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Editorial on the Research Topic
Advances in basic and applied research in photoplethysmography

Introducing photoplethysmography

Welcome to this Research Topic in Frontiers in Physiology, focusing on Advances in
Basic and Applied Research in Photoplethysmography.

Photoplethysmography (PPG) is a low-cost and simple vascular optics technique that
can be used to detect blood volume changes in the microvascular bed of tissue with each
heartbeat (Allen, 2007; Kyriacou and Allen, 2021). The popularity of this Research Topic
area can be attributed to the realization that PPG has important implications for a wide
range of applications including assessment of the cardiovascular system, monitoring of vital
signs including non-invasive estimation of blood pressure and heart rate, and the study of
pain. There is currently a large body of literature contributing new knowledge on the
relation of PPG pulse morphology, pulse wave analysis and pulse feature extraction with the
physiological status of peripheral blood vessels, such as vascular aging and stiffness, blood
pressure and compliance, microvascular disease, autonomic function, and others. There are
also significant efforts in the utilization of the PPG for the detection of heart arrhythmias
such as Atrial Fibrillation (AF). In addition, the recent significant contributions of PPG to
wearable devices have had a major impact on the popularity and usability of PPG.
Researchers continue to strive to combine the PPG sensory capabilities of wearables,
such as smartwatches, with Artificial Intelligence (AI) machine learning approaches to
deliver ubiquitous health monitoring solutions that go beyond currently available consumer
devices. PPG and AI have a bright future together for the benefit of patients.

The aim of this Research Topic for Frontiers in Physiology is to bring together the latest
cutting-edge basic and applied research in the field of Photoplethysmography. Our Research
Topic comes from world-leading authors in the field and showcases 16 original research
papers covering a diverse range of contributions in PPG measurement and analysis.

OPEN ACCESS

EDITED AND REVIEWED BY

Raimond L. Winslow,
Northeastern University, United States

*CORRESPONDENCE

John Allen,
ad5325@coventry.ac.uk

RECEIVED 09 April 2024
ACCEPTED 17 April 2024
PUBLISHED 16 May 2024

CITATION

Allen J and Kyriacou PA (2024), Editorial:
Advances in basic and applied research
in photoplethysmography.
Front. Physiol. 15:1415049.
doi: 10.3389/fphys.2024.1415049

COPYRIGHT

© 2024 Allen and Kyriacou. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Editorial
PUBLISHED 16 May 2024
DOI 10.3389/fphys.2024.1415049

5

https://www.frontiersin.org/articles/10.3389/fphys.2024.1415049/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1415049/full
https://www.frontiersin.org/articles/10.3389/fphys.2024.1415049/full
https://orcid.org/0000-0002-7263-0533
https://orcid.org/0000-0002-2868-485X
https://www.frontiersin.org/researchtopic/35155
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2024.1415049&domain=pdf&date_stamp=2024-05-16
mailto:ad5325@coventry.ac.uk
mailto:ad5325@coventry.ac.uk
https://doi.org/10.3389/fphys.2024.1415049
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2024.1415049


Summary of published papers in this
Research Topic

Cardiovascular disease continues to be the leading cause of death
globally - this is one of the very important areas where PPG has
considerable potential to help impact the burden of disease by
allowing us to better understand vascular aging and enable low-
cost, accessible monitoring of cardiovascular status. Djurić et al. in
“Using the photoplethysmography method to monitor age-related
changes in the cardiovascular system” collected single-site PPG
measurements from above the left common carotid artery in
117 healthy adult participants (up to 70 years of age) and
analyzed the data using a non-linear technique (detrended
fluctuation analysis, DFA) to produce a ratio of scalar coefficients
that were found to decrease exponentially with age–giving a
biomarker for monitoring aging. Age-related changes in PPG
shape have also been reported in the literature including the
classification of the pulse into one of four classes based on the
position of the dicrotic notch (Dawber et al., 1973). Zanelli et al. in
“Clustered photoplethysmogram pulse wave shapes and their
associations with clinical data” noted however that when working
with real data, labeling waveforms into one of these four classes is no
longer straightforward, but correct identification of the PPG shape
could improve the precision and reliability of extracted biomarkers.
Using a PPG dataset from 300 subjects (aged 19–83 years) the
authors employed unsupervised machine learning and deep
learning approaches to overcome the limitations of data labeling
(including K-medoids-based clustering, a similarity matrix
computed with Derivative Dynamic Time Warping, and PPG
features extracted with CNN AutoEncoder). The results indicated
that PPG waveforms do differ due to their dicrotic notch
characteristics. However, there are additional differences such as
the width of the systolic peak and the strength of a secondary systolic
wave and by investigating the optimal number of clusters they found
seven clusters of PPG wave shapes instead of the aforementioned
four classes.

PPG provides a valuable way to study the dynamics of the
cardiovascular system and key physiological variables such as blood
pressure (BP) and heart rate (HR). Xing et al. in “Temporal
complexity in photoplethysmography and its influence on blood
pressure” used the Higuchi fractal dimension (HFD) and the
autocorrelation function (ACF) to assess the temporal complexity
of the PPG and interpreted the stochastic patterns with a model-
based simulation which has the potential to help optimize BP
estimation algorithms. The authors adapted the classic four-
element Windkessel model to incorporate BP-dependent
compliance profiles and simulations generated PPG responses at
various time scales. Importantly, the relationship between
complexity and hemodynamics predicted by their model aligned
well with the experimental analysis of data collected from 40 healthy
subjects. HFD and ACF had significant contributions to BP and
displayed stability even in the presence of high cardiac output
fluctuations. Temporal complexity patterns are essential for
single-site PPG-based BP estimation and understanding the
physiological implications of these patterns may aid in the
development of such algorithms. A study of cardiovascular
variability was also reported by Mejía-Mejía and Kyriacou with
“Spectral analysis for pulse rate variability assessment from simulated

photoplethysmographic signals”. Pulse rate variability (PRV) has
been used as a surrogate for heart rate variability (HRV,
measured via ECG) although it has been shown that there are
differences that may result from physiological processes or from
technical aspects of extracting PRV from PPG. The researchers
extracted frequency-domain information from PRV in order to
establish the best-performing combination of parameters and
algorithms to obtain the spectral representation of PRV. They
found that with specific interpolation methods, the Fast Fourier
Transform (FFT) and multiple signal classification (PMUSIC)
algorithms gave the best results, and considering the lower
complexity of FFT over PMUSIC, it was recommended that FFT
be considered as the appropriate technique to extract frequency-
domain information from PRV signals.

The use of PPG for clinical monitoring was also covered in
several leading-edge contributions. Stockwell et al. in “Forehead
monitoring of heart rate in neonatal intensive care” described
pioneering R&D in PPG sensor development for heart rate
monitoring in critically unwell infants, with reflection mode
measurements advantageously made at the forehead site rather
than peripherally on a limb. They reported data comparing heart
rates measured with a forehead-based PPG sensor against a wrist-
based PPG sensor in 19 critically unwell infants in neonatal intensive
care collecting 198 h of data, with good agreement between
techniques (Bland-Altman limits of agreement of 8.44 bpm,
bias −0.22 bpm) showing that the forehead is a reliable
alternative location for measuring vital signs using the PPG.
Roldan et al. in “Non-invasive monitoring of intracranial pressure
changes: healthy volunteers study” aimed to evaluate the possible
association between pulsatile near-infrared spectroscopic waveform
features at the forehead and induced changes in intracranial pressure
(ICP) in healthy volunteers. The authors reported data from
16 healthy volunteers with measurements acquired during
changes in body position and during the Valsalva maneuver. The
classification model features were extracted and an analysis was
carried out to compare the two signals. The results revealed
significant differences in the features extracted from these signals,
demonstrating a correlation with ICP changes induced by position
changes and the Valsalva maneuver. The classification models were
able to identify changes in ICP using features from optical signals
from the brain, with sensitivities ranging from 63% to 80% and
specificities ranging from 60% to 70%; this work represents a first
step toward non-invasive monitoring of intracranial pressure. Pettit
et al. in “Photoplethysmogram beat detection using Symmetric
Projection Attractor Reconstruction” presented a novel method
that uses the Symmetric Projection Attractor Reconstruction
(SPAR) method to generate an attractor in two-dimensional
phase space from the PPG signal. A line was defined through the
origin of this phase space as a Poincaré section, and beats were
detected when the attractor trajectory crossed an optimally defined
section. The method was assessed on the Wearable Stress and Affect
Detection (WESAD) dataset and achieved median F1 scores of 74.
3% in the Baseline phase, 63.0% during Stress, 93.6% during
Amusement, and 97.7% during Meditation phases, comparable to
one of the best algorithms identified in a recent benchmarking study
of 15 beat detection algorithms. Iqbal et al. in “Deep learning
classification of systemic sclerosis from multi-site
photoplethysmography signals” described a pilot study assessing a
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novel approach to identify patients with the autoimmune connective
tissue disease systemic sclerosis (SSc) using deep learning analysis of
RGB scalograms of multi-site PPG waveforms (Figure 1 shows
examples of multi-site PPG amplitude variability with illustrative
analysis approach). Two different convolutional neural networks
(CNNs, namely, GoogLeNet and EfficientNetB0) were trained and
evaluated, with EfficientNetB0 showing overall better performance
(87.3% accuracy) compared to GoogLeNet (83.1%) - both CNNs
were superior to traditional ML methods.

A number of works in this Research Topic focused on non-
invasive blood pressure (BP) measurement: “Intensive care
photoplethysmogram datasets and machine-learning for blood
pressure estimation: Generalization not guaranteed” (Weber-
Boisvert et al.) studied the differences between the MIMIC
waveform dataset and the PPG-BP dataset (an alternative public
dataset obtained under controlled experimental conditions) and
suggested that BP estimation models based on the MIMIC
dataset have reduced predictive power in the general population;
“The identification of blood pressure variation with hypovolemia
based on the volume compensation method” (Chen et al.) studied the
blood pressure variation, which is important in continuous blood
pressure monitoring, especially in the case of low blood volume, and
which is critical for survival; “Towards continuous non-invasive
blood pressure measurements—interpretation of the vasculature
response to cuff inflation” (Loureiro et al.) investigated BP
surrogates (e.g., pulse transit or arrival time) and the results
provide promising directions to improve the calibration process
with cuff inflation toward accurate and robust non-invasive blood
pressure estimation; “Filtering-induced changes of pulse transmit
time across different ages: a neglected concern in

photoplethysmography-based cuffless blood pressure measurement”
(Liao et al.) showed that filtering-induced PTT changes are
significantly influenced by age and PTT definition. These factors
deserve further consideration to improve the accuracy of PPG-based
cuffless blood pressure measurement using wearable sensors.

Several studies in this Research Topic addressed pain and its
objective assessment: “Induced pain affects auricular and body
biosignals: From cold stressor to deep breathing” (Rapalis et al.)
examined targeted biofeedback parameters to close the loop in active
pain therapy via auricular vagus nerve stimulation - personalizing pain
therapy and increasing patient compliance; “Photoplethysmography
upon cold stress—impact of measurement site and acquisition mode”
(Fleischhauer et al.) systematically investigated the impact of the cold
pressor test (CPT), i.e., a painful stimulus, on the morphology of PPG
signals in 39 healthy volunteers and compared contact PPG recorded at
the finger/earlobe with non-contact PPG (imaging PPG, iPPG)
recorded at the face. The authors’ findings underlined the
importance of the recording setup and physiological in addition to
metrological differences related to the measurement protocol;
“Morphological features of the photoplethysmographic signal: a new
approach to characterize the microcirculatory response to
photobiomodulation” (Ovadia-Blechman et al.) indicated that post-
acquisition analysis of morphological features of the PPG waveform
can provide new measures for investigating the microcirculatory
response to photobiomodulation such as in the study of peripheral
vasodilation, wound healing and pain; “Contactless
photoplethysmography for assessment of small fiber neuropathy”
(Marcinkevics et al.) also considered pain caused by small fiber
neuropathy, seeking to develop objective non-invasive assessment
methods. The team developed a modular prototype of a contactless

FIGURE 1
Advanced PPG sensing and analysis can give exciting new ways in to assess cardiovascular patients - including the study of vascular dynamics and
signal variability (Kyriacou and Allen, 2021). For example, with AI, time-frequency image representations from combined resting and reactive hyperaemia
PPG signals can be assessed using a pre-trained convolutional neural network (CNN) image classification system (Iqbal et al.).
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(imaging) photoplethysmography system with three spectral bands
(420, 540, and 800 nm) to assess peripheral neuropathy patients via
a topical skin heating test and spectral analysis of cutaneous flow
motion in 30 subjects, with results showing that neuropathic patients
had a significantly lower vasomotor response (50%), flare area (63%),
flare intensity index (19%), and neurogenic component (54%) of
cutaneous flow motion compared to the control group, independent
of photoplethysmography spectral band. iPPG has potential as a cost-
effective alternative for the objective and non-invasive assessment of
neuropathic patients, but further research is needed to enhance PPG
signal quality and establish diagnostic criteria.

Concluding remarks

We, the Editors, hope that this Research Topic will provide you
with a deeper appreciation and understanding of PPG technology and
its wide range of applications in clinical physiological measurement.We
also hope that this Research Topic will help spark fresh ideas and new
research collaborations across disciplines, including with biomedical
engineering, and scientific and clinical colleagues. With the current
trends in PPG-based technologies, sensing and analysis techniques, and
clinical applications we can predict with great confidence that PPG will
continue to grow and enable the development of further disruptive
technologies for use in healthcare and well-being applications.
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Spectral analysis for pulse rate
variability assessment from
simulated
photoplethysmographic signals

Elisa Mejía-Mejía* and Panicos A. Kyriacou

Research Centre for Biomedical Engineering, City, University of London, London, United Kingdom

Introduction: Pulse rate variability (PRV) refers to the changes in pulse rate

through time and is extracted from pulsatile signals such as the

photoplethysmogram (PPG). Although PRV has been used as a surrogate of

heart rate variability (HRV), which is measured from the electrocardiogram

(ECG), these variables have been shown to have differences, and it has been

hypothesised that these differences may arise from technical aspects that may

affect the reliable extraction of PRV from PPG signals. Moreover, there are no

guidelines for the extraction of PRV information from pulsatile signals.

Aim: In this study, the extraction of frequency-domain information from PRV

was studied, in order to establish the best performing combination of

parameters and algorithms to obtain the spectral representation of PRV.

Methods: PPG signals with varying and known PRV content were simulated, and

PRV information was extracted from these signals. Several spectral analysis

techniques with different parameters were applied, and absolute, relative and

centroid-related frequency-domain indices extracted from each combination.

Indices from extracted and known PRV were compared using factorial analyses

and Kruskal-Wallis tests to determine which spectral analysis technique gave

the best performing results.

Results: It was found that using fast Fourier transform and the multiple signal

classification (PMUSIC) algorithms gave the best results, combined with cubic

spline interpolation and a frequency resolution of 0.0078 Hz for the former; and

a linear interpolation with a frequency resolution as low as 1.22 × 10−4, as well as

applying a fifth order model, for the latter.

Discussion: Considering the lower complexity of FFT over PMUSIC, FFT should

be considered as the appropriate technique to extract frequency-domain

information from PRV signals.

KEYWORDS

photoplethysmography, pulse rate variability, spectral analysis, fast Fourier analysis,
simulation
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Introduction

Pulse rate variability (PRV) describes the changes in pulse

rate (PR) through time when it is measured from pulsatile signals

such as the photoplethysmogram (PPG) (Mejía-Mejía et al.,

2020). PRV has been proposed as an alternative to heart rate

variability (HRV), which refers to the changes in heart rate (HR)

through time, and is obtained from electrocardiograms (ECG)

(Task Force of the European Society of Cardiology and The

North American Society of Pacing and Electrophysiology, 1996;

Schäfer and Vagedes, 2013; Mejía-Mejía et al., 2020). PRV has

become more popular recently, mainly due to the widespread use

of PPG sensors in wearable devices, and to the non-invasive, cost-

effective and non-intrusive nature of acquiring PPGs (Kyriacou,

2021).

PRV and HRV originate from the same physiological

process, i.e., the autonomic regulation performed on the sino-

atrial node, which controls the pumping rate of the heart

(Rangayyan, 2002; Shaffer and Ginsberg, 2017). In fact, HR

and PR have been shown to be good surrogates (Schäfer and

Vagedes, 2013). However, the relationship between HRV and

PRV is not entirely understood, and although they show similar

trends, there is evidence of differences between these two

variables, especially when measured from non-healthy, non-

resting or elderly subjects (Schäfer and Vagedes, 2013; Mejía-

Mejía et al., 2020).

Two hypotheses have been proposed to explain these

differences. Some authors argue that the differences between

HRV and PRV are mainly explained by physiological aspects. It

has been observed that stress and diseases affect PRV in a

different way than HRV (Giardino et al., 2002; Charlot et al.,

2009; Khandoker et al., 2011; Mejía-Mejía et al., 2021), whereas

other aspects such as pulse transit time, external forces on the

arteries and the different nature of ECG and PPG have also been

proposed as physiological differences that may explain the

dissimilarity between HRV and PRV (Gil et al., 2010;

Trajkovic et al., 2011; Chen et al., 2015). These and the fact

that PRV has been observed in the absence of HRV (Constant

et al., 1999; Pellegrino et al., 2014) suggest that there are different

processes affecting PRV that are not related to HRV.

An alternative hypothesis is that the agreement between

HRV and PRV is affected by technical aspects when PRV is

extracted from pulsatile signals (Posada-Quintero et al., 2013;

Hemon and Phillips, 2016; Choi and Shin, 2017; Béres et al.,

2019; Mejía-Mejía et al., 2022). This is a particularly crucial issue,

considering that there are no published guidelines for the

extraction of PRV from pulse waves and the standardisation

of the related analyses. Therefore, most methodologies for PRV

studies are based on the guidelines for HRV assessment from

ECG signals (Task Force of the European Society of Cardiology

and The North American Society of Pacing and

Electrophysiology, 1996). Moreover, most studies performed

to understand the effects of technical aspects on PRV are

based on the comparison between PRV and HRV, which

might introduce further biases since PRV is affected

differently to HRV by certain physiological processes.

Most studies related with PRV have been based on the

extraction of frequency-domain indices, due to their known

relationship with sympathetic and parasympathetic activity

(Shaffer and Ginsberg, 2017; Mejía-Mejía et al., 2020).

However, there is a lack of understanding of how different

spectral analysis techniques can affect the obtained results,

although it is known that classical and modern approaches for

spectral analysis deliver different results and can be affected by

several parameters, such as sampling rate, the number of data

points used for computing the spectra and the order of the model

(Semmlow and Griffel, 2014). Moreover, interbeat intervals are

not evenly sampled, which implies that the trends need to be

interpolated in order to have an evenly-sampled time-series to

which classical and modern methods can be applied to (Clifford,

2006). However, the effects of this interpolation on the measured

spectra and the related indices is not clear, and there is no

standard approach to apply this interpolation to the data. The

aim of this study was then to determine the best combination of

parameters for the extraction of frequency-domain indices from

PRV, in a first attempt to establish guidelines for the extraction of

frequency-domain information from PRV trends. In this first

study, this was done using PRV trends extracted from simulated

PPG signals with simulated PRV information, which was

considered as gold standard. The main advantages of using

simulated signals were 1) the availability of larger amounts

and more heterogeneous data, and 2) the comparison of

obtained results to a known gold standard rather than HRV,

which could introduce additional errors and physiologically-

induced differences.

Materials and methods

The aim of this study was to determine the best combination

of parameters for the extraction of frequency-domain indices

from PRV, considering PPG signals simulated with a properly

selected sampling rate and applying the best performing

combination of inter-beat intervals (IBIs) detection algorithm

and fiducial points (Mejía-Mejía et al., 2022). The simulation and

processing of photoplethysmographic signals was performed in

MATLAB (version 2020b), while statistical analyses were done in

RStudio (version 1.4.1717).

Signal simulation

PPG signals were simulated using the model described by

Mejía-Mejía et al. (2022). This model is based on the work

proposed by Tang et al. (2020b) and Tang et al. (2020a),

where each cardiac cycle is simulated using the sum of two
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Gaussian functions, with parameters set to simulate excellent and

acceptable quality PPG signals. The resulting model for a single

PPG cycle is shown in Eq. 1, where θ corresponds to the four

quadrant inverse tangent of the cosine and sine functions of the

duration of the cycle; ai, b, and μi correspond to the height, width

and mean values of the Gaussian function; and r is a parameter

that can be selected to control the relationship of the amplitudes

of both Gaussians. This is the main parameter that differentiates

between excellent and acceptable quality PPG cycles, and

determines the amplitude of the dicrotic notch. In this study,

two groups of PPG signals with different values for the r

parameter were simulated. Excellent quality PPG signals were

simulated with ratios of r = 2, while acceptable quality PPG

signals were considered as those with r = 4. Figure 1 shows the

base cardiac cycles used for the simulation of excellent and

acceptable quality signals.

z � a(e
− θ−μ1( )2

2b2
1 ) + 1

r
a(e

− θ−μ2( )2
2b2
2 ) (1)

The simulated cardiac cycles were then appended to create a PPG

signal with a determined length. The duration of each of the cardiac

cycles, i.e., the width of the summation of the Gaussians, was

modified in order to include PRV information on the PPG signal.

The duration of cardiac cycles was randomly generated by simulating

PRV information as a sum of sinusoidal waves with parameters that

fall inside plausible physiological values for PRV. The ranges for these

parameters are shown in Table 1. It is worth mentioning that this is

not the only possible way to generate PRV information, and other

models could modify the behaviour of the obtained signal.

The resulting function for the randomly generated PRV

information is shown in Eq. 2. As can be seen, a total of four

sinusoidal waves are summed, each of them with different

fundamental frequencies, two for each of the main frequency

bands in PRV analysis (LF(i) and HF(i)). This was done to

increase the variability of the frequency spectrum and to alter the

area of each of the frequency bands.

PRV � PR + SD∑
2

i�1
sin 2πLF i( )t( ) + sin 2πHF i( )t( )( ) (2)

For this study, a total of 200 excellent quality and

200 acceptable quality PPG signals were simulated, each with

1,200 cardiac cycles and a sampling rate of 256 Hz. An example

of these signals is shown in Figure 2.

FIGURE 1
Photoplethysmographic cardiac cycles generated using the proposed mode, using ratios of value (A) r = 2 (excellent quality), and (B) r = 4
(acceptable quality). The blue and orange dotted lines illustrate the two Gaussian functions generated, while the black continuous line shows the
result of summing these two Gaussian functions, i.e., z.

TABLE 1 Ranges for the Pulse Rate Variability (PRV) parameters and the
generation of PRV gold standard values.

Parameter Range Units

Low frequency peak location (LF) 0.04–0.15 Hz

High frequency peak location (HF) 0.15–0.40 Hz

Average pulse rate (PR) 40–200 Beats per minute (bpm)

Standard deviation of pulse rate (SD) 0.05–0.08 s
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Inter-beat intervals

The cardiac cycles were detected from the simulated signals using

the algorithm described by Elgendi et al. ()elg2013, denoted as

D2Max, which has been shown to have a good performance for

PRV analysis (Mejía-Mejía et al., 2022). This algorithm is based on

the generation of blocks of interests based on two moving averages,

which are designed based on the expected duration of cardiac cycles

and the a point in the second derivative of the PPG signal. The

location of the systolic peak from the PPG signal is determined as the

location of the maximum point in each block of interest.

IBIs were then measured as the time difference between

consecutive a points detected from each of the identified cardiac

cycles. IBIs longer than 1.25 times the median duration of all the IBIs

were corrected by looking for additional cardiac cycles in each of

these longer windows. IBIs shorter than 0.75 times the median

duration of IBIs were also detected and discarded.

Spectral analysis

Several methodologies for spectral analysis were applied to

the extracted IBIs. Fast Fourier transform (FFT) and Welch’s

power spectral density (PWELCH) were used as classical

methods. For PWELCH, a Hamming window and a 50%

overlap between consecutive segments was considered. Yule-

Walker’s (PYULEAR), Burg’s (PBURG), covariance (PCOV),

and modified covariance (PMCOV) autoregressive models

were used to obtain model based methods, as well as the

multiple signal classification (PMUSIC) algorithm was used to

obtain a pseudo-spectrum. Finally, the Lomb-Scargle algorithm

(PLOMB) was also applied. In the case of classical and model-

based algorithms, the parameters presented in Table 2 were

optimized.

From the different combinations of parameters and the different

methods for spectral analysis, PRV frequency domain indices were

FIGURE 2
Example of photoplethysmographic (PPG) signals simulated using the proposed model and randomly generated pulse rate variability (PRV)
information. (A) PPG signal with excellent quality (r = 2). (B) PPG signal with acceptable quality (r = 4). (C) PRV information used for the generation of
these signals.

Frontiers in Physiology frontiersin.org04

Mejía-Mejía and Kyriacou 10.3389/fphys.2022.966130

12

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.966130


extracted. The indices considered in this studywere: The power of the

very low frequency band (VLF); the absolute and relative power of

the low frequency band (LF and nLF); the absolute and relative power

of the high frequency band (HF and nHF); the total power of the

spectrum between 0.0033 and 0.4 Hz (TP); the ratio between LF and

HF (LF/HF); and the coordinates of the centroid of LF, HF and TP

(cLFx, cLFy, cHFx, cHFy, cTPx and cTPy).

These indices were also extracted from the power spectra

obtained from the simulated gold standard PRV signals. These

were calculated using FFT with 216 number of points (nFFT).

Table 3 summarises the PRV indices extracted from gold

standard PRV.

Statistical analysis

Factorial analyses were performed for each independent

spectral analysis method. This was done in order to evaluate

the effects of interaction among the studied factors, i.e., type of

interpolation used (A), the number of data points used for

obtaining the spectrum (B), the sampling rate used for

interpolation (C), and the order of the model (D). The

difference between the indices extracted from measured and

gold standard PRV trends were obtained. These differences

were then used for the statistical analysis, in which

independent factorial analysis were first performed in order to

obtain the combination of factors that gave the lowest differences

when spectra was obtained using each of the different methods,

except for the Lomb-Scargle periodogram, in which no

parameters needed to be modified. Then, the best

combination of factors was identified for each of the methods

and these were compared using a Kruskal-Wallis test, since data

did not follow a normal distribution according to the Lilliefors

test of normality of data. Using Wilcoxon rank sum tests with

Bonferroni correction, post hoc analyses were performed for the

indices in which the Kruskal-Wallis analysis showed statistically

significant differences among methods. The best combination of

method, interpolation technique, frequency resolution and

model order was then identified. Since data did not comply

with ANOVA assumptions for factorial analyses, Box-Cox

transformations were applied for the statistical analyses.

Cross-correlation and Pearson (XC Pearson) and Spearman

(XC Spearman) correlation analyses were used to compare the

frequency spectra obtained from measured and gold-standard

PRV. This was done to assess the similarity among spectra

extracted with the different combinations of parameters and

with the different methods. The cross-correlation was

characterized using the maximum value of cross-correlation

found (XC max), and the lag at which this maximum

occurred (XC lags). A similar process with factorial analyses

was performed with these indices, considering that a maximal

cross-correlation was desired.

Results

As explained, a factorial analysis was performed for each

independent spectral analysis method. This was done in order to

evaluate the effects of interaction among the studied factors,

i.e., type of interpolation used (A), the number of data points

used for obtaining the spectrum, which relates to the frequency

resolution (B), the sampling rate used for interpolation (C), and

the order of the model (D, for model-based approaches). The

TABLE 2 Combinations of parameters used for the extraction of frequency spectra from pulse rate variability trends. Frequency resolution: number of samples
used to calculate spectrum (nFFT) divided by the sampling rate of the signal.

Methods Interpolation Frequency Resolution (Hz) Order

Technique Sampling rate (Hz)

Classical Linear or cubic spline 4, 8, 16, 32, 64, 128, 256 0.01, 0.001, 0.0001 —

Model-based Linear or cubic spline 4, 8, 16, 32, 64, 128, 256 Hz 0.01, 0.001, 0.0001 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

TABLE 3Mean and standard deviation (SD) values for PRV indices extracted
from gold standard PRV.

Index Mean ± SD

VLF (ms2) 0.0555 ± 0.1430

LF (ms2) 1.9781 ± 0.3495

HF (ms2) 2.0024 ± 0.3639

TP (ms2) 4.0360 ± 0.6787

nLF 0.4925 ± 0.0489

nHF 0.4941 ± 0.0333

LF/HF 1.0078 ± 0.1833

cLFx (Hz) 0.0948 ± 0.0235

cLFy(ms2) 0.3501 ± 0.0803

cHFx (Hz) 0.2686 ± 0.0463

cHFy(ms2) 0.3313 ± 0.0864

cTPx (Hz) 0.1799 ± 0.0273

cTPy(ms2) 0.3410 ± 0.0445
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behaviour of indices extracted from excellent and acceptable PPG

signals was generally very similar.

In the case of FFT, the interaction between the three factors

(A × B × C) was significant for TP and XC lags, whereas it was

significant for HF, XC lags and XC Spearman. For both methods,

the interaction between the number of data points and sampling

rate used for interpolation (B × C) was the most significant,

whereas the interactions between the type of interpolation and

the other two factors were non-significant in most cases.

Centroid related indices were the less affected by the different

factors, showing significance on factor A only for cHFy when

measured using FFT and PWELCH, and on factor B for cLFy
when measured using PWELCH.

In the case of modern methods the behaviour was not as

clear, since each method showed different significant

interactions. In the case of PYULEAR and PMUSIC, the

interactions between the type of interpolation used, the

number of data points and the order of the model (A × B ×

D), as well as the interactions between the type of interpolation,

the sampling rate used and the order of the model (A × C × D)

were significant in the majority of the indices, while for PBURG,

PCOV, and PMCOV the maximum level of significance for most

of the indices was with two-factor interactions.

The best combination of factors that gave the lowest

difference for the measurement of each of the PRV indices, as

well as those that delivered maximal cross-correlation to gold-

standard spectra were determined for each of the methods that

allowed the selection of parameters, both for excellent and

acceptable quality PPG signals. Once the best combinations

were identified for each of the methods, these and the results

obtained using the Lomb-Scargle periodogram were compared

using a Kruskal-Wallis one-way analysis of variance for each

index. Tables 4, 5 summarize these results for PRV obtained from

excellent and acceptable quality PPG signals, respectively.

Figures 3–6 show the mean and standard deviation of the

differences of frequency-domain indices obtained between gold-

standard and measured PRV trends, considering the best

combinations of factors for each spectral analysis method, and

Figure 7 summarizes the correlation results after comparing

gold-standard and measured PRV spectra. The best spectral

analysis should have minimal differences to gold-standard

results, while achieving maximal correlation results.

It can be observed that the classical method with better

performance was FFT, while MUSIC showed the best

performance among modern methods. Both for excellent and

acceptable quality PPG signals, PMUSIC was the best performing

TABLE 4 Summary of results obtained from the Kruskal-Wallis one-way analysis of variance and post hoc comparisons for pulse rate variability obtained from
excellent quality PPG signals. ×: Significant differences. —: Non-significant differences.

Index Best results Significant differences

FFT PWELCH PYULEAR PBURG PCOV PMCOV PMUSIC PLOMB

VLF PMUSIC — — — — — — — ×

LF PWELCH — — × × × × × ×

HF FFT — × × × × × × ×

TP FFT — × × × × × × ×

nLF PMUSIC × × — × × × — ×

nHF PMUSIC × × × × × × — ×

LF/HF PMUSIC × × × × × × — ×

cLFx PMUSIC — — — — — — — —

cLFy PCOV × × — — — — — ×

cHFx PMUSIC — — — — — — — -—

cHFy PYULEAR × × — × — — — ×

cTPx PMUSIC × × — — — — — ×

cTPy PMUSIC × × — — — — — ×

XC lags PMUSIC × × × × × × — ×

XC max PLOMB × × × × × × × —

Spearman PCOV × × — — — — — —

Pearson PWELCH × — — — — — × —
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method for 9 and 8 of 17 indices, respectively. In terms of

classical methods, FFT showed better behaviour than

PWELCH. Also, it was found that the Lomb-Scargle

periodogram did not show good reliability for the extraction

of frequency-domain indices. Both for excellent and acceptable

quality PPG signals, the FFT showed better performances when

obtained after applying a cubic spline interpolation and

resampling PRV trends to 4 Hz, while an optimal number of

samples for measuring the spectrum was 512, which gave a

frequency resolution of 0.0078 Hz. In the case of the MUSIC

method, resampling PRV trends to 4 Hz using linear

interpolation and using a fifth order model gave the best

results both for excellent and acceptable quality signals. For

excellent quality PPG signals, a resolution frequency of

0.0078 Hz was also found to perform the best, although for

acceptable quality PPG signals a number of samples that gave

best results increased to 32,768, for a resolution frequency of

1.2207 × 10–4 Hz. Figure 8 exemplifies the behaviour of spectra

obtained using these spectral analysis techniques and the

corresponding parameters. Since FFT algorithm and

application is less complex than PMUSIC, and there were not

many significant differences between the best combinations of

these two methods, applying FFT with the recommended

parameters was found to be the best option for PRV spectral

analysis.

Discussion

Frequency-domain indices are probably the most used HRV

and PRV features since their relationship with specific processes

related to autonomic regulation have been shown in the literature

(Task Force of the European Society of Cardiology and The

North American Society of Pacing and Electrophysiology, 1996;

Billman, 2013; Shaffer and Ginsberg, 2017). However, at least for

PRV analysis, there is no consensus regarding how frequency

spectra should be derived from PRV time-domain trends, and

very little research has been done concerning this issue.

As is mentioned in the guidelines for HRV analysis, the

power spectral density (PSD) from HRV can be obtained using

non-parametric (classical, such as FFT) and parametric

(modern) methods (Task Force of the European Society of

Cardiology and The North American Society of Pacing and

Electrophysiology, 1996). However, there are multiple

algorithms and parameters that can be modified in order to

calculate this PSD both from HRV and PRV trends. Also,

TABLE 5 Summary of results obtained from the Kruskal-Wallis one-way analysis of variance and post hoc comparisons for pulse rate variability obtained from
acceptable quality PPG signals. ×: Significant differences. —: Non-significant differences.

Index Best results Significant differences

FFT PWELCH PYULEAR PBURG PCOV PMCOV PMUSIC PLOMB

VLF PMUSIC — — — — — — — ×

LF PWELCH — — × × × × × ×

HF FFT — × × × × × × ×

TP FFT — × × × × × × ×

nLF PMUSIC × × — × × × — ×

nHF PMUSIC × × × × × × — ×

LF/HF PMUSIC × × × × × × — ×

cLFx PMUSIC — — — — — — — —

cLFy PBURG × × — — — — — ×

cHFx PBURG — — — — — — — —

cHFy PYULEAR × — — — — — — ×

cTPx PMUSIC × × — — — — — ×

cTPy PMUSIC × × — × × × — ×

XC lags PMUSIC × × × × × × — ×

XC max PLOMB × × × × × × × —

Spearman PCOV × × — — — — — —

Pearson PWELCH × — — — — — × —
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FIGURE 3
Mean and standard deviations of the differences obtained by comparing pulse rate variability absolute power frequency-domain indices
obtained from extracted and gold-standard trends.
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FIGURE 4
Mean and standard deviations of the differences obtained by comparing pulse rate variability relative power frequency-domain indices obtained
from extracted and gold-standard trends.
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FIGURE 5
Mean and standard deviations of the differences obtained by comparing pulse rate variability x-coordinates of centroid-related frequency-
domain indices obtained from extracted and gold-standard trends.
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FIGURE 6
Mean and standard deviations of the differences obtained by comparing pulse rate variability y-coordinates of centroid-related frequency-
domain indices obtained from extracted and gold-standard trends.
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FIGURE 7
Mean and standard deviations of the correlation results obtained by comparing pulse rate variability spectra obtained from extracted and gold-
standard trends.
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research related to the optimisation of these parameters and their

suitability to obtain frequency domain indices from PRV is

scarce, hence reinforcing the need for such research (Li et al.,

2019). provided a useful summary of the different methodologies

used for spectral analysis from HRV trends. In the case of PRV

(Akar et al., 2013), applied several pre-processing techniques for

the extraction of PRV indices from PPG signals, and compared

the spectra obtained using the periodogram, Welch’s and Burg’s

algorithms. Although qualitative, their results showed differences

in the extracted spectra due to the methods used for its extraction

(Chen et al., 2018). evaluated the differences between frequency-

domain indices extracted from PRV trends re-sampled using

different sampling rates, concluding that, from data obtained

from wearable devices, better results were obtained using a 1 Hz

re-sampling rate for interpolating pulse rate information and

extracting frequency-related information. Other studies have also

suggested the extraction of frequency-related indices using novel

time-frequency techniques, such as empirical mode

decomposition (Abeysekera and Jaisankar, 2015; Chuang

et al., 2015). In this study, the aim was to determine the best

parameters for the extraction of spectral information from PRV

trends. It was found that the morphology of the spectra, assessed

by measuring cross-correlation indices between spectra obtained

from gold-standard and measured PRV trends, is affected, in

most cases, by all the factors considered for obtaining the PSD

and their interaction. However, PRV indices did not show this

behaviour. In the case of classical spectral analysis, indices were

mostly affected by the number of data points and the sampling

rate used for interpolation before extracting PSD. Both these

factors are related to the frequency resolution of the obtained

spectra, which was shown to be a critical factor for the assessment

of frequency-related information regardless of the algorithm

used for obtaining the spectra. The comparison of the

behaviour of indices extracted using different modern

methods is less straightforward, indicating the variability

among the mathematical foundations for each of these

algorithms. In the case of Yule-Walker and MUSIC

algorithms, three-way interactions including the type of

interpolation used and the order of the model showed

significant behaviour, while for the remaining methods two-

way interactions showed the most significant results.

It is noticeable that, in the case of centroid-related indices,

there were more significant interactions for indices related to the

y-coordinate, particularly for the centroid of the high-frequency

band. This could be indicating that the different methods for

assessing PRV frequency-content tend to be relatively stable for

the distribution of the frequency content, but there are

differences in terms of the amplitude of the spectra. Hence,

additional care should be taken when amplitude-related indices

are of interest. Also of interest is the fact that the Lomb-Scargle

algorithm did not show a better performance than the other

methods studied. This algorithm is based on probability

distributions and does not require a periodically-sampled

signal (Clifford, 2006). However, its lower performance might

be related precisely to the unpredictability of PRV trends, and the

largely variable parameters used for the simulation of PRV

information.

In general, it was found that MUSIC and FFT had the best

behaviour both for excellent and acceptable quality PPG signals.

In the case of MUSIC, the best behaviour was found when PRV

trends were resampled to 4 Hz using linear interpolation and

when a fifth order model was used, both for excellent and

acceptable quality PPG signals, with frequency resolution of

0.0078 and 0.000122 Hz respectively. In the case of FFT, the

FIGURE 8
Example of spectra obtained from gold standard PRV (black), FFT (blue) and PMUSIC (red), both from excellent and acceptable quality PPG
signals.
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best results regardless of quality of the signal were obtained after

applying a cubic spline interpolation to obtain a 4-Hz PRV trend,

and calculating the spectrum with 512 data points, for a

frequency resolution of 0.0078 Hz. Given the simplicity of

FFT, the computational load it has, and the easiness to

perform it in any platform, including embedded systems, it is

recommended to obtain spectral information from PRV trends

using this algorithm and these combination of parameters.

It is important to remark that the gold standard

measurements were extracted using FFT, hence a bias could

be present due to this. Non-etheless, the fact that the MUSIC

algorithm also showed a good performance, and that Welch’s

periodogram showed comparable results to FFT, indicate that the

results obtained are reliable. Moreover, the improved results

obtained using these algorithms can be explained from their

theoretical principles. The MUSIC algorithm, which is based on

the identification of eigenvalues and eigenvectors from a signal,

has been shown to be a high-resolution method particularly

suitable for analysing time series that are a sum of sinusoidal

waves, such as PRV, contaminated with Gaussian noise

(Fernando et al., 2003; Castanié, 2011). In the case of FFT,

this is the most direct and efficient digital implementation of

the Fourier transform, and hence is a suitable tool for the spectral

analysis of sine wave signals (Castanié, 2011; Semmlow and

Griffel, 2014). Also, when FFT is compared to other classical

methods, it has a higher resolution than other alternatives such as

Welch’s method (Semmlow and Griffel, 2014). In general, both

MUSIC and FFT could be expected to perform well when the

input signal exhibits a sine-like behaviour and when higher

resolution is required to observe the behaviour of the signal at

lower frequencies, as is the case of PRV.

This study has some limitations. Firstly, simulated PPG signals

with simulated PRV information were used in this study. This was

done with two main purposes. It is simpler to obtain larger number

of samples using simulated data, which gives statistical validity to the

experiment. The sample size for this study was estimated to observe

differences of 2% in the measurement of the indices, compared to

the gold standard. Also, by simulating PRV information it was

possible to obtain a gold standard that was not HRV information

obtained from the ECG. As mentioned, physiological aspects may

explain part of the differences between HRV and PRV, hence

comparing them in order to establish methodologies and

strategies for obtaining PRV information is not ideal. Regardless

of the benefits of using simulated signals, thesemay not represent the

entire variation of the PPG morphology, and the results from these

experiments need to be validated using real PPG data. The

simulation of PRV information may also affect the results

obtained. However, PRV was simulated using physiologically

feasible values, which may introduce larger variability of the PRV

but also simulate PRV information that could be obtained from

most of the healthy population. Future studies should optimise the

PRV model to have a better reflection of real PRV information,

applying alternative models such as the integral pulse frequency

modulationmodel (Candia-Rivera et al., 2021) or dynamical models

such as the one proposed by McSharry et al. (2003). Secondly, the

signals simulated were noiseless. This was done to have a controlled

way to modify the parameters, but the effect of noise in these results

need to be considered in future studies. Also, the agreement between

indices was not assessed. Future studies should investigate not only

the significance of the difference but also determine how the indices

agree using techniques such as Bland-Altman analysis. Finally, the

gold standard indices used in this study were extracted from PRV

trends using FFT, which could have had a bias on the results.

However, this was considered the optimal solution given the

response of FFT compared to the rest of the algorithms.

Conclusion

The relationship between PRV and HRV is not straightforward,

both due to physiological differences and to effects of technical

aspects on the extraction of PRV information from pulsatile

signals such as the PPG. The latter has not been thoroughly

studied and there is no consensus regarding the methodologies

for the extraction of PRV. In this study, a first approach for

determining the best combination of factors for the extraction of

frequency-domain indices from PRV information from simulated

PPG signals was presented. It was found that spectral analysis of PRV

information should be performed applying FFT and MUSIC

algorithms, each of them with specific parameters for the selection

of frequency resolution and interpolation of data. Future studies

should aim to validate these results using real data and to evaluate

how other technical aspects, such as the length of the recording and

the presence of noise may affect frequency-domain analysis

from PRV.
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Pain affects every fifth adult worldwide and is a significant health problem. From
a physiological perspective, pain is a protective reaction that restricts physical
functions and causes responses in physiological systems. These responses are
accessible for evaluation via recorded biosignals and can be favorably used as
feedback in active pain therapy via auricular vagus nerve stimulation (aVNS). The
aim of this study is to assess the significance of diverse parameters of biosignals
with respect to their deflection from cold stressor to deep breathing and their
suitability for use as biofeedback in aVNS stimulator. Seventy-eight volunteers
participated in two cold pressors and one deep breathing test. Three targeted
physiological parameters (RR interval of electrocardiogram, cardiac deflection
magnitude ZAC of ear impedance signal, and cardiac deflectionmagnitude PPGAC of
finger photoplethysmogram) and two reference parameters (systolic and diastolic
blood pressures BPS and BPD) were derived and monitored. The results show that
the cold water decreases the medians of targeted parameters (by 5.6, 9.3%, and
8.0% of RR, ZAC, and PPGAC, respectively) and increases the medians of reference
parameters (by 7.1% and 6.1% of BPS and BPD, respectively), with opposite changes
in deep breathing. Increasing pain level from relatively mild to moderate/strong
with cold stressor varies the medians of targeted and reference parameters in the
range from 0.5% to 6.0% (e.g., 2.9% for RR, ZAC and 6.0% for BPD). The physiological
footprints of painful cold stressor and relaxing deep breathing were shown for
auricular and non-auricular biosignals. The investigated targeted parameters can
be used as biofeedback to close the loop in aVNS to personalize the pain therapy
and increase its compliance.

KEYWORDS

auricular bioimpedance, auricular vagus nerve stimulation, blood pressure, cold pressor
test, deep breathing, physiological biofeedback, photoplethysmography

1 Introduction

Acute or chronic pain is one of the main complaints for seeking medical care. According to
the International Association for the Study of Pain, pain is defined as “unpleasant sensory and
emotional experience associated with, or resembling that associated with, actual or potential
tissue damage” Raja et al. (2020). Pain is a protective reaction restricting physical functions
with various physiological parameters, such as heart rate, respiratory rate, and arterial blood
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pressure, which are potential indicators of pain intensity Arbour et al.
(2014); Cowen et al. (2015); Peters and Schmidt (1991). The specific
changes can be observed by the reactivity and reflexivity of the
autonomic nervous, cardiovascular, and respirator systems Kyle and
McNeil (2014).

Adults and children suffer the pain associated with different
medical conditions, undergo different painful procedures, or
are referred with acute pain to the emergency department
Dahlhamer et al. (2018); Keating and Smith (2011);Mura et al. (2017);
Othow et al. (2022). Data suggest that 7 out of 10 patients come to the
emergency department due to pain Todd et al. (2007). Meanwhile,
chronic pain affects about 20.5% of adults in the United States
Yong et al. (2022) and about 10%–30% in Europe Breivik et al. (2006);
Reid et al. (2011). The meta-analysis showed that the prevalence of
chronic pain ranges between 0% and 24% globally Mansfield et al.
(2016).

Different medications, such as non-steroidal anti-inflammatory
drugs, opioids, or others, are used daily against pain. Despite various
painmedications and strategies, pain treatment faces many adversities
Fishman (2007), such as severe side effects, the use of illicit drugs,
opioid crisis St. Marie and Broglio (2020), peptic ulcers Tai and
McAlindon (2021), and others. All the more, pain management is
a fundamental human right Enright and Goucke (2016); Fishman
(2007).

Vagal nerve stimulation (VNS)—as a pain neuromodulation
technique, as reviewed in Kaniusas et al. (2019a)—has been
investigated in humans and animals. VNS can affect the autonomic
nervous system and is an approved treatment for pharmacoresistant
depression and drug-resistant epilepsy Nemeroff et al. (2006);
O’Reardon et al. (2006). Non-invasive transcutaneous modalities of
VNS emerge Busch et al. (2013); Nesbitt et al. (2015), such as the
electrical stimulation of the external surface of the ear innervated by
the afferent auricular branch of the vagus nerve, known as auricular
vagus nerve stimulation (aVNS). aVNS is performed using miniature
electrodes tightly fixed inside the auricular concha. The current
intensity is individually adjusted at the beginning of the aVNS session
to a level without evoking pain. However, the initial personalization
of the intensity of current alone does not ensure adequate vagus nerve
stimulation for the relatively long treatment duration (from days to
weeks).Here habituation effects, varying physiology, and deterioration
of the electrode-tissue interface contribute to this uncertainty in the
treatment Bouton (2017); Kaniusas (2019); Kaniusas et al. (2019b).
Therefore, aVNS can be hypothesized to avoid under- or over-
stimulation, reduce side effects, and save stimulation energy when
based on individual physiological biofeedback.

Biofeedback can be assessed using data from internal (in-the-
ear) and external (outside-the-ear) sensors, i.e., auricular and non-
auricular biosignals. However, it is not known which biosignals and
extracted parameters help estimate the balance between the stimulated
parasympathetic system and the complementary sympathetic system,
which is generally predominant in chronic ailments such as pain. In
the ideal case, this balance should be provided to the aVNS stimulator
to avoid the disadvantages of the non-personalized aVNS. Thus, easy-
to-access biosignals are of high interest which could estimate this
balance in favor of the efficiency of aVNS therapy.

The present study proposes a cold stressor as a sympathetically
driven stimulus (usually accompanied by acute pain) and deep
breathing as a mainly parasympathetically driven stimulus (with
relaxing effects) to manipulate the sympathovagal balance from

sympathetic to parasympathetic dominance while recording a set of
auricular and non-auricular biosignals. The aim of this study is to
assess the significance of diverse parameters of biosignals with respect
to their deflection from cold stressor to deep breathing and their
suitability for use as biofeedback in aVNS stimulator.

2 Materials and methods

2.1 Study population and data acquisition

Seventy-eight healthy volunteers (36women), 32.6± 10.7 years old
(range 20–64 years, with 23 men and 19 women <30 years), with a
height of 1.76 ± 0.1 m, a weight of 75.0 ± 13.6 kg, and a body mass
index of 24.1 ± 3.7 kg/m2 participated in the study. All participants
met the following criteria: 1) age ≥18 years; 2) no chronic pain; 3)
no documented cardiovascular, respiratory, diabetes, and depression
diseases; 4) no medication with b-blockers or calcium channel
antagonists; and 5) no pregnancy or breastfeeding. Participants were
instructed to avoid taking painkillers or anti-inflammatory drugs for
at least 24 h and activities that could affect the cardiovascular system
(smoking, coffee, alcohol, physical activity,medication, etc.) for at least
4 h before the study.

Data collection took place indoors at the Biomedical Engineering
Institute (Kaunas, Lithuania) in a quiet and temperature-controlled
(24.0°C ± 1.0°C) laboratory at the same time of the day (08:00–13:00)
tominimize the circadian influence. Four synchronous biosignalswere
recorded in the study, as illustrated in Figure 1: 1) a modified bipolar
three-lead electrocardiogram (ECG) signal (sampling rate 2 kHz); 2)
a red wavelength finger photoplethysmogram (PPG) signal (sampling
rate 1 kHz) using a proprietary multimodal signals recording system
Nautilus II (Biomedical Engineering Institute, Kaunas, Lithuania);
3) an ear impedance signal (at the frequency of 12.5 kHz, sampling
rate 1 kHz) using the data acquisition system Biopac MP150 (Biopac
Systems Inc., Aero Camino, Goleta, CA, United States); and 4)
arterial blood pressure signal (sampling rate 100 Hz) using the non-
invasive arterial blood pressure monitoring system CNAP Monitor
500 (CNSystems, Graz, Austria). The subjective/perceived pain was
recorded by a volunteer self-report (announced verbally and aloud to
an experimenter) using the numerical rating scale NRS (range 0–100,
with 0 for no pain and 100 for unbearable pain) at least every 30 s (or
even more often based on a volunteer’s initiative).

Well-known and effective pain-causing (the cold pressor test) and
relaxation (deep breathing) tests were used in the study. Namely, the
study protocol consisted of eight phases, as depicted in Figure 2A:
1) the first rest phase (Rest #1) lasting 10 min in the sitting position;
2) the warm water for 1 min (equalization phase), in which the
participant immersed his left hand into warm water (32.0°C ± 0.1°C);
3) the first cold water phase (CPT #1), in which the participant
immersed his left hand into cold water (7.0°C ± 0.1°C) for 2 min or
even shorter if the volunteer felt very uncomfortable and voluntarily
resumed; 4) the second rest phase (Rest #2) for 5 min where the
participant took his left hand out from cold water and rested in the
sitting position; 5) the second cold water phase (CPT #2), in which
the participant immersed his left hand into a little less cold water
(10.0°C ± 0.1°C) for 2 min or even shorter if the volunteer felt very
uncomfortable and voluntarily resumed; 6) the third rest phase (Rest
#3) for 10 min in analogy with Rest #2; 7) the deep breathing phase
(DB) for 1 min with the paced breathing rate 6 1/min (paced via a
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FIGURE 1
Placement of all sensors and electrodes for the recording of electrocardiogram ECG(t), pulse plethysmogram PPG(t), auricular impedance Z(t), and blood
pressure BP(t) signals.

monitor and a bar rising/falling periodically every 10 s); 8) the fourth
rest phase (Rest #4) for 5 min in analogy with Rest #2. Participants
were verbally instructed to immerse their left hand (up to the middle
of the forearm) in warm or cold water, indicate their subjective pain
level (in cold water), and take out their hand after 1 min in warm and
2 min in cold water.

The study was conducted following the ethical principles of
the Declaration of Helsinki and with ethics approval from the
Kaunas Region Biomedical Research Ethics Committee (No. BE-
2-24), including informed consent and voluntary participation.
Personal information was removed from the collected data to ensure
participants’ anonymity.

2.2 Signal processing and parameters
extraction

ECG was filtered using zero-phase Butterworth high-pass and
low-pass filters (cut-off frequencies 0.5 and 35 Hz, respectively),
R waves were detected using the modified Tompkins algorithm
Hamilton and Tompkins (1986), and RR was estimated as the time
interval between the successive R peaks. The ear impedance signal
reflects local changes in the blood perfusion and blood vessel size,
accounting for the local changes in capacitance and resistance. The
impedance signal is morphologically similar to PPG so that both
PPG and Z were filtered using high-pass and low-pass zero-phase
Butterworth filters (cut-off frequencies 0.5 and 10 Hz, respectively).
The associated peak and valley fiducial points in PPG, Z, and BP
signals were detected in line with the detected R waves of ECG.
Five parameters were extracted out of the four recorded biosignals
(Figure 3): 1) time interval RR between R peaks of ECG; 2) cardiac
deflection magnitude PPGAC of PPG; 3) cardiac deflection magnitude
ZAC of ear impedance signal; 4) systolic blood pressure BPS; and 5)
diastolic blood pressure BPD. Please note that the analyzed PPGAC

is mainly related to the pulsatile arterial blood, proportional to the
local systolic-diastolic deflection of the blood pressure and the arterial
compliance of the vascular wall Kaniusas (2015).

The entire periods of stimulation phases CPT #1, CPT #2,
and DB were included in the analysis, only the last 4 min of rest
phases Rest #1, Rest #2, and Rest #3 were included to avoid the
transient influence of the preceding phase (Figure 2B). The medians
of evaluated parameters from CPT #1, CPT #2, and DB phases
were compared with the medians of the respective Rest #1, Rest #2,
and Rest #3 phases, without any averaging. The analysis was
performed using different pain levels, ages, and gender. The pain
level threshold was chosen at 40 points, corresponding to mild pain
Karcioglu et al. (2018). The age threshold was selected at 30 years
in order to end up with comparably populated groups of men and
women.

2.3 Statistical analysis

The Shapiro-Wilk test was used to assess data normality. Because
of the non-normal distribution, the results are summarized using
boxplots with medians and quartiles. The Wilcoxon signed-rank
test with the Bonferroni’s adjustment for dependent samples was
used to compute the p-value, and statistical significance was set at
p <0.05.

3 Results

Out of 78 recorded data sets, two ECG, thirteen PPG, twenty-
four Z, and six BP traces were eliminated from the analysis due to
poor quality. Eight participants retreated earlier and did not finish the
CPT #1 phase, i.e., two women (age ≤30 years), two women (age
>30 years), one man (age ≤30 years), and one man (age >30 years).
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FIGURE 2
(A) The protocol of the study and (B) analyzed intervals.

FIGURE 3
Instructive qualitative changes of the interbeat period RR, the pulse plethysmography PPG, bioimpedance Z, and blood pressure BP from the first rest phase
(Rest #1), the first cold water phase (CPT #1), and the deep breathing phase (DB) of a single participant. The maximum reported NRS value of the CPT #1
was 80.

Two other participants did not finish CPT #2, i.e., one woman and one
man, both aged >30 years.

3.1 General tendencies

Figure 3 illustrates the temporal courses of RR, PPG, Z, and BP
during phases Rest #1, CPT #1, and DB. Compared to Rest #1, the
cold stimulus CPT #1 shows reduced bothRR and its variability, as well
as reduced cardiac deflection magnitude PPGAC of PPG and reduced
cardiac deflection ZAC of Z. The associated mean BP is larger during
CPT #1 than during Rest #1. The subsequent DB phase contrasts
CPT #1 in that PPGAC and ZAC increase in DB.The respiration-related
variability of all four RR, PPGAC, ZAC, and BP dominates in DB, with
the indicated respiration rate fR (Figure 3).

3.2 Cold water versus deep breathing

As shown in Figure 4, the first cold water stimulation CPT #1
decreases themedian ofRR (−5.5%) andZAC (−9.8%) while increasing
that of BPS (+12.6%) and BPD (+13.4%) of BP, as compared with the
first rest phase Rest #1. Here the associated PPGAC remains almost
constant (+0.9%).The second coldwater stimulationCPT#2 decreases
the median of RR (−5.6%), PPGAC (−8.0%), and ZAC (−9.3%) while
increasing that of BPS (+7.1%) and BPD (+6.1%), as compared with
the second rest phase Rest #2. The subsequent deep breathing DB
produces opposite effects: the median of RR (+1.8%), PPGAC (+5.1%),
and ZAC (+5.4%) increase, while that of BPS (−0.9%) and BPD (−5.6%)
decrease, as compared with the third rest phase Rest #3. The observed
changes inDB are significantly different compared to CPT #2 in all five
parameters.
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FIGURE 4
Relative changes (A) ΔRR of RR, (B) ΔPPGAC of PPGAC, (C) ΔZAC of ZAC, (D) ΔBPS of systolic BP values, and (E) ΔBPD of diastolic BP values from CPT #1,
CPT #2, and DB as related to the respective Rest #1, Rest #2, and Rest #3. The asterisk ”*” indicates significant changes (p <0.05) between CPT #2 and DB.

FIGURE 5
Medians and interquartile ranges of ΔRR, ΔPPGAC, ΔZAC, ΔBPS, and ΔBPD (compare Figure 4) during (A) CPT #2 and (B) DB.

Figure 5 summarizes and contrasts the observed changes for all
parameters in CPT #2 (Figure 5A) versus DB (Figure 5B), with the
indicated interquartile range from 25% to 75%. In line with Figure 4,
CPT #2 reduces RR, PPGAC, and ZAC and increases BPS and BPD,
whereas DB causes physiological processes with reversed tendencies,
i.e., RR, PPGAC, and ZAC increase while BPS and BPD decrease.

3.3 Pain level differences

Figure 6 illustrates the relative changes in the parameters in
CPT #2 for relatively mild pain with the associated NRS ≤40
(Figure 6A) in comparison with moderate to strong pain with NRS
>40 (Figure 6B). It can be observed that the physiological changes for
NRS ≤40 are more closely located to the 100% reference line, i.e., to
the values in Rest #2, than for NRS >40. Namely, the median ΔRR
decreases by −3.8% and−6.7% forNRS≤40 andNRS>40, respectively;
the associatedΔPPGAC decreases by−7.5%and−8.0%,ΔZAC decreases
by −6.5% and −9.4%, ΔBPS increases by +6.1% and +8.1%, and
ΔBPD increases by +3.4% and +9.4%. When comparing NRS ≤40

and NRS >40, statistically significant changes are observed in BPD
only.

3.4 Gender and age tendencies

Theinfluence of gender and age is depicted inFigure 7 considering
CPT #2 and DB (compare Figure 5). In CPT #2, the relative values
of ΔRR decrease by 1.5%–8.4%, with a minor decrease for young
men (<30 years) and the largest decrease for adult men (≥30 years).
Here ΔPPGAC decreases by 8.4%–12.3%, with almost no changes for
adult women (≥30 years). ΔZAC decreases by 3.9%–19.7%, with little
changes for adult women and maximum changes for young women
(<30 years). ΔBPS increases by 5.3%–8.2% with minor changes for
youngwomen, whereas ΔBPD increases by 5.1%–9.7%, with the largest
changes for adult women.

During DB, in line with Figure 5, the observed changes in all
gender and age groups mainly follow the opposite behavior. ΔRR
increases by 2.1%–4.5% except for adult men (≥30 years); ΔPPGAC
increases by 4.5%–12.1%but also except for adultmen; ΔZAC increases
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FIGURE 6
Median and interquartile ranges of ΔRR, ΔPPGAC, ΔZAC, ΔBPS, and ΔBPD (compare Figure 4) during CPT #2 for (A)mild pain with NRS ≤40 and (B)moderate
to severe pain with NRS >40. The distribution of maximum self-report NRS of the CPT #2 phase is presented in a bar diagram.

FIGURE 7
Medians of ΔRR, ΔPPGAC, ΔZAC, ΔBPS, and ΔBPD (compare Figure 4) differentiated by age and gender during (A) CPT #2 and (B) DB.

by 2.5%–9.6% with a minor increase for young men (<30 years);
ΔBPS increases very slightly for men (0.5%–1.1%) but decreases more
strongly for women (2.1%–2.8%); ΔBPD decreases in all cases by
1.0%–8.5% with a minor decrease for adult men (≥30 years) and the
largest decrease for young women (<30 years).

4 Discussion

The present study investigates the physiological footprints of
auricular and non-auricular biosignals in response to a cold stressor
and deep breathing. While a cold stressor is a sympathetically driven
stimulus (accompanied by acute pain), deep breathing is a mainly
parasympathetically driven stimulus (with relaxing effects). Thus, it
was investigated how the opposing sympathetic and parasympathetic
stimuli are reflected by the auricular biosignals, namely, its parameter
ZAC, and by parameters accessible from the auricular biosignals such as
RR and PPGAC. All these three parameters can be used as biofeedback
to close the loop in aVNS, i.e., in a targeted stimulation of the

parasympathetic system. The closed-loop set-up personalizes aVNS
with an expected tendency to avoid over and under-stimulation of
the vagus nerve/parasympathetic system. Thus, the closed-loop aVNS
may minimize both the energy consumption of the aVNS stimulator
and potential side effects (no over-stimulation) while optimizing and
personalizing the aVNS therapy (no recruitment of pain fibers), e.g., in
chronic pain. Here, the non-auricular biosignals with their parameters
BPS and BPD serve as a necessary reference to monitor stimuli-
related vital functions of the body and as an instructive substrate
for their comparison with stimuli-related changes in auricular
biosignals.

The auricular biosignal Z, namely its parameter ZAC (Figure 1),
decreases significantly during the sympathetic stimulus (CPT #2) as
comparedwith the parasympathetic one (DB) (Figures 3–5), as well as
decreases tendentiallywith increasing pain perception (Figure 6).This
behavior indicates the potential suitability of ZAC in assessing changes
in the balance of the parasympathetic and sympathetic stimuli, or,
more generally, in the balance of the parasympathetic and sympathetic
systems of the human body (sympathovagal balance). On the other
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hand, this balance, especially its normalization from a derailed state, is
usually a therapeutic target in aVNS when applied to different chronic
ailments Kaniusas et al. (2019a). Thus ZAC can be hypothesized to be
reasonable auricular biofeedback for the closed-loop aVNS without
using any sensors external to the ear, which may obstruct the
patient.

The parameters RR and PPGAC also reflect sympathovagal
balance. RR and PPGAC decrease significantly during the sympathetic
CPT #2 compared to the parasympathetic DB (Figures 3–5). While
RR tends to decrease with increasing pain, the level of PPGAC does not
(Figure 6). Therefore, RR and PPGAC, the former to a larger extent,
can also be hypothesized to be reasonable auricular biofeedback for
the closed-loop aVNS targeting a derailed sympathovagal balance.
Please note that RR could be estimated from the period of the cardiac
oscillation of the auricular Z (Figure 3), whereas PPGAC from the
cardiac deflection of PPG from the earlobe Allen (2007). However,
limitations in the precision of the estimated RR may apply in the
former case due to a rather smooth waveform of Z in contrast
to the spiky R peak of ECG. Likewise, limitations in PPGAC may
apply in the latter case due to a rather central connection of the
ear perfusion in contrast to the peripheral perfusion of the finger
(Figure 1).

The non-auricular parameters BPS and BPD reflect the
sympathovagal balance as well. Both increase significantly during
the sympathetic CPT #2 as compared with the parasympathetic
DB (Figures 3–5), while this increase in CPT #2 tends to be larger
for stronger pain (Figure 6). The level of BPD appears to depend
even stronger on the stimuli-induced sympathovagal balance with
the observed changes of 11.7% (from CPT #2 to DB) in contrast
to the associated changes in BPS of 8.0% (Figure 4). Likewise, the
sympathetically-governed vasoconstriction (governing BPD) may be
more dominant than stroke volume changes (governingBPS) Kaniusas
(2012). This leads to a hypothesis that BPS and BPD could be used as
non-auricular biofeedback for the closed-loop aVNS when external
sensors are used outside the ear.

In terms of gender and age, the largest changes from CPT #2
to DB were shown in RR for adult women (≥30 years), PPGAC for
young women (<30 years), ZAC for young women (<30 years), BPS
for adult women (≥30 years), BPD for young women (<30 years). In
contrast, the minor changes from CPT #2 to DB were shown in RR
for young men (<30 years), PPGAC for adult men (≥30 years), ZAC
for young men (<30 years), BPS for adult men (≥30 years), BPD for
adult men (≥30 years). Overall, men seem to show fewer changes
from CPT #2 to DB than women. This conclusion is in line with
previous studies, which conclude that women are more sensitive
to pain Fillingim et al. (2009); Mogil (2012); Popescu et al. (2010),
but it depends on the method of pain induction and assessment.
In most cases, the study also supports the still controversial claims
that older individuals are more tolerant of pain and show fewer
physiological effects than younger individuals Edwards et al. (2003);
Riley et al. (2010); Rittger et al. (2011). However, these statements
are very limited in their validity due to the small sample in this
study.

A limitation of the present study is the relatively small database
of recordings representing the elder part of the population which
has tendentially a larger prevalence of suffering pain. Collecting
and analyzing a more representative database is planned as a future

research direction in the research of the aVNS stimulator. Since the
warmwater phase immediately precedingCPT #1 strongly affected the
results in CPT #1, we focused our investigations on the comparison
of CPR #2 and DB, both preceded by rest phases. Another limitation
is that the order of the different phases of the protocol were not
randomized, especially the order of CPT and DB. Therefore, the
results may have been influenced by other factors such as expectation,
adaptation, prolonged exposure.

Lastly, it should be noted that the recorded pain level, in
contrast to nociception with its physiological encoding and processing
of nociceptive stimuli, is a subjective feeling connected with the
emotional experience to impeding or actual harm Loeser and
Treede (2008) but also altering autonomic nervous system Woo et al.
(2017); Adamczyk et al. (2020); Abdallah and Geha (2017). Thus, the
investigated objective characteristics of the autonomic system may
be useful for a continuous and objective personalization of aVNS in
chronic ailments such as pain.

5 Conclusion

The three parameters RR, PPGAC, and ZAC accessible
from auricular biosignals reflect the artificially-induced stimuli
with sympathetic or parasympathetic dominance and thus the
sympathovagal balance derailed in pain and other chronic conditions.
Therefore, auricular biosignals can be used as biofeedback to close the
loop in auricular vagus nerve stimulation to personalize the strength
and timing of the stimulation in favor of therapy, patient compliance,
and resourceful energy use.
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Intensive care
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The large MIMIC waveform dataset, sourced from intensive care units, has been
used extensively for the development of Photoplethysmography (PPG) based
blood pressure (BP) estimation algorithms. Yet, because the data comes from
patients in severe conditions—often under the effect of drugs—it is regularly noted
that the relationship between BP and PPG signal characteristics may be
anomalous, a claim that we investigate here. A sample of 12,000 records from
the MIMIC waveform dataset was stacked up against the 219 records of the PPG-
BP dataset, an alternative public dataset obtained under controlled experimental
conditions. The distribution of systolic and diastolic BP data and 31 PPG pulse
morphological features was first compared between datasets. Then, the
correlation between features and BP, as well as between the features
themselves, was analysed. Finally, regression models were trained for each
dataset and validated against the other. Statistical analysis showed significant
(p<0.001) differences between the datasets in diastolic BP and in 20 out of
31 features when adjusting for heart rate differences. The eight features showing
the highest rank correlation (|ρ| > 0.40) to systolic BP in PPG-BP all displayed
muted correlation levels (|ρ| < 0.10) in MIMIC. Regression tests showed twice
higher baseline predictive power with PPG-BP than with MIMIC. Cross-dataset
regression displayed a practically complete loss of predictive power for all models.
The differences between the MIMIC and PPG-BP dataset exposed in this study
suggest that BP estimation models based on the MIMIC dataset have reduced
predictive power on the general population.

KEYWORDS

blood pressure estimation, BP estimation, photoplethysmography, mimic, UCI, PPG-BP,
PPG datasets, intensive care datasets

1 Introduction

Hypertension is one of the greatest challenges to public health of our time. According to
the Centre for Disease Control, 47% of the adult population in the United States suffer from
hypertension, and only 24% of those with hypertension have their condition under control
(Centers for Disease Control and Prevention, 2022). Hypertension is an independent risk
factor for cardiovascular diseases such as heart attack, stroke, and kidney disease, and ranks
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second amongst the preventable causes of death in the U.S., trailing
cigarette smoking only (US Department of Health and Human
Services, 2003; Kochanek et al., 2019; Danaei et al., 2009). It is
now widely accepted that home blood pressure (BP) monitoring and
ambulatory BP monitoring are much better at predicting risks
associated with hypertension than in-clinic BP measurements
(Ogedegbe and Pickering, 2010), with night time BP increasingly
seen as an important risk determinant (Hansen et al., 2011; Gehring
et al., 2018). Devices presently used for home BP monitoring utilize
an inflatable cuff, which only provides intermittent readings instead
of presenting the entire dynamic range and patterns of BP
fluctuations. Moreover, the discomfort caused by cuff inflation is
particularly problematic for nocturnal BP measurement, as it can
disturb sleep and thereby interfere with measurements (Solà and
Delgado-Gonzalo, 2019).

Photoplethysmography (PPG) based BP estimation shows
promises to be a low-cost and convenient technique that enables
wearable designs and has the potential to replace cuff-based devices
(Elgendi et al., 2019). However, the lack of open access, standardized
PPG datasets for training and testing BP estimation algorithms is an
obstacle to researchers in the field. Most studies are based on private
databases where composition of the data and methods of acquisition
vary considerably, making a direct comparison between the
published BP estimation algorithms impossible (Solà and
Delgado-Gonzalo, 2019).

