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Editorial on the Research Topic
Omics applied to livestock genetics

Since the first draft of a mammalian genome, a multitude of studies including genomics,
transcriptomics, proteomics, epigenomics, and metabolomics datasets aiming to unravel the
biological mechanisms influencing phenotypic expression of complex traits have been
published (e.g., Portela and Esteller, 2010; Legrain et al., 2011; Costa et al., 2013;
Marcobal et al., 2013; Fonseca et al., 2018; Gallagher and Chen-Plotkin, 2018). These
“omics” studies have revolutionized the translation of genome to phenome research in the
last two decades, including the development of important tools for the livestock sector. There
are several projects, initiatives, and databases providing knowledge of genetic variations for
the economically, environmentally, and socially important traits in the main livestock
species. For instance, the AnimalQTLdb project (Hu et al., 2007) has curated genomic
information of a large number of quantitative trait loci (QTL) identified in cattle, pigs,
chicken, sheep, and other populations.

In many circumstances, the large-scale datasets generated by livestock “omics” projects
have been made publicly available to researchers aiming to generate knowledge and
translation tools for improving animal production and sustainability. For instance, the
Functional Annotation of Animal Genomes (FAANG) project has generated datasets to
decipher the function of genome segments, and it has analyzed samples from approximately
15 species, including pigs, cattle, sheep, and salmon (Giuffra et al., 2019). Moreover, the
“omics” approaches can be holistically applied to improve animal breeding strategies based
on biology-driven genomic predictions, besides a better understanding of the genomic
background of phenotypic variability in livestock systems (Chakraborty et al., 2022).

The Research Topic titled “Omics Applied to Livestock Genetics” presents a collection of
the latest findings in the area of livestock genetics based on omics approaches. Studies
focusing on food-source animals such as pigs, cattle, ducks, geese, and sheep involving omics
data revealed genetic information related to various relevant traits. The two most used
approaches were genomics and transcriptomics in cattle and pigs (Figure 1). The results
presented provide significant advancements toward understanding farm animal genetics.

In cattle studies, Silva-Vignato et al. combined SNP data from RNA-Seq and a high-
density SNP panel to generate a new dataset for performing a genome-wide association
analysis (GWAS) for intramuscular fat and backfat thickness in Nellore cattle. Their study

OPEN ACCESS

EDITED AND REVIEWED BY

Martino Cassandro,
University of Padua, Italy

*CORRESPONDENCE

Lucas Lima Verardo,
lucas.verardo@ufvjm.edu.br

SPECIALTY SECTION

This article was submitted to
Livestock Genomics, a section of the
journal Frontiers in Genetics

RECEIVED 31 January 2023
ACCEPTED 06 February 2023
PUBLISHED 16 February 2023

CITATION

Verardo LL, Brito LF, Carolino N and
Magalhães AFB (2023), Editorial: Omics
applied to livestock genetics.
Front. Genet. 14:1155611.
doi: 10.3389/fgene.2023.1155611

COPYRIGHT

© 2023 Verardo, Brito, Carolino and
Magalhães. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Editorial
PUBLISHED 16 February 2023
DOI 10.3389/fgene.2023.1155611

5

https://www.frontiersin.org/articles/10.3389/fgene.2023.1155611/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1155611/full
https://www.frontiersin.org/researchtopic/35117
https://www.frontiersin.org/research-topics/35117/omics-applied-to-livestock-genetics
https://www.frontiersin.org/articles/10.3389/fgene.2022.935238/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1155611&domain=pdf&date_stamp=2023-02-16
mailto:lucas.verardo@ufvjm.edu.br
mailto:lucas.verardo@ufvjm.edu.br
https://doi.org/10.3389/fgene.2023.1155611
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1155611


revealed genomic regions and regulatory SNPs associated with fat
deposition, including transcription factors involved in lipid
metabolism-related pathways. Also integrating genomic and
transcriptomic data, Liang et al. identified candidate genes for a
carcass trait, the weight of longissimus dorsi muscle, in Huaxi cattle.
After functional analysis of candidate genes and referring to other
studies, key genes were suggested to be associated with body
development and growth of muscle cells.

A proteomic study integrated with transcriptomic data was
presented by Nguyen et al. The authors aimed to elucidate the
critical proteins underlying puberty and uncover potential
molecular mechanisms from the hypothalamus and pituitary
gland of pre-pubertal and post-pubertal Brahman cattle. Their
study identified a small number of matched transcripts and
protein changes at puberty in each tissue, suggesting the need for
multiple omics analyses for a better interpretation of complex
biological systems. Moreover, Novais et al. applied factor analysis
(FA) and Bayesian network (BN) modeling to integrate proteomic-
transcriptomic data and complex traits by latent variables
(production, carcass, and meat quality traits) in Nellore cattle.
Their framework based on FA and BN generated new hypotheses
for molecular research, by integrating different types of data and
exploring hidden relationships.

Zhang et al. performed a whole-genome copy number variation
detection on Suhuai (SH), Chinese Min Zhu (MZ), and Large White
(LW) pigs based on next-generation sequencing data. Copy number
variation regions (CNVRs) were annotated and analyzed, with some
CNVRs verified by real-time polymerase chain reaction. The authors
observed that SH and LW pigs are more closely related and reported
annotated genes in CNVRs of each breed. Those genes were related
to unique traits in each breed and thus provided important
information for the identification of candidate genes for swine
breeding. Shi et al. integrated lncRNA-mediated ceRNA network
involved in immune regulation in the spleen of Meishan piglets.

Their study collected spleen tissues from Meishan piglets at three
different ages as a model, and mRNA and lncRNA transcripts were
profiled. The interactions between mRNAs and lncRNAs were
identified based on weighted gene co-expression network
analysis, demonstrating that lncRNAs are a crucial regulatory
component in mRNA. The expression of genes related to the
immune response of pigs was reported, contributing to a further
understanding of the mRNA and lncRNA expression in the spleen of
piglets.

Moreover, aiming to explore genomic imprinting, Ahn et al.
delineated spatially regulated imprinting of IGF2 transcripts, age-
dependent hepatic mono-to biallelic conversion, and reorganization
of topologically associating domains at the porcine H19/IGF2 locus
for a better translation to human and other animal research. Using a
polymorphism-based approach and omics datasets from chromatin
immunoprecipitation sequencing (ChIP–seq), whole-genome
sequencing, RNA-seq, and Hi-C, regulation of IGF2 during
development was analyzed. Their integrative omics analyses of
genome, epigenome, and transcriptome provided a
comprehensive view of imprinting status at the H19/IGF2 gene
cluster.

Gu et al., Gu et al. presented a transcriptome-wide study of
embryonic breast muscle development in ducks and chickens,
respectively. The authors performed m6A sequencing and
miRNA sequencing in the breast muscle of embryos in both
species. Several differentially methylated genes and differentially
expressed genes were identified. They presented the first
characterization of the m6A patterns in the duck transcriptome.
Besides, they found that miRNAs, in conjunction with m6A
modification, played a key role in the embryonic breast muscle
development of Wenchang chickens.

He et al. characterized the microRNA (miRNA) and circular
RNA (circRNA) expression profiles in the tail fat of sheep at 6, 18,
and 30 months of age. Differentially expressed miRNAs and
circRNAs were observed. Functional analysis revealed that
miRNA target genes were mainly involved in cellular
interactions, while the host genes of circRNAs were associated
with lipid and fatty acid metabolism. miRNAs were negatively
correlated with circRNAs during sheep tail fat development.
Multiple ceRNA regulatory networks dominated by
upregulated differentially expressed miRNAs may play a key
role in this developmental process. Furthermore, Ni et al.
reported whole genome sequencing analyses of a wild swan
goose population. They provided a valuable data set for
studies on goose genomics. These data may be useful to
explore the genetic relationships between the wild swan goose
and domestic goose.

In general, we observed that the main production species
have been studied through omics approaches. However, multi-
omics analyses are still in their infancy and the generation and
sharing of multi-omics datasets will be paramount for further
advancing research in this field. Functional genomic analyses and
high-throughput phenotyping are crucial for providing a clearer
picture of the genome-to-phenome paradigm in livestock
systems. Moreover, the integration of omics technologies with
phenomics into the breeding programs, which was absent from
this Research Topic, may help to increase the rates of genetic
progress in sustainable breeding programs.

FIGURE 1
Enrichment analysis highlighting the multi-omics approaches
(blue nodes) used and the most livestock species (green nodes)
studied in the Research Topic. The size of the nodes corresponds to
the Cytoscape network enrichment analysis, as the bigger the
nodes, the more used and/or studied were the corresponding nodes.
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Proteomic Analysis of Hypothalamus
and Pituitary Gland in Pre and
Postpubertal Brahman Heifers
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The hypothalamus and the pituitary gland are directly involved in the complex systemic
changes that drive the onset of puberty in cattle. Here, we applied integrated
bioinformatics to elucidate the critical proteins underlying puberty and uncover
potential molecular mechanisms from the hypothalamus and pituitary gland of
prepubertal (n = 6) and postpubertal (n = 6) cattle. Proteomic analysis in the
hypothalamus and pituitary gland revealed 275 and 186 differentially abundant (DA)
proteins, respectively (adjusted p-value < 0.01). The proteome profiles found herein
were integrated with previously acquired transcriptome profiles. These transcriptomic
studies used the same tissues harvested from the same heifers at pre- and post-puberty.
This comparison detected a small number of matched transcripts and protein changes at
puberty in each tissue, suggesting the need for multiple omics analyses for interpreting
complex biological systems. In the hypothalamus, upregulated DA proteins at post-
puberty were enriched in pathways related to puberty, including GnRH, calcium and
oxytocin signalling pathways, whereas downregulated proteins were observed in the
estrogen signalling pathway, axon guidance and GABAergic synapse. Additionally, this
study revealed that ribosomal pathway proteins in the pituitary were involved in the
pubertal development of mammals. The reported molecules and derived protein-
protein networks are a starting point for future experimental approaches that might
dissect with more detail the role of each molecule to provide new insights into the
mechanisms of puberty onset in cattle.

Keywords: puberty, hypothalamus, pituitary gland, brahman heifers, proteomics

INTRODUCTION

Early puberty is essential for the lifetime reproductive performance of cattle (Lesmeister et al., 1973;
Johnston et al., 2013). However, Brahman cattle, a breed of the Bos indicus sub-species, which can
withstand hostile conditions in northern production systems, are often older and heavier at puberty
than Bos taurus breeds (Chenoweth 1994). As reaching the age of puberty is an important event
contributing significantly to lifetime productivity, reducing the age at puberty is a major aim for Bos
indicus breeders for efficient herd productivity.

Like other vertebrates and humans, puberty in cattle is initiated when the hypothalamus-
pituitary-ovary (HPO) axis loses its sensitivity to negative feedback effects of steroid hormones,
allowing an increase in gonadotropin-releasing hormone (GnRH) secretion from GnRH neurons in
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the hypothalamus. The increase then stimulates gonadotropins’
secretion: luteinizing hormone (LH), and follicle-stimulating
hormone (FSH) are produced and released. FSH and LH then
regulate gonadal development (Day et al., 1984; Day et al., 1987;
Schillo et al., 1992; Day and Anderson, 1998; Gasser et al., 2006).
However, the process is controlled by multiple factors, and the
complex interactions between environmental and genetic factors
regulating the process are only now coming to light.

The complex genetic architecture of puberty–that is multiple
variants of small effect–is probably underpinned by variants
with transcriptional and post-transcriptional regulatory effects.
Variations in the expression of genes or proteins in the
hypothalamus or the pituitary gland, either alone or
simultaneously, will affect the pubertal process. To date,
several transcriptomic studies have focused on investigating
candidate molecules involved in critical molecular
mechanisms that drive puberty in Bos indicus in the HPO
axis. Fortes et al., 2016 identified five transcription factors,
E2F8, NFAT5, SIX5, ZBTB38, and ZNF605, with potential
regulatory roles at puberty in the hypothalamus in Brahman
heifers. Nguyen et al., 2017 confirmed the role of zinc finger
genes in a co-expression network using ovarian data of the same
Brahman heifers. Although these transcriptomic studies
confirmed the complexity of puberty, the correlation between
expression levels of mRNA and protein is renowned poor (Gygi
et al., 1999; de Sousa Abreu et al., 2009; Carvalhais et al., 2015;
Payne, 2015; Edfors et al., 2016). As such, proteomic studies are
complementary information, required to advance knowledge
beyond differential gene expression or co-expression analyses.

Most studies for understanding puberty-related proteins
involved in Brahman heifers were performed in peripheral
tissues such as the liver and adipose tissues (Nguyen et al.,
2018b; 2018c). Also, Tahir and others (Tahir et al., 2019) have
published on the ovarian protein abundances in pre versus post-
pubertal Brahman heifers. Although a neuropeptidome was
performed on the hypothalamus and pituitary gland of
Brangus heifers before and after puberty (DeAtley et al., 2018),
there is no previous proteome study in the hypothalamus and
pituitary gland of pubertal Brahman heifers. Therefore, this
present study was aimed at measuring the abundance of
proteins in the hypothalamus and pituitary gland in pubertal
Brahman heifers using liquid chromatography-electrospray
ionisation tandem mass spectrometry (LC-ESI-MS/MS).
Discovering protein abundance profiles at the different
pubertal stages in the hypothalamus and pituitary gland could
be useful for revealing key targets controlling the complex
mechanism of puberty and complementing the previous
transcriptomic studies.

MATERIALS AND METHODS

Ethics Statement
Animal use in this study was approved under animal ethics
number QAAFI/279/12. Animals were housed at the Gatton
Campus facilities of the University of Queensland.

Animal and Tissue Collection
The heifers used in this study and the assessment of puberty have
been described by (Fortes et al., 2016; Nguyen et al., 2017; Nguyen
et al., 2018a; Lau et al., 2020). In brief, these heifers were of the
same age with no difference in body weight or body condition
scores. Pubertal status was defined by the presence of the first
corpus luteum (CL) and progesterone concentration.
Postpubertal heifers were euthanized by stunning with a
nonpenetratng captive bolt through the parietal bone of the
head around day 15 after observing the first CL. The
nonpenetrating captive bolt methodology was used for
protecting the integrity of the lower brain tissues as previously
described (Cánovas et al., 2014). A pre-pubertal heifer was then
randomly selected to pair with a postpubertal heifer on slaughter
day. Plasma progesterone concentrations were 0.4 ± 0.2 ng/ml
and 2.0 ± 0.7 ng/ml in pre and post-pubertal heifers, respectively.

After euthanasia, the hypothalamus tissue (spanning from the
preoptic to the arcuate nucleus) and pituitary gland (including
anterior and posterior pituitary gland) tissues were quickly
harvested, frozen in liquid nitrogen, and stored at −80°C until
tissue processing.

Protein Sample Preparation
Protein extraction and digestion of heifers’ hypothalamus and
pituitary tissues were performed as previously described (Tan
et al., 2014; Nguyen et al., 2018b; Nguyen et al., 2018c). Briefly,
the hypothalamus and pituitary tissues were manually
homogenized into smaller fragments using rigid aluminium
foil to protect the tissue and a hammer to “pulverize” the
sample. This procedure was performed over a dry-ice bed to
preserve the sample and randomize the fragments, ensuring that
each sample was representative of the entire tissue. The resulting
tissue fragments were transferred into Eppendorf® lobind
microcentrifuge tubes (Sigma-Aldrich) where lysis solution
(7 M urea, 2 M thiourea, 4%SDS, 10 mM DTT and 1 mM
PMSF) was added. The fragments in the solution were
sonicated at power level 4 for 10 s. Subsequently, the
homogenate was vortexed vigorously for 1 h at 30°C.
Following that, 25 mM acrylamide was added to the samples
and subsequently incubated for 1 h at 30°C. Next, 5 mM DTT
was added to samples in order to quench excess acrylamide.
Four volumes of methanol: acetone (1:1) were added, and the
samples precipitated overnight at −20°C. The precipitates were
subsequently dissolved by adding 50 mM ammonium acetate,
and the protein concentrations were measured with a Nanodrop
(Thermo Scientific). After measuring concentration, about
100 µg of protein were transferred into a 10 kDa Amicon
Ultra 0.5 centrifugal filter device (Merck Millipore). This
filter device was then inserted into a collection tube and
centrifuged at maximum speed for at least 30 min. Protein
was diluted in 50 mM ammonium bicarbonate and then
again centrifuged at maximum speed for at least 30 min.
Trypsin was used as a protease for digestion of protein
solution followed by incubation overnight at 37°C. Peptides
were desalted by C-18 Zip-tip (adapted from Millipore
procedure) and stored at −20°C until analysis.
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Mass Spectrometry and Data Analysis
The LC-ESI-MS/MS was performed using a Prominence nanoLC
system (Shimadzu) and TripleToF 5600mass spectrometer with a
Nanospray III interface (SCIEX) as previously described (Xu
et al., 2015). Peptides were separated using a 70-min LC
gradient. MS-TOF scan was performed. We performed
information-dependent acquisition (IDA) of top peptides for
one randomly chosen pre-pubertal sample and one randomly
chosen post-pubertal sample. Subsequently, sequential window
acquisition of all theoretical mass spectra (SWATH) was
performed on all samples using the prepared IDA library for
each group.

Protein Pilot v5.0.1 (ABSCIEX) was then utilized for
peptide identification. The bovine protein database was used
for peptide mapping and retrieved from Uniprot (www.
uniprot.org; 43,813 entries assigned to Bos taurus). For
subsequent analyses, identified peptides with more than
99% confidence and a false discovery rate (FDR) of less
than 1% were used. Ion libraries were used for SWATH
analyses. The abundance of proteins and peptides was
computed by PeakView v2.1 software (ABSCIEX). The
differential expression analysis between the two grops of pre
and post-pubertal heifers as performed using MSstats (v2.6) in
R (Choi et al., 2014). For controlling the false discovery rate,
the p-values were adjusted using the Benjamini and
Hochberg’s approach. Proteins with an adjusted p-value <
0.01 were assigned as differentially abundant.

Transcriptomic Data
The hypothalamus and pituitary gland transcriptomic data
were obtained from Fortes et al., 2016 and Nguyen et al., 2017.
These transcriptomic studies used the same tissues harvested
from the same heifers at pre- and post-puberty. The mRNA
and protein pairs were identified from sets of expressed genes
(Fortes et al., 2016; Nguyen et al., 2017) and set of abundant
proteins (current study). The Pearson’s correlation coefficient
(r) was used to compute the correlations between expression
levels of mRNAs and the abundance of proteins in the
hypothalamus and pituitary gland from pre- and
postpubertal Brahman heifers. The cor() function in R was
used in this calculation. The unmatched mRNA-proteins were
not included in this analysis.

Functional Enrichment Analysis of DA
Proteins
The gene ontology analysis of differentially abundant (DA)
proteins was obtained through STRINGv10 system (http://
string-db.org). The DA proteins were classified according to
biological process (BP), cellular component (CC), molecular
function (MF) and pathways. Further, Cytoscape software
(http://cytoscape.org/) was used to retrieve biological terms for
the protein interaction networks. In order to determine
significant terms and pathways, the terms having a corrected
p-value (FDR) < 0.05 were considered.

RESULTS

Protein Identification, Quantification, and
Differential Abundance
In total, 765 proteins were identified and quantified in the
hypothalamus. Of this total, 275 differentially abundant (DA)
proteins were identified (adjusted p-value < 0.01) in the
hypothalamus libraries, of which 120 were significantly
downregulated and 155 were significantly upregulated at post-
puberty (adjusted p-value < 0.01) (Figures 1A, 2A and
Supplementary Table S1).

In the pituitary libraries, a total of 715 proteins were identified
and quantified. Of these, 186 were DA proteins, where 96 proteins
were significantly decreased, and 90 proteins were significantly
increased at post-puberty (adjusted p-value < 0.01) (Figures 1B,
2B and Supplementary Table S1).

The extent of DA proteins between pre and post-puberty in
each tissue was visualized in volcano plots (Figures 2A,B).
Protein IDs, corresponding gene names and fold change
(log2FC) information are listed in Supplementary Table S1.

Derived Correlations Between mRNA
Levels and Protein Abundances
The matching pairs of expressed mRNA and proteins in each
tissue were used for comparison because of the relatively small
number of matched DE mRNA and DA proteins. In the
hypothalamus, 641 out of 765 identified proteins corresponded
to mRNA transcripts discovered in the hypothalamic
transcriptome data (Fortes et al., 2016) (Figure 1A and
Supplementary Table S2). The correlation between 641
protein and transcript pairs in the hypothalamus was positive
but insignificant, with a correlation coefficient of 0.05 (p-value =
0.16). Among these pairs, only eight DE genes were DA proteins,
namely TUBB2B, OMG, SPTAN1, RAP1A, SSBP1, PLCB1, EIF3J
and H2AFX (Table 1). Six of these eight DA proteins showed the
same direction of regulation as their mRNAs.

When compared the proteins in the pituitary gland with its
corresponding mRNA data (Nguyen et al., 2017), 648 out of
715 mRNA-proteins pairs were identified (Fortes et al., 2016)
(Figure 1B and Supplementary Table S2). The correlation between
transcript and protein in pituitary for 648 proteins was minimal (r =
0.006; p-value = 0.8). Among these pairs, five DA proteins and DE
genes were in common. They were: IGFBP2, TAGLN, CHGB, ENO1
and HIST2H2AC (Table 1). Four of these five proteins showed the
same direction of regulations as their mRNAs.

Gene Ontology Enrichment Analysis
In order to evaluate themajor biological processes influencing puberty
onset in Brahman cattle, GO enrichment was performed to examine
the functional characteristics of DA proteins between pre and post-
pubertal samples in each tissue (Supplementary Tables S3, S4).

As shown in Figure 3, DA proteins in the hypothalamus were
predominantly enriched for “organic substance metabolic
process” (31%), “single-organism metabolic process” (27%),
“oxidation-reduction process” (14%) and “nervous system
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development” (12%), in the BP category of GO terms. As
expected, DA proteins were involved in the peptide metabolic
process and brain development (including development of
neurons, glial cells and axons). These DA proteins were also
annotated to the terms “response to oxidative stress,” “glutamine
metabolic and catabolic process,” “energy derivation by oxidation
of organic compounds,” and “regulation of stress-activated
MAPK cascade” (FDR <0.05). MF analysis revealed DA
proteins were connected to 89 enriched GO terms, including
proteins involved in binding (38%) and catalytic activity (34%).
There were 116 enriched GO terms found in the CC category
(FDR <0.05), and the majority of DA proteins were located in the
cytoplasmic (51%) and intracellular (45%) space.

According to the GO annotations of DA proteins from the
pituitary gland (Figure 4), among 214 enriched BP terms, the
majority of DA proteins were classified in the single-organism
cellular process (39%), cellular process (38%), metabolic process

(35%) and biological regulation (30%). Enriched MF terms were 39
in the analysis of the pituitary gland (FDR <0.05). Hydrolases,
oxidoreductases and endopeptidase were the main protein classes
identified in this MF anotation. Moreover, the CC terms of pituitary
DA proteins were assigned to the organelle, membrane-bounded
organelle, cytoplasm, intracellular and extracellular regions.

KEGG Pathway Analysis
In order to investigate the biological pathways enriched in
response to puberty onset in Brahman heifers, a KEGG
pathway enrichment analysis was performed.

In the hypothalamus, comparison of pre- and post-pubertal
samples, yielded a total of 275 DA proteins mapped to 67
enriched pathways (Supplementary Table S5). Among enriched
pathways, known pathways that are related to puberty were also
identified. The enriched pathways included the estrogen signalling
pathway (FDR = 0.002), axon guidance (FDR = 0.006), glutamatergic

FIGURE 1 | Venn diagram of expressed mRNAs and proteins as well as differentially expressed (DE) mRNA and differentially abundant (DA) protein in each tissue.
(A) in the hypothalamus tissue, (B) in the pituitary gland.
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synapse (FDR = 0.0001), GABAergic synapse (FDR = 0.005), GnRH
signalling pathway (FDR = 0.02), oxytocin signalling pathway (FDR
= 0.001), calcium signalling (FDR = 0.01) and PPAR signalling
pathway (FDR = 0.05). DA proteins involved in the GnRH
signalling pathway were highlighted in Figure 5. In addition, DA
proteins were also involved in other pathways such as oxidative
phosphorylation (FDR = 6.6 × 10−12), the tricarboxylic acid cycle
(TCA, FDR = 3.58 × 10−9), non-alcoholic fatty liver disease (NAFLD,
FDR = 1.08 × 10−5), glycolysis and gluconeogenesis (FDR <0.05),
thyroid hormone synthesis (FDR = 0.05), metabolism of amino acids

and carbohydrate metabolism (FDR <0.05). The DE gene and
corresponding DA protein, PLCB1, was annotated to four
enriched pathways: GnRH signalling, estrogen signalling, calcium
signalling and oxytocin signalling. In short, pathways related to
neuronal-hormonal signalling and metabolism were significant
for the DA proteins in the hypothalamus (Table 2).

In the pituitary gland, a total of 186 DA proteins were assigned
to 12 KEGG pathways (FDR <0.05). Among these enriched
pathways, the ribosome pathway represented the largest
number of DA proteins (FDR = 0.0002). Complement and

FIGURE 2 | Protein profiles and overlap with RNAseq between pre- and postpubertal heifers in each tissue. (A) in the hypothalamus tissue. (B) in the pituitary gland.

TABLE 1 | List of common differentially expressed genes and abundant proteins in the hypothalamus and pituitary studies.

Tissue Ensembl ID Uniprot ID Gene symbol FC_mRNA FC_protein

ENSBTAG00000004093 Q6B856 TUBB2B −0.203 −0.394
HYP ENSBTAG00000025213 Q0IIH3 OMG 0.199 −0.297

ENSBTAG00000015327 E1BFB0 SPTAN1 −0.131 −0.117
ENSBTAG00000014710 P62833 RAP1A 0.113 0.087
ENSBTAG00000010931 F1N1S0 SSBP1 0.189 0.321
ENSBTAG00000008338 P10894 PLCB1 −0.319 0.779
ENSBTAG00000000359 G8JKV2 EIF3J 0.119 0.845
ENSBTAG00000038047 Q17QG8 H2AFX 0.199 1.026

ENSBTAG00000005596 F1N2P8 IGFBP2 −0.615 −0.452
PIT ENSBTAG00000007196 V6F957 TAGLN −0.405 −0.698

ENSBTAG00000011782 P23389 CHGB −0.266 −0.653
ENSBTAG00000013411 F1MB08 ENO1 −0.126 −0.170
ENSBTAG00000032456 F2Z4I6 HIST2H2AC 0.680 −0.338

FC, means fold change; HYP, means Hypothalamus; PIT, means Pituitary.
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coagulation cascades, glycolysis and gluconeogenesis, biosynthesis
of amino acids, and focal adhesion were also overrepresented
(Figure 6).

Protein -Protein Interaction Network
Analysis
The relationship among DA proteins was further investigated in a
network analysis. The hypothalamus network contained 181 nodes
(proteins) with 486 edges (interactions) (Figure 7). Heat shock
protein 90 alpha family class A member 1 (HSP90AA1) had the
highest number of connections in the network (34 edges), followed
bymalate dehydrogenase 2 (MDH2) and albumin (ALB) with 23 and
21 connections, respectively. Of note, HSP90AA1 contributes to the
estrogen signalling pathway, according to the KEGG pathway
analysis (Table 2). In addition, KRAS protein, which plays a role
in GnRH signalling, axon guidance, estrogen signalling and oxytocin
signalling, interacted with 13 proteins in the network (Table 2 and
Figure 7). PLCB1, a DE gene and DA protein, had nine connections
in the network: GNAQ, GNAI2, PIP4K2A, GNAO1, SYNJ1, GNB2,

PRKCG, CAMK2D, CAMK2A (Table 2 and Figure 7). These genes
that were hubs in the network analysis and were associated with
enriched pathways of biological relevance for puberty might be
essential drivers of puberty in cattle.

The interaction network from the pituitary DA proteins
comprised 113 nodes with 254 edges (Figure 8). Among these
nodes, ribosome-related proteins seem to form a dominant
cluster in the network. The protein RPS5 had 17 connections
within the network. A common DE gene and a DA protein,
ENO1, was found in the network with 10 connections. This
protein is involved in carbon metabolism, biosynthesis of
amino acids and glycolysis/gluconeogenesis, as identified by
the KEGG pathway analysis of DA proteins in the pituitary
between pre- and post-pubertal Brahman heifers.

DISCUSSIONS

High-throughput techniques such as transcriptomic and
proteomic studies are potent approaches to understanding

FIGURE 3 | Functional classification of differentially abundant proteins in the hypothalamus between pre-versus postpubertal heifers. Only highly significant GO
terms were shown (FDR <1.0E−10).
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gene expression and regulation. Mowever, no single approach can
stand alone if we are to understand the fundamental biology
underlying complex traits. Analyses at multiple levels are needed
to interpret complex biological systems. In this study, the
correlation between protein abundance and mRNA expression
in the hypothalamus and pituitary gland was insignificant. To
date, reports on the correlation between mRNA and proteins that
use high-throughput approaches are scarce. Yeast, bacteria and
human cancer data reports found limited correlations between
mRNA and protein levels (Anderson and Seilhamer, 1997; Gygi
et al., 1999; Chen et al., 2002; Griffin et al., 2002; Ghaemmaghami
et al., 2003; Greenbaum et al., 2003; Washburn et al., 2003; Tian
et al., 2004; Nie et al., 2006; Jayapal et al., 2008; de Sousa Abreu
et al., 2009; Haider and Pal, 2013; Bai et al., 2015; Carvalhais et al.,
2015; Payne, 2015; Edfors et al., 2016). A weak correlation of 0.05
was reported for 17 DE genes and corresponding protein levels
analysed in the bovine mammary gland (Dai et al., 2017). The
weak correlation between mRNA and protein expression levels
may result from methodological constraints and biological
factors, such as translational regulation and protein in vivo

half-lives (Maier et al., 2009; Vogel and Marcotte, 2012;
Haider and Pal, 2013). Additional data on factors affecting
protein levels and in-depth studies, can help address this
conundrum.

Hypothalamus transcriptome and proteome analyses in pre-
and post-pubertal Brahman heifers revealed eight DE genes that
are also DA proteins. Among these DA proteins, tubulin beta 2B
class IIb (TUBB2B) is involved in neuronal migration and axonal
guidance that are prominent brain remodeling mechanisms
during pubertal development (Bond et al., 1984; Romaniello
et al., 2015). A study in female rats noted that the
neurotrophic effects of estrogen on the central nervous system
at the onset of puberty were partly mediated by the increase of
tubulin beta class II (Rogers et al., 1993). Further, the significant
increase of TUBB2B and TUBB2A mRNA expression in low
progesterone endometrium was reported in heifers (Forde
et al., 2012). Our study revealed a decreased abundance of
TUBB2B post-puberty, suggesting the correlation between
TUBB2B and steroid hormones. High expression of TUBB2B
in pre-pubertal Brahman heifers is proposed to play a part in

FIGURE 4 | Functional classification of differentially abundant proteins in the pituitary between pre-versus postpubertal heifers. Only highly significant GO terms
were shown (FDR <1.0E−10).
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remodeling the brain and how it responds the feedback of ovarian
hormones. Changes to the central nervous system are intrincical
to pubertal development.

Another protein among the eight that were DA that were also
DE genes in the hypothalamus is spectrin alpha nonerythrocytic 1
(SPTAN1). The SPTAN1 gene is known to play a vital role in
brain development and epileptic encephalophathy (Wang et al.,
2018). This protein was identified as an upregulated gene in the
mammary epithelial cells of pre-pubertal female mice compared
to post-pubertal mice (Pal et al., 2017). These results in mice seem
contrasting to ours, as SPTAN1 was downregulated in post-
pubertal cattle. Species or tissue differences and the definition
for puberty (and therefore timing of sampling) could explain such
discrepancies. Nonetheless, SPTAN1 is emerging as a candidate
for future research targeting puberty machanisnsm in mammals.

Perhaps the Phospholipase C beta 1 (PLCB1) was the DA
protein, which is also a DE gene, with more evidence of its role in
puberty. PLCB1 plays a crucial role in reproductive physiology.

Genome-wide association studies in pigs reported the
contribution of PLCB1 to growth at puberty onset and in the
gonadotropin signalling pathway (Meng et al., 2017). Further,
PLCB1 disruption resulted in infertile mice with pleiotropic
reproductive defects (Filis et al., 2013). PLCB1 is a crucial
factor modulating GPCR signalling, which controls
reproductive physiology in mice (Jiang et al., 1997; Kim et al.,
1997; Xie et al., 1999; Bohm et al., 2002; Ballester et al., 2004; Filis
et al., 2013). Our results serve as evidence that PLCB1 may have a
role in puberty onset in Bos indicus cattle: it interacts in the
predicted network with other genes (GNAQ, GNAI2, PIP4K2A,
GNAO1, SYNJ1, GNB2, PRKCG, CAMK2D, CAMK2A) related
to GnRH signalling and other hormonal and neuronal signalling
pathways known to be involved in the feedback mechanisms
driving the activation of HPO axis. More importantly, PLCB1 was
one of the upregulated DA proteins at post-puberty involving in
GnRH signalling, estrogen signalling, calcium signalling and
oxytocin signalling. In hypothalamic neurons, the pulsatile

FIGURE 5 |Gonadotropin-releasing hormone signalling pathway containing differentially abundant proteins in the hypothalamus of pre- and postpubertal brahman
heifers. Pathway components representing differentially abundant proteins are in orange. Pathway was adapted from the KEGGdatabase (http://www.genome.jp/kegg-
bin/show_pathway?bta04912, accessed: 11/03/2018).

TABLE 2 | Enriched pathways related to differentially abundant proteins in heifer puberty in the hypothalamus.

Pathway name Count False discovery rate Proteins involved

GnRH signalling pathway 5 0.02 GNAQ, PLCB1, CAMK2A, CAMK2D, KRAS
Calcium signalling pathway 8 0.01 SLC25A6, ATP2B3, GNAQ, PLCB1, PRKCG, CAMK2A, CAMK2D, ATP2B4
Oxytocin signalling pathway 9 0.001 EEF2, PRKCG, CAMK2A, GNAQ, CAMK2D, PLCB1, GNAI2, GNAO1, KRAS
Axon guidance 7 0.006 GNAI2, RAC1, KRAS, CDK5, DPYSL2, DPYSL5, CFL1
GABAergic synapse 6 0.004 GAD2, GLUL, PRKCG, GNAO1, GNAI2, GNB2
Estrogen signalling pathway 7 0.002 HSPA8, GNAO1, KRAS, GNAI2, HSP90AA1, PLCB1, GNAQ
PPAR signalling pathway 4 0.05 DBI, ILK, APOA2, FABP7

Low and high abundant proteins at post-puberty (adjusted p-value < 0.01) appear in normal and bold type, respectively.
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release of GnRH is depended on voltage-gated calcium influx
(Krsmanović et al., 1992). Therefore, it is logical to propose that
the increase of GnRH release at the hypothalamus of Brahman
heifers may be initiated via oxytocin signalling, via PLCB1.

