA–miRNA
relationship pairs were extracted from the miRWalk database,
but we retained only 67 mRNA–miRNA pairs (4 mRNAs and
66 miRNAs) that were validated in TargetScan or miRDB. Then,
interacting lncRNAs were predicted based on these miRNAs, and a
total of 8,654 pairs of interactions (24 miRNAs and 2,952 lncRNAs)
were predicted. Finally, a ceRNA network was constructed by
Cytoscape (V3.7) (Figure 6).

4 Discussion

Defined as a primary, non-traumatic intraparenchymal
hemorrhage, ICH can lead to severe disability and is associated
with a high fatality rate of 30%–50% within 6 months (Mayer and
Rincon, 2005). The mortality rate of ICH within 30 days is 32%–

50%, and only 28%–35% of patients who survive 3 months are able
to live independently (Martini et al., 2012). As a subtype of stroke,
the pathogenesis and treatment of ICH have been extensively
studied, and there is still a lack of effective acute treatment.
Autophagy, as an important regulatory mechanism of
intracellular homeostasis, has been gradually recognized in ICH,
but the regulatory effects of autophagy on intracellular homeostasis

FIGURE 5
Enrichment analysis of key genes. The first row is theGO analysis, and the second row is the KEGG analysis. From left to right are IL-1B, STAT3,NLRP3
and NOD2.
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and the immune microenvironment after ICH remain to be further
explored.

Inflammation in secondary injury after ICH is mainly due to the
activation of and increase in inflammatory cells and inflammatory
factors (Wang, 2010). After ICH, components in the blood,
including blood cells, cytokines and various immune cells,
quickly cross the blood–brain barrier and enter and accumulate
at the center of the injured site. This is followed by the activation of
infiltrated immune cells and immune cells of the central nervous
system, including the polarization of macrophages and microglia,
the activation of leukocytes and astrocytes, and brain tissue damage
and repair (Xue and Del Bigio, 2000; Sheth and Rosand, 2014).
Immune cells include peripheral blood-derived leukocytes and
macrophages, innate microglia, astrocytes, and mast cells. Many
studies have shown that leukocytes, macrophages, activated
microglia, and astrocytes are the main cellular mediators of
secondary injury in ICH (Illanes et al., 2011). These immune
cells can release cytokines, chemokines, prostaglandins, proteases,
ferrous iron, and other immunologically active molecules (Hua et al.,
2006). The R package X cell analysis indicated that four key genes
can cause macrophages, neutrophils and CD8+ T cells to infiltrate
the lesions during ICH and can also promote the increase in related
immune factors and aggravate the inflammatory response.

Although the pathogenesis of ICH has been extensively studied at the
transcriptional level, there are some limitations of these studies.Most of the

related research at the RNA level is on only the regulatory relationship
between a single type of RNA, such as lncRNAs,miRNAs ormRNAs, and
ICH, but little is known about the interaction of different RNAs in the
development of ICH. The discovery of ceRNAs in recent years has solved
this problem. ceRNArefers toRNAthat has amiRNAbinding site and can
compete with mRNA to bind miRNA, thereby inhibiting the regulatory
effect of miRNA on target genes (Ma et al., 2020). The ceRNA regulatory
network rigorously integrates the mutual regulatory relationship between
mRNA and non-coding RNA (ncRNA), providing significant help for the
study of posttranscriptional mechanisms of diseases (Qi et al., 2015).
Numerous studies have shown that the ceRNA regulatory network plays
an important role in secondary injury following ICH (Liu et al., 2021;
Wang et al., 2021; Yang et al., 2022). Based on multiple databases, the key
gene-related ceRNA network described in this study shows miRNAs and
related lncRNAs that play major regulatory roles.

This study identified IL-1B, STAT3, NOD2 and NLRP3 as key
causative genes for secondary injury in ICH and demonstrated the
critical role of autophagy in ICH.We combined two datasets, mainly
using GO/KEGG analysis, immune infiltration analysis and ceRNA
network construction, to screen key autophagy-related genes and
analyze their mechanisms affecting ICH progression.

Recent studies have shown that cytokines, including
proinflammatory cytokines and anti-inflammatory cytokines, play
an important regulatory role in the course of various inflammatory-
related diseases. IL-1B, a member of the interleukin 1 cytokine

