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Editorial on the Research Topic

AI and data science in drug development and public health: Highlights

from the MCBIOS 2022 conference

This Research Topic is a product of the 18th annual conference of the MidSouth

Computational Biology and Bioinformatics Society (MCBIOS), which has a broad

membership of scientists and trainees with research interests in genomics, medicine, and

regulatory sciences. The topic includes a total of nine papers appearing in Frontiers in

Artificial Intelligence (Medicine and Public Health), which include five original research

articles, two methods articles, one brief research report and one review article. The papers

can be categorized into four general themes of regulatory sciences, genomics, protein

modeling and natural language processing, as detailed below.

Regulatory science

The field of Artificial Intelligence (AI) has advanced significantly during the past few

years, but its application to biomedical research, healthcare and regulatory sciences is still

emerging. In particular, application of AI tools in regulatory decision-making and for drug

safety and efficacy is not widely accepted, in part due to the perception that larger amount of

data are needed to train accurate AI models. In their review article, Connor et al. challenge

this perception with respect to adaptability of AI models on unseen data, focusing on

evaluation of DeepDILI for predicting drug-induced liver injury (DILI). They concluded that

the target test set plays a major role in assessing the adaptive behavior of AI models, but the

training set does not significantly affect the predictive performance of the adaptive model.

Bisgin et al. demonstrated the use of machine learning in screening for

food-contaminating beetles, which currently requires manual microscopic examination.

They developed a convolutional neural network (CNN) model trained on high-quality

elytral (hardened forewing) images to predict 27 different species of pantry beetles. The

model achieved an average accuracy of ∼90%. However, several species fell below that
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average accuracy due to significant intraspecies variation of elytral

pattern. This represents an improvement over previous models

which will eventually lead to their goal of automated species

identification of food-contaminating beetles.

Genomics

A major challenge in metagenomics is the identification and

classification of bacteria in microbial communities that may consist

of thousands microbial species. To address this Research Topic,

Pham et al. developed a computationally efficient method by using

compressed and low-sized genomic signatures of the bacteria to be

classified. A modified Bloom filter is used to store k-mers with hash

values corresponding to each bacterial species. They showed that

most bacteria in many microbiomes can be represented uniquely

using the proposed genomic signatures.

As the amount of genome sequencing data increases in

the public databases, scalable methods are needed for efficient

variant annotation and classification tasks. Li et al. described an

updated version of SNPAAMapper, a variant annotation pipeline,

with much improved computational efficiency on most updated

information. This new version of the SNPAAMapper not only

runs faster and more efficiently, it can also classify variants by

type of genomic regions (Coding Sequence, Untranslated Regions,

upstream, downstream, and intron), predict types of amino acid

changes (missense, nonsense, etc.), and prioritize mutation effects

(e.g., non-synonymous, synonymous).

Genotype imputation is an important aspect of genome-

wide association studies (GWAS). Although deep learning (DL)-

based methods have already been developed for this task, it is

still challenging to optimize the learning process in DL-based

methods in order to achieve high imputation accuracy. Song et al.

developed a convolutional autoencoder (AE) model for genotype

imputation. Additionally, they implemented a customized training

loop by modifying the training process with a single batch loss

rather than the average loss over batches. This modified AE-based

imputation method was carefully evaluated using multiple real

datasets. They found that the modified AE imputation method

achieved comparable or better performance than the existing DL-

based methods.

Gene prioritization based on molecular function is an

important step in utilizing—omics data for understanding human

diseases. Nguyen et al. presented a new tool called WINNER

for characterizing and prioritizing biomolecules. The tool takes

molecular interaction data and expands the network while ranking

all nodes by their relevance to other network nodes. These networks

can be used to evaluate candidate genes for diseases or proteins

from high throughput experiments. The utility of WINNER was

evaluated on several diseases such as Alzheimer’s disease, breast

cancer, myocardial infarctions, and Triple negative breast cancer.

Protein modeling

Protein structure-function analysis is important for

understanding ligand binding properties of proteins as well

as for developing new drugs. However, the crystal structures of

many proteins are not available in public databases. In one such

case, Gokulan et al. modeled VirD4 ATPase, a component of the

bacterial type IV secretory system using a variety of bioinformatics

and computational tools. The authors hypothesized that the unique

insertion regions found in the VirD4 protein could play a role in

the flexible movement of the hexameric unit during the relaxosome

processing or transfer of the substrate.

Natural language processing

Machine learning approaches to utilize the vast amount of

unstructured text have made tremendous progress in recent years.

For example, a graph embedding-based method (MedGraph) was

developed by Ebeid to provide a semantic relevance retrieval

ranking for biomedical literature indexed in PubMed. Using

objective metrics, this a proof-of-concept study provides evidence

that graph modeling provides better search relevance than

traditional methods.

A fundamental challenge in any social, behavioral or biological

study is determination of causality. Further, assessing causality

from unstructured text is manual and time-consuming. In their

paper, Wang et al. describe a general causal fame work named

DeepCausality, which incorporates AI-powered language models,

named entity recognition and Judea Pearl’s Do-calculus to

fulfill different domain-specific applications. They evaluated their

method using the LiverTox database to estimate drug-induced liver

toxicity (DILI) and validating their results against the American

College of Gastroenterology clinical guidelines.

Overall, the papers selected for this Research Topic

represent the breadth of computational methods and

applications in biomedical and regulatory sciences at the

annual MCBIOS conference.
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Accurate species identification
of food-contaminating beetles
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US Food and Drug Administration, College Park, MD, United States, 5Stored Product Insect and

Engineering Research Unit, US Department of Agriculture, Manhattan, KS, United States, 6HK3 Lab,

Milan, Italy

Food samples are routinely screened for food-contaminating beetles (i.e.,

pantry beetles) due to their adverse impact on the economy, environment,

public health and safety. If found, their remains are subsequently analyzed

to identify the species responsible for the contamination; each species

poses di�erent levels of risk, requiring di�erent regulatory and management

steps. At present, this identification is done through manual microscopic

examination since each species of beetle has a unique pattern on its elytra

(hardened forewing). Our study sought to automate the pattern recognition

process throughmachine learning. Such automation will enable more e�cient

identification of pantry beetle species and could potentially be scaled up

and implemented across various analysis centers in a consistent manner. In

our earlier studies, we demonstrated that automated species identification

of pantry beetles is feasible through elytral pattern recognition. Due to

poor image quality, however, we failed to achieve prediction accuracies of

more than 80%. Subsequently, we modified the traditional imaging technique,

allowing us to acquire high-quality elytral images. In this study, we explored

whether high-quality elytral images can truly achieve near-perfect prediction

accuracies for 27 di�erent species of pantry beetles. To test this hypothesis,

we developed a convolutional neural network (CNN) model and compared

performance between two di�erent image sets for various pantry beetles.

Our study indicates improved image quality indeed leads to better prediction

accuracy; however, it was not the only requirement for achieving good
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accuracy. Also required are many high-quality images, especially for species

with a high number of variations in their elytral patterns. The current study

provided a direction toward achieving our ultimate goal of automated species

identification through elytral pattern recognition.

KEYWORDS

food-contaminating beetle, species identification, deep learning, convolutional

neural networks, machine learning, food safety, image classification

Introduction

A large group of nuisance insects that contaminate grains

and other food items are commonly termed pantry beetles

(Bell, 2013). They are notorious for spoiling stored grain

and processed food products, leading to significant economic

damage (Belluco et al., 2013). Some of these pantry beetles are

aggressively invasive and can cause damage to local agriculture

and ecological insects if they spread through the transportation

of contaminated food products (Heeps, 2016). Some of the pests

also pose a serious threat to public health, as they are active

carriers of pathogens (Olsen et al., 2001).

To counter such adversities, food grains and products

are monitored and routinely screened for pantry beetles or

their remains (Bell, 2013; Belluco et al., 2013). The most

common and widely-used method involves highly-trained

analysts manually screening food samples for insect remains

using optical microscopes. Any insect or insect remains found

are then scrutinized using a comparison optical microscope to

match the patterns from the insect fragments with reference

images to identify the exact insect species, genus, or family.

This identification step is crucial, as each species poses different

threat levels and their contamination may require different

methods of management and regulatory procedures. Currently,

no reliable alternatives to the manual screening method are

available, as spectroscopic or PCR-based detection techniques

have remained challenging for this application. Moreover, due

to the manual nature of the microanalysis, the current method

is highly dependent on the experience and expertise of the

individual analyst, making it more susceptible to human error

and higher variation across institutions. Also, manual methods

are difficult to scale up, hindering the screening of a larger

number of samples in a shorter time frame, especially in the

absence of experienced and dexterous analysts.

Species identification through image analysis has been

explored for efficient taxonomical and environmental

applications for several years (Norouzzadeh et al., 2018;

Terry et al., 2019; Høye et al., 2020). These computer-aided

applications have tried to address a wide range of problems

from food safety to identification of insect pests (Daly et al.,

1982; Weeks et al., 1997; O’Neill et al., 2000; Larios et al.,

2008; Yalcin, 2015). With the advent of machine learning

methods, image-based species identification has gained further

momentum and well-known discriminative models such as

support vector machines (SVM) (Cortes and Vapnik, 1995)

and generative models have been widely adopted for insect

classification (Martineau et al., 2017). Examples of these models

include, but are not limited to: insect or pest identification

using SVM (Qing et al., 2012; Wang et al., 2012; Yang et al.,

2015), honeybee and moth identification with decision trees

(Mayo and Watson, 2007; da Silva et al., 2015), and red

palm weevil and insect recognition systems through neural

networks (Al-Saqer and Hassan, 2011; Wang et al., 2012).

With increasing computational power, more complex neural

network architectures, i.e., deep learning (DL) approaches have

recently helped in tackling more challenging tasks in the field

of food and agricultural science (Lee et al., 2015; DeChant

et al., 2017; Lu et al., 2017; Zhang et al., 2018). Although there

have been relatively fewer DL studies to identify filth elements

for food contamination (Reinholds et al., 2015; Bansal et al.,

2017), variations of DL designs such as Region-based Fully

Convolutional Network (R-FCN), convolutional block attention

module (CBAM), convolutional neural network (CNN) and

pre-trained models have shown promising performances for

pest, stored-grain insect, and fly classification (Chen et al., 2020;

Kuzuhara et al., 2020; Shi et al., 2020). The DL models have not

only achieved high classification accuracies, but also offered a

new way of feature extraction embedded in the process as an

alternative to conventional features such as domain-dependent,

global, local, and mid-level features (Martineau et al., 2017).

We have also investigated similar approaches, i.e.,

machine learning techniques, with the aim of automating the

identification process of pantry beetles whose elytra (hardened

forewing) have unique patterns that can be considered as

fingerprints or features. In a previous study, we demonstrated

that a specific pantry beetle species could indeed be identified

through elytral pattern recognition using machine learning

(Martin et al., 2016). In our subsequent study, we observed that

classical machine learning techniques such as artificial neural

network (ANN) and SVM could be used for this application

(Bisgin et al., 2018). However, optimized ANN and SVMmodels

yielded about 80 and 85% of average accuracies, respectively.

We observed that some species consistently performed less than

others; which could be attributed to their misidentification with

Frontiers in Artificial Intelligence 02 frontiersin.org

7

https://doi.org/10.3389/frai.2022.952424
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Bisgin et al. 10.3389/frai.2022.952424

another species from the same genus or family with similar

or near-identical elytral patterns. We further studied more

advanced machine learning techniques such as CNN, which also

performed similarly (Wu et al., 2019).

Our findings in our earlier studies led us to scrutinize the

image set and observe that images lacking visual clarity due

to the reflective glare of the elytra surface were more prone

to misidentification. To remedy this, we amended the optical

and imaging settings and optimized the imaging conditions

to obtain a high-quality image set unaffected by artifacts and

showing the finer details of an elytron (Bera et al., 2021). We

hypothesized that using such a high-quality image set would

help us achieve a near-perfect prediction accuracy in identifying

each pantry beetle species. In the current study, therefore, we

tested this hypothesis by using a CNN model on an extended

dataset which consisted of high-quality images of 27 species.

We further shed light on the impact of enhanced images of 12

species in the same dataset that were previously studied. Our

experiments showed both the utility of the prediction framework

and the improvement in species identification due to image

quality which could potentially guide any future efforts for

auto-detection tools.

The rest of the paper is organized as follows: SectionMaterial

and methods details the dataset for 27 species and introduces

our approach, Section Results and discussion presents our

results, Section Discussion discusses our findings, and Section

Conclusion concludes our work.

Materials and methods

Beetle sample collection and image
acquisition

We elaborated on the details of sample collection,

preparation, and imaging technique in our previous publications

on imaging optimization (Bisgin et al., 2018; Wu et al., 2019;

Bera et al., 2021). Briefly, we used 12 different pantry beetle

species harvested from our in-house collection. We chose

these species due to their prevalence and significance in food

contamination, especially in North American food samples.

Another 15 different species were collected from the U.S.

Department of Agriculture’s (USDA) Animal and Plant Health

Inspection Service (APHIS) laboratory. Elytra from each

beetle specimen were harvested, thoroughly cleaned through

sonication in an ethanol solution, and subsequently preserved

in 70% ethanol prior to imaging. Table 1 shows the full list of 27

species which include both our in-house collection (12 species)

and additional 15 species.

The harvested elytra were then air-dried and imaged using

stereo microscopes (Leica M205, Allendale, New Jersey). Unlike

the older image set, which was subjected to varied magnification

(in the 75–100× range) and two-point reflected light, we used a

fixed magnification of 100× and transmitted light for this study.

These amendments significantly reduced glare spots and other

imaging artifacts, and drastically improved the clarity of elytral

patterns (Bera et al., 2021). We used a Leica MC170HD camera

to acquire the images with an image resolution set to 2,592 ×

1,944 dpi (dots per inch, the highest resolution available). In

this study, only images from the ventral side (underside) of

the elytra were used. The concave shape of the elytra naturally

preserves the ventral side elytral patterns. This selection allowed

us to focus our attention on only the pattern recognition aspect

without having to worry about such artifacts as variation or

loss of setae (surface hair) or other sample damages that often

occur on the frontal side of the elytra during food or sample

preparation steps.

We used 20 elytral images per species. Each image

subsequently was divided into smaller subimages (tiles)

to simulate physical fragmentation of the elytra that are

often observed in contaminated samples. This simulated

fragmentation step was critical to our application, as it allowed

us to increase the sample size and to validate our algorithms

in close to real-life scenarios, in which elytral fragments are the

only viable remains found in contaminated food samples.

Image preprocessing

Each image frame (captured at 100× magnification) had

the elytra at the center of the white background. Thus, in the

first step of preprocessing, we removed the white background

by determining the elytral border (line of maximum change in

contrast). Next, we randomly split images belonging to the same

species to construct training and test sets by observing a 4:1

ratio, as shown schematically in Supplementary Figure 1, which

was the same practice we used in our previous studies. Since

an early study showed the utility of images with a size of 448

× 448 (Wu et al., 2019), we randomly cropped 100 regions so

that each image was the same size. These sub-images guaranteed

they would be inside the borders detected in the previous step

and allowed to have overlap. This resulted in 46,300 training and

10,800 test images. By following such an exercise, we ensured

that all sub-images of a particular image were put either in the

training or test set in order to prevent information leak. This

“blind” cross-validation strategy reduced bias andminimized the

possibility of overfitting.

Convolutional neural network and the
model structure

For the classification task here, we adopted CNNs, which

have been widely used in the research community for image

classification and segmentation in recent years (Lawrence et al.,

1997; Krizhevsky et al., 2012; LeCun, 2021). The ability of
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TABLE 1 The complete list of pantry beetles used in this study, listed alphabetically by their family, genus, species and common names, with

abbreviations.

Family Genus Species Common Name SP Id new

1 Anthribidae Araecerus fasciculatus Coffee Bean Weevil AAF

2 Anobiidae Lasioderma serricorne Cigarette Beetle ALS

3 Anobiidae Stegobium paniceum Drugstore Beetle ASP

4 Bostrichidae Rhyzopthera dominica Lesser Grain Borer BRD

5 Chrysomelidae Callosobruchus maculatus Cowpea Weevil CCM

6 Curculionidae Sitophilus granarius Granary Weevil CSG

7 Curculionidae Sitophilus oryzae Rice Weevil CSO

8 Curculionidae Sitophilus zeamaise Maize Weevil CSZ

9 Dermestidae Attagenus Unicolor Black Carpet Beetle DAU

10 Dermestidae Trogoderma inclusum Cabinet Beetle DTI

11 Laemophloeidae Cryptolestes ferrugineus Rusty Grain Beetle LCF

12 Laemophloeidae Cryptolestes pusillus Flat Grain Beetle LCP

13 Laemophloeidae Cryptolestes turcicus Flour Mill Beetle LCT

14 Silvanidae Ahasverus advena Foreign Grain Beetle SAA

15 Silvanidae Ahasverus species Fungus Beetle SAS

16 Silvanidae Cathartus quadricollis Squarenecked Grain Beetle SCQ

17 Silvanidae Oryzaephilus mercator Merchant Grain Beetle SOM

18 Silvanidae Oryzaephilus surinamensis Saw-toothed Grain Beetle SOS

19 Tenebrionidae Cynaeus angustus Larger Black Flour Beetle TCA

20 Tenebrionidae Gnatocerus cornutus Broad-horned Flour Beetle TGC

21 Tenebrionidae Latheticus oryzae Longheaded Flour Beetle TLO

22 Tenebrionidae Lophocateres pusillus Siamese Grain Beetle TLP

23 Tenebrionidae Palorus ratzeburgii Smalleyed Flour Beetle TPR

24 Tenebrionidae Tribolium castaneum Red Flour Beetle TTCa

25 Tenebrionidae Tribolium confusum Confused Flour Beetle TTCo

26 Tenebrionidae Tribolium Destructor Dark Flour Beetle TTD

27 Tenebrionidae Tribolium madens Black Flour Beetle TTM

CNN to learn features while applying convolutional filters

during the training stage makes it appealing and different

from conventional image classification methods (Zheng et al.,

2006). These types of deep neural network structures comprise

cascaded convolutional and pooling layers in which filters

are utilized to attain the most informative features that

eventually provide significantly reduced image sizes. The CNN

final output is then passed to a dense layer in a flattened

representation, allowing passage to subsequent dense layers that

finally terminate in another fully-connected layer with a number

of neurons equal to the number of classes (i.e., species, in

our case).

We constructed a CNN by using Keras (Chollet, 2015),

which is an application programming interface (API) that

runs the Tensorflow machine learning platform (Abadi et al.,

2016) in the backend and offers further image preprocessing

utilities for more generalizable models. Specifically, our network

architecture consists of four convolutional layers along with

corresponding pooling layers. These perform downsampling,

usually by either choosing the maximum or average value in a

given region, and two additional dense layers. We employed 3×

3 filters in the convolutional layers that were followed by max

pooling layers using 2 × 2 windows to choose the maximum

value. In order to avoid overfitting, we further adapted the

dropout approach that randomly ignores some units at a desired

level to prevent coadapting (Srivastava et al., 2014). In Figure 1,

we illustrate the details of our network structure, listing all six

layers and the number of nodes for each layer. We used Rectified

Linear Unit (ReLU) activation function in the first five layers. In

the final layer, we used a softmax function due to the multi-class

nature of our predictions. For the optimizer, we used the Adam

algorithm because of its efficient management of larger datasets

and parameters (Kingma and Ba, 2014).

Keras’s data augmentation features enabled us to artificially

increase the sample size (i.e., number of subimages).

Additionally, it helped generalize the model by applying image

processing functions to the existing training samples. These

functions perform image manipulations, such as rotations, that
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FIGURE 1

Overview of the CNN architecture.

TABLE 2 List of augmentation options and parameter values used in our study.

Option Explanation Value

rotation_range Creates images with random rotations up to N degrees. 40

width_shift_range Handles off-center objects by artificially creating shifted versions of the training data 0.2

height_shift_range 0.2

shear_range Shear angle in counterclockwise direction in degrees 0.2

zoom_range Random zoom range 0.2

horizontal_flip Creates random flips of the image (supposes you feed a mirror image) True

fill_mode Helps in filling values outside the boundaries of an image nearest

lead to a more diverse and larger set of images derived from

the original set. We list details about the augmentation options

and parameter values used in our study in Table 2. From the

details shown in Table 2, we derived an augmented training set

which could include additional images that might be shifted

20%, rotated 30 degrees, magnified 15%, sheared 10%, and

horizontally flipped. If any pixels were lost due to the operations

and needed to be filled to keep the image integrity, the nearest

pixels could be used.

Model training and validation

Keras offers a user-friendly interface for data

augmentation and experimental design, including the

arrangement of training and test sets consisting of image

folders maintained by the ImageDataGenerator module

of the keras_preprocessing library. In our case, for 27

species we created a training directory that included

27 folders, from which class labels were inherited.
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Similarly, we created a validation directory using the

flow_from_directory function.

We passed these settings to the fit_generator function, along

with the compiled neural network detailed above, with the

categorical_crossentropy loss function, adam optimizer, and the

default batch size (Bisgin et al., 2018). We trained our model for

100 epochs and tested its performance on the validation images

after each epoch.

Model evaluation

As in our previous studies, we first computed the accuracy

values for each species by computing the mean and standard

deviation for each round of validation (Bisgin et al., 2018; Wu

et al., 2019). This yielded a confusion matrix after the cross-

validation fromwhich true positive (TP), false positive (FP), true

negative (TN), and false negative (FN) were computed. These

were subsequently used to calculate the prediction parameters,

namely Precision, Sensitivity (Recall), Specificity, Matthews

Correlation Coefficient (MCC) using the standard formula,

which can also be found in our previous report (Bisgin et al.,

2018). Average prediction accuracy was also calculated by

averaging species-wise accuracies.

Code and experimental environment

Given the significantly increased image size (average 14mb

per full elytra image and 600 kb per sub-images), we used the

NCTR/FDA High-Performance Computing Cluster containing

approximately 1100 CPU cores. The script used in this study can

be found in github1.

Results

Beetle species and the classifier

We initiated the studywith 15 species of food-contaminating

beetles most prevalent to North America. In the later part of

the study, this number was expanded to 27 species. Table 1

contains a list of test species alphabetized by their family names

with details on their nomenclature; namely, family, genus,

species, and common names, along with their abbreviations.

Those abbreviations were used to refer to each tested species.

Supplementary Figure 2 shows some of the representative elytra

images. For comparison, we provided images obtained though

both the traditional and optimized methods. It was quite evident

that imaging optimization significantly improved image quality

and clarity of the elytral patterns. Compared to the traditionally

1 https://github.com/hbisgin/beetleCNN

acquired image set, the optimized image set was devoid of such

artifacts as glare spots and other surface anomalies. Details on

the imaging improvements, described elsewhere, are beyond

the scope of this discussion (Bera et al., 2021). This image set

subsequently was processed to obtain the set of sub-images used

for our model.

Model summary

The analysis of training and validation progress of the

27 classes along epochs is reported in Figure 2. We observed

that the training loss (i.e., categorical cross-entropy) began to

stabilize after ∼50 epochs, beyond which the decrease was

much more gradual. Also, we observed that testing accuracy

approached saturation after ∼50 epochs. Both observations

might indicate that the model had reached nearly optimal

accuracy, and that 50 epochs would have been enough, which

was close to our earlier observations. However, the loss function

for the testing (validation loss) fluctuated, but tended to stay in

a limited bandwidth around the value at 50 epochs.

Species-wise performance
and comparison

To test the hypothesis that a high-quality image set

may increase prediction accuracy, we made a head-to-head

comparison of the prediction results (Recall and Precision)

for the same 12 species for earlier and current image sets,

as shown in Figure 3. Evidently, the newer high-quality image

set improves the prediction performance for most species,

with an average prediction accuracy increasing from 80% to

above 90%. The improvements were particularly notable for

such species as ALS and ASP, SOM and SOS, and TTCa

and TTCo; these had previously been difficult to accurately

identify, however, can now be identified with >90% accuracy.

These 12 species, especially, SOM, SOS, TTCa and TTCo,

are some of most commonly encountered pantry beetles in

North America. Therefore, improving the accuracy of their

prediction identification will have regulatory significance. The

traditionally-obtained images with higher artifacts and lower

quality lacked the pattern clarity to distinguish one species

from another. This was particularly true for species with near-

identical elytral patterns (due to their genetic similarity) and

belonging to the same genus and/or family [referred to as

“difficult pairs” in our previous works (Bisgin et al., 2018; Wu

et al., 2019)]. The high-quality images significantly improved

the pattern clarity, allowing for distinct identification of each

species, even within the difficult pairs. To our surprise, we

observed exceptions to this general trend, especially for the

species CSO. Of all 12 species, this one performed the poorest

and showed a significant decrease in prediction accuracy
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FIGURE 2

Model optimization showing the model achieving optimal performance after about 50 epochs.

FIGURE 3

Comparison of model performances on validation sets of traditionally- and optimally-acquired images.

compared to the traditionally-acquired images. The image set for

this particular species possibly contained an anomaly, resulting

in this decrease.

Expansion to more
species—performance parameters

Expanding the number of species to 27 enabled us to verify

the observations made with the initial 12 species with our

newly built model in this study. Four prediction parameters,

namely Precision, Recall (or Sensitivity), Specificity and MCC,

for these species are presented in Figure 4. The general trend

of improved prediction is evident from this figure. Specificity

values for all the species validate our hypothesis that high-

quality images can improve prediction accuracy. However, there

were exceptions to the general trend; as some species, such as

CSO and LCP, performed quite poorly. Several other species,

namely AAF, CSG, LCF, SAA, SOM, SOS, and TCA, performed

below average, i.e., 90%. This suggests poor performance is not a
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FIGURE 4

Performance metrics for the 27-class model.

singular anomaly in the image set of one species. Instead, there

may be underlying factors that play a crucial role in a species’

prediction performance and these need further research. One

possibility, as we observed previously, is that species with similar

elytral patterns (belonging to the same genus and/or family)

were confused with one another during the prediction.

Confusion matrix

Figure 5 shows the confusion matrix for all the species, with

horizontal rows showing the True class and vertical rows the

Predicted class. It is evident that overall performance of the

model is quite accurate, as the red diagonal entities are clearly

prominent. Although the model is far from perfect, as one can

observe several non-diagonal entities in yellow, it is a good

working model since the deviations were fairly low (mostly

yellow and not orange non-diagonal entities) as indicated by

the color scale. A closer look at the matrix, especially for the

poorly-performing species (marked with red arrows) such as

CSO, indicated that its low prediction performance was not

due to the similarity of elytral patterns with a species from the

same genus or family (marked by dotted squares). Rather, it

was being predicted for several different species across various

families. For instance TTCo was predicted as SOM and SOS

for 9 and 6 times, respectively, compared to TGC, which

is in the same family. This suggests that the image quality

that showed distinction (or resulted in confusion) between
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FIGURE 5

Confusion Matrix for 27-class task (computed on test set) showing the level of agreement between true and predicted classes. Red colored tiles

(diagonal) represent correct classification of each species and represent values between 67% and 100%. Yellow tiles represent incorrect

classification ratios that are non-zero and go up to 28%. Finally, green tiles represent zero values which means targeted species is not confused

with the corresponding species.

similar elytral patterns is not the major factor at play on our

data. We made a similar observation for the second-lowest

performer, LCF, which was also predicted beyond its own

genus and/or family. Other low-performing species, such as

AAF, SAA, SCQ, SOM, SOS, and TCA, showed comparable

trends. The two-dimensional UMAP representation of all classes

based on their extracted 128 features from the last layer of the

network (Supplementary Figure 3) also illustrates misclassified

species. This observation further bolstered our speculation that

something other than pattern clarity may be affecting the

prediction performance, and deserved detailed discussion.

Discussion

In most academic and research settings, the architecture

of the model often receives more attention than does the

quality of the data, possibly because cleaning the dataset

often is beyond the scope of many researchers. This has been

found to be true, particularly in image classification for species

identification applications. Users of prediction models, even

models with the best-known architecture, have found achieving

good accuracy for noisy datasets challenging as quality of the

data has impact on the classifier performance (Sáez et al., 2016).

Our study also highlights this fact in the context of species

identification and food safety, as the prediction performance

showed improvement when a better-quality dataset was used to

build the model.

Furthermore, our results indicated the importance

and relevance of other factors beyond data quality. As

discussed previously, we observed that species performing

below average were not being inaccurately predicted or

confused with another species from their own genus and/or

family due to elytral pattern similarity, but were being

misclassified into various different and unrelated species.

To better understand this problem, we delved deeper and

looked through the images of those species. Figure 6A shows

three different elytral images of the same species, CSO. The

difference in elytral patterns are obvious, and believed to

be mostly due to age of the beetle. However, differences
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FIGURE 6

Representative images of elytral variation. (A) Intraspecies pattern variation in CSO (possibly due to the di�erence in maturity), (B) pattern

variation due to background interference in LCP and LCF, and (C) regional variation in elytral patterns in AAF.

could also be due to sex and/or individual variation, as

the older beetles tend to develop a darker elytral color

and prominent pattern, possibly to attract a mate. These

variations are not uncommon and were found in such other

species as SAA and SOS (Supplementary Figure 4), which also

performed poorly.

Surprisingly, these species did not perform so poorly in our

previous models using ANN and SVM. Supplementary Figure 5

shows the Recall and Precision comparisons for ANN, SVM,

and CNN models using a conventionally-obtained (lower

quality) image set than that of the present model (CNN,

using a higher-quality image set). In comparison to ANN

and SVM models, the performances of CSO dropped in both

CNN models (using conventional and high-quality image sets),

even though the CNN model is known to, in most cases,

outperform ANN and SVM (Shin and Balasingham, 2017;

Senyurek et al., 2019). We argue that this anomaly is due to

the difference between explicitly defining features or trusting

the CNN to develop its own feature extraction internally. In

both ANN and SVM, the image features (such as size, shape,

distribution, and color of the elytral pattern), were preprocessed

before being used for training and testing the model. It

is during this feature selection process that the intraspecies

variations in elytral patterns probably did not get selected in

the top-ranked features, as they appeared in only a handful

of species. Subsequently, they remained unused in the ANN

and SVM models and showed no influence in performance.

On the other hand, output of convolutional layers served as

the feature set in the current model, which could not take

advantage of earlier select features, possibly causing a decrease

in performance.

Unlike CSO, the species LCP (the second-lowest performer)

did not show significant intraspecies variation. On minute

observation, we found they contained imaging artifacts. LCP

belongs to the family Laemophloeidae, which is one of the

smallest species of pantry beetles. They also have extremely

thin elytra and faint patterns, which when imaged on filter

papers (a common practice in food filth analysis), in some cases

resulted in a fibrous paper background getting embedded in

the elytral images (see Figure 6B). This imaging artifact was

prominent in some parts of a few of the elytral images, which

appeared quite different from the actual elytral pattern and

could very well be the reason for their poorer performance.

AAF was another species performing below average. In

this case, each elytron had regions that appeared different

from one another (variegated pattern). In some areas, the

elytra appeared much brighter, while in other regions they

appeared much darker. Some regions had more prominent

patterns compared to others (see Figure 6C). When the

images of the whole elytra were divided into subimages,

the subimage set had much more pattern diversity. Some

of the randomly-selected subimages used in testing probably

appeared quite different from the training subimages, yielding

a lower prediction value. It can also be noted that the

AAF had a high Recall value but low Precision values. This

indicated that our model was impressive in choosing relevant

species, but in this case was slightly less exact due to highly

diverse subimages.

While our collective results showed that model performance

improved significantly when using better-quality images, thus

validating our initial hypothesis, they indicated that species with

higher intraspecies elytral diversity or with enhanced variegated
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elytral patterns do not perform as well. These observations

seemed reasonable and have room for improvement without

needing significant change in the model architecture. They are

also aligned with a known general limitation of CNN models,

which require training sets with both high-quality and large-

quantity of images to yield better prediction accuracies (Valan

et al., 2019; Høye et al., 2020).

While the cropped subimages were a way of imitating the

actual beetle fragments and artificially increasing the size of

the dataset, the limited number of elytral images remained

one of the challenges in this study. Adding Keras image

augmentation became a possible solution, as it has been used

to solve imaging issues in domains such as medical image

analysis (Shorten and Khoshgoftaar, 2019). In this step, several

other scenarios, such as rotation, shearing, and zooming to

some extent, were incorporated. During the training stage,

the model was exposed to data augmentation to prepare it

for possible variations, including likely presence of fragmented

patterns. Even though this approach worked very well both for

training accuracy and training loss, slightly lower accuracy and

fluctuating loss observed in the validation stage also indicates

that high variability of novel patterns is much harder to control

and beyond the reach of data augmentation.

The broader objective of our work is to automate the

process of elytral pattern recognition to better alleviate insect

food contamination. We foresee this can only be achieved

by concatenating the following three steps: (1) establishing a

mechanism of acquiring high-quality images, (2) accumulating

beetle images with proper labels in a repository with a growing

number of samples for species with high variability, and (3)

making them accessible for model development/improvement.

Before developing a full-force effort to implement the whole

process, it was critical to validate with a proof of concept the

hypothesis that high-quality images can significantly improve

predictive accuracy. The present study served this purpose and

indicated that a high number of high-quality images is indeed a

promising way forward in achieving precise identification over

a large number of species. In our recent report on imaging

optimization techniques, we elaborated on the method for

acquiring high-quality images of pantry pests. Through this

study, we developed a step-by-step procedure and a detailed

instruction manual for high-quality image acquisition, which we

will make publicly available. We currently are in the process of

developing a high-quality image database containing 40 images

per species for about 40 different pantry beetles, which will also

be made public. Efforts currently are underway to construct a

graphical user interface (GUI), from which any user can upload

elytral images (preferably obtained by following the SOP and

imaging manual) of pantry beetles in order to identify species

using a CNN model similar to the one reported here. This

use of the GUI will further enhance the high-quality image

database and will provide a large number of high-quality, well-

labeled image sets which can be used to further improve this

CNN model in the future. At this point, the present work

explores advantages and limitations of using a CNN model for

classifying various species of pantry pests through elytral pattern

recognition. We are optimistic that the current study has put

us a step closer to achieving automated species identification of

pantry pests, and thus toward a more efficient regulatory system

to better manage food contamination scenarios.

Conclusions

In this study, we aimed at scouring the landscape

and moving closer to achieving near-perfect species-level

identification. We set out to explore whether high-quality elytral

images were sufficient for improving the prediction accuracy

of pantry beetle species identification. To test this hypothesis,

we first compared two CNN models; one developed with

traditionally-obtained, low-resolution images, and another with

optimized imaging conditions, yielding high-quality images.

Overall, we observed an improvement in average prediction

accuracy due to the improved image quality. When we extended

the analysis to 27 different pantry beetles, we achieved an average

accuracy of ∼90%; however, several species fell below that

average accuracy. A data review elucidated that below-average

performance was not due to poor image quality, but rather

to significant intraspecies variation of elytral pattern, and in

some cases, to enhanced regional variation of patterns within

one elytron. Detailed analysis indicated that greater numbers of

high-quality images are necessary to account for these variations

and achieve higher accuracy of the model. In future studies,

we aim to achieve this objective using a publicly-available GUI

for pantry beetle identification, allowing us to accumulate larger

quantities of high-quality images through user participation.We

hope this exploratory study will help achieve our ultimate goal of

automated species identification of food-contaminating beetles.
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Currently, there are many publicly available Next Generation Sequencing

tools developed for variant annotation and classification. However, as modern

sequencing technology produces more and more sequencing data, a more

e�cient analysis program is desired, especially for variant analysis. In this

study, we updated SNPAAMapper, a variant annotation pipeline by converting

perl codes to python for generating annotation output with an improved

computational e�ciency and updated information for broader applicability.

The new pipeline written in Python can classify variants by region (Coding

Sequence, Untranslated Regions, upstream, downstream, intron), predict

amino acid change type (missense, nonsense, etc.), and prioritize mutation

e�ects (e.g., synonymous > non-synonymous) while being faster and more

e�cient. Our new pipeline works in five steps. First, exon annotation files

are generated. Next, the exon annotation files are processed, and gene

mapping and feature information files are produced. Afterward, the python

scrips classify the variants based on genomic regions and predict the amino

acid change category. Lastly, another python script prioritizes and ranks the

mutation e�ects of variants to output the result file. The Python version of

SNPAAMapper accomplished the overall speed by running most annotation

steps in a substantially shorter time. The Python script can classify variants by

region in 53 s compared to 166 s for the Perl script in a test sample run on a

Latitude 7480 Desktop computer with 8GB RAM and an Intel Core i5-6300 CPU

@2.4Ghz. Steps of predicting amino acid change type and prioritizingmutation

e�ects of variants were executed within 1 s for both pipelines. SNPAAMapper-

Python was developed and tested on the ClinVar database, a NCBI database

of information on genomic variation and its relationship to human health.

We believe our developed Python version of SNPAAMapper variant annotation

pipeline will benefit the community by elucidating the variant consequence

and speed up the discovery of causative genetic variants through whole

genome/exome sequencing. Source codes, test data files, instructions, and
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further explanations are available on the web at https://github.com/BaiLab/

SNPAAMapper-Python.

