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Cover image by Thomas J. Anastasio

The next frontier in pharmacology is the development of Multi-target strategies in which 
pathological processes are controlled by pharmacologically manipulating them at many dif-
ferent points at once. Designing Multi-target strategies will require deep understanding of the 
complex physiology that underlies pathological processes. It will also require the development 
of single drugs with multiple targets, or combinations of drugs with compatible pharmacoki-
netics that work synergistically to maximize desirable effects while minimizing unwanted side 
effects. This e-Book contains ten original articles, each addressing a different aspect of this 
challenge. Together they open new perspectives and show the way forward in the development of  
Multi-target therapeutics.  
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Editorial on the Research Topic

Computational and Experimental Approaches in Multi-target Pharmacology

MULTI-TARGET TREATMENTS FOR MULTIFACTORIAL DISEASES

Picture yourself in the cockpit of the new BoeingTM 737 MAX airliner, or at the control console of
a new American AtomicsTM nuclear reactor. You are in charge, and hundreds to thousands of lives
depend on your skillful control of a very complex man-made system. Fortunately, these systems
are highly automated, so you need do little more than watch a few displays. Then the airliner
goes into a nosedive or the reactor overheats, and the computer fails! You need to take manual
control to avoid disaster. To make matters more interesting, imagine that, in order to control that
nosediving airliner or that overheating reactor, you have access not to all the controls, or even to
several controls, but to only one control. Can you further image that you would succeed in averting
disaster?

Biomedical researchers of many stripes are engaged in battles against multifactorial disease
processes that are fought within the dense jungles of very complex physiological systems. Most of
them still seem to imagine that they will win the battle by using a single drug to alter the biological
properties of a single drug target. How is that working out for them? Take Alzheimer Disease
as an example. For decades the Alzheimer field has focused on a single peptide, the amyloid-β
peptide, and has devoted vast resources to lowering it using drugs targeting its synthetic enzymes
(Armstrong, 2014; Hardy et al., 2014). After all this effort we still lack effective means to halt the
neurodegenerative processes associated with Alzheimer Disease. We can’t even slow them down.

Increasingly, forward-thinking researchers are calling for the development of multi-
target/multidrug treatments for Alzheimer Disease (Bajda et al., 2011; Leon and Marco-Contelles,
2011; Carmo Carreiras et al., 2013). I had my epiphany while creating a computational model
of the metabolism of amyloid-β. When I read the literature on the effects of estrogen on this
process, in order to connect estrogen with the other elements of my model, I found that this
hormone targets not one but at least 10 different elements of the system that regulates amyloid-
β (Anastasio, 2013). Hormones, naturally occurring interventional agents that have evolved over
eons, achieve control of complex physiological systems by manipulating many system elements
simultaneously. We should strive to do the same in identifying treatments for Alzheimer Disease
and other multifactorial disorders.

Diseases having multifactorial etiologies include Alzheimer and other neurodegenerative
diseases, cancer and cardiovascular disease, diabetes and obesity, and depression and
schizophrenia.Multi-target treatments for somemultifactorial diseases already exist, andmultidrug
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regimens for AIDS, infection by drug-resistant bacteria, cancer,
diabetes, and even some mood disorders are by now standard.
And the hunt is on for new multi-target approaches. It is
widely acknowledged that the main impediment to the design
of multidrug/multi-target treatments is the failure to understand
the multifactorial processes themselves. New computational
models are needed that can represent the interactions among
the many factors involved, and new experimental methods are
needed to evaluate the validity of the models. Several recent
surveys describe the current landscape (Keith et al., 2005; Boran
and Iyengar, 2010; Xie et al., 2012; Reddy and Zhang, 2013;
Billur Engin et al., 2014; Bulusu et al., 2016). In this Research
Topic, leading experts in the area of multi-target pharmacology
present their most recent new findings, new models, and new
ideas, and show the way forward in the identification of new
multi-target/multidrug treatments for multifactorial diseases.

FROM MEDICINAL PLANTS TO

MULTIDRUG STRATEGIES

Medicinal plants are the original multidrug medicines, and
many traditional treatments involve plants that have verifiable
medicinal properties. For example, Borreria verticillata has been
used traditionally in Brazil to treat pain. Silva et al. demonstrate
that crude extracts of this plant do indeed have antinociceptive
properties, and proceed to analyze its constituents experimentally
and computationally.

Medicinal plants were discovered by trail-and-error but
multi-target/multidrug therapies could be designed de novo. An
example of a designer drug pair is the “binary weapon” of
Grixti et al. in which the tumor cell toxicity of one compound
is increased through downregulation of its efflux transporter
by another compound. The Kell lab provides evidence that
various small molecule drugs can increase the toxicity to
pancreatic cancer cells of the nucleoside analog gemcitabine.
In a study that unifies the traditional and the modern, Gao
et al. show how protocatechuic aldehyde, a compound isolated
from the Lamiaceae root used in traditional Chinese medicine,
can ameliorate some of the serious adverse side effects of the
chemotherapeutic agent cisplatin.

DRUG COMBINATION IDENTIFICATION

USING COMPUTATIONAL BRAIN MODELS

Neurological and psychiatric disorders exemplify the challenge
of understanding a pathophysiological process well enough
to identify an effective polypharmacological treatment for it.
Increasingly, computational models are being used to aid the
design of effective drug combinations for the treatment of brain
diseases. Geerts et al. have developed a computational model of
cerebral cortex, featuring a network of many biologically realistic
pyramidal neurons and interneurons. Using computational
analogs of the working memory tasks that are used to assess
cognitive impairment in schizophrenics, they perform in silico
screens to predict novel drug combinations that would be
effective in ameliorating schizophrenic symptomatology. In a

similar vein, Neymotin et al. present a computational model
of dystonia, a movement disorder associated with involuntary
muscle contractions involving several interacting brain regions.
They produced a computational model of these brain regions
containing a multitude of biologically realistic model neurons,
and use it to suggest new multidrug treatments.

THE BENEFITS AND CHALLENGES OF

MULTI-TARGET PHARMACOLOGY

Perhaps the most obvious way to strike multiple pharmacological
targets is to administer multiple drugs, but major challenges
in the design of multidrug treatments are mismatches in the
pharmacokinetics of the different drugs in the combination.
This issue is obviated using single compounds that can strike
multiple targets, but finding or synthesizing such multi-target
ligands pose challenges of their own. Talevi gives numerous
examples of effective multi-target drugs and suggests new ways
to identify more. Rastelli and Pinzi elaborate on the multi-target
ligand theme and provide an overview of computational tools
and related approaches for identification of promising candidate
compounds.

Physiological processes are difficult to control not only
because they are complex but because they adapt. Xie and Bourne
lay out the challenges associated with the development of multi-
target strategies to prevent tumor growth due to the resistance to
anti-cancer drugs that tumors often develop.

The hoped for response to any drug combination is a
synergistic interaction that enhances the desired effects of the
individual drugs, or that causes new desired effects to emerge.
But synergy in the biological context can occur in various ways
and quantifying it is not always straightforward. Tang et al.
outline the problems and suggest that the best way to describe
synergy is to combine two well known methods. One possible
benefit of a multidrug combination is reduction in individual
drug dosage such that the desired effect arises synergistically from
the combination while unwanted side effects due to individual
drugs are minimized. The flip side is the potential drawback that
unwanted side effects could be exacerbated, or new side effects
could emerge from the combination. The ability to predict the
possible side effects of novel compounds would be of value in the
design of multidrug strategies, and Lopes et al. describe a new
method for doing that.

From drug-resistant bacterial infections to
neurodegeneration, the biomedical community faces treatment
challenges that involve confronting, understanding, and
ultimately manipulating disease processes of great complexity.
The articles in this Research Topic direct us along many
computational and experimental avenues that we can pursue in
identifying multi-target/multidrug treatments for multifactorial
disorders.
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Borreria verticillata (L.) G. Mey. known vassourinha has antibacterial, antimalarial,

hepatoprotective, antioxidative, analgesic, and anti-inflammatory, however, its

antinociceptive action requires further studies. Aim of the study evaluated the

antinociceptive activity of B. verticillata hydroalcoholic extract (EHBv) and ethyl

acetate fraction (FAc) by in vivo and in silico studies. In vivo assessment included the

paw edema test, writhing test, formalin test and tail flick test. Wistar rats and Swiss mice

were divided into 6 groups and given the following treatments oral: 0.9% NaCl control

group (CTRL), 10 mg/kg memantine (MEM), 10 mg/kg indomethacin (INDO), 500 mg/kg

EHBv (EHBv 500), 25 mg/kg FAc (FAc 25) and 50 mg/kg FAc (FAc 50). EHBv, FAc 25

and 50 treatments exhibited anti-edematous and peripheral antinociceptive effects. For

in silico assessment, compounds identified in FAc were subjected to molecular docking

with COX-2, GluN1a and GluN2B. Ursolic acid (UA) was the compound with best affinity

parameters (binding energy and inhibition constant) for COX-2, GluN1a, GluN2B, and

was selected for further analysis with molecular dynamics (MD) simulations. In MD

simulations, UA exhibited highly frequent interactions with residues Arg120 and Glu524

in the COX-2 active site and NMDA, whereby it might prevent COX-2 and NMDA receptor

activation. Treatment with UA 10 mg/Kg showed peripheral and central antinociceptive

effect. The antinociceptive effect of B. verticillata might be predominantly attributed to

peripheral actions, including the participation of anti-inflammatory components. Ursolic

acid is the main active component and seems to be a promising source of COX-2

inhibitors and NMDA receptor antagonists.

Keywords: Borreria verticillata, COX-2, NMDA receptor, molecular docking, molecular dynamics simulations

INTRODUCTION

Pain is a warning system that informs the body about the occurrence of tissue damage (Nickel et al.,
2012). In the pathophysiology of pain several biological actions are involved, including activation
of cyclooxygenase 2 enzyme (COX-2) and N-methyl-D-aspartate (NMDA) receptor.

COX-2 is upregulated in the central nervous system in response to inflammatory
factors. It is a rate-limiting enzyme for prostanoid production during inflammation
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(Ricciotti and Fitzgerald, 2011). Prostaglandin E2, the main
pro-inflammatory prostanoid, induces painful hypersensitivity
through modulation in the nociceptive pathways, activates
the periphery ionic channels such as sodium, calcium, and
potentiates the central activation of NMDA and α-amino-3-
hydroxy-5-methylsoxazol-4-propionic (AMPA) receptors (Chen
et al., 2013). Inhibition of COX-2 enzymatic activity prevents
prostanoid production, thus this enzyme is a usual target of
non-steroidal anti-inflammatory drugs (NSAIDs) (Zaiss et al.,
2014).

The activation of NMDA receptor requires the binding
of glycine and glutamate to its subunits GluN1 and GluN2,
respectively (Tajima et al., 2016). It is well-known that activation
of NMDA receptors causes central sensitization, amplification of
spinal nociception, increased ionic conductance and membrane
depolarization (Phang and Tan, 2013). For this reason, NMDA
receptor antagonists (e.g., memantine) are considered an option
in the management of opioid-resistant and chronic pain (Hewitt,
2000).

Therefore, NSAIDs and NMDA receptor antagonists are used
to afford pain relief. However, the use of these agents is limited
by the occurrence of side effects, such as dizziness, vomiting,
constipation, and gastric erosions. These problems and the
impact of pain in the quality of life of patients evidence the need
of novel therapeutic targets for pain management.

Medicinal plants and their derivatives represent a common
alternative for the treatment of diseases (Kandimalla et al., 2016;
Zaia et al., 2016). Borreria verticillata (L.) G. Mey., known in
Brazil as poaia, cordão-de-frade and vassourinha (Júnior et al.,
2012) is traditionally used for various therapeutic purposes
including the treatment of pain and inflammatory conditions
(Vieira et al., 1999; Souza et al., 2013). It has shown to possess
antibacterial (Neto et al., 2002; Ogunwande et al., 2010; Balde
et al., 2015), hepatoprotective (Murtala et al., 2015), antioxidant
(Abdullahi-Gero et al., 2014a), anti-inflammatory and analgesic
(Abdullahi-Gero et al., 2014b) activity.

New technologies have been applied to the assessment of
the pharmacological properties of extracts and active principles
of medicinal plants, such as molecular docking and molecular
dynamic, which is a computer-based approach used to give
a prediction of the ligand-receptor complex structure (Meng
et al., 2011). The combination of computational technique with
biological assay became an important strategy toward finding
plant-based drugs (Sharma and Sarkar, 2012).

Considering the factors that contribute to the mechanisms of
pain and the use of medicinal plants as multi-targets therapeutic
alternatives, the aim of the present study was to assess the
antinociceptive activity of the crude hydroalcoholic extract and
ethyl acetate fraction of B. verticillata. Furthermore, evaluate the
molecular interactions of compounds present in ethyl acetate
fraction with COX-2 enzyme and NMDA receptor.

MATERIALS AND METHODS

Botanic Material
The aerial parts of Borreria verticillata (L.) G. Mey, Rubiaceae
were collected at São José de Ribamar, Maranhão state,

(2◦33′13.3′′ S 44◦11′22.8′′ W), Brazil, in July 2014. A voucher
specimen was deposited at Maranhão Herbarium (MAR), of
Federal University of Maranhão (UFMA), under the registration
number 5151.

Obtaining the Hydroalcoholic Extract and
the Ethyl Acetate Fraction
Aerial parts of B. verticillata were dried at 38◦C in an oven
with circulating air and powdered with a knife mill to obtain a
moderately coarse powder (particle sizes under 710 µm and over
250 µm). The powder of B. verticillata aerial parts was macerated
with 70% ethanol for 5 days (this step was repeated 3 times)
obtaining a solution. The solution was filtered and concentrated
to a small volume at 40◦C in a rotary evaporator under
vacuum, to obtain the hydroalcoholic extract of B. verticillata
(EHBv). EHBv was dissolved in methanol:water (70:30,v/v)
for 60 min under mechanical agitation, and successively
subjected to liquid-liquid extraction with hexane, chloroform,
and ethyl acetate. The solutions were filtered and concentrated
at 40◦C in a rotary evaporator under vacuum, to ethyl acetate
fraction (FAc).

Phenolic and Flavonoid Content
Assessment
Total phenolic content (TPC) was determined using Folin-
Ciocalteu reagent and 20% sodium carbonate. The reaction was
kept in the dark for 2 h at room temperature; absorbance was
read with a spectrophotometer at 760 nm (Dutra et al., 2014). The
PCC was calculated based on the calibration curve plotted with
gallic acid standard solutions (1.0–30.0 µg/mL) and is expressed
as gallic acid equivalent (mg/mL).

Total flavonoid content (TFC) was determined using a 5%
methanol solution of aluminum chloride (AlCl3). The reaction
was kept in the dark for 30 min at room temperature; absorbance
was read with a spectrophotometer at 425 nm (Dutra et al.,
2008). The TFC was calculated based on the calibration curve
plotted with quercetin standard solutions (1.0–30.0 µg/mL) and
is expressed as quercetin equivalent (mg/mL).

High-Performance Liquid Chromatography
with Ultraviolet-Visible Detector (HPLC
UV/Vis)
EHBv and FAc were analyzed with an HPLC device (Thermo
Finnigan Surveyor) coupled to an ultraviolet-visible detector and
a reversed phase ACE C-18 (250 X 4.6 mm, 5µm) column
was used. The components of FAc and EHBv were separated at
room temperature through gradient elution at a 1 mL/min flow
rate. The mobile phases consisted of purified water with 0.1%
acetic acid (A) and acetonitrile (B). The gradient used was as
follows: 0–5 min, 20% B; 5–10 min, 25% B; 10–15 min, 25–
23% B; 15–20 min, 23–21% B; 20–25 min, 21–18% B; 25–30
min, 18–15% B; 30–35 min, 15–0% B. The injection volume
was 5 µL, and UV-Vis detection was performed at 254 nm. The
compounds were identified on the basis of co-injection with
standards.
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Gas Chromatography—Mass Spectrometry
(GC-MS)
FAc (10 mg) was derivatized in pyridine (300 µL) and bis-
(trimethylsilyl) trifluoroacetamide with trimethylchlorosilane
(BSTFA/TMCS, 100 µL) and was heated at 80◦C for 1 h. The
derivatized product was analyzed with a gas chromatograph (GC-
2010, Shimadzu, Japan) coupled to a mass spectrometer (GCMS-
QP2010 SE, Shimadzu, Japan) with an Rtx-5MS column (30m
× 0.25 mm ix 0.25 µm, Restek, USA), helium as the carrier
gas and a 1.0 mL/min flow rate. The oven temperature was first
kept at 70◦C and then set to increase 4◦C/min until 310◦C. The
temperature was maintained at 310◦C for 4 min. The injector
temperature was set to 250◦C; the injection volume was 1.0 mL at
a 1:30 ratio. The mass spectra were obtained by means of electron
impact ionization (70 eV) on total ion scanning mode (40 to
1,000 m/z) with the ion source at 200◦C. The compounds were
identified through comparison of the obtained mass spectra with
the NIST 11 library.

In vivo Biological Studies
Animals
The present study used adult, male and female Wistar Rattus
norvegicus rats with weights ranging from 200 to 300 g and adult,
male, and female Mus musculus mice with weights ranging from
25 to 35 g, which were procured from the Central Vivarium
(Biotério Central), Federal University of Maranhão (UFMA).
Animals were provided with free access to food and water
in an environment with controlled temperature and 12/12 h
light/dark cycle. This study was carried out in accordance with
the recommendations of IASP Guidelines for the Use of Animals
in Research. The experimental protocols were approved by the
UFMA Ethics in Animal Use Committee (CEUA), ruling no. 17,
protocol no. 23115.013545/2015-89.

Experimental Groups
Six experimental groups with 6 animals each were used. CTRL
group was treated oral (p.o) with 0.9% NaCl (0.1 mL/kg); the
INDO group was treated with indomethacin (10 mg/kg p.o.);
MEM group was treated with memantine (10 mg/kg p.o.); FAc
groups were treated with fraction the B. verticillata at doses of
25 mg/kg p.o (FAc 25) and 50 mg/kg p.o (FAc 50) and the EHBv
groupwas treated with the hydroalcoholic extract of B. verticillata
(500 mg/kg p.o.). NaCl 0.9% was used as the vehicle to dissolve
the solutions.

After the results obtained in the in silico studies, it was
observed that of the active compounds ursolic acid (UA) present
in the FAc presented better results. Then 6 animals were treated
orally with UA (10 mg/kg p.o) and submitted to the carrageenan-
induced paw edema test and tail flick.

Carrageenan-Induced Paw Edema
This test was performed to assess the pharmacological activities
of the investigated compounds after subplantar injection of
carrageenan. Mice were distributed and treated as described in
the “Experimental groups” section. Sixty minutes after the onset
of treatments, paw edema was induced through administration
of 50 µL of 1% carrageenan via subplantar injection in the right

paw; the same volume of 0.9% NaCl was injected in the left paw.
The paw volume was measured with a digital plethysmometer
1, 2, 3, 4, and 5 h after induction. Edema was calculated as the
difference between the right and left paw volume and is expressed
as paw volume variation (ml) over time (Winter et al., 1962;
Sadeghi et al., 2011).

Writhing Test
The acetic acid-induced writhing test is described as a visceral-
somatic inflammatory model used for pharmacological screening
of central and peripheral antinociceptive activity. Mice were
distributed and treated as described in the “Experimental
groups” section. Sixty minutes after treatment onset, abdominal
writhing was induced through intraperitoneal administration
of 0.8% acetic acid (10 mL/kg). The number of contractions
was cumulatively counted for 20 min after induction (Koster
et al., 1959). The results are expressed as the average number
of cumulative abdominal contractions (Shamsi and Keyhanfar,
2013; Mansouri et al., 2014).

Formalin Test
The formalin test for nociception allows assessment of the
neurogenic nociceptive mechanisms triggered by activation of
nociceptive fibers and the inflammatory mechanisms activated
following the release of inflammatory mediators. Mice were
treated as described above; 60 min later, a subplantar injection
of 20 µL of 2.5% formalin was administered in the right
paw. The nociceptive response, characterized by paw licking
or biting, was observed during the first 5 min to assess
neurogenic mechanisms and then fromminutes 15 to 30 to assess
inflammatory mechanisms (Hunskaar and Hole, 1987; Nemoto
et al., 2015).

Tail Flick Test
This test was performed to assess central antinociceptive activity
through the stimulation of spinal reflexes. Rats were treated as
described above; 60 min later, a thermal stimulus was applied
to the final third of the tail (Ugo Basile, Varese-Italy), and the
latency to tail flick was measured at baseline, 30, 60, 120, and 180
min. The stimulus intensity was set to obtain 3–6 s latency times;
the cutoff point was set to 10 s to avoid tail injury (D’Amour and
Smith, 1941; Mansouri et al., 2014).

In silico Studies
Structure of Compounds and Receptors
The compounds identified in FAc were obtained from the
PubChem Project database and were structurally plotted in 3
dimensions (3D) using GaussView 5.0.8 (Dennington et al.,
2009). Geometric and vibrational properties were calculated
(optimized) under vacuum by means of the density functional
theory (DFT) method using functional hybrid B3LYP combined
with basis 6–31 ++ G (d, p) in the Gaussian 09 program (Frisch
et al., 2009).

The 3D structure of Swiss mouse COX-2 (chain A) was
obtained from the Protein Data Bank (PDB, #1DDX). The
3D structures of the drugs MEM and INDO were obtained
from the PubChem Project (CID 4054 and 3715, respectively).
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The structural model of the Rattus norvegicus NMDA receptor
subunits GluN1a and GluN2B was obtained by means of
homology modeling.

Homology Modeling
Homology modeling was performed following Ramos et al.
(2012) with MODELER 9v14 (Webb and Sali, 2014) and
the amino acid sequences of subunits GluN1a and GluN2B
(NCBI GI 645985944 and GI 645985945, respectively). As the
crystallographic structure of the PDBNMDA (code 4PE5) are not
complete, models were generated by homology modeling (HM-
GluN1a and HM-GluN2B) using the crystallographic structure
of PDB code 4TLL (GluN1/GluN2B NMDA) as template. The
quality of the selected models was checked with the programs
ProCheck (Laskowski et al., 1993) and Errat (Colovos and Yeates,
1993), run in the SAVES server with Z-Score (ProSA-web Protein
Structure Analysis) (Table S2).

Molecular Docking
The AutoDock 4.2 package (Morris et al., 2008) was used
to prepare proteins (refined models) and ligands for docking
calculations using the AutoDock Tools (ADT) module, version
1.5.6, according to Ramos et al. (2012). The affinity grid centers
were defined on residue Arg120 for COX-2, Tyr513 for NMDA
GluN1A and Arg487 for NMDA GluN2B. The initial complex
coordinates for MD simulations were selected based on the
lowest energy configuration of clusters combined with visual
inspection.

Molecular Dynamics of Complexes
The MD simulations of the complexes selected after molecular
docking were performed using GROMACS 4.6.7 software
(Berk et al., 2014) following Ramos et al. (2012). The ligand
topologies were generated with Automated Topology Builder
(ATB) and Repository version 2.1 (Malde et al., 2011). The
protonation states of histidine residues were determined using
the H++ online server—http://biophysics.cs.vt.edu/hppdetails.
php. To enlarge the sample, 3 10-ns MD simulations were
performed per complex using different atomic velocities assigned
according to the Maxwell distribution. The data generated for
the last 4 ns in each simulated system were used for analysis.
During the production step, 123 frames were obtained at 100-
ps intervals. The details of the interactions were calculated with
LigPlot++ software (Laskowski et al., 1993). A minimum of
50% of contact (total of hydrophobic interactions and hydrogen
bonds) in the analyzed frames was defined as a criterion of
binding efficacy.

Statistical Analysis
Mean values among experimental groups were compared
through univariate analysis of variance (one-way ANOVA)
followed by the Newman-Keuls test at p < 0.05. The data
were analyzed in the terms of means ± standard errors using
GraphPad Prism 5 software.

RESULTS

Phenolic and Flavonoid Content
Assessment
The concentrations of total phenolic compounds and flavonoids
in EHBv were 9.61 and 7.67 mg/mL, respectively.

HPLC UV/Vis Analysis
Gallic acid, ß-sitosterol, glycyrrhetinic acid, ß-amyrin, caffeic
acid, coumaric acid, and quercetin were identified in EHBv
(Table 1 and Figure S1). Gallic acid, ursolic acid, caffeic
acid, and ellagic acid were identified in FAc (Table 1 and
Figure S2).

GC-MS Analysis
Thirteen components were detected in FAc, corresponding
to alcohols, sugars, fatty acids, and flavonoids. The main
components found were the sugars D-psicofuranose (10.2%) and
glucopyranose (33.47%) and the fatty acid 10-undecenoic acid
(15.70%) (Table 2).

In vivo Biological Studies
Carrageenan-Induced Paw Edema Test
Subplantar injection of carrageenan induced edema on the
animals’ paws that lasted the full period of observation, i.e., 5 h,
with the peak of edema starting 4 h after induction.

Treatments consisting of EHBv 500 and FAc (FAc 25 and
FAc 50) significantly reduced carrageenan-induced edema at 3,
4, and 5 h after induction compared to control. The percentage of
reduction in edema caused by the treatment was 41, 42, and 43%
for EHBv 500; 48, 61, and 67% for FAc 25; and 41, 53, and 61% for
FAc 50 respectively. Treatment with INDO significantly reduced
edema by 72, 74, and 77%, while MEM reduced edema by 20, 18,
and 14% at 3, 4, and 5 h after induction, respectively, compared to
control. Comparisons between the effects of B. verticillata extract,
fractions and standard drugs (indomethacin and memantine)
revealed that INDO, FAc 25, and FAc 50 were the most efficacious
in reducing edema. The effects of FAc at doses of 25 and 50

TABLE 1 | High-performance liquid chromatography (HPLC-UV) analysis

of the hydroalcoholic extract (EHBv) and ethyl acetate fraction (FAc) from

B. verticillata.

Compounds identified Retention time (Rt) minute Area (%)

EHBv Gallic acid 9.6 1.1

β-sitosterol 12.9 0.1

Glycyrrhetinic acid 13.9 1.9

β- amyrin 14.2 26.6

Caffeic acid 16.4 0.1

Coumaric Acid 20.0 1.2

Quercetin 31.7 14.40

FAc Gallic acid 4.7 7.3

Ursolic acid 6.3 2.3

Caffeic acid 6.71 2.3

Ellagic acid 8.20 6.1
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mg/kg were equivalent, without statistically significant difference
(Figure 1 and Table S1).

Writhing Test
Intraperitoneal administration of acetic acid caused pain to
animals during entire 20 min of assessment. Treatments with
EHBv 500, FAc 25, and FAc 50 significantly reduced the number
of abdominal contractions by 71, 72, and 42%, respectively,
compared to control (Figure 2). Treatment INDO and MEM
significantly reduced the number of abdominal contractions by
72.5 and 33%, respectively, compared to control. The effects of
INDO, EHBv 500 and FAc 25 on writhing test, and the reductions
in abdominal contractions induced by FAc 50 and MEM were
equivalent.

Formalin Test
This test assessed pain at 2 different stages. In stage 1 MEM,
FAc 25, and FAc 50 treatments significantly reduced neurogenic
pain by 54, 45, and 57%, respectively, compared to control,
while INDO did not induce a significant reduction of neurogenic

TABLE 2 | Gas chromatography-mass spectrometry (GC-MS) analysis of

the ethyl acetate fraction (FAc) from B. verticillata.

Class Component Compounds identified Area (%)

Alcohol Glycerol 9.7

Butanetriol 3.0

Sugars D-galactose 1.5

Trehalose 1.8

Fructopyranose 2.4

D-psicofuranose 10.2

Glucopyranose 33.4

Fatty acids Palmitic acid 2.0

Stearic acid 2.7

1-monopalmitin 2.2

Acid 10-undecenoic 15.7

Flavonoids Quercetin 1.9

Myricetin 2.1

FIGURE 1 | Paw edema induced by subplantar administration of 1%

carrageenan in mice treated orally with NaCl 0.9%, indomethacin 10

mg/kg, memantine 10 mg/Kg, EHBv 500 mg/Kg and FAc (25 and 50

mg/Kg). *p < 0.05; **p < 0.01; ***p < 0.001 vs. CTRL (ANOVA; Newman

Keuls).

pain. The effects of FAc 50 and MEM were similar. In stage
2, INDO, MEM, EHBv 500, FAc 25, and FAc 50 treatments
significantly reduced inflammatory pain by 82, 63, 57, 57, and
59%, respectively, compared to control (Figure 3). The effects of
EHBv 500, FAc 25 and FAc 50 were similar to MEM and INDO
treatments, without statistically significant differences.

Tail Flick Test
Treatment withMEM significantly reduced pain, as evidenced by
15, 40, and 40% increases in the latency time at 60, 120, and 180
min, respectively, compared to control. INDO, EHBv 500, FAc
25, and FAc 50 were unable to increase the latency time of the
animals during the 180 min assessment period (Figure 4).

In silico Studies
Molecular Docking
All compounds identified in FAc on HPLC UV-Vis analysis were
selected for molecular docking. The parameters affinity (binding
energy [1Gbind] and inhibition constant [Ki]) and values of all
ligands are described in Table 3.

FIGURE 2 | Writhing induced by the intraperitoneal administration of

0.8% acetic acid (10 ml/kg) in mice treated orally with NaCl 0.9%,

indomethacin 10 mg/kg, memantine 10 mg/Kg, EHBv 500 mg/Kg and

FAc (25mg/kg and 50 mg/Kg). **p < 0.01; ***p < 0.001 vs. CTRL (ANOVA;

Newman Keuls).

FIGURE 3 | Formalin test induced by subplantar formalin

administration of 2.5% in mice treated orally with NaCl 0.9%,

indomethacin 10 mg/kg, memantine 10 mg/Kg, EHBv 500 mg/Kg and

FAc (25 and 50 mg/Kg). *p < 0.05; **p< 0.01; ***p < 0.001 vs. CTRL

(ANOVA; Newman Keuls).
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FIGURE 4 | Tail flick test in rats treated orally with NaCl 0.9%, indomethacin 10 mg/kg, memantine 10 mg/Kg, EHBv 500 mg/Kg and FAc (25mg/kg and

50 mg/Kg). *p < 0.05; **p < 0.01 vs. CTRL (ANOVA; Newman Keuls).

TABLE 3 | Interactions by molecular docking of indomethacin, memantine and compounds identified in FAc with COX-2, GluN1a and GluN2B.

GluN1a GluN2B COX-2

Ligand 1Gbind* (kcal/mol) Ki** (µM) Ligand 1Gbind * (kcal/mol) Ki ** (µM) Ligand 1Gbind* (kcal/mol) Ki** (µM)

Memantine −7.82 1.86 Memantine −5.66 71.18 Indomethacin −8.30 0.82

Ursolic acid −7.02 7.13 Ursolic acid −5.69 67.35 Ursolic acid −9.86 0.05

Ellagic acid −5.67 70.17 Ellagic acid −5.34 122.58 Ellagic acid −7.54 2.99

Gallic acid −4.57 448.26 Gallic acid −5.16 164.28 Gallic acid −6.68 12.69

Caffei acid −4.47 531.44 Caffei acid −5.04 201.80 Caffei acid −5.88 49.19

*∆Gbind , binding energy. **Ki, inhibition constant.

In relation to COX-2, UA exhibited higher 1Gbind values
and inhibition constants compared with INDO, which were
−9.86 kcal/mol and 0.05 µM and −8.30 kcal/mol and 0.82
µM, respectively. The 1Gbind values corresponding to ellagic
acid, caffeic acid, and gallic acid were −7.54, −6.68, and −5.88
kcal/mol, respectively. Relative to the NMDA receptor, UA
exhibited the best affinity parameters with GluN1a, with values
of −7.02 kcal/mol and 7.13 µM, close to the values obtained for
MEM, which were −7.82 kcal/mol and 1.86 µM. With respect to
GluN2B, the affinity values of UA were slightly higher compared
with MEM, which were −5.69 kcal/mol and 67.35 µM vs. −5.66
kcal/mol and 71.18 µM, respectively. Relative to GluN1a and
GluN2B, the 1Gbind values corresponding to ellagic acid, caffeic
acid and gallic acid were −5.67, −4.57, and −4.47 kcal/mol and
−5.34,−5.16, and−5.04 kcal/mol, respectively.

The interactions of UA, MEM, and INDO with amino acids
identified in selected configurations obtained through molecular
docking calculations are described in Table 4.

Molecular Dynamics Simulations
The lowest docking-energy conformation of the cluster with
lowest energy was chosen as initial structure for the molecular
dynamics simulations of the COX-2 (Figures 5A–C) GluN1a
(Figure 6A and Figure S3) and GluN2B (Figure 6B and Figure
S4) (UA, INDO or MEM) complexes. Interactions ≥50% were
considered to be relevant.

In relation to COX-2, UA exhibited high frequencies
of interaction with Lys79, Leu80, Lys83, Pro84, Arg120,
Leu123, Trp155, Ser199, Phe470, Leu472, Ser481, and Glu524
(Figure 7A). The highest frequencies of interaction corresponded
to Glu524, with 97% of hydrogen bonds, and Arg120, with 96%
of hydrophobic interactions. INDO exhibited high frequencies
of interaction with Asn43, Arg44, Thr62, Phe64, Leu80, Trp122,
Leu123, lle124, Asp125, Phe470, and Arg469; the most relevant
interactions corresponded to Trp122 and Leu123, both with 88%
of hydrophobic interactions (Figure 7B).

With respect to (Figure 8A), UA exhibited high frequencies
of interaction with lle497, Pro510, Ala502, Phe507, and Glu506,
with the highest frequencies being 82% with Ile497 (67%
of hydrophobic interactions and 15% of hydrogen bonds)
and 81% with Phe507 (24% of hydrophobic bonds and 57%
of hydrogen bonds). Relative to GluN2B (Figure 8B), UA
exhibited high frequencies of interaction with lle483, Ser488,
Phe493, Asp492, and Pro496. The frequencies of interaction
with Asp492 and Phe493 were both 66%, corresponding to
2 and 25% of hydrophobic bonds and 64 and 41% of
hydrogen bonds, respectively. MEM had maximum contact
with GluN1a (Figure 8C) and high frequencies of interaction
with Phe436, Phe511, Lys512, Ala712, Phe736, Glu764, Met763,
and Leu766, with 100% of hydrogen bonds with Lys512
and 84% of interactions with Glu764 (61% of hydrophobic
interactions and 23% of hydrogen bonds). Regarding to GluN2B
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TABLE 4 | Interactions of ursolic acid, memantine and indomethacin for the conformations chosen by molecular docking.

GluN1a GluN2B COX-2

Ligand Hydrogen bonds Hydrophobic interactions Hydrogen bonds Hydrophobic interactions Hydrogen bonds Hydrophobic interactions

Ursolic acid Tyr535, Arg733 Ile497, Phe507, Ser508,

Lys509, Pro510, Ser734,

Gly735

Phe493, Lys736 Ile483, Ser420, Glu489,

Val491, Asp492

Lys83, Tyr122, Ser471 Pro84, Tyr115, Ser119,

Arg120, Leu123, Phe470,

Glu524, Pro528

Memantine Asp765, Asp767 Lys512, Ala712, Glu715,

Phe716, Glu764

Val490 Val169, Trp171, Glu489,

Lys736, Asp737

NA NA

Indomethacin NA NA NA NA Lys83, Tyr122 Asn43, Arg44, Thr62, Leu80,

Lys468, Arg469, Ser471.

NA, Not rated.

(Figure 8D), MEM exhibited 50% interaction with Glu489 (30%
of hydrophobic interactions and 20% of hydrogen bonds).

The frequencies of interaction of UA and MEM with GluN1a
and GluN2B are described in Figure 8.

Test In vivo of In silico Selected Compound
After analysis of the results obtained from the in silico tests,
tests of Carrageenan-induced paw edema and Tail flick with UA
(Sigma-Alderich) were performed.

Treatment with UA (10 mg/kg) significantly reduced
carrageenan-induced edema by at 5 h analyzed. These reductions
were 57–84%when compared to the control group. Comparisons
of the effects UA, INDO, and MEM revealed that UA were most
efficacious in reducing edema. Treatment with INDO and of
MEM reduced significantly the paw edema in the 3, 4, and 5 h
when compared with CTRL. These reductions were similar to
those mentioned above (Figure 9).

In tail flick test, treatment with UA (10 mg/kg) significantly
increased the animal latency time at 30–120 min at 28–42%
when compared to control. This effect was not observed after 180
min. Treatment with MEM significantly increased latency time
when compared to control. These results were similar to those
mentioned above (Figure 10).

DISCUSSION

The assays performed in the present study showed that
B. verticillata had peripheral antinociceptive effects and anti-
inflammatory properties. The in silico tests indicated that UA was
chief among the active components identified in FAc, exhibiting
relevant interactions with amino-acid residues in COX-2 and
NMDA receptor active sites.

The FAc doses (25 and 50 mg/kg) used in this study
were chosen according to results obtained in previous studies
developed by our research group. Our preliminary studies with
EHBv demonstrated that doses 250 and 500 mg/kg had an
antinociceptive effect. In order to define the doses used in FAc,
we reduced the EHBv dose by 100 times, resulting in doses of 25
and 50 mg/kg.

The anti-edematous effects of EHBv 500, FAc 25, and FAc
50 were similar to INDO starting 3 h after induction. Studies

have shown that the paw edema test has a maximum parameter
in 3–4 h lasting up to 5 h. After this period of time, induction
loses its effectiveness and due to this reason we do not continue
the evaluation (Eisenberg et al., 1994; Castardo et al., 2008).
Paw edema characteristically develops in 2 stages: the first stage
begins with carrageenan administration and lasts up to 2 h,
corresponding to the exudative phase of inflammation, which
is triggered by the release of inflammatory mediators such as
histamine, serotonin and bradykinin. The second stage begins
3 h after carrageenan administration and is characterized by
neutrophil infiltration and is sustained by prostanoids (Wilches
et al., 2015; Honmore et al., 2016). Along the inflammatory
process, or when tissue damage occurs, several substances are
released that promote vasodilation, plasma extravasation and
cell recruitment. In addition, glutamate release by primary
afferent fibers (class Aδ and C) is increased, as is the activation
of glutamatergic receptors, such as NMDA, with consequent
propagation of action potentials and the release of excitatory
neurotransmitters in the posterior horn of the spinal cord
(Miller et al., 2011). Accordingly, the anti-edematous effect of B.
verticillata FAc might be attributed to COX-2 inhibition and the
consequent reduction of PGE2 synthesis, as it also occurs in the
case of oral treatment with INDO. In addition, previous studies
showed that blockade of the NMDA receptor also influences
inflammation, as it reduces leukocyte migration (Bong et al.,
1996) proinflammatory cytokine induction (Morel et al., 2013)
and partially inhibits enzyme phospholipase A2 (Buritova et al.,
1996); all of which explain the anti-edematous effect of MEM.

The EHBv 500, FAc 25, and FAc 50 treatments reduced the
number of abdominal contractions on the writhing test by 71, 72,
and 42%, respectively. The effects of EHBv 500 and FAc 25 were
equivalent to INDO and the effect of FAc 50 was equivalent to
MEM.

The writhing test is a visceral inflammatory pain model used
for screening compounds with peripheral analgesic activity; it
involves activation of somatic and visceral receptors in addition
to induction of local inflammation mediated by prostaglandins,
bradykinin, tumor necrosis factor (TNF) α and interleukins (ILs)
1β and 8 (Rodrigues et al., 2012; Olonode et al., 2015). Some
studies have demonstrated increased activation of peripheral
receptors and elevated spinal cord glutamate concentrations
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FIGURE 5 | Spatial conformation obtained by molecular docking of ursolic acid (yellow) and indomethacin (blue) with the COX-2 enzyme (PDB: 1DDX)

(A). LIGPLOT diagrams for ursolic acid (B) and indomethacin (C) interaction in COX-2.

in inflammatory pain models (Santos et al., 2005; Shamsi and
Keyhanfar, 2013). As the effects of EHBv 500 and FAc 50
treatments were equivalent to INDO, the results of the present
study might be mainly attributed to COX-2 inhibition and the
consequent reduction of PGE2 synthesis. In addition, we must
also bear in mind the peripheral inhibition of the action of
glutamate on nociceptors induced by MEM, as the effects of this
drug and FAc 50 were equivalent.

The results of the present study showed that oral treatment
with MEM, FAc 25, and FAc 50 reduced the nociceptive response

in both phases of the formalin test. Treatments with EHBv
and INDO reduced the nociceptive response time only in the
inflammatory phase. The reductions in the nociceptive response
induced by B. verticillata extract and FAc were similar to MEM
and INDO in the first and second phases of formalin test,
respectively.

The formalin-induced nociception model involves a biphasic
nociceptive response. The first phase (0–5 min) is neurogenic,
when class C fibers are predominantly activated; the second
phase (15–30 min) corresponds to inflammation and depends
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FIGURE 6 | Spatial conformation obtained by molecular docking of

ursolic acid ligands (yellow) and memantine (green) with

N-methyl-D-aspartate (NMDA). (A) GluN1a, (B) GluN2B. Image generated

by VMD.

on a combination of inflammatory mediators and peripheral and
central sensitization (Hunskaar and Hole, 1987; Tjolsen et al.,
1992; Liberato et al., 2003).