At the time of writing, several public datasets that include BP
and PPG signal are available. There are two large datasets sourced from
intensive care and surgical units: the Multiparameter Intelligent
Monitoring in Intensive Care II (MIMIC) Waveform Dataset (Saeed
et al., 2011) from the Massachusetts Institute of Technology, released on
PhysioNet (Goldberger et al., 2000) in 2011, and the VitalDB from the
Seoul National University Hospital (Lee et al., 2022) released in 2017.
Several smaller datasets also exist, often with a focus on a specific
condition. A few examples are: The University of Queensland Vital
SignDataset (Liu et al., 2012), a 32 patient dataset focusing on anaesthesia
acquired at the Royal AdelaideHospital in Adelaide, Australia, released in
2012; the Bed-Based Ballistocardiography Dataset (Carlson et al., 2020), a
40 patient dataset from the Kansas State University, released at the end of
2020; and the PPG-BP dataset (Liang et al., 2018), a 219 patients dataset
from the Guilin People’s Hospital, released in 2018, with a focus on the
screening of cardiovascular diseases (CVD) from PPG.

The PPG-BP dataset can be considered a middle ground among
the available datasets. It contains 657 short PPG segments three for
each of the 219 patients and recorded at rest under controlled
experimental conditions. Each patient is associated with a single BP
measurement, as well as patient biometric data and diagnosed CVD,
if any. In contrast, MIMIC contains more than 25,000 records of
variable length and varying measurement types, at times including
PPG and arterial blood pressure (ABP). The data was acquired from
bedside monitoring devices at intensive care units (ICU), including
surgery and cardiac care units, at the Beth Israel Deaconess Medical
Center in Boston, United States. Among all the public datasets,
MIMIC has been available the longest and has been used the most
extensively in the field of BP estimation. The other datasets have
seen little use in comparison, and some are not well suited for
developing and validating BP estimation algorithms due to the
limited number of subjects, the special conditions of data
collection and the sporadicity of BP measurements.

MIMIC has been used in many BP estimation studies. Kachuee
et al. used a sample of 3,663 records from 942 subjects to estimate
systolic blood pressure (SBP) using 10 PPG and ECG morphological
features. Their best results were a mean absolute error (MAE) of
11.17mmHG without calibration and 8.21 mmHG with calibration,
using AdaBoost for regression (Kachuee et al., 2017). In
2020 Hasanzadeh et al. used a sample of about 1,000 subjects to
estimate SBP from one spectral and 18 morphological features using
PPG only. Their best results were obtained with AdaBoost regression,
giving a MAE of 8.22mmHg (Hasanzadeh et al., 2020). In 2021, a subset
of 200 subjects has been used by Esmaelpoor et al. to compare of
56 machine-learned features generated by convolutional neural
network (CNN) against a set of 27 frequently used morphological
features from PPG and ECG. Eight regression methods were tested
and the best results were obtained with squared exponential Gaussian
regression or Gaussian process regression depending on the test
parameters, providing SBP with a MAE under 6 mmHg using
morphological features, and under 3.5 mmHg using machine-learned
features (Esmaelpoor et al., 2021). As in this last example, the dataset has
been used many times with pulse transit time and pulse arrival time
algorithms, despite that variability in the ECG sampling time makes it
unsuitable for transit and arrival time calculation (Elgendi et al., 2019).
The breadth and variable quality of the dataset also resulted in uneven
sampling by researchers, and as such hardly makes performance
comparison easier, even between two studies using it. A more serious
concern is the frequently mentioned hypothesis that because the data is
sourced from ICU, with patients having receivedmedication and being in
varied critical conditions, the MIMIC population may exhibit
abnormalities or a different relation between PPG and BP than would
be seen in a more controlled setting (Kachuee et al., 2017; Hasanzadeh
et al., 2020; Chao et al., 2021), casting doubt on the validity of results
beyond the dataset itself.

The aim of this study is to evaluate if the relationship between
PPG pulse characteristics and BP inMIMIC is truly different from that in
data acquired under controlled conditions. To achieve this goal a subset of
MIMIC was compared to PPG-BP in a two-step approach. First, a
statistical comparison of the datasets was performed. It comprised
comparing the distribution of features characterizing PPG pulse
morphology, as well as comparing the correlation between features on
each dataset. Second, the correlation between BP and features was
compared between datasets to see if similar morphological variations
could be observed on both datasets in relation to BP changes. To illustrate
the implication of the differences between the datasets, Support Vector
Regression models were trained on each dataset and their cross-validated
performance on the training set were compared to their performance on
the other dataset, in order to assert whether predictive powers were
retained.

2 Materials and methods

2.1 Datasets

A subset of the MIMIC database, prepared especially for BP
estimation by Kachuee. (2015), is used in this study. Because it is
hosted by the University of California, Irvine, the subset is
sometimes called the “UCI” dataset, which will be used hereafter.
This subset, which excludes segments with missing signals and
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abnormal values from MIMIC, contains 12,000 records of lengths
varying between 8 s and 10 min. Each record is sampled at 125 Hz
and contain fingertip PPG, electrocardiogram (ECG), and
instantaneous ABP. No additional information about the subjects
is provided, and the devices used for data acquisition are not
specified.

The PPG-BP dataset contains 657 fingertip PPG segments from
219 subjects of 21–86 years of age with an average of 57 ± 16 years.
Each segment has a duration of 2.1 s and a sampling rate of 1 kHz. A
single SBP and diastolic blood pressure (DBP) measurement is provided
for each subject, as well as the sex, age, height, weight, heart rate, and
disease records. The PPG signal was recorded through an SMPLUS
SEP9AF-2 sensor connected to a Texas Instrument
MSP430FG4618 microcontroller, with a hardware filter bandpass of
0.5–12Hz. The BP measurements were taken with an Omron HEM-
7201 upper arm BP monitor. While also sourced from hospital patients,
the PPG-BP data does not come from ICU units and was acquired under
controlled conditions following an experimental protocol. Data
acquisition was conducted in private, following a relaxation and
adaptation period of 10min, with the patients sitting in an office
chair and their arms resting on a desk. The same acquisition devices
were used for all subjects. Furthermore, a screening process excluded
patients diagnosed with diseases other than cardiovascular diseases and
diabetes. The data was also screened for abnormal and missing values,
while a consistent signal quality was ensured by computing a signal
quality index and excluding subjects with low values (Liang et al., 2018).

2.2 Pre-processing

All signal processing was done in Python and references to
functions are, otherwise noted, part of the standard library or of the
SciPy scientific library (Virtanen et al., 2020).

For UCI, five evenly spaced segments of a duration of 5 seconds
were first extracted from each of the records in the dataset. Records
shorter than 25 s were rejected. SBP and DBP were extracted from
the continuous ABP signal by averaging all the peak values in the
sequence, using function find_peaks. Records with less than three
ABP peaks, due to non-pulsatile ABP segments, were rejected. Even
though the UCI dataset had already been pre-processed to eliminate
invalid or excessively noisy signals found inMIMIC, signal segments
with movement artefacts, as well as sequences with large variations
in pulsatile amplitude remained. To eliminate those issues and
ensure coherence between the datasets, the following pre-
processing steps were applied to both UCI and PPG-BP. First, all
segments had their mean removed and were then filtered using a
0.7–12 Hz zero-phase fourth order Butterworth bandpass filter.

Three screening criteria were created to identify the remaining
problematic segments. Any segment satisfying one of the conditions
was rejected. The first criterion excluded signal segments with very
rapid changes associated with signal artefacts such as those caused
by body movements or device disconnection:

max x´ n( )| |( )> μ x´ n( )( ) + 5σ x´ n( )( ) (1)
where x(n) is the filtered PPG signal, x´(n) is its first derivative, σ is
the standard deviations (STD) and μ the mean. The second
criterion ensured pulsatile amplitude was stable throughout
each segment:

max xi( ) −min xi( )( )> 1.5 max xj( ) −min xj( )( )
for i, j ∈ 1, 2, 3{ } and i ≠ j

(2)

where x1, x2 and x3 are three equally sized subdivisions of x(n). It
was not applicable to PPG-BP because of the shorter segment
duration. The last criterion removed segments with extreme heart
rate or with characteristics interfering with peak detection:

PR< 40 ∨ PR> 220 (3)
where PR is the pulse rate in beat per minute (BPM) estimated as the
average first derivative x´(n) peak to peak interval. To avoid false
peaks, those with a prominence lower than 60% of the maximum
prominence were discarded. The prominence of a peak quantifies
the amplitude difference between its apex and its bases, computed by
function peak_prominences.

Finally, to be able to compare the various time-based
features, both datasets were resampled to a matching
frequency of 250 Hz.

2.3 Fiducial points extraction

The fiducial points used for feature extraction are shown in Figure 1.
The second derivative of the signal was first computed and low-pass
filtered with a 12 Hz zero-phase sixth order Butterworth filter to obtain
x´´(n), after which the third derivative x´´´(n) was computed. The PPG
pulses peak positions np, and their maximum upslope positions nu were
then established by finding the peak positions of x(n) and x´(n) with the
find_peaks function, considering only peaks with a prominence greater
than 60% of the maximum prominence. Boundaries for each pulse were
established by finding the pulse onset, n0, associated with each nu. The
position of n0 was chosen as the first positive peak of x´´´(n) left of nu,
subject to x´´´(n)> 0.4max(x´´´(n)) to ignore minor peaks. If a
positive zero crossing of x´(n) could be found between that point
and nu, it was used instead. This strategy allowed a robust
detection of onset even for pulses preceded with a slow rise

FIGURE 1
A typical PPG signal as well as its first and second derivatives with
their most important fiducial points.
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before the onset. The end of the pulse, nz, was defined as the next
pulse onset. Pulses with a marked difference between the
amplitude at onset and end point, satisfying
|x(n0) − x(nZ)|> 0.12 (x(nP) − x(n0)), were discarded.

With pulse boundaries and peaks established, the remaining
fiducial points were extracted from x´´(n). Five of those points
are the a, b, c, d and e points described by Takazawa et al. (1998).
Since the e point also marks the position of the dicrotic notch,
the same nomenclature was kept for the additionnal f, g and h
points designating the second derivative estimates of the
diastolic peak, early systolic peak and late systolic peak
positions. The fiducial points as described by Takazawa
asusme an ideal PPG signal with well defined successive
waves in the second derivative. To enable extraction from
the non-ideal waveforms present in the datasets, the
following five step process was developed:

1. Set the position of a, na, to the point where x´´(n) is at its
maximum and the position of b, nb, where it is at its minimum,
subject to n< nP.

2. Set the position of the dicrotic notch e, ne as
the earliest x´´(n) peak with n constrained by
nP < n< 2

3 (nz − n0) ∧ x(n)< 0.7 x(nP) ∧ x´´(n)> 0.05x´´(na).
3. Set the position of the diastolic peak f, nf, as the earliest downward

peak satisfying the condition ne < n< 2
3 (nz − n0) ∧ x´´(n)< 0.

4. Set the position of c and d, nc and nd, as the x´´(n) upward and
downward peaks with the greatest difference between them,
constrained by nb < n< ne. For pulses where those peaks did
not exist, the positions were estimated as the position of the
maximum inflection points of x´´(n), that is the maximum
downward and upward peaks of the fourth derivative
constrained by nb < n< ne.

5. Estimate the position of the early and late systolic peak by setting
ng � nb + nc−nb

2 and nh � nc + nd−nc
2 .

All peaks of x´´(n) and x´´´(n) were extracted by detection of the
zero-crossings of the next higher order derivative.

2.4 Features extraction

All features were extracted on a pulse-by-pulse basis. The trend
of the signal of each pulse was first removed by subtracting the linear
slope connecting the start point of each pulse to its end point, as
described in (Xing et al., 2020). Thus, all pulses in the resulting
detrended signal, y(n), have value of zero at their starting and
ending point. The amplitudes of the detrended signal at various
fiducial point are hereafter designated by the form yi where
yi � y(ni). The features used in this paper are recapitulated in
Table 1.

2.4.1 Amplitude ratios
The reflection index (RI) along with the augmentation index

(AI) measure the contribution of the peripheral wave reflections to
the overall pulse (Elgendi, 2012). As a measure of reflected waves, AI
can also be computed in regards to the early and late systolic peaks as
in Eq. 6 and Eq. 7 while Ygh defined in Eq. 8 is an estimate of
amplitude ratio of the late to early systolic peak, which has
been correlated with changes in systolic pressure (Baruch et al.,
2011).

RI � yf

yp
(4)

AI � yp − yf

yp
� 1 − RI (5)

AIgh � yg − yh

yg
(6)

AIgf � yg − yf

yg
(7)

TABLE 1 Summary of the features used in this paper.

Feature Name/Description Defined in

RI Reflection index Sec. 2.4.1, Eq. 4

AI Augmentation index Sec. 2.4.1, Eq. 5

AIgh Augmentation index of early to late systolic peaks Sec. 2.4.1, Eq. 6

AIgf Augmentation index of early systolic to diastolic peaks Sec. 2.4.1, Eq. 7

Ygh Amplitude ratio or early to late systolic peaks Sec. 2.4.1, Eq. 8

IPA Inflection point area ratio Sec. 2.4.2, Eq. 9

Δnij Time span between two fiducial points Sec. 2.4.3, Eq. 10

HR Heart rate Sec. 2.4.3, Eq. 11

Ni Time ratio between the portion of the pulse duration before and after a fiducial point Sec. 2.4.4, Eq. 12

AX Aging index Sec. 2.4.5, Eq. 13

Spe Slope between points p and e Sec. 2.4.6, Eq. 14

Spf Slope between points p and f Sec. 2.4.6, Eq. 15

Wxx Width of the pulse at xx% of its amplitude Sec. 2.4.7
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Ygh � yh

yg
(8)

2.4.2 Area ratios
The Inflection Point Area ratio (IPA), the ratio of area under the

curve until the dicrotic notch to the area under the curve after it, is
an indicator of total peripheral resistance (Elgendi, 2012).

IPA � ∑ne
n�n0y n( )

∑nz
n�ney n( ) (9)

2.4.3 Time spans
Time spans all take the same general form, given in Eq. 10, and

can be visualised in Figure 2. The duration of the systolic phase,
Δn0p, has been associated with hypertension (Dillon and Hertzman,
1941; Elgendi, 2012) while the duration of the diastolic phase, Δnpz,
has been associated with DBP (Yoon et al., 2009). The time spans
Δn0g, Δn0h, Δngh, and Δngf, are spans between reflected waves
components, of which Δngf has been associated with pulse
pressure (PP) (Baruch et al., 2011). Δnpf is the time between
the peak and the diastolic peak. Δnup, Δnue, Δnuf are time spans
in relation to the maximum upslope point, of which the last has
been shown to have a strong correlation with SBP and DBP
(Kim et al., 2008).

Δnij � nj − ni (10)

The HR estimation used as a feature is also, in essence, a
time span, and was calculated based on the pulse duration as
shown in Eq. 11, where fs is the sampling rate.

HR � 60fs

nz − n0
(11)

2.4.4 Time ratios
Three different time ratios have been included in this study, each

representing the pulse duration ratio before and after a fiducial
point, taking the form shown in Eq. 12. Included areNp in relation to
the peak,Ne in relation to the e point, andNf in relation to the f point.
The time ratio of systole to diastole,Nf,was shown to be correlated to
SBP (Li et al., 2014).

Ni � Δnoi
Δniz

(12)

2.4.5 Acceleration PPG
Acceleration PPG, or second derivative PPG, is a group of

features extracted from the fiducial points in the second
derivative of the signal. They have been associated with
arterial stiffness and vascular aging (Takazawa et al., 1998).
The features b/a, c/a, d/a and e/a are amplitude ratios of the
second derivative at those fiducial points, while the aging index
(AX) is shown in Eq. 13.

AX � b − c − d − e

a
(13)

2.4.6 Slopes
The slopes from the peak to the dicrotic notch, Spe, and to the

diastolic peak, Spf, have been investigated as BP predictors. Spe was
shown, although with low certainty, to have a weak correlation to
DBP (Kim et al., 2008), and has also been associated with
peripheral resistance (Lin et al., 2020). Slopes used in this study
are normalized, as in (Kim et al., 2008), in relation to the pulse peak
value.

Spe � ye − yP

yP Δnpe
(14)

Spf � yf − yP

yP Δnpf
(15)

2.4.7 Widths
Widths are conceptually the same as time spans, but they

are not calculated from specific fiducial points in the pulse.
Rather, the span is the width of the pulse at a certain percentage
of its amplitude. It has been used as a BP predictor (Ding et al.,
2019) and is associated with systemic vascular resistance (Awad
et al., 2007). In this study, the pulse width is measured at 30%,
50%, 70% and 90% of yp for W30, W50,W70 and W90,
respectively.

2.4.8 Outlier exclusion and feature vector
construction

Outlier exclusion was performed on a per-pulse basis.
Morphologically abnormal values for IPA were identified first
and any values below 0.5, usually caused by an abnormal shape
of the diastolic part of the pulse, were rejected. The feature vectors of
both datasets were then temporarily joined to compute the global
mean and the global STD, σglobal, of each feature. Pulses where any
feature diverged more than 4 STD from the mean were considered
outliers and rejected.

The remaining feature vectors for pulses in the same segment
were then averaged and saved. Since only a single BPmeasurement is
provided per subject in the PPG-BP dataset, features extracted from
different segments but from the same subject were also averaged
together.

2.5 Statistical comparison of the datasets

To characterise the differences between PPG-BP and UCI, the
distribution of features and BP data compiled in section 2.4.8 were
first examined.

FIGURE 2
Different types of measurements used in feature extraction.
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For each feature, as well as SBP and DBP a two sample
Kolmogorov–Smirnov (KS) test was performed with α = 0.001 to
determine if differences between distributions were significant.

For each dataset, the mean and STD of each feature was
calculated. For each feature, the difference between the mean
value of the two datasets, was determined as per Eq. 16. The
same was also done for the STD value as in Eq. 17. The results
were computed as a percentage of σglobal to bring them on a
comparable scale. This analysis was also done on SBP and DBP.

μ% � μuci − μppg−bp
σglobal
∣∣∣∣

∣∣∣∣
· 100 (16)

σ% � σuci − σppg−bp
σglobal
∣∣∣∣

∣∣∣∣
· 100 (17)

Since many features are affected by the pulse duration, those
tests were then repeated with HR compensation. That is to say that
all time spans (Section 2.4.3) and widths (Section 2.4.7) were
multiplied by HR while slopes (Section 2.4.6) were divided by
HR before recomputing σglobal, Eq. 16 and Eq. 17, yielding μadj%
and σadj%.

Finally, the feature correlation matrix was computed: for
each feature, the Pearson correlation coefficient (r) was
calculated against every other feature. The difference between
the correlation matrix of each dataset was then produced to
highlight their discrepancies.

2.6 Response to BP variations and shared
predictive power

2.6.1 BP correlation test
The Spearman rank correlation coefficient (ρ) was computed

to assess correlation between each feature and SBP as well as
DBP, respectively. Spearman correlation was selected here
instead of Pearson for its ability to identify both linear and
non-linear relationships. The difference between the datasets
was then computed to reveal any divergence in BP-features
relationship.

2.6.2 BP estimation test
For this section, the Scikit-Learn machine learning library was

used (Pedregosa et al., 2011). Using the svm.svr module, a support
vector regression (SVR) model with a radial basis function
(RBF) kernel was trained for SBP estimation on the PPG-BP
dataset and another on UCI, keeping one random sample per
subject. Therefore, when splitting a dataset into a training and
testing set, data from one subject was never included into both
the training and testing set.

To counter the bias caused by the non-uniform sample
distribution, sample weights were passed to the model for
training and also in subsequent evaluation of performance.
Samples were first split into 12 equally spaced bins based on
their BP value. The weight g of each sample was gi � k max/ki
where k max is the number of samples in the bin with the most
samples and ki is the number of samples in the current sample’s
bin. Because samples were concentrated in the middle of the BP
range, the resulting weights increased emphasis on the samples

towards the extrema of the BP range, as to approximate training
and testing using a uniform distribution.

The features were centered to zero mean and scaled to unit
variance before being handed to the model.

The model regularization parameter C, controling
penalization of estimation errors during training, and the
kernel function scale parameter γ, were optimized first
through a coarse then a fine parameter grid search, as
described in (Hsu et al., 2016). A leave-one-out cross-
validation strategy was used to maximize the ammount of
useable data for training.

Backward feature elimination was used to find the optimal
feature set for each dataset, following this method:

1. Using 10-fold cross validation, sequentially train and test the SVR
using all features but one, until all features have been left
out once.

2. Compare the results and save the reduced feature set with the best
cross-validated performance.

3. Restart from step one using the reduced feature set until only
4 features remain.

4. Select the optimal feature set, that is the one that had the best
performance throughout the entire process.

At every step, performance was evaluated using the weighted
coefficient of determination R2, as defined in Eq. 18, where i is the
sample index, gi is the sample weight, ui is a sample’s true BP, ûi is a
sample’s estimated BP, �u is the weighted mean of the true BP of all
samples defined in Eq. 19, and k is the number of samples.

R2 � 1 − ∑k
i�1gi ui − ûi( )2

∑k
i�1gi ui − �u( )2 (18)

�u � ∑k
i�1giui

∑k
i�1gi

(19)

The Pearson correlation coefficient between the estimated BP
and true BP, as well as the MAE of the estimated BP were used as
secondary metrics. In addition to plotting the estimated BP and true
BP pairs for each test, Bland-Altman plots (Bland and Altman, 1986)
were also produced to allow better interpretation of the results. Final
performance evalution with the optimised model parameters was
carried out through leave-one-out cross-validation on the training
dataset. The models were then retrained separately on their entire
respective training dataset without leaving out any samples, but
keeping the same set of features as well as the same C and γ values.
Those retrained models were then validated against the other dataset
to see if the predictive power would be retained.

3 Results

3.1 Pre-processing and feature extraction

For PPG-BP, 16 of the dataset’s 657 segments were rejected
by criterion 1) before feature extraction. No segments were
rejected due to criterion 2) or 3). From the remaining segments,
742 pulses were identified, of which 22 (3%) were rejected as
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outliers based on extracted feature values. Averaging the
remaining pulse features per segment yeilded 533 valid
segments with complete feature vectors, for an overall
segment rejection rate of 19%. After averaging per subject,
the dataset had 211 feature vectors.

For UCI, 2,376 records were too short to generate the
segments and were ignored. The remaining records yielded
48,120 segments, of which 1791 were rejected due to non-
pulsatile ABP signals, 1,228 because criterion 1),
2,663 because of criterion 2) and 78 because of criterion 3).
From the remaining segments, 83,903 pulses were identified, of
which 7,104 (8%) were rejected as outliers based on extracted
feature values. Averaging the valid pulses per segment yeilded
21,698 valid segments with complete feature vectors, for an
overall segment rejection rate of 55%.

3.2 Statistical comparison

Results of the statistical comparison of the datasets are
aggregated in Figure 3.

According to the KS-test, the differences between feature
distributions were significant (p< 0.001) for 22 out of 31 features
for the original features and 21 out of 31 features for the HR adjusted
features.

Looking at μ% the difference in mean original feature values
between the datasets, c/a stood out among all features,
registering a difference of −100% of the standard deviation
on UCI compared to PPG-BP. Several other features displayed a
large difference, the second highest being Δngh (−93%),
followed by the width features all showing at least −75%
difference, Spe (−74%), AI (68%) and RI (−68%). The
difference between HR distributions (46%) is worth noting
because of its direct physiological implication and its effect
on other features. As shown in Figure 4, the UCI HR
distribution is bimodal with a first peak positioned around
75 BPM, similar to PPG-BP, and a second peak close to
90 BPM. The average HR was 6.2 BPM higher in UCI and
28% of segments had a HR above 90 compared to 8% in PPG-BP.

Because HR directly affects the value of many features, looking
at the HR corrected difference in mean μadj% reveals what part of μ%
is not explained by the difference in HR distribution, and highlights
fundamental differences in the pulse shapes. Values significantly
higher on UCI were AI (68%), Nf (68%), AIgf (62%), Δngf (59%),
Δnpf (51%), Δnuf (49%), HR (46%), Δn0g (45%), IPA (31%), AX
(28%) and d/a (14%). Values significantly lower on UCI were c/a
(-100%), RI (-68%), Δngh (−61%), W90 (−45%), W70 (−42%), Spe
(−41%), W30 (−40%), W50 (−39%) and b/a (−30%).

The five features with the highest STD difference were c/a (41%),
AX (38%), d/a (37%), IPA (31%) and Spe (30% or 29% adjusted for
HR), all higher on UCI. In fact, STD was higher in UCI for 87% (or
80% adjusted for HR) of features, indicating a greater variability in
pulse morphology within the dataset.

The relation of those differences to differences in pulse
morphology between UCI and PPG-BP are illustrated in
Figure 6. For example, the PPG-BP pulse with typical values
(A) had a well defined second derivative peak for the c point
with c/a = −0.15 while the depression at the c position for the

FIGURE 3
The difference inmean (μ%) and standard deviation (σ%) between
the datasets, given as a percentage standard deviation of the joined
datasets. The HR adjusted forms (μadj%) and (σadj%), compensate for
the different HR distributions affecting time sensitive features.
Negative values indicate that the mean or std values for UCI are lower
than for PPG-BP. Values in bold indicate significantly different
distributions (p < 0.001) according to the Kolmogorov-Smirnov test.
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bottom two pulses, (C) and (D), gave lower values of c/a = −0.40 and
c/a = −0.68. The f point was also positioned later in the pulse for (C)
and (D), resulting in larger time spans. Pulse (C) had Spe = −0.022,
Δn0g = 36; Δnuf = 83; Δnpf = 69 and Nf = 1.22 which can be directly
compared to the values of (A), Spe = −0.012, Δn0g = 32, Δnuf = 76,
Δnpf = 50 and Nf = 0.90, since both had similar heart rates.

Pulse (C) also had a very narrow peak section with W90 =
14 while the PPG-BP pulse (A) had a wider one with W90 = 30.
The heart rate of the UCI pulse (B) was 20 BPM lower than the
PPG-BP pulse (A) but still only hadW90 = 15. Pulse (B) also had
AI = 0.76 because of the larger amplitude difference between
p and f as well as a lower b/a = −1.26 caused by its more
pronounced b peak in the second derivative. In comparison the
PPG-BP pulse (A) had AI = 0.50 and b/a = −0.79. The variability
of c/a in UCI is also illustrated in Figure 6, where the amplitude
of c can be seen fluctuating between zero and the amplitude of b
in the three UCI pulses. It should be noted that the pulses in
Figure 6 are not archetypal pulses of UCI, which includes highly
varied pulse shapes. The pulses in Figure 6 were rather selected
to illustrate the morphological features that induce some of the
largest feature distribution differences observed between the
datasets.

In regards to BP, the SBP distribution was similar for both
datasets and close to normality. However, the DBP distributions had
significant differences. The average DBP value for UCI was lower at
64.3 mmHG, compared to 71.8 mmHG for PPG-BP, or a difference
equivalent to -64% of the global sandard deviation. The DBP
distribution of UCI was also found to deviate significantly from
normality, as shown in Figure 5, with a slightly leptokurtic shape and
a significant skew towards lower values.

Overall, the datasets had a similar degree of internal correlation,
with mean(|r|) � 0.36 compared to mean(|r|) � 0.35 for PPG-BP.
UCI had 61% of feature pairs with |r|> 0.25 and 28% of feature pairs
with |r|> 0.50, as compared to 57% and 25%, respectively, for
PPG-BP.

As for the correlation between features, the largest differences
between datasets were observed with Spe, a feature that also displayed
a significant mean and STD differences between the datasets.
Compared to PPG-BP, the correlation level |r| of Spe increased on
average by 0.40 with seven other features in UCI: b/a, d/a, AX,
Δnup,Δn0p, Ygh andAIgh. Another important difference was e/a,
which had a correlation of r = -0.42 with d/a for PPG-BP, while
that correlation fell to r = 0.02 for UCI.

The differences observed between the datasets were in large part
associated with the presence of particularily pointed pulses in UCI
and rare in PPG-BP. Those pulses hold a different relationship
between features compared not only to most pulses in PPG-BP, but
also to other types of pulses in UCI, increasing variability. Their
caracteristics can be seen in the UCI Pulses of Figure 6. In general
their c and d points were not well defined peaks in the second
derivative, but inflection points in a curve between b and e. The
amplitude of d tended to be higher as e also got higher and the Spe
slope became more pronounced. AX, which is calculated from the
amplitude of the second derivative fiducial points, was in turn
affected. Those pulses were also associated with a quick pulse
onset with shorter Δnup,Δn0p and a proportionnaly narrower
pulse wave. Finally the g point also tended to be situated around
the peak while the h point came later at a much decreased PPG
amplitude, wherea in PPG-BP the amplitude at g and h was not
related to Spe due to their more varied positions around a generally
flatter pulse peak.

3.3 Response to BP variations and shared
predictive power

3.3.1 Correlation to BP
The Spearman rank correlation coefficient (ρ) of each dataset’s

features against SBP and DBP is presented in Figure 7.
For SBP, significant correlation could be established for

15 features in PPG-BP. The three most correlating features were

FIGURE 4
Comparison of the HR distribution for the PPG-BP and UCI
datasets.

FIGURE 5
Comparison of the DBP distribution of the PPG-BP and UCI
datasets.
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AIgh(ρ � −0.50), Ygh(ρ � 0.50), Spf(ρ � −0.48), and a total of
14 features had a correlation of |ρ|> 0.25. For UCI, the three
most correlating features were c/a (ρ � 0.24), W90 (ρ � 0.22) and
Δngh (ρ � 0.20). It should be noted that those features all had major
mean and STD differences with PPG-BP (see Section 3.2). In total,
significant correlations with SBP could be established for 22 features
in UCI, although coefficients were lower at |ρ|≤ 0.25 for all features.

Stronger correlation with SBP in one dataset was not associated
to a stronger correlation with SBP in the other dataset. For example,
the three most correlating features of PPG-BP, AIgh, Ygh and Spf
(|ρ|≥ 0.48) were not among the higest in UCI, where their SBP
correlation reached at most |ρ| � 0.09. As for the most correlating
features in UCI, W90 obtained ρ � 0.36 in PPG-BP, Δngh was not
significant and c/a had a stronger but opposite correlation of
ρ � −0.28. Two other features showed significant but reversed
correlation, although to a lesser degree: Spe with ρ � −0.23 for
PPG-BP and ρ � 0.11 for UCI, and AX with ρ � 0.42 for PPG-
BP and ρ � −0.05 in UCI.

A similar pattern was observed for DBP. Significant correlations
were established for ten features for PPG-BP. Those with the highest

correlation were Δnpf(ρ � −0.42), Spf(ρ � −0.36), and d/a
(ρ � −0.35). For UCI, significant correlations were established for
a total of 28 features. Those with the highest correlation were
Δnpz(ρ � −0.25), HR(ρ � 0.24), and Ne(ρ � 0.23). In addition,
relatively strong correlation (for UCI) was shared with one of the
most correlating features of PPG-BP: Δnpf(ρ � −0.21). Again for
DBP, correlation levels of |ρ|> 0.25 were only reached on PPG-BP,
and that for nine of the ten features where significance was attained.

3.3.2 BP estimation
Sampling one feature vector per subject in UCI for the BP

estimation test yielded a total of 7,087 vectors. Parameter selection
for the PPG-BP trained model resulted in C � 75, γ � 0.1 while
selected parameters for UCI were C � 0.25, γ � 0.03. For PPG-BP,
eight features were retained during feature selection:
Ne, Spf,W90,Δngf,Δngh,Δnpf,AX andHR. For UCI, sixteen
features were retained: AIgf,Nf, Spf,W30,W50,W90,Δn0g,
Δn0h,Δnuf ,Δ ngh,HR,AX,RI, b/a, c/a and d/a.

SBP estimation results for the PPG-BP trained model are
presented in Figure 8 for cross-validated tests on PPG-BP.

FIGURE 6
(A) Pulse from PPG-BP with characteristics representative of the dataset. (B), (C) and (D) Pulses from UCI illustrating some of the differences
observed with PPG-BP. In general, the pulse shape was more pointed and narrower, dropping sharply after the peak. The amplitude of the PPG signal was
usually lower at the e and f points, and the f point was often encountered later in the pulse. The second derivative showed a lot of variability, but compared
to PPG-BP, the b point had usually a lower amplitude and the c and d points were often not well-defined peaks in the second derivative and were
thus estimated from the inflection points. This resulted in highly variable but general lower amplitude values for the c point especially, compared to PPG-
BP where it more consistently appears as a peak with a value closer to zero. Note that the pulse duration is normalized in all four pulses of this figure.
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During cross-validated tests, the model tended to overestimate
samples with low BP values and underestimated samples with
high BP. Nonetheless, it showed significant predictive power over
the entire range of BP values, as shown by the R2 score of 0.63.
Secondary metrics were r = 0.63 and MAE = 13.96 mmHg with an
STD of 10.50 mmHg. When applied to predict SBP for the UCI
dataset, a model with the same parameters trained with the entire
PPG-BP did not retain any predictive power, as shown in Figure 9,
giving worse results than a mean predictor, as shown by the R2 score
of -0.07. Secondary metrics were r = 0.09 and MAE = 21.03 mmHg
with an STD of 16.95 mmHg.

Cross-validated results for UCI, shown in Figure 10 were
considerably worse than for PPG-BP, achieving only R2 = 0.31,
with secondary metrics r = 0.42 and MAE = 16.66 mmHg with an
STD of 12.90 mmHg. Applying the UCI trained model to PPG-BP
resulted again in a loss of predictive power, as shown in Figure 11,
although not as dramatic as for the PPG-BP trainedmodel applied to

UCI. It resulted in an R2 score of 0.12, barely better than a mean
predictor. Secondary metrics were r = 0.45 andMAE = 16.68 mmHg
with an STD of 11.93 mmHg. Themodel can in fact be said to almost
act as a mean predictor, as the produced BP values always remain
close to the mean BP, with an STD of 5.74 mmHg.

4 Discussion

Analysis of the BP and features distributions showed
fundamental differences between datasets. Because vascular aging
plays a role in shaping the pulse wave, it can be hypothesized that
differences in the age distribution between the datasets could
influence the results. This hypothesis can neither be confirmed
nor rejected as age information is not available for UCI. While
we can’t ascertain that the UCI data is similarily distributed, it can be
interesting to look at age data available for 2040 subjects of the
MIMIC waveform database that have been matched to the MIMIC
clinical database. That information, provided in theMAP-CW file of
the dataset, shows an average age of 65 ± 17. It should however be
considered a low estimate since age for patients older than 90 years
of age is simply noted as “90+”.

For several features, the difference can be partly attributed to the
higher mean HR in UCI which results in narrower pulses. That
characteristic of UCI and more specifically the large portion of data
associated with a HR above 90, could be linked with stress or poor
health. It supports the idea that differences in the conditions in
which the data was obtained, or in the condition of the subject, has
an influence on the data.

However, even when scaled by the heart rate, the difference inmean
values between the datasets remained significant. That remainder was
linked to morphological variations between the datasets, notably to the
UCI pulse types illustrated in Figure 6. Those have amore pointed peak,
more of their energy concentrated early in their period, and often lack
well defined c and d peaks in the second derivative.

The loss of correlation between d/a and e/a on UCI may give
some insight into the physiological origin behind the differences.
The e/a ratio is associated with an increased inflection at the dicrotic
notch while the d/a ratio is associated with inflection at the late
systolic peak. A lower d/a ratio often equates to a flatter PPG peak
with a sharp drop, as compared to a pointier PPG peak with a more
progressive decline for higher ratios. In the wave-reflection based
PPG model, this can be seen as the effect of timings and amplitude
between the main systolic peak and the renal and iliac reflections
(Baruch et al., 2011). The correlation between those features in the
PPG-BP indicates that relatively uniform parameters in the
circulatory system of the subjects define both reflections, while
the loss of correlation on UCI indicates less uniformity, since the
renal and iliac reflections appear modulated by different parameters.
The d/a and e/a ratios have been shown to change independently
with the administration of vasodilators or vasoconstrictors
(Takazawa et al., 1998), which hints at possible differences in
subject or environmental conditions between UCI and PPG-BP.

The relatively high degree of linear correlation between features
was expected, as many features are similar in nature and are
influenced in the same way by the pulse characteristics. For
example widths and timings are all expected, to a certain degree,
to vary together with the pulse duration.

FIGURE 7
Feature-BP Spearman correlation test results. The top value is
the correlation coefficient for PPG-BP, the bottom value the
correlation coefficient for UCI, while the color and intensity show by
how much UCI differs from PPG-BP. Values in bold indicate that
the correlation is significant (p < 0.001).
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The BP correlation test showed a different relationship between
features and BP for each dataset. The higher correlation coefficients
generaly found on PPG-BP indicated a more uniform response
between the subjects, which is coherent with the controlled data
collection and subject selection methodology of PPG-BP, whereas
the data from UCI lacks any control over environmental and subject
conditions. For UCI, two of the features correlating the most with
SBP were c/a and Δngh, features that also had the most difference
between the datasets. Since those features had an opposite or null
correlation on PPG-BP, the difference points to possible clusters of
patients or conditions in UCI where consistant BP changes

accompany those morphological changes. In fact, 35% of the
pulses had a c amplitude lower than d in UCI, while it is the
case for only 5% of pulses in PPG-BP. In UCI, those pulses were
associated with an average SBP lower by 10.7 mmHg and average
DBP lower by 3.8 mmHg compared to pulses with well defined
second derivative peaks where c > d.

Of the features retained by the SBP estimation model for PPG-
BP, four out of eight (Spf,W90,Δnpf and AX) had significant
correlation to SBP. Some of the feature that showed among the
strongest correlation were not retained, which may be attributed to
information redundance due to the generally strong correlation

FIGURE 8
Cross validated results for the PPG-BP trained model.

FIGURE 9
Results of the PPG-BP trained model tested with the UCI data. A random sample of the BP estimations are shown but the metrics are for the entire
dataset.
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between features. For UCI, the large sample size allowed establishing
significance at lower correlation levels, despite the increased
variability of the data. The three features with the highest
correlation to SBP (W90,Δngh and c/a) were retained for
estimation, the latter two also being the two features with the
largest difference in mean value between datasets. Despite
significant SBP correlation being present for b/a, c/a and d/a, no
second derivative ratios were retained for PPG-BP. The fact that
those three ratios were retained for UCI, and especially c/a with its
opposite correlation profile compared to PPG-BP, maybe related to
the aforementioned presence of clusters of patients with significant

differences in the second derivative. It is also interesting to note that
HR was retained for both datasets despite the absence of direct
correlation to SBP, which suggests that scaling of some features in
relation to the pulse duration played an important part in the
estimation process.

Performance of BP estimation algorithms are extremely difficult
to compare. The absence of a standard test dataset and the tradition
of reporting the results in mmHg mean error or MAE make the
results very sensitive to sample selection and BP range. Sample size,
preprocessing and sampling methods vary widely, and are not
always clearly described in published studies. Comparison with a

FIGURE 10
Cross validated results for the UCI trained model. A random sample of the BP estimations are shown but the metrics are for the entire dataset.

FIGURE 11
Results of the UCI trained model tested with the PPG-BP data.
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few other calibration free studies can be made but should not be seen
as decisive. Kachuee et al. obtained anMAE of 11.17 ± 10.09 mmHG
and r = 0.59 on UCI using Adaboost, but also making use of ECG
(Kachuee et al., 2017). Slapnicar et al. obtained an MAE of
15.41 mmHg on 510 MIMIC subjects with a deep neural network
on the raw PPG signal and the two first derivatives, while
18.34 mmHG was obtained when using a random forest
algorithm with hand crafted features (Slapničar et al., 2019). As a
last example, Maqsood and al. tested the same algorithms on both
PPG-BP and MIMIC (although without cross-dataset tests) and
reported an MAE of 5.32 ± 4.26 mmHG for PPG-BP and 5.59 ±
5.92 mmHg for MIMIC with a bidirectional long short-term
memory neural network (Bi-LSTM) and time domain features,
while they obtained 15.48 ± 3.52 mmHG for PPG-BP and
12.14 ± 6.67 mmHG with an SVR (Maqsood et al., 2021).

While the use of more complex models such as Bi-LSTM may
potentially bring uncalibrated BP estimation closer to medical
device requirements, optimal performance was not the goal of this
study and a simpler model was prefered to illustrate the impact of
observed differences. The present results are thus more in line with
those of other simpler models. More importantly, the present
results clearly show that what was learned on one dataset does
not apply, or applies only weakly, to the other. It is interesting to
note that with fewer features, the cross-validated model of PPG-BP
obtained an R2 twice as that of UCI. The fact that less features and
thus less information is necessary to get those results in PPG-BP
indicates a more uniform response in the subjects, which may be
due to the more controlled data collection conditions. This would
also explain why the PPG-BP trained model retains no predictive
power at all with UCI, since it would not cover the wider variety of
patients and recording conditions present in UCI, while the UCI
trained model, having knowledge of a wider variety of conditions,
may be able to retain some power, even though very weak, when
applied to PPG-BP.

Absolute values of the PPG signal can vary greatly depending on
the recording conditions and equipment calibration. To ensure a
consistent comparison between the different records, and especially
between datasets possible, no raw amplitudes were used as features,
neither was the DC component of the signal. Thus, a part of the
signal information, which could potentially improve performance,
was not used. The added benefit of this information in the case of
UCI is however doubtful, as amplitudes were uneven between
segments, with the pulsatile amplitude actually following a strict
bimodal distribution with a wide separating gap.

Another factor limiting the comparison was the structure of
PPG-BP, which offers three short PPG segments per patient, all
associated to a single BP value. In contrast, UCI offers longer
segments with continous a contnuous ABP signal. The use of 5 s
samples of UCI allows to obtain on average the same number of
usable pulses as in three PPG-BP segments, and to reduce the ABP
signal to mean SBP and DBP over the period. As a result of those
differences, two additional criteria had to be applied to UCI in
Section 2.2 to ensure the integrity of the signal. One on the ABP
signal to detect non-pulsatile ABP, and one on the PPG signal to
ensure consistant pulsatile amplitude throughout the segment. We
believe that those additional criteria should not affect the validity of
the comparison. They merely ensure the signals are present and
usable to the same degree as in PPG-BP, which was already similarily

screened for signal integrity prior to its release. However, another
aspect of those differences brings uncertainty to the cross-dataset
validation. While in UCI the BP measurements are derived from the
ABP signal corresponding to the 5 s PPG segment, the BP
measurements in PPG-BP are derived from a period of 30 s
preceding the acquisition of the PPG signal. Moreover, unknown
gaps exist between the three PPG segments, the only guarantee being
that the BP measurements and all PPG segments are taken within a
period of 3 min. While this is not an idea situation and may
ultimately produce a certain degree of decoupling between the
PPG signals and the recorded BP value, the simultaneous
acquisition of BP and PPG may not be as important for PPG-BP
as for UCI, where ABP signals sometimes change rapidely. Indeed,
the acquisition protocol of PPG-BP guarantees a rest period as well
as a quiet and stable environement, which should provide more
stable BP values and PPG signals.

The preprocessing screening criteria were devised to catch the
most obvious signal issues, such as artefacts resulting from sudden
movements or sensor disconnections, that could be seen in UCI.
The exclusion thresholds were adjutsted incrementally to ensure
that, through visual inspection of a sample of 100 UCI segments,
only those with obvious issues were rejected. Thus, this step should
not be seen as an optimized method of eliminating all possible
segments with issues, but only those with the most flagrant signal
quality issues. The aim was to remove those early in order to have
less data to process and have a better baseline for statistical
comparison for filtering the remaining, lesser issues, in later
stages of processing. Segments are later excluded if fiducial
points cannot all be extracted according to the constrains, or if
the features produced are outliers.

The larger number of outliers in UCI compared to PPG-BP
raises the question of whether those segments could be a result of
extreme BP, and should not be rejected as outliers. It is however not
the case. The DBP distribution of rejected segments is almost
identical to that of retained segments. The SBP distribution is
only slightly more skewed towards lower values for rejected
segments with a mean and STD of 126.4 ± 21.8 mmHg
compared to 131.8 ± 21.4 mmHg for retained segments. The
large number of outliers can be explained by the lower signal
quality of UCI, where noise and remaining artefacts can result in
miss-detection of fiducial points or in abnormal pulse shapes,
generating anomalous feature values.

Although not presented here, two pulse decomposition
algorithms were evaluated to extract the g and h points: The
recursive algorithm described by Kontaxis et al. (2020) and the
gaussian fitting algorithm described by Couceiro et al. (2015). The
first one gave very inconsistant results for pulses with different
shapes, such as more pointed or wider top pulses and may not be
appropriate to compare between subjects with such differences. R2

estimation results were also lower by as much as 0.18 with that
method compared to the estimation method based on the
second derivative described in Section 2.3. For the gaussian
fitting method, R2 estimation results were similar while
computation time for feature extraction was several times
larger. The observation that some points in the second
derivative were highly correlated with the position of the
fitted gaussian components resulted in using those points
directly, as described in Section 2.3.
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To conclude, the various private datasets used in the indirect BP
measurement literature make comparing the published algorithms
difficult, and researchers have called for the creation of a
standardised dataset suitable to compare and validate BP
estimation algorithms (Solà and Delgado-Gonzalo, 2019).
MIMIC, and by extension UCI, are publicly available and contain
a large quantity of data, which may seem like a good basis for
comparison. However, results presented in this paper reinforces
suspicions of many researchers: that data sourced in intensive care
units, under unknown conditions, may have a skewed response to
BP and impair the generalisation of BP estimation algorithms. In
fact, the issue of cross-dataset generalization is neither new nor
limited to the field of BP estimation, but it is an issue often
overlooked. It has been argued that cross-dataset validation of
machine learning models developed for the medical field is
essential to evaluate their performance (Thambawita et al., 2020).
Yet, it is almost never done in the BP estimation literature. Cross-
dataset generalisation can be challenging in itself, for example
because of differences in equipment calibration, sampling, and
recording conditions. Using intensive care data introduces an
obvious sampling and recording condition bias. This is reflected
in our presented results as significant differences in the relationship
between BP and pulse features when comparing the UCI dataset to
data obtained under more controlled conditions, which may make
generalization more difficult to achieve. Besides using data that
better represents the entire population, researchers could turn to
data fusion and data augmentation to make their datasets more
comprehensive. The latter has been used successfully in
computer vision to improve cross-dataset performance,
including in the field of imaging photoplethysmography
(Nowara, 2021). In any case, we hope that the present paper
raises awareness of this issue, replaces the vague suspicions
surrounding intensive care data with quantified results that can
be referred to, and stimulates better validations of models on
different populations in future research.
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Forehead monitoring of heart rate
in neonatal intensive care

S. J. Stockwell1, T. C. Kwok2, S. P. Morgan1, D. Sharkey2 and
B. R. Hayes-Gill1*
1Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham,
United Kingdom, 2Centre for Perinatal Research, Lifespan and Population Health, School of Medicine,
University of Nottingham, Nottingham, United Kingdom

Heart rate is an extremely important physiological parameter to measure in
critically unwell infants, as it is the main physiological marker that changes in
response to a change in infant condition. Heart rate is routinely measured
peripherally on a limb with a pulse oximeter. However, when infants are
critically unwell, the blood supply to these peripheries is reduced in preference
for central perfusion of vital organs such as the brain and heart. Measurement of
heart rate with a reflection mode photoplethysmogram (PPG) sensor on the
forehead could help minimise this problem and make it easier for other
important medical equipment, such as cannulas, to be placed on the limbs.
This study compares heart rates measured with a forehead-based PPG sensor
against a wrist-based PPG sensor in 19 critically unwell infants in neonatal
intensive care collecting 198 h of data. The two heart rates were compared
using positive percentage agreement, Spearman’s correlation coefficient and
Bland-Altman analysis. The forehead PPG sensor showed good agreement
with the wrist-based PPG sensor with limits of agreement of 8.44 bpm, bias
of −0.22 bpm; positive percentage agreement of 98.87%; and Spearman’s
correlation coefficient of 0.9816. The analysis demonstrates that the forehead
is a reliable alternative location for measuring vital signs using the PPG.

KEYWORDS

photoplethysmogram, PPG, neonatal, heart rate, forehead, reflectance-mode, pulse
oximeter Min.5-Max. 8, NICU (neonatal intensive care unit)

1 Introduction

Pulse oximeters are a crucial piece of equipment when monitoring critically unwell
newborns in neonatal intensive care units (NICU). They are used to measure vital signs such
as heart rate and blood oxygen saturation (SpO2). These vital signs are obtained by
transmitting light through the body and investigating how the signal is modulated by
the pulsatile blood flow. This modulation of light can be detected and is referred to as the
photoplethysmogram (PPG). The PPG can be measured in two different modes,
transmission and reflection (Jubran, 2015). Transmission mode PPG is used on areas
where light can be transmitted through, such as the fingers, toes, and earlobes with the
detector placed on the opposite side to the light source. Reflection mode PPG can operate on
almost all parts of the body with sufficient cutaneous blood flow but with the detector placed
alongside the light source.

The PPG signal originates from oscillatory changes in volume of the microvasculature as
blood is pumped around the body by the heart. The PPG is regulated by several physiological
factors, including but not limited to respiration (Nilsson, 2013), blood pressure (Elgendi et
al., 2019) and neural activity (Khalid et al., 2022). These oscillatory changes can enable the
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extraction of multiple vital signs, such as heart rate, respiratory rate,
and blood pressure. The PPG is used for a range of applications but
here we focus on the newborn population. For details of other
applications of PPG, we refer the reader to a recent review (Park
et al., 2022).

Monitoring of the heart rate provides insight into the infant’s
condition and how well they are responding to treatment. Although
SpO2 provides oxygen status, heart rate is the first physiological
marker to respond when an infant’s condition deteriorates or when
treatment is successful (Wyckoff et al., 2020). Conventional pulse
oximeters rely on the transmission of red and infrared (IR) light
through the limb. Since the signal observed is due to pulsatile blood
flow, the quality of the signal is reduced in the presence of poor
peripheral perfusion. Reduced perfusion is common in the high-risk
group of newborns due to a variety of reasons, including iatrogenic
causes such as the use of inotropes (Dilli, Soylu, and Tekin, 2019)
(Kluckow, 2018) or bloodstream infections (Verstraete et al., 2015).
Hence, at a time when accurate heart rate measurement is crucial as
the infant becomes critically ill, impaired peripheral perfusion can
affect the ability of the conventional pulse oximeter to obtain reliable
signals and subsequent heart rate measurements.

The space surrounding an unwell newborn in NICU can be
especially limited with many wires and tubes being attached to the
newborn and to the respective monitors to display the data. A sensor
that uses wireless transmission to the bedside display not only
reduces the number of wires around the newborn but also frees
up vital space needed for important medical equipment, such as
cannulas. Furthermore, the reduction in wires also helps parents
establish skin-to-skin bonding (kangaroo care) with their newborn
earlier (Bonner et al., 2017).

The new device used in this study is a reflection-based green
light PPG probe mounted inside a cap placed on the forehead. This
probe benefits from the strong absorption of green light (λ =
525 nm) in both oxygenated and deoxygenated haemoglobin,
giving a large pulsatile signal. Furthermore, green light is
applicable for heart rate detection since the deeper penetration
depths provided by longer wavelengths, such as IR, is not
necessary to measure the pulsatile blood flow in the
microvasculature required to measure heart rate (Mejía-Mejía
et al., 2022). As such, this optimises the measurement of the
pulsatile signal of blood flow on the forehead.

The forehead provides a site with haemodynamic stability that
allows the heart rate to be determined using the blood supply of the
supraorbital artery and superficial temporal artery. These arteries are
in turn supplied by the internal and external carotid arteries, which
also supply blood to the brain. This makes the site much less
susceptible to poor peripheral perfusion since blood flow to the
brain is physiologically preserved at the expense of other less
important organs and peripheral limbs (Schallom et al., 2007)
(Berkenbosch and Tobias, 2006). Previous studies have
recommended the forehead for neonatal monitoring due to its
haemodynamic stability in comparison to the peripheries (Grubb
et al., 2014). The forehead has also shown promise as a suitable
location for non-contact PPG monitoring (Allen and Howell, 2014).
A further advantage of forehead monitoring is that the wrists of
neonates, especially preterm, are extremely small and it is not always
possible to place more than one piece of equipment. Should a
cannula be required, such as a peripheral venous line, PPG could

not be performed on that wrist. By implementing PPG on the
forehead, the wrists are available for cannulation where necessary.

We have previously studied a forehead-based PPG (fhPPG),
operating in multiple newborn clinical settings (NICU and delivery
room), demonstrating strong heart rate correlation with a gold
standard device (Henry et al., 2020). The aim of this study is to
compare a fhPPG sensor with a traditional, peripherally sited limb-
based pulse oximeter for heart rate monitoring in more critically
unwell newborns over a much longer study period (198 h compared
to 16 h previously).

2 Materials and methods

2.1 Study population

This cohort observation study was conducted at the Nottingham
University Hospitals NHS Trust, United Kingdom, following ethical
approval (East Midlands - Nottingham 1 Research Ethics
Committee 20/EM/0034). Informed parental consent was
obtained prior to infants being recruited into the study. One of
the aims of this trial was to evaluate the reliability and accuracy of
the heart rate algorithm of the fhPPG device in critically unwell
infants in the NICU. Infants were only recruited if they had an
arterial line as part of routine care and required monitoring of vitals
such as heart rate and blood oxygen saturation, the subject of a
future publication with the same fhPPG sensor used here. Infants,
regardless of gestational age or birthweight, were considered for the
trial if they met the aforementioned criteria. The trial was
terminated once the arterial line was removed from the infant. A
convenience sample of 20 infants was recruited. One infant was
excluded as there was no pulse oximeter (PO) data due to a lack of a
research compatible monitor from which to collect data.

2.2 Study design

The aim of this study is to compare a forehead-based PPG
(fhPPG) sensor with a traditional limb-based pulse oximeter for
heart rate monitoring. We have previously shown a device operating
in multiple clinical settings (NICU and delivery room)
demonstrating strong correlation with a gold standard (Henry
et al., 2020). The device has now been further trialed on a much
larger sample of data points (198 h compared to 16 h previously)
from critically unwell infants in neonatal intensive care to further
assess the ability to measure heart rates quickly and accurately over a
long continuous period.

For monitoring of the infant, the equipment consisted of an
fhPPG device (Surepulse Medical Ltd.) housed inside a cap of
appropriate size for the infant’s head and connected wirelessly to
a data logging system via an inbuilt Bluetooth module. The probe
has three LEDs of different wavelengths in the green (λ = 525 nm),
red (λ = 660 nm) and IR (λ = 950 nm) regions. For the detection and
calculation of heart rate, the fhPPG uses a green LED with a
photodiode to detect changes in the magnitude of detected light
as blood is pumped around the body. As part of routine care, a
transmission mode Nellcor MAX-N PO was placed on the infant’s
right wrist and was attached to a CARESCAPE Monitor B850
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(General Electric Healthcare). Custom software designed in
MATLAB 2021b (MathWorks) was used to collect synchronised
data in real-time from the B850 and stored on a laptop (Lenovo
Thinkpad L540, Lenovo Group Ltd.) running Windows 10. In
accordance with regular practice, if either of the devices
presented a poor or no trace, the device was repositioned in an
attempt to restore the signal. This was performed by neonatal nurses
when the trace observed on either the B850 or fhPPG display was
noticeably poor as is normal care practice. A diagram of the
equipment used, and site location is illustrated in Figure 1.

Each subject had multiple data recording sessions taken with the
fhPPG device with each record approximately 60–90 min long. After
each recording, the sensor was removed and placed back on the
infant’s head. This removal was necessary to check the skin integrity
under the sensor regarding redness and intact skin. Minimal redness
was observed and importantly, there was no skin damage. The
device has already met regulatory requirements for biocompatibility,
however, additional safety measures were taken proactively to
ensure the health of the subjects.

The raw fhPPG data is initially filtered in hardware by a 30 Hz
single pole switched capacitor filter. It is then further filtered in
software by a 3rd order linear phase bandpass filter (0.4—9 Hz) to
isolate the pulsatile signal of the PPG which has an expected
frequency between 1 and 4 Hz (60bpm—240bpm). The linear
phase response results in negligible distortion to the shape of
the pulse compared to non-linear phase responses (Liu et al.,
2021).

Prior to the beginning of each record, the clocks of both the
fhPPG and the B850 were aligned to synchronise the two data

streams. The B850 monitor generates heart rate data over a 10-s
window with an update rate of one second. The fhPPG was set to
the same window length as the B850. However, the fhPPG
produces a heart rate value every 5 s. As such, the B850 heart
rate data was downsampled to match the fhPPG, such that each
device observes the same period for each window.
Downsampling was chosen so that the time window observed
by both devices matched exactly as opposed to averaging the
B850 data.

2.3 Data analysis

Data analysis was performed using MATLAB. All continuous
variables were tested for normality with the Lilliefors test and
presented as mean and standard deviation (SD), median (range),
or median (IQR), as appropriate. On occasions, signal integrity
errors occurred with the B850 causing the data stream to output
constant values for the heart rate for the PO.Where this occurred, or
an error code was present, the data were disregarded and not
included in the analysis.

For all data pairs (fhPPG and PO), the following output
statistical values are calculated.

i) Positive percentage agreement (PPA)
ii) Bland-Altman plots (Limits of Agreement (LOA) and Bias)
iii) Spearman’s Correlation Coefficient (ρ)

When calculating the PPA, Spearman’s correlation coefficient,
and Bland-Altman statistics, “unsuccessful” paired data points were
removed from the analysis. An unsuccessful paired data point is
where either the fhPPG or the PO device: is unable to output a
reading due to an inability to calculate a heart rate; or a device
presented an error code; or device outputs a heart rate value outside
the standard operating ranges of 30–240 bpm. The removal of these
data points reduced the total amount of data available to process by
25 h, from 223 h to 198 h of paired data, for a total of 142,567 data
points.

For PPA, an fhPPG data point was considered in positive
agreement if the data point was within 10% of the paired PO
data point. This term provides a reliability indicator with an
element of accuracy compared to the PO. Correlation between
fhPPG heart rate and PO heart rate is shown with the
Spearman’s correlation coefficient. Spearman’s correlation
coefficient was chosen since the two values, fhPPG heart rate and
PO heart rate are not independent of each other, as they are both
attempting to measure the same signal. Finally, a comparison of
fhPPG and PO heart rate values was performed by Bland-Altman
analysis (Bland and Altman, 2007) reporting LOA and bias. The
modified Bland-Altman analysis was selected due to the differing
number of data points for each subject (Bland and Altman, 2007).
For Spearman’s correlation coefficient, the value of ρ is calculated by
taking the entire cohort of data. This is similar to the bias calculation
from Bland & Altman, 2007 as it accurately weights the data based
on the number of data points collected from each subject. The same
cohort technique was also performed for the PPA, such that those
subjects contributing the most data points to the analysis were
weighted correctly.

FIGURE 1
Diagram of the placement of the equipment on the subject in the
trial. The Nellcor PO was placed on the right wrist and the fhPPG on
the forehead.
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3 Results

The demographics of the 19 subjects are shown in Table 1. A
total of 187 recordings were made (median number of records 6/
infant, range 1-34). This corresponds to a median total record
length/infant of 7.16 h (IQR 4.12–17.05 h) with a minimum of
0.79 h and a maximum of 45.08 h/infant. In total 223 h of

recordings were undertaken with a total of 198 h of paired data
being analysed.

Figure 2 shows the cohort PPA against PPA thresholds in the
range of 2%–10%. At a threshold of 10% (where the fhPPG heart rate
was within 10% of the PO heart rate), the cohort had a PPA of 98.87%.
Pearson’s correlation coefficient had a strong correlation of 0.9816
(p < 0.001) between the PO heart rate and fhPPG heart rate. Bland-
Altman analysis of the data demonstrated a small negative bias
of −0.22 bpm with limits of agreement of 8.44 bpm. All fhPPG
and PO pairs used in analysis are shown in a pooled scatter plot
and Bland-Altman plot in Figures 3, 4 respectively.

Of the 19 subjects recruited, eight were considered preterm
(gestation age (GA) < 37 weeks). Of these eight, five were moderate
to late preterm (GA 32–37 weeks), two are very preterm (GA
28–32 weeks) and one is extremely preterm (GA < 28 weeks).
Table 2 shows the measurement statistics of two sub-cohorts of
the data, term subjects and preterm subjects.

4 Discussion

The aim of this trial was to assess the accuracy and reliability of
a head mounted fhPPG heart rate sensor on a large cohort of data
from critically ill infants not previously studied (Henry et al.,
2020). This was achieved as the dataset collected was over ten times
larger, with over 198 h of data compared to 16 h, albeit with only
19 subjects compared to 34 previously. The strongly positive
Spearman’s correlation coefficient shows that the fhPPG was
able to track the changes in the heart rate when compared with
the PO. When both devices were working in tandem, a very high
PPA was achieved when tested at all thresholds. This suggests that
the fhPPG consistently calculates heart rate to within a small
tolerance of the PO, with 98.87% of fhPPG heart rate
datapoints in positive agreement with the PO at a 10%
threshold. Given that the heart rate of the subjects was
generally between 100 and 200 bpm, the 81.53% PPA at a 2%
threshold shows that the fhPPG was within 2–4 bpm of the PO

TABLE 1 Demographics of the study. All values are either absolute values or
median and interquartile ranges (IQR). Primary reason for admission to NICU
given.

Demographics and characteristics Overall cohort
(N = 19)

Gestational age at birth (weeks + days) 37+2 (27+5–40+3)

Chronological age at recruitment (days) 2 (1–12)

Birthweight (g) 2920 (1060–3610)

Male sex, n (%) 7 (37)

Fitzpatrick skin type, n (%)

II 16 (84)

IV 2 (11)

V 1 (5)

Number of fhPPG records per subject 6 (1–34)

Principal cardiorespiratory diagnosis for neonatal
admission, n (%)

Persistent pulmonary hypertension 9 (47)

Congenital diaphragmatic hernia 3 (16)

Sepsis 2 (11)

Hydrops fetalis 2 (11)

Respiratory distress syndrome 1 (5)

Congenital heart defect 1 (5)

Right pneumothorax 1 (5)

Inotrope requirement, n (%) 12 (63)

Death before neonatal discharge, n (%) 1 (5)

FIGURE 2
A plot of PPA threshold against the cohort PPA value. The PPA threshold was defined as the fhPPG heart rate being within a certain percentage of the
PO heart rate.
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over 80% of the time. The high PPA, in combination with the
strongly positive Spearman’s correlation coefficient, suggests that
the fhPPG is not only able to track changes in heart rate but also to
do so accurately.

Previously, work has been undertaken to find the best
location for a pulse oximeter. Longmore et al. found that if
only heart rate and SpO2 is required, then the forehead is the
most suitable location with the smallest median error compared
to a finger-based PPG sensor (Longmore et al., 2019).
Furthermore, Peralta et al. (2017) showed that the forehead
provided greater accuracy than the finger when detecting pulse
rate variability, a derivative of the heart rate. However, along with

most forehead PPG comparison studies, these tests were
performed on adults. The previous work on reflection-mode
monitoring in newborns compared ECG (Grubb et al., 2014;
Henry et al., 2020) or PPG from a non-forehead site such as the
thigh (Johansson et al., 1999).

Whilst the magnitude of the bias decreased from the previous
trial (Henry et al., 2020) (−0.22 bpm vs. 0.6 bpm) there was an
increase in the LOA (8.44 bpm vs. 5 bpm). The aim of this trial
was to compare two optical based devices at different locations on
the body, forehead and wrist, in critically unwell subjects.
However, the use of a wrist-based PO is a limitation as
comparison to the more accurate ECG heart rate as suggested
by ISO 80601-2 (BS EN ISO 80601-2-61:2019) is recommended.
ECG probes were placed on the subject in line with standard care
practice, however ECG data for the whole dataset was unavailable
for comparison. The previous analysis of accuracy statistics
(RMSE and Bland-Altman) was conducted against ECG
(Henry et al., 2020) and is a possible reason why the LOA has
increased when compared with the previous data. Another
potential reason for the increase in the LOA in preterm cohort
is that the infants were on multiple vaso-active medications, such
as adrenaline and ventilation modalities that could interfere with
the PPG signal from either device. As these infants were much
sicker than those previously studied (Henry et al., 2020), these
data indicate that the fhPPG can still accurately monitor critically
ill infants with only small reduction in accuracy.

FIGURE 3
Scatter plot of heart rate between PO vs. fhPPG (n = 142,567) for
19 subjects.

FIGURE 4
Bland-Altman analysis of PO and fhPPG (n = 142,567) for 19 subjects.

TABLE 2 Accuracy results when separated into sub-cohorts of term and
preterm infants. Spearman’s correlation coefficient (ρ), bias and LOA are
presented.

Cohort\Variable N ρ Bias (bpm) LOA (bpm)

Cohort 19 0.9816 −0.22 8.44

Term 11 0.9819 −0.17 6.99

Preterm 8 0.9750 −0.46 12.41
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This study enrolled subjects of varying gestational age. Of the
19 subjects enrolled, 11 were term and eight preterm infants. For
the preterm infants, there was an increase in the bias and LOA
when compared with the term infants. The bias remained small,
however the LOA increased by 5.42 bpm to 12.41 bpm. This is
likely due to a variety of factors including the higher baseline
heart rate of preterm infants, often increased further with
caffeine treatment, and the differing pathologies between term
and preterm infants, such as an underdeveloped respiratory and
circulatory system. As a result, the ratio of the noise and motion
artefacts compared to the measured PPG signal in newborns is
larger compared to adults showing the importance of such a new
medical device for paediatricians use and provides a benchmark
for future improvements. The Spearman’s correlation coefficient
remained strongly positive however at 0.975, suggesting that the
fhPPG was able to track the changes in heart rate but the fhPPG
and PO disagreed on the value of the heart rate more so than in
term infants. As discussed previously this could be due in part to
errors in the PO as opposed to errors in the fhPPG heart rate, or a
combination of errors in both devices.

5 Conclusion

The results presented demonstrate that the forehead is an
equally suitable site for measuring reflectance mode PPG for
heart rate compared to a peripheral transmission mode PO.
The use of the forehead for monitoring PPG signals for heart
rate provides benefits when compared with peripheral limbs.
The forehead allows a measurement of the core blood supply
which is less susceptible to decreases in perfusion during times
of stress (Berkenbosch and Tobias, 2006). Additionally, it opens
up the possibility to use the wrists or ankles for other interventions,
such as cannulas. By coupling these advantages with the
ability to wirelessly transmit data to a remote screen, forehead
PPG also increases newborn accessibility allowing vital skin
to skin parental bonding and easier clinical access to the
infant. Further work investigating the effects of different
therapies and drugs on neonates would help assess further the
benefits of the forehead compared with the wrist for PPG
monitoring.
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Photoplethysmography (PPG) allows various statements about the physiological
state. It supports multiple recording setups, i.e., application to various body sites
and different acquisition modes, rendering the technique a versatile tool for
various situations. Owing to anatomical, physiological and metrological factors,
PPG signals differ with the actual setup. Research on such differences can
deepen the understanding of prevailing physiological mechanisms and path the
way towards improved or novel methods for PPG analysis. The presented work
systematically investigates the impact of the cold pressor test (CPT), i.e., a painful
stimulus, on the morphology of PPG signals considering different recording
setups. Our investigation compares contact PPG recorded at the finger, contact
PPG recorded at the earlobe and imaging PPG (iPPG), i.e., non-contact PPG,
recorded at the face. The study bases on own experimental data from 39 healthy
volunteers. We derived for each recording setup four common morphological
PPG features from three intervals around CPT. For the same intervals, we derived
blood pressure and heart rate as reference. To assess differences between the
intervals, we used repeated measures ANOVA together with paired t-tests for
each feature and we calculated Hedges’ g to quantify effect sizes. Our analyses
show a distinct impact of CPT. As expected, blood pressure shows a highly
significant and persistent increase. Independently of the recording setup, all PPG
features show significant changes upon CPT as well. However, there are marked
differences between recording setups. Effect sizes generally differ with the finger
PPG showing the strongest response. Moreover, one feature (pulse width at half
amplitude) shows an inverse behavior in finger PPG and head PPG (earlobe PPG
and iPPG). In addition, iPPG features behave partially different from contact PPG
features as they tend to return to baseline values while contact PPG features
remain altered. Our findings underline the importance of recording setup and
physiological as well as metrological differences that relate to the setups. The
actual setup must be considered in order to properly interpret features and use
PPG. The existence of differences between recording setups and a deepened
knowledge on such differences might open up novel diagnostic methods in the
future.

KEYWORDS

imaging photoplethysmography (iPPG), cold pressor test (CPT), pulse wave analysis
(PWA), blood pressure, photoplethysmography (PPG)
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1 Introduction

Today, photoplethysmography (PPG) is an extremely popular
metrological procedure. The technique supports multiple setups,
i.e., it applies to various body sites and features different modes of
application including finger clips, smart watches and non-contact
approaches by cameras denoted as imaging photoplethysmography
(iPPG). PPG signals and numerous features that can be derived
from them carry wide information on the physiological state
Almarshad et al. (2022); Elgendi (2012); Park et al. (2022). Recently,
the usage of multiple PPG at a time, sometimes referred to as
multisite PPG, has attracted attention as it even extends the
possibilities for PPG based analyses Chan et al. (2019). There are,
however, still limitations dealing with PPG. Such limitations relate
to the origin of PPG signals, local peculiarities of signal acquisition,
the interaction of multiple PPG signals, the behavior of features
in dependency to influencing factors and features’ interpretation.
Research on such aspects can deepen the understanding of
prevailing physiological mechanisms, help to optimize metrological
equipment and pave theway for improved or novelmethods for PPG
analysis.