Pituitary transcriptome and proteome analyses revealed five
differentially expressed genes: IGFBP2, TAGLN, CHGB, ENO1
and HIST2H2AC, significantly less abundant post-puberty.
Among these, IGFBP2 was the DA and DE gene with
mounting evidence of its roles in puberty. IGFBP2 is a
predominant insulin growth factor binding protein synthesised
and secreted in the anterior pituitary during the pre-ovulatory
and early luteal phase in beef cattle (Funston et al., 1995; Roberts
et al., 2001). In the anterior pituitary, the expression of IGFBP2
fluctuated with changes in the estrous cycle that were associated
with serum progesterone (Funston et al., 1995). In addition,
estrogen signalling increased IGFBP2 expression in the
anterior pituitary of ewes, cattle, pigs and rats (Michels et al.,
1993; Clapper et al., 1998; Roberts et al., 2001; Rempel and
Clapper, 2002). Roberts et al. (2001) reported that IGFBPs
levels in the anterior pituitary decreased from pre-ovulatory to
early luteal development in beef cattle. Consistent with Robert

et al. (2001) observations, the mRNA expression of IGFBP2 was
decreased in the transcriptome study (Nguyen et al., 2017) and
the current study. In short, we observed a lower abundancy of
IGFBP2 in the bovine pituitary gland at the luteal phase post-
puberty. The release of IGFBP2 in the pituitary gland was
stimulated by gonadotropin-releasing hormone, as
demonstrated by Robert et al. (2001). Also, polymorphisms in
IGFBP2 were associated with age at puberty in Brahman cattle
(Fortes et al., 2013b).

Chromogranin B (CHGB), another DA protein that was also a
DE gene from the pituitary studies, belongs to a chromogranin
protein family, which has been noted to affect the secretion and
storage of FSH and LH at different periods of estrous cycle in
sheep (Crawford and McNeilly, 2002). A study of granin-
gonadotropin interactions in sheep observed a decrease of
CHGB mRNA level after the pre-ovulatory LH surge
(Crawford and McNeilly, 2002). In agreement with the sheep
study, mRNA expression of CHGB decreased at post-puberty in
the pituitary transcriptome of Brahman heifers (Nguyen at el.,
2017). Additionally, the neuropeptide CHGB was selected as one
of the fertility-related neuropeptides in the pituitary gland

FIGURE 6 | KEGG pathway analysis of differentially abundant proteins in the pituitary gland of pubertal Brahman heifers.
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neuropeptidome of pre- and post-pubertal Brangus heifers
(DeAtley et al., 2018). The neuropeptidome study of Brangus
heifers also reported higher levels of CHGB neuropeptide
products in pre-pubertal pituitary tissue (DeAtley et al., 2018).
This study observed a lower abundance of CHGB protein after
puberty in Brahman heifers. Although measuring neuropeptides
is different from measuring protein levels, both studies point to
the importance of CHGB in the pituitary glands during pubertal
development in cattle.

The DA protein α-enolase (ENO1) is one of the three isoforms
of glycolytic enzymes responsible for catalysing the conversion of
2-phosphoglycerate to phosphoenolpyruvate (Pancholi, 2001). A
study in the ovaries of pre-laying and laying geese suggested that
ENO1 may regulate reproductive function in female geese (Ji
et al., 2014; Kang et al., 2014). The overexpression of ENO1 in
granular cells induced the mRNA expression of FSH and LH
receptors (Ji et al., 2014). Activation of these receptors is
necessary for the hormonal functioning of pituitary
glycoprotein hormones (LH and FSH). Pituitary FSH and LH

concentrations decreased at puberty in heifers (Desjardins and
Hafs, 1968). Our current and transcriptome studies (Fortes et al.,
2016; Nguyen et al., 2017) found lower mRNA and protein
expression of ENO1 post-puberty. On the contrary, single-cell
RNA profiling found ENO1 to be down-regulated in a pre-
puberty gene network of mouse mammary glands (Pal et al.,
2017). It is apparent that ENO1 impacts female puberty, but its
precise function needs to be considered in terms of tissue and
species-specific.

The DA protein coded by the DE gene HIST2H2AC in the
pituitary, a member of the histone 2A family, was mapped to a
genetic locus reported linking puberty timing and pubertal height
growth in humans (Cousminer et al., 2013). A genetic correlation
between age at puberty and high height in Brahman heifers was
also reported (Vargas et al., 1998). Differential expression of
HIST2H2AC at mRNA and proteins level between pre- and post-
pubertal heifers proposes it has a role in pubertal development.
This candidate gene could be mined for mutations that could be
tested for their effects on height and puberty in cattle.

FIGURE 7 | Protein-protein interaction network in the hypothalamic tissue. Each node represents a protein. Edges illustrate the interaction between proteins. Node
size represents the level of differential abundance measured for each protein in absolute terms, where bigger nodes represent higher fold changes. Node colour range
from green to red represent low to high connectivity in the network for each specific protein.
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The activation of HPO axis culminates with the pulsatile
release of GnRH from the hypothalamus. GnRH triggers the
synthesis and secretion of LH and FSH in the pituitary gland,
which stimulates the production of gonadal hormones leading to
ovulation (Bliss et al., 2010). Both positive and negative feedback
at several levels regulate HPO function. One positive feedback on
the activation of GnRH secretion is commenced by GnRH
receptor (GnRHR) - G-protein αq subunit (Gαq/11), which
induces increased intracellular calcium (Khadra and Li, 2006).
In agreement with this positive feedback, our proteomic study in
the hypothalamus revealed the up-regulation of the calcium
signalling pathway (FDR = 0.05) and GnRH signalling
pathway (FDR = 0.02). G protein subunit alpha q (GNAQ),
phospholipase C beta 1 (PLCB1), calcium/calmodulin-dependent
protein kinase II alpha (CAMK2A), and calcium/calmodulin-
dependent protein kinase II delta (CAMK2D) showed increased
abundance at post-puberty in Brahman heifers and were
associated with the upregulated pathways. As a result,
enrichment analysis of DA proteins from the hypothalamus
confirmed the involvement of these proteins on the onset of
puberty via multiple pathways.

Among enriched GO terms in the pituitary libraries, six of
these 11 GO terms, including regulation of multicellular
organismal process, extracellular region part, extracellular
matrix, proteinaceous extracellular matrix, calcium ion binding
and extracellular matrix structural constituent were also found as
GO terms involved in the onset of puberty in goat and rats (Gao
et al., 2018). These findings and the referenced literature suggest
the involvement of these GO terms in the regulation of puberty in

goats, rats and Brahman heifers. It seems that many of the
mechanisms of female puberty are conserved across mammals.

The interaction network in the hypothalamus revealed three DA
proteins as highly connected hubs: HSP90AA1, MDH2 and ALB.
The protein HSP90AA1 was involved in estrogen signalling, and it
interacted with other proteins of the PPAR and oxytocin pathways
(ILK, EEF2 and PRKCG). Recently, a transcriptomic study in pre-
versus post-pubertal mammary epithelial cells notedHSP90AA1 as a
DE gene (Pal et al., 2017). Even though there is little evidence of a
relationship between MDH2 and female reproduction, MDH2 was
characterised as a protein marker for male fertility (Kwon et al.,
2015a; Kwon et al., 2015b). A study in Egyptian boys suggested ALB
status involved in each puberty stage (Cole et al., 1982). The increase
of albumin excretion rate in the urinary tract was significantly
associated with puberty in non-diabetic children and adolescents
(Bangstad et al., 1993). Bovine serum albumin–estrogen compounds
impacted GnRH1 neuronal activity (Temple and Wray, 2005). The
inferred network predicted interactions between ALB and proteins
involved in estrogen (HSPA8) and oxytocin (EEF2) signalling.

Gao et al. (2018) performed KEGG analysis of long non-
coding RNA targets in the hypothalamus of pubertal rats and
reported significant enrichment for the ribosome pathway. In this
current study, the ribosome pathway was also enriched, and the
proteins in this pathway were less abundant post-puberty in the
pituitary gland. Further, these ribosomal proteins formed a
dominant cluster in the pituitary interaction network. A study
in pubertal Brangus heifers observed high expression of the
ribosomal protein L39 gene in the pituitary gland (Cánovas
et al., 2014). Further, ribosomal DA proteins in the interaction

FIGURE 8 | Protein-protein interaction network of differentially abundant proteins between pre- and postpubertal heifers in the pituitary gland. Each protein is a
node and protein-protein interactions are illustrated as edges that link nodes. The size of node represents the increase or decrease in protein abundance post-puberty.
Node colour represents the connectivity of a protein within the network; it is ranged from green to red for low to high connectivity.
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network, such as RPS5, RPS3 and RPLP1, were also listed in the
networks constructed from endometrial gene expression of low
and high fertility heifers (Killeen et al., 2014). Recently, miR-503-
3p was proposed as a new repressor of the initiation of puberty in
female mice (Tong et al., 2018). The stable overexpression of
miR-503-3p in the GT1-7 cell line can influence ribosome
biogenesis pathways and result in down-regulation of puberty-
related genes (Tong et al., 2018). The ribosomal protein RPL22
inhibited the expression of Lin28B, a puberty-related gene (Ong
et al., 2009; Rao et al., 2012). Another ribosomal protein, namely
RPS7, also regulated the PI3K and MAPK signalling pathways
that are involved in puberty (Bliss et al., 2010; Acosta-Martínez,
2011; Wang et al., 2013; Nelson et al., 2017; Pal et al., 2017). From
the pituitary protein-protein interaction network, there were
seven ribosomal proteins that interacted with UBB protein.
Disruption in the UBB gene in both male and female mice
resulted in infertile animals (Ryu et al., 2008). These collective
evidences suggested proteins in the ribosomal pathway are
relevant for pubertal development in mammals. Further work
could target the DA ribosomal proteins and their targets in the
pituitary gland to investigate the molecular mechanisms of
puberty in Bos indicus.

CONCLUSION

In summary, The study confirmed the poor global correlation
between mRNAs and proteins, suggesting the need for multiple
omics analyses for interpreting complex biological systems. A total of
275 and 186 DA proteins, between pre-pubertal and post-pubertal
Brahman heifers in the hypothalamus and pituitary gland were
identified, respectively. These DA proteins may regulate puberty
onset directly or indirectly. DA proteins in the hypothalamus were
mainly associated with metabolic pathways, energy metabolism, and
nervous system development. In agreement with previous findings
of complex feedback effects on GnRH release, the KEGG pathway
analysis indicated that these DA proteins are involved in pathways
that convey both inhibitory and excitatory inputs for hypothalamic
neurons. In the pituitary, the abundance of proteins involved in
protein digestion and absorption, focal adhesion, and ECM-receptor
interaction were significantly increased post-puberty. The decreased
abundance of ribosomal proteins post-puberty can be interpreted in
the context of these genes’ inhibitory input to puberty-related genes.
Proteins related to energy production and amino acid biosynthesis
may have a crucial role in the neuroendocrine regulation of the
pubertal process, meriting further investigation.
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Copy number variation (CNV) has been considered to be an important source of

genetic variation for important phenotypic traits of livestock. In this study, we performed

whole-genome CNV detection on Suhuai (SH) (n = 23), Chinese Min Zhu (MZ) (n =

11), and Large White (LW) (n = 12) pigs based on next-generation sequencing data.

The copy number variation regions (CNVRs) were annotated and analyzed, and 10,885,

10,836, and 10,917 CNVRs were detected in LW, MZ, and SH pigs, respectively. Some

CNVRs have been randomly selected for verification of the variation type by real-time

PCR. We found that SH and LW pigs are closely related, while MZ pigs are distantly

related to the SH and LW pigs by CNVR-based genetic structure, PCA, VST, and QTL

analyses. A total of 14 known genes annotated in CNVRs were unique for LW pigs.

Among them, the cyclin T2 (CCNT2) is involved in cell proliferation and the cell cycle.

The FA Complementation Group M (FANCM) is involved in defective DNA repair and

reproductive cell development. Ten known genes annotated in 47 CNVRs were unique

for MZ pigs. The genes included glycerol-3-phosphate acyltransferase 3 (GPAT3) is

involved in fat synthesis and is essential to forming the glycerol triphosphate. Glutathione

S-transferase mu 4 (GSTM4) gene plays an important role in detoxification. Eleven

known genes annotated in 23 CNVRs were unique for SH pigs. Neuroligin 4 X-linked

(NLGN4X) and Neuroligin 4 Y-linked (NLGN4Y) are involved with nerve disorders and

nerve signal transmission. IgLON family member 5 (IGLON5) is related to autoimmunity

and neural activities. The unique characteristics of LW, MZ, and SH pigs are related to

these genes with CNV polymorphisms. These findings provide important information for

the identification of candidate genes in the molecular breeding of pigs.
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INTRODUCTION

Copy number variation (CNV) was discovered in 1936 by Bridges
in drosophila (1). The duplication of a segment of the drosophila
Bar gene caused failure in the formation of normal compound
eyes. The definition of CNV is constantly being refined with
the additional research. Redon et al. (2) defined CNV as a
DNA fragment whose copy number has changed in contrast to
the reference genome, and the size from 1 kb to several Mb.
According to its structural characteristics, a CNV can be classified
as copy number gain or copy number loss. When both copy
number gain and loss occur, it is called both type. The CNV
mainly affects gene expression through gene dose-effect and
gene interruption (3). When the copy number variation region
(CNVR) contains dose-sensitive genes, the gene expression level
changes with the copy number or the CNV in the coding region
influences the gene function and leads to gene disruption and loss
of coding ability.

A previous study detected 3,131 CNVRs in Chinese and
European pigs. There were 129 and 147 unique CNVRs in
Chinese pigs and European pigs, respectively (4). According
to the functional enrichment analysis, the genes containing
unique CNVRs in Chinese pig breeds are associated with
disease resistance and high fertility, while the genes containing
unique CNVRs in European pig breeds are closely related
to muscle development (4). These results are consistent with
the characteristics of Chinese and European pig breeds. A
comprehensive CNV study on 98 Xiang pigs and 22 Kele
pigs detected 172 CNVRs in 660 annotated genes, which are
enriched in sensory, cognitive, reproductive, and ATP synthesis
functions (5). These functions are well-matched with the living
environment and breed characteristics of Xiang pigs and Kele
pigs. In particular, the genes of propagation-related CNVRs have
obvious contact with the number of piglets in the Xiang pigs.
In addition, studies on the Italian white pig (6), Taihu pig (7),
and Bama pig (8) also found a correlation between the breed
characteristics and the functions of genes annotated in CNVRs.
These studies indicate that the functions of CNVRs are associated
with the phenotypes of pigs.

Large White (LW) pigs are well known for their growth and
reproductive performance. Min Zhu (MZ) pigs are distributed
in northern China and have the characteristics of substantial fat
deposition and excellent stress resistance. Suhuai (SH) pigs are
crossbred pigs that contain 75 % LW and 25 % Chinese Huai.
The Huai and MZ pig breeds originated in north China. The
objective of this study is to explore the characteristics of CNV
in European LW, Chinese MZ, and crossbred SH pigs at the
whole-genome level.

MATERIALS AND METHODS

Samples and Data
Twenty-three SH pigs were selected from the Huaiyin
pig farm in Huai’an, Jiangsu Province. A standard
phenol/chloroform/isoamyl alcohol protocol was used to
extract genomic DNA from pig ear tissue samples. The Illumina
Hiseq2000 platform was used for whole-genome sequencing. In

addition, the whole-genome sequencing data of MZ pigs (n= 11)
and LW pigs (n= 12) were downloaded from the public database
(https://www.ncbi.nlm.nih.gov/) (Supplementary Table 1). The
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) was used to analyze the quality of the sequencing data
and the parameter was as follows: fastqc -o output -t thread
seqfile1..seqfileN. Where “-o” indicates the pathway of the out
file, “-t” indicates the number of threads running programs, and
“seqfile” indicates the input sequencing data. Then the Cutadapt
(https://cutadapt.readthedocs.io/en/stable/) was used for quality
filtering and reads trimming. The parameter was as follows:
cutadapt -q 10,15 –quality-base = 33 -o output.fastq input.fastq.
Where “-q” indicates filtering the quality of the reads, 10 and
15 represent the threshold of the 3’ and 5’, “–quality-base =

33” indicates the phred33 score system, and “-o” indicates the
pathway of the out file. The sequencing data were integrated by
MultiQC (v1.11) to meet the requirements of CNV detection
(Supplementary Figure 1) (9). The sequences were aligned to
the reference genome (Sscrofa 11.1) assembly using the Burrows-
Wheeler Aligner (BWA) (v 0.7.17) (10). The overall average
sequencing depth reaches 12.89 ×, up to 16.22 ×, at lowest 9.16
×, and 46 samples’ average mapping ratio reached 96.47%.

CNVR’s Definition and Statistics
We used the software CNVcaller to detect CNVs and determine
the CNVRs (11). All steps were conducted using the default
program. First, build a reference genome database. The reference
genome was based on the sliding window of the user’s specified
size, and the GC, repeat, and gap content of each window on
the genome were counted on the genome. The command was
as follows: Perl CNVReferenceDB.pl reference.fa -w 800. Where
“reference.fa” is the reference genome, “-w” indicates the size
of the sliding window. According to the author’s suggestion,
we selected a window size of 800 bp, and a step of 400 bp to
generate the reference genome database. Second, the absolute
copy number of each window was calculated. The BAM file
(BWA comparison generation) of each sample and the number
of reads in each window were analyzed. The high similarity
reads (≥97%) were merged, and the low-complexity regions were
removed. Based on the GC content, the correct the number
of reads in each window after merging was used to calculate
the absolute copy number. The command was as follows: bash
Individual.Process.sh -b sample.bam -h sample -d link. Where
“-b” indicates the BAM file, “-h” indicates the label of the BAM
file, and “-d” indicates the link files required for correction. The
third step was determination of the CNVR. The boundary of
each CNVR was preliminarily determined by comprehensively
considering the distribution of absolute copy number, the
frequency of variation, and the significant correlation between
adjacent windows (primaryCNVR). Then, the adjacent CNVRs
whose copy number distribution was significantly related to
the population were further merged to obtain the final CNV
detection results (mergedCNVR). The command was as follows:
bash CNV.Discovery.sh -l list -e exclude_list -f 0.1 -h 1 -r 0.5 -
p primaryCNVR -m mergeCNVR. Where “-l” indicates the list
of results files after the absolute copy number correction; “-e”
indicates the samples in this list are not used for the detection
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of CNVR. “-f” and “-h” represent the difference between the
individual’s absolute copy number and the reference absolute
copy number in frequency and quantity, which greater than
the setting value is considered a candidate CNV window; “-r”
indicates the correlation coefficient of the absolute copy number
of the adjacent candidate CNV window (no overlap), which
greater than the setting value will be merged; and “-p” and “-
m” indicate the output files primaryCNVR and mergeCNVR. A
genome-wide CNVR map was drawn by RIdeogram (12).

Genetic Structure Analysis
The CNVRs detected were used to analyze the genetic structure
differences among three pig breeds. We performed principal
component analysis (PCA) by PLINK (v 1.90) (13). PLINK was
used to convert the CNVRs file into bed format. ADMIXTURE (v
1.3.0) was used to execute population genetic structure analysis
(14). We first set the ancestral population number K value
between 1 and 5, then compute the Cross-Validation Error for
each K values. When the Cross-Validation Error value became
the least, the K value was the number of ancestors. MEGAX was
used for evolutionary tree analysis to evaluate the genetic distance
between the populations. By calculating the VST value (2), we
analyze the genetic difference between the two groups.

VST =

Vtotal −
V1×N1+V2× N2

Ntotal

Vtotal

Where Vtotal is the total variance in copy number between the two
groups, V1 and V2 are variances in copy number of population
1 and population 2, respectively. N1 and N2 are the numbers
of samples of population 1 and population 2, respectively. Ntotal

is the total number of all the samples. We compare the genetic
distance between groups by the mean VST values. All diagrams
were drawn by ggplot2 (15, 16).

CNVR Annotation and Population
Differences Comparison
To further study the relationship between CNVRs and the
phenotypic characteristics of the population, a Venn diagram
was drawn by TBTOOLS (v 1.098661) (17) to observe the
differential and common CNVRs. Gene annotation and pathway
enrichment were conducted for the population-specific CNVRs
using g:Profiler (18) and KOBAS (19), respectively.

Group-Specific CNVR Overlapped With
QTLs
QTL data were downloaded from Pig QTLdb (https://www.
animalgenome.org/cgi-bin/QTLdb/SS/index). Bedtools (v
2.15.0) (20) was used to overlap the QTLs with the group-specific
CNVRs, and the unique corresponding QTL area was obtained
after removing the repeat value. According to the description of
QTL traits, the group-specific CNVRs that affect the phenotypes
of LW, MZ, and SH pigs were analyzed.

Validation of Quantitative Real-Time PCR
We randomly selected 4 CNVRs fragments to detect copy
number polymorphisms by qPCR and the 2−1Ct method,

1Ct value = (Cttarget – Ctreference) (21). Primers used in
qPCR were designed by Primer-BLAST (https://www.ncbi.nlm.
nih.gov/tools/primer-blast). The highly conserved fragment of
the GCG in pigs was selected as an internal reference gene
(22). Primer sequences for CNVRs and GCG are shown in
Supplementary Table 2. To ensure that the test samples were
comparable to the GCG, we first constructed the standard
curve of each CNVR after gradient dilution of DNA. Total
CNVs were verified on the QuantStudio 5 real-time PCR system
(ABI, USA), and PCR amplification conditions were designed
according to the manufacturer’s description (Vazyme, China).
The PCR amplification system was completed in a 20 µL system,
including the following ingredients: 10 µL SYBR master Mix,
2 µL DNA (around 5ng), 0.4 µL forward primers, and 0.4 µL
reverse primers, and 7.2 µL water. The PCR conditions were as
follows: first step 95◦ C for 30 seconds followed by 40 cycles at
95 ◦ C for 10 s and 60 ◦ C for 30 s. The CNV type detected by
the above PCR method was the same as those detected by the
CNVcaller. Where CNVR-9017 was the gain type in LW pigs, but
the normal type in SH pigs. The CNVR-1169, CNVR-9126, and
CNVR-1771 were expressed in two pig breeds as the gain type. In
addition, we used the Integrative Genomics Viewer (IGV) (23) to
visualize the genome of the samples, and its results were the same
as qPCR (Supplementary Figure 2). Each CNVR fragment has 4
biological repetitions in both LW and SH pigs, and all samples
were performed in triplicate.

RESULTS

CNVR Detection and Statistics
A total of 11,173 CNVRs were detected in 46 pigs
(Supplementary Table 3). There were 10,917, 10,885, and
10,836 CNVRs detected in SH, LW, and MZ pigs, respectively.
The coverage area of these CNVRs in the three populations is
more than 43 million bp, which accounts for about 1.8% of the
whole genome (Sscrofa 11.1) (Supplementary Table 4). In all
samples, there were 3,457, 2390, and 5,326 cases of copy number
loss, copy number gain, and both type, respectively (Figure 1).
The length of CNVRs ranges from 1.6 to 560 kb, but 61.23% of
CNVRs are 1.6 to 3 kb, and only 0.75% CNVRs are more than
30 kb (Supplementary Figure 3). Moreover, a total of 8,247
CNVRs were detected in <5 pigs, and 4,134 CNVRs were found
in the unique individual (Supplementary Figure 4).

Analysis of Population Clustering
A PCA graph was developed with all the samples having
been divided into three groups: SH, MZ, and LW pig breeds
(Figure 2A). The LW and SH pigs are closer in the PCA diagram,
and the individuals are arrayed tight. The MZ pigs are far from
them, and the individuals are scattered.

Genetic Structure Analysis
When the ancestral population number K = 2, there are obvious
differences between LW and MZ pigs, while the information of
SH pigs is covered by that of LW pigs. When K = 3, the Cross-
Validation Error is the smallest (Supplementary Table 5), and
the three pig breeds are well separated (Figure 2B). The result
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FIGURE 1 | The genome distribution of CNVRs and variation types of LW (A), MZ (B), and SH (C) pigs. The legend of “Low” to “High” indicates the gene density on

the pig chromosomes. The yellow square represents the both type, the green circle represents the gain type, and the purple triangle represents the loss type.

of phylogenetic tree analysis is similar to that of PCA. Since the
genetic background of the SH pig is complicated (containing
75 % Large White and 25 % Chinese Huai), the position of the
SH pigs is close to the root of the tree, and the distance to LW
pigs is closer than MZ pigs (Figure 2C). The average VST value
of SH and LW pigs is just 0.111; but the average VST values
are 0.234 and 0.265 in SH and MZ pigs and LW and MZ pigs,
respectively (Figure 3). The VST analysis results are the same
as the PCA analysis and genetic structural analysis. The genetic
distance between SH and LW pigs is smaller than that between
LW and MZ pigs.

Analysis of Shared and Group-Specific
CNVR
The differences in CNVRs between pig breeds were compared
through the Venn diagram (Figure 4A). A total of 10,671 CNVRs
are shared among the three pig breeds. There are 23, 47, and 39
group-specific CNVRs in the SH, MZ, and LW pigs, respectively.
A total of 140 CNVRs are common in the SH and LW pigs, while
only 83 CNVRs are common in the SH and MZ pigs, and 35
CNVRs are common in the LW and MZ pigs.

Gene Research in Group-Specific CNVR
We noted the genes associated with group-specific CNVRs
and discovered 35 known genes (Table 1) and 25 novel genes
(Supplementary Table 6). These known genes were analyzed in
the KEGG pathway.

A total of 14 known genes were annotated in 39 unique
CNVRs in LW pigs. These genes regulate the metabolism
of phenylalanine, histidine, and other amino acids based on
the KEGG pathway (Figure 4B). The CCNT2 gene is widely
involved in the regulation of cell differentiation and the cell

cycle. In fibroblasts of C2C12 cells, the overexpression of CCNT2
strengthened MyoD-dependent transcription and promoted
myogenic differentiation (24). A comprehensive study reported
that the CCNT2 gene induced the differentiation of muscle
cells with the molecular partner Pkn (25), which may play a
positive role in the meat production of LW pigs. The FANCM
gene is involved in defective DNA repair and reproductive cell
development (26). Previous studies found that the FANCM gene
was associated with Non-obstructive Azoospermia and ovarian
deficiency, which led to male/female infertility (27, 28). It may
be related to the reproductive performance of the LW pigs. LW
pigs are commonly mated to other maternal lines to produce
crossbred commercial sows.

We annotated 10 known genes in 47 unique CNVRs in
MZ pigs. These genes are enriched in “Antifolate Resistance,”
“Metabolic Pathways,” and “Glycerolipid Metabolism” based on
the KEGG pathway (Figure 4C). A previous study reported that
the GPAT3 gene plays an important role in lipid metabolism,
which causes rapid growth and exquisite meat quality in
Yunling cattle (29). The knockout of the GPAT3 gene altered
energy balance in diet-induced obesity in mice, indicating that
the GPAT3 gene plays a role in regulating energy and lipid
homeostasis (30). It may be related to the fat deposition capacity
of MZ pigs. The GSTM4 and TBC1D14 genes are considered
to participate in detoxification and autophagy (31, 32). These
genes are related to “Glutathione Metabolism,” “Platinum Drug
Resistance,” and “Metabolism of Xenobiotics by Cytochrome
P450” detoxification and resistance gene pathways.

We have annotated 11 known genes in the 23 unique
CNVRs in SH pigs. These genes are enriched in resistance
and ATP-related pathways (Figure 4D). Interestingly, some
genes are associated with neurodevelopment. The NLGN4X and
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FIGURE 2 | (A) PCA plot of LW, MZ, and SH pigs. Red, green, and blue represent LW, MZ, and SH pigs, respectively. (B) Diagram of genetic structure analysis, the K

value represents the number of the hypothetical ancestor. When the ancestral population number K = 2, there are obvious differences between LW and MZ pigs,

while the information of SH pigs is covered by LW pigs, green and red represent LW and MZ pigs, respectively. When K = 3, the three pig breeds are well separated.

Green, red, and blue represent LW, SH, and MZ pigs, respectively. (C) Evolutionary tree diagram of LW, SH, and MZ pigs. The location of SH pigs is closer to the root,

moreover, the genetic distance between SH and LW pigs is less than SH and MZ pigs.

NLGN4Y genes are located on the X and Y chromosomes,
respectively. Neurogenesis, neuron differentiation, and muscle
development are increasingly disturbed in neuron stem cells
with NLGN4X knockdown, including DLG4 and NLGN3
postsynaptic genes also have decreased expression (33). The
IGLON5 gene participates in regulating sleep and other neural
activities and is also related to autoimmunity (34).

Group-Specific CNVRs Overlapped With
QTLs
The group-specific CNVRs of LW, SH, and MZ pigs were
mapped in the QTLs of the pigs. There are 1,139, 938, and 1,283
QTLs in the SH, LW, and MZ pigs, respectively. A Venn diagram
shows that 248 QTLs overlap between the LW and SH pigs,
237 QTLs overlap between the SH and MZ pigs, and 178 QTLs

overlap between theMZ and LWpigs. There are 285, 545, and 700
group-specific QTLs in the SH, LW, and MZ pigs, respectively
(Supplementary Figure 5). A circus diagram was used to show
the location of these unique QTLs (Figure 5A). The effects of
QTLs on traits are divided into three levels, “Trait Categories,”
“Trait Type,” and “Trait.” The difference in the meat and disease
resistance traits of LW, MZ, and SH pigs is more distinct (35)
(Figures 5B–D). So QTLs for meat and health trait categories
were analyzed.

In the anatomy type of the meat category, the trait cases of
“muscle area and muscle fiber” and “fat to meat ratio and fat-cut
percentage” are different in LW,MZ, and SH pigs. The number of
muscle-related QTLs is 12.2 times that of fat-related QTLs in LW
pigs (61/5). And this ratio is only 3.6 times and 7 times in MZ
and SH pigs (55/15, 35/5). Interestingly, the “EnzyMeactivity”
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FIGURE 3 | The VST values of all the copy number variation regions (CNVRs) in SH and LW (A) pigs, SH and MZ (B) pigs, LW and MZ (C) pigs. The average VST value

of SH and LW pigs is just 0.111; but the average VST values are 0.234 and 0.265 in SH and MZ pigs and LW and MZ pigs, respectively.
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FIGURE 4 | (A) Venn diagram of the CNVRs in LW, SH, and MZ pigs. The known genes of LW (B), MZ (C), and SH (D) pigs in the group-specific CNVRs were

analyzed in the KEGG pathway.

QTLs are unique to the MZ pigs. The number of total “NADPH-
generation enzyme activity” and “NADP-malate dehydrogenase
activity” is 12, which is related to the oxidation reaction in the
organism, particularly fatty acids generation (36). In the trait
category of health, the number of “Immune capacity” is huge
difference among LW, MZ, and SH pigs, with a total of 24 traits,
and 64 QTLs related to immune capacity in the MZ pigs, but
only 6 traits, 23 QTLs, and 14 traits, 34 QTLs are in LW and SH
pigs, respectively.

DISCUSSION

The role of CNV’s is an increasingly discussed academic
topic, and previous studies on CNV have been conducted in
humans, cattle, sheep, and other species (37–40). CNVs could
destroy the normal expression of genes and ultimately cause
phenotypic changes mainly through dosage effects, interruption,
and position effects of gene deletion and duplication (41–43). As
a type of essential variation in the genome, CNV polymorphisms
play key roles in species evolution, environmental adaptation,

disease resistance, and disease susceptibility (44–46). However,
numerous past studies have concentrated on CNV on the
chromosomal DNA with little attention given to CNV of
non-chromosomal DNA. Mitochondrial DNA (mtDNA) passes
through maternal inheritance, which has been confirmed to be
related to many traits, including respiratory and cardiovascular
disease (47). As a component of ribosomes, rRNA easily becomes
a substrate of homologous recombination resulting in CNV due
to its repetitive sequence structure (48).

In our present study, we noticed that LW pigs have excellent
meat production. Several genes containing the unique CNVRs
are involved in the regulation of cell proliferation and cell cycle
regulation in LW pigs. These genes have extensive participation
in muscle growth and development. We also obtained the same
results in the QTL analysis.

Among these genes, the CCNT2 gene is related to cell
differentiation and cell cycle, especially regulating the
differentiation of muscle cells (24). Many studies have
focused on the combined analysis of microRNA (miRNA)
and CCNT2. Previous research reported that miR-15a,
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TABLE 1 | Annotated genes in group-Specific CNVRs of LW, MZ, and SH pigs.

Population Ensemble_id Gene_name Description

ENSSSCG00000032786 ZC3HAV1L Zinc finger CCCH-type containing, antiviral 1 like

ENSSSCG00000024999 PPIP5K2 Diphosphoinositol pentakisphosphate kinase 2

ENSSSCG00000025784 CDH4 Cadherin 4

ENSSSCG00000015830 UNC5D Unc-5 netrin receptor D

ENSSSCG00000005000 FANCM FA complementation group M

ENSSSCG00000016141 PLEKHM3 Pleckstrin homology domain containing M3

LW ENSSSCG00000015379 DNAH11 Dynein axonemal heavy chain 11

ENSSSCG00000001975 PRKD1 Protein kinase D1

ENSSSCG00000015697 CCNT2 Cyclin T2

ENSSSCG00000023215 MAOB Monoamine oxidase B

ENSSSCG00000012101 ANOS1 Anosmin 1

ENSSSCG00000042659 ZSCAN5A Zinc finger and SCAN domain containing 5A

ENSSSCG00000042659 ZSCAN5B Zinc finger and SCAN domain containing 5B

ENSSSCG00000042659 ZSCAN5C Zinc finger and SCAN domain containing 5C

ENSSSCG00000009347 KL Klotho

ENSSSCG00000044340 EEA1 Early endosome antigen 1

ENSSSCG00000027349 TBC1D14 TBC1 domain family member 14

ENSSSCG00000009233 GPAT3 Glycerol-3-phosphate acyltransferase 3

ENSSSCG00000007727 AUTS2 Activator of transcription and developmental regulator AUTS2

MZ ENSSSCG00000030262 GDPD1 Glycerophosphodiester phosphodiesterase domain containing 1

ENSSSCG00000038036 TTLL11 Tubulin tyrosine ligase like 11

ENSSSCG00000037808 GSTM4 Glutathione S-transferase mu 4

ENSSSCG00000021846 EFHC2 EF-hand domain containing 2

ENSSSCG00000009497 ABCC4 ATP binding cassette subfamily C member 4

ENSSSCG00000011040 CACNB2 Calcium voltage-gated channel auxiliary subunit beta 2

ENSSSCG00000015435 NAMPT Nicotinamide phosphoribosyltransferase

ENSSSCG00000023934 KCNIP4 Potassium voltage-gated channel interacting protein 4

ENSSSCG00000009215 ABCG2 ATP binding cassette subfamily G member 2 (Junior blood group)

ENSSSCG00000033643 NLGN4X Neuroligin 4 X-linked

SH ENSSSCG00000033643 NLGN4Y Neuroligin 4 Y-linked

ENSSSCG00000033560 SERPINB3 Serpin family B member 3

ENSSSCG00000033560 SERPINB4 Serpin family B member 4

ENSSSCG00000011121 CELF2 CUGBP Elav-like family member 2

ENSSSCG00000003227 IGLON5 IgLON family member 5

ENSSSCG00000024674 ABL2 ABL proto-oncogene 2, non-receptor tyrosine kinase

miR-155-5p, and miR-188-5p inhibit muscle differentiation
and skeletal muscle development via target binding CCNT2
(49–51). Due to their great reproductive performance, in the
modern pig breeding systems, LW pigs are used to produce
crossbred female parents. Among these genes, FANCM is
involved in DNA damage repair, and the mutation causes
deaths of spermatogenic cells at all levels and stagnation of
round spermatids, which causes male reproductive disorders,
including sperm deformities, decreased motility, and decreased
numbers (27). These results are interesting because these
genes may be related to the reproductive performance of
LW pigs.