FIGURE 6
CeRNA network of key genes. Purple represents key genes, green represents miRNA, and orange represents lncRNA.
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family, is a key proinflammatory factor that plays an important role
in the body’s immune response and regulates inflammatory
responses to brain injury (You et al., 2020). After inflammation
occurs in the body, the secretion of IL-1B increases rapidly. In
general, IL-1B has a proinflammatory effect in the local
inflammatory response, causing vascular dilation and inducing
the transfer of monocytes and neutrophils to the inflammatory
site, resulting in a stress response and tissue damage (Schett et al.,
2016). Our GSEA suggested that IL-1Bwas involved in the process of
cytokine binding to its corresponding receptor, which also suggested
that IL-1B plays an important role in the inflammatory response to
ICH. In addition, KEGG analysis of IL-1B also showed enrichment
of the Janus kinase-signal transducer and activator of transcription
(JAK-STAT) pathway. Previously, researchers found that miRNAs/
mRNAs changes in whole-blood samples for patients with ICH were
important links with the JAK-STAT pathway (Cheng et al., 2020).
The JAK-STAT pathway has also been associated with ICH
progression in rat models (Ji et al., 2020). Our GSEA results also
showed that STAT3, which is closely related to mRNA catabolism, is
a key gene leading to ICH. The STAT protein family, which includes
seven members, plays a key role in regulating cytokine-dependent
inflammation and immunity. STAT3 is considered to be the most
conserved and can be activated by various factors and stimuli, such
as cytokines and chemokines. STAT3 is closely related to ischemic
stroke and ischemia–reperfusion injury, and its high expression
aggravates nerve damage (Zhu et al., 2021). Zhu H reported that
STAT3 activation can promote the occurrence and development of
inflammation, leading to increased cerebral edema after ICH and
damage to neurons around the hematoma, and NLRP3 is a
downstream molecule of STAT (Lee et al., 2006). In addition, the
findings from mouse experiments suggest that NLRP3 is the key to
the aggravation of ICH injury caused by STAT3 (Ji et al., 2022). Our
results showed thatNLRP3was significantly upregulated in the brain
tissues of ICH patients, and the AUC of NLRP3 was greater than
0.89, which indicates that NLRP3 is a key gene for ICH and has
strong predictive value for ICH. NLRP3, a member of the
intracytoplasmic pattern recognition receptor NOD-like receptors
(NLRs), is an important part of the innate immune system and plays
an important regulatory role in the process of innate immune
inflammation. NLRP3 can sense tissue cell damage and is then
activated by a variety of damage-associated molecular patterns
(DAMPs) or pathogen-associated molecular patterns (PAMPs)
(Mangan et al., 2018). Activated NLRP3 protein can form the
NLRP3 inflammasome, which can cleave biologically inactive
pro-IL-1B into IL-1B and exert its proinflammatory effect
(Mangan et al., 2018). The last key gene identified in our
analysis, NOD2, is also one of the main NLRs. As an important
intracytoplasmic pattern recognition receptor, NOD2 is widely
involved in the recognition of immune cells and the induction of
inflammatory responses (Huang et al., 2013). Activated
NOD2 receptors recruit the downstream signaling molecule
receptor interacting protein 2 (RIP2), which can activate the
non-canonical transcription factor nuclear factor-kappaB (NF-κB)
and then transcribe NF-κB-dependent target genes, secreting
inflammatory factors such as tumor necrosis factor-A (TNF-A)
and IL-1B. Although many NOD2 studies have focused on
inflammatory bowel disease, it has been shown that NOD2 is
involved in the inflammatory response after cerebral ischemia,

triggering an excessive inflammatory response and exacerbating
brain injury (Kuban et al., 2017). This study is the first to
suggest that NOD2 may be a key gene in the development of
ICH. Our GSEA results suggest a high correlation of NOD2 with
ANTIGEN PROCESSING AND PRESENTATION.

5 Conclusion

In this study, the existing ICHpatient data in theGEOdatabase were
analyzed by combining autophagy-related genes in the GENE database,
and 11 potential pathogenic genes were finally obtained. Finally, with
diagnostic and predictive value, IL-1B, STAT3, NLRP3 and NOD2 were
obtained through PPI analysis and ROC curve analysis. Then, based on
the database and R package, we found that these 4 key genes cause
immune cell infiltration into ICH lesions. GSEA revealed the specific
signaling pathways involved in key genes, and we explored the possibility
that these pathways might influence the development of ICH. The
demonstration of TFs and ceRNA networks affecting key genes
provides a theoretical basis for TFs and ncRNA in the regulation of
the expression of these key genes. The identification of four key genes
contributes to the understanding of the mechanism of ICH and provides
potential targets and directions for the clinical treatment of ICH.
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SUPPLEMENTARY FIGURE S1
The ROC curves of key genes suggest that the genes have good predictive
performance for ICH. The first row is theGSE149317 dataset, and the second
row is the GSE24265 dataset.

SUPPLEMENTARY FIGURE S2
(A-D) Pearson correlation between key genes and immune cells. IL-1B,
STAT3, NLRP3 and NOD2 are listed in alphabetical order. (E) Pearson

correlation analysis of 4 key genes and 20 kinds of immune cells; purple
indicates a negative correlation, and red indicates a positive correlation.

SUPPLEMENTARY FIGURE S3
(A-D) Pearson correlations of key genes and various immune factors;
purple indicates a negative correlation, and red indicates a positive
correlation. Chemokine-related genes, receptor-related genes,
immunoinhibitor-related genes, MHC-related genes and
immunostimulator-related genes are listed in alphabetical order. The p
value of the level of correlation is indicated by an asterisk: * for p < 0.05,
** for p < 0.01, and *** for p < 0.001.

SUPPLEMENTARY FIGURE S4
(A) Differences in the expression of ICH disease-regulating genes; blue
indicates healthy controls, and yellow indicates ICH patients. (B) Themiddle
panel shows the Pearson correlation analysis of ICH disease-regulating
genes and key genes. Blue indicates a negative correlation, and red indicates
a positive correlation.

SUPPLEMENTARY FILE S1
All the enrichedmotifs and corresponding transcription factors of core genes
are displayed in the document.
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