This contribution is dedicated to a deeper characterization
of PPG considering different measurement sites and acquisition
modes. Our comparison includes contact PPG recorded at the
finger, contact PPG recorded at the earlobe and iPPG, i.e., non-
contact PPG, recorded at the face. Recordings at the finger are the
traditional setup and most common way of application. Earlobe
PPG is used less frequently but also well known as it can feature
advantages, e.g., with respect to motion artifacts. iPPG is a relatively
novel approach, which has become extremely popular over the last
years. iPPG uses cameras to record the skin. The technique exploits
subtle variations in the intensity of reflected light, which varies
with blood filling of superficial vessels. Multiple current reviews
provide good overviews on the fundamentals and applications
of iPPG Molinaro et al. (2022); Selvaraju et al. (2022); Shao et al.
(2021); Zaunseder and Rasche (2022). According to them, the vast
majority of available works in the field of iPPG direct at heart rate
and heart rate variability. However, there is a growing interest on
morphological analyses and iPPG usage beyond heart rate.

Within this contribution, we employ PPG in the aforementioned
three setups and focus on morphological features during a cold
pressor test (CPT), i.e., a painful stimulus. CPT is a common
tool in research and carries potential for diagnostics as well. We
hypothesize that PPG derived features undergo changes upon CPT
in all recording setups but we would expect differences between
them.The presented research is worthwhile from two points of view.
On the one hand, a more detailed understanding on the behavior
of PPG derived features from single PPG signals and research on
the interaction between different PPG is highly beneficial as it
might contribute to refine existing analysis approaches or develop
novel ones Natarajan et al. (2022). Particularly with respect to iPPG,
ongoing debates regarding iPPG’s origin, a limited knowledge on
influence factors and a reduced number of works dedicated to
morphological analysis require basic research. On the other hand,
further research on the CPT is beneficial as the physiological
basics are not yet fully understood and standard values have to be
established in order to develop strategies to integrate the CPT for
diagnostic or prognostic purposes Lamotte et al. (2021).

The remainder of this work is structured as follows. Section 2
provides the background on the CPT and contains the results of a
literature review concerning PPG usage during CPT. In section 3
we describe the used data, which originates from own multimodal
experiments, the applied processing method and the statistics.
Section 4 and section 5 provide results and discuss them.

2 Background on PPG during cold
stress

2.1 Cold pressor test

Cold is known to elicit multiple physiological reactions. The
CPT, i.e., the defined application of a cold stimulus, was firstly
described for research purposes by Hines and Brown (1936);
Lamotte et al. (2021). Since then, the CPT has become a widely
used tool to study the cardiovascular system and autonomous
nervous system, most often in terms of blood pressure as well as
heart rate and its regulation Bali and Jaggi (2015); Mitchell et al.
(2004); Mourot et al. (2009). The most common experimental CPT
design requires immersing the hand into cold water. According
to published works, water temperatures vary between 0°C and
7°C (even higher temperatures up to 20°C have been considered
but then the perception is classified as cold sensation rather than
as pain). Duration of immersion also varies, typically between 1
and 6 min while termination upon participant’s request is always
possible. Immersion generates cold pain triggering sympathetic
activation and parasympathetic withdrawal. Sympathetic activation
causes a pronounced peripheral vasoconstriction. Positive inotropic
and chronotropic effects due to both, sympathetic activation
and parasympathetic withdrawal, accompany the peripheral
vasoconstriction. Consequently, CPT increases blood pressure
and heart rate immediately after immersion. However, heart rate
was shown to be affected to a lesser extent or even to decrease
again shortly after a first increase. A potential explanation is
the baroreceptor reflex. Increased blood pressure triggers the
baroreceptors leading to parasympathetic activation and a reduction
of heart rate.

As a result, CPT has been consistently shown to yield a rather
persistent blood pressure increase duringCPT execution. Heart rate,
in turn, shows amore indifferent and individual pattern during CPT
Bali and Jaggi (2015); Mitchell et al. (2004); Mourot et al. (2009).

2.2 PPG during CPT

As stated before, the CPT is a widely used experimental
technique. Many works explored and summarized the effect of CPT
on blood pressure and heart rate. PPG during CPT is common but
most often it serves to capture heart rate and its variability. The
morphological analysis of the photoplethysmographic waveform
duringCPT is less common. To reflect the current state of knowledge
on CPT’s effect on the photoplethysmographic waveform, we
conducted a systematic literature review using pubmed. The
review was done according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA). Our search
considered articles that had the word “cold” and either the word
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“PPG”, “photoplethysmogra*“, “oximet*” or “oxymet*” in their title
or abstract. We considered original articles only (reviews were
excluded). Further inclusion criteria were the use of finger and/or
earlobe PPG and/or iPPG and the examination of features related
to the shape of PPG signals (not only heart rate and heart rate
variability). In addition, inclusion required that the cold stimulus
of the CPT was not applied at the measurement site (cooling the
measurement site introduces additional effects beside the effect
of painful stimulus). The search was limited to studies that were
conducted on or regarding human subjects. Additional exclusion
criteria were the unavailability of full texts or articles written in
languages other than English or German.

Figure 1 shows the PRISMA flow chart. The initial search
resulted in 203 articles. 15 articles were excluded for non-fitting
language. 188 works were then further reviewed to exclude works
that we deemed unfitting based on titles, abstracts or full texts. After
screening the results for unfitting titles we excluded 83 articles. Of
the remaining 105 articles we excluded another 62 based on their
abstracts. Four additional articles were excluded for missing/non-
existent full texts. After review of the full texts of the remaining 39
articles, we excluded 29 of themandfinally endedupwith ten articles
that matched our inclusion criteria. Common reasons to exclude
articles during review were, for example, the lack of a CPT, cooling
at the measurement site and lacking usage of the PPG waveform.

Table 1 summarizes details on the studies that were finally
included. The considered works invoked seven to 33 subjects.
Healthy subjects were always considered. Five works also included
patients. The way cold stress was induced varied between
studies. Besides immersion of the hand into water Awad et al.
(2001b), Awad et al. (2006); Hamunen et al. (2012); Jaryal et al.
(2009); Cooke et al. (1993); Kurki et al. (1990), finger immersion
Suzuki et al. (1994), foot immersion Natarajan et al. (2022) and
holding an ice bottle in the hand Lin et al. (2020) were described.
Used temperatures to yield a cold response varied in a wide range
up to 20°C Cooke et al. (1993). Some works also employed multiple
temperatures to investigate the effect of the actual temperature
Suzuki et al. (1994); Veluswamy et al. (2020). As PPG measurement
site, fingers were most common. Regarding the used features, by
far the most often used feature was the amplitude. Besides, features
related to the slope and rise time are common. Other features, like
areas and derivative features, have also been considered (particularly
as some researchers invoked large feature sets Lin et al. (2020);
Natarajan et al. (2022)) but are not that common.

The studies rather consistently describe a significant effect of
CPT on the amplitude with very few exceptions (concerning the
earlobe in PPG Awad et al. (2001b) and the finger in Kurki et al.
(1990)). Most other features also show significant changes upon
CPT. Changes exist (almost) independently of the actual way of
stimulation though effect sizes increase with decreasing stimulus
temperature. Only few works directly compare PPG from different
sites. Awad et al. (2001b), Awad et al. (2006) describe a much more
pronounced response within the finger PPG compared to earlobe
PPG visible in multiple features including amplitude and area.
Natarajan et al. (2022) make use of PPG features to estimate blood
pressure. Dependent on the measurement site, different features
can make a valuable contribution. Such a finding also hints at a
non-uniform local behavior. With respect to pathology, available
works indicate changes Kurki et al. (1990); Veluswamy et al. (2020);

FIGURE 1
PRISMA flow diagram on the literature research regarding the effect of
CPT on the waveform of the PPG. Table 1 contains details for the
included works.

Jaryal et al. (2009); Cooke et al. (1993). There is, however, no
uniform behavior but the effects caused by CPT can be less or more
pronounced according to the specific disease.

3 Materials and methods

3.1 Data

Overview: The used data originates from own multimodal
experiments invoking healthy volunteers of Caucasian origin. The
whole experimental protocol contained different stimuli, namely,
paced deep breathing (PDB), multiple orthostatic maneuvers and
CPT. Throughout the experiment, we recorded multiple vital signs
and videos. Below we detail the experimental procedure and
the technical equipment. All subjects gave written consent. The
study was approved by the Ethics Committee at TU Dresden (EK
311082018).

Procedure: Figure 2 provides an overview on the whole
experimental protocol and the part of it that was considered in this
contribution. The experiment lasted approximately 49 min. During
execution, the tilt-table was alternated between supine and upright
position every 7 min defining seven phases. Between orthostatic
maneuvers participants had resting epochs and executed CPT or
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PDB. Each participant executed at least one CPT (denoted as CPT1),
whichwas randomly assigned to phase one or phase three. A random
subset of participants executed another CPT (CPT2) in phase five.
The presented investigation uses data from CPT1 (i.e., CPT2, tilting
and PDB are not relevant for this contribution). CPT required
participants to put their left hand into cold water (temperature was
approximately 4°C, which should yield a strong effect according
to the literature Suzuki et al. (1994); Veluswamy et al. (2020)).
Immersion was intended for 60 s but participants could terminate
before that time if they felt (too) uncomfortable. During immersion,
participants stayed in supine position and tried to keep the position
of their face and right arm as constant as possible. For the analysis,
we defined the following three time intervals of 10 s in relation to
the time of immersion tCPT: baseline (BL), starting at tCPT − 30 s,
stimulation 1 (ST1), starting at tCPT + 20 s and stimulation 2 (ST2),
starting at tCPT + 40 s. According to the preceding interval at rest,
we assume BL to represent a stable state, which is interchangeable
for phase one and phase three. For ST1 and ST2 we expect a
notable effect of the pain stimulus. The time interval ST1 was
chosen as we assumed the painful stimulus already having caused
an effect. ST2 represents the latest possible interval to see if different
recording setups diverge over the experiment. As subjects were told
shortly before the end of CPT to be prepared for removing their
hands, we avoided to use the last 10 s of the record. Note that we
do not expect the reaction upon cold stress to be terminated at
ST2. However, our investigation does not aim to explore the full
temporal behavior upon cold stress but explores the immediate
effect of a painful stimulus considering different measurement
sites and acquisition modes. According to Hamunen et al.
(2012) there seems to be a “saturation of unpleasantness” after
approximately 60 s, which renders 60 s a suitable duration.

Equipment: The used equipment is depicted in Figure 3. Vital
signs and RGB videos were continuously recorded throughout
the whole experiment. We used two biosignal amplifiers Biopac
MP36 (Biopac; Goleta, United States of America) and reflective
photoplethysmographic signal transducer SS4LA (Biopac; Goleta,
United States of America) to record (contact) PPG signals from right
earlobe and right index finger at a sampling rate of 2000 Hz with
an emitter/detector wavelength of 860± 60 nm (we also recorded
PPG at right antecubital fossa and right shoulder area but they
are not relevant to this contribution). In addition, we used the
Finapres Nova (Finapres Medical Systems; Enschede, Netherlands)
to record continuous non-invasive blood pressure and a single lead
electrocardiogram (Einthoven II). Videos were recorded by three
UI-3060CP-C-HR Rev 2 RGB cameras (IDS Imaging Development
Systems GmbH; Obersulm, Germany). The cameras were mounted
on the tilt table with fixed orientation regarding the subject during
the experiment. For this work, solely camera 2 is of particular
interest. This camera recorded the subject’s head at a distance of
approximately 40 cm. The recorded area covered the head and a
small portion of the shoulders. Videos were captured at a color
depth of 12 bit, a frame rate of 25 Hz and a spatial resolution of
1,280× 960 pixel. All videos were stored in a proprietary format
with lossless compression. The recordings took place in a controlled
environment using indirect artificial illumination by two spotlights
Walimex pro LED Sirius 160 Daylight 65 W (color temperature
5,600 K, color rendering index ≥90) (WALSER GmbH & Co. KG;

Gersthofen, Germany). Inputs from cameras and Finapres were fed
into the Biopac MP36 biosignal amplifiers for synchronization of
modalities.

Used data: Overall, 61 recordings were carried out using the
setting described above. We excluded 18 recordings which showed
intermittent technical problems (early recordings partially suffered
from a software issue, which could lead to missing data in at least
one video or signal; we completely discarded such recordings for
this analysis). We further excluded four recordings, which were
stopped upon participant’s request owing to malaise from tilting.
Overall, we include 39 recordings in our analysis (13 female,
26 male; age: 30.5± 12.0 years; body height: 177± 7.83 cm; body
weight: 76.5± 14.9 kg). As stated before, from each recording we
only consider CPT1.

3.2 PPG processing

In general, we applied the same approach to process PPG
and iPPG signals. However, iPPG processing first requires signal
formation including region of interest (ROI) segmentation, ROI
tracking and signal extraction. The further processing of all signals
- contact and non-contact PPG signals - included filtering, beat
detection, template construction and feature extraction by means
of pulse wave decomposition (PWD) and using derivatives of the
respective signals.

iPPG signal formation: To acquire iPPG signals from our
videos, we manually defined polygons for the forehead as our ROIs
in the first frame of the first interval (BL). We also defined ROIs for
both cheeks and used the combination of all face ROIs as a “super”
ROI to mimic common ROIs generated by automatic segmentation.
For each of the following intervals ST1 and ST2, we shifted the
ROIs to fit slightly changed body positions.TheROIs remained static
for the duration of each interval. We spatially smoothed the videos
with an averaging filter of 10 pixel width and then obtained iPPG
signals by averaging all pixels inside the ROI. The signals were then
inverted to resemble the conventional PPG and linear interpolated
to a sampling rate of 2000 Hz in order to match the sampling rate of
contact PPG. Figure 4 shows an example of the defined ROIs.

Signal processing: We filtered the PPG and iPPG signals
with a bandpass filter (fifth-order Butterworth filter with cut-
off frequencies of 0.4Hz and 8 Hz). Single beats from the PPG
signals were detected with the method of Làzaro et al. (2014).
The method considers the steepest ascent as the detection point
ti. Around each detection ti we defined a beat segment in the
interval [ti − 0.45 ⋅ B̃BI; ti + B̃BI], where B̃BI is the median length
of beat-to-beat intervals (BBI) within the considered interval. All
detected beat segments were correlated pairwise. We discarded beat
segments with a mean pairwise correlation lower than 0.3. The
remaining segments were ensemble averaged and potential linear
trends were removed to form a beat template. Figure 5 shows
exemplary template generations.Themedian number of usable beats
for template generation per measurement site was 10.

Feature extraction: We applied pulse wave decomposition
and recomposition to each template for denoising. We used the
GammaGaussian2 decomposition algorithm (i.e., decomposition
by a Gamma kernel and a Gaussian kernel, see Figure 6) that
was described previously Fleischhauer et al. (2020). A reconstructed
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FIGURE 2
Overview on the whole experimental protocol (lower part) and CPT1 (upper part). This work uses data from CPT1 only, which was randomized
executed in phase one or phase three. For each subject we define three time windows of 10 s: baseline (BL), stimulation 1 (ST1) and stimulation 2 (ST2).
Independently of the CPT execution in phase one or phase three, there was a resting epoch for approximately 5 minutes before the CPT.

FIGURE 3
Illustration of the used equipment.

beat y for the Gamma-Gaussian algorithm with 2 kernels can be
described as:

yGammaGaussian2 (t,θ) =
βα1
1

s1 ⋅ Γ (α1)
tα1−1e−β1t + a2 ⋅ e

( −(t−μ2)
2

2σ22
)
. (1)

Each reconstructed beat is a function of time t and an
optimization vector θ = [a,μ,σ]. The interior point optimization
algorithm fits the kernels to the template beat using the constraints
a1 > a2,μ1 < μ2, i.e., the Gamma kernel has to occur before the
Gaussian kernel and its amplitude has to be higher.The initial values
for the algorithm are explained in detail in Fleischhauer et al. (2020).
Figure 6 displays the processing of the template beats. Considering
the literature on PPG during CPT and common procedure in

PPG processing, we selected four features for analysis: amplitude
(maximum of the template), slope (maximum of the first derivative
of the template), area (area under the template) and PWHA (pulse
width at half amplitude). Figure 6 illustrates the definition of these
features.

3.3 Reference parameters

In addition to the PPG features under test, we considered blood
pressure and heart rate as reference to verify if CPT yielded the
expected effect. We used systolic blood pressure (SBP), diastolic
blood pressure (DBP) and heart rate by Finapres Nova. The device
yields values for such features for each single beat. From SBP and
DBP we additionally derived pulse pressure (PP). For each interval
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FIGURE 4
Exemplary ROI definition. Shown are three facial ROIs (forehead (blue
polygon), right cheek (yellow polygon), left cheek (orange polygon)).
To derive an iPPG signal we use the forehead ROI alone and all ROIs in
combination as a “super” ROI.

(BL, ST1, ST2) we calculated one single value for each reference
parameter by taking the median value of single beats’ values in the
respective interval.

3.4 Statistical assessment

To evaluate the effect of CPT, we firstly conducted repeated
measures ANOVA for each recording setup and feature on a
significance level of α = 0.05 with no grouping of the subjects. For
significant ANOVA results, we conducted paired t-tests as post hoc
tests for all combinations of intervals (BL vs ST1, BL vs. ST2 and
ST1 vs ST2). We tested each of these intervals against each other,
thereby creating non-orthogonal contrasts.Thus, we used theHolm-
Bonferroni correction to adjust the p values of our post hoc tests
with the respective correction factor (k− i+ 1) (with k being the
number of conducted tests and i the rank of the p values sorted
in ascending order) Holm (1979). As a measure of effect size we
calculated Hedges’ g Hedges (1981).

g = J (df) ⋅
x− y
s

(2)

s = √
(nx − 1) s

2
x + (ny − 1) s

2
y

nx + ny − 2
(3)

J (df) =
Γ (df/2)

√df/2Γ ((df− 1)/2)
(4)

df = nx + ny − 2 (5)

Hedges g is a modification of Cohens d. It is defined as the
difference of the means (x and y) of two groups of sizes nx and ny
divided by their pooled empirical standard deviation s. The biased
estimator is corrected by the factor J (df) that depends on the degrees
of freedom df. Effect sizes g < 0.5 are considered small, while g > 0.8

is considered large Cohen (1988). For visualization purposes, we
normalized all response variables, i.e., the PPG features, to the mean
of the three intervals for the respective response variable. The same
statistical procedure applies to the reference parameters SBP, DPB,
PP and heart rate but we omitted normalization as absolute numbers
are relevant there.

4 Results

Figure 5 shows templates of one subject from all recording
setups and time intervals as example. An overview on templates of
all subjects is provided in the Supplementary Material. PPG quality
should be mentioned here. While iPPG is known for limited signal
quality, contact PPG was expected to be of high quality. However,
in some cases, even contact PPG showed unstable beat shapes and
distortions (e.g., see Figure 9). We excluded three subjects as no
beat template could be generated in at least one of the analysis
intervals. Another subject was excluded because ofmissing reference
data. Those subjects were completely excluded from all analyses.
Accordingly, the following results and statistical assessment base on
data of 35 subjects.

Figure 7 depicts the behavior of reference parameters (SBP,DBP,
PP, heart rate) for all analysis intervals. For better visibility, we
omitted outliers in those plots (values are defined as outliers if they
are greater than q3 + 1.5 ⋅ IQR or less than q1 − 1.5 ⋅ IQR, where q1 is
the first quartile, q3 is the third quartile and IQR is the interquartile
range). Table 2 shows the corresponding number of outliers.
Repeated measures ANOVA yielded outcomes of p < 0.001 for all
reference features. SBP and DBP, both exhibit highly significant
(p < 0.001) differences in pairwise comparisons of analysis intervals.
PP shows a highly significantly increase in ST2 compared to BL and
ST1 (p < 0.001). There is also a statistically significant increase from
BL to ST1 (p < 0.05). Heart rate increases significantly between BL
and ST1 (p < 0.001) and BL and ST2 (p < 0.01).

Figure 8 depicts the behavior of PPG features over all analysis
intervals for all recording setups. Again, for better visibility, we
omitted outliers in those plots. Table 2 shows the corresponding
number of outliers. The repeated measures ANOVA yielded
highly significant differences (p < 0.001) for all features of all
measurement sites and recording setups except the slope of both
iPPG measurements. There, the difference was significant with
p < 0.01.

In all measurement sites, the amplitude shows a statistically
significant decrease from BL to ST1. For both contact PPG, the
significant decrease can also be observed between BL and ST2.
However, this behavior is not found for the iPPG measurements.
There, the amplitude exhibits a significant increase between ST1 and
ST2 and no significant difference between BL and ST2. The slope
also decreases significantly during BL and ST1 on all measurement
sites and recording setups. Only in the earlobe PPG a significant
decrease between ST1 and ST2 can be observed. The area behaves
similarly to the amplitude, though ST2 is significantly lower than BL
for both iPPG measurements. Both iPPG and the earlobe PPG show
a significant decrease in PWHA from BL to both ST1 and ST2. The
finger PPG significantly increases over time.

Tables 3, 4 show the effect sizes of the reference andPPG features
over the analysis intervals. We found small to medium increases
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FIGURE 5
Exemplary template generation of one subject. From left to right: earlobe PPG, finger PPG, forehead iPPG, super ROI iPPG. The upper row shows
signals during BL. The middle row shows signals during ST1. The lower row shows signals during ST2. Black lines indicate mean beat templates; gray
lines indicate the corresponding beat segments.

FIGURE 6
Visualization of the features derived from a beat template. The upper
figure shows the beat template (solid black line) and the kernels
(dashed black lines). The vertical arrow indicates the feature amplitude,
while the horizontal arrow shows the feature PWHA. The light gray
area marks the feature area. The lower figure shows the first derivative
of the recomposed template beat (solid black line). The vertical arrow
indicates the maximum of the first derivative, i.e., the feature slope.

for the heart rate and PP and medium to large increases for SBP
and DBP. Notably, our analysis indicates large effect sizes in finger
PPG for all features except PWHA, which exhibits small to medium

increases between all intervals. For all other PPGmeasurements, the
effect sizes are small.

5 Discussion

5.1 Main findings

General response to CPT: In general, the found behavior upon
cold stress in our data matches the physiological expectation very
well. Immediately after immersion, i.e., at ST1, there is a pain
related increase in blood pressure and heart rate. In ST2, both,
blood pressure and heart rate, remain increased but heart rate
behaves less deterministic (whichmanifests in an increased standard
deviation at ST2, see Figure 7). Our observations qualitatively
and quantitatively comply to earlier studies. With respect to
blood pressure, e.g., Mourot et al. report SBP increases of 14.5
and 18.1 mmHg Mourot et al. (2009), Lin et al. report 14 mmHg
Lin et al. (2020), Saab et al. report 14.5 mmHg and Jauregui-Renaud
et al. report 11.4 mmHg Jauregui-Renaud et al. (2001). With respect
to heart rate, a more indifferent behavior or minor effects were
previously reported, e.g., by Mourot et al. (2009) and Lin et al.
(2020).

Contact PPG analysis: Our results regarding different PPG
features from finger and earlobe PPG are mostly consistent with
previous results as derived from our literature review.This concerns,
first of all, the amplitude, which undergoes a fundamental decrease
uponCPT. Slope and area also decay in finger PPG and earlobe PPG.
These features show much more pronounced effects at the finger
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FIGURE 7
Behavior of the reference features (heart rate, systolic blood pressure (SBP), diastolic blood pressure (DBP) and pulse pressure (PP)) over all analysis
intervals. If significant, post hoc tests’ outcome is denoted by * (p < 0.05), ** (p < 0.01) or *** (p < 0.001). The numbers above the lines indicate effect
sizes and are provided for significant post hoc tests only. Outliers are not shown; the numbers of outliers are provided in Table 2.

FIGURE 8
Behavior of the features derived from PPG and iPPG (amplitude, slope, area, PWHA) over all analysis intervals. First row: PPG (finger), second row: PPG
(earlobe), third row: iPPG (forehead), fourth row: iPPG (super). If significant, post hoc tests’ outcome is denoted by * (p < 0.05), ** (p < 0.01) or ***
(p < 0.001). The numbers above the lines indicate effect sizes and are provided for significant post hoc tests only. Outliers are not shown; the numbers
of outliers are provided in Table 2.
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FIGURE 9
Exemplary template generation of one subject showing reduced quality templates. From left to right: earlobe PPG, finger PPG, forehead iPPG, super ROI
iPPG. The upper row shows signals during BL. The middle row shows signals during ST1. The lower row shows signals during ST2. Black lines indicate
mean beat templates; gray lines indicate the corresponding beat segments. The overall mean pairwise correlation of the beat segments forming the
template for the finger PPG, forehead iPPG and super iPPG during ST1 and ST2 is reduced compared to those in Figure 5. Reduced quality templates
lack distinct features (e.g., completely missing dicrotic notch in forehead iPPG during ST2, overall mean pairwise correlation: 0.71; corresponding
overall mean pairwise correlation in Figure 5: 0.96) or exhibit unexpected morphologies (e.g., finger PPG during ST2, overall mean pairwise correlation:
0.64; corresponding overall mean pairwise correlation in Figure 5: 0.99) due to low correlation of the beat segments forming a template.

than at the earlobe. Such effects of CPT to PPG signals in general
and to the considered features in particular was expected. Even local
differences were expected. Though only a few studies investigated
local differences upon CPT Awad et al. (2001b), Awad et al. (2006),
a couple of works describe the variability of PPG features to be
dependent on the measurement site indicating local differences
Allen and Murray (2000); Bentham et al. (2018); Hernando et al.
(2019). The found local behavior, i.e., stronger effects at the
finger, reflects the high innervation of the finger vascular bed
by α-adrenoceptors and a related responsiveness to sympathetic
activation. Blood vessels at the earlobe should be affected by
sympathetic activation as well, but to a lesser extend (a decreasing
amplitude despite an increasing PP hints at a vascular response
at the earlobe as well). The fourth feature, PWHA, turned out to
be special. We therefore discuss PWHA in a separate paragraph
below.

iPPG analysis: Our results reveal significant differences of
morphological features as a response to cold stress. The behavior
of the considered ROIs is thereby highly correlated. This is due to
the fact that both ROIs include the forehead and forehead as well as
cheeks are known to be suitable for signal extraction Lempe et al.
(2013). A close look to the quantitative results suggests slightly
stronger effects for the forehead ROI. This is reasonable as slightly
deviating behavior of forehead and cheeks would introduce some

blurring of effects. However, as the results are very similar, the
following discussion does not differentiate between such ROIs.

The close relation of iPPG features to earlobe PPG underline the
possibility to use iPPG for monitoring purposes beyond heart rate.
Though the vast majority of available works on the iPPG focuses
on heart rate, a growing number of works invokes morphological
analyses. Djeldjli et al. recently presented a comparison of finger
and earlobe PPG as well as iPPG Djeldjli et al. (2021). The work
analyses several features including amplitude, area and PWHA
during normal breathing intervals and during breath hold intervals.
As in our study, their results show high correlations between earlobe
PPG and iPPG during breath hold intervals for amplitude, area
and PWHA1. Other related works do not compare iPPG directly to
contact PPG but investigate the suitability of morphological features
with respect to blood pressure estimation. E.g., Ding et al. showed
PWHA to decay with blood pressure Ding et al. (2021). Rong
and Li (2021) and Jain et al. (2016) used multiple morphological
features to estimate blood pressure. Though not all such works
allow statements on the specific behavior of single features, they
emphasize the feasibility of morphological iPPG analysis. With

1 Note that normal breathing intervals in Djeldjli et al. (2021) partially suffered
from lacking feature variability; as correlation in such cases is misleading, our
statements here only relate to results for breath hold intervals.
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TABLE 2 Number of outliers not shown in boxplots for reference
parameters and PPG features.

Feature Measurement BL ST1 ST2

heart rate References 1 2 3

SBP taken from 1 1 1

DBP Finapres 1 1 1

PP Nova 1 1 1

amplitude PPG finger 1 1 1

amplitude PPG earlobe 2 2 1

amplitude iPPG forehead 2 1 2

amplitude iPPG super 2 1 1

slope PPG finger 1 1 1

slope PPG earlobe 2 2 1

slope iPPG forehead 2 1 3

slope iPPG super 3 1 2

area PPG finger 1 1 1

area PPG earlobe 1 1 1

area iPPG forehead 1 1 1

area iPPG super 2 1 1

PWHA PPG finger 1 1 1

PWHA PPG earlobe 2 5 1

PWHA iPPG forehead 2 1 2

PWHA iPPG super 1 1 1

TABLE 3 Effect sizes for reference features. Reported aremean effect sizes
and their respective confidence interval borders (confidence level of 0.95) in
brackets. Effect sizes for non-significant differences are colored grey.

Feature BL to ST1 BL to ST2 ST1 to ST2

heart rate 0.52[0.03,1.00] 0.39[−0.09,0.87] −0.11[−0.59,0.37]

SBP 0.53[0.04,1.02] 1.23[0.71,1.75] 0.65[0.16,1.14]

DBP 0.54[0.05,1.02] 1.38[0.84,1.90] 0.77[0.27,1.26]

PP 0.36[−0.12,0.84] 0.69[0.20,1.18] 0.32[−0.17,0.79]

respect to the competing theories on the origin of iPPG - the
volumetric model as in contact PPG Moço et al. (2018) versus an
elastic deformation model Kamshilin et al. (2015) - iPPG’s close
relation to earlobe PPG in our study as well as the results of related
works can be understood as strong hints that signal formation in
iPPG corresponds to the volumetric model rather than to tissue
compression.

Even if the global behavior of iPPG highly resembles earlobe
PPG, it is worth taking a closer look because one can observe
differences, which have been rarely discussed before. While features
of contact PPG remain reduced at ST2, iPPG shows already an
increase. The finding is not that striking as inversion in PWHA
(see below), but we observed a similar effect in a different group
before Fleischhauer et al. (2019). As in Fleischhauer et al. (2019),
the early return to higher amplitudes after CPT in iPPG suggests

that iPPG signals are driven by systemic hemodynamics and only
to a lesser extent dependent on local vascular effects. Such behavior
is reasonable as iPPG signals should be strongly affected by very
superficial vessels. Local vasoactive vessels, in turn, contribute less
to the signal formation in facial iPPG, at least as it concerns the
green channel. Systematic differences between PPG and iPPG as
we describe have rarely been addressed before. E.g., Djeldjli et al.
(2021) rely on the premise that iPPG should resemble contact PPG.
In deep learning approaches, the contact PPG can serve as target
function to train deep networks to extract signals from videos
Ni et al. (2021). Said premise and the usage for training are certainly
valid under a “global view” but theymay discard specific information
available via iPPG. The specific behavior of iPPG renders deepened
investigations and combined analyses with contact PPG to exploit
their interactions for diagnostic purposes very interesting.

PWHA: PWHA deserves particular attention as it shows an
inverse behavior between recording setups in our experiment.While
PPG signals from earlobe and face show a significant decrease,
finger PPG shows a significant increase in our data. PWHA is
commonly related to systemic vascular resistance (SVR) Awad et al.
(2007); Park et al. (2022). Marked differences in dependency to
the measurement site are thus not intuitive and need detailed
consideration.

Table 5 overviews previous works that invoked PWHA. Our
results regarding face and earlobe PPG are in line with Ding et al.,
who recently reported a negative correlation of PWHA from facial
iPPG and blood pressure Ding et al. (2021). Awad et al. report
differences in PWHA fromfinger and earlobe in patients undergoing
coronary artery bypass grafting Awad et al. (2001a). In contrast to
our analysis, however, Awad et al. find PWHA of the earlobe PPG
to be positively correlated with SBP while PWHA of the finger PPG
exhibits a negative correlation. Even different from our results, Teng
and Zhang (2003) describe a negative correlation between PWHA
from finger PPG and SBP. Awad et al. also examined morphologic
changes of finger and earlobe PPG during CPT for a healthy cohort
Awad et al. (2006). They found PWHA to increase significantly
duringCPT for earlobe PPG and to decrease for finger PPG.Notably,
none of the other features (amplitude, area, slope, downslope) of the
earlobe PPG changed significantly during immersion. In contrast,
the CPT significantly impacted all finger PPG features. Awad et al.
explain this behavior with the blood relocating from the finger
to other less vasoconstricted sites. The increased blood volume
and the assumption of already maximally dilated vessels of the
earlobe lead to the increase of PWHA. Again, such observations
contradict our findings. An interesting detail that might explain
differences in PWHAcompared to ourwork relates to the collective’s
physiological response to CPT. While blood pressure increased as in
our data, pulse rate decreased in Awad et al. (2006).Thismight be an
expression of the indifferent heart rate behaviorMourot et al. (2009)
and will obviously impact PWHA. Revision of further literature
shows PWHA generally to be controversial. E.g.,; Lin et al. (2020)
do not find a significant change in PWHA from finger PPG on
cold stress at all; Hickey et al. (2016); Abdullah et al. (2022), both
conducted similar studies that invoked arm lowering and elevation.
While Hickey et al. describe a significant decrease with lowering
and a mild (non-significant) increase with elevation, Abdullah et al.
(2022) show a significant decrease with elevation and no effect upon
lowering (see Figure 2 in Abdullah et al. (2022)). Lastly, even in
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TABLE 4 Effect sizes for PPG features. Reported aremean effect sizes and their respective confidence interval borders (confidence level of 0.95) in brackets.
Effect sizes for non-significant differences are colored grey.

Feature Measurement BL to ST1 BL to ST2 ST1 to ST2

amplitude PPG finger −1.30[−1.81,−0.79] −1.30[−1.81,−0.79] 0.00[−0.46,0.47]

amplitude PPG earlobe −0.24[−0.71,0.22] −0.23[−0.69,0.24] 0.01[−0.45,0.47]

amplitude iPPG forehead −0.30[−0.77,0.16] −0.14[−0.61,0.32] 0.16[−0.30,0.63]

amplitude iPPG super −0.25[−0.71,0.22] −0.11[−0.57,0.36] 0.15[−0.32,0.61]

slope PPG finger −1.33[−1.84,−0.81] −1.36[−1.87,−0.84] −0.10[−0.57,0.36]

slope PPG earlobe −0.28[−0.75,0.18] −0.38[−0.84,0.09] −0.09[−0.55,0.37]

slope iPPG forehead −0.21[−0.68,0.25] −0.17[−0.64,0.29] 0.05[−0.41,0.51]

slope iPPG super −0.18[−0.64,0.28] −0.18[−0.64,0.29] 0.02[−0.45,0.48]

area PPG finger −1.20[−1.70,−0.69] −1.18[−1.68,−0.67] 0.05[−0.41,0.52]

area PPG earlobe −0.35[−0.82,0.12] −0.33[−0.80,0.14] 0.01[−0.45,0.48]

area iPPG forehead −0.43[−0.89,0.04] −0.29[−0.75,0.18] 0.14[−0.32,0.61]

area iPPG super −0.40[−0.87,0.07] −0.27[−0.73,0.20] 0.14[−0.33,0.60]

PWHA PPG finger 0.63[0.16,1.11] 0.77[0.29,1.25] 0.12[−0.34,0.59]

PWHA PPG earlobe −0.27[−0.73,0.20] −0.28[−0.74,0.19] −0.00[−0.47,0.46]

PWHA iPPG forehead −0.47[−0.94,−0.00] −0.46[−0.93,0.01] 0.02[−0.45,0.48]

PWHA iPPG super −0.48[−0.94,−0.00] −0.48[−0.94,−0.00] 0.00[−0.46,0.47]

Djeldjli’s work Djeldjli et al. (2021) PWHA stands out. Compared
to all other temporal features, PWHA yields a clearly reduced
correlation between finger and earlobe PPG during breath hold
intervals.

To conclude, the literature on PWHA is not consistent. We thus
cannot regard our own results as either plausible or implausible
in face of the literature. We tried to rule out problems related to
the processing by going through all templates and did not find
abnormalities. As stated before, signal quality can cause problems
(e.g., see Figure 9 for an example of low-quality template generation
in finger PPG) but is not likely to behave systematically and cause
the found inverse effect. Even the existence of a diastolic wave might
cause misleading results. Depending on whether it is more or less
pronounced, half amplitude could be reached before or after it. But
again, a systematic effect as it would be needed to cause our results
is not likely. We thus believe that the found behavior reflects a
physiological effect in our cohort. Our hypothesis to explain such
behavior is as follows. Assuming that the recorded finger PPG
integrates contributions of larger vessels, which are less affected by
vasoconstriction, a strong increase in arterial vessels downstream
to the measurement site could explain an increase in PWHA.
Local vasoconstriction in the facial region is less pronounced. The
systemically increased blood pressure could lead to higher arterial
volumes and vessel tension during systole, which favor the outflow
and cause inverse effects on PWHA, i.e., a reduction. The common
opinion that PWHA relates to SVR thusmight not be generally valid
but local factors might have a strong influence. Notably, this finding
might have relevance beyond PWHA. If our hypothesis is true, other
PPG based features are likely to be similarly affected by local factors
but this assumption needs deepened investigations. One approach to

deepen the understanding could make use of simulations. Recently,
models and simulations of light-tissue interactions in the context of
PPG have gained immense interest. Most of these works use Monte
Carlo simulations to analyze the impact of contributing factors
to the PPG morphology (e.g., sensor geometry Chatterjee and
Kyriacou (2019), obesity Ajmal et al. (2021); Boonya-ananta et al.
(2021) and skin tone Ajmal et al. (2021)). The used models allow
for the simulation of pulsating blood to varying degrees, but they
do not incorporate details on interlinked changes of systemic
and local hemodynamics (i.e., blood pressure and local vessel
properties). While the existing models thus serve to prove some of
our experimental findings (e.g., as the lowered quality of red channel
Ajmal et al. (2021)), further extensions are required to simulate the
behavior of complex parameters like PWHAunder varying systemic
and local conditions.

5.2 Limitations

Our investigation has some limitations, which we discuss in this
section.

First, we have decided to restrict our PPG analyses to finger
PPG and earlobe PPG. iPPG analyses were restricted to the green
channel and to two ROIs (the forehead and a combination of
forehead and cheeks). Our selection was kind of obvious, as finger
and earlobe are common choices in PPG. For iPPG, the green
channel as a single channel Verkruysse et al. (2008) and the forehead
as well as the cheeks Lempe et al. (2013); Kim et al. (2021) are
known to yield good results. However, the experimental setup
features much more possibilities. Particularly with respect to iPPG,
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TABLE 5 Details on selected studies that used PWHA. †More subjects were invoked in another part of the study. ‡The correlation holds if wavelet processing
was included. CO - cardiac output.

Reference Population/experiment Site Main finding

Awad et al. (2007) 14, coronary artery bypass grafting finger correlation to SVR 0.56

earlobe correlation to SVR 0.62

Awad et al. (2006) 12, healthy, reaction upon CPT finger significant decrease upon CPT

earlobe significant increase upon CPT

12, coronary artery bypass grafting earlobe inverse correlation to CO (−0.761)

Awad et al. (2001a) 10†, coronary artery bypass grafting finger negative correlation to SBP (−0.1)

earlobe correlation to SBP (0.8)

Teng and Zhang (2003) 15, healthy, reaction upon activity finger negative correlation to SBP (−0.732†)

Ding et al. (2021) 12, healthy, deep breathing/exercise face (iPPG) negative correlation to SBP (<− 0.7 for 80{%} of subjects)

Lin et al. (2020) 12, reaction upon CPT finger no significant change

Hickey et al. (2016) 20, healthy, arm lowering/elevation finger significant decrease with lowering

Abdullah et al. (2022) 15, healthy, arm lowering/elevation finger significant decrease with elevation

FIGURE 10
Behavior of iPPG features of the forehead using the red channel over all analysis intervals. If significant, post hoc tests’ outcome is denoted by *
(p < 0.05), ** (p < 0.01) or *** (p < 0.001). The numbers above the lines indicate effect sizes and are provided for significant post hoc tests only. Outliers
are not shown.

alternating ROI definitions including additional constraints, e.g.,
regarding homogeneity as in Woyczyk et al. (2021), other color
spaces Ernst et al. (2021) and combinations of color channels like
POS Wang et al. (2017) and CHROM de Haan and Jeanne (2013)
are possible and might add valuable insights. We experimentally
did some first tests on the red channel. The higher wavelength
allows for a deeper penetration offering the potential for further
considerations on prevailing physiological mechanisms. Figure 10
shows the result. According to the expectation from previous
works and simulations Ajmal et al. (2021), the red channel generally
has reduced signal quality but the found behavior resembles the
green channel’s behavior. However, in-depth analyses and more
sophisticated processing strategies are required to exploit the added
value of the red channel. Such tasks should definitely be considered
in the future.

Second, we restricted our analysis to a reduced number of
features. In fact, multiple other features would be of interest and
possible. Owing to their pathophysiological relevance, particularly
features from the second derivative seem to be interesting. Deriving
such features is possible Fleischhauer et al. (2020) but they are

easily affected by distortions as also seen in Djeldjli et al. (2021). In
order to avoid distorted features to interfere with the physiological
interpretation, we selected the features that are common and that we
believe to be robust at the same time. Again, other choices should be
considered in the future.

Third, the presented research includes a comparatively high
number of subject but healthy volunteers only. In elderly or under
pathological conditions, the observed behavior might differ as
seen in previous works Cooke et al. (1993); Jaryal et al. (2009);
Kurki et al. (1990). Particularlywith respect to the idea of combining
measurement sites or acquisition modes in order to refine
diagnostics, this is of importance and obviously deserves special
attention in the future.

5.3 Conclusion and outlook

To summarize, we showed significant changes of PPG signals
in all recording setups upon cold stress. Remarkably, even in iPPG,
the considered features show an effect. This finding underlines the
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opportunity to use iPPG beyond heart rate. Despite the existence
of a response in all recording setups, there are differences. Such
differences generally relate to the effect sizes. Finger PPG shows the
strongest effects, which we attribute to a marked vasoconstriction in
the finger. For PWHA, differences do not only concern the effect size
but the general behavior. For PWHA, we found an inverse behavior
between finger and earlobe. Further, iPPG features tend to an earlier
return after a first response than PPG features, which could be an
indicator of iPPG’s formation to which very small superficial vessels
contribute more than in contact PPG.

Taken together, the found differences carry at least three
concrete implications for the usage of PPG and future works. First,
in multisite PPG, care has to be taken because indifferent shape
changes will also affect fiducial points and can thus hamper the
analysis as well as interpretation of time delays between PPG signals.
Second, care should be takenwhen earlier findings or evenmethods,
e.g., pretrained machine learning methods, are transferred between
recording setups. Third, the existence/absence of differences in
recording setups might carry diagnostic information. A future
diagnostic usage is of high interest but requires methodological
developments and basic research invoking different subject groups.
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response to cuff inflation
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Blood pressure (BP) surrogates, such as pulse transit time (PTT) or pulse arrival time
(PAT), have been intensively explored with the goal of achieving cuffless,
continuous, and accurate BP inference. In order to estimate BP, a one-point
calibration strategy between PAT and BP is typically used. Recent research
focuses on advanced calibration procedures exploiting the cuff inflation process
to improve calibration robustness by active and controlledmodulation of peripheral
PAT, as measured via plethysmograph (PPG) and electrocardiogram (ECG)
combination. Such methods require a detailed understanding of the mechanisms
behind the vasculature’s response to cuff inflation; for this, a model has recently
been developed to infer the PAT-BP calibration from measured cuff-induced
vasculature changes. The model, while promising, is still preliminary and only
partially validated; in-depth analysis and further developments are still needed.
Therefore, this work aims to improve our understanding of the cuff-vasculature
interaction in this model; we seek to define potential opportunities and to highlight
which aspects may require further study. We comparemodel behaviors with clinical
data samples based on a set of observable characteristics relevant for BP inference
and calibration. It is found that the observed behaviors are qualitatively well
represented with the current simulation model and complexity, with limitations
regarding the prediction of the onset of the distal arm dynamics and behavior
changes at high cuff pressures. Additionally, a sensitivity analysis of the model’s
parameter space is conducted to show the factors that influence the characteristics
of its observable outputs. It was revealed that easily controllable experimental
variables, such as lateral cuff length and inflation rate, have a significant impact
on cuff-induced vasculature changes. An interesting dependency between
systemic BP and cuff-induced distal PTT change is also found, revealing
opportunities for improved methods for BP surrogate calibration. However,
validation via patient data shows that this relation does not hold for all patients,
indicating requiredmodel improvements to be validated in follow up studies. These
results provide promising directions to improve the calibration process featuring
cuff inflation towards accurate and robust non-invasive blood pressure estimation.

KEYWORDS

blood pressure, pulse arrival time, oscillometry, blood pressure surrogate calibration,
hemodynamic model, pulse transit time, NIBP
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1 Introduction

The current standard for clinical Non-Invasive Blood Pressure
(NIBP) monitoring is based on sphygmomanometry utilizing a cuff
at the upper arm. With the cuff, the transmural pressure across the
brachial artery wall is changed, causing the volume of the brachial
artery to oscillate with varying amplitude, which is detected as air
pressure oscillations inside the cuff. The BP values are then inferred
by empirical methods, namely, oscillometry. Depending on the
patient’s state, this measurement is taken at intervals ranging
from a few minutes to multiple hour intervals, implying the risk
of not being able to continuously follow the hemodynamic state of a
patient undergoing therapeutic intervention, particularly when it
comes to not foreseeing (or entirely missing) critical events
(hemorrhages, shock, among others), preventing timely and
adequate therapy (Vincent et al., 2011).

For this reason, substantial research has been dedicated towards
accurate and tendentially continuous NIBP measurement. In
particular, the use of Blood Pressure (BP) surrogates, such as
Pulse Wave Velocity (PWV), Pulse Transit Time (PTT), and
Pulse Arrival Time (PAT), has been extensively explored (Sola
et al., 2019). PAT is the time a pulse takes to travel from the
heart to a peripheral artery, extracted as the time delay between the
R-peak of the electrocardiogram (ECG) signal and a signal feature in
a synchronously acquired photoplethysmogram (PPG) signal (e.g.,
from the finger), PTT is the time between two pulses measured at
two artery locations measured with, for example, two PPG devices
(Panula et al., 2023). While such measurements are widely available,
PAT/PTT-based BP estimation methods are not being implemented
in standard practice. A main limitation is the difficulty of estimating
the BP surrogate calibration–e.g., an x ms change in PAT/PTT
reveals a y mmHg change in BP. A large number of calibration
strategies of various levels of complexity have been attempted, e.g.,
based on demographic data (Chen et al., 2009; Gesche et al., 2012),
waveform feature analysis (Yoon et al., 2018), machine learning (Su
et al., 2018), among others (Sola et al., 2019). However, there is still
an unmet need for accurate and continuous NIBP measurement
methods.

Recently, Bogatu et al. (2020) discussed the opportunities in
estimating BP-surrogate calibration by utilizing the cuff in
combination with other typically available signals such as the
electrocardiogram (ECG) and photoplethysmogram (PPG). The
cuff actively modulates the blood flow and pulse propagation along
the artery distal to the cuff affecting, for instance, pulse arrival time
(PAT) or pulse transit time (PTT). The PAT response to cuff
inflation may, in principle, be representative of the PAT-BP
relationship over a large BP range and, therefore, be used to
establish a PAT-BP calibration with improved robustness,
allowing for more accurate measurements. However, the correct
interpretation of the measured cuff-induced change in PAT poses a
challenge. Early models did not correctly explain the dynamics of
the PAT response during cuff inflation, e.g., Yan and Zhang (2007)
or Bresch et al. (2018). Recent clinical data provided an improved
understanding of the true hemodynamic processes measuring the
BP dynamics (Bogatu et al., 2021). The cuff decreases the
transmural pressure at the brachial artery, causing an increase
in PTT for this artery segment. At the same time, the mean arterial
pressure (MAP) increases in the distal portion of the arm due to

venous collapse, impacting the effective overall observed PAT
behavior.

The basic measurement configuration of this work is shown in
Figure 1. It includes the simultaneous acquisition of an ECG signal,
the pressure within an inflatable cuff at the upper arm, a finger-site
PPG, and the invasive measurement of ABP in the radial artery
providing an accurate measurement for comparison/validation.

This complex and dynamic PAT response to cuff inflation has
been simulated via a hemodynamic model including the cuff and the
distal arm by Bogatu et al. (2021), aggregating work fromDrzewiecki
et al. (1994), Bank et al. (1999), Seagar et al. (1984) and Babbs et al.
(2012). This implementation incorporates the dynamic of the BP
changes in the distal arm. Preliminary clinical evidence of an
improved PAT-BP calibration performance for BP estimation has
been reported.

The model, while promising, is still preliminary and only
partially validated; in-depth analysis and further developments
are still needed. This paper aims at a deeper understanding and
critical evaluation of this simulation model in order to strategize
possible improvements. Particular attention was given to the
underlying dynamics during cuff inflation. For these purposes,
we discuss the results of 1) a direct qualitative comparison
between simulated and real-life distal BP and PAT data, as well
as 2) a sensitivity analysis of the model, identifying and assessing the
key variables that affect the distal arm’s vasculature response as
observed in measurements. These will provide insights on the main
factors to explore for future improvements in terms of robustness
and performance of BP surrogate calibration.

The remainder of this work is structured as follows.

• In Section 2, the materials and methods employed for this
research are described, starting from the simulation model
under analysis, followed by the data collection and
characterization strategy, as well as the sensitivity analysis
that was performed.

• Section 3 encompasses the findings obtained over the course of
the various analyses carried out in this work, including a brief
description of the results along with their exposition via figure/
table. We start by presenting the results of our qualitative
comparison between simulated and real data, moving on to the
outcomes of the sensitivity analysis.

• Our findings will be subject of discussion in Section 4, where a
critical assessment of our work is conducted, highlighting the
successes and limitations of our study, as well as their meaning
regarding the current hemodynamic monitoring landscape.

• Lastly, Section 5 summarizes and concludes this work.

2 Materials and methods

2.1 Simulation model

An overview of the model analyzed in this work is shown in
Figure 2 with input/output parameters and an internal resistor-
capacitor (RC) network.

All model variables are listed in Table 1. The inputs of the
model are systemic venous pressure, Pven sys, cuff inflation rate, and
the systemic arterial pressure, Part sys, assumed as a sinusoidal
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signal defined by heart rate and systemic systolic and diastolic
pressures. The arterial and venous pressures at the distal portion of
the arm are the model’s outputs. The behavior of the distal BP

signal is characterized by the systolic and diastolic pressure values
measured at the superior and inferior peaks of the wave,
respectively.

FIGURE 1
The setup utilized in this work acquiring ECG, PPG, the cuff air pressure and the invasively measured radial ABP. All signals are synchronously
recorded during a cuff inflation.

FIGURE 2
Overview of the distal arm circulation model.
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The RC parameters have beenmodelled as follows: the resistance
to blood flow across the portion of the brachial artery occluded by
the cuff is represented by Rart, estimated using the Poiseuille
Formula as stated in (Eq. 1):

Rart Ptm( ) � 8ηLcuf f

πr Ptm( )4 (1)

where η is the blood’s viscosity, Lcuff is the cuff’s length, Ptm is
transmural pressure, calculated as arterial BP (Part) minus cuff
pressure (Pcuff), and r (Ptm) is the brachial artery’s radius as a
function of transmural pressure across the arterial wall, which we
may obtain from the arterial cross-sectional area given by (Eq. 2),
introduced by Drzewiecki et al. (1994):

A Ptm( ) � d
ln aPtm + 3.3( )

1 + e−cPtm
(2)

with a, c, and d as model parameters. The venous resistance, Rven,
has been found to be uncritical (Smink et al., 2019)—venous
pressure typically ranges between 5 and 15 mmHg (Raju, 2019),
being fixed at 10 mmHg for this framework. We can therefore
assume that the vein is fully collapsed at a cuff pressure of
around 30 mmHg (Rven virtually infinite). For the systemic
resistance of the arm, Rsystemic, Alastruey et al. (2006)
reported values of about 100 mmHg·s/mL. Arm length is fixed
at 1 m.

Two capacitances/compliances were included in the model: Cart

and Cven, arterial and venous compliance, respectively. Cart is
defined with a fixed value of 0.03 mL·mmHg-1 (Alastruey et al.,
2006) and Cven is defined as approximately 30 times larger than Cart

(Gelman et al., 2008).
The model illustrated in Figure 2 can be represented via the

following equations:

dPart distal

dt
� Part sys

Rart
− Part distal

1
Rart

+ 1
Rsystemic

( ) + Pven distal

Rsystemic
( )

1
Cart

(3)
dPven distal

dt
� Part distal

Rsystemic
− Pven distal

1
Rsystemic

+ 1
Rven

( ) + Pven sys

Rven
( )

1
Cven

(4)

The simulation of the interaction between the cuff inflation and
pulse propagation at the cuff site is complemented by the
modulation of the hemodynamic behavior in the distal portion of
the arm. A good agreement between the observations obtained from
a limited sample of patient data and model simulations was reported
by Bogatu et al. (2021).

2.2 Clinical data acquisition and comparison
with model output

Clinical data was collected from four anesthetized and
mechanically ventilated patients (ages: 45, 58, 66, and 70 years
old), using a sensor arrangement as shown in Figure 1. It
consists of an ECG, a brachial blood pressure cuff at the upper
arm, a radial intra-arterial line (ABP), and a finger PPG. The patients
underwent invasive non-cardiac surgery at the time of the
recordings. The data collection process was approved by the
MEC-U ethical committee for this study (St. Antonius
Ziekenhuis, Koekoekslaan 1, 3430 EM Nieuwegein, NL. Approval
W19.046), and it was carried out at the Elisabeth Tweesteden
Ziekenhuis hospital in Tilburg, NL. Each patient gave written
informed consent. The signals were recorded using a Philips
MP50 patient monitor and custom data logging software. The
ECG signals were recorded with a sampling frequency of 500 Hz
whereas the cuff pressure, ABP, and PPG signals were recorded with
a sampling frequency of 125 Hz. All the signals were simultaneously
recorded.

The variations in PAT and PTT caused by the inflation of the
cuff are calculated over two vascular segments.

• Heart to finger site: ΔPATECG–PPG (Pcuff) is calculated as the
change in delay between the R-peak of the ECG signal and the
foot of the PPG waveform as Pcuff increases.

• Radial to finger site: ΔPTTABP–PPG (Pcuff) is calculated as the
change in delay between the foot of the ABP waveform and the
foot of the PPG waveform as Pcuff increases.

The difficult assessment of the heart’s pre-ejection period (PEP)
has been characterized as a drawback of the direct application of
PAT measurements in BP estimation (Pilz et al., 2023). The
presented calibration method eliminates this factor by
interpreting the PAT/PTT variations, given that they are
generated due to the action of the cuff and PEP remains constant
throughout the inflation.

The dynamics taking place in the portion of the arm distal from
the cuff are the focus of the model under study. The early venous
collapse at the cuff site causes an increase of BP in the distal arm due
to continued blood flow at intermediate cuff pressures, which can be
measured via invasive methods and is reflected in deviations in the
PAT/PTT measurements. With the purpose of describing this distal
filling effect, a series of metrics were defined and are explained below
and illustrated in Figure 3.

• The maximum drop in distal PTT variations (ΔPTT) caused
by the distal filling effect -max|ΔPTTdistal| - measured via the
time interval between the pulse detected at the ABP site and

TABLE 1 List of variables and respective reference/control values for the distal
arm circulation model.

Parameter Units References value

a mmHg-1 0.03

c mmHg-1 0.1

d cm 0.08

Systolic Pressure mmHg 120

Pulse Pressure mmHg 40

Heart Rate b.p.m 60

Cuff Inflation Rate mmHg/s 6

Arm length m 1

Cuff Length m 0.14
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the pulse detected at the finger site through the valleys of the
ABP and PPG waveforms.

• The maximum total PAT change (ΔPAT) - max|ΔPATtotal| -
measured via the time interval between the R-peak of the ECG
signal and the pulse detected at the finger site at the valley of
the PPG waveform.

• The maximum change in distal MAP - max|ΔMAP| -
measured as the difference between the maximum
measured MAP value during a cuff inflation and the MAP
value at the beginning of the cuff inflation.

• The equilibrium pressure - Peq–measured as the value to
which blood pressure in the distal arm asymptotically tends
at cuff pressures that cause arterial and venous occlusion in the
upper arm.

• The maximum change in distal Diastolic Pressure (DBP) -
max|ΔDBP| - measured as the difference between the
maximum measured DBP value during a cuff inflation and
the DBP value at the beginning of the cuff inflation.

• The difference between MAP and cuff pressure at the onset of
the distal filling effect - ΔPTTonset–calculated as the difference
between systemic MAP and the cuff pressure at the onset of
the observed decrease in ΔPTT.

These features have been also investigated in the sensitivity
analysis, as discussed in the next section.

2.3 Sensitivity analysis

The sensitivity analysis carried out in this work is based on the
variance-based method for Global Sensitivity Analysis (Sobol,
2001; Saltelli et al., 2004), as it is model-independent and allows
us to analyze non-linear and non-monotonic functions and
models. This method provides a structured approach to identify
the most influential parameters of a simulation model via their
contribution to the overall model output variance. The technique is

based on the decomposition of the model variance into Sobol
Indices. These Indices reflect the multiple order contributions to
output variance from the various parameter subsets, beginning
with the first order Sobol Indices that correspond to the
contribution from each individual parameter, moving to the
second-order Sobol Indices that reflect interactions between
pairs of parameters, and so on. The total-order Sobol indices
reflect the overall contribution each parameter has to the
variance of the output. Assuming a black-box model with
independent input variables represented by an integrable function:

Y � f X( ) � f X1, ..., Xn( ) (5)
where Y is the model output (or objective function) and (X1, ..., Xn)
is the input variable set. We can decompose the function f into
summands of increasing dimensionality:

Y � f X1, ..., Xn( )

� f0 +∑
n

i

fi Xi( ) +∑
n

i< j
fij Xi, Xj( ) +/ + f1,...,n X1, ..., Xn( ) (6)

and, subsequently, decompose the variance of Y into the summand
of the variances of individual parameters and their interactions
(Sobol, 1993), as in Eq. 5:

V Y( ) � ∑
n

i

Vi +∑
n

i< j
Vij +/ + Vi,...,n (7)

We can then calculate the Sobol indices for a parameter Xi as the
ratio of the partial variance which the parameter contributes to the
total variance V:

First Order Sobol Index: Si � Vi

V
(8)

SecondOrder Sobol Index: Sij � Vij

V
(9)

Total Order Sobol Index: STi � Si +∑
j≠i

Sij +/ (10)

FIGURE 3
Illustration of the metrics as used for this study.
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Based on these indices, we draw conclusions on the influence of
a parameter on the model. On relative terms.

• If the first order index is high (close to 1), the parameter has a
strong influence on the model by itself.

• If the total order index is low (close to 0), the parameter has a
weak impact on the model.

• If the first order index is low and the total order index is high,
the influence that the parameter has on the model is impacted
by interactions with other parameters.

Naturally, the method described above is analytically feasible
for simple, analytically trackable models, which is not the case for
most. However, for complex and highly non-linear models such
as the one at study, the individual variances in Eq. 7 can be
estimated via Monte Carlo (or quasi-Monte Carlo) sampling,
solely relying on the output of the model, as demonstrated by
Sobol (1993).

The list of parameters analyzed in the course of the sensitivity
analysis is shown in Table 2 including their respective assumed
distributions. There is limited prior information on the arterial
collapse parameters a and c, which have been assigned based on
clinical data as found by Bogatu et al. (2021). Regarding the Systolic
Pressure (SBP) and Pulse Pressure (PP) distributions, and given that
this method assumes independent input parameters, we used
Gaussian distributions. For both variables, the means and
standard deviations produce realistic samples, in line with the
European Society of Hypertension - European Society of
Cardiology (ESC) Guidelines for the Management of Arterial
Hypertension (Williams et al., 2018). These distributions also
provide samples characteristic of hypotensive and hypertensive
patients. The sensitivity analysis also evaluates the robustness of
these assumptions. Cuff length and inflation rate were set as
uniformly distributed given conditions from practice. It must be
noted that these settings are treated as variables in this study to
assess their value in further experimental protocols, as they were
kept constant in the course of the clinical data collection. Remaining
constraints and parameters, in particular the internal RC
components of the model, were fixed as described in the previous
section.

The parameter sets are generated according to a quasi-
random, low-discrepancy sampling method (Saltelli, 2002). For
each set, the output of the model is computed and its
characteristics are registered. The metrics for this quantitative

assessment are the same as discussed in Section 2.3 and illustrated
in Figure 3.

The implementation of the methods required for this analysis is
based on the SALib–Sensitivity Analysis Library in Python (Herman
et al., 2017; Iwanaga et al., 2022). The outputs of the model with each
parameter set were stored for use in the analysis itself and our own
quantitative assessment.

3 Results

3.1 Measured signal vs. model output signal
comparison

3.1.1 Distal BP
An example of the qualitative comparison between clinical

signal samples and simulated data assuming similar
physiological conditions, namely, BP and heart rate, is shown
below with a cuff inflation at t = 0 s. The goal is to identify
differences in ABP signal behaviors. This comparison is shown
in Figure 4.

Visually, the dynamics of BP, the increases in DBP and MAP
as well as the decrease in the SBP at the radial location, are well
reproduced by the model. However, it is noticeable that the
increase in DBP and MAP begins sooner in the simulation
than in the clinical data, also reaching higher values (~40 vs.
~25 mmHg, respectively). By contrast, the decrease in SBP seems
to be smaller in the model than in the real case. Different
dynamics regarding the tendency towards equilibrium pressure
are evident between simulation and clinical data. It should be
noted that, by design, the model does not take into account
difficult to measure or to control parameters such as cardiac
output and peripheral resistance.

3.1.2 PAT/PTT
In addition to the distal ABP signals, ΔPAT and ΔPTT behavior

is also investigated. The measured ΔPAT/PTT signals obtained
from the ECG, ABP and PPG recordings, as well as the simulated
ΔPAT/PTT signals are computed as described by Bogatu et al.
(2021). Figure 5 provides a side-by-side comparison between an
example of a clinical measurement (right diagram) and the
equivalent simulation results (left diagram), following the same
strategy as before. In this case, the total resulting measurements
(ΔPATtotal) can be decomposed in two components: ΔPTTcuff,
corresponding to the change in PTT cause only by action of the
cuff inflation, and ΔPTTdistal which is cause by the increase in DBP
and MAP due to the filling effect. Key observations include: 1) the
distal filling effect starts at lower cuff pressure (~60 mmHg) with
higher values of ΔPAT reached in the clinical data compared to the
simulation; 2) there is an increase of distal ΔPTT at the end of the
inflation, not covered by the simulation; 3) the ΔPAT
measurements tend to higher values in the clinical data,
compared to the model.

In Figure 6 it is observed that the onset of the MAP increase and
the onset of ΔPTT occur simultaneously in the clinical data. This
simultaneous onset is observed across the database, confirming that
the model represents this process well (in the simulations, onset of
MAP and onset of ΔPTTdistal are modelled to occur simultaneously).

TABLE 2 Assumed parameter constraints; Normal Distribution: N (µ, σ);
Uniform Distribution: U (lower limit, upper limit).

Parameters (Units—Type) Distribution

a (mmHg-1) U (0.017, 0.035)

c (mmHg-1) U (0.08, 0.14)

Systolic Pressure (mmHg) N (125, 15)

Pulse Pressure (mmHg) N (40, 5)

Cuff Inflation Rate (mmHg/s) U (4, 8)

Cuff Length (m) U (0.1, 0.18)
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However, the model cannot be used in the current state to predict
when the onset will occur along the cuff inflation. As shown in the
example in Figure 4, the onset of the distal effect happens at a
different moment in the simulation compared to measured data,
whereas in Figure 5 the onset happens later in the simulation. The
determinants of this process are explored in the sensitivity analysis.

Overall, the behaviors are qualitatively well represented via the
model; the model is an acceptable representation of the core
hemodynamic processes happening as result of the cuff inflation.
However, significant differences can be observed in amplitudes and
timing of signal changes, implying the existence of fundamental
inaccuracies/limitations.

FIGURE 4
Comparison between (A) simulated distal arterial BP, and (B) real clinical data from a patient. Black vertical lines mark the onset of the filling effect
(themoment when distal pressure starts to differ from systemic pressure). Input parameters for the simulated data are the same as the actual patient’s: HR:
1.4 Hz (~84 b.p.m.); BP: 100/45 mmHg; Cuff Inflation Rate: 6 mmHg/s; Arterial Collapse Parameters (a, c, and d): reference values, see Table 1.

FIGURE 5
Comparison between (A) simulated, and (B) real measurements of ΔPTTcuff, ΔPTTdistal, and ΔPATtotal. Input parameters for the simulated data are an
approximation of the actual patient’s: HR: 1.22 Hz (~73 b.p.m.); BP: 123/75 mmHg; Cuff Inflation Rate: 6.8 mmHg/s; Arterial Collapse Parameters (a, c,
and d): reference values, see Table 1.
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3.2 Sobol sensitivity analysis

The sensitivity analysis outputs the Sobol/Sensitivity Indices that
reflect the influence of each parameter on the evaluated outcomes.
The resulting first and total order Sobol Indices, respectively marked
as S1 and ST, are listed below, in Table 3.

The results show that, concerning the model, SBP and PP are
responsible for the majority of the variance of the outputs. SBP is the
dominant parameter in relation to the equilibrium pressure Peq,
individually accounting for over 77% of its variability, and PP is the
most influential factor for the observed decrease in distal ΔPTT, and
the onset of the distal effect (ΔPTTonset), as well as for increases in
DBP and MAP, being individually responsible for ~57%, ~73%,
~82%, and ~82% of their variability, respectively. The magnitude of
modelled ΔPAT (represented bymax|ΔPATtotal|) is mainly driven by
cuff length, being more than 75% dependent on it, as compared to
other parameters. The results show clearly that parameter a is the
least influential parameter of the investigated set, never accounting

for more than 3.09% for the variability whereas parameter c has
some influence onmax|ΔPATtotal| and ΔPTTonset. Peq is found to also
be ~20% dependent on the cuff inflation rate. Finally, the differences
between the First and Total Order indices are, albeit existent, not
significative when compared to their overall magnitude, suggesting
that higher order indices are not relevant for analysis.

Figure 7 illustrates model output characteristics for all simulated
parameter ranges. The figure reveals that signals generated via the
model fall within realistic physiological ranges; also indicating that
model parameter ranges (Table 2) are representative of realistic
values.

3.2.1 Effects of cuff length and inflation rate in the
simulated response

The results of the sensitivity analysis and the sampled parameter
sets allow the analysis of hypotheses regarding dependencies between
characteristics of the model outputs and its input variables. First, the
dependencies between the experimentally controllable cuff length and
inflation rate and the PAT/PTT response of the model are assessed. It is
found that cuff length strongly determines the measured ΔPAT and
max|ΔPATtotal|. Figure 8 illustrates max|ΔPATtotal| as simulated via the
model plotted with respect to corresponding cuff length for all
parameter sets included in the analysis. A strong linear dependency
is found with an R2 = 0.76.

Figure 9 illustrates the expected changes in distal vasculature
response to different cuff inflation rates; Peq andmax|ΔPTTdistal| are
plotted with respect to cuff inflation rate. It is clear that slower
inflations induce a more pronounced distal effect in Peq. In terms of
max|ΔPTTdistal|, the inflation rate can alter the max|ΔPTTdistal|
response by 1.5 millisecond; it is a small effect and it might be a
challenge to measure.

3.2.2 BP value vs. distal response correlation
The sensitivity analysis (Table 3) reveals that the vasculature

response to cuff inflation is considerably influenced by BP; namely,
SBP and PP. We therefore investigate a measurement strategy based on
the link between the BP value and the expected change in distal PTT,
characterized by max|ΔPTTdistal|. Figure 10 illustrates this connection -
max|ΔPTTdistal| is plotted against the corresponding PP value in a) and
against the respective PP and SBP values in b). It is observed that a linear
model can be used to characterize this link with good accuracy,
particularly in b), as an R2 of 0.9237 is determined.

The PP value could therefore be used as an index for the
expected change in distal ΔPTT during cuff inflation, in this way

FIGURE 6
Simultaneous recordings of distal BP signal and distal ΔPTT from
the clinical dataset. The vertical line marks the onset of the distal filling
effect.

TABLE 3 First (S1) and Total (ST) Order Indices from the sensitivity analysis.

Parameter max|ΔPTTdistal| max|ΔPATtotal| max|ΔMAP| Peq max|ΔDBP| ΔPTTonset

S1 ST S1 ST S1 ST S1 ST S1 ST S1 ST

a 0.0283 0.0352 0.0243 0.0512 0 0 0.0008 0.0009 0 0.0003 0.0309 0.0317

c 0.0023 0.0038 0.0435 0.0881 0.0075 0.0079 0.0079 0.0082 0.0017 0.0021 0.0483 0.0540

Systolic Pressure 0.3519 0.3678 0.0331 0.0599 0.1495 0.1506 0.7729 0.7879 0.1588 0.1612 0.1490 0.1604

Pulse Pressure 0.5857 0.5974 0.0005 0.0138 0.8150 0.8161 0.0047 0.0047 0.8179 0.8190 0.7277 0.7468

Cuff Inflation Rate 0.0153 0.0160 0.0960 0.1330 0.0262 0.0275 0.1988 0.2145 0.0193 0.0214 0.0220 0.0313

Cuff Length 0 0 0.7577 0.7616 0 0 0 0 0 0 0 0
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allowing for improved estimation of brachial ΔPTT as measured
non-invasively via ECG-PPG combination.

This relationship was also explored in the patient data. The
results are present in Figure 11, showing the dependency between
max|ΔPTTdistal| and PP as obtained from the recorded signals for the
4 evaluated subjects, S1, S2, S3, and S4. As shown, for S1, S2, and S4,
lower PP is associated with lower magnitude measurements of max|
ΔPTTdistal|. This relationship, however, is not verified for S3, where
the opposite seems to happen.