We found GPAT3 related to adipogenesis in unique CNVRs
in MZ pigs. The promoter polymorphisms of the GPAT3 were
associated with intramuscular fat content in Laiwu pigs, and

the knockout of GPAT3 was related to insulin resistance and
fatty liver in a mouse model of severe congenital generalized
lipodystrophy (30, 52). TheGPAT3 accelerated the fat production
capacity of MZ pigs. Understandably, the habitat of the MZ pigs
is in northern China, where winter temperatures reach minus 40
degrees Celsius. Sufficient fat keeps them resistant to the cold and
stores energy. Similarly,MZ pigs have good disease resistance and
detoxification capabilities.GSTM4 is a member of the glutathione
sulfur transferase family and plays a key role in the detoxification
of insecticides and other exogenous substances. In abamectin-
resistant tetranychus urticae, the activity of GSTs was significantly
increased (53). The QTLs mapped to the group-specific CNVRs
inMZ pigs are related to fat and immunity. The genes mentioned
above provide favorable conditions for the survival of MZ pigs in
cold regions.
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FIGURE 5 | (A) The genome distribution of the group-specific QTLs in SH, MZ, and LW pigs. (B–D) are the group-specific QTLs in SH, LW, and MZ pigs.

The SH pig is crossbred of Chinese and European pigs. The
CNV polymorphisms of some genes were unique in SH pigs.
SERPINB3 is a homologous substance to chicken ovalbumin
protein (OVA) in humans. It takes part in apoptosis and
autoimmune diseases and is related to the prognosis (54). The
NAMPT is primarily involved in redox reactions, and the signals
it transmits act during various stages of cell physiology, including
cell cycle and proliferation (55). It is a participant and regulator
of many diseases. The results were within our expectations,
including genes related to immunity and cell proliferation. What
surprised us was that some genes are related to neuroprotection

and neurological disorders. NLGN4X and NLGN4Y, as marker
molecules of human autism, are considered to play an important
role in the etiology of autism, the formation of synapses, and
the transmission of information. Autism can lead to stereotypic
behavior and communication difficulties in humans and is
related to developmental mental disorders (56, 57). In addition,
the massive accumulation of IGLON5 antibodies has been
proven to damage the cytoskeleton of hippocampal neurons,
which can lead to the occurrence of autoimmune diseases and
neurodegeneration (34, 58). These findings were interesting as
SH pigs are more docile and more easily domesticated than LW
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pigs. The neurological foundation of these behavioral differences
is still unknown.

By analyzing the genetic structure of LW, MZ, and SH pigs,
we found that SH and LW pigs are closely related, while MZ pigs
are distantly related to pigs of the other two breeds. It indicates
that LW and SH pigs have more genetic exchanges than MZ
pigs, which have the same trend in PCA, evolutionary tree, VST,
and the group-special CNVRs and QTLs analyses. Based on the
results of genetic structural analysis, we found that the lineage of
SH pigs came from LW pigs, and MZ pigs have a smaller genetic
distance from SH pigs than LW pigs. This may be because the
MZ pig have genetic exchanges with the LW pig of widespread
reproduction, and the habitats of MZ and SH pigs are similar in
geographical location, climate, and altitude, which have the same
environmental driving forces and adaptability that make them
produce the same CNV (59). Understandably, the main source
of CNV was inherited from ancestors, followed by adaptation
to environmental changes and other reasons that led to random
mutations (60, 61).

CONCLUSION

In summary, we have performed genome-wide CNV detection
on LW, MZ, and SH pigs to explore the relationship between
CNVs and phenotypic characteristics of pig breeds. The functions
of genes containing unique CNVRs are related to the phenotypic
traits of pig breeds. From this, we have identified some candidate
genes. These CNV polymorphisms provide a theoretical basis
for the understanding of the relationship between phenotype
and CNVs.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

ETHICS STATEMENT

The animal study was reviewed and approved by Experimental
Animal Welfare and Ethics Committee of Nanjing Agricultural
University, Nanjing, China.

AUTHOR CONTRIBUTIONS

BZ came up with the idea and revised the manuscript. CZ wrote
the manuscript and performed the experiments. JZ, YG, and QX
collected the samples and isolated the genomic DNA. ML, MC,
and XC analyzed the data. AS and BZ reviewed and edited the
manuscript. All authors have read and agreed to the published
version of the manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (NO. 32172786) and the JBGS
Project of Breeding Industry Revitalization in Jiangsu
Province [JBGS(2021)101].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fvets.
2022.909039/full#supplementary-material

Supplementary Figure 1 | All samples are suitable for CNV detection.

Supplementary Figure 2 | Genomic visualization of CNVR-9017, CNVR-1169,

CNVR-9126, and CNVR-1771 in LW and SH pigs.

Supplementary Figure 3 | The length-frequency distribution of CNVRs. The

majority of CNVRs are concentrated in 1.6-3 kb, accounting for 61.23% of the

total, with only 0.75% exceeding 30 kb.

Supplementary Figure 4 | The variable frequency distribution of CNVRs. A total

of 8,247 CNVRs were found in <5 individuals, and 4,134 CNVRs were found in a

unique individual.

Supplementary Figure 5 | A Venn diagram shows 285, 545, and 700

group-specific QTLs in the SH, LW, and MZ pigs, respectively.

Supplementary Table 1 | The whole-genome sequencing data of MZ, LW, and

SH pigs.

Supplementary Table 2 | The standard curve and primers for qPCR, and the

verification results of the CNV type.

Supplementary Table 3 | A total of CNVRs were detected in 46 pigs and

variations of types.

Supplementary Table 4 | The distribution of CNVRs on pig chromosomes of

the pig.

Supplementary Table 5 | The Cross-Validation Error under the ancestral

population number K value ranges from 1 to 5.

Supplementary Table 6 | Novel genes identified in LW, MZ, and SH pigs.

REFERENCES

1. BRIDGES CB. The bar “Gene” a duplication. Science. (1936) 83:210–

1. doi: 10.1126/science.83.2148.210

2. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al.

Global variation in copy number in the human genome. Nature. (2006)

444:444–54. doi: 10.1038/nature05329

3. Lupski JR, Stankiewicz P. Genomic disorders: molecular mechanisms

for rearrangements and conveyed phenotypes. PLoS Genet. (2005)

1:e49. doi: 10.1371/journal.pgen.0010049

4. Wang Y, Tang Z, Sun Y, Wang H, Wang C, Yu S, et al. Analysis

of genome-wide copy number variations in chinese indigenous and

western pig breeds by 60 k snp genotyping arrays. PLoS ONE. (2014)

9:e106780. doi: 10.1371/journal.pone.0106780

5. Xie J, Li R, Li S, Ran X, Wang J, Jiang J, et al. Identification of

copy number variations in xiang and kele pigs. PLoS ONE. (2016)

11:e0148565. doi: 10.1371/journal.pone.0148565

6. Schiavo G, Dolezal MA, Scotti E, Bertolini F, Calo DG, Galimberti G, et al.

Copy number variants in italian large white pigs detected using high-density

single nucleotide polymorphisms and their association with back fat thickness.

Anim Genet. (2014) 45:745–9. doi: 10.1111/age.12180

7. Wang Z, Chen Q, Liao R, Zhang Z, Zhang X, Liu X, et al. Genome-wide

genetic variation discovery in Chinese Taihu pig breeds using next generation

sequencing. Anim Genet. (2017) 48:38–47. doi: 10.1111/age.12465

Frontiers in Veterinary Science | www.frontiersin.org 10 June 2022 | Volume 9 | Article 90903932

https://www.frontiersin.org/articles/10.3389/fvets.2022.909039/full#supplementary-material
https://doi.org/10.1126/science.83.2148.210
https://doi.org/10.1038/nature05329
https://doi.org/10.1371/journal.pgen.0010049
https://doi.org/10.1371/journal.pone.0106780
https://doi.org/10.1371/journal.pone.0148565
https://doi.org/10.1111/age.12180
https://doi.org/10.1111/age.12465
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Zhang et al. CNVs in Pigs

8. Zhang L, Huang Y, Si J, Wu Y, Wang M, Jiang Q, et al. Comprehensive inbred

variation discovery in bama pigs using de novo assemblies. Gene. (2018)

679:81–9. doi: 10.1016/j.gene.2018.08.051

9. Ewels P, Magnusson M, Lundin S, Kaller M. Multiqc: summarize analysis

results for multiple tools and samples in a single report. Bioinformatics. (2016)

32:3047–8. doi: 10.1093/bioinformatics/btw354

10. Li H, Durbin R. Fast and accurate short read alignment with

burrows-wheeler transform. Bioinformatics. (2009) 25:1754–

60. doi: 10.1093/bioinformatics/btp324

11. Wang X, Zheng Z, Cai Y, Chen T, Li C, Fu W, et al. Cnvcaller: highly efficient

and widely applicable software for detecting copy number variations in large

populations. Gigascience. (2017) 6:1–12. doi: 10.1093/gigascience/gix115

12. Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, et al. Rideogram: drawing Svg

graphics to visualize and map genome-wide data on the idiograms. PeerJ

Comput Sci. (2020) 6:e251. doi: 10.7717/peerj-cs.251

13. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-

generation Plink: rising to the challenge of larger and richer datasets.

Gigascience. (2015) 4:7. doi: 10.1186/s13742-015-0047-8

14. Shringarpure SS, Bustamante CD, Lange K, Alexander DH. Efficient analysis

of large datasets and sex bias with admixture. BMC Bioinformatics. (2016)

17:218. doi: 10.1186/s12859-016-1082-x

15. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. Mega X: molecular

evolutionary genetics analysis across computing platforms. Mol Biol Evol.

(2018) 35:1547–9. doi: 10.1093/molbev/msy096

16. Ito K, Murphy D. Application of Ggplot2 to pharmacometric graphics.

CPT Pharmacometrics Syst Pharmacol. (2013) 2:e79. doi: 10.1038/psp.

2013.56

17. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. Tbtools: an

integrative toolkit developed for interactive analyses of big biological data.Mol

Plant. (2020) 13:1194–202. doi: 10.1016/j.molp.2020.06.009

18. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H,

et al. G:Profiler: a web server for functional enrichment analysis and

conversions of gene lists (2019 Update). Nucleic Acids Res. (2019) 47:W191–

W8. doi: 10.1093/nar/gkz369

19. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. Kobas 2.0: a web server

for annotation and identification of enriched pathways and diseases. Nucleic

Acids Res. (2011) 39:W316–22. doi: 10.1093/nar/gkr483

20. Quinlan AR, Hall IM. Bedtools: a flexible suite of utilities for

comparing genomic features. Bioinformatics. (2010) 26:841–

2. doi: 10.1093/bioinformatics/btq033

21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-

time quantitative Pcr and the 2(-Delta Delta C(T)) method. Methods. (2001)

25:402–8. doi: 10.1006/meth.2001.1262

22. Ballester M CA, Ibáñez E, Sánchez A, Folch JM. Real-time quantitative pcr-

based system for determining transgene copy number in transgenic animals.

Biotechniques. (2004) 37:3. doi: 10.2144/04374ST06

23. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer

(Igv): high-performance genomics data visualization and exploration. Brief

Bioinform. (2013) 14:178–92. doi: 10.1093/bib/bbs017

24. Simone C SP, Bagella L, Pucci B, Bellan C, De Falco G, De Luca A, et al.

Activation of myod-dependent transcription by cdk9/Cyclin T2. Oncogene.

(2002 J) 21:4137–48. doi: 10.1038/sj.onc.1205493

25. Cottone G, Baldi A, Palescandolo E, Manente L, Penta R, Paggi MG, et al. Pkn

is a novel partner of cyclin T2a in muscle differentiation. J Cell Physiol. (2006)

207:232–7. doi: 10.1002/jcp.20566

26. Kasak L, Punab M, Nagirnaja L, Grigorova M, Minajeva A, Lopes

AM, et al. Bi-allelic recessive loss-of-function variants in fancm

cause non-obstructive azoospermia. Am J Hum Genet. (2018)

103:200–12. doi: 10.1016/j.ajhg.2018.07.005

27. Yin H, Ma H, Hussain S, Zhang H, Xie X, Jiang L, et al. A homozygous

fancm frameshift pathogenic variant causes male infertility.GenetMed. (2019)

21:62–70. doi: 10.1038/s41436-018-0015-7

28. Jaillard S, Bell K, Akloul L, Walton K, McElreavy K, Stocker WA, et al.

New insights into the genetic basis of premature ovarian insufficiency: novel

causative variants and candidate genes revealed by genomic sequencing.

Maturitas. (2020) 141:9–19. doi: 10.1016/j.maturitas.2020.06.004

29. Zhang F, Hanif Q, Luo X, Jin X, Zhang J, He Z, et al. Muscle

transcriptome analysis reveal candidate genes and pathways related to

fat and lipid metabolism in yunling cattle. Anim Biotechnol. (2021)

7:1−8. doi: 10.1080/10495398.2021.2009846 [Epub ahead of print].

30. Gao M, Liu L, Wang X, Mak HY, Liu G, Yang H. Gpat3 deficiency

alleviates insulin resistance and hepatic steatosis in a mouse model of

severe congenital generalized lipodystrophy. Hum Mol Genet. (2020) 29:432–

43. doi: 10.1093/hmg/ddz300

31. LambCA, Nuhlen S, Judith D, Frith D, Snijders AP, Behrends C, et al. Tbc1d14

regulates autophagy via the trapp complex and Atg9 traffic. EMBO J. (2016)

35:281–301. doi: 10.15252/embj.201592695

32. Denson J, Xi Z, Wu Y, Yang W, Neale G, Zhang J. Screening for inter-

individual splicing differences in human Gstm4 and the discovery of a single

nucleotide substitution related to the tandem skipping of two exons. Gene.

(2006) 379:148–55. doi: 10.1016/j.gene.2006.05.012

33. Shi L, Chang X, Zhang P, Coba MP, Lu W, Wang K. The functional genetic

link of nlgn4x knockdown and neurodevelopment in neural stem cells. Hum

Mol Genet. (2013) 22:3749–60. doi: 10.1093/hmg/ddt226

34. Landa J, Gaig C, Plaguma J, Saiz A, Antonell A, Sanchez-Valle R, et al. Effects of

Iglon5 antibodies on neuronal cytoskeleton: a link between autoimmunity and

neurodegeneration. Ann Neurol. (2020) 88:1023–7. doi: 10.1002/ana.25857

35. Clapperton M, Bishop SC, Glass EJ. Innate immune traits differ between

meishan and large white pigs. Vet Immunol Immunopathol. (2005) 104:131–

44. doi: 10.1016/j.vetimm.2004.10.009

36. Belew GD, Silva J, Rito J, Tavares L, Viegas I, Teixeira J, et al.

Transfer of glucose hydrogens via acetyl-coa, malonyl-coa, and nadph

to fatty acids during de novo lipogenesis. J Lipid Res. (2019) 60:2050–

6. doi: 10.1194/jlr.RA119000354

37. Liu M, Li B, Shi T, Huang Y, Liu GE, Lan X, et al. Copy number variation of

bovine Shh gene is associated with body conformation traits in Chinese beef

cattle. J Appl Genet. (2019) 60:199–207. doi: 10.1007/s13353-019-00496-w

38. Feng Z, Li X, Cheng J, Jiang R, Huang R, Wang D, et al. Copy number

variation of the pigy gene in sheep and its association analysis with growth

traits. Animals. (2020) 10:6888. doi: 10.3390/ani10040688

39. Locke ME, Milojevic M, Eitutis ST, Patel N, Wishart AE, Daley M, et al.

Genomic copy number variation in mus musculus. BMC Genomics. (2015)

16:497. doi: 10.1186/s12864-015-1713-z

40. Khatri B, Kang S, Shouse S, Anthony N, Kuenzel W, Kong BC.

Copy number variation study in japanese quail associated with stress

related traits using whole genome re-sequencing data. PLoS ONE. (2019)

14:e0214543. doi: 10.1371/journal.pone.0214543

41. Vegesna R, Tomaszkiewicz M, Medvedev P, Makova KD. Dosage

regulation, and variation in gene expression and copy number

of human Y chromosome ampliconic genes. PLoS Genet. (2019)

15:e1008369. doi: 10.1371/journal.pgen.1008369

42. Iijima-Yamashita Y, Matsuo H, Yamada M, Deguchi T, Kiyokawa N, Shimada

A, et al. Multiplex fusion gene testing in pediatric acute myeloid leukemia.

Pediatr Int. (2018) 60:47–51. doi: 10.1111/ped.13451

43. Velagaleti GV B-WG, Northup JK, Lockhart LH, Hawkins JC, Jalal SM,

Withers M. et al. Position effects due to chromosome breakpoints that map

approximately 900 kb upstream and approximately 13Mb downstream of

Sox9 in two patients with campomelic. Am J Hum Genet. (2005) 76:652–

62. doi: 10.1086/429252

44. Wang H, Wang C, Yang K, Liu J, Zhang Y, Wang Y, et al. Genome

wide distributions and functional characterization of copy number

variations between Chinese and western pigs. PLoS ONE. (2015)

10:e0131522. doi: 10.1371/journal.pone.0131522

45. Fernandez AI, Barragan C, Fernandez A, Rodriguez MC, Villanueva B. Copy

number variants in a highly inbred Iberian porcine strain. Anim Genet. (2014)

45:357–66. doi: 10.1111/age.12137

46. Revay T, Quach AT, Maignel L, Sullivan B, King WA. Copy number

variations in high and low fertility breeding boars. BMC Genomics. (2015)

16:280. doi: 10.1186/s12864-015-1473-9

47. Foote K, Reinhold J, Yu EPK, Figg NL, Finigan A, Murphy MP, et al.

Restoring mitochondrial DNA copy number preserves mitochondrial

function and delays vascular aging in mice. Aging Cell. (2018)

17:e12773. doi: 10.1111/acel.12773

48. Porokhovnik L. Individual copy number of ribosomal genes as a

factor of mental retardation and autism risk and severity. Cells. (2019)

8:1151. doi: 10.3390/cells8101151

Frontiers in Veterinary Science | www.frontiersin.org 11 June 2022 | Volume 9 | Article 90903933

https://doi.org/10.1016/j.gene.2018.08.051
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/gigascience/gix115
https://doi.org/10.7717/peerj-cs.251
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s12859-016-1082-x
https://doi.org/10.1093/molbev/msy096
https://doi.org/10.1038/psp.2013.56
https://doi.org/10.1016/j.molp.2020.06.009
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1093/nar/gkr483
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.2144/04374ST06
https://doi.org/10.1093/bib/bbs017
https://doi.org/10.1038/sj.onc.1205493
https://doi.org/10.1002/jcp.20566
https://doi.org/10.1016/j.ajhg.2018.07.005
https://doi.org/10.1038/s41436-018-0015-7
https://doi.org/10.1016/j.maturitas.2020.06.004
https://doi.org/10.1080/10495398.2021.2009846
https://doi.org/10.1093/hmg/ddz300
https://doi.org/10.15252/embj.201592695
https://doi.org/10.1016/j.gene.2006.05.012
https://doi.org/10.1093/hmg/ddt226
https://doi.org/10.1002/ana.25857
https://doi.org/10.1016/j.vetimm.2004.10.009
https://doi.org/10.1194/jlr.RA119000354
https://doi.org/10.1007/s13353-019-00496-w
https://doi.org/10.3390/ani10040688
https://doi.org/10.1186/s12864-015-1713-z
https://doi.org/10.1371/journal.pone.0214543
https://doi.org/10.1371/journal.pgen.1008369
https://doi.org/10.1111/ped.13451
https://doi.org/10.1086/429252
https://doi.org/10.1371/journal.pone.0131522
https://doi.org/10.1111/age.12137
https://doi.org/10.1186/s12864-015-1473-9
https://doi.org/10.1111/acel.12773
https://doi.org/10.3390/cells8101151
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Zhang et al. CNVs in Pigs

49. Teng Y, Wang Y, Fu J, Cheng X, Miao S, Wang L. Cyclin T2: a novel

Mir-15a target gene involved in early spermatogenesis. FEBS Lett. (2011)

585:2493–500. doi: 10.1016/j.febslet.2011.06.031

50. Xu S, Chang Y, Wu G, Zhang W, Man C. Potential role of Mir-155-5p in

fat deposition and skeletal muscle development of chicken. Biosci Rep. (2020)

40. doi: 10.1042/BSR20193796

51. Wang F ZQ, Liu JZ, Kong DL. Mirna-188-5p alleviates the progression of

osteosarcoma via target degrading Ccnt2. Eur Rev Med Pharmacol Sci. (2020)

24:29–35. doi: 10.26355/eurrev_202001_19892

52. Ma C, Sun Y, Wang J, Kang L, Jiang Y. Identification of a promoter

polymorphism affecting Gpat3 gene expression that is likely related

to intramuscular fat content in pigs. Anim Biotechnol. (2020) 21:1–

4. doi: 10.1080/10495398.2020.1858847 [Epub ahead of print].

53. Mounsey KEPC, Arlian LG, MorganMS, Holt DC, Currie BJ, Walton SF, et al.

Increased transcription of glutathione S-Transferases in acaricide exposed

scabies mites. Parasit Vectors. (2010) 3:43. doi: 10.1186/1756-3305-3-43

54. Riaz N, Havel JJ, Kendall SM, Makarov V, Walsh LA, Desrichard

A, et al. Recurrent Serpinb3 and Serpinb4 mutations in patients who

respond to Anti-Ctla4 IMMUNOTHERAPY. Nat Genet. (2016) 48:1327–

9. doi: 10.1038/ng.3677

55. Sharif T, Martell E, Dai C, Ghassemi-Rad MS, Kennedy BE, Lee PWK, et al.

Regulation of Cancer and Cancer-Related Genes Via Nad(). Antioxid Redox

Signal. (2019) 30:906–23. doi: 10.1089/ars.2017.7478

56. Nguyen TA, Wu K, Pandey S, Lehr AW, Li Y, Bemben MA, et al. A cluster

of autism-associated variants on X-Linked Nlgn4x functionally resemble

Nlgn4y. Neuron. (2020) 106:759–68e7. doi: 10.1016/j.neuron.2020.03.008

57. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, et al.

Mutations of the X-Linked genes encoding neuroligins Nlgn3 and Nlgn4 are

associated with autism. Nat Genet. (2003) 34:27–9. doi: 10.1038/ng1136

58. Ryding M, Gamre M, Nissen MS, Nilsson AC, Okarmus J, Poulsen

AAE, et al. Neurodegeneration induced by anti-Iglon5 antibodies studied

in induced pluripotent stem cell-derived human neurons. Cells. (2021)

10:837. doi: 10.3390/cells10040837

59. Frantz LA, Schraiber JG, Madsen O, Megens HJ, Cagan A, Bosse M, et al.

Evidence of long-term gene flow and selection during domestication from

analyses of eurasian wild and domestic pig genomes. Nat Genet. (2015)

47:1141–8. doi: 10.1038/ng.3394

60. Hull RM, Cruz C, Jack CV, Houseley J. Environmental change drives

accelerated adaptation through stimulated copy number variation. PLoS Biol.

(2017) 15:e2001333. doi: 10.1371/journal.pbio.2001333

61. Stalder L, Oggenfuss U, Mohd-Assaad N, Croll D. The population genetics of

adaptation through copy-number variation in a fungal plant pathogen. Mol

Ecol. (2022) 27:1633-50. doi: 10.1111/mec.16435

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Zhang, Zhao, Guo, Xu, Liu, Cheng, Chao, Schinckel and Zhou.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Veterinary Science | www.frontiersin.org 12 June 2022 | Volume 9 | Article 90903934

https://doi.org/10.1016/j.febslet.2011.06.031
https://doi.org/10.1042/BSR20193796
https://doi.org/10.26355/eurrev_202001_19892
https://doi.org/10.1080/10495398.2020.1858847
https://doi.org/10.1186/1756-3305-3-43
https://doi.org/10.1038/ng.3677
https://doi.org/10.1089/ars.2017.7478
https://doi.org/10.1016/j.neuron.2020.03.008
https://doi.org/10.1038/ng1136
https://doi.org/10.3390/cells10040837
https://doi.org/10.1038/ng.3394
https://doi.org/10.1371/journal.pbio.2001333
https://doi.org/10.1111/mec.16435
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Loss ofMonoallelic Expression of IGF2
in the Adult Liver Via Alternative
Promoter Usage and Chromatin
Reorganization
Jinsoo Ahn1, Joonbum Lee1,2, Dong-Hwan Kim1, In-Sul Hwang3,4, Mi-Ryung Park3,
In-Cheol Cho5, Seongsoo Hwang3 and Kichoon Lee1,2*
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United States, 5National Institute of Animal Science, Rural Development Administration, Jeju, South Korea

In mammals, genomic imprinting operates via gene silencing mechanisms. Although
conservation of the imprinting mechanism at the H19/IGF2 locus has been generally
described in pigs, tissue-specific imprinting at the transcript level, monoallelic-to-biallelic
conversion, and spatio-temporal chromatin reorganization remain largely uninvestigated.
Here, we delineate spatially regulated imprinting of IGF2 transcripts, age-dependent
hepatic mono- to biallelic conversion, and reorganization of topologically associating
domains at the porcine H19/IGF2 locus for better translation to human and animal
research. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-
seq) of normal and parthenogenetic porcine embryos revealed the paternally
hypermethylated H19 differentially methylated region and paternal expression of IGF2.
Using a polymorphism-based approach and omics datasets from chromatin
immunoprecipitation sequencing (ChIP–seq), whole-genome sequencing (WGS), RNA-
seq, and Hi-C, regulation of IGF2 during development was analyzed. Regulatory elements
in the liver were distinguished from those in the muscle where the porcine IGF2 transcript
wasmonoallelically expressed. The IGF2 transcript from the liver was biallelically expressed
at later developmental stages in both pigs and humans. Chromatin interaction was less
frequent in the adult liver compared to the fetal liver and skeletal muscle. The duration of
genomic imprinting effects within the H19/IGF2 locus might be reduced in the liver with
biallelic conversion through alternative promoter usage and chromatin remodeling. Our
integrative omics analyses of genome, epigenome, and transcriptome provided a
comprehensive view of imprinting status at the H19/IGF2 cluster.

Keywords: imprinting, IGF2, pigs, alternative promoter usage, biallelic conversion, chromatin reorganization
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1 INTRODUCTION

Genomic imprinting operates in mammals as an epigenetic
mechanism that leads to parent-of-origin-specific monoallelic
expression of a subset of genes, mostly in a cluster, via
silencing of either parental allele (Reik and Walter, 2001;
Ferguson-Smith, 2011; Barlow and Bartolomei, 2014). Paternal
or maternal expression of imprinted alleles is essential for
embryonic development, animal growth and behavior, and
diseases related to abnormal loss of imprinting (LOI) (Peters,
2014; Tian, 2014; Tucci et al., 2019). The allele-specific silencing is
either direct (e.g., DNA hypermethylation on promoters (Ahn
et al., 2021a) or indirect (e.g., by antisense non-coding RNAs
(Latos et al., 2012) and chromatin insulators (Bell and Felsenfeld,
2000; Hark et al., 2000) and become complex when multiple types
of silencing simultaneously occur on transcript isoforms
generated by alternative promoter usage (Hayward et al.,
1998a; Hayward et al., 1998b; Peters et al., 1999; Plagge et al.,
2004; Ahn et al., 2020c). Regarding the insulators, studies have
extensively investigated the H19/Igf2 locus and established the
insulator-mediated organization that coordinately regulates them
via the imprinting control region (ICR) (Bartolomei et al., 1991;
Dechiara et al., 1991; Ferguson-Smith et al., 1991; Bartolomei
et al., 1993; Thorvaldsen et al., 1998; Bell and Felsenfeld, 2000;
Hark et al., 2000). This ICR upstream (5′) of H19 is methylated
only in the paternal allele (i.e., paternally imprinted), so that the
insulator CCCTC-binding factor (CTCF) is prevented from
binding to the paternal allele of ICR and subsequently, the
enhancer downstream (3′) of H19 communicates with the far
upstream promoter of Igf2 to drive paternal Igf2 expression.
Insulin-like growth factor 2 (IGF2) is a growth factor that
plays a central role in fetal and postnatal growth. Transgenic
overexpression of the paternally expressed Igf2 gene increased
fetal growth (Sun et al., 1997), and upregulation or
downregulation of IGF2 via aberrant imprinting is associated
with the overgrowth disorder Beckwith-Wiedemann syndrome
and the growth retardation disorder Silver-Russell syndrome,
respectively (Jacob et al., 2013). The maternally expressed H19
gene is a negative regulator of growth and encodes a tumor
suppressor (Hao et al., 1993; Yoshimizu et al., 2008). This
counteraction between paternally and maternally expressed
genes posited in the parental conflict theory regulates balanced
growth (Moore and Haig, 1991; Haig, 2004). Although the
insulator model for the H19/IGF2 locus has been established
in mice and humans (Barlow and Bartolomei, 2014; Nordin et al.,
2014), tissue- and transcript-specific imprinting and changes in
chromatin organization during development remain to be
identified in detail. These identifications can be achieved in a
comparative manner in mammals that serve as biomedical
models and are agriculturally important livestock. Pigs are
relevant models for translational research due to their
anatomical, physiological, as well as genomic similarities with
humans (Lunney et al., 2021). Although studies have described
DNA methylation and gene expression regarding IGF2 and H19
in pigs and a general conservation in the imprinting mechanism
(Li et al., 2008; Park et al., 2009; Braunschweig et al., 2011;
Criado-Mesas et al., 2019), tissue-specific imprinting at the

transcript level, age-dependent hepatic monoallelic-to-biallelic
conversion (loss of monoallelic expression), and spatio-
temporal chromatin reorganization remain largely
uninvestigated.

The multi-layered epigenetic regulatory machineries
responsible for DNA methylation, chromatin accessibility,
histone modifications, and gene expression can be investigated
using integrative omics approaches. As the gold standard for
DNA methylation analysis, whole-genome bisulfite sequencing
(WGBS) of animal models including parthenogenetic embryos
has been utilized to identify differentially methylated regions
(DMRs) (Clark et al., 2006; Ahn et al., 2020a; Ahn et al., 2020c;
Ahn et al., 2021b; a;Morrison et al., 2021). To assess chromatin
accessibility (Thurman et al., 2012) and capture open chromatin
sites, Assay for Transposase-Accessible Chromatin using
sequencing (ATAC-seq) has been used (Buenrostro et al.,
2013). Transcriptionally active promoters are marked by
histone H3 trimethylated at lysine 4 (H3K4me3) (Howe et al.,
2017). A subset of genes has an extended H3K4me3 signal, which
covers the gene body and overlaps with the active enhancer
mark—histone H3 acetylated at lysine 27 (H3K27ac),
consisting of the broad epigenetic domain (Beacon et al.,
2021). Cell type and tissue-specific enhancers in non-coding
regulatory regions serve as key cis-regulatory elements for
gene expression (Creyghton et al., 2010; Rada-Iglesias et al.,
2011; Andersson et al., 2014; Coppola et al., 2016). During
development, epigenetic modifications alter enhancer activities,
as shown in H3K27ac enrichment followed by up-regulation of
extracellular matrix genes which might reduce myogenic
potential in aged skeletal muscle (Zhou et al., 2019). The
formation of open chromatin regions and maintenance of
enhancer elements are related to activation of tissue-specific
genes (Xu et al., 2007; Wiench et al., 2011). Collectively,
epigenetic modulations change chromatin structure and
thereby alter DNA accessibility, which affects availability of
enhancers and promoters to the transcriptional machinery.
These epigenetic modifications might affect tissue-specific
monoallelic gene expression within the H19/IGF2 locus, which
can be identified by profiling informative single nucleotide
polymorphisms (SNPs) in genomic DNA and mRNA of the
same individual (Ahn et al., 2021b; a). In addition,
chromosomal conformation capture-based methods such as
Hi-C have enabled unbiased identification of chromatin
interactions across the genome (Lieberman-Aiden et al., 2009).
The genome is partitioned into functional domains of different
scale including megabase-long and evolutionarily conserved
topologically associating domains (TADs) in which intra-
domain chromatin interactions are frequent and cis-regulatory
elements are coordinately regulated (Shen et al., 2012). The
insulation score for genomic intervals along the chromosome
is used to detect minima/valleys of insulation profile for areas of
reduced chromatin interactions which are classified as TAD
boundaries (Crane et al., 2015). As such, investigating the
chromatin structure of imprinted domains in terms of TAD
organizations (Lleres et al., 2019; Li et al., 2020) improves our
understanding on imprinting clusters in the chromosomal
context.
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Here we aimed to delineate tissue-specific imprinting of major
IGF2 transcripts and hepatic mono- to biallelic conversion during
development of pigs in comparison with humans. We found that
the monoallelic-to-biallelic switch through liver-specific
alternative promoter usage might occur concomitantly with
removal of TAD boundaries and lower chromatin interaction
frequencies at the porcineH19/IGF2 locus. Our findings provided
a comprehensive view of coordinated action of regulatory
elements and chromatin organization and better
understanding of tissue-specific and developmentally regulated
genomic imprinting at the H19/IGF2 locus.

2 MATERIALS AND METHODS

2.1 Ethics Statement
Our experimental protocols for parthenogenetic studies in the pig
were approved by the Institutional Animal Care and Use
Committee of the National Institute of Animal Science, Rural
Development Administration (RDA) of Korea (approval number
NIAS 2015-670). Access to the National Bioscience Database
Center (NBDC) Human Database for de-identified data was
controlled to observe the Ohio State Human Research
Protection Program (HRPP) policies on human subjects (study
number 2020E1322).