Peripheral NMDA receptors contribute to the triggering
and maintenance of peripheral sensitization under conditions
characterized by cell damage and inflammation (Christoph et al.,
2005). Several studies have shown that NMDA antagonists, such
as MEM, are able to reduce the nociceptive response during both
the first and second phases (Davidson andCarlton, 1998; Liberato
et al., 2003). McRoberts et al. (2011) found a 50% reduction of the
inflammatory phase in GluN1-knockout rats, which suggests that
reduced expression of the NMDA receptor decreases glutamate-
and substance-P-mediated synaptic signaling in the spinal cord.

NSAIDs such as INDO decrease nociception in the second
phase of the nociceptive response only (Tjolsen et al., 1992). On
those grounds, one might attribute the reduction of nociception
in the first phase to the inhibition of the peripheral action of
glutamate on nociceptors and, in the second phase, inhibition of
COX-2 and PGE2 synthesis.

The tail flick test was performed in the present study to
investigate the central analgesic potential of EHBv and FAc. The
EHBv 500, FAc 25, FAc 50, and INDO treatments were not
able to promote central analgesia. In turn, the latency periods
were longer (60, 120, and 180 min after treatment, respectively)
than with 10 mg/kg MEM. According to Danneman et al.
(1994), the tail behavioral response to nociceptive stimuli is
predominantly regulated by spinal and supraspinal structures.
Thus, the analgesic effect of MEM is due to the blockade
of the NMDA receptor, with consequent reduction of central
sensitization mediated by excitatory neurotransmitters, such as
glutamate (Parsons et al., 1999; Morel et al., 2013).

The absence of the dose-dependent effect can be explained
by reducing the dissolution of the higher dose and the fact that

probably the largest dose does not have the same amounts of
active compounds present at the lowest dose.

On the basis of in vivo tests results, a peripheral
antinociceptive activity of B. verticillata can be attributed
to a reduction in the activity of COX-2 and the peripheral
NMDA receptor. In addition the peripheral antinociceptive
activity of B. verticillata detected in the present study agrees with
the findings described by Abdullahi-Gero et al. (2014b). In that
study, oral and intraperitoneal treatments with the ethanolic
extract of B. verticillata leaves in doses of 200–1,000 mg/kg
exhibited peripheral and central analgesic and anti-inflammatory
effects; furthermore, the results suggested that the 50% lethal
dose (LD50) for mice and rats is ≥5,000 mg/kg.

According to the chemical analysis results, the biological
activity of B. verticillata might be mainly attributed to
phenolic compounds and triterpenes, since constituents of these
metabolite classes were identified in EHBv and FAc. Some
studies showed that these compounds have anti-inflammatory
and analgesic effects, as follows: gallic acid—reductions in
allodynia and anti-inflammatory effects (Angélica et al., 2013);
caffeic acid—reductions in leukocyte migration and free radical
and nitric oxide production (Mehrotra et al., 2011); ellagic
acid—interaction with opioid receptors (Mansouri et al., 2014)
and UA—inhibition of nuclear factor-kappa B (NF-kB) activity
(Takada et al., 2010).

In order to determine the mechanisms and possible multi-
targets of the peripheral antinociceptive activity of B. verticillata,
the compounds identified in the FAc were submitted to in
silico studies. Gallic acid, caffeic acid, ellagic acid, and UA were
subjected to molecular docking analysis, targeting COX-2, and
NMDA receptor.

According to Guimarães et al. (2014), negative 1Gbind values
represent favorable interactions of the ligand-receptor complex.
The molecular docking interactions in Table 3 demonstrated
that UA had lower binding energies with the NMDA receptor
subunits GluN1a (−7.02 kcal/mol), GluN2B (−5.69 kcal/mol)
and COX-2 (−9.89 kcal/mol). Therefore, the UA was the ligand
that presented better interactions with the NMDA receptor and
COX-2, hence it was selected for MD simulations and in vivo
tests.

UA interacted with COX-2 and bothNMDA receptor subunits
as well as the standard drugs INDO and MEM. From a structural
point of view, the COX-2 active site consists of a lipophilic
channel with a gate formed by residues Arg120, Tyr355, and
Glu524 (Rowlinson et al., 2003), and its activation leads to
metabolic changes in arachidonic acid (AA) based on interactions
with COX-2 residues Arg120, Tyr355, Tyr385, and Ser530,
resulting in prostaglandin production (Xu et al., 2014).

Several studies have confirmed the relevance of interactions
involving the aforementioned amino acids, thus pointing
to them as potential targets in the investigation of COX-
2 inhibitors. Fenamic acid derivatives were assessed for
COX-2 inhibitory actions in vitro; once the efficacy of the
compounds was established, the complexes were subjected
to x-ray crystallography. The results indicated interactions of
fenamic acid derivatives with Arg120, Tyr355, Tyr385, Trp387,
Glu524, and Leu531 (Orlando and Malkowski, 2016). In vitro
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FIGURE 7 | Frequency of hydrophobic contacts (green) and hydrogen bonding (orange) of ursolic acid + COX-2 (A) and indomethacin + COX-2 (B). The

frequencies correspond to the end 4 of molecular dynamics simulations.

FIGURE 8 | Frequency of hydrophobic contacts (green) and hydrogen bonding (orange) between ursolic acid + GluN1a (A), ursolic acid + GluN2B (B),

memantine + GluN1a (C), and memantine + GluN2B (D).

evaluation of the COX-2 inhibitory potential of meloxicam and
isoxicam followed by x-ray crystallography detected interactions
of both compounds withMet113, Leu117, Arg120, Ile345, Val349,
Leu352, Leu359, Phe518, Ala527, Ser530, and Leu531 (Xu et al.,
2014). The interaction of COX-2 with ibuprofen, another NSAID
with anti-inflammatory and analgesic activities, involved the
participation of COX-2 residues Arg120, Val349, Tyr355, Trp387,
Met522, Val523, Gly526, Ala527, and Ser530 (Orlando et al.,

2015). The results of that study further showed that residues
Arg120 and Tyr355, located in the COX-2 channel gate, are
crucial for the enzyme’s interaction with ibuprofen.

Constant interactions between UA and significant amino acid
residues, such as Arg120, Glu524, and others closed related to
residues described in previous studies, such as Trp115 (close
to Met113 and Leu117, involved in meloxicam and isoxicam
interactions), Leu123 (close to Arg120, involved in meloxicam,
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FIGURE 9 | Paw edema induced by subplantar administration of 1%

carrageenan in mice treated orally with NaCl 0.9%, indomethacin 10

mg/kg, memantine 10 mg/Kg, and ursolic acid 10 mg/Kg. *p< 0.05;

**p< 0.01; ***p < 0.001 vs. CTRL (ANOVA; Newman Keuls).

FIGURE 10 | Tail flick test in rats treated orally with NaCl 0.9%,

indomethacin 10 mg/kg, memantine 10 mg/Kg, and ursolic acid 10

mg/Kg. *p < 0.05; **p < 0.01; ***p < 0.001 vs. CTRL (ANOVA; Newman

Keuls).

isoxicam and ibuprofen interactions), and Glu524 (close to
Val523, involved in meloxicam and ibuprofen interactions, and
to Gly526, involved in ibuprofen interactions).

The present study further found that the UA and COX-2
interaction profile detected upon molecular docking persisted
in the MD simulations, even in the presence of temperature,
pressure, water, and protein flexibility variations. In addition,
the interactions of UA with amino acid residues adjacent to
the COX-2 active site and the AA metabolism site, such as
Tyr115, Ser119, Tyr122, Leu123, Asp125, and Pro528, might also
intensify the COX-2 inhibitory potential of UA. On the basis of
the referred facts: (1) UA might block the access of ligands to
the COX-2 active site; (2) interactions with Arg120 and amino
acid residues adjacent to the COX-2 active site might reduce
arachidonic acid metabolization; and (3) interactions of COX-2
active site inhibitors with Arg120 and Glu524 have already been
described, which demonstrates the relevance of these amino acid
residues for the possible blocking of the COX-2 active site by UA
(Figure S5).

From a structural point of view, the NMDA receptor is a
heterotetramer formed by 2 subunits, GluN1 and GluN2. These
subunits are modulated by domains ATD, LBD, TMD, and CTD
(Karakas and Furukawa, 2014). Activation of the NMDA receptor

requires simultaneous binding of glutamate to GluN2 and glycine
or d-serine to GluN1 through the interactions of the latter α-
amino and α-carboxyl groups with LBD regions. The LBD is
formed by 3 transmembrane regions (M1, M2, and M3) and 2
segments (S1 and S2), which comprise the active site and are
located in subdomains D1 and D2, respectively (Traynelis et al.,
2010).

According to Kaye et al. (2006), the active site of subdomain
D1 is formed by amino acid residues Gln405, Phe484,
Thr486, Pro516, Thr518, and Arg523, and the active site of
subdomain D2 is formed by Ser688, Ser687, Val6869, Trp731,
Asp732, and Ser756. Several studies with GluN1 antagonists,
such as 5,7-dichlorokynurenic acid (DCKA) and 1-thioxo-
1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (TK40),
verified interactions with Phe484, Thr518, Pro516, and Arg523
(Furukawa and Gouaux, 2003) for DCKA and with Glun405,
Phe484, Pro516, Leu517, Thr518, Arg523, Ser687, Ser688,
and Val689 for TK40 (Kvist et al., 2013). These interactions
correspond to residues Gln383, Phe462, Pro494, Leu495, Thr496,
Arg501, Ser665, Ser666, and Val667 in our structure. After 10 ns
MD simulations, we found high frequencies of interactions of UA
with lle497, Ala502, Phe507, Ser508, Lys509, and Pro510, located
close to the sites indicated by previous authors, which points to
the potential of UA to inhibit glycine binding to GluN1.

Lee et al. (2014) developed a crystallographic structure
of GluN2B complexed with the partial agonist trans-1-
aminocyclobuthane-1,3-dicarboxylic acid (t-ACBD). Those
authors revelead that t-ACBD interacted with the amino acid
residues His479 and Thr507, which are equivalent to His454
and Thr482 in the present study. Addicionally, UA presented
interactions with Ile483, Ser48, and all other neighboring amino
acid residues, thus demonstrating that UAmight prevent binding
of agonists to the NMDA receptor GluN2B subunit.

Through in silico tests was demonstrated that UA has the
COX-2 enzyme and NMDA receptor as multi-targets. The
interactions of UA with these two pharmacological targets
suggest that there is inhibition of COX-2 activation, NMDA
receptor and consequently reduction of the painful process.
Compounds and multi-target drugs are currently a promising
alternative for the treatment of complex and multifactorial
pathologies. They present advantages over polypharmaceutical
therapies such as: patient adherence to treatment, improved
kinetics and therapeutic efficacy, increased therapeutic range,
reduction of drug interactions, adverse and toxicological effects
(Talevi, 2015; Nicolik et al., 2016). Because UA has exhibited this
feature (multi-targets), it may be considered an advantage over
other compounds described in the literature. Verano et al. (2013)
has shown that UA 10 mg/kg (i.p) has an antinociceptive effect,
so we chose this dose to test its effect orally and have confirmed
the antinociceptive and anti-inflammatory effects of UA through
inhibitions of the TRPV1 receptor and serotonergic synergism
(5-HT); reduced IL-2, IL-6, interferon (IFN)-γ, TNF-α, reactive
oxygen species (ROS), phospholipase A2 and NF-κβ release;
reduced COX-2 and inducible nitric oxide synthase (iNOS)
expression; (Kashyap et al., 2016) and favorable interactions for
complexes formed with COX-1 and COX-2 (Magalhães et al.,
2012). Zhang et al. (2013) demonstrated that UA can induce
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apoptosis of cancer cells by reducing COX-2 expression and Ma
et al. (2014) demonstrated that UA reduced COX-2 expression in
CCl4-treated animals. The results presented here evidenced that
UA exerts peripheral antinociceptive effect by inhibiting COX-2
in carrageenan- induced paw edema test and analgesic central in
the tail flick test.

Until now there are no studies performed in vivo or in silico
to analyse the antinociceptive potential of compounds present in
the aerial parts of B. verticillata. We suggest that the peripheral
antinociceptive effect of this plant species is mainly due to
actions of anti-inflammatory components. Possibly contributing
to reducing the activity of the enzyme COX-2 and peripheral
NMDA receptors, with consequent reductions in pain. In silico
and in vivo studies allowed the selection and suggestion of UA
as the main active compound in B. verticillata, as it exhibited
desirable affinity parameters, stable interactions with COX-2 and
NMDA receptor subunits GluN1a and GluN2B and presented
peripheral and central analgesic effect. Thus, the UA is configured
a promising molecule for the development of COX-2 inhibitors
and NMDA receptor antagonists.
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Small Molecule Binary Weapons That
Improve Transporter-Mediated
Targeting: A Cytotoxicity System
Based on Gemcitabine
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The transport of drug molecules is mainly determined by the distribution of influx
and efflux transporters for which they are substrates. To enable tissue targeting, we
sought to develop the idea that we might affect the transporter-mediated disposition
of small-molecule drugs via the addition of a second small molecule that of itself had no
inhibitory pharmacological effect but that influenced the expression of transporters for the
primary drug. We refer to this as a “binary weapon” strategy. The experimental system
tested the ability of a molecule that on its own had no cytotoxic effect to increase the
toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial
phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The
structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity
greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics
thus providing for a massive enrichment). We chose the top six representatives for further
study. They fell into three clusters whose members bore reasonable structural similarities
to each other (two were in fact isomers), lending strength to the self-consistency of
both our conceptual and experimental strategies. Existing literature had suggested that
indole-3-carbinol might play a similar role to that of our fragments, but in our hands
it was without effect; nor was it structurally similar to any of our hits. As there was
no evidence that the fragments could affect toxicity directly, we looked for effects on
transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5,
and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with
a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly,
the addition of gemcitabine alone increased the expression of the transcript for ABCC2
(MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of
the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without
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significant effect, implying that RRM1 was possibly the more significant player. These
effects were somewhat selective for Panc cells. It seems, therefore, that while the effects
we measured were here mediated more by efflux than influx transporters, and potentially
by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible
to find molecules that manipulate the expression of transporters that are involved in the
bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical
genomics-based drug targeting.

Keywords: binaryweapon, cheminformatics, gemcitabine, anticancer drugs, pancreatic cancer, drug transporters,

phenotypic screening

INTRODUCTION

In a typical small molecule drug discovery programme pipeline,
candidate (“hit”) compounds for treating a particular disease
are selected from a large chemical library, and after various
modifications (to form “leads” and variants thereof) enter
“phase 1,” a testing for safety at low doses in healthy volunteers.
“Attrition” is a term used to describe the failure of suchmolecules
to progress further to market, via phases 2 and 3 (small and larger
clinical trials) (Kola and Landis, 2004; Empfield and Leeson,
2010; Leeson and Empfield, 2010; Leeson, 2016). Nowadays
attrition occurs largely for reasons of toxicity or lack of efficacy
(Kola and Landis, 2004; Arrowsmith and Miller, 2013), and runs
in excess of 90% (e.g., Kola and Landis, 2004; Kell, 2013, and see
for full details http://csdd.tufts.edu/files/uploads/Tufts_CSDD_
briefing_on_RD_cost_study_-_Nov_18,_2014..pdf), with gross
pharmacokinetics and pharmacodynamics (as assessed at the
whole organ level) being seen as less of an issue than it once was
(Kola and Landis, 2004). The simple consequence of this level
of attrition is that it costs ∼10 times more than it might, per
molecule, now as much as $2.5 Bn, to bring a drug successfully
to market.

Role of Transporters in Cellular Drug
Uptake
We have argued that a lack of understanding of human
metabolism and of the transporters necessary to get orally active
drugs across intestinal epithelia and into target cells is one
of the chief causes of attrition. By now, following a similar
programme in yeast (Herrgård et al., 2008), we do have a
reasonable model of the human metabolic network (Swainston
et al., 2013, 2016; Thiele et al., 2013), with fully one third of
the steps involving some kind of transport(er), and with uptake
transporters of the SoLute Carrier families (SLCs) (Hediger et al.,
2004, 2013) being woefully understudied (César-Razquin et al.,
2015). In particular, although it remains underappreciated, we
have rehearsed on multiple occasions the abundant evidence
that the non-transporter- (i.e., bilayer-) mediated uptake of
drugs through intact cell membranes is normally negligible (e.g.,
Dobson and Kell, 2008; Dobson et al., 2009a,b; Kell et al., 2011,
2013, 2015; Lanthaler et al., 2011; Kell, 2013, 2015a,b, 2016a,b;
Kell and Goodacre, 2014; Kell and Oliver, 2014; Mendes et al.,
2015; O’Hagan and Kell, 2015a; Kell, 2015a,b), a striking recent
example being that of Superti-Furga and colleagues (Winter et al.,

2014). This shifts the agenda to one of molecular enzymology
and systems biology, in which we need to discover (i) which
transporters transport which drugs (Giacomini et al., 2010;
Sugiyama and Steffansen, 2013), (ii) their expression profiles in
differentmembranes and tissues, and (iii) their kinetic properties.
In other words it leads us to recognize that this is fundamentally
a problem of systems pharmacology (e.g., van der Greef and
Mcburney, 2005; Berger and Iyengar, 2009; van der Graaf and
Benson, 2011; Antman et al., 2012; Rostami-Hodjegan, 2012;
Waldman and Terzic, 2012; Zhao and Iyengar, 2012; Kell and
Goodacre, 2014; Westerhoff et al., 2015; Kell, 2015a).

Transporter-Mediated Drug Targeting
A particularly nice example of the overwhelming use of
transporters for drug uptake comes from the study of Superti-
Furga and colleagues (Winter et al., 2014) using haploid cells
and determining that very much less than 1% of sepantronium
uptake could have occurred other than via a specific SLC
called SLC35F2. In a similar and complementary vein, the
expression profile of specific transporters allows one to target
drug substrates to the particular tissues in which the relevant
transporters are most highly expressed. This has been illustrated
beautifully by Pfefferkorn and colleagues for both a glucokinase
activator (Pfefferkorn et al., 2012; Pfefferkorn, 2013; Sharma
et al., 2015) and a “statin”-type drug (Pfefferkorn et al., 2011)
that are both targeted to the liver via proteins of the Organic
Anion Transport Protein (OATP/SLCO/SLC21) (Hagenbuch and
Stieger, 2013) family. In this case substantial concentration
ratios of e.g., hepatocyte: pancreas of 50:1 (Pfefferkorn et al.,
2012) and hepatocyte:myocyte of 250,000:1 (Pfefferkorn et al.,
2011) could be achieved (a finding hard to explain on the
basis of any significant bilayer permeability!). Other examples
of tissue-selective drug targeting include a liver-targeted stearoyl
desaturase inhibitor (Oballa et al., 2011; Ramtohul et al., 2011;
Liu, 2013), various other liver-targeted drugs based on OATPs
(Buxhofer-Ausch et al., 2013; Tu et al., 2013), and a prostate-
specific targeting of an iodide transporter for radio-iodine-
mediated cell killing (Kakinuma et al., 2003).

These examples show what can be achieved in terms of drug
targeting if the transporter distribution happens to work to one’s
advantage “naturally,” but cannot be exploited directly when it
does not.

The glucokinase activator case is important, since if such
drug molecules were allowed to enter all tissues they proved
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toxic (Pfefferkorn et al., 2012; Pfefferkorn, 2013). A similar and
particular case of interest is that of broadly cytotoxic anticancer
drugs, where we evidently need mechanisms to target them
solely to the tissue of interest, and where we might then greatly
improve their therapeutic index. Since the tissue-dependent
expression of such transporter molecules is highly heterogeneous
(see e.g., almost any dataset in the human protein atlas http://
proteinatlas.org/ Uhlén et al., 2015, including those for SLC28
http://www.proteinatlas.org/search/slc28 and SLC29 http://www.
proteinatlas.org/search/slc29), it must be subject to regulation
(e.g., Pennycooke et al., 2001; Del Santo et al., 2001; Fernández-
Veledo et al., 2004, 2007; Plant, 2016). Thus, just as with the
small-molecule-driven induction of pluripotent stem cells (Okita
et al., 2007; Feng et al., 2009; Desponts and Ding, 2010; Li and
Ding, 2010; Zhang, 2010; Grskovic et al., 2011; Li et al., 2012,
2014; Li X. et al., 2015; Jung et al., 2014; Kang et al., 2014),
that regulation can similarly be affected by pharmacological
intervention with small molecule effectors. Thus, our aim was
to seek small molecules that were themselves without cytotoxic
effects but that could increase the response of different target
cells to anti-cancer drugs that are otherwise present at only a
barely cytotoxic level, in particular by modulating the level of
activities of specific uptake transporters. It differs from the use
of pairs of existing drugs of known activities (e.g., Borisy et al.,
2003; Lehár et al., 2007, 2008, 2009a,b; Zimmermann et al., 2007;
Wright, 2016), but, interestingly, bears a clear resemblance to
the overall strategy used in traditional Chinese medicine where
a “shi” (“courier”) herb is used to assist the delivery of the
main ingredient (“Jun” or “Emperor” herb) to its site of action
(Zhao et al., 2015). We refer to this combination as a “binary
weapon.”

Gemcitabine and Pancreatic Cancer
The nucleoside analog gemcitabine (2’,2’-difluorodeoxycytidine,
Gemzar R©) (Alvarellos et al., 2014) is one of the most commonly
used chemotherapeutic agents in pancreatic adenocarcinoma,
the carcinoma with arguably the least favorable prognosis (5-
year survival time) of any (Bhattacharjee et al., 2014; Waddell
et al., 2015). Like all nucleoside inhibitors of this type, it
must first be transported into the cell and then be metabolized
(phosphorylated) to exert its clinical action (thereby lowering its
ability to act as a substrate for efflux pumps Fukuda and Schuetz,
2012, though see below). Gemcitabine has multiple intracellular
targets, and up-regulation of these targets or nucleoside-
metabolizing enzymes such as ribonucleotide reductase (RRM1)
may confer resistance to this drug (Bergman et al., 2002,
2005; Nakano et al., 2007; Minami et al., 2015). The main
uptake transporters are considered to be ENT1 (SLC29A1) and
CNT1/3 (SLC28A1/3) of the SLC28/29 families (Kong et al.,
2004; Podgorska et al., 2005; Veltkamp et al., 2008; Young
et al., 2008, 2013; Molina-Arcas et al., 2009; Cano-Soldado
and Pastor-Anglada, 2012; Molina-Arcas and Pastor-Anglada,
2013) (Table 1). SLC28 transporters are sodium-dependent
concentrative nucleoside transporters (Smith et al., 2007), while
SLC29 are equilibrative. Notably, there is considerable evidence
that the potency (cytotoxicity) of gemcitabine is strongly related
to the expression level(s) of these transporters (e.g., Burke et al.,

1998; Mackey et al., 1998a,b; Baldwin et al., 1999; Rauchwerger
et al., 2000; Cass, 2001; Achiwa et al., 2004; Spratlin et al., 2004;
Giovannetti et al., 2005, 2006, 2007; King et al., 2006; Marcé et al.,
2006; Mey et al., 2006; Mini et al., 2006; Leung and Tse, 2007;
Mori et al., 2007; Oguri et al., 2007; Zhang et al., 2007; Cano-
Soldado et al., 2008; Molina-Arcas et al., 2008; Pérez-Torras et al.,
2008; Veltkamp et al., 2008; Andersson et al., 2009; Damaraju
et al., 2009; Farrell et al., 2009, 2016; Köse and Schiedel, 2009;
Maréchal et al., 2009, 2012; Wong et al., 2009; Hagmann et al.,
2010; Lane et al., 2010; Molina-Arcas and Pastor-Anglada, 2010;
Okazaki et al., 2010; Paproski et al., 2010, 2013; Santini et al.,
2010, 2011; Spratlin andMackey, 2010; Tanaka et al., 2010; Bhutia
et al., 2011; De Pas et al., 2011; Gusella et al., 2011; Komori
et al., 2011; Matsumura et al., 2011; Borbath et al., 2012; Choi,
2012; Gesto et al., 2012; Kobayashi et al., 2012; Koczor et al.,
2012; Morinaga et al., 2012; Murata et al., 2012; Eto et al., 2013;
Nakagawa et al., 2013; Skrypek et al., 2013; Xiao et al., 2013;
Chan et al., 2014; Deng et al., 2014; Greenhalf et al., 2014; Khatri
et al., 2014; Koay et al., 2014; Lee et al., 2014; Lemstrová et al.,
2014; Liu et al., 2014; Nordh et al., 2014; Tavano et al., 2014; Wu
et al., 2014; de Sousa Cavalcante and Monteiro, 2014; Hung et al.,
2015; Pastor-Anglada and Pérez-Torras, 2015; Yamada et al.,
2016).

ABC-type efflux transporters are heavily involved in drug
resistance in both mammals (e.g., Liu et al., 2005; Fukuda and
Schuetz, 2012; Rosenberg et al., 2015; Silva et al., 2015) and
microbes (e.g., Putman et al., 2000; Du et al., 2014; Prasad
and Rawal, 2014; Li X.-Z. et al., 2015), and may be of value
in industrial biotechnology (Kell et al., 2015). Gemcitabine
may also be a substrate for certain efflux transporters such as
ABCG2/BRCP (König et al., 2005; Keppler, 2011; Chen et al.,
2012; Lemstrová et al., 2014), although “knockdown of ABCC3,
ABCC5 or ABCC10 individually did not significantly increase
gemcitabine sensitivity” (Rudin et al., 2011). Finally, gemcitabine
may also be deaminated in plasma, leading to its clearance
(Hodge et al., 2011).

Other small molecules known to affect the response of
pancreatic cancer cells to gemcitabine include nicotine (Banerjee
et al., 2013, 2014), while molecules that affect nucleoside
transporter expression include bile acids (Klein et al., 2009).
Finally, erlotinib, gefitinib, and vandetanib inhibit human
nucleoside transporters and thereby protect cancer cells from
gemcitabine cytotoxicity (Damaraju et al., 2014), while a variety
of kinase inhibitors (Huang et al., 2002, 2003, 2004) and
dihydropyridine-type calcium channel antagonists (Li et al.,
2007) may also affect nucleoside transport.

In particular, however, and not least since the small
molecule indole-3-carbinol (which is probably converted to
3,3′-diindolylmethane Banerjee et al., 2009) had been stated to
increase both ENT1 expression and the sensitivity of pancreatic
carcinoma cells to gemcitabine (Wang et al., 2011), possibly
acting via miRNA-21 (Giovannetti et al., 2010; Hwang et al., 2010;
Melkamu et al., 2010; Paik et al., 2013), as too did the molecule
“S-1” (Nakahira et al., 2008; Jordheim and Dumontet, 2013), the
gemcitabine/nucleoside transporter system seemed ideal for the
test of our “binary weapon” strategy. The present paper reports
the results of this approach.
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MATERIALS AND METHODS

Cells and Reagents
The human pancreatic duct epithelioid carcinoma cell line, Panc1
(see Gou et al., 2007), and the human embryonic kidney cell
line, HEK293 were grown in Dulbecco’s modified Eagle’s medium
(DMEM) (Sigma). The human bone marrow neuroblastoma cell
line, SH-SY5Y was grown in a 1:1 mixture of Eagle’s Minimum
Essential Medium (Sigma) and F12 Medium (Sigma). All cell
culture media were supplemented with 10% heat-inactivated
fetal bovine serum (FBS), 200 mM L-glutamine, and a 5 mL
solution containing 10,000 units.mL-1 penicillin and 10 mg.mL-
1 streptomycin. The immortal human pancreatic duct epithelial
cell line, hPDE was grown in Keratinocyte-SFM (1X) medium
(ThermoFisher), supplemented with 10 mg.mL-1 streptomycin.
All four cell lines were obtained and karyotyped locally. Cells
were routinely maintained at 37◦C in a humidified 5% CO2
atmosphere, in continuous exponential growth at a cell density
ranging between 1 × 105 and 1 × 106 cells.mL-1, by passaging
every 3 or 4 days. Cell line authenticity was confirmed through
karyotype testing (University of Manchester, UK).

Cell Growth/Viability Assay
Cells were seeded in a 96-well plate at a density of 5,000
cells/well, in triplicate, and left to attach. Gemcitabine, present
at different concentrations, was added directly to the cells, and
left to incubate for an additional 96 h. Cells were then subjected
to the MTT Cell Proliferation Assay as per the manufacturer’s
instructions (Sigma). Absorbance at 570 nm was measured 3 h
after the addition of 10 µL of MTT salt reagent/well.

Maybridge Fragment Screening
Maybridge fragments (MBFs) obeying the “rule of three”
(Congreve et al., 2003) were supplied at 100 mM in DMSO and
were deployed into the assay plates using an ECHO contactless
liquid handler (Labcyte, Inc). For screening purposes, the first
500 MBFs (Library 1) were pooled, i.e., each well in a 96-well
plate had a pool of six MBFs. Cells were seeded in a 96-well
plate at a density of 5,000 cells/well, in triplicate, and left to
attach overnight. Following incubation, the growth medium was
replaced with fresh medium containing the pooled MBFs, each
fragment present at 10 µM, followed by an additional 24 h
incubation. The cells were further incubated with the fragments
in the presence of gemcitabine at 20 nM for 96 h. Cells were then
subjected to theMTTCell Proliferation Assay as described above.

To study the effect of each MBF on its own rather than in
a pool, the candidate pooled fragments (i.e., showing activity)
were de-convolved, i.e., one MBF/well, and cells were plated and
treated as described above.

Specificity Experiments
SH-SY5Y cells were seeded at a density of 12,500 cells/well,
HEK293 and hPDE cells at a density of 10,000 cells/well,
in triplicate in a 96-well plate, and left to attach overnight.
Following incubation, the medium was replaced with fresh
medium containing the MBF hits (i.e., MBF D1, B1, 10, 11, 12,
and 20) at 10 µM, followed by an additional 24 h incubation
period. Cells were further incubated with the fragments in the

presence of gemcitabine at 100 nM for 72 h (SH-SY5Y cells) and
96 h (HEK293 and hPDE cells). Cell viability was then assessed
using the MTT Cell Proliferation Assay.

Cheminformatic Analyses
These were all performed as in our previous work of this type
(O’Hagan and Kell, 2015a,b,c; O’Hagan et al., 2015; O’Hagan and
Kell, 2016), using the KNIMEworkflow system (see e.g., Berthold
et al., 2008; Mazanetz et al., 2012; Meinl et al., 2012; Warr, 2012;
O’Hagan and Kell, 2015b and http://knime.org/).

Maybridge Fragment Titration Experiments
Cells were seeded in a 96-well plate at a density of 5,000 cells/well,
in triplicate, and left to attach overnight. Following incubation,
the medium was replaced with fresh medium containing MBFs
at different concentrations (3, 10, 30, 100, and 300 µM) followed
by an additional 24 h incubation. Cells were further incubated
with the fragments in the presence of gemcitabine at 100 nM for
96 h. Cells were then assessed using the MTT Cell Proliferation
Assay as described earlier.

Cell Culture Treatments for Gene
Dysregulation Studies
To examine the effect of gemcitabine and MBFs, alone or in
combination; on expression of the influx and efflux transporter
genes and of the RRM1 gene, cells were seeded in a 6-well
plate at a density of 30,000 cells/well, in duplicate, and left to
attach overnight. Following incubation, in studies where the
effects of the MBFs alone were studied, the medium was replaced
with fresh medium containing MBFs at 10 µM, followed by
further incubation for 24 h. For studies where the effects of
gemcitabine alone were studied, the medium was replaced with
fresh medium containing gemcitabine at 100 nM, followed by
further incubation for 96 h. For studies in which cells were
treated with gemcitabine in combination with the fragments,
the cells were first pre-treated with MBFs at 10 µM for 24 h,
followed by further incubation with the fragments at 10 µM
in the presence of gemcitabine at 100 nM for 96 h. Cells were
harvested using TRIzol R© reagent (Life Technologies) and stored
in−80◦C until use.

Total RNA Isolation and Quantitative
Real-Time Reverse Transcription
Polymerase Chain Reaction (RT-qPCR)
Following treatment as described above, total cellular RNA was
isolated from the cells using the RNeasy isolation kit (Qiagen)
according to the manufacturer’s instructions. RNA concentration
was determined using a NanoDrop R© Spectrophotometer
(NanoDrop ND-1000, NanoDrop Technologies, Wilmington,
USA). The OD_260/280 nm ratios of all RNA samples were
determined to be between 1.9 and 2.0, suggesting that all
RNA samples were highly pure. RNA integrity was verified
by the Agilent RNA 6000 Nano assay kit (Agilent Bioanalyser
2100, Agilent Technologies, Cheadle, UK) as described by the
manufacturer. Single-strand cDNA used for RT-qPCR analyses
was synthesized from purified total RNA using SuperScript R©

III Reverse Transcriptase (Life Technologies, Paisley, UK).
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FIGURE 1 | Effect of 500 Maybridge fragments on the viability of Panc1 cells in the absence and presence of 20 nM gemcitabine. Experiment number is
encoded by shape. Fragments were added in pools of 6. Pools in which there was a hit relative to the same control are marked in red. The line is a line of best fit.

FIGURE 2 | Effect of gemcitabine concentration on the viability of

Panc1 cells. Cells were grown and pre-incubated with the stated
concentration of gemcitabine, and their viability was assessed, as described in
the Methods section.

RT-qPCR were performed using 384-well plates, with a final
volume of 10 µL in each well, consisting of 4 µL of cDNA, 5 µL
of 2x SYBR Green LightCycler 480_TM PCR master mix (Roche
Life Sciences), 0.8 µL of sterile distilled water, 0.1 µL each of 20
µM reverse and forward primers. Samples were performed in
triplicates. In the no template controls (negative controls) 4µL
of H2O were added, instead of the cDNA samples. RT-qPCR
reactions were carried-out using the Roche LightCycler LC_480-
qPCR platform, where fluorescence signals were measured in

FIGURE 3 | Variability in gemcitabine sensitivity and the effect of a “hit”

(fragment D1) on cellular viability when measured on three sets of cells

in cultures grown on different days. The differences between gemcitabine
and gemcitabine plus all “hit” fragments such as D1 is statistically significant at
the P < 0.05 level (n = 3).

real-time. The protocol, set-up with thermal cycling conditions,
consisted of one cycle at 95◦C for 10 min, followed by 45 cycles
of amplification at 95◦C for 10 s, and 60◦C for 30 s. Roche
LightCycler Data Analysis Software was used to determine
the melt curve data as well as the quantification cycle values
(Cq values). The changes in expression levels were normalized
against two reference gene as determined via GeNorm (REF),
and the relative mRNA levels of genes following treatment
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FIGURE 4 | Distribution in chemical space of the first 500 Maybridge fragments as judged using the principal components of the variance in a set of

their biophysical properties (see Methods) as produced using RDKit in KNIME.

FIGURE 5 | As in Figure 4 save that the axes are Total Polar Surface area and S log P as calculated using RDKit.
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FIGURE 6 | Tanimoto similarity to the set of three hits in the first 500 Maybridge fragments of 20 molecules selected from the other four libraries. The
average % viability of the cells in the presence of gemcitabine but the absence of Maybridge fragments in this experiment was 81. The starting fragment to which the
molecule was most similar is encoded by shape and color, while the S log P-value is encoded by size.

were calculated using “The Comparative CT Method” (11CT

Method).

Design of Primers for RT-qPCR
The National Centre for Biotechnology Information (NCBI)
website (http://www.ncbi.nlm.nih.gov/) was used to identify and
obtain mRNA sequences. Exon boundaries were determined
from the “European Molecular Biology Laboratories” website
(http://www.ensembl.org). This procedure was performed until
sets of primers were selected for each target gene. The final
step involved checking the primers for similarity using NCBI
BLAST (Basic Local Alignment Search Tool) (http://www.ncbi.
nlm.nih.gov/BLAST), reducing the chance of primers binding
non-specifically.

Identification of Reference Genes for
RT-qPCR Analysis
Samples were analyzed for the expression of each of eight
candidate reference genes, namely: ACTB (Beta-Actin), B2M
(Beta-2-microglobulin), GAPDH (glyceraldehyde-3-phosphate
dehydrogenase), HMBS (hydroxymethyl-bilane synthase),
HPRT1 (hypoxanthine phosphoribosyl transferase 1), RPL13A
(ribosomal protein L13a), RPL32 (ribosomal protein L32),
SDHA (succinate dehydrogenase complex, subunit A) as
recommended by Vandesompele et al. (2002). RT-qPCR was
performed as described previously, using the primers specific for
each candidate reference gene. The GeNorm algorithm software
package was used to determine the two most stable reference
genes from the set of tested candidate genes by calculating a gene
normalization factor, eliminating the least stable genes until a

stability value (M) of 0.4 or less was reached (Vandesompele
et al., 2002).

RESULTS

Effects of Gemcitabine and Drug
Fragments on the Viability of Panc-1 Cells
A standard strategy is to choose a series of molecules that
cover chemical space effectively, and for this we chose initially
the main Maybridge drug fragment library. It consists of 500
rule-of-three-compliant (Congreve et al., 2003) polar molecules
that cover chemical space widely, and where the molecular
properties include molecular weight <300, number of hydrogen
bond donors≤3, number of hydrogen bond acceptors≤3, ClogP
≤3, and in addition, the number of rotatable bonds ≤3 and
the polar surface area ≤60Å2. While the use of fragments is
commonplace in target-based assays, especially where structures
are known (e.g., Erlanson and Hansen, 2004; Erlanson et al.,
2004; Rees et al., 2004; Carr et al., 2005; Alex and Flocco, 2007;
Ciulli and Abell, 2007; Jhoti, 2007; Jhoti et al., 2007; Hubbard,
2008; Fischer and Hubbard, 2009; Schulz and Hubbard, 2009;
Whittaker et al., 2010; Leach and Hann, 2011; Erlanson, 2012;
Caliandro et al., 2013), we here prefer the use of the rather more
successful phenotypic screens (Swinney and Anthony, 2011;
Swinney, 2013). Although it is hard to find published examples of
phenotypic screens that used fragment-based libraries, we merely
point out that 25% of successful (marketed) drugs are no larger
than fragments (i.e., <300 Da) (O’Hagan and Kell, 2015c). The
fragment-based approach also has the advantage of avoiding the
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TABLE 2 | Six hits in the “binary weapon” assay given in three formats, plus indole-3-carbinol.

MBF SMILES Name

D1 OC(=O)c1sc2sccc2c1Cl 3-chlorothieno[2,3-b]thiophene-2-carboxylic acid

B1 CNCc1ccccc1c2cccs2 N-methyl-N-(2-thien-2-ylbenzyl)amine

10 S1C(=CC=C1CNC)c1cccnc1 N-methyl-(5-pyrid-3-ylthien-2-yl)methylamine

11 S1C(=CC=C1CNC)c1ccncc1 N-methyl-(5-pyrid-4-ylthien-2-yl)methylamine

12 S1C=C(c2c1ccc(c2)Cl)CC(=O)O 2-(5-Chlorobenzo[b]thiophen-3-yl)acetic acid

20 N1=COC(=C1)c1ccc(cc1)N 4-(1, 3-Oxazol-5-yl)aniline

I3C C1=CC=C2C(=C1)C(=CN2)CO Indole-3-carbinol

increasing “molecular obesity” (Hann, 2011; Meanwell, 2011)
that is seen in some cases as inimical to the finding of successful
drugs (Leeson and Springthorpe, 2007; Leeson and Empfield,
2010).

Panc1 cells are a pancreatic cancer cell line (e.g., Gradiz et al.,
2016). Figure 1 shows four separate experiments in which the
effect of the pools of the Maybridge fragments (6 at a time) on
the viability of cells was assessed in the presence and absence
of 20 nM gemcitabine, pointing up three pools containing “hits”
(which occurred in at least 3 experiments; there are a total of 336
experiments here). Figure 2 shows the % viability of one set of
Panc1 cells as a function of the gemcitabine concentration, as
a result of which we later chose 100 nM gemcitabine to assess
the efficacy of the individual fragments in increasing its toxicity.
Figure 3 shows a titration curve for three repeats with one of
the “hits,” the plot also serving to illustrate the variability of the
toxicity of gemcitabine alone on different days. Figures 4, 5 show
the distribution in chemical space of all 500 fragments in the
first Maybridge library and three “hits” at 10 µM that lowered

the viability of cells by at least 10% in the presence, but not
the absence, of 100 nM gemcitabine. These were retested singly,
then together pairwise, resulting in three hits, viz B1, D1, and
B12. B12 seemed to interfere with the other two fragments by
binding to them directly (UV evidence) and was not used further.
Note that a significant issue is that although for a given batch
of Panc1 cells the titration curves were reasonably reproducible,
they were considerably less so between batches (for reasons that
will become apparent below). This meant that each culture had
to be used as its own control, as we did e.g., in Figure 2. Another
interesting feature was that quite a significant fraction of the
fragments (as in Figure 1, and see below) were even somewhat
stimulatory to cell growth in the absence of gemcitabine.