4 Discussion

4.1 Comparison between clinical data and
model outputs

4.1.1 Distal BP
Clinical data is compared by visual inspection with simulated

data generated with comparable BP and heart rate values and cuff

inflation rate and length. We find that the model is an acceptable
representation of the core hemodynamic processes happening in
the portion of the arm distal to the cuff, which includes the
increases in DBP and MAP and the decrease in SBP as observed
in the clinical data. From a physiological point-of-view, the
observed dynamics are sound. A number of measurement stages
can be identified: 1) Cuff pressure value is below systemic venous
pressure–no changes occur; 2) Cuff pressure increases beyond
systemic venous pressure–vein collapses, flow out of the limb is
stopped, buildup of blood begins to occur in the limb from the
artery; 3) Cuff pressure approaches systemic systolic
pressure–minimal amount of blood flows into the limb at each
heart-beat, a decrease in the distal systolic pressure is observed; 4)
Eventually, blood flow is stopped–arterial and venous pressures
tend towards an equilibrium value. The arterial pressure decreases
via an exponential decay function.

However, differences can be observed in amplitudes and timing
of signal changes. For example, shifts in DBP and MAP happen
earlier and with different magnitude in the model than in the patient
data. Such discrepancies may arise from two reasons: 1) the model in
this state is not sufficiently complex to represent the full dynamics,
such as the venous return, and the outcomes will differ from the
patient measurements regardless of the chosen parameters for the
simulation; 2) model constraints or incorrect assumptions on
parameter ranges, particularly when it comes to the arterial
collapse parameters and the distal arm vascular factors
(resistances and compliances), both of which were obtained from
very limited patient data, may explain differences in morphology of
the signals and could be corrected via additional clinical
measurements.

4.1.2 PAT/PTT
Observation of ΔPAT and ΔPTT data from the simulation

framework and the clinical dataset reveals differences concerning
the response to cuff-induced variations in transmural pressure. In
the example from Figure 5, we see similar qualitative behaviors
observed in the simulation and clinical data, albeit with different
timings and magnitudes. However, the model is not able to

FIGURE 7
Boxplots of the generated (A) max|ΔPTTdistal| and max|ΔPATtotal|, and (B) max|ΔMAP|, max|ΔDBP|, and Peq.

FIGURE 8
Relation between cuff length and max|ΔPATtotal| and cuff
length–scatter plot and linearmodel fit of the sampled simulation sets.
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reproduce the clinical data even qualitatively at high cuff pressures,
indicating either the need for model improvements and/or possibly
inaccurate assumptions regarding constraints and parameter ranges.
The PAT-BP calibration depends significantly on the correct
understanding of these phenomena, towards accurate and
personalized calibration procedure for cuffless and continuous BP
measurement.

Upon observation of the complete set of clinical data samples,
we find that the onset of the change in BP and the onset of the
change in distal ΔPTT happens simultaneously, which is well
depicted in the current model. Still, model improvements are
needed to better characterize when the onset occurs with respect
to cuff pressure. Finally, based on observations from the clinical
data, these measurements require improved robustness given their
low signal-to-noise ratio (SNR).

4.2 Sensitivity analysis

The results of the sensitivity analysis outline the major influence
of SBP and PP. In contrast, the arterial collapse parameter a has only
a relatively minute effect on the model’s behavior. As a consequence,
this parameter could probably be set to a constant value when using
the Bayesian technique for BP inference as it was introduced by
Bogatu et al. (2021). Parameter c, despite also not being much
influent from a global perspective, still has a noticeable impact under
constant cuff length and inflation rate, meaning it should be
included in the current estimation framework.

Another relevant finding deals with the impact of cuff length and
inflation rate, which both can be easily changed in practice,
suggesting a point of optimization of the measurement
procedure, discussed more in depth in the following section.

FIGURE 9
Scatter plots of the simulated relation between cuff inflation rate and (A) max|ΔPATtotal| and (B) Peq.

FIGURE 10
Scatter plots of the relation between (A) PP and max|ΔPTTdistal| and (B) PP and SBP and max|ΔPTTdistal| in the sampled parameter sets with a fitted
linear model.
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An important result is the global impact of the BP parameters
(SBP and PP) across most characteristics of the vasculature response
to cuff perturbation.

Overall, we find that the characteristics of the outputs of the
simulations are all well determined by one to three parameters each,
indicating possibilities for simplified modelling, yet to be verified
with clinical data. These results also indicate which parameters we
must keep in mind when optimizing particular aspects of the model.
It should also be noted that despite the high non-linearity of the
simulation, higher order interactions between the parameters are
not significant which could be an implication of the relatively low
complexity of the framework.

As shown in Figure 7 via boxplots, the results indicate that
outputs of the model reflect a realistic behavior over the entire
parameter space. This further establishes the model as a useful tool
for the representation of the complex hemodynamic processes at
play in a global sense, albeit with room for improvement as has been
discussed in this work.

4.2.1 Effects of cuff length and inflation rate in the
simulated response

The results from the analysis performed on the outputs from the
sampled parameter sets reveal dependencies between the cuff length
and inflation rate on the behavior of the model. Longer cuff lengths
provide larger PAT changes in the course of the cuff inflation. This
behavior can be interpreted physiologically–a longer cuff length
covers a larger arterial segment. Along this arterial segment the
artery is off-loaded and therefore the effective distally measured
pulse wave velocity (PWV) is reduced (resulting in an increase in
PAT). This result has practical implications on the PAT-BP
calibration framework. A longer cuff could be used to increase
the changes in PAT caused by the cuff inflation, improving the
measurement’s SNR.

Clear effects caused by the inflation rate are also visible–on faster
inflations, the drop in ΔPTT that characterizes the distal filling effect
is smaller, and the theoretical equilibrium pressure is also lower. It

should be noted that the scale of these differences (~1 millisecond),
despite small, is still significant within the scope of the distal ΔPTT
measurements. This behavior is physiologically sound, as a slower
inflation translates into more blood pumped in the limb (outflow of
blood is stopped via brachial vein collapse, while inflow of blood via
artery continues). In practice, slower inflation rates provide more
PAT measurement points, as more heartbeats are included in the
inflation time window, meaning that a greater amount of data is
available for the Bayesian inference of the a and c parameters,
potentially improving its accuracy. However, slower inflation rates
also result in the amplification of the distal filling effect, adding
uncertainty in a scenario where only non-invasive data sources
would be available, which could have possible implications even in
standard practice oscillometry. Further work is needed to find the
optimal inflation rate for each case, balancing the amount of
collected data with the intensity of these effects.

In addition, due to the impact this parameter has on the
equilibrium pressure, being responsible for roughly 20% of its
variability, its exploration can be useful towards the estimation of
mean systemic filling pressure with the circuits time constant, as
introduced by Bogatu et al. (2021). As a final remark on this topic,
the sensitivity analysis points at cuff length and cuff inflation rate as
important determinants of cuff-vasculature interaction, meaning
further studies will account for this to observe cuff-induced changes
more accurately in PAT/PTT/distal BP oscillations. In addition,
parallel studies are seeking to achieve a more direct measurement of
the arterial and venous parameters across a broader set of
demographics via imaging, while also investigating the
mechanisms of pressure transmission via the cuff at brachial site
to obtain improved transmural pressure control (Bogatu et al.,
2019).

4.2.2 BP value vs. distal response correlation
The results from the simulation indicate a strong linear

relationship between distal ΔPTT and PP and SBP. This is an
important finding, as PP could indicate the expected change in

FIGURE 11
Scatter plot of the relation between PP and max|ΔPTTdistal| for the patients S1, S2, S3, and S4, with fitted linear function.
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distal ΔPTT during cuff inflation, therefore allowing for improved
estimation of brachial ΔPTT as measured non-invasively via ECG-
PPG combination.

When validating this relationship via patient data, we find that, for
subjects S1, S2, and S4, an increase in PP is indeed indicative of an
increase in max|ΔPTTdistal|. However, this relationship does not hold
for S3, where a decrease inmax|ΔPTTdistal| is foundwith an increase in
PP. This indicates limitations of the current simulation model. While
at first sight, the model represents all signal characteristics well, the in-
depth sensitivity analysis highlights specifically which aspects require
further investigation via dedicated studies.

4.3 Limitations of the study and future
research

There are several factors which may limit the model-clinical
data comparison. For example, motion and breathing artifacts,
the low number of beats recorded per inflation and the short
length of the cuff all affect the SNR, impacting the assessment of
amplitude and onset of the response. Nevertheless, qualitative
comparisons between model output and measurements are
possible. The cuff-induced vasculature response is observed to
follow behaviors which are predicted via the model; the trends in
signal changes induced via cuff inflation are accurately
represented. A more quantitative, one-on-one model-clinical
data assessment is not yet possible also due to the difficulty of
obtaining all parameter values specific to one patient. However,
alternative measurement modalities such as MRI (Bogatu et al.,
2022) may enable such research in the future.

In addition, the current work is focused on response of
vasculature to relatively short inflations. A more complete model-
clinical data comparison relies on design of new clinical studies. This
work contributes to planning of such new investigations and
definition of study aims; e.g., the sensitivity analysis reveals how
cuff length and duration of inflation are expected to impact
vasculature response. It is necessary to conduct focused
investigations regarding different cuff inflation strategies (e.g.,
response to inflation/deflation, inflation speed, cuff length,
frequency of occlusions, site at which occlusion is applied). Also,
the current study highlights inaccuracies in our understanding of the
relationship between systemic BP and distal PTT; future studies can
be specifically aimed towards the identified effects.

The model representing distal vasculature (Figure 2) also needs
to be studied in the context of multi-segment models which describe
the entire circulation (e.g., Avolio, 1980), in order to determine the
extent to which reflection coefficients, cardiac output, contractility
and general waveform characteristics impact the vasculature
response to cuff occlusion.

While the dataset utilized for this work includes a substantial
amount of cuff inflation segments (the core “unit” of our study),
these were recorded from only 4 subjects, implying limited
demographic variability, particularly in terms of cardiovascular
health status. It should also be considered that the subjects were
undergoing invasive surgical procedures and were anesthetized,
two factors that may significantly impact their hemodynamic
behavior.

Finally, despite popular and powerful, the variance-based
Global Sensitivity Analysis has its weaknesses. An important
assumption of the employed method is the independence
between the parameters. We tackle this via efforts to create a
representative and realistic parameter set. Nevertheless,
improved analyses may be performed once a more complete
understanding of the potential links between the individual
model parameters is acquired.

5 Conclusion

Measuring the response of a BP surrogate (PAT/PTT) to
transmural pressure modulation controlled via the cuff is a
promising approach to improve robustness of calibrations of BP
surrogates like PAT and PTT. A detailed understanding of the
inflation process and its impact on the hemodynamics distal to the
cuff provides insights on how to implement such a calibration strategy.

For that purpose, we investigate a “low complexity”
simulation model and compare its performance with real
clinical data. Despite its simplicity, the simulation model
characteristics agrees qualitatively with experimental findings.
The simultaneous onset of distal BP and PTT changes were found
to be modelled correctly. However, improved understanding is
needed to better model the onset and amplitude of vasculature
responses to cuff inflation.

A sensitivity analysis showed that cuff length and cuff
inflation rate–both of which can be easily changed in practice
- have a significant effect on vasculature response to cuff inflation
and may be explored to improve the PAT-BP calibration
framework, recommended to be subject of further research.
The link between BP and cuff-induced vascular response was
also analyzed in depth. A particularly interesting correlation
between BP and distal PTT has been revealed, paving the way
towards improved BP surrogate calibration. However, a first
check with a limited set of patient data gave inconsistent
results to be investigated in detail, ideally with an expanded
set of patients. While at first sight, the model represents all the
signal characteristics well, the in-depth sensitivity analysis
highlights specifically which aspects require further
investigation via dedicated studies.

Concluding, the model under analysis serves as a valuable
tool towards understanding of vascular dynamics occurring
during cuff inflation. The model can facilitate the development
of monitoring techniques that rely on cuff-based modulation of
BP surrogates (PAT/PTT). This study highlighted specifically
which effects are/are not well represented via the model, as well as
it identified promising avenues via which further investigations
can be conducted as well as suggesting improvements of the
simulation model.
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Introduction: Aging is a physiological process characterized by progressive changes
in all organ systems. In the last few decades, the elderly population has been growing,
so the scientific community is focusing on the investigation of the aging process, all in
order to improve the quality of life in elderly. One of the biggest challenges in studying
the impact of the aging on the human body represents themonitoring of the changes
that inevitably occur in arterial blood vessels. Therefore, the medical community has
invested a great deal of effort in studying and discovering newmethods and tools that
could be used to monitor the changes in arterial blood vessels caused by the aging
process. The goal of our research was to develop a new diagnostic method using a
photoplethysmographic sensor and to examine the impact of the aging process on the
cardiovascular system in adults. Long-term recorded arterial blood flow waveforms
were analyzed using detrended fluctuation analysis.

Materials and Methods: The study included 117 respondents, aged 20–70 years.
The waveform of the arterial blood flow was recorded for 5 min, with an optical
sensor placed above the left common carotid artery, simultaneously with a single-
channel ECG. For each cardiac cycle, the blood flow amplitude was determined,
and a new time serieswas formed, whichwas analyzed non-linearly (DFAmethod).
The values of the scalar coefficients α1 and α2, particularly their ratio (α1/α2) were
obtained, which were then monitored in relation to the age of the subjects.

Result: The values of the scalar ratio (α1/α2) were significantly different between
the subjects older and younger than 50 years. The value of the α1/α2 decreased
exponentially with the aging. In the population of middle-aged adults, this ratio
had a value around 1, in young adults the value was exclusively higher than 1 and in
older adults the value was exclusively lower than 1.

Conclusion: The results of this study indicated that the aging led to a decrease in
the α1/α2 in the population of healthy subjects. With this non-invasive method,
changes in the cardiovascular system due to aging can be detected and
monitored.

KEYWORDS

photoplethysmography, sensor, cardiovascular age, blood flow waveform, detrended
fluctuation analysis
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1 Introduction

Human life has evidently prolonged over the last 50 years, but
cardiovascular diseases are still the leading cause of mortality in
the modern world (Rudnicka et al., 2020; World Health
Organization, 2021). The research that addresses the causes of
the disease, age-related changes of blood vessels and the analysis
of blood flow waveforms are highly important for patients benefit
(Gavrilov and Gavrilova, 2015; Van Leeuwen et al., 2019;
Rudnicka et al., 2020).

The cardiovascular system changes through years,
particularly it changes its biophysical properties: increase in
arterial blood pressure and pulse wave velocity, as well as the
appearance of wave reflection (Parikh et al., 2016; Guzik and
Touyz, 2017; Allen et al., 2020). Moreover, according to some
cardiologists, the older your cardiovascular system is, the older
you are (Dantas et al., 2012; Gopcevic et al., 2021; Hamczyk et al.,
2022).

The proper medical diagnosis as well as the cardiovascular
research, depends from biophysical understanding of arterial
hemodynamics, especially from pressure and blood flow
waveforms conditions (Willemet and Alastruey, 2015; Jozwiak
et al., 2018). More precisely, the blood viscosity, elasticity of the
arterial wall, the thickness of the wall, the internal pressure, the
blood density, the influence of gravity and body position can be
recognized as main biophysical characteristics of blood propagation
in vessel (Secomb, 2016; Žikić et al., 2019).

Pulse wave velocity (PWV) measurement is still the primary
method for assessing the age of arteries in clinical research (Sutton-
Tyrrell et al., 2005; Reference Values for Arterial Stiffness’
Collaboration, 2010; Diaz et al., 2018). Previous studies show that
the PWV depends on the elasticity of the artery wall, wall thickness,
wall diameter and blood density (Avolio, 2013; Messas et al., 2013;
Ma et al., 2018).

The main goal of the present study is to find a new biophysical
model that could monitor the aging of the cardiovascular system.
This idea was created by following the arterial blood flow, with
non-invasive measurement of the arterial blood flow waveform.
There are two basic techniques of non-invasive blood flow
measurement: ultrasonographic and optical. The first method
is very sensitive (depending on the experience and skills of
medical professionals) and cannot provide reliable signals for
wave analysis (Srámek et al., 2000; Loizou, 2014). On the other
hand, the second method is independent from the muscle’s
activity, although there is a problem with the signal
calibration (Žikić, 2008; Djuric et al., 2017).

Although the main goal of this study is the analysis of the
distribution of wave blood flow with age, the comparison of the
mean values of scalar coefficients in three selected age groups can be
considered as a secondary goal. Nevertheless, although implicitly
presented, the essential goal of this study is to present a non-invasive
method of imaging arterial blood flow by photoplethysmography
method. In addition, a mathematical model that follows this kind of
signal analysis (Detrended fluctuation analysis - DFA) can reliably
estimate the arterial blood flow waveform in the cardiovascular
system during aging.

2 Materials and methods

2.1 Subject, groups, and physical
examination

The study was conducted at the Faculty of Medicine, University
of Belgrade (Serbia), from September 2019 to April 2021 at the
Institute of Medical physiology and the Institute of Biophysics. The
study was carried out following the recommendations of the
Helsinki Committee, which is confirmed by the decision of the
Ethics Committee of the Faculty of Medicine.

In total, 117 healthy subjects (58 male and 59 female), aged
between 20 and 70 years, have participated in this study. Based on
the age in which the frequency of vascular disease symptoms
increases markedly, the subjects were divided into two groups
(Lloyd-Jones et al., 2006; Wang et al., 2020; Mohanty et al.,
2021): younger than 50 years (82) and older than 50 years (35).
In addition, subjects have been divided into three age groups (Petry,
2002; Thomas et al., 2018) according to the demographic
characteristics. The first group was the younger adults (53) less
than 35 years, then middle-aged adults (44) from 35 to 55 years.
Finally, the third group was older adults (22) higher than 55 years.

FIGURE 1
Recorded ECG and blood flow waveforms from the left index
finger and the carotid artery.
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2.2 Signal recording

For the purposes of this research, the photoplethysmography
sensor designed and developed earlier (Žikić, 2008), has been used
for continuous and non-invasive recording of the arterial blood flow
waveform (Djuric et al., 2017). The sensor was designed in order to
eliminate artifacts that were occurring during the phases of respiration,
caused by the contraction of the respiratory muscles. In the improved

design, the light source was two series-connected IR diodes, and the
detector was three series-connected NPN phototransistors. Three
serially connected silicon NPN phototransistors were used as light
intensity change detectors (Djuric et al., 2017).

The photoplethysmography sensor was placed and secured
over the left common carotid artery (Vlachopoulos et al., 2010).
Synchronized with the recording of carotid arterial blood flow
waveform, a single-lead channel ECG was also recorded, using
three electrodes on the surface of the chest, as well as arterial
blood flow waveform on the left index finger in order to detect
artifacts due to movement of the neck, swallowing or breathing.
(Figure 1). Recordings were performed in the supine position
for 5–7 min, in order to provide a long-lasting signal suitable for
further mathematical analysis (Figure 1).

All the signals from the sensor module and ECG device were
digitized in 12-bit resolution (PCI-20428W, data-acquisition board,
United States) with a sampling frequency of 1 Khz. After smoothing
and normalization of the signal (by dividing the whole signal by the
maximummeasured value - Q/Qmax), the amplitudes of the arterial
blood flow waveform were determined for each cardiac cycle, for a
minimum of 256 heartbeats. Amplitudes were calculated as the
difference between the maximal reached value of the waveform and
the foot-of-the-wave (Figure 2).

Based on the obtained difference values, a new signal, amplitude
in function of the heartbeat number N, was constructed (Figure 3).

2.3 Data processing

For each subject, the recording of the arterial flow was analyzed
by determining the amplitudes (zi) for each heartbeat (Peng et al.,

FIGURE 2
Determination of the maximal and minimal value of the arterial
blood flow waveform (Q/Qmax–flow amplitude normalized in relation
to the maximum amplitude.

FIGURE 3
Amplitude of the arterial blood flow waveform in the function of the number of heartbeats.
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1995). Then, on the entire signal, the extracted amplitudes were
made as a function of the number of beats (ni), i.e., zi = f (ni). The
sequence was further analyzed using the nonlinear dynamics
technique, applied to physiological signals, i.e., detrended
fluctuation analysis or DFA (Peng et al., 1995; Hausdorff et al.,
1996). According to this technique the sequence y(k) was formed
(Hardstone et al., 2012) and divided into segments of non-
overlapping length n). In each segment the linear local trend
(yn(k)) was calculated (Peng et al., 1995; Hardstone et al., 2012).

In the next step, the root mean square of the fluctuations in
series yn on all N segments of length n was calculated (Peng et al.,
1995; Bryce and Sprague, 2012). In case when the relationship F(n)
vs n is some sort of power function (for instance, const·nα) the graph
is shown by a straight line whose direction coefficient is α.

TheDFAmethod applied in this way defines two coefficients: α1 and
α2. The first refers to correlations over short distances, while the second
defines correlations over long temporal distances. In this study, α1 is the
slope of the linear fit between 4 and 15 beats, while α2 is the slope of the
linear fit more than 15 heart beats (Figure 4). At the end, the ratio of the
slope α1/α2, as the result of the entire signal analysis, was established.

2.4. Statistics

Monitoring and signal registration was performed using the
LabView software (National Instruments Corp. United States).

Further processing of the recorded signal and graphical
presentation was done in OriginPro 8.0 (OriginLab). At the end,
the statistical evaluation of the measured values was carried out
using SPSS 26 (IBM, United States, demo version).

Taking into account the number of values within each age group
(Table 1), the statistical evaluation between the mean values was
performed using the t-test for independent samples (A-B), as well as
the Mann-Whitney test between two pairs (A-C and B-C).

3 Results

The DFA analysis was performed after several subjects were
measured for over 20 min in order to obtain 1,024 points. However,
the preliminary results suggested that the time interval could be
shortened for two reasons: 1) after 7–8 min of recording the subjects
became uncomfortable and started moving their head/neck

FIGURE 4
Results of arterial blood-flow waveform fluctuations in young (A), middle-aged (B), and elderly (C) subject.

TABLE 1 The number of subjects and the corresponding α1/α2 statistical
parameters (mean, standard deviation SD, standard error SE and range) in
three age groups (A, B and C). Symbol * indicates level of statistical difference
between groups.

Group A B C

Number (n) 53 44 22

Mean 1.24 0.87 ***(A) 0.67***(A,B)

SD 0.19 0.18 0.09

SE 0.03 0.03 0.02

Range 0.69 0.94 0.33

FIGURE 5
The relationship between α1/α2 and the age of all subjects who
participated in the study. The vertical lines define intervals in the three
age groups (A–C).
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involuntarily, and 2) the same outcome (in the DFA analysis) were
obtained with 256 points. Thus, the measurement session lasted 5 min.

Figure 5 shows the distribution of the α1/α2 with age, from 20 to
70 years. The vertical lines show the distribution of the α1/α2 values
across the three age groups of subjects (A, B and C). Qualitative
analysis of Figure 5 shows that in the first group, the values of the α1/
α2 are greater than 1, i.e., they range from 1 to 1.7. At the same time,
it can be seen that the α1/α2 values for group 2 oscillate around the
number 1 (from 0.5 to 1.3). It is possible to conclude that the
majority of the α1/α2 are below 1, but this was only the case of this
study. Finally, the third group of subjects reliably has values of the
α1/α2 less than 1 (between 0.4 and 1.0).

The next step involved finding the function thatmost accurately fits
the data. The resulting distribution was fitted with four functions: linear
(-a·(age) + b), logarithmic (a·ln (age) + b), exponential (a·exp (-b·age)),
and polynomial (a·(age)2 - b·(age) + c). The quality of fitting was
examined by comparing the correlation coefficients R) and comparing
the residuals in relation to the fitted curve. The results showed that the
polynomial residuals adjust the curve to the data more than they fit it.
On the other hand, the exponential function has the highestR (0.841) in
comparison with the logarithmic and linear functions (0.813 and 0.809,
respectively). Thus, the nature of the distribution should be presented
with the exponential function.

Table 1 shows the calculated α1/α2 values of the statistical
parameters (mean value, standard deviation, standard error, and
range) for the three age groups of the subjects. The symbol n
indicates the number of subjects in each group, making it clear
that comparison of means requires the use of nonparametric
statistics. Considering the number of samples, the statistical
analysis of the mean values of the first and second groups was
performed using the t-test for two independent samples. On the
other hand, the comparison of mean values between other pairs
(A-C and B-C) was carried out using the Mann-Whitney test. The
results showed that the mean values of all pairs showed a convincing
statistical significance (p < 0.001, Table 1).

4 Discussion

Themorphological and functional changes that are occurring in the
cardiovascular system during aging are known as the Vascular Health
Triad (Townsend et al., 2015). These processes lead to the appearance of
arteriosclerosis and atherosclerosis (Diaz et al., 2018). To be precise, an
increase in the stiffness of the wall leads to an increase in arterial blood
pressure and pulse wave velocity (Ranadive et al., 2021). DFA of signal
fluctuation represents the analysis of self-similarity of the fractal
structure in relation to the signal as a whole (Peng et al., 1995).
This kind of analysis is applicable to various physiological
parameters. By using DFA of signal fluctuations, there is a
possibility of finding the long-term correlations within the chaotic
values in physiological signals (Esen et al., 2009).

Previous studies have shown that the DFA is primarily used in
heart-rate analysis (Peng et al., 1995; De Souza et al., 2014;
Mizobuchi et al., 2021). However, the existence of amplitude
fluctuations for certain parameter, in relation to the time
domain, has been only demonstrated in the analysis of
continuous EEG recordings (Hardstone et al., 2012; De Souza
et al., 2014; Facioli et al., 2021; Mizobuchi et al., 2021). The

amplitude of the recorded signal shows large fluctuations (Eke
et al., 2002), but the amplitude values can be characterized by the
scalar coefficient α). The value of an α value higher than 0.5 shows a
positive correlation in fluctuation of the recorded signal. Conversely,
the value smaller than 0.5 indicates the absence of correlation,
i.e., the existence of small fluctuations (Hardstone et al., 2012).

The present study examines the possibilities of using the DFA
technique in the analysis of fluctuations in the amplitude of blood pulse
waves. To the best of our knowledge, no study has been reported that
analyzes the amplitude fluctuations of arterial blood flow waveforms of
subjects of different ages. Therefore, this study represents a novelty in
the application of DFA, but considering the number of subjects, the
study is still only preliminary. In addition, the study included subjects of
different ages (between 20 and 70 years of age) without heart rhythm
abnormalities and other cardiac or vascular diseases. The subjects were
classified into three age groups (Section 2.1) mostly for the reason of
indirectly examining the difference in the morphology of the artery
walls (Djuric, 2022). Namely, the difference in the wall morphology
with age was quantified through the difference in the fluctuations of the
amplitude of the blood flow waveform (Djuric, 2022).

The quantification of the fluctuations of the amplitudes of arterial
blood flow waveform was performed by determining the scalar
coefficients (α1 and α2) over the years, or more precisely their ratio
(α1/α2). The results of this study clearly show that the ratio of the scalar
coefficients decreases with age (Figure 4). This distribution was best
represented by the exponential function. Further analysis of the
distribution showed that the selected age groups differed significantly
from each other (Table 1). In this study, a significant difference between
subjects over 55 years (GroupC), both in relation other groups (GroupA
and B) could be seen as expected result. However, the highly significant
difference between Group B and C could be seen as a novelty. Subjects
with higher values of α1/α2 demonstrated the existence of a correlation in
waveform amplitude through the entire photoplethysmography signal
(Eke et al., 2000; Eke al., 2002; Hardstone et al., 2012). Large fluctuations
in the amplitude aremost likely occurring due to the high elasticity of the
arterial vessels (Zarrinkoob et al., 2016).

Further, the decrease of the α1/α2 with age may indicate a
decrease in the fluctuation of the waveform amplitude, and this
probably occurs because of changes in the elasticity of the wall of the
arterial blood vessel (Mitchel, 2021). Finally, observing the
distribution of the α1/α2 in relation to the age, and comparing
the values between different age groups, we can conclude that the
mentioned ratio represents a sensitive marker for assessing the age of
the vascular system in the population of healthy subjects.

Assessing the age of the cardiovascular system is very difficult to
determine with non-invasive measurement methods. With aging,
changes occur in the walls of blood vessels, which will certainly affect
thewaveformof the bloodflow.Validation of thismethod is very difficult.
We plan to repeat the measurement of the same subjects after a shorter
period and compare the results of the analysis. Another limitation of the
method is the impact of hypertension and blood viscosity on the blood
flow waveform. These parameters will be included in further studies.

5 Conclusion

Cardiovascular diseases are the leading cause of mortality in Serbia
and the rest of the world (Institute of Public Health of Serbia, 2020;
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National Center for Health Statistics, 2021; Tsao et al., 2023). The
research which addresses age-related changes of blood vessels,
particularly the analysis of blood flow waveforms, is highly important
for patients’ benefit. This becomes especially important knowing that in
the last 20 years the number of old people has been growing.

Reviewing the present literature (Charlton et al., 2021), we did not
notice a study that analyzes the long-term arterial blood flow waveform
within different age ranges. It is usually studied by ultrasonographic
analysis of blood flow, so this study represents a novelty by finding that
blood flow waveforms recorded by photoplethysmography based sensor
can be used for the research of the cardiovascular system aging. However,
considering the number of subjects and their age range, we perceive this
study as preliminary. As such, this study registers an exponential decrease
in the ratio of the scalar coefficients with age and detects differences
between themean values of their ratio in the three selected age groups. In
addition, our analysis could indicate certain changes in the cardiovascular
system that cannot be detected by standard non-invasive methods.

Therefore, we believe that our new analysis of wave propagation
of blood may be very useful for indication of cardiovascular diseases.
Our analysis method could contribute to faster diagnosis and
adequate therapeutic decision for a better quality of life for older
people (American Heart Association, 2019; Lindbohm et al., 2019;
Neumann et al., 2022).
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Background: Pulse transit time (PTT) is a key parameter in cuffless blood pressure
measurement based on photoplethysmography (PPG) signals. In wearable PPG
sensors, raw PPG signals are filtered, which can change the timing of PPG
waveform feature points, leading to inaccurate PTT estimation. There is a lack
of comprehensive investigation of filtering-induced PTT changes in subjects with
different ages.

Objective: This study aimed to quantitatively investigate the effects of aging and
PTT definition on the infinite impulse response (IIR) filtering-induced PTT changes.

Methods: One hundred healthy subjects in five different ranges of age
(i.e., 20–29, 30–39, 40–49, 50–59, and over 60 years old, 20 subjects in
each) were recruited. Electrocardiogram (ECG) and PPG signals were
recorded simultaneously for 120 s. PTT was calculated from the R wave of
ECG and PPG waveform features. Eight PTT definitions were developed from
different PPG waveform feature points. The raw PPG signals were preprocessed
then further low-pass filtered. The difference between PTTs derived from
preprocessed and filtered PPG signals, and the relative difference, were
calculated and compared among five age groups and eight PTT definitions
using the analysis of variance (ANOVA) or Scheirer–Ray–Hare test with post hoc
analysis. Linear regression analysis was used to investigate the relationship
between age and filtering-induced PTT changes.

Results: Filtering-induced PTT difference and the relative difference were
significantly influenced by age and PTT definition (p < 0.001 for both). Aging
effect on filtering-induced PTT changes was consecutive with a monotonous
trend under all PTT definitions. The age groups with maximum and minimum
filtering-induced PTT changes depended on the definition. In all subjects, the PTT
defined by maximum peak of PPG had the minimum filtering-induced PTT
changes (mean: 16.16 ms and 5.65% for PTT difference and relative difference).
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The changes of PTT defined by maximum first PPG derivative had the strongest
linear relationship with age (R-squared: 0.47 and 0.46 for PTT difference relative
difference).

Conclusion: The filtering-induced PTT changes are significantly influenced by age
and PTT definition. These factors deserve further consideration to improve the
accuracy of PPG-based cuffless blood pressure measurement using wearable
sensors.

KEYWORDS

cuffless blood pressure measurement, pulse transit time (PTT), photoplethysmography
(PPG), filtering, waveform feature

1 Introduction

Photoplethysmography (PPG) signal reflects the volumetric
changes in microcirculation. PPG pulse waveform characteristics
contain vital information regarding cardiovascular systems and
associated diseases. The PPG technology has been widely used in
physiological measurement of important cardiovascular parameters,
e.g., heart rate, heart rate variability, and blood pressure (Allen,
2007; Liu et al., 2019; Khalid et al., 2020; Khalid et al., 2022).
Nowadays, the development of wearable technology further
expanded the application scenarios of PPG-based mobile health
monitoring in daily life.

Among many, pulse transit time (PTT) is one of the most
important characteristics provided by PPG pulse waveform. PTT
refers the time for heart pulse wave (PW) to propagate through a
length of the arterial tree. It can be approximated as the interval
between the R wave of electrocardiogram (ECG) and the
characteristic point of PPG signal (e.g., the end-of-diastolic
valley) in the same cardiac cycle. PTT (negatively related to
blood pressure) and associated pulse wave velocity (PWV) have
been extensively used to develop novel cuffless and continuous
blood pressure measurements using wearable PPG sensors (Ding
and Zhang, 2019). In early works, several PPG pulse wave
characteristics have been extracted to determine PTT, including
PPG valley (Babchenko et al., 2000; Nitzan et al., 2002; Allen et al.,
2008), PPG peak (Zhang and Zhang, 2006; Allen et al., 2008;Wagner
et al., 2010; Kortekaas et al., 2012; Li et al., 2014), peak of the first
derivative of PPG (Yoon et al., 2009; Kortekaas et al., 2012; Kim
et al., 2013), and peak of the second derivative of PPG (Teng and
Zhang, 2006; Kortekaas et al., 2012), etc.

PPG measurement is influenced by many factors, including (but
not limited to) body site of measurement, breathing pattern, age, etc.
All these factors may affect the waveform quality of the PPG data,
and subsequently cause challenges in extracting PPG waveform
features. Hartmann et al. found that the PPG signals measured
from the fingertip achieved the highest percentage of analyzable
waveforms for feature extraction among six measurement sites of
finger, wrist under, wrist upper, arm, earlobe, and forehead
(Hartmann et al., 2019). In addition, the age-related changes of
vascular biomechanical properties, e.g., artery stiffness, can
significantly influence the PPG waveform and the location of
characteristic points (Allen et al., 2020). It has been reported that
PWV, the gold standard for evaluating arterial stiffness, was
correlated with age in healthy adults (Koivistoinen et al., 2007;

Schwartz et al., 2019). Allen et al. observed multiple age-related
changes in PPG pulse shape characteristics measured at different
body sites, with small but significant overall elongation of the
systolic rising edge (Allen and Murray, 2003). They found a
significant correlation between aging and PTT shortening (Allen
and Murray, 2002).

In addition to the abovementioned physiological factors,
preprocessing of raw PPG signals may also incur some changes
on PPG waveform features, particularly the timing information. In
many wearable applications, raw PPG signals are filtered before
feature extraction. Filtering can change the waveform of PPG signals
and the timing of feature points (Liu et al., 2021). At present, the
finite impulse response (FIR) and infinite impulse response (IIR)
filters are widely applied in PPG signal processing. IIR filters offer a
number of advantages over other types of filters, such as their ability
to achieve a high degree of signal attenuation and their applicability
in digital signal processing systems. Whereas, the nonlinear phase
response of the IIR filter can deform PPG signals and affect the
timing of PPG waveform feature points (Allen and Murray, 2004).
In our previous study, we observed that IIR filtering can significantly
change the characteristics of PPG waveforms (e.g., peaks and
valleys) with the average time shift over 0.1s (Liu et al., 2021).
Hence it was noted that filtering parameters should be quoted to
support the reproducibility of PPG-related studies (Liu et al., 2021;
Charlton et al., 2022). In this paper, we continue this line of thought
and research methodology on IIR filtering which will establish the
groundwork for future research on FIR and other filters.

Considering the importance of PTT for measuring important
cardiovascular signs (e.g., blood pressure, vascular elasticity), it is
valuable to study all possible sources leading to PTT measurement
errors. So far, little has been reported on how filtering-induced time
shift in PPG signal preprocessing affects PTTmeasurement, which is
largely due the lack of a standardized PPG signal processing
workflow. The filtering parameters of many commercial wearable
PPG sensors are unrevealed. In early studies, the filtering parameters
were not uniform and narrow frequency bands were widely used,
e.g., 0.5–4 Hz (Wang et al., 2007; Vogel et al., 2009) and 0.8–4 Hz
(Poh et al., 2012).

This work took the first step toward quantitatively assessing the
effect of PPG pulse filtering on PTT changes. Specially, eight
waveform feature points from PPG signals were used to define
8 types of PPT for studying the PPT definition effect, and PPG
signals were collected from a wide range of age for studying the
possible aging effect.
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2 Materials and methods

2.1 Subjects

A total of one hundred participants (age: 44 ± 14 years, age
range: 20–71 years; 48 males and 52 females) were recruited from
staff, students and their relatives in Newcastle Hospitals and
Newcastle University with written informed consent. The
participants were equally distributed in five age groups
(i.e., 20–29, 30–39, 40–49, 50–59, and over 60 years old,
20 subjects in each). No participant suffered cardiovascular
disease before. This study received ethical permission from the
Faculty Research Ethics Panel at Anglia Ruskin University
(FMSFREP/17/18205), and all participants provided their written
informed consent. The experimental procedures involving human
subjects described in this work complied with the principles in the
Declaration of Helsinki by World Medical Association in 2000.

2.2 Measurement procedure

Figure 1 illustrates the schematic diagram of the PPG and ECG
measurement system. The experiment was performed in a
thermostatic room maintaining the temperature at 23°C ± 1°C. In
order to stabilize the cardiovascular system, each participant was
guided to lie supine on a couch and rest for 5 min. Their arms were
placed parallel to the body without any movement. During the
experiment, the ECG and PPG signals were recorded, reviewed, and
saved using the MP160 data acquisition system with the Biopac
AcqKnowledge software. The sensors to measure ECG and PPG
signals were attached to thoracic area and right index fingertip,
respectively. The participants were informed to keep a normal
breathing. When the ECG and finger PPG signals on the
monitor screen were stable, they were recorded simultaneously at
a sample rate of 2,500 Hz for 120 s. The operator monitored the data
during the recording, reviewed the whole data segments after the
recording, and then saved the data with adequate quality. If any

error or low-quality segment appeared, the data recording was
repeated.

2.3 Signal preprocessing and filtering

The recorded data were anonymized and imported to
MATLAB (R2021b; MathWorks Inc. Natick, United States) for
signal processing. The ECG signals were first pre-processed with
a 4th-order Butterworth band-pass filter (passband: 0.05–35 Hz,
stopbands: <0.01 Hz and >40 Hz) to remove the baseline drifts
(i.e., low-frequency noises) and high-frequency noise, followed
by a wavelet transformation to further remove the remaining
low-frequency noises due to the slant stopband edges. Specially,
the Daubechies 8 wavelet (db8) was used for 11-level
decomposition. As compared with a band-pass filter, the
discrete wavelet transform could perform better in terms of
eliminating high-frequency noise (e.g., electrocardiogram
noise, power line noise, etc.) while keeping the morphology
feature points of the ECG signal (Zhao et al., 2022). The
approximation coefficient of the wavelet decomposition at the
11th level, which contained low-frequency drift component, was
replaced by zero. Then, the signal was reconstructed based on the
new coefficients to obtain the preprocessed ECG signal.

The raw PPG signals were preprocessed with a high-pass infinite
impulse response (IIR) filter (1 zero and 10 poles, passband: >0.5 Hz,
stopband: <0.2 Hz) to remove the baseline drifts. A low-pass IIR
filter (1 zero and 16 poles, passband: <20 Hz, stopband: >30 Hz) was
then used to remove the high-frequency noises which included the
50 Hz power line and electrophysiological noises.

To investigate the effect of filtering on PTT measurement, the
preprocessed PPG signals were further filtered with a low-pass IIR
filter (1 zero and 13 poles, passband: <3 Hz, stopband: >5 Hz). The
details of the PPG signal preprocessing could be found in Figure 2 of
(Liu et al., 2021). Figure 2 illustrates the removal of baseline
wondering and high-frequency noises (see the enlarged circle) in
preprocessing, and further smoothing in the IIR filtering.

FIGURE 1
Schematic diagram of the measurement system.
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2.4 Definition of PTT

PTT is usually defined as the time between the R-peak of the
electrocardiogram (ECG) and a reference point on systolic PPG
signal segment. The reference point can be derived from different
PPG features (e.g., end-of-diastolic valley, systolic peak, see
Figure 3), which leads to different PTT definitions.

This work selected eight different PPG pulse waveform
characteristics to define eight PTTs. The eight PPG pulse
waveform characteristics are (see Figure 4).

(1) Onset point of the first derivative (O1D): the onset of the first
derivative of PPG in a cardiac cycle.

(2) Valley point of PPG (VP): the point corresponding to the
minimum value of the PPG in a cardiac cycle which is
located at the end of diastole.

(3) Maximum second derivative (M2D): the point corresponding to
the maximum value of the second derivative of PPG in a cardiac
cycle.

(4) Maximum first derivative (M1D): the point corresponding to
the maximum value of the first derivative of PPG in a cardiac
cycle.

FIGURE 2
Example waveforms of (A) raw PPG, (B) preprocessed PPG, and (C) filtered PPG signals with a duration of 60 s.

FIGURE 3
Illustration of two types of PTT, i.e., preprocessed PTT and filtered
PTT. Here, the preprocessed PTT refers the interval between the ECG
R-wave and the end-of-diastolic valley of the preprocessed PPG
signal, while the filtered PTT is the interval between the ECG
R-wave and the end-of-diastolic valley of the filtered PPG signal.
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(5) Valley point of the second derivative (V2D): the point
corresponding to the minimum value of the second
derivative of PPG in a cardiac cycle.

(6) Forward peak of PPG (FP): the point that has the maximum
value in a cardiac cycle of the forward PPG wave.

(7) Maximum peak of PPG (MP); the systolic peak point that has
the maximal PPG value in a cardiac cycle.

(8) Valley point of the first derivative of PPG (V1D): the point
corresponding to the minimum value of the first derivative of
PPG in a cardiac cycle.

The derivatives were approximated using backward difference
calculated from adjacent sampling points. Therefore, the first and
second derivatives of the PPG signal started from the second and third
sampling points, respectively. Considering the high sampling frequency
(i.e., 2,500 Hz), the error caused by the approximation was very limited
(<4 × 10−4 s for the timing of any characteristic point). The characteristic
points were detected from the extrema (i.e., peak and valley points) of PPG
and its derivatives, as well as the decomposition of forward and backward

pulse waves. The details of defining and detecting characteristic points can
be found in our early works (Liu et al., 2021; Lin et al., 2022).

To prevent inaccurate readings at the immediate start and end of
a PPG recording, any characteristic point was excluded from the
analysis if it or its ‘counterpart’ (i.e., any of the preprocessed or
filtered one) fell in the first 0.5 s (e.g., in Figure 4D, the pair of peak
points are excluded) or the last 0.75 s (Figure 4E). To exclude the
missing or erroneous feature points, any detected feature point was
excluded if there was no ‘counterpart’ point within ±0.3 s of the
detected feature point. The time axis was unchanged (i.e., no shift of
any signal) during signal processing.

As to ECG signals, the R wave peak was detected as the maximal
value in a cardiac cycle using the Pan Tompkins method
(Sathyapriya et al., 2014). To prevent inaccurate readings at the
immediate start and end of an ECG recording, similar as in PPG
preprocessing, any R peak point was excluded if it or its counterpart
was in the first 0.5 s or the last 0.5 s. When processing the noisy PPG
signals in some cardiac cycles, only the valleys within 100–500 ms
after the ECG R-peak (i.e., 100 ms≤ PTT ≤500 ms) were selected for

FIGURE 4
The characteristic points on (A) the PPG signal and its (B) first and (C) second derivatives. Points 1-8 denote O1D, VP, M2D, M1D, V2D, FP, MP, and
V1D, respectively. Adopted from (Mejia-Mejia et al., 2022). (D) and (E): Corresponding PPGwaveform characteristics points of both signals (preprocessed
and filtered) were excluded from the analysis if any of them falls in the first 0.5s (D) or last 0.75s of the recording (E).
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analysis. For each PPG signal (preprocessed or filtered), the PTT was
calculated as the mean value of PTTs of all included cardiac cycles.

2.5 Statistical analysis

For each participant, the filtering-induced PTT difference was
calculated between the PTT values derived from the filtered and
preprocessed PPG signals. The relative PTT difference was calculated as:

RDPTT � PTTfiltered − PTTpreprocessed( )/PTTpreprocessed (1)

For each subject, the PTT difference and RDPTT were averaged in
all included cardiac cycles. The ratio between the mean and standard
deviation of RDPTT in all included cardiac cycles was also calculated to
estimate the intra-subject variation of filtering-induced PPT changes.
Statistical analysis was performed using SPSS (Version 24.0, IBM
Corp.; Armonk, NY, United States) and R programming language,
version 4.1.0 (R Core Team, 2021). Considering the data size,
Shapiro–Wilk test was performed to investigate the normality of

FIGURE 5
Box and whisker plots of the filtering-induced difference and
relative difference of PTT in five age groups and eight PTT definitions.
The medians are represented by the horizontal lines within the boxes
while the first and third quartiles are represented by the box
boundaries.

TABLE 1 Results of Scheirer-Ray-Hare test regarding the PTT difference.
Asterisk denotes significant difference.

H p-value

Age 22.29 <0.001*

PTT Definition 530.37 <0.001*

Age & PTT Definition Interaction 35.89 0.146

TABLE 2 Results of Scheirer-Ray-Hare test regarding the PTT relative
difference. Asterisk denotes significant difference.

H p-value

Age 23.54 <0.001*

PTT Definition 484.48 <0.001*

Age & PTT Definition Interaction 36.87 0.122

FIGURE 6
Results of Dunn’s Kruskal–Wallis multiple comparisons between
the five age groups regarding the PTT difference, derived from all PTT
definitions. The brightness indicates the statistical significance
(i.e., higher significance in red color).

FIGURE 7
Results of Dunn’s Kruskal–Wallis multiple comparisons between
the five age groups regarding the PTT relative difference (RDPTT). The
brightness indicates the statistical significance (i.e., higher significance
in red color).
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data distribution. Normal distribution was defined as p > 0.05 in
Shapiro–Wilk test.

To investigate if there was any significant effect of age, PTT
definition, or their interaction on the filtering-induced PTT
difference or RDPTT, the analysis of variance (ANOVA) or
Scheirer–Ray–Hare test was performed. ANOVA was performed
on normally distributed data where the homogeneity of variance was
satisfied (defined as p > 0.05 in Levene’s test), otherwise the
Scheirer–Ray–Hare test was performed as a substitute.

To further investigate the difference between age groups, or
between PTT definitions, and to identify the age group and the PTT
definition with the highest reliability (i.e., with the least filtering-
induced PTT changes), the post hoc analysis was performed, i.e., least
significant difference tests and Dunn’s Kruskal–Wallis multiple
comparisons for ANOVA and the Scheirer–Ray–Hare test,
respectively. In the Dunn’s Kruskal–Wallis multiple comparisons,
the p-value was adjusted via the Benjamini–Hochberg method
(Benjamini and Hochberg, 1995).

Finally, to investigate quantitatively the aging effect on filtering-
induced PTT difference and its relative difference, linear regression
analysis was performed. The R-squared value was calculated to evaluate
the strength of the linear relationship. A significant linear relationship
was defined as r > 0.5 (R-squared >0.25) and p < 0.05. A strong linear
relationship was defined as r > 0.8 (R-squared >0.64) and p < 0.05.

Regression analysis of the data and curve plotting were performed using
Graphpad Prism (version 9.0.0, GraphPad Software, United States).

3 Results

3.1 Effects of age and PTT definition on
filtering-induced PTT differences

The ratio between mean and standard deviation of RDPTT in
included cardiac cycles was below 20% for all PTTs in 72 subjects,
indicating limited intra-subject variability of filtering-induced PTT
difference. Therefore, in this study, the data analysis was focused on
the mean values of filtering-induced PTT changes and RDPTT.

Figure 5 shows the distribution of filtering-induced PTT
difference and its relative difference in five different age ranges
and eight PTT definitions. The distribution of filtering-induced PTT
difference and relative difference did not satisfy the homogeneity of
variance (p < 0.05 in Levene’s test for both). Therefore, the Scheirer-
Ray-Hare test was performed. As shown in Tables 1, 2, there were
significant effects of age and PTT definition (p < 0.001 for both) on
filtering-induced PTT difference and its relative difference, whereas,
the effect of interaction between age and PTT definition is
insignificant.

FIGURE 8
Results of Dunn’s Kruskal–Wallis multiple comparisons between the eight types of PTT definition regarding the PTT difference. The brightness
indicates the statistical significance (i.e., higher significance in red color).

FIGURE 9
Results of Dunn’s Kruskal–Wallis multiple comparisons between the eight types of PTT definition regarding the PTT relative difference (RDPTT). The
brightness indicates the statistical significance (i.e., higher significance in red color).
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3.2 Comparison between age groups and
PTT definitions

As shown in Figure 5, in most PTT definitions, there is a
consecutive and monotonic trend in filtering-induced PTT
difference across different age groups (e.g., increase and decrease
with age for M1D in MP, respectively).

In Figures 6, 7, in can be observed that the differences in PTT
difference and RDPTT both increase with the gap between age
groups, where the difference between the youngest and oldest
groups (20–29 and >60 years) is the most significant (p <
0.001 for both PTT difference and relative difference).

Considering all PTT definitions, the age groups (20–29) and
(50–59) had the maximum and minimum filtering-induced
changes, respectively (for both PTT difference and relative
difference, in mean value). Of note, the age groups with maximal
and minimal filtering-induced PTT changes were actually
definition-specific (Figure 5).

Regarding the differences among PTT definitions, as shown in
Figure 8, significant differences in PTT difference were observed (p <
0.05) except between O1D and FP, and between MP and M1D. As
shown in Figure 9, significant differences in PTT relative difference
were observed (p < 0.05) except between V2D and M2D, between
V1D and VP, as well as between MP and M1D. Therefore, PTT
definition has significant influence on the filtering-induced PTT
changes. In all subjects, MP had the minimum filtering-induced
changes for both PTT difference and RDPTT (mean in all subjects:
16.16 ms and 5.65%, respectively).

3.3 Quantitative analysis: age and filtering-
induced PTT difference

As shown in Figure 10, many filtering-induced PTT changes
have linear relationships with age, which is in accordance with the
trends in Figure 5. The significant linear relationship between age
and PTT difference was found in all types of PTT definition group
except O1D, FP and V1D. Overall, M1D had the highest strength of
the linear relationship (r2 � 0.47 in PTT difference and r2 � 0.46 in
PTT relative difference).

4 Discussion and conclusion

The results in this work showed that IIR filtering considerably
influenced PTT values by changing the positions of PPG feature
points. We observed that filtering-induced PTT changes depended
on age and the definition of PTT. In all PTT definitions, the effect of
age was consecutive with a monotonous trend. The age group with
the least filtering-induced PTT changes depended specifically on
PTT definition. Among different PTT definitions, MP showed the
highest robustness against the filtering-induced PTT changes. The
MP and M1D exhibited the least filtering-sensitive PTT changes,
which may explain the lack of significant difference between them in
Figures 8, 9. The performance of difference PTTs deserves further
investigation on the underlying physiological mechanisms. The
linear trends between age and filtering-induced PTT changes
indicated the significance of age-based adjustment in PTT
estimation. As far as we know, this work is among the first
attempts to investigate the filtering-induced PTT changes.

4.1 Filtering-induced PTT changes: A
neglected concern

PPG signals are typically subject to noises and trends. Therefore,
a proper preprocessing plays a key role in many applications, e.g.,
the functional assessment of autonomic nervous system (Akar et al.,
2013). However, at present, there is a lack of comprehensive
evaluation of the filtering effect on the accuracy of PTT across

FIGURE 10
Linear regression plot between age and filtering-induced PTT
difference and relative difference (RDPTT) under eight definitions
of PTT.
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different ages. Our results filled this gap and highlighted the
importance of age-based adjustment of the filtering-induced
inaccuracy in PTT-based applications, e.g., BP estimation.

Currently, despite the increasing diversity in PPG pre-
processing techniques, traditional IIR and FIR filers still play an
important role because they are easier to design in digital signal
processors (Liu et al., 2021; Mejia-Mejia and Kyriacou, 2023).
Recently, Mejía-Mejía et al. investigated the effect of PPG
filtering strategy in the analysis of pulse rate variability (PRV),
and concluded that PRV information can be reliably extracted from
PPG signals filtered by elliptic IIR or equiripple or Parks–McClellan
FIR filters (Mejia-Mejia and Kyriacou, 2023).We also focused on the
IIR filter in this pilot study. Compared with PRV which is measured
between consecutive heartbeats, PTT is derived from a much shorter
period in a cardiac cycle, and thus can be more sensitive to the
filtering-induced time shift of PPG feature points. Our results
revealed that the filtering can led to considerable changes in PTT
(>39.6%, all age groups in VP), affecting the accuracy in BP
estimation. Therefore, filtering-induced PPG waveform
deformation deserves further attention in PTT-based BP estimation.

4.2 Beyond age: physiological factors that
can influence PTT

It is well known that the PTT-BP relationship depends on age
(Allen and Murray, 2002; Foo et al., 2005). Allen et al. found a
consistent trend in the effect of age on PTT (r2 � 0.48) (Allen and
Murray, 2002), while we further observed similar phenomena in the
filtering-induced PTT difference (Figures 5, 10). These observations
commonly provide the reference for age-adjusted PTT calculation in
the future.

Besides age, many other physiological conditions including
measurement site, breathing pattern, and neural activities can
significantly influence PPG waveform, therefore change the PTT
values (Hartmann et al., 2019; Liu et al., 2020; Khalid et al., 2022).
The temperature-induced autoregulation can also influence PTT.
Teng et al. found that local cold exposure can influence the PTT
defined by MP with negligible effect on the PTT defined by VP
(Zhang and Zhang, 2006). Furthermore, vascular stiffness increases
with age, which has a significant effect on PPG signal waveform
(Allen andMurray, 2002). A recent study on oscillography-based BP
estimation concludes that, age, BP, and arterial stiffness have
complex interaction (Pan et al., 2022). The effect of these
physiological factors in PPG waveform changes deserves further
investigation.

4.3 Technological factors in improving the
accuracy of PTT estimation

Some technical issues can influence the PTT values. Recently,
Chandrasekhar et al. pointed out that the PPG sensor contact
pressure might be another factor that influences the reliability of
PTT measurement (Chandrasekhar et al., 2020). Teng et al. found
that, during the increase of contacting force, the PTT defined by
M2D had the largest overall change (from 200.3 ± 20.6 ms to 225.0 ±
19.3 ms) (Teng and Zhang, 2006), whereas the PTT defined by M1D

had the minimum 325 changes (from 245.3 ± 20.2 ms to 261.4 ±
14.2 ms) (Teng et al., 2004) which is in accordance with our
observations. They also found that the interaction between age
and contact force might influence PTT. As the contact force
increased to the mean intra-arterial pressure (zero transmural
pressure), PTT increased from 155.2 ± 18.5 ms to 164.7 ±
21.6 ms for the group of elderly subjects and from 186.7 ±
21.0 ms to 201.7 ± 19.5 ms for the group of young subjects (Teng
and Zhang, 2007). Therefore, more physiological and technical
factors, as well as their interactions, need to be considered to
improve the accuracy of PTT-based BP estimation. Since MP and
M1D exhibited the least filtering-sensitive PTT changes and showed
strongest linear relationships, we recommend using M1D in
younger subjects and MP in older subjects in calculating PTT to
improve its reliability.

4.4 PPG signal preprocessing: towards
application-specific standardization

PPG technology provides the possibility of low-cost, non-
invasive, and continuous BP measurement for different
application scenarios. Recent development of learning-based
methods has largely improved the accuracy of BP estimation
based on single PPG waveform analysis. PTT-based BP
estimation is being considered at a secondary place due to the
significant impact of arterial stiffness, individual instability and
physical condition on the predetermined hypothetical
relationship (Agham and Chaskar, 2021). However, due to its
accuracy and reliability, PTT-based BP estimation is still the
commonest solution in wearable devices compared with other
approaches.

Our results revealed a major limitation of PTT-based methods,
i.e., the lack of a framework for standardized filtering and
quantitative adjustment of the results. At present, there is a lack
of standardized practices in PPG signal acquisition and processing
(Charlton et al., 2022). In the majority of PPG studies, there are
insufficient details of the settings/parameters of the filters. As
summarized in our previous work, the filtering parameters are
not uniform, where the lower and upper stop frequencies range
around 0.005–0.5 Hz, and 5–20 Hz, respectively, with an
inconsistency in key properties such as transition bandwidth and
ripples (Liu et al., 2021). Considering the diversity of PPG pre-
processing methods, and the interaction between technical with
physiological factors in the changes of PTT values, we recommend
that the preprocessing of PPG signals can be standardized and
tailored to meet different application scenarios, where both technical
and physiological factors (e.g., filtering parameters, age,
measurement site, etc.) can be considered comprehensively and
adjusted quantitatively to improve the accuracy of PTT-based BP
estimation.

4.5 Limitations and future directions

This is a small-scale pilot study, where other physiological
factors as abovementioned were not included to avoid
confounding the results. Another major limitation of the study is
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that it did not include the subjects with very low and high ages
(<20 and >70 years). Existing studies showed that the relationship
between age and arterial stiffness is non-linear (Vlachopoulos et al.,
2011; Laurent et al., 2019). Therefore, the results might not reflect
the filtering-induced PTT changes in elderly people who are more
liable to hypertension. Also, we only included healthy subjects,
without considering the effect of pathological changes on PPG
signal waveform. Existing evidence showed that PTT was mildly
elevated in patients with heart failure compared with healthy
subjects (468 ± 12 vs. 430 ± 23 ms, p = 0.001) (Wagner et al., 2010).

In future studies, large-scale, multi-center datasets covering
a wider range of age and more pathophysiological conditions
could be used to improve the accuracy of PTT calculation and
enable a fine-grained PTT estimation framework. More filtering
metrics and techniques can be explored to develop a panoramic,
standardizable PPG preprocessing framework with high
robustness against filtering-induced PPG waveform
deformation.

In conclusion, the results in this work showed that the filtering-
induced PTT difference was significantly different among different
types of PTT definite or among different age groups. The
physiological factor including age and PTT definition should be
considered in PTT-based application using wearable sensors, e.g.,
blood pressure estimation.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by Faculty Research Ethics Panel at Anglia Ruskin
University (FMSFREP/17/18205). The patients/participants
provided their written informed consent to participate in this study.

Author contributions

SL and HL conceived and planned the study. DZ collected the
dataset. SL, HL, and W-HL developed the signal processing
algorithms. SL performed the signal processing. SL and HL
performed the statistical analysis and drafted the first version of
the manuscript. FC supervised the project that led to production of
the results. All authors contributed to the article and approved the
submitted version.

Funding

This work was supported by Shenzhen Key Technology
Program Funding (JSGG20220831103803006).

Acknowledgments

We acknowledge Newcastle University and Anglia Ruskin
University for providing convenience in data collection and access.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Agham, N. D., and Chaskar, U. M. (2021). Learning and non-learning algorithms for
cuffless blood pressure measurement: A review. Med. Biol. Eng. Comput. 59 (6),
1201–1222. doi:10.1007/s11517-021-02362-6

Akar, S. A., Kara, S., Latifoglu, F., and Bilgic, V. (2013). Spectral analysis of
photoplethysmographic signals: The importance of preprocessing. Biomed. Signal
Process. Control 8 (1), 16–22. doi:10.1016/j.bspc.2012.04.002

Allen, J., and Murray, A. (2002). Age-related changes in peripheral pulse timing
characteristics at the ears, fingers and toes. J. Hum. Hypertens. 16 (10), 711–717. doi:10.
1038/sj.jhh.1001478

Allen, J., and Murray, A. (2003). Age-related changes in the characteristics of the
photoplethysmographic pulse shape at various body sites. Physiol. Meas. 24 (2),
297–307. doi:10.1088/0967-3334/24/2/306

Allen, J., and Murray, A. (2004). “Effects of filtering on multisite
photoplethysmography pulse waveform characteristics,” in Computers in
Cardiology, 2004: IEEE, Chicago, IL, USA, 19-22 September 2004, 485–488.

Allen, J., O’Sullivan, J., Stansby, G., and Murray, A. (2020). Age-related changes in
pulse risetime measured by multi-site photoplethysmography. Physiol. Meas. 41 (7),
074001. doi:10.1088/1361-6579/ab9b67

Allen, J., Overbeck, K., Nath, A. F., Murray, A., and Stansby, G. (2008). A prospective
comparison of bilateral photoplethysmography versus the ankle-brachial pressure index

for detecting and quantifying lower limb peripheral arterial disease. J. Vasc. Surg. 47 (4),
794–802. doi:10.1016/j.jvs.2007.11.057

Allen, J. (2007). Photoplethysmography and its application in clinical physiological
measurement. Physiol. Meas. 28 (3), R1–R39. doi:10.1088/0967-3334/28/3/R01

Babchenko, A., Davidson, E., Adler, D., Ginosar, Y., Kurz, V., and Nitzan, M. (2000).
Increase in pulse transit time to the foot after epidural anaesthesia treatment.Med. Biol.
Eng. Comput. 38 (6), 674–679. doi:10.1007/bf02344874

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: A
practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57
(1), 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x

Chandrasekhar, A., Yavarimanesh, M., Natarajan, K., Hahn, J. O., and Mukkamala, R.
(2020). PPG sensor contact pressure should Be taken into account for cuff-less blood
pressure measurement. Ieee Trans. Biomed. Eng. 67 (11), 3134–3140. doi:10.1109/tbme.
2020.2976989

Charlton, P. H., Pilt, K., and Kyriacou, P. A. (2022). Establishing best practices in
photoplethysmography signal acquisition and processing. Physiol. Meas. 43 (5), 050301.
doi:10.1088/1361-6579/ac6cc4

Ding, X., and Zhang, Y.-T. (2019). Pulse transit time technique for cuffless
unobtrusive blood pressure measurement: From theory to algorithm. Biomed. Eng.
Lett. 9 (1), 37–52. doi:10.1007/s13534-019-00096-x

Frontiers in Physiology frontiersin.org10

Liao et al. 10.3389/fphys.2023.1172150

99

https://doi.org/10.1007/s11517-021-02362-6
https://doi.org/10.1016/j.bspc.2012.04.002
https://doi.org/10.1038/sj.jhh.1001478
https://doi.org/10.1038/sj.jhh.1001478
https://doi.org/10.1088/0967-3334/24/2/306
https://doi.org/10.1088/1361-6579/ab9b67
https://doi.org/10.1016/j.jvs.2007.11.057
https://doi.org/10.1088/0967-3334/28/3/R01
https://doi.org/10.1007/bf02344874
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1109/tbme.2020.2976989
https://doi.org/10.1109/tbme.2020.2976989
https://doi.org/10.1088/1361-6579/ac6cc4
https://doi.org/10.1007/s13534-019-00096-x
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1172150


Foo, J. Y. A., Wilson, S. J., Williams, G., Harris, M. A., and Cooper, D. (2005). Age-
related factors that confound peripheral pulse timing characteristics in Caucasian
children. J. Hum. Hypertens. 19 (6), 463–466. doi:10.1038/sj.jhh.1001846

Hartmann, V., Liu, H. P., Chen, F., Qiu, Q., Hughes, S., and Zheng, D. C. (2019).
Quantitative comparison of photoplethysmographic waveform characteristics: Effect of
measurement site. Front. Physiology 10, 198. doi:10.3389/fphys.2019.00198

Khalid, S. G., Ali, S. M., Liu, H. P., Qurashi, A. G., and Ali, U. (2022).
Photoplethysmography temporal marker-based machine learning classifier for
anesthesia drug detection. Med. Biol. Eng. Comput. 60 (11), 3057–3068. doi:10.1007/
s11517-022-02658-1

Khalid, S. G., Liu, H., Zia, T., Zhang, J., Chen, F., and Zheng, D. (2020). Cuffless blood
pressure estimation using single channel photoplethysmography: A two-step method.
IEEE Access 8, 58146–58154. doi:10.1109/access.2020.2981903

Kim, S. H., Song, J. G., Park, J. H., Kim, J. W., Park, Y. S., and Hwang, G. S. (2013).
Beat-to-Beat tracking of systolic blood pressure using noninvasive pulse transit time
during anesthesia induction in hypertensive patients. Anesth. Analgesia 116 (1), 94–100.
doi:10.1213/ANE.0b013e318270a6d9

Koivistoinen, T., Kööbi, T., Jula, A., Hutri-Kähönen, N., Raitakari, O. T., Majahalme,
S., et al. (2007). Pulse wave velocity reference values in healthy adults aged 26–75 years.
Clin. Physiology Funct. Imaging 27 (3), 191–196. doi:10.1111/j.1475-097X.2007.00734.x

Kortekaas, M. C., Niehof, S. P., van Velzen, M. H. N., Galvin, E. M., Huygen, F., and
Stolker, R. J. (2012). Pulse transit time as a quick predictor of a successful axillary
brachial plexus block. Acta Anaesthesiol. Scand. 56 (10), 1228–1233. doi:10.1111/j.1399-
6576.2012.02746.x

Laurent, S., Boutouyrie, P., Cunha, P. G., Lacolley, P., and Nilsson, P. M. (2019).
Concept of extremes in vascular aging. Hypertension 74 (2), 218–228. doi:10.1161/
hypertensionaha.119.12655

Li, Y. J., Wang, Z. L., Zhang, L., Yang, X. L., and Song, J. Z. (2014). Characters available
in photoplethysmogram for blood pressure estimation: Beyond the pulse transit time.
Australas. Phys. Eng. Sci. Med. 37 (2), 367–376. doi:10.1007/s13246-014-0269-6

Lin, W. H., Zheng, D. C., Li, G. L., Zhou, H., and Chen, F. (2022). Investigation on
pulse wave forward peak detection and its applications in cardiovascular health. Ieee
Trans. Biomed. Eng. 69 (2), 700–709. doi:10.1109/tbme.2021.3103552

Liu, H., Allen, J., Zheng, D., and Chen, F. (2019). Recent development of respiratory
rate measurement technologies. Physiol. Meas. 40 (7), 07TR01. doi:10.1088/1361-6579/
ab299e

Liu, H. P., Allen, J., Khalid, S. G., Chen, F., and Zheng, D. (2021). Filtering-induced
time shifts in photoplethysmography pulse features measured at different body sites:
The importance of filter definition and standardization. Physiol. Meas. 42 (7), 074001.
doi:10.1088/1361-6579/ac0a34

Liu, H. P., Chen, F., Hartmann, V., Khalid, S. G., Hughes, S., and Zheng, D. C. (2020).
Comparison of different modulations of photoplethysmography in extracting
respiratory rate: From a physiological perspective. Physiol. Meas. 41 (9), 094001.
doi:10.1088/1361-6579/abaaf0

Mejia-Mejia, E., Allen, J., Budidha, K., El-Hajj, C., Kyriacou, P. A., and Charlton, P. H.
(2022). Photoplethysmography signal processing and synthesis. Photoplethysmography
2022, 69–146. Elsevier. doi:10.1016/B978-0-12-823374-0.00015-3

Mejia-Mejia, E., and Kyriacou, P. A. (2023). Effects of noise and filtering strategies on
the extraction of pulse rate variability from photoplethysmograms. Biomed. Signal
Process. Control 80, 104291. doi:10.1016/j.bspc.2022.104291

Nitzan, M., Khanokh, B., and Slovik, Y. (2002). The difference in pulse transit time to
the toe and finger measured by photoplethysmography. Physiol. Meas. 23 (1), 85–93.
doi:10.1088/0967-3334/23/1/308

Pan, F., He, P., Qian, Y., Gao, H., Chen, F., Liu, H., et al. (2022). Changes of
oscillogram envelope maximum with blood pressure and aging: A quantitative
observation. Physiol. Meas. 43 (11), 115008. doi:10.1088/1361-6579/aca26d

Poh, M. Z., Kim, K., Goessling, A., Swenson, N., and Picard, R. (2012). Cardiovascular
monitoring using earphones and a mobile device. Ieee Pervasive Comput. 11 (4), 18–26.
doi:10.1109/mprv.2010.91

R Core Team (2021). R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-
project.org

Sathyapriya, L., Murali, L., and Manigandan, T. (2014). “Analysis and detection
R-peak detection using modified pan-tompkins algorithm,” in International Conference
on Advanced Communication Control and Computing Technologies,
Ramanathapuram, India, 08-10 May 2014, 483–487. NEW YORK: Ieee.