2.2 Collection of Parthenogenetic and
Control Embryos
Procedures of production of parthenogenetic embryos following
in vitro maturation (IVM) of pig oocytes have been described in
our previous reports (Kwon et al., 2017; Ahn et al., 2020b). In
detail, ovaries of Landrace x Yorkshire x Duroc (LYD) pigs were
obtained from a local slaughterhouse, transferred to our lab, and
maintained in a thermos at 30–35°C. Cumulus-oocyte complexes
(COCs) were gathered and washed in Tyrode’s lactate-Hepes
medium containing 0.1% (w/v) polyvinyl alcohol. Before IVM,
50 COCs were washed three times in TCM-199 (GIBCO, Grand
Island, NY, United States) [supplemented with 0.1% polyvinyl
alcohol (w/v), 3.05 mM D-glucose, 0.91 mM sodium pyruvate,
0.57 mM cysteine, 0.5 μg/ml luteinizing hormone, 0.5 μg/ml
follicle stimulating hormone, 10 ng/ml epidermal growth
factor, 10% porcine follicular fluid (pFF), 75 μg/ml penicillin
G, and 50 μg/ml streptomycin] and then placed in each well of
five 4-well dishes (Nunc, Roskilde, Denmark) containing 500 µL
of maturation medium and matured for 40–42 h at 38.5°C in an
incubator containing 5% CO2. After maturation, cumulus cells
were removed and oocytes having the first polar body were
selected and activated as follows: oocytes were placed in a
fusion chamber with 250 µm diameter wire electrodes (BLS,
Budapest, Hungary) covered with 0.3 M mannitol solution
containing 0.1 mM MgSO4, 1.0 mM CaCl2, and 0.5 mM Hepes
and two DC pulses (1 s interval) of 1.2 kV/cm were applied for
30 µs using an LF101 Electro Cell Fusion Generator (Nepa Gene
Co., Ltd. Chiba, Japan). Then, after 2 h of stabilization period,
parthenogenetic embryos were placed into oviducts of two LY
(Landrace X Yorkshire) surrogate gilts aged 12 months at onset of

estrus to develop the embryos. Parthenogenetic embryos were
recovered at day 21 from the surrogate gilts before they
underwent morphological changes around day 30–35 (Bischoff
et al., 2009; Hwang et al., 2020). As a control, fertilized embryos
were also recovered at day 21 from gilts, after two LY gilts were
naturally mated with boars twice with a 6 h interval during the
natural heat period at the onset of estrus and confirmed pregnant
by ultrasound examination. For the recovery, gilts were
euthanized, and their reproductive tracts were sectioned, and
the placenta was isolated from the uterus. Embryos were
separated from the surrounding placenta and the surface of
embryos was dried on cleaning tissues. Morphologically intact
embryos with comparable sizes (approx. 2 cm) were selected and
stored in liquid N2 until further use.

2.3 Whole-Genome Bisulfite Sequencing
Genomic DNA was isolated from whole collected embryos
(triplicates for both parthenogenetic and control embryos) and
fragmented. Accel-NGS Methyl-Seq DNA Library Kit (Swift
Biosciences, Inc. Ann Arbor, MI, United States) was used to
optimize bisulfite conversion of genomic DNA according to the
manufacturer`s instructions. PCR was conducted to amplify the
bisulfite-treated DNA with adapter primers, Diastar™ EF-Taq
DNA polymerase (Solgent, Daejeon, Korea), and the following
thermal cycles: 3 m at 95°C followed by 35 cycles of 30 s at 95°C,
30 s at 60°C, and 30 s at 72°C, and a final extension for 5 m at 72°C.
After bead-based clean-up, libraries were sequenced on an
HiSeqX sequencer by Macrogen (Seoul, Korea) with 151 bp
paired-end reads. Data quality was checked using FastQC
(v0.11.7). Raw reads in FASTQ format were quality- and
adapter-trimmed with the default parameters of Trim Galore
(v0.4.5), except for additional trimming of 18 bp off the 3′ end of
R1 and the 5′ end of R2 for removing bases derived from the
sequence tag introduced in the library preparation procedure
(--three_prime_clip_R1 18 --clip_R2 18). Trimmed reads (more
than 800 million reads for each sample) were aligned to the pig
reference genome (Sscrofa11.1, GenBank accession:
GCF_000003025.6) using Bismark (v0.22.3) with default
parameters including --no_overlap for paired-end reads
(Krueger and Andrews, 2011). After deduplication using the
deduplicate_bismark command, the Bismark methylation
extractor was used to calculate methylation percentage of
every cytosine in CpG context. Next, the DMR caller, metilene
(v0.2-8), was used to identify de novo DMRs with default
parameters [including maximum distance of 300 bp between
CpGs (-M 300), minimum of 10 CpGs (-m 10), and minimum
mean methylation difference of 0.2 (−d 0.2)] and a false discovery
rate (FDR) option (Juhling et al., 2016). Methylation ratios and
DMRs (FDR < 0.05) were visualized on genomic coordinates
using the R/Bioconductor package Gviz (v1.28.3) (Hahne and
Ivanek, 2016).

2.4 RNA Sequencing
Total RNA from whole embryo samples (n = 3 for each of the
control and parthenote) was isolated with TRIzol reagent (Sigma-
Aldrich, United States) following the manufacturer’s instructions.
The RNA samples were treated with DNase I to avoid genomic
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DNA contamination and electrophoresed in 1.2% agarose gels to
evaluate the integrity of RNA, which was confirmed by 28S/18S
rRNA ratio > 2 and RNA integrity number (RIN) > 7 using an
Agilent 2100 BioAnalyzer. The concentrations of RNA were
assessed by the ratios of A260/A280 and A260/A230 (1.8–2.0).
One ug of total RNA and the TruSeq RNA Sample Prep Kit v.2
(Illumina, San Diego, CA, United States) were used to construct
cDNA libraries, and final libraries were produced using the
protocol consisting of polyA-selected RNA extraction, RNA
fragmentation, random hexamer primed reverse transcription
and amplification. The cDNA libraries were quantified by
quantitative Real-Time PCR (qPCR), and qualification of the
libraries was assessed using the Agilent 2100 Bioanalyzer. The
library products (100 nt paired-end) were sequenced by the
Illumina HiSeq2500 RNA-Seq platform. The raw RNA
sequencing reads (FASTQ format) were checked for quality by
FastQC (v0.11.7) and trimmed and filtered by Trimmomatic
v0.38 with default parameters (Bolger et al., 2014). Then,
using STAR aligner (v2.7.5) with default parameter settings
(Dobin et al., 2013), cleaned sequencing reads were mapped to
the pig reference genome sequence (Sscrofa11.1). Duplicated
reads were removed using Picard MarkDuplicates and reads
were filtered using SAMtools (-q 30) (Li et al., 2009). Read
coverages in BAM files were normalized to values equivalent
to transcripts per million (TPM) using bamCoverage in
deepTools (v3.5.0) with parameters (--binSize 10,
--smoothLength 15) (Ramirez et al., 2014) and plotted using
the R/Bioconductor package Gviz (v1.28.3) (Hahne and Ivanek,
2016).

2.5 Analyses of Differential Gene Expression
Raw RNA-seq reads in the FASTQ format were quantified
against indexed pig transcriptome using Salmon (v1.3.0) in the
mapping-based mode (Patro et al., 2017). TPM values of each
gene were obtained for parthenogenetic embryos (PA) and
control embryos (CN) (n = 3 for each) from Salmon output
files (quant.sf). The output files were then imported by
tximport function to construct a gene-level DESeqDataSet
object for the R/Bioconductor package DESeq2 (v1.28.1)
(Love et al., 2014). The test for DEGs was conducted by
DESeq2. To obtain significant DEGs, combined criteria of
FDR < 0.05 and the absolute log2-fold change > 1 were
used, where a fold change is defined as read counts in PA
divided by read counts in CN.

2.6 Profiling Gene Regulatory Elements
Raw FASTQ files deposited with GEO accession number
GSE158430 (ATAC-seq, and H3K27ac, H3K4me3, and
CTCF ChIP-seq) for 6-month-old pigs (Kern et al., 2021),
GSE143288 (ATAC-seq, and H3K27ac and H3K4me3 ChIP-
seq) for 2-week-old pigs (Zhao et al., 2021), GSE153452
(CTCF-seq) for pig embryonic fibroblasts (Li et al., 2020),
and GSE155324 (CTCF-seq) for human lymphoblasts (Ushiki
et al., 2021) were downloaded via the European Nucleotide
Archive (ENA) Globus GridFTP. The quality of the raw
sequencing reads was checked using FastQC (v0.11.8), and
raw reads were trimmed and filtered using Trimmomatic

(v0.38) with default settings (Bolger et al., 2014). All
trimmed reads were mapped to the pig reference genome
(Sscrofa11.1) or the human reference genome (GRCh38.p13,
RefSeq assembly accession: GCF_000001405.39) using BWA-
MEM aligner (v 0.7.17-r1198) using default parameters (Li,
2013). For ATAC-seq, mitochondrial genome was removed
from the pig genome before alignment to avoid contamination
of the mitochondrial genome which is more accessible owing
to chromatin packaging deficiencies (Yan et al., 2020). Aligned
reads were deduplicated using Picard MarkDuplicates, and
filtered for quality using SAMtools (MAPQ > 30) (Li et al.,
2009). MACS2 was used with default parameters to call peaks
except for broad peaks (--broad) for ATAC-seq and FDR <
0.01 (-q 0.01) (Zhang et al., 2008). Read coverages in BAM files
were normalized to 1x depth (reads per genomic content,
RPGC) using bamCoverage in deepTools (v3.5.0) with
parameters (--binSize 10, --smoothLength 15) (Ramirez
et al., 2014). Peaks were visualized on genomic coordinates
using the R/Bioconductor package Gviz v1.36.2 (Hahne and
Ivanek, 2016).

2.7 Analyses of Tissue-Specific and
Developmental Stage-Specific Expression
Raw RNA-seq data of normal pigs [PRJEB44486 (under Sus
scrofa section in the FAANG datasets, https://data.faang.org/
dataset), GSE77776 (Li et al., 2017), PRJNA493166 (Zhang
et al., 2019), GSE158430 (Kern et al., 2021), PRJNA597972,
GSE124484, GSE92433, PRJNA721126, GSE93855 (Tang et al.,
2017), and GSE157045 (Yang et al., 2021)] and humans
[GSE63634 (Yan et al., 2016), SRP166862 (George et al.,
2019), PRJNA395106, and GSE120795 (Suntsova et al., 2019)]
were downloaded through ENA’s Globus GridFTP, except for
raw data files of the human adult liver (accession hum0158.v2 for
controlled access) which were downloaded via SFTP of the NBDC
Human Database. The RNA-seq processing procedures were the
same as above.

2.8 Analyses of Allele-Specific Expression
Datasets with genomic DNA and mRNA sequencing data from
the same individuals were used. In detail, in addition to the
above RNA-seq data, raw data for genomic DNA from the
same individual were also downloaded from ENA’s Globus
GridFTP, except for the human adult liver obtained from
NBDC’s SFTP. For each pig breed, one liver and skeletal
muscle sample from a 60-day-old pig was used
(PRJNA309108/GSE77776) (Li et al., 2017). The human
fetal liver samples were from two fetuses at 12 weeks after
gestation (GSE63634) (Yan et al., 2016). The IDs of human
liver samples from adults aged 31–74 were RK001, RK003,
RK018, RK019, RK024, RK075, RK130, RK141, and RK157
(hum0158.v2). The IDs of human smooth muscle samples
from reproductive age adults were MP100N, MP136N,
MP169N, NW206N, and GO537N (SRP163897/SRP166862)
(George et al., 2019). The IDs of human lung samples of adults
aged 68–77 were N1, N3, N5, N12, N19, and N23
(PRJNA395106). Individuals with these IDs had
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heterozygous SNPs at the IGF2 locus in genomic DNA. In
addition, an RNA-seq dataset, PRJNA597972, was used to
analyze biallelic tendencies.

Whole-genome sequencing (WGS), whole-exome sequencing
(WES), and H3K4me1 ChIP-seq data were cleaned and aligned
using BWA-MEM as above. The deduplicated BAM files were
used to detect SNPs and obtain allele counts in individual samples
by generating vcf files through bcftools mpileup piped to bcftools
call command. The published pig SNP data
(GCA_000003025.6_current _ids.vcf.gz) were obtained from
the EBI ftp server (ftp://ftp.ebi.ac.uk/pub/databases/eva/rs_
releases/release_2/by_species/sus_scrofa/Sscrofa11.1/). The
human SNPs in the vcf file (GCF_000001405.39.gz) for the
GRCh38.p13 genome were downloaded from the NCBI data
repository (https://ftp.ncbi.nih.gov/snp/.redesign/latest_release/
VCF/). For sequencing to generate chromatogram for IGF2(8)
and IGF2-AS, genomic DNA and RNA were isolated from the
liver of 6-month-old Berkshire pigs. To amplify a DNA fragment
containing a potential SNP on the second exon of the IGF2(8)
transcript, primers were designed on the first intron (forward: 5′-
AGCGTGGA GAGGCTCTCTT-3′) and the second intron
(reverse: 5′-ACCCAAACACTCAATGCAGCTTT-3′). For a
potential SNP on the second exon of the IGF2-AS transcript,
primers were designed on the first intron (forward: 5′-CTGCTC
TGGGTTCCCCAT-3′) and the second intron (reverse: 5′-
CTGACAA CCCTGCCCTGTT-3′). After sequencing and
confirming heterozygosity of the SNP, primers for cDNA were
designed on the first exon (forward: 5′-CCCCATTGGCACCAG
TACAG-3′) and the third exon (reverse: 5′-GCTGAGCCCGAG
GAGATGTG-3′) of IGF2(8) and the first exon (forward: 5′-GGA
CACGCGAGGCGA-3′) and second exon (reverse: 5′-CAAGGT
CCAGGCGCATGT-3′) of IGF2-AS to avoid genomic DNA
contamination. PCR was conducted using the Taq DNA
Polymerase (#M0273S, New England Biolabs, Ipswich, MA,
United States) with an initial incubation at 95°C for 30 s,
followed by 43 cycles at 95°C for 30 s, 56°C for 35 s, and 68°C
for 20 s. The final extension was performed at 68°C for 5 min.
After agarose gel electrophoresis, DNA was extracted from
separated PCR bands using a QIAquick Gel Extraction Kit
(#28104, Qiagen, Venlo, Netherlands) according to the
manufacturer’s protocol and sent out for Sanger sequencing at
The Ohio State University Core Facility.

2.9 Hi-C Data Processing
Raw Hi-C data in FASTQ format of the liver of fetal (embryonic
day 90) and adult (2-years-old) Bamaxiang pigs (PRJNA482496)
(Tian et al., 2020) and skeletal muscle tissues of a Luchuan pig
(embryonic day 35) (GSE166346) (Yuan et al., 2021) and Large
White pigs (2-week-old) (GSE143288) (Zhao et al., 2021) were
retrieved through ENA’s Globus GridFTP. After assessing the
quality of data using FastQC (v0.11.7), the raw paired-end reads
were trimmed and filtered out to remove low quality reads,
adapters, and reads shorter than 20 bp by using default
settings of Trim Galore (v0.4.5). Cleaned data were processed
using HiC-Pro (v.3.1.0) with default parameters (Servant et al.,
2015) while specifying the index for bowtie2 (v2.4.4) and MboI
(or DpnII) restriction fragments according to data submitters’

publications (Tian et al., 2020; Yuan et al., 2021; Zhao et al., 2021).
To determine concordance of rawHi-Cmatrices, GenomeDISCO
was used to produce smoothed matrices and randomly work on
the smoothed matrices to obtain concordance scores (Ursu et al.,
2018). The validPairs files from matrices with high concordance
were merged to increase resolution and normalized by iterative
correction and eigenvector decomposition (ICE) using
parameters of HiC-Pro (-s merge_persample -s
build_contact_maps -s ice_norm). TADs were identified using
insulation scores and ICE normalized matrices were visualized
using the GENOVA R-package (Van Der Weide et al., 2021).

3 RESULTS

3.1 A Differentially Methylated Region
Within the Porcine H19/IGF2 Locus is
Paternally Methylated at a CpG Island
Using diploid uni-maternal PA embryos and bi-parental CN
embryos, we performed WGBS at an approximately 50X depth
(Supplementary Table S1). By analyzing the WGBS data, DMRs
between the embryos were obtained whose mean methylation
difference (i.e., a mean of PA subtracted by a mean of CN) was
more than 0.2 (hypermethylation in PA) or less than 0.2
(hypomethylation in PA) with significance (FDR < 0.05)
(Supplementary Figure S1A). Compared with methylated
regions without significance, DMRs tended to be longer in
base pairs and greater in CpG numbers, as a result of
processing approximately 588 million deduplicated uniquely
mapped reads for each replicate on average (Supplementary
Figure S1B and Supplementary Table S1). Using
unmethylated lambda phage DNA added to sample DNA
prior to fragmentation, bisulfite conversion rates at CpG,
CHG, and CHH sites were calculated and estimated to be
99.69%–99.71% across samples representing successful library
construction (Supplementary Table S1). In order to examine
DNA methylation status within the H19/IGF2 locus in porcine
embryos, methylation ratios at single-base resolution were
analyzed. Based on the mean methylation ratio at each CpG
site, diploid uni-maternal PA carried a broad range of
hypomethylation immediately upstream (5ʹ) of the non-coding
H19 gene (Figure 1A bottom panel, Supplementary Table S2).
Hemi-methylation occurred in bi-parental CN, and a DMR
between PA and CN was identified which mostly overlapped a
CpG island (Figure 1A bottom panel). It was consistent with a
previous study regarding the presence of the porcine H19-DMR,
where maternal alleles were almost unmethylated and paternal
alleles were completely methylated which led to hemi-
methylation (Braunschweig et al., 2011). Additionally, a
narrow hypermethylated DMR in PA was located farther
upstream of H19 (Figure 1A bottom panel). DNA methylation
in the upstream and downstream of the IGF2, INS, TH genes did
not show differences between PA and CN, and various IGF2
transcripts did not exhibit a transcript-specific methylation
pattern (Figure 1A bottom panel). In summary, the
hypomethylated region in PA (i.e., paternally methylated H19-
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FIGURE 1 |Gene expression and DNAmethylation profiling at theH19/IGF2 locus in the porcine embryo. (A) Above GeneRegionTrack, normalized read coverages
from RNA-Seq are shown as transcripts per million (TPM; y-axis) in each track of PA and CN embryos. In GeneRegionTrack, genes located in the 0.171-Mb (171-Kb)
region between theMRPL23 and TH genes (chr2:1,337,000-1,508,000) are displayed by either brown boxes [tall, translated regions; short, untranslated regions (UTRs)]
for protein-coding transcripts or purple boxes for non-coding transcripts. The directions of transcription aremarked by horizontal arrows. BelowGeneRegionTrack,
averages of cytosine methylation ratios (n = 3, PA and CN each) obtained by WGBS are shown. PA-CN indicates mean methylation ratios of PA subtracted by those of
CN. R represents DMRs called by the metilene software (FDR < 0.05) which are also overlaid in the PA-CN track. I (CpG islands) and GC% (GC content) were derived
from the UCSC Table Browser. (B) The locus spanning IGF2, IGF2-AS, INS, and TH genes (43-Kb, chr2:1,465,000-1,508,000) were zoomed in. For IGF2-AS, INS, and
TH, expression is displayed within a dotted rectangle and an additional y-axis (TPM) is shown at the far right. Pig gene transcripts includeMRPL23(1), XM_021083608.1;
MRPL23(2), XM_021083607.1; IGF2(1), XM_021080593.1; IGF2(2), XM_021080637.1; IGF2(3), XM_021080576.1; IGF2(4), XM_021080612.1; IGF2(5),
XM_021080582.1; IGF2(6), XM_021080648.1; IGF2(7), XM_021080641.1; IGF2(8), XM_021080607.1; IGF2(9), XM_021080643.1; IGF2(10), XM_021080603.1;
IGF2(11), XM_021080596.1; INS(1), XM_021081278.1; INS(2), NM_001109772.1.
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DMR) was the only DMR that overlapped a CpG island
throughout the H19/IGF2 locus of the pig embryo, and
transcript-specific DMRs were not found in the IGF2 locus.

3.2 Expression of the IGF2 Gene in Pig
Embryos is Paternal Allele-Specific
In our model of PA and CN, gene and transcript expressions
within the H19/IGF2 locus were examined to investigate their
imprinting status. Analyses of differentially expressed genes
(DEGs) on RNA-seq data (Supplementary Table S1)
revealed that expression of the non-coding H19 gene tended
to increase in PA compared to CN (1.61-fold higher in PA)
suggesting its maternal expression, i.e., had a higher expression
in two maternal alleles of PA than in one maternal allele of CN
(Figure 1A top panel, Supplementary Table S3, and
Supplementary Figure S1C). This deviation from a 2-fold
increase might be accounted for by gene dosage
compensation in diploid uni-parental embryos or loss of
imprinting (Shemer et al., 1996; Park et al., 2011). Expression
of the IGF2 genes was almost exclusive in CN embryos (adjusted
p-value < 0.001), indicating expression in the paternal allele of
CN while being absent in PA without the paternal allele
(Figure 1B; Supplementary Table S3, and Supplementary
Figure S1C). Among the IGF2 transcript isoforms, the major
transcript was IGF2(3) (short-form; GenBank accession
number: XM_021080576.1) having four exons and its non-
overlapping first exon carried predominant read coverages
(Figure 1B). In addition, paternal expression of antisense of
IGF2 (IGF2-AS) was indicated by almost exclusive read
coverages in CN (adjusted p-value < 0.001) (Figure 1B;
Supplementary Table S3, and Supplementary Figure S1C).
Other genes and gene transcripts including MRPL23 and INS
appeared to be expressed biallelically and expression of the TH
gene tended to increase in PA embryos, while expression of
LOC110259183, LOC110259218, and LOC110259219 was
almost undetectable (Figure 1; Supplementary Table S3, and
Supplementary Figure S1C). Consequently, the imprinted
expressions of the IGF2(3) and IGF2-AS genes were shown to
be paternal monoallelic.

3.3 Regions Surrounding the Porcine H19
and IGF2 Locus Accumulate
Distinguishable Gene Regulatory Elements
Between the Liver and Skeletal Muscle
To examine whether imprinted monoallelic expression at the
IGF2 locus is maintained in different developmental stages, we
first analyzed expression levels H19 and IGF2 in multiple tissues
of 6-month-old pigs using a dataset retrieved by the Gene
Expression Omnibus (GEO) accession GSE158430. At this
stage, expression of IGF2 was prominent in the liver and
expression of H19 was high in skeletal muscle
(Supplementary Figure S2). In other pig tissues, including the
adipose tissue, brain hypothalamus, lung, and spleen, expression
of both IGF2 and H19 was substantially low (Supplementary
Figure S2). Therefore, we investigated gene regulatory elements

in the liver and skeletal muscle of the same pigs within and near
the porcine H19/IGF2 locus that might affect gene expression.
ATAC-seq (for open chromatin), H3K27ac (at active enhancers
and promoters), H3K4me3 (at active promoters), and CTCF
(insulators) were analyzed. Our analysis of these datasets from
two biological replicates of skeletal muscle revealed that H3K27ac
signals were distributed around ATAC peaks spanning ~20 kb
(chr2:1,346,472-1,366,301) approximately 15–35 kb downstream
(3′) of the H19 transcription start site (TSS) (ae, Figure 2A),
suggestive of active enhancers. However, these signals were
absent in the liver. On the other hand, H3K27ac peaks
upstream (5′) of IGF2(8) were enriched with H3K4me3 in the
liver, and also H3K27ac peaks upstream of IGF2(3)were enriched
with H3K4me3 in skeletal muscle (approx. 1–2 kb H3K27ac and
H3Kme3 signals) (Figure 2A), suggesting that they represent
regulatory features including active promoters. In addition, in
skeletal muscle but not in the liver, H3K4me3 signals located
immediate upstream (5′) of H19 where CTCF peaks co-localized
(ap, Figure 2A). It indicated that theH19 promoter was activated,
and this activation might be attributed to the aforementioned
active enhancer downstream of H19 and monoallelic CTCF
binding which leads to monoallelic activation of the H19
promoter as previously reported regarding the human and
mice ICRs (Bell and Felsenfeld, 2000; Hark et al., 2000).
Moreover, although monoallelic CTCF binding in the skeletal
muscle was not confirmed due to lack of heterozygous sites, the
monoallelic CTCF binding was evident in pig embryonic
fibroblasts (PEFs) whose CTCF sites were analogous to those
of human lymphoblasts (Supplementary Figure S3). Noticeably,
expression ofH19 was low in the liver and high in skeletal muscle
(Figure 2A bottom panel, and Supplementary Figure S2), and
IGF2 transcripts expressed in this locus were different between
the two tissues: IGF2(8) in the liver and IGF2(3) in skeletal
muscle, and total expression of IGF2 was higher in the liver
(Figure 2A bottom panel, Figure 2B, and Supplementary
Figure S2).

We further investigated an additional presence of gene
regulatory elements in the liver which deviate from the
insulator model (Barlow and Bartolomei, 2014; Nordin et al.,
2014) using another dataset (GSE143288). In 2-week-old pigs,
H3K27ac peaks were distributed in the downstream of H19
around the open chromatin region indicated by ATAC signals,
although the dataset contained ATAC data for the one pig (Li1)
(Figure 3A top panel). The H3K4me3 signals near H19 indicated
an activated promoter, and all the ATAC, H3K27ac, and
H3K4me3 signals around the first exon of IGF2(3) suggested
the long-range insulator-mediated regulation of IGF2(3)
expression. However, those ATAC, H3K27ac, and
H3K4me3 signals were also detected near the first exon of the
IGF2(8) transcript (Figure 3A top panel), suggesting the presence
of an additional transcript-level gene regulation. Consistently, the
expression of both IGF2(3) and IGF2(8) was observed in the same
liver tissues while H19 was expressed in the far downstream of
IGF2 (Figure 3A bottom panel and Figure 3B). Taken together, it
suggested that, compared to the IGF2(3) expression in the whole
embryo (Figure 1) and the IGF2(8) expression in the liver from 6-
month-old pigs (Figure 2), both IGF2(3) and IGF2(8) are
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FIGURE 2 | Epigenetic regulatory elements identified in the H19/IGF2 locus of liver and skeletal muscle of 6-month-old pigs and gene expression profiling. (A)
Above GeneRegionTrack, peaks of ATAC-seq, H3K27ac, H3K4me3 and CTCF are displayed in 1x normalized read coverages. MACS2-called peaks are underscored
with red bars. Peaks of interest in the liver and skeletal muscle are pointed with brown and blue arrows, respectively. ae, active enhancer; ap, active promoter. Below
GeneRegionTrack, normalized read coverages in TPM values from RNA-Seq from the same pigs (P348 and P350) are displayed. Li1, liver 1 from P348; Li2, liver
2 from P350; Mu1, skeletal muscle 1 from P348; Mu2, skeletal muscle 2 from P350. (B) RNA-Seq read coverages in the IGF2 locus are zoomed in. Data were retrieved
from a dataset (GSE158430). Details about y axis titles and the plot are in Figure 1 legend.
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expressed in the liver of two-week-old pigs (Figure 3) under the
regulation of two different sets of gene regulatory elements.

3.4 Developmental Changes of the Porcine
IGF2 Gene Expression and Bi- or
Mono-Allelic Expression are Distinct in the
Liver and Skeletal Muscle
Considering the aforementioned distinct gene regulation and
expression patterns in the liver, we examined whether the
IGF2 gene expression is regulated developmentally and shows
an allele-specific pattern. First, using RNA-seq datasets, read

coverages for IGF2 transcripts were analyzed in the liver and
skeletal muscle across developmental stages. In both the liver and
skeletal muscle, on embryonic day 70 and postnatal day 1, the
IGF2(3) transcript was predominantly expressed (Figure 4). On
day 60, however, the IGF2(3) transcript was not always
predominant in the liver of analyzed pigs, while in the skeletal
muscle the IGF2(3) transcript was predominant (Figure 4). In
particular, in the liver of Landrace pigs, the IGF2(3) transcript was
predominant and the IGF2(8) expression was detected at a low
level. In the liver of Large White and Meishan pigs both IGF2(3)
and IGF2(8) transcripts were predominant, while Berkshire pigs
showed high expression of the IGF2(8) transcript and reduced

FIGURE 3 | Enrichment of gene regulatory signals and expression of genes within theH19/IGF2 locus of the liver of 2-week-old pigs. (A) ATAC-seq, H3K27ac, and
H3K4me3 signals in the liver (Li) of two Large White pigs are represented with 1x normalized read coverages. Red bars indicate MACS2-called peaks. Both grey shades
and brown arrows denote gene regulatory signals and gene expression. ae, active enhancer; ap, active promoter. (B) Expression pattens of the IGF2 transcripts is
zoomed in. Both IGF2(3) and IGF2(8) are expressed in the same liver tissues of the 2-week-old pigs. Data were retrieved from GSE143288.
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expression of the IGF2(3) transcript. On the other hand,
expression of the IGF2(3) transcript was almost absent in the
liver of Bamei, Jinhua, and Rongchang pigs, whereas the IGF2(8)
transcript was predominant (Figure 4). On day 180, the IGF2(8)
transcript was predominant in the liver and the IGF2(3)
transcript was predominant in skeletal muscle (Figure 4). The

total read coverages of IGF2 tended to decrease in both the liver
and skeletal muscle during development. The transition of IGF2
expression in the liver, but not in skeletal muscle, was repeatedly
shown in additional data (Supplementary Figures S4A and S5).

To examine allelic expression patterns, informative
(heterozygous) SNPs in the IGF2(3) and IGF2(8) transcripts

FIGURE 4 |mRNA expression in the liver and skeletal muscle within the IGF2 locus of embryonic day 70 (E70 d), 1-day-old (1 d), 60-day-old (60 d), and 180-day-
old (180 d) pigs. Pig RNA-seq data generated using embryonic liver and skeletal muscle (PRJEB44486), 1 d liver and skeletal muscle (PRJEB44486), 60 d liver and
skeletal muscle (GSE77776), and 180 d liver and skeletal muscle (PRJNA493166) were analyzed. Developmental stages are separated and indicated for liver and
skeletal muscle using light brown to dark brown and light green to dark green, respectively. Non-overlapping exons with high read coverages are overlaid with grey
shades and corresponding predominantly expressed transcripts (IGF2(3) and IGF2(8)) are marked by red arrows. Li, liver; Mu, skeletal muscle. LW, Large White; LD,
Landrace; MS, Meishan; BS, Berkshire; BM, Bamei; JH, Jinhua; RC, Rongchang pigs.
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FIGURE 5 | Allelic expression of the IGF2 transcripts from the liver and skeletal muscle of 60-day-old pigs from 9 breeds. (A) Predominant porcine IGF2 transcripts
in liver (Li) and skeletal muscle (Mu) from Figure 4 are displayed along with an antisense transcript (IGF2-AS). (B) Location of SNPs on genomic DNA (gDNA) analyzed
usingWGS (PRJNA309108) are denoted with blue numbers. Reference and alternative alleles are marked in the format of ref/alt (e.g., A/G). If present, the reference SNP
ID (rs ID) is shown (e.g., rs1109870997). Heterozygous alleles are denoted with stars (*) on the right side of SNPs in the genomic DNA. Read coverages of RNA-seq
(GSE77776) from the same pigs as WGS are displayed for liver (C) and skeletal muscle (D). Numbers on the top-left corner of each read coverage denote the depth of
coverage. (E) Sequencing of exon 2 (E2) of IGF2(8) and IGF2-AS for genomic DNA and cDNA from the liver tissues of two 6-month-old (6 months) Berkshire pigs (P1 and
2). LW, Large White; LD, Landrace; MS, Meishan; BS, Berkshire; BM, Bamei; JH, Jinhua; RC, Rongchang pigs.
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and IGF2-AS were explored (Figures 5A,B). Nine heterozygous
SNPs were found in genomic DNA (gDNA) of any of the 60-day-
old pigs (Figures 5A,B and Supplementary Table S4). Among
those SNPs, four heterozygous SNPs including a previously
reported SNP (rs1113378991) were found for non-overlapping
exons of the IGF2(8) transcript in Bamei (SNP1-3) and Landrace
(SNP4) pigs (Figure 5B and Supplementary Table S4) and
mRNA expression on those four alleles in the liver was
biallelic (Figure 5C and Supplementary Table S4), indicating
biallelic expression of the porcine IGF2(8) transcript. One
heterozygous SNP for IGF2-AS (SNP5) in Meishan and
Rongchang pigs (Figure 5B and Supplementary Table S4)
was expressed monoallelically in both the liver and skeletal
muscle, although the mRNA expression level was low (Figures
5C,D and Supplementary Table S4). Four other SNPs (SNP6-9)
including a previously reported SNP (rs1109870997) were found
in overlapping exons of the IGF2(3) and IGF2(8) transcripts, and
informative SNPs were not found in the non-overlapping exon
(E1) of IGF2(3) (Figures 5A,B and Supplementary Table S4). In
the liver of Rongchang, Jinhua, and Bamei pigs which expressed
exclusively the IGF2(8) transcript (Figure 4), SNP6 and 7 in
Rongchang, SNP8 in Jinhua, and SNP9 in Bamei pigs were
biallelically expressed (Figure 5C and Supplementary Table
S4). In the liver of Meishan pigs which expressed both the
IGF2(3) and IGF2(8) transcripts (Figure 4), SNP9 showed a
decreased biallelic tendency due possibly to monoallelic
expression of IGF2(3) and biallelic expression of IGF2(8)
(Figure 5C and Supplementary Table S4). In the liver of
Landrace pigs which expressed the IGF2(3) transcript
predominantly and the IGF2(8) transcript at a low level
(Figure 4), SNP9 showed a monoallelic tendency due possibly
to substantially higher monoallelic expression of the IGF2(3)
transcript than biallelic expression of the IGF2(8) transcript
(Figure 5C and Supplementary Table S4). These allelic
changes were also found using another dataset which showed
a biallelic tendency or a decreased biallelic tendency
(Supplementary Figure S4B). In the skeletal muscle, these
Rongchang, Jinhua, Bamei, Meishan, and Landrace pigs
expressed the IGF2(3) transcript predominantly (Figure 4),
and corresponding expression of SNP6-9 tended to be
monoallelic (Figure 5D and Supplementary Table S4). In the
liver of adult Berkshire pigs, biallelic expression of the IGF2(8)
transcript andmonoallelic expression of IGF2-ASwere confirmed
(Figure 5E). Taken together, it suggests that allelic expression
patterns were different in between the liver and muscle, in
addition to the difference of the expressed form of IGF2
transcripts.