KEYWORDS

Next-Generation Sequencing, SNP, python, mutation, variant annotation, pipeline

Introduction

Next-Generation Sequencing is a technique to

rapidly sequence a genome and was developed because

of the Human Genome Project, which successfully

sequenced a human genome over a period of 23 years

(www.genome.gov/human-genome-project) and cost around

$2.7 billion in 1991 Fiscal Year Dollars, equivalent to $5.6

Billion 2022 Fiscal Year Dollars. Today, a human genome can

be accurately sequenced for as low as $600 (Preston et al., 2022).

In 2013, sequencing a whole human genome took between 1

and 2 days (Lewis, 2013).

With the decreasing cost and increasing availability of the

Next-Generation-Sequencing technique (Barba et al., 2014),

our ability to discover variants in the human genome has

been revolutionized. More variants have been reported and

discovered. Our ability to interpret or annotate these variants

becomes a major gap in effectively using genomics data in

understanding diseases. To address this issue, multiple variant

annotation tools that locate and assign information about

variants have been developed.

One such tool is SNPAAMapper, a variant analysis tool

developed in 2013 in the Perl coding language. SNPAAMapper

contains two general algorithms: one that generates annotation

tables with coding and other information annotated for each

exon, and one that reads the generated annotation tables and

assigns identified variants to the genomic loci and classifies them

by region (Bai and Cavalcoli, 2013).

The original SNPAAMapper used the Perl coding language

to make alignment of input DNA sequences, which may have

sub-optimal performance. This inefficiency and inability to

handle big data in a timely manner placed a hurdle in its

wide applications. In this study, we chose to update and

modify SNPAAMapper to substantially increase the speed of

the program to fulfill the current need of the genomics field.

Additionally, we presented an improved output to facilitate

downstream data processing and analysis.

Methods

Input data acquisition

The reference genomes used in the paper were sourced

from the UCSC genome browser (https://genome.ucsc.edu/).

The UCSC Genome Browser is a web-based tool that allows

researchers to example all 23 chromosomes of the human

genome all the way down to an individual nucleotide. It

also contains data on the genomes of more than a 100 other

organisms. The genome browser was created and maintained

by Jim Kent and David Haussler at UCSC in 2000 as a

resource for the distribution of results from the Human

Genome Project. It was funded by the Howard Hughes

Medical Institute and the National Human Genome Research

Institute (NHGRI) (https://genome.ucsc.edu/goldenPath/

history.html).

When testing our tool, we used both a small test

dataset (number of variants = 80) and data file from

the ClinVar database (https://www.ncbi.nlm.nih.gov/

clinvar/) (number of variants = 1,440,883), a publicly

accessible archive of reports of relationships between human

variations and phenotypes. ClinVar is crowdsourced and

relies on the submission of reports by researchers and

clinical labs. The default format for ClinVar database is

VCF and the database file was downloaded in assembly

GRCh37/hg19 for the human reference genome on May

28, 2022. VCF is the default format for ClinVar to store

and report variants, including point mutations and short

insertions/deletions. In the “INFO” columns, some related

annotation information was also provided by ClinVar, such as

the associated clinical significance, associated diseases, gene

annotation etc.

Algorithm description

The pseudocodes for SNPAAMapper-Python algorithms

are described in Algorithm 1 (see Supplementary materials).

There are two modules of the algorithm: (1) Preprocess the

gene structure to build annotation for each exon; (2) Map

identified variants onto the genomic location and report

the hit class. In the Python version of SNPAAMapper,

the second script for processing exon annotation files and

generating feature start and gene mapping files performs

extremely better than the one in the original Perl version. The

screenshot for SNPAAMapper on the GitHub site is shown in

Figure 1.
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FIGURE 1

Screenshot of the GitHub website of SNPAAMapper-Python.

Usage

As the input, a VCF file is required for annotation. There

are two methods to use the program, an end-to-end option

and a step-by-step option. For the end-to-end option, users

can use the config.txt file to configure the running parameters

and define input files. The running parameters are “vcfFile =

clinvar_20220528.vcf, intronBoundary = 6, geneAnnotation

= ChrAll_knownGene.txt, conversionFile = kgXref.txt,

sequenceFile = hg19_CDSIntronWithSign.txt.out.” Then users

can use command./run_SNPAAMapper-Python.sh config.txt

to generate the final output by running through each step

automatically. This option is recommended for all users by

default. For the step-by-step option, the users will have to

run through the Python scripts step-by-step in the following

orders: (1) Generate exon annotation file; (2) Process exon

annotation files and generate feature start and gene mapping

files (Algorithm_preprocessing_exon_annotation_RR.py);

(3) Classify variants by regions (CDS,

Upstream, Downstream Intron, UTRs...)

(Algorithm_mapping_variants_reporting_class_intronLocation

_updown.py); 4() Predict amino acid change type

(Algorithm_predicting_full_AA_change_samtools_updown.py);

(5) Prioritize mutation effects

(Algorithm_prioritizing_mutation_headerTop_updown.py).

This option is recommended for more advanced users and

for users who are only interested in the intermediate outputs.

The final output will be an annotated variant file, with each

row representing a unique input variant and each column

representing one piece of annotated information.

Results

Annotated file

For each variant in the input VCF file called by SAMTools

(Li et al., 2009), there is a corresponding row in the

output annotated file. The final output will be an annotated

variant file, with each row representing a unique input

variant and each column representing one piece of annotated

information. Specifically, there 21 columns with unique

annotation information. For VCF files containing individual

genotype data, the first column specifies the sample ID. The

other 20 columns are as follows: “Chromosome,” “Variant

Position,” “Gene Symbol,” “UCSC ID,” “Strand,” “AA Position
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TABLE 1 Speed comparison between original and updated

SNPAAMapper for the test dataset.

Steps Python execution time

in seconds

Perl execution time in

seconds

Step 1 13 2

Step 2 16 166

Step 3 2 138

Step 4 62 407

Step 5 1 1

Total 94 714

of Mutation (for CDSHIT),” “Variant Type,” “Amino Acid Ref

(Codon) -> AA SNP (Codon),” “Variant Class,” “Ref AA chain,”

“Alt AA chain,” “Hit Type,” “Known dbSNP,” “Ref nt,” “Alt nt,”

“Quality,” “Depth,” “Allele Freq,” “Read Categories,” and “Info.”

A table with column descriptions for the first 15 columns of

the VCF output file can be found in Supplementary Table 1. The

remaining five columns are variant calling information extracted

from the VCF output file.

ClinVar database

ClinVar is a widely used database that links variants to

their functional importance (pathogenicity) (Landrum et al.,

2015). ClinVar provides a full download of their database

in VCF format. Aside from potential phenotype/clinical

association information, ClinVar provides some basic

annotation for the variants, such as HGVS-nomenclature,

types of variants (single nucleotide variant, indels, etc.),

and functional consequences (missense, UTR, etc.). While

this information is valuable, it is common to expand these

annotations for the clinicians/researchers to better understand

the functional impact of the variants for the purpose of disease

diagnosis, hypothesis-generating/validation.

Currently, ClinVar (20220508) includes 1,440,883 unique

variants that are associated with various diseases. It uses a 5-

category classification system that groups these variants into

pathogenic, likely pathogenic, benign, likely benign, and variant

of uncertain significance.

We first compared the running speed of annotating the test

file using the original and updated SNPAAMapper (Table 1).

We then ran the updated Python version of SNPAAMapper for

entire ClinVar database file and found that our updated version

was able to generate exon annotation file in 48 s; generate feature

start and genemapping files in 49 s; classify variants by regions in

256 s, It took 124,311 s for predicting amino acid change type. It

took 497 s for prioritizing mutation effects. For the Perl version

of SNPAAMapper, it takes more than 2 weeks to run all the

pipeline steps.

Next, we examined the concordance of annotation between

ClinVar and SNPAAMapper-Python. We found that 91.4% of

the variants have concordant annotations between ClinVar and

our tool (Figure 2). Among those variants with discordant

annotations, we found that 48.55% of them are annotated

as non-coding transcripts variants in ClinVar which was not

specifically annotated in SNPAAMapper. Additionally, our tool

provided annotation for 10% of the variants that showed

no annotation in ClinVar, which highlighted the usefulness

of our tool. Importantly, annotations from ClinVar were

buried into the “INFO” column with other information, which

makes parsing and understanding the information much more

difficult, whereas, for our tool, there is a separate column

for each specific annotation. Using position-based annotation

from SNPAAMapper, we examined the distribution of variants

by functional genomics regions (Figure 3). We found that

the majority (661,958 for pathogenic variants and 592,638

for benign variants) of reported variants in ClinVar (n =

947,008), regardless of their pathogenicity, reside in coding

sequences (CDS).

Comparing pathogenic variants (n = 103,909) to benign

ones (n= 340,726), we found that there was a higher percentage

of CDS variants and lower percentages of 3’UTR, 5’UTR,

and other non-coding sequences for pathogenic variants. This

observation illustrated that most of the studies focused on CDS

as variants from this region usually have clearer functional

consequences. Additionally, using the SNPAAMapper’s output,

we can easily examine the distribution of variants across

different genes. For example, gene TTN has the most unique

variants (n = 17,915), while 2,448 genes have only 1

unique variant. These observations highlighted our need for

investigating the under-studied genes to gain a well-rounded

understanding of human genes and genetic mutations. We note

that this gain of knowledge is attributable to the easy-to-use

format of SNPAAMapper’s output.

Finally, we illustrated the importance of including additional

exome-specific annotations to help users interpret their data

using annotated output from the previous step. First, we

looked under the hood for variants residing in CDS. As

illustrated in Figure 4, it is not surprising that the vast

majority of nonsense (NSN) variants are pathogenic, while

most synonymous (SYN) variants are benign. Interestingly,

for nonsynonymous (NSM) variants, we observed a similar

percentage of the reported pathogenic and benign variants.

This highlighted the importance of NSM variants in helping us

interpret sequencing variants. As a result, numerous methods

have been developed to target NSM variants and predict whether

they are functional or not.

Another key strength of our SNPAAMapper pipeline was to

retrieve the most damaging amino acid variants from genomic

variants. This can be used to investigate the property of variants

and their impact on the biochemical and physical properties

of the amino acid and protein. As illustrated in Figure 5, we
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FIGURE 2

Percentage of ClinVar variant region annotation that are concordant with SNPAAMapper-Python.

FIGURE 3

Percentage of ClinVar variants by variant type. Left, Percentage of ClinVar pathogenic variants by variant type; Right, Percentage of ClinVar

benign variants by variant region.

FIGURE 4

Count of pathogenic and benign variants by their functional

annotation. NSN, nonsense; NSM, nonsynonymous; SYN,

synonymous.

plotted the hydropathy of the variants in ClinVar database

grouped by their clinical significance. We found that a change

in hydropathy was more commonly observed in pathogenic

variants. For example, hydrophobic to hydrophilic conversion

was substantially enriched in pathogenic variants. On the other

hand, benign variants were substantially enriched in variants

without pathogenic conversion (hydrophilic to hydrophilic,

etc.). This analysis briefly highlighted the importance of

providing easy-to-access amino acid variants, as their properties

are crucial in understanding the functional consequence of the

underlying genomic variants.

Comparison of performance in run times

We compared the execution time between the original

SNPAAMapper and updated SNPAAMapper-Python using the

same sample VCF file. The updated program runs significantly

faster (8 times) than the original Perl program, with an almost

Frontiers in Artificial Intelligence 05 frontiersin.org

23

https://doi.org/10.3389/frai.2022.991733
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Li et al. 10.3389/frai.2022.991733

FIGURE 5

Percentage of variants grouped by their hydropathy.

10-fold increase in speed. This time increase will be substantially

more prominent when hundreds or thousands of samples

were queried.

Discussion

The biggest difference between the old tool (SNPAAMapper)

and our updated tool (SNPAAMapper-Python) is the change in

the programming language. The former runs on Perl, while the

latter runs in Python, as the name states. To convert the original

Perl pipeline codes, we downloaded and analyzed the original

SNPAAMapper code reported in the paper, which was sourced

from the previous study (Bai and Cavalcoli, 2013).

Our updated program maintains all the previous features

of SNPAAMapper. It grants downstream variant identification

and analysis at a record speed. Our tool is self-sufficient and

lightweight; external alignment tools and such are not necessary

since they are all included in this package. In addition, our

tool preserves the original customizability of SNPAAMapper,

meaning that it can be easily configured for other species and

reference genomes. Another benefit of our program is its greater

compatibility; the popularity and use of the Perl programming

language are rapidly decreasing (https://www.tiobe.com/tiobe-

index/perl/) while the use of Python has been growing at an

extreme rate for the last decade (https://www.tiobe.com/tiobe-

index/python/). We believe that this upgrade is crucial for

researchers due to the impractical run time of the original

SNPAAMapper on a test sample (Table 1).

The python version performs more efficiently than the perl

version. The reason is that we use an optimized Python-built

in module “csv” to read and write tabular data. In particular,

the python version is not using any embedded loop as the

Perl version by iterating over almost approximately a million

rows in the ChrAll_knownGene.txt.exons file for “the number

of chromosomes” (about 60) times. Instead, the python version

iterates only one time.

We used the same dataset tested in SNPAAMapper for both

programs. By running both tools on a Latitude 7480 Desktop

computer with 8GB RAM and an Intel Core i5-6300 CPU

@ 2.4Ghz, we were able to make an accurate comparison of

the execution times for each program. Using this method, we

were also able to make time comparisons for each step of

both programs.

In addition, we also run SNPAAMapper-python on the

ClinVar database file to collect the running statistics. Specifically,

we ran the pipeline on an lntel_Core_i7-4770K_CPU@3.5GHz

Gentoo Linux box to collect running statistics for ClinVar

database file.

Additionally, with the improved output representation,

this update enables easy-to-use output where each column

represents a single piece of information. These improvements

can greatly facilitate downstream analyses and open up

opportunities for users to analyze their data using tools

like Excel, which is expected to accelerate the translation

of information to knowledge. Lastly, our codes are open-

sourced and hosted on GitHub, which enables the continuing

maintenance, updates and improvements from us and all

the users.

We created an end-to-end pipeline with intermediate

outputs. The final output is the one that’s interesting to most of

our users.

To test the ease of use and convenience of our program,

we asked a student to act as a user and attempt to operate our

system. As our tester, we asked the student to document running

statistics and surveyed the practicality of our tool.

Our ultimate goal is to create a very efficient and

multifunctional pipeline which can not only do variant

annotation, but also has multiple functional annotation

databases incorporated into the pipeline. This would require

downloading many databases and consistently formatting them.

In the future, we plan to add additional features/annotations

to the pipeline. Some examples include population allele

frequencies, functional prediction scores etc. This will be

a priority for us. Additionally, we expect to compare the

annotations made by SNPAAMapper with other established

tools in the future version to give users a better understanding

of the performance of our tool. Furthermore, to make

SNPAAMapper more easily accessible to a wider range of

users, we plan to extend our program to support R in

future development.
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from poultry products
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Bacterial species have evolved with a wide variety of cellular devices, and they

employ these devices for communication and transfer of genetic materials and

toxins. They are classified into secretory system types I to VI based on their

structure, composition, and functional activity. Specifically, the bacterial type

IV secretory system (T4SS) is a more versatile system than the other secretory

systems because it is involved in the transfer of genetic materials, proteins,

and toxins to the host cells or other bacterial species. The T4SS machinery is

made up of several proteins with distinct functions and forms a complex which

spans the inner and outermembranes. This secretorymachinery contains three

ATPases that are the driving force for the functionality of this apparatus. At

the initial stage of the secretion process, the selection of substrate molecules

and processing occurs at the cytoplasmic region (also known as relaxosome),

and then transfer mechanisms occur through the secretion complex. In this

process, the VirD4 ATPase is the first molecule that initiates substrate selection,

which is subsequently delivered to the secretory machinery. In the protein

data bank (PDB), no structural information is available for the VirD4 ATPase to

understand the functional property. In this manuscript, we havemodeled VirD4

structure in the Gram-negative bacterium Salmonella enterica and described

the predicted functional importance. The sequence alignment shows that

VirD4 of S. enterica contains several insertion regions as compared with the

template structure (pdb:1E9R) used for homology modeling. In this study,

we hypothesized that the insertion regions could play a role in the flexible

movement of the hexameric unit during the relaxosome processing or transfer

of the substrate.

KEYWORDS

type IV secretion system, ATPases, S. enterica, transmissible plasmids, ligand docking,

homology modeling, secretary mechanism
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Introduction

Secretion is a central biological process in living

organisms, which facilitates the transfer of chemicals,

molecules, and toxins across the cell membrane. Bacterial

species use multiple secretory apparatuses to facilitate the

translocation of several molecules into the host cells, which

helps bacterial survival and communication with other

organisms in the surrounding environments (Schroder and

Lanka, 2005; Fronzes et al., 2009). To date, six types of

secretory systems (types I, II, III, IV, V, and VI) have been

identified and characterized in the microbial world. Among

these systems, the type IV secretion system (T4SS) is the

most versatile, which facilitates various functions and has

been observed in both Gram-positive and Gram-negative

bacteria. The T4SS shares several structural and functional

features with bacterial conjugation systems. The functions

of T4SS in bacterial species include (1) translocation of

proteins or toxins to the host cell, (2) horizontal transfer

of plasmid DNA between bacteria during conjugation, and

(3) uptake and release of DNA molecules that allow the

exchange of DNA with the extracellular environment or host

cells (Grohmann et al., 2003; Wallden et al., 2010).

The presence of T4SS machineries has been documented

in several pathogenic bacteria that include Helicobacter pylori,

Streptococcus suis, Bordetella pertussis, Brucella spp., and

Legionella pneumophila (Kwok et al., 2007; Zhao et al., 2011).

These bacterial species employ T4SS to inject virulence factors

into host cells (Corbel, 1997; Ninio and Roy, 2007). Most of the

studies elucidating Salmonella pathogenicity have been focused

on serovar Typhimurium; however, there is a knowledge gap

in understanding how different serovars lead to infection and

whether putative virulence factors located on plasmids impact

the ability of Salmonella to infect different hosts; for example,

how Salmonella enterica isolates containing T4SS differ from

those that lack T4SS. Recent CDC data show that non-typhoidal

Salmonella is the leading cause of diarrhea globally, which

accounts for roughly 153million gastroenteritis cases and 57,000

deaths annually (Healy, 2020). The mode of transmission occurs

via the consumption of contaminated food products including

animal-derived products, seafood, fresh produce, and fruits

(Mellou et al., 2021). S. enterica serovar Heidelberg is another

leading serovar that mostly infects poultry (turkey and chicken)

and is a major cause of severe illness in humans through the

consumption of contaminated poultry products. S. Heidelberg

strains are often resistant to several antimicrobial agents, and

surveillance data show that drug-resistant strains are on the

rise. National Antimicrobial Resistance Monitoring System

(NARMS) data show that the percentage of S.Heidelberg isolates

from human and poultry that are resistant to cephalosporin has

been on the rise (Winokur et al., 2000) and correlates with the

spread of AmpC β-lactamase. This β-lactamase is encoded by

blaCMY genes and is linked with transmissible plasmids. Studies

have shown that S. Heidelberg harbor plasmids are able to

transfer genes and are also responsible for multidrug resistance

and virulence.

Studies have shown that certain S. enterica strains isolated

from food-animal sources harbor transmissible plasmids

(Johnson et al., 2010). In addition, multiple isolates have

been shown to have transmissible plasmids that harbor T4SS

encoding genes in S. enterica (Han et al., 2012). Moreover,

the importance of T4SS encoding genes in bacterial invasion

and virulence of S. enterica on macrophage infection was

demonstrated by our group (Gokulan et al., 2013). In Gram-

negative bacteria, the T4SS core complex is composed of 12

proteins (VirB1 to VirB11 and VirD4) that span across both

inner and outer transmembrane domains to facilitate secretion.

The T4SS complex is further divided into three groups: (i)

scaffold with translocation channel; (ii) ATPases, and (iii) pilus.

The plasmid sequence analysis of S. enterica revealed that the

presence of the VirB/D4 T4SS core complex is similar to the

Agrobacterium tumefaciens VirB/D T4SS. The sequence analysis

also revealed the absence of the VirB7 sequence in the core

complex in S. enterica. This finding was consistent with whole-

genome sequence results of 44 outbreak strains of S. Heidelberg

isolates (animal, retail meats, and human clinical isolates) that

revealed the presence of transmissible plasmids that encode

T4SS in 21 isolates (Hoffmann et al., 2013).

The T4SS inner membrane complex (ATPases system)

contains three ATPase proteins (i.e., VirD4, VirB4, and VirB11),

which are the driving force for the assembly of T4SS, substrate

transfer that can include virulence factors. The VirB4 crystal

structure bound with ADP has been reported elsewhere

(Wallden et al., 2012). VirB4 is a highly conserved protein in the

T4SS machinery and is composed of N-terminal and C-terminal

domains. There is no structural information available for VirD4

of S. enterica; therefore, this study was undertaken to understand

the structural and functional details of VirD4. In this study, we

employed bioinformatics tools for the homology modeling of

the T4SS machinery of S. enterica to understand the functional

aspects of the VirD4 ATPases.

Methods

Salmonella strain and sequence selection
for homology modeling

The VirD4 sequence used for homology modeling was

derived from S. enterica strain 163 (which was isolated from

an infected turkey) (pSH163_34, GenBank accession No.

JX258656). Protein sequences were determined with the RAST

annotation pipeline (Argonne National Laboratory, Chicago, IL,

USA), and the protein identities were determined by BLAST

comparisons to GenBank.
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Secondary structure and protein
structural fold prediction

VirD4 protein sequences were submitted to the

protein fold reorganization server to predict structural

folding based on the sequence and similarity in protein

folding (www.sbg.bio.ic.ac.uk/phyre2) and the Swiss model

(swissmodel.expasy.org) (Soding, 2005; Waterhouse et al.,

2018). We compared the predicted structures from these

programs and selected the best fit secondary structure and

protein fold conserved template for homology model building.

To analyze the confidence of the predicted model, we used

sequence identity, similarity, secondary structure prediction,

and structural superposition for conservation of protein fold

and obtained root mean square deviation (RMSD) value during

structural alignment and Z-score value (DALI search) (Holm

and Rosenstrom, 2010). The final model was energy minimized

using SYBYL (www.tripos.com), which was further inspected

using WINCOOT (www.ysbl.york.ac.uk) to see if any clashes

occur between side chain residues by comparing with the

template model. The stereochemistry of the predicted structure

was assessed with the program PROCHECK (www.ebi.ac.uk).

Structural cavity analysis by CASTp

In the PDB, no structural information is available for the

VirD4 protein of T4SS machinery; therefore, there is a lack of

information about the substrate binding region. In addition, the

VirD4 sequence had several insertion regions compared with

the template structure (bacterial conjugate coupling protein pdb

1E9R). To predict the nucleotide-binding region and exclude it

from the shallow depression, cavity prediction was performed

for modeled VirD4 structure. Cavities exhibit an entrance that

connects the interior of protein with the outside solution or

small molecules. Before submission to cavity prediction, we

removed residues 1-106 from the model, which is predicted

to be in the transmembrane region. To predict a probable

substrate binding site, we initially employed the CASTp program

that analyzes the topology of the structure and predicts the

concave cavities, surface area, and location (Binkowski et al.,

2003). In addition, we also used the protein structural fold

search engine to identify the functional site in the homology

model. The CASTp predicted concave cavity location, and the

functional site predicted by the protein structural fold search

engine was further validated by docking the nucleotide at the

active site.

Ligand docking by CB-DOCK and
3D-ligand docking method

Based on the cavity prediction and functional site prediction,

ligand docking was performed by CB-DOCK and 3D-

ligand docking for validation (Liu et al., 2020). The VirD4

homology model was converted into pdbqt format for

FIGURE 1

The secondary structure alignment between the template structure (1E9R) and Salmonella enterica VirD4 sequence. The secondary structure

prediction shows that approximately 400 amino acids are aligned very well between them. The S. enterica VirD4 protein sequence has several

insertion regions, which are shown in the red box. The α-helix prediction is shown in green, and the β-strand is shown by the blue arrow. In this

figure, G-indicates the 3-turn helix, T-indicates the hydrogen-bonded turn, and S indicates the bend. The top row is VirD4 starts with residue

107, and the bottom row is template starts with residue 91(1E9R).
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docking purposes. VirD4 ATPase initiates protein assembly

and facilitates the secretion of toxins into the host cells

in association with partner proteins. Therefore, an ADP

ligand was generated and converted into an SDF file format

for docking.

Hexameric structure

The fundamental functions of the VirD4 protein are

to recruit the substrates and then deliver them to the

secretion channel. It is also known as coupling protein that

contains Walker A and B sequence motifs. These motifs

play a major role in nucleotide binding and hydrolysis.

The crystal structure of the cytoplasmic region of the P-

loop containing nucleoside triphosphate hydrolases (1E9R)

assembles to form a hexameric structure. The VirD4 protein

displayed 70 to 80% conservation of secondary structure

with 1E9R structure for 395 residues. The conservation of

secondary structure and structural fold implicates the functional

similarity between them. To construct S. enterica VirD4

hexameric form, we employed 1E9R hexameric structure

as a template and translated modeled VirB4 into each

monomer. The hexameric structure was globally energy-

minimized using SYBYL. Figures were generated using the

program Pymol (www.pymol.org).

Results

The protein structural fold search engine (Phyre2)

predicted a few structural coordinates from the PDB based

on protein sequence identity and similarity that aided as

a template for homology modeling for S. enterica VirD4

protein, and specifically, these include P-loop containing

nucleoside triphosphate hydrolases (1E9R), Type IV Coupling

Complex (T4CC) from L. pneumophila (6SZ9), and structure

of VirB4 of Thermoanaerobacter pseudethanolicus (4AG5)

(Pena et al., 2012; Wallden et al., 2012; Meir et al., 2020). The

predicted secondary structure of VirD4 protein displayed a high

percentage of structure conservation with P-loop containing

nucleoside triphosphate hydrolase structure (Pena et al.,

2012). The predicted secondary structure of VirD4 protein

was found to be around a 70 to 80% match with the template

secondary structure (1E9R) for 395 residues. The sequence

alignment analysis reveals that the VirD4 sequence of S. enterica

showed 21% sequence identity and 56% sequence homology

with P-loop containing nucleoside triphosphate hydrolase

sequence (1E9R). The sequence alignment displayed that the

VirD4 protein sequence had several insertion sequences in

comparison with template structure (pdb#1E9R) (Figure 1).

The protein structural fold search engine also predicted VirB4

of T. pseudethanolicus as a template model, which belongs to

T4SS (Wallden et al., 2012); however, the secondary structure

FIGURE 2

(A) The structural superposition of modeled VirD4 structure on top of 1E9R template structure. This diagram also shows the insertion regions

and nucleotide binding regions in di�erent colors. Color code: green VirD4 and cyan 1E9R template structure. The two long insertion regions

are labeled as Regions I (residues 271-295) and II (residues 505-519). (B) The left side of the diagram shows the formation of the hexamer. The

nucleotide-binding regions are located at the dimer interface shown in pink. Two long insertion regions are shown in blue, one occupies the top

of the hexamer and the other is at the bottom. The transmembrane binding region forms a circular disc to insert into the membrane. (C) The

right surface diagram shows the top view. In the hexameric form, the opening of the tunnel is much wider near the transmembrane region,

whereas, in the cytoplasmic region, the opening is very narrow. The two insertion regions are also shown in blue. At the transmembrane

insertion region, all six monomers connected to each other forming a ring-like disc.
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prediction and structural alignment displayed less conservation

in comparison with 1E9R coordinates. Therefore, the 1E9R

coordinate was used for homology modeling of the VirD4

structure based on the secondary structure conservation

and similarity in the structural fold. Although VirD4 had

only 21% sequence identity with 1E9R coordinates, the

structural fold was highly similar (Figure 2A). Approximately

70% of the predicted model was built with more than

90% confidence.

For the structural analysis, we deleted the N-terminal

transmembrane region of VirD4 protein residues 1-116 and

the last 40 amino acids (580-620) from the C-terminal region

due to low confidence in the homology model building. Then,

we superimposed C-α carbon atoms of the VirD4 homology

model on top of 1E9R coordinates for structural analyses. The

VirD4 C-α carbon atoms of residues from 107 to 474 were

superimposed on top of the template structure (1E9R) and

C-α carbon atom residues from 91 to 491 with RMSD 0.6

Å (Figure 2A). The structural alignment revealed that VirD4

structure insertion regions occupy the connecting loop and are

located away from the core structure (shown in red color in

Figure 2A). Most of the insertions are between 4 and 6 residues

except two regions (Table 1). Two insertion regions were around

10 to 15 residues long, and one insertion was positioned in

the connecting loop at the bottom of the hexamer (Figure 2A

shown in red color). The second region occupies the top of

the core structure (left side cartoon diagram shown in blue

in Figure 2B) that forms a donut-like structure highlighted

in blue (right side surface diagram shown in Figure 2C).

The homology model was minimized, and the quality of the

structure was inspected for clashes, rotamers, and amino acid

geometry (Ramachandran plot), and all were in acceptable

ranges. We also generated a hexameric form of the VirD4

model, which forms a ring-like structure (Figure 2B). The final

VirD4 homology model was submitted to DALI search for

structural alignment prediction from the PDB. The DALI search

predicted several structures from the PDB; however, the 1E9R

structure was the top-most structure with a Z-score of 37.4%,

with a low RMSD, and a clear separation from the remaining

predicted structures which all had very low Z-scores with

higher RMSD.

The homology structure of VirD4 contains two domains that

include an α-helical domain and β-strands surrounded by α-

helices or a nucleotide binding region, which is very similar to

the 1E9R structure (Figure 2A). The sequence alignment shows

that the C-terminal region contains highly conserved amino

acids as compared with the N-terminal region. Earlier it was

shown that VirD4 is essential machinery in first recruiting the

substrate and subsequently transferring the substrate to VirB11;

therefore, VirD4 is known as a coupling protein. Due to its

role in secretory pathways, we analyzed the functional property

of VirD4 protein structure by analyzing surface topology to

predict a cavity, which could be a probable nucleotide-binding

TABLE 1 The position of the insertion region and the number of

residues in each region.

VirD4 Insertion region Residues

136–142 KDKKIIR

189–195 SLIRKVI

224–228 SEGFN

271–285 NDKAGLKTLDIEPV

312–325 SELRGKTLADI

355–360 ANPNVA

411–415 MPTD

505–519 TIGSKSKSRSRGGTS

pocket (CASTp server). The surface topology characterization

predicted two pockets in the VirD4 structure with a surface area

of 1,395 Å (Pocket-1) and 2,539 Å (Pocket-2) (Figure 3A). The

boundary of Pocket-1 is well-defined with a concave surface

located in the region of β-strands surrounded by α-helices,

whereas the predicted Pocket-2 boundary is scattered and

occupies a larger surface area. We also analyzed the functional

sites of the VirD4 structure of S. enterica using a 3D ligand

docking server and predicted the probable nucleotide-binding

region (Figure 3B, which is shown in red color). 3D-ligand

docking server predicted 5 binding clusters, and among them,

clusters 3 and 5 predicted the Walker A and B motifs; however,

predicted cluster 3 was found to be a more accurate and

superimposed well with the earlier solved crystal structure. The

3D-ligand predicted cluster and CB-DOCK predicted nucleotide

binding site matched well with Pocket-1 predicted by CASTp.

The ligand binding cavity is surrounded by several charged

residues with interacting distances, and these residues overlap

with functional site residues identified by CASTp, CB-DOCK,

and 3D-ligand dock predicated region (Figure 3C). The 3D-

ligand docking predicts the probability of active site residues

(probability score 0.33 or above of a residue is considered

involving in binding) that are involved in ligand binding. Table 1

shows the list of residues that can participate in nucleotide

binding and shows the solvent accessibility of these residues.

In addition, the table provides the conservation information

of the binding residues. The 3D-ligand cluster prediction

was based on the binding of 15 ligands (ADP: 5, SO4: 7,

and GNP: 3) (Figure 3D).

Then, we analyzed conserved residues of the active site in

comparison with other ATPases of bacterial secretory systems.

Like other ATPases, VirD4’s predicted functional site residues

possess conserved nucleotide binding motifs (Walker A and B

motifs, Supplementary Table 1). We also analyzed the presence

of Walker A and B motifs from other related ATPases as

well. The result shows that these motifs are highly conserved

and aligned with other bacterial ATPases that include the

family of conjugative coupling factor, conjugation transfer
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FIGURE 3

(A) Surface topology predicts the cavity on VirD4 structure. In this figure, we have shown the well-defined cavity that occupies the N-terminal

region between the β-strands and is surrounded by α-helices. (B) The prediction of functional residues that are likely involved in substrate

binding. (C) The nucleotide-binding region is shown in blue, which is surrounded by Walker A and B motifs, shown in green with stick

representation. (D) This sequence shows the location of Walker A and B motifs. The interacting residues are shown above the blue box.

Frontiers in Artificial Intelligence 06 frontiersin.org

31

https://doi.org/10.3389/frai.2022.952997
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Gokulan et al. 10.3389/frai.2022.952997

FIGURE 4

(A) The substrate binding pocket in which the ADP molecule is docked in the active site and represented in the stick model. The interacting

residues are shown and labeled in the active site cavity. The α-and β-phosphate groups of ADP are surrounded by P-loop binding residues. The

adenine and ribose molecules are interacting with several charged residues. (B) Binding of genistein in the active site cavity of VirD4 structure on

docking. The interacting residues are very similar for both ADP and genistein. Part of the molecule is surrounded by Walker A structure, a very

similar phosphate group of ADP. Walker A and B motifs are mostly involved in interacting with genistein.

FIGURE 5

The various steps of the secretion process. Step-I shows the relaxosome where VirD4 recruits the substrate. During this process, the insertion

regions may allow flexible movements. Step II shows the transfer of substrate to VirB11. This cartoon also depicts VirD4 possibly interacting with

VirB11. Step III shows the translocation of the substrate through the secretory machinery. Step-IV shows the secretory products to the host cells

to transfer to bacterial species.

system, and TraN, a hallmark protein of the F-type IV

secretion system (Supplementary Table 2). The docked ligand

is surrounded by Walker A and B motif sequence indicating

the functional role as an ATPase (Figure 4A). This docked

conformation is positioned to interact with several conserved

residues at the active site, and they are comparable with

nucleotide-bound VirB4 and other ATPases (Wallden et al.,

2012). The phosphate groups of ADP ligand are surrounded

by residues of Gly-Thr-Arg-Ala-Gly-Lys-Gly-Ala-Gly-Iso-Val-

Iso, Tyr562, and Tyr563 like other ATPases. Specifically, α-
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and β-phosphates interact with backbone nitrogen amides of

the P-loop of the Walker A-motif. Similarly, adenine ring

and ribose sugar molecules are surrounded by several charged

residues including Lys181, Arg182, Glu183, Asn186, Asn565,

and Asp571 positioned within hydrogen bonding distances

(Figure 4A). Ligand docking showed several orientations of the

ligand with energy minimization scores, and Figure 4A shows

the best-fitted ligand with lowest 1G energy (-8.3 kcal/mol).

We also docked genistein (a known RecA inhibitor) at the

predicted substrate binding cavity. The docking results show

that the 5-hydoxy-3-(4-hydroxyphenyl)-7 group of genistein

is surrounded by Walker A motif sequence very similar

to phosphate groups of nucleotides (ADP). The hydroxy-

phenyl group is similarly occupied to the adenine ring

of nucleotide, and interacting residues Pro180, Lys181, and

Glu183 are very similar for both nucleotide and genistein

(Figure 4B).

Discussion

The T4SS is large multiprotein machinery spanning the

inner and outer membranes of Gram-negative bacteria. This

system is more versatile compared with other types of secretion

systems and is involved in DNA conjugation between two

cells of the same bacterial taxa, injecting proteins or toxins

to the host cells or other bacterial species and contributing

to the release or uptake of genetic material (Lederberg and

Tatum, 1953; Lawley et al., 2003; Backert and Meyer, 2006).

The bacterial conjugation system has been linked to multidrug

resistance due to horizontal DNA transfer, which poses a threat

to human health (Leclercq et al., 1988; Douard et al., 2010).

The structural components of the bacterial T4SS are ATPases,

channel-forming multi-proteins, and pilus (Alvarez-Martinez

and Christie, 2009; Bhatty et al., 2013). Each component

arbitrates a specific biological function during the secretion

process. T4SS contains three ATPases that include VirB4,

VirB11, and VirD4, which are responsible for powering the

secretory machinery on binding with nucleotide. The next major

structural component is the translocation channel formed by

several proteins including VirB3, B6, B7, B8, B9, and B10, which

facilitate the translocation of toxins or genetic material to the

host cells or other bacteria. The pilus is an extracellular structure

located on the outer membrane, and it helps with the adhesion

function during interaction with host cells. Characterizing the

function of individual plasmid-encoded genes and proteins

involved in secretion will provide an improved understanding of

the structural basis of antimicrobial resistance and themolecular

mechanism of pathogenesis.

In S. enterica,VirD4 consists of 640 amino acids, which form

N-terminal and C-terminal domains. The amino acid sequences

are highly variable at the N-terminal, but C-terminal has more

conserved residues like other bacterial VirD4 proteins. The

monomeric form retains structural folds very similar to P-loop

containing nucleoside triphosphate hydrolase structure (Pena

et al., 2012). The only difference is that the VirD4 structure

has several insertion regions, and most of them occupy the

outer surface of the core structure except amino acids 505-519.

An earlier study showed the stoichiometry of VirD4, and it

consists of six subunits assembled as a hexamer (Pena et al.,

2012). In the generated hexameric form, the insertion region

residues 505-519 occupy the top of the core structure and

form a donut-like ring structure. In the hexameric form, the

insertion region could (a) contribute to attachment with the

inner transmembrane, (b) provide more flexibility to interact

with a partner protein, and (c) recruit substrates. Likewise,

residues 271-285 occupy the outer surface, and the substrate

selection is mostly directed by the interaction between the

relaxosome and coupling protein. Based on its location of

residues 271-285, we proposed that it could contribute to the

interaction with relaxosome or VirB11 during the transfer

of substrate to the secretary channel. These insertions are

absent in P-loop containing nucleoside triphosphate hydrolases.

The hexameric structure has a wide opening (20Å) near the

transmembrane region, whereas, in the cytoplasmic region, the

opening is narrower (14Å). In the hexameric structure, the

nucleotide-binding regions are occupied between two monomer

interfaces with a wide cavity to enter the nucleotide. This

is consistent with earlier reported crystal structures (Wallden

et al., 2012). The α- and β-phosphates of ADP are at a

favorable distance to interact with backbone amines of the P-

loop of the Walker motif, which lines other ATPases. Genistein

docking reveals that the 5-hydroxy-3-(4-hydroxyphenyl) group

occupies the same location as that of α-and β-phosphates of

ADP, and its hydroxyl groups interact with the P-loop of the

Walker motif. The genistein binding location and ADP binding

location are very similar in the active site cavity. In addition,

the interacting residues are also very similar for both ligands.

Earlier studies have shown that genistein inhibits RecA ATPase;

therefore, we proposed that genistein could probably inhibit

VirD4 ATPase as well. However, this hypothesis needs to be

experimentally verified.

Conclusion

The VirD4 protein had a 21% sequence identity with

P-loop containing nucleoside triphosphate hydrolase

structure. Although it has several insertion regions,

the structural fold is very similar, which indicates the

functional and structural conservation between them.

Based on the location of two insertion regions, we

hypothesized that it could provide more flexibility to

interact with partner proteins during substrate transfer

to VirB11 (Figure 5). The ligand or inhibitor docking

reveals that Walker A and B motifs are involved in
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ligand binding. The proposed hypothesis needs to be

biochemically validated.
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Here we study the semantic search and retrieval problem in biomedical digital

libraries. First, we introduce MedGraph, a knowledge graph embedding-based

method that provides semantic relevance retrieval and ranking for the

biomedical literature indexed in PubMed. Second, we evaluate our approach

using PubMed’s Best Match algorithm. Moreover, we compare our method

MedGraph to a traditional TF-IDF-based algorithm. Third, we use a dataset

extracted from PubMed, including 30 million articles’ metadata such as

abstracts, author information, citation information, and extracted biological

entity mentions. We pull a subset of the dataset to evaluate MedGraph using

predefined queries with ground truth ranked results. To our knowledge, this

technique has not been explored before in biomedical information retrieval.

In addition, our results provide some evidence that semantic approaches to

search and relevance in biomedical digital libraries that rely on knowledge

graph modeling o�er better search relevance results when compared with

traditional methods in terms of objective metrics.

KEYWORDS

knowledge graph, natural language processing, information retrieval, biomedical

digital libraries, graph embedding

1. Introduction

1.1. PubMed

PubMed is the National Library of Medicine’s (NLM) free authoritative

database of citations and search engine of more than 30 million articles in biology,

medicine, pharmacy, and life sciences and across multiple curated databases such

as MEDLINE1. PubMed is used by more than 2.5 million users each day, serving

clinicians, physicians, researchers, and students (Fiorini et al., 2018). It is worth

mentioning that PubMed is a database of citations, not a database of full-text

articles. About two-thirds of the articles indexed in PubMed do not provide access

to full texts2. Instead, when a free full text is available by the publisher, published

1 http://www.nlm.nih.gov/pubs/factsheets/medline.html

2 https://pubmed.ncbi.nlm.nih.gov/
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as open access, or supported by a National Institutes of Health

(NIH)3 grant, the full article gets indexed in PubMed Central4,

NLM’s accessible repository of full-text articles. Accordingly, the

PubMed search engine relies on metadata and citations instead

of parsing full-text articles when providing a search experience.

Articles’ metadata are indexed and parsed in fields to be utilized

in the search process. Metadata fields include titles, abstracts,

authors, journal names, publication dates, submission dates,

related Medical Subject Headings (MeSH)5 terms, citation and

references information, funding grants, and projects.

PubMed uses an algorithm that relies on fuzzy string

matching to match the query with relevant citations. For

example, when a user enters in the search box an author

name followed by a journal name, all the articles that author

published in that journal will appear. In addition, PubMed

uses the Automatic Term Mapping system (ATM) (Thirion

et al., 2009). The ATM system expands the input query and

finds which fields the query entered intended. The expanded

query is then matched with the most relevant documents using

MeSH terms, keywords, and other metadata that could be

treated as an index. The most relevant articles are then retrieved

using the Term Frequency-Inverse Document Frequency (TF-

IDF) algorithm Jones (1972) and ranked based on date or

alphabetically using either the title or the author name (Fiorini

et al., 2018). Other methods include ranking by date or author

information. Recently PubMed deployed its newest relevance

ranking algorithm named BestMatch (Fiorini et al., 2018).

BestMatch relies on a machine learning model trained on

features extracted from user search logs on PubMed in the

past several years. The system has been shown to outperform

TF-IDF-based ranking. However, BestMatch does not consider

that the user query logs that the system has been trained on

contain ambiguous queries. In addition, even though the authors

evaluated the system thoroughly using an A/B testing approach

with real users to evaluate the ranking quality, the algorithm

did not provide solutions for the problem of understanding

query intentions through semantic models. For example, a user

can enter the word “cancer” in the PubMed search box, and

they might mean multiple things by “cancer”. For instance, they

might want an article in the journal named “Nature: Cancer”.

Alternatively, they might want authors who work and publish

in the field of cancer. Or, they might want all relevant articles

that mention cancer or research done in the field of cancer.

They might also be looking for a specific citation with a title

or author name, journal, and year. Alternatively, they might

be looking for several articles related to cancer. Search engines

and information retrieval systems such as PubMed and Google

rely on objective metrics and algorithms to rank their search

3 https://www.nih.gov/

4 https://pubmed.ncbi.nlm.nih.gov/

5 https://www.nlm.nih.gov/mesh/meshhome.html

results. The ranking of the search results does not necessarily

reflect what the user meant by the query. They, however,

reflect the most objective relevance based on the text of the

input query. That is done by analyzing the frequency of the

strings in the input queries in the corpus of documents. In

addition, other models incorporate the citation network of the

documents, such as PageRank in the case of Google (Page et al.,

1999). Hence, integrating semantics in search algorithms and

information retrieval systems, especially in biomedical literature

searches, is crucial to move toward systems that can sort

out ambiguity, understand query intentions, and aid in true

knowledge discovery.

In recent years and the Web 2.0 information revolution,

Semantic Web technologies have proliferated (Berners-Lee

et al., 2001). Semantic web technologies aim to create an

understandable and readable web by machines. The graph

model was introduced to represent knowledge in web pages

semantically using standards such as the Resource Descriptor

Framework (Lassila and Swick, 1998). The idea was driven by

earlier work in digital ontology and concept maps. Knowledge

graphs were then born as a data model used to store information

and data semantically. Knowledge graphs have also been

extended as graph databases for data persistence as it allows for

a more flexible representation of data and relationships than the

relational data model (Hogan et al., 2021).

1.2. Contribution

To help investigate the challenges associated with semantic

understanding of queries when searching the biomedical

literature in PubMed, we introduce MedGraph, a knowledge

graph-based search engine and information retrieval method.

MedGraph relies on converting the metadata associated with

PubMed into a knowledge graph. The metadata includes

disambiguated author names, grant information, MeSH terms,

citation information, and a dataset of extracted bio entities such

as drugs, genes, proteins, and species from the text of the title

and the abstract of each article in PubMed. The dataset was

introduced by Xu et al. (2020), and it includes NIH project

involvement for each author and each article in PubMed. In

addition, it has extracted biological entities using deep learning

named entity recognition technique called BioBERT (Lee et al.,

2020). The dataset is available as a relational database linked

using each article’s unique identifier PMID. The dataset contains

articles from the year 1781 until December 2020. To prove

the utility of MedGraph, we extracted a small dataset of 2,696

articles and their associated metadata and citation network from

the PubMed dataset (Xu et al., 2020). We then extracted the

entities from the dataset and linked them semantically as a

knowledge graph. We then used a knowledge graph embedding

method named Node2vec (Grover and Leskovec, 2016) to

extract semantic features and embed the extracted knowledge
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graph in a Euclidean space. We then used the node vectors to

rank the articles using a cosine distance similarity measure on

the learned vectors according to the input query after pooling

all the vectors of related first-order neighbor nodes for each

article. On the query side, first, the input query is parsed and

expanded using the extracted biological entities in the original

dataset as an index. The expanded query is then matched to

their corresponding nodes in the knowledge graph. Thematched

node vectors are then averaged to vectorize each query.

Using various metrics, we evaluate the proposed method

against PubMed’s BestMatch algorithm as ground truth. In

addition, we compare our method with a traditional TF-IDF

approach (Jones, 1972; Ramos, 2003). Our results show that

MedGraph performs comparably to BestMatch. In addition, it

outperforms the traditional TF-IDF method providing evidence

that using knowledge graph-based semantic search will benefit

the biomedical and life science research community when

adopted as a widely used method in literature search through

digital libraries.

1.3. Relevant previous work

Knowledge graphs (KG) (Paulheim, 2017) have been

adapted to aid search engines and recommender systems.

KGs are highly efficient in those applications due to their

flexibility in modeling multi-cardinal relations at the entity

level. For example, Xiong et al. (2017), the authors introduced

explicit semantic ranking, harnessing KG embedding. The

algorithm uses graph representation learning on the metadata

of articles in the online search engine named Semantic Scholar

(Fricke, 2018). They use a KG embedding model to represent

queries and documents as vectors in the same vector space.

This work is the closest to the work we present here. The

authors provided strong evidence that using KG embedding

in searching academic literature improves the relevance of

the returned documents drastically due to the reliance on

semantics and entity matching in the process. While in Wang

et al. (2017), the authors demonstrated the usefulness of KGs

and semantic modeling in search engines when retrieving web

pages. They used a relation extraction algorithm to construct

a KG. Though they have not used graph embedding, they

devised a semantic matching approach based on support vector

machines.

In Montes-y Gómez et al. (2000), the authors introduced

extracting a KG from the text of two documents. They

then measured the similarity between these two graphs

extracted from the two articles, combining relational and

conceptual similarities. In Ebeid et al. (2021), the authors

showed the utility of ranking methods on embedded KGs

using simple cosine distance metrics to perform tasks such

as link prediction in the biomedical domain. While in

Matsuo et al. (2006), the authors described a system built

using keyword co-occurrence matching. They remodeled the

keyword matching process as a graph and applied a graph

clustering technique to match keywords and queries. In

Blanco and Lioma (2012), The authors modeled the text in

documents as a graph instead of a Bag of Words model

(BoW). Then, they used PageRank (Page et al., 1999) to

derive similarity measures between documents. At the same

time, the authors (Farouk et al., 2018) argued that graph

modeling could enhance search relevance results based on

context rather than just string similarity. They developed a

system where the input documents and indices are converted

to a KG. Their findings support (Ma et al., 2016), where

they drove the point that graph-based search engines are

highly efficient and valuable despite their challenges. Evidence

of the utility of graph-based search is strengthened in Guo

et al. (2021). The authors constructed a network of the

standardized MeSH headings assigned to articles in MEDLINE

(Motschall and Falck-Ytter, 2005). The relationships between

the MeSH headings were modeled as a graph where the edges

represent different hierarchical roles in the original MeSH

coding system. The graph of MeSH headings was then fed

to various graph embedding algorithms. The output was a

learned feature vector representing each MeSH heading for

each node. The data set is helpful in downstream biomedical

computational tasks.

While in Wang J. Z. et al. (2014), the authors used an

efficient graph-based search engine on par with PubMed. Their

approach tackled the problem of returning relevant documents

from three angles. They first built a parallel document indexer.

Second, they modeled each article’s metadata, such as MeSH

terms and keywords, as a graph and applied a personalized

PageRank (Lofgren et al., 2016) to rank the concepts in

the built graph, followed by TF-IDF (Pita et al., 2018) to

rank the documents relative to a query. Third, they included

the user’s search behavior as a factor in relevance, similar

to BestMatch (Fiorini et al., 2018). Despite its efficiency

compared to PubMed, the algorithm requires user input

and is not fully unsupervised. The BestMatch (Fiorini et al.,

2018) is the newest algorithm used by the PubMed search

engine to find the most relevant articles to a user’s query.

BestMatch relies on extracting features from articles and

including prior user search logs into a relevance ranking

predictionmodel. Themodel then finds themost relevant results

personalized to each user. BestMatch provides excellent results

compared with previous approaches in PubMed, yet it does

not consider any semantics failing to distinguish ambiguity

in queries.

In the next section, we describe our methodology and

framework proposed in this article. In Section 3, we describe

our evaluation experiments and results. Section 4 discusses the

results, implications, and future work.We conclude in Section 5.

A complete bibliography is available in Section 6. An additional

literature review is included in the Supplementary material.
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2. Method

In this section, we explain in detail the proposed KG

based biomedical information retrieval framework MedGraph

as shown in Figure 1. An additional illustrative example of our

framework’s pipeline is available in Supplementary Figure 1.

2.1. The PubMed metadata database

In Xu et al. (2020), the authors extracted a metadata

database from the corpus of the PubMed articles available

from 1781 until December 2020 (30 million). The extracted

information includes names of biological entities such as genes,

proteins, species, drugs, and diseases and disambiguated author

information and citation information. The primary purpose

of that dataset was to create a full KG of the articles in

PubMed. The extracted biomedical KG could be used in

various biomedical information retrieval and data mining tasks.

Here we utilize the extracted biomedical knowledge graph

described in Xu et al. (2020). The dataset comes as a relational

database linked by a unique identifier, each article’s identifier

in PubMed, also known as the PMID. Those account for

31, 929, 000 articles. Author information from each article,

including first names, middle names, last names, and affiliations,

has been extracted and disambiguated in separate tables. In

addition, the disambiguated authors have a unique identifier

of AIDs.

Table 1 provides statistics and a description of the PubMed

relational database for essential tables. The original dataset

contains 27 tables linked by PMID. Here we extract metadata

from seven tables. In addition, we do not use 31 million articles

for our dataset. Instead, we choose a subset of articles that have

been submitted to journals between the dates of 2/1/2019 and

2/3/2019. This subset of the articles yielded 2,696 articles when

queried on PubMed. We then use the 2,696 articles to extract

a first-order citation network from the table C04_ReferenceList.

The citation network produced 100,456 articles. Finally, for the

100,456 articles, we extracted the rest of the metadata from the

tables listed above, which will be described later.

2.2. Indexing

Indexing is simply mapping unique vocab to documents

or the opposite like the index at the back of a book. You

can expand that definition and match the extracted unique

vocab to a dictionary (Xu et al., 2020). The index here is the

mapping between the limited unique vocab of the recognized

entities and their respective documents which is enough for

our task. The difference between our indexing strategy and

a more generalized approach is that we did not expand the

index to include all unique entities we just limited the index

to the extracted biomedical terms. In addition in our case, we

use the terms extracted during the named entity recognition as

a limited index. Moreover, the table named B10_BERN_Main

represents the names of drugs, genes, diseases, and species

extracted using named entity recognition using the biomedical

deep learning language model BioBERT (Lee et al., 2020) in the

dataset presented in Xu et al. (2020), which acts as an index

in addition to being part of the KG that we will describe its

extraction later in the following subsection. In addition, the

index will be used to match input user queries and expansion

and create query vectors. More formally, each article p ∈ P

will contain a set of biological entity mentions m ∈ M. Each

mention is part of a set of mentions that distinguish each

unique biological entity b ∈ B where M′ ⊆ M and b →

|M′|. In addition, each unique biological entity has a type that

can be one of four types[ drug, disease, gene, species] where

b(t) ∈ B(T) and T = [drug, disease, gene, species]. Hence

the relationship becomes p[b(t)] ∈ P[B(T)] ∀ b → |M′|.

Note that we only use extracted biological entities from the

text of each article to index our corpus of articles instead of

using MeSH terms or UMLS (Bodenreider, 2004) vocabulary,

which is considered a standard approach in work that has

been done before in biomedical information retrieval and

text mining.

2.3. Knowledge graph extraction

KG extraction converts the relational database of the

PubMed metadata to a graph of interconnected entities,

as shown in Figure 2. For each article, we first extract all

author names, names of drugs, genes, proteins, diseases, and

species, and related MeSH terms and Chemical Substances

terms from the tables described above. Then, the unique

identifiers representing each entity create the KG. As

described before, KGs are represented as a list of triples.

For example, in our case, when we extract an author name

for an article from the metadata database, we represent that

information as [“article/pmid/86509”, “isWrittenBy/wrote”,

“author/aid/6754”]. Similarly, when we extract a drug

name from an article, that information is represented

as [“bioentity/drug/1256”, “isMentionedIn/mentions”,

“article/pmid/78456”]. In addition, if an NIH grant

or project funded an article, that information will be

represented as [“ article/pmid/5678”, “isFundedBy/funds”,

“nih_project/project_id/4123”]. Note that the relationships are

represented equally as the data in this KG model compared with

a relational model.

Accordingly, each article and associated metadata will be

represented as a mini KG or a concept graph, as shown in

Figure 2. Those mini KGs or concept graphs could be seen as

subgraphs of a larger encompassing KG. In our case, we link all

the subgraphs in two ways. First, we use the citation network
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FIGURE 1

An overview of the MedGraph framework.

TABLE 1 A description of main tables in the downloaded PubMed dataset provided in Xu et al. (2020).

Table No. of

rows

No. of

distinct

entities

Description

A01_Articles 31,928,777 31,926,861 A table containing PubMed articles’ bibliographic information.

A02_AuthorList 131,446,038 18,519,492 A table containing PubMed authors and their unique identifiers.

B10_BERN_Main 295,921,671 20,136,150 A table containing all types of extracted bio-entities by BioBERT are used in both building the

Knowledge Graph and as an index.

C03_Affiliation_Merge 62,015,712 9,502,394 A table containing affiliations and extracted fine-grained items.

C05_NIH_PubMed 22,946,601 116,530 A table containing projects from NIH ExPORTER and mapping relation between PI_ID, PMID, and

AND_ID.

C04_ReferenceList 633,401,975 23,856,949 A table containing reference relations between PMID and reference PMID. It was extracted from the

Web of Sciences.

FIGURE 2

The image represents how each article is converted to a concept graph or a smaller knowledge graph.
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FIGURE 3

A part of the extracted knowledge graph.

provided in table C04_ReferenceList, representing extracted

citation information from PubMed and Web of Science. The

citation network provides the edges necessary to link most

articles using the relationship “isCitedBy/cites.” For example,

two articles will be linked and represented in the knowledge

graph as a triple [“article/pmid/652148,” “isCitedBy/cites,”

“article/pmid/415923”]. Second, since the authors and the

names of drugs, diseases, genes, and proteins are disambiguated

and unique, if an author appears with multiple names across

several articles, all the names they appeared with will have

the same author identifier number. Similarly, they will have

the same unique identifier if they occur with different names,

such as Aspirin and NSAID for drugs, proteins, genes, and

species. Moreover, we create a mini KG for each article using

a unique identifier. The linked KG will also be semantically

related because an author will appear in multiple articles, a drug

name in various articles, and the citation network connects all

articles. The final KG will be a semantically linked network

representing articles, authors, NIH grants, drugs, diseases, and

genes. Extracting a KG dataset as described above for the whole

corpus of articles in PubMed is a daunting task. We extract

only a small subset of articles with their citation information

to prove the concept. KG extraction can be formalized by

seeing each subject and object in the extracted triples [vi, rk, vj]

as nodes v of type l in a KG v(l) ∈ V(L) where each

node has a type l ∈ L where L = [“article”, “author”,

“gene/protein”, “drug”, “disease”, “species”, “nih project”, “mesh

term”, “chemical substance”]. Edges in the KG are equivalent

to verbs or predicates in the triple representation, as shown

in Figure 3. Each edge e(k) ∈ E(K) has a type k ∈ K

where K = [“isCitedBy/cites”, “isMentionedIn/mentions”,

“isFundedBy/funds”, “mesh”, “isRelatedTo/relates”]. Hence the

triple relationship can be reformalized to G = (V ,E).

Regarding the validity of the extracted KG please refer

to Xu et al. (2020). As mentioned before the authors

extracted entities using BioBERT, a finely tuned state-of-the-

art biomedical BERT model. The validation was done by

comparing the results to a pretrained general BERT model

on the general domain corpus. The relations were validated

using multiple normalization models and dictionaries such as

GNormPlus for Gene/Protein and Sieve-based entity linking for

Diseases. Author disambiguation was validated using the NIH

ExPORTER and NIH-funded research databases.

2.4. Knowledge graph embedding

Knowledge graph embedding models can be transductive as

in learned from the structure of the graph itself (Perozzi et al.,

2014; Tang et al., 2015; Grover and Leskovec, 2016). Or they
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FIGURE 4

A representation of the Skip-gram model.

can be distance based by forcing a scoring function to evaluate

the plausibility of the triples in the KG (Bordes et al., 2013; Lin

et al., 2015). Or based on end-to-end graph-based deep learning

models such as Graph Neural Networks (Kipf and Welling,

2016). More knowledge about graph embedding can be found

in Wang et al. (2017). Here we aim to learn a set of feature

vectors for each node or entity in the KG as shown in Figure 4.

The feature vector needs to encode the structure of the graph.

More formally, for the graph G = (V ,E) a matrix X ∈ R
d is

learned via the function f : v ǫ V → R
d. One of the constraints

on the learned embedding matrix is that it can be decomposed

to X = ZTv Zu so that X preserves the similarity between its

component matrices where v ∈ V and u ∈ V and Zv ≡ XT and

Zu ≡ X. Preserving the similarity is learned through predicting

the probabilities of co-occurrence between 2 nodes in the same

neighborhood within a specific context windowC after sampling

the graph using a random walk strategy to a size of a corpus

sampled nodes, T.

P(v1, v2, v3, . . . , vt) =
1

T

t=1∑

T

∑

−c ≤ j ≤ c, j=0

log P(vt+j|vt)

(1)

Where c ∈ C and t ∈ T. v1, v2, v3, . . . , vt are sampled

from the first order neighborhood N of a randomly chosen

node vi. To train matrix X, we approximate the probability

P(v1, v2, v3, . . . , vt) over positively and negatively sampled and

labeled nodes using a sliding window on the sampled chains

of nodes from the graph as described in equation 1. Nodes

within the context window are labeled 1, while nodes outside the

context window are labeled 0. A sigmoid function is then used

to normalize the parameters of the matrix X. A backpropagation

phase then takes place to optimize the loss function:

Jt(θ) = log σ (uT0 vc) +

∑

j = P(V)

log σ (−uTj vc) (2)

Where u and vǫ V and ui and vi are row vectors ǫ X.

The previously described algorithm is the Skip-gram model

introduced in Mikolov et al. (2013). It is worth mentioning

that first-order neighborhood means one edge at a time. It is

different than the walk length. Other types of graph embedding

algorithmsmight take into consideration 2nd and 3rd order. But

in general, it is computationally impractical and intractable to

take more than that. To extract KG embedding representations,

we use Node2vec, the algorithm described in Grover and

Leskovec (2016). Node2vec performs a modified version of

the random walk strategy in Perozzi et al. (2014), including

parameters p and q to control the sampling strategy. The p

parameter controls the likelihood of the walk revisiting a node.

The q parameter controls whether the search is constrained

locally or globally. Given q > 1 and a random walk on an

initial node, the random walk samples nodes closer to the initial

node as in Breadth-First Search. Whereas, q < 1, random

walk samples nodes further from the initial node like a Depth

First Search. This customizability in search behavior allows the

random walker to capture diverse structural and topological

properties within the graph. The sampling strategy builds a

corpus of walks starting from each node. The Skip-gram model

trains on this corpus to generate a unique embedding vector for

each node in the KG. Once the model finishes training, we get an

embedding vector of size d for each node regardless of its type,

whether an article, author, drug, disease, gene, NIH project, or

MeSH term.

2.5. Article embedding

Our goal is to build a backend KG-based embedding model

used by a front-end search engine to rank articles relevant

to specific user queries. This step uses a pooling operation

averaging all the node embedding vectors of all types of nodes

connected to each article node in its first-order neighborhood.
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FIGURE 5

How article embeddings are generated.

We created the article embedding model in two stages. First, we

performed the pooling operation of averaging all the nodes of the

articles as described before mentioned in the citation network,

which gives us 100,456 articles. Next, we did a second pooling

operation where we averaged the first-order neighbors of articles

for the 2,696 articles we intend to search.

In Figure 5, the graph on the left is our KG, where we

only have article nodes along with other node types as shown

in Figure 3. For example, suppose we want to calculate the

embedding for article a3, one of the 2,696 articles, but it is also

connected to other article nodes in the graph. So we average

all the embedding vectors of the neighboring articles only, that

is, a2, a4, and a6, and the resultant vector will be the one

representing a3.

2.6. Query tokenizer

This module acts as an interface with the user. It takes

user queries and parses them. The input queries are assumed

to be in English and are tokenized by splitting over white

spaces after removing punctuation, stop words, and verbs. For

example, a query like “show me articles on depression and type

2 diabetes” after tokenization it will be reduced to [“articles,”

“depression,” “type,” “2,” “diabetes”]. The output keywords will

be passed to the query expansion module. Note that the

assumption here is that the query should include keywords in

the index.

2.7. Query matcher

The list of extracted keywords is then expanded using

a sliding window of sizes 2, 3, and 4. The sliding window’s

function captures multiple tokens from the initial keyword

list. It slides over the list of keywords and expands it. For

example, our list of keywords [“articles,” “depression,” “type,”

“2,” “diabetes”] will be expanded to [“articles,” “depression,”

“type,” “2,” “diabetes,” “articles depression,” “depression

type,” “type 2,” “2 diabetes,” “articles depression type,”

“depression type 2,” “type 2 diabetes”]. The expanded list

of keywords is then matched using a Levenshtein string

distance comparator to the index. The index contains all

the extracted biological entities from the articles and their

unique identifiers and locations. For the matched mentions

in each article in the index, each biological entity’s unique

identifier will be extracted and passed to the next step. Similar

to PubMed the system exits if the keywords are not found in

the index.

2.8. Query embedding

This step aims to find all the nodes in the KG with

the same identifiers as the identifiers returned by the query

matcher. After identifying the nodes, their corresponding

learned embedding vectors from the KG embedding step is

extracted. All the vectors are averaged to a single vector in a

pooling operation like Figure 5. The single vector becomes our

query embedding vector.

2.9. Cosine distance and ranked results

In a Euclidean space, the cosine of angle θ between two

vectors A and B is determined using the relationship:

similarity = cos (θ) =
AB

||A|| ||B||
(3)

Since our KG has been embedded in Euclidean space,

the similarity between two nodes is equivalent to the cosine

of the angle between the two vectors representing the

two nodes. So at this point, we have a query vector and

a set of article vectors. A simple operation between the

query vector and the article vectors would yield the list of

articles relevant to the query vector. When sorted by the

cosine score, the list of articles will be presented as ranked

retrieved articles.
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3. Evaluation

3.1. Dataset

For general tasks in information retrieval there exists

multiple benchmark datasets (Thakur et al., 2021). However, in

biomedical information retrieval, there is a lack of benchmark

datasets specific to this particular task (Fiorini et al., 2018). That

said it is not unusual in information retrieval for researchers

to device their evaluation procedure and dataset like we did

here. The only difference is that here we did not perform A/B

testing with users. We used the common heuristic mean average

precision (MAP) on a reproducible dataset. The contribution

of this work lies in the fact that an information retrieval

researcher can take this tested framework and apply it to another

biomedical digital library or further test it on any digital library.

Hence we extracted a proof of concept dataset from the PubMed

database described in Xu et al. (2020) and available at http://er.

tacc.utexas.edu/datasets/ped. The database contains 3, 190, 000

articles indexed from the year 1781 to December 2020. We

extracted our target dataset of 2,696 articles submitted to journals

between 02/01/2019 and 02/03/2019. We came about those

dates by examining the number of articles that have been

submitted to journals for each month in the past 5 years in

PubMed. We then chose the month with the least number of

articles submitted, February 2019. Still, the dataset at that point

was too large. Note that we include extracted articles, but we also

query the reference table to extract the first order citations of

each article, so the number grows exponentially. Accordingly, we

kept reducing the number of days where articles were submitted

to their journals until we got a reasonable size dataset. The

dataset was extracted by first querying the PubMed online search

engine6 for the articles that were submitted to their journals each

month for each year since 2019:

(((("2019/month/01"[Date − Completion] : "2019/month/

30"[Date− Completion]))))

Then the month with the least number of completed and

submitted articles was chosen across all years. Then we adjusted

to choose only 3 days since the size of the yielded citation

network would have been beyond the scope of this study. We

then settled for the dates mentioned above and queried PubMed

with the query, which yielded 2,696 articles:

(((("2019/02/01"[Date−Completion] : "2019/02/03"[Date−

Completion]))))

We then extracted the PMIDs of those articles. The extracted

PMIDs were used to query the downloaded PubMed database

to extract all the necessary metadata for each article. We first

extracted the citation network of the 2,696 articles, which

yielded 100,456 articles, including the 2,696 articles. For the

100,456 articles, all the metadata has been extracted, including

author information, MeSH terms, Substances, NIH project

6 https://www.ncbi.nlm.nih.gov/pmc/

TABLE 2 The description of node and edge types in the extracted

knowledge graph.

Node/Edge type Count

No. of nodes 578,453

No. of author 393,864

No. of article 100,456

No. of NIH projects 27,109

No. of MeSH terms 20,015

No. of chemical substances 9,686

No. of disease 9,594

No. of drug 8,762

No. of gene 6,094

No. of species 2,873

No. of edges 2,226,999

No. of article-relatedTo-MeSHTerm 1,049,789

No. of article-writtenBy-author 596,340

No. of article-mentions-disease 176,516

No. of article-mentions-drug 108,435

No. of article-cites-article 104,138

No. of article-mentions-species 70,694

No. of article-mentions-gene 56,337

No. of article-isFundedBy-NIHProject 54,751

No. of article-relatedTo-substances 9,999

involvement, extracted drug, disease, and protein names, and

citation network from Table 1. The extracted metadata was used

to create the KG as described in Figure 2. The final KG is amulti-

undirected graph with the following description in Table 2. The

total nodes in the graph were 578, 453, representing nine types of

entities; authors, articles, NIH projects, MeSH terms, registered

chemical substances, diseases, drugs, genes, and species. Most of

those nodes were author nodes, followed by article nodes, then

several NIH projects,MeSH term nodes, and extracted biological

entities. Note that what defines a node in a graph is its identifier.

Each node in the KG is identified by its original identifier

concatenated to its type with a slash. For authors, identifiers

are Author IDs (AIDs) in the database, PMIDs identify articles,

Project IDs identify NIH projects, Header IDs identify MeSH

terms, and extracted biological entities are identified by their

unique Entity ID assigned by BioBERT in the original paper (Xu

et al., 2020). For example, an article node will appear in the KG

“article/pmid/652148.” On the other hand, edges in the KG are

identified by their edge type. Here we identify nine relationships

represented with edge labels, as shown in Table 2.

3.2. Experimental setup

We then trained the resultant KG to extract node embedding

vectors using a Node2vec (Grover and Leskovec, 2016) approach
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implemented using Python 3.8 and the library Stellargraph

(Data61, 2018). The algorithm first runs a biased random walk

sampling algorithm on the graph to sample chains of nodes

using the breadth-first bias parameter q = 0.5 and the depth-

first bias parameter p = 2 with a walk length of 50 and 5

walks per node. The sampled corpus of node walks is then used

to train a Skip-gram model as described in Figure 4. Next, we

tuned the Skipgam model over multiple iterations to yield the

best MAP value. The final model was trained using the vector

size 128 chosen from a list of [12, 24, 48, 64, 128, 256], context

window size 5 chosen from the values [3, 5, 7, 12] which are

mostly commonly used in the literature, and the number of

negative samples was 7 from the values [7, 10, 20] also from

the most commonly used values in the literature. The model

was trained on a Windows PC with an Intel i7 processor and

32 GB of RAM. We also implemented and trained a TF-IDF

model on our corpus of 100,456 articles and then extracted

the TF-IDF vectors for the 2,696 target articles to compare

against our method. With the help of the Python library Gensim

(Rehurek and Sojka, 2011), we first extracted a dictionary of

unique tokens in the corpus and then trained a Bag of Words

model. The Bag of Words model was then used to train the TF-

IDF model, yielding a vectorized document matrix and unique

vocabulary. We evaluated MedGraph to assess the quality of our

KG embedding based on relevance ranking against PubMed’s

BestMatch algorithm as ground truth. We extracted a set of

15 queries from PubMed, and we applied the search to the

articles that were completed between the dates of 2/1/2019

and 2/3/2019. The 15 queries were chosen randomly from the

extracted index of biological entities as described in Section 2.2.

They contained the names of diseases and drugs, as shown in

Table 3. For example, for the query “type 2 diabetes,” we use

the following query to search PubMed and then download the

resultant PMIDs of the ranked articles.

(((("2019/02/01"[Date−Completion] : "2019/02/03"[Date−

Completion])))) AND

(type2diabetes[TextWord])

Then for each query, we rank the articles based on

the cosine distance metric by comparing the query vector

to the article vectors described in Figure 1. We then prune

the list of the resultant ranked retrieved articles by K.

That means we choose the top K elements of the ranked

retrieved articles from MedGraph. Then we compute the

number of relevant articles, the number of retrieved articles,

and the number of relevant articles retrieved. We then

compute precision, recall, and F1-Score. Precision is the

number of relevant articles retrieved over the total number

of relevant articles. The recall is the number of relevant

articles retrieved over the total number of retrieved articles.

Moreover, the F1-Score is the harmonic mean of precision and

recall.

We also compute the Mean Average Precision (MAP) across

queries (Aslam and Yilmaz, 2006). MAP is a widely used metric

TABLE 3 A description of the queries we used to evaluate the system

against PubMed’s BestMatch ranked results were used as a ground

truth.

Query

ID

Text No. of relevant

documents

No. of tokens

1 Alcohol 37 1

2 Amino acids 11 2

3 Bacterial infections 6 2

4 Basal cell carcinoma 3 3

5 Bipolar disorder 10 2

6 Cancer 320 1

7 Diabetes 59 1

8 Hepatitis c virus 3 3

9 Histamine 2 1

10 Insulin 25 1

11 Loss of muscle strength 1 4

12 Pediatric cancer 1 2

13 Trauma 22 1

14 Type 2 diabetes 22 3

15 Urinary tract infection 5 3

in information retrieval to evaluate search engines. It focuses

on precision since recall can be misleading in some cases. To

compute MAP, we first calculate the average precision for each

query. That is done by finding each retrieved article in the

ground truth and for top K. Then computing precision at each

article in the retrieved articles. That is followed by averaging the

precision values across all retrieved articles K. Then averaging

across all the queries.

4. Results

Table 4 presents the results of the four metrics we

described in the previous section. We ran 12 levels of K

for both our method MedGraph and the standard TF-IDF

(Ramos, 2003) approach for ranking relevant documents.

Our results indicate that MedGraph has outperformed TF-

IDF on the PubMed BestMatch dataset at various levels of

K and across all queries and metrics. The only exception

is that MAP at higher K levels was higher for TF-IDF.

That might explain why TF-IDF returns more relevant

documents but does not rank them higher, while MedGraph

might retrieve less relevant documents more semantically

related and ranked closely. In addition, both precision

and recall for MedGraph were consistently higher. The

recall increased exponentially with higher K, and precision

decreased exponentially with higher K levels, as demonstrated

in Figure 6.

MedGraph had higherMAP and F1-Scores across allK levels

due to its higher recall and precision. The highest difference
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TABLE 4 Results averaged across the 15 queries on di�erent K levels.

Metric Method K = 1 K = 2 K = 5 K = 10 K = 25 K = 50 K = 75 K = 100 K = 150 K = 250 K = 500 K = 1,000

Recall
TFIDF 0.053 0.062 0.078 0.113 0.177 0.197 0.202 0.207 0.217 0.22 0.22 0.22

MedGraph 0.227 0.245 0.297 0.392 0.545 0.646 0.693 0.726 0.749 0.846 0.931 0.976

Precision
TFIDF 0.467 0.4 0.307 0.293 0.248 0.171 0.136 0.117 0.1 0.064 0.032 0.016

MedGraph 0.867 0.667 0.507 0.453 0.336 0.248 0.202 0.172 0.134 0.103 0.064 0.034

F1-Score
TFIDF 0.081 0.083 0.09 0.122 0.161 0.138 0.118 0.107 0.097 0.074 0.046 0.026

MedGraph 0.279 0.245 0.235 0.276 0.282 0.253 0.221 0.197 0.161 0.134 0.095 0.056

MAP
TFIDF 0.467 0.383 0.272 0.221 0.184 0.177 0.175 0.174 0.174 0.173 0.173 0.173

MedGraph 0.867 0.55 0.284 0.168 0.077 0.041 0.028 0.021 0.014 0.009 0.004 0.002

Bold values indicate the instances where MedGraph has outperformed TF-IDF on different metrics.

FIGURE 6

MedGraph vs. TFIDF on all four metrics.

between MedGraph and TF-IDF was at K = 1, indicating

that the first document in the retrieved documents almost

always existed in the ground truth dataset. However, recall

was the lowest because most of the relevant documents did

not exist in the first position in the retrieved documents. Of

course, as we increase K, the recall increases, indicating that

most of the relevant documents in the ground truth appeared

in the retrieved documents. At K = 10, MedGraph started

underperforming on MAP while TF-IDF stayed consistent at

higherK levels. That is becauseMedGraph ranks a small number

of the relevant documents highly, while many of the documents

do not appear in MedGraph. The documents that appear in the

retrieved documents are ranked closely and higher due to the

semantic nature of the algorithm, while the documents that are

not closely ranked and in the top are usually ranked lower and

tend to be spread out.

Alternatively, in other words, MedGraph produces relevant

articles that are closely ranked together due to the semantic

nature of the algorithm. In contrast, TF-IDF has almost the

same number of relevant articles but is not ranked closer

together. Finally, we computed the four metrics by pruning

the top K ground truth results from relevant documents

from BestMatch.

We used the same K levels provided to prune the

retrieved and relevant results. Figure 7 shows the difference

between pruning the relevant ground truth articles and

not pruning them. The values of recall and F1-Score do

not differ between both approaches. Yet, precision and

MAP are higher when the relevant documents are not

pruned using K. Pruning perhaps provides a mechanism

to control the ground truth dataset. We do not know

how exactly BestMatch ranked it. The returned BestMatch

articles from PubMed have different retrieved articles

without explanation, as shown in Table 4. Hence pruning

might make sense in some cases depending on the

evaluation dataset.

That is also seen in Figure 8, where precision

was much higher across queries with unpruned

Frontiers in BigData 11 frontiersin.org

46

https://doi.org/10.3389/fdata.2022.965619
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Ebeid 10.3389/fdata.2022.965619

FIGURE 7

The di�erence between pruned and unpruned retrieved results.

FIGURE 8

The four metrics across various levels of K over the 15 queries. Upper is pruned, and lower is unpruned relevant documents.
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relevant results, indicating that MedGraph retrieved

almost all of the relevant results compared

with BestMatch.

5. Discussion

This work provided evidence of the utility and efficiency of

KG-based methods in information retrieval, especially in the

biomedical field. We highlighted the need for more techniques

that rely on semantic understanding of queries and datasets

to aid in automated knowledge discovery and information

organization. KGs have been around for a while, yet they have

not been fully utilized in search engines. Approaches such as

BestMatch for PubMed are very efficient but do not understand

semantics and are trained on user query logs that might change

over time, requiring retraining. Traditional TF-IDF approaches

do not rely on semantics and are almost outperformed by

newly developed methods like ours. The results also indicated

that MAP alone is not enough as an evaluation metric. The

ranking is usually evaluated using A/B testing approaches

involving user studies and metrics that would include users

ranking relevance by hand and then computing metrics such

as Normalized Discounted Cumulative Gain (Busa-Fekete et al.,

2012). Precision as a metric is very informative in evaluating

how many relevant articles were retrieved and, in our case,

MedGraph. It highlighted its superiority. Nevertheless, metrics

such as recall can be misleading. For example, if the system

only retrieved one document, but that document is in the

relevant documents no matter the rank, then recall shall be

100%. Precision acts as a self-assessment of the retrieved articles

by MedGraph because it compares the numbers of retrieved

relevant articles to the number of retrieved articles regardless of

the number of relevant articles.

In our future work, we plan to conduct a user study

where each user, typically a biomedical researcher or a medical

student, will be invited and asked to rank documents based

on specific queries. We will create our ground-truth dataset

instead of relying on BestMatch as our ground truth. We

also plan to expand the scope to extract a KG from the

entire dataset of 30 million articles (Xu et al., 2020) and

compare our model with BestMatch and TF-IDF using our

ground truth. Node2vec represents a basic model incapable

of encoding heterogeneity in KGs. Heterogeneity refers to

a KG having more than one type of node and more than

one type of edge or relationship. Hence more sophisticated

embedding algorithms such as Wang Z. et al. (2014), which

focuses on embedding not just the structure but also the

relations in the KG could be used. In addition heterogeneous

graph neural networks (Wu et al., 2020) could be also

used and both might provide better results. In that light,

we plan to experiment with various other KG embedding

models (Wang et al., 2017) like GraphSAGE that are capable

of handling dynamic KGs. In addition we will experiment

with embedding models capable of capturing more semantics

in the training of node embeddings, expanding our query

matching capabilities to include more than four tokens, and

handling out-of-context queries. Moreover, we plan to have

even more metadata nodes in our KG with the potential

of enriching the KG with other semantic datasets such as

Chem2Bio2RDF (Chen et al., 2010). Moreover, we plan to

experiment with different pooling operations in both article and

query embeddings and present a full parameter sensitivity and

ablation studies.

Its worth mentioning that to experiment on a huge

KG of billions of nodes, we need a parallel large-scale

heterogeneous embedding algorithm that could take in billions

of nodes that would presumably be extracted from the

whole PubMed corpus. Those models though exist and

some of them are used in the industry they can be

impractical in research. Most graph embedding algorithms

work on a very limited amount of data. Our sample

corpus here provides some evidence that this framework is

effective and provides better search results than traditional

methods opening the door to building a full-scale system.

Finally even though this framework here does not address

query intention particularly. Yet it considers semantics and

relations between terms in the ranking. Semantics could

be seen as a step toward future systems that consider

query intentions.

6. Conclusion

In this article, we presented a proof-of-concept method to

build a semantic search engine for the biomedical literature

indexed in PubMed named MedGraph. We showed that

our method is superior to more traditional approaches in

relevance ranking and provided evidence that semantic methods

in information retrieval are more needed. Furthermore, we

performed a complete evaluation using various metrics on

our approach using PubMed’s BestMatch as a ground truth.

We also presented an innovative way of converting relational

databases to KGs. In the future, we hope to expand this work

and provide a fully working model and system accessible by

researchers to provide better ways to discover knowledge and

advance science.
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Genotype imputation has a wide range of applications in genome-wide

association study (GWAS), including increasing the statistical power of

association tests, discovering trait-associated loci in meta-analyses, and

prioritizing causal variants with fine-mapping. In recent years, deep learning

(DL) based methods, such as sparse convolutional denoising autoencoder

(SCDA), have been developed for genotype imputation. However, it remains

a challenging task to optimize the learning process in DL-based methods

to achieve high imputation accuracy. To address this challenge, we have

developed a convolutional autoencoder (AE) model for genotype imputation

and implemented a customized training loop bymodifying the training process

with a single batch loss rather than the average loss over batches. Thismodified

AE imputationmodel was evaluated using a yeast dataset, the human leukocyte

antigen (HLA) data from the 1,000 Genomes Project (1KGP), and our in-house

genotype data from the Louisiana Osteoporosis Study (LOS). Our modified AE

imputation model has achieved comparable or better performance than the

existing SCDA model in terms of evaluation metrics such as the concordance

rate (CR), the Hellinger score, the scaled Euclidean norm (SEN) score, and

the imputation quality score (IQS) in all three datasets. Taking the imputation

results from the HLA data as an example, the AE model achieved an average

CR of 0.9468 and 0.9459, Hellinger score of 0.9765 and 0.9518, SEN score of

0.9977 and 0.9953, and IQS of 0.9515 and 0.9044 at missing ratios of 10% and

20%, respectively. As for the results of LOS data, it achieved an average CR

of 0.9005, Hellinger score of 0.9384, SEN score of 0.9940, and IQS of 0.8681

at the missing ratio of 20%. In summary, our proposed method for genotype

imputation has a great potential to increase the statistical power of GWAS and

improve downstream post-GWAS analyses.
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genotype imputation, deep learning, autoencoder, paired sample t-test, GWAS
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Introduction

Genotype imputation has become an essential step in

genome-wide association study (GWAS). It is now widely

used in a variety of applications in GWAS, such as boosting

the power of association studies, increasing the possibility of

identifying functional single-nucleotide polymorphisms (SNPs)

or causal genetic variants, enhancing the resolution in fine-

mapping studies, and discovering trait-associated loci in meta-

analyses (Das et al., 2018). Although the cost of whole-genome

sequencing (WGS) has decreased considerably during the past

few years, it remains cost-prohibitive to perform WGS for a

large number of samples. Currently, most GWAS samples are

genotyped with low coverage genotyping approaches such as

SNP arrays (Torkamaneh and Belzile, 2021). However, these

low coverage approaches will inevitably generate incomplete

datasets with missing values. Missing values in genotype data

can considerably limit causal variants discovery or statistical

inferences in meta-analysis. Therefore, it is a necessary step

to impute untyped or missing variants before performing

association studies.

The first two examples of GWASs facilitated by genotype

imputation were a type 2 diabetes (T2D) study in Finns

(Scott et al., 2007) and a joint GWAS with 2,000 cases and

3,000 controls from the UK for seven complex diseases such

as coronary artery disease (CAD) and T2D (Burton et al.,

2007). From then on, genotype imputation has become an

important step in GWAS for human disease studies. Another

recent example is a meta-analysis with 44,506 samples to

identify genomic risk loci for bone mineral density (BMD)

in an osteoporosis study (Greenbaum et al., 2022). For five

independent GWAS array samples in this study, missing values

were imputed by using Minimac2 (Fuchsberger et al., 2015,

2) with the Trans-Omics for Precision Medicine (TOPMed)

(including > 97,000 high coverage genomes with a mean depth

of 30×) as a reference panel.

The presence of missing values in SNP genotyping arrays

is a common issue and can have various causes, such as

assay failures, the design of different densities for genotyping

platforms, and the detection of rare variants. Current genotype

imputation methods can be divided into two classes: reference-

based and reference-free approaches. The reference-based

genotype imputation methods need a large-scale reference

panel such as TOPMed and the assumption behind them

is that individuals from the same or similar ancestor can

share short stretches of DNA sequence between them (Song

et al., 2020). Therefore, the observed genotypes from an

SNP array can be used to match DNA segments shared

between a target sample with missing values and a reference

panel without missing values. Reference-based imputation

methods include IMPUTE5 (Rubinacci et al., 2020), BEAGLE5

(Browning et al., 2018), Minimac4 (Das et al., 2016), MACH

(Li et al., 2010), and fastPHASE (Scheet and Stephens, 2006).

In recent years, web-based imputation tools appeared, such

as the TOPMed Imputation Server (https://imputation.

biodatacatalyst.nhlbi.nih.gov/), the Michigan Imputation Server

(https://imputationserver.sph.umich.edu/), and the Sanger

Imputation server (https://www.sanger.ac.uk/tool/sanger-

imputation-service/). However, there are some challenges for

these reference-based methods such as the computational cost

of genotype calling for a large number of samples in a reference

panel and the restrictive nature of obtaining consent for general

research use (Das et al., 2018).

In contrast, reference-free imputation methods such as

mean replacement, singular value decomposition (SVD),

k-nearest neighbors (KNN), and random forest (RF) do not

require a reference panel. In recent years, deep learning

(DL) has had a great impact on many application areas,

such as natural language processing, image processing,

and bioinformatics because of its ability to accommodate

large datasets and model highly non-linear relationships.

By combining autoencoder (AE) and convolutional neural

networks (CNNs), a reference-free approach, SCDA (Sparse

Convolutional Denoising Autoencoder), was used for genotype

imputation (Chen and Shi, 2019). It utilizes the advantages of

convolutional layers to extract local data correlations within

nearby variants in an AE model structure. However, the SCDA

model was implemented sequentially, and has some limitations

such as the inability to handle shared information with another

layer except for its subsequent layer as well as the inability to

build a model with multiple inputs and outputs. In addition, the

training process for the SCDA model is based on minimizing a

default average loss over batches and researchers are not able

to implement a custom training loop, which may be needed to

further improve the performance. Therefore, there is a need

to modify the model and its implementation to improve the

performance of genotype imputation.

In this paper, we present an improved one-dimensional

(1D) convolutional AE model, inspired by SCDA, to perform

genotype imputation. Instead of using sequential or functional

methods to define the neural network architectures, we utilized

the model subclassing method to build our AE model as it

can be more easily extended to other omics data (e.g., gene

expression data). Compared with sequential and functional

methods, our model subclassing method is fully customizable

and enables researchers to have control over every detail of the

deep neural network and the whole training pipeline. With these

advantages of the model subclassing method, we improved the

training process by implementing a customized training loop

and using a single batch loss. We evaluated our modified AE

model with two public genotype datasets [yeast data and the

human leukocyte antigen (HLA) data in the 1,000 Genomes

Project (1KGP)] and our own genotype data generated from the

Louisiana Osteoporosis Study (LOS) project. Compared with the
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SCDA model, our AE model achieved a comparable or better

concordance rate (CR), Hellinger score, scaled Euclidean norm

(SEN) score, and imputation quality score (IQS).

Materials and methods

Dataset sources and data preprocessing

We used three genotype datasets in this study, including the

yeast data (Chen and Shi, 2019), HLA data (Chen and Shi, 2019),

and LOS data (Greenbaum et al., 2022). We selected the first

two publicly available datasets to benchmark the performance

of our imputation approach. Then we applied our model to the

LOS data, which was recently collected at Tulane University and

aimed to investigate the molecular mechanisms of osteoporosis

by integrating multi-omics data.

Yeast data

The yeast genotype data (Bloom et al., 2015; Chen and

Shi, 2019) from the SCDA model has 28,220 variants from

4,390 samples. There are two strains of yeast: an isolate from a

vineyard (RM) encoded with −1 and a laboratory strain (BY)

encoded with 1, respectively. We replaced all RM variants of−1

with 2 to make sure that there were no negative values when

calculating the categorical cross entropy (CCE) loss function for

the model.

HLA data

The aim of the 1KGP was to provide researchers with a

comprehensive open data source of human genetic variation by

using technologies such as microarray genotyping, low coverage

WGS with a mean depth of 7.4×, and deep exome sequencing

with a mean depth of 65.7× (Auton et al., 2015; Zheng-Bradley

and Flicek, 2017). The phase 3 of 1KGP (released in 2005)

included 2,504 individuals from 26 multiple populations. Given

the high quality of genotype data from 1KGP, it can serve

as a reference panel for reference-based genotype imputation

methods such as IMPUTE5 (Rubinacci et al., 2020) and

BEAGLE5 (Browning et al., 2018). Specifically, HLA genes from

the major histocompatibility complex (MHC) region at 6p21.3

are considered to contribute to a wide range of complex human

diseases (Naito et al., 2021) and the genotypes in this HLA region

are more diverse and heterogeneous (Chen and Shi, 2019). The

HLA region from the 1KGP contains 28,583 genotypes from

2,504 individuals across five populations including Americans,

Europeans, Africans, East Asians, and Southern Asians (Auton

et al., 2015; Chen and Shi, 2019). After removing multi-allelic

SNPs with Bcftools for the HLA data, there were 27,209 SNPs

remaining across 2,504 individuals that are used in this study.

TABLE 1 Distribution of LOS samples based on gender and ethnicity.

Gender/ African Caucasian Total

ethnicity American

Male 1,124 1,357 2,481

Female 986 1,519 2,505

Total 2,110 2,876 4,986

LOS data

LOS is an ongoing research study that has recruited>17,000

individuals since 2011 and aims to investigate the genetic risk

factors of osteoporosis and other complex diseases (Greenbaum

et al., 2022). Table 1 shows a summary of the gender and

ethnicity for the available subjects in the LOS data until June

2022. In total, there are 4,986 unrelated subjects including 2,110

African Americans and 2,876 Caucasians randomly selected

(stratified by sex and race groups) from the whole LOS cohort.

WGS of the blood samples was conducted on a BGISEQ-

500 sequencer (BGI Americas Corporation, Cambridge, MA,

USA) with 350 bp paired-end reads at an average sequencing

depth of 22× (Greenbaum et al., 2022). By using the Burrows-

Wheeler Aligner software, sequence reads were aligned to

the human reference genome (version GRCh38/hg38) (Li and

Durbin, 2009). Single-nucleotide variants (SNVs) and small

Insertion–deletion mutations (InDels) were detected with the

HaplotypeCaller of the Genome Analysis Toolkit (GATK)

(McKenna et al., 2010). Variant quality score recalibration

(VQSR) was applied to filter out potential sequencing artifacts

and obtain high confidence variant calls (McKenna et al., 2010).

The pipeline for quality control of the LOS genotype data

is illustrated in Figure 1. Taking chromosome 20 as an example,

it has 3,098,112 SNVs from 4,986 samples. We first performed

sample filtering with PLINK (Purcell et al., 2007) to exclude

samples with more than 95% of the genotype missing. We

then used Bcftools to remove multiallelic variants (Danecek

et al., 2021). To solve the unknown strand issue, we aligned

the strands of genotype data to the latest version of 1KGP

reference panel with a mean depth of 30× (GRCh38/hg38)

(Aganezov et al., 2022) by using Genotype Harmonizer (GH)

(Deelen et al., 2014). GH automatically aligns ambiguous A/T

and G/C SNPs to the reference by using linkage disequilibrium

(LD) patterns without prior knowledge of the strands. Next, we

corrected the strand swaps with the fixref library of Bcftools

and excluded any remaining unmatched SNPs for the reference

genome with “Bcftools norm -check-ref x” (Danecek et al.,

2021). Then, we used Vcftools (Danecek et al., 2011) to perform

SNP filtering with the following criteria: missing ratio > 0%

(removing all missing values), Hardy-Weinberg equilibrium

(HWE) p-value < 10−6, and minor allele frequency (MAF)

< 0.1%. After the above quality control steps, we retained

162,027 SNPs from 4,985 samples for chromosome 20 in LOS
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FIGURE 1

Pipeline of quality control for the LOS data. Taking chromosome

20 as an example, it has 3,098,112 SNVs from 4,986 samples.

After quality control, we retained 162,027 SNPs from 4,985

samples.

data. Figure 2 visualizes a subset of the preprocessed LOS

data (chromosome 20) with a heatmap at the missing ratio

of 10%.

One-hot encoding of preprocessed data

Table 2 shows a summary of the three datasets after

preprocessing. For the encoding of the HLA and LOS data, we

first added one to all the original genotype values of 0 (0|0), 1

(0|1 or 1|0) and 2 (1|1), which represents the number of non-

reference alleles. Therefore, the corresponding new genotype

values are 1, 2, and 3, respectively. The purpose for doing this

is to use zeros to represent fake missing values for evaluating

the imputation performance (Chen and Shi, 2019). Then, we

utilized one-hot encoding for these genotype values with 0

encoded as (1,0,0,0), 1 as (0,1,0,0), 2 as (0,0,1,0), and 3 as

(0,0,0,1). As for the yeast data, we conducted similar processing

procedures with 0 encoded as (1,0,0), 1 as (0,1,0), and 2 as

(0,0,1).

In addition, to determine the impact of minor allele

frequency (MAF) on the imputation accuracy for the

preprocessed LOS data (chromosome 20), we divided the

SNPs into four groups according to their MAFs (as shown

in Table 3): MAF > 5% (38,872 SNPs), 1% < MAF <

5% (59,579 SNPs), 0.5% < MAF < 1% (33,899 SNPs),

and 0.1% < MAF < 0.5% (29,677 SNPs). The thresholds

of missingness and HWE for the quality control remain

the same.

AE model architecture

An AE is an unsupervised artificial neural network that

learns a low-dimensional latent space representation from high-

dimensional input data and then reconstructs the output data

from the learned representation (Goodfellow et al., 2016). It

consists of two components: an encoder and a decoder. The

structure of an AE can be defined as:

x̂ = D (E (x)) (1)

where x is the input, x̂ is the output, E is the encoder sub-

network of the AE, and D is the decoder sub-network of the

AE. The decoder usually has an inverted symmetric structure

to the encoder. The number of nodes for the stacked layers in

the encoder usually decreases while the number of nodes for the

decoder increases back to the number of the AE’s input. The loss

function for an AE can be defined as:

L
(
x, x̂

)
(2)

Among the different types of AE structures, a denoising AE

receives corrupted data by injecting some noise into the original

input and predict the uncorrupted output. If we corrupt the

input genotype data with some missing values, the denoising AE

is able to recover these missing values for genotype imputation.

On the other hand, CNNs have been widely used for two-

dimensional image classification problems. Similarly, they can

be applied to 1D genotype data with one-hot encoding for

human data. The equation for a 1D CNN can be described as

follows (González-Muñiz et al., 2020):

x
(m)
l

= δ(b
(m)
l

+

C∑

c=1

W
(c,m)
l

∗x
(c)
l−1

) (3)

where (∗) is the convolution operator between the input x
(c)
l−1

and the weight of the m-th filter W
(c,m)
l

at the c-th channel,

C denotes the number of channels, l represents the number of

layers, b
(m)
l

is the bias for the m-th filter at layer l, δ is the

activation function (such as rectified linear unit (ReLU) and

sigmoid), and x
(m)
l

is the output.

We implemented a 1D convolutional AE model to

perform genotype imputation (Figure 3). Taking the LOS data

(chromosome 20) as an example, we selected the first 162,024

SNPs out of the total 162,027 SNPs according to their positions

to ensure that the number of SNPs is divisible by 4. Here

the number 4 is determined by the product of the number

of convolutional layers (e.g., 2) of the encoder and the pool

size (e.g., 2). The input SNPs data have been converted from

two dimensions (4,985 samples, 162,024 SNPs) into three

dimensions (4,985 samples, 162,024 SNPs, 4 channels) with one-

hot encoding. The first two 1D convolutional layers for the SNP

encoder have 32 and 64 filters, respectively. Each of them is
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FIGURE 2

Visualization of the preprocessed LOS data (chromosome 20) with a heatmap at the missing ratio of 10%. Rows represent the position of each

SNP and columns indicate di�erent samples. Di�erent colors represent di�erent genotype values: purple for missing value, blue for 0, green for

1, and yellow for 2.
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TABLE 2 Summary of three genotype datasets after preprocessing.

Data Samples Number of SNPs

Yeast 4,390 28,220

HLA 2,504 27,209

LOS (chromosome 20) 4,985 162,027

TABLE 3 SNPs of LOS (chromosome 20) data with di�erent MAFs.

MAF Number of SNPs

MAF > 5% 38,872

1% < MAF < 5% 59,579

0.5% < MAF < 1% 33,899

0.1% < MAF < 0.5% 29,677

followed by a max-pooling layer (with a pool size of 2) and a

dropout (with a dropout rate of 0.2) layer. The embedding layer

of the AE model is a 1D convolutional layer with 40,506 features

and 128 filters. The SNP decoder has an inverted symmetry

structure with the encoder. The first two 1D convolutional layers

for the SNP decoder have 64 and 32 filters, respectively. Each

of them is followed by an up-sampling layer (with a factor of

2) and a dropout (with a dropout rate of 0.2) layer. Finally, we

used a 1D convolutional layer with 162,024 features, 4 channels,

and the “Softmax” activation function as the output layer. All the

convolutional layers of the AE model have a filter size of five and

each of them has an L1 regularization factor of 0.0001.

Loss function

The loss function of the AE model can be defined as a

reconstruction error between the input and imputed output such

as CCE for discrete values or mean squared error (MSE) for

continuous values. Since genotype data are discrete values, we

utilized CCE as the loss function:

LCCE(x, x̂) = −

1

N

N∑

i=0

C∑

j=0

xij∗ log(x̂ij) (4)

where N is the total number of data points (i.e., the product

of the number of samples and the number of SNPs), C is the

number of channels, xij is the input SNP with one-hot encoding

for the i-th sample of the j-th channel, and x̂ij is the probability

of imputed SNP. Then we defined a weighted CCE to train the

AE model:

L
(
x, x̂

)
= αLCCE

(
x, x̂

)
(5)

where α is the weight of CCE loss. In our AE model, we set α

as 1.

SCDA model for baseline comparison

The SCDA model is based on a general denoising AE

framework for genotype imputation (Chen and Shi, 2019). To

capture the LD patterns among nearby genetic markers, it

utilizes the CNNs in an AE structure. In total, the SCDA model

has six convolutional layers with the number of filters set as 32,

64, 128, 128, 64, and 1, respectively. The size of all the filters is

5 × 1 and an L1 regularization (λ = 0.0001) was introduced to

each convolutional layer to add a sparsity constraint for the high

dimensional genotype data. Two max-pooling layers with a pool

size of 2 were deployed in the encoder network to reduce the

dimension of the input features, whereas two up-sampling layers

with a factor of 2 were used in the decoder network to restore

the dimension for the imputed output features. In addition, the

SCDAmodel uses dropout layers (with a rate of 0.25) to prevent

overfitting. For the input genotype data, it uses the one-hot

encoding technique. The loss function for the model is CCE.

Model training strategy

We implemented the proposed AE model with TensorFlow

v2.4.1. We utilized the model subclassing method in the Keras

framework to implement our AE model as it is more flexible

and can be easily extended to other omics data (e.g., gene

expression). At the same time, the model subclassing method

offers us the opportunity to have full control of the model. Thus,

it enables us to implement a custom training loop and improve

the training process by using a single batch loss rather than the

average loss over batches.

We first divided the preprocessed genotype data into

training, validation, and test data by randomly splitting the

samples with the proportion of 64%, 16%, and 20%, respectively.

Next, to compare the performances between our AE model

and the SCDA model, we generated three datasets by randomly

masking with enforced missing rates of 0%, 10%, and 20%

after data splitting. This process replaced random values in the

original genotype datasets with zeros to create missing values

for each of the preprocessed genotype datasets including yeast,

HLA, and LOS. A summary of the hyperparameter settings for

our AE model is shown in Table 4. For example, we set the batch

size as 32 and the number of epochs as 100. During the training

process, we used the Adam optimizer with an initial learning rate

of 0.001.

Evaluation metrics

We evaluated our AE model in terms of the evaluation

metrics CR, Hellinger score, SEN score, and IQS for all the

experiments as well as the Pearson correlation coefficient (PCC)

in the LOS genotype imputation experiment (Stahl et al.,
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FIGURE 3

Overview of the AE structure for genotype imputation. The input is the fake missing SNPs with one-hot encoding and the output is the

probability of the imputed SNPs. The six consecutive 1D convolutional layers have 32, 64, 128, 64, 32, and 4 filters, respectively. All of them have

a filter size of five and L1 regularization factor of 0.0001.

TABLE 4 Summary of the hyperparameter settings for our AE model.

Hyperparameters Values

Epochs 100

Batch size 32

Initial learning rate 0.001

Dropout 0.2

L1 regularization 0.0001

Max-pooling size 2

Up-sampling size 2

Filter size 5

Number of filters (32, 64, 128, 64, 32, 4)

Strides 1

Padding Same

Optimizer Adam

Activation function ReLU except the output layer (Softmax)

2021). The CR is the ratio of correctly imputed SNPs out of

all SNPs. The Hellinger score is a measure of the distance

between two probability distributions, while the SEN score is

the scaled Euclidean distance between the true dosage (the

expectations of the observed distribution) and the imputed

dosage (the expectations of the imputed posterior distribution)

(Roshyara et al., 2014). Both the Hellinger score and SEN

score are calculated per SNP and per sample. The IQS is

calculated based on the observed proportion of agreement and

the chance agreement (Lin et al., 2010). The details for the

definition of the equations for these metrics are shown in

Supplementary material.

The above four evaluation metrics were based on the

comparison between imputed genotypes and the ground truth of

the sequenced genotypes (Stahl et al., 2021). For the calculation

of the CR, we first calculated the values across SNPs for each

sample, and then determined the mean value for all samples. As

for the IQS, we first calculated the values across samples for each

SNP, and then obtained the mean values for all SNPs. Since the

Hellinger score and SEN score are calculated per SNP and per

sample, we needed to accumulate them (e.g., the mean and the

minimum) across samples for each SNP, and then determine the

mean values for all SNPs. The minimum of the Hellinger score

and the minimum of the SEN score can be viewed as the lower

bound of the imputation quality. The range of all the evaluation

metrics is from 0 to 1, and a score close to 1 indicates a higher

imputation quality.

A paired sample t-test (Ross and Willson, 2017) was used to

compare the evaluation metrics between our AE model and the

SCDA model and to determine if there is a significant difference

between them. Since we selected the same random seed for data

splitting on both models and ensured the same test samples for

each comparison, we chose to perform a paired t-test rather than

a standard two sample t-test for comparing the mean evaluation

metrics between the two models.

Experimental setup

We trained and tested the AE model and then compared

it with the SCDA model on both our Seahawk server and the

Tulane BIZON HPC server. Seahawk consists of four NVIDIA

GP102 Titan X (Pascal) GPUs, an Intel Xeon CPU E5 1650

V4, and 98 GB system memory. The Tulane BIZON HPC

server consists of two NVIDIA RTX A6000 48 GB GPUs, an

AMD Ryzen Threadripper 3970X CPU, and 128 GB DDR4

system memory.

Results

To evaluate the performance of our AEmodel, we compared

it to the SCDA method with three different genotype datasets

including yeast, HLA, and LOS. We chose the CR, the Hellinger

score, the SEN score, and the IQS as evaluation metrics and

calculated the average value and standard deviation (SD) as well

as the corresponding p-value by running the models three times

at three different missing ratios (0%, 10%, and 20%). In addition,

we visualized the results of evaluation metrics between these two
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FIGURE 4

Comparison of loss (Top) and accuracy (Bottom) curve between the SCDA (blue color) and the AE (red color) model during training (dotted line)

and validation (solid line) processes on the yeast, HLA, and LOS data (from left to right) at the missing ratio of 20%.

models with violin plots and histograms. Lastly, we assessed the

impact of MAFs on the imputation quality with the LOS data.

Impacts of the improved training
processes

We implemented a customized training loop and modified

the training process by using a single batch loss rather than

the running average loss over batches. Since the results of

running the training process between our AE model and

the SCDA model over three attempts were very similar, we

chose the first instance as an example. Figure 4 shows the

improvements for the loss and accuracy curve of our AE model

compared to the SCDA model during training and validation

processes on three different training and validation datasets,

especially for the HLA and LOS genotype data, at the missing

ratio of 20%. The results show that our AE model converges

faster than the SCDA model and achieves comparable or

higher accuracy than the SCDA model for both training and

validation processes.

Imputation performance comparison

Table 5 shows the performance comparison of evaluation

metrics between our AE model and the SCDA model on three

test datasets at different missing ratios. We observed that our

AE model achieved overall better or comparable imputation

performance than the SCDA model in all metrics.

First, for the yeast data, our AE model achieved slightly

better or at least comparable performance than the SCDA

model in terms of the evaluation metrics CR, Hellinger score,

SEN score, and IQS. Both models achieved almost the same

performance regardless of the missing ratios. In contrast, for

the minimum of the Hellinger score and the minimum of

the SEN score, our model achieved considerably better results

than the SCDA model on the data with three different missing

ratios. The performance of these two metrics for both models

declined with increasing missing ratios. Second, for the HLA

data, our AE model had better performance than the SCDA

model in all of the metrics at three different missing ratios,

except one case of the minimum of the Hellinger score with

the missing ratio of 10%, which shows no significant difference

based on the paired sample t-test (p-value = 0.1395). On the

other hand, even though the imputation performances for both

models declined when the missing ratios increased, our AE

model still outperformed the SCDA model. Finally, for the LOS

data, our AE model performed better than the SCDA model in

all the metrics at three different missing ratios except one case

of the IQS with the missing ratio of 0% showing no significant

improvement (p-value = 0.0730). Although the performance of

both models decreased with the increase of missing ratios, our

AE model yielded better performance than the SCDA model.
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TABLE 5 Performance results (mean, SD, and p-value with respect to di�erent evaluation metrics) between the AE and the SCDA model on three

di�erent test datasets at di�erent missing ratios (0%, 10% and 20%).

Metrics Data Model Missing ratio

0% 10% 20%

mean (SD) p-value mean (SD) p-value mean (SD) p-value

CR (accuracy) Yeast SCDA 0.9999 (0.0) 0.0090 0.9979 (0.0) 0.0422 0.9970 (0.0) 0.4710

AE 1.0000 (0.0) 0.9980 (0.0) 0.9979 (0.0)

HLA SCDA 0.9947 (0.0008) 0.0103 0.9421 (0.0003) 0.0019 0.9416 (0.0002) 0.0014

AE 1.0000 (0.0) 0.9468 (0.0001) 0.9459 (0.0001)

LOS SCDA 0.9983 (0.0003) 0.0141 0.9005 (0.0007) 0.0393 0.8999 (0.0007) 0.0166

AE 0.9999 (0.0) 0.9011 (0.0006) 0.9005 (0.0007)

Hellinger score Yeast SCDA 0.9979 (0.0007) 0.0540 0.9974 (0.0005) 0.0312 0.9963 (0.0006) 0.0240

AE 1.0000 (0.0) 0.9995 (0.0001) 0.9991 (0.0)

HLA SCDA 0.9843 (0.0016) 0.0056 0.9506 (0.0010) 0.0004 0.9192 (0.0017) 0.0001

AE 0.9995 (0.0) 0.9765 (0.0005) 0.9518 (0.0012)

LOS SCDA 0.9880 (0.0010) 0.0037 0.9404 (0.0028) 0.0048 0.9043 (0.0007) 0.0004

AE 0.9993 (0.0001) 0.9687 (0.0001) 0.9384 (0.0005)

Minimum Hellinger score Yeast SCDA 0.7180 (0.0049) 0.0002 0.6477 (0.0056) 0.0006 0.6151 (0.0076) 0.0017

AE 0.9765 (0.0004) 0.8389 (0.0018) 0.7551 (0.0020)

HLA SCDA 0.8245 (0.0157) 0.0047 0.5596 (0.0118) 0.1395 0.5022 (0.0092) 0.0391

AE 0.9826 (0.0003) 0.5753 (0.0042) 0.5119 (0.0072)

LOS SCDA 0.7058 (0.0175) 0.0021 0.1626 (0.0015) 0.0054 0.1049 (0.0019) 0.0002

AE 0.9471 (0.0048) 0.2079 (0.0033) 0.1413 (0.0012)

SEN score Yeast SCDA 1.0000 (0.0) 0.0007 0.9999 (0.0) 0.0018 0.9999 (0.0) 0.0070

AE 1.0000 (0.0) 1.0000 (0.0) 0.9999 (0.0)

HLA SCDA 0.9981 (0.0003) 0.0130 0.9952 (0.0004) 0.0156 0.9929 (0.0002) 0.0014

AE 1.0000 (0.0) 0.9977 (0.0) 0.9953 (0.0001)

LOS SCDA 0.9995 (0.0001) 0.0227 0.9958 (0.0) 0.0003 0.9925 (0.0) 0.0014

AE 1.0000 (0.0) 0.9970 (0.0) 0.9940 (0.0)

Minimum SEN score Yeast SCDA 0.9795 (0.0003) 0.0001 0.9636 (0.0007) 0.0010 0.9526 (0.0013) 0.0038

AE 0.9976 (0.0001) 0.9821 (0.0001) 0.9700 (0.0002)

HLA SCDA 0.9702 (0.0043) 0.0106 0.8436 (0.0036) 0.0027 0.8195 (0.0048) 0.0045

AE 0.9991 (0.0001) 0.8591 (0.0026) 0.8301 (0.0041)

LOS SCDA 0.9681 (0.0062) 0.0188 0.6389 (0.0007) 0.0019 0.5751 (0.0035) 0.0015

AE 0.9976 (0.0006) 0.6719 (0.0025) 0.6059 (0.0019)

IQS Yeast SCDA 0.9998 (0.0) 0.0090 0.9993 (0.0) 0.0001 0.9990 (0.0) 0.0107

AE 1.0000 (0.0) 0.9996 (0.0) 0.9991 (0.0)

HLA SCDA 0.9604 (0.0056) 0.0099 0.9115 (0.0067) 0.0129 0.8678 (0.0057) 0.0113

AE 0.9996 (0.0001) 0.9515 (0.0002) 0.9044 (0.0022)

LOS SCDA 0.9899 (0.0040) 0.0730 0.9145 (0.0023) 0.0064 0.8470 (0.0023) 0.0079

AE 0.9997 (0.0001) 0.9355 (0.0003) 0.8681 (0.0005)

To test if there is a significant improvement between

our AE model and the SCDA model, we calculated the

mean and SD of each metric as well as the corresponding

p-values (Table 5). We observed that most of the p-values

were below a significance level of 0.05, which indicated a

significant improvement between our AE model and the

SCDA model.

We noticed that the imputation performance on yeast

genotype data was much better than that on human genotype

datasets including HLA and LOS data with different missing

ratios, especially with high missing ratios (e.g., 20%). As

discussed in the SCDA paper (Chen and Shi, 2019), the

correlation patterns among nearby genetic markers in yeast

genotype data are considerably stronger than those among
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human genotype data, which led to a higher imputation

performance with the yeast data. Compared with yeast, human

genotypes are highly dispersed and heterogeneous, leading to

more difficulty for the human genotype imputation than for

yeast data.

Visualization of metrics with violin plots

A violin plot depicts not only the distribution of the numeric

data (same as a box plot) but also its probability density. In other

words, it shows summary statistics (e.g., median, interquartile

range, and distribution except for outliers) and density of each

variable (wider regions of a violin plot indicate values will occur

more frequently, while narrower regions indicate values will

occur less frequently). The results of evaluation metrics gathered

three times between our AE model and the SCDA model on

three different test datasets at the missing ratio of 20% are

visualized in violin plots in Figure 5. We observed that our

AE model had relatively higher metrics including the CR, the

Hellinger score, the SEN score, and the IQS compared with the

SCDA model.

Distribution of metrics with histogram

Figure 6 shows the frequency distribution of the metrics

between our AE model and the SCDA model on three different

test datasets at the missing ratio of 20%.We chose the histogram

of the first run as an example because the results across all three

runs were very similar. From this figure, we can see that for

both the HLA and LOS data, our AEmodel achieved comparable

distributions of the CR and SEN score to the SCDAmodel, while

it had distributions closer to the right than the SCDAmodel (i.e.,

1, indicating a higher imputation quality) for metrics including

the Hellinger score and IQS. As for the yeast data, our AE model

achieved comparable distributions of the CR andHellinger score

to the SCDA model, whereas it had the distributions closer to

the right (i.e., 1) for metrics such as the SEN score and IQS

compared with the SCDA model.

Imputation quality with di�erent MAFs

Table 6 shows the performance comparison in terms of

evaluation metrics including the CR, the PCC, the Hellinger

score, the minimum of the Hellinger score, the SEN score, the

minimum of the SEN score, and the IQS between the AE and

SCDA models on the test dataset of LOS data with four ranges

of MAFs (e.g., MAF > 5%, 1% < MAF < 5%, 0.5% < MAF <

1%, and 0.1% < MAF < 0.5%) at a missing ratio of 20%. The

AE model achieved overall better or comparable performance

than the SCDA model in all four different ranges of MAFs,

especially for the range of 0.1% <MAF <0.5% where our model

demonstrated a considerably better IQS value (0.8767) than that

of the SCDA model (0.0042). Based on the paired sample t-test,

our model significantly outperformed the SCDA model in most

scenarios.

We also observed two opposite trends of evaluation metrics

for both our AE model and the SCDA model. With the

increasing MAF, some metrics, including the CR, the Hellinger

score, and the SEN score, declined. On the contrary, the PCC

and IQS of the SCDAmodel increased whenMAFwas increased.

This phenomenon is consistent with previous studies (Buckley

et al., 2022; Kai-li et al., 2022). This is because the CR does not

consider the correct genotype imputation with a random guess,

especially for the rare variants. When MAF is increased, the

probability of correct genotype imputation by chance decreased.

On the other hand, the PCC is less sensitive to MAFs and

the IQS adjusts for chance agreement and controls for allele

frequencies. Therefore, both the PCC and MAF are more useful

for the evaluation of imputation performance for rare variants.

Interestingly, the PCC and IQS of our AEmodel have not shown

a large difference for the four different ranges of MAFs, which

means that our AE model is more robust to the impact of

MAF in terms of the PCC and IQS metrics. As the LOS dataset

is a multiethnic cohort including both Caucasian and African

American samples, one of the advantages of our AE model

compared with the SCDA model is that it can enhance the PCC

and IQS imputation performance for rare variants, especially for

African American data, which have more complicated genome

structures and more rare variants.

Discussion

In summary, we implemented a 1D convolutional AE

model for genotype imputation and increased the imputation

performance by improving the learning process. The evaluation

results on the three genotype datasets revealed that our AE

model achieved better (or at least comparable) imputation

performance measured with metrics including the CR, the

Hellinger score, the minimum of the Hellinger score, the SEN

score, the minimum of the SEN score, and the IQS when

compared with the reported SCDA model.

As our AE imputation is a reference-free genotype

imputation method, we did not compare our model with

reference-based methods such as IMPUTE5, BEAGLE5, and

Minimac4. However, we did compare it with the reference-

free genotype imputation SCDA model. For the other basic

reference-free methods including average, KNN, and SVD,

Chen and Shi (Chen and Shi, 2019) have already made a

comprehensive investigation between their proposed SCDA

model and these popular imputation methods, and the

comparison results showed that the SCDAmodel achieved better

imputation accuracy than these popular methods. Therefore,

we did not include them for the comparison with our

AE approach.
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FIGURE 5

Violin plots of metrics (including the CR, the Hellinger score, the SEN score, and the IQS, from top to bottom) between the SCDA (blue color)

and the AE (red color) model on the test datasets of yeast, HLA, and LOS data (from left to right) at the missing ratio of 20%.

In the comparison of imputation performance between our

AE model and the SCDA model, we used the same parameters

in the model structure (such as number of epochs, fake missing

ratio, batch size, the learning rate, L1 regularization, dropout

rate, number of filters, kernel size of the 1D convolution window,

pooling size, and random seed for data splitting) except for

the training strategies which were different. In other words, we

implemented a customized training loop in our AE model and

improved the training process by using a single batch loss rather

than the average loss over batches used by the SCDA model.

As shown in Figure 4, the losses decrease smoothly for all cases

with insignificant fluctuations. We found that minimizing the

losses corresponding to two batches separately is more effective

than minimizing the average loss over two batches because the
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FIGURE 6

Histogram of metrics (including the CR, the Hellinger score, the SEN score, and the IQS, from top to bottom) between the SCDA (blue color) and

the AE (red color) model on the test datasets of yeast, HLA, and LOS data (from left to right) at the missing ratio of 20%.

minimization of the loss for the second batch is based on the loss

that has already been minimized for the first batch. Therefore,

the improved imputation performance mainly resulted from the

model subclassing method of the training process implemented

in our proposed AE model.

There are several limitations for our AE model. First,

compared with reference-based imputation methods, which can

impute small sample size from a large reference panel, our

AE model may not be able to handle the imputation of small

sample sizes as effectively since it needs more data to train

the model sufficiently. Second, since our AE model does not

require a reference panel, it lacks the ability to utilize key

genetic characteristics such as mutations, linkage patterns, and

recombination hotspots in the reference panels of hundreds of

thousands of individuals. Lastly, the imputation accuracy can

be affected by several factors such as sample size, sequencing

coverage, population structure, and MAF. In our current study,

we only considered the effect of different MAFs on imputation

accuracy and did not investigate the impacts of other factors.

For the future work, based the imputed genotype data from

the AE model, we will further perform downstream analyses

on LOS data for GWAS, such as identifying novel causal

variants in a fine-mapping study to verify the power of genotype

imputation. In addition, to overcome the drawback of lack

of the interpretability of the DL methods, we will integrate

prior biological information into our DL model and define

biologically plausible connections within the architecture of a

deep neural network. Another interesting direction of genotype
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TABLE 6 Performance results (mean, SD, and p-value with respect to di�erent evaluation metrics) between the AE and the SCDA model on the test

dataset of LOS data with di�erent MAFs at the missing ratio of 20%.

Metrics Model MAF

0.1% < MAF < 0.5% 0.5% < MAF < 1% 1% < MAF < 5% MAF > 5%

mean (SD) p-value mean (SD) p-value mean (SD) p-value mean (SD) p-value

CR (accuracy) SCDA 0.9931(0.0002) 0.6730 0.9854(0.0001) 0.0063 0.9544(0.0011) 0.0701 0.7371(0.0011) 0.0028

AE 0.9932(0.0001) 0.9859(0.0) 0.9560(0.0005) 0.7422(0.0009)

PCC (dosage) SCDA 0.5901(0.0108) 0.0006 0.7682(0.0945) 0.1907 0.8334(0.0021) 0.0005 0.8872(0.0003) 0.0003

AE 0.8915(0.0002) 0.8980(0.0003) 0.9011(0.0002) 0.8987(0.0002)

Hellinger score SCDA 0.9763(0.0023) 0.0132 0.9624(0.0010) 0.0064 0.9296(0.0072) 0.0205 0.8472(0.0029) 0.0011

AE 0.9876(0.0005) 0.9827(0.0013) 0.9646(0.0010) 0.8867(0.0024)

Minimum Hellinger score SCDA 0.1336(0.0067) 0.0023 0.0871(0.0032) 0.0096 0.0670(0.0070) 0.0169 0.1239(0.0015) 0.0168

AE 0.2572(0.0047) 0.1255(0.0043) 0.1152(0.0034) 0.1420(0.002)

SEN score SCDA 0.9988(0.0) 0.0008 0.9987(0.0002) 0.0285 0.9961(0.0001) 0.0015 0.9845(0.0) 0.0017

AE 0.9997(0.0) 0.9993(0.0) 0.9979(0.0) 0.9864(0.0001)

Minimum SEN score SCDA 0.7760(0.0023) 0.0014 0.7045(0.0104) 0.0126 0.5908(0.0199) 0.0439 0.3789(0.013) 0.1708

AE 0.8207(0.0010) 0.7664(0.0013) 0.6614(0.0035) 0.4089(0.0070)

IQS SCDA 0.0042(0.0017) 0.0 0.7280(0.0614) 0.0689 0.7848(0.0105) 0.0056 0.8551(0.0007) 0.0013

AE 0.8767(0.0008) 0.8844(0.0002) 0.8836(0.0001) 0.8699(0.0004)

imputation is the imputation for low-coverage (e.g., 1× coverage

or less) WGS data, which can be seen as an alternative approach

to SNP arrays. Methods for low-coverage WGS imputation

include GLIMPSE (Rubinacci et al., 2021), QUILT (Davies et al.,

2021), and GeneImp (Spiliopoulou et al., 2017). All of these

methods are based on large reference panels. Therefore, we will

have the advantage to extend our reference-free AE model to

low-coverage WGS imputation.

Conclusions

To address the problem of missing values in genotype data

with deep learning methods, we implemented a convolutional

AE imputation model with an improved learning strategy by

using a single batch loss rather than the average loss over batches.

We first evaluated our AE model with two public genotype

datasets including the yeast data and the HLA data and then

applied it to our own LOS data. Our modified AE imputation

model outperformed the reported SCDA model in terms of the

performance metrics CR, Hellinger score, SEN score, and IQS.

Furthermore, our AE model significantly improved the IQS for

rare variants, especially for the data from African Americans.

We believe that our proposed method has a great potential to

increase the statistical power of GWAS and enrich downstream

GWAS analyses.
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Background and contribution: In network biology, molecular functions can

be characterized by network-based inference, or “guilt-by-associations.”

PageRank-like tools have been applied in the study of biomolecular interaction

networks to obtain further the relative significance of all molecules in the

network. However, there is a great deal of inherent noise in widely accessible

data sets for gene-to-gene associations or protein-protein interactions. How

to develop robust tests to expand, filter, and rank molecular entities in disease-

specific networks remains an ad hoc data analysis process.

Results: We describe a new biomolecular characterization and prioritization

tool called Weighted In-Network Node Expansion and Ranking (WINNER).

It takes the input of any molecular interaction network data and generates

an optionally expanded network with all the nodes ranked according to

their relevance to one another in the network. To help users assess the

robustness of results, WINNER provides two di�erent types of statistics. The

first type is a node-expansion p-value, which helps evaluate the statistical

significance of adding “non-seed” molecules to the original biomolecular

interaction network consisting of “seed”molecules andmolecular interactions.

The second type is a node-ranking p-value, which helps evaluate the

relative statistical significance of the contribution of each node to the

overall network architecture. We validated the robustness of WINNER in

ranking top molecules by spiking noises in several network permutation

experiments. We have found that node degree–preservation randomization

of the gene network produced normally distributed ranking scores, which

outperform those made with other gene network randomization techniques.

Furthermore, we validated that a more significant proportion of the WINNER-

ranked genes was associated with disease biology than existing methods

such as PageRank. We demonstrated the performance of WINNER with a

few case studies, including Alzheimer’s disease, breast cancer, myocardial

infarctions, and Triple negative breast cancer (TNBC). In all these case studies,

the expanded and top-ranked genes identified by WINNER reveal disease

biology more significantly than those identified by other gene prioritizing

software tools, including Ingenuity Pathway Analysis (IPA) and DiAMOND.

Frontiers in BigData 01 frontiersin.org

66

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2022.1016606
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2022.1016606&domain=pdf&date_stamp=2022-11-04
mailto:jakechen@uab.edu
https://doi.org/10.3389/fdata.2022.1016606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2022.1016606/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Nguyen et al. 10.3389/fdata.2022.1016606

Conclusion: WINNER ranking strongly correlates to other ranking methods

when the network covers su�cient node and edge information, indicating

a high network quality. WINNER users can use this new tool to robustly

evaluate a list of candidate genes, proteins, or metabolites produced

from high-throughput biology experiments, as long as there is available

gene/protein/metabolic network information.

KEYWORDS

gene prioritization, network expansion, network statistical analysis, pathway analysis,

network biology

Introduction

Gene prioritization from large-scale omics projects is a

central topic in disease biology (Huang H. et al., 2009). Manual

searches of the literature and publicly annotated databases (Gene

Ontology et al., 2013; Kanehisa et al., 2017; Tyner et al., 2017)

for genes associated with a particular disease or biological

process can be biased, because they are limited to existing

knowledge. Sifting hundreds and thousands of gene or genetic

variations associated with genes from genomic studies can also

be daunting (Moreau and Tranchevent, 2012), e.g., even for

a user to search for genes associated with cardiac arrhythmia

(Rajab et al., 2010) within a 2-Mb region of chromosome 17

may return 77 candidate genes. For many biologists, the lack of

ranking of genes based on biological relevance of disease context

is an experience analogous to the pre-Google days of Internet

search of web content. With influx of data from large-scale

sequencing projects (Schlotterer et al., 2014), bioinformatics

users increasingly count on good gene prioritization to help

them generate biological hypotheses (Chen et al., 2006a; Hale

et al., 2012), find potential disease biomarkers (Saha et al.,

2008; Zhang and Chen, 2010, 2013), and identify candidate drug

targets (Chen et al., 2006b, 2013; Li et al., 2009; Muhammad

et al., 2017). However, as datasets continue to become larger and

more heterogeneous, statistical (Subramanian et al., 2005; Aerts

et al., 2006; Cantor et al., 2010) and text-mining (Krallinger

et al., 2008; Liu et al., 2015; ElShal et al., 2016) approaches

to gene prioritization lack sufficient precision in the biological

knowledge context. For example, surveys of PAGER (Yue et al.,

2018) for genes associated with the response of breast cancer to

doxorubicin treatment may retrieve more than 2,000 statistically

significant genes with MSigDB (Liberzon et al., 2015), or

234 candidate genes with the online text-mining platform

Beegle (ElShal et al., 2016). The use of statistical p-values to

prioritize retrieved genes can mislead biology users who assume

statistical significance in samples equate the gene’s true biological

significance against one another in the experiment (Kim and

Bang, 2016).

To overcome the limitations gene prioritization in practice,

bioinformatics researchers have developed gene network models

with which they perform knowledge-based gene prioritization

and novel candidate genes identification (Chen et al., 2006a;

Cowen et al., 2017). A molecular network consists of nodes (e.g.,

proteins) linked by edges that represent the pairwise interactions

between nodes, forming a convenient computational model

that is easy to interpret and has been widely used to discover

(and rediscover) disease-specific genes and potential targets for

treatment (Chen et al., 2009; Wu et al., 2009; Erten et al.,

2011; Gottlieb et al., 2011; Guney and Oliva, 2012; Singh-Blom

et al., 2013; Smedley et al., 2014; Peters et al., 2017; do Valle

et al., 2018). Network-based methods also enable researchers to

integrate data from a wide variety of sources, including analyses

of gene-gene similarity (Alvarez-Ponce et al., 2013), proteomic

interactions (Rolland et al., 2014), and regulatory pathways

(Li and Campos, 2015); however, the results of prioritization

strongly depend on the input gene list (Antanaviciute et al.,

2015), and the list is often derived from existing databases that

may lack important genes because of statistical errors or human

errors during annotation. For example, acetylcholinesterase

(ACHE), which is commonly associated with β-amyloid plaques

and neurofibrillary tangles in the brains of patients with

Alzheimer’s Disease (AD; Talesa, 2001), is not among the

annotated genes for AD in the KEGG database (Kanehisa et al.,

2017). Input lists may also be compromised by redundancy,

which can be generated from at least two sources: (1) the

inclusion of genes that were falsely identified during the

statistical analysis of an experiment (Yu et al., 2017), and (2)

when, in an attempt to increase comprehensiveness, the list is

expanded to include the gene for a “hub” protein that interacts

with dozens, or even hundreds, of other proteins [e.g., ubiquitin

C binds to 4,658 other molecules (Chen et al., 2017)] and,

consequently is unlikely to be specific for the phenotype of

interest. Furthermore, the statistical significance of a ranking

is typically calculated via comparison to the rankings from

a randomized version of the original network, but since the

randomized network is often created by adding or deleting a

small number of gene-gene interactions (i.e., increasing noise),

or via total network permutation (Xie et al., 2015; Guala and

Sonnhammer, 2017), much of the topology of the original

network may be lost.
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Related works

According to Bromberg (2013), molecular-interaction-based

disease gene prioritization started in the early 2000’s by

pioneering techniques such as G2D (Perez-Iratxeta et al., 2002).

In principle, statistical analysis of the patients’ genetic data yields

100’s of disease-associated genes. These genes often belong to

an interaction network (Sun and Zhao, 2010), which is also

called a “disease pathway.” Assume that the disease phenotypes

occur due to a disturbance at any point of the pathway, then

disturbing the “most influential” genes is the most likely reason

leading to the disease. Then, having a good disease pathway,

network ranking algorithms, especially the eigenvector-based

[RandomWalk (Smedley et al., 2014) and PageRank (Page et al.,

1999)] and centric-based [betweenness centrality (Newman,

2005)] can be used to prioritize the genes. Also, this idea

can be applied to analyze key regulators in non-disease-

specific biological processes. However, the pathways are usually

incompleted: new disease regulators are still not discovered or

some interaction among disease-associated genes are not yet

shown (Bromberg, 2013). Therefore, the ranking techniques are

required to extend the interaction network beyond the known

disease-associated genes. Recent gene prioritization techniques

have this ability. For example, DIAMOnD (Ghiassian et al.,

2015) built a large network comprising genes related to 70

diseases, clustered the large network into multiple network

modules, then assigned the network module to a disease; here,

in the same module, genes not related to the disease module are

added (extended) into the disease-specific network-module for

prioritization. Ingenuity Pathway Analysis (Kramer et al., 2014)

extended the disease-specific pathway by statistically estimating

the likelihood of how a new gene interacts with the known

disease-related gene. In Node2Vec (Grover and Leskovec, 2016;

Peng et al., 2019), a “global gene network,” which includes

the known disease-specific genes, their direct interacting genes,

and indirect interacting ones (optionally) was constructed; then,

each gene is represented by a numerical vector having a fixed-

length dimension to allow computing the cosine similarity

between a known disease-specific gene and another gene; so,

the extension can be made by choosing the genes having high

cosine similarity to any of the disease-specific ones. Or, in

GenePANDA (Yin et al., 2017), given a “global gene network”

(similar to Node2Vec), for a specific gene, the average distance

between itself and any other gene in the “global” network was

subtracted by the average distance between itself and the known

disease-specific genes; then, this difference was used to rank

the genes.

Besides the network-based approach, gene prioritization

could be performed using text mining and similarity profiling

approaches (Yin et al., 2017). In the text mining approach,

it is hypothesized that important genes are more likely to be

mentioned in an article than non-important ones. Therefore,

text mining tools, such as aBandApart (Van Vooren et al.,

2007) and Gene Prospector (Yu et al., 2008), emphasize

efficient queries in MEDLINE and other large literature

collections to find important disease-specific genes. However,

these approaches may not find important genes when the disease

is not yet well-researched or when a new disease model (i.e., a

new cell line or new organoid) is built to represent the disease.

On the other hand, similarity profiling defines the similarity

among the genes according to the disease-related information;

then, if a novel gene shares a high similarity with genes that

are known to be important, the novel gene will be ranked

highly. For example, Endeavor (Aerts et al., 2006) and ToppGene

(Chen et al., 2009) integrated multiple disease-omic databases

by a machine-learning model; the model was trained to classify

between the known-important genes and non-important genes;

the model will produce a ranking score reflecting how important

a novel gene is, respecting the already known ones. Meanwhile,

the disease-specific gene expression and correlation matrix can

be clustered or latent-based represented, such as in Pinta (Nitsch

et al., 2011), Maxlink (Guala et al., 2014), and Genefriends

(van Dam et al., 2012), where the well-known disease-specific

genes are expected to concentrate in one or a few clusters/latent

modules, and the novel genes in these clusters or modules would

be ranked highly.

Here, we introduce a new ranking method, Weighted

In-Network Node Expansion and Ranking (WINNER), that

addresses many of the current limitations of network-based

gene prioritization methods. As with PageRank (Winter et al.,

2012) and many other gene prioritization techniques, the

ranking engine of WINNER uses random-walk principles (Zhao

et al., 2015). However, WINNER was designed to address the

following three specific network biology tasks: (1) perform gene

prioritization in a weighted biomolecular association network,

(2) identify upstream regulators and targeted genes (i.e.,

“upstream” ranking), or (3) identifying downstream effector

molecules that are specific for a particular disease or phenotype

(“downstream” ranking).WINNER can generate a ranking score

for each input gene, derive optional genes that are “expanded”

from the original seed gene lists, and provide two different

statistic for users (1) the gene expansion p-value (pe) for adding a

gene to the network, which addresses both incomprehensiveness

and redundancy; and (2) the gene ranking p-value (pr), which

represents the significance of the ranking when compared to

the randomized network. Furthermore, we found that compared

to total network permutation (Xie et al., 2015; Guala and

Sonnhammer, 2017), preserving the modularity randomization

(Cowen et al., 2017) produces a randomized network that

is topologically similar to the original network and yields a

more normal distribution of ranks (Espinoza, 2012). We further

demonstrated the benefit of WINNER in omics study result

interpretations with the following case studies: (1) ranking genes

that are genetically associated with Alzheimer’s disease (AD);

(2) ranking breast-cancer survival-related genes (Lanczky et al.,

2016); (3) ranking differentially expressed genes involved in
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myocardial injury in pigs for their potential roles in myocardial

regeneration (Eschenhagen et al., 2017). In all these studies, we

discuss how our prioritization score and statistic associated with

high-ranked genes enable biology users to derive new insights

and hypotheses worth further experimental investigations.

Methods

For this work, we postulated (1) that the seeded (i.e.,

input) genes consist of (but are not limited to) differentially

expressed genes identified in a wet-lab experiment, genes in a

well-curated pathway, and phenotype-associated genes mined

from the literature; and (2) that genes added to the expanded

network (i.e., “expansion genes”) would have significantly more

interactions with seeded genes (i.e., “seeded interactions”) than

with non-seeded genes. WINNER begins with the set of seeded

genes and a collection of gene-gene interactions, iteratively

applies network ranking for gene prioritization, and expands the

ranked list of genes one gene at a time (Supplementary Figure 1).

Each gene-gene interaction has a confidence score (scaled

between 0 and 1), which is commonly included in interactome

databases (Chatr-Aryamontri et al., 2013; Szklarczyk et al.,

2015); however, if a confidence score is not available, then the

confidence score is set to 1 for all interactions. Network ranking

is first applied to the seeded genes and the interactions among

them (S0 metric, Equation 1); then, genes adjacent to the seeded

genes are filtered for significant interactions with the seeded

genes (pe) to identify candidates for the expanded network. The

identified candidate is added to the ranked list, and network

ranking is re-applied to initiate the next iteration of the cycle.

A more detailed description of each step is provided below.

Ranking genes in the network by WINNER

Undirected networks

Given a gene-gene association network, the genes are ranked

as in Supplementary Video 1. First, WINNER assigns an initial

score (S0) to the genes, according to Yue et al. (2017):

S0 (i) = e2 ln(w(i))−ln(I(i)) (1)

where i represents the gene index, w(i) is the sum of the

confidence scores (normalized to between 0 and 1) for all gene-

gene interactions associated with i, and I(i) is the number of

gene-gene interactions associated with i. Here, larger confidence

scores imply stronger associations. Second, WINNER iteratively

updates the gene score by applying the RandomWalk technique

(Page et al., 1999):

St (i) = (1− σ) × S0 (i) + σ ×

∑

∀j

c(j, i)×St−1
(
j
)

w
(
j
) (2)

where s is the random walk damping parameter [set to s

= 0.85 as described (Page et al., 1999)], c(j, i) represents the

confidence score of the interaction between gene i and gene j,

and t is the index of iteration (starting at 1); S= 0 for genes that

are outside the network but appear in the collection of gene-gene

interactions. PageRank theory (Page et al., 1999) demonstrates

that St converges (|St − St−1|
R©
0) if t is large enough, so the

iterative cycle was continued until |St − St−1| < 0.001.

Directed networks

Directed networks, such as networks of regulatory pathways,

include more annotation than undirected networks. Thus, we

adapted the definitions of terms in Equations 1, 2 so that

WINNER could be used to (for example) infer upstream

regulatory and downstream effector genes (Kramer et al., 2014).

For “upstream” ranking, i is the regulatory gene and j is the gene

regulated by i; thus, w (i) is the sum of the confidence scores for

all gene-gene relationships that i regulates, I(i) is the number

of gene-gene relationships regulated by i, and c(j, i) is the

confidence score for the regulation of j by i. For “downstream”

ranking, i is the regulated gene and j is the gene that regulates

i; thus, w (i) is the sum of the confidence scores for all gene-

gene relationships in which i is regulated, I(i) is the number of

gene-gene relationships in which i is regulated, and c(j, i) is the

confidence score for the regulation of i by j.

Statistical significance of gene ranking

To evaluate the statistical significance (p-value) of the gene

ranking, we determined how likely the converging result of S

(by default, S200) in Equations 1, 2 is higher than in random

networks. Randomization was performed inMatlab with degree-

preservation (Espinoza, 2012; Tiong and Yeang, 2019) to

maintain the topological characteristics of the original gene-gene

network; however, the technique only generates unweighted

relationships, so weights were randomly assigned from the

distribution of relationship weights in the original network. One

thousand random networks were generated, and the ranking

scores (S200) of the genes in the random networks were normally

distributed (as validated via the Chi-square goodness-of-fit test).

Thus, the ranking p-value (pr) for each gene i was calculated by

using the normal distribution [m(i), s(i)] parameter estimation

(Bowman and Azzalini, 1997):

pr (i) =






∫ S200(i)
−∞

1
σ (i)

√

2π
e
−

(x−µ(i))2

2σ2 dx if S200 (i) < µ(i)

∫
∞

S200(i)
1

σ (i)
√

2π
e
−

(x−µ(i))2

2σ2 dx if S200 (i) > µ(i)

(3)

which is equivalent to computing the two-tailed p-value for

a normal distribution.
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Filtering candidates for expansion

We chose two hypergeometric tests that are common

practice in annotation (Huang et al., 2009). First, we tested

the likelihood of the candidate expansion gene having a seeded

interaction relative to its total number of interactions. Second,

we tested the likelihood of the candidate expansion gene

having seeded interactions relative to the seeded interactions

of its most similar seeded gene, with similarity determined

by node degree. Thus, we calculated two p-values for

each expansion gene j from the “overrepresented” point

of view (Beissbarth and Speed, 2004; terms are defined in

Supplementary Figure 2):

Test 1:

p1e
(
j
)
=

min(n,K)∑

l=k(j)

(
K

l

)(
N − K

n− l

)

(
N

K

) (4)

Test 2:





p2e
(
j
)
=

min(n,K)∑

l=k(j)

(
K

l

)(
N − K

n− l

)

(
N

K

) if N > K

p2e
(
j
)
= 1−

min(n,K)∑

l=0

(
N

l

)(
K − N

k− l

)

(
K

N

) if N < K

(5)

in which the double-line bracket operator represents the

combination operator:

(
N

K

)
=

N (N − 1) (N − 2) . . . (N − K + 1)

K (K − 1) (K − 2) . . . 1
(6)

Genes for which both p1e(j) < 0.05 and p2e(j) < 0.05 were

chosen as candidates for expansion. Thus, the expansion p-value

(pe) for each gene j is defined by the equation pe(j) = max

[p1e(j), p2e(j)].

Selecting one candidate for expanded
ranking

Since there will likely be more than one candidate expansion

gene remaining after filtration, WINNER estimates which of the

candidates should be added to the network by calculating an

expansion score (e) from the confidence score of the interaction

between the candidate gene and the ranked genes, and the

ranking score (S) of the ranked genes:

e (i) =
∑ c

(
i, j
)
S
(
j
)

W
(
j
) (7)

Where i is the candidate expansion gene, j represents all

seeded genes that interact with the candidate expansion gene,

andW(j) is the sum of the confidence scores for all interactions

involving all seeded genes. Note that W(j) differs from w(j)

in Equation 2, because w(j) is restricted to interactions among

ranked genes.

Informatics databases and benchmarking
metrics

Correlations among WINNER, PageRank (Winter et al.,

2012), dual node-edge ranking (Wang et al., 2015), eigenvector

centrality, betweenness centrality, node degree, and clustering

coefficient (Newman, 2008) were evaluated by computing

the linear correlation coefficients and p-values with Matlab

(Neupane and Kiser, 2018).

For analyses of upstream and downstream genes (directed

network), genes were distributed into layers via the breadth-

first-search approach, and groups of genes that formed a self-

contained cycle were treated as a single node. Results were

visualized with boxplots. In each pathway, the gene rank

numbers were converted into percentile format: the first rank

(number 1) was converted to 100% percentile, while the last rank

was converted to 0% percentile. The percentile format allowed

boxplot aggregation frommultiple pathways, where the different

pathways had different number of genes.

Experiments demonstrating the general topological and

biological significance of the WINNER ranking were conducted

with the small gene set associated with AD from KEGG release

50 (2009) (Kanehisa et al., 2010) and with undirected gene-gene

interactions from HAPPI version 1.0 (Chen J. Y. et al., 2009).

Rankings of upstream regulators and downstream effectors were

conducted with all cancer disease pathways in KEGG release

85 (Kanehisa et al., 2017; Tessier et al., 2018) and gene-gene

regulatory relationships from STRING v.10.5 (Szklarczyk et al.,

2017).

The effectiveness of WINNER for identifying network-

expansion genes was evaluated by using KEGG release 50 [stored

in PAGER 1.0 (Yue et al., 2015)] as the input with interactions

of all types (without directionality) from HAPPI v.2.0 whose

confidence scores exceeded 0.75 (Chen et al., 2017), and then

determining how closely the expanded network matched the

updated KEGG release 85 (Kanehisa et al., 2017). An analogous

experiment was conducted with Ingenuity Pathway Analysis

(IPA), which (in theory) can be used for both upstream and

downstream expansion and HAPPI v.2.0 (Kramer et al., 2014)

for comparison. Precision, recall, and F1 scores were calculated

via the following equations:

precision =

|E ∩ U|

|E|
(8)

recall =
|E ∩ U|

|E|
(9)
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F1 =

2× precision× recall

precision+ recall
(10)

where E is the set of expansion genes determined by Winner

or IPA and U is the set of genes present in KEGG release 85 but

not in KEGG release 50.

The biological relevance of our rankings was evaluated by

(1) determining whether the top-ranked genes from WINNER

ranking of the KEGG breast cancer pathway (Kanehisa

et al., 2017; https://www.genome.jp/kegg-bin/show_pathway?

hsa05224) were included among the genes correlated with

survival in 3951 Breast Cancer patients (Gyorffy et al., 2010);

and (2) by ranking the set of differentially expressed genes from

a study of myocardial regeneration in neonatal pigs (Zhu et al.,

2018) with WINNER and determining whether the top-ranked

genes could contribute to cardiac repair and cardiomyocyte

proliferation. For the analysis of breast-cancer survival genes,

we calculated the ratio of the number of genes that were both

significant (survival p-value < 0.05) in the breast cancer study

(Gyorffy et al., 2010) and highly ranked by WINNER (i.e.,

scored above a defined threshold) to the number of highly-

ranked genes.

Network randomization and testing for
ranking normal distribution in random
networks

In WINNER, given a network (also called the original

network), we examined the following network randomization

approaches to evaluate which network randomization approach

was the most suitable for computing the ranking p-value for

each gene:

• Total rewiring (also called total network permutation;

Waksman, 1968). To implement this approach, for each

interaction (edge) in the original network, we randomly

changed the two genes (node) connecting through this

edge. Therefore, this approach preserves the number

of interactions, yet it totally changes the network and

gene topology.

• Randomly drawing a new network such that each gene’s

degree is the same to what it is in the original network (also

called preserving degree; Rao et al., 1996). A gene degree, in

simple description, is the number of other genes connecting

to the gene in the network.

• Randomly drawing a new network with the same

modularity to the original network (also called preserving

modularity). We implemented this strategy according to

the network modularity definition in Newman (2006).

Modularity measures likely the network can be partitioned

into clusters of interacting genes.

• Randomly adding 5% new interactions into

the original network. These interactions were

not reported in the gene-gene interaction

databases.

• Randomly removing 5% of the interactions from the

original network.

For each network randomization approach, starting from

the same original network, we repeated 10,000 times, yielding

10,000 different random networks. Then, applying WINNER

(and other ranking algorithms) yielded 10,000 random ranking

results for each gene. We tested whether these random rankings

followed a normal distribution using chi-square goodness of fit

test (chi2gof)1 in Matlab. In this test, the smaller chi-square

(chi2) indicates that the rankings are more naturally distributed.

Literature validation using co-citations
from PubMed

Important disease-specific genes are often co-mentioned in

a research article. Therefore, to demonstrate the significance of

the genes related to a disease, we applied a co-citations from the

NCBI e-utils application programming interface (API; Sayers,

2008) that implements semantic searches of PubMed abstracts

to report biomedical literature citations (https://eutils.ncbi.nlm.

nih.gov/entrez/eutils/esearch.fcgi?). We applied “pubmed” as

input of database and the concatenated string of the candidate

gene and the disease name as input of terms. To identify the

co-citation support for the winner scores, we separated the

genes into two categories, with literature co-citation (k = 0)

or without literature co-citation (k > 0) to find the differences

between the winner scores. We applied the Kruskal-Wallis test

to report p-values.

Biomedical case studies, data, and
preprocessing

Cardiac regeneration dataset

For the cardiac regeneration case study, the bulk-RNA

expression dataset was obtained from Zhang et al. (2020).

Briefly, two groups of pig hearts were sent for sequencing when

they reached postnatal days (P) 7, 14, and 28. In the first group,

the pigs underwent myocardial infarction (a heart attack model)

on the postnatal day 1, then their heart fully recovered to normal

cardiac functionality with no scar. In the second group, the pig

did not undergo injury (sham control). For each group at each

day (P7, P14, or P28), three pigs were sequenced. The bulk-RNA

data were processed by applying trim-galore (Krueger, 2015) for

trimming the fastQ read, then STAR package v2.5.2 for mapping

to Pig genome (Dobin et al., 2013), then the RNA transcripts

1 chi2gof: Chi-square goodness-of-fit test [https://www.mathworks.

com/help/stats/chi2gof.html].
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were counted using HtSeq version 0.6.1 (Anders et al., 2015).

The gene expression was normalized, and fold-change was

calculated using Deseq2 software (Love et al., 2014). Due to

the small sample size (n = 3), the p-values for differentially

expressed genes, compared between two groups at P7, P14, and

P21, were calculated using the approach in Bian et al. (2021).

After calculating and comparing two groups at these three

different postnatal time points, this process yielded 276 seed

genes as input for WINNER. Then, these genes were queried in

HAPPI v2 database (Chen et al., 2017) to build their interacting

network. These gene lists, their interaction, and WINNER

results were summarized in Supplementary Tables 1, 2.

Data processing of triple negative breast
cancer (TNBC)

Triple negative breast cancer (TNBC) has been found in 15%

of breast cancer cases and is characterized by the tumor cells

lacking the expression of the following: epidermal growth factor

2 (HER2), estrogen receptor (ER), and progesterone receptor

(PR; Liu et al., 2014; Ueda et al., 2019). Unfortunately, because

of its nature, TNBC has a poorer prognosis than other types of

breast cancers and treatment options are limited (Xia et al., 2014;

Eltohamy et al., 2018; Lu et al., 2020). While TNBC markers

are already well-studied, finding the key disease regulators and

promising targeted genes is still challenging (Nedeljkovic and

Damjanovic, 2019). Therefore, we applied WINNER to explore

novel answers for this question.

We took the triple negative breast cancer candidate genes

from the University of Alabama at Birmingham Cancer data

analysis Portal (UALCAN) database (Chandrashekar et al.,

2022). In the comparison between the 116 triple negative breast

cancer samples and 114 normal samples, UALCAN provided

the top 250 up-regulated genes and 250 down-regulated genes

selected by the t-test p-value. Next, we retrieved the Protein-

Protein Interaction (PPI) using the medium confidence (score

≥ 0.4) and extended 100 genes using the STRING database.

We performed WINNER and generated the gene ranking and

p-values (Supplementary Tables 3, 4).

PubMed co-citation analysis of the WINNER
ranked genes

We hypothesize that important disease-specific genes are

often co-mentioned in a research article (Olsen et al., 2014);

if so, WINNER high-ranking genes tend to be more co-cited

in the literature than the low-ranking ones. Therefore, to

demonstrate the significance of the genes related to a disease,

we applied co-citations from the NCBI e-utils application

programming interface (API; Sayers, 2008) that implements

semantic searches of PubMed abstracts to report biomedical

literature citations (https://eutils.ncbi.nlm.nih.gov/entrez/eutils/

esearch.fcgi?). We applied “pubmed” as an input of the database

and the concatenated string of the candidate gene and the

disease name as input of terms. To identify the co-citation

support for the winner scores, we separated the genes into two

categories, the WINNER significant ranked genes (p-value ≤

0.05) orWINNER non-significant ranked genes (p-value> 0.05)

to find the differences between the co-citations. We applied

the Kruskal-Wallis test to report p-values to test differences of

co-citations between significant and non-significant genes.

Pathway level assignment

We retrieved significantly enriched pathways from PAGER

2.0 database (Yue et al., 2018) using WINNER highly ranked

genes with p-values ≤ 0.05. We applied the parameter set as

follows. The data sources were KEGG, WikiPathway, BioCarta,

NCI-Nature Curated, Reactome, Protein Lounge, and Spike, the

similarity was set to be 0.05, and FDR was set to be 0.01. We

constructed the regulatory (r-type) PAG-to-PAG network using

the default r-type relationship score cutoff (=1). We performed

a 5-step procedure in the pathway level assignment. Firstly,

we calculated shortest paths among the pairwise r-type PAG-

PAG relationships. Secondly, we extracted the longest shortest

path and assigned levels of pathway from the upstream to the

downstream pathway using 1 to n. Thirdly, we expanded the

level assignment to the using shortest distances, such as the

current pathway is level m, the shortest distance between the

expanded pathway in the upstream to the current pathway is 2,

the expanded pathway level will be assigned by m-2. Fourthly,

we took the average of the levels assigned to pathways. Fifthly,

we repeated the steps three and four until all the pathways had

been assigned.

The correlation analysis of WINNER ranking
and the enriched pathways using the
exponential scale of top gene bins

Firstly, we segregated the WINNER significant genes into 2x

bins. Secondly, we took the top 2x bins (x is [1, X]) andmerge the

genes to perform the enrichment analysis. Thirdly, we had the

pathways enriched in the top 2x gene bins minus the pathways

enriched in 21, . . . ,2x−1 to seek the add-on pathways enriched in

the top 2x gene bins. Fourthly, we mapped the levels from the r-

type pathway-to-pathway relationships to the add-on enriched

pathways in each top 2x gene bins, and plotted the curve of

pathway levels vs. the gene bins. Meanwhile, we performed the

Pearson correlation analysis to report the correlation coefficient

between the pathways’ levels and gene bins.

Results

Characteristics of WINNER ranking

WINNER ranking of undirected networks

When genes in the KEGG [release 50, stored in the

PAGER 1.0 database (Yue et al., 2015)] AD pathway

Frontiers in BigData 07 frontiersin.org

72

https://doi.org/10.3389/fdata.2022.1016606
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Nguyen et al. 10.3389/fdata.2022.1016606

FIGURE 1

WINNER gene prioritization is well-correlated with other ranking

techniques and most network topological metrics. Genes in the

KEGG AD pathway were ranked via WINNER (WN), PageRank

(PG), Dual Node-edge Rank (DR), Betweenness Centrality (BC),

clustering coe�cient (CC), eigenvector centrality (EV), and node

degree (ND); then, the correlation coe�cients for all pairwise

comparisons between ranking methods were calculated via

Pearson’s correlation.

(Supplementary Figure 3) were ranked via WINNER gene

prioritization, our results were strongly correlated with those

obtained via analyses of both eigenvector (Newman, 2008;

p = 1.45 × 10−39) and node-betweenness (Newman, 2008;

p = 1.67 × 10−11) centrality, but not with the clustering

coefficient (Newman, 2008; p = 0.22). Similar patterns of

correlation were obtained with two other state-of-the-art

network-based ranking techniques, PageRank (Winter et al.,

2012), eigenvector (Newman, 2008), betweenness centrality

(Newman, 2005), and dual node-edge ranking (dual rank; Wang

et al., 2015) (Figure 1), and all three ranking techniques were

strongly correlated with node degree. Notably, the clustering

coefficient, but no other metric or technique, failed to identify

some of the most important markers for Alzheimer’s, including

Amyloid Beta Precursor Protein (A4 or APP; Jonsson et al.,

2012), Caspase 8 (CASP8; Wei et al., 2002), Caspase 3 (CASP3;

D’Amelio et al., 2011), and Presenilin 1 (PSN1; La Bella

et al., 2004). Thus, WINNER was at least equivalent to other

network topological metrics and well-established prioritization

techniques for ranking genes in undirected biological networks.

The strong correlation between the WINNER and node-

degree rankings prompted us to preserve the node degree

and modularity during randomization. Examining the AD-

associated genes network, the pairwise rank differences between

the original network and the total-permutation random

network were significantly large (Figure 2A). When the

difference between the random ranking and the original

ranking is too large, the random network topology would

be too different from the original network topology; thus,

the random ranking may not be suitable to test statistical

significance of the original ranking. Besides, when compared

to other randomization techniques (total network permutation,

preserving modularity, or adding/removing 5% of edges),

the distribution of rankings of AD-associated genes in

the degree-preserved randomized network was significantly

more normally-distributed (Figure 2B). Furthermore, when

examining the ranking distributions of two important AD-

associated genes A4 and Presenilin 1 (PSN1; Figures 2C,D), it

was clear that their distributions had the bell-shape. Thus, rather

than relying on the empirical p-value (Cornish et al., 2018) for

gene rankings, we generated 1,000 node-preserved randomized

networks and calculated a ranking p-value (pr) for all genes in

all KEGG pathways. Notably, the rankings were much less likely

to change in response to the addition of noise for genes with pr

< 0.05 than for genes with pr ≥ 0.05, especially as the amount

of noise increased (Figure 3). These observations suggest that

when randomized networks are generated with node-degree

preservation, fewer randomizations may be required to achieve

adequate precision, and fewer noise simulationmay be necessary

to evaluate the robustness of the rankings.

The accuracy of WINNER gene prioritization was evaluated

by ranking genes in the KEGG breast cancer pathway (https://

www.genome.jp/kegg-bin/show_pathway?hsa05224) and then

determining whether the top-ranked genes correlated with the

genes’ effect on survival for patients with breast cancer, as

estimated with an online Kaplan-Meier (Bland and Altman,

1998) tool that calculates the breast-cancer survival rates

associated with more than 6,000 genes (Gyorffy et al., 2010).

The KEGG breast cancer pathway contains 146 genes [annotated

by UniProt Consortium (2018)], 62% of which significantly

influenced patient survival, and a greater proportion of the most

highly ranked genes were significantly associated with breast-

cancer survival when prioritized with WINNER than with other

gene prioritization techniques (PageRank and dual node-edge

ranking; Figure 4). Furthermore, the precision of WINNER for

retrieving survival-related genes (i.e., the proportion of retrieved

genes that were significantly related to breast cancer survival)

was even greater when restricted to genes with a ranking p-value

of pr < 0.05.

WINNER ranking of directed networks

WINNER ranking of directed networks was evaluated

via WINNER upstream prioritization with all cancer disease

pathways in KEGG release 85 (Kanehisa et al., 2017; KEGG,

2022) and the gene-gene regulatory relationships in STRING

v.10.5 (Szklarczyk et al., 2017). Genes were distributed into layers

using the breadth-first search approach (Wang et al., 2012) with

genes coding for proteins that function further upstream in the

pathways assigned to the lower-numbered layers. Thus, genes in

the lowest-numbered layers tend to encode master regulatory

molecules/receptors and first/second messengers, which are
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FIGURE 2

With WINNER, Node-degree–preservation and modularity preservation yields more normally distributed randomized networks. Genes in the

KEGG AD pathway were ranked via WINNER; then, the ranked networks were randomized via: preserving node degree (Pre-Degree), preserving

modularity (Pre-Modularity), adding 5% interactions [Add (5%)], removing 5% of the interactions [Remove (5%)], and total network permutation.

(A) The (pairwise) di�erence between the original network ranking score and the random network ranking score; smaller di�erence implies the

random network approach is more likely to preserve the original network topology. (B) Chi-square (chi2coef) coe�cient in chi2gof test (https://

www.mathworks.com/help/stats/chi2gof.html). Smaller chi2coef implies that the random ranking is more normally distributed. The (+) signs in

the boxplots imply outliners (outside 2 and 98% percentiles). Under random network by preserving node degree, WINNER ranking distributions

are in bell-shape for two important AD-related genes: A4 (C) and PSN1 (D).

located where the signaling cascade originates (e.g., near the

cell membrane; Koschmann et al., 2015), while genes with the

highest layer numbers tend to encode downstream effector

molecules that are closely associated with a specific disease

phenotype, such as drug resistance in breast cancer (Johnston,

2006). Our results indicated that using WINNER, layer 1–3

genes, which were the upstream layers in the pathways, were

consistently ranked at higher percentiles than genes at other

layers (more downstream; Figure 5). But this consistency was

not observed when the genes were prioritized via equivalent

(directed-network ranking) analyses with PageRank (Winter

et al., 2012) and dual node-edge ranking (Wang et al., 2015).

WINNER upstream overestimated the ranking of genes in layer

8, but this can likely be attributed to noise, because the layer

contained only 12 ranked genes.

WINNER network expansion and ranking
upstream regulators

We demonstrated how WINNER could identify upstream

regulators of two cancer pathways, Chronic Myeloid Leukemia

(CML; https://www.genome.jp/kegg-bin/show_pathway?

hsa05220) and hepatocellular carcinoma (https://www.genome.

jp/pathway/hsa05225), that were missing from the existing

pathways in KEGG but were present in the KEGG database

itself. WINNER upstream prioritization distributed genes into

five different layers for each pathway, and WINNER expansion

added several highly ranked genes to both networks. Additions

to the CML network (Figure 6) included JAK1/2/3 and proteins

that participate in IL-2 (IL2, IL2RA, and IL2RB), IL-3 (IL-3,

IL-3RA, and IL-3RB), and GM-CSF (CSF2) signaling, which is

consistent with the JAK2/STAT5 pathway’s status as one of the
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FIGURE 3

The WINNER ranking p-value (pr) is robust to the addition of

noise (STATS?). Genes in all KEGG pathways were ranked via

WINNER, and WINNER ranking p-values (pr) were calculated,

after varying degrees of noise were added to the network; then,

noise robustness was compared for genes with pr < 0.05 and pr

≥ 0.05 by determining the likelihood that the gene’s ranking

changed by 10 or more upon the addition of noise.

primary targets for treatment of CML (Valent, 2014), as well

as evidence that STAT5 is phosphorylated by IL-2 (Kobayashi

et al., 2014; Valent, 2014) and IL-3 (Jiang et al., 1999) signaling,

and that GM-CSF is a crucial growth factor for myeloid

cells; notably, several of these molecules are currently being

investigated as therapeutic targets for CML treatment (Hercus

et al., 2012; Broughton et al., 2014; Kobayashi et al., 2014). For

the hepatocellular carcinoma pathway (Figure 7), WINNER

expansion added KC1G2, a serine-threonine kinase that can

activate TGF-β1/Smad signaling (Guo et al., 2008); TMED4,

WLS, and PRCN, which mediate Wnt/β-catenin signaling (Guo

et al., 2008; Martin-Orozco et al., 2019; Bland et al., 2021); and

several genes for proteins in the FGF signaling pathway (FRS2,

FRS3, KLB, and PLCG1; Gotoh, 2008; Gyanchandani et al.,

2013; Wang et al., 2020), of which KLB is particularly important,

because it functions as a co-receptor for the binding of FGF-

19/21 to FGFR-1/4 (Yang et al., 2012). Thus, the genes added

to the KEGG CML and hepatocellular carcinoma pathways

by WINNER expansion have strong, well-established links to

multiple binding partners that participate in the mechanisms

associated these diseases.

Besides, WINNER ranking correlation with other ranking

techniques, including Ingenuity Pathway Analysis (IPA; Kramer

et al., 2014), DIAMOnD (Ghiassian et al., 2015), Random

Walk (Smedley et al., 2014), Node2Vec (Grover and Leskovec,

2016; Peng et al., 2019), and GenePANDA (Yin et al., 2017),

vary from −0.83 (negatively correlated) to −0.05 (insignificant

correlation), then to 0.74 (moderate-positively correlated;

Figure 6C). This result suggests that the major difference

between WINNER and other techniques’ ranking appears when

FIGURE 4

WINNER gene prioritization more accurately identifies the

relationship between breast-cancer genes and patient survival.

Genes in the KEGG breast-cancer pathway were ranked via

WINNER, PageRank, and Dual Rank, and the significance of each

gene’s relationship to patient survival was determined with an

online Kaplan-Meier plotting tool. (A) The proportion of genes

that were significantly (p < 0.05) related to breast-cancer

survival was determined for the top 0-50% of ranked genes. (B)

The precision of the WINNER ranking of genes for breast-cancer

survival (Bland and Altman, 1998) was compared for the top

0–30% of ranked genes with pr < 0.05 and pr ≥ 0.05.

the network expands beyond the seed genes. Thus, a good

benchmark among WINNER and other techniques can be

performed by a network-expansion scenario.

Benchmarking WINNER ranking by
retrieving newly updated genes in KEGG
pathways

Gene prioritization algorithms are benchmarked by

information retrieval experiments, such as in Guala and

Sonnhammer (2017) and Zhang et al. (2021), where some
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important regulators are labeled “unknown,” and the algorithms

are executed to rank these “unknown-labeled” gene such

that these regulators are top-ranked. Thus, to benchmark

WINNER, we setup the KEGG Pathway retrieval experiment.

Here, WINNER took a KEGG pathway release 50 (2009

version; Kanehisa et al., 2010) as the seed genes and gene-gene

interactions (expanded network) in HAPPI database (Chen

et al., 2017) as the input; the WINNER expansion p-value

(pe) and WINNER score were calculated for candidate genes

to include in the KEGG release 50 pathway networks; then,

the highly-ranked non-seed (expanded genes) was compared

to the same updated pathway network in KEGG release 85

(Ogata et al., 1999; Kanehisa et al., 2017; 2017 version) as the

ground-truth. In this experiment, WINNER performance,

quantified by precision, recall, and the F1 score, was compared

with Ingenuity Pathway Analysis (IPA; Kramer et al., 2014),

DIAMOnD (Ghiassian et al., 2015), Random Walk (Smedley

et al., 2014), Node2Vec (Grover and Leskovec, 2016; Peng et al.,

2019), and GenePANDA (Yin et al., 2017); these techniques were

chosen according to Zhang et al. (2021). The same experiment

was executed with each KEGG pathway, and the results were

aggregated into error bars.

Our results indicated that the WINNER predictions had

greater precision but less recall (i.e., the proportion of newly

incorporated genes that were retrieved by the prediction)

than the predictions generated via other comparing methods

(Figure 8). The WINNER predictions were also associated with

a higher F1 score, which incorporates both precision and recall

into a global measure of accuracy, when more than 60% of the

extension candidates were examined. Besides, Figure 8 shows

that the retrieval recall rate is low (usually <0.2) in all of the

algorithms. Precision should be prioritized in comparing the

performance among these expansion algorithms.

WINNER ranking of di�erentially
expressed genes in biological
case-studies

WINNER ranking of genes involved in apoptosis
and cell-cycle activity

The use of WINNER for prioritizing genes involved in

cellular processes was evaluated with the KEGG apoptosis

and cell-cycle pathways and node-degree–preserved network

randomization. WINNER ranking p-values were highly

significant for genes that participate in some of the most

essential mechanisms of apoptosis, such as Phosphatidylinositol

4,5-bisphosphate 3-kinase catalytic subunit alpha isoform

(PIK3CA) (pr = 5.01×10−13); the Phosphatidylinositol 3-

kinase regulatory subunit alpha (P85A; pr = 1.34 × 10−12) and

Cytokine receptor common subunit beta (IL3RB; pr = 4.60 ×

10−12); and genes for several proteins of the cytoskeleton (actin,

pr = 1.94×10−104; Tubulin, pr = 1.94×10−104; B4DZT3, pr

= 8.71×10−87; Lamin A/C, pr = 8.17×10−87; Lamin B1, pr =

8.17×10−87; actin-G, pr = 5.15×10−63), which is substantially

reorganized to produce the characteristic shrunken morphology

of apoptotic cells; notably, actin and actin-binding proteins also

initiate and regulate apoptosis (Desouza et al., 2012). However,

the KEGG apoptosis pathway also includes genes for a number

of proteins that participate IL-3– and NGF-signaling (IL-3,

IL-3R, and NGF), which are nonessential (or even irrelevant)

for apoptosis, and the ranking p-values calculated for these

genes were not significant (pr = 0.18). Similarly, genes in the

KEGG cell-cycle pathway that encode proteins directly involved

in DNA replication and cell division had highly significant

ranking p-values (Cell Division Cycle 14B, pr = 9.5×10−297

and 14A, pr = 2.28×10−22) whereas the ranking p-values for

genes that participate in TGF-β signaling were nonsignificant

(TGF-β, pr = 0.29; SMAD2, pr = 0.29; SMAD3, pr = 0.29;

SMAD4, pr = 0.29), which is consistent with the role of TGF-β

in cell-proliferation: it interacts with many components of the

cell cycle pathway but generally inhibits proliferation in non-

mesenchymal cells. Collectively, these observations demonstrate

that the WINNER ranking p-value can be a useful guide for

distinguishing between genes that are essential or nonessential

participants in a particular cellular process.

WINNER ranks important signaling pathway
markers in mammalian pig heart regeneration

The hearts of adult mammals cannot regenerate myocardial

tissues that are lost to injury; however, when myocardial

infarction (MI) was induced in the hearts of one-day-old

piglets, the animals recovered with no significant loss of

cardiac function and little evidence of myocardial scarring

(Zhu et al., 2018). Thus, to identify genes that may contribute

to mammalian cardiac regeneration, we used WINNER to

rank the list of differentially expressed genes from piglets

that had or had not undergone surgically induced MI on

postnatal day 1 for a previous report (Zhang et al., 2020;

Figure 9, Supplementary Table 1). Here, we used HAPPI version

2 database (Chen et al., 2017) to build the network connecting

these genes. The two top-ranked genes (FN1 and JAK3)

encoded fibronectin, which is required for cardiac regeneration

in zebrafish (Wang et al., 2013), and Janus kinase 3 (JAK3),

which has been shown to protect against ischemia-reperfusion

injury (Kubin et al., 2011); notably, JAK3 also interacts

with oncostatin-M, which is encoded by the tenth-highest

WINNER-ranked gene (OSM) and is a primary factor in

cardiomyocyte dedifferentiation and remodeling (Singh et al.,

2016; Doll et al., 2017). Also among the top 10 were genes

encoding subunits of the essential matrix proteins integrin

alpha (ITGA8) and beta (ITGB4), which are differentially

expressed in adult and fetal cardiac fibroblasts and involved

in chamber specification of zebrafish hearts (Singh et al.,

2016; Doll et al., 2017), while the 11th-ranked gene, THBS3,

encodes another extracellular matrix protein, thrombospontin

Frontiers in BigData 11 frontiersin.org

76

https://doi.org/10.3389/fdata.2022.1016606
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Nguyen et al. 10.3389/fdata.2022.1016606

FIGURE 5

WINNER upstream prioritization more accurately identifies the relative position of genes in a pathway. Gene-gene regulatory relationships from

STRING v.10.5 were used to distribute genes from all KEGG cancer pathways into 7 layers via WINNER (customized for upstream ranking),

PageRank, and Dual Rank; genes coding for proteins that function further upstream in the pathways were assigned to the lower-numbered

layers. Layers 1–3 are the most upstream layers, usually correspond to the kineases, grow factors, and receptors. Layers 4–7 are downstream,

usually correspond to signaling hubs, phospholization, transcription factors, and inside-nucleus genes. The y axis indicates the ranking scores,

which were converted into percentile so that the rankings across di�erent pathways could be combined into one boxplot. The red cross implies

boxplot outliners (beyond 2 and 98% percentiles). (A) WINNER upstream rank. (B) PageRank. (C) Dual node-edge rank.

3, which is a critical [and clinically relevant (Mustonen

et al., 2013)] regulator of cell-cell and cell-matrix signaling

that appears to impede integrin function and contribute to

injury-induced cardiomyopathy in mice (Costa et al., 2014;

Porrello and Olson, 2014; Puente et al., 2014). Other genes

ranked among the top 20 by WINNER included the nitrous-

oxide–related genes NCF2 and NCF4, and the gene for

vasopressin 2 (AVPR2), which collectively modulate the cellular

environment to promote cardiac regeneration (Costa et al.,

2014; Porrello and Olson, 2014; Puente et al., 2014); ERBB3,

which encodes a tyrosine kinase that appears to be crucial

for embryonic development (Erickson et al., 1997); and genes

for a dynamin protein (DNM1) and a Rho GTPase (RND2),

which suggests that at least some of the mechanisms of

mammalian myocardial regeneration are mediated by vesicle-

based signaling.

WINNER ranking reflects the important genes
supported by co-citations and reveals the
upstream events in the r-type
pathway-to-pathway network in triple negative
breast cancer (TNBC) study

We found 72 significant genes ranked by WINNER using

p-value ≤ 0.05 with the WINNER score ranging from 7.4 to

92.5, and the left nonsignificant genes’ WINER score ranges

from 0 to 68.7. The co-citations analysis shows that the “triple

negative breast cancer” co-citations between the significant
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FIGURE 6

WINNER upstream ranking and expansion can identify genes that are missing from established chronic myeloid leukemia (CML) networks.

Genes in the KEGG CML pathways were distributed into layers via WINNER upstream, and genes that were missing from the networks were

identified via WINNER expansion. Genes in the same layer are displayed in the same color, and the size of the node represents the WINNER

score. (A) WINNER ranking without expansion. (B) WINNER ranking with expanded genes. (C) Correlation among WINNER (WN), Igenunity

Pathway Analysis (IPA), DIAMOnD (DM), Node2Vec (ND), Random Walk (RW), and GenePANDA (GP) ranking.

ranked genes and the nonsignificant ranked genes have

significant difference with Kruskal Wallis test’s p-value = 0.027

(Figure 10). The result suggests that WINNER’s high-rank genes

are more likely lead to biological insights than the WINNER’s

low-rank genes.

To explore new insights among the high-ranking genes, we

performed pathway analysis and built the pathway-to-pathway

regulatory networks from these genes using PAGER tool (Yue

et al., 2018). The WINNER significantly ranked genes regulated

many implicated pathways and processes for TNBC. Thus, we
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FIGURE 7

WINNER upstream ranking and expansion can identify genes that are missing from established hepatocellular carcinoma networks. Genes in the

KEGG hepatocellular carcinoma pathways were distributed into layers via WINNER upstream, and genes that were missing from the networks

were identified via WINNER expansion. Genes in the same layer are displayed in the same color, and the size of the node represents the WINNER

score. (A) WINNER ranking without expansion. (B) WINNER ranking with expanded genes.

observed the higher ranked gene enriched pathways are more

likely to be at upstream side of the regulatory (r-type) enriched

pathway-to-pathway network. In general, the add-on pathway

levels were positive correlated to the ranked gene bins with

Pearson correlation coefficient equal to 0.74 (Figure 11).

We found that the top ranked genes, TOP2A, CDK1,

PLK1, and UBE2C, were enriched in the cell cycle related

pathways, such as “Phosphorylation of Cyclin B1 in the

CRS domain,” “Regulation of mitotic cell cycle,” “Mitotic

Metaphase and Anaphase,” and “Free APC/C phosphorylated

by Plk1.”

Topoisomerase II a (TOP2A) can be a useful gene in

determining whether TNBC patients would have a good

response to anthracycline therapy, which is the mainstay

treatment in TNBC cancer (Brase et al., 2010; Di Leo et al., 2011;

Eltohamy et al., 2018). Both Eltohamy et al. and Di Leo et al.

found that patients with aberrant expression of TOP2A have

better response to anthracycline treatment (Di Leo et al., 2011;

Eltohamy et al., 2018).

Cyclin dependent kinase 1 (CDK1) play a critical role how

the cell cycle is regulated, specifically during mitosis. Liu et al.

used nanoparticles with siRNA to target CDK1, and it has been

found to successfully inhibit the TNBC cell line that has been

injected in mice (Liu et al., 2014). Xia et al. has found that the

CDK1 inhibitor can inhibit the growth of the TNBC cells by

arresting them in the G2/M cell phase (Xia et al., 2014).

Polo like kinase-1 (PLK1) has been found to be one of the key

regulators in the cell cycle. Targeting and knocking out of PLK1

has been found to cause the TNBC tumor cells to be arrested in

the G2-M cell cycle (Ueda et al., 2019; Zhao et al., 2021; Patel

et al., 2022). Morray et al. found that a nanoparticle with siRNA

targeting PLK1 can inhibit growth in the TNBC tumor cell line

(Morry et al., 2017). Patel et al. used the allosteric inhibitor RK-

10 to target the PLK1 in TNBC cell lines, and it has inhibited

growth through the S phase and G2/M (Patel et al., 2022).

Overexpression of Ubiquitin-conjugated enzyme (UBE2C)

can play a role in the pathogenesis of TNBC (Chou et al., 2014;

Kim et al., 2019). Chou et al had found that UBE2C has been

highly expressed in cancer tissue cells, and that when UBE2C

has been targeted with siRNA, the tumor cells have stopped

proliferating (Chou et al., 2014).

Discussion and conclusion

In this paper, we introduce WINNER, a new network-based

ranking tool that addresses several of the limitations

associated with other gene prioritization techniques. Our
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FIGURE 8

Benchmark: WINNER expansion more accurately identifies the addition of new genes to established networks. The pathway networks in KEGG

(https://www.genome.jp/kegg/network.html) release 50 was expanded via WINNER (i.e., calculation of the WINNER expansion p-value),

Ingenuity Pathway Analysis (IPA), DIAMoND, Random Walk, Node2Vec, and GenePANDA. Then, the expanded networks were compared to the

updated network in KEGG release 85 to determine the precision, recall, and F1 scores for each expansion technique.

novel use of node-degree–preserved and modularity-

preserved randomization produced randomized networks

that retained some of the original network topology and were

more normally distributed, which increased the precision

and robustness of our ranking p-value (pr) calculations,

while the expansion p-value (pe) better accommodated the

incomprehensiveness and redundancy of the input gene list.

However, WINNER rankings were not well-correlated with the

clustering coefficient, which represents the presence of network

cliques (Newman, 2008; i.e., semi-isolated groups of genes

that collectively function like a single node), which suggests

that WINNER ranking may be somewhat compromised

in dense networks, such as those containing families of

proteins, where the scale-free property (Timar et al., 2016)

does not apply. Nevertheless, many biological networks

are scale-free (Khanin and Wit, 2006), and since degree-

preserved randomization tends to produce near-normal ranking

distributions, the WINNER pr value is likely more accurate

than the empirical p-value, even for networks that are not

perfectly scale-free.

WINNER network ranking belongs to the “eigenvector

ranking” (Newman, 2008) class of algorithm. Therefore, it has

the same “big-O” computational cost to PageRank [O(N3),

where N is the number of network genes] if implemented using

iterative matrix multiplication. However, this class of algorithm

can be implemented in parallel, which significantly reduced the

computational time in practice.

The performance of gene network prioritization significantly

depends on the disease (Zhang et al., 2021), or the biological

case-study. Therefore, we demonstrate WINNER’s performance

in various disease and biological study scenarios. The

comprehensive KEGG pathway results reflect the case

when lacking biological samples and expression data. Then,

prioritization needs to be performed only using the domain-

knowledge available network to generate hypotheses. Cardiac

regeneration, which focuses on cardiomyocyte proliferation,

case-study is an example when a significant biological process,

not a disease, that does not naturally happen in matured

mammals (Porrello et al., 2011; Lam and Sadek, 2018; Ye

et al., 2018; Zhu et al., 2018; Zhao et al., 2020; Nakada et al.,

2021; Nguyen et al., 2022). In this case, the focus is finding

the regulating mechanism to create new cells and to apply this

knowledge in biomedical engineering research. Cancer and

other disease case studies (leukemia, TNBC, and Vitamin D)

are directly related to the disease, and targeted therapies to kill

cells are available or proposed. In this case, the focus is to find
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FIGURE 9

WINNER can identify genes that contribute to cardiac

regeneration from a list of di�erentially expressed genes.

RNA-sequencing analyses of gene expression in the hearts of

piglets that had or had not undergone surgically induced

myocardial infarction on the 1st day after birth for a previous

report (Zhu et al., 2018) were compared to generate a list of

di�erentially expressed genes; then their gene-gene interactions

were queried from HAPPI v2 database; then, the list was ranked

via WINNER gene prioritization to determine which genes likely

contributed to myocardial regeneration. The 20 top-ranked

genes are displayed with their corresponding WINNER scores.

markers, especially the “cell-killer ones” associated with the

disease outcomes, and there is less emphasis rather than the

regulating growing mechanism. WINNER results are insightful

in all of these cases, whereas whether other techniques have

insightful results is yet to be examined in multiple studies.

In conclusion, WINNER gene prioritization is generally

more accurate and robust than other network-based

prioritization techniques, such as PageRank and node-degree

ranking, and can be effective for identifying genes that may be

missing from established gene networks, for determining the

relative position (i.e., upstream or downstream) of genes within

a pathway, and for ranking a list of differentially expressed

genes. The superior performance is linked to better retrieval

precision when expanding the network among the seed genes.

The important case studies presented in this work are in a

scenario where new disease-specific gene-expression data were

generated, and novel genes associated with the disease and

phenotype are expected. Then, network expansion is required.

In this expansion, WINNER emphasizes precision, where only

FIGURE 10

The literature validation of triple negative breast cancer genes

using co-citations from PubMed. The co-citations of gene and

TNBC are grouped by the WINNER reported p-values. The

non-significant gene p-values are larger than 0.05 in WINNER,

and the significant gene p-values are ≤0.05 in WINNER. The

Kruskal Wallis test p-value is 0.027.

FIGURE 11

The correlation between the add-on pathways enriched in the

top 2x bins and the bin size. The violin plot shows the pathway

level distribution. The red points connected by solid red lines are

the means of pathway levels.

a small expanded but highly relevant candidates are explored,

over recall, where more comprehensive candidate genes were

explored but may involve many irrelevant ones. Other methods

tend to emphasize recall; therefore, they may computationally

retrieve more candidates; however, at the same time, make it

much more difficult for the user to choose the rightly relevant

ones. Also, having too many irrelevant genes in the network

significantly affects the ranks of the well-known disease-specific

genes. This scenario explains the advantage of WINNER

over other methods. Future investigations are warranted to

determine what additional biological insights can be obtained by

using WINNER to rank genes that participate in other cellular

processes, in metabolic regulatory pathways (Berkhout et al.,

2013), and in co-expression networks (Radulescu et al., 2018).
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SUPPLEMENTARY FIGURE 1

Schematic diagrams of WINNER gene prioritization and network

expansion. (a) Seeded genes (green) and candidate expansion genes

(yellow) are assembled into a network as indicated by their pairwise

interactions. (b) The expansion p-value (pe) are calculated among the

expansion-candidate genes, then genes with pe < 0.05 will be further

evaluate and added into and expand the network, one gene at a time.

Then (c) the expansion score (e) are calculated for the candidate

expansion genes; then, the highest-scored gene is added to the

network; this process is repeated until all candidates are added or being

halted (not adding all candidates). And (d), after completing the

expansion, the statistical significance of the rankings are recalculated for

the expanded network.

SUPPLEMENTARY FIGURE 2

WINNER filtering of candidate genes for network expansion. Red nodes

represent seeded genes, open nodes represent candidate expansion

genes, black lines represent interactions between two seeded genes,

and gray lines represent interactions between one seeded gene and one

expansion gene or between two expansion genes. Candidate genes for

network expansion were filtered via two tests: (1) the likelihood of the

candidate expansion gene (E.Gene) having a seeded interaction relative

to its total number of interactions (bottom left table), and (2) the

likelihood of the candidate expansion gene having seeded interactions

relative to the seeded interactions of its most similar seeded gene

(S.Gene), with similarity determined by node degree (bottom right table).

SUPPLEMENTARY FIGURE 3

WINNER ranking of the network of Alzheimer’s disease pathways in

KEGG release 50. The network graph was constructed with Cytoscape

(Shannon et al., 2003) version 3.6.0 and the force-directed layout; the

size of the node represents the WINNER score.

SUPPLEMENTARY TABLE 1

WINNER ranking for genes in cardiac regeneration dataset. The table

includes gene symbol, the indication of whether a gene is a seeded (S)

or expanded (E) gene, and WINNER score.

SUPPLEMENTARY TABLE 2

Gene-gene interaction network in the cardiac regeneration dataset.

SUPPLEMENTARY TABLE 3

WINNER ranking for genes in triple negative breast cancer (TNBC)

dataset. The table includes gene symbol, the indication of whether a

gene is a seeded (S) or expanded (E) gene, WINNER score, and p-value.

SUPPLEMENTARY TABLE 4

Gene-gene interaction network in triple negative breast cancer (TNBC)

dataset.

SUPPLEMENTARY VIDEO 1

The .cys (cytoscape) file of the regulatory (r-type) pathway-to-pathway

network in the triple negative breast cancer study.
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Artificial intelligence (AI) has played a crucial role in advancing biomedical

sciences but has yet to have the impact it merits in regulatory science. As

the field advances, in silico and in vitro approaches have been evaluated as

alternatives to animal studies, in a drive to identify andmitigate safety concerns

earlier in the drug development process. Although many AI tools are available,

their acceptance in regulatory decision-making for drug e�cacy and safety

evaluation is still a challenge. It is a common perception that an AI model

improves with more data, but does reality reflect this perception in drug safety

assessments? Importantly, a model aiming at regulatory application needs to

take a broad range of model characteristics into consideration. Among them

is adaptability, defined as the adaptive behavior of a model as it is retrained

on unseen data. This is an important model characteristic which should be

considered in regulatory applications. In this study, we set up a comprehensive

study to assess adaptability in AI by mimicking the real-world scenario of the

annual addition of new drugs to the market, using a model we previously

developed known as DeepDILI for predicting drug-induced liver injury (DILI)

with a novel Deep Learning method. We found that the target test set plays

a major role in assessing the adaptive behavior of our model. Our findings

also indicated that adding more drugs to the training set does not significantly

a�ect the predictive performance of our adaptive model. We concluded that

the proposed adaptability assessment framework has utility in the evaluation

of the performance of a model over time.

KEYWORDS

adaptability, AI, deep learning, drug-induced liver injury (DILI), drug safety, risk

assessment, regulatory science
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AI in regulatory sciences

The term Artificial Intelligence (AI) refers to the ability

of a computer system to learn from past data to predict

future outcomes. Machine Learning (ML), a subset of AI,

refers to the study and use of computer algorithms that

automatically improve in making predictions or decisions

based on their experiences and interactions with the training

data (Gupta et al., 2021). Deep Learning (DL), a subset

of ML, mimics the cognitive behaviors associated with

the approach the human brain would take in learning

and problem-solving of data-intensive problems (Gupta

et al., 2021). Although AI has gained momentum in recent

advancements within the biomedical field, especially in

areas like drug safety evaluation and assessment, from a

regulatory science perspective AI has yet to have the impact

it merits.

Regulatory science is the science of developing new

tools, standards, and approaches to assess the safety, efficacy,

quality, and performance of FDA-regulated products (FDA,

2021). The main role of regulatory science is to certify

the safety, proper labeling, and efficacy of food, drug and

cosmetic items, like mandating food standards for packaging

and quality, and regulating cosmetic products and medical

devices (Patel and Miller, 2012). Despite being a critical

component in the continued evolution of our approaches to

certifying the safety and quality of food and medical products,

regulatory science research has yet to have the impact it merits

(Hamburg, 2011).

As the field of regulatory science advances, in silico

and in vitro approaches have been extensively evaluated as

alternatives to some animal studies, in a drive to identify

and mitigate safety concerns earlier in the drug development

process (Hamburg, 2011). AI and DL tools have begun to

play a crucial role in the advancement of computer-aided

drug discovery, design, and development (Gupta et al., 2021),

specifically for the study of drug safety and efficacy. DL is

arguably the most advanced ML approach that frequently

outperforms conventional ML approaches (Slikker et al., 2012;

Gupta et al., 2021; Anklam et al., 2022). DL usually consists of

multiple layers of neural networks which can be constructed

and connected in diverse ways, giving rise to a broad range

of methodologies. As a result, DL has become the first-choice

algorithm in regulatory science research due to its diversity and

superior performance.

Regulatory frameworks and the
initiatives benefiting from AI

As interest in the use of AI within scientific and clinical

research has grown, the global government agencies such as

the European Medicines Agency, the European Food Safety

Agency, the Unites States National Institute of Standards and

Technology (NIST), the US Food and Drug Administration

(FDA), and the United States Congress have worked to

strengthen the guidance on how to safely implement the use

of AI as software tools and medical devices. In 2021, the US

House of Representatives introduced the FDA Modernization

Act, H.R. 2565 (Text-H.R.2565-117th Congress (2021–2022),

2021) and S.2952 (Text-S.2952-117th Congress (2021–2022),

2021), intended to reform the drug approval process and

drive the use of non-animal testing methods. In June 2022,

the FDA Modernization Act as was passed as an additional

provision, Section 701 (Text-H.R.7667-117th Congress

(2021–2022), 2022), in a larger legislative package of FDA-

related reforms known as the Food and Drug Amendments of

2022, H.R. 7667 (Text-H.R.7667-117th Congress (2021–2022),

2022). NIST has released several whitepapers providing

guidance on how to properly implement AI in regulatory

sciences like the 116th Congress AI in Government Act

of 2020 (Text-H.R.2575-116th Congress (2019–2020),

2020) and the 117th Congress GOOD AI Act of 2021

(Text-S.3035-117th Congress (2021–2022), 2022).

The FDA has made major strides in guiding developmental

and more recently computational opportunities within

regulatory science through programs like the Drug

Development Tool Qualification Programs (U. S. Food andDrug

Administration, 2021a) and the FDA’s Predictive Toxicology

Roadmap (U. S. Food and Drug Administration, 2017), as

well as many initiatives at the Center for Drug Evaluation and

Research (CEDR) and for the first time an AI/ML specific Action

Plan named “Artificial Intelligence/Machine Learning (AI/ML)-

Based Software as a Medical Device (SaMD) Action Plan” has

been instituted by the Center for Devices and Radiological

Health (CDRH) (U. S. Food and Drug Administration, 2019b,

2021b).

In 2016 the FDA passed the Cures Act which defined a

three-stage qualification process that allowed the use of qualified

Drug Development Tools (DDTs) across drug development

programs (U. S. Food and Drug Administration, 2021a). DDTs

are methods, materials, or measures that have the potential

to facilitate drug development. There is a total of four DDT

Qualification Programs (U. S. Food and Drug Administration,

2021a). A qualified DDT has been determined to have a

trusted specific interpretation and application within drug

development and regulatory review for the qualified context

of use. Once qualified, DDTs are made publicly available and

can generally be included in Investigational New Drug (IND),

New Drug Application (NDA), or Biologics License Application

(BLA) submissions without requiring the FDA to reconsider or

reconfirm its suitability (U. S. Food and Drug Administration,

2017, 2021a,c). The four programs, Animal Model, Biomarker,

Clinical Outcome Assessment (COA), and the newest addition

the Innovative Science and Technology Approaches for New

Drugs (ISTAND) Pilot Program, rely on a context of use
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statement. The Context of use statement is one of the most

important parts of the qualification process. The context of

use should describe all elements that characterize the manner

and purpose of use for the DDT being submitted (U. S. Food

and Drug Administration, 2021a). Once qualified the context

of use will define the boundaries that justify to others where

they can use the qualified DDT. The ISTAND Pilot Program

(U. S. Food and Drug Administration, 2021c) was developed

to expand the current types of DDTs by encouraging the

development and acceptance of DDTs that are outside of the

scope of existing programs but are still novel approaches to

drug development and acceptable for regulatory use. Once a

new model is considered qualified by the FDA for a specific

context of use, industry and other stakeholders may use it for the

qualified purpose during product development without the need

for FDA reviewers to re-review the underlying supporting data

(U. S. Food and Drug Administration, 2017, 2021a,c).

In December of 2017 the FDA’s Toxicology Working

Group published the FDA’s Predictive Toxicology Roadmap

(U. S. Food and Drug Administration, 2017), a six-part

framework outlining Agency priorities and engagement in

predictive toxicology, and identifying current toxicology issues

related to FDA-regulated products. The roadmap describes

the FDA’s current thoughts on practical ways to incorporate

the development and evaluation of emerging toxicological

methods and innovative technologies into the FDA regulatory

review process. The six-part framework moves to enhance

FDA engagement in the science of toxicology through the

organization of a senior-level Toxicology Working Group

that will help identify areas where research is needed, assist

with efforts to reduce duplication and increase collaboration

inside and outside the FDA through the encouragement of

frequent communication and fostering collaborations across

sectors and disciplines both nationally and internationally

(U. S. Food and Drug Administration, 2021a).

Adaptability of AI in regulatory
science

Although there are several interpretations of adaptability

and adaptive AI in the field, within this article we define

adaptability as the study of the adaptive behavior of a model as

it is retrained on unseen data. An adaptive model is a model that

has the ability to continuously learn and change as it is used,

meaning as time goes on the same question will not yield the

same results as the model learns to better address the problem.

A locked model is trained, developed, and tested to produce the

best version of the model and once the model is launched for

public or private use it should produce the same results every

time the same input is used.

The AI/ML specific action plan was a response to a

discussion paper published by the FDA in April of 2019 with a

request for stakeholder feedback on the potential approach to the

premarket review of AI and ML driven software modifications

for Software used as a Medical Device (SaMD) (U. S. Food

and Drug Administration, 2019b, 2021b). SaMD (Health et al.,

2018) is “software intended to be used for one or more medical

purposes that perform these purposes without being part of

a hardware medical device” as defined by the International

Medical Device Regulators Forum (IMDRF) (U. S. Food and

Drug Administration, 2019a). As stated in the proposed plan,

the FDA has cleared or approved several AI/ML-based SaMDs,

but to date, SaMDs have typically only included algorithms that

are “locked” prior to the systems or software’s launch to market.

Any proposed algorithm changes to a “locked” algorithm

will likely require an FDA premarket review, especially if

those changes are beyond the original approved authorization

(U. S. Food and Drug Administration, 2019b). However,

some algorithms have the capability and need to adapt over

time through continuous learning from real-world experience

after distribution.

The advantage and drawback, depending on the

circumstance, of a “locked” algorithm is the fact it will not

continually adapt or learn from its post market use, this

feature is important in some instances but occasionally an

adaptive algorithm is needed. The newly released AI/ML-

Based SaMD Action Plan outlines five actions that the FDA

intends to take to advance the use of AI/ML based software

within regulatory science. The first of which is tailored

toward the further development of adaptive AI and ML

algorithms within the regulatory framework through the

“issuance of Draft Guidance on the Predetermined Change

Control Plan” which includes SaMD Pre-Specifications (SPS),

where manufacturers describe “what” aspects they intend

or anticipate modifying through continuously learning,

and Algorithm Change Protocol (ACP) which explains

“how” the algorithm will learn and change while remaining

safe and effective (U. S. Food and Drug Administration,

2021b). The four other actions include encouraging the

development of good ML practices, fostering a patient-

centered approach through incorporating transparency to

users, supporting regulatory science efforts to evaluate and

improve ML algorithms; and working with stakeholders who

are piloting the Real-World Performance (RWP) process for

AI/ML-based SaMD.

Programs like ISTAND and the AI/ML-based SaMD Action

Plan help lay the foundation for methodologies and tools to

advance the use of computation within regulatory science. To

test the assumption that drug safety models improve as more

data is added to the training set, we set up a comprehensive

study to mimic the real-world scenario of annually adding novel

drugs to the market, using a model we previously developed for

assessing drug-induced liver injury (DILI), known as DeepDILI

(Li et al., 2021). In using this approach, we addressed two

important questions: First, did themodel’s performance improve
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or decline as more data was added? Second, did the context of

use change as the model adapted? Our evaluation followed the

real-world scenario where a model was developed based on the

drugs approved in the early years (before 1997) and assessed with

the drugs approved thereafter (after 1997).

DeepDILI: A deep learning model to
evaluate drug-induced liver injury in
humans

Evaluating DILI has been a persistent challenge for the

past 60 years and continues to be the leading cause of toxicity

failures in pharmaceutical development (PoPPer et al., 1965;

Zimmerman, 1999; Van Norman, 2019). In our previous study,

we developed an AI drug safety model, known as DeepDILI

(Li et al., 2021), a deep learning-powered prediction model

designed to identify drugs with DILI potential in humans

solely based on chemical structure information. DeepDILI was

created by combining model-level representation generated

from five conventional ML algorithms [k-nearest neighbor

(kNN), logistic regression (LR), support vector machine

(SVM), random forest (RF), and extreme gradient boosting

(XGBoost)] with a deep learning framework usingMold2 (Hong

et al., 2008) chemical descriptors. With DeepDILI, we aimed

to evaluate whether the DILI potential of newly approved

drugs could be predicted by accumulating knowledge from

previously approved drugs. For that reason, the DeepDILI

model was trained with 753 drugs released to the market

prior to 1997 and evaluated on the 249 drugs approved in

1997 and thereafter. Upon evaluation the model yielded an

accuracy of 68.7%. In addition, DeepDILI was compared with

a published DL DILI prediction model using three external

validation sets, resulting in the DeepDILI model achieving

better results with two data sets and comparable result

with one.

Adaptability of DeepDILI: An
assessment based on a real-world
scenario

To explore the adaptability of an AI solution for drug

risk, we implemented a time-split based adaptability framework

using our DeepDILI prediction model (Li et al., 2021). We

utilized our DILI Severity and Toxicity (DILIst) dataset, which

is currently the largest binary human DILI classification data

set (Thakkar et al., 2020). The 1,002 drugs from DILIst were

first split based on the drugs’ approval year; 753 drugs with an

approval year before 1997 were used for model development

and 249 drugs with an approval year after 1997 were used

for testing. To implement a time-split adaptability framework

analysis, the 249 drugs (with an approval year of 1997–2019)

were split into five chronological groups or buckets of relatively

the same size (Figure 1). Drugs approved from 1997 to 1998

were put into bucket 1, 1999 to 2001 in bucket 2, 2002 to 2004

in bucket 3, 2005 to 2007 in bucket 4, and 2008 to 2019 into

bucket 5, with 53 (36+/17–), 44(29+/15–), 46(24+/22–), 45

(23+/22–), and 61 (38+/23–) drugs, respectively in each bucket

(Figure 1). DILI positive and negative are labeled as “+”and

“–”, respectively.

The adaptability of DeepDILI was assessed by adding drugs

from each of the previously mentioned buckets by year into the

training set to develop adaptive DeepDILI models (Figure 2A).

The new training set was used to develop a new and evolved

DeepDILI model. More in depth details about the model

development can be found in our previous DeepDILI work

(Li et al., 2021). To mimic the real-world scenario of annually

adding novel drugs to the market, we increased the number

of new drugs by stepwise and chronologically adding each

bucket of drugs. Through this method, there was at most four

buckets of drugs added to the initial locked training set (i.e.,

the 753 drugs approved before 1997) and one bucket used

for evaluating the performance of the adaptive models. For

example, if bucket 5 containing drugs approved from 2008

to 2019 was used as the test set, the adaptative models were

developed as follows (Figure 2B). The first adaptative model

was developed with the locked training set (602 drugs approved

before 1997) in addition to the new drugs from bucket 1 (53

drugs approved in 1997 and 1998) and evaluated with bucket

5 (61 drugs approved in 2008 to 2019). The second adaptive

model was developed with the locked training set in addition

to the new drugs from bucket 1 and bucket 2 (44 drugs

approved in 1999 to 2001) and evaluated with bucket 5. The

third adaptive model was developed with the locked training

set in addition to the new drugs from buckets 1 through 3 (46

drugs approved in 2002 to 2004) and evaluated with bucket

5. The fourth adaptive model was developed with the locked

training set in addition to the new drugs from buckets 1 through

4 (45 drugs approved in 2005 to 2007) and evaluated with

bucket 5. Additionally, the performance of the four adaptive

models were compared with that of the initial DeepDILI model

with the test bucket, which in this case is bucket 5. This

process was reiterated five times. Each time a different bucket

served as the new test set and all remaining buckets were

chronologically added to the training set as described above.

The data and code are available through https://github.com/

TingLi2016/Adaptability.

To assess the adaptative nature of DeepDILI, seven

performance metrics were compared between the locked and

adaptive DeepDILI models. We calculated seven performance

metrics to evaluate the performance of the model: the area under

the receiver operating characteristic curve (AUC), accuracy,

sensitivity, specificity, F1, Matthew’s correlation coefficient
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FIGURE 1

Data preparation: the data set was adopted from the previous DeepDILI study. The DeepDILI test set was split into five buckets based on the

information of drugs’ approval year. DILI positive and negative was labeled as “+”and “–”.

FIGURE 2

Adaptability Assessment Framework. (A) General framework of the adaptive model development, where the DeepDILI model adapts to new data

by incorporating more data in the initial training set; (B) One iteration of the adaptability assessment process. In this iteration, bucket 5 was used

as the test set, and the other four buckets served as the new drugs, that were chronologically and incrementally added to the initial training set.

The process iterates five times as each bucket served as a test set.
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FIGURE 3

MCC distribution of the locked DeepDILI and adaptive DeepDILI models: the red triangle is the MCC of locked DeepDILI and the black dots

represent the MCCs of the adaptive DeepDILI models for every test bucket. For example, 1997_1998 means that the tested drugs were approved

in 1997 and 1998.

(MCC), and balanced accuracy (BA), were calculated using the

following formulas:

True Positive (TP), True Negative (TN), False Positive (FP),

and False Negative (FN)

accuracy =

TP + TN

TP + TN + FN + FP
(1)

sensitivity =

TP

TP + FN
(2)

specificity =

TN

TN + FP
(3)

F1 =

2TP

2TP + FP + FN
(4)

MCC =

TP∗TN − FP∗FN√
(TP + FP)∗ (TP + FN)∗ (TN + FP)∗ (TN + FN)

BA =

sensitivity+ specificity

2
(5)

MCC ranges from −1 to 1, with extreme values −1 and 1

representing perfect misclassification and perfect classification,

respectively. All the other sixmetrics range from 0 to 1; a score of

1 indicates the model makes correct decision on every test case.

Thus, the higher value the better. Although we evaluated seven

metrics for the locked and adaptative DeepDILI models, it was

common to find that one model had better performance in some

metrics but may be inferior to other metrics during the model

comparison. Therefore, we selected MCC as the main metric,

which has proven to have advantages in the binary classifications

for an unbalanced data set (Chicco and Jurman, 2020; Chicco

et al., 2021).

Key questions in adaptability assessment
for the DeepDILI model

Has the model performance improved?

Figure 3 illustrates the comparison of the MCCs for the

adaptive models (marked by the black dots) to the MCCs of

the locked model (marked by the red triangles) for all five test

sets, buckets 1–5. The locked DeepDILI model achieved the

highest MCC of 0.538 and 0.436 in comparison to the adaptive

models in the same test sets for bucket 2 (1999 to 2001) and

bucket 4 (2005 to 2007), a comparable MCC of 0.376 and 0.106

in comparison to the adaptive models in the same test sets for

bucket 1 (1997 to 1998) and bucket 5 (2008 to 2019), and the

lowest MCC of 0.213 in comparison to the adaptive models in

the same test sets for bucket 3 (2002 to 2004). Thus, we found

that bucket 3 (2002 to 2004) was the only bucket in which the

adaptive models MCC improved, as more drugs were added,

in comparison to the locked DeepDILI model. The same trend

was observed for the accuracy and F1, but a slight variance

was found in the AUC, BA, sensitivity and specificity. Detailed

information for these seven performance metrics can be found

in Supplementary Table 1.

How does the performance of the model adapt
as the number of drugs increases?

To investigate whether the model performance was

positively associated with the increasing number of drugs in

the training set, we assessed the MCCs of the locked DeepDILI
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FIGURE 4

The trend of MCC among the locked DeepDILI and adaptive DeepDILI models within each buckets test set: for example, (A) showed the MCC

trend of the locked DeepDILI model (labeled DeepDILI) and four adaptive DeepDILI models (labeled by the added drugs’ approval year) on the

test set with the drugs approved in 1997- and 1998. The following 4 sub-figures (B–E) follow this exact trend with their corresponding years.

model (labeled as DeepDILI) and individual adaptive DeepDILI

model for each test set (Figure 4). The locked DeepDILI

model, which has the smallest number of drugs in the training

set as compared to the adaptative DeepDILI models, was

used as a baseline. In Figure 4A, the MCCs of the adaptive

DeepDILI models for the test set of bucket 1 (1997 to 1998)

decreased as more drugs were added to the training set. In

Figures 4B,D, the MCCs of the adaptive models for the test

sets of buckets 2 (1999 to 2001) and 4 (2005 to 2007) presented

as a wave shape as more drugs were added to the training

set. In Figures 4C,E, the MCCs of the adaptive models for

the test sets of buckets 3 (2002 to 2004) and 5 (2008 to 2019)

exhibited a relatively flat trend as more drugs were added to

the training set, indicating that as more drugs were used in

the training, the performance of the adaptive models did not

improve. Thus, there is no positive relationship between the

model performance and the number of drugs in the training

set. In addition, no general pattern was found in the adaptive

models performance as we increased the number of drugs in the

training set.

What additional factors influence the models’
performance?

As the performance of the models adapted to the addition

of new drugs, we observed the average MCC varied from

one test set to another (Supplementary Table 1). The test set

of bucket 2 (1999 to 2001) achieved the highest average

MCC of 0.379, while bucket 5 (2008 to 2019) yielded the

lowest average MCC of 0.031. The test sets of buckets 1

(1997 to 1998), 3 (2002 to 2004), and 4 (2005 to 2007)

yielded similar average MCCs of 0.235, 0.243, and 0.213,

respectively. This indicates that different test sets presented

various levels of challenges for DILI prediction, showing that

the properties of the test set data are a key factor in the

model’s performance.
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Discussion

Although AI is promising, there is still work to do; a

comprehensive assessment of the adaptive behavior and context-

of-use of AI models for regulatory application is required. As

two important aspects of regulatory significance, especially for

the application of AI, the applicability domain and context

of use play a significant role in enhancing AI solutions

for risk assessments within the regulatory arena. On every

occasion, the context of use should clearly convey to users

where the model is best utilized as well as whether the model

is intended to complement or replace current technologies

(Anklam et al., 2022), while the applicability domain outlines

how the model is used through defining best practices

(Anklam et al., 2022).

When it comes to using adaptive models and assessing

their adaptive behavior there are a number of strategies and

approaches being used across the field of AI (Groce et al., 2002;

Yang et al., 2005; Xiao et al., 2016; López and Tucker, 2018).

Currently, a random split cross-validation model is considered

the ML standard for model building and evaluation (Morita

et al., 2022). Random split cross-validation is often found

to be overoptimistic in comparison to real-world situations,

while a time-split approach is considered suitable for real-world

prediction (Morita et al., 2022). In this study, we proposed

a time-split adaptability framework approach to exploring the

adaptive behavior of an AI-based solution for drug toxicity and

risk assessments within regulatory science. In using the time-

split approach, we were able to discuss two important questions:

(1) Did the models performance improve or decline as more

data was added? And (2) Did the context of use change as the

model adapted?

Through the real-world scenario of annually adding new

drugs to the market to retrain our model, we found that the

target test set plays a major role in the adaptive behavior

of our model. Our findings suggest that regardless of the

individual model performance, the average MCC was found to

vary from one test set to another. This indicates that different

test sets possess different levels of challenge for prediction,

demonstrating that the target test set appears to be the most

important factor in performance. The context of use for our

DeepDILI model was the same for the locked and adaptive

models. DeepDILI aims to flag the human DILI potential of

DILI positive drugs using the chemical structure that have a

molecular weight lower than 1,000 g/mol. Since these criteria

were used to screen the drugs for the initial model that our

adaptive framework was remodeled from our context of use did

not change as the model adapted to “new” data. Although a

time-split approach is seen to be better for real-world prediction,

a major caveat of this approach are the limitations with

respect to the amount of usable or available data for model

training, development, and testing. In future studies, it would

be beneficial to assess the application of our adaptive framework

to other types of predictive models to determine their adaptive

behavior. Since drug induced organ injury is a leading cause of

drug withdrawals, it would be beneficial to see how our locked

and adaptive model frameworks perform when used on other

organ systems.

Our results indicated that adding more drugs to the

training set did not substantially contribute to the performance

of the adaptive DeepDILI model. Overall, based on these

findings we conclude that the proposed adaptability assessment

framework has utility in the evaluation of a model’s adaptive

performance over time, which would greatly support the

advancement of AI-based models in regulatory science. Using

comprehensive assessments to evaluate the adaptive behavior

and context-of-use of AI based safety evaluation and risk

assessment models, whether locked or adaptive, can have

a positive impact on decision making within regulatory

science. Currently, reviewers utilize animal pharmacology and

toxicology data, manufacturing information, clinical protocols

and any past knowledge of the compound to assess the safety

of a new drug. The development and parallel use of alternative

approaches to identify and signal different safety concerns

earlier in the review process are essential to the future of

regulatory science.
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Representing bacteria with
unique genomic signatures

Diem-Trang Pham and Vinhthuy Phan*

Department of Computer Science, University of Memphis, Memphis, TN, United States

Classifying or identifying bacteria in metagenomic samples is an important

problem in the analysis of metagenomic data. This task can be computationally

expensive since microbial communities usually consist of hundreds to

thousands of environmental microbial species. We proposed a new method

for representing bacteria in a microbial community using genomic signatures

of those bacteria. With respect to the microbial community, the genomic

signatures of each bacterium are unique to that bacterium; they do not exist

in other bacteria in the community. Further, since the genomic signatures of

a bacterium are much smaller than its genome size, the approach allows for

a compressed representation of the microbial community. This approach uses

a modified Bloom filter to store short k-mers with hash values that are unique

to each bacterium. We show that most bacteria in many microbiomes can be

represented uniquely using the proposed genomic signatures. This approach

paves the way toward new methods for classifying bacteria in metagenomic

samples.

KEYWORDS

metagenomics, Bloom filter, bacteria detection, NGS analysis, k-mers

1. Introduction

Metagenomics is the study of analyzing genomes contained in environmental

samples. Recent metagenomic studies revealed that the knowledge of the microbial

composition in the human gut shows certain complexmechanisms of disorders of human

health (Handelsman et al., 2007), such as diverse as diabetes, depression and rheumatoid

arthritis. And although the dysbiosis has been proved to link to the gastrointestinal

tract (Eloe-Fadrosh and Rasko, 2013), it can be on any exposed surface or mucus

membrane, such as the skin or the respiratory system. This variation can impact the

human health (Martín et al., 2014). A challenge in metagenomics that is caused by

large and complex metagenomic data is the identification and classification of bacteria

in microbial communities that consist of thousands or more environmental microbial

species (Teeling and Fo, 2012; Sharpton, 2014). A number of approaches have been

developed, including alignment reads to reference genomes, analyzing taxonomically

informative gene markers, clustering sequences, assembling sequences into genomes and

using k-mer based approach. In any approach, it requires a set of reference genomes as

a database or an index. In alignment approach, the metagenome sequences (or reads)

from the environment are aligned to the reference genome database. In k-mer based

approach, an index is created from k-mers of the reference genomes, and this index

is used in identification or profiling. While alignment approach has been shown to be
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accurate, they require large amounts of time and resources.

There are many approaches that utilize gene markers or

k-mer have been introduced to reduce the running time

while still achieving the high accuracy (Lindgreen et al.,

2016).

A Bloom filter is a probabilistic data structure that provides

very fast membership queries. This useful data structure

has been used in several applications in bioinformatics and

metagenomics. FACS (Stranneheim et al., 2010) creates a Bloom

filter for each reference genome and inserts all k-mers in

the filter. Later in query, if a match was found for a k-

mer, a match score is computed and it has to surpass a

threshold to be classified to a reference genome. BFCounter

(Melsted and Pritchard, 2011) introduces an application of

Bloom filter to count the k-mers efficiently. BioBloom tool

(Chu et al., 2014) applied Bloom filter to create a filter-

based sequence-screening tool which was claimed to be faster

than BWA, Bowtie 2 and FACS. And another research in

building Bloom filters (Pellow et al., 2017) with one-sided

k-mers, two-sided k-mers and sparse k-mers data structures

improves the performance of the Bloom filter, which will

be useful in genome assembly, sequence comparison and

sequence search applications. Sequence Bloom Tree (Solomon

and Kingsford, 2016), another application of Bloom Filter, is

a method for querying thousands of short-read sequencing

in RNA-seq experiments for expressed isoforms. This method

was able to search large collections of RNA-seq experiments

for a given transcript order of magnitude faster than existing

approaches.

Most of the existing work use one Bloom filter for each

genome, this may not efficiently represent a microbiome

or community. In this work, we introduce a method that

uses a modified Bloom filter to store unique signatures

of bacteria. As such, it can be used to provide unique

representation of bacteria in microbiomes. We also show

that this method can be used to retrieve species in two

microbiomes.

2. Methods

Similar to other existing profiling methods, our

method consists of two procedures. The first procedure

builds an index based on the genomes of all the bacteria

that might exist in metagenomic samples. The index

stores unique genomic signatures of each genome in the

microbiome. Once an index is built, it can be used to

identify, classify or profile metagenomic samples. Given

reads in a metagenomic sample, the second procedure,

known as the querying phase, makes a query for each

read to identify which bacterial genome the read may

come from.

2.1. Set membership determination with
bloom filters

A Bloom filter is a space-efficient probabilistic data structure

used for set membership queries. Technically, a Bloom filter is

an M-bit array B, which is initially all zeros, together with a set

of n hash functions. To prepare a Bloom filter for identifying

elements in a universe of elements, each element xi is hashed to

obtain n hashed values h1(xi), · · · , hn(xi). Each entry B(hj(xi)) is

set to 1.

To check whether an item y exists in B, n hash values

h1(y), · · · , hn(y) are computed. If all values are 1, the query

answer is True. If not, it is False.

In membership querying, a Bloom filter does not make a

false negative. A query to an element in the universe, which is

stored in the filter, always correctly returns True. A false positive,

however, can happen. Due to the nature of simply setting all

hashed entries to 1 in the filter building phase, it is possible that

the query of an element z that is not stored in the filter actually

returns True. It is known that to minimize the probability of

getting false positives, the optimal number of hash functions

should be b ln 2
m , where b is the size (number of bits) of the filter,

and m is the number of elements stored in the filter (Bloom,

1970).

2.2. Finding k-mers with genome-unique
hash values

Given a set of referenced bacterial genomes that might exist

in the metagenomic environment of interest, an index, F, which

is a modified Bloom filter, is built to store unique genomic

signatures of each genome.

The index, F, is an array with m entries. During the

processing of referenced genomes, k-mers from these genomes

are hashed into F using n randomly generated hash functions.

A k-mer x is hashed into n entries h1(x), · · · , hn(x) of F. After

all referenced genomes are processed, an entry of F with a

positive value g corresponds to a k-mer, whose hash values are

unique to genome g. This allows F to be used in ways similar

to those of a Bloom filter to detect genomes that are present

in the metagenomic sample. The construction of F consists of

two main phases. In each phase, all genomes are sequentially

processed by Algorithm 1. In both phases, Algorithm 1 shares

a common goal: it attempts to identify k-mers with hash values

that are unique to the genome. It does this by going through each

k-mer of the genome and marking all n locations (determined

by n hash values) with dirty or with the genome id. A location

is dirty (set to -1) if two k-mers on two different genomes get

hashed to it. If a location is not dirty, it stores the id of some

genome. If a k-mer x of genome g1 is hashed to an entry that

holds the id of another genome, say g2, then that x is not unique
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1: positions = []

2: for k-mer k at position pos in genome gid do

3: unique = True

4: idx = []

5: for each hash function f do

6: v = f (k)

7: idx.append(v)

8: if F[v] 6= 0 and F[v] 6= gid then

9: unique = False

10: if unique then

11: if phase == 2 then

12: positions.append(pos)

13: for each value v in idx do

14: F[v] = gid

15: else

16: for each value v in idx do

17: F[v] = −1

18: if phase == 2 then

19: Reduce(F, gid, positions)

Algorithm 1. ProcessGenome(F, gid, phase).

and all entries h1(x), · · · , hn(x) of F are set to dirty. If x is

deemed unique, the genome id is stored in all of these entries.

Suppose that after Phase 1, genomes g1, · · · , gl are processed

sequentially in this order. Entries in F with values g1 may not

correspond to k-mers with unique hash values. To see this,

suppose k-mer x appears in both g1, k-mer y appears in g2, and

some of the hash values of x and y are the same. Because g2

is processed after g1, all the entries corresponding to the hash

values of y are set to dirty, but not all the entries corresponding

to the hash values of x are set to dirty.

It is, however, important to understand that after Phase 1,

entries in F with values gl will in fact correspond to k-mers

in genome gl with hash values unique to this genome. Since gl
is processed last, if an entry in F has value gl, it means some

k-mer in gl with hash values that do not collide with any k-

mer in all the other genomes that are already processed. Thus,

this k-mer has hash values that are unique; no other k-mer in

any other genome shares one of these hash values. Therefore,

when a genome is processed by Algorithm 1 after all of the

other genomes have already been processed, all of k-mers with

unique hash values in that genome are correctly marked in F.

This means that after Phase 2, when all genomes are processed

again by Algorithm 1, all k-mers with unique hash values in all

genomes will be correctly marked in F.

2.3. Query phase: Reads processing

Given reads from a metagenomic sample, the main task is

to identify which bacteria exist in the sample. This boils down

1: selected = [positions[0]]

2: for i = 1; i < len(positions); i = i+ 1 do

3: if selected[len(selected)− 1]+ ω < positions[i] then

4: selected.append(positions[i])

5: else

6: Let x be the k-mer at positions[i] in genome gid

7: for each hash function f do

8: F[f (x)] = −1

9: for each position p in selected do

10: Let x be the k-mer at p in genome gid

11: for each hash function f do

12: F[f (x)] = gid

Algorithm 2. Reduce(F, gid, positions).

to processing reads and determining which bacterial genomes

they most likely belong to. While all existing methods we are

aware of process all reads in the metagenomic samples, the

proposedmethod processes just enough reads to cover a fraction

of bacterial genomes. This typically results in choosing a small

random samples of reads for processing.

If a processed read belongs to a genome g and also contains

a k-mer x with unique hash values stored in F, there is a good

chance that the read will be correctly identified to belong to g.

The read is not recognized if the k-mer x has a sequencing error

or a genetic variant. A genetic variant can occur because the

genome of the bacterium in the sample is likely not the same

as the referenced genome of the same bacteria used to create F.

A processed read that does not belong to genome g might

also be mistakenly identified to belong to g if it has a sequencing

error or a genetic variant that results in a k-mer with hash

value(s) collide with one of the k-mers of g stored in F.

Given a read to be processed, all k-mers are passed into k-

mer processing to classify its gi. Let V be the set of classified gi of

all k-mers of the read. If V consists of only 0 and/or –1, then the

read is discarded. If, however, V consists of positive values, i.e.,

genome ids, then one of three different strategies can be used to

determine which genome the read belongs to.

2.3.1. Majority

If there is a positive number, g, in V with frequency greater

than 50%, then g is predicted to be the genome that contains

the read. If there is no such number, then the read is discarded.

This strategy is effective in the presence of significant amounts

of sequencing errors and/or genetic variants. In such cases, a

k-mer of the read can be misidentified to be a unique k-mer

of a different bacteria. But if there are not too many of such

mistakes, a majority of positive identification can identify the

correct genome.
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FIGURE 1

Read processing. The majority strategy predicts the read comes from G1. The First-hit strategy predicts the read comes from G2. The

One-or-nothing strategy discards the read.

2.3.2. First-hit

K-mers are processed sequentially.When the first k-mer that

has a positive hash value, g, is encountered, no additional k-mers

are processed. g is predicted to be the genome that contains the

read. This strategy is effective when k-mers stored in F are highly

unique so that the first hit is most likely correct.

2.3.3. One-or-nothing

If V has only one positive value, g, then g is predicted to be

the genome that contains the read. If this is not the case, the

read is discarded. This strategy is highly conservative. If there is

a disagreement, i.e., two genomes identified by different k-mers

of the reads, the read is discarded from consideration.

Figure 1 gives an example on how each strategy classifies a

read to a reference genome.

In order to optimize the running time of query phase, reads

are distributed to different cores for processing.

3. Results

3.1. Experimental setup

To assess performance of ourmethod, we used twomicrobial

communities, with included 457 and 2,850 reference genomes,

respectively. The first community consists of 457 reference

genomes, named S1, combined from three metagenomes

used by Mende et al. (2012) in a study of metagenomic

assembly. To create a set of reference genomes, we extracted

accession numbers from reads in these three metagenomes.

This information allowed us to retrieve from NCBI reference

genomes for the bacteria, from which the reads were created.

The second community, named S2, includes genomes used in

CAMI challenge (Sczyrba et al., 2017).

First, we show some statistics of the indexes of each reference

genome set. Second, we compare results on different querying

strategies. And finally, we also show the difference of indexes

when using different number of hash functions.

3.2. Representing bacteria using unique
signatures

We now report how the two microbial communities

can be represented by unique genomic signatures. For

the first set of bacterial genomes S1, we used 2 hash

functions, k-mer of length 31 and the size of the index is

8GB. The index was built in two phases. All 457 genomes

have unique signatures. Total number of signatures is

248,758,006. Minimum number of unique signatures

is 152 and maximum number of unique signatures

is 1,720,014.

As the more hash functions are used in building index,

the more hash values are computed for each k-mer and the

more unique it is. But that will also reduce the number of

k-mers with unique hash values for each genome. Although

larger genomes have a sufficient number of k-mers with

unique hash values, smaller genomes have only a few of

such unique k-mers. For this bacterial genome set S2, we

build two indexes with the same k-mer size and index size,

and only vary the number of hash functions to compare the

effect on querying performance when different number of

hash functions were used to build the index. Both indexes

are built in 1 phase. All the genomes have unique signatures.

Table 1 shows the total, the minimum, and the maximum

number of signatures of each index. We found that the 3-

hash-function index had fewer signatures than the 2-hash-

function index. This is likely because as more hash values were

computed, there was a higher chance of having collisions of

those hash values. Figure 2 shows the distribution of number

of unique signatures for each genome in genome set S2 in the

change of number of hash functions when building index for

set S2.

3.3. Querying

In order to evaluate the retrieval capability of our two

indexes, we downloaded two simulated samples for querying.We
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FIGURE 2

Number of unique signatures for each genome in genome set S2 in the change of number of hash functions.

TABLE 1 Comparison on number of signatures in the change of

number of hash functions when building index for set S2.

Number of hash functions Min Max Total

2 544 386,709 400,769,054

3 211 145,005 150,366,923

use the 10 species dataset by Mende et al. (2012) which consists

of genomic reads from 10 genomes in S1, and the RH_S001

dataset from Sczyrba et al. (2017) consists of 302 genomes

from S2. We will refer to these datasets as 10 species and

RH_S001 in subsequent discussions. Reads from 10 species and

RH_S001 are paired-end and were simulated with charateristics

of Illumina sequencing technology with length of 75 and 150 bp,

respectively. The 10 species dataset is used to query bacteria in

S1, and the RH_S001 is queried in S2.

Performance was measured in terms of precision, recall

and F1-score as accuracy of the predicting process. Precision is

computed as the number of correctly queried bacteria divided

by the total number of predicted bacteria. Recall is the number of

correctly queried bacteria divided by the total number of bacteria

that actually exist in the sample. F1-score is the harmonic mean

of precision and recall.

The 10 species sample is queried on index of set S1 using

majority strategy. We were able to query all 10 species, results

in recall of 100%. However, there are many incorrect querying,

this leads to low precision of 2.6%. The F1-score is 5%. We also

evaluated the performance of different querying strategies. As

TABLE 2 E�ect of di�erent number of querying strategies.

Query strategy Precision Recall F1-score

Majority 0.026 1.000 0.051

First-hit 0.026 0.990 0.051

One-or-nothing 0.028 0.987 0.053

TABLE 3 E�ect of di�erent number of hash functions.

Number of hash functions Precision Recall F1-score

2 0.316 0.601 0.414

3 0.296 0.601 0.396

described earlier, the majority query strategy looks at all k-mers

and picks the genome that shows up at least 50% among all k-

mers. The one-or-nothing query strategy picks a genome only if

it is the only genome predicted by all k-mers of the read. The

first-hit strategy picks the first genome that is predicted by some

k-mer of the read. Each of these strategies has its own pros and

cons. And the most appropriate strategy depends on the dataset.

Table 2 shows the performance resulted from each of the three

query strategies.

We found that the performance resulted from the three

query strategies was very similar. Both majority and first-hit

strategies had lower precision, but higher recall than one-or-

nothing. One-or-nothing, by design, is more conservative, and

therefore, should have fewer false positives, and higher precision

than the other two strategies.
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The RH_S001 sample is queried on the index of set S2 using

themajority strategy. There are 162 out of 302 genomes correctly

predicted. Only 5 genomes in the sample are missing as there

may have sequencing errors in the reads that causes wrong

prediction to other genomes. Another reason is that no read has

the exact unique signatures in the index. This leads to a precision

of 26%, recall of 97% and F1-score is 41%.

Table 3 shows the effect on querying performance when two

or three hash functions were used to build the index. We found

that using 2 hash functions to build an index resulted in a slightly

better overall performance than using 3 hash functions. While

recall rates were similar, precision rates were higher when 2 hash

functions were used. In this experiment, we used the majority

strategy, and having more signatures could be useful for this

querying strategy to reduce the false positive, which improves

the precision.

4. Discussion

We introduced a method for representing bacteria in a

microbial community uniquely. We showed that our method

could be used to query reads inmetagenomic samples. Amethod

for efficiently representing bacteria in a microbial community

would be useful for post-processing in order to have an accurate

identification of bacteria, which requires more analysis as well as

data interpretation on the query outputs. And due to the close

relationship between the microbiome and health, improving

the accuracy of bacteria identification would help to make

metagenomic analysis more meaningful in understanding the

human microbiome in health and disease. There is room to

find parameters that can improve the performance of the query

phase. Also, additional improvements can be made in the future

to determine these choices more appropriately under different

criteria.

Similar to most of other k-mer based approaches, when the

database consists of hundreds of thousands reference genomes,

it is challenging for the proposed method to obtain unique

signatures for some genome, especially very small genomes. This

method, however, can be promising for microbiomes that are

not too big, e.g., skin, oral, or gut microbiomes.
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Causality plays an essential role in multiple scientific disciplines, including

the social, behavioral, and biological sciences and portions of statistics and

artificial intelligence. Manual-based causality assessment from a large number

of free text-based documents is very time-consuming, labor-intensive,

and sometimes even impractical. Herein, we proposed a general causal

inference framework named DeepCausality to empirically estimate the causal

factors for suspected endpoints embedded in the free text. The proposed

DeepCausality seamlessly incorporates AI-powered language models, named

entity recognition and Judea Pearl’s Do-calculus, into a general framework

for causal inference to fulfill di�erent domain-specific applications. We

exemplified the utility of the proposed DeepCausality framework by employing

the LiverTox database to estimate idiosyncratic drug-induced liver injury

(DILI)-related causal terms and generate a knowledge-based causal tree

for idiosyncratic DILI patient stratification. Consequently, the DeepCausality

yielded a prediction performance with an accuracy of 0.92 and an F-score

of 0.84 for the DILI prediction. Notably, 90% of causal terms enriched by

the DeepCausality were consistent with the clinical causal terms defined

by the American College of Gastroenterology (ACG) clinical guideline for

evaluating suspected idiosyncratic DILI (iDILI). Furthermore, we observed a

high concordance of 0.91 between the iDILI severity scores generated by

DeepCausality and domain experts. Altogether, the proposed DeepCausality

framework could be a promising solution for causality assessment from free

text and is publicly available through https://github.com/XingqiaoWang/https-

github.com-XingqiaoWang-DeepCausality-LiverTox.
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Introduction

Causality is the study of the relationship between causes

and effects, which is the foundation of almost every scientific

discipline to verify hypotheses and uncover underlying

mechanisms (Pearl, 2009). Notably, causal inference plays an

essential role in medical practices to test scientific theories

and decipher the etiology for advancing pharmacovigilance,

optimize clinical trial designs, and establish real-world evidence

(Naidu, 2013; Mazhar et al., 2020; Zheng et al., 2020; Ho et al.,

2021). The conventional way to conduct causal inference relies

on randomized controlled trials (RCTs) (Zheng et al., 2020).

In randomized clinical trials, the test subjects are randomly

assigned to one of two groups: the treated group receiving the

intervention (e.g., drug) tested and the control group receiving

an alternative (e.g., placebo) treatment. Causality is established

if the clinical outcome is statistically significant in the treated

group over the control one. However, conducting a randomized

clinical trial is time-consuming, labor-intensive, expensive, and

sometimes even impractical.

Consequently, there has been growing interest in alternative

approaches, such as target trials based on observational data,

to improve the causality assessment in real-world applications

(Frieden, 2017; Gajra et al., 2020; Hernán, 2021). For example,

the U.S. Food and Drug Administration (FDA) released

guidance on a real-world evidence (RWE) program to create

a framework for evaluating the potential use of RWE to help

support the approval of a new indication for a drug already

approved under section 505(c) of the FD&C Act or to help

support or satisfy drug post-approval study requirements

(https://www.fda.gov/science-research/science-and-research-

special-topics/real-world-evidence). Under the 21st Century

Cures Act, the FDA is mandated to evaluate the potential use

of real-world data (RWD) and RWE to support the approval

of a new indication for a drug. Draft guidance has been issued

to address the generation of RWE, including the utilization

of claims and electronic health records (EHRs), two major

RWD sources, in support of regulatory decision-making. In

addition, the FDA has prioritized the creation of an RWE

Data Enterprise (the Sentinel System). An essential part of the

initiative is incorporating EHR data from about 10 million

individuals into the data infrastructure for FDA active drug

safety surveillance (https://www.fda.gov/news-events/fda-

voices/fda-budget-matters-cross-cutting-data-enterprise-real-

world-evidence).

In the past decade, the generation of EHRs has increased

substantially in the U.S., partly due to the Health Information

Technology for Economic and Clinical Health (HITECH)

Act of 2009, which provided $30 billion in incentives for

hospitals and physician practices to adopt EHR systems.

Whereas administrative claims data are highly structured, much

of the potentially useful information contained within EHRs

is unstructured, in the form of laboratory data, visit notes

(e.g., narrative descriptions of a patient’s signs and symptoms,

family history, social history), radiology reports or images, and

discharge summaries. EHRs contain rich clinical information

and complex relations in the data that may not be fully

harnessed using more traditional approaches. The ability of

EHRs to generate quality RWE depends on whether we can

address the challenge in curating and analyzing unstructured

data. In response, FDA seeks to incorporate emerging data

science innovations, such as natural language processing

(NLP) and machine learning, to establish the organizational

framework for ensuring high-fidelity, fit-for-purpose EHR data.

To inform the causal inference framework for EHR-based signal

detection (hypothesis generating), we will evaluate the emerging

approaches that have been proposed or tested.

Accumulated observational data provide tremendous

opportunities to promote target trials for causality

establishment. Thus, there is an urgent need to develop novel

statistical models to effectively estimate causal factors embedded

in the extensive free text-based observational data. Artificial

intelligence (AI) has made substantial progress in a variety of

fields, such as computer vision (O’Mahony et al., 2019), NLP

(Liu et al., 2021), speech recognition and generation (Hannun

et al., 2014), and decision-making (Shrestha et al., 2019).

Despite significant progress in AI, we still face a great challenge

in understanding the mechanisms underlying intelligence,

including reasoning, planning, and imagination (Schölkopf,

2019). Recent hype of AI-powered language models (LMs) and

advanced statistical measures seem to pave a promising way to

enhance the ability of AI in reasoning, such as causal inference

(Veitch et al., 2020; Wang et al., 2021). In our previous work,

we proposed a transformer-based causal inference framework

called InferBERT by integrating the A Lite Bidirectional

Encoder Representations from Transformers (ALBERT) (Lan

et al., 2019) and Judea Pearl’s Do-calculus (Wang et al., 2021).

The proposed InferBERT has been successfully applied for

causality assessment in pharmacovigilance and exemplified

estimation of the causal factors related to opioid-related acute

liver failure and tramadol-related mortalities in the FDA

Adverse Event Reporting System (FAERS) database. However,

there is still much space for improvement for InferBERT to

facilitate real-world applications. First, the proposed InferBERT

has only been used for structure-based data sets (e.g., FAERS),

limiting its application in the free text-based corpus. Although

we proposed a synthetic approach to transforming the different

clinical entities into a sentence-based representation, the

performance of the proposed InferBERT in free text needs to

be further investigated. Second, domain-specific knowledge was

not considered for causal inference, resulting in false positives

or introduction of Irrelevant causal factors.

In this study, we proposed a general AI-powered framework

called DeepCausality by fusing transformer, named entity

recognition (NER), and Judea Pearl’s Do-calculus for causal

inference from free text-based documents. To demonstrate
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FIGURE 1

The workflow of the study: General framework of the DeepCausality, case study with LiverTox, and idiosyncratic DILI (iDILI) patient stratification.

the validity of the proposed DeepCausality, we employed

the LiverTox database (https://www.ncbi.nlm.nih.gov/books/

NBK547852/) to estimate the drug-induced liver injury (DILI)-

related causal terms and further verified by using the American

College of Gastroenterology (ACG) clinical guideline for

idiosyncratic DILI (iDILI) (Chalasani et al., 2021). Furthermore,

we developed a causal tree based on verified causal DILI terms

and utilized it for iDILI patient stratification based on DILI

case reports.

Materials and methods

DeepCausality overview

The proposed DeepCausality is a general transformer-based

causal inference framework for free text, consisting of data

preprocessing, LM development, NER, and Do-calculus based

causal inference (Figure 1).

Data preprocessing

First, the corpus of free text-based documents was split

into sentences. Then, an endpoint was assigned to each

sentence based on the investigational causal question. For

example, suppose you investigate causal factors of lung cancer

etiology. The sentences describing the patient with lung cancer

and related symptoms and clinical outcomes were labeled as

positives, and vice versa. Consequently, we used D to denote

the preprocessed corpus of free text-based documents, where

di = (xi, yi) ǫ D indicates the i-th instance in the dataset D, i =

1,2, . . . , N, N (total number of instances), with xi (i.e., sentence)

and yi (i.e., endpoint) being the text sequence. We employed
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tf-idf [i.e., term frequency (tf)-inverse document frequency

(idf)] values to investigate the distribution of terms in the

corpus, which could be calculated based on the below formula,

tf − idf
(
t, d

)
= tf

(
t, d

)
∗

idf (t) (1)

tf
(
t, d

)
=

count of t in d

number of words in d
(2)

idf (t) = log(N/(df + 1)) (3)

where t, d, N denote term, documents, and number of

documents, respectively. The higher tf-idf value signified its

importance in the document and corpus.

Language model development

Conditional probability distribution among words (i.e.,

tokens) in the text corpus is the basis for causal inference.

LM uses various statistical and probabilistic techniques to

determine joint probability among the words in the corpus.

Specifically, a transformer-based LM could generate all joint

probability among tokens as a gigantic probabilistic model

using the Masked-Language Modeling (MLM) training

strategy, allowing casual assessment among all the variables

in the corpus. Two major types of transformer-based LM

architectures, Bidirectional Encoder Representations from

Transformers (BERT) (Devlin et al., 2018) and its derives

(Lan et al., 2019; Liu et al., 2019; Sanh et al., 2019; Clark

et al., 2020), and Generative Pre-trained Transformer

(GPT) models (Brown et al., 2020), currently dominate

the field. Furthermore, efforts have also been made to

develop transformers based on the domain-specific corpus

[e.g., BioBERT (Lee et al., 2020), ClinicalBERT (Huang and

Altosaar, 2019), SciBERT (Beltagy and Lo, 2019), LEGAL-BERT

(Chalkidis et al., 2020)] for performance enhancement in

specialized domains. Some reports have demonstrated that

domain-specific pre-training is a solid foundation for a wide

range of downstream domain-specialized NLP tasks (Gu et al.,

2021).

With the pre-trained LM, the conditional probability

distribution given free text is estimated by the LM-based

downstream task. The pre-trained LM computes the attention

between tokens. Then, the classification ([CLS]) special token

representing the semantic information of the whole sequence

is fed into the input layer of the downstream classification

model. The softMax layer is adopted as the output layer to

access the conditional probability distribution. We use the

following cross entropy loss function for the classification of

input text sequences:

LOSS(D) = −
∑N

1
(yi∗log

(
p (xi)

)

+

(
1− yi

)
∗log(1− p(xi))), i = 1, 2, . . . , N (4)

where p(xi) is the output of the classification model for text

sequence xi, which is a calculated probability of the predicted

class of xi. yi is the ground truth label of xi.

By training the classifier with dataset D, we can estimate

the conditional probability distribution P(endpoint|X), where

training dataset X = {x1, x2, . . . , xN }. Then, we use the model

to predict all the text sequences for each instance in the dataset

D. We denote the output of the classifier as p(xi), where p(xi) is

the probability of the endpoint presented for instance di.

Name entity recognition

According to the task field, our framework adopts a domain-

specific NER method, a text mining technique, to extract the

name entities in the free text. The NER method can predict the

span and category of name entities in the text according to the

task with a domain-specific NER method.

For each instance, di in dataset D, the NER method

recognizes all the name entities in the text sequence xi. Then,

we get the set of name entities neri corresponding to xi, where

neri= {neri1, neri2, . . . , neriM}, with M being the total number

of name entities in the text sequence xi. Next, we combined and

unified all the name entities in set nericorresponding to the text

in the extracted dataset D. As a result, we obtained the unique

name entity set NER, where NER =
⋃

neri, i = 1, 2, . . . ,N;

It is the union of neri. Then, the recognized name entities were

fed into the Do-calculus component of the framework as causal

factor candidates.

Do-calculus based causal inference

In our previous work, we performed causal inference on

structured data by using the Do-calculus mechanism to check

whether each feature in the structured data was the cause of

the endpoint. In this study, to perform causal inference on the

free text, we first extracted name entities in free text and then

considered these name entities as causality candidates to infer

potential causal factors.

In the proposed framework, the classifier model calculates

the conditional probability distribution of the endpoint given

the free text sequence. Then, the extracted name entities in each

instance sequence act as the endpoint’s candidate causal factors.

To empirically estimate the candidate name entities in each

instance causing the endpoint, we adopted Judea Pearl’s Do-

calculus framework (Tucci, 2013; Pearl and Mackenzie, 2018).

Do-calculus aims to investigate the interventional

conditional probability distribution of P[endpoint

= true|DO(ner)] by counterfactually changing the

appearance of the name entity ner. We use the conditional

probability distribution expectation to represent the

DO(ner) and NOT DO(ner). Suppose there exists a

statistically significant difference when comparing the

interventional conditional probability distributions of
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P[endpoint = true|DO(ner)] and P[endpoint = true|NOT

DO(ner)]. In that case, the causality relationship will

be established.

Based on the Classification Prediction p(xi) from

the developed classifier, the Do-calculus procedure was

performed to estimate the cause of the endpoint. The pseudo-

code of the name entity-based Do-calculus procedure is

shown below:

Input:Classification Prediction result p(x),

dataset D, NER results, statistic test threshold

thr

Output:Do-calculus results C

1. set C = {} // C is the set of

established causes

2. for ner in NER do // for each name entity

3. set S1 = {} // S1 contains all results of

DO (ner)

4. set S2 = {} // S2 contains all results of

NOT DO (ner)

5. for di in D do // for each instance in

the dataset

6. S1 ← p(endpoint|DO (ner) // probability of

DO (ner).

7. S2← p(endpoint|NOT DO (ner) // probability

of NOT DO (ner).

8. z-score = ztest (S1, S2) // perform z-test

based on S1 and S2

9. if z-score > thr then

10. C←ner // C consists of all

established causes

11. return C;

Algorithm 1. Name entity-based Do-calculus algorithm.

For all the extracted name entities, we applied the name

entity-based Do-calculus algorithm to check whether it was the

cause of the endpoint. For a name entity ner, if ner ǫ xi, we say

instance di meets the condition of DO (ner), while if ner xi,

then it doesn’t. For ner, we assigned the conditional probability

p[endpoint|DO (ner)] or p[endpoint|NOT DO (ner)] to sets

S1 and S2 respectively. S1 is the set of conditional probability

of DO (ner), while S2 consists of conditional probabilities of

those instances NOT DO (ner). We used the one tail z-test

to evaluate whether the probabilities in S1 were significantly

different to S2.

We perform one tail z-test between S1 and S2. If the p-value

is less than a threshold like 0.05, we view the ner as a cause of

the endpoint. To establish all the causal terms of the endpoint,

we evaluated every candidate name entity. The generated term

set C is the set of all the name entities that satisfy the statistical

significance test.

Case study: Causal inference of
idiosyncratic DILI based on LiverTox

Clinical knowledge of idiosyncratic DILI

iDILI is a rare adverse drug reaction, but common in

gastroenterology and hepatology practices. The symptoms

of iDILI have multiple presentations, characterized

from asymptomatic elevations in liver biochemistries to

hepatocellular or cholestatic jaundice, liver failure, or chronic

hepatitis (Chalasani et al., 2021). Causal factors associated

with iDILI recommended by ACG Clinical Guideline could

be divided into three types: host, environmental, and drug-

related factors (Chalasani et al., 2021). Specifically, host

factors include age, gender, pregnancy, malnutrition, obesity,

diabetes mellitus, co-morbidities (e.g., underlying liver disease),

and indications for therapy. Environmental factors include

smoking, alcohol consumption, infection, and inflammatory

episodes. Drug-related factors consist of the daily dose,

metabolic profiles, class effect and cross-sensitization, and drug

interactions and polypharmacy. Furthermore, the ACG clinical

guideline also suggested an algorithm to evaluate suspected

iDILI by integrating DILI-related clinical measurements and

iDILI-associated causal factors (Chalasani et al., 2021).

Data preprocessing of the LiverTox database

LiverTox R©, launched by the National Institute of Diabetes

and Digestive and Kidney Diseases (NIDDK) and the National

Library of Medicine (NLM), is a DILI atlas dedicated

to providing up-to-date, easily accessed information and

comprehensive clinical information on iDILI for both physicians

and patients (Hoofnagle, 2013). There are 1,095 drug records

in the LiverTox database, which are available at https://ftp.

ncbi.nlm.nih.gov/pub/litarch/29/31/. For each drug record, the

information was organized based on different sections, including

Introduction, Background, Hepatotoxicity, Mechanism of Liver

Injury, Outcome and Management, Case reports, Chemical and

Product Information, and References.

To demonstrate the utility of the proposed DeepCausality

framework, we employed drug records stored in the LiverTox R©

database. The purpose is to use our proposed DeepCausality

to estimate the causal factors related to iDILI. For each drug

record, we extracted the text from four sections, Introduction,

Background, Hepatotoxicity, and Mechanism of Liver Injury,

which are the major sections that describe the synthesized

knowledge on hepatoxicity. The DILI Likelihood score is

embedded in the hepatoxicity section. Each sentence except

the one that included the DILI likelihood score in these four

sections was considered as xi, and all the extracted sentences

were considered as D.

Domain experts developed the DILI likelihood score to

categorize drugs based on the likelihood of drugs associated

with the known potential of DILI for causing liver injury. The
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DILI likelihood score is largely opinion-based and derived from

published medical literature to categorize the possibility of the

drug causing idiosyncratic liver injury, including Category A –

well known, Category B – known or highly likely, Category C –

probable, Category D – possible, Category E – not believed or

unlikely, and Category X – unknown. We labeled each sentence

xi according to the DILI likelihood score. Specifically, if the

sentence xi from the drug with a DILI likelihood score was

either Category A or Category B, we assigned the sentence a

label yi as iDILI positives. Otherwise, the sentence was labeled

as iDILI negatives.

Language model selection

Considering the LiverTox database provided the

summarized knowledge on DILI mainly based on medical

literature, we selected BioBERT as the domain-specific language

model to develop DeepCausality. BioBERT was developed

on top of the pre-trained BERT model by further fine-tuning

with biomedical-specific corpora, including PubMed abstracts

(PubMed) and PubMed Central full-text articles (PMC) using

MLM (Lee et al., 2019). BioBERT has shown its superiority in

various biomedical-related downstream tasks over the state-of-

the-art NLP approaches. To make BioBERT more specific for

the DILI application, we further fine-tuned the BioBERT model

with the extracted sentences D from LiverTox. Consequently,

the fine-tuned BioBERT could represent the joint conditional

probability among words involved in the extracted sentence D.

Biomedical entity recognition

Given that many words in the corpus were not biomedical

specific, there was the potential risk of bringing false positives

during the causal inference process. Therefore, we employed

biomedical entity recognition to extract different biomedical-

related terms and limit the causal inference within these

domain-relevant terms. In this study, we used biomedical

entity recognition and a multi-type normalization tool (BERN)

to extract biomedical-related terms, including gene/protein,

disease, drug/chemical, species information, and genetic variants

(Kim et al., 2019). The BERN is a series of BioBERT-named

entity recognition models with probability-based decision

rules to recognize and discover different biomedical entities,

accessible through https://bern.korea.ac.kr. Here, we only

considered extracted name entities with more than a frequency

of 50 across the corpus as causal factor candidates for

further analysis.

NER-based Causal inference

The named entity-based Do-calculus strategy was developed

to carry out the causal inference within biomedical entities

extracted using the BERN. The potential causal terms of iDILI

were enriched if the adjusted p value was less than 0.05 based

on the one-tail z-test calculation. Furthermore, other statistical

measures were also provided, including z-score, average DO

probability, and average not DO probability.

We further developed a knowledge-based causal tree to

organize the enriched causal factors by following the ACG

clinical guideline for iDILI diagnosis (see Clinical knowledge

section). Specifically, the enriched causal terms were classified

into different causal factors of iDILI, including Concomitant

diseases, History of other liver disorders, Physical findings,

Laboratory results, Symptoms and Signs, Clinical outcome,

Covering host, Environmental, and Drug-related. Furthermore,

the liver enzymes test results were also incorporated into the

proposed knowledge-based causal tree to facilitate the iDILI

patient stratification.

Real-world application: Idiosyncratic DILI
(iDILI) patient stratification

In the LiverTox database, some drug records contained one

or more case reports related to DILI, which were curated from

scientific literature or liver-specific clinical databases such as

DILI Network (DILIN). The case report comprised the findings

from a clinical laboratory, radiologic and histologic testing

summarized in a formulaic table titled Key Points, and a short

concluding discussion and comment on DILI severity. The key

points included iDILI patterns and severity scores, which served

as the ground truth for iDILI patient classification. The DILI

patterns were divided into three categories (i.e., Hepatocellular

- R > 5, mixed - 2<R<5, and cholestatic - R < 2) by the

ratio between serum alanine transaminase (ALT) and aspartate

transaminase (AST). The severity score was based on five levels:

1+, Mild; 2+, Moderate; 3+, Moderate to Severe; 4+, Severe;

and 5+, Fatal.

Because iDILI is a multifactorial endpoint caused by

different underlying mechanisms, it was crucial to stratify iDILI

patients into different DILI pattern subgroups to facilitate

subsequent treatment regimen development. To demonstrate

whether the developed knowledge-based causal tree could be

utilized to categorize the iDILI patients, we extracted a total of

175 case reports from LiverTox for further analysis. First, we

classified the patients by extracting the causal factors involved

in the developed knowledge-based causal tree from each case

report. Second, we verified the iDILI patient stratification results

by comparing them to the ground truth classification results

based on the DILI pattern and severity scores.

Robustness evaluation

The proposed DeepCausality framework employed

transformer-based LMs to learn the joint probability among
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variables for causal inference. However, this process can be

less robust due to different random seeds, even though the

same hyper-parameters were chosen. Toward real-world

applications, the robustness of the proposed framework was

investigated based on the strategy developed in our previous

study (Wang et al., 2021). Specifically, we employed the

proposed DeepCausality to run parallel experiments with

the same hypermeters three times. Then, the enriched causal

terms in the three repeated experiments were compared

using a Venn diagram and the percentage of overlapped

terms (POT) strategy (Wang et al., 2021). The POT could

be calculated based on two steps: (1) rank the enriched

terms based on z scores from high to low in each run, and

(2) calculate the POT using the number of the overlapping

terms among three repeated runs divided by L. L denotes

the number of enriched terms of each subset of the ranked

enriched term list. In this study, L was set from 1 to 30 at

one interval.

Implementation of the DeepCausality

To facilitate the application of our model, we developed

a standalone package for the readers’ convenience. The

proposed DeepCausality framework was exemplified based on

a BioBERT (BioBERT, https://github.com/dmis-lab/biobert) and

BERN under Python 3.6 TensorFlow version 1.15. We evaluated

our proposed DeepCausality model on one NVIDIA Tesla

V100 GPU. For the LiverTox dataset, the average runtime

was approximately 8 h. We incorporated the Do-calculus

causal function into the BioBERT source code, which easily

migrated into other transformers. All the source code and the

processed data sets used in this study are publicly available

through https://github.com/XingqiaoWang/https-github.com-

XingqiaoWang-DeepCausality-LiverTox.

Results

Data preprocessing of the LiverTox
dataset

Figure 2 illustrates the sequence length of the extracted

14,361 sentences from four sections (i.e., Introduction,

Background, Hepatotoxicity, Mechanism of Liver Injury)

of LiverTox. The average and standard deviation of the

sequence length of the extracted 14,361 sentences is 26.84

± 15.58. Furthermore, the extracted 14,361 sentences

contain 15,804 unique words (Supplementary Table S1).

We observed the top ten terms based on the term frequency-

inverse document frequency (Tf-idf) values, including iu,

hydroxycut, clobazam, dabrafenib, dapsone, germander,

progesterone, asparaginase, barbiturate, and CDC. These

FIGURE 2

The distribution of sequence length and the top 10 terms based

on Tf-idf values.

TABLE 1 Data information of preprocessed sentences in LiverTox.

Dataset iDILI

positive

iDILI

negative

Positive

ratio

Total

Training set 3,218 9,706 0.249 12,924

Test set 360 1,077 0.251 1,437

Total 3,578 10,783 0.249 14,361

top ten terms were not directly associated with any

current knowledge of iDILI, indicating the causal factors

could not be enriched by the simple frequency-based

strategy.

Fine-tune BioBERT model with LiverTox
data

Considering that LiverTox is summarized from literature

and clinical reports, we employed BioBERT to establish the

joint probability between variables. For that, we divided the

extracted 14,361 sentences into two sets with a ratio of 9:1 in

a stratified manner, with the ratio between positives (i.e., iDILI

positives) and negatives (i.e., iDILI negatives) kept constant for

both sets. It resulted in 12,924 (14,361 × 90% = 12,924) and

1,437 (14,361 × 10% = 1,437) sentences in training and test

sets, respectively (Table 1). Then, we employed BioBERT-Base

v1.1 (+ PubMed 1M), consisting of 12 transformer layers, 128

embeddings, 768 hidden, and 12 heads with 11M parameters.

We further fine-tuned the BioBERTbase model with the 12,924

sentences in the training set. We determined the optimized

models based on the text classification result in the test set for

iDILI sentence prediction. Specifically, we set the maximum

sequence length to 128 and the mini-batch size to 128. A total of
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FIGURE 3

(A) The trend of cross-entropy loss and accuracy across the di�erent training steps in the fine-tuned BioBERT model; (B) Prediction

performance metrics of the optimized fine-tuned BioBERT model on the test set.

2,500 training steps were implemented with a 500-step warmup,

and the checkpoint step was set to 200 for recording the

prediction results.

Figure 3A depicted the trends of cross entropy loss and

accuracy while increasing the number of training steps based

on the text set. The cross-entropy loss decreased dramatically

before 400 training steps and became stable between 400

and 800 training steps. Then, it increased after 1,000 steps,

indicating the potential of overfitting phenomena. Meanwhile,

the accuracies of the dataset tended to be stable after training

step 400. Thus, we selected the optimized fine-tuned model

based on the training step with the minimum loss (i.e., 800),

where the accuracy value also showed no dramatic changes.

The optimized fine-tuned model yielded a high accuracy

of 0.92, an F1-score of 0.84, a precision of 0.86, and a

recall of 0.82 in the test set, indicating the optimized fine-

tuned model well captured the relationship between variables

(Figure 3B).

Biomedical-based named entity
recognition

To carry out the causal inference within the biomedical-

based NER terms, we employed the BERN to extract the

biomedical-related terms from the preprocessed sentences.

We obtained a total of 87 biomedical-related terms that

were divided into three categories using BERN, including 16

drugs, 11 genes, and 60 diseases (see Supplementary Table S2).

Through the biomedical-based NER, we narrowed down

the total terms (unique words) in the preprocessed

sentences from a total of 15,804 to 87, with a 99.4%

compression rate.

Causal inference using NER-based
Do-calculus

To further investigate whether the performance of the

proposed DeepCausality could identify the causal terms of

iDILI, we implemented NER-based Do-calculus to uncover

the predictors from the fine-tuned BioBERT model (Table 2).

Of 87 Biomedical-based name entities, 24 name entities were

enriched with an adjusted p value < 0.05 based on a one-tail

z-test using the NER-based Do-calculus. We excluded 4 drug

entities, including iron, isoniazid, rifampin, and acetaminophen,

since our objective is to identify the causal factors related

to iDILI. For example, acetaminophen is a protype drug

for dose-dependent drug-induced liver injury (DILI), which

is not idiosyncratic in nature (Jaeschke, 2015). Furthermore,

18 of 20 enriched causal terms were highly consistent

with current knowledge of iDILI, yielding an enrichment

rate of 90% (Chalasani et al., 2021). These name entities

were distributed into different categories, including Liver

Enzymes, Concomitant diseases, History of other liver disorders,

Physical findings, Laboratory results, Symptoms and Signs, and

Clinical outcomes based on the ACG clinical guideline for

iDILI diagnosis.

Table 2 lists enriched causal factors ranked based on

the Z score. The causal factor (Z score) are as follows: for

Liver Enzymes, alkaline phosphatase (3.772), ALT (2.561);

for Concomitant diseases, tuberculosis (2.470), rheumatoid
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TABLE 2 Causal inference results for idiosyncratic DILI.

Elements Z score Probability

of DO

value

Probability

of not DO

value

Probability

difference

Liver Enzymes

Alkaline

phosphatase

3.772 0.398 0.244 0.154

ALT 2.561 0.307 0.244 0.064

Concomitant diseases

Tuberculosis 2.470 0.382 0.244 0.138

Rheumatoid

arthritis

1.759 0.334 0.244 0.089

History of other liver disorder

Cholestasis 4.827 0.547 0.244 0.303

Cholestatic

hepatitis

3.653 0.499 0.244 0.255

Physical findings

Fever 6.508 0.383 0.241 0.141

Pain 2.377 0.395 0.244 0.150

Laboratory results

Lactic acidosis 3.181 0.460 0.244 0.216

Symptoms and signs

Hypersensitivity 3.966 0.383 0.243 0.139

Skin rash 2.066 0.333 0.244 0.088

Jaundice 1.773 0.274 0.244 0.030

Stevens

Johnson

syndrome

1.669 0.335 0.245 0.090

Clinical outcome

Hepatic failure 4.119 0.437 0.244 0.193

Cirrhosis 2.944 0.391 0.244 0.147

Liver failure 2.905 0.366 0.244 0.122

Sinusoidal

obstruction

syndrome

2.490 0.403 0.244 0.159

Acute liver

failure

1.669 0.326 0.244 0.082

arthritis (1.759); for History of other liver disorder, cholestasis

(4.827), cholestatic hepatitis (3.653); for Physical findings,

fever (6.508), pain (2.377); for Laboratory results, lactic

acidosis (3.181); for Symptoms and Signs, hypersensitivity

(3.966), skin rash (2.066), jaundice (1.773), and Stevens-

Johnson syndrome (1.669); for Clinical outcome, hepatic

failure (4.119), cirrhosis (2.944), liver failure (2.905),

sinusoidal obstruction syndrome (2.490), and acute liver

failure (1.669).

Figure 4 illustrates the developed knowledge-based causal

tree with enriched causal factors based on the ACG clinical

guideline for iDILI diagnosis. The proposed knowledge-based

prediction tree could be divided into two major components:

liver enzyme test and clinical observations. The liver enzyme

test, including ALT and AST, divides iDILI patients into different

DILI patterns, including hepatocellular, mixed, and cholestatic.

Clinical observations could further classify the iDILI patients

based on their severity and clinical symptoms.

iDILI patient stratification

To demonstrate the proposed knowledge-based causal tree

could be utilized for iDILI patient stratification, we stratified

175 patients’ case reports in the LiverTox dataset based

on the developed causal tree and compared expert-based

patient stratification results. There was a high correlation

between the R (ALT/AST) values determined by DeepCausality

and the experts, with a Pearson correlation coefficient of

more than 0.9 (Figure 5). Furthermore, we observed that the

clinical observations in the developed causal tree could be

used to classify the patients into different severity groups,

distinguished by the R scores estimated by DeepCausality

(Figure 6).

Robustness of DeepCausality

To ensure the proposed DeepCausality could generate

reproducible causal inference results, we investigated the

robustness of causal inference results by running the

DeepCausality three times (see Supplementary Table S3).

Figure 7 depicted the POT enrichment after three different

runs. We found highly reproducible results from three

parallel runs of DeepCausality, with an average POT of 0.923.

Furthermore, the Venn diagram indicates 87.5% commonality

of enriched causal terms after three runs. Altogether, the

proposed DeepCausality framework could generate highly

repeatable results without interfering with factors such as

initial seeds.

Discussion

Causality is one of the most critical notions in every

branch of science. Causal inference based on observational

data has gained more and more momentum as an alternative

to the conventional random controlled trial-based causality

assessment. Notably, More and more advocates promote using

RWD and RWE to monitor post-market safety and adverse

events and make regulatory decisions in drug development.

An essential resource of RWD, observational data such as

EHRs, clinical reports, and patient narratives are typically

free text-based, posing a significant challenge to uncovering

hidden causal factors. AI-powered LMs such as transformers
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FIGURE 4

The proposed knowledge-based causal tree based on the ACG clinical guideline on iDILI patient diagnosis: ULN denotes upper limits of normal.

have shown great potential in various NLP tasks such as

text classification, information retrieval, question & answering,

and sentimental analysis. However, leveraging these AI-

powered LMs to conduct causal inference as a human

does is still at the infant stage. To bridge this gap, we

proposed DeepCausality, a general AI-powered causal inference

framework for free text. We exemplified the utility of

the proposed DeepCausality for iDILI-related causal factor

identification based on LiverTox and applied it to iDILI

patient stratification. Consequently, DeepCausality identified 20

causal factors for iDILI, and 18 (90%) were aligned with the

current clinical knowledge of iDILI. Furthermore, the developed

knowledge-based causal tree was used to classify iDILI patients,

which was highly consistent with stratification results based on

domain experts.

AI-based language models such as transformers rely on

a pre-trained model with a large corpus and then use

the learned knowledge to solve the downstream tasks. In

this study, without training on a large number of DILI-

related literature and clinical reports, we hypothesized the

accumulated knowledge from these large corpora of documents

could be an alternative to accelerate the training process

of transformer-based LMs. Furthermore, we introduced the

FIGURE 5

The correction between the R scores (ALT/AST) calculated by

DeepCausality and expert: ALT and AST stand for Alanine

transaminase and aspartate transaminase, respectively.

domain-specific named entity recognition (NER) step into the

general framework, aiming to eliminate the false positives

and irrelevant enrichment in the causal inference process. If
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FIGURE 6

The distribution of iDILI patients stratified by DeepCausality

across the di�erent severity levels defined by domain experts.

FIGURE 7

Robustness evaluation of the proposed DeepCausality: The

Venn diagram illustrates the overlapping of the enriched causal

terms by three parallel runs. The dotted-line curve illustrates the

percentage of overlapping causal terms (POTs) among the three

repeated runs across ranked order terms by z scores.

available, this step could also be substituted with domain-specific

ontology and knowledge graphs.

One of the initial attempts conveyed in this

study was to use the developed knowledge-based

causal tree for iDILI patient stratification. The high

consistency of iDILI patient stratification results from

DeepCausality with determination by experts is encouraging.

However, it is worth pointing out the causal tree was

developed based on prior knowledge of iDILI diagnosis,

indicating that expert knowledge is still an indispensable

component to facilitating AI-based approaches in

real-world applications.

It is also worth investigating a few aspects of the proposed

DeepCausality for potential improvements. In this study,

to showcase the proposed DeepCausality, we employed a

biomedical-based free text in LiverTox. Additional validation

of the utility in other domains is highly recommended.

To facilitate the process, all developed codes, scripts, and

processed datasets are open to the public through https://

github.com/XingqiaoWang/https-github.com-XingqiaoWang-

DeepCausality-LiverTox. Additionally, the BERT-based model

was incorporated into the DeepCausality framework presented

here. Some generative-based transformers, such as Generative

Pre-trained Transformer 3 (GPT3), do not need intensive

task-specific training (Brown et al., 2020), which may be a

more efficient way to conduct causal inference. Lastly, although

DeepCausality could identify the causal factors, it could not

classify the identified causal factors further into cofounders

or colliders. It may be solved by developing directional DO-

calculus statistics in the Bayesian networks derived from

the transformers.

In conclusion, DeepCausality provided an AI-powered

solution for causal inference in free text by integrating

transformers, NER, and Do-calculus into a unified framework.

DeepCausality is proposed for real-world applications to

promote RWE collection and utilization.
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