Schwartz, J. E., Feig, P. U., and Izzo, J. L. (2019). Pulse wave velocities derived from
cuff ambulatory pulse wave analysis. Hypertension 74 (1), 111–116. doi:10.1161/
HYPERTENSIONAHA.119.12756

Teng, X. F., Poon, C. C., Zhang, C., and Zhang, Y. T. (2004). “Study on the effect of
contacting force on pulse transit time,” in2004 2nd IEEE/EMBS International Summer
School on Medical Devices and Biosensors, Hong Kong, China, June 26, 2004–July 02,
2004 IEEE, 111–114. doi:10.1109/ISSMD.2004.1689575

Teng, X. F., and Zhang, Y. T. (2006). The effect of applied sensor contact force on
pulse transit time. Physiol. Meas. 27 (8), 675–684. doi:10.1088/0967-3334/27/8/002

Teng, X. F., and Zhang, Y. T. (2007). Theoretical study on the effect of sensor contact
force on pulse transit time. Ieee Trans. Biomed. Eng. 54 (8), 1490–1498. doi:10.1109/
tbme.2007.900815

Vlachopoulos, C., Terentes-Printzios, D., and Stefanadis, C. (2011). When the arteries get
tough, the tougher do not get going.Hypertens. Res. 34 (7), 793–794. doi:10.1038/hr.2011.49

Vogel, S., Hulsbusch, M., Hennig, T., Blazek, V., and Leonhardt, S. (2009). In-ear vital
signs monitoring using a novel microoptic reflective sensor. Ieee Trans. Inf. Technol.
Biomed. 13 (6), 882–889. doi:10.1109/titb.2009.2033268

Wagner, D. R., Roesch, N., Harpes, P., Kortke, H., Plumer, P., Saberin, A., et al. (2010).
Relationship between pulse transit time and blood pressure is impaired in patients with
chronic heart failure. Clin. Res. Cardiol. 99 (10), 657–664. doi:10.1007/s00392-010-
0168-0

Wang, L., Lo, B. P. L., and Yang, G. Z. (2007). Multichannel reflective PPG earpiece
sensor with passive motion cancellation. Ieee Trans. Biomed. Circuits Syst. 1 (4),
235–241. doi:10.1109/tbcas.2007.910900

Yoon, Y., Cho, J. H., and Yoon, G. (2009). Non-constrained blood pressure
monitoring using ECG and PPG for personal healthcare. J. Med. Syst. 33 (4),
261–266. doi:10.1007/s10916-008-9186-0

Zhang, X. Y., and Zhang, Y. T. (2006). The effect of local mild cold exposure on pulse
transit time. Physiol. Meas. 27 (7), 649–660. doi:10.1088/0967-3334/27/7/008

Zhao, X. Y., Zhang, J. C., Gong, Y. L., Xu, L. H., Liu, H. P., Wei, S. J., et al. (2022).
Reliable detection of myocardial ischemia using machine learning based on temporal-
spatial characteristics of electrocardiogram and vectorcardiogram. Front. Physiology 13,
854191. doi:10.3389/fphys.2022.854191

Frontiers in Physiology frontiersin.org11

Liao et al. 10.3389/fphys.2023.1172150

100

https://doi.org/10.1038/sj.jhh.1001846
https://doi.org/10.3389/fphys.2019.00198
https://doi.org/10.1007/s11517-022-02658-1
https://doi.org/10.1007/s11517-022-02658-1
https://doi.org/10.1109/access.2020.2981903
https://doi.org/10.1213/ANE.0b013e318270a6d9
https://doi.org/10.1111/j.1475-097X.2007.00734.x
https://doi.org/10.1111/j.1399-6576.2012.02746.x
https://doi.org/10.1111/j.1399-6576.2012.02746.x
https://doi.org/10.1161/hypertensionaha.119.12655
https://doi.org/10.1161/hypertensionaha.119.12655
https://doi.org/10.1007/s13246-014-0269-6
https://doi.org/10.1109/tbme.2021.3103552
https://doi.org/10.1088/1361-6579/ab299e
https://doi.org/10.1088/1361-6579/ab299e
https://doi.org/10.1088/1361-6579/ac0a34
https://doi.org/10.1088/1361-6579/abaaf0
https://doi.org/10.1016/B978-0-12-823374-0.00015-3
https://doi.org/10.1016/j.bspc.2022.104291
https://doi.org/10.1088/0967-3334/23/1/308
https://doi.org/10.1088/1361-6579/aca26d
https://doi.org/10.1109/mprv.2010.91
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.1161/HYPERTENSIONAHA.119.12756
https://doi.org/10.1161/HYPERTENSIONAHA.119.12756
https://doi.org/10.1109/ISSMD.2004.1689575
https://doi.org/10.1088/0967-3334/27/8/002
https://doi.org/10.1109/tbme.2007.900815
https://doi.org/10.1109/tbme.2007.900815
https://doi.org/10.1038/hr.2011.49
https://doi.org/10.1109/titb.2009.2033268
https://doi.org/10.1007/s00392-010-0168-0
https://doi.org/10.1007/s00392-010-0168-0
https://doi.org/10.1109/tbcas.2007.910900
https://doi.org/10.1007/s10916-008-9186-0
https://doi.org/10.1088/0967-3334/27/7/008
https://doi.org/10.3389/fphys.2022.854191
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1172150


The identification of blood
pressure variation with
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Objective: The purpose of this study is to identify the blood pressure variation,
which is important in continuous blood pressuremonitoring, especially in the case
of low blood volume, which is critical for survival.

Methods: A pilot study was conducted to identify blood pressure variation with
hypovolemia using five Landrace pigs. New multi-dimensional morphological
features of Photoplethysmography (PPG) were proposed based on
experimental study of hemorrhagic shock in pigs, which were strongly
correlated with blood pressure changes. Five machine learning methods were
compared to develop the blood pressure variation identification model.

Results: Compared with the traditional blood pressure variation identification
model with single characteristic based on single period area of PPG, the
identification accuracy of mean blood pressure variation based on the
proposed multi-feature random forest model in this paper was up to 90%,
which was 17% higher than that of the traditional blood pressure variation
identification model.

Conclusion: By the proposed multi-dimensional features and the identification
method, it is more accurate to detect the rapid variation in blood pressure and to
adopt corresponding measures.

Significance: Rapid and accurate identification of blood pressure variation under
low blood volume ultimately has the potential to effectively avoid complications
caused by abnormal blood pressure in patients with clinical bleeding trauma.

KEYWORDS

hypovolemia, volume compensation method, blood pressure variation,
photoplethysmography, non-invasive

1 Introduction

Hemorrhagic shock is a pathophysiological process characterized by reduced effective
circulating blood volume and cardiac output, insufficient tissue perfusion, disordered cell
metabolism and impaired function due to massive blood loss caused by trauma (Liu et al.,
2015). Hemorrhagic shock is often accompanied by concomitant hypotension, which is
defined as systolic blood pressure less than 90 mmHg and differential pulse pressure less than
20 mmHg (Chou et al., 2016; Tran et al., 2018). According to World Health Organization
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(WHO) statistics, about 10% of global deaths and 16% of disability
cases are caused by trauma, which is also the leading cause of death
for people under the age of 40 worldwide (World Health
Organization, 2019). In trauma patients, the death rate due to
excessive blood loss is about 30–40 percent (Edgard et al., 2015;
Keane, 2016; Palmer, 2017), and the death rate due to incorrect
treatment and inappropriate treatment is 10–20 percent (Küchler
et al., 2020).

Arterial blood pressure is critical for adequate tissue perfusion,
providing oxygen delivery for energy needs. Continuous and reliable
measurements of absolute blood pressure are required for critically
ill patients in the ICU, and variations in blood pressure of even a few
minutes in patients with hypovolemic blood loss pose unpredictable
risks, including hemorrhagic shock (Ameloot et al., 2013).
Continuous detection of the blood pressure trend of patients in
the state of blood loss and hypovolemia can provide important
cardiovascular state supporting data and provide early intervention
for corresponding treatment methods. The results of various studies
of continuous noninvasive blood pressure monitoring devices versus
invasive blood pressure monitoring methods were summarized by
Kim et al. They found a significant difference between the non-
invasive and invasive blood pressure obtained with the CNAP and
ClearSight devices based on the volumetric compensation method.
The standard deviations were 5.5 ± 9.3 mmHg and 3.5 ± 6.8 mmHg
for CNAP and ClearSight respectively (Kim et al., 2014; Vos et al.,
2014; Meidert and Saugel, 2017). This analysis shows that the
accuracy and precision of continuous noninvasive devices are not
interchangeable with invasive blood pressure measurements.

A method for blood pressure variation identification under
hypovolemia based on the volume compensation method and pulse
wave morphological characteristics is proposed in this study. Currently,
the volume compensation method is a relatively mature blood pressure
monitoring technology. This method keeps the blood volume constant
in the vessel by applying a pressure value equivalent to the intravascular
pressure outside the measurement (ZhangLiuChen and Liu, 2020).
Studies have shown that the PPG signal profile of the photoelectric pulse
wave signal is mainly controlled by the blood pressure waveform, and
contains cardiovascular information, such as blood vessel stiffness and
blood pressure. A large number of studies have verified that a large
amount of cardiovascular information is contained in the PPG signal,
which is strongly correlated to blood pressure (Mukherjee et al., 2018).
The morphological analysis of PPG has been applied to vascular
assessment (Fedotov, 2019a), providing rich information for
cardiovascular analysis (Fedotov, 2019b; Subashini et al., 2021).
There were also some studies that use morphological characteristics
of not only PPG but also ECG (Electrocardiogram) signals to jointly
estimate blood pressure, and to estimate SBP value every 30 s (Sun et al.,
2016; Sun et al., 2022). A study that predicted blood pressure by
combining various morphologies of Pulse Transit Time and PPG
verified that the morphological features of PPG improved the
accuracy of blood pressure estimation (Ding and Zhang, 2015; Ding
et al., 2016; Lin et al., 2017; Rastegar et al., 2019).

Based on the data set under the experimental model of animal
controlled hypovolemia, this study uses the photoelectric pulse signal
collected by the volume compensation method to identify the
variation of 11-degree blood pressure in the range of 5–15 mmHg.
Fivemodels, namely, LightGBM, Random Forest, XGBoost, CatBoost,
and Decision Tree, were employed to investigate the advantages of

multi-dimensional features compared with single-dimensional
features in the identification of blood pressure variation under low
blood volume. The accurate prediction of blood pressure variation was
realized, which verifies the validity of this research method. Using
accurate results of non-invasive blood pressure variation identification
under hypovolemia during blood loss can not only help avoid adverse
events caused by invasive blood pressure monitoring (Suess and
Pinsky, 2015; Minokadeh and Pinsky, 2016), but also provide
accurate diagnostic prediction for patients under cardiovascular
monitoring to reduce patient tissue hypoxia, mitigate oxidative
damage, prevent multiple organ failure, and improve clinical
outcomes (Janssen et al., 2017; Nachman et al., 2020).

2 Materials and methods

2.1 Experiment

An animal model of hemorrhagic hypovolemia was designed in
this study (The experimental schematic diagram is shown in Figure 1),
and five healthy Landrace pigs weighing 23 ± 6 kg were selected as the
subjects for a pilot study on blood pressure discrimination with
hypovolemia. After Landrace pigs were anesthetized, the pigs were
intubated and mechanically ventilated using a ventilator to prevent
spontaneous breathing from affecting signal acquisition. Mindray
monitor was used to monitor the physiological state and tail PI
(Perfusion Index) of pigs in real time. The femoral artery was
punctured on the pig, and the IBP signal was collected using the
Chengdu Instrument RM6240C multi-channel physiological
parameter acquisition device, while the self-developed device and
deflatable optoelectronic finger cuff was used to collect the PPG
signal on the pig’s tail (The light Emitting Diode inside the finger
cuff emits infrared light, which is transmitted through the tissues of the
pig’s tail and the arterial veins, and is received by the Photoelectric
Sensor. Due to the flow of blood in the arteries, there is a change in the
absorption of the light so that the transmitted light is converted into an
electrical signal to form a PPG signal. So the measured PPG signal is
opposite to the actual PPG signal waveform of the pig.). The sampling
frequency of Chengdu Instrument RM6240C multi-channel
physiological parameter acquisition instrument equipment is
1,000 Hz, and the sampling frequency of self-developed device is
500 Hz. Multiple bloodletting operations were performed through
the carotid artery until the tail PI (Perfusion Index) was under 0.3,
which indicated a state of hypovolemia. which indicates a state of
hypovolemia. IBP and PPG signals were collected synchronously
during bloodletting. The animal Invasive blood pressure span
changed during the blood loss process, where the blood pressure of
each animal decreased from different initial baseline blood pressure to
blood pressure under hypovolemia. Experiment in this study was
approved by the Medical Ethics Committee of Chinese PLA
General Hospital (No. S2020-045-01).

2.2 Pressure setting and signal acquisition

2.2.1 Constant pressure setting algorithm
The blood pressure change identification is based on the

photoelectric pulse wave signal of the detection site under
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constant pressure. In the process of external force change, when the
external force applied to the detection site is equal to the average
pressure in the artery, pulse wave peak reaches the maximum
intensity. As intra-arterial blood pressure changes, the shape of
the photoplethysmography wave changes significantly at the
constant pressure (Figure 2).

The peak-to-peak value was calculated according to the upper
and lower envelopes of the photoelectric pulse wave signal under
pressure (Find the function of the PPG signal envelope and the
parameters to be set: the function is envelope; parameter 1 is set to
250; parameter 2 is set to “peak”.). The maximum peak-to-peak
value corresponding to the pressure applied to the detection site

FIGURE 1
Schematic diagramof animal blood loss experiment. PPG signal (human finger probe used) under constant volume and invasive blood pressurewere
collected based on synchronization level signal sent by the finger cuff to achieve strict time alignment.

FIGURE 2
Relationship between PPG pulsation and external pressure at the detection site. The left y-label represents the externally applied pressure value, the
black diagonal line in the figure represents the pressure change, the right y-label represents the normalized PPG value, the blue line in the figure
represents the PPG waveform, and the red curve represents the upper and lower envelopes of the PPG waveform.
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was the average pressure corresponding to the detection site, and
the constant pressure was set at the detection. Repeated
application of 150 mmHg finger cuff pressure to the animal tail
before the experiment can result in the temporary blood flow
blocking effect, in addition to not causing venous congestion
damage to the tail. The external force of 150 mmHg was
repeatedly applied on the tail, released to 0 mmHg, and the tail
photoelectric pulse wave was collected in real time. In this
experiment, blood loss and transfusion were performed to
change the blood pressure state continuously, and constant
pressure value was calculated under a new blood pressure
homeostasis. A total of 214 groups of constant pressure sample
data were collected, with blood pressure ranging from 52 mmHg
to 119 mmHg.

2.2.2 Photoelectric pulse wave data set at constant
pressure

Before each blood loss operation in the animal experiment,
the constant pressure value that should be applied to the tail of
the animal was calculated, and the finger cuff was inflated to this
constant pressure value. On a constant pressure, the pressure
was maintained for 10 min during a single bloodletting of
200 mL, the pressure was released to zero after 10 min, and
the tail was relieved for 10 min. Two photoelectric pulse wave
data segments of blood loss process were collected for each
animal, and a total of ten blood loss data segments were
collected, based on the photoelectric acquisition terminal in
the tail finger cuff.

2.3 Data preprocessing

The photoelectric pulse wave signal was collected under
constant pressure in the state of continuous blood loss. The
experimental subject was accompanied by an accelerated
heartbeat and changes in the elasticity of blood vessels during
bloodletting. To minimize the influence of factors other than
intravascular pressure on the photoelectric pulse waveform, the
template processing (Figure 3) for the photoelectric pulse wave
was adopted. The templating process consists of five parts:

(1) Preprocessing: Check the original data and remove invalid data
segments during convulsions of animals or abnormal device
connections. Retain data from 0.3–20 Hz with Butterworth filter
to remove baseline drift, low frequency noise and high
frequency noise.

(2) Pulse wave single-cycle amplitude normalization: A pulse
wave cycle from the pulse wave trough value to the next
pulse wave trough value was defined. Amplitude
normalization was performed based on the waveform peak
and trough value of a single cycle, and the amplitude was fully
normalized as [0,1].

(3) Pulse wave single cycle length normalization: A pulse wave
cycle from the pulse wave trough value to the next pulse
wave trough value was defined, and the length in a single
cycle to 200 points was normalized. If the length of a single
cycle waveform is greater than two hundred points, the
waveform in the cycle will be downsampled, otherwise the

FIGURE 3
Data processing result graph. Figures (A), (B), (C) are the pulse wave waveform after single-cycle preprocessing, the pulse wave waveform after
single-cycle normalization, and the pulse wave waveform after single-cycle template, respectively; Figures (D), (E) and (F) are the ten consecutive cycles
pulse waveforms after of preprocessing, ten consecutive cycles pulse waveforms after normalizing, and ten consecutive pulse cycles waveforms after
templating, respectively.
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waveform in the cycle will be subjected to cubic spline
interpolation.

(4) Obtaining the pulse wave template waveform: Based on average
of the summation of the normalized waveform PPG_norm for
the first n cycles of maintaining a constant pressure, the
template formula is shown in (1):

PPG template � PPG norm 1( ) + PPG norm 2( ) + ...PPG norm n( )
n

(1)

(5) Find the pulse wave sample waveform: Starting from the i-th (i >
2) waveform, the moving average processing is performed

FIGURE 4
The change of PPG waveform shape during blood pressure change: Blood pressure drops and PPG waveform become shorter and wider. Blood
pressure increased, PPGwaveform became high and narrow. The red line represents the blood pressure and the blue line represents the PPGwaveform at
that blood pressure.

FIGURE 5
Schematic diagram of feature extraction.
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according to the normalized waveforms of the current n cycles,
until the last waveform cycle in the data segment is added to the
calculation. The calculation formula is shown in (2):

PPG sample � PPG norm i( ) + PPG norm i + 1( ) + ...PPG norm i + n − 1( )
n

(2)

2.4 Feature extraction

Three morphological features that are highly correlated with the
blood pressure changes during blood loss were extracted based on

previous research and the photoelectric pulse wave signal in this
experiment. Figure 4 shows the changes of the pulse waveform
characteristics and actual blood pressure values in the tail of the

FIGURE 6
The overall flow chart of blood pressure identification. ①Firstly, the animal experiment was carried out. IBP was collected from the left femoral
artery, PPG and Finger pressure were collected from the pig tail by self-developed device, and a total of three signals were collected;②The collected PPG
signals were preprocessed, the baseline drift and noise were removed by filtering, the amplitude and length of the signals were normalized, and finally the
PPG signals were templated; ③Feature extraction was carried out for the preprocessed PPG signals, and the integral area of the rising edge of the
waveform, the integral area of a single cycle of the waveform and the difference between the cross-correlation of the samplewaveform and the template
waveform and the autocorrelation of the template waveform; ④After feature extraction, the ten-fold cross-validation idea was used to construct the
model. The magnitude of a single feature value is used to determine changes in blood pressure and a machine learning model with multiple features is
built to identify changes in blood pressure, respectively. Feature 1 represents the integral area of the rising edge of the waveform, Feature 2 represents the
integral area of the waveform in one period, and Feature 3 represents the cross correlation between the sample waveform and the template waveform
and the difference between the template waveform and the template waveform; ⑤The optimal threshold points were selected by using the Youden’s
index, Automatic parameter tuning using Bayesian optimization; ⑥Statistical 10-fold cross validation evaluation index.

TABLE 1 Comparison with BHS standard.

Method Subject Cumulative error percentage (%)

≤5 mmHg ≤10 mmHg ≤15 mmHg

this study NIMBP 52.8 92.5 100

BHS Grade A 60 85 95

Grade B 50 75 90

Grade C 40 65 85

TABLE 2 Identification results of diastolic blood pressure variation under
different models (F1 represents the classification model based on the optimal
threshold of feature 1, F2 represents the classification model based on the
optimal threshold of feature 2, F3 represents the classification model based on
the optimal threshold of feature 3, M1 represents the LightGBM model,
M2 represents the Random Forest, M3 represents XGBoost model,
M4 represents CatBoost model, and M5 represents Decision Tree.).

ΔDBP (mmHg)
Model

ACC (%) AUC (%)

5 10 15 Mean 5 10 15 Mean

F1 79 82 90 83 80 86 90 85

F2 66 76 76 73 66 76 76 75

F3 74 80 80 78 75 81 82 79

M1 87 88 90 87 94 94 96 94

M2 83 85 93 87 95 95 97 95

M3 85 87 91 87 93 93 96 93

M4 84 87 92 88 93 95 96 94

M5 88 91 89 88 88 91 89 88
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animals during blood loss and blood transfusion. In the process of
blood pressure change from high to low, the shape of the pulse wave
changed from normal to wider and shorter. In the process of blood
pressure from small to large, the shape of the pulse wave changed
from normal to thinner and taller.

According to the above pulse wavemorphological changes, three
morphological features in the pulse wave waveform were extracted.

It includes the integral area of the rising edge of the waveform, the
integral area of a single cycle of the waveform and the difference
between the cross-correlation of the sample waveform and the
template waveform and the autocorrelation of the template
waveform. The feature extraction process is shown in Figure 5.

It includes the integral area of the rising edge of the waveform,
the integral area of a single cycle of the waveform and the difference

FIGURE 7
Bland-Altman plot comparing non-invasive mean blood pressure and invasive mean blood pressure. There are 214 groups of samples, with each
circle representing the mean blood pressure at the beginning of identification of blood pressure.

FIGURE 8
(A–C) are the correlation analysis of characteristic parameters with systolic blood pressure, diastolic blood pressure and mean blood pressure,
respectively.
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between the cross-correlation of the sample waveform and the
template waveform and the autocorrelation of the template
waveform.

As shown in Figure 5, the three feature extraction processes
were:

Feature 1 extraction:
A linear straight line was fitted in the direction from the pulse

trough value to the peak value, and the straight line was used as the
baseline to obtain the integral area of the area enclosed between the
rising edge curve of the waveform and the baseline.

Feature 2 extraction:
One third of the peak value of the pulse wave was taken as the

baseline, and the difference between the integral area of the upper
half waveform of the baseline and the lower half waveform of the
baseline was calculated.

Feature 3 extraction:
Step1, The cross-correlation matrix of the sample waveform and

the template waveform (Rt-s) were calculated. Then the sample
waveform was multiplied by the point-by-point sliding and then
summed. The calculation formula is shown in (3):

Rt−s � ppg template n( )*ppg sample* −n( ) (3)
Step2, The autocorrelation matrix of the template waveform

(Rt-t) was calculated. Autocorrelation is a special case of cross-
correlation, that is, the correlation between the sequence and itself.
The calculation formula is shown in (4):

Rt−t � ppg template n( )*ppg template* −n( ) (4)
Step3, The difference between the cross-correlation matrix and

the auto-correlation matrix was calculated, and this difference was
described by the area enclosed by the two matrix curves, as shown in
formula (5).When the sample waveform and the template waveform
had high similarity, the area enclosed by the two matrix curves was
small, otherwise, the difference between the two was considered to
be greater.

difference � ∑n

i�1 Rt−s i( ) − Rt−t i( )| | (5)

2.5 Construction of blood pressure variation
identification model

2.5.1 Construction of blood pressure variation
identification model based on single feature

Three classification models based on the classification
thresholds of the three features and ten-fold cross-validation
were constructed. In the process of ten-fold cross validation ten
sub-data sets were randomly generated from the data set, one sub-
data set was selected each time as the test set, and the ten sub-data
sets were sequentially used as the test set. Using the traditional
single-feature PPG single-cycle integral area as the prediction model
index. The minimum and maximum sample values in the model
were identified, the value was divided into 100 parts with the
maximum and minimum values, and the 100 values were in turn
cycled as the classification threshold. According to 10 test results
(the intersection of sensitivity curve, specificity curve and accuracy
curve), the optimal classification threshold of the model was
selected. Finally, the test set was identified based on the optimal
classification threshold, and the results were evaluated by the
Accuracy (ACC) and Area Under the Curve (AUC) values.

2.5.2 Construction of blood pressure variation
identification model based on multiple features

The PPG feature sample dataset and label corresponding to the
process of diastolic blood pressure, systolic blood pressure, and
mean blood pressure variation of 5–15 mmHg obtained in the blood
loss experiment in this study were used as input. Five classic
machine learning algorithms, namely, LightGBM, Random
Forest, XGBoost, CatBoost, and Decision Tree were used. The
learning model performed classification and identification. The
following indicators were used to evaluate the ability of five

TABLE 3 Identification results of mean blood pressure variation under different
models (F1 represents the classification model based on the optimal threshold
of feature 1, F2 represents the classification model based on the optimal
threshold of feature 2, F3 represents the classification model based on the
optimal threshold of feature 3, M1 represents the LightGBM model,
M2 represents the Random Forest, M3 represents XGBoost model,
M4 represents CatBoost model, and M5 represents Decision Tree).

ΔMBP (mmHg)
Model

ACC (%) AUC (%)

5 10 15 Mean 5 10 15 Mean

F1 82 85 93 86 82 87 93 88

F2 65 75 77 73 67 77 79 75

F3 83 86 90 86 85 84 90 87

M1 78 89 94 89 92 96 98 96

M2 82 91 95 90 92 96 98 96

M3 79 90 94 89 92 96 97 95

M4 77 90 94 89 92 96 98 96

M5 83 91 93 90 83 91 93 90

TABLE 4 Identification results of systolic blood pressure variation under
different models (F1 represents the classification model based on the optimal
threshold of feature 1, F2 represents the classification model based on the
optimal threshold of feature 2, F3 represents the classification model based on
the optimal threshold of feature 3, M1 represents the LightGBM model,
M2 represents the Random Forest, M3 represents XGBoost model,
M4 represents CatBoost model, and M5 represents Decision Tree.).

ΔSBP (mmHg)
Model

ACC (%) AUC (%)

5 10 15 Mean 5 10 15 Mean

F1 82 83 86 84 84 84 88 85

F2 64 74 77 73 65 76 79 74

F3 78 82 85 83 80 83 85 84

M1 83 90 91 90 93 96 96 95

M2 80 90 93 89 94 97 96 96

M3 84 90 93 90 92 96 96 95

M4 82 91 90 89 93 96 97 96

M5 86 91 89 90 86 91 89 90
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machine learning models to identify changes in blood pressure
under hypovolemia. ACC represents the accuracy of the model,
AUC represents the integral area under the Receiver Operating
Characteristic (ROC) curve, Matthews correlation coefficient
(MCC) represents the consistency of the predicted classification
with the actual classification, F1 score (F1_score) considers the
accuracy and recall rate of the classification model, Kappa: tests
the consistency coefficient, AUPRC: the area under the precision-
recall curve. Figure 6 shows the overall flow chart of blood pressure
identification.

2.6 Constant pressure setting results

The results of the constant pressure setting algorithm described
above showed that the correlation between the non-invasive mean
blood pressure of the tail and the invasive mean blood pressure of
the left thigh of the animal collected simultaneously was 84%.
Table 1 shows the comparison between the error analysis results
of the non-invasive mean blood pressure and invasive mean blood
pressure and the British Hypertension Society (BHS) standard
results. The Bland-Altman analysis results are shown in Figure 7.

Using self-developed device, the mean deviation of non-invasive
blood pressure detection and invasive blood pressure detection was
0.41 mmHg, and the 95% confidence of the difference between the
two was −11.44 mmHg–12.26 mmHg, which can accurately detect
blood pressure. According to the above Bland-Altman diagram, there
are 3 samples, namely, 3/214 (1.4%), and less than 5% of the samples
exceed the 95% consistency limit. The initial non-invasivemean blood
pressure detection is highly consistent with the invasive mean blood
pressure, which proves the reliability of the self-developed device.

2.7 Correlation analysis between
characteristic parameters and blood
pressure

Correlation analysis was performed based on the extracted
feature parameters and invasive blood pressure values to evaluate

the relationship between the above three pulse wave morphological
features and blood pressure. Five periodic waveform periods were
used as the sliding window size to perform template processing, and
the processed waveforms were the extracted features. A total of
1942 groups of valid feature samples were extracted from five
animals. Three characteristic parameters and invasive blood
pressure data of an animal under blood loss for 5 minutes were
extracted and analyzed (Figure 8). The correlation between the two
was 0.892–0.948, and the blood pressure change state under blood
loss could be identified based on the characteristic parameters.

With reference to the normal fluctuation range of blood pressure
within 12 h and 24 h in humans, the standard of blood pressure change
was identified as 5 mmHg–15 mmHg. First, taking the blood pressure
change threshold of 5 mmHg as an example, in the blood loss data
segment, the samples with invasive blood pressure changes within
5 mmHg were defined as no change in blood pressure and were
considered as negative sample data. Conversely, when the blood
pressure was greater than 5 mmHg, the samples were identified as
the occurrence of individual blood pressure during blood loss and the
change was considered as positive sample data. In order to avoid over-
fitting caused by the large proportion of category samples, the prediction
results would be biased towards the classification with the large number
of samples. The positive samples and negative samples for blood
pressure change identification classification are 1:1. Taking the data
set during the blood loss of a case of an animal as an example,
340 characteristic samples were extracted, and correlation analysis
was carried out with the synchronously collected invasive blood
pressure data (Figures 8A, B, C). The correlation between the three
features and the invasive systolic blood pressure were 0.903, 0.892, and
0.903, respectively, the correlation between the three features and the
invasive mean blood pressure were 0.925, 0.914, and 0.948, respectively,
and the correlation between the three features and the invasive diastolic
blood pressure were 0.927, 0.916, and 0.938, respectively.

2.8 BP variation identification model results

The data set after template processing was analyzed with five
waveform periods as the sliding window size, and the blood pressure

FIGURE 9
(A–C) are the analysis of identification results under different blood pressure variability under diastolic blood pressure, mean blood pressure and
systolic blood pressure, respectively.
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FIGURE 10
(A) is the mean values of ACC, MCC, F1 score, AUC, KAPPA and AUPRC for systolic blood pressure at different sliding window sizes, in models
established for blood pressure changes spanning 5–15 mmHg, respectively. (B) is the mean values of ACC, MCC, F1 score, AUC, KAPPA and AUPRC for
diastolic blood pressure at different sliding window sizes, in models established for blood pressure changes spanning 5–15 mmHg, respectively. (C) is the
mean values of ACC, MCC, F1 score, AUC, KAPPA and AUPRC for mean blood pressure at different sliding window sizes, in models established for
blood pressure changes spanning 5–15 mmHg, respectively. The X label of each graph represents the size of the slidingwindow and the Y label represents
the different evaluation metrics for blood pressure changes across 5–15 mmHg under the current sliding window.
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FIGURE 11
(A) is the standard deviations of ACC, MCC, F1 score, AUC, KAPPA and AUPRC for systolic blood pressure at different sliding window sizes, in models
established for blood pressure changes spanning 5–15 mmHg, respectively. (B) is the standard deviations of ACC,MCC, F1 score, AUC, KAPPA and AUPRC
for diastolic blood pressure at different sliding window sizes, in models established for blood pressure changes spanning 5–15 mmHg, respectively. (C) is
the standard deviations of ACC, MCC, F1 score, AUC, KAPPA and AUPRC for mean blood pressure at different sliding window sizes, in models
established for blood pressure changes spanning 5–15 mmHg, respectively. The X label of each graph represents the size of the sliding window and the Y
label represents the different evaluation metrics for blood pressure changes across 5–15 mmHg under the current sliding window.
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identification range was 5–15 mmHg. Variation identification
accuracy and AUC values of blood pressure (diastolic blood
pressure, mean blood pressure, systolic blood pressure) at
5 mmHg, 10 mmHg, 15 mmHg and average variation under
5–15 mmHg based on single-feature identification model and five
machine learning models based on multi-feature are shown in
Tables 2, 3, 4.

As shown in Tables 2, 3, 4: the blood pressure variation
identification model under hypovolemia in this study was
constructed based on the two newly extracted feature parameters,
compared with the traditional Feature 2. The reported ACC and AUC
values for diastolic blood pressure increased with theΔDBPmore than
5%, while the ACC and AUC values for mean blood pressure and
systolic blood pressure increasedwith the ΔMBP andΔSBPmore than
10%. The identification model results based on multi-dimensional
features compared with the traditional feature 2 blood pressure
variation identification model showed that the diastolic blood
pressure variation identification ACC and AUC increased with the
ΔDBP 14%–15% and 15%–20%, respectively; themean blood pressure
variation average identification ACC and AUC were increased with
the ΔMBP 16%–17% and 15%–21%, respectively, and the mean
identification of systolic blood pressure variation ACC and AUC
were increased with the ΔSBP 16%–17% and 16%–22%, respectively.
Comparison of the results of multi-dimensional-based blood pressure
variation identification under hypovolemia showed that the features
proposed in this study are better for mean blood pressure and systolic
blood pressure variation identification than diastolic blood pressure
fluctuation identification under hypovolemia. Furthermore, the
analysis of the results of the five machine learning models showed
that the variation identification accuracy of the mean blood pressure
and systolic blood pressure in the range of 5–15 mmHg under the
random forest and decision tree machine learning models can reach
90% and all the AUC values exceeding 90%.

3 Analysis and discussion

3.1 Comparative analysis of different blood
pressure identification range results

Following template processing, the data set was analyzed with five
periodic waveforms as the sliding window size, and blood pressure
variation identification was performed for 5 mmHg–15 mmHg in
turn. Based on three characteristics of systolic blood pressure, diastolic
blood pressure, and average blood pressure variation identification
model using the five machine learning models, the average ACC and
the average AUC were calculated (Figure 9). With the increase of
blood pressure variation range, the ACC values and AUC values show
an overall increasing trend.

3.2 Comparison of identification results of
blood pressure changes under different
template waveforms

According to the above template processing process, five cycles
of pulse waves were selected for sliding average processing. In order
to compare the optimal sliding window size, this study repeats the

above feature extraction process and modeling process for
waveforms processed based on two to seven cycles of pulse
waves. Based on different template waveforms, blood pressure
changes were identified for 5–15 mmHg in turn, and the mean
and standard deviation of the systolic blood pressure, diastolic blood
pressure, and mean blood pressure variation identification
indicators under the above-mentioned multi-feature identification
model were used to analyze the mean value and standard deviation,
respectively (Figures 10, 11). The results in the two figures show that
the average value and standard deviation of the indicators of
different template waveforms are comprehensively compared, and
the blood pressure change identification effect is the best based when
the three-cycle pulse wave was used as the template-processed
waveform of the sliding window size.

3.3 Limitation

In this work, we used 1942 samples of 5 pigs to get the result, in
the early stage to verify the feasibility of our method, and later
experiments with larger samples data will be done to further
improve its stability and extensibility.

4 Conclusion

New features and the blood pressure variation identification
models under hypovolemia are proposed and established in this
study, based on the morphological characteristics of
photoplethysmography wave in the tail of animals. The results
showed that the morphological characteristic parameters of the
volumetric pulse wave under constant pressure can effectively
and accurately identify the degree of blood pressure variation
under blood loss. Compared with the traditional features, the two
new features can further improve the accuracy of the traditional
volumetric compensation method to capture blood pressure
variation under low perfusion. Compared with single feature
models, the classification model based on multi-dimensional
features can achieve better identification effect. The feature
proposed in this study is more suitable for the variation
identification of mean blood pressure and systolic blood pressure,
compared with the fluctuation identification of diastolic blood
pressure under low blood volume. The results of blood pressure
identification at different levels of 5–15 mmHg proposed in this
paper can provide information of blood pressure variation for
patients with mild blood loss or hemorrhagic shock, and provide
non-invasive continuous blood pressure change warning for
different clinical application scenarios. Furthermore, the new
morphological features proposed in this study can provide an
additional new blood pressure tracking method for the
continuous non-invasive blood pressure monitoring equipment
based on the volume compensation method.
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Tomas Y. Abay and Panayiotis A. Kyriacou

Research Centre for Biomedical Engineering, City University of London, London, United Kingdom

Objective: This research aims to evaluate the possible association between
pulsatile near infrared spectroscopic waveform features and induced changes
in intracranial pressure in healthy volunteers.

Methods: An optical intracranial pressure sensor was attached to the forehead
of 16 healthy volunteers. Pulsatile near infrared spectroscopic signals were
acquired from the forehead during body position changes and Valsalva
manoeuvers. Features were extracted from the pulsatile signals and analyses
were carried out to investigate the presence of statistical differences in the
features when intracranial pressure changes were induced. Classificationmodels
were developed utilizing the features extracted from the pulsatile near-infrared
spectroscopic signals to classify between different body positions and Valsalva
manoeuvre.

Results: The presence of significant differences in the majority of the analyzed
features (p < 0.05) indicates the technique’s ability to distinguish between
variations in intracranial pressure. Furthermore, the disparities observed in the
optical signal features captured by the proximal and distal photodetectors
support the hypothesis that alterations in back-scattered light directly
correspond to brain-related changes. Further research is required to subtract
distal and proximal signals and construct predictive models employing a gold
standard measurement for non-invasive, continuous monitoring of intracranial
pressure.

Conclusion: The study investigated the use of pulsatile near infrared
spectroscopic signals to detect changes in intracranial pressure in healthy
volunteers. The results revealed significant differences in the features extracted
from these signals, demonstrating a correlation with ICP changes induced by
positional changes and Valsalva manoeuvre. Classification models were capable
of identifying changes in ICP using features from optical signals from the brain,
with a sensitivity ranging from63.07% to 80% and specificity ranging from60.23%
to 70% respectively. These findings underscored the potential of these features
to effectively identify alterations in ICP.

Significance: The study’s results demonstrate the feasibility of using features
extracted from optical signals from the brain to detect changes in ICP induced
by positional changes and Valsalva manoeuvre in healthy volunteers. This
represents a first step towards the non-invasive monitoring of intracranial
pressure.
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1 Introduction

Intracranial pressure (ICP) is frequently impaired in
neurocritical care patients. There are several conditions which
can cause intracranial hypertension, such as, head injury, cerebral
haemorrhages, stroke, intracerebral hematomas, meningitis, acute
liver failure and hydrocephalus. ICP can also be influenced by
surgical interventions such as tumour removal and the repairing
of damaged blood vessels (Chiara, 2018). Despite several studies
showing that hospital-level ICP monitoring utilisation varies
substantially, with some hospitals measuring invasive ICP in as
few as 9.5% of their patients, while others monitor up to 83%
of their patients (Okazaki et al., 2021; Bennett et al., 2012), it is
considered the gold standard in neurocritical monitoring (Evensen
and Eide, 2020). Early management of intracranial hypertension
decreases the risk of secondary injuries to the brain, poor outcomes
and mortality (Chiara, 2018). However, current gold standard
monitoring techniques are predominantly measured by invasive
methods which rely on neurosurgical expertise, which could
potentially delay treatment whilst introducing additional risks for
the patient (Roldan et al., 2020). Consequently, numerous authors
have searched for non-invasive methods to assess the brain, such as
Computerised Tomography Scan, Magnetic Resonance Imaging,
Transcranial Doppler and Near-Infrared Spectroscopy (NIRS)
(Roldan et al., 2020). The latter has been widely described for
cerebral perfusion and brain oxygenation monitoring (Roldan and
Kyriacou, 2021). Continuous waveform NIRS and spatially resolved
spectroscopy techniques are based on the light absorbance change
reflected in the DC component of the optical signal measured by
the probe (Roldan and Kyriacou, 2021). However, the information
regarding the pulsatile (AC) component of the reflected infrared
light has yet to be assessed. This AC component might be associated
with changes in intracranial volume, which is highly correlated to
ICP. This research aims to evaluate the possible association between
pulsatile NIRS waveform features and induced changes in ICP in
healthy volunteers.

2 Materials and methods

2.1 Monitoring device

A custom made optical nICP sensor was attached to the
subject’s foreheadbelow the hairline. This in-house, non-invasive
sensor consists of four LEDs at multiple wavelengths and two
photodiodes (proximal and distal) arranged as shown in Figure 1.
A multiple wavelength sensor allows for multimodal monitoring,
however This study exclusively analyzed data at 810 nm as the
absorption properties of oxyhemoglobin and deoxyhemoglobin are
the same at this specific wavelength. This characteristic enables
the extraction of an optical signal that is independent of blood
oxygenation (Murkin and Arango, 2009). Montecarlo simulation

of the light-tissue interaction has demonstrated that near-infrared
(NIR) light travels deeper into the head tissue when the source-
detector distance is increased (Roldan et al., 2021). The reflected
light from extracerebral tissue reached the proximal photodetector
placed 10 mm from the LEDs; and the non-absorbed light from
deeper tissues travelled back to the distal photodiode placed 35 mm
from the LEDs. This study interrogated the effect of the photodiodes
locations under ICP changes, and evaluated the acquisition of
pulsatile signals from both distal and proximal photodiodes. The
optical probe was driven by a custom made processing system
enabling optical signal acquisition, pre-processing, visualization
(using LabView) and archiving on a personal computer.

2.2 Healthy subjects

Sixteen healthy volunteers aged 28 ± 6 years (mean ± standard
deviation; 6 women) took part in this study. The subjects were
recruited through posters in the university where the study took
place. The exclusion criteria included existing pathology associated
with raised ICP, vasculitis, diabetes, high-risk factor for stroke
or heart disease, hypertension, previous traumatic brain injury,
meningitis or hydrocephalus, migraine, vertigo, fever, influenza or
other infectious diseases. The University Senate Research Ethics
Committee approved the study, and all participants signed an
informed consent form prior to the study.

2.3 Intervention

Literature has established that tilting body position and
the Valsalva manoeuver are effective methods of inducing
changes in ICP among healthy volunteers (Haykowsky et al., 2002;
Eklund et al., 2016; Watkins et al., 2017). In order to replicate these
conditions, the volunteers’ body positions were adjusted a tilt-
function of the investigation bed. The protocol began with the
volunteers in a supine position for 5 min (first supine), followed by
a 5-min period in the Tredelenburg position, with the head inclined
downward at −30°.Theprotocol endedwith the volunteers returning
to a supine position for an additional 2 min (second supine). A
transition period of 30–60 s was allowed between each position.
During the transition period, data was not recorded. Figure 2
provides a visual summary of this protocol. Similarly, for theValsalva
intervention, volunteers were seated and baseline measurements
were recorded before three consecutive Valsalva manoeuvres were
performed.

2.4 Analysis

The recorded signals were processed and analyzed using Python
(version 3.10). The signal processing began by sectioning the
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FIGURE 1
Experimental setup for the acquisition of pulsatile optical signals from the forehead. The sensor has a reflectance configuration with four light emitters
(770, 810, 855, and 880 nm). The reflected light from extracerebral tissue reached the proximal photodetetor placed 10 mm from the LEDs. Similarly,
non-absorbed light from deeper tissues travelled back to the distal photodiode placed 35 mm from the source. The probe is connected to a processing
system to acquire the signals, which are finally visualised and recorded in a LabView interface.

FIGURE 2
Measurement protocol for the body position tilting intervention.

recorded signals based on the corresponding body positions.
Additionally, the Valsalva peaks were isolated from the baseline. The
signals were filtered using Butterworth filters in order to separate
the AC PPG component (2nd order bandpass filter with cutoff
frequencies of 0.8 and 10 Hz) from the DC PPG component (2nd
order lowpass filter with a cutoff frequency of 0.1 Hz). The data was
then normalised by dividing the AC component of the signal by it is
DC component, followed by a 10 factor multiplication.

2.5 Sectioning

For the tilting intervention, changes in body position were
determined by time. The sectioning algorithm under-sampled the
signals to 100 Hz and the total duration of the signal was calculated.
From the calculated duration, the time spent in transitions was
subtracted to obtain an average transition time. Subsequently,
the indices corresponding to each body position window were
estimated. To ensure that only relevant data from the body position
was included and to exclude transition data, the middle 60{%} of

each body position window was extracted. This ensured that the
analysis focused on stable body position periods. The flow diagram
illustrating this sectioning algorithm can be seen in Figure 3A.

Inversely, the Valsalva manoeuvre peaks were not controlled
by time, therefore a different algorithm was required to identify
and extract these peaks from the original signal. The first step
was calculating the first and second derivative of the PPG signal,
which were then filtered using a Savitzky–Golay filter. Then, three
maximum peaks were detected from the first derivative envelope,
as well as three maximum lows. The algorithm defined where
a Valsalva window started when a maximum peak of the first
derivative envelope was close to a point where the first and second
derivative crossed. Likewise, the Valsalva window ended when a
maximum low of the first derivative envelope was close to a point
where the first and second derivative crossed.The average time of the
three Valsalva peaks was calculated, and a corresponding segment
of baseline time was extracted from the signal, representing the
period before any Valsalva maneuver occurred. Figure 3B provides
a description of the sectioning algorithm used for the Valsalva
intervention.
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FIGURE 3
Sectioning algorithms applied to segment data obtained during (A) the tilting protocol and (B) the Valsalva intervention.

2.6 Feature extraction

Several features have been extracted and investigated in the
literature to characterise pulsating signals, such as PPG (El-Hajj and
Kyriacou, 2021). In this study, nine features were extracted from the
optical signals. These features were: the amplitude, pulse width, rise
time, decay time, upslope, area under the curve, area of the systolic
period, area of the diastolic period and ratio between both systolic
and diastolic areas. Figure 4 shows a graphical representation of the
figures extracted. The median value of each feature was calculated
in a signal window of 15 s for the tilting intervention while a
5 s window was implemented for the Valsalva intervention, where
the sectioned signals were shorter. The features from each section
(baseline, body position or Valsalva) were compared according to
the following statistical analysis.

2.7 Statistical analysis

To assess whether there were any significant differences in
the features extracted at different body positions (both proximal
and distal measurements), a non-parametric and parametric
factorial analysis was undertaken in Python (version 3.10).
Utilizing two distinct analytical methods increased the robustness
of our investigation and ensured that any significant findings
were not reliant upon a particular statistical technique. The

significance level was set at 95{%} (α = 0.05) for both analyses.
The factors were the body position and the photodetector
location.

The ANOVA assumptions were assessed using several statistical
tests. Specifically, the normality assumption for each feature was
evaluated using the Shapiro-Wilk and Kolmogorov-Smirnov tests,
while Bartlett’s test was used to evaluate variance homogeneity for
each factor. Data independence was assessed through graphical
methods. In instances where the assumptions of normality,
homoscedasticity, and independence were not met, Box-Cox
transformations were applied using an optimal lambda in order to
proceed with the factorial analysis. Following the transformation,
both factors were incorporated into a linear model to examine
any potential interaction effects on the changes in the extracted
features.

Lastly, logisitc regression classification models were constructed
to predict body position and Valsalva peaks based on the
independent variables extracted from the optical signals recorded
with the aforementioned probe. The data underwent pre-processing
steps prior to model training. Firstly, all instances except for those
at the 810 nm wavelength were removed from the original feature
dataset, resulting in a dataset containing only instances of extracted
features from the 810 nm wavelength. Secondly, to address the issue
of class imbalance, the original dataset was randomly undersampled
to ensure an equal number of instances for each classification
class (body positions/Valsalva peak or baseline) for each volunteer
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FIGURE 4
Features extracted from the optical signals. F1: Amplitude; F2: Pulse width; F3: Up slope; F4: Decay time; F5: Rise time; F6: Area under the curve; F7:
Area of the systolic period; F8: Area of the diastolic period; F9: Ratio between both systolic and diastolic areas.

at each intervention. The independent variables were scaled to a
range between 0 and 1. This step was undertaken to help improve
the performance and convergence rate of the algorithm, as the
features extracted used different ranges. The final pre-processing
step for the model involved splitting the tilting and Valsalva datasets
by photodetector position (proximal and distal). As distal signals
contain cerebral information, the model was trained using the distal
photodetector dataset only.

The decision to use a logisitc regression classification model
in this study was driven by its suitability for a small labelled
dataset and its effectiveness on binary classification tasks. Logistic
regression only requires estimation of coefficients associated
with each predictor variable, resulting in fewer parameters to
estimate compared to more complex models. Consequently,
logistic regression is less prone to overfitting. Furthermore,
logistic regression takes the form of a sigmoid curve, which
ranges between 0 and 1, reflecting the probability of a binary
outcome. Therefore, logistic regression is a suitable choice
for classification problems where the outcome variable is
binary.

To split the data into training and testing datasets, two
different approaches were employed. The first approach involved
dividing the data into folds, with the number of folds equal
to the number of volunteers in the dataset (16 for tilting and
10 for Valsalva). Each fold consisted of all the data from one
volunteer. In contrast, the second approach employed a 10-fold
cross-validation, where the entire dataset was randomly shuffled
and split into 10 folds. In both approaches, the model was
trained on the remaining data after holding out the fold and then
tested on the held-out data. To evaluate the performance of the
models, accuracy measurements, sensitivity and specificity were
calculated.

3 Results

3.1 Pulsatile signals from the forehead

Pulsatile signals were successfully recorded from near infrared
light from 16 healthy volunteers using a two photodiode probe.

Figure 5 presents the first observational proof of brain pulsatile
signals obtained at 810 nm.Additionally, the results of the sectioning
algorithm, shown in Figure 5, allow for easy identification of
changes in the DC component of the optical signals during ICP
alterations (i.e., trendelenburg −30 and Valsalva). Differences in
the waveform morphology at different body positions or after a
Valsalva manoeuvre, were analysed by feature extraction at each
section.

3.2 Statistical analysis

To explore the differences in the features extracted at different
body positions and between baseline and valsalva manoeuvres,
we employed both parametric and non-parametric analyses, the
results of which support the hypothesis of this study. Figure 6
shows the boxplots of each feature at the different body positions
for both photodiode locations. In the tilting intervention,
a non-parametric analysis was conducted using the Mann-
Whitney U test. The results indicate significant differences in
all features except the rise-time feature. This suggests significant
difference between the features across both proximal and distal
data.

To complement the non-parametric approach a parametric,
factorial analysis using ANOVA was carried out. Although the
data did not fit the assumptions of ANOVA in either intervention
suggesting that the data were not normally distributed, did not
have unequal variances or did not show residual independence
a Box-Cox transformation enabled a factorial analysis. After the
transformation, the assumptions were evaluated by Q-Q plot,
residuals plot and fitted values plot. The results of the ANOVA
analysis were consistent with those of the non-parametric analysis.
The factorial analysis results indicate significant differences
in all features across both proximal and distal measurements.
The findings of the comparison between photodiodes showed
significant differences between sensor locations across all
features, which may be attributed to the fact that the distal
photodiode is interrogating mixed brain and extracerebral
signals while the proximal photodiode only detects extracerebral
signals.
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FIGURE 5
Sectioned signals per intervention. (A) Tilting, where the distal (blue) and proximal (orange) signals were sectioned to identify initial supine position, the
transition from supine to Trendelenburg (−30°), Trendelenburg position, the transition to supine and final supine position. (B) Valsalva, where the distal
(blue) and proximal (orange) signals were sectioned to identify the baseline condition and the three different Valsalva maneuvers.

The use of both analytical methods allowed us to confirm
our findings using two independent statistical techniques. By
performing both parametric and non-parametric analyses,
we were able to explore the differences in the features
extracted at different body positions producing results which
were not reliant upon a particular statistical technique. The
evidence of both support our hypothesis that there are
significant differences in the features extracted at different body
positions.

Similarly, in the Valsalva intervention, a non-parametric,
Kruskal–Wallis test and a parametric, factorial analysis using
ANOVA were conducted to assess the differences between baseline
and valsalva for both sensor locations. Due to data quality
challenges, data from 10 out of the original 16 volunteers were

included in this analysis. Figure 7 presents the boxplots of each
feature at baseline and the three Valsalva manoeuvres for both
photodiode locations.

The Kruskal–Wallis analysis suggests that the majority of
features changed significantly between baseline and Valsalva
conditions in the distal dataset, which interrogates mixed brain
and extracerebral signals. Conversely, the proximal data revealed
that most of the features did not show significant changes between
baseline and Valsalva conditions. The ANOVA analysis results
were consistent with those of the parametric analysis. The findings
indicate significant changes in half of the features analysed between
baseline and Valsalva, while the second factor analysis showed
significant differences between sensor locations for 70% of the
features. These results suggest that the pulsatile signal morphology
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FIGURE 6
Boxplots of pulsatile signal features at different body positions for both distal and proximal photodiode locations. Each box represents the interquartile
range (IQR) of the data, with the median value represented by the horizontal line inside the box. Differences in box height between positions and
photodiode locations suggest significant variations in the pulsatile waveform morphology.

differs during an instant increase in ICP induced by the Valsalva
manoeuvre.

3.3 Classification tasks

The results of the classification models are presented
on Table 1. Two training and validation approaches were
used: the first approach used a hold-out validation method,
while the second approach employed a k-fold cross-validation
method.

On the Tilting intervention dataset the results suggest that both
approaches achieved a good balance between correctly identifying
trendelenburg −30 and supine cases.

The first approach, the hold-out validation method achieved an
average sensitivity of 63.07% and an average specificity of 60.23%
on the dataset. In contrast, the k-fold cross-validation method
demonstrated slightly better performance, with a sensitivity of 68.1%
and a specificity of 63.69%. This suggests that the model has a
good balance between identifying both positive and negative cases
and is effective at identifying patients in the trendelenburg −30
position.

The favourable classification performance of the second
approach is also mirrored in the distal Valsalva dataset. The
average sensitivity and specificity of the second approach
on the Valsalva dataset were 80.0% and 70.0%, respectively,
representing a 10% higher sensitivity than that of the first
approach.

The results across both datasets demonstrate an
encouraging classification performance using both training

and validation approaches. The k-fold cross-validation method
showed slightly better results than the hold-out validation
method.

4 Discussion

This study has proposed the use of a custom optical sensor
with multi-distance photodetectors to interrogate pulsatile signals
from backscattered light from the brain. The sensor demonstrated
its capability to acquire pulsatile signals from extracerebral and
cerebral tissue at multiple wavelengths, of which the isosbestic point
(810 nm) was selected for further analysis. Volunteers underwent
two different interventions, tilting body position and Valsalva
manoeuvre, in order to induce changes in the intracranial pressure.
Trendelenburg at −30°, lead to the engorgement of the brain,
where blood and Cerebrospinal Fluid (CSF) volume increase the
total intracranial volume, hence the ICP. Intracranial hypertension
decreases the intracranial compliance and results in an enlarged
flow pulsatility (Figure 8) (Alperin et al., 2005). The Results from
this study demonstrate that both scenarios of enlargement and
attenuation of the flow pulsatility due to changes in ICP, correlate to
changes in the morphological features of the pulsatile optical signals
in healthy volunteers. Similarly, significant changes in the features
of the pulsatile signals during Valsalva manoeuvres represent a rise
in the intracranial pressure due to the sudden expulsion of blood
from the thoracic vessels into the carotid vessels (Prabhakar et al.,
2007).

To the knowledge of the authors, there are no previous
studies that have analyzed the features of pulsatile optical signals
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FIGURE 7
Boxplots of pulsatile signal features at baseline and during three Valsalva manoeuvres for both distal and proximal photodiode locations. Each box
represents the interquartile range (IQR) of the data, with the median value represented by the horizontal line inside the box. Differences in box height
between baseline and Valsalva conditions, as well as between photodiode locations, indicate significant changes in pulsatile waveform morphology
during the Valsalva manoeuvre.

to discriminate changes in ICP induced by changes in body
position and Valsalva manoeuvers. Literature reports significant
changes in ICP when healthy volunteers undergo tilting or Valsalva
manoeuvres. Alperin et al. quantified the effect of posture on
intracranial physiology using Magnetic Resonance Images (MRI) of
the brain, demonstrating that changes in ICP induced by posture
alterations strongly affect the dynamics of cerebral blood and CSF
flows (El-Hajj and Kyriacou, 2021). Computer tomography scans
and MRI are non-invasive technologies used for TBI monitoring;
however their accessibility is limited and do not facilitate bedside
or continuous monitoring. On the other hand, invasive techniques
such as intracranial bolts or neuroendoscopic procedures have also
been used to evaluate changes in ICP during Valsalva manoeuvres,
showing a significant increase in cerebral dynamics, including
intracranial hypertension after the intervention (Alperin et al.,
2005). Invasive ICP monitoring is an invasive and expensive
procedure which requires a high level of expertise. Increasing the
barrier to entry for patients and healthcare systems.

Since the analysis of features of pulsatile optical signals was
capable of discriminating changes in ICP in healthy volunteers, this
method might be of significant value for the future development
of prediction algorithms for non-invasive monitoring of absolute
ICP values. From the models developed in this study, a conclusion
regarding the hold-out method is that it allows for an accurate
measure of the model’s performance on each volunteer whilst also
giving a representation of the model’s performance on unseen data.
However, it seems reasonable to suggest that with further research
and the collection of a larger dataset we could expect better model
performance from approach one. On the other hand, the K-fold

TABLE 1 Classification results of hold-out Validation and K-fold
cross-validationmethods onTilting andValsalva Datasets. The classification
results include average sensitivity and specificity measures for each
approach on each dataset.

Tilting dataset

Approach Position Sensitivity (%) Specificity (%)

One volunteer per fold Trendelenburg −30 63.07% 60.23%

K-fold cross validation Trendelenburg −30 68.1% 63.69%

Valsalva dataset

Approach Position Sensitivity (%) Specificity (%)

One volunteer per fold Valsalva 70.0% 70.0%

K-fold cross validation Valsalva 80.0% 70.0%

classification is a good method of evaluating a model on a limited
dataset and provides a good estimate of the model’s performance on
unseen data.

This study has demonstrated that themorphologies of the signals
recorded from the sensor differ between baseline and Valsalva
conditions as the analysis found extracted features from the signal
changed significantly between the two conditions. In addition to
this the results found significant differences within features between
body positions supine and trendelenburg −30. In order to further
suggest that the sensor is isolating signals from the brain the study
could be repeated using data recorded from both the forehead
and the finger with the intention to measure and evaluate the
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FIGURE 8
Modulation of pulsatile flow through rigid (top) and compliant (bottom) conduits. Outflow waveform from the compliant conduit suffered changes on
the pulse morphology compared to outflow from the rigid conduit. Figure adapted from Alperin et al. (2005), with permission from John Wiley and
Sons.

changes in extracted features fromboth during baseline andValsalva
conditions and during the protocol of positions. Additionally this
study has found meaningful differences within the features of
pulsatile NIRS signals which are correlated with induced changes
in intracranial pressure. Given this it seems reasonable to explore
the capacity to non-invasively measure intracranial pressure using
data collected by the sensor. To determine the efficacy of the
sensor’s capacity to non-invasively measure intracranial pressure
this work could be extended to the simultaneous collection of
invasive intracranial pressure data and data from the sensor with
the intention to develop a computational approach to calculating
intracranial pressure values from the data. The results of which
would be measured and compared against the reported gold
standard. If it can be demonstrated as being efficacious for the
non-invasive measurement of intracranial pressure, the research
could be extended to the development of computational approaches
for the forecasting of intracranial pressure values at future time
points using non-invasively collected data. This would provide a
non-invasive and continuous intracranial pressure measurement
approach capable of the early detection of intracranial pressure
crises.

This study has some limitations. First, and most importantly,
gold-standard ICP measurements were not acquired during this
study. This was due to the invasive nature of the current ICP
monitoring techniques, making it impossible to obtain from healthy
volunteers. However, and as has been explained, the effects of
the protocols performed in this study have been shown to trigger
changes in ICPwhichwas the aimof this study. Future studies should
validate the results obtained from this study in critically-ill patients
with continuous, invasive ICP monitoring, from which ICP values
are available. Secondly, the sample size from this study is relatively
small and the characteristics of the subjects were homogeneous,

risking overfitting the results of this study to the sample used.
Furthermore, only a small subset of features were extracted and
analysed from the obtained signals. Future studies should aim to
explore more features from pulsatile signals that may be more
prone to changes in ICP, such as frequency-domain and nonlinear
indices. Additionally only data obtained using light at 810 nm were
analysed. This was done due to the importance of this wavelength in
the assessment of blood perfusion. However, future studies should
evaluate the relationship of signals obtained using other wavelengths
to ICP changes. Finally, it has been suggested that the developed
sensor acquires pulsatile signals from the extracerebral and cerebral
tissues of the brain, from the proximal and distal photodetectors,
respectively. This study focused on the distal signal dataset in the
classification task, as it is expected to contain cerebral information.
However, the proximal data has not been used and the optical
subtraction of the data collected from the proximal photodiode
from the data acquired from the distal photodiode may isolate the
cerebral data by eliminating the noise of extracerebral data, making
the resultsmore reliable and resulting in a better performance on the
classification task.

5 Conclusion

This study found significant differences in the features extracted
from the pulsatile NIRS signals, that correlate to induced changes
in intracranial pressure in healthy volunteers. Additionlly this
study presented classification models capable of identify changes
in ICP induced by changes in body position and Valsalva
manoeuvres. This novel method might be of significant value for
the future implementation of a non-invasive ICP monitoring tool
in neurocritical care.
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Chronic pain is a prevalent condition affecting approximately one-fifth of the
global population, with significant impacts on quality of life and work productivity.
Small fiber neuropathies are a common cause of chronic pain, and current
diagnostic methods rely on subjective self-assessment or invasive skin biopsies,
highlighting the need for objective noninvasive assessment methods. The study
aims to develop a modular prototype of a contactless photoplethysmography
systemwith three spectral bands (420, 540, and 800 nm) and evaluate its potential
for assessing peripheral neuropathy patients via a skin topical heating test and
spectral analyses of cutaneous flowmotions. The foot topical skin heating test was
conducted on thirty volunteers, including fifteen healthy subjects and fifteen
neuropathic patients. Four cutaneous nerve fiber characterizing parameters
were evaluated at different wavelengths, including vasomotor response trend,
flare area, flare intensity index, and the spectral power of cutaneous flowmotions.
The results show that neuropathic patients had significantly lower vasomotor
response (50%), flare area (63%), flare intensity index (19%), and neurogenic
component (54%) of cutaneous flowmotions compared to the control group,
independent of photoplethysmography spectral band. An absolute value of
perfusion was 20%–30% higher in the 420 nm band. Imaging
photoplethysmography shows potential as a cost-effective alternative for
objective and non-invasive assessment of neuropathic patients, but further
research is needed to enhance photoplethysmography signal quality and
establish diagnostic criteria.

KEYWORDS

remote photoplethysmography, imaging photoplethysmography, small fiber neuropathy,
vasomotor responses, axon reflex flare, cutaneous vasomotion, optical diagnostic
imaging, topical heating

1 Introduction

Pain is an evolutionarily adaptive trait that substantially improves the survival of a
species, as it is a product of the nociceptive system that is closely interconnected with reward
and motivation mechanisms. This results in the avoidance of potentially dangerous stimuli
or activities (Walters and De C Williams, 2019). However, sometimes due to pathological
conditions, pain sensations can become spontaneous and chronic, which can substantially
impair the functioning and wellbeing of an individual. One particularly debilitating form of
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chronic pain is neuropathic pain, which refers to a specific chronic
pain syndrome characterized by pain and sensory abnormalities in
body parts that have lost their normal peripheral innervation or
sensory representation (Costigan et al., 2009). The prevalence of the
syndrome is approximately 2.4% globally, and the percentage rises
with age, with 5%–7% in those aged 45 and older (Callaghan et al.,
2015). This is not entirely clear and can vary in different age
populations. Approximately 40% of sufferers never receive
appropriate diagnosis, while 21% receive no pain management at
all (Carnago et al., 2021). Usually, neuropathic pain occurs as a result
of damage to small fibers (A-delta and C nerve fibers) and can be
caused by a wide range of disorders (Colloca et al., 2017). Recently, a
substantial worsening of the global situation has been observed due
to the SarsCov-2 pandemic, which caused a COVID-19 disease
burden worldwide (Pires et al., 2022). A growing number of studies
have documented a wide variety of neurological manifestations
associated with COVID-19 disease, particularly neuropathies,
which can account for as much as 36.4% of COVID-19 patients
(Ftiha et al., 2020).

The present diagnostics of peripheral neuropathies are primarily
based on subjective self-assessment tests or biopsies (Scott et al.,
2003). Their results partly depend on the patient’s interpretation and
feedback to physicians, and therefore may be doubtful for the
elderly, who are the main patient group. One such test is
Quantitative sensory testing, a measure of perception in response
to mechanical, thermal, and painful stimuli of controlled intensity. A
more objective alternative is the invasive skin biopsy technique with
subsequent histological nerve fiber density determination. However,
it is uncomfortable for the patients and therefore not widely used.
Nevertheless, after years of research, there is still no affordable non-
invasive clinical diagnostic technique for small fiber neuropathy.

In light of the present situation in healthcare and high economic
demands (Breivik et al., 2013), the development of alternative
techniques for objective and non-invasive diagnostics of
neuropathy is of great importance. Recent studies shed light on
this issue, suggesting that derangement of small nerve fibers has local
manifestation on the adjacent skin and its vasculature (Ando et al.,
2021). The skin is the largest human organ, which is extensively
vascularized and innervated, manifesting different pathological
conditions of local and systemic origin (Leal et al., 2021), such as
septic shock, diabetes, hepatitis and rheumatoid arthritis. The skin is
easily accessible for optical techniques and has desirable and well-
known optical properties (Bashkatov et al., 2011), hence the
heterogeneous non-uniform structure possessing sophisticated
and not entirely understood regulatory mechanisms (Slominski
et al., 2015).

Studies suggest that alterations in dermal blood flow (cutaneous
vasomotor responses) evoked by different provocation tests, such as
topical skin heating (Minson et al., 2011), cooling, reperfusion
during post-reactive hyperemia, or iontophoresis of vasoactive
substances into the skin, are promising diagnostic indicators
(Lenasi, 2011). Another encouraging but methodologically
challenging avenue would be spectral analyses of spontaneous
oscillations of cutaneous perfusion, referred to as cutaneous
flowmotions (Rossi et al., 2005), which can reflect different local
and systemic regulatory mechanisms and might reveal pathology at
early stage (Sun et al., 2013). All aforementioned measurements
require a simple and reliable, artifact-proof technique for cutaneous

perfusion monitoring. Nevertheless, most of the preceding studies
on cutaneous blood perfusion were performed by laser Doppler
imaging technique (Harrison et al., 1993; Cracowski and Roustit,
2016), which is sophisticated and expensive with relatively low
temporal resolution (Merla et al., 2008; Rajan et al., 2009). In
recent years, the contactless modality of photoplethysmography
has gained popularity as a simpler and cost-effective alternative
to Doppler imaging (Hagblad et al., 2010; Mizeva et al., 2015;
Rodrigues et al., 2019). It has proven its capability in different
diagnostic scenarios, such as monitoring local anesthesia (Rubins
et al., 2010), assessing oral mucosa health (Rubins et al., 2019),
diagnosing gingivitis (Marcinkevics et al., 2020), and assessing
cutaneous vasomotor responses (Trumpp et al., 2016;
Marcinkevics et al., 2019). The approach is similar to the
conventional contact manner reflection-type
photoplethysmography (Hertzman, 1937; Allen, 2007), with the
photodetector being replaced by a video camera (Huelsbusch and
Blazek, 2002). This allows remote registration of a large area of
interest at relatively high spatial and temporal resolution (Cheng
et al., 2022) while avoiding any pressure or attachment on the skin,
which can prevent tissue compression, capillary blood flow
occlusion (Sun and Thakor, 2016), and discomfort during the
measurement (Desquins et al., 2022). By using advanced signal
processing algorithms, the blood perfusion-related signal can be
extracted from the subtle pixel intensity changes in the image
sequence even during non-stationary position of body (Maity
et al., 2022). The major technical advantages of the contactless
plethysmography approach are its flexibility and scalability, which
permit its extension to multispectral modality. Over the past decade,
several studies have investigated the potential of multispectral
modality in different experimental settings (Asare et al., 2011;
Trumpp et al., 2016; Chen et al., 2020), including our previous
research on the value of multispectral photoplethysmography for the
clinical assessment of cutaneous microcirculation at two different
depths (Marcinkevics et al., 2016).

Considering the recent evidence and achievements in the field of
remote photoplethysmography (Sun and Thakor, 2016; Ryals et al.,
2023), and the pressing need for improved healthcare technology in
Post-coronavirus pandemic era (Gautam et al., 2020; Jazieh and
Kozlakidis, 2020), the present study aims to develop a modular
prototype of a contactless photoplethysmography system with three
spectral bands and evaluate its potential for assessing peripheral
neuropathy via a skin topical heating test. Two hypotheses were
formulated. First, we hypothesize that neuropathic patients will
exhibit significantly lower perfusion index values during the
topical heating-induced vasomotor response than healthy
volunteers. Second, we predict that utilizing three spectral bands
will yield more valuable diagnostic information for neuropathic
patients compared to using a single spectral band.

2 Methods

2.1 Design of contactless
photoplethysmography system

The contactless reflection-type photoplethysmography (PPG)
system prototype was designed based on our experience in
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developing imaging systems, current research, and clinical expert
input. The system offers modularity and spectral band flexibility,
allowing for customization of spectral bands to optimize
measurement conditions for different tissue depths and types of
biological tissue. This flexibility makes the system highly adaptable
and versatile, suitable for various laboratory and clinical

measurement scenarios, including cutaneous perfusion mapping
and PPG waveform and phase analysis. The contactless
reflection-type photoplethysmography system prototype
(Figure 1) consisted primarily of three key components: an
imaging device, a signal processing unit, and dedicated software
for offline data analysis (Figure 2).

FIGURE 1
The iPPG system for cutaneous perfusion monitoring during the heating tests. (A) The experiment setup and major components of the system; (B)
Photo of imaging system in action.

FIGURE 2
The screenshot of custom made dedicated Matlab based software for off-line data analyses.
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2.1.1 The imaging device
Comprised three identical cameras (Ximea-xiQ USB-3, ADC

8–12-bits, resolution 648 × 488 pix.) equipped with the lens
(Edmund Optics, C-mount f = 25 mm, F1.4, two visible spectra,
and one near-infrared lens) which were mounted on the rigid
aluminum frame-device chassis at fixed angles to align the visual
fields of all three cameras along a single optical axis (Figure 1A).
Spectral band changes were achieved by using different sets of
optical narrowband interference filters mounted in front of the
camera lens, along with an orthogonal polarization system. This
system used one linear polarizer in front of the lens and another in
front of the light source to prevent reflection from the skin surface
and improve image quality. In our measurement setup, the imaging
device was equipped with three narrowband filters (CW = 420, 540,
and 800 nm, FWHM= 10 nm) based on pilot studies that confirmed
the effectiveness of narrowband filters in improving system
sensitivity by tuning reflected wavelength to particular
hemoglobin absorption maxima, thus reducing biological noise in
the signal. The light source consisted of eight custom-made,
replaceable illuminator modules of high power LEDs, distributed
in a circular arrangement on the device chassis, providing uniform
illumination of the measured surface, with the option to replace and
customize the desirable illumination wavelength. In the present
setup, each module consisted of two blue LEDs (CW = 420 nm,
FWHM = 20 nm, max. Electric power 1 W); one green LED (CW =
568 nm, FWHM= 100 nm, max. Power 1 W); and one infrared LED
(CW = 810 nm, FWHM = 20 nm, max. Power 0.6 W), which were
manufactured by LuxeonZ from LumiLeds (San Jose, CA,
United States). Measured irradiance in the skin plane (25 cm
from the illuminator) for blue at 420 nm was 1.5 mW/cm2, for
green at 540 nm was 0.3 mW/cm2 and for infrared at 800 nm was
0.7 mW/cm2. Advanced active cooling and ultra-stabile LED driver
circuit were used to maintain stable irradiation over long
measurement sessions, incorporating miniature brushless fans
into the back of the illuminator module heatsink plate. universal

mounting options are provided by fixing the imaging system frame
to the Variable Friction Magic Arm (Manfrotto), which can be
attached to the optional tripod stand or any part of the bed or office
table if necessary.