3.5 IGF2 Expression in Humans is
Developmentally Regulated and Bi- or
Mono-Allelic Expression Patterns Are
Tissue-Specific
For comparison with pigs, the IGF2 gene expression in the fetal
and adult liver and other tissues of the human was examined and
also allelic expression in those tissues was further investigated.
Based on RNA-seq read coverages, when compared with other

tissues, expression of IGF2 andH19was relatively high in the liver
and muscle, respectively, while expression of both IGF2 and H19
was low in other tissues including the brain, lung, colon, and
stomach (Supplementary Figure S6A). The IGF2(2) transcript
[the orthologous transcript of porcine IGF2(3)] was expressed in
the fetal liver and the IGF2(6) transcript [the orthologous
transcript of porcine IGF2(8)] was expressed in the adult liver
(Figure 6 and Supplementary Figures S6, S7), which are
comparable to the findings of the predominant expression of
IGF2(3) and IGF2(8) in fetal and adult livers, respectively, in pigs.
Both the IGF2(1) and IGF2(2) transcripts were expressed in the
adult smooth muscle and lung (Figure 6). The overall expression
levels tended to be high to low in the order of fetal liver, adult
liver, adult smooth muscle, and adult lung. Expression of INS-
IGF2 fusion transcripts and INS transcripts was not detectable
(Figure 6), while expression of IGF2-AS was low but detectable in
the fetal liver and decreased in postnatal stages of both pigs and
humans (Figure 7B and Supplementary Figure S8). Total
expression of IGF2 was significantly higher in the liver than in
skeletal muscle, and total expression ofH19 tended to be higher in
skeletal muscle than in the liver (Supplementary Figure S6B),
and these patterns in adult humans were similar to those of the
adult pigs (Supplementary Figure S2B).

Allelic expression was further explored for the fetal and adult
liver of the human, regarding informative SNPs in the expressed
IGF2(2) and IGF2(6) transcripts and IGF2-AS (Figure 7A). The
IGF2(2) and IGF2-AS transcripts were expressed in the fetal
liver (Figures 7A,B), and six informative SNPs on gDNA were
found (Figure 7B and Supplementary Table S5). All of those
six SNPs were monoallelically expressed in mRNA of the fetal
liver (Figure 7B and Supplementary Table S5). The IGF2(6)
transcript was expressed in the adult liver and with a very low
degree for IGF2-AS expression (Figures 7A,C). The same
SNP5 between the fetal and adult liver was heterozygous in
the adult liver from individual 2, 4, 6, 7, and 9 (Figure 7C top
panel and Supplementary Table S5) and tended to be expressed
biallelically (Figure 7C bottom panel and Supplementary Table
S5), suggesting biallelic expression of IGF2(6) unlikely to
monoallelic expression of IGF2(2) in the fetal liver
(Figure 7B and Supplementary Table S5). Also, in the adult
liver, SNP8-10 were found to be heterozygous in some
individuals (SNP8: 2 and 4-9, SNP9: 2, 6, 7, and 9, SNP10: 2,
4, 7, and 9) and corresponding mRNA expression of IGF2(6)
tended to be biallelic (Figure 7C and Supplementary Table S5).
The SNP7 was found on IGF2-AS but the expression was too low
to determine its allelic expression (Figures 7A,C and
Supplementary Table S5) and therefore, its allelic expression
could not be determined.

Moreover, in smooth muscle and lungs, informative SNPs on
IGF2(1), IGF2(2), and IGF2-AS were explored in gDNA
(Figure 8A) and their allelic expression was examined. In
smooth muscle, both IGF2(1) and IGF2(2) were expressed,
and SNP11-15 were heterozygous in gDNA (Figures 8A,B
and Supplementary Table S6). Allelic expression of SNP11-
15 tended to be monoallelic (Figure 8B bottom panel and
Supplementary Table S6), indicating monoallelic expression
of IGF2(1) and IGF2(2). The SNP1 was heterozygous in smooth
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muscle, but the mRNA expression was very low (Figures 8A,B
and Supplementary Table S6). In the lungs, both IGF2(1) and
IGF2(2) were expressed, and the same SNP5, 9, and 10 as in the
liver were found to be heterozygous (Figures 8A,C and
Supplementary Table S6). Unlike biallelic expression in the
liver, expression on SNP5, 9, and 10 was monoallelic in the lungs
(Figure 8C bottom panel and Supplementary Table S6). In
addition, SNP16 was found to be heterozygous in individual 2,
and its expression tended to be monoallelic in the lungs (Figures

8A,C and Supplementary Table S6). Regarding SNP1, the
mRNA expression of IGF2-AS was very low in the lungs
(Figures 8A,C and Supplementary Table S6).

Overall, in the human, IGF2(1) and/or IGF2(2) were expressed
in the fetal liver, adult smooth muscle, and adult lung, and the
expression tended to be monoallelic, whereas IGF2(6) was
expressed in the adult liver and the expression tended to be
biallelic. In addition, the IGF2-AS expression was very low, except
in the fetal liver where the expression tended to be monoallelic.

FIGURE 6 | Temporal and spatial differences of expressed IGF2 transcripts in the human. Displayed are mRNA expression of the IGF2 gene in the human fetal liver
(Li), adult liver (Li), adult smoothmuscle (SM), and adult lung (Lu). RNA-seq data were retrieved from datasets: GSE63634 for fetal liver, hum0158.v2 for normal adult liver,
SRP166862 for normal adult smooth muscle, and PRJNA395106 for normal adult lung. Read coverages are represented as TPM values on the y-axis. In
GeneRegionTrack, transcripts of IGF2, INS-IGF2 fusion, IGF2-AS, and INS genes located in the 0.0365-Mb (36.5-Kb) region (chr11:2,125,500-2,162,000) are
displayed by either light blue boxes [tall, translated regions; short, untranslated regions (UTRs)] for protein-coding or purple boxes for non-coding. Horizontal arrows
under transcripts indicate the direction of transcription. Grey shades overlay non-overlapping exons with high read coverages corresponding to predominant transcripts
(IGF2(1), IGF2(2) and IGF2(6)) with red arrows. Human gene transcripts include IGF2(1), NM_001291861.3; IGF2(2), NM_000612.6; IGF2(3), NM_001127598.3;
IGF2(4), NM_001291862.3; IGF2(5), NM_001007139.5; IGF2-AS(1), NR_028043.2; IGF2-AS(2), NR_133657.1; INS(1), NM_001185097.2; INS(2), NM_001185098.2;
INS(3), NM_001291897.2; INS(4), NM_000207.3.
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FIGURE 7 | Allelic expression of IGF2 in fetal and adult human liver. (A) Predominant IGF2 transcripts in either the fetal liver (FL) (IGF2(2)) or adult liver (Li) (IGF2(6)) are
displayed along with antisense transcripts (IGF2-AS). SNP locations are marked with numbers on exons (E) and numbers in red (5, 9, and 10) indicate the same SNPs as
in Figure 7. (B) Heterozygous alleles in the gDNA were identified using H3K4me1 ChIP-seq data retried from GSE63634 for fetal liver at 12 weeks of gestation and are
denoted with stars (*) on the right side of SNPs. Corresponding sites were displayed below for fetal liver mRNA expression in individual-matched RNA-seq. (C)
WGS data obtained from hum0158.v2 for normal adult liver, and heterozygous alleles are marked with stars (*) on the right side of SNPs. Corresponding mRNA
expression in the adult liver derived from RNA-seq from the same dataset is shown below.
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FIGURE 8 | Allelic expression of IGF2 in adult human smooth muscle and lung. (A) Predominant IGF2 transcripts (IGF2(1) and IGF2(2)) in both adult smooth muscle
(SM) and adult lung (Lu) are displayed along with antisense transcripts (IGF2-AS). SNP locations are marked with numbers on exons (E) and numbers in red (5, 9, and 10)
indicate the same SNPs as in Figure 7. (B)Whole-exome sequencing (WES) data (SRP163897) generated using adult smoothmuscle were retrieved, and heterozygous
alleles are marked on the gDNA. Corresponding matched RNA-seq (SRP166862) were processed and allelic expression is displayed below. (C) Heterozygous
alleles were identified using WES data (PRJNA395106) of the human adult lung and marked with *. Corresponding matched RNA-seq from the same dataset
(PRJNA395106) were used to show allelic expression.
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FIGURE 9 | Chromatin interactions and schematic models of gene regulation at the porcine H19/IGF2 locus. For the chromosomal region (chr2:0-3000000)
containing the H19/IGF2 locus, two-dimensional heatmaps of Hi-C contact matrices were generated at a 10-kb resolution using the GENOVA R-package.
Corresponding truncated pyramid plots zoomed in the locus. TADs were identified based on insulation scores and are indicated with red bars. (A,B) In the fetal liver, a
TAD boundary is indicated with the grey perpendicular shades and a schematic diagram displays the long-range enhancer-promoter communication for paternal
IGF2(3) expression within the TAD. Active regulatory elements are denoted with blue rectangles. In the maternal allele, CTCF binds to the hypomethylated region and
expression of H19 is promoted by an active enhancer. (C) A proposed schematic model of less chromatin interaction and week TAD boundary is shown for a transition

(Continued )
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3.6 Topologically Associating Domains in
the H19/IGF2 Imprinted Cluster and
Schematic Models Represent Insulation
and Imprinting Boundaries
Hi-C datasets were analyzed to identify topologically associating
domains (TADs) and TAD boundaries within and adjacent to the
H19/IGF2 locus. To determine whether Hi-C data from replicates
of the liver and skeletal muscle can be merged, concordance of the
data was estimated using GenomeDISCO (Ursu et al., 2018). For
both fetal and adult livers, concordance scores for all pairwise
comparisons of Hi-C matrices in multiple resolutions passed a
threshold of 0.8 while also passing the recommended threshold of
0.8 at a 50-kb resolution (Ursu et al., 2018), although the scores
tended to decrease in higher resolutions (Supplementary Figure
S9). In addition, smoothed matrices produced from
GenomeDISCO procedures displayed similarities within the
tissue groups, but not between the groups (Supplementary
Figure S10–S15). For skeletal muscle of 2-week-old pigs,
concordance scores from pairwise comparison also passed the
threshold and smoothed matrices were different from those of
fetal and adult livers (Supplementary Figures S16, S17). Total
number of trimmed paired-end reads of each group were similar:
~2.35 billion for fetal liver, ~2.90 billion for the liver, and
~2.24 billion for skeletal muscle (Supplementary Table S7).
Based on high concordance and comparable amount of the
data, matrices of three, three, and two replicates for each
group (fetal liver, adult liver, and skeletal muscle), respectively,
were merged to increase resolution. After merging, Hi-C matrices
at a 10-kb resolution were visualized using two-dimensional
heatmaps, and the matrices of the fetal liver and skeletal
muscle exhibited stronger contact interactions between
approximately 1.0 and 2.0 Mb of pig chromosome 2 than that
of the adult liver (Figure 9). In the fetal liver and skeletal muscle,
boundaries between TADs (i.e., TAD boundaries) encompassing
the locus where the first exon of IGF2(8) starts, but not the first
exon of IGF2(3), was found (Figures 9A,F). In addition, muscle
from fetal pigs contained a TAD boundary at the locus containing
the first exon of IGF2(8) which was not overlapped with the first
exon of IGF2(3) (Supplementary Figure S18). In contrast, in the
adult liver, a week TAD throughout the region based on
insulation scores was revealed, and TAD boundaries were
absent at the H19/IGF2 locus (Figure 9D). We expected
lowered chromatin interaction in the liver at a transition state
based on the enriched regulatory elements and gene expression
patterns (Figure 3), but Hi-C data were absent (Figure 9C). In
schematic diagrams, we propose chromatin reorganization in the
liver that can weaken TAD and TAD boundaries and alter gene
regulation, resulting in conversion of monoallelic expression of

IGF2(3) in the fetal liver (Figure 9B) via both monoallelic
expression of IGF2(3) and biallelic expression of IGF2(8) in
the neonatal liver (Figure 9C) to biallelic expression of
IGF2(8) in the adult liver (Figure 9E). In skeletal muscle,
consistent IGF2(3) expression throughout the development
and similar chromatin interaction frequencies between pre-
and post-natal stages suggested robust imprinted gene
regulation underlying monoallelic expression of the IGF2
transcript (Figure 9G).

4 DISCUSSION

In this study, we present comprehensive imprinting status of the
conserved paternally imprinted H19/IGF2 cluster including
developmentally regulated and tissue-specific allelic IGF2 gene
expression in the pig and human. By comparing methylome of
parthenogenetic (diploid uni-maternal) embryos with bi-parental
control embryos, while reducing genetic variability with
triplicates of each sample, the porcine H19 DMR was
identified. Previously, the paternal methylation imprint on the
H19 germline DMR, which is fully methylated in sperm and
unmethylated in oocytes, was reported in pigs in the form of a
group of three DMRs (Park et al., 2009). On the paternal allele of
the H19 DMR, however, demethylation temporarily occurs and
then it is remethylated by the morula stage (Park et al., 2009). In
addition, differential expression of IGF2 between androgenetic,
parthenogenetic, and in vitro fertilized control embryos was
previously observed from the blastocyst stage around day 10
(Park et al., 2011). Because, in this study, parthenogenetic and
control embryos were recovered later at embryonic day 21at
which the dynamic methylation changes were passed, the
detected H19 DMR could be consistent with the germline
DMR between sperm and oocytes. The recovery day 21 was
also before morphological degeneration of parthenogenetic
embryos occurs at around day 30–35 (Bischoff et al., 2009;
Hwang et al., 2020) so that we could prevent confounding
effects other than genetic effects. On the other hand, putative
IGF2 DMRs, which were hypermethylated in sperm DNA of
Swiss Landrace and Swiss Large White (Giannini and
Braunschweig, 2009), were not found in the current study
possibly due to breed-specific effects on DNA methylation as
described previously (Hwang et al., 2020).

Integrative analyses of ATAC-seq, ChIP-seq, and RNA-seq
datasets provide effective strategies to precisely and
spatiotemporally elucidate epigenetic regulatory elements and
their genetic variations that affect gene expression (Buenrostro
et al., 2013; Lara-Astiaso et al., 2014; Floc’hlay et al., 2020). While
variations on the regulatory DNA are often buffered and

FIGURE 9 | state around 2 weeks (2w) for the porcine liver. Both paternal IGF2(3) expression and biallelic IGF(8) expression are indicated. (D,E) In the adult liver, a week
TAD throughout the region is marked with pink bars. Also, low chromatin accessibility in the downstream of H19 and altered gene regulation are represented in the
diagram, along with biallelic IGF(8) expression indicated by black bent arrows on both alleles. (F,G) In skeletal muscle, the grey perpendicular shades denote a TAD
boundary and paternal IGF2(3) expression is indicated, similarly to the ones in the fetal liver (A,B). Gene transcripts expressed throughout the region are displayed in the
bottom track. A red arrow marks the predominant IGF2 isoform, IGF2(3), in the fetal liver (B) and skeletal muscle (G), and a grey arrow points at the long-form, IGF2(8),
which is expressed predominantly in the adult liver (E). Both IGF2(3) and IGF2(8) are expressed in the proposed transition state of pigs (C).
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compensated by other regulatory elements so that redundant
regulatory signals might be present in the H19/IGF2 locus
(Floc’hlay et al., 2020), clear distinctions of regulatory layers
between the liver and muscle tissues were identified (Figure 2).
As the ATAC signals are substantially correlated with H3K27ac
(Lara-Astiaso et al., 2014), co-occurrence of ATAC and H3K27ac
downstream of H19 suggested that active enhancers were
established from a poised state concomitantly with formation
of open chromatin sites upon developmental and signaling cues
(Creyghton et al., 2010). Interestingly, this activation of
enhancers occurred in skeletal muscle, but not in the liver, of
6-month-old pigs, which leads to recruitment of tissue-specific
transcription factors and drives tissue-specific gene expression
(Ong and Corces, 2011). In addition, in eukaryotes, H3K4me3 is
associated with transcriptional activation on active promoters
and typically restricted to narrow regions at the 5′ end of the gene
body (Santos-Rosa et al., 2002; Schneider et al., 2004; Pena et al.,
2006; Wysocka et al., 2006). H3K4me3 marks overlapping the
CTCF signal immediately upstream of H19 might represent the
active H19 promoter regulated by binding of the transcription
factor CTCF at close range. Also, H3K4me3 marks overlapping
the promoter regions of IGF2 transcripts [i.e., IGF2(3) and
IGF2(8)] might represent transcriptionally active IGF2
promoters. At both proximal and distal regions of TSSs the
H3K27ac signal can be found (Creyghton et al., 2010), and
thus overlaps of H3K27ac with H3K4me3 at close proximity
to the promoter regions of IGF2 transcripts might represent both
active enhancers and promoters. We found that these overlaps of
H3K27ac and H3K4me3 were present near the first exons of both
IGF2(3) and IGF2(8) transcripts in the liver of 2-week-old pigs,
indicating distinct gene regulation during early post-natal liver
development.

Although many imprinted genes have been studied in the fetal
stage because of their relevance to fetal growth (Peters, 2014;
Tian, 2014; Tucci et al., 2019), the current study revealed that the
expressed transcript isoform of IGF2 in muscle tissues might be
stably maintained during development and its monoallelic
expression was identified in post-natal stages suggesting its
role in mature muscle. In the liver of fetal pigs, there was a
lack of informative SNPs, but our parthenogenesis studies with
whole embryos showed paternal monoallelic expression in the
embryonic stage (Figure 1B). In the human, it has been reported
that IGF2 gene transcription is driven by multiple promoters in
fetal and non-hepatic adult tissues (Holthuizen et al., 1993; Monk
et al., 2006), but we showed that the major form in these tissues of
humans was IGF2(2)which is orthologous to porcine IGF2(3). On
the other hand, the liver-specific promoter (P1) drives IGF2 gene
transcription in the adult liver (Holthuizen et al., 1993; Monk
et al., 2006). The corresponding adult liver-specific transcript is
not currently annotated in the NCBI Gene database (https://
www.ncbi.nlm. nih.gov/gene/3481), but we revealed the
expression of adult liver-specific IGF2(6) (Supplementary
Figure S7) which was orthologous to the porcine long-form
transcript [IGF2(8)]. The IGF2 transcripts from human fetal
tissues including the liver is paternally imprinted and
monoallelic, but expression becomes biallelic in the adult liver
(Kalscheuer et al., 1993). In addition to this biallelic conversion,

we revealed that a relatively high IGF2 expression occurred in the
adult human liver compared to other analyzed tissues where
monoallelic expression remains (Figure 6 and Supplementary
Figure S6). Our analyses using pigs support the biallelic
conversion and alternative promoter usage that might occur
gradually at post-natal ages while ages for initiation of the
conversion might vary (Figure 4). These allelic expression
patterns were verified based on individual-matched genomic
DNA sequence data from WGS and mRNA sequence data
from RNA-seq in both pigs and humans (Figures 5, 7, and 8)
using informative SNPs found on genomic DNA that served as
markers to confirm allelic imbalance of mRNA expression (Castel
et al., 2015; Ahn et al., 2021b; a). We primarily examined SNPs in
non-overlapping exons to identify and analyze allelic expression
at the isoform level while there is a previous study relied on a
marker in the last overlapping exon (Braunschweig et al., 2011).
In contrast to the INS-IGF2 read-through script whose expression
is spatially regulated in pancreatic islets (Jian and Felsenfeld,
2021), the expression of IGF2-AS transcript has been shown to be
developmentally regulated as its imprinted paternal expression is
relatively high in fetal stages and decreased in adults in both pigs
and humans (Okutsu et al., 2000; Braunschweig et al., 2004).
Moreover, the notion that the expression of IGF2-AS in fetal
stages interferes with overlapping IGF2 (Braunschweig et al.,
2004) might be supported by our findings: relatively high
expression of IGF2-AS in the fetal liver coincided with
negligible expression of the long-forms [porcine IGF2(8) and
human IGF2(6)] and low expression of IGF2-AS in adults
coincided with high expression of the long-forms. However, it
is also expected that the antisense role of IGF2-AS might be
limited in normal tissues due to its low expression compared with
high expression of IGF2, although increased expression of IGF2-
AS has been reported in Wilms tumors (Okutsu et al., 2000).
Rather, the biallelic conversion in the liver might ensue changes
in chromatin structure and regulatory elements as well as
antisense expression as discussed below.

The differences in chromatin interaction between fetal and adult
livers (and also between skeletal muscle and adult liver) suggested
not only transcript conversion, but also chromatin remodelingmight
occur toward changes in gene regulatory elements and reduce long-
range enhancer-promoter communication in the adult liver
(Figure 9 and Supplementary Figure S18). In particular, hemi-
methylation at the H19 DMR in the adult liver was reported
indicating maintenance of the imprint (Braunschweig et al.,
2011); however, compared to the fetal liver, chromatin interaction
indicated by the self-interacting TADs became weaker in the adult
liver of pigs. This lower interactionmight be related to less activity of
the distal enhancer for the long-range communication, and removal
of TAD boundaries might lead to use of the proximal enhancer for
the long IGF2 transcript in the liver. Also, a linkage between lessH19
expression indicating the weak distal enhancer and expression of the
biallelic IGF2 transcript (Ohlsson et al., 1994) was consistently
observed in the livers of both pigs and humans (Supplementary
Figures S2 and S6). Additionally, in between the fetal and adult
stages, there might be a transition state in the liver that is
characterized by co-existence of TADs and a weak TAD
boundary which is permissive to the proximal enhancer activity
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(Gong et al., 2018). In contrast, in skeletal muscle, TADs and TAD
boundaries in fetal stages appeared to maintain in post-natal ages.
Whether these TADs and TAD boundaries are variable at the single
cell level will need to be further investigated (Farabella and Marti-
Renom, 2020; Luppino et al., 2020), but existence of TADs and TAD
boundaries at the porcine IGF2 locus was evident. Their significant
changes and remodeling in the livermight contribute to liver-specific
modifications of IGF2 allelic expression patterns. Our presentation
of the pig Hi-C fills the gap in mammalian genomics, but
unfortunately, in the human, Hi-C data from liver (GSE58752)
and muscle (GSE87112) tissues that we processed displayed a very
low resolution for this relatively narrow range of theH19/IGF2 locus.
Based on our current study that advances our understanding on
tissue-specific genomic imprinting in the H19/IGF2 cluster, studies
on other animal species using multi-omics data can further
comparatively delineate the H19/IGF2 locus. Also, gene
annotations for porcine H19 and IGF2-AS and human IGF2(6)
need to be updated due to their lack in the NCBI Gene database
(www.ncbi.nlm.nih.gov/gene). In this study, based on previous
studies reported H19 and IGF2-AS expression status in pigs (Li
et al., 2008; Braunschweig et al., 2011) and IGF2(6) in humans
(Holthuizen et al., 1993; Monk et al., 2006) as well as our alignment
and sequencing results, these genes were analyzed to present the
complete landscape of genomic imprinting.

5 CONCLUSION

Our integrative omics analyses of genome, epigenome, and
transcriptome revealed a comprehensive imprinting status at
the H19/IGF2 locus in pigs in comparison with humans. The
porcine H19/IGF2 imprinting cluster represented a long-term
influence of genomic imprinting in muscle tissues but not in the
liver which might be similar to that of the orthologous human
gene cluster. To the best of our knowledge, this is the first study
that describes relatedness between mono- to biallelic conversion
of IGF2 and alternative promoter usage in reorganized chromatin
in the liver of adult pigs. The current approaches can be applied in
cross-tissue and cross-species analyses to elucidate epigenetic
mechanisms that underlie tissue growth and development.
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Transcriptome-wide study
revealed m6A and miRNA
regulation of embryonic breast
muscle development in
Wenchang chickens

Lihong Gu1, Qicheng Jiang2, Youyi Chen3, Xinli Zheng1,

Hailong Zhou2* and Tieshan Xu4*

1Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences,

Haikou, China, 2School of Life Science, Hainan University, Haikou, China, 3Wuzhishan Animal

Science and Veterinary Medicine and Fishery Service Center, Wuzhishan Agricultural and Rural

Bureau, Wuzhishan, China, 4Tropical Crops Genetic Resources Institute, Chinese Academy of

Tropical Agricultural Sciences, Haikou, China

N6-Methyladenosine (m6A) modification has been shown to play important

role in skeletal muscle development. Wenchang chickens are commonly used

as a high-quality animal model in researching meat quality. However, there

have been no previous reports regarding the profile of m6A and its function

in the embryonic breast muscle development of Wenchang chickens. In

this paper, we identified di�erent developmental stages of breast muscle in

Wenchang chickens and performed m6A sequencing and miRNA sequencing

in the breast muscle of embryos. Embryo breast muscles were weighed and

stained with hematoxylin–eosin after hatching. We found that myofibers grew

fast on the 10th day after hatching (E10) and seldom proliferated beyond

the 19th day after hatching (E19). A total of 6,774 di�erentially methylated

genes (DMGs) were identified between E10 and E19. For RNA-seq data, we

found 5,586 di�erentially expressed genes (DEGs). After overlapping DEGs and

DMGs, we recorded 651 shared genes (DEMGs). Subsequently, we performed

miRNA-seq analysis and obtained 495 di�erentially expressed miRNAs (DEMs).

Then, we overlapped DEMGs and the target genes of DEMs and obtained

72 overlapped genes (called miRNA-m6A-genes in this study). GO and

KEGG results showed DEMGs enriched in many muscle development-related

pathways. Furthermore, we chose WNT7B, a key regulator of skeletal muscle

development, to perform IGV visualization analysis and found that the m6A

levels on the WNT7B gene between E10 and E19 were significantly di�erent.

In conclusion, we found that miRNAs, in conjunction with m6A modification,

played a key role in the embryonic breast muscle development of Wenchang

chickens. The results of this paper o�er a theoretical basis for the study of m6A

function in muscle development and fat deposition of Wenchang chickens.
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Introduction

Unlike DNA modification, RNA modification is more

complex and diverse. More than 150 types of RNAmodifications

are currently known, most of which occur after transcription (1).

RNAmodifications have an important impact on the diversity of

RNA structure, type, and function. N6-Methyladenosine (m6A)

modification is the most common post-transcriptional RNA

modification in eukaryotes and the most common internal

modification in messenger RNA (mRNA) (2).

m6A modification is driven by the m6A modified enzyme

system, which can be divided into three categories: writers,

erasers, and readers. Among them, the writers, also called

m6A methyltransferases, include METTL3/14, WTAP, and

KIAA1429; their main function is to catalyze m6A modification

of adenylate on mRNA. The erasers are also called m6A

demethylases; their main function is to demethylate the

modification of bases that have undergone m6A modification.

Currently, the main m6A demethylases include two members,

obesity-related protein (FTO) (3) and Alk B homologous

protein 5 (ALKBH5) (4). These two demethylases lead to

a reversible change in m6A modification. The readers, also

called m6A binding proteins, are mainly used to identify m6A

modified bases and activate downstream regulatory pathways,

such as RNA degradation and miRNA processing. The m6A

readers mostly include YTH family proteins, such as YTHDC1,

YTHDF1, and YTHDF2. YTHDC1 interacts with the splicing

factors SRSF3 and SRSF10 to affect transcript expression (5).

YTHDF1 can be complexed with translation initiation action,

thereby promoting the translation of m6A modified RNA

(6). YTHDF2 can mediate the degradation of m6A modified

RNA (7).

Increasing numbers of research studies, based on m6A

modification, have found it to play important regulatory role

in many physiological processes. Hao et al. showed that

METTL3-mediated m6A modification plays an important role

in biological processes such as mouse embryo development

(8). Yang et al. found that RNA m6A modification is

involved in the regulation of circadian rhythms in the

chicken hypothalamus under both basal and chronic stress

conditions (9). m6A modification also has many functions in

embryonic stem cell differentiation, development of the nervous

and hematopoietic systems, myogenesis, zygote formation,

and embryonic development (10). The regulation of m6A

methylation is integral to muscle generation during embryonic

development. Meanwhile, Wang et al. (11) found that FTO

is required for myogenic differentiation and suggested that

the FTO-mediated mTOR-PGC-1α-mitochondrial axis plays

Abbreviations: DMGs, di�erentially methylated genes; DEGs, di�erentially

expressed genes; DEMGs, shared genes between DEGs and DMGs; input,

the data of RNA-seq; IP, the date of m6A-seq.

crucial role in myogenic differentiation. Zhang et al. (12)

detected the specific expression of METTL3 in the vascular

system of zebrafish. It is speculated that m6A modification

is closely related to blood development, and the key role

of m6A methylation modification in the development of

hematopoietic stem cells has been revealed for the first time.

m6A is also an important regulator of muscle development.

Chen et. al. (13) explored the involvement of m6A mRNA

modifications in mediating muscle regulation. Dang et al. (14)

identified the key genes involved in cattle muscle growth and

m6A modification development by bioinformatics analysis. The

results showed that the differentially expressed genes modified

by m6A are mainly involved in skeletal muscle contraction,

steroid biosynthesis, redox process, the PPAR pathway, and

fatty acid metabolism. Finally, Yang et al. (15) used m6A-seq

to analyze bovine myoblasts and myotubes and found that

m6A methylation was an abundant modification in mRNA.

Furthermore, using experiments, they confirmed that four genes

related to myogenesis exhibited differential changes in both

m6A and mRNA levels during bovine myoblast differentiation,

indicating that they can be potential candidate targets for m6A

regulation of skeletal myogenesis.

MicroRNA (miRNA) is a type of noncoding RNA that exists

widely in eukaryotes with a length of about 18–25 nt. miRNA

plays an important role in the post-transcriptional regulation

of target genes and is widely involved in various biological

processes including growth and development, immunity,

proliferation, and apoptosis. Shen et al. found that the expression

of miR-152 can affect the quality of pork (16). Jebessa et. al. (17)

investigated the underlying molecular mechanisms of skeletal

muscle development based on differentially expressed genes and

miRNAs. Meanwhile, Li et. al. (18) summarized miRNA related

to muscle development, providing a better understanding of

skeletal muscle development.

The rearing of Wenchang chickens is the most economically

important livestock sector in Hainan province, with a 1.78

billion dollars output value in 2020. Wenchang chickens are

famous for their rough feeding resistance and heat resistance

and have a higher intramuscular fat and moderate subcutaneous

fat content. Our research showed that the fastest stage of

embryonic breast muscle development of Wenchang chickens

was E10, and growth had slowed by E19. Given that m6A

methylation modification plays an important role in skeletal

muscle development, we speculated that modification of m6A

methylation might be a crucial regulator of the growth rate

of embryonic breast muscle. Herein, we performed m6A

sequencing of breast muscle on embryos at E10 and E19. We

also performed miRNA-seq to explore whether some genes were

regulated by m6A and miRNA. We set out to determine the

m6A profile and miRNA regulation in the embryonic breast

muscle of Wenchang chickens; the results of this paper offer

a basis for revealing the role of m6A modification in breast

muscle development.
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Methods

Ethics approval

This experiment was performed in accordance with animal

welfare principles and was conducted under protocols approved

by the Chinese Universities Union for the Protection of Animals.

All chickens were obtained from the Institute of

Animal Science & Veterinary Medicine, Hainan Academy

of Agricultural Sciences (IASVM-HAAS, Haikou, China). Ethics

approval (reference number: IASVMHAAS-AE-202016) was

conferred by the animal ethics committee of IASVM-HAAS,

which is responsible for animal welfare. All experimental

protocols were conducted in accordance with guidelines

established by the Ministry of Science and Technology

(Beijing, China).

Anatomy experiment

To identify different developmental stages of breast muscle

in Wenchang chickens, we selected three eggs per day from the

8th day after hatching (E8) and the 21st day after hatching (E21).

Embryo weight and breast muscle weight were recorded, and

then, breast muscles from E8 to E21 were stripped from the bone

and stained with HE staining by the same process as Gu et al.

(19). Briefly, breast muscle samples of fourteen embryonic stages

(E8–E21) were washed with running water and then dehydrated

in a series of ethanol dilutions (75% for 4 h, 85% for 4 h, and

95% overnight) and then 100% ethanol for 2 h with two changes.

Dehydrated tissues were treated with xylene three times and

then embedded into paraffin blocks, trimmed, and cut to 4µm.

Paraffin ribbons were placed in a water bath at about 40 ◦C.

Sections were mounted onto slides, air-dried for 30min, and

then dehydrated at 45 ◦C overnight. Sections were dewaxed

with two changes of xylene for 10min each and then hydrated

with two changes of 100% ethanol for 3min each, 95% and 80%

ethanol for 1min each, and, finally, rinsed in distilled water for

5min. Slices were stained with hematoxylin and eosin (H&E).

Sections from three samples of breast muscle were taken from

each stage; five different fields were examined from each section,

and pictures were taken under each field; cell counts were also

performed for each field.

Sample collection

The Wenchang chicken embryos at E10 and E19 were

purchased from the breeding farm of Hainan Chuanwei

Wenchang Chickens Industry Co. Ltd. Three eggs were selected

at E10 and E19; embryos were removed under aseptic conditions

and stripped of their breast muscles; the left and right sides for

each embryo were placed into different centrifuge tubes. The

centrifuge tubes were placed immediately into liquid nitrogen

and subsequently brought to the laboratory for storage at−80
◦C for further use. The left and right breast muscles of

chicken embryos were used for m6A-seq and RNA-seq analysis,

respectively. In addition, another three embryonic breast muscle

samples from E10 and E19 embryos were obtained and were

used for miRNA-seq analysis.

RNA extraction and fragmentation

Total RNA was isolated and purified using TRIzol reagent

(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s

instructions. We purified Poly (A) RNA from total RNA in

three steps. The first step used NanoDrop ND-1000 (NanoDrop,

Wilmington, DE, USA) to quantify the RNA and purity of each

sample. The next step confirmed the RNA integrity, as assessed

by Bioanalyzer 2100 (Agilent, CA, USA) with RIN number>7.0,

using electrophoresis with denaturing agarose gel. The final

step was purifying Poly (A) RNA from 50 µg total RNA using

Dynabeads Oligo (dT) 25-61005 (Thermo Fisher, CA, USA) with

two rounds of purification. The fragmentation buffer was added

to the purified Poly (A) mRNA for fragmentation.

M6A immunoprecipitation, library
construction, and sequencing

The fragmented RNA was divided into two parts. The

first part was incubated for 2 h at 4 ◦C with m6A-specific

antibody (No. 202003, Synaptic Systems, Germany) in IP buffer

(50mM Tris-HCl, 750mM NaCl, and 0.5% IGEPAL CA-630).

To create the cDNA, we made IP RNA reverse-transcribed

with SuperScriptTM II Reverse Transcriptase (Invitrogen, cat.

1896649, USA) according to the technical manual. Then, the

products were used to synthesize U-labeled second-stranded

DNAs with E. coli DNA polymerase I (NEB, cat.m0209, USA),

RNase H (NEB, cat.m0297, USA), and dUTP Solution (Thermo

Fisher, cat.R0133, USA). Because each adapter contains a T-base

overhang, we added an A-base to the blunt ends of each strand

for ligating the adapter. Single- or dual-index adapters were

ligated to the fragments, and size selection was performed with

AMPure XP beads. Subsequently, the heat-labile UDG enzyme

(NEB, cat.m0280, USA) treatment of the U-labeled second-

stranded DNAs was performed. The products were amplified

with PCR under the following conditions: initial denaturation

at 95 ◦C for 3min; 8 cycles of denaturation at 98 ◦C for 15 s,

annealing at 60 ◦C for 15 s, and extension at 72 ◦C for 30 s; and

then final extension at 72 ◦C for 5min. The average insert size

for the final cDNA library was 300± 50 bp.

The second part served as a control to construct a

conventional transcriptome sequencing library directly. The two

constructed sequencing libraries, m6A-seq Library (IP) and
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RNA-seq Library (input), were separately subjected to high-

throughput sequencing using Illumina NovaSeqTM 6000, and the

sequencing mode was 150 PE.

M6A-seq and RNA-seq data filtering

M6A-seq technology employs a co-immunoprecipitation

approach in which m6A-specific antibodies are incubated

with RNA fragments that are randomly interrupted (IP) and

fragments that grasp the m6A methylation modification are

sequenced. One control group (input) was simultaneously

sequenced in parallel and used to eliminate background during

grasping with methylated fragments (20). So we performed

m6A-seq in concert with RNA-seq. First, the reads containing

adapter contamination, low-quality bases, and undetermined

bases were removed by fastp (https://github.com/OpenGene/

fastp) with default parameters, and valid data were then

obtained. Sequence quality of IP and input samples were also

verified using fastp. The R package exomePeak 1.8 (21) provided

mapped reads for IP reads and input libraries, which identifies

m6A peaks with bed or bigwig format. Furthermore, we use

motif analysis software MEME 1.0 to identify motifs with high

reliability in the peak area and record the width, E-value, PFM,

PSSM of each motif, and its total position information in each

peak sequence, then performed motif prediction for each group

of samples, and analyzed the differential expression results.

M6A methylation peak screening and
di�erential m6A analysis

The peak calling software and the R package exomePeak

1.8 were used to perform peak scanning on m6A samples

and transcriptome samples to obtain the location of the peak

on the genome, peak length, and the difference calculations

between groups. These peaks were finally annotated using

ChIPseeker 1.0.

Reference genome alignment

Valid data were aligned onto the reference genome of

chicken (Gallus gallus, Version: V96) using the software HISAT2

1.0. According to the genomic annotation file gtf, number and

distribution of alignment to reference genome reads, reads

number, and proportions in exon and intron were counted.

Valid data that enabled alignment to the reference genome,

in accordance with the regional information of the reference

genome, could be defined as alignment to exon (exonic), intron

(intronic), and intergenic (intergenic spacer region) data.

Di�erentially expressed genes

StringTie 1.0 (22) was used to detect the expression levels for

all mRNAs from Input libraries by calculating FPKM [total exon

fragments /mapped reads (millions)×exon length (kB)]. The

differentially expressed mRNAs were selected according to the

criteria of |log2foldchange|≥1 and p<0.05 by R package edgeR

4.1 (https://bioconductor.org/packages/edgeR) (23).

Conjoint analysis of DEGs and DMGs

We overlapped DEGs and DMGs to explore gene

modification by m6A and differential genes that were

potentially connected with breast muscles. If a DEG overlapped

with one or more differentially methylated m6A peaks, it

was called a differentially methylated gene (DEMG). We

examined up- and down-overlapping methylated m6A sites

with up- and downregulated genes; we then obtained the

upregulated genes with upregulated methylated m6A sites

(hyper-up), the downregulated genes with upregulated

methylated m6A sites (hyper-down), the upregulated

genes with downregulated methylated m6A sites (hypo-

up), and the downregulated genes with hypo-methylated m6A

sites (hypo-down).

MiRNA library construction, sequencing,
and analysis

The experimental flow was performed following standard

procedures provided by Illumina. Small RNA sequencing

libraries were prepared using the TruSeq Small RNA Sample

Prep Kits (Illumina, San Diego, USA). After library preparation

was completed, the constructed libraries were sequenced using

Illumina hiseq2500 with a sequencing read length of single-end

1×50 bp.

ACGT101-miR 4.2 (LC Sciences, Houston, Texas, USA) was

used to analyze the miRNA data. First, 3’-adaptors and junk

sequences were removed to obtain sequences with lengths in the

range of 18–26 nt. The remaining sequences were then aligned

(miRNA excluded) to the mRNA, Rfam, and Repbase databases

and filtered. Valid data were then aligned to pre-miRNA and

the genome for miRNA identification. The identified miRNAs

were differentially analyzed, and the differential miRNAs were

subjected to target gene prediction.

Integrated analysis of m6A-seq,
MRNA-seq, and MiRNA-seq data

After differentially methylated m6A peaks and DEGs

were obtained, we searched for DEGs to examine whether a
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DEG overlapped with one or more differentially methylated

m6A peaks. If such an overlap was demonstrated, it was

termed a differentially methylated gene (DEMG). By the

analysis of miRNAs, we obtained differential miRNAs (DEMs).

The targets of DEMs were then predicted. Finally, we

overlapped the targets of DEMs and DEMGs and obtained the

shared genes.

Results

Determination of developmental
regularity of Wenchang chicken breast
muscle

We measured embryo weight and breast muscle weight

and performed H&E staining for Wenchang chicken embryos

at stages E8–E19. The weight of the breast muscle increased

gradually from E8 to E17, (Figure 1A) then plateaued after

E17, and decreased during the first few days of life, which may

indicate that the breast muscle was initially in a proliferative

differentiation phase; then during the first few days of life,

the nutrition in the muscle was consumed, and the weight

of the breast muscle decreased. By counting the results

and section results in Figure 1B, it can be seen that the

breast muscle cells were in the most proliferative period

during E8–E12, and the myofibers gradually converged to

form muscle bundles after E12; however, large numbers

of free myocytes remained. By E17, the myofibers were

progressively larger, free myocytes were progressively fewer,

myocyte fusion events were gradually reduced, and the

number of myofibers was concomitantly fixed. For E10–

E12, the fastest growth took place at E10 and there was a

gradual decline in number between E17 and E21 because

of the progressive enlargement of myofibers with cessation

of proliferation. Therefore, we selected days E10 and E19

to investigate the potential regulation of m6A modification

in Wenchang chicken embryonic skeletal muscle using

m6A-seq technology.

Basic information of m6A-seq and
RNA-seq

For RNA-seq (input), 60.53G raw data were obtained from

breast muscles at E10 and E19, with an average of 10.09G per

sample. The raw data were filtered by fastp, and a mean of

6.94G was obtained per sample. For m6A-seq (IP), 64.07G raw

data were obtained at E10 and E19, with a mean of 10.67G

per sample. After filtering, a total of 43.02G of valid data were

obtained, with a mean of 7.17G per sample (Supplementary

Table S1).

FIGURE 1

Outline of breast muscle development during the embryonic

stages of Wenchang chickens. (A) Trend of breast muscle

weights. (B) Embryonic breast muscle slices of Wenchang

chickens. 8–14, 17, 19, and 21 represented to embryonic 8th day

E8–E14, E17, E19, and E21, respectively.

Alignment of valid data to the chicken
reference genome

We then aligned the valid data to the chicken reference

genome (Gallus gallus Version: V96) (Supplementary Table S2).
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FIGURE 2

m6A methylation peak screening and di�erential m6A peak analysis. (A) m6A methylation peaks at E10. (B) m6A methylation peaks at E19. (C)

Overlapped m6A methylation peaks between E10 and E19. (D) GO enrichment barplot of DMGs. (E) GO enrichment scatterplot of DMGs.

(F) KEGG enrichment scatterplot of DMGs.
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FIGURE 3

Di�erentially expressed gene (DEG) analysis. (A) GO enrichment barplot of DEGs. (B) GO enrichment scatterplot of DEGs. (C) KEGG enrichment

scatterplot of DEGs.

Mean alignment rates were 90.83% for RNA-seq and 87.07%

for m6A-seq. For m6A-seq, the majority of valid reads

were aligned to exonic regions (exon) with 88.96, 87.7,

and 87.67% for the three samples of E10 and 91.57, 92.96,

and 92.49% for E19. Only a small proportion of the

valid reads fell in intronic and intergenic regions. Similar

to m6A-seq, most of the valid reads of RNA-seq aligned

to exonic regions with 87.04, 87.81, and 89.07% for the

three samples of E10 and 89.79, 90.51, and 89.84% for

E19. In this study, most valid reads fell in exonic regions,

which was consistent with the fact that the m6A-seq and

RNA-seq libraries were constructed using Poly (A) RNA
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FIGURE 4

Conjoint analysis of DEGs and DMGs. (A) GO enrichment barplot of DEMGs. (B) GO enrichment scatterplot of DMGs. (C) KEGG enrichment

scatterplot of DEMGs. (D) Regulatory relationship between m6A and di�erential genes.
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FIGURE 5

Integrated analysis of m6A-seq, mRNA-seq, and miRNA-seq data. (A) GO enrichment barplot of miRNA-m6A-genes. (B) GO enrichment

scatterplot of miRNA-m6A-genes. (C) KEGG enrichment scatterplot of miRNA-m6A-genes. (D) The visualization of m6A abundances in WNT7B

mRNA transcripts in E10 and E19.

(Supplementary Figure S1). The results above indicate that our

sequencing results were accurate.

M6A methylation peak screening and
di�erential m6A peak analysis

After screening for m6A methylation peaks, a total of

19,292 peaks were found at E10 (Supplementary Table S3), of

which 8,538 were located in exons (44.26%), 7,213 in 3’UTR

(37.39%), and only 3,541 in 5’UTR (18.35%; Figure 2A). In

total, 11,294 genes were obtained with each of their transcripts

overlapped with at least one m6A peak (called m6A genes

in this study). For E19, a total of 16,843 peaks were found

(Supplementary Table S4), of which 7,457 were located in exons

(44.28%), 6,572 in 3’UTR (39.02%), and only 2,814 in 5’UTR

(16.71%; Figure 2B). In total, 9,790 genes were obtained with

each of their transcripts overlapped with at least one m6A peak.

Differential analysis of the m6A methylated fragments from the

two periods revealed that 6,774 differentially methylated peaks
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existed, of which 1,514 were highly expressed at E10 and 5,260

were lowly expressed at E10; meanwhile, 2,517 differentially

methylated peaks were located in exons (37.15%), 2,588 in the

3’UTR (38.20%), and 1,669 in the 5’UTR (24.64%) (Figure 2C).

These m6A differentially methylated peaks overlapped with

5,565 genes (DMGs) (Supplementary Table S5).

To investigate the function of DMGs in breast muscle

development, we performed GO and KEGG enrichment

analyses. GO term displayed DMGs were most significantly

enriched in protein binding in molecular function, signal

transduction in biological process, and membrane in cellular

component, as shown in Figure 2D. In addition, many

GO terms related to muscle development, fat deposition,

and m6A methylation were also significantly enriched,

including branchiomeric skeletal muscle development, RNA

N6-methyladenosine methyltransferase complex, and fatty acid

biosynthetic process (Figure 2E). KEGG results of DMGs are

presented in Figure 2F. In total, we identified 123 pathways that

were significantly enriched. Among them, the most significant

pathways were neuroactive ligand–receptor interaction, cellular

senescence, and cell adhesion molecules. Pathways related to

muscle development and fat deposition were also significantly

enriched, such as fatty acid elongation and phosphatidylinositol

signaling system. We also identified the MYOG gene, a member

of the MRFs (MyoD, MYOG, MyF5, and MRF4) family of

myogenic regulators. The MYOG gene plays a key role in

controlling the initiation of myoblast fusion, driving myoblast

proliferation, and allowing the transition of mono-nucleated

myoblasts into multinucleated myofibers (24).

Motif analysis

m6A methylation modification, as well as demethylation

modification, begins with the binding of multiple binding

proteins to a motif at which methylation sites occur. Motifs

are essentially nucleic acid sequence patterns of biological

significance. m6A methylation and demethylation enzymes

can recognize the motifs and bind to them, thereby affecting

gene expression and gene function. The identification of these

motifs is important for mechanistic studies of gene expression

regulation. To determine whether m6A peaks contain a motif of

m6A by RRACH (i.e., R for purine, A for m6A, C for cytosine,

and H for non-guanine bases), we performed motif predictions

for E10 and E19 samples (Supplementary Figure S2) and found

motifs in both E10 and E19.

Di�erentially expressed gene analysis

By DEG analysis of RNA-seq data, we obtained 5,586

DEGs (Supplementary Table S6). GO and KEGG analyses were

then performed. Biological process of GO analysis showed

that positive regulation of transcription by RNA polymerase

II was the most enriched. Molecular function of GO analysis

indicated protein binding, while membrane was the most

enriched in cellular component. (Figure 3A). More important,

we foundmanymuscle-related GO terms and genes (Figure 3B),

such as those in the MRF family (the MYF6 gene was more

highly expressed at E19 than at E10 and the MYOG Gene

was more highly expressed at E10 than at E19) and Pax

family (Pax3 and Pax7 were both more highly expressed

at E10 than E19). Pax3 and Pax7 in the Pax family have

DNA activating transcription factor activity and bind RNA

polymerase II specifically; they also play an important role in

myofiber cell development (25). These results further suggest

that some genes in the MRF family and Pax family may function

during breast muscle development of Wenchang chickens at

different embryonic ages. KEGG enrichment analysis of the

DEGs showed that 160 pathways were significantly enriched

including cell cycle, oxidative phosphorylation, cardiac muscle

contraction, and DNA replication (Figure 3C). Among them,

some muscle development-related pathways, such as the Wnt

signaling pathway, were also obtained (26).

Conjoint analysis of DEGs and DMGs

To explore the relationship between m6A modification and

gene expression, we carried out conjoint analysis of DEGs

and DMGs. We overlapped DEGs and DMGs to produce 651

DEMGs in this study (Supplementary Table S7). GO functional

analysis showed that most GO terms were enriched in cellular

component (Figure 4A) and those DEMGs were significantly

enriched in nucleus, positive regulation of transcription by RNA

polymerase II, and protein binding (Figure 4B). KEGG results

showed that 144 significantly enriched pathways were found,

among which the most significant were Wnt signaling pathway,

tight junction, and oxidative phosphorylation (Figure 4C).

Interestingly, some muscle development-related pathways were

also enriched, including the MAPK signaling pathway, an

important regulatory pathway during myoblast differentiation

(27). Activation of the MAPK signaling pathway can further

increase skeletal myofiber cellular protein content, increase

myofiber length and cross-sectional diameter, and make skeletal

myofibers increase in mass when the number is unchanged (28).

We found a different correlation between methylated

m6A level and gene expression abundance in E10 and E19

(Figure 4D). In 1,514 hyper-methylated m6A sites detected by

m6A-seq, we found 314 genes with downregulated mRNA

transcripts, that is, “hyper-down.” There were 187 genes

detected to have hyper-methylated m6A sites along with

upregulated mRNA transcripts, that is, “hyper-up.” In parallel

to 5,260 hypo-methylated m6A sites, we found 214 genes with

upregulated mRNA transcripts, that is “hypo-up.” There were

1,279 genes examined to have hypo-methylated m6A sites along
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with downregulated mRNA transcript, that is, “hypo-down.” It

is easy to see that hypo-down m6A level and gene expression in

E10 compared with E19 were higher than in others, but in our

previous research on ducks and geese, most genes were enriched

in hypo-up and hyper-down indicating that m6A showed a

negative correlation. This may be because those genes are not

only regulated bym6Amodification, but also by other regulatory

factors such as miRNA.

MiRNA analysis

Some previous research demonstrated that m6A could

influence miRNA production (29), so we performed miRNA-

seq to explore the effect. In total, 150 significantly differentially

expressed miRNAs (DEMs) were obtained by miRNA-seq

analysis. Among them, 58 were upregulated and 92 were

downregulated (Supplementary Figure S3). The target genes of

DEMs were predicted, and 5,675 target genes were obtained.

Interestingly, some m6A key enzyme genes were found to be

the targets of DEMs. For example, METTL14 was found to

be the target gene of gga-miR-6586-5p and gga-miR-132a-3p;

and YTHDF1 was the target gene of gga-miR-6555-5p and gga-

miR-1626-5p. This suggests that miRNA may be involved in

regulating m6A modification.

Integrated analysis of m6A-seq,
MRNA-seq, and MiRNA-seq data

Using overlapped DEMGs and the targets of DEMs,

72 miRNA-m6A-genes were obtained Supplementary Table S8.

Then, GQ and KEGG functional analysis of miRNA-m6A-genes

were performed. GO terms showed that they were significantly

enriched in oxidation–reduction process, membrane, integral

component of membrane, and cytoplasmic (Figure 5A). In

addition, many GO terms were related to membrane, integral

component of membrane, ephrin receptor activity, and others

(Figure 5B). KEGG metabolic pathway enrichment analysis

revealed that signal transduction, carbohydrate metabolism,

lipid metabolism, glycan biosynthesis and metabolism, and

amino acid metabolism were significantly enriched (Figure 5C).

Among those miRNA-m6A-genes, we chose WNT7B, which is

closely related with skeletal muscle development, to perform

IGV visualization analysis and found significantly different m6A

levels on theWNT7B gene between E10 and E19 (Figure 5D).

Discussion

There are many types of modifications on RNA, including

m6A, N1-methyladenosine modification (m1A), methylcytosine

modification (m5C), and pseudouridine modification (Ψ ). m6A

was first discovered in the 1970s (30, 31); it is the most common

internal modification in eukaryotic cell RNA and the best

studied RNA modification. Studies have shown that m6A is

common in mRNAs of different prokaryotes, eukaryotes, and

viruses (32–34). m6A is the most commonmodification method

in post-translational modification of eukaryotic mRNA, which

accounts for more than 80% of RNA methylation (35). m6A is

also a way for regulating mRNAmetabolism and translation and

plays important role in various physiological processes such as

cell differentiation, development, and the stress response (2, 36).

m6A modification plays crucial role in many physiological

processes such as myogenesis, embryonic development, and

abnormal m6Amodification can have huge effects on embryonic

stem cell differentiation, zygote formation, and skeletal muscle

development. Knockout of METTL3 in the embryonic stem

cells before mouse embryo implantation will affect the

stability of original pluripotency factor gene transcripts such

as Nanog (homeobox protein NANOG), so that it cannot

be downregulated, resulting in the obstruction of embryonic

stem cell differentiation and the failure to fully terminate

its naive state (37). Recently, another study has shown that

the number of related gene transcripts cannot be changed

during the development in oocytes of YTHDF2-messing mice;

this phenomenon leads to infertility in this mouse (38).

During embryonic development, muscle production is also

inseparable from the regulation of m6A methylation. It has

been shown that FTO as a demethylase of m6A can influence

the differentiation of myoblasts. Deng et al. indicate that

the FTO-mediated m6A modification in GADD45B mRNA

drives skeletal muscle differentiation by activating the p38

MAPK pathway, which provides a molecular mechanism for

the regulation of myogenesis via RNA methylation (39). Kudou

et al. (40) found that METTL3 is involved in skeletal muscle

differentiation of myogenic progenitor cells by mediating

myogenic transcription factors such as MyoD, a key regulator

of skeletal muscle differentiation. The results of our previous

study illustrated the significance of m6A regulatory function

in skeletal muscle development. Therefore, we selected breast

muscles at E10 and E19 for preliminary experiments and found

that m6A expression levels and methylation-modifying enzymes

decreased with embryo age, indicating that m6A methylation

modification played key role in the development of breast

muscle in chicken embryos.

m6A methylation modification is a common phenomenon

in post-transcriptional mRNA. Zhang et al. explored the

expression profile of m6A in adult human tissues and detected

a total of 101,340 methylation sites (41); the analysis of Dan

et al. yielded 12,769 putative m6A sites within 6,990 coding

gene transcripts and 250 noncoding ones (2). In this study, we

found 18,068 peaks, which was consistent with the above studies.

In addition, we found that the m6A methylation sites were

mainly distributed in the 3’UTR regions, which are also themain

binding sites of miRNAs. The m6A modification of the mRNA
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was mostly enriched near the terminators and in the 3
′

-UTR

(36); it showed the same mode of distribution as our results.

We obtained 5,565 DMG overlapped peaks between E10

and E19, indicating that m6A modification was prevalent in

chicken gene modification. Using RNA-seq, we identified 5,586

DEGs between E10 and E19. We overlapped DMGs with DEGs

and noted 651 DEMGs that were significantly affected by

development stages and m6A modification. GO and KEGG

results show that many genes were enriched in skeletal muscle

development and fat deposition. Our results illustrated that

m6Amethylation modification had important effects on skeletal

muscle development and fat deposition.

In addition, we found many muscle development-related

genes and m6A modification-related genes, such as MYH

gene, MYF5 gene, Pax gene, METTL14 gene, YTHDF1 gene,

and MYOG gene among DEMGs; this indicated that both

development stages and m6A modification might be regulators

of skeletal muscle in Wenchang chickens. The roles of

the myogenic regulatory factor (MRF) family (MyoD, myf5,

myogenin, and MRF4) can cause the activation, proliferation,

and differentiation of satellite cells (24). Studies have shown

that Pax3 and Pax7 are upstream transcription factors of the

MRF genes, which can cause expression of the MyoD gene

in the embryonic period, thereby affecting the occurrence of

muscle cells (25). Pax3 mutant mice will have missing limb

muscles, but precursor cells and bodymuscle (including thoracic

muscle) show normal differentiation (42); in murine knockouts

of both Pax3 and Pax7, skeletal muscle development will end

in the embryonic stage (43). After comparing gene expression

levels in Wenchang chicken E10 and E19 breast muscle tissues,

we found that the expression levels of the Pax7 gene, Pax3

gene, METTL14 gene, YTHDF1 gene, and MYOG gene were

lower in E19 than in E10. However, the expression levels

of MYF6 and MYH genes were higher in E19 than that in

E10. Considering the fact that the embryonic breast muscle

growth of Wenchang chickens is slower at E19 than at E10,

Pax7, Pax3, METTL14, YTHDF1, and MYOG genes might

be positive regulators, while MYF6 and MYH genes may be

negative regulators.

miRNAs are important regulatory factors in skeletal

muscle. To detect their effect on the development of breast

muscle, we combined them with the results of m6A-seq data,

to find those genes regulated by both m6A modification

and miRNAs. We first carried out miRNA-seq analysis of

embryonic breast muscles of Wenchang chickens at E10

and E19. We obtained 495 DEMs and 5,676 target genes

of DEMs. Using overlapping the targets of DEMs with

DEMGs, we obtained 72 miRNA-m6A-genes, which might be

the regulators of embryonic breast muscle development of

Wenchang chickens with their expression regulated by miRNAs

and m6A modification. Among those miRNA-m6A-genes, we

chose WNT7B, which is closely related with skeletal muscle

development, to perform IGV visualization analysis and found

significantly different m6A levels on the WNT7B gene between

E10 and E19.

There may be another regulation mode here, that is, m6A

modification regulates the expression of miRNA and then affects

the expression of mRNA. The pri-miRNA is often modified

by m6A methyltransferase and cleaved by methylated binding

proteins to become pre-miRNA and eventually forms mature

miRNA. Alarcon et al. found that METTL3 can methylate

pri-miRNA, and the labeled pri-miRNA can be recognized

and processed by DGCR8. By miRNA chip analysis, it was

found that knockdown of METTL3 would reduce the binding

between DGCR8 and pri-miRNA, reduce the expression of

mature miRNA, and increase the content of unprocessed pri-

miRNA. In vitro experiments, it has been confirmed that m6A

could promote the processing of pri-miRNA. Finally, functional

validation experiments revealed that METTL3 could promote

miRNA maturation (44). Kyung-Won et al. uncovered the role

of mRNA methylation on the abundance of AGO2 mRNA

resulting in the repression of miRNA expression during the

process of human aging (45). m6A modification can not only

directly regulate gene expression, but also indirectly affect

related regulatory factors to affect gene expression. We therefore

suggest that m6A modification is important and extensive in

organisms; however, the related regulatory mechanism remains

to be studied.

Conclusion

In conclusion, we compared m6A modification profiles

and gene expression levels at E10 and E19 of Wenchang

chickens. We found that some genes shared by DMGs and

DEMs in chicken embryonic breast muscle were enriched in

skeletal muscle development-related pathways, indicating that

m6A modification is one approach affecting skeletal muscle

development and fat deposition. In addition, some target

genes of DEMs overlapped with DEMGs, which indicated that

miRNAs were potential regulators of m6A modification.
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Genome-Wide Association Study and
Expression Quantitative Trait Loci
Reveals Bovine Muscle Gene
Expression Regulatory
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Understanding the architecture of gene expression is fundamental to unravel the molecular
mechanisms regulating complex traits in bovine, such as intramuscular fat content (IMF)
and backfat thickness (BFT). These traits are economically important for the beef industry
since they affect carcass and meat quality. Our main goal was to identify gene expression
regulatory polymorphisms within genomic regions (QTL) associated with IMF and BFT in
Nellore cattle. For that, we used RNA-Seq data from 193 Nellore steers to perform SNP
calling analysis. Then, we combined the RNA-Seq SNP and a high-density SNP panel to
obtain a new dataset for further genome-wide association analysis (GWAS), totaling
534,928 SNPs. GWAS was performed using the Bayes B model. Twenty-one relevant
QTL were associated with our target traits. The expression quantitative trait loci (eQTL)
analysis was performed using Matrix eQTL with the complete SNP dataset and
12,991 genes, revealing a total of 71,033 cis and 36,497 trans-eQTL (FDR < 0.05).
Intersecting with QTL for IMF, we found 231 eQTL regulating the expression levels of
117 genes. Within those eQTL, three predicted deleterious SNPs were identified. We also
identified 109 eQTL associated with BFT and affecting the expression of 54 genes. This
study revealed genomic regions and regulatory SNPs associated with fat deposition in
Nellore cattle. We highlight the transcription factors FOXP4, FOXO3, ZSCAN2, and EBF4,
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involved in lipid metabolism-related pathways. These results helped us to improve our
knowledge about the genetic architecture behind important traits in cattle.

Keywords: backfat thickness, carcass andmeat quality, expression quantitative trait loci, intramuscular fat content,
RNA-Seq, SNP, Nellore cattle

INTRODUCTION

Over the last years, several studies have shown a growing interest in
understanding the molecular mechanisms regulating carcass and
meat quality traits in beef cattle (Cesar et al., 2014; Fernandes
Júnior et al., 2016; Silva-Vignato et al., 2017; Park et al., 2018; Raza
et al., 2020). Carcass and meat quality fat traits, such as backfat
thickness (BFT) and intramuscular fat content (IMF) are
economically important for the beef industry since they affect
the yield of cuts, dressing percentage, and the final consumer
perception of meat quality (Yokoo et al., 2008; Park et al., 2018).
BFT and IMF are traits related to the final amount of fat in the
carcass and play an important role in the determination of meat
palatability. The subcutaneous fat layer protects the carcass in the
cooling process, minimizing evaporative weight loss and avoiding
muscle fiber cold-shortening (Yokoo et al., 2008). The IMF
content, also known as marbling, affects beef juiciness,
tenderness, and palatability, relevant sensory characteristics for
the consumers (Troy et al., 2016; Park et al., 2018). Moreover, the
IMF is composed of higher levels of polyunsaturated fatty acid
(PUFA) and monounsaturated fatty acid (MUFA), which are
beneficial for human health (Troy et al., 2016).

Fat deposition in beef cattle depends on several intrinsic and
extrinsic factors, such as the stage of growth, physiological
maturity, nutrition, and genetics (Kauffman and Berg, 2011).
Researchers have already explored some of these factors showing
the differences in body composition among and within breeds
(Burrow et al., 2001; Yokoo et al., 2008; Lopes et al., 2012). In the
genetics field, genome-wide association studies (GWAS) have
been used to detect DNA variants and genomic regions
(quantitative trait loci, QTL) associated with carcass and meat
quality traits (Tizioto et al., 2013; Cesar et al., 2014; Fernandes
Júnior et al., 2016; Raza et al., 2020). Fernandes Júnior et al.
(2016), identified genomic regions and putative candidate genes
associated with ribeye area and BFT in Nellore cattle. Recently,
Martins et al. (2021) found genomic regions on chromosomes 1,
2, 5, 6, 7, 8, 10, 13, 14, and 26, which together explained 12.96%
of the total additive genetic variance of fatness (backfat and
rump fat thickness) in Nellore cattle. The authors reported
seven candidate genes involved in metabolic pathways related
to fatness and lipid metabolism (Martins et al., 2021). In previous
studies from our research group, Tizioto et al. (2013) found a
small effect QTL associated with meat and carcass quality traits
in Nellore cattle. Cesar et al. (2014) identified 23 moderate effect
QTL associated with fatty acids composition and small effect
QTL associated with intramuscular fat in Nellore cattle. Although
GWAS reveal genomic regions and putative candidate genes
associated with the phenotypes, such analysis provides limited
information on the molecular regulation of phenotypes (Michaelson
et al., 2009).

Understanding the architecture of gene expression is
fundamental to unraveling the molecular mechanisms
regulating complex traits (Spielman et al., 2007; Lee, 2018). In
previous studies from our lab, we have identified differentially
expressed genes in themuscle transcriptome of Nellore cattle with
extreme values for BFT and IMF, revealing metabolic pathways
and biological processes involved with these traits (Cesar et al.,
2015; Silva-Vignato et al., 2017). We also detected modules of co-
expressed genes correlated with BFT in Nellore cattle, underling
relevant pathways involved in bovine fat deposition (Silva-
Vignato et al., 2019). These studies helped us to gain insights
into how gene expression influenced these phenotypes. However,
there are still gaps in our knowledge about gene expression
regulation in cattle.

The expression quantitative trait loci (eQTL) mapping
effectively integrates genetic variations and gene expression at
the whole-genome level (Westra and Franke, 2014). eQTL data
provide substantial insights into transcriptional regulation,
functional interpretation for trait-associated SNP, and genetic
factors that regulate a specific disease or a complex phenotype
(Michaelson et al., 2009; Shabalin, 2012; Westra and Franke,
2014). Thus, our main goal was to identify gene expression
regulatory polymorphisms within genomic regions associated
with intramuscular fat and backfat thickness in Nellore cattle.
To achieve this goal, GWAS and eQTL analyses were performed
using an SNP dataset formed by transcribed variants mined from
RNA-Seq data combined with a high-density panel of SNP.

MATERIALS AND METHODS

Animals, Samples, and Phenotypes
The experimental procedures related to animal handling and care
were approved by the Institutional Animal Care and Use
Committee Guidelines from EMBRAPA (CEUA 01/2013).

A population of 193 Nellore steers, derived from an experimental
herd of the Brazilian Agricultural Research Corporation
(EMBRAPA), and originated from 34 unrelated bulls
representing the principal Brazilian Nellore genealogies, was used
in the current study. Between the years 2009 and 2011, the animals
were raised in grazing systems and finished in feedlots with the same
handling and nutritional conditions. The steers were slaughtered at
an average age of 25 months and 452 kg in a commercial
slaughterhouse located in Bariri (São Paulo, Brazil), following the
Brazilian Ministry of Agriculture, Livestock and Food Supply
(MAPA) regularization. More details are provided elsewhere
(Tizioto et al., 2013; Cesar et al., 2014).

For the RNA-Seq, a Longissimus thoracis (LT) muscle sample
of approximately 5 g was collected from the right side of each
carcass between the 12th and 13th ribs immediately after the
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animal’s death and stored in ultra-freezer at −80°C until the
analysis. For measurements of intramuscular fat content (IMF,
%) and backfat thickness (BFT, mm), a beef sample of the LT
muscle (12th–13th ribs, left side of the carcass) was collected 24 h
after slaughter. For IMF analysis, beef samples of approximately
100 g were lyophilized and ground, then IMF was achieved using
the AnkomXT20 extractor, following the AOCS protocol (AOCS,
2004), a more complete description can be found in Cesar et al.
(2014). The BFT was measured by using a graduated ruler, more
details in Tizioto et al. (2013).

High-Density Genotyping Data
The high-density genotyping data acquisition was already described
elsewhere (Cesar et al., 2014). Briefly, the genotyping analysis was
performed at the Bovine Functional Genomics Laboratory ARS/
United States and ESALQ Genomics Center (Piracicaba, São Paulo,
Brazil), using the BovineHD 770 k BeadChip (Infinium BeadChip,
Illumina, San Diego, CA, United States) following Illumina’s
protocol. As a quality control step, SNPs with call rate ≤ 95%,
minor allele frequency (MAF) ≤ 5%, located in sexual
chromosomes, and those not mapped in the Bos taurus ARS-
UCD1.2 reference genome were excluded from further analysis.

RNA-Sequencing
For total RNA extraction, a sample of 100 mg of the LT muscle
was processed using the Trizol reagent (Life Technologies,
Carlsbad, CA, United States), following the manufacturer’s
guidelines. After extraction, RNA integrity was verified using
the Bioanalyzer 2100 (Agilent, Santa Clara, CA, United States),
and the samples presenting RNA integrity numbers (RIN) greater
than 7 were considered for the next analyses. A total of 2 µg of
RNA from each sample was used for the cDNA library
preparation, according to the protocol described in the TruSeq
RNA Sample Preparation kit v2 guide (Illumina, San Diego, CA,
United States). The libraries were sequenced using the Illumina
HiSeq2500 ultra-high-throughput sequencing system with the
TruSeq SBS kit v3-HS (200 cycles), as described in Cesar et al.
(2015). All sequencing analyzes were performed at ESALQ
Genomics Center (Piracicaba, São Paulo, Brazil). After
sequencing, the SeqyClean package v. 1.4.13 (Zhbannikov
et al., 2017) was utilized to remove low-complexity reads and
the adapters sequences from the library preparation step. For the
quality control visualization, FastQC software v. 0.10.1 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used.

The read alignment against the bovine reference genome Bos
taurus ARS-UCD1.2 was carried out using STAR (Spliced
Transcripts Alignment to a Reference) (Dobin and Gingeras,
2015) v. 2.7 with Ensembl (release 96) gene annotation file. To
count the reads, we applied the HTSeq software (Anders et al.,
2015) v. 0.11.1 inside STAR. Only reads that were exclusively
mapped to known chromosomes were used in this study.

Read counts for each gene were normalized to CPM (Counts
per million) using the Bioconductor package edgeR (Robinson
et al., 2010), and then the CPM values were log2 transformed
(log2-CPM). Genes expressed at a low level or not expressed
(log2-CPM value < 0) and expressed in <50% of the samples, were
filtered out from the analysis. Additionally, concerning technical

biases affecting gene expression, a batch effect correction was
performed using the NOISeq R Package (Tarazona et al., 2015) v.
2.16.0. For that, a Principal Component Analysis (PCA) allowed
us to explore the dataset and detect possible batch effects. Then,
using the ARSyNseq function, we filtered out the noise associated
with the batch effect, a combination of flow cell and lane. The
datasets analyzed in this study can be found in the European
Nucleotide Archive (ENA) repository (EMBL-EBI) under the
accession codes: PRJEB13188, PRJEB10898, and PRJEB19421.

Variant Calling Analysis and SNPAnnotation
For the variant calling analysis in the muscle transcriptome, the
Genome Analysis Toolkit (GATK) v. 4.1.0.0 was used in the
Genomic Variant Call Format (GVCF) mode (Brouard et al.,
2019). Using this approach, all genotypes’ types were reported in
a final VCF file. The variants were called following the GATK Best
Practices, and the Ensembl Bos taurus dbSNP (release 96) was used
as known variants. The HaplotypeCaller algorithm was used to call
the variants individually, generating GVCF files for each sample.
These files were then merged using the CombineGVCF tool, and the
joint genotyping analysis was performed using the GenotypeGVCF.
In the end, a VCF file with all samples genotyped was achieved.
After the variant calling, we filtered the SNP for variant quality
score (QUAL) ≥ 30 and total depth of coverage (DP) > 10, using
BCFtools (Li, 2011) v. 1.9. Moreover, the SNP with call rate < 95%,
MAF < 5%, located in sexual chromosomes, and non-biallelic, were
removed from the SNP dataset. The variants’ annotation and
functional consequences were predicted using the Ensembl
Variant Effect Predictor (VEP) (McLaren et al., 2016) v. 95.2.

Genome-Wide Association Study
Previously to the association study, the filtered SNPs from the
RNA-Seq variant calling and the Bovine HD BeadChip were
combined into one complete dataset. BEDTools (Quinlan and
Hall, 2010) v. 2.27.1 was used to check for common variants
(located in the same genome position) in the two datasets. Then,
the transcribed variants located in the same spot as those from the
Bovine HD BeadChip were removed from the analysis. Thus, a
complete dataset containing all SNPs (unique variants) was used
for the following analysis.

The GWAS was performed using the GenSel software (Garrick
and Fernando, 2013) with a Bayesian approach. First, a Bayes C
model was used to estimate the prior genetic and residual
variances for each trait with a calculated π (0.9997). Then,
these values were used as priors to run a Bayes B model, as
previously described in (Cesar et al., 2014; Moreira et al., 2018).
The mathematical model was

y � Xb + ∑
k

j�1
ajβjδj + e,

where y was the vector of phenotypic values, X represented the
incidence matrix for fixed effects, b was the vector of fixed effects,
K was the number of SNP variants (534,928), aj was the column
vector representing the SNP covariate at locus j, assumed to be
normally distributed N (0, σ2β) when δj = 1, but βj = 0 when δj = 0,
with δj being a random variable 0/1, indicating the absence
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(probability π) or presence (probability 1-π) of locus j in the
model, and e represented the vector of residuals associated with
the analysis. In the model, the contemporary group (animals from
the same farm, year, and slaughter date) was set as a fixed effect
and hot carcass weight as a covariate.

The GenSel program uses Markov-Chain Monte Carlo
(MCMC) to estimate the effect of each SNP among all SNPs
in each interaction. In this procedure, 41,000 interactions, with
the first 1,000 interactions being discarded, were accumulated
to obtain the posterior mean effect for each SNP. A map file
was used to position the SNPs into 2,502 non-overlapping
1 Mb SNP windows. Manhattan plots containing the variance
explained by each SNP window along the autosomal
chromosomes were constructed for each trait. Based on an
infinitesimal model (Onteru et al., 2013; Van Goor et al., 2016),
it is expected that each window explains 0.04% (100%/2,502) of
the genetic variance, thus, windows explaining five times more
than the expected (0.20%) were considered as relevant QTL
regions.

The Cattle QTL database (Hu et al., 2019) (Cattle QTLdb,
release 41) was used to search for known QTL that could be
overlapping our relevant QTL regions. For that, we used an in-
house R script and the BED file with QTL coordinates according
to the Bos taurus ARS-UCD1.2 genome, available on Cattle
QTLdb. We also checked for previously detected QTL
reported by our research group for the interest traits (Tizioto
et al., 2013; Cesar et al., 2014). Before this, the LiftOver tool from
UCSC Genome Browser (Casper et al., 2018) was used to convert
the genome coordinates from the Bos taurus UMD3.1 for the
current version ARS-UCD1.2. Finally, the genes within the
relevant QTL were annotated using the Ensembl Biomart
(Ensembl Genes 100).

Expression Quantitative Trait Loci
Identification and Functional Annotation
The R package Matrix eQTL (Shabalin, 2012) v. 2.3 was used to
perform cis and trans-eQTL identification, using the complete
dataset of SNP and genes with expression values in log2-CPM.
The contemporary group was considered in the model for
confounding effect correction. According to previous work from
our group (Mudadu et al., 2016), no evidence of population
stratification was verified in this Nellore population. In the
present study, cis-eQTL were defined as SNP located no more
than 1Mb upstream or downstream from the regulated gene,
and trans-eQTL as the SNP located more than 1Mb from the
regulated gene. Matrix eQTL tests for associations between SNP
genotypes and gene expression using linear regression to associate
each gene-SNP pair, considering additive genotype effects. The
program also calculates the false discovery rate (FDR), based on
Benjamini–Hochberg methodology (Benjamini and Hochberg,
1995), separately for cis and trans-eQTL (Shabalin, 2012). The
lists of cis and trans-eQTL (FDR < 0.05) were annotated
separately, by using VEP (McLaren et al., 2016) v. 95.2. At last,
to verify if the eQTL can be affecting transcription factor (TF), we
compared our results with the manually curated list of bovine TFs
published by our research group (de Souza et al., 2018).

Overlap Between Relevant Quantitative
Trait Loci and the Expression Quantitative
Trait Loci
To verify if the SNPs within relevant QTL regions were also
affecting the gene expression, an overlap analysis using those
SNPs and the list of cis and trans-eQTL (FDR < 0.05) were
performed utilizing the GNU/LINUX environment. Considering
all the eQTL (cis and trans) within QTL regions, we used PLINK
(Purcell et al., 2007) v. 1.9 to perform linkage disequilibrium (LD)
pruning. The parameters applied to variant pruning were
pairwise linkage with a minimum r2 of 0.5 and window size of
100 SNPs, shifting 10 SNPs at each step. Then, carrying out the
most representative eQTL (tag-SNP) and the genes regulated by
them, we used Cytoscape software (Shannon et al., 2003) to build
SNP-gene regulation networks for each trait. Finally, to find the
molecular pathways in which the genes regulated and containing
the representative eQTL were involved, we used MetaCore
software (https://portal.genego.com/) from Clarivate (London,
GBR) with the Mus musculus database.

RESULTS

Phenotypes, High-Density SNP Data, and
RNA-Seq Data
In the current study, the Nellore steer population presented mean
phenotypic values of 2.93% for IMF and 6.86mm for BFT, with
genomic heritability of 0.25 and 0.18 for IMF and BFT, respectively.
From the high-density genotyping SNP data, we obtained a total of
414,879 SNPs that passed all the quality control filters (MAF ≥ 5%;
call rate≥ 95%; not in sex chromosomes; andmapped to the reference
genome). Concerning the RNA-Seq data, an average of 18.45million
reads per animal were used as input for mapping to the Bos taurus
ARS-UCD1.2 genome. In this analysis, 85.71% of the reads were
uniquely mapped to the reference genome. Supplementary Table S1
shows all the mapping reads statistics. Read counts were normalized
to counts per million (CPM) and log2 transformed. Filtering steps
were applied to remove low-level or not expressed genes and a batch
effect correctionwas performed tominimize technical biases affecting
gene expression, totaling 12,991 genes with log2-CPM expression
values used in the eQTL identification.

RNA-Seq Variant Calling Analysis Revealed
120,049 Unique Variants.
The GATK variant calling analysis allowed us to identify
123,300 SNPs that passed all the quality control filters
(MAF >5%; call rate > 95%; not in sex chromosomes; and
biallelic). There were 3,251 SNPs that overlapped the SNP panel
used for genotype (Illumina HD BeadChip). These were used to
validate our SNP discovery and revealed 95.85% concordance
between genotypes. Variants in the same position as the high-
density SNP panel were removed for the next analysis due to
their high genotype similarity, and we proceeded with
120,049 unique variants.

Functional annotation analysis of the 120,049 SNPs revealed
9,018 novel variants. Supplementary Figure S1 shows the variant
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distribution across the 29 Bos taurus autosomal chromosomes (BTA)
and the most severe consequences predicted by VEP. Most SNPs
were in 3′UTR regions (23.24%), followed by downstream genes
(18.82%) and intron variants (12.67%). Besides these, 25.28% were
synonymous variants, while 9.81% were classified as missense
mutations. The SIFT score predicted 2.85% of deleterious SNPs. A
complete overview of the results obtained in the annotation analysis
can be seen in Supplementary Table S2.

Twenty-One Relevant Quantitative Trait
Loci Associated With Intramuscular Fat and
Backfat Thickness
The Illumina bovine HD SNP panels were designed to cover the
entire genomes with equally spaced polymorphic SNPs across
different breeds. In the current study, 414,879 SNPs from the Bos
taurus genome passed all the quality control filters. To empower the

SNP database with coding and regulatory variants, we combined the
Illumina panel with transcribed variants obtained from theRNA-Seq
calling analysis (120,049 SNPs). As a result, for the GWAS, a total of
534,928 SNPs were associated with the phenotypes. Figure 1 shows
the Manhattan plots of the proportion of genetic variance explained
by the 1Mb SNP windows for each trait (a complete overview of the
SNP windows can be seen in Supplementary Table S3).

Starting with IMF, we found eleven relevant QTL windows
positioned on BTA1, 3, 7, 10, 13, 19, 20, 21, and 23 (Table 1). The
QTL that explained the highest proportion of the genetic variance
of the phenotype (Vg) for IMF (0.84%) was located on BTA23 at
15 Mb. Supplementary Table S4 presents the individual SNP
effects within each of the relevant windows. Additionally, using
the Ensembl Genes database, we annotated the 155 genes within
the relevant QTL associated with IMF (Supplementary Table
S5). Then, we consulted the Cattle QTLdb to identify relevant
QTL overlapping with known cattle QTL. Our relevant QTL

FIGURE 1 | Manhattan plot of the posterior means of the percentage of genetic variance explained by each 1 Mb SNP window across the 29 autosomal
chromosomes for intramuscular fat content (IMF) (A) and backfat thickness (BFT) (B). The X-axis represents the chromosomes, and the Y-axis, the percentage of genetic
variance explained by each SNP window. Red dashed lines delimit the relevant QTL regions.

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 9352385

Silva-Vignato et al. Regulatory Polymorphisms Controlling Fat Traits

75

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


regions were previously associated with carcass and meat quality
traits, such as marbling score, fatty acid composition, shear force,
and body weight gain in taurine and zebuine breeds
(Supplementary Table S6).

For BFT, we found 10 relevant QTL (Table 1) with 106 genes
annotated on these regions (Supplementary Table S5). The QTL
that explained the highest proportion of Vg were located on
BTA9 at 4 Mb and BTA1 at 63 Mb (0.45% of Vg each).
Supplementary Table S7 reports the individual SNP effects
within the relevant QTL associated with BFT. Comparing our
SNP windows with known bovine QTL (QTLdb) revealed
genomic regions associated with body composition and carcass
quality traits, like body weight, subcutaneous fat, and shear force
in taurine and zebuine cattle breeds (Supplementary Table S6).
Moreover, looking for our group’s previously identified QTL, we
found two IMF QTL (BTA1_75 and BTA20_62) and three BFT
QTL (BTA1_63, BTA7_3, and BTA7_96) encompassing genomic
regions associated before with ribeye area, BFT, and fatty acids
content (Eicosadienoic acid and Docosahexaenoic acid) in this
Nellore population (Tizioto et al., 2013; Cesar et al., 2014).

Most Cis and Trans-Expression
Quantitative Trait Loci Were in Transcribed
Regions
We identified 71,033 cis-eQTL and 36,497 trans-eQTL (FDR <
0.05) distributed along the genome, with 5,718 SNPs acting both
as cis and trans-eQTL. Figure 2 illustrates the eQTL distribution
and gene positions (Mb) along the 29 BTAs. Regarding gene
regulation, 4,871 genes had their expression affected by cis-eQTL,
and among them, 128 were in the curate list of bovine TFs (de

Souza et al., 2018). Moreover, 6,370 genes were affected by trans-
eQTL, and within them, 259 were TFs. From the total of genes,
2,560 were affected by both cis and trans-eQTL. Supplementary
Table S8 displays the complete list of cis and trans-eQTL (FDR <
0.05) and the genes regulated by them, highlighting the TFs.

VEP analysis showed that most of the cis and trans-eQTL were
located on BTA19 and BTA23, respectively, while BTA20 had
fewer local and distant variants (Supplementary Figure S2).
Moreover, most eQTL were variants called from the RNA-Seq
data (approximately 92% of the cis and 70% of the trans-eQTL),
so the functional annotation results are similar to those presented
for the complete dataset of transcript SNPs. Both cis and trans-
eQTL were predominantly located in 3’UTR, intronic, and
downstream gene regions. Among them, 23.86% and 22.25%
were predicted to be synonymous variants, whereas 9.62% and
8.70% were classified as missense for the cis and trans-eQTL,
respectively (Supplementary Figure S3).

Regulatory Polymorphisms Associated
With Intramuscular Fat and Backfat
Thickness
To identify eQTL that could be associated with our phenotypes,
we overlapped the eQTL and GWAS results. Our analysis
revealed that 231 and 109 eQTL variants were located on
relevant QTL associated with IMF and BFT, respectively.
Within the 231 eQTL associated with IMF (relevant QTL
windows described in Table 1), 156 were cis, 26 trans, and
49 cis and trans variants. These regulatory polymorphisms
affected the expression of 117 genes, including seven TFs:
ARNT, FOXO3, FOXP4, NFYA, ZFP2, ZNF354C, and

TABLE 1 | Characterization of the relevant QTL regions associated with intramuscular fat content (IMF) and backfat thickness (BFT) in a Nellore cattle population.

Traits Chr_Mb First—last position Proportion Vg
(%)

N SNP/window N Genes/window

IMF 23_15 15000692–15992208 0.84 185 27
7_2 2003622–2999865 0.51 941 26

21_22 22001027–22990406 0.38 223 18
7_81 81002985–81999643 0.35 284 7
1_75 75000671–75968766 0.33 257 3
20_62 62002061–62998209 0.30 303 11
1_67 67000099–67991943 0.28 251 12
13_13 13000910–13992863 0.23 208 2
19_54 54022589–54994606 0.22 309 12
3_108 108002916–108996760 0.22 258 16
10_37 37022308–37997882 0.21 427 21

BFT 9_4 4040113–4999917 0.45 196 2
1_63 63008675–63998464 0.45 201 4
9_46 46000672–46993133 0.26 184 2
5_104 104002715–104990551 0.24 302 8
17_18 18002778–18997485 0.24 335 13
9_55 55005021–55998978 0.24 144 3
7_3 3000052–3998084 0.23 351 24

13_52 52001168–52998893 0.22 212 32
7_96 96002065–96995101 0.21 523 9
21_23 23014366–23998400 0.21 224 9

Chr_Mb = map position (chromosome and position in Mb) based on the Bos taurus ARS-UCD1.2; Proportion Vg (%) = Proportion of genetic variance explained by 1 Mb SNP, window;
N SNP/ window = number of SNP within the genomic region; N Genes/ window = number of genes annotated within the (Ensembl Genes 100) SNP window.
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ZSCAN2. Besides that, 12 eQTL were missense mutations
(Supplementary Table S2), spanning the QTL regions located
on BTA1, 3, 7, 10, 19, and 21. Among them, the cis-eQTL
rs381713284 (BTA21 at 22 Mb, SIFT = 0.05), the trans-eQTL
rs379524684 (BTA3 at 108 Mb, SIFT = 0.03), and the trans-eQTL
rs110129172 (BTA10 at 37 Mb, SIFT = 0.02) were deleterious
SNP. The SNP rs382320484 (BTA10 at 37 Mb), upstream of the
TMEM87A and GANC genes, affected the expression of the
largest number of genes (12 genes in trans and two genes in
cis); followed by the novel SNP 21:22425675 (chromosome:
position), a synonymous variant located on the ZNF592 gene,
that affected the expression of nine genes (seven genes in trans
and two genes in cis), being two TFs (FOXO3 and ARNT).
Moreover, within the genes regulated by eQTL associated with
IMF, the two genes regulated by the larger number of eQTL were
the pseudogene ENSBTAG00000052719 (BTA7) by 21 cis-eQTL,
and the TMEM87A (BTA10) by 13 cis-eQTL. In Figure 3, we
presented the SNP-gene regulation networks for the eQTL
associated with IMF, focusing on the eQTL affecting TFs and
their direct connections.

Associated with BFT, there were 74 cis, 20 trans, and 15 both
cis and trans-eQTL. These variants were located on the SNP
windows BTA9_46, BTA5_104, BTA17_18, BTA7_3, BTA13_52,
BTA7_96, and BTA21_23 (see Table 1). Together, the 109 eQTL
affected the expression levels of 54 genes, among them two TFs,
the EBF4 and ZSCAN2. The genes regulated by the larger number
of eQTL were NDUFC1 (BTA17), which is affected by nine eQTL
(cis and trans), and the novel gene ENSBTAG00000025383
(BTA12), which is affected by eight eQTL (cis and trans).
Figure 4 illustrates the SNP-gene regulation networks for the
eQTL associated with BFT, focusing on the eQTL affecting TFs
and their direct connections. As occurred for IMF, we found
12 missense variants within our relevant eQTL. These variants
were located on BTA5, 7, 13, 17, and 21 and all of them were

classified as tolerated by VEP (without deleterious effects). The
complete list of the eQTL spanning IMF and BFT relevant QTL,
their regulated genes, and beta-values (effect size and direction)
are presented in Supplementary Table S9.

At last, to investigate if the genes regulated and containing
eQTL associated with the interest traits were involved in lipid
metabolism-related pathways, we did an enrichment analysis of
these genes (135 and 74 genes for IMF and BFT, respectively).
This analysis revealed some interesting pathways, such as signal
transduction, cell cycle, development, and transport, underlining
the AKT andWNT signaling. Figure 5 shows the top ten Pathway
Maps [−log (p-value)] enriched for the genes related to IMF
and BFT.

DISCUSSION

In the present study, we used an SNP dataset constituted by RNA-
Seq variants and a high-density genotyping panel to perform an
integrative analysis between GWAS and eQTL. The idea was to
find gene expression regulatory polymorphisms associated with
intramuscular fat and backfat thickness in bovine. Backfat
thickness and intramuscular fat deposition are of economic
importance to the beef cattle industry. The BFT is the best
predictor of overall fatness in the animal’s body, impacting
carcass cutability and meat yield (Yokoo et al., 2008; Lopes
et al., 2012). The IMF is positively correlated with beef
tenderness, a meat quality trait that strongly affects consumer
satisfaction and repurchase decision (Park et al., 2018). Moreover,
the beef fatty acids composition is associated with human health
(Troy et al., 2016). Herein, the mean phenotypic values of IMF
and BFT were higher than those presented in the literature for
Nellore cattle, with mean values ranging from 2 to 5 mm for BFT,
and around 1% for IMF (Yokoo et al., 2010; Borges et al., 2014;

FIGURE 2 | Scatter plot of the affected genes and eQTL (FDR < 0.05). The Y-axis represents gene order in relation to chromosome position in the Bos taurus
genome, and X-axis represents the SNP order in relation to chromosome position in the Bos taurus genome. Points scattered diagonally indicates cis-eQTL. Points
scattered vertically indicate trans-eQTL. The vertical blue lines denote individual autosomal chromosomes.
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Fernandes Júnior et al., 2016). Nevertheless, selection for these
traits can be difficult as they are expressed later in the animal’s
life. In this way, identifying genes and genetic markers with
causative effects over these traits will help improve breeding
progress in bovine (Fernandes Júnior et al., 2016).

GWAS has been widely used to identify genetic variants and
putative candidate genes associated with complex phenotypes
(Cesar et al., 2014; Fernandes Júnior et al., 2016; Raza et al., 2020;
Martins et al., 2021). However, panels used for GWAS studies are
not designed to have causative SNP since the goal is to have
informative markers across the genome (Tam et al., 2019). In the
current study, we used RNA-Seq-based SNP to empower the
high-density genotyping panel. According to Suárez-Vega et al.
(2015), calling variants from RNA-Seq raises the chances of
discovering causative mutations harboring or neighboring QTL
and can provide a better understanding of the regulatory
mechanisms underlying eQTL.

With the incorporation of RNA-Seq-based SNP, we were able
to identify QTL associated with IMF and BFT that better

explained the genetic variance of the phenotype compared
with previous works (Tizioto et al., 2013; Cesar et al., 2014),
even using a minor subset of the population (193 animals that
have RNA-Seq information). Tizioto et al. (2013), using only the
high-density SNP panel (Bovine HD 770 k) and 536 animals from
the same population, found that the highest effect QTL for BFT
was located on BTA11 and only explained 0.36% of Vg, with
genomic heritabily (h2) of 0.21. Here, the two QTL with the
highest effect for BFT were detected on BTA9 and BTA1, and
each explained 0.45% of Vg, with a slightly smaller h2 of 0.18. In
another study using the same population (Cesar et al., 2014) with
386 Nellore steers with phenotypes for IMF and the HD
770 k chip, the highest effect QTL for IMF (located on
BTA10) explained 0.66% of Vg (h2 = 0.25), while in this
study, the highest effect QTL was detected on BTA23 and it
explained 0.84% of Vg (h2 = 0.25).

Complementary to the GWAS analysis, we identified
71,033 cis-eQTL and 36,497 trans-eQTL in this Nellore
population, most of them from the RNA-Seq dataset, showing

FIGURE 3 | SNP-gene regulation networks representing the eQTL variants located within QTL windows associated with intramuscular fat content (IMF) and the
genes regulated by them, focusing on the variants regulating transcription factors (TFs) and their direct connections. The colors are coded by QTL window: (A)
BTA21_22, eQTL represented in orange; (B) BTA23_15, eQTL represented in lightgreen; (C) BTA7_2, eQTL represented in pink. All the formats are described in the
legend. New variants are represented by chromosome: position. Gray lines represent a positive beta-value and red ones represent a negative beta-value.
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the importance of adding transcribed variant calling information
on eQTL mapping, as stated by Suárez-Vega et al. (2015). Most of
the SNPs were in 3′UTR, introns, and downstream gene regions,
but some were missense variants (about 9%). It is important to
keep in mind that the polymorphisms identified in this study may
not be the causative mutation but could be in linkage
disequilibrium with the causative one (Mueller, 2004), thus
explaining how a missense SNP could be associated with gene
expression variation.

There are several advantages in integrating GWAS and eQTL
data. Expression quantitative trait loci are essential for
understanding the genetic basis of cellular processes and
complex traits (Lee, 2018). Moreover, eQTL are essential for
the functional interpretation of trait-associated polymorphisms
and identification of genes with expression levels associated with
complex phenotypes (Westra and Franke, 2014; Littlejohn et al.,
2016; Cai et al., 2019). In the current work, we focused on the
overlap between the eQTL and relevant QTL regions for each

FIGURE 4 | SNP-gene regulation networks representing the eQTL variants located within QTL windows associated with backfat thickness (BFT) and the genes
regulated by them, focusing on the variants regulating transcription factors (TFs) and their direct connections. The colors are coded by QTL window: (A) BTA21_23,
eQTL represented in blue; (B) BTA13_52, eQTL represented in green. All the formats are described in the legend. Gray lines represent a positive beta-value and red ones
represent a negative beta-value.
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trait, concentrating on the mutations affecting the expression of
transcription factors.

Intramuscular Fat Content
Seven TFs were regulated by eQTL harbored on QTL regions
associated with IMF. Transcription factors are cellular
components that exert an essential role in regulating gene
expression (Vaquerizas et al., 2009). Studying how these
components are regulated is attractive to a more in-depth
investigation of gene expression patterns during development
and terminally differentiated cells (Calkhoven and Ab, 1996).

Thus, we first highlight here the FOXP4 TF, positively regulated
by a cis-eQTL (rs449704044) located downstream of the novel
gene ENSBTAG00000054479, and harbored on the most relevant
QTL for IMF (BTA23 at 15 Mb), that explained 0.84% of Vg. The
Forkhead box (Fox) family genes are expressed in various tissues,
acting both in developmental processes as in tissue maintenance
during adult life (Golson and Kaestner, 2016; Zhu, 2016). The
same cis-eQTL (rs449704044) negatively affected the expression
levels of the C23H6orf132 gene (Figure 3B). Although there is a
lack of information about the C23H6orf132 gene function in
cattle, according to the GeneCards human database (Stelzer et al.,
2016), Fox TFs were predicted to bind TFBS (transcription factor-
binding sites) of this gene. The C23H6orf132 was also regulated
by the rs383735612 cis-eQTL, located in the 3’UTR region of the
TAF8 gene. The TAF8 is an important modulator of early
adipogenesis. Because of its histone fold domain, TAF8 can
inhibit adipogenesis by specifically downregulating the
expression of the peroxisome proliferator-activated receptor γ
(PPARγ) and the CCAAT enhancer-binding protein α (C/EBPα),
major promoters of adipogenesis (Guermah et al., 2003; Lefterova
et al., 2014). Wang et al. (2013) found TAF8 as a target gene of a
miRNA highly expressed in subcutaneous fat of beef cattle, and
further, enriched for the “regulation of fat cell differentiation”
biological process, corroborating its relevance in controlling fat
deposition in bovine. Another TF affected by an eQTL located on
BTA23 was NFYA (see Figure 3B), also known as CCAAT-box
Binding Protein A (CBP-A). This TF plays a role in the early
development of adipocytes, as well as, is essential for leptin gene
expression (Lu et al., 2015). The knockout of this gene in mice
resulted in lipodystrophy with a progressive loss of adipose tissue
(Lu et al., 2015).

We also emphasize another member of the Forkhead box
family, the FOXO3. This TF is negatively regulated in trans by a
synonymous novel SNP (21:22425675) located on the exonic
region of ZNF592 gene. This SNP also regulates six more genes in
trans and two genes in cis (Figure 3A). In the skeletal muscle,
FoxO genes, including FOXO3, are responsible for switching
carbohydrate to lipid as an energy source during starvation
periods and can interact with the PPARγ (Gross et al., 2008).
In previous work, Cesar et al. (2016), identified FOXO1 and
FOXO3 as upstream regulators of gene expression in the skeletal
muscle of Nellore cattle influenced by a variation in oleic acid
content. Gui and Jia (2018) found a polymorphism in the 3’UTR
region of FOXO1 associated with IMF in Qinchuan cattle. The
authors hypothesized that the variant could affect FOXO1
expression levels through miRNA activity, thus modulating
changes in fatty acid metabolism. This hypothesis corroborates
our findings of a regulatory SNP affecting the expression levels of
a FoxO gene associated with IMF in beef cattle.

From the list of nine genes regulated by the aforementioned
novel SNP 21:22425675 (Figure 3A), there is one more TF, the
ARNT, and some noteworthy genes, such as the CRTC3, IQGAP1,
and SSH1. The ARNT, negatively regulated in trans, is a nuclear
translocator that binds the aryl-hydrocarbon receptor (AhR). This
binding forms a heterodimer that attaches to Xenobiotic/Dioxin
response element sequences (XRE/DRE) of different target genes,
activating mRNA transcription (Ishihara et al., 2018). Conversely,

FIGURE 5 | Top 10 pathway maps enriched for the genes regulated and
containing the eQTL encompassing relevant QTL regions associated with
intramuscular fat content (IMF) (A) and backfat thickness (BFT) (B) in a Nellore
cattle population.
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the CRTC3 and the IQGAP1 were regulated in cis by this eQTL.
The first one, CRTC3 is part of the cAMP responsive element-
binding protein (CREB)-regulated transcription coactivator
(CRTC) family and plays an important role in lipid and glucose
metabolism (Liu et al., 2020; Liu et al., 2021). Studying IMF
deposition, Liu et al. (2020) overexpressed CRTC3 in porcine
IMF adipocytes and observed a faster accumulation of lipid
droplets in cells together with an upregulation of important fat
metabolism genes, such as perilipin, PPARγ, C/EBPα, leptin, and
FABP4 (Fatty acid-binding protein 4). In a more recent work, Liu
et al. (2021), demonstrated that the overexpression of CRTC3
changes the metabolic profile in intramuscular adipocytes, and
also promotes adipogenic differentiation of intramuscular and
subcutaneous adipocytes through the calcium signaling pathway.
We also highlight that in the same genomic region (BTA21,
22Mb), we found two other eQTL (rs379449619 and
rs525656948) located on the CRTC3 gene associated with IMF
in our population, emphasizing its relevance for IMF molecular
regulation. As for IQGAP1, this gene encodes a ubiquitously
expressed scaffolding protein implicated in several cellular
processes, including mitogen-activated protein kinase and AKT
signaling cascades (Erickson and Anakk, 2018; Hedman et al.,
2021). Studies investigating the loss of this protein in mice
demonstrated a reduced PPARγ activity, as well as, a defective
transcription of gluconeogenesis and fatty acid synthesis genes
(Erickson andAnakk, 2018; Hedman et al., 2021). Finally, the SSH1
gene, known by its function in cytoskeleton organization and cell
migration, was previously found associated with body fat in
humans (Gomez-Santos et al., 2011). In earlier work from our
group, studying the proteomic profile of high and low IMF Nellore
cattle, we found SSH1 protein downregulated in the group with
higher values of IMF, suggesting its involvement in the cellular
rearrangement needed for adipocyte growth (Poleti et al., 2018).

Still focusing on the genomic window of BTA21, we emphasize
the zinc-finger gene ZSCAN2, a TF negatively affected in cis by a
deleterious SNP (rs381713284). Deleterious mutations can be
defined as genetic alterations that raise individual susceptibility or
predisposition to diseases/disorders. These variations often occur
in coding regions and are typically missense, causing changes in
the amino acid sequence, and consequently, in the protein
(Plekhanova et al., 2018). According to van Strien (2018), it is
coherent that variants causing changes in the protein product
(missense) also can affect the expression levels of the gene coding
for the protein (cis-effects) or on other genes (trans-effects). Here
the rs381713284 (located on theWDR73 gene), which changes an
Arginine for a Cysteine in the protein sequence, was the only
missense eQTL presenting cis-effects. Leal-Gutiérrez et al. (2020)
found that a higher expression level ofWDR73 is associated with
a lower meat quality index (lower marbling score, higher
connective tissue content, tougher and dryer meat) in Angus-
Brahman steers. Although missense mutations on the WDR73
gene were already reported in humans associated with neuro
disorders (Jiang et al., 2017), as far as we know, in cattle, there
were no previous reports of deleterious SNPs on this gene
associated with IMF.

Other TF identified herein affected by eQTL associated with
IMF (Figure 3C) were the ZFP2 and the ZNF354C, both members

of the zinc-finger family. Together, ZFP2 and ZNF354C were
affected by 10 cis-eQTL located on BTA7 at 2 Mb, the second
most relevant QTL for IMF, explaining 0.51% of Vg. Zinc-finger
proteins are a large family of TFs characterized by a zinc-finger
domain in their structure. They are ubiquitously expressed in
eukaryotic genomes, participating in growth regulation, cell
development, immunity, and signal transduction pathways.
During adipogenesis, zinc-finger TFs are key molecules in
preadipocytes differentiation and adipocyte determination.
Moreover, zinc-finger TFs can both activate and inhibit the
PPARγ and C/EBPs (Wei et al., 2013; Cassandri et al., 2017).
Most of the eQTL affecting these two zinc-finger gene expression
levels were located in novel genes, except for two of them
(rs208107772 and rs462263309) located on the exonic region
of ADAMTS2. The A Disintegrin and Metalloproteinase with
Thrombospondin motifs (ADAMTS) family exerts a principal
role in the extracellular matrix (ECM) maintenance and
remodeling, mainly by participating in collagen biosynthesis
(Kelwick et al., 2015). Lee et al. (2010) found the ADAMTS4
overexpressed in the Longissimus dorsi muscle of Korean cattle
presenting high IMF. Cao et al. (2017) identified the ADAMTS2
gene as differentially methylated and differentially expressed
when comparing two sheep breeds known by their different
carcass weight and meat yield, confirming that this gene may
indirectly affect marbling through collagen synthesis.

Finally, the enrichment analysis of the genes regulated and
containing eQTL associated with IMF revealed that those genes
were involved in signal transduction, cell cycle, and development
pathways, like the AKT signaling (Figure 5A). The AKT or PI3K-
AKT signaling is an intracellular pathway essential for signal
transduction, cell proliferation, apoptosis, and metabolism (Yun
et al., 2020). Furthermore, AKT plays a crucial role in adipocyte
differentiation. AKT can drive fat production and promote
adipogenesis through phosphorylation of substrates, such as
Fox family members (Kim et al., 2010; Wang et al., 2020; Yun
et al., 2020). Corroborating these findings, in the current study,
the FOXO3 TF, negatively regulated by the 21:22425675 eQTL,
was enriched for the Signal transduction AKT signaling. Besides
that, although not enriched in this pathway, the IQGAP1 gene,
affected by the same eQTL plays a role in AKT signaling cascades.
Li et al. (2017), studying transcriptional differences in pigs in high
and low BFT groups, found the PI3K-AKT signaling pathway
enriched for differentially expressed liver miRNAs in these
animals. Liang et al. (2017), also found the PI3K-AKT
pathway related to lipid metabolism and milk fat formation in
Holstein cows. These findings indicate that the genes being
regulated/containing eQTL associated with IMF participate in
relevant lipid-metabolism pathways.

Backfat Thickness
Regarding the eQTL harbored on relevant QTL associated with
BFT, most of them were cis-eQTL. Among the affected genes,
EBF4 and ZSCAN2 are part of the list of bovine curated TFs (de
Souza et al., 2018). The first one, EBF4, is positively regulated by a
single cis-eQTL (rs378953520) harbored on the PCED1A gene
(Figure 4B), and located on the QTL region of BTA13 at 52 Mb
(0.22% Vg). This gene is a helix-loop-helix TF, member of the
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early B cell factor (Ebf) gene family, that in vertebrates is
composed of four members, EBF1 to 4. The EBF1 and 2
participate in the adipogenesis process by playing critical roles
during the transcriptional adipogenic cascade (Akerblad et al.,
2002; Jimenez et al., 2007). Recently, Cao et al. (2021), in a
genome-wide DNA methylation study associated with body fat
traits in healthy adult humans, identified a differential methylated
position associated with body mass index in the 3’UTR region of
the EBF4 gene, suggesting that this gene could be a target for
future obesity risk research. About the gene harboring this
mutation, the PCED1A is an esterase part of the GDSL/SGNH
superfamily, and is expressed in multiple tissues (Maynard et al.,
2018). Despite limited studies about the specific functions of this
gene, Maynard et al. (2018) indicated a potential structural
function at the cell membrane and/or the ECM. As already
mentioned, structural genes may exert a function in the
cellular rearrangement during adipocyte expansion.

Concerning ZSCAN2, this TF is negatively regulated by a cis-
eQTL (rs476932264) in the FSD2 gene (Figure 4A), located on
BTA21 at 23Mb, a region that explained 0.21% of Vg in GWAS
analysis. Interestingly, ZSCAN2 expression levels were also
negatively regulated by a missense cis-eQTL associated with IMF
(Figure 3A). This gene belongs to the zinc-finger family of TFs,
exerting a role during adipocytes differentiation and determination,
and may promote and inhibit PPARγ and C/EBPs expression (Wei
et al., 2013; Cassandri et al., 2017). Regarding FSD2, this gene not
only harbors the rs476932264 cis-eQTL, but also the
rs109974605 and rs379905460 (Figure 4A). The rs476932264 and
rs109974605 are part of the five cis-eQTL affecting their own gene
expression levels. While, rs379905460 is a trans-eQTL affecting the
expression of both LOC522763, a cattle novel gene, and HAPLN3, a
hyaluronan and proteoglycan-binding link protein gene involved in
integrity maintenance and binding functions of the ECM (Spicer
et al., 2003). In previous work from our group, a SNP in the FSD2
gene was already associated with meat color in this Nellore cattle
population (Tizioto et al., 2013). Moreover, Lim et al. (2016),
indicated it as a potential determinant of overall meat quality in
pigs. The authors tested the association of haplotypes produced by
FSD2 SNP and meat quality traits in Berkshire pigs, showing
significant associations of the haplotypes with moisture, crude
protein levels, color, and IMF content.

We also highlight here the genes ENSBTAG00000025383 and
NDUFC1. These two genes were affected by 8 and 9 eQTL
associated with BFT, respectively, being the most regulated
ones. Although there is a scarcity of information about the
novel gene ENSBTAG00000025383, it is part of the NDUFC1
Gene Tree, according to the Ensembl database. The NADH-
ubiquinone oxidoreductase (NDUF) enzymes are components of
the Complex I oxidative phosphorylation system in
mitochondria. In mammals, almost all the ATP molecules
required by the cells are generated by oxidative
phosphorylation in the mitochondrial respiratory chain (Papa
et al., 2002). Kim et al. (2009) and Karisa et al. (2013) found
NDUF genes related to beef cattle growth and fat deposition traits
(ribeye area and marbling). Corroborating these findings, Jeong
et al. (2013) studied transcriptome alterations on the skeletal
muscle of castrated Korean cattle that drives IMF deposition and

found upregulated NDUF genes enriched for the oxidative
phosphorylation process. Cesar et al. (2016), working with this
Nellore population, identified NDUF genes differentially
expressed in the skeletal muscle associated with fatty acid
content. Even though none of the cited studies found these
genes associated with the BFT, we have enough evidence to
support them as candidate genes.

Lastly, the enrichment analysis of the genes regulated/
containing eQTL encompassing relevant QTL associated with
the backfat thickness revealed cell cycle, development, and
transport pathways. We highlighted the WNT signaling, an
important regulator of adipogenesis (Bowers and Lane, 2008).
This pathway regulates mesenchymal stem cells, promotes
osteogenesis and myogenesis, and inhibits adipogenesis
through deacetylation of PPARγ and C/EBPα promoters, and
also, by blocking their expression (Bowers and Lane, 2008). In a
previous work (Silva-Vignato et al., 2017), studying the skeletal
muscle transcriptome of a subset of this Nellore population with
extreme values for BFT (high and low groups), we found the
WNT signaling enriched for an upregulated gene in the low BFT
group. Similarly, Li et al. (2017), working with a pig population
with divergent BFT phenotypes (high and low groups), identified
the WNT signaling enriched for the differentially expressed
miRNAs.

In conclusion, combining RNA-Seq information (expression and
SNP) with a high-density genotyping panel, allowed us to identify
relevant genomic regions and regulatory polymorphisms associated
with intramuscular fat and backfat thickness of Nellore cattle.
Within the genes regulated by eQTL associated with the interest
traits, we highlight that the transcription factors FOXP4, FOXO3,
ZSCAN2, and EBF4 are involved in lipid metabolism-related
pathways and may regulate major adipogenesis genes, such as the
PPARγ and C/EBPα. We also reported for the first time, a missense
cis-eQTL in the WDR73 gene associated with the intramuscular fat
content. These findings help us to improve our knowledge about the
genetic architecture that controls economically important carcass
and meat quality fat traits in bovine.
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Meishan pigs are a famous local pig breed in China, with high fertility and

early sexual maturity, and stronger immunity compared to other breeds. The

spleen is the largest lymphoid organ in pigs and performs essential functions,

such as those relating to immunity and haematopoiesis. The invasion of many

pathogenic microorganisms in pigs is associated with spleen damage. Long

non-coding RNAs participate in a broad range of biological processes and

have been demonstrated to be associated with splenic immune regulation.

However, the expression network of mRNAs and lncRNAs in the spleen of

Meishan pigs remains unclear. This study collected spleen tissues fromMeishan

piglets at three di�erent ages as a model, and mRNA and lncRNA transcripts

were profiled for each sample. Additionally, 1,806 di�erential mRNAs and

319 di�erential lncRNAs were identified. A complicated interaction between

mRNAs and lncRNAs was identified via WGCNA, demonstrating that lncRNAs

are a crucial regulatory component in mRNA. The results show that the

modules black and red have similar mRNA and lncRNA transcription patterns

and are mainly involved in the process of the immune defense response.

The core genes (DHX58 and IFIT1) and key lncRNAs (TCONS-00002102 and

TCONS-00012474) of piglet spleen tissue were screened using the ceRNA

network. The expression of these genes is related to the immune response

of pigs. Our research may contribute to a further understanding of mRNA and

lncRNA expression in the spleen of piglets, and provide new ideas to improve

the disease resistance of piglets.
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Frontiers in Veterinary Science 01 frontiersin.org

86

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2022.1031786
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2022.1031786&domain=pdf&date_stamp=2022-10-19
mailto:pigbreeding@163.com
https://doi.org/10.3389/fvets.2022.1031786
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fvets.2022.1031786/full
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Shi et al. 10.3389/fvets.2022.1031786

Introduction

With the rapid development of high-throughput,

transcriptome-sequencing technologies, our understanding of

themammalian genome is growing rapidly. This has contributed

to the improvement of economic traits in mammals, such as

beef cattle (1) and Ningxiang pigs (2). Although approximately

two-thirds of the mammalian genome is actively transcribed,

most does not encode proteins (3). Long non-coding RNA

(lncRNA) is a type of non-coding RNA that accounts for

more than 80% of non-coding RNAs (4), with fragments

larger than 200 bp, mostly without coding ability (very few

can encode small peptides), and is directly involved in the

regulation of expression in cells (5). A series of recent papers

have shown that cis-lncRNA and trans-lncRNA play a role

in regulating the activity of genes (6). Moreover, lncRNA

can act as a positive or negative signal during transcription,

regulate protein activity, and modulate chromatin function

(7–9). Numerous studies have also shown that lncRNAs play

an essential regulatory role in immune-related processes

in pigs, such as physiopathology. For example, Wu et al.

identified differentially expressed lncRNAs and mRNAs in

porcine alveolar macrophages after infection with PRRSV

(Porcine Reproductive and Respiratory Syndrome Virus) and

found that co-expressed genes for down-regulated lncRNAs

were significantly enriched in NF-κB and Toll-like receptor

signaling pathways (10). Chen et al. identified the expression

profile of lncRNAs in IPEC-J2 cells during PEDV (Porcine

Endemic Diarrhea Virus) infection and further determined

the differential expression of immune-related lncRNAs in

PEDV-infected IPEC-J2 cells and newborn piglets (11).

Fang et al. analyzed 199 differentially expressed lncRNAs

in IPEC-J2 cells after PCV2 (Porcine Circovirus Type 2)

infection, and their regulatory target genes (SOD2, TNFAIP3,

and MG7) were all associated with infectious diseases (12).

LncRNAs, especially during transcription, have remained a

research hotspot in recent years. Therefore, in the present

study, we investigated the mRNA regulation of lncRNAs in

Meishan piglets.

China has approximately 100 breeds of domestic pig genetic

resources, accounting for over one-third of the global total (13).

The Meishan pig is a famous local pig in China, known for its

high fecundity and early sexual maturity. Additionally, many

domestic and foreign studies have shown that Meishan pigs have

shown stronger tolerance and resistance to many diseases. For

example, Halbur et al. (14) found that Meishan pigs were less

susceptible to Porcine Reproductive and Respiratory Syndrome

Virus (PRRSV) than Hampshire and Duroc pigs. Reiner et al.

(15) found that Meishan pigs were more resistant to pork

sporozoites than Pietrain pigs. In addition, Chen et al. (16)

compared the expression of porcine β-defensins in Meishan pigs

and crossbred (Duroc × Yorkshire × Landrace) pigs and found

that Meishan pigs had a higher expression, which might be the

reason for their higher immunity and disease resistance. Dong

et al. (17) compared the intestinal barrier function of Meishan

piglets and crossbred neonatal piglets and found that Meishan

pigs had greater intestinal barrier function. Therefore, it is of

great interest to study the immune resistance of Meishan pigs.

Pig farming is a pillar of China’s livestock industry, with

epidemic problems causing considerable losses to the pig

industry every year. In particular, piglets are less resistant

to disease than adult pigs, and there are differences between

breeds in the resistance of pigs to disease (18). PED (Porcine

Epidemic Diarrhea) affects pigs of all ages, but lethality is seen

mainly in lactating piglets (19). Newborn piglets infected with

PDCoV (Porcine Delta Coronavirus) die from severe diarrhea

(20). Infection with TGEV (Transmissible Gastroenteritis Virus)

causes 100% mortality in piglets under 14 days of age (21). It is

therefore a matter of urgency to pay attention to and improve

piglets’ immunity and disease resistance. As the most prominent

secondary lymphoid organ in pigs, the spleen contains a variety

of immunoreactive cells and immune factors. It is an important

site of response for both innate and adaptive immunity. In recent

years, many studies have been conducted to screen for immune-

related genes in pigs by the transcriptome analysis of porcine

immune organs in order to improve resistance and resilience to

pathogens (22–25).

However, no RNA sequencing study has yet been reported

for Meishan pigs. In order to investigate the molecular

regulatory mechanisms of immune differences among Meishan

piglets, the spleen was used as an immune model. The spleens

were collected from Meishan piglets at three ages: 1 day old

(without colostrum), 14 days after colostrum feeding, and

28 days after colostrum feeding. Additionally, the mRNA

and lncRNA sequencing of spleen tissues was performed by

high-throughput sequencing technology. We successfully

identified differentially expressed candidate genes, thus

providing a reference for studying the function and mechanism

of lncRNAs in spleen tissues. In addition, our study will increase

our understanding of the transcriptomics associated with spleen

tissue and contribute to a better understanding of the immune

function of the mammalian spleen.

Materials and methods

Ethics statement

All experiments were approved by the Institutional Animal

Care and Use Committee (IACUC) of Yangzhou University

(Pig: SYXK(Su)2012-0029) and were performed according to

the Animal Ethics Procedures and Guidelines of the People’s

Republic of China. No other specific permissions were required

for these experiments.
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Experimental animal and sample
collection

Two Meishan sows were chosen that were similar in

weight, age, and body shape and that had farrowed on the

same day. After parturition, the piglets received the same

diet and were housed in an environmentally controlled room.

We designated the first day of the newborns’ existence as

day 1. Once the sows farrowed, two piglets from each litter

were immediately chosen to be slaughtered. Four piglets of

similar weight were sacrificed. Following slaughter, spleen

samples were collected simultaneously and snap-frozen in liquid

nitrogen (-196◦C). The remaining piglets were housed in two

pens in an environmentally controlled room and were fed

under identical husbandry conditions. All piglets were fed

only via breastfeeding until weaning (day 35). Similar to the

aforementioned sample collection procedure on day 1, two

piglets from each litter were chosen to be sacrificed at postnatal

days 14 and 28 after farrowing using an intravenous injection

of pentobarbital sodium, which minimized animal suffering.

Spleen samples were immediately stored in liquid nitrogen for

RNA isolation. Samples were kept at ultra-low temperatures to

avoid RNA degradation.

RNA extraction

Total RNA from the milled spleen tissues was extracted

using Trizol reagent (TaKaRa, Dalian, China), according to

the manufacturer’s protocol. The extracted total RNA was then

treated with RNase-free DNase to remove excess DNA. The

quality of the RNA extracted from spleen tissue was assessed by

Nanodrop 2000 (Thermo Fisher Scientific,Waltham,MA,USA).

Qualified total RNA was stored at−80◦C until use. A total of 12

samples were used for RNA extraction.

Library construction and RNA-Seq
analysis

Qualified RNA samples of four individuals at the same age

were equally pooled together to form three RNA groups: 1 d,

14 d, and 28 d. Approximately 1 µg of total RNA per sample

was treated with the Ribo-ZeroTM Magnetic Kit (Epicenter) to

deplete rRNA. The retrieved RNA was fragmented by adding

First Strand Master Mix (Invitrogen). First-strand cDNA was

generated using random primer reverse transcription, followed

by second-strand cDNA synthesis. The synthesized cDNA was

subjected to end-repair and then was 3’ adenylated. Adapters

were ligated to the ends of these 3’ adenylated cDNA fragments.

Several rounds of PCR amplification with PCR Primer Cocktail

and PCR Master Mix were performed to enrich the cDNA

fragments. Then, the PCR products were purified with Ampure

XP Beads. The constructed RNA libraries were quality checked

with an Agilent 2100 Bioanalyzer and then sequenced using an

Illumina sequencer.

Raw data quality assessment

Raw sequencing data (Raw Reads) were first filtered to

obtain high-quality clean data to ensure the quality and accuracy

of subsequent bioinformatic analysis. The quality control of

the raw and trimmed reads was performed using FastQC and

MultiQC (26, 27). Trimming of the adapter content and quality

trimming was performed using Cutadapt (28). All downstream

analyses were based on high-quality clean reads.

Identification and classification of
lncRNAs

Clean reads aligned to the reference genome (Sus scrofa

11.1) were stored in a binary bam file. The new transcript was

spliced after the readings were collated using Stringtie software

(29). Then, by comparing the gene annotation data of the

reference sequence generated by Cuffcompare software (30), the

potential lncRNA transcripts were chosen. CPC, CNCI, Pfam,

and PLEK were used to filter out lncRNAs with coding potential

and obtain the predicted lncRNA sequences (31–34).

Functional enrichment and di�erential
expression analysis

Using the R package DESeq2 (35), differential expression

gene analysis was conducted between the two groups, and

genes with p-adj < 0.05 and |log2FoldChange| > 1 were

chosen as differential genes. By performing a hypergeometric

distribution test using enrichGO and enrichKEGG in the R

package clusterProfiler (36), the functional enrichment analysis

of genes based on the GO and KEGG databases was carried out

and enriched pathways with p < 0.05 were retained.

Co-expression networks (weighted
correlation network analysis)

Weighted gene co-expression network analysis (WGCNA)

can be used to build gene co-expression modules using gene

expression profiles (37, 38). The gene relationship matrix was

first derived from the gene expression matrix using the Pearson

correlation coefficient. By setting a soft threshold of 9, the gene

relationship matrix was transformed into an adjacency matrix.
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The network’s interconnectivity was then determined using

the topological overlap matrix (TOM). In order to categorize

genes into various modules, we employed the TOM difference

degree as the clustering distance. Using a threshold of 0.25, the

dynamic tree approach was also employed to combine related

gene modules (37).

Construction of mRNA–lncRNA and
mRNA–lncRNA–pathway networks

To explore the association between mRNA and lncRNA

using the significant module of the mRNA–lncRNA

co-expression network, we constructed mRNA–lncRNA–

pathway networks based on mRNA–lncRNA networks and

important pathways involved in mRNA regulation. This paper

aims to reveal the relevant pathways of lncRNA regulation and

thus predict the possible mechanisms of lncRNA in the spleen.

The network was constructed using significant correlation

pairs based on Pearson correlation coefficients. The differential

co-expression network was visualized and analyzed using

Cytoscape software (version: 3.9.0) (39).

Establishment of the
lncRNA–miRNA–mRNA ceRNA network

In 2011, Leonardo Salmena proposed the competing

endogenous RNA (ceRNA) hypothesis, revealing a new

mechanism of RNA interactions. This hypothesis suggested

that different types of RNA molecules competitively bind

to miRNAs, thus reducing the inhibitory effect of miRNAs

on their target mRNAs; these competitive endogenous

RNAs may include circRNAs, lncRNAs, pseudogenes, and

protein-coding mRNAs (40). To better understand the role of

lncRNAs in the ceRNA network, all potential co-deregulated

competitive triads were established to construct the lncRNA–

miRNA–mRNA network. The miRNA sequences were

downloaded from the miRBase website. The MiRanda

software (41) was used to predict miRNA-targeted lncRNAs

and mRNAs. A max score > 190 and max energy < −15

were set to obtain high confidence in the interaction

relationships. The ceRNA network was then constructed

from co-expressed mRNA–lncRNAs and their co-targeted

miRNAs (42).

Real-time PCR quantification

Total RNAs from pig spleen tissues were extracted using

Trizol (TaKaRa, Dalian, China). Then, reverse transcription

of RNA was conducted using HiScript III RT SuperMix

with gDNA wiper (Vazyme, Nanjing, China). The RT-qPCR

TABLE 1 Forward and reverse primers used for gene quantification by

RT-qPCR.

Name Sequence (5’−3’)

IFIT1-F CTTGGAGGAGATTGAGTT

IFIT1-R CAGTATGTTCTTGTTGGG

DHX58-F CTCTGTGCCAACCT

DHX58-R TCCCGTCTCAACTC

TCONS-00012474-F GAGCCACAAAGGGAA

TCONS-00012474-R GCTGAGGTGAGGTAA

TCONS-00002102-F GCCCTTCTACCCTATCAT

TCONS-00002102-R ATTTCCTTTCACCGACTC

reaction system contained 5 µl SYBR Green Mixture (Vazyme,

Nanjing, China), 1 µl of the cDNA template, 0.2 µl of each

primer, and 3.6 µl deionised water. The thermal conditions

were as follows: 95◦C for 5min, 40 cycles of 95◦C for

10 s, and 60◦C for 30 s. The GAPDH genes were set as the

internal controls. All the forward and reverse primers for the

RT-qPCR assays are listed in Table 1. The expression level of

each validated gene for each timepoint was calculated by the

2−11Ct method.

Results

Identification and classification of
lncRNAs in the spleen tissue of Meishan
piglets

The data analysis process for this study is shown in

Figure 1. We used a combination of the most widely used

coding potential analysis methods to screen the candidate

lncRNAs, including CPC analysis, CNCI analysis, Pfam protein

structural domain analysis, and PLEK analysis. The resulting

Venn diagram shows that a total of 2,234 new lncRNA

transcripts were detected using the four methods (Figure 2A).

The statistical distribution of the GC content of the predicted

lncRNA sequences showed that most of the lncRNA GC

content was around 30–60% (Figure 2B). The stacked bar

chart shows that the highest proportion of newly predicted

lncRNAs was genic intronic in both the antisense and sense

categories (Figure 2C). Figure 2D shows the length distribution

of lncRNAs, with more lncRNAs being between 200 and

300 bp in length (Figure 2D). The results of the exon

number distribution map of lncRNAs show that lncRNAs were

mainly concentrated in two exons, followed by three exons

(Figure 2E).
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FIGURE 1

Flow chart of data analysis.

Analysis of di�erentially expressed mRNA
and lncRNA

The box plot demonstrates the consistency in the

distribution of mRNA and lncRNA in terms of the transcript

expression levels across the three groups, indicating no batch

effect in the data (Figure 3A). Principal component analysis

showed that the three different groups of spleens essentially

formed well-defined groups, ranked according to their number

of days (Figure 3B). Day 1 and days 14 and 28 clustered

more distantly, while days 14 and 28 clustered more closely

with each other. Differences in the expression of mRNAs

and lncRNAs between the three groups were analyzed by

volcano plots, which showed 367 up-regulated genes and 188

down-regulated genes for 14 vs. 1 d, 748 up-regulated genes and

439 down-regulated genes for 28 vs. 1 d, and 51 up-regulated

genes and 13 down-regulated genes for 28 vs. 14 d in mRNAs.

In terms of lncRNAs, 14 vs. 1 d had 62 up-regulated genes

and 21 down-regulated genes, 28 vs. 1 d had 148 up-regulated

genes and 73 down-regulated genes, and 28 vs. 14 d had 9

up-regulated genes and 6 down-regulated genes (Figure 3C,

Supplementary Tables 1, 2).
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FIGURE 2

Classification and identification of lncRNAs. (A) Venn diagram of lncRNA, predicted using CPC (Coding Potential Calculator), CNCI

(Coding-Non-Coding Index), CPAT (Coding Potential Assessment Tool), and Pfam (Protein families). (B) lncRNA GC content. (C) lncRNA

classification. (D) lncRNA length. (E) lncRNA exon number.

GO and KEGG enrichment analysis of
di�erentially expressed mRNAs

GO analysis revealed that the biological processes

and pathways enriched by the differentially expressed

mRNAs in piglet spleen tissues were mainly related to the

immune response, defense response, and defense response

to a virus (Figure 4A, Supplementary Tables 3–5). KEGG

pathway enrichment analysis showed that cytokine–cytokine

receptor interaction, haematopoietic cell lineage, toll-like

receptor signaling pathway, and the NF-kappa B signaling

pathway were the most important pathways (Figure 4B,

Supplementary Tables 6–8).

WGCNA analysis

WGCNAwas used to construct a differentially expressed co-

expression module comprising 1,806 mRNAs and 319 lncRNAs.

When the soft threshold power β was set at 9, the scale-

free network matching index exceeded 0.7, which is of greater

biological significance (Figure 5A). Therefore, β = 9 was used to

generate a hierarchical clustering tree. A co-expression network

(combined cut height = 0.25, redundancy = 3) was constructed

by WGCNA to discover the potential regulatory functional

relationships between lncRNAs and mRNAs in spleen tissues

at different ages, as well as their mechanisms. The network

was divided into five modules, identified by and displayed
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FIGURE 3

Di�erential expression of mRNAs and lncRNAs. (A) Box line plot of mRNA and lncRNA expression in three di�erent groups of spleen tissues. (B)

Principal component analysis of mRNA and lncRNA in three di�erent groups of spleen tissues. (C) Volcano plot analysis of mRNA and lncRNA

expression between the three groups.

in different colors (black, blue, yellow, gray, and red), each

containing different gene clusters and showing the expression

patterns of genes within the different modules in a heat map

(Figure 5B, Supplementary Table 9). Red represents positive

correlations, while blue represents negative correlations. The

relationship between co-expressionmodules and different ages is

shown in Figure 5C. We found a significant positive correlation

between the black and red modules and 28 days (correlation

coefficient for 28 d = 0.71, p = 0.01). Gene significance analysis

was performed for each of the 28 d modules (Figure 5D), and

the red and black modules were significant > 0.5; thus, the red

and black modules for 28 d were selected for the next step of the

analysis. Figure 5E shows the significance of these genes in the

red and black module for 28 d. Furthermore, genes with gene

significance > 0.6 and module membership > 0.8 were used

as core genes. There were 69 mRNAs and 24 lncRNAs in the

black and red modules (Figure 5E). Performing GO enrichment

analysis of mRNAs, we found that the red and black modules are

mainly involved in the process of the immune defense response

(Figure 5F, Supplementary Table 10).

Construction of mRNA–lncRNA
co-expression networks and ceRNA
networks

In our study, we identified 14 mRNAs and 2 lncRNAs

in the mRNA–lncRNA pathway network, all of which were

upregulated at 28 days (Figure 6A). In the mRNA–lncRNA

network, TCONS-00012474 (one lncRNA) was linked to 14

mRNAs (DLG3, SCG3, CLEC4F, GZMB, IRF9, IFI44, RTP4,

Frontiers in Veterinary Science 07 frontiersin.org

92

https://doi.org/10.3389/fvets.2022.1031786
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Shi et al. 10.3389/fvets.2022.1031786

FIGURE 4

mRNA enrichment analysis for di�erential expression. (A) GO enrichment analysis and (B) KEGG enrichment analysis.

BHLHE22, STAC3, LOC100517129, OAS1,LOC100519082,

IFIT1, and DHX58), corresponding to the linkage and

enrichment of the innate immune response, immune effector

process, and other pathways. TCONS-00002102 (one lncRNA)

is related to seven mRNAs (IF144, RTP4, BHLHE22, STAC3,

LOC100517129, LOC100519082, and DHX58) and is enriched

in the innate immune response, immune effector process,

and other pathways. A heat map of the topological overlap

of interacting mRNAs and lncRNAs in the mRNA–lncRNA–

pathway co-expression network in three age groups was

created with different color markers; red represents positive

correlations, while blue represents negative correlations

(Figure 6B). We predicted miRNAs common to mRNA and

lncRNA to construct the mRNA–miRNA–lncRNA ceRNA
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FIGURE 5

WGCNA analysis. (A) Scale independence and mean connectivity analysis for various soft threshold powers. (B) Clustering dendrograms of

mRNAs. Di�erent colors indicate di�erent co-expression modules. Heat map showing the expression profile of protein-coding genes. (C)

Module–trait relationship. Each row represents a module eigengene, and each column represents a trait. Each cell includes the corresponding

correlation and p-value. (D) Gene significance analysis for each of the 28 d modules. (E) Scatter plot of red and black modules. (F) GO

enrichment analysis of the pathways of the red and black modules.
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FIGURE 6

mRNA–lncRNA co-expression networks and ceRNA networks. (A) Co-expression mRNA–lncRNA network in the red and black modules. The

circular nodes represent the mRNAs, and the triangle nodes represent lncRNAs. Gray edges represent mRNA–lncRNA interactions and the other

edges represent the mRNA pathways. (B) Heat map showing the correlated expression of mRNA and lncRNA in spleen tissue at three di�erent

ages. (C) ceRNA network shows the relationship between mRNA, miRNA, and lncRNA.

network (Figure 6C, Supplementary Table 11), which included

2 lncRNAs, 2 mRNAs, and 41 miRNAs.

RT-qPCR quantification of mRNAs and
lncRNAs

In order to confirm the reliability of RNA-seq data in

Meishan piglets, the mRNA (IFIT1 and DHX58) and lncRNA

(TCONS-00002102 and TCONS-00012474) genes were selected

for RT-qPCR. It can be seen that the RT-qPCR results for

these mRNAs and lncRNAs are similar to the RNA-seq results,

indicating the accuracy of the RNA-seq data (Figure 7).

Discussion

The spleen is one of the pigs’ most important immune

organs. Additionally, studies have reported many epidemics
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FIGURE 7

Expression patterns of DHX58, IFIT1, TCONS-00002102, and TCONS-00012474 compared with expression patterns obtained by RNA-seq.

in pigs to be associated with spleen damage, such as

PRRS, Porcine Circovirus, pseudorabies, and swine fever

(43). There are two existing studies on lncRNAs in the

spleen of Chinese endemic pigs, and these studies focused

on the multiple developmental stages of the pig spleen

(22, 43). In our study, Meishan piglets were selected

as a model to analyse the transcriptional expression of

lncRNA and mRNA in the spleen tissue of piglets for

the first time. The differentially expressed 1,806 mRNAs

and 319 lncRNAs were identified based on transcriptome

expression profiles.

The colostrum is considered to be the first immunization

for newborns. Therefore, the three different sample groups

selected in this study exhibited large immunological differences.

Compared to 14 vs. 1 d and 28 vs. 1 d, the number of differential

mRNAs and lncRNAs in 28 vs. 14 d is significantly lower. We

speculate that the immune system of piglets starts to establish

itself before 14 days, which is in general agreement with the view

that the immune system of pigs is established at seven days of

life (43).

The results of GO enrichment analysis showed an increase

in the expression of genes in pathways related to the

immune defense response to viruses. The changes reflect the

immunologic function of the spleen (44). In addition, the KEGG

results were enriched for upregulating the haematopoietic cell

lineage pathway. This result suggests that the spleen may be

involved in haematopoietic processes during development (44).

The initial innate immune responses are the first line of

defense against viral vectors and help modulate subsequent

adaptive immune responses (45). The gene enrichment in

the innate immune response and immune effector process

pathways discovered by WGCNA analysis demonstrates that

the innate immune function of the spleen has been activated.

Interferon beta is an important type I interferon that plays

an important role in intrinsic antiviral immunity (46), and

has anti-tumor, anti-proliferative, and immunomodulatory
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functions (47, 48). The enrichment of the interferon beta

production pathway indicates that the spleen of piglets

already has immunomodulatory functions at 28 days

of age.

IFIT1 and DHX58 were identified as the central genes

by mRNA–lncRNA co-expression network analysis. The target

genes of the two lncRNAs (TCONS-00002102 and TCONS-

00012474) were shown to be IFIT1 and DHX58 based on the

predicted ceRNA network map. All genes were significantly

upregulated with age. IFIT1, also known as ISG56, is a

member of the family of interferon-inducible proteins with

tetrapeptide repeats (IFITs) (49). IFITs are important viral

restriction factors that have been shown to directly inhibit

viral protein synthesis and regulate innate immune signaling

pathways. Recently, it was shown that the knockdown of the

STAT1 gene, a gene that inhibits Porcine Delta Coronavirus,

resulted in a significant increase in PDCoV production,

and then downstream interferon-stimulated gene expression

was detected, in which IFIT1 expression was found to be

substantially decreased (50). This suggests that IFIT1 is

important in antiviral replication. Furthermore, Vaishali Sah

et al. used IFIT1 as a key indicator of immunity by measuring

its expression level after swine fever vaccination (51). It has

been reported that interferon can significantly trigger the

production of many interferon-induced genes (IFIT1, IFITM3,

MX-1, OASL, ISG15, PKR, GBP1, Viperin, BST2, IRF-1, and

CXCL10), which play key roles in the resistance to viral infection

(52). Bo Yang et al. also showed that the expression of some

antiviral and inflammation-related factors was significantly

altered after African swine fever virus infection, including

the interferon-inducible protein IFIT1 (53). This suggests that

IFIT1 plays an important immune function in the host as

an interferon-inducible gene. According to our results, IFIT1

also plays a key role in the establishment of splenic immunity

in Meishan piglets. DHX58 is a member of the retinoic-acid-

inducible gene (RIG)-like receptor (RLRs) family, which are

pattern recognition receptors (PRRs) that trigger an innate

immune response against viral infections (54). Previous studies

have shown that the mRNA and protein levels of DHX58 are

significantly upregulated in M1 macrophages (55). Moreover,

the gene encoding this protein can stimulate macrophages

to generate signals that incite the mitochondria to produce

inflammasomes, producing inflammatory proteins that play a

role in the defense response (56). In addition, it has been shown

that DHX58 negatively regulates the RIG-1 signaling pathway

through the competitive binding of viral RNA molecules to

RIG-I/MDA5 and inhibits the transcription of type I IFN

induced by viral infection (57). Li et al. found that an SNP in the

DHX58 gene was significantly associated with blood parameters

in pigs (58). With these results, we speculate that DHX58 may

be one of the crucial genes associated with the immune response

in pigs.

A shortcoming of this study is that only mRNA and lncRNA

transcripts were analyzed in the spleen of Meishan piglets, and

the immune effects of the selected lncRNA transcripts were not

explored in depth. This represents a direction for future work.

Conclusion

In summary, the ceRNA networks were constructed by

predicting miRNA-targeted lncRNAs and mRNAs, and were

screened for the core genes (DHX58, IFIT1) and key lncRNAs

(TCONS-00002102, TCONS-00012474). Additionally, they play

a key role in immune defense, the inflammatory response, and

other processes. The results of this study contribute to our

understanding of the immune function of the spleen in Meishan

piglets, lay the foundation for the study of lncRNAs in Meishan

pigs, and provide new insights into the function of lncRNAs in

spleen tissue. However, this study still has limitations, and more

experiments are needed to explore the biological functions of key

lncRNAs in order to improve disease resistance in piglets.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found in the

article/Supplementary material.

Ethics statement

The animal study was reviewed and approved by

Institutional Animal Care and Use Committee (IACUC)

of Yangzhou University (Pig: SYXK(Su)2012-0029).

Author contributions

JS, CX, and WB designed the experiments. JS and CX

collected the experimental tissues, analyzed the data, and

interpreted the results. JS wrote the manuscript with input

from all the authors. SW and ZW participated in designing the

structure of the article. All authors have read and approved the

final manuscript.

Funding

This work was supported by grants from the Key Research

and Development Project (Modern Agriculture) of Jiangsu

Province (BE2019341), the Open Competition Mechanism

to Select the Best Candidates for the Foundation for

Breeding Industry Prosperity of Jiangsu Province, China

Frontiers in Veterinary Science 12 frontiersin.org

97

https://doi.org/10.3389/fvets.2022.1031786
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Shi et al. 10.3389/fvets.2022.1031786

(JBGS[2021]098), and the Priority Academic Program

Development of Jiangsu Higher Education Institutions.

Acknowledgments

We thank Oebiotech Corporation (Shanghai, China) for

Illumina sequencing.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fvets.2022.1031786/full#supplementary-material

References

1. Raza SHA, Khan R, Cheng G, Long F, Bing S, Easa AA, et al.
RNA-Seq reveals the potential molecular mechanisms of bovine KLF6 gene
in the regulation of adipogenesis. Int J Biol Macromol. (2022) 195:198–
206. doi: 10.1016/j.ijbiomac.2021.11.202

2. Gong Y, He J, Li B, Xiao Y, Zeng Q, Xu K, et al. Integrated analysis of
lncRNA and mRNA in subcutaneous adipose tissue of ningxiang pig. Biology.
(2021) 10:726. doi: 10.3390/biology10080726

3. Hombach S, Kretz M. Non-coding RNAs: classification,
biology and functioning. Adv Exp Med Biol. (2016) 937:3–
17. doi: 10.1007/978-3-319-42059-2_1

4. Fathizadeh H, Hayat SMG, Dao S, Ganbarov K, Tanomand A, AsgharzadehM,
et al. Long non-coding RNAmolecules in tuberculosis. Int J Biol Macromol. (2020)
156:340–6. doi: 10.1016/j.ijbiomac.2020.04.030

5. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and
function. J Cell Biol. (2021) 220:e202009045. doi: 10.1083/jcb.202009045

6. Kopp F, Mendell JT. Functional classification and experimental dissection of
long noncoding RNAs. Cell. (2018) 172:393–407. doi: 10.1016/j.cell.2018.01.011

7. Li Y, Egranov SD, Yang L, Lin C. Molecular mechanisms of long noncoding
RNAs-mediated cancer metastasis. Genes Chromosomes Cancer. (2019) 58:200–
7. doi: 10.1002/gcc.22691

8. Ransohoff JD, Wei Y, Khavari PA. The functions and unique features
of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. (2018) 19:143–
57. doi: 10.1038/nrm.2017.104

9. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-
coding RNAs and its biological functions. Nat Rev Mol Cell Biol. (2021) 22:96–
118. doi: 10.1038/s41580-020-00315-9

10. Wu J, Peng X, Qiao M, Zhao H, Li M, Liu G, et al. Genome-wide analysis
of long noncoding RNA and mRNA profiles in PRRSV-infected porcine alveolar
macrophages. Genomics. (2020) 112:1879–88. doi: 10.1016/j.ygeno.2019.10.024

11. