Background: Individuals with major depressive disorder (MDD) and a lifetime history of attempted suicide demonstrate lower antidepressant response rates than those without a prior suicide attempt. Identifying biomarkers of antidepressant response and lifetime history of attempted suicide may help augment pharmacotherapy selection and improve the objectivity of suicide risk assessments. Towards this goal, this study sought to use network science approaches to establish a multi-omics (genomic and metabolomic) signature of antidepressant response and lifetime history of attempted suicide in adults with MDD.
Methods: Single nucleotide variants (SNVs) which associated with suicide attempt(s) in the literature were identified and then integrated with a) p180-assayed metabolites collected prior to antidepressant pharmacotherapy and b) a binary measure of antidepressant response at 8 weeks of treatment using penalized regression-based networks in 245 ‘Pharmacogenomics Research Network Antidepressant Medication Study (PGRN-AMPS)’ and 103 ‘Combining Medications to Enhance Depression Outcomes (CO-MED)’ patients with major depressive disorder. This approach enabled characterization and comparison of biological profiles and associated antidepressant treatment outcomes of those with (N = 46) and without (N = 302) a self-reported lifetime history of suicide attempt.
Results: 351 SNVs were associated with suicide attempt(s) in the literature. Intronic SNVs in the circadian genes CLOCK and ARNTL (encoding the CLOCK:BMAL1 heterodimer) were amongst the top network analysis features to differentiate patients with and without a prior suicide attempt. CLOCK and ARNTL differed in their correlations with plasma phosphatidylcholines, kynurenine, amino acids, and carnitines between groups. CLOCK and ARNTL-associated phosphatidylcholines showed a positive correlation with antidepressant response in individuals without a prior suicide attempt which was not observed in the group with a prior suicide attempt.
Conclusion: Results provide evidence for a disturbance between CLOCK:BMAL1 circadian processes and circulating phosphatidylcholines, kynurenine, amino acids, and carnitines in individuals with MDD who have attempted suicide. This disturbance may provide mechanistic insights for differential antidepressant pharmacotherapy outcomes between patients with MDD with versus without a lifetime history of attempted suicide. Future investigations of CLOCK:BMAL1 metabolic regulation in the context of suicide attempts may help move towards biologically-augmented pharmacotherapy selection and stratification of suicide risk for subgroups of patients with MDD and a lifetime history of attempted suicide.
Acute type A aortic dissection (ATAAD) is a life-threatening disease. The understanding of its pathogenesis and treatment approaches remains unclear. In the present work, differentially expressed genes (DEGs) from two ATAAD datasets GSE52093 and GSE98770 were filtered. Transcription factor TEAD4 was predicted as a key modulator in protein-protein interaction (PPI) network. Weighted correlation network analysis (WGCNA) identified five modules in GSE52093 and four modules in GSE98770 were highly correlated with ATAAD. 71 consensus DEGs of highly correlated modules were defined and functionally annotated. L1000CDS2 was executed to predict drug for drug repositioning in ATAAD treatment. Eight compounds were filtered as potential drugs. Integrative analysis revealed the interaction network of five differentially expressed miRNA and 16 targeted DEGs. Finally, master DEGs were validated in human ATAAD samples and AD cell model in vitro. TIMP3 and SORBS1 were downregulated in ATAAD samples and AD cell model, while PRUNE2 only decreased in vitro. Calcium channel blocker and glucocorticoid receptor agonist might be potential drugs for ATAAD. The present study offers potential targets and underlying molecular mechanisms ATAAD pathogenesis, prevention and drug discovery.