2.1.2 The signal processing unit
To ensure high-quality video input and control of illumination

modules, the imaging device was connected to a laptop computer
(Intel Core i7; 16 GB of RAM) via four USB 3.0 cables. The cables
were organized and protected by being enclosed in a flexible spiral
tube, which helped to prevent tangling and physical damage during
use. The imaging system was operated by custom-developed
MATLAB-based software, which allowed for the control of
cameras and video storage to 12-bit video files. Following the
start of the system, the software operated in preview mode,
displaying the 420, 540, and 800 nm spectral videos. When the
measurement was started (by pressing the Start button), the software
was switched to video recording mode, enabling the viewing of skin
blood perfusion maps in each of the images. The software recorded
video at 25 frames per second with a resolution of 480 × 480 pixels in
12-bit mode to achieve high dynamic range videos. At the end of the
measurement, the software automatically switched back to preview
mode and was ready for the next measurement.

2.1.3 The data offline analyses software
The blockchart of iPPG analysis algorithm is shown in Figure 3.

The most sophisticated and computationally extensive part of
photoplethysmography system is Matlab platform based offline
data analyses software, which contains very extensive set of
contactless PPG analyses functions, such as signal filtering and
frame stabilization, beat detection, estimation of characterizing
waveform features, computation of augmentation, reflection and
stiffness indexes, perfusion index perfusion mapping, calculation of
signal Fourier spectra characteristics and analyses of vasomotor
responses. The operation of software was provided by the same

FIGURE 3
The algorithm block chart of iPPG signal analysis. The initial video data acquisition stage, employs amulti-spectral imaging device, including amulti-
spectral illuminator and three cameras, each equipped with 420 nm, 540 nm, and 800 nm filters (A). The second stage of the process, where the PPG
signal is computed using temporal filtering of the video frames. The frequency range used for AC related to the heartbeat is (0.7–5 Hz), and for slow DC it
is (0–0.3 Hz) (B). The final stage, where the hemodynamic parameters, such as the perfusion index, are derived for each spectral channel using the
AC and DC values calculated at each heartbeat (C). Z. Marcinkevics, U. Rubins, A. Caica, and A. Grabovskis “Evaluation of nitroglycerin effect on remote
photoplethysmogram waveform acquired at green and near infra-red illumination”, Proc. SPIE 10592, Biophotonics—Riga 2017, 105920E (7 December
2017); https://doi.org/10.1117/12.2297385.
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signal processing unit (data acquisition Laptop computer). The
advantage of software is ability to operate large datasets (Big
data) (~25 GB for each measurement set) which is crucial for
long, higher framerate recordings. The software is organized with
interactive user interface (Figure 2). The further description of the
software’s signal processing and data analysis functions which are
related to vasomotor response, flare and flowmotion analyses is
provided in the Signal Processing and Analyses of Cutaneous
Perfusion Data sections.

2.2 Subjects

Thirty subjects were enrolled in the study, fifteen neuropathic
patients and fifteen similar age (59.33 years vs. 57.20 years, p > 0.05),
gender proportion (f:67%, m:33% vs. f:67%, m:33%) and body mass
index (21.76 kg/m2 vs. 21.41 kg/m2) healthy volunteers. The study
procedures were approved by both the Ethics Committee of the
University of Latvia, Institute of Cardiology and Regenerative
Medicine and Riga Stradins University Research Ethics
Committee (Prot.Nr: 03.05.2018), and were in accordance with
the Declaration of Helsinki (World Medical Association, 2013).
Prior to the study, all subjects were informed about the protocol and
gave their written informed consent.

An experienced neurologist selected our patient cohort from
outpatients based on established clinical guidelines that
incorporated the results of both quantitative sensory testing and
neurography (sural nerve conduction test.) We applied the referent
values for quantitative sensory testing thermal thresholds as
proposed by Magerl et al. (2010). According to these guidelines,

all patients in our cohort were diagnosed with either probable or
definite small fiber neuropathy. The clinical guidelines define
probable small fiber neuropathy as the presence of length-
dependent symptoms and/or signs of small fiber damage in
conjunction with a normal sural nerve conduction test, while the
definitive diagnosis of small fiber neuropathy requires the
aforementioned criteria to be accompanied by abnormal thermal
thresholds detected during quantitative sensory testing at the foot
and/or reduced intraepidermal nerve fiber density at the ankle, as
ascertained by biopsy (Tesfaye et al., 2010; Terkelsen et al., 2017).

The control group comprised individuals who did not exhibit
any length-dependent symptoms or signs of small fiber damage, and
were therefore deemed to be healthy.

2.3 Measurement procedure

To evaluate the function of small cutaneous sensory nerve fibers,
we employed two modalities of a topical heating test, along with the
assessment of cutaneous flow motions. The first modality aimed to
produce a heating-induced vasomotor response trend characterized
by biphasic changes in cutaneous blood perfusion (Kellogg, 2006).
This response consists of a sharp rise (first peak) followed by a
decline to a nadir, and then a subsequent increase that remains
relatively constant over a longer time course, referred to as the
plateau phase as shown in Figure 4B. The second modality was
intended to evoke a skin topical heating-induced flare (Weidner
et al., 2003), which is an extent of cutaneous reddening beyond the
direct contact heating zone. Cutaneous flow motions (Kastrup et al.,
1989) were acquired from intact skin regions not influenced by

FIGURE 4
Measurement protocol. (A) Position of sensors and measurement regions on the dorsal aspect of foot. Water filled VHP3 heating probe is marked
with large hollow ring, and the region of signal acquisition for vasomotor response trend is denoted by V; VHP1 heating probe is marked with black filled
circle, flare area measurement site is denoted by FL. Flow motion acquisition region is denoted by F. (B) Typical trend of topical skin heating induced
vasomotor response, comprising baseline, initial peak-P, nadir-ND and plateau phase–PL. Reproduced from Marcinkevics et al. (2021), licensed
under CC BY 4.0 (C) Topical heating protocol, Simultaneous PPG recording at 420, 540 and 800 nm is marked by horizontal color bar.
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heating, and comprises three major spectral components (myogenic,
neurogenic, and endothelial). Before the procedure, the subject was
seated in a reclined position on a comfortable cosmetology seat, with
adjustable spinal and leg support angles. The hands were placed on
chair arm supports, and the right leg was extended and firmly fixed
by a vacuum pillow to eliminate possible movements during the
measurement procedure. It was ensured that all subjects were in the
same position, so that the foot was approximately 10 cm below heart
level. A 10-min adaptation period was allowed for subjects to
become accustomed to the laboratory room conditions and the
presence of the research staff. The dorsal aspect of the foot was
gently wiped with an alcohol pad to remove sweat sediments and the
fat layer from the skin. Two different types of heating probes were
situated on the skin in the following manner (Figure 4A): the large
VHP3 probe was attached to the skin using self-adhesive ring-
shaped tape and filled with distilled water, so that perfusion signal
can be continuously captured through water from the center of the
probe. The small VHP1 probe served for inducing flare response and
was gently placed on the skin, securing it with a thin rubber belt, as
seen in Figure 1B. The flowmotion acquisition area was selected to
avoid different influencing factors of heating-induced responses, or
underlying veins and large arteries that might pulsate (Figure 4A).
After placement of the probes and all adjustments to the imaging
device, which is part of the contactless PPG system, were made, it
was fixed to the stand and positioned approximately 25 cm from the
skin so that the entire dorsal aspect of the palm fits the visual field,
and the illumination is uniform in the regions of interest, providing
a sharp, high-quality image.

2.3.1 Heating protocol
Themeasurement lasted for a total of 30 min. Once the placement

of VHP1 and VHP3 heating probes to the skin was complete and the
measurement equipment was set up, the recording was started by
pressing the record button on the custom-made dedicated software.
The video capturing took place at 25 frames per second. During the
data acquisition, the external illumination (regular room illumination)
was switched off to avoid interference with the imaging device light
source. To establish baseline perfusion at 32°C for both probes
(VHP1 and VHP3), a 10-min pre-heating period was initiated at
the beginning of the protocol. At the 10th minute, the probes were
adjusted to 43°C for VHP3 and 45°C for VHP1 respectively as
depicted in Figure 4C. The protocol then continued for an
additional 18 min with the probes at their respective temperatures.
After 28 min, the VHP1 probe was removed to expose the cutaneous
flare area. The recording ended 2 min later, and the remaining
VHP3 probe was then gently removed from the skin. To provide a
visual representation of the protocol, a scheme is provided in Figure 4.

2.4 Signal processing

Data analysis and signal processing of video was performed offline
using a dedicatedMatlab software (see Figure 2). The process involved
opening a previously stored measurement file and performing video
pre-processing and iPPG processing. Pre-processing included three
steps: 1) loading data into video buffer and spatial downsampling by
factor two; 2) alignment of spectral images by estimation of geometric
transformation using the “imregtform” function, and applying

geometric transformation using the “imwarp” function; 3) video
motion stabilization. The stabilized videos can be further analyzed
to obtain haemodynamic parameters such as heart rate and perfusion
index, or other parameters.

The amplitude of back-scattered light intensity pulsations fast
varying component (AC) induced by heart activity is typically very
small, usually below 1% from slow varying component (DC) level.
Additionally, there is some fraction of biological noise present in the
signal which can influence the signal-to-noise ratio and quality of
signal. To address these issues, a second-order zero-phase
Butterworth bandpass filter was applied within the heartbeat
frequency range (0.7–5 Hz) to compute the AC signal, while the
DC signal was calculated by low-pass cut-off filtering (0–0.3 Hz).
The frequency ranges can be adjusted manually. To obtain
hemodynamic parameters, the iPPG AC signal processing was
accomplished in several steps. First, the local minima and
maxima positions were found in a single PPG waveform using
the built-in Matlab “findpeaks” function. If necessary, the sensitivity
of the function for localization of extremal points can be adjusted
manually. Then, single-period iPPG waveforms were extracted in a
beat-per-beat manner, and hemodynamic parameters including
pulse rate, DC signal, and AC signal amplitudes were calculated
in every beat. The pulse rate was calculated using the formula:

Pulse ratei � 60 · tn+1 − tn( )/fs (1)
where n is the number of the current heartbeat, tn is the time of the
first local minima of the pulse wave, and fs is the sampling frequency
of the video. Microcirculation is related to the Perfusion Index (PI),
which is calculated from the AC amplitude relative to DC level in
every heartbeat using the formula:

PIn %( ) � 100 · ACmaxn − ACminn( )/DCn (2)
where ACmin and ACmax are the minimum and maximum peak
values of the pulsatile component, DC is slow-varying signal, at
nth beat.

The strength of camera-based contactless plethysmography lies
in its high spatial resolution, which is particularly useful for
determining topical heating-induced flare-a region of the skin
with a substantially increased perfusion above the baseline. The
process involves two steps. First, a perfusion map is generated by
calculating the pulsatile component in every pixel of the video using
the locking-amplification principle as described by Amelard et al.
(2017) as the Pearson’s linear correlation coefficient between the
signal obtained in each image pixel and the ground-truth reference
signal in such a way:

P x, t( ) � ∑T
t�0Y x, t( )R t( )����������

∑T
t�0Y x, t( )2

√ ��������
∑T

t�0R t( )2
√ (3)

where P is a perfusion map, x is a pixel coordinate, t is a time, T is a
time buffer (10 s) of a pulsatile PPG AC signal Y, and R is the
reference signal which is calculated as spatially averaged Y signal
from manually selected RoI. Equation 3 represents a spatially-
distributed skin blood perfusion, which varies in time. Perfusion
map is auto normalized, and its value varies from 0 to 1.

The area of the flare depends on the threshold, which depends on
biological zero signal in the skin non-affected by external heat stimuli.
The flare area is defined as the sumof the perfusionmappixels where p>
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0.5, which we assumed as an optimum threshold considering baseline
perfusion level. The total flare area (FA) is calculated as the full area
minus the area of the VHP1 heater contact surface, which is 100 mm2.
The equation for calculating FA is as follows:

FA � a ∑
x∈S

x−∑
x∈H

x⎛⎝ ⎞⎠ (4)

where x is a pixel coordinate, a is the area of a single pixel, S refers to
the manually selected ellipse region of interest (RoI) that covers the
area surrounding the VHP1 probe, and H is the VHP1 probe contact
area. The flare intensity index, which has been introduced to
characterize the density of the flare, is defined as follows:

FD %( ) � 100 · a
FA

∑
x∈S

P x( )− ∑
x∈H

P x( )⎛⎝ ⎞⎠ (5)

where P(x) is a perfusion map values in x pixels belonging to the S
and H regions, FD is a flare intensity index.

2.4.1 Analyses of cutaneous perfusion data
The characterization of heating-induced vasomotor response,

heating-induced flare, and flowmotions was performed offline using
data analysis software that is an integral part of the present contactless
photoplethysmography (PPG) system. The relevant regions of interest

were manually selected on the preview video screen, and the analyses
were performed automatically. Vasomotor response was computed
from the region inside the transparent part of the VHP3 heating probe,
and the perfusion index changes over time were analyzed using the
vasomotor response analysis module which was part of the software.
The analyses incorporated perfusion index filtering and trending with
the detection of characteristic inflection points that determined the
amplitudes of the first peak (P), nadir (ND), and plateau phase (PL), as
depicted in Figure 4B. To explore the flare response, two regions of
interest were selected. First, a small circular region was selected on the
contact zone of the VHP1 probe to fit directly heated skin boundaries,
while the second regionwas placed over the larger area surrounding the
VHP1 probe. The analyses were performed on a 1-min duration video
fragment just following removal of the heating probe. Offline analyses
included the generation of a perfusion map and the determination of
the flare area, as described in the signal processing methods section.
Cutaneous flowmotions were calculated from flare and heating
unaffected skin by selecting a ~40 × 40 pixel region of a 20-min
duration video fragment, as depicted in Figure 5. The flowmotions
were automatically divided into three spectral ranges representing the
influence of myogenic (~0.05–0.15 Hz) (Kastrup et al., 1989),
neurogenic (~0.02–0.05 Hz) (Söderström et al., 2003), and
endothelial (~0.0095–0.02 Hz) (Kvernmo et al., 1999; Kvandal et al.,
2003) activity, as suggested by other studies. The averaged spectral

FIGURE 5
Topical heating vasomotor response trend (A, B) Individual example from patient and healthy subject at 420 and 540 nm illumination. (C, D) Baseline
normalized group (patients: n = 15, control: n = 15) mean data of vasomotor response characterizing parameters; P- initial peak, ND-nadir, PL-plateau
phase, values presented as mean ± standard deviation, statistically significant difference denoted by asterisk.
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power density for each spectral range was computed by Fast Fourier
Transform using following formula:

PSD � 1
f2 − f1

∑f2

f1
F f( )
∣∣∣∣

∣∣∣∣2

Where PSD is a averaged power spectral density, F is a Fourier
transform of RoI-averaged PPG signal, f1, f2—spectral range of
corresponding flowmotion component.

2.5 Statistical analyses

The statistical analyses were conducted using SigmaPlot 12.0
(Systat Software Inc., San Jose, CA, United States). As the majority of
the data did not conform to Gaussian distribution, non-parametric
statistical tests were employed. To compare the patient group with
the control group, the Mann-Whitney Rank Sum Test was utilized.
The baseline cutaneous perfusion values for the different
wavelengths in both the control and patient groups were
compared using Kruskal–Wallis One Way Analysis of Variance
on Ranks (ANOVA). To reveal relationship between flare area and
flare intensity index Spearman’s correlation analyses was utilized. A
statistically significant difference was defined as p < 0.05. Unless
stated otherwise, the values presented in the text and graphs are
expressed as the arithmetic mean ± standard deviation.

3 Results

Comparing baseline amplitude of PPG waveform (AC signal) at
all three wavelengths, it has been noticed that the infrared channel
(800 nm) signal amplitude across all subjects did not significantly
differ from the noise. Therefore, these data has been excluded from
subsequent analyses, and further results are provided on blue
(420 nm) and green channels (540 nm). All fifty subjects (patient
group and healthy control group) displayed a reasonable amplitude
PPG waveform at both channels during baseline and vasomotor
response. The baseline perfusion index amplitude slightly varied
among the individuals, with no statistically significant difference
observed between subject groups or two PPG channels (420 nm vs.
540 nm). The mean values were as follows: 420 nm - control (0.12 ±
0.04) vs. patients (0.11 ± 0.06) and 540 nm - control (0.13 ± 0.06) vs.
patients (0.14 ± 0.07).

The quantification of heating-induced cutaneous response was
performed on the two separate modalities as an amplitudes of
vasomotor trend and extend of cutaneous reddening area-flare.

3.1 Topical heating vasomotor response
trend

Control group subjects exhibited a similar trend of vasomotor
response at both 420 and 540 nm, with its characteristic shape
comprising sharp, increase of perfusion (P1) with the following
decline, nadir, and succeeding elevation, which remained relatively
unchanged until the end of recording, known as the plateau phase, as
shown in Figure 5. However the signal at 420 nm PPG band was

20%–30% larger, than that of 540 nm, regardless of subjects
group. Meanwhile, the neuropathic patient group demonstrated a
blunted response (50%), with altered initial peak (P1), nadir (ND),
and plateau phase (PL), regardless of the illumination wavelength,
Figure 5.

3.2 Topical heating flare response

Topical heating induced the reddening (flare) surrounding the
direct contact site of the heating probe in all subjects, with some
individual differences in the intensity of flare (flare intensity index)
and area noticed among the same group subjects (Figure 6). Similar
to vasomotor response amplitude, flare area (63%) and flare
intensity index (19%) were significantly decreased in patients
compared to healthy volunteers, regardless of the illumination
wavelength. The patient group (n = 15) flare intensity index and
flare area at 420 nm and 540 nm were as follows: 420 nm
illumination 48.74 ± 14.56 a.u. and 248.46 cm2 ± 198.08 cm2;
540 nm illumination 45.89 ± 13.69 a.u. and 246.13 cm2 ±
195.18 cm2. The control group flare intensity index and flare area
were: 420 nm illumination 56.26 ± 5.31 a.u. and 598.07 cm2 ±
271.89 cm2; 540 nm illumination 57.92 ± 6.77 a.u. and
673.60 cm2 ± 275.16 cm2.

3.3 Cutaneous flowmotions

Acquisition of cutaneous flowmotions was more challenging due
to the requirement of long duration artefact-free recording; therefore,
moderate substantial variation among the same group subjects was
observed for all three components, regardless of illumination
wavelength. A noteworthy finding is the significantly larger (54%)
neurogenic component of the control group compared to the
neuropathic patient group at both wavelengths (Figure 7). The
group mean values for healthy volunteers were as follows: at
420 nm illumination-endothelial 0.85 ± 0.68 a.u., neurogenic 0.58 ±
0.49 a. u., myogenic 0.14 ± 0.11a.u.; at 540 nm illumination-endothelial
0.91 ± 0.62a.u., neurogenic 0.55 ± 0.38 a. u., myogenic 0.11 ± 0.08 a. u.
Group mean values for neuropathic patients were as follow: at 420 nm
illumination-endothelial 0.85 ± 0.68 a. u., neurogenic 0.58 ± 0.49 a. u.,
myogenic 0.14 ± 0.11 a. u.; at 540 nm illumination-endothelial 0.91 ±
0.62 a. u., neurogenic 0.55 ± 0.38 a. u., myogenic 0.11 ± 0.08 a. u.

4 Discussion

Over decades there were several attempts to use
photoplethysmography for assessment on neuropathies, ranging
from PPG waveform parameter analyses (Bryce et al., 2022) to
spectral analyses of PPG signal fluctuations (Bentham et al., 2018),
and using single point PPG recording and multi-channel recording
(Kim et al., 2007), alone or in combination with different modalities
such as ECG or laser Doppler (Kim et al., 2008). However most of
the studies up to date in this field were performed using contact
manner conventional transmission type PPG, which is usually
applied in the fingers and there are sparse studies assessing
function of peripheral nerve fibers by contactless modality of
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PPG. The present study makes a significant contribution to the
evaluation of multispectral imaging photoplethysmography for
assessing neuropathic patients. By examining cutaneous flow
motions and topical heating-induced vasomotor responses, we
demonstrate the capability of this method, which to the best of
our knowledge is the first of its kind. It was expected that a
multispectral approach, comprising three different wavelengths,
may provide additional diagnostic information, and therefore was
implemented in our present setup. Contrary to our expectations, it
was possible to obtain reliable PPG signal only at two (420 and
540 nm) out of three wavelengths during the same test of topical
heating, as the signal at 800 nm illumination was extremely noisy
and did not significantly differ from the biological zero level. This
finding is in contrast to our previous studies where a detectable,
hence smaller amplitude signal was obtained from both the dorsal
and palmar aspect of the hand at the baseline and during topical
heating using similar wavelength illumination (Marcinkevics et al.,
2016; Marcinkevics et al., 2017), albeit with approximately four times
larger spectral bandwidth, which covers a broader range of
chromophores providing absorption in adjacent wavelengths. The
possible reasons for the diminished PPG signal at this wavelength
are low Hb absorption and lower density of arterio-venous
anastomoses in the cutaneous vasculature of the foot’s dorsal

aspect, which counterweights our initial idea of selecting the Hb
isosbestic point, which might be indifferent to alterations of Hb
saturation and could provide information regardless of the patient’s
arterial oxygen content. Noteworthy was finding that baseline
perfusion was similar in the blue (420 nm) and green (50 nm)
PPG channels and did not differ between neuropathic and
control group, which allowed us to normalize cutaneous
perfusion to the baseline. Different normalization approaches
have been mentioned in the early studies for inter-subject
comparison, including normalization to maximal vasodilatory
capacity, which is achieved by pharmacological intervention, such
as iontophoresis of sodium nitroprusside used or acetylcholine,
contributing as an endothelium independent vasodilators (Kellogg
et al., 1999), first being an NO dependent, and second acting directly
on smooth muscle cells. Or physiological normalization, such as
maximal reperfusion during post occlusive reactive hyperemia
(Shirazi et al., 2021) and topical heating induced vasodilation
(Chaseling et al., 2020). Another option could be normalization
to the baseline, which is more non-intrusive but feasible only if
constant initial baseline conditions are achieved. All mentioned
approaches have its own limitations therefore simpler and less
intrusive baseline approach was presently utilized. Its validity can
be supported by the fact that all subjects regardless age and health

FIGURE 6
Topical heating induced flare response. (A–D) representative data from individual subject, flare discrimination threshold is set to 0.5. (E–H) Group
mean data (control:n = 15, patients:n = 15) mean ± std, statistical significance denoted with asterisks.
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state exhibited similar absolute values of perfusion index during the
baseline, resulted by preconditioning of 32°C preheating.

4.1 Heating induced vasomotor response
trend

All subjects responded to topical heating, producing well-known
three-phase pattern of cutaneous vasodilation: an initial peak within

the first 5–6 min and a subsequent nadir followed by a sustained
plateau (Kellogg et al., 1999; Minson et al., 2001). Neuropathic
patients showed diverse response with significantly reduced
amplitude of cutaneous vasodilation in both PPG channels,
particularly in the initial vasodilatory peak (approximately 58%)
and to a moderate extent in the plateau phase (approximately 45%).
This observation was consistent across all subjects, regardless of the
PPG channel, with some individual variations. The interpretation of
this phenomenon is particularly challenging, as there is a lack of

FIGURE 7
Cutaneous flowmotions. Power Spectral Density of endothelial (0.009–0.022 Hz), neurogenic (0.22–0.05 Hz) and myogenic (0.05–0.15 Hz)
components at two wavelength, (A, B) individual data from one subject. (C–E) group mean data (control:n = 15, patients:n = 15), statistically significant
data denoted by asterisks.
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studies on contactless PPG assessment of neuropathies. However,
our recent study evaluating reversible pharmacological impairment
of cutaneous sensory nerve fibers using remote
photoplethysmography showed a decrease in the initial
vasodilatory peak, but unaltered plateau phase (Marcinkevics
et al., 2021), which is contrary to the present finding. Similar
were provided from neuropathic patients studies using laser
Doppler technique (Kilo et al., 2000; Krishnan and Rayman,
2004; Carter and Hodges, 2011; Obayashi and Ando, 2014;
Kubasch et al., 2017), hence the technique substantially differs
from PPG. The decreased vasodilatory response in the
neuropathic group may be explained by underlying physiological
mechanisms of heat induced vasodilation. The literature suggest that
major contributor to transient initial vasodilatory peak is a local
sensory nerve-mediated axon reflex (Minson et al., 2001), mediated
by TRPV1 channel dependent activation of C-fiber afferent nerve
fibers that release substance-P and calcitonin gene-related peptide
(GCRP) with a modest contribution of NO during early phase
(Marche et al., 2017) and therefore may reflect both endothelial
and small nerve fiber function. Studies suggest slightly diminishing
initial peak due to the aging (Millet et al., 2012), and equally
sympathetic-parasympathetic balance along to hormonal level
could influence response, potentially accounting to observed
variance in our subjects groups. Nevertheless, the substantial
effect of age on vasomotor response is excluded, as the patient
and control groups have similar age structure, confirmed by
statistics. The possible explanations to reduced plateau phase in
our patient cohort, is contribution of plethora of mechanisms in its
genesis. There is evidence that plateau is only 60%–70%
endothelium NO-dependent (Fieger and Wong, 2010; Bruning
et al., 2012; Fujii et al., 2014), and could be modulated by other
factors such as adenosine receptors, endogenous reactive oxygen
species (Huang et al., 2012) and transient receptor potential
vanilloid type 1 (TRPV1) channels which are expressed on the
membrane of sensory nerve fibers (Wong and Fieger, 2010) and
could be deranged in neuropathic patients. In addition etiology of
peripheral neuropathies is multifaceted, frequently related to
endothelial dysfunction such as in diabetic polyneuropathy.
Clinical studies have shown that endothelial function assessed by
endothelium-dependent vasodilation is impaired in diabetic patients
(McVeigh et al., 1992) although the pathogenesis has not been fully
elucidated. Our neuropathic group was etiologically heterogeneous
and impairments of endothelial function cannot be ruled out.

4.2 Flare response

Another more robust expression of topical heating is the flare
response-a type of localized neurogenic inflammationmanifested as the
reddening of the skin region which surrounds directly heated site. In
our study, the flare response along the vasomotor response trend was
employed to evaluate cutaneous nerve fiber function in neuropathic
patients. The essential finding of present photoplethysmography study
is reduced flare area (approx. 63%) and flare intensity (approx. 19%) in
neuropathic patients in comparison to control group regardless of the
illumination wavelength. The similar effect have been showed by
several laser Doppler studies utilizing different provocation
procedures, such as topical skin heating and vasoactive substance

iontophoresis in neuropathic patients (Krishnan and Rayman, 2004;
Bickel et al., 2009; Green, 2009; Green et al., 2009; Illigens et al., 2013;
Namer et al., 2013; Sharma et al., 2015; Abraham et al., 2016; Calero-
Romero et al., 2018). However there are also controversial studies,
suggesting decreased flare area in neuropathic patients with structurally
deranged nerve fibers (Bickel et al., 2009), while others points on flare
reliability only for painful neuropathy conditions (Ysihai, 2009).
Notably, our present research revealed that the flare intensity index
in neuropathic patients remained unchanged regardless of the size of
the flare area. What is in line to the laser Doppler study by Alistair et al.
suggesting correlation of flare intensity to microvascular function and
correlation of flare area to small fiber functions (Arnold et al., 2015).
And in the light of this study the slight decrease of flare intensity index
might point on moderate microvascular impairments in our
neuropathic patient group, which is consisted with findings related
to diminished plateau phase of these patients. Hence, it is difficult to
interpret the present data due to the lack of relevant studies and sparse
evidence regarding photoplethysmography’s ability to assess
neuropathic patients using quantification of flare response, as this
imaging modality differs substantially from Laser Doppler technique
and results cannot be directly attributed to other imaging modalities
without appropriate investigation. Nonetheless, there is some evidence
from our previous research (Marcinkevics et al., 2021) on potential of
imaging photoplethysmography for assessment of small fiber functions
in the healthy volunteers, whichmay be extrapolated to the neuropathic
patients. Recent evidence suggest that pathophysiology of small fiber
neuropathy is related to spontaneous activation of small unmyelinated
sensory polymodal nerve fibers which are aimed to detect and transmit
temperature and slow pain to the central nervous system; hence, when
impaired, can cause chronic neuropathic pain. In the healthy
individuals topical skin heating (above 42°C) depolarizes small
unmyelinated dermal C-fibers, resulting in afferent action potentials
that are conducted toward the spinal cord and, at branching points,
antidromically invade peripheral branches adjacent to the initial
stimulation point, triggering release of vasoactive substances, such as
substance P and calcitonin gene-related peptide (CGRP), from nerve
terminals, which leads to arteriolar smooth muscle relaxation and
vasodilation at the localized skin area extending outside heated skin
region (Weidner et al., 2003). While in the neuropathic patients
deranged nerve fibers produce substantially blunted response, which
can be detected by imaging photoplethysmography, Laser Doppler
imaging, and likely any imaging technique with potential to measure
cutaneous blood perfusion.

4.3 Flowmotions

Spectral analysis of photoplethysmography (PPG) signals has long
been a desirable technique due to the relative ease of recording and the
potential for advanced mathematical tools to yield valuable diagnostic
information. In the recent study, we have expanded upon this
approach and performed a comprehensive evaluation of the
efficacy of contactless PPG in the assessment of patients with
small fiber neuropathy using cutaneous flowmotion analyses. The
key finding of our present study is a marked reduction in the
neurogenic component of vasomotor responses in patients with
neuropathy, which is consistent with the observed reductions in
flare area, flare intensity, and initial peak pointing on deranged
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small nerve fiber function. Surprisingly, there was no statistically
significant difference between the endothelial flowmotion component
in healthy subjects and neuropathic patients, despite the latter group
showing a reduced plateau phase in vasomotor response, which can be
partly explained by contribution of systemic factors or insufficiently
deranged endothelial function of patients. Overall, our results are
consistent with other studies (Bernardi et al., 1997; Lefrandt et al.,
2003; Meyer et al., 2003; Quattrini et al., 2007; Sun et al., 2013; Körei
et al., 2015) that have used Laser Doppler to evaluate diabetic patients
with neuropathy, as well as with our previous study that utilized
photoplethysmography to assess small cutaneous nerve fibers in
healthy subjects (Marcinkevics et al., 2021). However, the
interpretation of our present findings is constrained by the lack of
literature on flowmotions studies that utilize the same spectral analysis
approach (three major spectral components) and
photoplethysmography, as most existing research on this topic are
conducted with the Laser Doppler technique, emphasizing the
necessity for further research using comparable methodologies to
validate and expand our results. Furthermore, the interpretation of
our results is limited by incomplete knowledge of the genesis and
influencing factors of flowmotions. The precise mechanism
underlying these oscillations remains unclear, but prior research
suggests a local origin stemming from dynamic interactions
between sympathetic vasoconstriction, pressure-dependent
vasoconstriction, flow-dependent endothelium-mediated
vasodilation, metabolic vasodilation, and spontaneous myogenic
activity (Rossi et al., 2006), which can indirectly support our
recent findings on alteration on neurogenic component in
neuropathic patients.

4.4 Study limitations

While the study was conducted with a commitment to precise
methodology and strict adherence to the experimental design, certain
limitations were encountered that could impact the reliability of the
findings, necessitating careful interpretation of the results.

First, the generalizability of our findings could be affected by the
relatively small sample size and the diverse nature of the neuropathic
patients we studied. Nevertheless, significant results were still
achieved, underscoring the robustness of our
photoplethysmographic evaluations.

Second, our study primarily focused on functional assessments
of neuropathic patients, without a direct morphologic evaluation of
nerve fibers by biopsy to validate clinical diagnoses. However, the
intent of our study was not to provide structural assessments, but to
showcase a potential functional evaluation technique that could
augment existing structural testing methods.

Third, there exists the possibility of parameter drift in the
photoplethysmography imaging system during recording, which
could potentially affect the recording of vasomotion due to their
low frequency. To mitigate this, we assessed the stability of light
sources prior to the experiment. Our data showed that for all three
channels, the standard deviation did not exceed 0.05% of the mean
PPG signal in the 0–5 Hz frequency range. Moreover, the power
spectral density (PSD) of the PPG signal, calculated from a white
reference video in the 0.0095–0.15 Hz frequency range, was two
orders of magnitude lower than the PPG signals obtained from

healthy subjects. This indicates that any potential instability of the
LED did not significantly influence the flowmotion measurements.

Fourth, the slow respiration rate of subjects could potentially
affect the myogenic component of flowmotions (Liu et al., 2020).
However, we did not control for this as we assumed subjects were
breathing normally in either sitting or resting positions (Rodríguez-
Molinero et al., 2013; Miles-Chan et al., 2014; Katz et al., 2018).
Further, normal breathing does not interfere with the myogenic
frequency range or affect the PPG signal. As corroborated by other
studies of vasomotion using laser Doppler, the control of respiratory
rate during cutaneous blood perfusion recording is not a critical
factor for measuring vasomotion components (Kastrup et al., 1989;
Meyer et al., 2003).

Despite these limitations, we believe our study makes valuable
contributions to the literature and opens avenues for future research.

4.5 Conclusive remarks

Overall, our study highlights that photoplethysmographic
evaluation of the flare response is the most methodically simple
and robust technique among all we tested. While the analysis of
flowmotions may appear simple and attractive, but is less
informative due to its sensitivity to slow fluctuation artifacts and
measurement site variations. Taken together, these results suggest
that photoplethysmographic evaluation of the vasomotor flare
response holds promise as an objective clinically valuable tool for
assessing small fiber function in neuropathic patients.

One partially unresolved issue in our study concerns the diagnostic
utility of the multispectral approach in photoplethysmography. Our
findings suggest that there are no clear indications for any additional
diagnostic information gained from the simultaneous use of the green
(540 nm) and blue (420 nm) channels, nor are there any strong
implications for the preference of the blue channel over the green
in assessing neuropathic patients. However, we did observe that in the
blue channel, the vasomotor response was numerically larger by
approximately 20%–30% in both the patient and control groups,
which could be attributed to the higher hemoglobin absorption at
this wavelength (Zijlstra et al., 1991) and slightly different penetration
depth into the skin, comprising different density of vessels (Finlayson
et al., 2022). Nonetheless, despite these differentiating factors, both
420 nm and 540 nm light penetrate only superficially at the epidermal-
dermal junction where the majority of vessels are densely situated
capillary loops without substantial contractile elements, the two
wavelengths provide a similar pattern of vasomotor response. These
results suggest that the application of the two band approach in
photoplethysmography may not yield significant diagnostic value in
the evaluation of neuropathic patients and the usefulness of different
PPG bands in diagnostics is highly debatable, while several studies
emphasize the contrary (Asare et al., 2011; Chen et al., 2020), such as
the study by Labuda et al. (2022) The argument put forth by the
authors is that information can be extracted from different depths. At
the outset of our study, we hypothesized that simultaneous recording at
different illuminations would provide valuable diagnostic information
from varying vascular layers within the skin due to the wavelength-
dependent penetration depth of light. However, our findings failed to
support this hypothesis. An explanation for this may be found in the
genesis mechanisms of photoplethysmography, which, despite decades
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of research and widespread application varying from heart rate
monitors to intensive care pulse oximeters, have not been fully
elucidated. Several recent studies have advocated the classical, well-
accepted volumetric photoplethysmographymodel (Moço et al., 2018),
which posits that the PPG signal originates from volume variations in
the arteriole-arterial network at different depths. According to this
model, the depth-origin of PPG using green wavelengths is dermal
blood volume variations, while red-IR wavelengths may interact with
subcutaneous blood volume variations. Another, the red blood cell
aggregationmodel (Fine and Kaminsky, 2022), suggests that the source
of the optical signal pulsation is associated with the modulation of the
scattering of RBCs in the blood vessels that is caused by themodulation
of blood flow velocity. The change in blood scattering can be explained
by the change in the average size of aggregates following the
fluctuations of shear forces, which vary during the course of the
pulse wave. Recently, an interesting tissue compression model was
proposed by Kamshilin et al. (2015), which states that pulse oscillations
of the arterial transmural pressure, which occur during every cardiac
cycle, deform the connective-tissue components of the dermis.
Therefore, further studies using advanced tissue modeling are
necessary to reveal a more unified mechanism of PPG signal origin
that would fit all existing hypotheses and experimental data.

5 Conclusion

Overall, this study demonstrate the potential of imaging
photoplethysmography as a cost-effective and straightforward
alternative to existing imaging techniques for the assessment of
neuropathic patients, providing novel information to the field of
chronic pain diagnostics. However, in order to effectively implement
this technology in clinical settings, further extensive research is
required to improve provocation methodology, enhance PPG signal
quality, and establish diagnostic criteria and referent values for heat-
induced vasomotor tests, which can be achieved through the
utilization of novel approaches, such as deep learning.
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Objective: The temporal complexity of photoplethysmography (PPG) provides
valuable information about blood pressure (BP). In this study, we aim to interpret
the stochastic PPG patterns with a model-based simulation, which may help
optimize the BP estimation algorithms.

Methods: The classic four-element Windkessel model is adapted in this study to
incorporate BP-dependent compliance profiles. Simulations are performed to
generate PPG responses to pulse and continuous stimuli at various timescales,
aiming to mimic sudden or gradual hemodynamic changes observed in real-life
scenarios. To quantify the temporal complexity of PPG, we utilize the Higuchi
fractal dimension (HFD) and autocorrelation function (ACF). These measures
provide insights into the intricate temporal patterns exhibited by PPG. To
validate the simulation results, continuous recordings of BP, PPG, and stroke
volume from 40 healthy subjects were used.

Results: Pulse simulations showed that central vascular compliance variation
during a cardiac cycle, peripheral resistance, and cardiac output (CO)
collectively contributed to the time delay, amplitude overshoot, and phase shift
of PPG responses. Continuous simulations showed that the PPG complexity could
be generated by random stimuli, which were subsequently influenced by the
autocorrelation patterns of the stimuli. Importantly, the relationship between
complexity and hemodynamics as predicted by our model aligned well with
the experimental analysis. HFD and ACF had significant contributions to BP,
displaying stability even in the presence of high CO fluctuations. In contrast,
morphological features exhibited reduced contribution in unstable hemodynamic
conditions.

Conclusion: Temporal complexity patterns are essential to single-site PPG-based
BP estimation. Understanding the physiological implications of these patterns can
aid in the development of algorithms with clear interpretability and optimal
structures.

KEYWORDS

photoplethysmography, blood pressure, single-site, Windkessel model, temporal
patterns
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1 Introduction

Blood pressure (BP) is one of the most important vital signs and
is closely related to the prognosis of cardiovascular disease, which
ranks first in all-cause mortality (Chobanian et al., 2003). Although
the office blood pressure measurement (OBPM) is still the
recommended diagnostic tool, ambulatory blood pressure
monitoring (ABPM) can offer more details about BP fluctuation
and help improve the diagnosis (Force et al., 2021). A lightweight
and easy-to-use ambulatory BP monitor could help promote the
long-term management of hypertension (Agarwal et al., 2011).

The use of photoplethysmography (PPG) for estimating BP has
gained popularity in recent years due to its affordability and
convenience (Martínez et al., 2018; Elgendi et al., 2019; Josep
Solà and Josep Solà, 2019; Cosoli et al., 2020). However, several
drawbacks prevented its widespread usage. The first problem is that
current theoretical models may lead to unstable BP prediction in
practice. The most well-known pulse transition time (PTT) methods
assumed correlations between PTT and arterial compliance (C)
(Mukkamala et al., 2015; Ding et al., 2016; Mukkamala and
Hahn, 2018). But cardiac output (CO) and peripheral resistance
(R) to blood flow also had considerable contributions to BP changes.
Calibrations must be done frequently, and sudden failures may
occur (Butlin et al., 2018; Finnegan et al., 2021; Avolio et al., 2022).
Another theoretical proposal used the four-element Windkessel
(WK4) model to estimate major lump hemodynamic properties
(Wang et al., 2017; Xing et al., 2021), which could be used to stabilize
the measurement. However, this model only used PPG
morphological features, making it susceptible to environmental
disturbances such as contact pressure, sensor placement, and
temperature fluctuations (Hsiu et al., 2011; Hsiu et al., 2012;
Grabovskis et al., 2013). Therefore, obtaining reliable BP
estimations from PPG morphology alone, even after calibration,
remains challenging (Xing et al., 2019; Hosanee et al., 2020).
Another problem with single-site PPG-derived BP is associated
with instability in ambulatory measurement. Most of the studies
required the subjects to stay motionless in a supine or sitting
position. The performance of BP estimation may deteriorate
quickly in motion because PTT and PPG morphology are
sensitive to noise and posture changes (Allen and Murray, 1999;
Pour Ebrahim et al., 2019).

Although the “black-box” encoding in machine learning
algorithms lacks clear interpretability, they have achieved
remarkable performance in practice. Some were deployed in
continuous BP measurement and showed improvement in both
accuracy and stability (Radha et al., 2019; El-Hajj and Kyriacou,
2021; Yen et al., 2021). Most of them used time-dependent
information, such as the long- and short-term memory (LSTM)
network (Monte-Moreno, 2011; Radha et al., 2019; Harfiya et al.,
2021; Li et al., 2021; Pu et al., 2021; Wang et al., 2021; Ali and Atef,
2022; Meng et al., 2022), system identification (Allen and Murray,
1999), auto-regression (Acciaroli, 2018), multi-stage feature
extraction (Ali and Atef, 2022; Jiang et al., 2022), dynamic
compliance (Gupta et al., 2022), or simple heart rate
variability(HRV) (Mejía-Mejía et al., 2022). These algorithms
performed better than those without dynamic features (Radha
et al., 2019; Harfiya et al., 2021). In this study, we aim to give a
plausible explanation of the system’s temporal complexity. With this

knowledge, optimizing the structure of the machine learning
algorithms would be easier.

Physiological model-based PPG simulations may help decode
this “black box”. However, current PPG synthesis methods have
limitations, with some being overly complicated (Charlton et al.,
2019; Mazumder et al., 2022) and others overly simplistic (Tang
et al., 2020a; Tang et al., 2020b). The complex physiological
models often require human anatomical data and intricate
coupling between vascular segments. While they serve as
excellent approximations of real PPG signals and are valuable
for disease diagnosis, studying rapid hemodynamic changes
becomes challenging due to their high computational cost. On
the other hand, simple PPG synthesis models combine forward
and reflected waves, aiding in PPG event detection. However,
these models lack essential hemodynamic details, such as
compliance dependent on BP (Tang et al., 2020a). In this
study, our aim is to develop a user-friendly simulation tool by
modifying the classic four-element Windkessel model. By
updating the simulation per heartbeat, we can generate stimuli
with varying timescales and observe subsequent PPG responses.
This approach enables the simulation of fast-changing CO, R,
and compliance, allowing us to investigate unstable
hemodynamic conditions. Through this simulation tool, we
can gain insights into the stochastic behavior of PPG and
evaluate their potential contribution to BP estimation.

This study introduces several key novelties and findings,
including.

(1) A novel in silico simulation method is proposed to generate
dynamic PPG signals with time- and BP-dependent compliance
profiles.

(2) The variation of central vascular compliance (C1) throughout a
cardiac cycle, along with CO and R, collectively determine the
time delay, amplitude overshoot, and phase lag of the PPG
response to a pulse stimulus.

(3) Continuous simulations showed that complicated temporal
PPG patterns could be generated by random stimuli, which
means that the “passive” buildup of phase lags and amplitude
fluctuations are related to hemodynamic fluctuations.

(4) The complexity of stimuli directly influences the complexity of
the resulting signal.

(5) The addition of temporal complexity features increased the
stability and accuracy of BP estimation, especially at high CO
fluctuations.

The rest of this paper is organized as follows. Section 2
provides a detailed description of the modified four-element
Windkessel model, pulse and continuous simulation
procedures, experimental dataset, validation procedure, and
complexity measures. Section 3 presented the simulation
results and the complexity feature distribution, which were
validated using multi-modal experimental data. The
contribution of complexity and morphological features to BP
estimation under stable and unstable cardiac conditions were
calculated and compared. Section 4 discussed the physiological
implication of these findings and the potential advantages of
using complexity features in BP estimation. Section 5 concludes
the paper.
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2 Materials and methods

This section mainly describes the in silico simulation and
experimental verification procedures, as illustrated in Figure 1.
For simulation, a modified WK4 model with BP-dependent
compliance was introduced. PPG responses to both pulse and
continuous stimuli at various timescales were simulated and
quantified. Temporal complexity and correlation measures such
as HFD and ACF are proposed to describe the PPG responses.
Their contribution to BP was calculated and compared to

morphological features. Multi-modal continuous experimental
recordings were used to verify the simulation results.

2.1 The modified WK4 model with time- and
BP-dependent compliance

To get a rough idea of the PPG response to stimuli, we did a
series of simulations using a modified WK4 model with time- and
BP-dependent compliance, as shown in Figure 2A. In this model, the

FIGURE 1
Schematics of the proposed simulationmethod, hypothesis, and experimental verifications. ThemodifiedWindkesselmodel is introduced in detail in
Section 2.1, with a simplified assumption of the left ventricular ejection (qin). Pulse and continuous simulations with different timescales were carried out
to locate the origin of complexity patterns.

FIGURE 2
(A) The equivalent circuit of the modified WK4 model. q(t) represents blood flow. C1 is time-dependent and varies with central BP. (B) The elastic
property of the aorta under different pressures (Langewouters et al., 1984). Aorta1: Am = 3.5 cm2, P0 = 50.4 mmHg, P1 = 42.3 mmHg; Aorta2: Am =
6.18 cm2, P0 = −2.3 mmHg, P1 = 21.6 mmHg.
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heart is represented as a current source qin. The arterial tree system is
modeled by four major parameters. Unlike traditional WK4 models
(Wang et al., 2017), C1 is designed to vary within a cardiac cycle,
which depends on central BP (pc), as shown in Figure 2B. R reflects
the peripheral resistance, which mainly comes from small arteries,
arterioles, and capillaries. BP changes induce corresponding
arteriolar resistance changes to keep capillary pressure constant
and maintain tissue fluid equilibrium (Nicolaas Westerhof and
Noble, 2010). Although R also varies during a cardiac cycle, the
overall fluctuation is smaller during a heartbeat. Thus, R is treated as
a constant or slowly changing parameter. To reduce the complexity
of the model, compliance of the distal arteries (C2), and inertance (L)
are set to be time-invariant, which are added to increase the PPG
waveform fitting accuracy (Westerhof et al., 2009). The blood
pressure at the peripheral site (pp) could be obtained if the
cardiovascular and hemodynamic parameters are known. Since
the amplitude of PPG depends on the tissue substrate,
microvasculature, and the coupling coefficient of the sensor and
skin, personalized transfer functions were considered to convert BP
to PPG (Millasseau et al., 2000).

In the time-dependent WK4 model, C1(t), pc(t), and pp(t) are
strongly interdependent, as shown in equations (1a)–(1c).

dq t( )
dt

� 1
L

pc t( ) − pp t( )( ) . . . . . . . . . 1a( )
dpc t( )
dt

� 1
C1 t( ) qin t( ) − q t( )( ) . . . . . . . . . 1b( )

dpp t( )
dt

� 1
C2

q t( ) − pp t( )
R

( ) . . . . . . . . . 1c( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

In this study, qin(t) is assumed to have the flow profile described
by Equation (2), where q0 is the maximum qin(t). Ts is the left
ventricle ejection duration and T is the cardiac cycle; α determines
the peak time of qin(t), which is set as 1/3. Note that it is a simplified
approximation used to facilitate the simulation. For a more realistic
simulation, qin(t) could be replaced by a numeric array obtained by
in-vivo experiments. q0 is closely related to stroke volume (SV) and
CO, as the integral of qin(t) within a cardiac cycle gives SV.
Multiplied by heart rate and we can obtain CO.

qin t( ) �

q0 sin
πt

2αTs
( ) 0≤ t≤ αTs( )

q0 cos
πt

4αTs
t − αTs( )( ) αT< t≤Ts( )

0 Ts < t≤T( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

C1(t) oscillates in a wide range for subjects with elastic blood
vessels (Hallock and Benson, 1937). Langewouters et al. proposed a
model to describe the cross-sectional compliance of the aorta, which
used three independent parameters (Langewouters et al., 1984). In
this study, we used volume compliance. C1(t) is modified by adding a
unit length l, as shown in Equation 3.

C1 t( ) � Aml

πP1 1 + pc t( ) − P0( )/P1( )2[ ]
(3)

Am is the maximum cross-sectional area of the aorta, and P0 is
the transmural pressure when compliance reached its maximum. P1
represents the steepness of the compliance rise. We chose two

representative sets of values from the published dataset and
illustrated the compliance-pressure relationship in Figure 2B.

Our ultimate goal is to estimate pp(t) and generate
corresponding PPG signals. By analyzing Eqs. 1–3, we found that
they could be combined to yield a differential equation with only one
unknown variable. The procedure is as follows:

(1) Combine Eqs 1a–1c and eliminate pc(t) and q(t). The
resulting equation has only two unknown variables C1(t) and
pp(t), as shown in Equation (4). All the other parameters were
assumed to be known.

d3pp t( )
dt3

+ 1
RC2

d2pp t( )
dt2

+ 1
LC1 t( ) +

1
LC2

( )
dpp t( )
dt

+ 1
LRC1 t( )C2

pp t( ) � 1
LC1 t( )C2

qin t( ) (4)

(2) Combining Equations (1a), (1c), we could obtain Equation
(5) by eliminating q(t). Then C1(t) in Equation (3) becomes an
expression that depends solely on variable pp(t), as shown in
Equation (6).

pc t( ) � d2pp t( )
dt2

+ 1
C2R

×
dpp t( )
dt

( )C2L + pp t( ) (5)

C1 t( ) � Aml

πP1 1 +
d2pp t( )
dt2 + 1

C2R
× dpp t( )

dt( )C2L + pp t( ) − P0[ ]
P1

⎛⎝ ⎞⎠
2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

(6)

(3) By replacing C1(t) in Equation (4) with the expression in
Equation (6), the resulting differential equation has only one
unknown variable pp(t), which could be solved with the Runge-
Kutta (4,5) formula (ODE45) in Matlab 2021b.

(4) When pp(t) is obtained, PPG could be subsequently calculated
by using the P-V relationship (Millasseau et al., 2000). For this
study, we conducted simulations with a time resolution of 0.01 s.
Although a higher resolution could potentially handle more
complex qin(t) profiles, a step size of 0.01 s is sufficient given that
we primarily employed an analytical description of qin(t).

Although the modified WK4 model provided realistic PPG
waveforms, caution should be taken to interpret the simulation
results. Firstly, the original WK4 model was proposed to explain the
formation of peripheral BP waveforms at different frequencies
(Nicolaas Westerhof and Noble, 2010). The hemodynamic
parameters must be constant to yield a reasonable impedance
explanation. In this study, we let the compliance be time-
dependent, which is physiologically sound, but the simulation
results should not be used to modify the characteristic
impedance. Secondly, the simulated PPG waveforms may deviate
from in-vivo measurements due to the oversimplified qin(t) and
cardiovascular system. This modified time-dependent WK4 model
is used to qualitatively explore the stochastic patterns of PPG, which
must be verified using experimental data. Thirdly, WK4 is an open-
loopmodel, which assumes that qin(t) is known and does not depend
on cardiovascular feedback. For a more realistic model, the influence
on qin(t) should be considered to form a more complex closed-loop
model. As a result, the change in blood flow can have much longer
impact than an open-loop model.
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Considering the complexity of the topic, we have chosen to
commence our study with simpler models before gradually
advancing to more intricate and realistic ones. By initially
employing an open-loop model, we were able to establish a
preliminary dynamic relationship between PPG and BP. This
approach not only facilitates easier comprehension but also
enhances safety during the research process.

To sum up, the in silico simulation provided guidance, while
experimental data must be used to refine the details.

2.2 Experimental data

To generate realistic simulation data, we used some of the
experimentally measured data as the model input. For example,
we used 45 different C1 profiles from Langewouters et al
(Langewouters et al., 1984). Multi-modal continuous vital
recordings are from a publicly available database by Charles
Carlson et al. (Carlson et al., 2020), which consists of short PPG-
BP measurements from 40 healthy subjects. The original study
involving human participants was reviewed and approved by the
Kansas State University Institutional Review Board (protocol
number 9386, approved 5 July 2019). Informed consent was
obtained from all subjects involved in the study. The more
popular Medical Information Mart for Intensive Care (MIMIC)
database is not used due to its lack of PPG amplitude information
(Johnson et al., 2016).

The subjects took a supine position and each measurement
lasted for around 5 min. Finger PPGwas acquired using a GE patient
monitor (Datex CardioCap 5). Continuous brachial BP waveforms
and stroke volume (SV) were derived from Finometer PRO
(Finapres Medical Systems). The raw data were resampled to
100 Hz and lowpass filtered with a cut-off frequency of 10 Hz.
For temporal pattern calculation, data with sufficient length is
required. We used a window of 20 s and moved one cardiac
cycle each time to increase the sample size. A total of
17,476 measurements were obtained from 40 subjects. The
subjects’ demographics are listed in Table 1.

The hemodynamic status of each measurement is estimated to
help understand the underlying physiological mechanism. N
Stergiopulos et al. found that C1 and R could be accurately
estimated by the Windkessel model (Stergiopulos et al., 1994;
Nicolaas Westerhof and Noble, 2010). In this study, we used a
similar approach to estimate C1 and R (Xing et al., 2021), except that
C1 had to be chosen from the 45 published profiles, as in Equation
(3) (Langewouters et al., 1984). We performed individual test on
each subject and each C1 profile using the time-dependent
Windkessel models, taking into account the variability of BP
within the cardiac cycle. For each pair, we adjusted R, L, and C2

to minimize the discrepancy between the simulated and measured
BP waveforms. On a per-subject basis, the C1 profile that exhibited

the best match (as indicated by the lowest root mean square error,
RMSE) to the measured BP waveform was selected. Alternative
approaches were used to ensure the validity of hemodynamic
estimation. For example, R is also estimated by calculating the
ratio of the mean arterial pressure (MAP) and CO (Nicolaas
Westerhof and Noble, 2010). C1 is also estimated by calculating
the ratio of the peak-to-peak PPG amplitude and the pulse pressure
(PP) of BP (Allen andMurray, 1999). We found that theWindkessel
model derived C1 and R linearly correlated with the alternative
methods in this dataset. If different models yielded considerably
different estimations, we discard the corresponding samples.

2.3 Pulse stimuli and the corresponding PPG
responses

Real hemodynamic stimuli are complicated, as shown in Figures
3A,E. However, they could be decomposed into continuous pulse
simulations with different timescales, which may help to understand
the physiological mechanism. We designed pulse in silico
simulations with long and short durations to investigate the
corresponding PPG responses, as shown in Figures 3B,F. Firstly,
a simulation with a 20% q0 increase that lasted a single cardiac cycle
was built, hereby referred to as SV stimuli. It is the easiest to model,
understand and quantify. Then very short stimuli with a 10%
increase of qin(t) that lasted for 0.01s was simulated, hereby
referred to as “mini” stimuli.

For the in silico SV stimuli simulation, cardiovascular systems
with different C1 and R were used. Two indices were proposed to
describe the recovery time from a single stimulus, as shown in
Figure 3C. Half width (HW) is defined as the width at 50% of the
peak response, which measures the recovery time for a single
stimulus. Longer HW may lead to overlaps of responses and
complex signal fractal structures. The height of the overshoot
(OS) is associated with the maximum magnitude of BP or PPG
fluctuations. The PPG distortions are defined as the difference
between PPG signals with and without stimuli, as illustrated in
Figures 3D,H. “Mini” stimuli caused similar but much smaller
amplitude responses (~10−3 of the response from SV stimuli),
which were more pronounced in the derivatives of the PPG signal.

To gain a thorough understanding of the time-dependent PPG
responses to stimuli, we used all the 45 C1 profiles from the
published dataset (Langewouters et al., 1984) and varied the
peripheral resistance from 0.7 to 1.3 mmHg s/ml, with a step size
of 0.2 mmHg s/ml. Three CO levels were tested at 4.25L/min, 5.1 L/
min, and 5.95 L/min. Simulations with SBP higher than 220 mmHg
or lower than 80 mmHg were discarded, since these out-of-range
SBPs did not match our experimental data and may potentially
deviate from the simplified model.

The result from SV stimuli simulations could be extrapolated to
more complicated situations. For example, qin contour irregularity

TABLE 1 Subjects’ demographics.

Number of subjects Age (years) Height (cm) Weight (kg) BMI (kg/m2) Sex (M/F) SBP (mmHg) DBP (mmHg)

40 34 ± 15 171 ± 11 76 ± 18 26 ± 5.7 17/23 120 ± 14 69 ± 13

*SBP: systolic BP; DBP: diastolic BP.
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could also be decomposed into an infinite number of “mini” stimuli
(Nicolaas Westerhof and Noble, 2010), similar to Figures 3E,F.
These “mini” stimuli mainly influence the C1 trajectory during a
cardiac cycle and lead to small phase shifts, as in Figures 3G,H. We
assumed PPG responses to “mini” stimuli were similar to SV stimuli,
but at a smaller scale.

2.4 Continuous stimulation and
experimental validation

2.4.1 Continuous stimulation: Random stimuli
In a real-life application, the cardiovascular system constantly

adjusts CO, heart rate (HR), C1, R, and qin contour depending on the
metabolic need and hemodynamic feedback from the entire body. In
addition, autocorrelation patterns can also be observed in the
fluctuations of SV and R, as depicted in Supplementary Figures
S1, S2, which may lead to longer cardiovascular responses. The
accumulated PPG responses may form long- and short-term
temporal patterns. For simplicity, we chose CO and R
perturbation to study longer-term complexities, and assumed qin-
caused short-term complexities have similar behavior. To isolate the
origin of complexity, random stimuli were used. Peripheral BP
signals (pp(t)) were generated by the modified WK4 model, and
PPG is translated from BP by personalized pressure-volume
translations. Each simulation contained 20 cardiac cycles.

To build a more realistic simulation, the hemodynamic status of
the 40 healthy subjects was estimated and used as simulation inputs.
The mean CO and R of each subject were used as baselines, and
random perturbations were added. We used a white noise randomly
chosen from −5% to 5% of the baseline, with a mean of 0 and

standard deviation of 2.83%. To increase sample sizes, CO and R
baselines were also shifted by ±10%. An example simulation is
shown in Figure 4. This test is to investigate the possibility of
forming complexity patterns just from “passive” hemodynamic
responses.

In real-life scenarios, stimuli like SV and R may exhibit
autocorrelation owing to cardiovascular auto-regulation, as
demonstrated in Supplementary Figures S1, S2. The experimental
BP and PPG complexity measures exhibit combined impact of the
stimuli and vascular response.

2.4.2 Experimental validation: Distributionmap and
contribution evaluation

For experimental validation, complexity measures such as
HFD and ACF were calculated for each 20s sampling window,
and their correlation with hemodynamic status is used to
investigate the agreement between model prediction and
experimental data. For practical usage, three-dimensional
maps of complexity measures and their gradients were
generated for experimental data.

Furthermore, to assess the influence of temporal patterns to BP
under stable and unstable cardiac conditions, we calculated the
Pearson correlation coefficient (PCC) of each temporal feature and
BP. Additionally, we employed Bayesian neural network to evaluate
their collective nonlinear contributions, as explained in Section 2.7.
Comparisons were made with commonly-used single-site
morphological features, as defined in Table 2 and documented in
Supplementary Figure S3 (Elgendi, 2012). Biometric input was not
permitted to prevent information leakage. In order to maintain
consistency with temporal features, we performed a median
averaging of the morphological features, resulting in one reading

FIGURE 3
(A)Continuous qin fluctuationwith SV variation. (B)Definition of an SV pulse stimulus that lasted a cardiac cycle. (C) The simulated PPG response and
definition of half width (HW) and overshoot (OS). Simulation parameters were set as follows: Am = 3.5 cm2, P0 = 50.4 mmHg, P1 = 42.3 mmHg, T = 0.8 s,
α = 1/3, Ts = 0.35 s, CO = 5.95 L/min, C2 = 0.1 mL/mmHg, R = 1.4 mmHg s/ml, L = 0.03 mmHg s2/ml. (D) The SV pulse-induced PPG changes. (E) qin
fluctuation within a cardiac cycle. (F) Definition of a “mini” pulse stimulus that lasted for 0.01 s. (G) The simulated PPG response to a “mini” pulse. (H)
The “mini” pulse induced PPG changes.
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per 20-s epoch. This approach enables us to simultaneously evaluate
the contributions from both morphological and temporal features.
By considering these aspects together, we gain a comprehensive
understanding of the characteristics under analysis.

2.5 Complexity measures

We also introduced two main categories of parameters to
describe the dynamic patterns: autocorrelation and fractal
dimension. Autocorrelation Function (ACF) measures the
correlation between data points in a time series and their
preceding data points (Box et al., 2015; Tunnicliffe Wilson
et al., 2015). It provides insights into the translation
invariance of the signal across different delay times (τ). A
commonly used measure derived from the ACF is known as
ACFHW, representing the time when the ACF reaches 0.5, as
depicted in Figure 5A.

Fractal dimension analysis is highly sensitive in uncovering
hidden information within physiological time series (Higuchi,
1988; Kesić and Spasić, 2016a; Rubega et al., 2020). Most fractal
measures require a long recording time of the signals (~hours),

which may not be suitable for BP estimation (Baumert et al.,
2005). Since BP fluctuations occur on a shorter timescale
(minutes), HFD proves to be a favorable choice for capturing
the complexity and dynamic patterns in the data.

In this study, we used the HFD of PPG waveforms (HFDwave),
baseline (HFDDC), and pulsatile amplitude (HFDAC) to measure
complexity at different timescales. PPG signals could be simplified as
time sequences x(1), x(2),. . ., x(N). x is sampled at 100 Hz for
HFDwave, as a short-timescale fractal measure proposed by
Cymberknop et al. (Cymberknop et al., 2011). HFDDC and
HFDAC are calculated when x is sampled per cardiac cycle,
representing longer timescale complexity (Colovini et al., 2019).
From the starting time, a new self-similar time series is used to
calculate curve length Lm(k), as in Equation 7. N is the length of the
original time series x, m is the initial time and k is the time interval.
int[N−m

k ] is the integer part of the real number N−m
k . In this study,

kmax is set to 5.

Lm k( ) � 1
k
[( ∑

int N−m
k[ ]

i�1
x m + ik( ) − x m + i − 1( )k( )| |) N − 1

int N−m
k[ ]k

; k

� 1, 2, . . . , kmax

(7)
Lm(k) is averaged for all m. The mean value of the curve length

L(k) is defined as

L k( ) � 1
k
∑k

m�1Lm k( ) (8)

The ln(L(k)) and ln(1/k) relationship for DC and AC is
sometimes nonlinear, as shown in Figures 5B,C. The fitting
parameters contain rich information about hemodynamics. To
describe the relationship between ln(L) and ln(1/k), a cubic fitting
is employed, resulting in the following expression: ln(L) =
a0+a1ln(1/k) +a2ln(1/k)

2 + a3ln(1/k)
3. Notably, the higher-

order fitting coefficients (a1-3) demonstrated fractal property
of the “active” stimuli at longer timescales, as demonstrated in
Supplementary Figure S4. In this study, our focus is on examining
the accumulation of “passive” responses, resulting in the usage of
the intercept(a0) as HFDAC or HFDDC. It is important to note that
a0 is more closely related to stochastic signal fluctuation, while a1

FIGURE 4
(A, B) RandomCO and R stimuli using baseline hemodynamic status from subject X1047. (C) Simulated peripheral BP. (D) PPG signals were obtained
from personalized P-V translations.

TABLE 2 Definition of selected morphological features.

Features Definition

AC The pulsating amplitude of PPG

DC Mean of PPG baseline

Area The area under the normalized PPG waveform

Notch
index (NI)

Notch index. The waveform value at the dicrotic notch over the
systolic peak

SPMEAN Mean upstroke slope during the systolic period

SPVAR Variation of upstroke slope (standard deviation) during the
systolic period

DPMEAN Mean downstroke slope during the diastolic period

DPVAR Variation of downstroke slope (standard deviation) during the
diastolic period
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represents the traditional definition of fractal dimensions.
Conversely, we found that the linear slope of HFDwave had
enhanced robustness and correlated with the individual’s
hemodynamic status. Therefore, the linear slope (a1) is used as
the HFDwave in our study.

2.6 Robustness of temporal patterns and
their sensitivity to BP

Typically, fractal dimensions are calculated using longer
signals (Baumert et al., 2005; Kesić and Spasić, 2016b). In our
study, we chose 20 s to be the window size. It is necessary to
evaluate the uncertainty of complexity measure calculation in
this specific application. To address this, we undertook two
approaches.

Firstly, we simulated a change in the coupling between the
sensor and skin by multiplying the experimental PPG amplitudes by
factors of 120% and 80%, respectively. We then recorded and
analyzed the resulting variations in complexity measures. This
evaluation allowed us to assess the sensitivity of the chosen
measures to changes in the skin-sensor coupling coefficient.

Secondly, we estimated the error in slope(a1) and intercept(a0)
estimation caused by cubic fitting of ln(L) versus ln(1/k) using
experimental data. The errors were calculated by using variance-
covariance matrix for the fitted coefficients (Seber, 1989). This
analysis provided us with insights into the potential estimation
errors caused by the fitting process.

As the goal of our study is to estimate the contribution of
temporal patterns to blood pressure (BP) estimation, we evaluated
their sensitivity to BP using the partial derivative ∂f/∂h. Here, f
represents the chosen complexity measure, and h can be underlying
hemodynamic parameters such as SV, R and C1. Measurements were
divided into low and high CO variations according to their beat-to-
beat CO fluctuations (|∂CO/∂t|). The threshold is set to be the
median of the CO variations.

2.7 Enhancing BP estimation performance
with temporal features

To evaluate the impact of temporal complexities on BP, we
constructed a straightforward Bayesian neural network(BNN)
(Kesić and Spasić, 2016b). Morphological and temporal features,
including HRV, were tested as standalone features and feature
combinations. The resulting BNN performance may help
understand the non-linear side of the relative contribution.

The BNN consisted of a single layer with 15 neurons. To address
any imbalances in the input data and improve overall BP estimation
performance, we utilized the EasyEnsemble technique (Liu, 2009).
This technique effectively balances the data, leading to improved
estimation accuracy. To ensure robust testing and training, we
implemented a leave-one-subject-out procedure, allowing us to
separate the training and testing data. In terms of the testing
data, they were fitted and then calibrated using the first 10 data
points. We assessed the MAP and PP under high and low CO
fluctuation situations. Median absolute errors (MAE) and Pearson’s
correlation coefficient (r) are used as indicators of accuracy and
correlation. These evaluation measures provide valuable insights
into the effectiveness of the BP estimation algorithm and its ability to
accurately predict BP values.

Please be noted that this neural network structure or feature
combination may not be the optimal for real-life deployment.
The purpose is to showcase the added value of temporal
features.

3 Results

This section presents the analysis of the in silico simulation
results, which were further examined and verified using
experimental data. The distributions of HFD and ACF are
visualized, allowing for a thorough estimation of their respective
contributions to BP. Additionally, comparisons with morphological

FIGURE 5
(A) ACF of three experimental measurements as examples. M1-3 refers to measurements 1–3. ACFHW refers to the time lag taken to reach 0.5. (B, C)
ln(L) versus ln(1/k). The intercept of the cubic fitting is used for HFDDC and HFDAC calculation. (D) ln(L) versus ln(1/k) for HFDwave calculation.

Frontiers in Physiology frontiersin.org08

Xing et al. 10.3389/fphys.2023.1187561

148

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1187561


features under both stable and unstable cardiac conditions were
conducted to provide further insights.

3.1 Pulse simulation

Since C1(t) changes rapidly during a cardiac cycle, to simplify the
illustration, C1(t) is averaged and binned to suppress C1-profile-
related fluctuations. To ensure a consistent comparison of
amplitudes, a generalized transfer function was used to convert
BP to PPG (Millasseau et al., 2000). We found that at a given
peripheral resistance, PPG with higher C1 had a longer HW or
slower recovery time after perturbation, as shown in Figures 6A–C.
Lower peripheral resistance reduces the recovery time and narrows
the HW differences for different C1. Smaller CO leads to longer
recovery time and lower overshoot, which is probably due to lower
BP and hysteresis. Generally speaking, subjects with stiffer blood
vessels, lower peripheral resistance, and high CO had a more
instantaneous response to stimuli. Subjects with very elastic
blood vessels, high peripheral resistance, or low CO have
prolonged responses, which may lead to complex overlap patterns.

The overshoot of PPG caused by the pulse stimulus is higher for
subjects with lowerC1 and highCO, as shown in Figures 6D–F. SinceC1

becomes smaller with age (Brandfonbrener et al., 1955; Van Bortel and
Spek, 1998), older subjects with hypertension are more likely to have
high fluctuation of BP during the day, which is consistent with previous

publications (Chobanian et al., 2003; Force et al., 2021; Guirguis-Blake
et al., 2021).

Similar patterns exist for “mini” pulse simulations, except that
PPG responses are much smaller. Pulse simulation with other
hemodynamic conditions might be extrapolated from existing
results. Another notable point is that all the possible hemodynamic
combinations were used as long as the resulting BP is in the desired
range. Experimental data showed overall higher C1 since the
participants were young and healthy.

3.2 Continuous simulation

Continuous simulation showed that temporal patterns could be
generated by random stimuli, as in Figures 7A–D. Experimental results
are similar but not the same as the simulation prediction, due to the
autocorrelation patterns of stimuli, perturbation strength, and noise.

We used HFDDC and ACFHW to demonstrate the PPG temporal
responses to continuous stimuli. HFDDC showed a significantly positive
correlation with R. Steiger’s z-test showed no statistical difference
between the HFDDC-R slopes of the simulation and experiments.
Experimental data had overall more negative ∂HFDDC/∂CO slope
compared to the simulation, but the slope is not smooth with locally
positive gradients in the 6–8L/min subregion. The correlation between
HFDDC and C1 is non-significant in both simulation and
experimental data.