There are four other Maybridge fragment libraries of 500
molecules each, covering broadly the same chemical space but
in more detail (O’Hagan and Kell, 2015c), and we performed
a cheminformatics analysis (MACCS encoding, Tanimoto
similarity) to establish which other molecules might be similar,
exactly as per the analyses in (O’Hagan et al., 2015). Some 20
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FIGURE 7 | Chemical similarities of the various hits to each other, and effect of Maybridge fragment 10 on cell viability. A heatmap showing the three
clusters of molecules that could be observed.

molecules had a Tanimoto similarity within 0.7 of one of the
three remaining hits and were tested. In this case, the starting %
viability was much higher than those in Figure 2. All 20 of these
fragments are in fact active, which shows that these molecules
(Figure 6) exhibit a very considerable enrichment over the whole
library, and illustrates the utility of the principle of molecular
similarity (Gasteiger, 2003; Bender and Glen, 2004; Stumpfe and
Bajorath, 2011; Maggiora et al., 2014). The figure also illustrates
which of the original three hits the new hits are closest to,
and encodes their S log P-values as the size of the marker.
This enormous cheminformatics-based enrichment also gives
considerable confidence in our strategy, despite the variability
in sensitivity of the Panc1 cells to gemcitabine alone, since such
a huge enrichment could not conceivable occur for molecules
that were not active. Although none was quite as active as the
original hits, all exhibited some kind of activity (Figure 2) (the
starting viabilities for two different experiments in the presence
of gemcitabine only were 78 and 84%). Of all of these, the seven
most potent molecules exhibited activity at 3µM.One was rather
expensive and was again excluded. Thus, we had a total of 6 hits
to consider [two from library 1 (B1 and D1), and a total of four
from the other four libraries, referred to as fragments 10, 11, 12,

and 20]. Table 2 gives their names, SMILES encodings and 2D
structures, along with that of indole-3-carboxylic acid (see later).

Figure 7 shows a (symmetrical) heatmap (MACCS encoding)
of the Tanimoto similarities of the 22 most potent molecules,
where it can again be seen that the hits are in three clusters.
These are B1, 10, and 11 (all are amines), D1 and 12 (carboxylic
acids), and 20 (an aniline derivative—possibly to be avoided
Benigni and Passerini, 2002; Benigni et al., 2009; Franke et al.,
2010). One implication is that they each have different targets
(probably plural) but attempts even to show additivity, let alone
synergy, met with failure, possibly because the molecules were
indeed rather similar to each other in terms of the larger
chemical space. Figure 8—equivalent to Figure 3—shows data
for two experiments with fragment 10, again illustrating the
stimulation of growth by the fragment alone, and its inhibition
in the presence of a relatively weakly inhibiting concentration
of gemcitabine. Finally, Figure 9 shows the Tanimoto similarities
(TS, based on the MACCS encoding) between the six hits plus
Indole-3-carbinol (I3C, see below). Fragments within a group
showed a Tanimoto similarity of 0.75 or greater, while those
between groups were less than 0.5. I3C was not really similar to
any of the hits; its highest TS to any of the hits was 0.36. It is

Frontiers in Pharmacology | www.frontiersin.org March 2017 | Volume 8 | Article 155 | 31

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Grixti et al. Drug Targeting Binary Weapon Strategy

FIGURE 8 | Two experiments illustrating the effect of Maybridge fragment 10 on cell viability in the absence and presence of gemcitabine, again

showing the stimulation in the absence of gemcitabine. The differences between gemcitabine and gemcitabine plus fragment 10 is statistically significant at the
P < 0.05 level (n = 3).

especially gratifying to note that MBF10 and MBF11 were both
selected and had a TS to each other of 1, as they are in fact
structural isomers. Along with the other clusterings, this adds
considerable weight to the validity of our assays.

Effect of Indole-3-Carbinol on Gemcitabine
Toxicity
Cruciferous vegetables such as Brassica spp. are considered to
have certain anticancer properties (Higdon et al., 2007; Juge
et al., 2007; Fujioka et al., 2016b), and small molecules derived
from the hydrolysis of glucosinolates, such as sulforaphane and
indole-3-carbinol (I3C), have been implicated in a variety of
anticarcinogenic mechanisms (e.g., Chen et al., 2014; Fujioka
et al., 2016a). I3C is a small molecule (MW 147.17, well within
the range of “fragments”), and Lyn-Cook and colleagues (Lyn-
Cook et al., 2010; Wang et al., 2011; Paik et al., 2013) have
published that I3C can enhance the sensitivity of pancreatic
cancer cells to gemcitabine, possibly via upregulation of ENT1
expression (Wang et al., 2011). It was thus of interest to compare
I3C with the hits that we found. In our hands, however, I3C
had no measurable effect on either the cell viability in the
presence or absence of gemcitabine (nor on the expression
profiles discussed below). This is entirely consistent with its low
structural similarity to the other hits as indicated above.

Effect of Fragments on the Growth of
Panc1 Cells
Although this was not the main focus of the present paper, we
did note (as mentioned above) that the fragments themselves
could stimulate the growth of Panc1 cells relative to that of
controls (as measured by OD). This is illustrated in Figure 10

for 28 of the fragments on which we focussed. Also encoded
with the structures are the number of H-bond donors and
acceptors, the total polar surface area of the fragments, and
(on the abscissa) the S log P-values. It is clear (i) that virtually
every fragment could stimulate the growth of the cells, and
(ii) that there was no particularly obvious relationship of
the extent of such stimulation with any of the descriptors
stated.

Effect of Gemcitabine and Fragments on
the Expression of Selected Transcripts in
Panc 1 Cells
Given that there was evidence that the fragments did not affect
gemcitabine uptake directly, we assumed that they must be
working by influencing the activity or expression of appropriate
targets (and certainly small molecules can affect transporter
expression, (e.g., Mrozikiewicz et al., 2014). To this end, we
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FIGURE 9 | Tanimoto similarities of the main hits in the three clusters of Figure 7 (plus I3C).

FIGURE 10 | Effect of various fragments on cell growth/viability relative to untreated controls. Also plotted are the number of H-bond acceptors (by shape;
square 1, circle 2, diamond 3, triangle 4), H-bond donors (by color, blue 0, green 1, red 2, yellow 3), total polar surface area (by size of symbol, up to 63 Å2) and S log
P (on the abscissa).
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TABLE 3 | Changes in the transcript level of relevant transporters and

other genes when treated with gemcitabine and/or fragment D1.

Gene Fold changes

Treatment with

100nM GEM

Treatment with

MBF D1 only

Treatment with MBF

D1 and 100 nM GEM

ENT1 0.87 ± 0.13 0.79 ± 0.12 1.08 ± 0.17

ENT2 0.57 ± 0.13 0.98 ± 0.27 0.59 ± 0.17

ENT3 2.58 ± 0.11 1.18 ± 0.64* 0.89 ± 0.20***

ABCC2 12.27 ± 0.34 0.66 ± 0.14*** 1.33 ± 0.33***

ABCC3 0.16 ± 0.48 2.10 ± 0.09** 0.54 ± 0.18

ABCC4 0.53 ± 0.10 0.90 ± 0.23 0.36 ± 0.14

ABCC5 0.50 ± 0.11 1.18 ± 0.32* 1.21 ± 0.15**

ABCC10 1.61 ± 0.48 0.53 ± 0.08* 0.48 ± 0.16*

RRM1 4.43 ± 0.13 1.11 ± 0.17*** 2.07 ± 0.16***

Only those transcripts detectable within 35 PCR cycles are shown. Data are given asmean

± standard deviation. A 2-sided T-test was performed to assess statistical significance

against GEM alone, P-values being encoded as * < 0.05, ** < 0.01, *** < 0.001.

TABLE 4 | Changes in the transcript level of ABCC2 and RRM1 when

treated with gemcitabine and/or the other fragment hits.

Treatment Gene fold changes

ABCC2 STDEV RRM1 STDEV

GEM 100 nM GEM 12.27 ±0.34 4.43 ±0.13

MBF D1 MBF D1 only 0.66*** ±0.14 1.11*** ±0.17

MBF D1 + 100 nM GEM 1.33*** ±0.33 2.07*** ±0.16

MBF B1 MBF B1 only 0.49*** ±0.08 1.22*** ±0.12

MBF B1 + 100 nM GEM 1.21*** ±0.53 2.77*** ±0.11

MBF 10 MBF 10 only 1.00*** ±0.23 1.76*** ±0.14

MBF 10 + 100 nM GEM 0.68*** ±0.05 1.56*** ±0.08

MBF 11 MBF 11 only 1.09*** ±0.09 1.04*** ±0.11

MBF 11 + 100 nM GEM 0.93*** ±0.15 1.88*** ±0.20

MBF 12 MBF 12 only 0.65*** ±0.13 1.39*** ±0.09

MBF 12 + 100 nM GEM 1.25*** ±0.19 2.11*** ±0.15

MBF 20 MBF 20 only 0.7*** ±0.06 1.43*** ±0.11

MBF 20 + 100 nM GEM 1.13*** ±0.05 2.02*** ±0.12

A 2-sided T-test was performed to assess statistical significance vs. GEM alone, P-values

being encoded as * < 0.05, ** < 0.01, *** < 0.001.

designed primers to enable PCR of transcripts relevant to
gemcitabine transport and metabolism. Table 3 shows each of
those that were detectable within 35 PCR cycles when treated (i)
with gemcitabine alone, (ii) with Maybridge fragment D1 alone,
and (iii) with both gemcitabine and D1. Strikingly, gemcitabine
increases the expression of the ABCC2 efflux transporter (MRP2)
more than 12-fold, and that of RRM1 more than fourfold, while
the addition of D1 largely reverses both of these effects. It
would seem that these are by far the largest contributors to
the efficacy of fragment D1 in enhancing the cytotoxicity of
gemcitabine, and the same is true for each of the other fragments
(Table 4 and Figure 11). However, the ABCC2 inhibitor MK-571
(e.g., Weiss et al., 2007; Noma et al., 2008) at 20 µM had no
effect on the viability of Panc1 cells treated with Gemcitabine

alone (data not shown), possibly implying that RRM1 was
the more significant contributor to the phenotypic changes
in resistance.

Selectivity of Fragments for Increasing
Transporter Expression
Having seen that various of the fragments could increase the
toxicity of gemcitabine to Panc1 cells, it was of interest to see
whether this was a cell-selective phenomenon. Although time did
not permit an exhaustive study, we noted that fragments 10 and
20 also had these toxicity-enhancing effect for the neuroblastoma
SH-SY5Y cell line while B1, D1, 11, and 12 did not (Figure 12).
No fragments seemed to have any such effects on the non-
cancerous pancreatic cell line hPDE (Figure 13) and HEK293
cells (Figure 14), implying that there is or can be at least some
degree of specificity in our “binary weapon” approach. Clearly a
larger-scale study (including both larger libraries and more cell
lines) would be able to discover molecules with both potency and
selectivity.

DISCUSSION

In the present work, we sought to develop the idea that we might
affect the transporter-mediated disposition of small-molecule
drugs via the addition of a second small molecule that of itself
had no inhibitory pharmacological effect but that influenced
the expression of transporters for the primary drug (Figure 15).
We refer to this as a “binary weapon” strategy. The specific
phenotypic effect we sought was for a molecule that on its own
had no such effect to increase the toxicity of the nucleoside analog
gemcitabine to Panc1 pancreatic cancer cells (Figures 1–3).

Given the recognition (O’Hagan and Kell, 2015c) that more
some 25% of marketed drugs are in fact no larger than the polar
“rule-of-three”-compliant (Congreve et al., 2003) molecules used
in fragment-based drug discovery, we used an initial screen of
a 500-member polar drug fragment library. This yielded three
“hits” (Figures 4, 5). The structures of 20 of the other 2000
members of this library had a Tanimoto similarity greater than 0.7
to those of the initial hits, and eachwas itself a hit (Figure 6) (with
the cheminformatics thus providing for a massive enrichment
in the fraction of successful experiments). We chose the top
six representatives for further study. They each bore reasonable
structural similarities to each other (two were in fact isomers),
lending strength to the self-consistency of both our conceptual
and experimental strategies (Figures 7, 8).

Existing literature had suggested that indole-3-carbinol might
play a similar role to that of our fragments, but in our hands it
was without effect, and nor was it structurally similar to any of
our hits (Figure 9). We therefore discounted it.

There is an interesting issue when the phenotypic activity
being measured is in fact cell death, as it is then impossible
legitimately to compare bulk measurements of biochemical
changes with individual-cell viabilities. This is because with
bulk or ensemble measurements one does not know if say a
lowering of a biochemical parameter by 50% means that all of
the cells have lost half of it or half of the cells have lost all
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FIGURE 11 | Effect of gemcitabine ± various Maybridge fragments on the expression of transcripts for ABCC2 and RRM1. Each experiment was
performed three times, as described in Materials and Methods, and the mean is shown. For clarity, SD and statistical significance data are given only in the legends to
Tables 3, 4.

FIGURE 12 | Effects of gemcitabine and gemcitabine plus fragments on the viability of SH-SY5Y cells. Apart from fragments 10 and 20, the effects of the
fragments were not statistically significant at the P < 0.05 level, n = 3 per experiment.
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FIGURE 13 | Effects of gemcitabine and gemcitabine plus fragments on the viability of hPDE cells. The effects of the fragments were not statistically
significant at the P < 0.05 level, n = 3 per experiment.

FIGURE 14 | Effects of gemcitabine and gemcitabine plus fragments on the viability of HEK293 cells. Experiments were performed as described, and as per
the legend to Figures 3, 8. The effects of the fragments were not statistically significant at the P < 0.05 level, n = 3 per experiment.
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FIGURE 15 | Cartoons illustrating the potential modes of action of

fragments in enhancing transporter-mediated gemcitabine toxicity in

Panc1 cells. (The smaller effects on RRM1 are ignored for clarity). Left:
Original hypothesis that fragments would stimulate the activity of uptake
transporters. Right: Actual mechanism based on PCR data.

of it (or anything in between) (Kell et al., 1991, 1998; Davey
and Kell, 1996). In the event, the mechanism was very clear,
however.

Because the fragments were themselves without negative
effects on the cells in the absence of gemcitabine (interestingly,
many of them actually stimulated cell growth, Figure 1, so
each had to be compared to the appropriate control!), we next
designed suitable primers to assess the expression levels of all
the candidate transporters plus ribonucleotide reductase. In our
hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux
transporters displayed measurable transcripts, along with RRM1.

Very strikingly, the addition of gemcitabine alone increased the
expression of the transcript for ABCC2 (MRP2) by more than
12-fold, and that of RRM1 by more than fourfold, and each
of the fragment “hits” served to reverse this, at least in part
(Figure 11). The effects on ABCC2 are thus consistent with the
finding (Horiguchi et al., 2013) that it may be amajor efflux pump
for gemcitabine.

It seems, therefore, that while the effect was here mediated
more by efflux than influx transporters, the binary weapon idea is
hereby fully confirmed: our results show that it is possible to find
molecules that manipulate the expression of transporters that are
involved in the bioactivity of a pharmaceutical drug, and that
there is a certain degree of specificity in this for pancreatic cancer
cells (Figures 12–14). This could explain, at least in part, the basis
for the selective toxicity of a drug that is otherwise cytotoxic
generally (Figure 15). The next steps will involve determining
muchmore extensively howmuch any such activity differs, or can
be made to differ (as do most transcript levels), between different
cells.
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Cisplatin is a classic chemotherapeutic agent widely used to treat different types of
cancers including ovarian, head and neck, testicular and uterine cervical carcinomas.
However, cisplatin induces acute kidney injury by directly triggering an excessive
inflammatory response, oxidative stress, and programmed cell death of renal tubular
epithelial cells, all of which lead to high mortality rates in patients. In this study, we
examined the protective effect of protocatechuic aldehyde (PA) in vitro in cisplatin-
treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of
Traditional Chinese Medicine isolated from the root of S. miltiorrhiza (Lamiaceae). Results
show that PA prevented cisplatin-induced decline of renal function and histological
damage, which was confirmed by attenuation of KIM1 in both mRNA and protein
levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and
programmed cell death in response to cisplatin, which was further evidenced by
in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4,
in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed
the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may
play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute
kidney injury. Collectively, our data indicate that PA blocks cisplatin-induced acute
kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation
without compromising anti-tumor activity of cisplatin. These findings suggest that PA
and its derivatives may serve as potential protective agents for cancer patients receiving
cisplatin treatment.
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INTRODUCTION

Cisplatin is widely used in the treatment of various cancers
including ovarian, head and neck, testicular and uterine cervical
carcinomas (Pabla and Dong, 2008; Sung et al., 2008). Although
regarded as one of most effective chemotherapeutic agents by
directly interfering with DNA synthesis and inducing apoptosis,
adverse effects such as nephrotoxicity put this promising anti-
cancer agent in a precarious position. In fact, approximately 30%
of patients experience a marked decline in renal function after a
single dose injection of cisplatin (Sung et al., 2008). To this point
it is important to prevent cisplatin-induced acute kidney injury,
which is growing in clinical significance. Although emerging
evidence indicates several pathological mechanisms, including
excessive inflammatory response, oxidative stress, apoptosis and
death of renal tubular epithelial cells, clear therapeutic targets and
effective therapies are still lacking (Sancho-Martinez et al., 2015;
Yang et al., 2016; Zuk and Bonventre, 2016).

Traditional Chinese Medicine (TCM) may be a promising
and novel avenue to effectively treat human diseases with lower
toxicity. Indeed, artemisinin is an impressive example of success
in the war against malaria. Previous studies indicated that
several TCM monomers, such as resveratrol (Kim et al., 2011),
Luteolin (Domitrovic et al., 2013), and Emodin (Liu et al., 2016)
relieved cisplatin-induced acute kidney injury in animal models.
Our recent findings also revealed that 18β-glycyrrhetinic acid
alleviated cisplatin-induced apoptosis of renal tubular epithelial
cells by targeting HDAC2/BMP-7 axis (Ma et al., 2016). However,
the identification of more efficient and low toxic therapeutic
agents needs more research. In our pilot study, we tested 10
potential anti-inflammatory TCM monomers including aloin,
barbaloin, icariin, protocatechuic acid, protocatechuic aldehyde
(PA), puerarin, sodium houttuyfonate, sophoridine, wogonin,
and wogonoside, which have not been investigated in the kidney
field or in cisplatin-treated tubular epithelial cells (data not
shown). Results presented here show that PA, isolated from the
root of S. miltiorrhiza, is one of the most powerful protective
TCM monomers. It significantly suppressed cisplatin-induced
injury of tubular epithelial cells and the inflammatory response.
This was possibly mediated by inhibition of oxidative stress and
programmed cell death. Moreover, the protective role of PA
was further evidenced in vivo in cisplatin nephropathy, where it
prevented decline of renal function and attenuated renal injury.
More importantly, results of MMT assay in three tumor cell
lines demonstrated that treatment of PA didn’t alter the anti-
tumor property of cisplatin. These findings indicate that PA may
be a potential therapeutic agent for preventing cisplatin-induced
acute kidney injury.

RESULTS

PA Ameliorated Cisplatin-Induced Death
in HK2 Cells
We used an MTT assay to analyze the impact of PA on
cell viability in the human tubular epithelial cell line (HK2).
Results show that PA treatment began to reduce cell viability at

concentrations greater than 1 µM (Figure 1A). Moreover, PA
in concentration of 0.25, 0.5, and 1 µM significantly restored
cell viability after cisplatin treatment (20 µM; Figure 1B). Given
these results, we chose 0.25, 0.5, and 1 µM PA for subsequent
experiments. We also determined whether PA limited the anti-
tumor activity of cisplatin in three solid tumor cells lines,
SMCC-7721, BEL-7402, and U87. MTT assay data show that
cisplatin reduced cell viability of hepatic cancer SMCC-7721 cells,
particularly at 48 h, and administration of PA didn’t reduce
the tumor-suppressive effect of cisplatin (Figure 1C). This was
further supported by the findings that PA didn’t protect against
cisplatin-induced tumor cell death in human hepatic cancer line
BEL-7402 and malignant gliomaU87 cell line.

PA Protected against Cisplatin-Induced
Cell Damage and Inflammatory
Response
To assess whether PA reduces kidney damage, we examined
mRNA and protein expression of kidney injury molecule-
1(KIM1). Western blot and real-time PCR results show that
cisplatin upregulated KIM1. This was decreased by PA treatment
in a time-dependent manner in HK-2 cells (Figures 2A,B).
Additionally, real-time PCR and ELISA analysis show that
PA protected against inflammatory response as evidenced by
decreased chemokine monocyte chemotactic protein (MCP-1),
inflammatory cytokine (IL-8), and proinflammatory cytokine
TNF-α expression levels (Figures 2B,C).

PA Inhibited Cisplatin-Induced Cell
Necroptosis and Apoptosis
We tested the protective effects of PA on cell death of HK2 by
flow cytometric analysis of PI/AnnexinV staining. Results show
that PA alleviated cisplatin-induced necroptosis and apoptosis
(Figure 3A). Mechanistically, PA significantly reduced the key
signaling molecules mediating necroptosis, including RIP1, RIP3,
and phosphorylation of downstream MLML in HK2 cells
(Figure 3B). Furthermore, cleaved-caspase-8, cleaved-caspase-
3, cleaved-caspase-12, and phosphorylation of p53 were also
markedly decreased in response to PA treatment (Figure 3B).

PA Suppressed Cisplatin-Induced Injury
In vitro via Blocking Nox-Mediated
Oxidative Stress
A reactive oxygen species (ROS) assay was performed using
DCF fluorescence in HK2 cells to measure the effect of PA on
oxidative stress. Results show that PA largely decreased ROS in
cisplatin-stimulated HK2 cells (Figure 4A). Moreover, results of
DHE staining show that superoxide levels, the reaction product
of Nox enzymes, were suppressed by PA treatment (Figure 4B).
We know that apocynin or PA treatment decreases cisplatin-
induced damage of tubular epithelial cells. Interestingly, we found
that after blocking Nox enzymes with apocynin, PA failed to
further reduce the renal damage (Figure 4C). This indicates a
role for the Nox family in mediating the protective effect of PA.
Therefore, we analyzed the main members of the Nox family in
kidney, including Nox2 and Nox4. Western blot results show that
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FIGURE 1 | Effect of protocatechuic aldehyde (PA) on cell viability with or without cisplatin treatment. (A) Effect of different concentrations of PA on
viability of HK2 cells by MTT assay. (B) PA restored cell viability in cisplatin-treated HK2 cells (MTT assay). (C) Effect of PA on anti-cancer efficacy of cisplatin. Data
represent the mean ± SEM for at least 3–4 independent experiments. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 compared to the control. #p < 0.05, ##p < 0.01,
###p < 0.001 compared to cisplatin-treated group. Cis, cisplatin; PA, protocatechuic aldehyde.

PA treatment reduced cisplatin-induced Nox2 and Nox4 protein
expression in a dose-dependent manner (Figures 4D,F). This was
further supported by real-time PCR data showing reduced Nox2
mRNA and Nox4 mRNA (Figures 4E,G).

PA Attenuated Cisplatin-Induced Injury
through Nox4-Dependent Mechanisms
We determined whether Nox2 and Nox4 are important targets
for PA in mediating its protective effects. We found that
Nox2 and Nox4 were largely suppressed when shRNA plasmids
were transfected into cells (Figures 5A,B). Western blot results
show that PA further suppressed KIM1 levels in absence of
Nox2. But, PA failed to further attenuate renal tubular cell

damage when Nox4 was disrupted (Figure 5C). This indicates
an essential role for Nox4 in mediating protective effects
of PA.

PA Attenuated Cisplatin-Induced
Necrosis, Inflammation, and ROS
through Nox4-Dependent Mechanisms
We analyzed the role of PA on the Nox4 pathway in more
detail in vitro. We found that PA failed to reduce cleaved-
caspase-3 levels in Nox4 knockdown HK2 cells (Figure 6A).
Consistently, when Nox4 was silenced, PA didn’t further suppress
the production of inflammatory cytokines (Figure 6B). This
indicates that PA protects against cisplatin-treated tubular
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FIGURE 2 | Protocatechuic aldehyde reduced cisplatin-induced kidney injury molecule-1 (KIM1) level and inflammatory response in HK2 cells.
(A) Western blot analysis and quantitative data of KIM-1 in HK2 cells. (B) Real-time PCR in HK2 cells. Results demonstrate that treatment of PA largely reduced
cisplatin-induced mRNA levels of KIM1, TNF-α, MCP-1, and IL-8. (C) ELISA in HK2 cells. Results indicate that treatment with PA significantly reduced
cisplatin-upregulated protein levels of IL-8 and MCP-1 in HK2 cells. Data represent the mean ± SEM for 3–4 independent experiments.∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001 compared to the control. #p < 0.05, ##p < 0.01, ###p < 0.001 compared to cisplatin-treated group. Cis, cisplatin; PA, protocatechuic aldehyde.

epithelial cells in a Nox-dependent manner. These results were
further confirmed by detecting MDA level, which showed that
ROS levels were consistent (Figure 6C).

PA Inhibited Cisplatin-Induced Acute
Kidney Injury in Mice
The protective effect of PA was also evaluated in vivo in
cisplatin nephropathy. Results of periodic acid-Schiff (PAS)
staining revealed that administration of PA in concentrations of
0.45, 0.9, and 1.8 mg/kg reduced tubular necrosis, dilation, and
cast formation compared with model groups (Figure 7A). The

therapeutic effects of PA were further confirmed by detection
of renal function, including serum creatinine and blood urea
nitrogen. Results show that PA largely prevented the decline of
renal function in a dose-dependent manner (Figures 7B,C).

PA Significantly Reduced
Cisplatin-Induced Tubular Injury and
Inflammation Response in Mice
Western blot and quantitative data show that KIM1, a
key marker for tubular injury, was significantly elevated by
cisplatin but reduced by PA treatment in a dose-dependent
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FIGURE 3 | Protocatechuic aldehyde inhibited cisplatin-induced cell necroptosis and apoptosis in HK2 cells. (A) Flow cytometry of PI/AnnexinV. Results
of flow cytometry demonstrate that PA inhibited cisplatin-induced cell necrosis and apoptosis in HK2 cells; (B) Western blot analysis and quantitative data of RIP1,
RIP3, p-MLKL in cisplatin-treated HK2. Results show that administration of PA substantially blocked activation of RIP1/RIP3/MLKL axis in cisplatin-stimulated HK2
cells; In addition, results of Western blot and quantitative data demonstrate that treatment of PA gently decreased cisplatin-induced cleavage of caspases and
phosphorylation of p53 in HK2 cells; Data represent the mean ± SEM for 3–4 independent experiments. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 compared to the
control. #p < 0.05, ##p < 0.01, ###p < 0.001 compared to cisplatin-treated group. Cis, cisplatin; PA, protocatechuic aldehyde.

manner (Figure 8A). This was further evidenced by results
from IHC and real-time PCR (Figures 8C,E). PA treatment
also suppressed the increased level of Neutrophil gelatinase-
associated lipocalin (NGAL), another kidney injury marker,
in urine in cisplatin nephropathy (Figure 8B). Additionally,

results from IHC show that PA reduced TNF-α positive signals
in injured kidney. This was consistent with real-time PCR
results showing reduced mRNA levels of proinflammatory
cytokines and chemokines including TNF-α, IL-6, and MCP-1
(Figures 8D,E).
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FIGURE 4 | Protocatechuic aldehyde inhibited cisplatin-induced cell oxidative stress in HK2 cells by suppressing Nox signaling. (A) DCF Assay of
Reactive Oxygen Species. Results of ROS assay demonstrate that PA inhibited cisplatin-induced cell oxidative stress in HK2 cells; (B) DHE staining of intracellular
ROS levels. PA attenuates cisplatin-induced ROS generation. (C) Role of Nox enzymes in the effect of PA on cisplatin-treated HK2 cells. (D,F) Western blot analysis
and quantitative data of Nox2 and Nox4 in cisplatin-treated HK2 cells. Results show that administration of PA substantially suppressed protein levels of both Nox2
and Nox4 in cisplatin-stimulated HK2 cells. (E,G) Real-time PCR in HK2 cells. Results demonstrate that treatment of PA largely reduced cisplatin-induced mRNA
levels of Nox2 and Nox4; Data represent the mean ± SEM for 3–4 independent experiments. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 compared to the control.
#p < 0.05, ##p < 0.01, ###p < 0.001 compared to cisplatin-treated group. Cis, cisplatin; PA, protocatechuic aldehyde; APO, Apocynin.
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FIGURE 5 | Protocatechuic aldehyde failed to further reduce cisplatin-induced cell injury in Nox4 knockdown, instead of Nox2 knockdown in HK2
cells. (A,B) Identification of Nox2 and Nox4 knockdown in HK2 cells; Results show that Nox2 and Nox4 were downregulated by transfection of Nox2 siRNA and
Nox4 ShRNA plasmid, respectively. (C) Western blot analysis and quantitative data of KIM1 in Nox2 and Nox4 knockdown HK2 cells treated with PA. Data represent
the mean ± SEM for 3–4 independent experiments. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 compared to the control. #p < 0.05, ##p < 0.01, ###p < 0.001 compared
to Nox4 EV group. $$p < 0.01, $$$p < 0.001 compared to cisplatin-treated group. Cis, cisplatin; PA, protocatechuic aldehyde; EV, empty vector; KD, knockdown.

PA Protected against Cisplatin
Nephropathy by Attenuating Oxidative
Stress
We then investigated the underlying mechanisms by which PA
improves renal function and limits kidney injury. We found
that MDA levels were significantly increased in kidneys of
cisplatin-injected mice. But, PA reduced the upregulation of
MDA levels in a dose-dependent manner (Figures 9A,B). This
is consistent with the finding that PA restored the cisplatin-
suppressed level of GSH, an antioxidant index. This indicates
that PA substantially decreased cisplatin-induced production of
ROS. Moreover, Western blot and quantitative data show that
PA reduced protein levels of Nox2 and Nox4 in a dosage-
dependent manner in cisplatin nephropathy. This was further

confirmed by immunohistochemistry that revealed that Nox4
was downregulated in cisplatin-injured kidney treated with PA
(Figures 9C,D). Additionally, the function of Nox4 was detected
in vivo. Results of PAS staining indicate that lentivirus-mediated
knockdown of Nox4 significantly attenuated cisplatin-induced
kidney damage (Figure 9E). This demonstrates it may be a critical
target to mediate protective effects of PA.

PA Protected against Cisplatin
Nephropathy by Attenuating Cell Death
Our results show that PA suppressed activation of the
RIP1/RIP3/MLKL axis, which is regarded as the key pathway
mediating necroptosis. We found PA also decreased levels of
cleaved-caspase-3 in cisplatin nephropathy (Figure 10).
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FIGURE 6 | Protocatechuic aldehyde failed to further reduce cisplatin-induced cell apoptosis, inflammatory response, and oxidative stress in Nox4
disrupted HK2 cells. (A) Western blot analysis and quantitative data of cleaved-caspase-3. (B) Real-time PCR analysis of inflammatory response in Nox4 disrupted
HK2 cells. Results show that when Nox4 was disrupted, PA failed to further decrease mRNA levels of KIM1, MCP-1, TNF-α, and IL-8. (C) Malondialdehyde (MDA)
levels in HK2 cells. Results indicate that when Nox4 was knocked down, PA failed to further decrease the MDA levels in cisplatin-stimulated HK2 cells. Data
represent the mean ± SEM for 3–4 independent experiments. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 compared to the control. #p < 0.05, ##p < 0.01, ###p < 0.001
compared to Nox4 EV group. $p < 0.05, $$p < 0.01, $$$p < 0.001 compared to cisplatin-treated group. Cis, cisplatin; PA, protocatechuic aldehyde; EV, empty
vector; KD, knockdown.

MATERIALS AND METHODS

Murine Model of Cisplatin-Induced AKI
Mice were obtained from Laboratory Animal Center of
Anhui province. All animal procedures were approved by
the Institutional Animal Experimentation Ethics Committee
of Anhui Medical University. Cisplatin with a single dose
at 20 mg/kg was injected intraperitoneally in 8-week-old
male mice and their littermates injected with saline were
set as normal control. Protocatechuic aldehyde (Dalian
Meilun Biotech Co. Ltd.), concentrations of 0.45, 0.9,
and 1.8 mg/kg, were given via intraperitoneal injection
6 h before cisplatin treatment and injected daily. Mice
were sacrificed under anesthesia (10% chloralic hydras by

intraperitoneal injection) 3 days after cisplatin injection.
Samples of kidney tissues and blood were harvested for further
analysis, including BUN (Nanjing Jiancheng Bioengineering
Institute) and creatinine, paraffin embedding (Nanjing Jiancheng
Bioengineering Institute) and molecular analysis. Paraffin
sections (3–5 mm) were stained with Periodic acid Schiff (PAS)
Staining kit (Fuzhou Maixin Biotech. Co., Ltd.) and analyzed via
immunohistochemistry.

Reagents and Materials
Antibodies RIP1, RIP3, KIM-1, Nox2, Nox4, TNF-α, and
β-actin were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA); Rabbit anti-P-MLKL and Anti-cleaved-
caspase-3, cleaved-caspase-12 were obtained from Cell Signaling
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FIGURE 7 | Protocatechuic aldehyde prevented cisplatin-induced renal injury and decline of renal function in vivo. (A) PAS staining and score. Results of
PAS staining and score of severity indicate that treatment of a set concentrations of PA alleviated tubular necrosis, tubular dilation, and cast formation in cisplatin
nephropathy; (B) Serum Creatinine; (C) BUN. Results of serum creatinine and BUN show that treatment of PA restored renal function in cisplatin nephropathy. Data
represent the mean ± SEM for 6–8 mice. ∗∗p < 0.01, ∗∗∗p < 0.001 compared to control. ##p < 0.01, ###p < 0.001 compared to model. Cis, cisplatin; PA,
protocatechuic aldehyde.

Technology (CST, Danvers, MA, USA). Lipofectamine 3000
was purchased from Science Biotechnology (Invitrogen, Beijing,
China). Protein Assay Kit was purchased from Beyotime Institute
of Biotechnology (Jiangsu, China). Cell Malondialdehyde (MDA)
assay kit (Colorimetric method), reduced glutathione (GSH)
assay kit, creatinine (Cr) Assay kit (sarcosine oxidase) and
urea (BUN) assay kit were obtained from Nanjing Jiancheng
Bioengineering Institute(Nanjing, China). Reactive Oxygen
Species Assay (DCF Assay) Kit and Dihydroethidium (DHE)
were purchased from Beyotime Institute of Biotechnology
(Jiangsu, China). ITC AnnexinV/propidiuiodide was purchased
from Bestbio (Shanghai, China). Mouse NGAL ELISA kit was
purchased from CUSABIO (Wuhan, China).

Cell Culture
Solid tumor cell lines (SMCC-7721, BEL-7402, and U87), kidney
tubular epithelial cells of human (HK2), and Nox2, Nox4
knockdown HK2 cells were cultured in 5% FBS-containing
HyCloneTM DMEM/F12 medium at 37◦C in humidified 5%
CO2. After overnight starving in DMEM/F12 medium containing
0.5% FBS, HK2 cells were pretreated with PA (Meilun Biology
Technology, Dalian, China) for 6 h before being exposed

to cisplatin (20 µM). Twenty-four hour later, the cells were
harvested for cell viability, the indexes of kidney injury, oxidative
stress, programmed cell death, and inflammatory response such
as KIM1, Nox2, Nox4, cleaved-caspase-3, 8, and 12, p-p53, p53,
RIP1, RIP3, phospho-MLKL, TNF-α, and MCP-1 using Western
blot analysis, real-time PCR or other methods. Three to four
in vitro experiments were performed independently.

Cell Viability Assay
Cell viability is determined by MTT assay, according to a purple
formazan product produced by mitochondrial dehydrogenase of
viable cells. Human HK2 cells were grown in 96-well plates with
treatments by a set of concentrations of PA (arranged from 0.25
to 8 µM). After 12 h, the cells were exposed to cisplatin (20 µM)
for 24 h in incubator. They were harvested after addition of
5 mg/ml MTT solution to each well for 4 h. Optical density (OD)
was determined in microplate reader (Multiskan MK3, Thermo,
USA) at 492 nm wavelength.

RNA Extraction and Real-Time PCR
Total RNA was isolated using the RNeasy Isolation Kit
(Qiagen, Valencia, CA, USA) according to the manufacturer’s
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FIGURE 8 | Protocatechuic aldehyde attenuated cisplatin-induced renal injury and inflammation in vivo. (A) Western blot analysis and quantitative data of
KIM1. Results indicate that treatment of PA in a set of concentrations substantially inhibited cisplatin-induced KIM1 in protein levels. (B) ELISA of urinary neutrophil
gelatinase-associated lipocalin (NGAL). PA treatment also suppressed the increased level of urinary NGAL in cisplatin nephropathy. (C) Immunohistochemistry of
KIM1. IHC result and quantitative data indicate that treatment of PA reduced the percentage of KIM1+ cells in injured kidney; (D) Immunohistochemistry of TNF-α.
IHC result and quantitative data indicate that treatment of PA reduced the percentage of TNF-α+ cells in injured kidney; (E) Real-time PCR of inflammation indexes.
Real-time PCR demonstrate that treatment of PA largely blocked upregulated mRNA levels of KIM1, MCP-1, TNF-α, and IL-6 in cisplatin-injured kidney. Data
represent the mean ± SEM for 6–8 mice. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 compared to control. #p < 0.05, ##p < 0.01, ###p < 0.001 compared to model. Cis,
cisplatin; PA, protocatechuic aldehyde.

instructions (Li et al., 2012). The RNA concentration
was detected by a NanoDrop 2000 Spectrophotometer
(Thermo Scientific, USA). RNA, nuclease-free water and
RealMasterMix (Bio-Rad, Hercules, CA, USA) were used

for cDNA synthesis. Real-time PCR was performed in
a total volume of 9 µl, including 2 µl cDNA solution,
4 µlBio-Rad iQ SYBR Green supermix with Opticon 2
(Bio-Rad, Hercules, CA, USA), 2.4 µl nuclease-free water,
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FIGURE 9 | Protocatechuic aldehyde prevented Nox4-mediated oxidative stress in cisplatin nephropathy. (A) The changes of MDA levels in vivo. (B) The
changes of glutathione (GSH) levels in vivo. Results of the MDA activities and GSH activities show that treatment of PA suppressed renal oxidative stress in cisplatin
nephropathy. (C) Western blot analysis and quantitative data of Nox2 and Nox4 in cisplatin nephropathy. Results show that treatment of PA in a set of concentrations
significantly reduced the protein level of Nox2 and Nox4. (D) Immunohistochemistry of Nox4. IHC result and quantitative data indicate that treatment of PA reduced
the percentage of Nox4+ cells in injured kidney. (E) PAS staining of Nox4 knockdown kidney. PAS staining and score show that lentivirus-mediated knockdown of
Nox4 prevented cisplatin-induced kidney damage. Data represent the mean ± SEM for 6–8 mice. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 compared to control.
#p < 0.05, ##p < 0.01, ###p < 0.001 compared to model. Cis, cisplatin; PA, protocatechuic aldehyde.
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FIGURE 10 | Protocatechuic aldehyde prevented necrosis and apoptosis in cisplatin nephropathy. Western blot analysis and quantitative data of RIP1,
RIP3, p-MLKL, and cleaved-caspase-3. Data represent the mean ± SEM for 6–8 mice. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 compared to control. #p < 0.05,
##p < 0.01, ###p < 0.001 compared to model. Cis, cisplatin; PA, protocatechuic aldehyde.

FIGURE 11 | Therapeutic effects of PA on cisplatin-induced renal
injury. PA treatment attenuates cisplatin-induced renal injury both in vivo and
in vitro through Nox4-correlated mechanisms.

and 0.6 µl each primer. The sequences of primers are as
follows:

Human IL-8, forward 5′-AGGACAAGAGCCAGGAAGAA-3′,
reverse 5′- ACTGCACCTTCACACAGAGC-3′;
Human TNF-α, forward 5′-CCCAGGGACCTCTCTCTAATCA-3′,
reverse 5′- GCTACAGGCTTGTCACTCGG-3′;

Human KIM-1, forward 5′-CTGCAGGGAGCAATAAGGAG-3′,
reverse 5′-TCCAAAGGCCATCTGAAGAC-3′;
Human Nox4, forward 5′-GGATCACAGAAGGTCCCTAGCAG-3′,
reverse 5′-GCGGCTACATGCACACCTGAGAA-3′;
Human Nox2, forward 5′–3′TTCCAGTGCGTGTTGCTCGAC,
reverse 5′–3′GATGGCGGTGTGCAGTGCTAT;
Human β-actin, forward 5′-CGCCGCCAGCTCACCATG-3′,
reverse 5′-CACGATGGAGGGGAAGACGG-3′;
Mouse IL-6, forward 5′-GAGGATACCACTCCCAACAGACC-3′,
reverse 5′-AAGTGCATCATCGTTGTTCATACA-3′;
Mouse TNF-α, forward 5′- CATCTTCTCAAAATTCGAGTGACAA-3′,
reverse 5′-TGGGAGTAGACAAGGTACAACCC-3′;
Mouse MCP-1, forward 5′- CTTCTGGGCCTGCTGTTCA-3′,
reverse 5′-CCAGCCTACTCATTGGGATCA-3′;
Mouse KIM-1, forward 5′-CAGGGAAGCCGCAGAAAA-3′,
reverse 5′-GAGACACGGAAGGCAACCAC-3′;
Mouse β-actin, forward 5′- CATTGCTGACAGGATGCAGAA-3′,
reverse 5′-ATGGTGCTAGGAGCCAGAGC-3′

Assays were run over 40 cycles with the following conditions:
denaturation at 95◦C for 20 s, annealing at 58◦C for 20 s, and
elongation at 72◦C for 20 s. β-actin was used to normalize the
expression values of the other genes.