FIGURE 6
PPG recovery parameters versus hemodynamic status at different CO. (A–C) Half width (HW) of PPG response (D–F)Overshoot of PPG amplitude.
The unit for R is “mmHg.s/ml”. The simulation data is presented as “mean ± SD” to accommodate the variations attributed to different C2 and L. Here, SD
refers to the standard deviation of the data in each bin.
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For random stimuli, ACFHW significantly and positively
correlated with R and SV. Experimental data had significantly
more positive ∂ACFHW/∂R and ∂ACFHW/∂SV slopes. We used
SV instead of CO, because the correlation between ACFHW and CO
is positive but much weaker. Since the timescale of ACFHW is small
(~0.1s), the inherent ACF dynamics likely correlate more with SV
than CO. The correlation between ACFHW and C1 changed with R in
simulation, while experimental data showed a consistent negative
correlation with C1. The difference is probably caused by qin-
irregularity-induced phase lags. The minimum experimental
ACFHW (~0.08s) is lower than the simulated ACFHW (~0.1s),
probably due to the deviation from WK4 models caused by
structural heterogeneity. The comparative analysis of the average
slopes between temporal features and hemodynamics can be found
in Supplementary Table S1. To enhance the quality of regression, a
robust fitting approach was employed.

The relationship between HFDAC, HFDwave, and
hemodynamics is shown in Supplementary Figure S5. For both
simulation and experimental data, HFDAC negatively correlated
with R and positively correlated with CO. Experimental analysis
showed similar trends with weaker C1 reliance. Experimental
HFDwave showed stratified but mixed correlations with C1. The
correlation between HFDwave and CO or R is also nonlinear,
while simulations with random stimuli per heartbeat showed no
corresponding trends. This result agreed with our hypothesis that
HFD at a much shorter timescale (~0.01s) may be caused by qin
irregularity and buildup of “mini” stimuli. Due to the high
computational cost of adding random qin irregularity and the
difficulty of obtaining clinical qin measurements, we think this
explanation is plausible, but could not confirm this hypothesis at
this stage.

3.3 Robustness of temporal patterns and
their multi-dimensional mapping

To investigate the practical usage of temporal patterns in BP
estimation, we tested their robustness to scaling factors. Three-
dimensional distribution and sensitivity maps were generated,
so that machine learning algorithms could use them as
references.

3.3.1 Sensitivity to PPG amplitude
The experimental PPG amplitudes were multiplied by 120% and

80% respectively to mimic the changed coupling between the sensor
and skin. All the complexity measures are robust to PPG scaling
factors, as shown in Figure 8. HFDwave is the most influenced by the
scaling factors. But the magnitude (5%) is still much smaller than the
disturbances (±20%).

3.3.2 Influence of data segment length
The intercept(a0) of HFD calculation reveals a small relative

uncertainty even with a signal length of 20 s. However, the
uncertainty of the slope(a1) is more influenced by the signal
length, showing stabilization around 100 s. It is worth noting that
the intercept and slope of the ln(L) versus ln(1/k) values can fluctuate
by 50% and 200% respectively, during a 5-min measurement. Thus,
the uncertainty of the HFD calculation remains relatively small.

In this study, our primary focus is on the accumulation of
delayed cardiovascular response to stimuli, which is more related to
the intercept of the HFD calculation. Supplementary Figure S4
demonstrates that the higher-order fitting coefficients of ln(L)
versus ln(1/k) exhibit a strong correlation with the corresponding
fractal dimensions of stroke volume (SV) only when signal lengths

FIGURE 7
Comparison of continuous PPG simulation and experimental results. (A–D) Random stimuli caused complexities and their dependence on
hemodynamic status. (E–H)Measured complexities and their dependence on hemodynamic status. The simulation and experimental data are binned and
presented as “mean ± SD”.
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reach 100 s or longer. Hence, it is crucial that future studies, which
incorporate a closed-loop model and consider CO or SV
complexities, utilize longer signal lengths to ensure accurate and
reliable calculations. This would enable a more comprehensive
understanding of the relationship between the higher-order
coefficients, fractal dimensions, and physiological parameters.

3.3.3 Distribution of complexity measures and their
sensitivity to hemodynamics

Experimental data were used to generate a three-dimensional map
of complexity measures based on CO, R, and C1, as shown in Figure 9.
To ascertain the sensitivity of complexity measures to hemodynamic
changes, the partial differentiation technique was employed while
controlling the effects of the remaining variables. Although the
presence of autocorrelation in stimuli, perturbation strength, and
noise may cause non-smooth sensitivities, their distribution and
differentiability still provide valuable information for analysis.

Knowing the underlying hemodynamic properties of the subject
would help build more robust and accurate BP estimation
algorithms. Self-similarity and stochastic patterns could encode
the hemodynamics-related information in PPG temporal series,
which may help stabilize BP estimation and improve the overall
performance.

3.4 Contribution to BP: Linear correlation

As shown in Figure 10, temporal complexity features are less
influenced by CO fluctuation, and some even had increased
correlation at high CO variation. Most morphological features
had a significantly decreased or small correlation with MAP at
high CO variation. A simple multiple linear regression algorithm
was built with these features. The PCC of estimated MAP and PP
with reference is shown in Figures 10C,D. BP estimation
performance is not affected if morphological features and
temporal features are combined, while the morphology-only
algorithm has a significantly worse MAP estimation performance
at higher CO fluctuations.

3.5 Evaluation of nonlinear correlations
with BP

Nonlinearity exists in the PPG-BP relationship. To further
investigate the impact of different features on BP estimation
performance, a BNN algorithm was employed, as described in
Section 2.6. Notably, the combination of morphological features,
HRV, and complexity measures such as HFD and ACF exhibited
the highest correlation with the reference for BP prediction,
although it did not yield the lowest MAE. Upon closer

FIGURE 8
Scaling factor-induced HFD and ACF changes (mean ± SD).

FIGURE 9
Experimental temporal complexity measure distributions and their sensitivity to CO, R, and C1. The size of the bubble represented the relative
number ofmeasurements. The color represented the complexity measure or gradient value. (A–D)HFDDC distribution and its sensitivity to hemodynamic
parameters. ∂HFDDC/∂CO is locally positive in the 6–8 L/min subregion. (E–H) ACFHW distribution and its sensitivity to hemodynamic parameters.
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examination, it was found that the inclusion of complexity
measures introduced more outliers compared to the
morphology only method, as shown in Supplementary Figure
S6, S7. This finding can be attributed to the inherent uncertainties
associated with HFD calculations, which should be carefully
considered. To address this issue, implementing a thorough
outlier removal or quality check procedure would prove
beneficial.

The addition of HRV played a significant role in scenarios with
high CO fluctuations. However, it was observed that the
incorporation of HRV negatively impacts BP estimation
performance when CO fluctuations are low. These findings
underscore the importance of considering the specific context
and characteristics of the dataset when selecting and combining
features for BP estimation. Table 3 Table 4.

4 Discussion

4.1 Novelty of the study

Single-site PPG-based BP estimation has raised a lot of interest
in both academia and the industrial world. Previous studies showed
that PPGmorphological information may not be enough to estimate
BP, but the dynamic process is too complex to build a precise model.
Machine learning algorithms such as LSTM produced better results.
But it is difficult to know the exact mechanism.

In this study, we designed a novel in silico simulation to provide
insight into the hemodynamic process. Pulse simulations showed
that CO, R, and C1 are the main determinants of prolonged PPG
fluctuations. Continuous simulation with random stimuli confirmed
that the buildup of prolonged vascular responses could generate
certain stochastic patterns, which had a strong dependence on
hemodynamics. Experimental data agreed well with the
prediction. Real-life stimuli could have different levels of
autocorrelation and perturbation strengths. The multi-scales and

nonlinearity of complexity should be utilized to capture the
hemodynamics-related information.

In addition to providing more information about
hemodynamics, HFD, and ACF features are more robust. For
repetitive measurement, the coupling coefficient of skin and
sensor, and the sensor location difference may cause large
errors in PPG amplitude measurement. Complexity patterns
are less sensitive to PPG amplitude, which may help stabilize
BP estimation. At unstable conditions when CO variation is
higher, more and more information go into temporal
complexity features. The contribution of morphological
features to BP significantly decreased. BP estimation
algorithms could only have the same performance when
temporal features were added, showing the inherent
information flow when cardiac stability changes.

4.2 Comparison with previous studies

Very few studies have used explicit stochastic temporal features
to estimate BP (Hosanee et al., 2020). Colovini, T. et al. reported that
HFD of the continuous DBP recordings had a significantly positive
correlation with average DBP in hypertensive patients (Colovini
et al., 2019). Cymberknop et al. found that HFD of arterial pressure
morphology decreased with increasing blood flow, which correlated

FIGURE 10
(A, B) The correlation of PPG features and BP (MAP and PP). “*” indicated a significant difference between groups. Temporal features are in the
shaded area. (C, D) Correlation of BP (MAP and PP) estimation and reference with complexity features only, morphology features only, and combined
features. “*” indicated a significant difference between low and high CO variation.

TABLE 3 Uncertainty of HFD calculation caused by length selection.

HFD of DC HFD of AC

Intercept(a0) Slope (a1) Intercept(a0) Slope (a1)

20 0.60% 20.0% 0.42% 27.0%

60 0.31% 9.6% 0.23% 13.5%

100 0.27% 8.0% 0.19% 10.8%
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with arterial stiffness (Cymberknop et al., 2011). Gomes, R. et al.
reported acutely decreased HFD of heart rate after exercise (Gomes
et al., 2017). The fractal dimension of signals as short as
50 heartbeats is useful (Peña et al., 2009). To our knowledge,
ACF has not been studied as a contributing factor to BP
estimation. Although HRV is a well-studied dynamic feature, its
impact on BP improvement primarily relates to the assessment of
neurological activity (Mejía-Mejía et al., 2020a; Mejía-Mejía et al.,
2020b; Mejía-Mejía et al., 2022), representing the "active” stimuli
and not encompassing all aspects of the dynamic process.

In our study, we gave explicit disclosure about the temporal PPG
patterns and their potential physiological meanings. Their relative
contribution to BP depended on hemodynamic properties. By
mapping the distribution of temporal complexity features, the
application scope could be defined.

4.3 Limitations of the study

The database we used contained 40 healthy subjects. Most of
them were young and healthy. The same procedure should be tested
in datasets with wider coverage of subjects. Human beings are not
perfect stochastic systems, and the approximation of HFD and ACF
calculations may not be accurate enough. Although sex is unlikely to
influence PPG-BP correlation, its role in cardiovascular health
deserves to be explored further with PPG technology. Finally, we
used estimated blood vessel compliance and peripheral resistance to
generate the complexity feature distribution map. Validation from
medical ultrasound and total peripheral resistance (TPR)
measurements should be necessary.

We proposed a plausible explanation of the stochastic patterns
in the PPG signal. The simulation results agreed with experimental
observations and previous publications. However, the exact origin
should be explored further, and the cardiovascular modeling should
be more detailed to account for the closed-loop interaction, vascular
tree structure, flow distribution, cardiac activity variation, etc.

4.4 Suggestions for future work

Temporal complexities contain rich information about
hemodynamics. Our study only showed a fraction of its potential
due to limited space. Previous studies mostly used HFD of BP
instead of PPG signals. The impact of P-V translation and

measurement location on the HFD of PPG should be fully
investigated. For example, simulating PPG signals in peripheral areas
versus within the arterial network may yield distinct results due to
variations in the volume of arterial blood within the tissues. It would be
intriguing to extend the application of the time-dependent model to
incorporate multi-site PPG measurements, allowing for a more
comprehensive investigation. We have shown that the nonlinearity
of ln(L) and ln(1/k) relationship contained stimuli information. The
role of other fitting coefficients should be thoroughly investigated. The
incorporation of these coefficients will further improve the BP
estimation accuracy. We found a significant contribution of
HFDwave to BP. However, its correlation with hemodynamic
parameters is nonlinear. Collection of clinical qin and corresponding
simulations should be done to elucidate its influence on HFDwave.

It is possible that we only found one source of temporal PPG
complexity. A more detailed simulation including cardiovascular
tree structure should be carried out to confirm the origin of the
fractal pattern. In addition to SV or CO variations, the influence of
breathing should be taken into account, considering its impact on
the parasympathetic and sympathetic nervous systems.
Furthermore, conducting simulations with different patterns of
HRV may provide valuable insights. By using a larger dataset
and employing finer grids, more accurate and comprehensive
heatmaps of temporal features in relation to BP can be
generated. Incorporating these adjustments and considerations
will contribute to a more holistic understanding of the intricate
relationship between PPG and BP.

We employed a simple BNN to estimate BP, which, although
explicit, may not yield optimal performance. Moving forward, it is
crucial for future studies to consider the temporal properties of the
algorithm and fine-tune parameters in alignment with the specific
context, such as stimuli strength, hemodynamic status, and
physiological constrains related to temporal interactions. These
refinements will contribute to enhancing the performance and
accuracy of BP estimation algorithms.

Although we obtained decent BP estimation performance from
single-site PPG alone, it is important to note that relying solely on
single-site PPG or a simple combination of PPG and ECG may not
provide sufficient information for reliable BP estimations (Mieloszyk
et al., 2022;Mukkamala et al., 2023). Therefore, adopting amulti-modal
approach that integrates multiple sensing modalities is crucial to
enhance the reliability of the algorithm. This entails extracting
valuable information from each modality and evaluating their
respective contributions. By improving data integration and analysis

TABLE 4 Calibrated BP estimation by BNN.

High CO fluctuation Low CO fluctuation

MAP PP MAP PP

Correlation coefficient (r) M 0.50 0.61 0.58 0.66

M + HRV 0.62 0.66 0.42 0.57

M + HRV + complexity 0.65 0.71 0.61 0.74

MAE (mmHg) M 4.47 6.78 4.23 6.82

M + HRV 5.12 8.08 5.18 8.38

M + HRV + complexity 4.97 7.45 4.61 7.51
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across various physiological measurements, we can achieve more
accurate and robust BP estimation outcomes.

5 Conclusion

Signal fluctuation is not merely a nuisance but also valuable
information. In this study, we have demonstrated that the
temporal complexity patterns of PPG are correlated with
hemodynamic status and make a substantial contribution to
BP estimation, particularly in the presence of high CO
variations. The integration of these temporal complexity
features has the potential to enhance the accuracy and
interpretability of single-site PPG-based BP estimation
methods, thereby facilitating the development of more
advanced algorithms in the future.
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Introduction:Apilot studyassessinganovel approach to identify patientswithSystemic
Sclerosis (SSc) using deep learning analysis of multi-site photoplethysmography (PPG)
waveforms (“DL-PPG”).

Methods: PPG recordings having baseline, unilateral arm pressure cuff occlusion and
reactive hyperaemia flush phases from 6 body sites were studied in 51 Controls and
20 SSc patients. RGB scalogram images were obtained from the PPG, using the
continuous wavelet transform (CWT). 2 different pre-trained convolutional neural
networks (CNNs, namely, GoogLeNet and EfficientNetB0) were trained to classify
the SSc and Control groups, evaluating their performance using 10-fold stratified cross
validation (CV). Their classification performance (i.e., accuracy, sensitivity, and
specificity, with 95% confidence intervals) was also compared to traditional machine
learning (ML), i.e., Linear Discriminant Analysis (LDA) and K-Nearest Neighbour (KNN).

Results: On a participant basis DL-PPG accuracy, sensitivity and specificity for
GoogLeNet were 83.1 (72.3–90.9), 75.0 (50.9–91.3) and 86.3 (73.7–94.3)%
respectively, and for EfficientNetB0 were 87.3 (77.2–94.0), 80.0 (56.3–94.3) and
90.1 (78.6–96.7)%. The corresponding results for ML classification using LDA were
66.2 (53.9–77.0), 65.0 (40.8–84.6) and 66.7 (52.1–79.2)% respectively, and for KNN
were 76.1 (64.5–85.4), 40.0 (19.1–63.9), and 90.2 (78.6–96.7)% respectively.

Discussion: This study shows the potential of DL-PPG classification using CNNs to
detect SSc. EfficientNetB0 gave an overall improved performance compared to
GoogLeNet, with both CNNs performing better than the traditional ML methods
tested. Our automatic AI approach, using transfer learning, could offer significant
benefits for SSc diagnostics in a variety of clinical settings where low-cost portable
and easy-to-use diagnostics can be beneficial.

KEYWORDS

deep learning, machine learning, photoplethysmography, pulse, Raynaud’s, scleroderma,
systemic sclerosis

1 Introduction

1.1 Background

Systemic Sclerosis (SSc, aka Scleroderma) is a complex, rare, connective tissue disease
(CTD) involving the collagen, major organs, the blood vessels and the immune system
(van den Hoogen et al., 2013; Di Battista et al., 2021), in which extensive fibrosis and vascular
alterations take place. It has significant morbidity and mortality (van den Hoogen et al., 2013),
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and in the UK an estimated prevalence of 307 per million (95%
CI: 290–323), with the highest occurrence in the 70–84 years age
group (Royle et al., 2018). SSc (the two most common variants
are limited cutaneous variant (lcSSc), and diffuse cutaneous
(dcSSc)) is often associated with Raynaud’s phenomenon
(RP), a condition in which recurrent, reversible vasospasm of
the digital small arteries, arterioles, pre-capillary and post-
capillary venules occurs on exposure to cold or emotional
stress (Hughes and Herrick, 2016; Silva et al., 2016). RP is
common and in the UK is reported to affect up to 10 million
people (SRUK, 2023). About 1 in 16 women and 1 in 50 men with
Raynaud’s develop SSc, usually between the ages of 25 and 55
(NHSinform, 2023; Haque, 2020; Belch, 2017). It is usually sub-
categorised into: a) Primary RP (PRP) when no underlying cause
condition is known (idiopathic); b) Secondary RP when RP is
linked to an underlying disease such as SSc or dermatomyositis
or to the intake of certain drugs. Secondary RP is typically seen
in approximately 90%–96% of patents with SSc and often
precedes the development of SSc by an average time of
10.4 years (Spencer-Green, 1998; Pauling et al., 2019).
Clinical specialists differentiate secondary RP from PRP by
checking for symptoms associated with secondary RP such as
the age at onset (secondary RP is usually after 30 years of age),
detecting abnormal immunology e.g., certain autoantibodies,
observing nailfold capillaries, ulceration of digits, checking
for fibrosis in the lungs or other organs, and skin thickening
which is the hallmark of SSc. However, diagnosing SSc is not
always easy as its symptoms resemble other conditions such as
PRP and early symptoms of diseases such as systemic lupus
erythematous (where 10% and 45% of patients show Raynaud’s
phenomenon). Early detection and management of the disease is
a must, to improve the morbidity and mortality in patients
(Walker et al., 2007). This in turn requires a multi-disciplinary
and collaborative effort involving clinical specialists and testing.
It can take more than one visit to an expert Rheumatology
specialist to diagnose the disease, especially in the early stages.
Identification of internal organ involvement and its severity is
also important.

1.2 Current methods of SSc diagnosis

These involve extensive and costly testing for autoantibodies and
markers of organ involvement. Sometimes, it is difficult to
distinguish between SSc and non-SSc cases as patients have
overlap conditions. Nailfold capillaroscopy (NFC) is another key
technique used to help diagnose SSc. NFC is a non-invasive, optical
imaging technique (Allen and Howell, 2014; Eriksson et al., 2014)
that is used by an expert operator to visually inspect the
microcirculation in the nailfold capillaries of the distal papillae
and hence assess pathological/morphological changes associated
with SSc such as capillary “dilatation”, distribution and density
(for “drop-out”), bushing (for “angiogenesis”) and
microhaemorrhage (extravasation). Tests such as NFC, however,
are usually currently performed in specialist hospitals and are not at
all readily available to all patients.

There is huge scope to look for alternative, low-cost technologies
to assess SSc. Photoplethysmography (PPG) is one such technique,

which is non-invasive and optically assesses the circulation. The
working principle of a PPG-based system uses a suitable light
source such as infrared or near-infrared light to study the heart-
synchronous changes in blood volume in the microvascular bed
of tissues such as skin (Allen, 2007; Elgendi, 2012; Kyriacou and
Allen, 2021). Additional key advantages of PPG are its
portability and its versatility to be used in a range of settings
such as measurement labs as well as ambulatory assessments
(wearable sensors, Charlton et al., 2023). PPG is currently widely
used in different clinical applications (Johnson et al., 2020)
including for pulse oxygen saturation measurement (SpO2)
(Ma et al., 2018), cardiovascular health (heart rate, blood
pressure, blood vessel and arterial stiffness) monitoring
(Castaneda et al., 2018), and for studying hypertension (Liang
et al., 2018).

1.3 Recent works

The potential of PPG for detecting patients with SSc has already
been explored using conventional optical pulse wave analysis
techniques but the literature here appears to be limited to date.
The largest SSc PPG study reported to date is by Rosato et al. (2010)
with 105 SSc (compared to 96 PRP and 85 healthy controls) using a
Termoflow type PPG instrument. The authors found that the mean
amplitude of the PPG sphygmic wave was significantly lower in the
PRP group than in the SSc group (mean ± standard deviation = 11 ±
10, given in arbitrary units (a.u.) vs. 24 ± 24 a.u. for SSc). The mean
amplitude was also significantly lower in SSc than in HC (56 ±
19 a.u. for HC). A further study by Rosato et al. (2011) using bilateral
PPG measurements found a homogeneous pattern (meaning
uniformity of morphology and amplitude of sphygmic PPG wave
across all 10 fingers) for 95% of the HCs and 93% of the PRPs but
was only 28% for the SSc group. McKay et al. (2014) investigated
multi-site PPG in 19 SSc, 19 PRP and 23HC by studying measures of
arterial, endothelial and peripheral autonomic dysfunction under a
dynamic 3 phase testing protocol. The authors found that measures
attributed to endothelial function were significantly impaired in SSc
(p < 0.02), but with no difference between the HCs and PRPs. The
authors reported that the Receiver Operating Characteristic (ROC)
based classification accuracy was 81% (sensitivity 90%, specificity
74%) for separating SSc from HCs, and 82% (sensitivity 84%,
specificity 79%) for separating SSc from PRPs. Mamontov et al.
(2020) employed imaging PPG (iPPG) and studied 19 SSc and
21 HC participants (with age- and sex-matched balanced classes)
and from the pulse arrival time (PAT) showed a significant increase
in its variability in SSc patients as compared to HCs (52 ± 47 ms vs.
24 ± 13 ms, p = 0.01). These earlier works show the potential of PPG
as a tool to help investigate SSc but such approaches from the
literature have relied on extracting a range of pulse features based on
domain knowledge, and then performing specific feature selection to
try and improve classification performance. To the authors’ best
knowledge, there are no papers on contact type PPG measurements
using analysis based on deep learning (DL) for the assessment of SSc
patients. The aim of this pilot study was to utilise DL in a novel way
by applying it to automatically identify the presence (or absence) of
SSc from multi-site PPG measurements collected under a dynamic
3-phase test protocol.
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2 Materials and methods

2.1 Study participants

Consecutive patients were approached by specific autoimmune
connective tissue disease rheumatologists or the connective tissue
disease nurse specialist from the Rheumatology outpatient
population attending Freeman Hospital, Newcastle upon Tyne.
The SSc participants were each diagnosed by an expert
consultant Rheumatologist at Freeman Hospital, using the 1980
American College of Rheumatology (ACR) preliminary criteria for
the classification of systemic sclerosis (Subcommittee for
Scleroderma Criteria, 1980). PRP patients were diagnosed by the
same clinical team, as having vasospastic symptoms for >2 years,
with routine practice assessments and no other underlying medical
or mechanical cause. SSc and PRP participants were recruited from
the Rheumatology outpatient clinic at Freeman Hospital, Newcastle
upon Tyne. Healthy Control (HC) participants were recruited from
volunteers - largely from the University of the Third Age (U3A,
Wearside Branch), and from staff and students of Newcastle
Hospitals and Newcastle University. The HC participants had no
known underlying health condition (e.g., diabetes mellitus and
hypertension). For each patient a range of clinical and
demographic data were collected for the study, including
participants’ pertinent medical history, and the tests done in the
hospital to assess and diagnose SSc patients. All participants were
permitted to continue their regular medication, including
vasodilator treatment, at the time of their recruitment and
informed consent was taken. Ethics approval for the original
study data collection was granted by the National Research
Ethics Service (NRES) Committee Northeast (County Durham
and Tees Valley 1 REC, 07/H0905/72 2008). Ethics permission
for re-analysis of the anonymised PPG waveform data for Sadaf
Iqbal’s PhD studentship project was obtained from Newcastle
University (Reference 7273/2018, with an extension to the study
17138/2021).

2.2 Multi-site PPG measurements and pre-
processing

The PPG data set measurements were originally collected by Dr
Neil McKay, Rheumatologist, between 2009 and 2011 at Freeman
Hospital’s microvascular research facility, with 3-phase
measurement protocol developed and physiological measurement
training supported by expert PPG operator JA. Participants were
firstly asked to lay comfortably in a symmetrical supine position for
a period of at least 15 min whilst acclimatising in a warm
normothermic temperature-controlled (23°C ± 1°C) clinical
measurement room. Multi-site PPG waveforms were then
collected simultaneously for 20 min from 6 symmetrical, body
sites namely: right and left earlobes, index finger pads and great
toe pads respectively, using optically and electronically matched
amplifiers (bandwidth 0.5–20 Hz) and captured to computer at a
sampling frequency (Fs) of 2000 Hz. The 3 phases of measurement
were: subject resting supine (10 min, Baseline phase); an arm
pressure cuff inflated at 300 mmHg to stop the arterial blood
flow into the left arm (for 5 min, Occlusion phase); then at

15 min the cuff pressure was quickly but carefully released, and
the degree of reactive hyperaemia monitored for a further 5 min
(Flush phase). Figure 1 shows examples of 3-phase PPG beat-to-beat
amplitude data for the left finger measurement site of a Control
participant and a SSc participant.

For this study involving advanced analysis of the data, a visual
analysis of the PPG data was carried out by operator SI to check for
the presence of unexpected artifacts (such as that caused by
unreliable PPG probe skin contact or when a study did not
follow protocol) or a distorted flush response was evident. Some
of the 92 participants originally entered into the study had to be
excluded: original PPG data collected using too high a manual gain
setting causing a high flush which saturated i.e., electronically
clipping and making unusable a PPG trace for the left study arm
(N = 3); participants not following the 20-min protocol (N = 7). In
total, PPG and ECG data from a total of 20 SSc, 22 PRP and 29 HC
participants were included and analysed using the techniques
described in the next section. Figure 2 shows a participant
flowchart summary for the included and excluded subjects in our
pilot study.

Healthy controls and patient controls (i.e., PRP) participants
were combined in a single control group as they both belong to
clinical class of non-life-threatening conditions as opposed to SSc
group which needs clinical attention and early identification and
management. Also, noting here that although pulse amplitudes can
be different between the groups and from the same subject if tested
on different days, the literature suggests that PPG pulse measures are
similar across the two groups. The study by Rosato et al. (2011) had
shown that PPG shows a homogeneous pattern, i.e., a uniformity in
morphology as well as amplitude of PPG sphygmic waves across the
fingers, in 95% of the healthy control subjects and 93% of the PRP
patients as opposed to this being present in only 28% of the SSc
patients. McKay et al. (2014) also had found no differences between
healthy controls and PRP for the case of dynamic physiological
testing i.e., the derived PPG median flush response slope and flush
response value.

In this study a PPG signal was pre-processed with only a
normalisation stage, with each of the 6 PPG signals divided by
their respective PPG amplifier channel gain setting. There was no
additional signal filtering performed by the computer.

2.3 Deep learning classification

This data analysis was carried out on a 64-bit Windows 10 and
14 Core PC fitted with a single NVIDIA GeForce RTX 2080 Ti GPU
card which used MATLAB software. Here, the PPG time series was
converted into scalogram images for the study subjects using
continuous wavelet transform (CWT). Scalograms give a time-
frequency (T-F) image representing the percentage of signal
energy contained in different frequency bands (Gandhi et al.,
2014), with the x-axis representing time and y-axis representing
frequency and a signal varying in colour intensity over the T-F plane.

Each PPG channel’s gain normalised time series was divided
into consecutive 30 s non-overlapping windows and for each 1D
time window, a 2D scalogram image along with its label was then
generated using continuous wavelet transform (CWT)methods. The
Morse mother wavelet was used in CWT as this type of analytic
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wavelet is very useful to analyse signals with time-varying amplitude
and frequency (PPG here) (Wachowiak et al., 2018) and Voices per
Octave was selected as 12 to keep the computational complexity
low (Wachowiak et al., 2018). The 30 s period for plotting
scalograms was selected based on initial exploratory scalogram
plotting to select meaningful T-F resolution and hence extract
meaningful features from the scalogram images. Noting that with

the uncertainty principle, the greater length of time window
means that frequency resolution is higher but time resolution
is lower, and vice versa. Hence, for the data under consideration a
30 s epoch provided a reasonable trade-off between the time and
frequency resolutions. Figure 3 shows a 30 s sample scalogram
with frequencies ranging from 0–20 Hz (noting each PPG was
already bandpass filtered in this range using analogue electronics

FIGURE 1
Example 3-phase PPG Amp data recordings for a Control (black line) and for a SSc participant (Blue line) showing beat-to-beat amplitude changes
for the left finger site, with 0–600 s = Baseline phase, 600–900 s = Occlusion phase, and 600–1200 s = Flush phase.

FIGURE 2
Participant flowchart showing included and reasons for the excluded subjects.
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during physiological data acquisition). The scalogram was
calculated using Eqs 1, 2 below:

S � coef .*coef| |where coef are the CWTcoef f icients over a timewindow

(1)
Scalogram � 100 × S( )/ ∑ S( ) (2)

In the first stage, the results were calculated using the number of
images that were classified into SSc versus Control (‘image-based
performance’). Two pretrained convolutional neural networks
(CNN) from MATLAB were used (GoogLeNet (Szegedy et al.,
2015) and EfficientNetB0 (Tan et al., 2019)) to learn the PPG
T-F features and then perform the classification. These networks
have already been previously trained on millions of high-resolution
images from the ImageNet database (Krizhevsky et al., 2017).
GoogLeNet (structure comprising 144 layers) was the winner of
2014 ImageNet competition and had least number of parameters
(~6.9 million) as compared to other pretrained models available in
MATLAB at the time of study. EfficientNetB0 (290 layers) which
was introduced in 2019 (parameters ~5.3 million) represents a
newer generation of CNNs, based on ResNet design, and had
been designed to work better and faster than the hitherto
available CNNs (Tan and Le, 2019), giving 2 key types of CNN
to implement and explore respective performances. Figure 4 shows
the basic building blocks for these two types of CNN network.
Figures 5, 6 respectively show the network architectures of
GoogLeNet (Szegedy et al., 2015) and EfficientNetB0 (Tan et al.,
2019; Tan and Le, 2019).

For the PPG dataset, 16,188 labelled scalogram images were
generated for the 71 participants covering all 6 PPG sites,
i.e., channels of the multi-site PPG system. The scalogram images

were rescaled to 224 × 224 × 3 size to match input dimensions of
GoogLeNet and EfficientNetB0 using a standard MATLAB function
“imresize” which applies a simple scale transformation to the original
image using bicubic interpolation which is a standard algorithm used
in image resizing (Hashemi et al., 2015). Data were divided into
10 mini batches (batch size 1620 images) to reduce computational
time. The learning rate was 0.005. Optimisation utilised the stochastic
gradient descent method (Tian et al., 2023) as this is computationally
faster and can converge quicker than other optimisation algorithms.
The loss function usedwas cross-entropy loss. Ten-fold stratified cross
validation was carried out on 71 participants wherein 9/10 of the
participants’ images were used in training and 1mutually exclusive (1/
10 of the participants’ images) were used for its testing, this process
was repeated 10 times. The image wise combined confusion matrix
obtained after 10-fold CV was used to calculate measures of
classification performance. The two networks train on the input
training data and adapt their weights, to learn the features of the
data. The approximate training time in any fold of training was about
240–300 min. The approximate testing time for any test fold was
between 20–30 min.

The SSc versus Control classification was performed based on
number of images and this is called as image-based classification
throughout. A post-processing step was also applied which
calculated the number of images classified in each category per
each individual test participant, to provide SSc versus Control
classification based on number of participants. In this case, the
majority class of images in each test participant was considered as
the class of the output label. This was compared against the ground
truth label (i.e., SSc diagnosis) which was clinically determined
beforehand. The steps and methodology of the DL analysis are
summarised in the block diagram in Figure 7.

FIGURE 3
An example 30 s scalogram from aControl subject. Themagnitude of the scalogram is shown in the colour bar to the right of the image. The brighter
colours represent higher signal energy at a particular frequency.
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FIGURE 4
BasicbuildingblocksofGoogLeNet andEfficientNetB0are shown indiagrams (A,B), respectively. The small nodes represent a layer each specifiedby its name.

FIGURE 5
The architecture of GoogLeNet. Conv, convolution; Norm, normalization; MaxPool, maximum pooling. The inception modules repeat but filter
depth is different in different modules (Szegedy et al., 2015).
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2.4 Comparator ML method using wavelet
time-frequency classification

This is a comparator ML method using the discrete wavelet
transform (DWT) to compare with the performance of the T-F
based DL classification. DWT method has advantages over other
T-F methods such as CWT such in being computationally faster and
the ability to analyse the input signal into desired constituent
frequency bands. The same participant-wise partitions of the
training/test data sets were used as for the DL classification work
to allow a fair inter-comparison between methods.

Ten-level DWT decomposition (Mohamed and Deriche, 2014) was
carried out per channel PPG using Daubechies 4 (db4) mother wavelet
thereby producing 10 levels of detailed coefficients (d1, d2, . . .. . .. , d10)
and approximate coefficients (shortened as ap in this work) for each
channel. The mother wavelet db4 was chosen as it matches the shape of
the PPG pulse more than any other wavelet, and hence is the best choice
to calculate the wavelet transform of the signal. Since the PPGs had
already been bandpass filtered (i.e., 0.5–20 Hz) at data acquisition then
only the detailed coefficients containing these relevant frequencies
namely, d6 (frequency range 15.63–31.25 Hz), d7 (7.81–15.63 Hz),
d8 (3.91–7.81 Hz), d9 (1.95–3.91 Hz), d10 (0.98–1.95 Hz) and ap
(0.49–0.98 Hz) were selected for further analysis. To make the
computational complexity less and thus the algorithm faster,
4 features were extracted from each of the 6 frequency bands for

each channel, thereby giving 6*6*4 = 144 features per participant.
PPG features extracted were Energy, Entropy, Mean absolute value
and Skewness, as defined in Eqs 3–5.

Energy: Energy of the PPG DWT coefficients is calculated as the
sum of the squares of all the sampled amplitudes for a single channel
and is defined by Eq. 3:

Energy � ∑N

i�0x
2
i (3)

Where xi, the ith data instance and N are the total number of
sample values.

Entropy: Entropy describes the irregularity, complexity, or
unpredictability characteristics of a signal. In this work entropy
was used as a feature to quantify the irregularity of the PPG time
series and hence Shannon entropy was calculated as given by Eq. 4:

Entropy � ∑N

i�1 xi p log2 1/xi( ){ } (4)

Mean absolute value: The absolute value of the average of each
channel within the data matrix.

Skewness: Skewness can be used as a measure to describe the
asymmetry around the mean of the data sample. If the value of skewness
is less than zero, the data hasmore spread around the left-hand side of the
mean, if greater than zero, it is more towards the right-hand side of the
mean and if equals to zero, the data can be considered as symmetrically
distributed. For a dataset, skewness can be described by Eq. 5:

FIGURE 6
Architecture of EfficientNetB0. Eachblock representedbydifferent colours ismadeupof different layers. The basic block of EfficientNetB0 is an inverted
mobile bottleneck (MBConv) and its structure is shown in diagram (A) and the structure of squeeze and excitation (SE) block is shown in diagram (B)
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Skewness � E xi − μ( )3

σ3
(5)

Where µ is the mean of x, σ is the standard deviation of x, and E(t)
represents the expected value of the quantity t.

The extracted features were then fed into the linear discriminant
analysis (LDA) and into the K-Nearest Neighbour (KNN, set at K =
9) analysis to classify SSc versus Control.

2.5 Statistical analysis

Demographic data were expressed using mean (±standard
deviation, SD) values. Since the subjects are grouped into 2 distinct
SSc and Control classes with each group having independent and
different participants, hence unpaired Student’s t-test was used to

study themean values of SSc and Control groups. A p-value <0.05 was
the level of statistical significance. A crosshair plot illustrating a meta-
analysis overview of classifier performance (test sensitivity versus False
Positive Rate i.e., 1-specificity) was produced using the mada
command from R (RStudio version 1.4.1106).

3 Results

Table 1 overviews the demographic details for the study
participants. Clearly, there were more females than males in the
study (18 out of 20 in the SSc group and 45 of 51 in the Control
group), but with no significant difference between the groups (p =
0.83). Noting, this is representative as SSc is more prevalent in
females than males (van den Hoogen et al., 2013). There was a
significant but modest difference for age (p = 0.007) with SSc [62

FIGURE 7
Block diagram of the steps and methodology for the DL analysis.
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(18) years] older than Controls [50 (11) years] overall. There was a
marginally higher BMI for the SSc patient group [26.4 (4.1) kg/m2]
compared to Controls [23.9 (3.9) kg/m2 (p = 0.020). There was no
significant difference found for SBP (p = 0.712) and borderline
significance for the DBP (p = 0.050) between the groups.

The key diagnostic test related results (in %) and the respective
95% CI ranges for image based and participant based SSc versus
Control classification analyses are summarised in Tables 2–5. For
image-based classification the diagnostic test accuracy for
GoogLeNet was 83.2 (95% CI range 82.6–83.8) %, sensitivity 73.7
(72.4–74.9) and specificity 86.9 (86.3–87.6). Performance was
improved for EfficientNetB0 with 88.4 (87.8–88.8) %, 80.4
(79.2–81.5) and 91.5 (90.9–91.9), respectively. For participant-
based classification the diagnostic test accuracy for GoogLeNet
was 83.1 (72.3–90.9) %, sensitivity 75.0 (50.9–91.3) and
specificity 86.3 (73.7–94.3), and once again the performance was
improved for EfficientNetB0 with 87.3 (77.2–94.0) %, 80.0
(56.3–94.3), and 90.1 (78.6–96.7), respectively.

DL was also compared against traditional ML T-F wavelet
classification using the KNN and LDA classifiers. The results of
the T-F ML analysis in terms of diagnostic test accuracy, sensitivity
and specificity are shown in Table 6. Using the LDA classifier the
diagnostic test accuracy obtained for subject based classification was
66.2 (53.9–77.0) %, sensitivity 65.0 (40.8–84.6) % and specificity 66.7
(52.1–79.2) %. Using the KNN classifier the diagnostic test accuracy

obtained for subject based classification was 76.1 (64.5–85.4) %,
sensitivity 40.0 (19.1–63.9) and specificity 90.2 (78.6–96.7) %. The
95% CI range for accuracy, sensitivity and specificity for participant-
based classification in DL was 72.3%–94.0%, 50.9%–94.3% and
73.7%–96.7% respectively, whereas the corresponding
performance range for the ML experiment was 53.9%–85.4%,
19.1%–84.6%, and 52.1%–96.7% respectively.

4 Discussion

This pilot study has shown that AI analysis, i.e., using 2 different
types of deep learning classifier, can differentiate between the PPG
recordings from Controls and SSc on a participant-basis and give
approximate test accuracies of 83% (for GoogLeNet, released circa
2014) and 87% (for EfficientNetB0, released circa 2019). Figure 8
shows crosshair plot showing the comparison of performance of the
four classifiers used. The overall test performance of
EfficientNetB0 is marginally better overall than GoogLeNet but
both CNNs were clearly better than the conventional ML
classification approaches (i.e., LDA and KNN, accuracies were
only 66% and 76%, respectively).

Previous published research studies on SSc diagnostics using
PPG data, particularly Rosato et al. (2010), Rosato et al. (2011),
McKay et al. (2014) and Mamontov et al. (2020), had each relied on
statistical and manual analysis approaches to differentiate between

TABLE 1 Demographic details of the study participants.

Key demographics, with mean (SD values)

Mean ± SD Sex Age
(years)

BMI
(kg/m2)

SBP
(mmHg)

DBP
(mmHg)

Immunology: Specific SSc
autoantibodies

HC 23F, 6M 47 (18) 24.1 (3.8) 135 (21) 84 (6) All presumed negative

PRP 22F, 0M 54 (16) 23.7 (4.0) 138 (16) 84 (7) All negative

All Controls (HC + PRP) 45F, 6M 50 (18) 23.9 (3.9) 136 (19) 84 (7) All negative

SSc 18F, 2M 62 (11) 26.4 (4.1) 134 (24) 80 (9) 10 positive

p-value between SSc and
Control

Proportion of males between the
classes, p = 0.83

0.007 0.020 0.712 0.050

SD, standard deviation; BMI, bodymass index, D/SBP, diastolic/systolic blood pressure, M =male, F = female. Note: the bold numbers in p values represent statistically significant levels between

Controls and SSc.

TABLE 2 Combined confusion matrix obtained in this analysis for number of
image-based classification for GoogLeNet and EfficientNetB0 CNNs.

Number of images classified

GoogLeNet SSc Controls True class

SSc 3359 (TP) 1201 (FN)

Controls 1517 (FP) 10,111 (TN)

Predicted class

EfficientNetB0 SSc 3666 894 True class

Controls 989 10,639

Predicted class

TP, true positive; TN, true negative; FP, false positive; FN, false negative.

TABLE 3 Combined confusion matrix of participant-based classification for
GoogLeNet and EfficientNetB0 CNNs.

Numbers of participants classified

GoogLeNet Number of participants SSc Controls True class

SSc 15 5

Controls 7 44

Predicted class

EfficientNetB0 SSc 16 4 True class

Controls 5 46

Predicted class
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subject groups. Manual analysis limits the ability of these techniques
to be implemented in practical clinical test settings and for larger
datasets. To the best of the authors’ knowledge (literature search
made to January 2023), there are no studies on contact-based PPG
measurements for the study of SSc using DL analytics. In our work
we also aimed to fill in the gaps found in the earlier SSc PPG
literature. SSc is also a growing area of interest using deep learning
and skin histology type imaging, for example, the recent pilot study
by Akay et al., 2021.

Advantages with our measurement and analysis approach:
This DL-PPG proof-of-concept study presents a straightforward and
effective method using deep learning as compared to conventional
ML and statistical analysis approaches of differentiating between
subject groups. The transfer learning ability of CNNs previously
trained on thousands to millions of non-medical images allows
quicker retraining on the disease specific dataset, thereby saving
time and computational cost. DL eliminates the need to collect an
ECG signal to give a cardiac timing reference as in conventional
analysis of the PPG features on a beat-by-beat basis. CNNs can learn
hundreds of features automatically from the data, thereby
eliminating the need to extract key PPG features by domain experts.

Two different CNN architectures, namely, GoogLeNet and
EfficientNetB0, have been employed in this research as they both
have been trained on the same ImageNet database (Krizhevsky et al.,

2017) and have same input dimension of 224 × 224 × 3. However,
the 2 structures are different with GoogLeNet having 144 layers and
approximately 6.9 million parameters (Tan and Le, 2019) and
EfficientNetB0 having 290 layers but a smaller number
(i.e., ~5.3 million) parameters. The initial layers of a CNN learn
low level features from the input images such as edges whilst the
deeper level layers learn advanced features of input images such as
constituent parts (LeCun et al., 2015). The CNN acts as a classifier
too and the last layer namely, the output layer contains as many
output nodes as the number of classes of data fed into the network.
In this work, the 71 participants were first partitioned into 10-folds
using stratified CV, wherein 9 folds of subjects are used for training
the network and the remaining 1-fold of subjects were used for its
testing. The participant-based division we employed ensured that
the data from same subject does not fall into training and testing
simultaneously which could have led to testing the same type of
images as in training and hence falsely exaggerated the performance.

In this work, first T-F image-based classification of SSc from
Controls was carried out. This was done because the PPG recordings
were converted into a series of images and the classifiers trained
using these. Then using post-processing, the classification was
performed using the participants classified into SSc and Control
classes, which is clinically and practically the desired case. Figure 6
shows that more recent CNN EfficientNetB0 has higher sensitivity

TABLE 4 Performance of image-based classification and participant-based classification for GoogLeNet in terms of diagnostic test accuracy, sensitivity and
specificity (95% CI range estimates shown).

GoogLeNet CNN model diagnostic test performance (%) along with their 95% CI ranges

Image-based Participant-based

Accuracy (%) 83.2 (82.6–83.8) 83.1 (72.3–90.9)

Sensitivity (%) 73.7 (72.4–74.9) 75.0 (50.9–91.3)

Specificity (%) 86.9 (86.3–87.6) 86.3 (73.7–94.3)

TABLE 5 Performance of image-based classification and participant-based classification for EfficientNetB0 in terms of diagnostic test accuracy, sensitivity and
specificity (95% CI range estimates shown).

EfficientNetB0 CNN model diagnostic test performance (%) along with their 95% CI ranges

Image-based Participant-based

Accuracy (%) 88.4 (87.8–88.8) 87.3 (77.2–94.0)

Sensitivity (%) 80.4 (79.2–81.5) 80.0 (56.3–94.3)

Specificity (%) 91.5 (90.9–91.9) 90.1 (78.6–96.7)

TABLE 6 Performance of LDA and KNN comparator machine learning classifiers on a participant-basis in terms of diagnostic test accuracy, sensitivity and specificity
(95% CI range estimates shown).

Machine learning (ML) model diagnostic test performance (%) along with their 95% CI ranges for participant-based classification

LDA KNN

Accuracy (%) 66.2 (53.9–77.0) 76.1 (64.5–85.4)

Sensitivity (%) 65.0 (40.8–84.6) 40.0 (19.1–63.9)

Specificity (%) 66.7 (52.1–79.2) 90.2 (78.6–96.7)
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and specificity and hence produced a better classification
performance as compared to GoogLeNet. This could be due to
EfficientNetB0 having more layers than other CNN GoogLeNet and
hence learning more features from the input data, whilst computing
faster (Tan et al., 2019). Future studies could investigate the effects of
changing the network parameters to study effects on classification
performance. It also shows that both DL architectures, namely,
GoogLeNet and EfficientNetBo, can give higher performance in
terms of sensitivity and specificity as compared to ML classifiers
namely, LDA and KNN. This is because both types of CNN extract
several hundreds of features from inputs thereby learning the
inherent details of the data, as compared to tens of features
chosen manually for the traditional ML classification techniques.

Another point to mention is the good sensitivities (in percent for
participant based) of DL architectures namely, GoogLeNet having
75.0 (95% CI 50.9–91.3) % and EfficientNetB0 having 80.0
(56.3–94.3) %. These could be considered better than for the
specific antibody blood tests performance summarised in Table 7
since only 10 of the 20 (50%) SSc participants were positive for either
the ACA or Scl-70 autoantibodies. It is noted that there is now easier
access to extended scleroderma autoantibody panels but at the time
of the original PPG data collection only 2 antibody tests were
available (ACA and Scl70). High accuracy is of course very
important to help make this PPG-based SSc classification
technique clinically relevant. Clinically because of the morbidity
and mortality involved in SSc, it is particularly important to identify
all such patients and therefore the sensitivity of the test should be

high. Specificity should also be high as falsely labelling a person who
has not got the disease could lead to unnecessary further testing
(inefficient use of time and resources) as well as likely significant
anxiety for the patient. The ultimate gold standard of diagnosing SSc
remains the expertise of the clinicians but this work shows the
potential of DL-based classification using PPG to help screen SSc
patients in the future. In future this study could be carried out on a
bigger dataset comprising a greater number of SSc and control
participants to further validate our initial findings. The pilot work
also helps in the design of advanced analysis sub-systems of PPG
technology for SSc diagnostics.

Limitations and Future Work: In this pilot study there were
20 SSc and 51 Control participants analysed and thus had a degree of
imbalance between the classes. The groups were not fully-age-
matched either although the age difference here could be
considered modest in terms of vascular ageing. Future wider
studies, involving more patients should explore the impact of
matching across age, BMI and blood pressure. Our study was
sufficient though to show the capability of the DL-PPG approach
as well as highlight its opportunities and challenges. Stratified cross
validation had been used to ensure equal division of minority class
cross the different training folds. In this work the patient control
PRP participants have been grouped with HC to form the combined
Control class because of the clinical relevance of finding life
threatening disease cases against the non-life-threatening control
cases. The sensitivity or accuracy of classification had also not been
maximised. Future studies will address these limitations to study the

FIGURE 8
Crosshair plot giving a comparison of classifier performance using test sensitivity versus false positive rate (i.e., 1-specificity) for SSc versus Control
on a participant basis. In this representation a sensitivity of 1 = 100% and similarly for the false positive rate.
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effect on classification performance by including a balanced study
population and with greater SSc participant numbers. Noting
though that SSc is a rare disease and it is not straightforward to
recruit patients and collect very large data sets except perhaps across
multiple clinical centres specialising in the condition. (Mitchell,
2006; Fagerland, 2012; Goodfellow et al., 2016; Allen et al., 2020;
Huthart et al., 2020; Dong et al., 2021; Kyriacou and Allen, 2021;
Phillips, 2022; Iqbal, 2023).

5 Summary

We have demonstrated in this first proof-of-concept study that
GoogLeNet and EfficientNetB0 DL-PPG analytics can detect SSc with
an accuracy of 83.1 (95% CIs 72.3–90.9) % and 87.3 (77.2–94.0) % for
participant-based classification, respectively. The results from our
novel DL-PPG classification technique appear better than for
conventional ML methods. The DL-PPG sensitivity (75.0% and
80.0% for GoogLeNet and EfficientNetB0, respectively) is clearly
better than for the standard immunological biomarkers for SSc
available at the time our original PPG data collection for the
research. DL-PPG has shown promise and should be developed
further to become an accessible test for the benefit of patients with
Systemic Sclerosis as well as for those with Raynaud’s.
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TABLE 7 Clinical summary for the 20 SSc participants included in the study.

1 Disease subtype, number (% out of total participants) 11 diffuse cutaneous SSc (55%) 9 limited cutaneous SSc (45%)

2 Disease phase, n (%) Early: 5 (25%)

Intermediate/late: 13 (65%), 2 missing data

3 SSc specific autoantibodies, n (%) Scl70 positive 4 (20%)

ACA positive 6 (30%)

4 MRSS for the 17 sites (maximum possible score 51)

Median (IQR) 4 (11)

Range (1–33)

5 Finger digital ulcers, n (%) 6 (30%)

6 Ulcers (foot), n (%) 3 (15%)

7 Capillaroscopy abnormal, n (%) 9 (45%)

8 Thermography abnormal, n (%) 7 (35%)

9 Patients with CRP >5 mg/L, n (%) 4 (20%)

10 SHAQ, mean (range) 9 (2–22)

ACA, anticentromere antibody; MRSS, modified rodnan skin score; IQR, interquartile range, CRP = C-Reactive Protein, SHAQ, Scleroderma Health Assessment Questionnaire.
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Introduction and Objectives: Advanced analysis of the morphological features of
the photoplethysmographic (PPG) waveform may provide greater understanding
of mechanisms of action of photobiomodulation (PBM). Photobiomodulation is a
non-ionizing, red to near-infrared irradiation shown to induce peripheral
vasodilatation, promote wound healing, and reduce pain. Using laser Doppler
flowmetry combined with thermal imaging we found previously in a clinical study
that PBM stimulates microcirculatory blood flow and that baseline palm skin
temperature determines, at least in part, why some individuals respond favorably
to PBMwhile others do not. “Responders” (n = 12) had a skin temperature range of
33°C–37.5°C, while “non-responders” (n = 8) had “cold” or “hot” skin temperature
(<33°C or >37.5°C respectively). The continuous PPG signals recorded from the
index fingers of both hands in the original clinical study were subjected to
advanced post-acquisitional analysis in the current study, aiming to identify
morphological features that may improve the accuracy of discrimination
between potential responders and non-responders to PBM.

Methods: The PPG signals were detrended by subtracting the lower envelope
from the raw signal. The Root Mean Square (RMS) and Entropy features were
extracted as were two additional morphological features -- Smoothness and
number of local extrema per PPG beat (#Extrema). These describe the signal
jaggedness and were developed specifically for this study. The Wilcoxon test was
used for paired comparisons. Correlations were determined by the Spearman
correlation test (rs).

Results: The PPG waveforms of responders to PBM had increased amplitude and
decreased jaggedness (Baseline vs. 10’ post-irradiation: Entropy, 5.0 ± 1.3 vs. 3.9 ±
1.1, p = 0.012; #Extrema, 4.0 ± 1.1 vs. 3.0 ± 1.6, p = 0.009; RMS, 1.6 ± 0.9 vs. 2.3 ±
1.2, p = 0.004; Smoothness, 0.10 ± 0.05 vs. 0.19 ± 0.16, p = 0.016). In addition,
unilateral irradiation resulted in a bilateral response, although the response of the

OPEN ACCESS

EDITED BY

John Allen,
Coventry University, United Kingdom

REVIEWED BY

Haipeng Liu,
Coventry University, United Kingdom
Shaoxiong Sun,
King’s College London, United Kingdom

*CORRESPONDENCE

Zehava Ovadia-Blechman,
zehava@afeka.ac.il

RECEIVED 27 February 2023
ACCEPTED 11 September 2023
PUBLISHED 25 September 2023

CITATION

Ovadia-Blechman Z, Hauptman Y,
Rabin N, Wiezman G, Hoffer O, Gertz SD,
Gavish B and Gavish L (2023),
Morphological features of the
photoplethysmographic signal: a new
approach to characterize the
microcirculatory response
to photobiomodulation.
Front. Physiol. 14:1175470.
doi: 10.3389/fphys.2023.1175470

COPYRIGHT

© 2023 Ovadia-Blechman, Hauptman,
Rabin, Wiezman, Hoffer, Gertz, Gavish
and Gavish. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 25 September 2023
DOI 10.3389/fphys.2023.1175470

171

https://www.frontiersin.org/articles/10.3389/fphys.2023.1175470/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1175470/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1175470/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1175470/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1175470/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1175470&domain=pdf&date_stamp=2023-09-25
mailto:zehava@afeka.ac.il
mailto:zehava@afeka.ac.il
https://doi.org/10.3389/fphys.2023.1175470
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1175470


contralateral, non-irradiated hand was shorter in duration and lower in magnitude.
Although subjects with ‘cold,’ or ‘hot,’ baseline skin temperature appeared to have
morphologically distinct PPG waveforms, representing vasoconstriction and
vasodilatation, these were not affected by PBM irradiation.

Conclusion: This pilot study indicates that post-acquisitional analysis of
morphological features of the PPG waveform provides new measures for the
exploration of microcirculation responsiveness to PBM.

KEYWORDS

photoplethysmography, waveform, photobiomodulation, low-level laser, entropy, signal
processing, peripheral microcirculation

1 Introduction

Photoplethysmography (PPG) is a non-invasive, inexpensive
optical technique that can detect relative changes in the quantity of
red blood cells (RBC) in the peripheral microcirculation (Allen, 2007;
Nitzan and Ovadia-Blechman, 2022). PPG is widely accepted for
monitoring pulsations associated with local blood volume changes
assuming a constant RBC concentration (Ovadia et al., 1995;
Kyriacou and Chatterjee, 2022). Previous studies have shown that
PPG can detect compensatory changes in local blood flow as well as
predict changes in systemic hemodynamic variables during a variety of
physiological and pathological conditions (Ovadia et al., 1995; Allen,
2007; Ovadia-Blechman et al., 2015a; Ovadia-Blechman et al., 2015b;
Ovadia-Blechman et al., 2017; Ovadia-Blechman et al., 2018; Ahmed
et al., 2022). Moreover, using PPG monitoring, changes in peripheral
blood supply following a unilateral clinical intervention can exert
significant contralateral effects, the characterization of which may be
further elucidated by advanced post-acquisitional analysis of the PPG
signals (Ahmed et al., 2022; Allen, 2022; Mejia-Mejia et al., 2022).

In recent years, advanced morphological analysis of the PPG
signal has contributed to a better understanding of the underlying
physiological mechanisms associated with various normal and
pathological conditions with particular effort seen in various
fields of cardiovascular medicine (Hickey et al., 2015;
Goshvarpour and Goshvarpour, 2020; Qawqzeh et al., 2020;
Vasyltsov and Lee, 2020; Ahmed et al., 2022; Allen, 2022; Mejia-
Mejia et al., 2022; Roy et al., 2022). Alterations in features such as
entropy, that reflects the level of signal disorder, allow for more
precise characterization of the morphology of the signals that may
improve clinical diagnosis (Wei et al., 2020; Hauptman et al., 2019).

Photobiomodulation (PBM) is a non-ionizing, red to near-
infrared optical irradiation that stimulates and/or stabilizes
mitochondrial membrane potential and ATP production, reduces
pro-inflammatory mediators, and increases cell proliferation
(Pastore et al., 1996; Gavish et al., 2004; Gavish et al., 2008;
Passarella and Karu, 2014; Hamblin, 2018; Gavish et al., 2021). It
is widely used clinically to reduce pain and accelerate wound healing
(Avci et al., 2013; Chow, 2016; Oyebode et al., 2021). PBM was
shown to stimulate vasodilatation and increase peripheral blood
flow (Schindl et al., 1998; Schindl et al., 2002; Samoilova et al., 2008a;
Samoilova et al., 2008b). This effect is based at least in part on the
upregulation by PBM of synthesis and secretion of nitric oxide (NO)
and modification of reactive oxygen species (Vladimirov et al., 2000;
Chen et al., 2008; Gavish et al., 2008; Chen et al., 2022; Keszler et al.,
2022). In a previous study using laser Doppler flowmetry and

thermal imaging, PBM was found to increase microvascular flow
(Gavish et al., 2020) and that those that did not respond were
found to have either ‘hot’ or ‘cold’ hand with skin temperature at
baseline being >37.5°C or <33°C respectively (Gavish et al., 2020).

The current pilot study involves advanced post-acquisitional
analysis of PPG signal recordings collected from the index fingers of
both hands in the previous study (Gavish et al., 2020). This post-
acquisitional study will interrogate previously validated as well as
novel morphological features of the PPG signal. Its purpose is to
identify morphological features of the PPG signal that may increase
the accuracy of prediction of those likely to respond favorably to
PBM treatment and those who may not respond and to quantify the
bilateral response using these features.

2 Methods

2.1 Study overview

This study is a subgroup analysis consisting of advanced post-
acquisitional processing of PPG signals collected previously (Gavish
et al., 2020), NCT03357523). The study analyses and compares PPG
recordings of responders and non-responders (NR) to PBM. The
criterion for dividing the participants into responders (n = 12) and
non-responders (n = 8) in the original study was an increase
of ≥0.5°C which is accepted as a deviation from the normal
symmetrical thermal distribution between sides of the body
extremities (Ammer, 2012; Garcia Becerra et al., 2022) and was
found to indicate underlying pathologies (Suominen and Asko-
Seljavaara, 1996; Selfe et al., 2008). In the original study (Gavish
et al., 2020), this criterion was used as a threshold for dynamic
changes in thermal response to PBM.

This created 3, non-overlapping subgroups according to baseline
skin temperature. “Responders” to PBM had a range of skin
temperature from 33°C to 37.5°C, while “non-responders” to
PBM had “cold” or “hot” skin temperature (<33°C or >37.5°C
respectively). The original study was approved by the Afeka
Institutional Ethics Review Board (05.04.2017-1-AFK), and all
participants signed an informed consent form prior to inclusion.

The study population included 20, healthy, adult, non-smoking
volunteers (10:10 males: females, 30 ± 8 years old) that were
randomized to receive either red or near infrared PBM
irradiation (633 nm, power density = 70 mW/cm2; total energy
per session 21 J/cm2; 830 nm, 55 mW/cm2; 16.5 J/cm2) using a
commercial light emitting diode (LED) cluster (Omnilux new-U,
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Photomedex United States). The LaserMate power-meter
(Coherent, Auburn group, Coherent-Europe, Utrecht, Holand)
was used to confirm the power density at the plane of irradiation.

Subjects were requested not to consume any beverages that
contained caffeine (coffee, tea, cola, etc.) or alcohol at least 3 h prior
to the session. The subjects sat relaxed in a quiet room with constant
temperature (25°C ± 1°C) for at least 15 min with exposed hands
before data collection. The LED cluster was positioned over the left
wrist and switched on for 5 min, while the right hand was protected
from the light.

The PPG optical reflective sensors (model SS4LA,
wavelength—860 nm) were placed on the index finger of both
hands using Velcro® strip (Biopac™ System Inc., Goleta, CA). Both
PPG and electrocardiographic (ECG) signals were monitored
continuously and sampled at 200 Hz using the Biopac™ software.
Skin temperature was measured in the center of the palm by an
infrared thermal imaging camera (emissivity = 0.98, Sensitivity =
50 mK) that was positioned above the hands (FLIR A35, FLIR
Systems Inc., OR, United States). The thermal camera calibration
has undergone factory calibration to be within the manufacturer’s

accuracy. Signals were collected before PBM irradiation and during
irradiation and continued for 20 min after the end of irradiation. The
signal processing was performed at the following time periods: half a
minute before the irradiation (baseline), the last 3 min of the irradiation,
and at follow-up–during 5–10 min, 10–15 min, and 15–20 min after
the end of irradiation.

2.2 Signal processing and feature extraction

In general, PPG signals have beats reflecting local blood volume
variations in response to the blood pressure fluctuations during the
cardiac cycle. PPG maximum and minimum reflect the systolic and
diastolic pressures respectively (Figure 1). The PPG beats are
superimposed on slower signal variations generated by other
dynamic processes, e.g., respiratory activity (“lower envelope” in
Figure 1). In addition, the PPG signal contains local minima and
maxima that may be physiologically meaningful and that can be
studied by the presently described extraction of PPG-signal features.

The PPG signal processing was performed as follows:

FIGURE 1
Raw (top) and detrended (bottom) PPG signals.
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a. Sampling the PPG signal at 200 Hz and dividing it into
consecutive frames. The frame size was 120 s with 3 s stride
(97.5% overlap). Thus, each frame consists of N = 24000 samples.

b. Restricting the analysis to the PPG beats by subtracting the lower
envelope from the raw PPG signal resulted in a detrended PPG
signal, denoted by x(n), where n = 1,2, . . . N as the sample

FIGURE 2
Detrended PPG signals from responders and non-responders (NR) to photobiomodulation (PBM) before and 10 min after PBM from 3 participants
with accompanying electrocardiographic strips to show synchronicity with the pulse. All graphs are at the same scale.
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number (Figure 1). The lower envelope is constructed by finding
the lowest point in each PPG beat and connecting these points
consecutively by a piecewise linear function.

c. Extracting the following features from each frame of detrended
PPG signals:

2.2.1 RMS
RMS stands for the Root Mean Square of a frame of N samples

and calculated by Eq. 1 from the detrended PPG signal.

RMS �
�����������
1
N

∑N

n�1x
2 n( )

√
(1)

2.2.2 Entropy
Entropy is a statistical measure of the randomness of data. This

feature indicates the extent of disorder of the signal. Entropy is
calculated by Eq. 2, where the Probability Mass Function (PMF),
p(i), is the normalized histogram (using 256 bins—i.e., dividing the
signal level range into 256 equal parts) of the detrended PPG
signal x(n).

Entropy � −∑256

i�1p i( )plog2 p i( )( ) (2)

2.2.3 Smoothness
The average of High Frequency Components (HFC) of the signal

is obtained by averaging the absolute values of the differences
between the detrended PPG signal x(n) and a filtered signal
x′(n) given by Eq. 3.

Smoothness � 1
N

∑N

n�1 x n( ) − x′ n( )∣∣∣∣
∣∣∣∣ (3)

Amoving-average filter given by Eq. 4 is used, where the value of
k was set to 30, and x is the detrended PPG signal.

x′ n( ) � 1
2k + 1

∑+k
l�−kx n + l( ) (4)

2.2.4 Local extrema
This feature counts the number (#) of Extrema points (local

maxima or minima) in each beat. The calculation was performed as
follows:

(1) The derivative of the detrended PPG signal was calculated using
the local polynomial method (De Brabanter et al., 2013).

(2) The sign of the derivative of the detrended PPG signal was
calculated. Positive values were set to 1 and negative values were
set to −1.

(3) The time index of the sign changes (i.e., from −1 to 1 or vice
versa) was marked as an extremal point.

(4) If two Extrema points were detected in a time interval that was
smaller than 50 ms, only one point was accounted.

(5) The number of Extrema was counted in the calculation frame.
(6) The number of Extrema was divided by the mean heart-rate to

obtain the average number per PPG beat.

(See Discussion for additional points related to the
morphological features defined in this section.)

2.3 Study outcomes

Study outcomes included the average feature values and the
average change from baseline during irradiation and 10, 15, and
20 min during the follow up period.

2.4 Statistics

All participants of the original trial were included. Variables
are presented as mean ± SD. Statistical analysis pertained only
to the “responders” in view of the sample size. Normality of the
data was determined with the Shapiro-Wilk test with a cutoff of
p = 0.1. The Friedman’s test with multiple comparisons was
used to compare baseline to other time points (and Holm’s
modification of Bonferroni’s correction for 4 comparisons
[HMBC]) and the exact Wilcoxon signed rank test was used
to compare irradiated to non-irradiated hands (ratio to
baseline) per time point also with HMBC. The Spearman
correlation test was used to determine the level of correlation
between hands. In order to determine if the improvement in
correlation between pre- and post-irradiation was significant,
Spearman correlation coefficients (rs) were computed twice
between the right and left hands for each PPG feature—once
for pre-irradiation and once for post-irradiation. These were
compared using a special adaptation of Fisher’s
z-transformation (Dunn and Clark, 1969) that can be
assumed to be normally distributed in such cases (Silver
et al., 2004) and which is suitable for Spearman coefficients
(Zar, 2010; Wilcox, 2016) (See supplement). p< 0.05 was
considered significant.

3 Results

Representative examples of the distinctive PPG waveform for
each group before and after irradiation are depicted in Figure 2, and
the extracted morphological features, including Entropy, Root Mean
Square (RMS), Smoothness, and the number of Extrema per beat
(#Extrema) for each time period (baseline, irradiation, and follow
up), are presented in Table 1 and Figures 3A–D).

Following irradiation, responders (n = 12) had increased
amplitude and decreased jaggedness displaying an increase in
RMS and smoothness of 80% and 107% respectively. They had a
decrease in Entropy and #Extrema of 21% and 27% respectively
(Baseline vs- 10’ post-irradiation: Entropy, 5.0 ± 1.3 vs. 3.9 ± 1.1, p =
0.012; #Extrema, 4.0 ± 1.1 vs. 3.0 ± 1.6, p = 0.009; RMS, 1.6 ± 0.9 vs.
2.3 ± 1.2, p = 0.004; Smoothness, 0.10 ± 0.05 vs. 0.19 ± 0.16, p =
0.016) (Table 1).

Non-responders (n = 8) with “cold,” or “hot,” baseline skin
temperature appeared to have PPG waveforms that were
morphologically distinct from responders. Those with “cold”
hands (n = 3) appeared to have the highest Entropy and
#Extrema, and the lowest RMS and Smoothness, reflecting a
noisy and low-amplitude PPG waveform. By contrast, the
signal of those with hot’ hands (n = 5) appeared noiseless
with the lowest number of Extrema. However, the numbers of
subjects in each of these two extreme groups (on the high versus
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the low end of baseline skin temperature) were too small to
reach definite conclusions regarding the differences between
these two groups of non-responders. Nonetheless, it should be

noted that the morphological features of the PPG in these two
extreme groups of non-responders were not affected by PBM
irradiation.

TABLE 1 Effect of photobiomodulation on the morphological features of the photoplethysmographic waveform.

PPG feature Irradiated (PBM) Non-irradiated Correlation rs

Pre Post % p* Pre Post % p* Pre Post

Entropy 5.0 ± 1.3 3.9 ± 1.3 −21% 0.012 5.6 ± 1.6 4.9 ± 1.5 −11% 0.008 0.706 0.853

#Extrema 4.0 ± 1.1 3.0 ± 1.6 −27% 0.009 3.6 ± 1.36 2.87 ± 1.34 −19% <0.001 0.566 0.923†

RMS 1.57 ± 0.89 2.25 ± 1.22 +80% 0.00 0.97 ± 0.5 1.26 ± 0.74 +31% <0.001 0.469 0.811

Smoothness 0.10 ± 0.05 0.19 ± 0.16 +107% 0.016 0.07 ± 0.04 0.11 ± 0.06 +61% <0.001 0.860 0.797

PBM = photobiomodulation (low level laser irradiation), Pre = baseline; Post = 10 min after irradiation; % = Change over baseline; RMS = root mean square; Data = mean ± SD; by Spearman

correlation test; *p < 0.05 by Friedman’s test with multiple comparisons with Holm’s modification of Bonferroni’s correction; †by modified Fisher’s z-transformation.

FIGURE 3
Effect of Photobiomodulation on Morphological Features of the PPG Waveform by Subgroup. Bars represent mean ± SEM for each subgroup at
baseline (dots), after irradiation (black), and at the end of the follow up period (20’ post-irradiation) (grey) for (A) Entropy; (B) Root Mean Square (RMS); (C)
#Extrema per beat; and (D) Smoothness. Note significant change in each of the features post-irradiation for the “responders”. *p < 0.05 by Friedman’s test
with multiple comparisons and Holm’s modification of Bonferroni’s correction. NR = non-responders.
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3.1 Bilateral effect

Unilateral irradiation resulted in a bilateral response, but the
response of the contralateral, non-irradiated hand was shorter in
duration, persisting for only 10 min, and lower in magnitude
(Figure 4). The correlation between irradiated and non-irradiated
hands in Entropy, #Extrema, and RMS was moderate before
irradiation and strong post-irradiation (Table 1). This was not the
case with Smoothness since the correlation was already strong at
baseline (rs = 0.86). The strongest improvement of correlation after

irradiation between irradiated and contralateral, non-irradiated
hands was seen in the #Extrema feature (rs, baseline vs. post-
irradiation: 0.566 vs. 0.923, p = 0.018).

4 Discussion

In recent years, photoplethysmography (PPG) has become very
widely used for non-invasive monitoring instruments particularly in
the healthcare arena. This has included its use as a basis for a rapidly

FIGURE 4
Kinetics of the Bilateral Response of Morphological Features of the PPG Signal to Unilateral Photobiomodulation. Note the significant change post
irradiation for both hands that remained significant throughout the experiment in the irradiated hand but only up to 10 min in the non-irradiated hand.
Also note that the response was larger in the irradiated than the non-irradiated hand. Data points and error bars represent mean ± SEM by time point for
the irradiated hands (closed circles, solid line) and non-irradiated hands (open circles, dashed line) of responders to PBM (n = 12) for (A) Entropy; (B)
RootMean Square (RMS); (C)#Extrema per beat; and (D) Smoothness. *p < 0.05 by Friedman’s test withmultiple comparisons and Holm’smodification of
Bonferroni’s correction.
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expanding variety of wearable devices (Singh et al., 2021; Charlton
and Vaidotas, 2022). The implementation of advanced methods of
PPG signal processing, including advanced morphological analysis,
has expanded the capabilities, accuracy, and usefulness of this
technology in various fields of physiology and pathology such as
cardiovascular function, sleep studies, pregnancy, pain, and mental
health (Hickey et al., 2015; Qawqzeh et al., 2020; Ahmed et al., 2022;
Allen, 2022; Allen and Fei, 2022; Mejia-Mejia et al., 2022).

Previously we found, using laser Doppler and thermal imaging,
that PBM induces arteriolar vasodilatation resulting in both
immediate and long-lasting increased capillary flow and tissue
perfusion in healthy individuals, but not in participants having
“cold hands” or “hot hands” (Gavish et al., 2020).

It is important to emphasize that the overall microvascular
response to PBM is large in magnitude which is why it can be
easily detected even by measurements of skin temperature that are a
low-resolution proxy for microvascular blood flow. However, other
characteristics of the microvascular response to PBM, for example,
change over time or differences between the irradiated limb vs. the
contralateral, non-irradiated limb, are much subtler and smaller in
magnitude and appear to have a more complex behavior. Hence, an
additional direct and more refined method was required.

In the current study, post-acquisitional analysis of advanced
(known and novel) morphological features of the PPG waveforms
obtained from these three groups was performed to better understand
and provide clinically valuable physiological interpretation for the
response to PBM. These additional morphological features, or
combinations thereof, may be used in the future to improve the
ability to identify potential responders to PBM.

The responders were found to have increased amplitude of the
PPG signal and decreased level of jaggedness in the PPG waveform,
i.e., the signal became smoother.

4.1 Morphological features of the PPG signal

The purpose for detrending the PPG signal was to preserve
relevant physiological information and to remove the low-frequency
components that were not relevant for the analysis. This involved
lower envelope subtraction that is similar to a high pass filter but has
some additional advantages. The high pass frequency determination
is not required, there are no filter transients in the signal, and the
remaining upper envelope clearly manifests the amplitude swing of
the PPG signal, since the lower envelope is constant. No additional
noise removal filtering was used in order to preserve the relevant
information (“jaggedness”).

Two common features were used: Root Mean Square (RMS) of
the signal and Entropy for the signal shape (Wei et al., 2020; Singh
et al., 2021; Mejia-Mejia et al., 2022). Two new features were
introduced -- Smoothness and number (#) of local Extrema per
PPG beat. The latter are based on the development of a dedicated
algorithm for this research that provides more accurate quantitative
information regarding the level of jaggedness of the PPG signal. The
Smoothness level of a signal is commonly determined by calculating
the higher frequency portion of the signal spectrum or calculating
the energy after high-pass filtration (Wei et al., 2020; Singh et al.,
2021; Mejia-Mejia et al., 2022). These methods require the
determination of the cutoff frequency; that is, the frequency

bands of the noises and the ‘clean’ signal. In applying these
methods to the PPG signals, the determination of the optimal
cutoff frequency was found to be difficult due to the nature of
these signals, which are not always fully periodic, and due to the
jaggedness of the envelope. To overcome this problem, the RMS
value of the PPG signal was calculated after subtracting from the
PPG signal its smoothed version obtained by a simple moving-
average filter. Following this subtraction, a smooth PPG signal with a
very low RMS value was obtained since the signal and its smooth
version are similar.

The calculation of derivatives of the PPG signal is often an
essential step in pulse wave analysis. For example, several indices of
vascular aging can be extracted from the second derivative of the
PPG pulse wave (Takazawa et al., 1998; Mejia-Mejia et al., 2022). In
this study the number (#) of local Extrema per beat was calculated as
another method for describing the jaggedness of the signal: Local
Extrema can be easily identified by analyzing the derivatives of the
PPG signal. Thus, higher jaggedness will result in a higher count of
local Extrema.

4.2 Physiological interpretation of the PPG
features

The morphological features of the PPG signal represent
characteristics of blood volume changes in a microvascular bed
reflecting instantaneous changes in the number of RBCs during the
pulsatile blood flow. In the case of constant RBC concentration, the
RMS of the signal represents the mean value of the pulsatile
component of the blood volume which decreases for smaller
diameter and stiffer arteriolar walls (Fusi and Farina, 2020).
Thus, in comparison to responders, RMS is expected to be lower
in “cold hands” due to vasoconstriction and the elevated wall
stiffness associated with increased vascular tone. It should be
higher in “hot hands” due to vasodilation.

Entropy represents a measure of fluctuations in the signal
structure that reflects its complexity. Thus, Entropy is likely to
increase when blood flow is compromised either because of an
intrinsic pathology of the vessels themselves or inadequate supply
with respect to physiological demand resulting in attempts at
compensation. In the case of “cold hands,” PBM seems to
improve the blood flow resulting in reduction of signal
complexity (Entropy) from its baseline level.

Regarding the number of Extrema per beat, the pulse waveform
always includes a maximum point at the systolic peak and, frequently, a
local minimum at the diastolic phase. Additional Extrema are likely to
represent instabilities in the blood flow and dynamic fluctuations in the
distribution of RBCs which tend to aggregate at low flow states and in
“cold hands” during the diastolic phase (Lipowsky, 2005; Baskurt and
Meiselman, 2007). Thus, increased blood flow, as occurs in “hot hands”,
or upon/after irradiation, is expected to reduce the number of Extrema
as observed.

4.3 Clinical considerations

PPG signal processing led to two, clinically important findings:
First, the duration of the response to irradiation in the group of
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responders lasted for at least 20 min. The second is the synchronized
changes in the PPG signal in both hands following irradiation of only
one hand. Previous clinical studies conducted with thermography and
laser Doppler flowmetry have shown that photostimulation for at least
15 min elicits a response in the non-irradiated side, albeit smaller in
magnitude (Schindl et al., 2002; Samoilova et al., 2008a). This bilateral
response has importance in clinical practice when the area requiring
treatment is not accessible or is too painful to treat. Although the
vasodilative response following PBMwas shown to depend on local NO
synthesis or release (Samoilova et al., 2008b; Keszler et al., 2018;
Weihrauch et al., 2021; Keszler et al., 2022), it has been suggested
that the bilateral effect may also point to the involvement of neuronal
pathways coursing through the central nervous system (Koltzenburg
et al., 1999) and/or the systemic release of a humoralmediator. Previous
clinical studies using other interventions also observed bilateral effects
where local stimulation on one side affected the other side (Koltzenburg
et al., 1999; Huang et al., 2007; Ovadia-Blechman et al., 2018; Ovadia-
Blechman et al., 2021). Further studies are in order to identify the
precise pathway or mediator that can be manipulated, upregulated, or
synthesized to simulate, or to improve the efficiency of, the therapeutic
effects seen with PBM.

Methods such as time-frequency analysis and machine learning
(Allen et al., 2021) should be of additional benefit for enhanced
automaticity, standardization of interpretation of PPG morphological
data, and more precise prediction of response to PBM.

Themain limitation of our study was the small sample size of the
“cold” and “hot” groups that prevented appropriate statistical
evaluation of the effects of PBM on the morphological features of
the PPG signal in these two extreme groups. For this reason, the
results of this study were based on the post-acquisitional analysis of
the PPG waveform of the responders’ group for which adequate
numbers were available and reliable statistical separation obtained.

5 Conclusion

This pilot study indicates that post-acquisitional analysis of
morphological features of the PPG waveform provides new
measures for the exploration of microcirculation responsiveness
to PBM. Extraction of morphological features from continuous
synchronous bilateral PPG measurements enables additional
quantification of the kinetics and magnitude of the local
(irradiated hand) and the systemic (non-irradiated) response to
intervention. An algorithm for prediction of response to PBMmay
be developed based on a combination of these features. Application
of these advances in waveform analysis to machine learning may
improve accuracy, enhance standardization of interpretation, and
facilitate automaticity, thereby expanding the usefulness of the
rapidly expanding PPG-based non-invasive monitoring
technologies for hospital as well as pre-hospital and home care.
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Photopletysmography (PPG) is a non-invasive and well known technology that
enables the recording of the digital volume pulse (DVP). Although PPG is
largely employed in research, several aspects remain unknown. One of these
is represented by the lack of information about how many waveform classes
best express the variability in shape. In the literature, it is common to classify
DVPs into four classes based on the dicrotic notch position. However, when
working with real data, labelling waveforms with one of these four classes is
no longer straightforward and may be challenging. The correct identification of
the DVP shape could enhance the precision and the reliability of the extracted
bio markers. In this work we proposed unsupervised machine learning and deep
learning approaches to overcome the data labelling limitations. Concretely we
performed a K-medoids based clustering that takes as input 1) DVP handcrafted
features, 2) similarity matrix computed with the Derivative Dynamic Time
Warping and 3) DVP features extracted from a CNN AutoEncoder. All the cited
methods have been tested first by imposing four medoids representative of the
Dawber classes, and after by automatically searching four clusters. We then
searched the optimal number of clusters for eachmethod using silhouette score,
the prediction strength and inertia. To validate the proposed approaches we
analyse the dissimilarities in the clinical data related to obtained clusters.

KEYWORDS

PPG, waveform, classification, machine learning, deep learning, unsupervised learning

1 Introduction

The photoplethysmogram (PPG) signal contains precious information about the blood
vessels and heart activity. The digital volume pulse (DVP) is defined as the portion of
PPG signal corresponding to one cardiac cycle. In young individuals, the DVP exhibits
clearly defined systolic and diastolic peaks. The diastolic peak is attenuated with increasing
age (Dawber et al., 1973). The systolic peak is related to the forward pressure wave from
the heart to the finger. The diastolic wave, also called the reflected wave, depends on the
amount of reflection (due to muscular tone) in small arteries (Millasseau et al., 2006). DVP
shape changes with age (Allen and Murray, 2003), blood pressure (Millasseau et al., 2006),
atherosclerosis (Rozi et al., 2012), and other cardiovascular diseases such as arrhythmia
(Sardana et al., 2021) and coronary artery disease (Saritas et al., 2019). DVP wave shapes
vary between subjects and with the presence of pathologies. It can be used to assess a
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variety of cardiovascular properties, such as estimating blood
pressure (Kurylyak et al., 2013), detecting diabetes (Zanelli et al.,
2022), or assessing vascular ageing (Charlton et al., 2022). An
understanding of typical DVP wave shapes could contribute to the
physiological interpretation of wave shapes, and could help in the
development of robust DVP wave analysis algorithms. Most of the
DVP biomarkers extraction algorithms assume that DVPs have a
standardized shape. However real DVPs can show more than one
peak. In this case, the biomarker cannot be computed directly but
a suitable pre-processing has to be applied to the wave in order to
obtain an estimation. For our knowledge very few studies address
the DVP shape morphology classification topic.

In 1973, Dawber et al., 1973 defined four classes of DVP shape
based on the characteristics of the dicrotic notch (Figure 1).The four
classes range from a visible and clearly marked dicrotic notch (Class
1) to a non visible dicrotic notch (Class 4). However, DVPs exhibit
far more shape variations than are captured in the characteristics
of the dicrotic notch. Other attempts have been made to identify
typical DVP wave shapes: frequency analysis to classify the DVPs
into three classes based on the age (Sherebrin and Sherebrin,
1990); machine learning and deep learning methods trained over
handcrafted features to classify the DVPs shape into the four
classes proposed by Dawber et al. (Tigges et al., 2016); and second
derivative analysis used to obtain four DVP templates (Takada et al.,
1996).Wang et al., 2013 proposed amulti-Gaussian fitting to classify
DVPs into five classes.With respect toDawber et al., they introduced
an intermediate class where no notch develops but there is a notable
reflected wave in the systolic component of the pulse wave.Themain
limitation of these studies is the pre-emptive choice of the number
of DVP classes.

We used non-supervised approaches to identify clusters of DVP
wave shapes as follows. First, we investigated different approaches for
clustering DVP waves with the aim of identifying the best approach.
K-medoids clustering was used to cluster DVP wave shapes based
on: 1) handcrafted DVP features; 2) Derivative Dynamic Time
Warping (DDTW) distances; or (iii) features extracted from a
convolutional neural network autoencoder (CNN AE). K-medoids
was used instead of K-means as it is less affected by outliers, and
it guarantees that each medoid (the DVP shape representing the
entire cluster) is an actual DVP (Park and June 2009). Second,
we investigated whether the optimal number of clusters is four, as

suggested by Dawber et al., or a different number. To do so, all
the clustering methods were tested when the number of clusters
was fixed to four (with and without fixing the medoids to DVP
waves typical of Dawber’s four classes), and when the optimal
number of clusters was determined through one of: the prediction
strengthmethod (Tibshirani andWalther, 2005); the silhouette score
(Shahapure and Nicholas, 2020); or clusters inertia (Syakur et al.,
2018). Third, we investigated whether any of the obtained clusters
were clinically relevant. To do so, we analysed the related clinical
data for each cluster to assess whether there were significant
differences between clusters.Thedataset used in this study contained
approximately 11,000 DVPs from 300 subjects aged 20–80 years old.
Our contributions can be summarized as follows.

• We clustered DVP waves using a K-medoids approach with
three different feature sets. We compared the results obtained
with 1) a dataset composed by fourteen PPG handcrafted
features, 2) a dataset composed by DDTW pairwise distances
and 3) a dataset composed by features automatically extracted
from a CNN autoencoder.
• We tested the proposed approaches with four clusters to

compare the obtained results with the Dawber et al. classes.
Then, we investigated the optimal number of clusters using the
silhouette score, inertia and the prediction strength methods.
The approaches have been also tested by imposing four
representative medoids, selected by a human expert.
• We investigatewhether or not the obtained clusters are clinically

relevant by analysing the distribution of the clinical data
associated with each cluster.

2 Material and methods

2.1 Dataset

The dataset used in this study contains PPG signals recorded
from 300 different subjects, providing a total of about 11,057 DVPs.
Table 1 presents the subject characteristics: the subjects ranged from
19 to 83 years old; and included normotensives, hypertensives and
hypotensives. Figure 2 represents the age distribution of the dataset.
The PPG signals were acquired at 1 kHz with the pOpmètre device

FIGURE 1
Example of digital volume pulse Dawber classes. Data sourced from Charlton et al. (2016). Figure: Classes of photoplethysmogram (PPG) pulse wave
shape: Examples of the four classes of pulse wave shape proposed by Dawber et al. Reproduced form https://commons.wikimedia.org/wiki/File:
Classes_of_photoplethysmogram_(PPG)_pulse_wave_shape.svg, licensed under CC-BY4.0.
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TABLE 1 Clinical data. Mean, standard deviation, minimum andmaximum
values of the clinical data related to the used DVPs dataset.

Feature Mean (± std) Min Max

Age[years] 44.31 ± 14.34 19.48 83.00

Weight[kg] 74.60 ± 16.99 45.00 180.00

Height[cm] 170.04 ± 8.45 140.00 196.00

PWV[m/s] 7.99 ± 2.91 3.70 26.10

PAS[mmHg] 124.77 ± 16.01 90.00 190.00

PAD[mmHg] 76.10 ± 9.73 48.00 120.00

BMI[kg/m2] 25.78 ± 5.12 6.00 56.00

BPM[bpm] 71.82 ± 14.89 40.00 185.00

FIGURE 2
Age distribution of the used dataset.

(Axelife, France) (Obeid et al., 2017). pOpmètre is a medical device
thatmeasures the pulse wave velocity (PWV) between the finger and
the toe in order to assess arterial stiffness. Prior to measurement,
subjects were asked to lie down and rest for about 5 min. The
device utilizes transmittance PPG with red and infrared light. Each
measurement takes up to 14 s to be computed. Some subjects in
the dataset had more than one measurement taken. Only the finger
signals were used in this study. The quality assessment process
described in (Zanelli et al., 2021) was used to select only the high
quality parts of the signals. Signals were then segmented into DVPs.
DVP waves were normalised in time (100 samples) and amplitude
(between zero and one). The employed dataset is composed only
of DVP waves without any other information related to the shape.
Since no labels are available, we propose an unsupervised approach
to cluster the waves, using three different DVP extracted features.
This process is further explained in the next section.

The dataset was split into train and test sets using 70% and
30% of the available data respectively. Since one subject can have
different DVP shapes along the same measurement, one subject can
contribute to the train, validation or test set at the same time. The
validation set is composed of 30%of the training test.The same train,
validation and test sets were used with all the proposed methods

in order to be able to compare the results. The train and validation
sets were used to train the CNN AE while the test set was used for
clustering.

2.2 Clustering pulse waves

The K-medoids technique was used to cluster DVP waves.
K-medoids is a partitional algorithm firstly proposed in 1980
(Rdusseeun and Kaufman, 1987). Its objective is to split a dataset
into k clusters by minimising the distance between the center of
each cluster and the samples assigned to that cluster. The center of
the cluster (also known as a medoid) is defined as the sample in
the cluster whose average dissimilarity to all the remaining objects
in the cluster is minimal. The chosen medoid is an actual sample
of the dataset, in contrast to the k-means algorithm. Furthermore,
because k-medoids minimizes the sum of dissimilarities between
two samples of the dataset instead of the sum of squared euclidean
distances, it is more robust to noise and outliers than k-means
(Kaur et al., 2014). In this study, we applied the K-medoids in three
ways, as now described.

2.2.1 Using handcrafted features

Clusteringwas performedusing twenty one handcrafted features
were extracted from the DVPs contained in the dataset. The features
include those proposed in the literature to assess DVP morphology
(Tigges et al., 2016), second derivative features (Mouney et al.,
2021), and statistical shape features such as kurtosis and skewness.
We performed the correlation analysis to identify and remove highly
correlated features. This resulted in fourteen handcrafted features
being selected, as reported in Table 2. After checking the feature
distributions, we applied a logarithmic transformation to three of the
remaining features.We then standardized the features by subtracting
the mean and scaling to unit variance. The fourteen features were
clustered using the K-medoids approach.

2.2.2 Using dynamic time warping

Dynamic Time Warping (DTW) is an algorithm employed to
estimate the similarity between two time series (Müller, 2007). DTW
was first introduced around 1960 and applied in speech recognition
around 1975 (Senin, 2008). Over the years, this algorithm has been
demonstrated to be very effective in matching time series of all
kinds (Bagnall et al., 2016), such as for handwriting classification
(El-Yacoubi et al., 2019). It has already been applied to PPG and
ECG signals in various fields to assess signal quality (Li and Clifford,
2012), identify fine finger gestures (Zhao et al., 2018), or for human
verification systems (Hwang et al., 2021). We define two time series
as X = (x1,x2,… ,xn) and Y = (y1,y2,… ,ym).

The DTW similarity measure is computed as the minimal
cost of aligning the two time series as described in Algorithm 1
(Sakoe and Chiba, 1978). Several adaptations have been proposed
to improve the efficiency and the effectiveness of this algorithm.
Local constraints such as the Itakura parallelogram (Itakura, 1975)
or the Sakoe-Chiba band (Sakoe and Chiba, 1978) have been
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TABLE 2 DVPs features used for clustering with the handcrafted DVP feature approach. Abb: feature name abbreviation.

Feature Abb Description

Dicrotic-diastolic notch DDR Ratio between dicrotic notch and diastolic peak amplitude. Set to 1.1 if no diastolic point is detected

Relative downslope sum RDS Area under the curve from the maximum descendet slope to the end of the pulse

Downslope derivative mean DDM Mean value of the pulse derivative after the systolic peak

Skewness Skew Measure of the pulse asymmetry

Max second derivative P_b_2Dev_A First minimum amplitude of the second derivative

Index min second derivative P_b_2Dev_i Index of the first minimum amplitude of the second derivative

Min second derivative P_a_2Dev_A Maximum amplitude of the second derivative

Index max second derivative P_a_2Dev_i Index of the maximum amplitude of the second derivative

Integral of the curve S_P_Onde Total area under the curve

Number of peaks nbr_peaks Number of peaks inside the pulse

Logarithm of Rise time log (RT) Logarithm of the rise time

Logarithm of Kurtosis log (Kurt) Logartimic measure of the “tailedness”

Augmentation index AI_bin Augmentation index, binary variable. If augmentation index could be computed the variable has high value

Down slope derivative variance log (DDV) Logarithm of the variance of the pulse derivative variance during the down slope

FIGURE 3
Dynamic time warping and derivative dynamic time warping comparison. It is observable how DDTW is able to match the same shape modifications
with respect to the DTW that matches points that have low relative distance.

found to reduce the computational complexity of the unconstrained
DTW and also improve accuracy when used with a 1 Nearest-
Neighbor (1-NN) classifier (Geler et al., 2019). We implemented
DDTW using a SakoeChiba window of length w = 20 samples.
DTW is likely to be successful when applied to two sequences
that are similar except for local accelerations and decelerations
in the time axis. However, in our case the DVPs differed mostly
on the Y-axis. We found that DTW did not provide successful
results, as the algorithm matched points with lower mutual distance
rather than points with similar shapes. Therefore, we implemented
Derivative Dynamic Time Warping (DDTW), in which the time
series X and Y are substituted with their derivatives X′ and Y′.
This takes into consideration the slopes of the DVPs in order
to compute the minimal cost (Keogh and Pazzani, 2001). DVPs

were further Z-normalised before performing DDTW measures.
Figure 3 shows the application of classical DTW and DDTW.
The DDTW similarities were clustered using the K-medoids
approach.

2.2.3 Convolutional neural network
autoencoder

A Convolutional Neural Network (CNN) AutoEncoder model
was used to automatically extract features from DVP waves
(Chafik et al., 2019). CNNs are widely employed in biomedical
signal processing (Alaskar, 2018) since they are capable of extracting
features by exploiting the convolution operation between the input
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 Require: n,m ≥ 0

  int DTW[0..n, 0..m]

  int i, j, cost

  s: array [1..n], t: array [1..m]

  for i ≔ 1 to n do

    for j ≔ 1 to m do

      DTW[i, j] ≔ infinity

    end for

  end for

  DTW[0, 0] ≔ 0

  for i ≔ 1 to n do

    for j ≔ 1 to m do

      cost≔ abs(s[i] - t[j])

      DTW[i, j] ≔ cost + minimum(DTW[i-1, j ],

DTW[i , j-1], DTW[i-1, j-1])

    end for

  end for

  return DTW[n, m]

Algorithm 1. Calculating the dynamic time warping (DTW) distance between
time series.

and learnt filters (Li et al., 2017). The autoencoder is trained
to extract features from the input (performing a dimension
compression step) and reconstruct it using the learnt features
by minimising the Mean Squared Error (MSE) between the
reconstructed input and the actual input. The model is composed
of 6 convolutional layers and three dense layers. A flattening
layer is added after the last convolution in order to reduce the
dimensions and pass the feature maps to the fully connected layer.
Relu activation functions inside CNN layers were used, while a
sigmoid activation function was used for the reconstruction layer.
The model architecture is represented in Table 3. We optimize the
bottleneck layer size, the learning rate and λ L2 regularisation factor
using Autonomio Talos python tool (Talos, 2019). The optimal
model was chosen as a trade-off between validation loss and
bottleneck layer size. A latent size of eight was chosen, indicating
that eight features were extracted from DVP waves. This provided
the smallest bottleneck layer size that performed well enough
compared to the best validation loss obtained. Once the autoencoder
is trained, only the encoder part is used to extract features from
the DVPs. The eight features were clustered using the K-medoids
approach.

2.3 Investigating the optimal number of
clusters

We employed three different methods to investigate the
optimal number of clusters: the silhouette score (Rousseeuw,
1987), the prediction strength (Tibshirani and Walther, 2005),
and the cluster inertia (Syakur et al., 2018). These are now
described.

The silhouette score is calculated by taking into account the
mean intra-cluster distance a, and the distance between a sample and
the nearest cluster that the sample is not a part of b. The silhouette

TABLE 3 CNN AutoEncoder architecture.

Layers Output shape

Encoder

Input layer (None, 100)

Convolution layer (None,100,32)

MaxPooling (None,50,32)

Convolution layer (None,50,32)

MaxPooling (None,25,32)

Convolution layer (None,25,32)

MaxPooling (None,13,32)

Flatten (None,416)

Dense (None,8)

Decoder

Dense (None,8)

Dense (None,416)

Reshape (None,13,32)

Convolution layer (None,26,32)

Cropping (None,25,32)

UpSampling (None,50,32)

Convolution layer (None,50,32)

UpSampling (None,100,32)

Convolution layer (None,100,32)

Flatten (None,3,200)

Dense (None,100)

score s for a sample is:

s = (b− a)/max (a,b) . (1)

The score is then averaged over all samples. This score measures
how well a dataset sample i matches the chosen clustering scheme.
A score of 1 means the samples are correctly clustered, a score of 0
means the samples could belong to other clusters, and a score of −1
means that the cluster contains the wrong samples.

The prediction strength of the clustering C(Xtr,k) is a defined as:

ps (k) = min
1≤j≤k

1
nk,j (nk,j − 1)

∑
i≠i′∈Akj

D[C(Xtr,k) ,Xte]ii′ , (2)

where nk,j is the number of observations in the jth cluster,
D[C(Xtr,k),Xte] is the co-membership matrix of size (Xtr (train set),
Xte (test set)) and C(Xtr,k) is the clustering algorithm fitted to the
training set. In other words, for each test cluster, the proportion of
observation pairs in that cluster that are also assigned to the same
cluster by the training set centroids is computed. The prediction
strength is the minimum of this quantity over the k test clusters. The
maximum number of clusters for which the prediction strength is
above a certain threshold is then chosen. Although the experiments
ran by the authors suggest 0.8–0.9 as a good value for the threshold,
the latter may be interpreted on a case-by-case basis.
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FIGURE 4
Prediction strength, inertia and silhouette score for clusters k = [1,15] for handcrafted and CNN AE approach. Inertia and silhouette score for clusters
k = [1,15] for DDTW approach. Black dotted line: chosen number of clusters.

FIGURE 5
t-SNE clustering representation of all the proposed approaches. From the top to the bottom: template, baseline and optimal approach. From the left to
the right: handcrafted, CNN AE and automated features.
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FIGURE 6
Medoids (dark green) and DVPs (light green) for all the proposed approaches. From the top to the bottom: template, baseline and optimal approach.
From the left to the right: handcrafted, CNN AE and automated features.

The cluster inertia was computed as follows:

N

∑
i=1
(xi −Ck)

2, (3)

where N is the number of samples within the data set
and C is the center of a cluster. It computes the sum of
squared distance of each sample in a cluster to its cluster
center.
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FIGURE 7
Radar plot for all the proposed approaches representing the average value of the clinical data related to the clustered DVPs. From the top to the
bottom: template, baseline and optimal approach. From the left to the right: handcrafted, CNN AE and automated features.

We have to highlight that, although we tested three different
methods to investigate the optimal number of clusters, the final
choice of the optimal number of clusters is still affected by personal
interpretation.

2.4 Investigating the clinical relevance of
obtained clusters

The clinical relevance of the clustering was investigated as
follows.

The Kruskal Wallis test (McKight and Najab, 2010) was used to
assess whether there was a significant difference between the values
of each clinical parameter between the clusters found using each
clustering approach (template, baseline, and optimal). In the case of

significant differences, the null hypothesis that themean ranks of the
groups are the same was rejected, and the Welch test (Alekseyenko,
2016) was used to identify the clusters for which the differences were
significant.

Since significant differences were found between the clinical
parameters of different clusters when using all the clustering
approaches, we also conducted a more in-depth analysis of
differences. Here, we propose a technique to identify which
methods better discriminate the clinical data distribution among
the clusters. Inspired by core shape modelling (Boudaoud et al.,
2010), we assessed the intrinsic shape variations of the clinical
data probability density functions (PDFs) across different clusters.
This method assesses the dissimilarity between cluster PDFs by
computing the distance between the relative reversed cumulative
distribution function. The CSM objective is to remove the shape
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modification related to the x-axis shift and focus only on the shape.
Differently from the original approach, we did not want to remove
the x-axis shift. Thus, we computed the distances between the
reversed cumulative distribution function taking into consideration
the possible x-axis shift. Probability density functions (PDFs) of
the clinical data related to the clusters were computed for each of
the proposed methods. From the reversed cumulative distribution
function it is now possible to compute the euclidean distance. This
measure gives an index to quantify the similarity between two PDFs.
The larger it is, the better the method is able to cluster waves in a
clinical relevant manner. The averaged distance d that we propose is
computed as follows:

d = 1
k (k− 1)

k

∑
i=1

wi

k

∑
i≠j

wjdist (i, j) (4)

where wn =
NDVPn
NDVP

is a weight that penalises clusters composed of
fewer DVPs computed as the ration between the number of DVP
contained in the cluster n and the total amount of DVP in the dataset
and dist(i, j) = |CDF−1i −CDF

−1
j | is the distance between two reserved

cumulative distribution functions.

3 Results and discussion

In this sectionwe present and discuss the obtainedDVP clusters.
First, we compare results obtained using the baseline approach and
the template approach to understand whether the clusters of DVP
waves are similar to Dawber’s classes. Second, we present the results
obtained using each of the threemethods for identifying the optimal
number of clusters. Finally, we assess the clinical relevance of the
obtained clusters.

Clusters were visualised using a nonlinear dimensionality
reduction method: the t-Distributed Stochastic Neighbor
Embedding (t-SNE) (Van der Maaten and Hinton, 2008). This
method provides a faithful lower-dimensional representation
where the distribution of the original data is conserved also in
the lower dimension representation. It achieves this by modeling
the dataset with a dimension-agnostic probability distribution,
finding a lower-dimensional approximation with a closely matching
distribution (Li et al., 2017). In order to visualise the clinical data
among the different clusters we present, for each proposed method,
a radar plot representing the clinical data normalized averages
among the clusters. Figure 5, Figure 6 and Figure 7 respectively
represent the t-SNE cluster representation, the medoids and the
PPG waves attributed to each cluster; and the radar plot of the
clinical parameters.

3.1 Comparing with Dawber’s classes

This section presents the results of clustering the dataset into
four clusters using each of the three clusteringmethods: handcrafted
features, CNN AE automated features, and the DDTW similarity
matrix. We chose four clusters to allow comparison with the DVP
shapes proposed by Dawber et al. In a first (baseline) approach each
method was used to automatically identify the four clusters. In a
second (template) approach, the medoids of the four clusters were

imposed as DVP waves selected by an expert to correspond to the
four classes identified by Dawber et al. We iteratively computed the
assignments of the pulses to the clusters.

The results are shown in Figure 6, where the top row shows the
template approach, and themiddle row shows the baseline approach.
Dawber’s classes (top row) were designed based on differences in
dicrotic notch characteristics.ThemedoidDVPwaves automatically
identified in the DDTW baseline approach are most similar to
Dawber’s classes: cluster 1 (corresonding to the youngest subjects
as observed in Figure 7) exhibits a marked dicrotic notch (similar
to Dawber’s class 1), which gradually disappears in older subjects
(clusters 0, 2, and 3 respectively, corresponding to Dawber’s classes
2, 3, and 4) (see Figure 6).The clusters automatically identified when
using the CNN autoencoder method are less similar to Dawber’s
classes, and those identified when using handcrafted features are
even less similar still.

The number of DVP waves in each cluster was less
balanced when imposing Dawber’s classes as medoids than when
automatically identifying medoids (see Table 4). For instance,
when using handcrafted features, the proportion of DVP waves
allocated to each cluster ranged from 3% to 43% when prescribing
Dawber’s template classes, compared to 20%–33% when allowing
cluster medoids to be identified automatically. There were similar
imbalances when using CNN autoencoder features, and DDTW.

The clusters identified using DDTW not only exhibited
differences in dicrotic notch characteristics (similarly to Dawber’s
classes) but also exhibit changes in the characteristics of the systolic
portion of the DVP wave (see Figure 6): the systolic peak becomes
wider with age (i.e., from cluster 1 to 0, 2, and 3), and the secondary
systolicwave disappearswith age.This secondary systolicwave could
be a reflected wave caused by the elasticity of the artery (Luo et al.,
2014) or the reflection of the forward wave at the renal artery branch
(Nagasawa et al., 2022).

3.2 Determining the optimal number of
clusters

In order to determine the optimal number of clusters, we
computed the silhouette score, the inertia and the prediction
strength of the proposed approaches (see Section 2.3). Whilst
these methods do require some subjective interpretation, using
multiple methods allowed us to reduce the level of subjectivity.
The computational cost of applying the prediction strength to the
DDTW matrix was found to be high resulting in an extremely
long runtime (>10 days) requiring, in our opinion, a non-
justifiable amount of resources (Patterson et al., 2021). Therefore,
the silhouette score and inertia were used to select optimal numbers
of clusters. Where available, the result was then compared with the
prediction strength.

Figure 4 shows the results for the three approaches when varying
the number of clusters from 1 to 15. Silhouette score and inertia
have been used jointly to select the optimal number of clusters.
We searched in the results a number of cluster k, for which the
obtained silhouette score was close to 1 and the inertia presented
an elbow. The selected number of clusters was then compared
with the obtained prediction strength analysis. Based on these
results, we chose not to use a threshold of 0.8 for the prediction
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TABLE 4 Number of DVPs in each cluster and for each proposedmethod.

Features Handcrafted CNN DDTW Handcrafted CNN DDTW Handcrafted CNN DDTW

Approach Template Baseline Optimal

Cluster 0 746 656 1,506 803 701 1,161 495 714 172

% 20 18 41 22 19 32 14 20 5

Cluster 1 1,230 1,602 247 920 854 1,087 584 351 601

% 34 44 7 25 23 30 16 10 16

Cluster 2 1,580 1,151 1,354 734 998 878 743 642 780

% 43 32 37 20 27 24 20 18 21

Cluster 3 87 234 536 1,186 1,090 520 606 342 345

% 2 6 15 33 30 14 17 9 9

Cluster 4 - - - - - - 539 452 725

% 15 12 20

Cluster 5 - - - - - - 676 579 635

% 19 16 17

Cluster 6 - - - - - - - 563 388

% 15 11

Total waves 3,643 3,643 3,643 3,643 3,643 3,646 3,643 3,643 3,646

strength because it would have been too restrictive. The optimal
number of clusters was determined as 6, 7, and 7 clusters for the
handcrafted feature, the CNN AE, and the DDTW approaches
respectively.

3.3 Determining the optimal clustering
method

The t-SNE visualisations (Figure 5) help determine which
clustering approach best separates DVP waves into clusters. The
DDTW approach appears to better separate the clusters when
using the template, baseline, or optimal approaches. However,
we can observe from the medoids plot (Figure 6) some clusters
appear to be very similar in all of the three proposed approaches.
We used the intra-cluster inertia to further investigate the
performance of different clustering approaches (see Figure 4).
The intra-cluster inertia was lowest for the DDTW approach
(approximately 0.2), and substantially higher for the other
approaches (approximately 0.4 for the CNN autoencoder approach,
and 0.5 for the handcrafted features approach). Based on this, we
suggest that the DDTW clustering approach performed best in this
study.

3.4 Investigating the clinical relevance of
clusters

Clustering a dataset composed of real DVPs with no prior
information about the possible optimal number of clusters, can be
challenging.Themain difficulty is represented by the impossibility of

validating a certain approach. In this work, we used the clinical data
related to the DVPs to validate and score the proposed approaches.
To visualize the clinical data related to the clustered DVPs, we
employed the radar plot in Figure 7. These plots represent the
average value of each clinical parameter for each cluster. From
visual inspection it is clear that almost all the clustering approaches
result in clusters which are associated with differences in clinical
parameters. To quantify this, we first performed statistical tests to
assess whether there were significant differences between the clinical
data for each cluster. Significant differences were found between
clusters obtained using all the approaches. To investigate which
method is able to better differentiate the clinical data related to the
clusters we implemented a modified version of the CSM approach
(Boudaoud et al., 2010). For each clinical data contained in the
dataset and for each method, we assessed the capability of the latter
to cluster waves in a clinical relevant manner. Table 5 reports the
obtained results. Depending on the considered data, themethod that
obtained the largest distance changes. When clustering with with
the optimal approach, the distances are smaller. This finding is logic,
since the starting support space is unaltered. The CNN and DDTW
approaches (template and baseline) seem to always score large
distances among all the clinical data. Age and transit time appear to
have the largest difference, perhaps being the primary determinants
for DVPs shape. Clusters appear to correspond to different clinical
characteristics, and could provide insights into a subject’s vascular
age as they are most strongly influenced by age and pulse transit
time. This finding is in accordance with several studies (Alty et al.,
2007; Brillante et al., 2008; Yousef et al., 2012). Physiologically, the
aging process leads to increasing arterial stiffness (Bortolotto et al.,
2000)which is reflected on theDVP shape as a lessmarked backward
wave and dicrotic notch (Dawber et al., 1973). Arterial stiffness is
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TABLE 5 PDF distances for each clinical data for each proposedmethod. The larger is the scored distance the better themethod is able to cluster DVPs in a
clinical relevant manner. Themethods are scored, for each clinical data, from the best to the poorest.

Variable Distance Method Variable Distance Method Variable Distance Method

Age 0.19 CNN AE baseline 0.05 BMI CNN AE template 0.05 BPM CNN AE baseline

Age 0.18 DDTW baseline 0.05 BMI CNN AE baseline 0.04 BPM DDTW baseline

Age 0.17 CNN AE template 0.05 BMI DDTW baseline 0.04 BPM CNN AE template

Age 0.17 Handcrafted template 0.04 BMI Handcrafted template 0.03 BPM Handcrafted template

Age 0.17 Handcrafted baseline 0.04 BMI Handcrafted baseline 0.03 BPM Handcrafted baseline

Age 0.08 DDTW template 0.03 BMI DDTW template 0.03 BPM DDTW template

Age 0.07 Handcrafted optimal 0.02 BMI Handcrafted optimal 0.02 BPM Handcrafted optimal

Age 0.05 CNN AE optimal 0.01 BMI CNN AE optimal 0.01 BPM CNN AE optimal

Age 0.05 DDTW optimal 0.01 BMI DDTW optimal 0.01 BPM DDTW optimal

Height 0.06 Handcrafted baseline 0.08 PAD CNN AE template 0.09 PAS CNN AE baseline

Height 0.06 CNN AE baseline 0.08 PAD CNN AE baseline 0.09 PAS CNN AE template

Height 0.06 CNN AE template 0.07 PAD Handcrafted template 0.08 PAS DDTW baseline

Height 0.06 Handcrafted template 0.07 PAD DDTW baseline 0.08 PAS Handcrafted template

Height 0.05 DDTW baseline 0.06 PAD Handcrafted baseline 0.07 PAS Handcrafted baseline

Height 0.02 Handcrafted optimal 0.03 PAD DDTW template 0.03 PAS DDTW template

Height 0.02 DDTW template 0.03 PAD Handcrafted optimal 0.03 PAS Handcrafted optimal

Height 0.02 CNN AE optimal 0.02 PAD CNN AE optimal 0.02 PAS CNN AE optimal

Height 0.01 DDTW optimal 0.02 PAD DDTW optimal 0.02 PAS DDTW optimal

TT 0.17 DDTW baseline 0.09 PWV DDTW baseline 0.05 Weight DDTW baseline

TT 0.17 CNN AE baseline 0.09 PWV CNN AE baseline 0.05 Weight CNN AE template

TT 0.16 Handcrafted template 0.09 PWV Handcrafted baseline 0.05 Weight CNN AE baseline

TT 0.16 CNN AE template 0.09 PWV CNN AE template 0.04 Weight Handcrafted template

TT 0.15 Handcrafted baseline 0.08 PWV Handcrafted template 0.03 Weight DDTW template

TT 0.07 DDTW template 0.04 PWV DDTW template 0.03 Weight Handcrafted baseline

TT 0.06 Handcrafted optimal 0.03 PWV Handcrafted optimal 0.02 Weight Handcrafted optimal

TT 0.05 DDTW optimal 0.03 PWV DDTW optimal 0.02 Weight CNN AE optimal

TT 0.05 CNN AE optimal 0.03 PWV CNN AE optimal 0.02 Weight DDTW optimal

directly correlated to the transit time.Themore rigid the arteries, the
smaller is the transit time due to a physiological loss of compliance of
the arteries with the age (Nitzan et al., 2001). The obtained clusters
seem to be able to differentiate among DVP related to subjects with
different levels of arterial stiffening. The obtained clusters exhibit
differences in dicrotic notch characteristics and also in the shape
of the systolic portion of the DVP (see Figure 7). The systolic peak
becomes wider with age and the diastolic wave disappears with age
(Figure 6). However, further studies are needed to better understand
the relation between the obtained clusters and their physiological
meaning.

4 Conclusion

In this work we investigated several unsupervised approaches
to cluster DVPs. We wanted to address whether or not a dataset

composed of real DVPs can be described by 4 classes based on
the dicrotic notch position, as previously reported by Dawber
et al.

Our results indicate that DVP wave shapes do differ due to
their dicrotic notch characteristics. However, there are additional
differences such as width of the systolic peak and the strength of
a secondary systolic wave. Investigating the optimal number of
clusters with the help of methods such as inertia, silhouette score
and prediction strength, we found 7 clusters of DVP wave shapes.
Whilst these methods do require some subjective interpretation,
using multiple methods allowed us to reduce the level of
subjectivity.

The DDTW clustering approach performed best in this study,
providing better separation between clusters than using either
handcrafted features, or a CNN autoencoder approach. The DDTW
approach takes into account the shape of the DVP wave by applying
DTW to the first derivative of the DVP wave, and may therefore
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confer benefit over the previously proposed approach of applying
DTW to the original DVP wave.

The different clusters of DVP waves correspond to different
clinical characteristics.The clustering revealed that DVPwave shape
was primarily associated with pulse transit time and age, which is in
accordance with other studies Yousef et al. (2012); Alty et al. (2007);
Brillante et al. (2008). Therefore, these clusters may provide insight
into a subject’s vascular age. However, further studies are needed
to better investigate the relationship between PWV and age and its
effect on the DVP morphology. However, further studies are needed
to better understand the relation between the obtained clusters and
their physiological meaning.

Further improvements will focus on improving the measure
of similarity d to assess differences in the probability density
function by taking into consideration the distance between the
averaged clinical values, the standard deviation and the variability
among clusters. Other methods such as Gaussian and exponential
modelling will be taken into consideration to extract relevant
features from the DVP. In order to test the presented approach on a
public dataset for comparison, it would be very helpful if public PPG
datasets were created which contain PPG signals alongside reference
cardiovascular measurements such as systolic blood pressure, pulse
wave velocity and generic data such as age, weight and BMI.
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Many methods have been proposed to detect beats in photoplethysmogram
(PPG) signals. We present a novel method which uses the Symmetric Projection
Attractor Reconstruction (SPAR) method to generate an attractor in a two
dimensional phase space from the PPG signal. We can then define a line through
the origin of this phase space to be a Poincaré section, as is commonly used in
dynamical systems. Beats are detected when the attractor trajectory crosses the
Poincaré section. By considering baseline drift, we define an optimal Poincaré
section to use. The performance of this method was assessed using the WESAD
dataset, achieving median F1 scores of 74.3% in the Baseline phase, 63.0% during
Stress, 93.6% during Amusement, and 97.7% duringMeditation. Performancewas
better than an earlier version of the method, and comparable to one of the
best algorithms identified in a recent benchmarking study of 15 beat detection
algorithms. In addition, our method performed better than two others in the
accuracy of the inter-beat intervals for two resting subjects.

KEYWORDS

photoplethysmography, beat detection, symmetric projection attractor reconstruction,
PPG signals, attractor, poincaré section, inter-beat intervals

1 Introduction

Photoplethysmogram (PPG) signals are now widely measured both by consumer
smartwatches and by clinical pulse oximeters for unobtrusive physiological monitoring. A
key step in many PPG signal processing tasks is detecting heartbeats in the PPG signal:
this can form the basis for heart rate monitoring; it is fundamental to extracting inter-
beat intervals (IBIs) from which to assess autonomic function through pulse rate variability
analysis (Mejía-Mejía et al., 2020); and is often a precursor to estimating blood pressure
from PPG pulse wave morphology (Mejía-Mejía et al., 2022). Therefore, accurate PPG beat
detection algorithms are of the utmost importance in the field.

Beat detection in photoplethysmogram (PPG) signals is not a straightforward task.
First, PPG signals are highly susceptible to noise and in particular motion artifact.
Second, PPG signals do not exhibit a prominent feature indicating a heartbeat, in
contrast to electrocardiogram (ECG) signals which contain a high-frequency R-wave each
heartbeat. Third, the morphology of PPG signals can vary from one beat to the next.
PPG beats are commonly detected using some form of either peak or trough detection
(Charlton et al., 2022). However, peaks or troughs in the PPG are not always clearly defined,
particularly in the presence of noise. Furthermore, PPG signals sometimes exhibit two peaks
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FIGURE 1
A PPG signal for subject S4 with double peaks.

per heartbeat, with the first being the highest for some
beats and the second being the highest for other beats
(see Figure 1), which can introduce timing errors into
beat detection.

In this study we propose a novel beat detection algorithm
for PPG signals based on the generation of Symmetric Projection
Attractor Reconstruction (SPAR) attractors (Aston et al., 2018;
Lyle and Aston, 2021). The SPAR method derives attractors
from signals using a number of equally spaced points running
through the signal to generate a bounded attractor in a two-
dimensional phase space. In this work, we use a SPAR attractor
as previously defined and combine it with the concept of a
Poincaré section, a line which cuts through the attractor that is
a concept borrowed from dynamical systems theory (Wiggins,
2003), to detect beats from SPAR attractors. The beat detection
algorithm presented in this paper has been refined since an early
version of the method was presented in Charlton et al. (2022).
Thus, we present new results on the performance of the SPAR beat
detector and compare its performance with the best methods in
Charlton et al. (2022).

Our novel beat detection algorithm may be applied not only
in heart rate monitoring, but also for applications requiring
accurate inter-beat interval estimation such as heart rhythm
assessment, heart rate variability analysis, and stress monitoring.
The algorithm may be particularly useful for wearable devices
such as smartwatches, smart rings, and earbuds, due to
its low computational complexity and its ability to handle
baseline wander.

Heart Rate Variability (HRV) analysis (Acharya et al., 2006)
consists of deriving a range of useful measures from the IBIs,
which are obtained from the distances between successive R peaks
of an ECG signal. Similarly, Pulse Rate Variability (PRV) (Mejía-
Mejía et al., 2020) performs a similar analysis using the IBIs derived
from a PPG signal. It has been concluded that PRV is a valid
surrogate for HRV for healthy, resting subjects (Mejía-Mejía et al.,
2020).Thus, we also compare the accuracy of the SPAR beat detector
IBIs and two other PPG beat detection algorithm IBIs against the
ECG RR intervals for two resting subjects which have no artefacts in
their PPG signals.

2 Methods

2.1 Dataset

The dataset used in this study was the Wearable Stress and
Affect Detection (WESAD) dataset from the UC Irvine Machine
Learning Repository (Schmidt et al., 2018). This dataset includes:
i) PPG signals recorded from an Empatica E4 wrist-worn device
at a sampling frequency of 64Hz; and ii) ECG signals recorded
simultaneously from a RespiBAN chest-worn device at 700Hz. For
each of the 15 subjects there is around 100 min of data. Each subject
followed a protocol including five phases: Baseline, Amusement,
Stress, Meditation 1, and Meditation 2. We considered all phases in
our analysis.

2.2 Symmetric Projection Attractor
Reconstruction

The Symmetric Projection Attractor Reconstruction (SPAR)
method converts the PPG signal, which is measured over time,
into an attractor in a bounded domain, by plotting its trajectory
in three-dimensional phase space and then projecting it onto a
particular plane, as described in Aston et al. (2018). The process
of obtaining an attractor from a PPG signal is summarised
in Figure 2, and the remainder of this section provides further
mathematical details.

Using Takens’ method for reconstructing attractors using time
delay coordinates (Takens, 1981), an attractor can be reconstructed
in anN-dimensional phase space from a single signal x(t) by using a
vector of delay coordinates given by

[x (t) ,x (t− τ) ,x (t− 2τ) ,…,x (t− (N− 1)τ)]

where τ > 0 is a fixed delay and N ≥ 2 is the embedding
dimension. The embedding dimension was initially chosen as
N = 3 for ease of visualisation in Aston et al. (2018) although
this was later generalised to any embedding dimension N ≥ 3 in
Lyle and Aston (2021).

For the case N = 3, we define the new variables

y (t) = x (t− τ) , z (t) = x (t− 2τ)

where the time delay τ is chosen to be one-third of the average cycle
length (Aston et al., 2018). The trajectory can then be plotted in a
three-dimensional phase space as shown in Figure 2B. Projecting
the three-dimensional attractor onto a plane perpendicular to the
vector (1,1,1) reduces the effect of baseline wander and gives a
two-dimensional attractor with approximate three-fold rotational
symmetry (Aston et al., 2018). For this, we define the new variables

u = 1
3 (x+ y+ z)

v = 1
√6
(x+ y− 2z)

w = 1
√2
(x− y)

and then the (v,w) plane is perpendicular to the vector (1,1,1),
(Aston et al., 2018). The resulting attractor in the (v,w) plane is
shown in Figure 2C where the trajectory runs in a clockwise
direction and each loop of the attractor corresponds to one cycle of
the PPG data.
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FIGURE 2
The steps used to generate a two-dimensional attractor using the SPAR method. The data is 420–430 s of subject 13. (A) A sample of PPG signal; (B)
The trajectory plotted in three dimensional phase space; (C) The corresponding attractor in the (v,w) plane.

2.3 Using a Poincaré section for beat
detection

In dynamical systems, described by a system of ordinary
differential equations, a Poincaré section that intersects the
flow in phase space transversely can be used to convert
a continuous dynamical system into a discrete dynamical
system (Wiggins, 2003). Here we are working with data,
not a dynamical system, but we similarly define a Poincaré
section that intersects our attractor as a means of detecting
individual beats. The section should be transversal to the
flow ideally, which of course can never be guaranteed for
data-defined trajectories. Due to the approximate three-fold
symmetry of the attractor, there are three natural choices of the
Poincaré section, as shown by the black, red and green lines in
Figure 3A.

In practice, we define a fixed Poincaré section by the horizontal
line w = 0, v > 0 and rotate the attractor appropriately. The
timestamps at which the section is crossed are found by checking
the conditions wi > 0 and wi+1 < 0. Note that these conditions also
specify the direction of crossing, namely, from above to below the
line.When these conditions are satisfied, linear interpolation is used
to find the time t* of the crossing more accurately and then the
further condition v (t*) > 0 is also checked. If required, IBIs can
be obtained by finding the difference between consecutive times at
which the attractor intersects a particular Poincaré section.

2.4 Varying the embedding dimension N

The description of the SPAR method for generating attractors
(in Section 2.2) considered an embedding dimension N = 3. More
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FIGURE 3
The (A) N = 3 and (B) N = 4 attractors and chosen Poincaré sections.

generally, the embedding dimension can be set to any integer
N ≥ 3. Lyle and Aston (2021) showed how to generate similar
two-dimensional attractors (vN,k,wN,k), but with multiple attractors
for each dimension N > 4 which we call projections, indexed by
k = 1,… ,⌊(N− 1)/2⌋. The (N,k) attractor has an approximate m-
fold rotational symmetry where m = N/gcd(N,k). The attractor for
the PPG signal shown in Figure 2A for N = 4 is shown in Figure 3B
and for N = 5,7,9 is shown in Figure 4, all with projection k = 1.
We investigated using higher projections k > 1 but found that they
were not suitable as the attractors were more variable in these
cases. Therefore all of our examples use projection k = 1. Similarly
to the N = 3 case, we used 4 equally spaced Poincaré sections in
approximately the middle of each side of the N = 4 attractor, as
shown in Figure 3B, to give multiple estimates for individual beats
and IBIs.

For higher dimensions, the attractors become more circular in
nature (Lyle and Aston, 2021) which is an advantage. However,
if N is too large, there may be very few data points between
each of the delay coordinates if the sampling frequency of
the data is relatively low and so there may be a mismatch
between the expected positions of the delay coordinates and data
points available.

2.5 Finding the optimal Poincaré section

We now consider whether there is an angle for the Poincaré
section that consistently gives the best accuracy. An example when
finding the errors for the section at all possible angles for the N = 3
attractor is shown in Figure 5, where the distance from the centre of
the plot indicates the mean absolute error. As might be expected,
the errors are high if the section is positioned at the corners of
the attractor and is much lower when positioned in the middle

of the straight sides of the attractor. However, this pattern is not
repeated for higher values of N, when the attractor becomes more
circular, as is also shown in Figure 5. The optimal angle seems
to be always in the first quadrant and has an increasing angle as
N increases.

We conjecture that the optimal angle of the section is related to
baseline wander in the signal and so we consider the effect of linear
baseline drift on the attractor by considering the function

x (t) = x0 (t) + ct (1)

where x0(t) is an approximately periodic function which has linear
drift added to it, where c is a constant.

When N = 3, the v attractor coordinate is given by

v (t) = 1
√6
(x (t) + x (t− τ) − 2x (t− 2τ))

= 1
√6
(x0 (t) + x0 (t− τ) − 2x0 (t− 2τ) + ct

+ c (t− τ) − 2c (t− 2τ))

= v0 (t) +
3
√6

cτ

where v0(t) is the v coordinate generated from the signal x0(t).
Similarly, the w attractor coordinate in this case is given by

w (t) = 1
√2
(x (t) − x (t− τ))

= 1
√2
(x0 (t) − x0 (t− τ) + ct− c (t− τ))

= w0 (t) +
1
√2

cτ

where w0(t) is the w coordinate generated from the signal x0(t).
Thus, the baseline drift added to the signal results in a translation

of the (v0,w0) attractor which is proportional in magnitude to the
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FIGURE 4
The attractors for (A) N = 5, (B) N = 7, (C) N = 9.

slope c of the drift. The direction of movement in the (v,w) plane is
in a direction θ defined by

tan θ =
cτ/√2

3cτ/√6
= 1
√3

which is independent of c. In this case, we have θ = π/6 if c is positive
or θ = −5π/6 if c is negative. The angle θ = π/6 is shown as a red line
on theN = 3 plot in Figure 5 and it can be seen that this is very close
to the optimal angle in this case.

We can generalise this result to any value of N ≥ 3.
Supplementary Theorem S1.
The (N, k) attractor for k = 1 … , ⌊(N − 1)/2⌋ generated from

an approximately periodic signal x0(t) with superimposed linear drift

given by Eq. 1 is related to the (N, k) attractor generated from the signal
x0(t) only by a translation in the direction θN,k where

θN,k =
π
2
− πk

N
(c > 0) , −π

2
− πk

N
(c < 0)

Themagnitude of the shift is proportional to the slope c of the drift
but the direction of the shift is independent of c.

The proof of this result is given in the Supplementary Material.
We note that as N→∞ for fixed k, θN,k→±π/2. Also, for

k = 1 and N = 3,5,7,9, we have θN,k = 30°,54°,450/7 = 64.29°,70°
respectively. These angles are shown as red lines on the respective
plots in Figure 5 and give good agreement with the minimum error
in each case.
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FIGURE 5
The mean absolute error of the inter-beat intervals for varying angle of the Poincaré section (in degrees) applied to the PPG signal shown in Figure 2A
for the attractors with (A) N = 3, (B) N = 5, (C) N = 7, (D) N = 9. The optimal angle of Supplementary Theorem S1 is depicted by the red lines.

We conjecture that the angle given in Supplementary Theorem
S1 is optimal because baseline drift on the signal moves the attractor
in the direction of the section and so has no effect on the time for
each cycle whereas, if the direction of translation is not aligned with
the section, the IBIs will be increased or reduced by the translation
of the attractor.

2.6 Algorithm implementation

The SPAR beat detector was implemented as follows. Signals
were segmented into 20 s windows with a 5 s overlap. For each
window, the time delay parameter τ was found by: i) filtering the

signal using a fourth order Chebyshev II filter to remove baseline
wander, as recommended in Liang et al. (2018) ii) identifying the
average cycle length (i.e., the average IBI); as the cycle length which
produced the maximum autocorrelation value for the filtered signal
(limited to a search between and 0.4 s and 1.5 s, corresponding to a
heart rate range of 40–150 bpm); and iii) calculating τ as 1/N times
this average cycle length.The attractor trajectory was then generated
from the raw PPG signal using this value for τ. Individual beats were
then detected as the times at which the attractor trajectory crossed
the optimal Poincaré section as given in SupplementaryTheorem S1.
Multiple embedding dimensions were investigated.

A further step was included to account for noisy signals. The
autocorrelation function provides values between −1 and 1, with
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FIGURE 6
All plots are for the PPG data shown in Figure 2A and the N = 3 attractor. (A) The beats detected when the delay coordinate x lies on either the green,
black or red sections shown in Figure 3A. (B) The ECG inter-beat intervals together with the PPG inter-beat intervals for each section. (C) A Bland
Altman plot for each section with mean indicated by solid lines and mean plus/minus 1.96 x standard deviation indicated by dashed lines.

1 indicating perfect correlation. Through a manual inspection,
a threshold of the maximum autocorrelation value of 0.4 was
identified to distinguish between clean and noisy signals. Windows
with values of <0.4 were deemed noisy, and so the window was
divided in half and the cycle length corresponding to the highest
maximum of the autocorrelation function from the two-halves of
the window was used as the average cycle length. This worked
well where there was high quality signal at the start or end
of the window.

In the periods of overlap between consecutive 20 s windows,
beats were duplicated but were not necessarily identified at the
exact same times, due to a difference in the time delay τ for
the two windows. The smallest error between the duplicated
beats was found and this beat was the last one used from
the earlier window before swapping over to the beats in
the new window.

Following beat detection, missed or false beat detections
were corrected as follows. Missed beats were detected by
checking for IBIs greater than the median IBI plus a tolerance
of 0.35IBI. The number of missing beats was determined from
the IBI divided by the median IBI and the corresponding
number of evenly spaced beats was inserted. Similarly, if two
beats were closer than the median IBI minus a tolerance
of 0.3IBI then the beat closest to its other neighbour
was removed.

2.7 Performance assessment

The performance of the SPAR beat detector was assessed in
three ways: i) PPG-derived IBIs and reference ECG-derived IBIs
were compared for short time intervals for illustrative purposes;
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TABLE 1 The mean absolute error for the inter-beat intervals of the PPG
signal shown in Figure 2A.

N Section Mean absolute error (s)

3 black 0.0036

3 green 0.0031

3 red 0.0039

4 black 0.0045

4 green 0.0031

4 cyan 0.0045

4 red 0.0041

ii) the accuracy of beat detection was assessed against reference
beats identified in the ECG signal using the F1 score and iii)
PPG IBIs were compared with ECG-derived IBIs for two subjects
during the Meditation 1 phase. These three approaches are
now described.

First, IBIs obtained from PPG signals using the SPAR beat
detector were compared to reference IBIs obtained from ECG
signals. To do so, beats were detected in PPG signals using the SPAR
beat detector, and then IBIs were calculated as the time differences
between consecutive beat detections. R-peaks were detected in the
ECG signals, manually checked, and corrected where necessary (for
the whole dataset). ECG-derived IBIs were then calculated as the
time differences between consecutive R-peaks. Performance was
expressed as the mean absolute error between PPG- and ECG-
derived IBIs.

Second, the performance of the SPAR beat detector was assessed
against reference ECG beats using the F1 score, which is the
harmonic mean of the recall (i.e., sensitivity, the proportion of
ECG beats which were correctly detected in the PPG) and the
precision (i.e., positive predictive value, the proportion of PPG
beat detections which were correct). The F1 score simplifies in
this context to

F1 (%) =
2ncorrect

nPPG + nECG
× 100

where ncorrect is the number of correct beats, nPPG is the number of
PPG beats and nECG is the number of ECG beats. The number of
correct PPG beats was determined as in Charlton et al. (2022) by
finding the nearest PPG beat to each ECG R peak and designating
it as correct if the absolute time difference between the two was
<150 ms. The results were reported as median (lower - upper
quartiles) F1 scores on a per subject basis. The performance of
the present SPAR beat detector algorithm was compared with that
of an earlier version of the algorithm, which was described in
Charlton et al. (2022).

It was important to synchronise the timings of ECG and PPG
signals since they were measured using different devices. To do
so, PPG beats were aligned with ECG R-peaks using the time
delay which resulted in the highest number of correct beats (with
candidate time delays of between −10 s and 10 s in steps of 10 ms
investigated).

Finally, we compared PPG-derived IBIs found using the SPAR
beat detector with the ECG-derived IBIs and did a similar
comparison with the qppg and MSPTD beat detection algorithms,
which were the top two methods for beat detection in Charlton
et al. (2022). The sequences of IBIs derived from the ECG and
PPG signals can only be compared if they have detected the same
number of beats. Also, if the PPG beat detector missed a beat which
has then been estimated, this beat is likely to have a larger error
which will dominate any errors from correctly detected beats, thus
distorting the results. Thus, we chose subjects from the WESAD
data using the Meditation 1 phase for which there were no noisy
intervals in the signal so that all the beats are detected by the
PPG beat detectors. In particular, we chose subjects S9 and S10.
(The exception to this was the qppg beat detector which incorrectly
detected a few beats at the start for subject S9 and so for this
case, we excluded the first 14 s of data, which should have little
influence on the results.) The Meditation 1 phase for both of these
subjects was 400 s long and consisted of 475 beats for subject
S9 and 501 beats for subject S10. The IBIs were found using the
three PPG beat detectors (using N = 3,… ,10 for the SPAR beat
detector) and from the corresponding ECG signals. Each sequence
of PPG-derived IBIs was aligned with the ECG-derived IBIs by
finding the minimum of the mean absolute error with a shift of
±5 IBIs. We then report the mean absolute error of these aligned
sequences of IBIs.

3 Results

3.1 Illustrative examples

Illustrative examples of PPG beat detection using the SPAR
beat detector are now presented. Figure 6A shows the PPG beats
detected using an N = 3 attractor for the signal in Figure 2A,
where the points shown are the position of the leading delay
coordinate, x, when the attractor trajectory crosses each of the
three sections. The corresponding IBIs obtained are shown in
Figure 6B while the Bland Altman plot in Figure 6C shows the
errors when compared to the ECG-derived IBIs. This plot shows
that the mean of the errors is smallest for the red and green
sections, while the standard deviation is the smallest for the
black and green sections, thus suggesting that the results obtained
from the green section are the best. The mean absolute error for
each section is given in Table 1 from which we can see that in
this particular case the best results were also obtained for the
green section.

In the case of N = 4, similar results are shown in Figure 7, and
the corresponding mean absolute errors are shown in Table 1. The
green section again gave the best results with the smallest standard
deviation in the Bland Altman plot and the same error as for the
green section with N = 3.

3.2 The accuracy of the SPAR beat
detection

Results relating to the accuracy of the SPAR beat detector are
now presented, expressed as the F1 score. Accuracy was assessed
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FIGURE 7
All plots are for the PPG data shown in Figure 2A and the N = 4 attractor. (A) The beats detected when the delay coordinate x lies on either the green,
black, red or cyan sections shown in Figure 3A. (B) The ECG inter-beat intervals together with the PPG inter-beat intervals for each section. (C) A Bland
Altman plot for each section with mean indicated by solid lines and mean plus/minus 1.96 x standard deviation indicated by dashed lines.

over each of the five protocol phases, and using a range of
attractor embedding dimensions: N = 3,5,7,9. Box plots were used
to summarise these results for all the subjects, as shown in Figure 8.
There was only a small difference in the median F1 scores for the
different values ofN.The best median score was obtained withN = 3
for three of the five phases (Stress, Amusement and Meditation 2).
N = 3 also provided good performance in the other phases, being
the second best performer in the ‘Meditation 1’ phase, and the
third best performer in the ‘Baseline’ phase (where the median F1
score with N = 3 was 1% lower than that of the best performer,
N = 7).

For comparison, results obtained using the previously reported
SPAR method are shown in Figure 9. It can be seen that the new
SPAR method gives significantly improved results compared with
the previous method.

3.3 The accuracy of the SPAR inter-beat
intervals

The mean absolute error between the ECG-derived IBIs and the
PPG-derived IBIs was found for the SPAR, MSPTD and qppg beat
detectors for subjects S9 and S10 during the Meditation 1 phase.
These errors are shown in Figure 10.

For subject S10, the SPAR errors are much smaller than those
for the other two algorithms. The reason for this is that there
are quite a few double peaks in this PPG signal and the second
peak is sometimes the highest, resulting in inaccurate IBIs. A
sample of the signal with the detected peaks and the IBIs calculated
using the qppg algorithm are shown in Figure 11. The results
for the MSPTD method are similar. We also note that the error
for the SPAR method with N = 4 is much larger than the other
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FIGURE 8
Box plots of the F1 scores for each of the five conditions and for
N = 3,5,7,9.

FIGURE 9
Box plots of the F1 scores for each of the five conditions and for
N = 3,5,7,9 using the earlier SPAR method that was used in
Charlton et al. (2022).

SPAR errors. The reason for this is that this method misses one
beat in approximately the middle of the data, and so the second
half of the IBIs are out of synch with the ECG IBIs. For the
SPAR method, the smallest mean absolute error of 0.0061 was
obtained for N = 3.

There is no problem with double peaks for subject S9, but here
also the SPAR method with N = 3 has the lowest mean absolute
error of 0.0052 as compared to 0.0103 for MSPTD and 0.0089
for qppg.

The simplest variability metric that is derived from the
IBIs is the standard deviation, which is usually referred to
as SDNN. The percentage error between the ECG-derived and
PPG-derived SDNN is shown in Table 2 for both subjects S9
and S10.

TABLE 2 Percentage errors in calculating SDNN compared to the
ECG-derived value for subjects S9 and S10.

S9 (%) S10 (%)

SPAR (N = 3) 2.22 2.16

MSPTD 8.52 42.67

qppg 4.59 45.39

4 Discussion

This study has presented a novel algorithm for detecting beats in
the PPG signal which is not based on peak detection. The algorithm
involves representing the PPG signal as an attractor in phase space
using the SPAR method, and identifying beats as the times at which
the attractor trajectory intersects the optimal Poincaré section. The
algorithm showed good performance on a dataset of PPG signals
acquired from a wrist-worn device across different phases of a
mental stress protocol.

We now compare our results with those reported in
Charlton et al. (2022) for the WESAD dataset and in particular,
with the qppg algorithm from the prior study. For the
‘Baseline’ phase, the median F1 score for qppg was 74.2%,
in comparison to the SPAR beat detector’s performance of
74.2% (N = 7). For ‘Stress’, the SPAR beat detector achieved
62.6% (N = 3), which was a little worse than qppg which
achieved 68.7%. For ‘Amusement’, the SPAR beat detector
achieved 93.6% (N = 3) which was marginally better than the
92.8% achieved by qppg. For ‘Meditation 1’, the SPAR beat
detector achieved 97.7% (N = 9) which is slightly lower than
the 98.3% obtained by qppg. The ‘Meditation 2’ data was not
considered in Charlton et al. (2022) so a comparison is not
possible in this case. In summary, the new SPAR methodology
performed similarly to qppg, which was one of the two best-
performing algorithms identified in Charlton et al. (2022). We
note that there are some differences in the algorithm assessment
methodologies used between these studies, introducing some
uncertainty into the above comparison. Nonetheless, in this study
the SPAR beat detector demonstrated a clear improvement in
performance when compared to an earlier version of the SPAR
beat detector.

The calculation of the IBIs for the SPAR method with N = 3
outperformed both the MSPTD and qppg algorithms, which
were the top two best performing algorithms in Charlton et al.
(2022), for two subjects during the Meditation 1 phase. Poor
results were obtained for the IBIs for subject S10 due to the
regular occurrence of a second peak being the highest, but
the SPAR method also performed best for subject S9 where
there were no such problems. In the calculation of SDNN, the
SPAR method with N = 3 had an error of just 2.2% relative
to the ECG-derived value for both subjects, whereas the other
methods had an error in excess of 40% for subject S10, due
to the double peaks, but also had higher errors (8.5% for
MSPTD and 4.6% for qppg) for subject S9. Thus, we conclude
that the SPAR method is clearly the best performing of the
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FIGURE 10
The mean absolute error between the ECG-derived IBIs and the PPG derived IBIs for (A) subject S9 and (B) subject S10 during the Meditation 1 phase.

FIGURE 11
(A) Some of the detected beats showing alternation between which of the double peaks is the highest and (B) the IBIs calculated by the qppg algorithm
for subject S10.

methods considered for calculating the IBIs that are required for
HRV/PRV analysis.

In conclusion, the novel SPAR PPG beat detection algorithm
presented in this study was found to perform well with wrist
PPG signals. The algorithm methodology differs greatly from
previously proposed PPG beat detection algorithms as it does
not depend on detection of peaks or troughs in the signal but
instead calculates times at which the orbit in reconstructed
phase space intersects a Poincaré section. These intersections
typically occur well away from the peaks and troughs and so
are not dependent on the clarity of the peaks and troughs.
Future work should investigate how the algorithm performs

across different subject groups. Future work may also consider
extending the method to detect beats in other cardiovascular
signals such as the electrocardiogram, and also to detect
events in any approximately periodic data, such as breaths in
respiratory signals.
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