Western Blot Analysis
Protein was isolated from pulverized tissue or cells from 6-
well plates in ice-cold RIPA-Buffer (Beyotime, Jiangsu, China).
BCA protein quantitative kit (Beyotime, Jiangsu, China) was
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used to evaluate the protein concentration. For Western blots,
total protein were loaded in 10% SDS-PAGE and transferred
onto nitrocellulose membranes. After blocking, membranes
were incubated with rabbit anti-Nox2, Nox4, anti-KIM-1, anti-
RIP1, anti-RIP3, anti-P-MLKL, anti-cleaved-caspase-3 antibody,
anti-cleaved-caspase-8, anti-cleaved-caspase-12, and mouse anti-
β-actin antibody for 18 h at 4◦C, then incubated with IRDye 800-
conjugated secondary antibody for 1.5 h at room temperature
(1:10000, Rockland immunochemicals, Gilbertsville, PA, USA).
Images were detected by Li-Cor/Odyssey infrared image system
(LI-COR Biosciences, Lincoln, NE, USA) and quantified using
the Image J software (NIH, Bethesda, MD, USA).

Flow Cytometry
The extent of programmed cell death was detected by flow
cytometry (BD FACSVerse, USA) using AV-FITC/PI apoptosis
detection kit (Bestbio, Shanghai, China). Briefly, HK2 cells were
harvested and washed twice with PBS after incubation in cell
culture bottle with/without cisplatin and PA for 24 h. The cells
were centrifuged at 1500 rpm/min for 5 min and stained with
5 µL Annexin V-FITC and 10 µL PI in the dark, followed by flow
cytometry and quantified using FlowJo 7.6 software.

Determination of MDA and GSH
The levels of MDA and GSH in cell or in mouse tissues were
measured with a commercial kit (Jiancheng Co., Nanjing, China)
according to the manufacturer’s instructions. Thiobarbituric acid
reacts with MDA, degradation product of lipid peroxidation
in, to generate red compound which has maximum absorbance
at 532 nm. This assay is commonly called thiobarbituric acid
reactive substances assay (TBARS assay). Homogenate was
centrifuged at 4000 rpm/min (10 min) after incubation with
TBA reagent for 40 min at 100◦C. Supernatant was measured
at 530 nm. 5,5-dithiobis-2-nitrobenzoic acid (DTNB) reacts with
sulfhydryl compounds to generate a yellow compound, whose
absorption peaks at 405 nm. GSH concentration was determined
based on the absorbance of yellow compound. The homogenate
was obtained and centrifuged at 3500 rpm/min for 10 min.
The supernatant was reacted with DTNB and generated yellow-
colored complex, which was measured at 405 nm.

DCF Assay
DCF, the oxidation product of 2,7-dichlorodihydro-fluorescein
diacetate, is a marker of cellular oxidation. Cisplatin-induced the
generation of ROS as revealed by increased 2,7-dichlorodihydro-
fluorescein, which was measured by fluorescence microscopy
with excitation of 488 nm and emission of 525 nm after cells
were incubated with DCF (10 µL/L) for 20 min at 37◦C in no
FBS-containing DMEM/F12 medium.

DHE Staining
The oxidation of DHE, ethidium bound to DNA and fluoresced
red, was used to estimate intracellular ROS levels. Cells were
incubated with 5 µM freshly prepared DHE solution (Beyotime,
Jiangsu, China) for 30 min at 37◦C and then measured under
fluorescence microscopy.

Knockdown of Nox2 and Nox4 in HK2
Cells
Nox2 and Nox4 were silenced by transfection with sequence-
specific or non-targeting siRNA (GenePharm, Shanghai,
China)/shRNA (GeneChem Co. Ltd., Shanghai, China) using
LipofectamineTM 2000 reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. Briefly, for each
well of a 6-well plate, 5 µl siRNA/shRNA and 5 µl lipofectamine
2000 were diluted in 200 µl Opti-DMEM separately, and
incubated for 5 min at room temperature in the dark. The diluted
siRNA/shRNA was combined with the diluted Lipofectamine
2000 and incubated for 20 min at room temperature. Finally, the
mixture with 100 ml Opti-DMEM was applied to the cells. After
incubation for 12 h, the medium was replaced with fresh DMEM
supplemented with 5% FBS. Cells with Nox4 shRNA screened by
puromycin were cultured in incubator at 37◦C. The transfection
efficiency was then evaluated using Western blotting.

Renal Histology and
Immunohistochemistry
Renal tissues were fixed in 4% PFA immediately. After
dehydration, samples were embedded in paraffin. According
to the manufacturer’s instruction, PAS staining was performed
in Paraffin sections (3–5 µm) to assess the degree of
tubulointerstitial damage and examined by light microscope
(Olympus, Japan) at 200 × magnification. On PAS-stained
kidney sections (n = 6–8), kidney damage in the cortical
proximal was scored as the approximate extent of tubules
that displayed tubular necrosis, cast formation, and tubular
dilation as follows: 0 = normal; 1 = 10%; 2 = 10–25%;
3 = 26–50%; 4 = 51–75%; 5 = 75–95%; 6 = more than
96%. Immunohistochemistry was performed in paraffin sections
using a microwave-based antigen retrieval technique (Li et al.,
2012). Sections were incubated with rabbit anti-Nox4, anti-
KIM-1, anti-TNF-α, and rabbit anti-F4/80 antibody overnight
at 4◦C. After incubation in secondary antibody and chromagen
liquid DAB (3,30-diaminobenzidine tetrahydrochloride), the
slides were counterstained with hematoxylin. The results were
analyzed by Image Analysis System (AxioVision 4, Carl Zeiss,
Jena, Germany).

Statistical Analyses
Data are expressed as the mean ± SEM. Statistical significance
was analyzed by two-tailed unpaired t-test or one-way analysis
of variance (ANOVA), followed by Tukey post hoc tests using
GraphPad Prism 5 software.

DISCUSSION

Nephrotoxicity leads to high mortality in cisplatin-treated
patients with cancer, therefore identification of preventive agents
for cisplatin-induced AKI is needed for clinical treatments.
Here, we identified a novel TCM monomer, protocatechuic
aldehyde, that protects against cisplatin-induced injury both
in vivo and in vitro via inhibiting Nox-mediated oxidative stress,
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renal inflammation, and programmed cell death of renal tubular
epithelial cells.

Protocatechuic aldehyde is a phenolic acid compound isolated
from several types of Chinese herbs, including roots of
miltiorrhiza, leaves of Stenolomachusanum (L.) Ching and Ilex
chinensis Sims (Li et al., 2012). In several animal models,
including cerebral ischemia model (Guo et al., 2016) and
experimental model of sepsis (Xu et al., 2012). PA has shown
pharmacological effects on inflammation and oxidative stress,
which are highly correlated with pathogenesis of cisplatin
nephropathy (Gao et al., 2011; Wei et al., 2013). For example, PA
alleviated cerebral ischemia-reperfusion-induced oxidative injury
via activating protein kinase Cε/Nrf2/HO-1 pathway (Guo et al.,
2016). In addition, treatment of PA suppressed TNF-α-induced
NF-κB phosphorylation and HMGB1 expression, attenuating
inflammatory response in RAW264.7 cells (Xu et al., 2012). PA
was also reported to reduce oxidative stress in sh-sy5y cells by
targeting Dj-1. However, whether PA prevents cisplatin-induced
AKI and the underlying mechanisms are still unknown.

In the current study, we found PA inhibited cisplatin-induced
decline of renal function, renal damage, cell death and apoptosis,
and inflammatory response in a dosage-dependent manner.
Interestingly, accumulating evidence shows that PA possesses
anti-cancer property by targeting cyclin D1-regulated cell cycle of
tumor cells (Jeong and Lee, 2013; Choi et al., 2014). Here, we used
three solid tumor cells lines, SMCC-7721, BEL-7402, and U87, to
test the effect of PA on tumor cell viability. We found PA failed to
reinforce the tumor suppressive effect of cisplatin. However, data
show that PA gently promoted anti-tumor activity of cisplatin in
U87 cell lines 24 h after cisplatin incubation. PA didn’t reduce
anti-tumor effects of cisplatin when protected against cisplatin
nephropathy, indicating PA-based therapy for cisplatin-induced
nephrotoxicity in cancer patients may be effective and promising.

Our results also show that PA significantly attenuated
oxidative stress by reducing ROS production in cisplatin-
challenged tubular epithelial cells and kidney tissues. This may
be one of the most critical mechanisms by which PA attenuates
cisplatin nephropathy. To date, evidence has shown that
oxidative stress plays critical roles in pathogenesis of cisplatin-
induced nephrotoxicity (Humanes et al., 2012). Multiple sources
for ROS in cells have been identified, including mitochondria,
xanthine oxidase, cytochrome P-450, and uncoupled nitric
oxide synthase (Humanes et al., 2012). NAPDH oxidases, a
set of membrane-associated proteins using NADPH to transfer
electrons across biological membranes and therefore generating
ROS, are regarded as one of key sources for ROS in the kidney
(Schreck and O’Connor, 2011). The Nox family consists of
seven members (Noxs 1–5, Duox1 and 2). Nox2 and Nox4 are
highly expressed within the kidney and Nox4 is known as the
predominant form, which plays important roles in renal oxidative
stress and kidney injury (Gill and Wilcox, 2006; Sedeek et al.,
2013; Kim et al., 2016; Oh et al., 2016). Our data show that
lentivirus-mediated knockdown of Nox4 in vivo significantly
attenuated cisplatin nephropathy. In the present study, both
in vivo and in vitro studies show that PA blocked cisplatin-
induced ROS generation, which was evidenced by results of GSH
assay, MDA assay, and ROS assay. Of note, cisplatin significantly

increased protein levels of Nox4 both in cisplatin-challenged
HK2 cells and cisplatin nephropathy, which was largely blocked
by PA treatment. More importantly, in vitro data indicated
that silencing Nox4, partly blocked the inhibitory effects of PA
on cisplatin-upregulated levels of KIM1, cleaved-caspase-3 and
production of inflammatory factors. This demonstrates that Nox4
may be the primary target in mediating the anti-oxidative stress
and protective role of PA in cisplatin-induced nephrotoxicity.
Additionally, it is noteworthy that Nox2 was significantly induced
by cisplatin, but suppressed by PA treatment, both in vivo and
in vitro; however, results generated from cisplatin-stimulated
Nox2 knockdown HK2 cells showed the less important role of
Nox2 in mediating the effects of PA compared with Nox4, as a
critical enzyme in the injury of kidney and other organs, (Gill and
Wilcox, 2006). Whether Nox2 is involved in PA treatment needs
to be further validated.

We also found that PA diminished cisplatin-induced
programmed cell death, especially necroptosis. As the best
characterized regulated necrosis, necroptosis is known to
play a critical role in cisplatin-induced AKI (Xu et al., 2015;
Linkermann, 2016). Administration of Nec-1, an inhibitor for
necroptosis, alleviated acute kidney injury induced by cisplatin
(Tristão et al., 2012), cyclosporin A (Ouyang et al., 2012), and
ischemia-reperfusion injury (Zhang et al., 2013). Emerging
evidence shows that RIP1, RIP3, and downstream MLKL serve
as predominant regulators in necroptosis while genetic deletion
or pharmalogical inhibition of these key genes significantly
reduced cisplatin-induced AKI (Linkermann et al., 2013, 2014;
Xu et al., 2015). Compared with apoptosis, necroptosis plays
more pivotal roles in the induction of inflammatory responses.
Cell membrane collapse induces the release of damage-associated
molecular patterns (DAMPs) including high-mobility group
box 1 (HMGB1), heat-shock proteins, uric acid, and IL-33,
which may interact with receptors (such as Toll-like receptors)
and initiate downstream signaling pathways to enhance renal
inflammation in a positive-feedback loop (Scaffidi et al., 2002;
Vilaysane et al., 2010; He et al., 2011). However, the mechanisms
by which PA blocks necroptosis is still to be determined. PA may
direct target key mediators in necroptosis-regulated pathways or
through indirect mechanisms in which Nox-dependent oxidative
stressare invovled.

Collectively, as shown in Figure 11 our study demonstrated
that PA substantially alleviated the decline of renal function and
renal damage while preventing renal oxidative stress, necroptosis,
and consequent inflammatory response. This may be correlated
with the inhibitory effect of PA on Nox4. Considering the finding
that PA significantly protects against cisplatin-induced acute
kidney injury without compromising the anti-cancer properties
of cisplatin, it should be further explored as a preventive agent
for cisplatin-treated cancer patients.
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While many drug discovery research programs aim to develop highly selective

clinical candidates, their clinical success is limited because of the complex non-linear

interactions of human brain neuronal circuits. Therefore, a rational approach for identifying

appropriate synergistic multipharmacology and validating optimal target combinations is

desperately needed. A mechanism-based Quantitative Systems Pharmacology (QSP)

computer-based modeling platform that combines biophysically realistic preclinical

neurophysiology and neuropharmacology with clinical information is a possible solution.

This paper reports the application of such a model for Cognitive Impairment In

Schizophrenia (CIAS), where the cholinomimetics galantamine and donepezil are

combined with memantine and with different antipsychotics and smoking in a

virtual human patient experiment. The results suggest that cholinomimetics added to

antipsychotics have a modest effect on cognition in CIAS in non-smoking patients with

haloperidol and risperidone and to a lesser extent with olanzapine and aripiprazole.

Smoking reduces the effect of cholinomimetics with aripiprazole and olanzapine, but

enhances the effect in haloperidol and risperidone. Adding memantine to antipsychotics

improves cognition except with quetiapine, an effect enhanced with smoking. Combining

cholinomimetics, antipsychotics and memantine in general shows an additive effect,

except for a negative interaction with aripiprazole and quetiapine and a synergistic

effect with olanzapine and haloperidol in non-smokers and haloperidol in smokers. The

complex interaction of cholinomimetics withmemantine, antipsychotics and smoking can

be quantitatively studied using mechanism-based advanced computer modeling. QSP

modeling of virtual human patients can possibly generate useful insights on the non-linear

interactions of multipharmacology drugs and support complex CNS R&D projects in

cognition in search of synergistic polypharmacy.

Keywords: cognition, polypharmacy, antipsychotics, cholinomimetic, schizophrenia
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Introduction

While polypharmacy is more of a rule than an exception in real-
life clinical treatment, preclinical animal models are ill-equipped
to address the issue of comedication because of fundamental
species-specific differences in drug metabolism, the impact of
human-specific genotypes, the different pharmacology of the
drugs for human vs. rodent targets and incomplete pathology (for
a review see, Geerts, 2009).

Cognitive Impairment in Schizophrenia (CIAS) is a major
unmet medical need for this patient population; while psychosis
can be readily managed by the current antipsychotic drug
armentarium, cognitive and negative symptoms are hampering
patients to return to a more normal professional life (Kitchen
et al., 2012). This has prompted the major stakeholders
from industry, regulatory agencies and academia to develop
a regulatory path for cognitive enhancement, resulting in the
development of the Matrics battery (Green and Nuechterlein,
2004). Over the last 15 years, many novel highly selective drugs
have been tested for cognitive enhancement as augmentation
therapy without much success (Dunlop and Brandon, 2015).

Symptomatic treatment has been successful in Alzheimer’s
disease with cholinomimetics and memantine. Galantamine
is an acetylcholinesterase inhibitor (AChE-I) with allosteric
potentiating effects on nicotinic receptors (nAChR) currently
approved for Alzheimer’s Disease (Tariot et al., 2000) and has
been tested for cognitive improvement in schizophrenia (Norén
et al., 2006; Deutsch et al., 2008; Dyer et al., 2008; Sacco et al.,
2008). Donepezil, a pure AChE-I has been studied for cognitive
improvement in schizophrenia withmixed results (Akhondzadeh
et al., 2008; Keefe et al., 2008; Gauthier and Molinuevo, 2013).
On the other hand, memantine is a weak NMDA-antagonist
approved for moderate-to-severe AD (Reisberg et al., 2003) with
preferential affinity against the excitatory-inhibitory synapses
in cortical networks (Kotermanski and Johnson, 2009). The
effect of these compounds in CIAS has yielded equivocal results.
Possible reasons for the lack of clear results include non-
trivial pharmacodynamic relationships between the investigative
drugs and the different baseline antipsychotics. For instance,
some antipsychotics such as olanzapine and clozapine affect
the muscarinic cholinergic receptors; indeed olanzapine is a
documented antagonist ofM1, M2, M3, M4, andM5 mAChRwith
respective affinities of 26, 18, 52, 17, and 20 nM (Bymaster et al.,

Abbreviations: 5HTTLPR, Serotonin transporter promotor: long vs.

short isoform; ACh, acetylcholine; AChE, acetylcholinesterase; AChE-I,

acetylcholinesterase inhibitors; CIAS, Cognitive Impairment in Schizophrenia;

COMT, Catechol-O-Methyl Transferase; CYTP450, Cytochrome P450 enzyme;

DA, Dopamine; dlPFC, dorso-lateral Prefrontal Cortex; EPS, Extra-pyramidal

symptoms; GABA, gamma-amino butyric acid; GPCR, G-protein coupled

receptors; mAChR, muscarinic acetylcholine receptor; MATRICS, Measurement

And Treatment Research to Improve Cognition in; Schizophrenia; nAChR,

nicotinic acetylcholine receptor; NMDA, N-methyl-D-aspartate (glutamate

receptor subtype); PBPD, Physiology-based pharmacodynamic modeling;

PBPK, Physiology-based pharmacokinetic modeling; PDSP, Psycho-active

Drug Screening Program; PET, Positron Emission Tomography; PFC,

Prefrontal Cortex; PK/PK, pharmacokinetic-pharmacokinetic; QSP, Quantitative

Systems Pharmacology; RBANS, Repeatable Battery for the Assessment of

Neuropsychological Status; R&D, (Pharmaceutical) Research and Development.

1996). Therefore, it is to be expected that the dose-response of
cholinomimetics in CIAS might be highly dependent upon the
different antipsychotics.

To complicate the situation even further, anticholinergics are
often used in treating the symptoms of extrapyramidal motor
symptoms and can affect the cognitive function substantially
(Ogino et al., 2014). In addition, a disproportionate fraction
of schizophrenia patients tend to smoke (Dalack et al., 1998),
adding more complexity to the pharmacodynamic interaction of
cholinomimetics at the level of nicotinic receptors.

A recent paper suggested that the combination of memantine
and AChE inhibitors, in particular galantamine, would show
a bigger effect in CIAS because of their complementary
pharmacology on pyramidal cells and interneurons (Koola et al.,
2014).

Testing such a combination therapy is likely beyond the
capability of preclinical animal testing due to the complexity
and combinatorial challenges of the trial design. To explore
the possible clinical applications of this combination therapy,
other approaches need to be explored. In this paper we propose
an advanced version of a computer-based Quantitative Systems
Pharmacology (QSP) platform, a mechanism-based computer
model of the relevant humanized cortical networks that has been
developed for clinical readouts in psychiatry and neurology, and
calibrated with group average clinical data. Such an approach
is similar to Physiology-Based PharmacoDynamic (PBPD)
Modeling in line with new terminology around Physiology-Based
Pharmacokinetic Modeling (PBPK) and is gaining traction in
pharmaceutical research and development. The platform has
been able to blindly, prospectively and correctly predict an
unexpected clinical outcome in schizophrenia and Alzheimer’s
disease (AD) (Geerts et al., 2012; Nicholas et al., 2013; Liu et al.,
2014) and has been calibrated for clinical cognitive outcomes in
conditions of chronic schizophrenia (Geerts et al., 2013).

Testing the platform in a number of practical clinical
situations with known outcomes, such as the augmentation
therapy of cholinomimetics and memantine on antipsychotics is
mandatory to help constrain the platform. Once calibrated and
constrained, with human clinical data, this QSP approach can
then be used in rationally designed multi-target drug discovery
programs.

Methods

We use a previously described (Geerts et al., 2013) biophysically
realistic and mechanism-based QSP platform to simulate the
impact of augmentation therapy with cognitive enhancers in
virtual schizophrenia patients. This QSP platform has been
calibrated against observed clinical effects on the N-back
working memory test with various therapeutic interventions
in diverse patient populations and recapitulates the negative
pharmacodynamic clinical effect of risperidone augmentation
on clozapine. Basically, the platform consists of a receptor
competition model that allows accurate quantification of drug
target exposure, a biophysically realistic neuronal network that
captures the microarchitecture of a cortical column and a
calibration module that relates computer model outcome to
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actual clinical results. The platform includes the neurophysiology
of over 30 CNS targets, ranging from catecholamine GPCR over
various glutamate, GABA receptors and ligand and voltage-gated
ion channels to enzymes such as Catechol-O-methyl transferase
(COMT) and PDE10 and neurotransmitter transporters.

Defining Target Exposure in Quantitative
Systems Pharmacology Model
The receptor competition model (Spiros et al., 2010; Spiros
and Geerts, 2012) calculates the degree of activation of various
postsynaptic receptors (dopamine, serotonin, norepinephrine,
and cholinergic neurotransmitters) in the presence of
antipsychotics. The affinity of the parent molecule and its
major metabolite for both pre- and post-synaptic receptors,
derived from the Psychoactive Drug Screening Program
(Besnard et al., 2012) is used to calculate the competition with
endogenous neurotransmitters. The presynaptic autoreceptor
neurophysiology properties are calculated from preclinical
data using fast-cyclic voltammetry constrained with clinical
imaging data (Nicholas et al., 2013). The functional intrasynaptic
concentration of the specific antipsychotic is determined from
calculating the concentration that corresponds to the clinically
observed displacement of a radio-active D2R specific PET
tracer, such as raclopride (Spiros et al., 2012). We assume
regular clinical doses 400 and 600mg, i.e., 6mg risperidone,
10mg haloperidol, 15mg olanzapine, 200 quetiapine, and 30mg
aripiprazole.

Quantitative Systems Pharmacology Model for
Cognitive Impairment in Schizophrenia
The QSP model consists of a network of 80 four-compartment
pyramidal and 40 two-compartment interneurons with the effects
of dopaminergic, serotonergic, noradrenergic and cholinergic
modulation (including a spatio-temporal receptor statemodel for
allosteric modulation of the different nicotinic ACh receptors)
and has been described in detail elsewhere (Geerts et al., 2013).
A subset of pyramidal cells is stimulated for a very short
period at a certain time point, reflecting a sensory stimulus
typical of a working memory paradigm. The actual membrane
potential of each compartment can be calculated from the actual
conductances, which are dependent upon the activation level of
various G-protein coupled receptors. The resulting state diagram
shows a synchronized firing of the cells during 5–10 s after
they have been stimulated for a short period (100ms). While
this computational neuroscience model has been designed using
in vivo electrophysiological single-unit recordings in non-human
primates (Williams and Goldman-Rakic, 1995) performing a
working memory task and therefore probably only reflects the
maintenance phase, the outcome could be generalized to the
strength of a memory trace (Roberts et al., 2012; Geerts et al.,
2013). We have shown previously that the duration of this
synchronized firing correlates well with actual 2-Back working
memory task in a variety of experimental interventions in
humans (Geerts et al., 2013).

Schizophrenia pathology is implemented using insights from
human neuroimaging, genetic and neuropathology data and
includes a hypodopaminergic cortical D1R tone (Durstewitz
and Seamans, 2008), NMDA-R hypofunction (Coyle, 2006)

documented by a hypocortical-hyperstriatal imbalance in
metabolic imaging (Meyer-Lindenberg et al., 2002), a GABA
deficit (Volk and Lewis, 2002) applied here to the network
interneurons, and a noisier background signal (Winterer
et al., 2000), resulting in a clinical cognitive deficit which is
dependent upon the cognitive domain, but on average is 1.5
standard deviations lower than healthy controls (Saykin et al.,
1994). The pathology in the computer model leads to a similar
deficit between a “healthy environment” and the schizophrenia
condition.

Implementation of Pharmacology for Cognitive
Enhancers
Donepezil is an AChE-inhibitor with a Ki of 20 nM while
galantamine inhibits AChE-I with a much lower affinity of
800 nM and in addition weakly and allosteric potentiates α7
and α4β2 nAChR (Woodruff-Pak et al., 2002). Imaging studies
with 11C-PMP have suggested that 10mg donepezil and 24mg
galantamine lead to brain AChE-inhibition levels of 35%
(Shinotoh et al., 2001; Darreh-Shori et al., 2008). These clinically
observed inhibition levels can be used to calculate the daily
dose to affect 50% brain AChE-inhibition, which corresponds
to 18.5mg for donepezil and 44.5mg for galantamine, resulting
in inhibition levels of 20% for 5mg donepezil, 15% for 8mg
galantamine and 24% for 16mg galantamine. ACh half-life, T, in
the cholinergic receptor competition model is then calculated as
T0/(1-Enzyme inhibition), with T0 being the half-life in untreated
patients. The AchE is one of the fastest enzymes in the human
body (Iwanaga et al., 1994), leading to a half-life in the untreated
situation of 5ms. This leads to ACh half-lives of 6.9 and 7.7ms for
donepezil at 5 and 10mg and to half-lives of 5.9, 6.8, and 7.7ms
for galantamine at 8, 16, and 24mg.

In addition, galantamine has a small allosteric potentiating
effect on nAChR (Woodruff-Pak et al., 2002), which we
implemented as a 5, 10, or 15% (respectively for 8, 16, and 24 mg)
relative increase in both α7 nAChR and α4β2 nAChR activation
levels.

Implementation of Smoking
As a disproportionally large fraction of schizophrenia patients
smoke (Dalack et al., 1998), we implement the effect of nicotine
on both α4β2 nAChR and α7 nAChR. Nicotine has a much
higher affinity for α4β2 nAChR than for a7 nAChR and imaging
studies with the PET radiotracer 18F-2-Fluoro-A85380 showed
an almost complete saturation of α4β2 nAChR in smokers (Brody
et al., 2006). We assume an increase in α4β2 nAChR activation
of 20% as the receptors are already naturally active. However,
this level of α4β2 nAChR activation, together with the continuous
nicotine exposure likely overall leads to receptor desensitization
(Grady et al., 2012). Because α4β2 nAChR regulates GABA
release (McClure-Begley et al., 2009; Zappettini et al., 2011) we
implement the desenitization induced by the smoking condition
as a two-fold decrease in GABA conductances, leading to a
greater firing of the network. Given the relative much lower
affinity of nicotine for the α7 nAChR (20,000 nM vs. 100 nM)
(Buisson et al., 1996), we assume smoking does not affect α7
nAChR. Note that the amount of ACh bound to α4β2 (and of α7)
nAChR is further determined by the galantamine or donepezil
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mediated AChE inhibition in addition to inhibition of the
presynaptic M2mAchR autoreceptor by specific antipsychotics,
such as olanzapine. In ourmodel, this is illustrated by the fact that
binding of ACh to α4β2 nAChR ranges from 24% (non-smoking
patient on haloperidol) to 62% (olanzapine in smoking patients
on 24mg galantamine).

Implementation of Memantine Pharmacology
Memantine is a relatively weak NMDA-R inhibitor that has a
larger affinity for the NMDA-NR2C/2D subunit (Kotermanski
and Johnson, 2009) in physiological conditions. Based upon
the observation that the NR2C/2D subunits are preferentially
located on inhibitory interneurons (Monyer et al., 1994) in rats,
memantine’s pharmacology is implemented using a two-fold
greater inhibition of the NMDAR on interneurons as compared
to the NMDAR on pyramidal cells.

Data further suggest that the functional memantine
concentration in the human brain is relatively small; in our
earlier paper on the cognitive model (Roberts et al., 2012) for
Alzheimer’s Disease, a 1% decrease in gNMDA on interneurons
resulted in a selective positive impact on moderate to severe AD
cases but not in the situation of mild cases, suggesting that such
an inhibition corresponded to the clinical dose of 20mg.

Implementation of Pharmacological Profile of
Antipsychotics
The affinity parameters for each individual drug and
neurotransmitter for human receptors were derived from
the standardized PDSP database (http://pdsp.med.unc.edu/
indexR.html) (Besnard et al., 2012). Importantly, the active
moiety of antipsychotics, taking into account the pharmacology
of metabolites was used (see Figure 1). We took great care
in determining the functional intrasynaptic concentration
of the various antipsychotics using published 11C-raclopride
displacements observed with specific antipsychotic dose
combinations using the receptor competition model, described
above.

Results

Augmentation Therapy with Memantine
We studied the effect of increasing memantine doses on the
performance of the in silico network for CIAS in the presence
of antipsychotics. Figures 2A,B shows the effect of memantine
on the estimated 2-back working memory outcomes, respectively
in the absence and presence of nicotine. In the absence of
smoking, with the exception of quetiapine, all drugs improve
cognitive readout with increasing memantine doses with the
greatest effect observed for aripiprazole (from 69 accuracy to
81% in a 2-back test). For smoking conditions, the increase in
frequency of accurate responses as a function of the optimal
memantine dose is amplified for Risperidone (maximal increase
from 5 to 14%), Haloperidol (maximal effect increases from 5 to
12%) and olanzapine (maximal effect from 6 to 11%), but not
for aripiprazole and quetiapine. Note that this maximal effect
happens atmemantine doses of 40mg. At clinically relevant doses
of 20mg, the effect is about half as much.

Augmentation Therapy with AChE-I
We then simulated the effect of augmentation strategy with
ACh inhibitors added to antipsychotics on cognitive outcome
(Figure 3), both in the absence and presence of nicotine. In
non-smokers, AChE-I dose-dependently improved cognitive
outcomes with risperidone, aripiprazole (donepezil only) and
haloperidol, with only the 24mg galantamine showing a robust
improvement of >10% in correct responses. In the presence of
olanzapine and aripiprazole with galantamine, a tendency was
observed for an inverse U-shape dose-response. In the presence
of quetiapine, increased AChE-I worsened responses.

Smoking tended to increase the procognitive effect as a stand
alone (i.e., without cholinomimetics) and in the presence of
risperidone, haloperidol and aripiprazole (donepezil only). For
instance the fraction of correct responses went up from 66 to 71%
for risperidone with 24mg galantamine. However, smoking also
tended to diminish the cognitive response when augmented with
quetiapine and olanzapine.When aripiprazole is augmented with
galantamine, smoking shifted the peak response of the inverse
U-shaped curve.

Augmentation Therapy with a Combination of
Memantine and AChE-I
This section deals with the simulation of combination therapy of
memantine with cholinomimetics on cognitive outcomes. Note
that we simulate the outcome of up to five agents in the same
patient, i.e., the parent molecule and active metabolite of an
antipsychotic, an AChE-I such as donepezil and galantamine,
memantine and nicotine. This is a situation that is often
encountered in clinical practice.

From the data a complex picture emerges, ranging from a
negative effect (adding AChE-I lowers the effect of memantine)
with quetiapine and aripiprazole, to an additive effect with
risperidone (see Table 1). Synergism is clearly observed with
olanzapine and in some cases with haloperidol in the non-
smoking case and with haloperidol in the smoking condition.

Figure 4 shows a dose-response of memantine on cognitive
effects in the presence of olanzapine, and with donepezil or
galantamine. Memantine increases cognitive effects dose-
dependently in the absence of the AChE-I and the slope (in
% correct on the 2-back WM test for 0–40mg of memantine)
of 0.08 is increased to 0.23 and 0.34 when adding donepezil
5 and 10 mg, respectively. When adding galantamine, the
slope is increased to 0.13, 0.30, and 0.16 for 8, 16, and 24mg,
respectively. This suggests a synergistic effect with increasing
concentrations of donepezil and galantamine, although at
the highest galantamine dose of 24mg the effect is somewhat
attenuated. This synergistic effect with olanzapine however
disappears in the smoking conditions.

An interesting pattern emerges with regard to different doses
of quetiapine. In the non-smoking condition, memantine has
a clear beneficial effect on cognition in the absence of any
AchE-I with a tendency for greater effect at greater quetiapine
doses. Adding donepezil or galantamine reverses this effect at all
quetiapine (200–600mg daily) doses into a negative interaction,
i.e., cognitive performance drops with increasing memantine
dose. The negative interaction decreases slightly as the quetiapine
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FIGURE 1 | Complex pharmacology of antipsychotics and their major metabolites (forming the active moiety of currently used antipsychotic

medication) illustrated by the pKa (−10logKi) against the human receptors, where Ki is the affinity of the drug determined by tracer displacement

studies. More peripheral readouts correspond to higher affinities. Data are derived from the standardized PDSP database (http://pdsp.med.unc.edu/indexR.html). It is

clear that many antipsychotics have complex pharmacologies leading to non-linear interactions in the human networks. (A) pharmacology of active moiety of

aripiprazole, haldoperidol, and olanzapine, (B) pharmacology of risperidone and quetiapine.

FIGURE 2 | Effect of increasing memantine dose on anticipated N-back working memory tests outcome (% correct responses in a 2-Back working

memory test) in the presence of the five antipsychotics. (A) Non-smokers, (B) smokers. The simulations suggest evidence for a dose-dependent effect of

memantine for all antipsychotics except quetiapine. The effect is slightly amplified for patients on nicotine. Note that the maximal dose (40mg) is twice the regular

dose used in Alzheimer patients.

dose increases. This is likely because adding AchE-I to quetiapine
substantially improves cognition; so that further block of the
NMDA receptors with memantine reduces GABA tone and
drives the network to fire at a very high frequency determined
only by the refractory period of the pyramidal neurons, reducing
the variability of the interspike distribution and the information
bandwidth.

In smoking conditions, the slope of cognitive improvement
with memantine without AchE-I is much smaller for all
quetiapine doses, because the baseline performance of smoking
and quetiapine is already higher than in the non-smoking
condition. Adding AchE-I in the smoking condition to
quetiapine and memantine has a relative smaller negative effect
than in the non-smoking condition, although the absolute values
of the slopes are similar. This illustrates the complex non-linear
pharmacodynamic interactions between different comedications.

Table 1 shows the slopes of the memantine dose-response
with donepezil and galantamine in the presence of specific
antipsychotics and smoking/no-smoking conditions. As

mentioned above, there is a synergistic effect in non-smokers
on olanzapine and in smokers treated with haloperidol for both
donepezil and galantamine.

Discussion

This study addresses the question of a suggested synergistic
interaction between AChE-I such as donepezil and galantamine
and memantine on cognitive readouts in schizophrenia (Koola
et al., 2014) by simulating real-life treatment combinations,
including the effect of smoking. We approached this through a
mechanism-based QSP computer modeling approach where the
pathology of CIAS is combined with the pharmacology and target
exposure of the respective drug combinations.

Combination of AChE-I with Antipsychotics
The combination of AChE-I with antipsychotics shows a number
of interesting and unexpected outcomes. The 24mg galantamine
has a higher response than any of the two doses of donepezil
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TABLE 1 | Slopes of the memantine dose-response for non-smokers and

smokers, calculated from the trendline of the dose-responses in the

different conditions and comparing the effect of adding 5 and 10mg

donepezil and 8, 16, and 24mg galantamine to memantine in the presence

of five different antipsychotics (RIS, risperidone; QUE, quetiapine; OLA,

olanzapine; ARI, aripiprazole, HAL, haloperidol).

Stand-alone DON5 DON10 GAL8 GAL16 GAL24

MEM 0.13 0.16 0.08 0.18 0.07 0.02

RIS NoSmok 0.10 0.05 0.11 0.09 0.10 0.14

QUE NoSmok 0.06 − 0.01 −0.05 0.00 0.00 −0.01

QUE400 NoSmok 0.09 0.03 − 0.03 0.01 −0.07 0.06

QUE600 NoSmok 0.10 0.03 −0.01 0.01 −0.07 0.09

OLA NoSmok 0.08 0.23 0.29 0.09 0.21 0.07

ARI NoSmok 0.23 0.09 0.13 0.12 0.04 −0.01

HAL NoSmok 0.12 0.16 0.18 0.16 0.21 0.16

MEM-SMOK 0.13 0.12 − 0.01 0.13 0.23 0.12

RIS SMOK 0.09 0.04 0.07 0.07 0.08 0.18

QUE SMOK 0.02 0.00 −0.02 −0.01 −0.03 −0.03

QUE400 SMOK 0.05 0.00 − 0.03 0.00 − 0.04 −0.04

QUE600 SMOK 0.01 −0.02 −0.02 −0.02 −0.03 −0.02

OLA SMOK 0.02 0.00 −0.02 −0.01 −0.03 −0.03

ARI SMOK 0.11 0.05 0.03 0.05 0.04 −0.03

HAL SMOK 0.21 0.20 0.16 0.12 0.16 0.13

The cases with synergy are noted in yellow, while the situation where addition of AChE-I

to memantine worsens the dose-response is noted in red. The other cases suggest a

pure additive effect. From the data a complex picture emerges, ranging from a negative

effect (i.e., lower slopes) in the presence of quetiapine and aripiprazole (in both non-

smoking and smoking conditions) to an additive effect with olanzapine and quetiapine

combined with donepezil in smoking conditions. Synergism is observed with olanzapine

in the non-smoking case with a tendency for synergism in haloperidol non-smokers and

with haloperidol in the smoking condition.

for risperidone and haloperidol, an effect that is sustained in
smokers. Interestingly galantamine shows an inverse U-shape
dose-response with olanzapine in non-smokers; the lowest dose
of 8mg had a higher effect than the highest dose. Smoking also
drives the responses of both donepezil and galantamine into
an inverse dose-response when combined with aripiprazole or
olanzapine. One could argue that the interaction of olanzapine
with the presynaptic M2 mAChR (a Ki of 18 nM) has a
disproportionately larger impact given the affinity of ACh for
the M2 mAChR (which is in the 300 nM range). Blocking the
presynaptic autoreceptor could further increase the release of
Ach beyond the added effect of AChE inhibition which would
then drive the postsynaptic nAChR into desensitization. The
level of free ACh in schizophrenia patients is relatively normal,
in contrast to the reduced free ACh in Alzheimer’s patients,
suggesting that the nAChR work on a very different baseline.

Aripiprazole and quetiapine both have strong 5-HT1A
agonism and lack the inhibition of the presynaptic 5-HT1BR that
is a hallmark of risperidone; these two properties might account
for a relatively good baseline performance as compared to
risperidone. The 5-HT1A pathway has been documented to play
a role in antipsychotic response (Takekita et al., 2015), at least
in negative symptoms. Therefore, the higher ACh tone resulting
from inhibition of the AChE in the presence of quetiapine and
aripiprazole has less dynamical range to improve.

A recent meta-analysis indeed suggest that antipsychotics do
indeed have different effects on cognition (Désaméricq et al.,
2014), with quetiapine having the greatest beneficial impact on
global cognitive score, attention and speed of processing.

The effect of adding AChE-I to antipsychotics on cognition
has been studied extensively in clinical trials with effect sizes
in the range 0.4–0.6 (Ribeiz et al., 2010; Choi et al., 2013).
Studies with donepezil have yielded controversial and mixed
results, from positive results (Zhu et al., 2014) to negative
results (Kohler et al., 2007; Keefe et al., 2008) with similar
negative (Dyer et al., 2008; Lindenmayer and Khan, 2011)
and positive results (Schubert et al., 2006; Buchanan et al.,
2008) or no effect (Lee et al., 2007) for galantamine leading to
the overall perception that these drugs only work marginally
or not at all. Our modeling suggests that the nature of
the antipsychotic and the condition of smoking does matter.
In non-smokers, donepezil and galantamine work best with
risperidone, haloperidol, aripiprazole, and olanzapine, but not
with quetiapine. In smokers, both galantamine and donepezil
enhance cognition with risperidone and haloperidol but have
an inverse U-shape dose-response in olanzapine (lower AchE-
I doses work best) while there is no effect in aripiprazole and
quetiapine. Interestingly high-dose galantamine is inferior to
placebo for a number of cognitive readouts in schizophrenia
when added to antipsychotics (Dyer et al., 2008). Possible
explanations for these observations include the interaction
of olanzapine with the muscarinic receptors, especially the
presynaptic M2 mAChR autoreceptor. This would affect the
amount of presynaptically released ACh and therfore interfere
in a complex way with the increased half-life of ACh with
AChE-I and the allosteric modulatory effect of galantamine. It
is of interest to note that the trials with donepezil that showed
some efficacy for donepezil, had risperidone and olanzapine
as baseline medication (Akhondzadeh et al., 2008; Zhu et al.,
2014) with a majority of patients on the lower donepezil dose
of 5mg.

Two trials with galantamine (Schubert et al., 2006;
Lindenmayer and Khan, 2011) added to risperidone showed
opposite effects. It is worthwhile to examine these two clinical
trials in more detail. The positive Schubert trial was a short
duration, 8 week trial (n = 16), almost all smokers with an
average risperidone dose of 5.4mg (with patients on risperidone
for almost 3 years) where anticholinergics were excluded and
showed a clear clinical and statistical benefit in delayed memory
and attention on the RBANS scale. The negative Lindenmayer
trial was a 52-week study of long-acting injection Risperidone
(25 and 50mg) in 32 patients in which galantamine was titrated
up to 24 mg; no data on smoking were available. Anticholinergics
were allowed for treatment of EPS side-effects, but no data are
available on the frequency of this comedication.

Possible clinical trial design differences in these two studies
leading to the opposite outcomes include the fraction of smokers
(smoking tends to amplify galantamine’s effect on cognition) and
the somewhat lower dose of 25mgRis Consta in the Lindenmayer
study as compared to 6mg oral risperidone. Sensitivity analyses
in the model show that lower risperidone doses tend to perform
better in the cognitive model, leaving somewhat less dynamic
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FIGURE 3 | Simulated clinical outcome (% correct responses in a 2-Back working memory test) for the combination of various cholinomimetics

(donepezil and galantamine) with different antipsychotics in non-smoking schizophrenia patients (A) and in smoking schizophrenia patients (B). Both

galantamine and donepezil show a dose-dependent improvement in the presence of risperidone, aripiprazole, and haloperidol, although the effect sizes differ.

However, there is no improvement for quetiapine, probably due to the high baseline, and a more complex dose-response for olanzapine. Smoking tends to slightly

enhance the responses of cognition in augmentation therapy with risperidone and haloperidol. However, smoking also tends to slightly decrease the responses of

cognition in augmentation therapy with quetiapine and olanzapine. This is probably due to the many non-linear interactions between cholinergic modulation and the

complex pharmacodynamics of antipsychotics.

FIGURE 4 | Simulated clinical outcome (% correct responses in a

2-Back working memory test) for the combination of memantine and

cholinomimetics (donepezil and galantamine) as augmentation therapy

with olanzapine in non-smoking conditions. The dose-response of

memantine, memantine + donepezil (two doses) and memantine +

galantamine (three doses) are fitted with a linear trendline. The slope of the

memantine dose-response clearly increases when adding donepezil and

galantamine in a dose-dependent way (i.e., with higher donepezil or

galantamine doses), suggesting a synergistic effect.

range for additional effect of pro-cognitive enhancers; this is
partially explained by the anti-cognitive effect of the dose-
dependent presynaptic 5-HT1B autoreceptor block that affects
free 5-HT levels. Attention deficit has indeed been shown to
be correlated with the amount of D2R blockade by risperidone
(Uchida et al., 2009), at least in late-life schizophrenia; therefore
higher doses of risperidone leading to a lower baseline provide a
greater dynamic range for pro-cognitive effects of galantamine.

In general, however, the information available from peer-
reviewed articles usually does not have the granularity needed
to identify the different comedications for individual patients
in the different treatment arms. Exploration of other databases

such as ADNI, where the comedications are given at the level of
individual subjects or the database from electronic health records
from the South London and Maudsley National Health Systems
registry (Kadra et al., 2015) are a possibility to test the QSPmodel
outcomes to real-life situations.

Combination of Memantine with Antipsychotics
The simulations in this paper also suggest that memantine as
augmentation therapy has a very modest effect on cognition
that is enhanced in the smoking conditions. Again the best
response is observed when adding memantine to risperidone and
haloperidol, but at concentrations that are about twice as high as
currently used in Alzheimer’s disease. A meta-analysis of clinical
trials (Kishi and Iwata, 2013) indeed suggests a modest effect of
memantine on cognition in schizophrenia.

It is worthwhile to expand upon the unexpected clinical pro-
cognitive finding of a (weak) NMDA-antagonist. Memantine’s
interaction under in vivo conditions with Mg present, shows a
higher affinity for the NMDA-NR2C subunit on the excitatory-
inhibitory glutamatergic synapses as compared to the NMDA-
NR2A/B subunits that are present on excitatory-excitatory
synapses (Kotermanski et al., 2009). Smoking tends to desensitize
the α4β2 nAChR more than the α7 nAChR; this would lead to
a lower GABA tone as one of α4β2 nAChR mediated processes
regulates the GABA release (McClure-Begley et al., 2009;
Zappettini et al., 2011). Memantine, through its antagonism on
the excitatory-inhibitory glutamatergic synapse, also lowers the
GABA-tone, opening the possibility for an additive or synergistic
mechanism by addressing one of the major pathological
hallmarks of the schizophrenia condition (Volk and Lewis, 2002).

Combination of Memantine and AChE-I with
Antipsychotics
When adding AChE-inhibitors to antipsychotics andmemantine,
the effect greatly depends upon both the nature of the
antipsychotic and the smoking condition. Overall, the effect
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is additive, with the exception of aripiprazole and quetiapine
for both smokers and non-smokers and for olanzapine in the
smoking condition, where addition of AChE-I decreases the
effect of memantine.

A synergistic effect is observed for olanzapine in the non-
smoking condition and for haloperidol in both conditions. The
observation that adding AChE-I to memantine can improve
cognitive readouts is in line with clinical data in Alzheimer’s
patients (Gauthier and Molinuevo, 2013). The inhibition on
the AChE leads to slightly shorter half-life for AChE in the
case of galantamine (5.9ms for 8mg galantamine vs. 6.5ms for
5mg donepezil). The observed lack of differentiation between
donepezil and galantamine could be due to the fact that the
impact of galantamine’s allosteric modulation on nAChR has a
quite limited effect (especially given the low efficacy) and is barely
capable to compensate for the somewhat lower level of AChE-
I. This is in line with clinical observations in the Alzheimer’s
field that suggest no detectable difference in treatment with either
donepezil or galantamine (Tan et al., 2014).

The observation that olanzapine favors a synergistic effect
between memantine and AChE-I points to an important role
for the GABA interneurons in cortical circuits. Olanzapine
has a substantial antagonism at the 5-HT3R that regulates
GABA interneuron firing (Puig, 2004), a property it shares
with clozapine and as such can compensate for the observed
GABA dysfunction in schizophrenia (Volk and Lewis, 2002).
Indeed, as mentioned above, memantine preferentially interacts
with the NMDA receptor subunit on the excitatory-inhibitory
synapses, increased levels of ACh through blocking of the
AChE can activate α4β2 nAChR that regulate GABA release and
galantamine has an additional allosteric potentiating effect at
the same α4β2 nAChR. The fact that the synergism disappears
in smoking olanzapine patients suggests that this interaction is
highly non-linear in nature.

Smoking by itself tends to improve cognitive outcome,
probably through its effect on α4β2 nAChR GABA tone, perhaps
underscoring its capacity for self-medication. Smoking can also
enhance the effect of either memantine or AChE-I in a number
of situations, but with both memantine and AChE-I added to
antipsychotics the effect is hard to predict due to a number of
non-linear interactions. This further underscores the importance
of the excitation-inhibition balance in these cortical networks.

It is of interest to elaborate on the negative pharmacodynamic
interactions of certain conditions. Increasing evidence suggest
that information in the human brain is not encoded in simple
firing rates; examples include oscillatory behavior of local field
potential in the subthalamic nucleus of basal ganglia that code
for motor symptoms (Little et al., 2013; Beudel et al., 2015). Our
model readout also takes into account the interspike variability
of the action potential train(Geerts et al., 2013) which might
explain some of the non-monotonic dose-responses observed
with quetiapine and aripiprazole, where increased firing rate does
not lead to enhanced cognitive performance.

Limitations of the Model
The network is calibrated on a working memory task, represents
only the maintenance phase and therefore probably does not
capture the intricacies of the different cognitive tasks. However,

we would argue that the network also captures the strength of a
memory trace representation that is a necessary step in a number
of other cognitive tasks. For instance, in an episodic memory
task, an existing memory trace needs to be retrieved from its
memory bank and kept for a certain time in memory, although
at a different time scale, to perform calculations and to compare
it to a novel sensory stimulus.

A major issue is the choice of the biological processes and
the changes associated with the pharmacological treatment. For
instance, the allosteric effect of galantamine on nAChR has been
documented to be as high as 70% (Samochocki et al., 2000) but
a later study puts the effect more at 40% and lower (Samochocki
et al., 2003). Furthermore, we have somewhat arbitrarily set the
effect of smoking as a 20% increase in activation. The effect of
such differences can be studied using sensitivity analyses.

Another major limitation is the “blind” pharmacology of
antipsychotic drugs; unlike animal models, the computer model
is bound by the available knowledge of the pharmacology of
the drugs and does not take into account the possible effect of
drugs on targets that are undocumented. However, the functional
concentration of antipsychotics as measured by PET raclopride
radiotracer in clinically relevant situations is in the low nM range,
except for quetiapine. This effectively reduces the probability of
off-target effects that might play a role at higher doses.

This simulation generates average values for “generic” patients
on a fixed dose of an antipsychotic and, memantine and/or
an AChE-I. In real-life practice, doses are often titrated
to the best trade-off between efficacy and side-effects. In
addition, the variability in clinical outcome might be affected
by CYTP450 interaction between the different drugs where
inhibition or stimulation of a CYTP450 enzyme by one drug
might affect the levels of other drugs (so called pharmacokinetic-
pharmacokinetic or PK/PK interactions). Finally, variability
might be a consequence of different genotypes, for instance
the COMTVal158Met and the 5-HTTLPR s/l that all can
affect cognitive outcomes. In principle, the QSP platform
is able to simulate virtual individual patients complete with
PK/PK interactions, different individual doses of the different
drugs and any combination of the common genotypes. As
an example, we have implemented the COMTVal158Met
genotype in the QSP platform using human imaging studies
in unmedicated healthy volunteers as a different half-life of
dopamine and norepinephrine in cortical synapses (Spiros and
Geerts, 2012).

The major message from this simulation exercise is the
unexpected impact of different antipsychotics each with
their own fingerprint of pharmacological activity on the
dose-response of the same drug-drug combination and/or
combined with smoking. The non-linear interactions of drug
pharmacodynamics plays an important role in real-life drug
treatment, as polypharmacy is more the rule than the exception.
This is particularly important when considering the design of
clinical trials; careful consideration of inclusion/exclusion of
comedications can substantially reduce the patient variability
in the different treatment arms and increase the probability
that a clinical signal can be detected. Failure to take these
differential interactions into account might lead to reduction
of the clinical signal as treatment arms become inadvertently
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populated with drugs that do not work or work adversely. We
suspect that this might be one of the causes of clinical trial
failures of drugs tested with augmentation therapy in Cognitive
Impairment with Schizophrenia. Obviously other processes
contribute to the variability in clinical trial outcomes such as
different genotypes, different pathological baselines and PK
variability. In this regard, we would argue that the concept of
chlorpromazine equivalents (Beckmann and Laux, 1990) where
the differentiation between antipsychotics is solely driven by
their dose and their corresponding D2R occupancy, although
very handy and appealing because of its simplicity, might need a
substantial correction.

An additional collorary is that new drugs with a specific
selective pharmacology aimed at augmentation therapy could
only be combined with specific antipsychotics, because of
negative pharmacodynamic interaction of other antipsychotics
with specific drug pharmacology of the new investigative
compound. In addition, smoking through its effect on nicotinic
receptors can significantly affect cognitive outcome. The
results of this paper suggest that the complex poly-pharmacy
profile of marketed antipsychotics can lead to non-linear
pharmacodynamics interactions beyond their simple D2R
occupancy and that this can significantly impact clinical
outcome.
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A large number of physiomic pathologies can produce hyperexcitability in cortex.

Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic

movement disorder or as epilpesy. We focus here on dystonia, a movement disorder

that produces involuntary muscle contractions and involves pathology in multiple brain

areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices.

Most research in dystonia has focused on basal ganglia, while much pharmacological

treatment is provided directly at muscles to prevent contraction. Motor cortex is

another potential target for therapy that exhibits pathological dynamics in dystonia,

including heightened activity and altered beta oscillations. We developed a multiscale

model of primary motor cortex, ranging from molecular, up to cellular, and network

levels, containing 1715 compartmental model neurons with multiple ion channels and

intracellular molecular dynamics. We wired the model based on electrophysiological

data obtained from mouse motor cortex circuit mapping experiments. We used the

model to reproduce patterns of heightened activity seen in dystonia by applying

independent random variations in parameters to identify pathological parameter sets.

These models demonstrated degeneracy, meaning that there were many ways of

obtaining the pathological syndrome. There was no single parameter alteration which

would consistently distinguish pathological from physiological dynamics. At higher

dimensions in parameter space, we were able to use support vector machines to

distinguish the two patterns in different regions of space and thereby trace multitarget

routes from dystonic to physiological dynamics. These results suggest the use of in silico

models for discovery of multitarget drug cocktails.

Keywords: dystonia, multiscale modeling, computer simulation, motor cortex, beta oscillations, corticospinal

neurons, multitarget pharmacology, support vector machines

72

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://dx.doi.org/10.3389/fphar.2016.00157
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2016.00157&domain=pdf&date_stamp=2016-06-14
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:samn@neurosim.downstate.edu
http://dx.doi.org/10.3389/fphar.2016.00157
http://journal.frontiersin.org/article/10.3389/fphar.2016.00157/abstract
http://loop.frontiersin.org/people/22133/overview
http://loop.frontiersin.org/people/72122/overview
http://loop.frontiersin.org/people/9223/overview
http://loop.frontiersin.org/people/203574/overview
http://loop.frontiersin.org/people/2277/overview


Neymotin et al. Multiscale Modeling for Dystonia Therapies

1. INTRODUCTION

A large number of physiomic pathologies can produce
hyperexcitability in cortex. In motor cortex, this hyperexcitability
will manifest as alterations in movement and muscle tone.
At the most extreme, hyperexcitability leads to a seizure with
uncontrolled movement, as seen in epilepsia partialis continuans.
Lesser hyperexcitability produces a variety of hyperactive
movement disorders, including tics, chorea, tremor, etc, whose
pathophysiology is not restricted to cortex, but involves multiple
brain areas including basal ganglia, thalamus, cerebellum, and
others. We focus here on dystonia, a movement disorder that
produces prolonged involuntary muscle contractions (Neychev
et al., 2008; Crowell et al., 2012).

The large variety of dystonias of different etiologies may
present with involvement of one or several parts of the
body. Pediatric causes of dystonia include cerebral palsy and
are generally distinct from adult-onset cases. Common adult
dystonias are torticollis, causing involuntary head turning, and
movement-overuse dystonias such as writers cramp. Despite
these differences, dystonias in different patient populations are
primarily treated with the same therapies. While most research
in dystonia has focused on basal ganglia, much pharmacological
treatment is provided directly at muscles. Similarly, we propose
that treatment could be targeted elsewhere in the motor
pathway, here focusing on motor cortex as a potential target for
therapy.

As with many other movement disorders, the dystonias
generally lack a reliable biomarker and are diagnosed by
semiology, the assessment of signs and symptoms. However, all
dystonias feature excessive muscle activation that is associated
with hyperactivity in multiple motor areas associated with
movement activation. Electrophysiological studies of dystonia
patients confirms a pattern of hyperactivation in cortex. Healthy
individuals show low beta oscillations (∼15–20 Hz) in motor
cortical local field potential (LFP). This beta is reduced in
amplitude and synchrony duringmovement (Jasper and Penfield,
1949; Pfurtscheller and Aranibar, 1979; Crone et al., 1998; Miller
et al., 2007). In dystonia patients, motor cortex shows increases
in neuronal activity levels (Nobrega et al., 1995; Pratt et al.,
1995), with relatively high beta amplitude and high functional
connectivity at the beta frequency (Schnitzler and Gross, 2005;
Jin et al., 2011). There is also excessive neural synchrony both
at rest and in certain phases of movement (Toro et al., 1994;
Kristeva et al., 2005; Mallet et al., 2008; Crowell et al., 2012).

Some dystonias, in common with several other movement
disorders, are thought to have their origin in the basal ganglia.
Other dystonias, such as those associated with cerebral palsy
and with movement overuse, probably have a strong cortical
component. In all cases, however, the interconnections of brain
motor systems makes it clear that multiple brain areas will be “in
the loop” of abnormal activity. Following some primary insult
or insults to a brain area, a secondarily-involved brain area will
contribute further to the disorder by reacting to the alterations
in input activity through its own homeostatic responses. In some
cases these homeostatic changes may be compensatory so as to
reduce the severity of the symptoms. However, in other cases,

plasticity may actually exacerbate the abnormal movements
(Sanger et al., 2003; Neychev et al., 2008; Casellato et al., 2014).

There are at least two, and perhaps more, cerebello-thalamo-
striato-cortical loops that play a role in movement disorders.
There may also be additional contributions from still longer
loops involving recurrent connections from spinal cord or from
muscle spindles. One or more of these sites may have associated
pathology. Regardless of the locus of primary pathology,
multiple sites are potential targets where therapy could interrupt
pathophysiological dynamics. Currently, brain pharmacotherapy
often fails and patients are treated with botulinum toxin to
partially paralyze muscles by blocking nicotinic cholinergic
transmission at the affected muscle. Another treatment is deep
brain stimulation using implanted electrodes. In this paper, we
take two or three steps back from the level of muscle treatment
by proposing interventions at the level of motor cortex.

Complex multifocal diseases may require complex multitarget
treatments (Viayna et al., 2013). In the context of brain disease,
multitarget therapy can hit multiple brain regions or multiple
receptors in a region or both. High-level models that include
many brain areas can assist in understanding how different
brain areas contribute to a disorder (Sanger and Merzenich,
2000; Sanger, 2003; Hendrix and Vitek, 2012; Kerr et al.,
2013). However, these models typically lack biological detail,
making them unsuitable for assessing the impact of specific
pharmacological manipulations. Detailed models are not yet
elaborated to the point of handling multiple brain areas but do
provide the details needed to assess pharmacological intervention
more directly.

Single agent treatments for disease are traditionally tested
in vitro or in vivo. As noted above, single agent treatments
for dystonia have not had much success. There is, however,
the potential for success with multitarget drug cocktails that
could target multiple locations in the brain, or multiple drug
receptor targets at a single location, or both (Delnooz and
van de Warrenburg, 2012). Due to combinatorial explosion,
evaluating combinations of drugs in different dosages in this
way can not be readily done in tissue and is most feasible in
silico (Viceconti et al., 2008; Kohl and Noble, 2009; Lytton et al.,
2014; Action, 2016; Viceconti et al., 2016). In this study, we use
our detailed multiscale model of primary motor cortex to assess
potential multitarget pharmacological therapies for treatment of
dystonia. The model contains 6 cortical layers with multiple
classes of excitatory and inhibitory neurons, using wiring based
on mouse microconnectomic data (Shipp, 2005; Weiler et al.,
2008; Kiritani et al., 2012; Hooks et al., 2013). Excitatory neurons
contain intracellular molecular mechanisms that contribute to
persistent activity and hyperexcitability (Neymotin et al., 2016).
These mechanisms include endoplasmic reticulum associated
calcium stores released by activation of IP3Rs, and ryanodine
receptors, both with affinity for caffeine, an agent that can
exacerbate dystonia symptoms (Richter and Hamann, 2001).
Plasmamembrane calcium, sodium, and potassium channels also
contribute to cellular excitability.

Since our model does not include spinal cord and muscle, we
defined dystonia pathology as a state of cortical hyperactivation
characterized by increased beta oscillations with excessive and
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hypersynchronous firing in layer 5 corticospinal neurons. These
layer 5 neurons project downward to brainstem and spinal cord,
and their sustained firing would lead to the increased muscle
contractions of dystonia. We distinguished the hyperexcitability
of dystonia from the still greater hyperexcitability of a seizure by
excluding simulations that showed higher levels of activity with
higher frequency oscillation and a strong tendency to “latch-up”
through multicell depolarization blockade (Lytton and Omurtag,
2007). Classification in 11-dimensional space demonstrated that
we could identify different regions in parameter space for these
different states—baseline normal, dystonia, epileptiform—and
predict pharmacological combinations that would lead from
pathology back to the physiological activity state. As in our
previous investigations of epilepsy (Lytton and Omurtag, 2007),
we found multiple parameter combinations that were consistent
with the pathological state, as well as multiple parameter
combinations to produce our baseline physiological state. Such
parameter degeneracy is typical of complex neural systems
(Edelman and Gally, 2001; Golowasch et al., 2002).

2. MATERIALS AND METHODS

Network simulations consisted of 1715 reduced compartmental
cell models with single compartments for inhibitory cells
and five compartments for pyramidal cells, arrayed by layer
with connectivity taken from experimental results on motor
cortex (Weiler et al., 2008; Figures 1A,B). Parallel-conductance
electrophysiological simulation in the pyramidal cells was
complemented by chemophysiological simulation focused on
Ca2+ handling, based on our prior models (Neymotin et al., 2015,
2016; Figure 1C).

Simulations were run in the NEURON (version 7.4)
simulation environment (Carnevale and Hines, 2006) utilizing
the reaction-diffusion (RxD) Python module (McDougal et al.,
2013a,b) and NMODL (Hines and Carnevale, 2000). Two
seconds of simulation time took ∼3 min using 24 nodes
on a Linux cluster with parallel NEURON, run with a
fixed time-step of 0.1 ms. The full model is available on
ModelDB (https://senselab.med.yale.edu/ModelDB/ShowModel.
cshtml?model=189154).

We briefly describe the scales of the multiscale model from
smaller to larger in the following sections (Table 1). For more
details, readers are referred to our previous papers (Neymotin
et al., 2015, 2016).

2.1. Intracellular Molecular Scale
Our Ca2+ dynamics (Figure 1C), are based on (Neymotin
et al., 2016). We modeled a one-dimensional RxD system of
intracellular neuronal Ca2+ signaling in all compartments
of neocortical pyramidal (PYR) neurons. Within each
compartment, we modeled cytosolic and endoplasmic reticulum
(ER) sub-compartments by using a fractional volume for each.

IP3 was produced through a reaction sequence initiated
by glutamate binding to the metabotropic glutamate receptor
(mGluR), based on a reaction scheme developed by Ashhad and
Narayanan (2013) (ModelDB #150551). IP3 diffused outward
from the synapse location and decayed following first-order

kinetics (τIP3 of 1 s). Baseline mGluR synaptic weight was
normalized to represent the increase in the amount of glutamate
bound to mGluR. Extracellular glutamate did not diffuse but
was represented by a local Glu value that was incremented in
response to an event delivered due to a presynaptic spike. Glu
showed bind/unbind kinetics on mGluR and was eliminated by
first-order degradation (lower left of Figure 1C).

The ER Ca2+ model involves IP3 receptors (IP3Rs), ryanodine
receptors (RYR) (Sneyd et al., 2003), SERCA pumps, and a Ca2+

leak. IP3R dynamics involved a slow Ca2+ inactivation binding
site state (De Young and Keizer, 1992; Li and Rinzel, 1994).
The SERCA pump is a pump rather than a channel and so is
modeled with Hill-type dynamics. Calcium buffering followed

Ca + B
5

−−−−⇀↽−−−−
9.5·10−4

CaB where B is diffusible buffer with diffusion

coefficients D = 0.043 µm2
/ms for both B and CaB, about half

the rate of Ca2+diffusion (Anwar et al., 2012). Calcium extrusion
across the plasma membrane was modeled by first-order decay
with τex = 5 ms.

2.2. Synapses
AMPA/NMDA synapses were modeled by standard NEURON
double-exponential mechanisms (Table 2). All excitatory
projections were mixed AMPA (rise,decay τ : 0.05, 5.3 ms) and
NMDA (rise,decay τ : 15, 150 ms). NMDARs were scaled by
1/(1+ 0.28 ·Mg · exp(−0.062 · V)); Mg = 1mM (Jahr and
Stevens, 1990). 13% of INMDA was carried by Ca2+(Spruston
et al., 1995). AMPA and NMDA receptors had reversal potentials
of 0 mV.

Inhibitory synapses were mediated by GABAA and GABAB

receptors. GABAA synapses were modeled with a double-
exponential mechanism. The GABAB synapse had second
messenger connectivity to a G protein-coupled inwardly-
rectifying potassium channel (GIRK). LTS cells connected to
apical dendrites of PYR cells using GABAA receptors (GABAAR;
rise,decay τ : 0.2, 20 ms) and GABAB receptors (GABABR) and
onto somata of FS and other LTS cells with GABAA Rs (rise,decay
τ : 20, 40 ms). GABAARs had reversal potentials of −80 mV, and
GABABRs −95 mV. GABABRs provide longer-lasting activation
compared to GABAARs.

2.3. Cell Scale
The network consisted of pyramidal cells (PYR; 3 apical
dendrite compartments, 1 basal dendrite compartment, 1 somatic
compartment), fast spiking soma-targeting interneurons (FS; one
compartment) , and dendrite-targeting low-threshold spiking
interneurons (LTS; one compartment; Wang and Buzsaki,
1996; Wang, 2002; Monyer and Markram, 2004; Bartos et al.,
2007; Neymotin et al., 2011a,b; Tables 3, 4). Reaction-diffusion
mechanisms (Ca2+,IP3,buffer) were restricted to the PYR cells
in this network. Properties of pyramidal neurons in the different
layers were identical except for apical dendrite length which is
longer in deep pyramidal neurons than in superficial (Hay et al.,
2011; Castro-Alamancos, 2013): 900 µm in L5-6; 450 µm in L2/3
and L4.

Voltage-gated ionic current models were based on prior
models of our own and others (McCormick and Huguenard,
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FIGURE 1 | Model schematics. (A,B) Motor cortex architecture. Circles represent neuronal populations (red: excitatory cells; green: fast-spiking interneurons; blue:

low-threshold firing interneurons). Circle size denotes number of cells in population. Lines (with arrows) indicate connections between the populations. Thickness of

lines proportional to synaptic weights. E cells synapse with AMPAR/NMDARs; I cells synapse with GABAAR / GABABRs. Circles with self-connects denotes recurrent

connectivity. (A) Excitatory connections. E5P projects to spinal cord (not modeled). (B) Inhibitory connections. (C) Chemical signaling in pyramidal cells showing fluxes

(black arrows) and second- (and third- etc) messenger modulation (red back-beginning arrows). We distinguish membrane-associated ionotropic and metabotropic

receptors and ion channels involved in reaction schemes in red (in reality, it is likely that almost every membrane-bound protein is modulated). External events are

represented by yellow lightning bolts—there is no extracellular diffusion; the only extracellular reaction is glutamate binding, unbinding, and degradation on mGluR1

after an event. Ca2+ is shown redundantly in blue—note that there is only one Ca2+ pool for extracellular, 1 pool for cytoplasmic, and 1 pool for ER (PLC,

phospholipase C; DAG, diacyl-glycerol; cAMP, cyclic adenosine monophosphate; PIP2, phosphatidylinositol 4,5-bisphosphate). Adapted from Figure 1 of Neymotin

et al. (2016).

1992; Migliore et al., 2004; Stacey et al., 2009; Neymotin et al.,
2011b,a, 2013). Voltage sensitive channels generally followed
the Hodgkin-Huxley parameterization, whereby ẋ = (x∞ −

x)/τx (x = m for activation particle and h for inactivation
particle). Steady-state x∞ and time constant τx are either related
to channel opening α(V) and closing kinetics β(V) as x∞ =

α/(α + β), τx = 1/(α + β), or are directly parameterized:
x∞(V), τx(V). Kinetics for channels were scaled by Q10 from
an experimental temperature (where available) to simulation

temperature of 37◦C. Q10 = 3 was used when no experimental
value was available. All cells contained leak current, transient
sodium current INa, and delayed rectifier current IK−DR, to allow
for action potential generation. Additionally, PYR cells contained
in all compartments IK−A, IK−M providing firing-rate adaptation
(McCormick et al., 1993). Pyramidal cells also had Ih, voltage-
gated calcium channels (VGCCs) in all compartments: IL, IT ,
IN (Kay and Wong, 1987; McCormick and Huguenard, 1992;
Safiulina et al., 2010; Neymotin et al., 2015), and SK and BK
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TABLE 1 | Summary of model.

Property Description

Populations 13; 7 E and 6 I, corresponding to layer 2/3, 4, 5A, 5B, and 6

of M1

Topology 3D with cortical depth (y) based on M1 laminar distribution,

horizontal location (x,z) randomly distributed

Connectivity Probability of connection and weight depends on layer and

cell type

Neuron model Multichannel multicompartment (E cells also RxD

mechanisms)

Synapse model AMPA, NMDA, GABAA, GABAB, mGluR

Plasticity –

Input Independent random Poisson spike trains with fixed rate

depending on cell type/synapse

Measurements Membrane potential, spiking activity, synchronization, firing

vector correlations

E (I) denote excitatory (inhibitory) neurons. No plasticity modeled (Table format based on

Nordlie et al., 2009).

TABLE 2 | Summary of synapse models used to connect neurons.

Label Description

AMPA Double exponential

NMDA Double exponential with voltage dependence

GABAA Double exponential

GABAB 2nd messenger connectivity to a G protein-coupled inwardly-rectifying

potassium channel (GIRK)

mGluR 2nd messenger signaling producing IP3

TABLE 3 | Summary of neuron models.

Label Description

Dynamics Multichannel compartmental Hodgkin-Huxley (plus RxD

mechanisms)

Compartments E: 5 (soma, basal dendrite, 3 apical dendrites)

Compartments I: 1 (soma)

Ion channels E: leak, Naf , Kdr , Ka, KD, KM, HCN, CaL, CaN, CaT, SK,

BK

Ion channels I: leak, Naf , Kdr , HCN, CaL, KM

RxD molecules E: Ca2+, IP3, B (Ca2+ buffer), CaB (Ca2+-bound

Ca2+-buffer)

RxD compartments E: endoplasmic reticulum, cytosol

RxD channels E: leak, RyR, IP3R, SERCA

E (I) denote excitatory (inhibitory) neurons. Reaction-diffusion (RxD) mechanisms/

compartments described more fully in intracellular scale.

calcium-activated potassium currents (IKCa). LTS cells contained
IL, non-Ca

2+-dependent Ih, SK, and Ca2+ decay.
HCN channels in different cell types have somewhat different

voltage dependence and different kinetics (Hagiwara and Irisawa,
1989; Schwindt et al., 1992; Chen et al., 2001; Wang et al.,
2002; Robinson and Siegelbaum, 2003). The hyperpolarization-
activated HCN current Ih used in pyramidal cells was modeled
with second messenger and calcium dependence taken from

Winograd et al. (2008) (ModelDB #113997), and modified to
provide the faster voltage-sensitivity time constants found in
cortex (Harnett et al., 2015), and provides PYR cells longer-
lasting firing activity via augmentation of the HCN channel
conductance. The mechanism for Ca2+ regulation of HCN
channels in PYR cells in Winograd et al. (2008) is modeled
empirically in order to produce the relationship between
cytosolic Ca2+ levels and Ih activation without simulating the
details of Ca2+ effects on adenyl cyclase (see schematic for HCN
chan in Figure 1C).

ḡh was 0.0025 S/cm2 in PYR soma, basal dendrites and
exponentially-increasing in apical dendrites with distance from
somawith 325µm space constant, hence e-fold augmented at 325
microns as described by Kole et al. (2006). Apical dendrite IK−DR,
IK−A, IK−M density also increased with the same length constant,
based on data showing HCN and Kv channel colocalization
(Harnett et al., 2015, 2013).

2.4. Network Scale
The network consisted of 1715 cells (Table 4). The network
contained 157,507 synapses for an overall connection density
of ∼5% (see Table 6). PYR cells synapsed onto each-other’s
dendrites. PYR-to-PYR synaptic locations on the dendrite were
randomized between basal and apical compartments (Markram
et al., 1997). PYR cells synapsed onto somata of FS and LTS cells
(single-compartment models).

Neuronal populations were arranged by cortical layer based
on our prior models (Neymotin et al., 2011a,c; Chadderdon
et al., 2014; Neymotin et al., 2016), with additional data from
direct measurements from mouse motor cortex (Shipp, 2005;
Weiler et al., 2008; Kiritani et al., 2012; Hooks et al., 2013), and
recent experiments which demonstrate a thin layer 4 in mouse
motor cortex (Yamawaki et al., 2014). The network consisted
of 13 populations of 3 excitatory cell types, intratelencephalic
(IT), pyramidal-tract (PT), and corticothalamic (CT), and 2
inhibitory cell types, low-threshold spiking (LTS) and fast-
spiking (FS). These were distributed across cortical layers 2/3,
4, 5a, 5b, and 6 (Harris and Shepherd, 2015), with cell numbers
for each population based on estimated cell densities and
volume (Table 4). The volume of each population was calculated
assuming a horizontal area (x and z dimensions) of 120 × 120
µm, and a layer-dependent cortical depth range (y dimension).

Connection probabilities pij (Tables 5, 6) of presynaptic
excitatory populations were dependent on pre- and pothst-
synaptic type and layer. For presynaptic inhibitory populations,
connection probabilities inversely scaled based on distance

pij = p̄ij · exp(−
√

(dx2 + dz2)/15), in x, z plane perpendicular
to the y-direction of layering. Connection probabilities and
weights are based on data from rodent motor cortex mapping
(Weiler et al., 2008; Lefort et al., 2009; Anderson et al., 2010;
Fino and Yuste, 2011; Apicella et al., 2012; Kiritani et al.,
2012). Individual neurons were placed randomly with uniform
distribution. Weights from E cells displayed in Table 6 are for
the AMPA synapses, with colocalized NMDA weights at 10% of
AMPA weights. Synaptic delays were randomized between 1.8
and 5 ms with additional delay based on distance.
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TABLE 4 | Network Population, including normalized and nominal cortical depth range (ynormRange, yRange, neuron density, and number of cells).

Label Description ynormRange yRange (um) Density (cells/mm3) numCells

E2 Layer 2/3 PYR IT excitatory neurons 0.12–0.31 160–420 80,000 300

E4 Layer 4 PYR IT excitatory neurons 0.31–0.42 420–570 80,000 173

I2 Layers 2/3 FS interneurons 0.12–0.31 160–420 10,000 37

I2L Layers 2/3 LTS interneurons 0.12–0.31 160–420 10,000 37

E5a Layer 5a PYR IT excitatory neurons 0.42–0.52 570–700 80,000 150

E5b Layer 5b PYR IT excitatory neurons 0.52–0.77 700–1040 40,000 196

E5P Layer 5b PYR PT excitatory neurons 0.52–0.77 700–1040 40,000 196

I5 Layers 4 and 5 FS interneurons 0.31–0.77 420–1040 10,000 89

I5L Layers 4 and 5 LTS interneurons 0.31–0.77 420–1040 10,000 89

E6 Layer 6 PYR IT excitatory neurons 0.77–1.0 1040–1350 40,000 179

E6C Layer 6 PYR CT excitatory neurons 0.77–1.0 1040–1350 40,000 179

I6 Layer 6 FS interneurons 0.77–1.0 1040–1350 10,000 45

I6L Layer 6 LTS interneurons 0.77–1.0 1040–1350 10,000 45

PYR, pyramidal; IT, intratelencephalic; PT, pyramidal tract; CT, corticothalamic; FS, fast spiking, LTS, low-threshold spiking.

TABLE 5 | Summary of network connectivity rules.

Property Description

E to E pij , wij dependent on pre-/post-synaptic cell type/layer

E to I pij , wij dependent on pre-synaptic cell layer, and post-synaptic cell

type/layer

I to E/I pij decreases exponentially with x,z plane distance between

pre-/post-synaptic neurons; fixed wij

All delays Randomized 1.8–5 ms with additional delay based on distance

pij denotes probability of connection between type i and j; wij denotes weight. Parameters

by pre- and post-synaptic type in Table 6.

Background activity was simulated by excitatory and
inhibitory synaptic inputs following a Poisson process, sent
to all cells, representing ongoing drive from other cortical
areas and other inputs. These inputs were selected to maintain
low-frequency firing of neurons within the model, which would
not fire otherwise, due to small network size and the requirement
for multiple synaptic inputs to trigger a postsynaptic spike
(Neymotin et al., 2011a). The strength of these background
inputs was not based on the full source of inputs from all
upstream brain areas, since these inputs are not completely
mapped.

2.5. Simulation Variations
We ran over 5800 simulations, randomly varying each of the
following parameters using an independent normal distribution:
1. E neuron mGluR density (mGluR); 2. E neuron ER RYR
density (RYR); 3. E and I neuron HCN channel density; 4.
E and I neuron fast Na+ channel density (Naf ); 5. E neuron
Kdr channel density; 6. E neuron Ka channel density; 7. E
neuron KD channel density; 8. E neuron KM channel density;
9. E neuron SK calcium-activated potassium channel density;
10. E neuron BK calcium-activated potassium channel density;
11. E and LTS neuron voltage-gated calcium channel (VGCC)
density.

Means and standard deviations differed for the different
parameters and were selected to allow each simulation to
maintain activity. A subset of the simulations was used for the
analyses described (Table 7).

We ran simulations with initial calcium concentration in the
ER set to 1.25 mM (Bygrave and Benedetti, 1996), to mimic
the effects of ER calcium priming via prior excitatory synaptic
stimulation (Ross et al., 2005; Hong and Ross, 2007; Fitzpatrick
et al., 2009; Neymotin et al., 2016).

We categorized the simulations into distinct groups by noting
major differences in activity across parameter sets (Table 8).
From the full set of 5867 simulations, 1505 did not display
any firing due to random variations in ion channel densities
which led to low neuronal activity (Table 7). The remaining
4341 simulations were Active due to higher neuronal activity,
e.g., partially caused by the higher average Naf density in these
simulations. Of these 4341 Active simulations, 1077 exhibited
epileptic latch-up dynamics—periods of intense activity which
led to depolarization blockade (Na+ channel inactivation; Lytton
and Omurtag, 2007). These periods where neurons did not
fire lasted 200–300 ms (gaps between E5P spikes: E5P gap in
Table 8). We categorized the top and bottom 2nd percentile of
the Active/non-latch-up simulations ranked by E5P firing rate
into dystonia (n = 65) and physiological (n = 65) sub-sets.
We used E5P firing rate as a criterion for dystonia classification
because E5P neurons project downward to brainstem spinal cord,
and sustained overactive E5P firing can lead to the tonic muscle
contractions symptomatic of dystonia.

2.6. Data Analysis
We formed multiunit activity (MUA) time-series, which count
the number of spikes in each bin (10 ms) for a given
population. To calculate neuronal population rhythms, we
took the power spectral density (PSD) of the mean-subtracted
MUA time-series; we then calculated the peak frequencies and
amplitudes in the PSD. We used the average Kendall’s τ non-
parametric rank-correlation coefficient (Kendall, 1938; Knight,
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TABLE 6 | Network Connectivity Parameters.

Pre Post p̄ij wij (nS) Pre Post p̄ij wij (nS) Pre Post p̄ij wij (nS)

I2L I2L 1.00 0.150 I2L I2 1.00 0.150 I2L E2 1.00 0.225

I2L E2 1.00 1.688 I2 I2L 1.00 0.150 I2 I2 1.00 0.150

I2 E2 1.00 0.225 E2 I2L 0.19 0.117 E2 I2 0.19 0.117

E2 E2 0.15 0.160 E2 E4 0.11 0.092 E2 I5L 0.22 0.151

E2 I5 0.02 0.017 E2 E5a 0.05 0.126 E2 E5b 0.01 0.111

E2 E5P 0.07 0.111 E4 I2L 0.02 0.054 E4 I2 0.02 0.054

E4 E2 0.05 0.184 E4 E4 0.15 0.160 E4 I5L 0.03 0.018

E4 I5 0.19 0.162 E4 E5a 0.04 0.160 E4 E5b 0.01 0.225

E4 E5P 0.01 0.225 E4 I6L 0.02 0.066 E4 I6 0.02 0.066

E4 E6C 0.00 0.477 E4 E6 0.00 0.477 I5L E4 1.00 0.225

I5L E4 1.00 1.688 I5L I5L 1.00 0.150 I5L I5 1.00 0.150

I5L E5a 1.00 0.225 I5L E5a 1.00 1.688 I5L E5b 1.00 0.225

I5L E5b 1.00 1.688 I5L E5P 1.00 0.225 I5L E5P 1.00 1.688

I5 E4 1.00 0.225 I5 I5L 1.00 0.150 I5 I5 1.00 0.150

I5 E5a 1.00 0.225 I5 E5b 1.00 0.225 I5 E5P 1.00 0.225

E5a I2L 0.02 0.054 E5a I2 0.02 0.054 E5a E2 0.04 0.131

E5a E4 0.03 0.104 E5a I5L 0.03 0.018 E5a I5 0.19 0.162

E5a E5a 0.18 0.143 E5a E5b 0.01 0.208 E5a E5P 0.02 0.208

E5a I6L 0.02 0.066 E5a I6 0.02 0.066 E5a E6C 0.01 0.081

E5a E6 0.01 0.081 E5b I2L 0.02 0.054 E5b I2 0.02 0.054

E5b E2 0.02 0.059 E5b E4 0.03 0.043 E5b I5L 0.03 0.018

E5b I5 0.19 0.162 E5b E5a 0.05 0.080 E5b E5b 0.18 0.171

E5b E5P 0.04 0.171 E5b I6L 0.02 0.066 E5b I6 0.02 0.066

E5b E6C 0.02 0.122 E5b E6 0.02 0.122 E5P I2L 0.02 0.054

E5P I2 0.02 0.054 E5P I5L 0.03 0.018 E5P I5 0.19 0.162

E5P E5P 0.18 0.171 E5P I6L 0.02 0.066 E5P I6 0.02 0.066

I6L I6L 1.00 0.150 I6L I6 1.00 0.150 I6L E6C 1.00 0.225

I6L E6C 1.00 1.688 I6L E6 1.00 0.225 I6L E6 1.00 1.688

I6 I6L 1.00 0.150 I6 I6 1.00 0.150 I6 E6C 1.00 0.225

I6 E6 1.00 0.225 E6C I5L 0.02 0.037 E6C I5 0.02 0.037

E6C E5a 0.03 0.034 E6C E5b 0.03 0.077 E6C E5P 0.03 0.077

E6C I6L 0.02 0.080 E6C I6 0.02 0.080 E6C E6C 0.03 0.133

E6C E6 0.02 0.133 E6 I5L 0.02 0.037 E6 I5 0.02 0.037

E6 E5a 0.03 0.034 E6 E5b 0.03 0.077 E6 E5P 0.03 0.077

E6 I6L 0.02 0.080 E6 I6 0.02 0.080 E6 E6C 0.02 0.133

E6 E6 0.03 0.133

p̄ij and wij are distance-independent probability of connections from Pre to Post neuronal types and synaptic weights, respectively.

1966) between pairs of neuron binned spike train time-series
for calculating the synchronization of populations of neurons
(denoted population-synchrony). Kendall’s τ non-parametric
rank correlation, defined as:

τ =
nc − nd
1
2n(n− 1)

,

is used with these data. Kendall’s τ is a normalized difference
between concordant (nc) and discordant pairs (nd); ties are
taken into account by the normalizing term, 1

2n(n − 1) ,
which represents the total number of ordered pairs in the

time-series. We used the Python scikit-learn library (Pedregosa
et al., 2011) for performing principal component analysis (PCA)
and support-vector machine (SVM) classification (Cortes and
Vapnik, 1995; Orrù et al., 2012). Dystonia and physiological
simulation classes were characterized on the basis of layer
5 corticospinal pyramidal neuron (E5P) firing rates. The
clearest examples of both classes (bottom/top 2nd percentiles
as physiological/dystonia classes) were used for the majority
of the analyses described in the Results (Figures 3–8). The
NuSVC variant of SVMs was used to classify physiological and
dystonia simulations and to find which simulation parameters
contributed the most to classification accuracy. SVM inputs
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TABLE 7 | Parameter ranges (average ± standard deviation) for all simulations (n = 5867), active simulations (n = 4341), latch-up simulations (n = 1077),

active/non-Latch-up simulations (n = 3264), physiological simulations (n = 65), and dystonia simulations (n = 65).

Parameter All Active Latch-up

mGluR 8.06± 6.44 8.02± 6.43 8.04±6.34

RYR 108.54± 86.99 109.74± 86.74 112.03±86.98

HCN 0.0025± 0.0003 0.0026± 0.0002 0.0026±0.0002

Naf 0.0809± 0.0081 0.0829± 0.0074 0.0856±0.0072

Kdr 0.0209± 0.0053 0.0202± 0.0052 0.0216±0.0054

Ka 0.3000± 0.0150 0.2977± 0.0147 0.2967±0.0144

Kd 0.0009± 0.0002 0.0008± 0.0002 0.0008±0.0002

Km 1.002e-05± 2.48e-06 1e-05± 2.49e-06 1.001e-05±2.51e-06

SK 0.0001± 6.163e-05 0.0001± 6.18e-05 0.0001±6.296e-05

BK 0.0030± 0.0015 0.0030± 0.0015 0.0031±0.0015

VGCC 0.0052± 0.0035 0.0053± 0.0035 0.0051±0.0035

Parameter Active/Non-Latch-up Physiological Dystonia

mGluR 8.02± 6.45 8.42± 6.54 8.12±5.74

RYR 108.99± 86.66 105.1± 82.9 116.64±77.11

HCN 0.0026± 0.0002 0.0026± 0.0002 0.0026±0.0003

Naf 0.0820± 0.0073 0.0787± 0.0053 0.0879±0.0076

Kdr 0.0198± 0.0051 0.0226± 0.0041 0.0195±0.0054

Ka 0.2981± 0.0148 0.3029± 0.0144 0.2992±0.0136

Kd 0.0008± 0.0002 0.0008± 0.0002 0.0008±0.0002

Km 1e-05± 2.48e-06 1.034e-05± 2.42e-06 1.021e-05±2.81e-06

SK 0.0001± 6.135e-05 0.0001± 6.797e-05 0.0001±6.604e-05

BK 0.0030± 0.0015 0.0034± 0.0013 0.0025±0.0015

VGCC 0.0054± 0.0035 0.0058± 0.0032 0.0046±0.0031

Plasma membrane ion channel conductance density values are in S/cm2. mGluR and RYR density are in arbitrary units used to scale channel conductance.

TABLE 8 | Dynamic measures (average ± standard deviation) for All simulations (n = 5867), Active simulations (n = 4341), Latch-up simulations (n = 1077),

Active/Non-Latch-up (n = 3264), physiological simulations (n = 65), and dystonia simulations (n = 65).

Dynamic measure All Active Latch-up Active/non-latch-up Physiological Dystonia

E5a rate (Hz) 0.65± 0.52 0.88± 0.41 1.09± 0.37 0.81±0.40 1.34± 0.51 0.85± 0.39

E5b rate (Hz) 1.68± 1.21 2.27± 0.79 2.45± 0.66 2.22±0.82 1.18± 0.28 3.74± 2.08

E5P rate (Hz) 7.10± 5.62 9.59± 4.32 7.77± 2.68 10.19±4.59 1.77± 0.26 22.59± 2.67

I5 rate (Hz) 11.46± 6.99 15.49± 1.89 15.14± 1.28 15.61±2.04 11.47± 0.72 17.67± 0.90

I5L rate (Hz) 5.81± 3.71 7.85± 1.61 7.13± 1.19 8.09±1.66 5.37± 0.76 13.42± 1.82

E5P synchrony 0.35± 0.25 0.47± 0.16 0.47± 0.12 0.47±0.17 0.07± 0.06 0.75± 0.05

E5P MUA freq. (Hz) 14.78± 8.91 19.97± 1.94 19.72± 1.79 20.05±1.99 20.91± 3.11 20.55± 0.88

E5P MUA amp. (AU) 83.0± 100.1 112.1± 101.4 59.8± 48.1 129.4±108.1 1.9± 1.2 527.0± 161.7

E5P MUA beta amp. (AU) 21.0± 26.4 28.3± 27.1 15.9± 11.9 32.4±29.4 0.8± 0.7 111.2± 64.9

E5P gap 79.13± 70.95 106.94± 61.87 190.23± 32.94 79.46±41.10 62.77± 24.85 21.75± 32.11

E5P FV sim 0.20± 0.14 0.27± 0.09 0.24± 0.06 0.28±0.09 0.13± 0.03 0.44± 0.08

E5P gap measures number of 300 ms gaps between individual E5P neuron firing times; E5P MUA amplitude and E5P MUA beta amplitude in arbitrary units; E5P FV sim measures

similarity between E5P population firing rate vectors using average pairwise Pearson correlation.

were vectors consisting of normalized parameter values. Each
of these input vectors was labeled into either of two distinct
binary classes: physiological (0) or dystonia (1). SVM parameters,
including kernel type (linear, polynomial, radial-basis function),
γ , tolerance, ν, and polynomial degree were selected using

a grid search with N-fold cross validation run 10 times for
each combination of parameters. SVM classification accuracy
surpassed the accuracy of other machine learning methods,
including logistic regression (not shown). Figures were drawn
with Matplotlib (Hunter, 2007).
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3. RESULTS

3.1. Simulation Overview
We ran over 5800 network simulations, randomizing 11
ion channel/receptor densities independently. A typical 2 s
simulation took ∼3 min using 24 cores on Linux with parallel
NEURON. After running simulations, we calculated neuronal
population firing rates, synchronization, and power spectra.

3.2. Characterization of Dystonia
Pathophysiology
Simulations were grouped into physiological and pathological
based on differences in firing patterns (Table 8, Figure 2).
1505 of 5867 simulations produced no activity. The remaining
simulations were characterized as physiological or pathological.
Pathological simulations showed increased activity. High
activity alternating with latch-up condition was defined
as an epileptiform simulation with periods of >200 ms of
depolarization blockade across multiple cells (1077 simulations).
1077 simulations were classified as epileptiform based on activity
latch-up resulting in sustained periods. The different classes
of simulations formed distinct clusters in multiple slices of
excitatory corticospinal (ESP) activity feature-space (Figure 2).
Physiological simulations showed E5P rates ≤2 Hz with low
to intermediate E5P firing vector (FV) similarity. Dystonia
simulations primarily occupied the upper-right quadrant of the
scatterplot in Figure 2A, but displayed either high or low FV
similarity which overlapped with the range of values displayed
by the physiological simulations. Epileptiform simulations had
intermediate average E5P rates due to high activity alternating
with periods of quiescence caused by depolarization blockade.
Across simulation types, higher E5P firing increased the
excitatory drive to I5 neurons, causing increased I5 neuron firing
(Table 8). Higher I5 and E5P neuron firing then caused higher
E5P synchronization via recurrent E5P excitation and feedback
inhibition (Figure 2B). Stronger E5P and I5 interactions then

increased beta rhythm amplitude (Figure 2B), however with
substantial variability. Peak oscillatory frequency was held
relatively stable across simulations (Table 8). Physiological
and epileptiform simulations had lower overall E5P synchrony
and beta power compared to the dystonia simulations, which
occupied the upper-right quadrant of Figure 2B.

E5P FV similarity showed temporal recurrences which
further distinguished the three simulation types (Figure 2C).
The physiological simulation showed intermediate self-similarity
(0.17) due to sparse firing of different subsets of pyramidal cells
at different times. In contrast, the dystonia simulation firing
patterns showed strong self-similarity (0.56) and recurrence
over time (recurring orange/red blobs in Figure 2C), indicating
stereotyped dynamics. The example epileptiform simulation
showed relatively weak self-similarity (0.16) due to its two
distinct firing patterns: high E5P synchrony alternating with
E5P silence produced by depolarization blockade. Epileptiform
and dystonia simulations showed a brief period of high
similarity when the epileptiform simulation showed strong
oscillations during the initial period. There was weak similarity
between epileptiform and physiological (0.12) and dystonia
and physiological (0.22) simulations, indicating that both
pathological dynamics were distinct from the physiological.

E5P neurons in a representative physiological model fired
sparsely with low synchrony (population-synchrony = 0.01;
Figures 3A,D; Supplementary Figure 1 has all physiological
rasters), with multiple downstream effects. Low excitatory drive
from E5P to I5 and I5L neurons caused them to fire slowly. This
low L5 inhibition allowed E5a neurons to fire quickly. The weak
E5P and L5 interneuron interactions produced only weak beta
rhythms which were confined to layer 5 (Figure 4A).

In a representative dystonia simulation, E5P neurons
had sustained, synchronous, rapid firing (Figures 3B,D;
Supplementary Figure 2 shows all dystonia simulation rasters).
This promoted strong, continuous layer 5 interneuron activation.
The L5 interneurons then suppressed E5a intratelencephalic

FIGURE 2 | Distinct dynamics in in physiological, dystonia, and latch-up simulations. (A) Average E5P firing rate vector (FV) similarity vs. average E5P firing

rate for individual simulations. (B) E5P MUA Beta oscillation amplitude vs. E5P synchrony for individual simulations. (A,B) [light blue: physiological, purple: dystonia,

orange: epileptiform, black: remaining Active simulations, large circles represent simulations shown in (C) and Figure 3]. (C) Pearson correlations between all pairs of

E5P FVs. Solid black lines demarcate FVs from example physiological, dystonia, and epileptiform simulations. All FVs used 50 ms intervals, forming 40 FVs per 2 s of

simulation.
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FIGURE 3 | Distinct firing patterns in physiological, dystonia, and epileptiform (epileptic) simulations. (A) Physiological model has sparse, asynchronous

E5P firing, relatively low I5 firing, and activated E5a/E5b populations. (B) Pathological model shows high-frequency, synchronous activity in E5P neurons, causing

higher I5 firing, which suppresses E5a activity. (C) “Epileptiform” (epileptic) model shows high-frequency, synchronous activity with intermittent 200–300 ms gaps in

firing of E neurons, caused by depolarization blockade (Na+ channel inactivation). (A–C) Left Dots represent individual neuron spike times (red: E cells, blue: LTS cells,

green: FS cells). Cells arranged from layer 2/3 (top) to layer 6 (bottom). Scale-bar: 100 ms. (A–C) Right Population firing rates (25 ms bins) arranged vertically to

roughly correspond to position on raster plot to the left. Scale-bar: 40 Hz (Same color code as raster; apparently flat lines indicate low variation in firing rate). (D)

Population firing rates from simulations in (A–C) (Average ± standard error of the mean).

neurons, which fired at reduced rates. In contrast, E5b firing
increased with the faster E5P firing, due to excitation spreading
in the network. The relatively high recurrent connectivity
(18% density) and strong synaptic weights between E5P
neurons allowed the E5P neurons to remain activated despite
strong feedback inhibition. The strong feedback inhibition
also activated the E5P HCN channels, which produced
rebound excitation. The strong E5P activation coupled with the
feedback inhibition also enabled E5P neurons to synchronize

(population-synchrony= 0.83; vertical stripes in Figure 3B) at
a strong beta rhythm (∼20 Hz; Figure 4B). These synchronous
beta rhythms also spread to other populations and layers (E2, I5,
I5L, E5b, and E6).

Epileptiform simulation also displayed strong intermittent
beta oscillations and strong synchrony (population-synchrony
= 0.05; Figures 3C, 4C), but this activity alternated with
lengthy periods (200–300 ms) where E neurons were not firing
due to depolarization blockade. Even with these periods of

Frontiers in Pharmacology | www.frontiersin.org June 2016 | Volume 7 | Article 157 | 81

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Neymotin et al. Multiscale Modeling for Dystonia Therapies

FIGURE 4 | Motor cortex models produce different beta oscillations. Power spectrum of multiunit activity vectors of examples in Figure 3. Power (y-axis) in

arbitrary units. (A) Physiological model shows weak beta (22 Hz) oscillations with power of <0.1% of the pathological model. (B) Pathological model produces strong

beta (20 Hz) oscillations with additional harmonic at 40 Hz. (C) Epileptiform model produces strong beta (19 Hz) oscillations with additional harmonic at 38 Hz.

depolarization blockade, most E neurons fired at higher average
rate than in the physiological simulations (Figure 3D). Such
increased synchrony with high excitatory cell activity is seen in
epilepsy patients (Meisel et al., 2015). In contrast to the dystonia
simulations, the synchronous periods of epileptiform oscillations
were largely confined to layer 5 and did not spread to other layers.

3.3. Need for Multitarget Approach
No individual parameter determined physiological vs. dystonia-
dynamical-condition in the network (Figure 5). Therefore, no
single parameter adjustment would routinely provide an effective
“treatment” that would reliably restore physiological activity in
most pathological models. We therefore went on to explore
whether multitarget manipulation would be able to find such
treatment routes.

Although no single parameter could predict physiological
vs. pathological dynamics, the outliers of certain individual
parameters were predictive. At the pathological margin,
simulations had parameters which are expected to produce high
activity: high Na+ or Ca2+ channels promoting inward currents,
high HCN channel densities providing high resting membrane
potential (RMP), and low K+ channel densities again producing
depolarization and reduced repolarization with spiking.

Further evidence for lack of predictability of dynamics
based on parameters, comes from viewing the parameters
in all 11 dimensions organized into 2 classes by dynamics.
The parameter space showed substantial heterogeneity in the
patterns producing pathology (Figure 6A), with weak intra-class
clustering (Figure 6B). Correlation between parameter vectors
of each simulation averaged 0.06 for physiological simulations,
0.07 for pathological simulations, with weak -0.05 anticorrelation
between pathological and physiological simulations. The low
correlations in both the physiological simulations (lower-left

corner of Figure 6B) and the pathological simulations (upper-
right corner of Figure 6B) demonstrate that there is widespread
degeneracy in the parameter sets that produce either the
physiological or pathological states. Some of this degeneracy is
unsurprising: for example K+ channels with similar time courses
of activation can substitute for one another to some extent. Other
degeneracy is more complex and involves higher-order dynamic
compensation.

3.4. High Dimensional Separation of
Physiological and Pathological Parameters
Because of the difficulty of separating pathological from
physiological with these high dimensional parameter sets,
we used a SVM classification to create a separation (termed
a maximum margin hyperplane) separating parameter sets
producing physiological dynamics from parameter sets
producing pathological dynamics. We started by training
SVMs using only two parameters in combination (Figure 7). In
order to test the efficiency of this separation, we separated out
our target sets (physiological vs. pathological) into two subsets
of each to serve as training and testing sets to evaluate the
adequacy of the separation. By trying various random training
and testing sets we got a mean and standard error for each
case. Many two-parameter predictions were below chance (0.5)
indicating that the SVM could not separate physiological from
pathological based on that parameter pair. Two-parameter SVMs
could accurately classify when the parameter pair included
Naf density—the strongest predictor of excitability. The best
prediction came with high Naf and low Kdr . Logistic regression
methods were also tried to perform this two-dimensional
separation but did not perform as well as SVM.

Going beyond 2 parameters, SVM classification accuracy
increased regularly with the number of parameters used
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FIGURE 5 | Individual parameters do not distinguish physiological from dystonia activity. (A) Dystonia (purple) vs. physiological (light blue) simulations. of

simulations sorted by E5P firing rate (N = 65 for each group). (B) Cumulative probability distributions for each parameter in the dystonia (purple) and physiological

(light blue) simulations. Parameter values normalized to a distribution with zero mean and unit variance (zero mean does not indicate zero density of a given ion

channel/receptor). Simulations shown are obtained from bottom and top 2nd percentile based on dynamic measures.

(Figure 8), suggesting that a multi-target drug approach beyond
two targets might produce greater effect. Moving to higher and
higher dimensional spaces, we checked all possible parameter
combinations at each dimensionality. In Figure 8, we report
the parameter combination that was most predictive—e.g., at 6
dimensions we report just one of the 462 combinations of six
from 11 parameters. Looking at the red blocks below, we can
identify that the six dimensions that provide best prediction are
Naf , four of the K

+ channels, and VGCC. Predictability increases
up through six parameters, then plateaus, and then falls off due
to the extreme sparseness of data. This sparseness was due to
the so-called curse of dimensionality: given a constant number
of data points n, the density falls off #bin-fold with each increase
in dimension, where #bin is the binning of the space in one

dimension. Because of this, any high-dimensional method will
tend to underestimate predictive strength given a limited amount
of data (Bishop, 2006; Noble, 2006).

This multi-target SVM approach revealed the parameters
that had the highest contribution to producing or preventing
dystonia. Naf density was the most predictive parameter across
all numbers of parameters used (horizontal red stripe at top
of Figure 8B), as had been also shown using 2 dimensions
alone (Figure 7). Again confirming the 2-dimensional result, the
next most predictive parameters was Kdr . Following these came
Ka, Kd, BK, SK, and VGCC densities which also significantly
contributed to accurate predictions, due to their strong influence
on E neuron excitability. mGLUR, RYR, and Km densities showed
lesser contributions.
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FIGURE 6 | All parameters of pathological and physiological simulations reveals weak intra-class clustering. (A) 11-dimensional parameters for

physiological and pathological simulations. Colorbar is normalized parameter values as in Figure 5. (B) Pearson correlations between all pairs of parameter vectors.

FIGURE 7 | Support vector machine classification accuracy of pathological vs. physiological simulations using two parameter values has high levels

for certain parameter combinations (e.g., including Naf channel density) but overall accuracy is often below chance (0.5). (A) Accuracy as a function of

specific parameter combinations [indicated at same horizontal location in (B) (Red indicates parameter (param) was used for classification; blue indicates the

parameter was not used)] (solid line: mean cross-validation accuracy (n = 10); dotted line: standard error of cross-validation accuracies).

Increasing the percentile cutoffs for categorizing physiological
from pathological simulations from the 2nd percentile to 7th
percentile decreased prediction accuracy but still demonstrated
the value of multitarget changes (Figure 9). The left column

shows the same result as Figure 8: accuracy increased (colormap)
as one goes from fewer to more parameters (bottom to top).
By including more exemplars on both the physiological and
pathological sides, we moved away from the best exemplars
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FIGURE 8 | SVM classification accuracy generally increases when using 1–10 parameters, indicating utility of multitarget pharmacy approach to

treating dystonia. (A) Best classification accuracy from all combinations of x parameters (solid line: mean cross-validation accuracy (n = 10); dotted line: standard

error). (B) Best parameter (param) combinations (red: parameter used; blue: parameter not used). x-axis in (A,B) indicates number of parameters used.

and obtained less distinction between the two parameter sets.
However, at all percentiles, there was an initial increase in
classification accuracy with continued increase up to or beyond
3 parameters. This increase then declined as the number
of parameters increased further due to the aforementioned
sparseness at high dimensionality.

4. DISCUSSION

We developed a multiscale model of primary motor cortex
to explore multitarget pharmacological therapies for dystonia.
We searched parameter space—channel and receptor densities—
to create a set of models to contrast dystonia dynamics with
physiological dynamics. Dystonia simulations displayed high
excitability and synchrony in layer 5 corticospinal neurons
(E5P), and strong beta oscillations which spread between
cortical layers (Figures 3B, 4B). Dystonia simulations could be
distinguished from epileptiform simulations primarily by the
presence of periods of latch-up with depolarization blockade
in the epileptiform simulations. Physiological simulations
had low excitability, asynchronous firing, and weak beta
oscillations (Figures 3C, 4C). Attempts to use high-dimensional
visualization techniques to find potential therapeutic directions
in the parameter space were limited by the solution degeneracy
in the 11-dimensional parameter space with scattered parameter

vectors with low correlation (Figure 6). We therefore turned to a
SVM classification to identify hyperplanes in high-dimensional
space that would separate the two populations. As expected,
the major spike generating channels, Naf and Kdr were the
primary determinants of excitability, followed by additional
potassium channels and calcium channels. We did not assess
pharmacological effects on synapses, which would be useful to
do in the future.

4.1. Biological Degeneracy and
Personalized Therapy
Degeneracy of mechanism is a major theme in biology (Edelman
and Gally, 2001), meaning that there are many different ways
that a biological system can produce a particular shape in the
case of an immunoglobulin, or a particular dynamics in the case
of a neural system. Such degeneracy has been shown directly in
the stomatogastric ganglion of lobster, where a particular cell
type produces its stereotyped dynamics using many different
combinations of ion channel densities (Golowasch et al.,
2002). Associated with this degeneracy is failure of averaging—
averaging across parameter sets that produce the dynamics
gives a set of parameter values that do not produce the same
dynamics.

In the context of brain physiology, this means that we
can expect that individuals differ in the details of how their
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FIGURE 9 | SVM classification accuracy increases with more

parameters then decreases due to “curse of

dimensionality”—sparseness of parameter vectors relative to

dimension. Best classification accuracy from all combinations of y

parameters (params) using bottom/top SPI firing rate percentiles on x-axis.

motor cortex produces oscillations and contributes tomovement.
Similarly, we can expect that individuals differ in the details of
their pathology. From a pharmacological perspective this argues
that we may see greater benefit from personalized medicine—
identifying the high-dimensional complex of pathological
parameters in a particular patient in order to treat them with
their own individualized cocktail of multitarget drugs to produce
a dynamics that falls somewhere in the physiological regime. To
this might also be added complementary individualized, perhaps
multi-locus, brain stimulation (Kerr et al., 2012; Song et al.,
2013; Chadderdon et al., 2014; Hiscott, 2014; Nelson and Tepe,
2014; Dura-Bernal et al., 2016). Such a personalized approach
would require much more intensive, and more costly, diagnostic
procedures of a type that is currently only used by epilepsy
surgery centers, which typically require invasive methods to
perform their diagnostic tests.

Due to the degeneracy, parameter averaging failed in our
dataset—using the average of all parameters sets that produce
pathological simulations does not give a pathological simulation.
However, the ability of the SVMmethod to separate pathological
from physiological populations in high dimensional parameter
space does suggest that there may be some benefit to pushing all
patients in that direction through a multitarget pharamacological
cocktail. In future studies, we plan to test this explicitly in the
simulations in order to determine what percentage improve,
what percentage worsen and what percentage remain essentially
unchanged with such an average treatment. This assessment will

require a larger number of simulated patients than we have thus
far accumulated.

4.2. Multilocus, Multitarget, Multiscale
Approaches for Treating Dystonia
In general, single target pharmacology has not been effective in
dystonia (Fahn, 1987). As in other complex diseases, many of
the treatments for dystonia have highly variable effectiveness and
must be used at high doses that produce side-effects (Jankovic,
2006). For these reasons, botulinum toxin, targeting the final
endpoint —the muscle movement—is commonly used as a
treatment (Jankovic, 2006; Sanger et al., 2007; Bragg and Sharma,
2014). Deep-brain stimulation, an invasive procedure, is also
used to partially restore normal brain dynamics (Tarsy, 2007;
Johnson et al., 2008; Air et al., 2011; Bhanpuri et al., 2014).

Multilocus, multitarget approaches may be particularly
useful in movement disorders because movement produces
coordination by utilizing coordination among multiple brain
areas including the basal ganglia, thalamus, cerebellum, sensory,
and motor cortices (Neychev et al., 2008; Crowell et al., 2012;
Delnooz and van de Warrenburg, 2012). Pathology within any
one region, or disturbances in communication between any of
the regions can potentially lead to disorders. To begin to address
these multiple challenges, we focused our computer modeling
here on a multiscale model of motor cortex and multitarget
pharmacology based in this one area. In the future, thismodel will
be expanded to encompass more areas and will include synaptic
receptor targets in each area.
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Multi-target drugs have raised considerable interest in the last decade owing to their
advantages in the treatment of complex diseases and health conditions linked to
drug resistance issues. Prospective drug repositioning to treat comorbid conditions is
an additional, overlooked application of multi-target ligands. While medicinal chemists
usually rely on some version of the lock and key paradigm to design novel therapeutics,
modern pharmacology recognizes that the mid- and long-term effects of a given drug
on a biological system may depend not only on the specific ligand-target recognition
events but also on the influence of the repeated administration of a drug on the cell gene
signature. The design of multi-target agents usually imposes challenging restrictions on
the topology or flexibility of the candidate drugs, which are briefly discussed in the present
article. Finally, computational strategies to approach the identification of novel multi-target
agents are overviewed.

Keywords: multi-target agents, lock and key paradigm, gene profile, drug resistance, drug repositioning, drug
design, designed multiple ligands

Introduction

Multi-target drugs (or multi-functional drugs or network therapeutics) have attracted considerable
attention in the last decade, as potential therapeutic solutions to diseases of complex etiology (Talevi
et al., 2012; Koerberle and Werz, 2014; Zheng et al., 2014) and health conditions linked to drug-
resistance issues (Talevi and Bruno-Blanch, 2013; Li et al., 2014). According to the “one drug, one
target” paradigm, highly potent and specific (single-target) treatments would be better tolerated due
to absence of off-target side-effects. However, poor correlation between in vitro drug effects and
in vivo efficacy is often found with target-driven approximations (Kell, 2013; Margineanu, 2014).
While target-first strategies might prove useful to approach single gene disorders, disease is often
a multifactorial condition involving a combination of constitutive and/or environmental factors.
Owing to compensatory mechanisms and redundant functions, biological systems are resilient to
single-point perturbations (Hopkins, 2008). Under such perspective, disease often results from the
breakdown of robust physiological systems due to multiple genetic and/or environmental factors,
leading to the establishment of robust disease conditions (Yildrim et al., 2007). Thus, complex
disorders are more likely to be healed or alleviated though simultaneous modulation of multiple
targets.

Though this strategy has only been purposely applied in the last 10 to 15 years, many of
the previously known therapeutic agents are in fact multi-target ligands (Yildrim et al., 2007),
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FIGURE 1 | Extrapolation of the classic lock and key analogy to multi-target agents.

which is especially true for those drugs that were discovered by
serendipity, phenotypic screening or traditional medicine. Note
that in all these cases, the knowledge on the pharmacological effect
precedes the knowledge of the mode of action. Aspirin itself has
been shown to act through a diversity of molecular mechanisms
besides cyclooxygenase inhibition (Koerberle and Werz, 2014).
Some therapeutic categories, e.g., mood disorder medications,
are particularly abundant on classical examples of multi-target
drugs (Roth et al., 2004). So actually, multi-target drugs have
long been known and effectively used in the clinical practice but
have majorly been found serendipitously or through phenotypic
screening. What are the possibilities and limitations of tailored
multi-target drugs?

Revisiting and Squeezing the Classical
Lock and Key Paradigm

Medicinal chemists usually resort to the traditional lock and
key model to describe the interaction between a ligand and its
molecular target (or an updated version of this paradigm that
contemplates the ligand and target flexibility, such as the hand-
in-glove analogy). The general idea is that the ligand (the key)
and the target (the lock) should have complementary features to
efficiently interact and trigger some biological response (open
the lock). Frequently, different ligands can elicit a qualitatively
similar response at a certain target. For different keys to activate
the same lock alike they must share some common, essential

arrangement of features (the blade of the key), whichwill be termed
the pharmacophore (from the Greek, what carries the medicine).
The remaining part of the key (the bow) may be indeed important,
but less subject to structural restrictions (Figure 1).

A multi-target ligand might be conceived as a skeleton or
master key capable of unlocking several locks. While selective
non-selectivity might be of benefit, promiscuity (non-selective
non-selectivity) might in contrast raise severe safety concerns
and should be avoided. Why may a non-promiscuous ligand
activate different targets? There are many possible answers to this
question. First, it is frequent for a given ligand to act on several
isoforms of the same protein. For instance, xilocaine (lidocaine)
can produce anesthetic, antiarrhythmic and anticonvulsant effects
by blocking the peripheral nervous system, heart and central
nervous system sodium channels (Catterall, 2000). Alternatively,
different members of a given biochemical pathway might share,
to some extent, ligand specificity due to co-evolution. Finally,
a ligand might display affinity to two or more unrelated
targets by combining different pharmacophores in the same
molecule (Morphy et al., 2004). Frequently, such combination of
pharmacophores leads to molecules that are either enthalpically
or entropically unfavorable, which conspires against the design of
multi-target drugs, as will be later discussed in the correspondent
section. This is metaphorically represented in Figure 1, through
the awkward design of key number 3.

The contribution of biotechnology, however, has made very
clear that the lock and key analogy can fall short to explain
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the effects of a drug on a biological system, particularly when
medium- and long-term drug exposure (multiple-dose regimens)
is required. After sustained exposure to a chemical agent the
gene signature of a cell varies: some genes are upregulated while
others are downregulated (e.g., owing to activation of nuclear
receptors, compensatory mechanisms, etc.). Whereas in the past
attention was directed to the direct interactions between the
drug and its molecular target/s, now it is known that a more
holistic perspective is needed to fully characterize the action of
a drug on a biological system. For example, it has been reported
that chronic administration of valproic acid and carbamazepine
downregulates cytosolic phospholipase A2 and/or cyclooxygenase
(with the consequent reduction of proinflammatory cytokines;
Bosetti et al., 2003; Gherlardoni et al., 2004), an effect that may
be involved in the effectiveness of these agents in epilepsy and
bipolar disorder. The need for such holistic view is unequivocally
expressed in the Connectivity Map, a publicly available resource
meant to connect disease and small molecules through gene-
profiles (Qu and Rajpal, 2012). The Connectivity Map stores gene
expression profiles derived from the treatment of human cells
cultured with a large number of drugs; when a disease signature
is used as a query, it is expected that those drugs related to the
disease by opposite expression changes (inverse similarity) will be
potential treatments.

Possible Applications of Multi-Target
Ligands

Threemain applications ofmulti-target agents in a therapeutic can
be envisioned.

Complex Disorders
Complex disorders are multi-factorial health conditions triggered
by a number of intrinsic and/or environmental factors acting
together on an organism. Among them we may mention mood
disorders, neurodegenerative diseases, chronic inflammation or
cancer. Despite the advances on the comprehension of the
biological basis of these conditions and the huge investments
made by the pharmaceutical sector, pharmaceutical solutions
remain elusive. Although in some cases such disorders can be or
are approached through combined therapies, multi-target ligands
would present clear advantages, among them more predictive
pharmacokinetics, better patient compliance, and reduced risk
of drug interactions. There are several reviews available covering
the potential of the multi-target approach in cancer (Petrelli and
Giordano, 2008; Petrelli andValabrega, 2009), Alzheimer’s disease
(Bajda et al., 2011; Dias and Viegas, 2014; Zheng et al., 2014),
Parkinson’s disease (Youdim et al., 2014), inflammation (Hwang
et al., 2013), depression and other psychiatric disorders (Wong
et al., 2008; Milan, 2014).

Drug Resistance
Simultaneously impacting different targets could also be
advantageous to approach individuals expressing intrinsic
or induced variability in drug response due to modifications
in key disease-relevant biological pathways and activation of

compensatory mechanisms (Zimmermann et al., 2007; Xie
et al., 2012). Apart from the obvious applications in the field
of antimicrobial chemotherapy (it is less probable to develop
resistance linked to single-point mutations against multi-target
than single-target agents) this strategy could also be pertinent to
treat non-infectious conditions characterized by high incidence
of the drug resistance phenomena, e.g., epilepsy (Bianchi et al.,
2009; Margineanu, 2014). One third of the epileptic patients
suffer from refractory epilepsy. One of the prevalent hypotheses
to explain refractory epilepsy cases proposes that at least part of
the non-responsive patients might express variations inmolecular
targets of antiepileptic drugs (Talevi and Bruno-Blanch, 2013).
Isobolographic studies in animal models and clinical experience
suggest that combination of drugs with different mechanisms
tends to be beneficial (Kwan and Brodie, 2006; Kaminski et al.,
2009; Lee and Dworetzky, 2010; Brodie et al., 2011). On the
other hand, while there exists consensus regarding the utility of
single-target drugs for the treatment of some specific epilepsy
types or syndromes, broad spectrum antiepileptic drugs such as
valproic acid are among the most used antiepileptic agents and
might be valuable in those cases where, at the onset of epilepsy,
diagnosis of the specific syndrome is elusive (Bourgeois, 2007;
Lagae, 2009; Löscher et al., 2013; Margineanu, 2014).

Prospective Drug Repositioning
Drug repositioning (i.e., finding a second or further medical
use for already known therapeutics, including approved,
discontinued, shelved, and experimental drugs) has attracted
enormous interest within the academic and pharmaceutical
sectors during the last 10 years (Ashburn and Thor, 2004; Novac,
2013). Most of the successful drug repositioning cases have been
found by serendipity or through exploitation of the original
action mechanism of a drug for new indications (on target
repositioning). Multi-target agents are natural candidates for
more innovative, off-target drug repositioning. Computational
approaches to drug repositioning have so far focused on what
we will call retrospective drug repositioning: screening known
drugs collections/libraries to find novel indications for already
known therapeutic agents. Prospective drug repositioning, in
contrast, would explore drug repositioning possibilities much
earlier in the drug discovery process. While some pharmaceutical
companies now consider exploring repositioning alternatives for
drugs in the pipeline, the approach could be taken much further,
by designing multi-purpose drugs to treat different conditions;
prominently, frequently co-morbid disorders (e.g., diabetes and
cardiac disease; anxiety and peptic ulcer disease, epilepsy, and
depression) or, alternatively, underlying pathologies plus disease
symptoms. The case of amiodarone and related compounds and
Chagas disease can be illustrative. Chagas disease is a tropical
parasitic disease historically endemic to Latin America. The late
phase of the disease is characterized by life-threatening heart
disorder in around one third of the patients. Amiodarone is a
class III antiarrhythmic agent that shares many characteristics
of other electrophysiological anti-arrhythmic drugs, including
inhibition of sodium and potassium channels and L-type calcium
channels. Interestingly, some studies showed that patients with
chagasic cardiomyopathy treated with amiodarone had a more
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rapid recovery when compared with other patients treated with
class I and class IV antiarrhythmics. This fact suggested that
other mode of action could be in play. It was later demonstrated
that amiodarone was able to act directly on the parasite
survival, affecting the growth of Trypanosoma cruzi extracellular
epimastigotes and T. cruzi amastigotes (that is, amiodarone
could act on the underlying pathology). The mechanism of
action of the drug was elucidated, showing that this drug directly
disrupts the intracellular calcium regulation of the parasite
(Benaim et al., 2006). Similar results were later observed with
dronedarone (Benaim et al., 2012). Still, this example is another
case of retrospective drug repositioning, since the new medical
use emerged from clinical observations. A future challenge is to
define whether this kind of indication expansion oriented to the
treatment of co-morbid conditions could be anticipated through
rational approaches at early stages of the drug development
process, thus helping to provide evidence on possible advantages
of new treatments compared to the existent ones, and additional
criteria to decide which drug candidates should be prioritized to
clinical trials and to conveniently choose the clinical endpoints
of the trial that will be used to test superiority or non-superiority
of the treatments under comparison. Computational network-
based approximations could prove valuable to unveil hidden
connections between diseases and assist these types of initiatives.

Some Considerations Related to the
Design and Screening of Multi-Target
Agents

Development of tailored multi-target agents with affinity to
unrelated or weakly related drug targets relies mainly in
two approaches (Morphy et al., 2004; Ma et al., 2010): the
methodical combination of pharmacophores from selective,
single-target ligands (a fragment-based approach) and; the
screening of compound collections by simultaneous application
of multiple computational models (or a single, multi-tasking
computational model) to identify compounds with a suitable
combination of activities. In the first approximation, the distinct
pharmacophores are joined together by a cleavable or stable
linker or, alternatively, they are overlapped by taking advantage of
structural commonalities (Morphy et al., 2004). The use of linkers
often leads to compounds with unfavorable biopharmaceutic
or pharmacokinetic profile (e.g., compounds that violate more
than two of the Lipinski’s rules). Although the use of cleavable
linkers might be advantageous, it also limits some of the merits
of the multi-target approach in comparison with combination
therapies (simplified pharmacokinetics, reduced chance of drug
interactions). Moreover, the fragment-based approach could
lead to poor ligand efficiency metrics (Hopkins et al., 2014),
which refer to the binding efficiency per atom. It might
be speculated that, since only a part of the molecule can
interact with each of the proposed targets, the other part can
become an obstacle for the binding event, reducing the binding
efficiency because of enthalpic and/or entropic reasons, which
is represented through the awkward topology of key number
3 (Figure 1). Therefore, the overlapping or merging approach

(searching partially or highly integrated pharmacophores in a
small molecule) seems more attractive from a biopharmaceutical
viewpoint. Including some degree of flexibility in the molecule
may help the common and non-common pharmacophoric
features to accommodate to the correspondent binding sites of
the different intended targets; however, the degree of flexibility
should be carefully tuned so that an excess of flexibility does
not conspire against the binding affinity (owing to unfavorable
entropic loss associated to the binding event) or the bioavailability
of the drug (it should be remembered that many druglikeness
rules limit the number of flexible bonds in the molecule). An
illustrative example of some of these principles is provided
by the recent research from Jayaraman et al. (2013). These
authors applied the fragment-based approach in the design
of phytochemical-antibiotic conjugates conceived as multivalent
inhibitors of Pseudomonas aeruginosa DNA gyrase subunit B
(GyrB)/topoisomerase IV subunit B, dihydrofolate reductase
(DHFR) and dihydropteroate synthase (DHPS). Departing from
previously identified pharmacophores for inhibitors of E. coli
GyrB andDHFR, the authors derived a common pharmacophoric
model for multi-inhibition of such enzymes. Remarkably, they
decided on using simple phenols (gallic acid and protocatechuic
acid, simpler structural analogs of the bivalent natural product
epigallocatechin gallate) conjugated through a non-cleavable
linker to sulfamethoxazole and sulfadiazine (which inhibit
DHPS; Figure 2). The decision of using simple phytochemicals
as departure points resulted in four drug-like compounds
with acceptable computed biopharmaceutical properties, which
was checked through different drug-likeness rules (Lipinski
and Veber rules) and by predicting the solubility and the
percentage of absorption for the designed drug candidates. Two
of the candidates displayed no violation of the rule of five
and Veber rules, while the remaining two showed only one
violation of Lipinski rules and marginal violation of Veber
rules.

Regarding the screening approximation, one should bear in
mind that the hit rate in the screening campaign is expected to
be lower than the ones obtained when looking for single-target
drug candidates (Talevi et al., 2012): each model used in the
in silico screening process functions as a structural restriction
that filters out all the molecules that do not gather the model
requisites; thus, the more models used, the less probable it
is to find chemical compounds accomplishing all the models
structural constraints. For example,Nair et al. (2013) have recently
performed a virtual screening campaign to identify multi-target
inhibitors of DAP-kinases (a family of pro-apoptotic proteins also
involve in autophagy, which are proposed as a promising target for
therapeutic intervention of brain ischemia and neurodegenerative
diseases). AmongDAP-kinases, DRP1 has been reported to be the
upstream protein of all the DAP-kinases as it is involved in the
activation of other members of the family. However, modulation
of DRP1 is not enough to attenuate the cell death pathways
activated by DAP-kinases, owing to the existence of alternative
activating sources. Searching for multi-target agents, the authors
have explored a combined database of 391 known ligands of one
of three members of the DAP-kinases family: DAPk1, DRP1, and
ZIPk. This library was compiled from the Protein Data Bank
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FIGURE 2 | Multi-target antibiotic phyto-drug conjugates designed by Jayaraman et al. (2013).

and ChEMBL, and it was sequentially screened through three
pharmacophore hypothesis of DAPk1, DRP1, and ZIPk, in that
order. Screening using the first hypothesis (DAPk1) resulted in
196 hits. Further, screening of these hits by DRP1 pharmacophore
resulted in 56 hits, which contained pharmacophore features of
both DAPk1 and DRP1 ligands. The 56 ligand hits were then
screened by the ZIPk pharmacophore, retrieving only four ligands
gathering the pharmacophoric features of all three DAP-kinases.
The limited number of hits obtained when using sequential
in silico filters/models to select multi-target agents might be
compensated by the huge, ever expanding available chemical
universe. Multitasking QSAR approximations (Zanni et al., 2014;
Speck-Planche and Cordeiro, 2015) could prove as a valuable tool
to implement this strategy.

Target Selection

So far the advantages and challenges posed by the multi-target
approach have been discussed. A critical question remains,
however, to be made: if we are to design multi-target agents, how
shall we choose our molecular targets? Obviously, a drug target
needs to have the potential to be disease modifying. Secondly,
if we are fighting against an infection or a deregulated cell (e.g.,
in cancer) the drug must display some degree of selectivity, e.g.,
the drug target must be exclusively or preferentially expressed in
the infectious agent or in the cancerous cell, targeted proteins
in a pathogen should not have homologous proteins in the
host or homologous proteins in the host should be sufficiently
different from those in the pathogen, etc. Furthermore, the
Medicinal Chemistry community has long accepted that not all
the proteins are equally “druggable,” i.e., likely to be moderated by

small molecules. A number of approaches to assess druggability
have been proposed in the specialized literature, from “guilt
by association” approximations (a protein is predicted to be
druggable if it belongs to a protein family for which at least one
member of the family is targeted by a drug) to methods based on
binding site prediction, among others (Keller et al., 2006; Cheng
et al., 2007). But still the previous are just general considerations
valid for both single- and multi-target approximations. When
aiming at multiple targets, the choice of the targets and the
pursued type of inhibition depend on several factors, among
them the nature of the disease (infectious disease? complex
disorder?) and/or the possible mechanisms of drug resistance
(adaptive mechanisms? target amplification or mutation?). A
relevant issue that deserves attention is whether it is preferable
to directly block the selected targets or to modulate them (e.g.,
through weak partial inhibitions). Under our modern paradigm,
built on a systems biology perspective, it is understood that,
in general, we are not targeting isolated proteins but pathways
instead. We might target different signaling pathways (parallel
targeting), which may be valuable to block escape routes, adaptive
resistance mechanism and compensatory homeostatic responses;
alternatively, vertical targeting (attacking the same pathway
at different nodes) might prove useful against other types of
resistance (e.g., target mutations; Shahbazian et al., 2012). When
trying to kill pathogens or malignant cells, attacking hubs (highly
connected nodes in a biochemical network) might be the strategy
of choice; on the other hand, if the treatment objective is to
restore a perturbed network to a healthy state, using low affinity
multi-target ligands to modulate multiple non-crucial nodes
neighboring key nodes ligands might be advantageous in order
to avoid sever side-effects (that might be otherwise expected
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if blocking a key node with a crucial physiological function;
Csernely et al., 2013). Metabolic control analysis constitutes a
useful frame to evaluate the importance and relative contribution
of individual metabolic steps in the overall functioning of a
particular system and, subsequently, to identify optimal targets
(Hornberg et al., 2007).

Conclusion

Multi-target agents are a promising strategy to face complex,
multifactor disorders and drug resistance issues. Additionally,
they can prove valuable in prospective drug repositioning oriented
to the treatment of comorbid conditions or both the underlying
pathology and its symptoms, an overlooked application to the
moment. Compared to combination therapies, they present
several advantages, includingmore predictable pharmacokinetics,
lower probabilities of drug interactions and higher patient
compliance.

We have highlighted some difficulties related to the search
of tailored multi-target drugs (e.g., enthalpic and entropic
considerations and potential bioavailability issues, limited
number of hits when sequentially screening a virtual library).
Besides the classical key and lock paradigm to approach the
multi-target strategy, the effect of the drug on cell gene signatures
should also be considered, especially when looking for middle-
and long-term treatments, which is often the case for complex
disorders. Finally, network analysis might provide clues to help
target selection, which is highly dependent on the nature of the
treated disorder and the known mechanisms of resistance.
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In the last years, the “one target, one drug” paradigm that has traditionally dominated drug
discovery has been deeply challenged by the evidence that small molecules interact simultaneously
with multiple targets, a phenomenon known as polypharmacology. Today, polypharmacology is
recognized as a new valuable opportunity for drug discovery and development. It is now well
established that drug molecules typically bind to several targets, and that their efficacy and safety
is mostly dependent on their polypharmacological profile (Jalencas and Mestres, 2012; Peters,
2013; Anighoro et al., 2014). Indeed, one of the most common reasons for terminating a drug
discovery program has been promiscuity or lack of selectivity of the developed compounds. This
leads to important considerations regarding the polypharmacology inherent in chemical structures
and its possible exploitation for drug discovery. First, side effects caused by drug binding to
unwanted off-targets (adverse polypharmacology) should be identified as early as possible in the
drug discovery pipeline. Second, potential synergistic effects arising from hitting multiple targets
(beneficial polypharmacology) should be taken into consideration and thoroughly incorporated
in the drug design strategy. Third, polypharmacological approaches have the potential to redirect
stalled drug discovery projects and to reposition valuable hits or leads (drug repositioning). Finally,
prediction of polypharmacological profiles can be used to uncover new macromolecular targets
for already known or new developing drugs (target identification and deconvolution). In all these
areas, computational polypharmacology is gaining a foothold in drug discovery, as witnessed by the
increasing number of publications reporting theoretical approaches and methods specifically put
forward to address these needs.

State-of-the-art computational approaches offer the possibility to predict the activity profile of
ligands to a set of targets, thereby anticipating potential selectivity issues or discovering desired
multitarget activities early in the iterative design and optimization steps typical of a preclinical
drug discovery project. These approaches stem from 2D or 3D shape and chemical similarity,
pharmacophore analyses, target and binding site similarity assessment, docking methods,
bioinformatics, graph theory and modeling, machine-learning algorithms, and chemogenomics
(Figure 1). Broadly, these can be classified into statistical data analysis and bioinformatics, ligand-
based, and structure-based approaches, all of which are well documented in the literature (Csermely
et al., 2005; Boran and Iyengar, 2010; Bottegoni et al., 2012; Anighoro et al., 2014; Reddy et al.,
2014). One should note that ligand-based and structure-based strategies have specific advantages
and limitations. Structure-based methods use the information derived from knowledge of the
3D structure of proteins. These methods are applicable to identify ligands for a specific target
or set of targets of interest, for example by performing de-novo design or virtual screening of
large libraries of small molecules. In addition, they can be used to assess binding site structural
similarity and to profile protein-ligand interactions among sets of targets. Their application is
obviously limited to proteins with known crystal structure or to homology models derived from
highly homologous crystal structure templates. Moreover, structure-based results are influenced
by differences in conformations of binding site residues, which are generally difficult to predict.
Ligand-based approaches do not require crystal structures of the target proteins but rely on
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FIGURE 1 | Computational approaches useful for predicting

polypharmacology. Statistical data analysis and bioinformatics,
ligand-based, and structure-based approaches can be applied either
singularly or in combination, to take advantage of the peculiar features and

strengths of each approach. The lower part of the figure shows three different
proteins (A–C) interacting with the same ligand, and highlights that the final
pharmacological effect of the ligand is the result of synergistic effects arising
from interaction with all targets.

prior knowledge of biologically active ligands, therefore their
use is limited to targets for which ligands are known. Worth of
note is that in ligand-based methods the derived information is
necessarily dependent on the chemical structures of the classes of
compounds that have been thus far developed. As a consequence,
predicting polypharmacological profiles of ligands that are
too dissimilar to already synthesized classes of compounds
would be impossible. Overall, ligand-based and structure-based
methods appear to be applicable in conjunction to provide

more robust results (Anighoro et al., 2015). Such combination
offers the possibility to take advantage of the peculiar features
and strengths of each approach toward the obtainment of
possible candidates for polypharmacology, and appears to be
one promising way to go in future investigations. For example,
one risk of predicting polypharmacology by using only chemical
similarity principles is that inactive compounds can exhibit high
similarity with active molecules if they derive from a slight
modification of an active compound at some key position crucial
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for its interaction with the target. In this case such similarity
would lead to false positives. Likewise, false negatives can be
expected considering that not all of active compounds have
been identified for a given target. In these cases, structure-based
methods can help overcome these potential pitfalls by estimating
the steric and electrostatic complementarity of ligands with
the target binding sites. For example, structure-based docking
screenings of compounds that passed the desired chemical
similarity filters may be independently performed on two or
more biological targets of interest, and multi-target hits may
be identified from compounds located at the top of all ranked
lists. Finally, analysis of drug targets and drug-target associations
using a network approach may provide useful information to
highlight particularly interesting target combinations or chemical
modulators able to perturb the network at specific nodes of
disease-specific critical pathways (Csermely et al., 2013). In this
context, partial inhibition of a small number of targets can be
more efficient than the complete inhibition of a single target,
especially for complex and multifactorial diseases (Csermely
et al., 2005). This information can be used by ligand-based or
structure-based methods to direct the design and screening of
new drugs toward the desired set of multiple drug targets.

Polypharmacology has been mainly recognized within
members of the kinome and GPCRs families (Knight et al., 2010;
Jacobson et al., 2014). This is not surprising, considering that
binding sites within members of conserved and evolutionarily
related targets are generally conserved and thus prone to
multitarget inhibition. However, one should note that the
recognized specificity of a ligand or a series of ligands depends
heavily on how hard on- and off-targets have been investigated,
and this is surely the case for kinases and GPCRs, which have
been extensively explored. We are far from having the capacity to
perform an exhaustive biological profiling of ligands that enter
into drug discovery pipelines, but we can expect that the more
testing will be performed, the more off-targets and multitarget
activities will be seen also for targets genetically and structurally
unrelated to the primary intended target. In this respect, constant
improvement and implementation of compound and bioactivity
data deposited in publicly available databases will provide
access to an increasing number of high confidence bioactivity
annotations for larger sets of chemicals and therapeutic targets
(Hu and Bajorath, 2013). Overall, this information will be very
useful to computationally design multitarget ligands. In parallel,
improvement in hardware and software performance is making
it possible to handle an enormous amount of data, thus enabling
the generation and analysis of big data for polypharmacology in
a very cost- and time-effective way.

The rational design of molecules interacting with more than
one biological target becomes most challenging when these
targets are only distantly related or unrelated, i.e., when they
belong to different protein families. For example, the selectivity
of particularly interesting kinase inhibitors are usually profiled
against a large panel of kinases of the kinome, but they are
rarely screened against targets of other families due to limited
capacity of experimental in vitro testing. Considering that local
binding site similarities may be more important than global
structural similarity to determine polypharmacological activities,

especially when ligands are able to interact with key residues
of more than one target, this remains a critical point for the
development of multi-targeted drugs (Salentin et al., 2014).
Therefore, assessing local binding site similarities and comparing
protein-ligand interaction profiles, especially for distantly related
sets of targets and chemical classes of ligands, will be crucial
for predicting polypharmacology (both beneficial and harmful).
Significant improvements are also needed on how to select the
most relevant set of therapeutically important targets for a given
disease, a question that can benefit of the recent progresses of
proteomics and clinical molecular investigations on patients and
disease states.

Progresses in modeling protein-ligand interactions and in
quantitatively predicting free energies of binding of ligands to
target proteins will definitely contribute to successful design
of molecules with the desired polypharmacological profile. The
ongoing advances in docking methods such as improvement
of scoring functions and better treatment of receptor flexibility
are playing an important role to meet this goal. Importantly,
several free-energy based approaches, with different theoretical
backgrounds and at different levels of approximation, have been
proposed to rescore docking results in order to increase the
accuracy of binding affinity predictions (Parenti and Rastelli,
2012). Considering that the affinity of a ligand for a target
protein reflects the 1G of binding, any further improvement
in our ability to accurately predict binding free energies will be
important to design multi-target drug candidates.

Combining computational design and chemical synthesis of
libraries of multi-target ligands provides another means to more
effectively obtain bioactive compounds with the desired on- and
off-target binding. For example, Reutlinger et al. very recently
described the development and application of a computational
molecular de novo method for designing combinatorial libraries
that exhibit an accurately predicted bioactivity profile, obtaining
nanomolar multitarget ligands modulating the dopamine D4 and
sigma-1 receptors (Reutlinger et al., 2014). In another study,
Rodrigues et al. showed that the combination of machine-
learning methods with automated chemical synthesis and fast
bioassay turnover enabled the generation of small molecules with
the desired polypharmacology (Rodrigues et al., 2015). These
investigations suggest that a combination of the two approaches
may be suitable for rapidly obtaining hits and leads with the
desired target engagement.

Finally, a thorough understanding of drug-target network
relationships and target-disease associations is key not only to
provide more effective and safer drugs, but also to uncover
specific target combinations that may provide synergistic effects
and/or benefits for mitigating or bypassing drug resistance. In
other words, selecting the “right” combination of targets for
a specific disease will probably be a major key to success,
and this should be given full consideration by focusing
computational experiments on target combinations suggested
by clinical and/or molecular biology investigations. So far,
given the high number of cellular targets and our limited
ability to understand their interplay in disease states, most
biologically active small molecules are likely to bind several
targets and/or to activate or suppress alternate pathways or
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targets. Network models are providing useful information to
analyze the interconnection of pathways and targets relevant
to human diseases, and their relation with chemical compound
networks (Schadt et al., 2009). However, the more the pathways
and mechanisms of disease (especially multifactorial and
complex diseases) will be understood at the molecular level,
the more the polypharmacological networks can be exploited
with computational methods to obtain safer and potent drugs

able to modulate the desired on- and off-target activities. The
recent successes in de novo predicting drug polypharmacology
and the raising number of computational strategies and
frameworks developed at this purpose testify that computational
polypharmacology has come of age and will play an increasingly
important role in drug discovery. The combination of different
approaches and expertise (experimental and computational) will
likely be key to success.
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Multi-target therapies, either in combination or in sequential order, have been advocated to
combat intrinsic and acquired resistance to anti-cancer drugs (Holohan et al., 2013; Yardley, 2013).
However, the effectiveness of multi-target anti-cancer therapy in the clinic is limited. The selection
of cancer cells obeys Darwin’s law of evolution. Under the pressure of drug perturbation, the cancer
cell can adapt versatile molecular and cellular mechanisms for survival, and often evolves into
more aggressive or metastasis phenotypes (Holohan et al., 2013). At the molecular level, acquired
mutations resulting from drug treatment may modify drug metabolism (e.g., increasing efflux,
decreasing uptake, and enhancing detoxification etc.) and alter drug-target interactions. At the
cellular level, multiple pathways support the survival of cancer cells. The inhibition of one pathway
may result in the activation of an alternative pathway. Although novel approaches to optimizing
combination therapies have been proposed to defer these drug resistance mechanisms (Crystal
et al., 2014; Wang et al., 2015), intra-tumor heterogeneity that have been observed ubiquitously
may make the drug combination fail (McGranahan and Swanton, 2015). Polygenic drug-resistance
mechanisms are present in sub-clones prior to the initiation of therapy (Bozic et al., 2013). If the
therapy cannot target all sub-clones that drive the cancer progress in a fast-killing mode, it would
prompt the rapid growth of sub-clones that are not sensitive to the treatment (Gatenby et al., 2009).
Unfortunately, the number of driver mutations in advanced tumors is substantial (Gerlinger et al.,
2014). It could be an impossible mission to target all driver mutations. The existence of cancer stem
cells adds another dimension of complexity. The conventional single or combinational anti-cancer
drug is incapable of killing cancer stem cells. When a cancer cell is killed by chemotherapy, it could
send signals to stimulate the proliferation of the cancer stem cell, leading to the repopulation of the
drug-resistance tumor (Kurtova et al., 2015). Thus, new strategies are needed to combat anti-cancer
drug resistance with the goal to improve the effectiveness of anti-cancer therapy.

Cancer cells originate from the host’s normal cells, but eventually turn into a new “pathogen”
species. To eliminate anti-cancer drug resistance, we may borrow an idea from anti-bacterial
drug discovery. Anti-virulence has emerged as a novel concept in addressing the challenge of
antibiotic resistance (Rasko and Sperandio, 2010). Instead of killing bacteria, the anti-virulence
drug interferes with the bacterial virulence and/or cell-cell communication, disrupts pathogen-
human interactions, or enhances the host’s inner immunity. The rationale is that the bacterium is
less likely to evolve into a drug-resistant strain when facing less evolutionary pressure. As the cancer
adapts similar mechanisms to the bacterium in acquiring drug resistance, the “anti-virulence”
strategy could be applied as an anti-cancer therapy. Recent successes in anti-cancer immune
therapy open a new door to exploring the “anti-virulence” strategy in cancer treatment (Johnson
et al., 2015). If the cancer can be controlled as a less aggressive or non-metastasis type, it may be
possible to cure the cancer by boosting anticancer immunity (Carmi et al., 2015). On the contrary,
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the chemotherapy may stimulate the production of
immunosuppressive molecules (Shalapour et al., 2015). As
a result, the patient’s anti-cancer immune response is inhibited.
Along these lines, adaptive therapy has been proposed to control
the tumor growth by permitting the survival of drug sensitive
cells. In this way, the growth of drug-resistant clones could be
surpassed (Gatenby et al., 2009). In some cases, the cancer can
be treated as a chronic disease when transferring the cancer
cell into a quiescent state (Aguirre-Ghiso, 2006). For example,
chronic myeloid leukemia (CML), chronic lymphocytic leukemia
(CLL), and low grade non-Hodgkin’s lymphoma (NHL) are
slow-growing cancers. Patients can live with them for many
years.

The various heterogeneous types of cancer cells form an
ecosystem, cooperating and competing with each other for
nutrients and spaces from the harsh environment. For example,
sustained angiogenesis, one of the hallmarks of cancer, relies on
the cooperation of co-existing cell lineages (Floor et al., 2012).
The cooperating sub-clones either bear complementary traits
or play a different role of producer or consumer of “public
goods” such as diffusible growth factors (Korolev et al., 2014).
Based on theoretical, experimental, and clinical results of ecology,
microbiology, and cancer research, it has been proposed that
tuning the population dynamics of cancer cells can be a powerful
strategy in developing an anti-cancer therapy (Korolev et al.,
2014). By either changing the tumor microenvironment, or
confusing cancer cell-cell communications, the whole cancer
ecosystem can be controlled, even eliminated.

To determine the evolutionary dynamics of the cancer
ecosystem, and the drug targets that can modulate its
evolutionary trajectory, we need a deep understanding of not
only the drug response and resulting evolution of individual
cell types but also the emergent properties of the whole system
under a diverse genetic and environmental background, which
is more than a simple summarization of the behavior of all
cells. Recent advances in cancer biology, single cell technologies,
next-generation sequencing, and systems biology provide great
opportunities to dissect the evolution of the cancer ecosystem
at multiple scales. Multiple molecular components such as
integrin and cadherin and pathways (e.g., Rho GTPase), which
are responsible for the cell-cell communications and the cell-
environment interactions, have been revealed (Brücher and
Jamall, 2014). They represent potential drug targets to perturb
cancer cell-cell interactions and to constraint tumor growth.
The Cancer Genome Atlas has identified millions of somatic
mutations (Ledford, 2015). Correlated with generic variations,
drug response phenomics data are available at molecular,
cellular, tissue, and organism levels (Zbuk and Eng, 2007). The
systematic integration of these data may allow us to predict drug-
response phenotypes for intervention against multiple targets
and pathways. Single cell sequencing has revealed the clonal
evolution of breast cancer (Wang et al., 2014) and childhood
acute lymphoblastic leukemia (Gawad et al., 2014), and drug
resistance dynamics (Lee et al., 2014). These studies will provide
critical information to predict the cancer evolutionary trajectory,
leading to the development of pre-emptive treatment strategies
that are in contrast to current reactive clinical approaches. In

spite of this progress, one of fundamental challenges remaining
is to bridge genetic and molecular mechanisms of single cell-cell
interactions to the ecological dynamics of the cancer population.

Multi-scale modeling and simulation may play a key role in
predicting the evolutionary dynamics of the cancer ecosystem,
and identify anti-cancer therapeutic targets for pre-emptive
treatment. It is possible to reconstruct context-specific whole
cell models by integrating multiple omics data (Karr et al.,
2012). Subsequently, their cellular functions can be simulated and
predicted at different evolutionary stages under a framework of
constraint-based modeling (Bordbar et al., 2014). Using a single
cell or sub-clone as the building block, the cancer ecosystem
can be modeled as a dynamic cell-cell interaction network, in
which the node is a cell, and the edge represents the cell-
cell interaction. Each node, or cluster of nodes, has different
traits and evolutionary trajectory, yet depend on each other, as
shown in Figure 1. A network representation may allow us to
understand the emergent properties of the cancer ecosystem.
For example, one of intrinsic properties of biological network
is “robust-yet-fragile” (Kitano, 2007). The removal of a single
node may have little impact on the whole system. However,
the weak perturbation of multiple nodes can lead to the system
failure, even if these nodes are not deleted. A number of
effective therapies in treating complex diseases may follow this
principle (Xie et al., 2012). For instance, successful anti-psychotic
drugs, such as clozapine, mediate their effects through binding
entire families of serotonin and dopamine receptors. The clinical
failures of many anti-psychotic drugs can be attributed to them
being too selective as designed (Hopkins et al., 2006). In another
example, the anti-cancer effect of HIV protease inhibitors is
proposed to comes from their weak bindings to multiple kinases
(Xie et al., 2011). Moreover, the perturbation of edges may be
more effective than nodes to regulate the state transition of a
non-linear dynamic system (Tong et al., 2012). An additional
advantage of edge perturbation is that the cancer cell has little
selection pressure to evolve into a drug resistant phenotype,
as the cancer cell will not be killed directly by the drug.
In a proof-of-concept study, blocking cell-cell communication
inhibited the repopulation of cancer stem cells, thus enhancing
the effectiveness of anti-cancer therapy (Kurtova et al., 2015). To
capture the whole dynamic spectrum of the cancer ecosystem,
mechanistic and quantitative dynamic simulation is needed.
Coarse-grained dynamic modeling has successfully identified
an optimized sequence of therapies to improve the survival
of patients with metastatic castrate resistant prostate cancer
(Gallaher et al., 2014). Agent-based modeling that has been
successfully applied to study the dynamics of complex systems
could be a powerful tool to integrate whole cell models into a
dynamic model of the cancer ecosystem (An et al., 2009).

Multi-target therapy can be achieved by either
polypharmacology or drug combination. Polypharmacology
has several advantages over drug combination. Firstly, it is
not a trivial task to optimize dosages and sequences of a drug
combination. The highly heterogeneous nature of cancer cells
makes optimization even more difficult. Secondly, potential
drug-drug interactions may cause serious side-effects. A singe
“dirty” drug may reduce the probability of this problem. Finally,

Frontiers in Pharmacology | www.frontiersin.org September 2015 | Volume 6 | Article 209 | 102

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Xie and Bourne Polypharmacology targeting cancer ecosystem

FIGURE 1 | Two strategies for anti-cancer therapy. (A) Node killing strategy kills sub-clones of cancer cells through chemo-, targeted-, and immuno-therapy. The

adaptive evolution of the cancer often leads to drug resistance. The cancer often turns into a more aggressive form. (B) Edge perturbation strategy aims to disturb the

cell-cell interactions of the cancer ecosystem. It may have bigger impact on the cancer as a whole. It is less likely for the cancer to evolve into a drug resistance

phenotype, as no sub-clone can gain particular evolutionary advantage.

it is argued that polypharmacology is more likely to achieve
desired selective profiles than the drug combination (Varshavsky,
1998). Compared with anti-virulence agents for bacteria,
selectivity is particularly challenging in the development of
anti-cancer therapy, as the normal cell is more similar to the
cancer cell than the bacteria. The side-effect of anti-cancer
therapy is mainly because the drug cannot distinguish the
normal cell from the cancer cell. The cancer genes that harbor
driver mutations can be either up-regulated or down-regulated.
A polypharmacological agent can be designed in such a way that
it is mutually exclusive—it binds both the up-regulated gene A
and the down-regulated gene B (terms A+ and B-, respectively)
(Varshavsky, 1998). Consequently, the agent will selectively bind
to A+ in the cancer cell as B- is less competitive. In the normal
cell, A and B will competitively bind the agent, thus the agent
will have little impact on the function of either of them. In
contrast, the combination of two drugs, which bind to A and B,
respectively, will be less selective. Following the same principle
above, a selective agent can be designed for genes that are all
up-regulated through targeting the allosteric site of one gene
(Varshavsky, 1998).

The identification of suitable therapeutic targets is only
the starting point of anti-cancer drug development. It is
often more challenging to discover molecules that are able
to achieve desirable therapeutic effects with minimum side
effects. In addition to conventional druggable targets, targeting
the protein-protein interaction (PPI) interface could be an

efficient strategy to modulate signal transduction, cell-cell
communications, and cell-environmental interactions (Jubb
et al., 2012; Mullard, 2012). For example, cadherin-p120
interactions may mediate the contact inhibition of locomotion
(CIL) that controls cell growth. The loss of CIL leads to
tumor growth and metastasis (Mayor and Carmona-Fontaine,
2010). Thus, enhancing cancer cell-cell interactions may inhibit
tumor progression. Historically, it is difficult to design small
molecule inhibitors to target the PPI interface, as it is flat,
large, and featureless, and thus considered undruggable. Multiple
weak binders instead of a single strong binder could be an
alternative strategy to designing PPI modulators, as the PPI
interface is characterized by “hot spots” that contribute the
most to the binding free energy, and well-defined grooves or
small pockets that are associated with a continuous epitope
binding partner (Ma and Nussinov, 2014). As mentioned
previously, multiple weak binders may be more effective in
regulating biological systems than a single selective inhibitor
with high binding affinity. Although drug combinations are
a successful multi-target therapy strategy, possible drug-drug
interactions may limit the number of drugs administrated
together. Polypharmacology offers two alternatives to the
drug combination. Polypharmacology aims to design “dirty”
drugs that can bind to multiple receptors simultaneously. Its
effectiveness in treating systematic diseases has been documented
(Xie et al., 2012). For example, targeted polypharmacological
agents have been successfully designed to modulate signaling
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transduction events (Apsel et al., 2008). It is possible for a
small molecule to target multiple PPI interfaces, as they are
promiscuous across fold space (Gao and Skolnick, 2010), and
may share conserved hot spot residues (Keskin et al., 2005;
Shulman-Peleg et al., 2007). The desired multi-target binding
specificity can be achieved through the fine-tuned side chain
geometry and chemistry of protein-ligand interactions (Gao and
Skolnick, 2010).

In summary, with advances in whole genome sequencing,
high-throughput techniques, systems biology, and cloud
computing, information on the evolutionary dynamics of cancer,
from a single cell to the whole population, is starting to emerge.

Concurrently, progress in medicinal chemistry is expanding
the druggable target space (e.g., through targeting the protein-
protein interaction interface and allosteric events). Putting these
efforts together may open a new door to multi-target therapies
for cancer treatment.
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What is synergy? The Saariselkä
agreement revisited
Jing Tang*, Krister Wennerberg* and Tero Aittokallio *

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland

Many biological or chemical agents when combined interact with each other and produce

a synergistic response that cannot be predicted based on the single agent responses

alone. However, depending on the postulated null hypothesis of non-interaction, one

may end up in different interpretations of synergy. Two popular reference models for

null hypothesis include the Bliss independence model and the Loewe additivity model,

each of which is formulated from different perspectives. During the last century, there

has been an intensive debate on the suitability of these synergy models, both of which

are theoretically justified and also in practice supported by different schools of scientists.

More than 20 years ago, there was a community effort to make a consensus on the

terminology one should use when claiming synergy. The agreement was formulated at

a conference held in Saariselkä, Finland in 1992, stating that one should use the terms

Bliss synergy or Loewe synergy to avoid ambiguity in the underlying models. We review

the theoretical relationships between these models and argue that one should combine

the advantages of both models to provide a more consistent definition of synergy and

antagonism.

Keywords: definition of synergy, drug combinations, Bliss and Loewe models, interaction barometer, consensus

agreement

Introduction

Evaluation of interaction effects between biologically active agents has become an important topic
in many disciplines, including pharmacology (Cokol et al., 2011; Miller et al., 2013; Chevereau and
Bollenbach, 2015), biochemistry (Hu et al., 2011; Zhang and Viikari, 2014; Bunterngsook et al.,
2015), and environmental sciences (Darling and Côté, 2008; Piggott et al., 2015). The interaction
between multiple agents is often classified as either synergistic or antagonistic, depending on
how much the observed combination response differs from the expected response under the null
hypothesis that the two agents are non-interacting.Multiple referencemodels have been formulated
based on a distinctive set of empirical or biological assumptions (see e.g., Lehár et al., 2009).
These assumptions, albeit difficult to validate a priori due to the lack of precise knowledge of the
mechanisms of action, are often justifiable as long as they provide biologically plausible reasoning
about the nature of non-interaction. However, the inherent differences in the model assumptions
have inevitably led to inconsistency in the quantification of the degree of interaction, contributing
to a major source of confusion and controversy on the definitions of synergy and antagonism.
The Saariselkä agreement, proposed more than 20 years ago, aimed at reaching a consensus on
the terminology for characterizing the degree of interaction (Greco et al., 1992). Acknowledging
the theoretical background of the major competing models, the Saariselkä agreement admitted
that there is no single universally best reference model. Rather than continuing the debate on the
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appropriateness of the model assumptions, the agreement
called for a compromise between the advocates of the models,
and proposed a practical guideline for reporting synergy or
antagonism, where the underlying reference model should be
explicitly described to avoid any ambiguity.

The Two Reference Models

For the rest of the review, we will use drug combination as an
example of interaction data. A drug’s effect y is often measured
at a certain dose x as the percentage of biological response, i.e.,
x > 0, 0 < y < 1. Let us consider that, drug 1 at dose x1
produces a response y1 and drug 2 at dose x2 produces a response
y2. Next, we combine the two drugs at the dose pair (x1, x2)
and observe a combination response yc. To quantify the degree
of drug interaction, we need to formulate a reference model to
answer the following question: if there is no interaction between
the drugs, what would be the expected combination response
yEXP at (x1, x2)? So far, two major reference model classes have
been proposed, the Bliss independence model (Bliss, 1939) and
the Loewe additivity model (Loewe, 1953). While each having its
own logical basis, the underlying assumptions behind these two
models are relatively distinct.

The Bliss independence model adopts a probabilistic
perspective by treating a drug combination under non-
interaction as a joint action of independent, yet competing
perturbations by the individual drugs. Such a probabilistic
independence allows the expected combination response to be
computed as the product of the individual drug responses:

yBLISS = y1 + (1− y1)y2 = y1 + y2 − y1y2. (1)

An observed combination response greater or smaller than
yBLISS can be interpreted as a departure from the probabilistic
independence, which thus implies an interaction between the two
drugs. The Loewe additivity model, on the other hand, requires
additional information about the dose-response relationships of
the individual drugs. Namely, let y = f1(x) and y = f2(x) be
the dose-response functions for drug 1 and drug 2, respectively.
Then the doses at which each drug alone produces the expected
response yLOEWE can be represented as, f−1

1 (yLOEWE) and

f−1
2 (yLOEWE), where f

−1 is an inverse function which maps the
response y back to the dose x. Formally, the Loewe additivity
model states that yLOEWE must satisfy:

x1

f−1
1 (yLOEWE)

+
x2

f−1
2 (yLOEWE)

= 1. (2)

The rationale behind Equation (2) is to fit non-interaction
to the so-called sham experiment scenario, where a drug is
combined with itself, that is, f1(x) = f2(x). According to
Equation (2), one can derive yLOEWE = f (x1 + x2) for the
sham experiment, reflecting the intuition that combining two
drugs of the same type should induce neither synergy nor
antagonism.

The Saariselkä Agreement

The assumptions and performance of the two reference models
have been compared and discussed in many review articles (e.g.,
Berenbaum, 1989; Greco et al., 1995; Chou, 2006; Lee, 2010; Zhao
et al., 2010). There have been attempts to distinguish the Bliss and
Loewe models in terms of mechanistic implications (Shafer et al.,
2008; Laskey and Siliciano, 2014; Chevereau and Bollenbach,
2015). The Bliss independence model is expected to hold true for
non-interacting drugs that elicit their responses independently,
e.g., by targeting separate pathways. Loewe additivity, in contrast,
is more compatible with the case where the drugs have similar
modes of action on the same targets or pathways. However,
little is known about whether such mechanistic justifications
for the Bliss and Loewe models reflect the reality. Further,
with increasing understanding of drugs’ modes of action,
any “previously unexpected” interaction effect becomes more
expected, whichmakes the referencemodels totally dependent on
the temporal state of knowledge. As pointed out in the Saariselkä
agreement (Greco et al., 1992), and also by many others, neither
Loewe additivity nor Bliss independence is necessarily reflecting
the expected modes of action of a drug combination (Fitzgerald
et al., 2006; Yeh et al., 2006; Breitinger, 2012). Rather, Loewe
and Bliss models should be used as data exploratory approaches,
with a major purpose to identify potential synergistic drug
combinations that warrant further mechanistic investigation, but
not the other way around, i.e., using the mechanistic evidence to
determine which reference model is more appropriate.

After reaching the common understanding on the model
assumptions, the Saariselkä agreement allowed the researchers
for the flexibility to choose a preferred reference model
to evaluate interactions of multiple agents, with the only
precondition that the names of the specific models need to be
explicitly reported. Namely, depending on which model is used, a
combination response greater or less than yEXP will be termed
as Loewe synergy, Loewe antagonism, Bliss synergy or Bliss
antagonism, respectively. Following these recommendations, the
controversy over the definitions of synergy and antagonism
seemed subsided. More recently, a variety of interaction
assessment methods have been further developed and applied
to a wide range of biological research fields. Notably, most
of these methods can be traced back to the two basic model
classes. For example, variants of the Loewe additive model
include combination index (Lee et al., 2007; Chou, 2010),
isobologram analysis (Tallarida, 2006) and response surface
models (Greco et al., 1995; Kong and Lee, 2006); variants of
the Bliss independence model include various synergy contour
approaches (Fitzgerald et al., 2006; Zhao et al., 2014).

What is Synergy?

Paradoxically, even with the clear distinction that has been made
between the reference models, we feel that the fundamental
question still remains unanswered, if not becoming even more
serious:What is synergy after all? Since the expected combination
responses yBLISS and yLOEWE most often are not identical
(Berenbaum, 1989), choosing the model to use has become
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a practical burden for a researcher who tries to draw solid
biological conclusions out from the data. Due to the lack of
practical guidelines, the model selection has become a personal
preference or largely a convention that has been followed in a
particular research field without clear reasons (Lee et al., 2007;
Zhao et al., 2014). There has been a tendency to favor a model
that yields a lower expected combination response, as it results
in a higher likelihood of detecting stronger synergy. To make
matters even worse, there has been often a dilemma when a
drug combination is classified as synergistic according to one
model but antagonistic according to the other (Cokol et al., 2011).
The Saariselkä agreement, unfortunately, seem to have failed to
provide any recommendations for solving these practical issues.
What the Saariselkä agreement achieved was a compromise
for accepting individualized claims, but the ultimate aim to
advance the consensus knowledge on the degree of interaction
has remained largely missing.

To ease the model selection burden, we propose here the use
of new terminology that incorporates both of the two reference
models, together with the single drug responses, to distinguish
non-interaction, synergy and antagonism. With simple algebra,
one can show that max(y1, y2) ≤ yBLISS. For the Loewe
additivity model with a monotonically increasing dose-response
relation, one can also show that max(y1, y2) ≤ yLOEWE. We
note that, max(y1, y2) is also the expected response from a
popular referencemodel, called highest single agent (HSA)model
(Berenbaum, 1989). If the combination response yc is lower
than max(y1, y2), then one would intuitively infer antagonism.
Therefore, we may use max(y1, y2), to distinguish antagonism
from non-interaction. Similarly, one can use the response of the
less effective single drug, that is min(y1, y2), to further distinguish
between weak and strong antagonisms. For distinguishing
synergy from non-interaction the answer is less obvious, as it
depends on the comparison between yBLISS and yLOEWE. There
has been considerable interest in the mathematical relationships
between the Bliss independence and the Loewe additivity models
to understand how much difference in the characterization of
drug interaction one can expect when choosing one model
over another (see e.g., Goldoni and Johansson, 2007). In
particular, two authors of the Saariselkä agreement have reported
results from such comparisons (Drescher and Boedeker, 1995;
Dressler et al., 1999). They showed that yLOEWE > yBLISS is
generally observed for very steep dose-response curves, while
yLOEWE < yBLISS when the curves become more flat. Since,
yBLISS and yLOEWE differ in a complex way depending on the
parameterization of the dose-response functions, we propose
two cut-offs, min(yBLISS, yLOEWE) and max(yBLISS, yLOEWE), for
characterizing synergistic combinations. We reason that the
consistency between the Bliss independence and the Loewe
additivity models should be indicative of the degree of synergy:
If both the Bliss model and the Loewe model classify a drug
combination as synergistic, that is, yc > max(yBLISS, yLOEWE),
then we call it a strong synergy; If the combination is
classified as synergistic according to one model only, that is,
min(yBLISS, yLOEWE) < yc < max(yBLISS, yLOEWE), then it
is called weak synergy. Finally, non-interacting drugs have
max(y1, y2) < yc < min(yBLISS, yLOEWE), reflecting our

view that non-interaction should also be defined similarly
as a range, rather than a single point as in the individual
reference models. Given such a classification, one may continue
to develop statistical testing methods for evaluation of its
significance for replicate data. To facilitate better understanding
of these definitions, we designed an interaction barometer
that enables a systematic comparison of these proposed
interaction terms along an axis of drug combination response yc
(Figure 1).

The benefits of adopting the proposed terminology for the
degree of interaction are two-fold. First, the definitions of synergy
and antagonism are based on a simultaneous evaluation of the
two reference models, as well as the individual drug responses.
Such a data-driven approach avoids any pre-defined preference
either for the Bliss independence or Loewe additivity when
characterizing drug interactions, and thus it minimizes the biases
toward either of the models. This is consistent with the idea that
any synergy model should be treated as an exploratory ranking
statistic for prioritization of the most potent combinations for
further evaluation, rather than a “true model” for explaining
synergy or antagonism mechanisms. Further, this terminology
enables a more intuitive definition of non-interaction, under
which the combination response may be higher than the single
drug response, but not as high as the expected responses from the
Bliss independence and the Loewe additivity models. Note that a
drug combination falling into such an interval would be classified
as antagonistic according to both of the two models, but since
it produces a higher response than the single drugs, one would
rather characterize it as an additive effect or non-interaction. For
the sake of clarity, we would call it non-interaction, and in fact
discourage the terms additive or additivity since these may be
confused with the additivity implicated by the Loewe additivity
model. The interval of non-interaction shown in Figure 1 is
positioned at the center of the barometer as a gray zone for those
drug combinations with no clear evidence in support of either
synergy or antagonism.

Secondly, the different interaction terms are positioned along
the common response axis (e.g., measured as the percentage
inhibitions of cell growth), which makes it easier to relate
the degree of drug interaction with its outcome in the drug
response. With the proposed interaction barometer (Figure 1),
one can immediately tell the differences between the drug
combination response yc and the responses of individual
drugs (y1, y2), as well as the expected combination responses
(yBLISS, yLOEWE) based on the two reference models. The
clear correspondence between the degree of synergy and the
combination response is in many ways superior to the use
of an interaction index, such as combination index or other
similar approaches (see e.g., Lee et al., 2007; Lee, 2010), which
tend to be less obvious to interpret in terms of response
boosting. For example, a combination index of 0.1 has been
considered as a very strong synergy by Chou (2006), but how
much extra response the synergy can produce for the drug
combination is difficult to tell. In contrast, with the interaction
barometer one can easily visualize the levels of boosted
response of the combination compared to the single drugs or
reference models. From the model development perspective,
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FIGURE 1 | The proposed terminology for classifying drug interactions. Using the interaction barometer allows a direct comparison between

different drug combinations in terms of their degrees of interaction as well as their combination responses. If the observed drug combination

effect yc is lower than the maximum single drug effect max(y1, y2 ) but higher than the minimum effect min(y1, y2 ), then the combination is

called weak antagonism; if yc < min(y1, y2 ) it is called strong antagonism. To classify synergy, we consider the Bliss and Loewe models, with the

expected effects denoted as yBLISS and yLOEWE, respectively. If max(y1, y2 ) < yc < min(yBLISS, yLOEWE), then we call the combination as

non-interaction; if yHSA < yc < min(yBLISS, yLOEWE ) it is called weak synergy, and for yc > max(yBLISS, yLOEWE ) strong synergy.

the graphical representation of the competing reference models
in the interaction barometer may facilitate a more systematic
comparison among different approaches. For example, when new
reference models are introduced, one can always position its
expected combination response onto the barometer to enable
better understanding of its relationships with the existing
models.

Synergy vs. Efficacy

So far, we have merely discussed about the assessment of
drug interactions using the difference between the observed
combination response and its theoretical expectation, i.e.,
yc − yEXP, to classify a drug combination as synergistic or
antagonistic. However, a drug combination can be also classified
as either effective or ineffective based solely on its actual
combination response yc. It is important not to confuse these
two concepts, synergy and efficacy, as the nomenclatures are
related but should not be treated the same. Synergy is a measure
of the degree of drug interaction, while efficacy is a measure
of phenotypic response of a drug combination. It is possible
that a drug combination is highly synergistic, while its actual
response may be insufficient to reach therapeutic efficacy. On
the other hand, a drug combination that exhibits strong response
does not necessarily imply a synergistic interaction. For instance,
only one of its component drugs may produce the response,
while the other one is simply lowering the adverse effect of the
first drug without affecting its on-target activity. In preclinical
testing, a drug combination with strong synergy and efficacy
should be prioritized for further mechanistic investigation, with
an additional requirement of tolerable toxicity profile (Fitzgerald
et al., 2006). Accordingly, the dosages of a drug combination are
also important factor for clinical feasibility and for maintaining
acceptable side effects. For instance, the concept of therapeutic
synergy compares the therapeutic windows of the single agents to
that of their combinations, instead of using compound efficacies
alone (Kashif et al., 2014). However, the main focus of this
review was the definition of synergistic interaction, and we refer
those readers interested in the therapeutic significance of synergy

in drug discovery to previous reviews (Fitzgerald et al., 2006;
Sucher, 2014).

Conclusion

The definition of synergistic interaction is still under debate.
After a careful investigation of the Bliss independence model and
the Loewe additivity model, we argue that, without jeopardizing
the validity of both models, a more consistent terminology
for classifying synergy and antagonism can be made. By
comparing the observed combination response with the expected
combination responses from the two models, as well as the
single drug responses, one can classify the drug combination into
five categories including strong antagonism, weak antagonism,
non-interaction, weak synergy, and strong synergy. We propose
the use of the interaction barometer to visualize the degree of
interaction on the common axis of drug response, which has been
shown to facilitate the interpretation and comparison between
different combinations. We view our efforts as a continuation
to what the Saariselkä agreement started more than 20 years
ago but has not yet concluded: a consensus on concepts and
terminology for interaction assessment. We acknowledge that
our proposal is not yet solving the practical issues for analyzing
real data which typically contain combination responses tested
at different dose ranges. How to maximize the benefits of the
interaction barometer to summarize the interaction patterns
of a drug combination would be a source of future research
initiatives. We hope that such a classification scheme will raise
more discussions about the standardization of the interaction
assessment, toward finally reaching a consensus not only on the
definition itself, but also on the other important issues, such as the
experimental design of combination experiments, their quality
control and the statistical evaluation of synergy and antagonism.
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Identifying promising compounds during the early stages of drug development is a major

challenge for both academia and the pharmaceutical industry. The difficulties are even

more pronounced when we consider multi-target pharmacology, where the compounds

often target more than one protein, or multiple compounds are used together. Here,

we address this problem by using machine learning and network analysis to process

sequence and interaction data from human proteins to identify promising compounds.

We used this strategy to identify properties that make certain proteins more likely to

cause harmful effects when targeted; such proteins usually have domains commonly

found throughout the human proteome. Additionally, since currently marketed drugs hit

multiple targets simultaneously, we combined the information from individual proteins to

devise a score that quantifies the likelihood of a compound being harmful to humans.

This approach enabled us to distinguish between approved and problematic drugs with

an accuracy of 60–70%. Moreover, our approach can be applied as soon as candidate

drugs are available, as demonstrated with predictions for more than 5000 experimental

drugs. These resources are available at http://sourceforge.net/projects/psin/.

Keywords: multi-target drugs, drug safety, target validation, machine learning, protein networks, supervised

learning

Introduction

New compounds are traditionally discovered by using large biological screening techniques to
identify substances that cause the desired effects. While this approach has been effective for years
and produced the drugs used today, technological advances are shifting the drug discovery process
toward a more rational approach, with computational drug-design and pathway analysis playing
major roles. With the costs of compound design dramatically increasing and most of these funds
being spent on drugs that never make it to market (Munos, 2009; Scannell et al., 2012), there is a
clear need for new technologies to develop more specific, less toxic compounds.

Recently, in silico analyses have been successfully applied throughout the drug discovery
pipeline. Examples include methods to help understand the changes caused by candidate
compounds in protein interaction networks (Csermely et al., 2005; Yildirim et al., 2007), and
algorithms to develop specific ligands that inhibit the activity of pathogen proteins (Fleishman
et al., 2011;Whitehead et al., 2012). In addition, computational analyses in key studies have revealed
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the off-targets of drug candidates and predicted important side
effects (Keiser et al., 2007, 2009; Campillos et al., 2008; Yamanishi
et al., 2008; Liu et al., 2011; Lounkine et al., 2012). These studies
have shown that computational analyses are an essential part of
drug discovery. Yet the early identification of problematic drugs
remains a major challenge.

Here, we propose a method to distinguish between
compounds that are safe and those likely to be harmful.
For this purpose, we considered the targets of more than 1800
approved and problematic drugs (i.e., withdrawn from market,
or halted in development due to safety concerns). To study
the properties of these targets, we created a protein similarity
network (PSIN), in which the proteins are connected only if their
sequences are similar. We found that the centrality measures of
the PSIN network clearly indicated which human proteins are
likely to cause harmful effects if their activities are modulated by
drugs; our analysis suggested that ∼5000 human proteins had
characteristics that resembled those of targets of problematic
drugs. Next, by using machine learning techniques, we developed
an index (called the Rejection Score) to quantify the likelihood of
a candidate drug being problematic. Although some substances
were difficult to classify and obtained intermediate scores,
most were consistent with their status of being approved or
problematic.

Finally, based on the targets of more than 5000 experimental
substances from major databases (∼700 of which are currently
undergoing pre-clinical or clinical evaluation), we predicted
which drugs have a high likelihood of approval by regulatory
agencies. This process of validation of individual proteins
and assignment of rejection scores to candidate drugs should
improve gene target selection and candidate prioritization in
drug development.

Materials and Methods

Protein Sequence Comparison
To perform the protein sequence comparisons required to
assemble the PSIN, we used a stand-alone version of BLAST
toolkit v2.2 (Camacho et al., 2009), and the human protein
sequence database obtained from Uniprot (released in August
2012). We removed all splicing variants from this database,
leaving only the first protein isoforms. We used the PSI-
BLAST algorithm and the BLOSUM distance matrix, with a gap-
open cost value of 11, gap-extension cost of 1, and minimum
expectation value of 1e-03. We set the E-value threshold for
inclusion in the multipass model at 1e-05, and six PSI-BLAST
iterations or less (if the results converged before; i.e., no further
sequences could be discovered in the database using the profile as
the input query).

Databases
The drugs, their targets, and status (approved, withdrawn, illicit,
experimental, etc), were obtained from Drugbank (Wishart et al.,
2006), from the Therapeutic Target Database (Zhu et al., 2012),
and from ChEMBL (Gaulton et al., 2012). We merged all three
databases into one dataset, with drugs containing targets from all
three databases. While the first two databases have information

about the legal status of the compounds, ChEMBL has only an
indication of “therapeutic” or “non-therapeutic,” and whether
a therapeutic drug contains a black-box warning. Therefore, to
study the characteristics of approved and problematic drugs. we
used only the drugs for which we had legal status information
from DrugBank or TTD, and the therapeutic drugs from
ChEMBL (Supplementary Table S1).

From the ChEMBL database, we considered only proteins
targeted by a compound if they had an IC50-value < 30 nM.
Additionally, several drugs did not have targets present in the
PSIN or in the protein-protein interaction network PPI. Because
these drugs targeted proteins that were isolated from the rest
of the network, only drugs with at least one target present in
the PSIN or PPI were considered, and for drugs with multiple
targets, those targets not present in either the PSIN or the PPI
were removed before any analysis was done.

For the protein-protein interaction analysis, we used HIPPIE
(Human Protein-Protein Interaction Reference Schaefer et al.,
2012).

Assigning Drugs Approved or Problematic Labels
The legal status of the drugs from the two databases was highly
heterogeneous, containing approved drugs (those available by
prescription or over the counter), illicit, and withdrawn drugs
(those removed from the market or that had their development
halted due safety or efficacy concerns). For our study, we were
interested in understanding what distinguishes drugs successfully
used to treat patients from those causing drug attrition or
those that were withdrawn from the market due harmful effects.
Thus, we first identified drugs that were withdrawn from the
market in several countries and classified them as problematic.
Second, drugs that were discontinued during clinical trials due
to safety or efficacy issues were also considered problematic. In
contrast, we considered a drug “successful” if it was available
for purchase. Additionally, after detailed inspection of drugs
classified as “illicit” in the DrugBank database, we verified that
they were mainly used to treat psychological disorders (e.g.,
anxiety, schizophrenia, and insomnia), and had the potential
for abuse and addiction. Since these substances can be obtained
in most countries when prescribed by clinicians, we concluded
that most of them were not in fact illicit, but rather “controlled
substances,” in which case, we also considered them approved
drugs (Supplementary Table S2).

Centralities, Averages, and Relevance Measures
For each protein network, we calculated the betweenness of a
node v as:

B(v) =
∑ sij(v)

sij
, with i 6= j, v 6= i and v 6= j

where sij is the number of shortest paths between the nodes i and
j and sij (v) is the fraction of those shortest paths passing through
node v.

Burt’s Constraint was calculated as:

C(i) =
∑

j

(pij +
∑

q

piqpqj)
2
, with q 6= i, j, and j 6= i
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where piqpqj is the product between the proportional strength
of the node i’s relationship with node q, and the proportional
strength of the node q’s relationship with node j. The details
of these calculations in their original sociological context were
reported by Burt (1992, 2004).

In addition, when considering multiple targets of the same
drug, we transformed all individual PSIN network measures to
the log10 scale and then combined their centrality measures by
calculating their arithmetic means.

Implementation, Data Analysis, and
Pre-processing
The computations involving pre-processing and machine
learning classifiers were performed by using the Weka suite
for data mining (Frank et al., 2004); our code was written in
Java and all algorithms were used with their default parameters.
The Support Vector Machine was implemented using LibSVM,
with the code available at https://weka.wikispaces.com/LibSVM
(visited in August 2015).

The statistical and network analyses were performed in R.
Additionally, we used the iGraph package (Csardi and Nepusz,
2006) for the network analysis, the poweRlaw package for power-
law fits, and the ROCR (Sing et al., 2005) package to create the
ROC curves.

Pre-processing involved four steps: (1) not all proteins had
centrality values in the PPI or in the PSIN, hence, we filled
those missing values with the mean of the training and test sets
separately by using the Weka function ReplaceMissingValues; (2)
we had to over-sample the smaller class because our dataset
contained more instances from the approved class than from the
problematic class. Hence, we used the SMOTE (Chawla et al.,
2002) algorithm for this task, with an oversample proportion
of 500% and 8 nearest neighbors. We used the Tomek links
(Tomek, 1976) method to remove instances whose nearest
neighbors belonged to the opposite class. This strategy proved
very effective relative to other pre-processing alternatives to deal
with unbalanced, overlapping datasets (Batista et al., 2004). (3)
we removed the instances that were on the “border” of different
classes, i.e., instances that were the nearest neighbors of several
instances from different classes (see Figures 1, 2 of Batista et al.,
2004); and (4) we ran a preliminary cleaning step by using
Multilayer Perceptron exclusively on the training set to remove
the misclassified instances (we used the RemoveMisclassified
routine from the Weka package).

For the training and testing procedure, we removed the
drugs that targeted the same set of proteins. For example, if a
hypothetical drug in the test set targeted proteins A, B, and C,
then all other compounds in the training set that targeted A,
B, and C were discarded. Additionally, we removed ∼100 drugs
that targeted the same proteins but had conflicting classifications
(i.e., some were approved and others problematic). This ensured
that we had no redundant instances in the dataset, and that
the same targets were not simultaneously in the training and
test sets. After calculating the mean centrality measures of all
drug targets, they were scaled to the interval [0,1] by using the
R package Reshape http://had.co.nz/reshape - visited in June
2015.

Results

Network Characteristics
A protein similarity network is distinct from a protein-protein
interaction network (PPI) because in the former, neighbor
proteins do not necessarily interact or regulate each other’s
activities; instead, two proteins are connected only if their amino
acid sequences are similar. Although other protein networks
exist (Weston et al., 2004; Camoglu et al., 2006; Zhang and
Grigorov, 2006; Atkinson et al., 2009; Rattei et al., 2010;
Valavanis et al., 2010), they suffer from shortcomings such
as the use of small protein datasets, employing information
other than amino acid sequences, not being specific for human
proteins, or not using signature-based methods to assess protein
similarity. These shortcomings led us to create a network with
the characteristics required to study the properties of drug
targets. We used PSI-BLAST (Altschul et al., 1997) to query
and compare the ∼20,000 human protein sequences in the
Uniprot database. BLAST searches were not reciprocal (i.e.,
searches with “protein A” identified “protein B” as similar, but
searches with “protein B” did not necessarily identify “protein
A” as similar). Therefore, to establish a link between two
nodes (proteins) in the PSIN we considered only bidirectional
hits.

The PSIN has ∼17,000 proteins connected by ∼1,700,000
edges. The network does not have a single large component;
rather, it has more than 800 smaller connected components.
We used the degree (the number of edges—i.e., neighbors—
each node has) to quantify the connectivity of the PSIN. Its
nodes have an average of 200 connections, with the most
connected having ∼2600 neighbors. We verified that, similar
to PPI networks, the degree distribution of the PSIN also
fits in the power-law distribution, where many nodes have
a few connections and a few nodes have many connections
(Supplementary Figure 1). Nodes with up to 500 neighbors were
connected to other nodes of similar degree, and above this
point, the nodes were usually connected to those with 400–500
connections (Figure 1A).

In the PSIN, the proteins are connected to each other by
similarity of one or more shared domains. We verified that
most of the low-degree nodes and their neighbors belonged to
the same families, because these proteins had domains found
only in a few other proteins. For instance, the family of alpha-
defensin proteins, responsible for Gram-negative antibacterial
activity, formed a cluster of only five proteins connected to
each other through their exclusive and characteristic defensin
domain. In contrast, highly connected proteins had a mixture
of common and rare domains. For example, the notch1
protein has several repetitions of its 7 domains, which are
connected to 1445 proteins from more than 50 families
(Figure 1B).

In summary, the degree distribution in the PSIN resembled
the power-law, like other protein networks. Low-degree proteins
comprised rare domains and were mainly connected to members

of the same family; high-degree proteins were composed of both
rare and common domains, and were connected to members of

several different families.
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FIGURE 1 | (A) Nodes with up to ∼500 connections are neighbors of proteins with approximately the same degree. After the peak, nodes with higher degrees

are connected to other nodes with ∼400 connections. Darker tones of blue indicate a higher concentration of nodes with these degree values. (B) Depicted

are a few neighbors of notch1, their families, and domain compositions (with the shared domains boxed red). In the PSIN, notch1 is connected to members of

the Peptidase S1 family through their shared EGF domain. The proteins from the other three families are connected to each other and to notch1 by their

ankyrin domain.

Network Characteristics of Drug Targets
By using the PSIN and a PPI database, we searched for
characteristics that discriminated between the targets of
approved and problematic drugs.

We obtained all drugs and their reported targets from three
major drug-target databases (see Materials and Methods), and
merged all three databases taking into account the different
drug names and synonyms; the merged dataset contained 1802
drugs for which their legal status was available (approved,
withdraw, illicit, etc., Supplementary Table S1), and more than
5000 experimental drugs (Supplementary Table S2). Next, we
assigned a simplified class label to each of the 1802 drugs,
indicating whether the drug was considered safe and was
marketed (approved), or if it had had its development halted or
was withdrawn from the market (problematic).

We observed that the targets of approved and problematic
drugs largely overlapped (Figure 2A), and there were more
reported targets in the combined databases for the approved
drugs than for the problematic drugs (Figure 2B). This is due to
the strict requirements for drug approval by regulatory agencies,
since before going to market, companies must provide detailed
reports about modes of action, and after a compound is released,
researchers from academia often report additional targets.

For each target of the approved and problematic drugs, in
addition to the degree (the number of neighbors a protein
has in the network), we calculated their betweenness, closeness
centrality, and Burt’s constraint in the PSIN and PPI networks.
The betweenness describes how central a node is, counting the
number of shortest paths that must pass through that node to

connect the other nodes in the network. The closeness centrality
from a node measures how many steps are necessary to reach
every other node. The Burt’s constraint, was first employed
in a socio-psychological context, where the author studied the
location of individuals in a large social network and quantified
which individuals are in a position of advantage, located between
groups, and have access to information and resources from
different environments (Burt, 1992, 2004) (Figure 2C).

Compared with proteins targeted by the approved drugs, those
targeted by problematic compounds had a significantly higher
degree in both networks, andmuch lower closeness centrality and
Burt’s constraint values (Figure 3; for each centrality measure,
One-Way ANOVA, p < 0.0001, followed by Tukey’s HSD
test; Supplementary Figure 2). In contrast, we observed no
significant differences in the betweenness values of proteins
targeted by problematic and those targeted by approved drugs
in the PSIN or in the PPI network. These findings indicate that
while targets of approved drugs have protein domains that are
not shared among many other proteins and are involved in fewer
interactions, targets of problematic drugs have domains that are
more common throughout the proteome and have more protein
interactions reported.

Figure 3 suggests that proteins targeted by approved
compounds and problematic compounds have characteristics
similar to problematic targets. This finding could shed light
on why some drugs are approved, while others are rejected,
even though they target the same protein. For example, VEGF
receptors, which are involved in blood vessel growth, are popular
anti-cancer targets. Usually, the drugs targeting these receptors
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FIGURE 2 | (A) Although most targets of approved drugs are exclusive, the problematic targets are almost entirely covered by the approved category. Between

parentheses are the number of singleton proteins in the PSIN. (B) Approved and problematic drugs have different numbers of reported targets. While most

problematic drugs have only one target reported, approved drugs have several—identified either by the community after the drug is marketed or by companies as part

of the drug-approval process. (C) The Burt’s constraint was proposed in a sociological context to study positions of advantage for individuals in a group. In this simple

example, if the nodes are individuals, on the left no node can negotiate or bargain with the others, since they all have alternative connections. However, on the right, if

a structural hole exists, Node 1 is in a better position, since the other two nodes may not be aware of each other’s existence;hence, Node 1 is less “constrained” than

the other two. In a protein similarity context, proteins with low constraint values are generally those with several common domains, located between different protein

families. In contrast, proteins with large constraint values are the peripheral nodes, with a few domains shared among only a few other proteins.

FIGURE 3 | (A–D) In general, targets of problematic drugs have high degrees and closeness centralities in the PSIN and PPI networks. However, their betweenness

values are not significantly different from the targets of approved drugs in either protein network (One-Way ANOVA, ***p << 0.0001 and *p > 0.05, sample sizes for

each group are the same as depicted in Figure 2A). The closeness from the targets of both networks was close to two main values, differing by only decimal digits;

therefore, we rounded the values to their closest integer, namely 17 or 19 in the PSIN and 14 or 18 in the PPI. While three PSIN centrality measures were found to be

strong indicators of the differences between targets of problematic and approved drugs, the centrality measures of the PPI network could also detect these

differences, albeit in a moderate fashion (Tukey’s Honest Significance Difference—Supplementary Figure 2). Overall, this likely stems from the fact that the current

PPIs still have only ∼10,000 proteins and numerous false-positive interactions; with new proteins and high-quality interactions being constantly added, we expect this

to change in the future.

cause major side effects (Roodhart et al., 2008) including
hypertension, coagulation disorders, and neurotoxicity. We
found that the three VEGF receptors had characteristics
similar to other targets of problematic drugs, suggesting that
compounds that target proteins with these characteristics will
either be unapproved or, if approved, will likely cause harmful
effects.

Next, we asked how many proteins share the characteristics of
the approved and problematic targets. We observed that ∼65%
of problematic drug-targets had a degree value > 110 and a
Burt’s constraint <0.025, whereas only ∼22% of approved drug-
targets had these characteristics. In the PPI,∼62% of problematic
targets had a degree value >11 and a Burt’s constraint <0.1,
compared with ∼33% of approved drug-targets with these
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characteristics. In general, these values are ones that show
the highest separation between the targets of problematic and
approved drugs (Supplementary Figure 3). When we consider
the centrality measures separately, in the PSIN, ∼7600 proteins
had degree and Burt’s constraint values similar to those of
problematic targets, and in the PPI, ∼4600 had degree and
constraint values similar to other proteins of the problematic
group. When we consider the characteristics of both networks
together, ∼1200 proteins had measures that closely resembled
those of problematic drug targets. Notably, this group has
several popular targets of anticancer drugs, including almost all
members of the cyclin-dependent kinase family, aurora kinases,
and Pim/PLK serine threonine kinases. We then attempted to
verify whether compounds targeted neighbor proteins in the
PSIN. We built a contingency table counting the number of
compounds that targeted neighbor proteins and the number of
compounds that did not target neighbor proteins in the PSIN and
tested its statistical significance by using Fisher’s exact test. We
obtained a p > 0.05, confirming that compounds often target
proteins with no detectable sequence similarity (Keiser et al.,
2007; Apsel et al., 2008; Yamanishi et al., 2008).

Taken together, our results indicate that the centrality
measures calculated from the PSIN (and to a lesser extent from
the PPI) can be used to distinguish between individual targets of
approved and problematic drugs. These characteristics define the
“danger zone” for therapeutic modulation, that is, they serve as
indictors that modulating the activity of these proteins may be
harmful to human health.

Classifying Multi-target Drugs
Since drug targets of approved and problematic drugs could
be distinguished individually, we asked whether evaluating the
characteristics of all proteins targeted by a compound would help
to predict the compound’s safety and consequently, its approval
or rejection. For classification and prediction tasks, supervised
learning algorithms use a training set with examples assigned
to different classes, and after a training phase, these algorithms
attempt to predict the classes of instances they have not seen
before. In our case, our training set comprised drugs, their
targets, and their status (approved or problematic).

We built a dataset by calculating the centrality measures
used above for each target of each drug; however, since
most drugs have multiple targets, we combined the centrality
measures of these targets using the means of their individual
measures (see Materials and Methods). Overall, our dataset
comprised 1802 drugs: 1445 approved and 357 problematic
(Supplementary Table S1). As in most real-life scenarios, this
dataset is characterized by the imbalance between the number of
approved vs. problematic drugs–a characteristic that is notably
difficult for machine learning algorithms (Batista et al., 2004).
Therefore, we pre-processed the dataset to increase the sensitivity
of the classifiers to the characteristics of the problematic class
(see Materials and Methods), and for the classification routine,
we compared the performance of 14 machine learning classifiers,
namely KStar (Cleary and Trigg, 1995), Naive Bayes (John and
Langley, 1995), J48 (Quinlan, 1993), Thresold Selector (Witten
et al., 2011), Multilayer Perceptron (MLP)(Bishop, 1995), JRip

(Cohen, 1995), IB1 (Aha et al., 1991), PART (Frank and Witten,
1998), END (Dong et al., 2005), Random Tree (Breiman, 2001),
Rotation Forest (Rodríguez and Kuncheva, 2006), Random
Forest (Breiman, 2001), Decorate (Melville and Mooney, 2003),
and Support Vector Machines (SVM)(Cortes and Vapnik, 1995).

We asked how the classifiers perform if we use only
the centrality measures from the PSIN, from the PPI, or a
combination of both. We divided the input dataset into 70%
of instances for training and 30% for prediction, with no
overlapping drugs between them. Drugs that bind the same set
of protein targets were removed to prevent obvious redundancies
during classifier evaluation (see Materials and Methods). This
procedure was repeated 100 times to quantify the prediction
accuracy for each set of centrality measures. We then verified
that although the topological characteristics of the PPI network
could moderately distinguish between individual approved and
problematic drugs, the predictive power of the machine learning
algorithms was highest when using only the centrality measures
of the PSIN network (Supplementary Figure 4), therefore, for
subsequent analyses we used only the PSIN.

After close inspection of the drug-targets dataset, we realized
that confounding factors of the drug-binding protein data might
affect classifier performance (e.g., differing numbers of binding
partners per drug, missing drug-targets in the protein networks).
Therefore, we designed three tests to determine whether the PSIN
data could enhance classifier performance over the performance
obtained when only these confounding factors were considered.
In the first test, we shuffled the class-labels (i.e., approved and
problematic labels and the targets of all drugs—always keeping
the same proportions as the original datasets—and compared
them to the performances obtained when using the standard
dataset, by using the 70%–30% division for training and testing
sets, respectively. We verified that while most classifiers had an
area under the ROC curve (AUC) close to 0.7 when trained to
the complete dataset, the classifiers generally performed close
to random guessing (AUC∼0.5) when trained using random
datasets (p < 0.01, comparing the AUCs of each classifier,
Wilcoxon two-sided signed-rank test).

In the second test, we developed a more stringent procedure
wherein we created 40 randomized datasets also by shuffling
the labels of the proteins in the PSIN, but here, for each
single cross-validation, we first randomly split the standard
dataset (i.e., that derived from the PSIN) into the 70%–30%
training–test sets and determined the AUC. Next, we took
each of the 40 randomized datasets and carefully divided
them into training and testing data, making sure that we
selected the same drugs that were used for training and
testing with the standard data, and calculated the AUC.
The 40 AUCs from the randomized data represented our
null distribution, that is, the expected AUC achieved when
drugs can bind any proteins. From this null distribution,
we determined the likelihood that the AUC achieved by the
standard data happened by chance, by comparing all runs of
the randomized data to the standard dataset, and we verified
that the overall classification procedure had better performance
than random datasets in more than 88% of all comparisons
(Supplementary Figure 5).
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In the final test, we shuffled only the PSIN protein
labels, removing the class distinctions discussed in Figure 3,
while keeping the same network topology distributions (i.e.,
the power-law degree distribution). Again, we divided the
dataset into 70%–30% for training and testing, respectively,
repeating this procedure 100 times, and compared the results
to the standard dataset. We observed that the classifiers
performed considerably better than all of the shuffled networks
(Supplementary Figure 6).

Together, these results demonstrate that the PSIN and
the machine learning classifiers can overcome the effects of
confounding factors, and distinguish multi-target problematic
and approved drugs based solely on the network characteristics
of their targets. Some of the algorithms outputted only
binary classifications (END, Random Tree, SVM), or had the
same underlying base classifier (J48); therefore, for further
classifications, we used three algorithms (KStar, MLP, and
Rotation forest) that were built using different underlying
principles and outputted a probability that a drug belonged to
the problematic class. This approach should compensate for any
inevitable biases that all algorithms have.

Predicting Drug Safety
After analyzing the capabilities of the classifiers, we used them
as a prediction tool for new multi-target drugs. For fairness,
all previous tests to study the characteristics of the classifiers
had been performed without parameter or dataset optimization.
However, to use as a prediction tool, it is desirable to fine-tuned
the input dataset and include only the most meaningful examples
in the training set.

While the approved drugs are generally compounds approved
by regulatory agencies and successfully commercialized, the
problematic drugs were deemed problematic for one or more
of 10 different reasons (Supplementary Table S3). We wanted to
test whether individually removing each of these 10 reasons from
the input set would improve the classification.

For this purpose, we created 10 different datasets containing
all of the approved and problematic drugs except those in each
of the 10 groups that led to the drug failure. Each of these 10
datasets was then randomly divided into training and test sets by
using the 70%–30% proportion, and the AUC of the classification
was calculated. This procedure was repeated 100 times and
our results showed that removal of one group of problematic
drugs (those deemed “withdrawn”) considerably improved the
classification (p < 0.001, One-Way ANOVA, followed by Tukey’s
HSD test). Most likely, these compounds targeted proteins
that were also targeted by approved drugs, but—in contrast to
approved drugs—had harmful effects. Thus, by removing these
drugs from the dataset, we removed a confounding factor and
consequently reduced the false positives and increased the overall
drug classification.

Next, from the complete dataset (with 1802 drugs), we selected
one drug at a time and used the drugs from the optimized
dataset as a training set. Importantly, we also removed from
the training set any drug that targeted the same proteins
as the drug being evaluated (the predictions are available in
Supplementary Table S4).

We found that the classification of existing and experimental
drugs into two classes (i.e., approved and problematic) could be
over-simplistic; for drug development, it is more informative to
quantify how likely a compound is to cause harm (Evans et al.,
2009). Therefore, we created an index, which we named the
“Rejection Score” (RS), by using the average of the probabilities
calculated by use of the three chosen classifiers. We used this
index to indicate whether a compound was predicted to be safe
(RS close to 0.0) or more likely to be toxic (RS close to 1.0).

We found that 55% of approved drugs had a RS < 0.02
(Figure 4A, Table 1); yet, only 23% of problematic drugs had RSs
close to 0.02. Conversely, 23% of approved drugs and 61% of
problematic compounds had RSs greater than 0.9. Beyond this
point, we observe a sharp increase in the number of problematic
drugs and a slow increase in the number of approved drugs;
hence, drugs with RSs of 0.9–0.95 could be considered “high-
risk” compounds that are likely to cause strong side effects
(nonetheless, their use may be warranted to treat life-threatening
diseases). It is important to note that these cut-offs are arbitrary
and may vary depending on the risk that is deemed acceptable.
Moreover, given that drugs have distinct numbers of targets,
we tested the rejection score and observed that it moderately
correlated with its number of targets (Supplementary Figure 7).

Next, we asked whether the Rejection Scores reflected the
known adverse reactions of marketed drugs. To answer this
question, we analyzed the labels and package inserts of 245 drugs
obtained from the SIDER database (Kuhn et al., 2010). We chose
drugs with RSs covering the full range of predicted scores (i.e.,
from 0.0 to 1.0); for all selected drugs, we listed the indicated
precautions, contraindications, adverse reactions, warnings, and
where available, boxed warnings (Supplementary Table S5).

Several drugs with an RS of 0.9–1.0 had associated warnings
and cautions regarding the risk of severe reactions, for example,
beta-blocker drugs (Pirbuterol, Atenolol, Alvimopan), which
can cause life-threatening reactions including heart failure,
bradycardia, and angina. The side effects of beta-blockers have
been known for decades (Frishman, 1988), and the high RSs of
these drugs likely stem from the fact that their target proteins
(Beta-1 and Beta-2 adrenergic receptors) have characteristics
similar to those of other problematic drug targets, namely a
high-degree (500+), and a low Burt’s constraint (<0.006).

At the other end of the scale, we found that drugs with
RSs of 0.0–0.2 and of 0.2–0.4 have been commercially available
for years; an example is Bumetanide (RS 0.26), a diuretic that
may cause profound water loss and electrolyte depletion only if
used in excess. Bumetanide’s reported targets include proteins
involved in the transport of potassium, chloride, and sodium,
and these transporters have low PSIN degree values (∼24) and
high Burt’s constraints (∼0.14), which are characteristics of
proteins that are relatively isolated in the network and that are
similar to only a few others. Another example is Diazepam (RS
0.0005), a benzodiazepine broadly prescribed since 1963 to treat
anxiety and insomnia that can cause unpleasant, but manageable
side effects, such as nausea, skin rashes, and headache (Riss
et al., 2008). The targets of Diazepam, gamma-aminobutyric acid
(GABA) receptors, have low PSIN degree values (46), and a high
Burt’s constraint (0.0826), and form a cluster in which these
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FIGURE 4 | (A) The cumulative percentage of approved, experimental, and

problematic drugs, according to their rejection scores (RSs) (the complete

predictions are available in Supplementary Tables S3, S4). (B) We predicted

the status of experimental drugs from the TTD, Drugbank, and ChEMBL

databases. In general, more than half of the drugs have high rejection scores,

whereas about 20–30% have RSs that position them among the low-risk

compounds. Each chart contains the number of drugs of the respective group.

proteins connect to each other and to a few other GABA receptor
subtypes.

In addition to drugs classified as approved or problematic,
we also calculated the RS of ∼5000 experimental drugs.
Experimental drugs listed in TTD and Drugbank are those
currently being evaluated in clinical and pre-clinical trials, that
have already undergone such evaluation, did not make it to

TABLE 1 | Percentage of drugs classified according to their Rejection

Score.

Rejection score Percentage of drugs (%)a

Approved Problematic

0.0004 88.9 1.96

0.0008 76.2 10.36

0.0055 53.28 19.04

0.2400 33.14 30.53

0.9291 23.73 40.05

0.9998 6.92 85.15

a In this dataset, 357 drugs were deemed “Problematic”; 1445 were deemed “Approved.”

See Supplementary Table S4 for details.

market, or are being tested for alternative indications. We also
predicted the RSs of non-therapeutic substances from ChEMBL.
The respective compounds selected from all three databases are
listed in Supplementary Table S3, and their RS predictions are
shown in Supplementary Table S6.

For experimental drugs, while more than 50% of compounds
were predicted to have high rejection scores (>0.95), only 15–
20% of compounds in clinical trials had scores similar to those
of approved drugs (Figure 4B), suggesting that only a small
number of these candidate compounds may be approved and not
cause severe side effects. These observations are consistent with
the known high attrition rates observed in the pharmaceutical
industry (Kola and Landis, 2004).

To summarize, most of our predictions seem to match the
status of marketed drugs and their reported adverse reactions,
and in general, our results show that drugs with high RSs
were more likely to be discontinued in their development or be
withdrawn from the market after commercialization.

Discussion

Here, we investigated the characteristics of proteins targeted
by approved and problematic drugs. We found that they
have distinguishing characteristics that can be readily identified
by using protein similarity and protein-protein interaction
networks. In addition, we used machine learning methods to
devise a score to quantify the risks of a drug being harmful to
human health. We used this approach to predict the safety of
several drugs and found that, for the most part, the prediction
is consistent with their status of approved or problematic.

Given the prediction accuracy of ∼70%, it is unlikely that
pharmaceutical companies would use such prediction results for
Go/No-Go decision on compounds that may be already in the
late pre-clinical or clinical stages. However, such information
may be highly valuable in creating an overall portfolio of the
candidate compounds from their very large chemical libraries. If
a pharmaceutical company uses our method to evaluate millions
of compounds and decides to moderately bias their choices
according to the ratings presented here, the long-term outcome
may be very different. This will be increasingly important
when assessing the suitability of multiple-target drugs—i.e., it
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is essential to efficiently identify combinations of targets and
compounds that are both safe and effective.

Interestingly, while attempting to find general properties of
individual proteins that may be associated with side effects,
we found characteristics from protein networks that clearly
distinguish between targets of approved and problematic drugs
(Figure 3). The degree, betweenness, and closeness centrality
of proteins are well known measures and are broadly used
in network studies. The Burt’s constraint is already used in
sociological studies and interestingly, revealed itself as a strong
indicator of protein druggability (Figure 3B). Together, these
network characteristics define a new axis along which drug
targets can be assessed for their viability. In addition, together
with other considerations (e.g., existence of accessible binding
pockets, and the location and time-point of expression), this
methodology can help validate safe targets whose modulation is
therapeutically relevant (Bunnage, 2011). Further, the correlation
between the RSs and the severity of the reported adverse
reactions was not perfect; some drugs with a high RS had only
mild adverse reactions, while others with low RSs had clear
warnings about their potential harm. A potential explanation
is that some drugs targeting highly connected proteins were
approved despite their known adverse reactions (e.g., anti-cancer
drugs), while relatively safe drugs may not have been developed
due to business decisions. Thus, the Rejection Score should
not be considered in isolation, but in conjunction with the
network centralities of the drug’s targets. For instance, a drug
with low RS targeting high-degree proteins suggests that this
compound is likely to cause moderate or severe side effects
but still has the potential to be approved, depending on its
indication. Conversely, if a compound has a high RS and
targets high-degree proteins, this is a strong indication that this
compound will be problematic because only a few or no other
drugs targeting proteins with similar characteristics have been
successfully commercialized.

When developing therapeutic compounds it is difficult to
assess beforehand which proteins can be targeted without
causing major side effects but still overcome cell tolerance
to perturbations (Kitano, 2007; Hopkins, 2008). Moreover,
understanding and anticipating side effects can be complex. For
instance, the weight gain, diabetes, and cardiovascular problems
experienced by patients being treated with antipsychotic drugs
have causes that remain unclear (De Hert et al., 2012),
although mounting evidence suggests that a compound’s side
effects are caused by modulation of its primary and secondary
targets (Xie et al., 2009; Correll et al., 2011; Lounkine et al.,
2012).

Some cases were difficult to classify. A notable example was
Thalidomide (RS = 0.0004), a drug used to treat morning
sickness and removed from the market after it was associated
with birth defects (Stephens et al., 2000). Due to its inhibition
of blood vessel growth (D’Amato et al., 1994), this compound
was investigated to treat cancer (Verheul et al., 1999) and
appeared to improve the survival of multiple myeloma patients
(Singhal et al., 1999). With a low RS, this drug targeted
proteins with characteristics of both approved and problematic
targets, indicating that in addition to network characteristics,

it is essential to verify that the stage of development and
the location for target inhibition is appropriate (i.e., inhibiting
angiogenesis in tumors is desirable, but during limb development
is catastrophic).

Naturally, our approach has limitations. First, there are false-
positives in both the PPI and PSIN networks. In the former,
false-positives exist mainly due different experimental setups
(Venkatesan et al., 2009), and in the latter, the algorithm used
to build the network has a statistical cut-off, which, although
strict, does not completely prevent proteins from being set as
neighbors by chance. Second, the list of targets reported for each
drug is incomplete and it varies from reporting several targets
for approved drugs, to only a few for problematic compounds.
As recently demonstrated, known drugs have multiple protein
off-targets, bound with enough specificity to interfere with their
functions (Campillos et al., 2008; Yamanishi et al., 2008; Keiser
et al., 2009; Lounkine et al., 2012). Additionally, the targets
reported in the database might show not only direct interaction,
but also indirect activation or repression. Therefore, future
studies should take into account the nature of the interaction
between the compound and the members of pathways, as well
as which isoforms of the proteins are the actual targets of
the drugs (here, as in most pathway databases and protein
networks, we considered only the first splicing variant). Another
limitation of the approach presented here is the mismatch
between the RSs of drugs and their reported adverse effects.
The reason for this mismatch is known, but its resolution is
markedly complicated. Drugs approved despite their known
severe adverse effects, as well as drugs deemed problematic for
business-related reasons, are confounding factors even for the
most sophisticated classifiers. Ideally, one would separate drugs
by indication or class, train classifiers using only the drugs
in each group, and finally check the predictions against drug
labels and the complete documentation for the drugs in the
training set. However, this is not practical at present because
no database has enough positive and negative examples from
each drug class, and only a fraction of all results and adverse
reactions observed during clinical trials are available at present
(Wieseler et al., 2013). Therefore, to benefit from the methods
presented here, it is important to always consider the RS of
drug candidates together with the centrality of the protein
targets. Nevertheless, the quality of protein networks and of
the drug-target databases is constantly improving, and despite
these limitations, the methods presented here predicted the safety
or danger of 60–70% of known drugs (Figure 4A). Moreover,
we believe that as more comprehensive post-translational and
structural information becomes available, its integration to the
PSIN will enhance its predictive capabilities, furthering our
understanding of the mechanisms of drug action and its effects
on protein structures.

Finally, our prediction that several experimental drugs may
not be approved provides evidence that the approaches presented
here can be used long before a drug reaches the end of
the development pipeline (Scannell et al., 2012); in fact, as
soon as the targets of a compound are determined, we would
recommend that that compound be subjected to the procedures
described here.
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Supplementary Figure 1 | We verified that the PSIN degree distribution

could be fitted in the power-law. The figure depicts the degree distribution

(black circles) and the curve-fit (in red), with the modifying exponent parameter

indicated in the figure. The fit is satisfactory for most nodes, but those with a

higher degree have some deviation from the fitted curve. Additionally, we can

observe the degree distribution for the HIPPIE database, and for a sequence of

15,000 random numbers chosen with replacement from the interval [1, 2000].

Supplementary Figure 2 | Tukey’s Honest Significant Difference test

indicating the differences between the groups of drug targets. APP stands

for Approved drug-targets, PRO Problematic drug-targets, and BOTH are the

proteins targeted by drugs from both groups. The sample sizes of each group are

the same as those shown in Figure 2A.

Supplementary Figure 3 | The figure shows the distribution of the degree

and the Burt’s constraint of the targets of approved and problematic

drugs. In the PSIN, the highest separation between targets of approved and

problematic drugs occurs at a degree value of 110; 75–80% of approved drug

targets have values lower than this value, whereas only 30–35% of problematic

drug targets have degree values smaller than 110. Additionally, we can observe

that the separation of targets of problematic and approved drugs is much

narrower in the PPI than in the PSIN, making it more difficult to distinguish the

potential therapeutic targets based on the centrality measures of the PPI network.

Supplementary Figure 4 | Boxplots with popular measures used to

evaluate classifiers and different datasets. We can verify that for most

measures and classifiers, the PSIN alone yields the best results.

Supplementary Figure 5 | We created randomized datasets that

maintained the dependencies between the samples by shuffling the labels

of the proteins in the PSIN and recalculating the average network

topologies for each drug to create a single randomized dataset. In total, we

created 40 randomized datasets. (A) Depicts an example, for a single

cross-validation where we randomly split the standard dataset (i.e., that derived

from the PSIN) into a training set and a test set and determined the AUC. Next, we

took each of the 40 randomized datasets, carefully split them into training and

testing data making sure we selected the same drugs that were used for training

and testing with the standard data, and calculated the AUC. The 40 AUCs from

the randomized data represent our null distribution, that is, the expected AUC

achieved when drugs can bind any proteins. From this null distribution, we

determined the likelihood that the AUC achieved by the standard data happened

by chance. Thus, the p-value for a single iteration is the fraction of AUCs from the

randomized data that was greater than or equal to the AUC achieved with the

standard data; for example, a p-value of 0.1 would indicate that in 10% of cases

the randomized data yielded an AUC equivalent to the standard run (B), Dataset

#0 is the standard run, the remaining are the randomized datasets. We then

repeated this for 120 cross-validation iterations (totaling 4920 calculations) and

calculated the average and the median p-values observed across all iterations of

the three classifiers used to formulate the Rejection Score. (C) Depicts histograms

of the p-values achieved from 120 cross-validation iterations.

Supplementary Figure 6 | Depicted are the Area Under the ROC Curves

(AUCs) where the Complete Dataset (i.e., original PSIN), is compared with

a dataset in which we kept the networks intact, but shuffled the protein

labels. We observe that most classifiers obtained higher AUCs than the shuffled

datasets, indicating that even though confounding factors (e.g., number of targets

per drug) play a role in the classification, the classifiers were still able to provide

significant added value to the overall procedure. In each panel, the groups were

compared by using the Wilcoxon two-sided signed-rank test, and in all cases,

they were distinct with p << 0.01.

Supplementary Figure 7 | We observed a negative correlation (−0.35)

between the number of targets a drug has and its rejection score (if the

number of targets was in the logarithmic scale, the correlation

was −0.51), yet, most drugs with only a few or with many targets still had

similar rejection scores. The figure also suggests that we were not capturing

the characteristics of only one or two of the databases.

Supplementary Table 1 | Drugs, targets, and their regulatory status.

Supplementary Table 2 | Experimental drugs and their targets.

Supplementary Table 3 | Criteria used for the drug categorization.

Supplementary Table 4 | Computational classification of marketed drugs.

Supplementary Table 5 | Drugs, Rejection Scores, and reported adverse

effects.

Supplementary Table 6 | Computational classification of experimental

drugs.
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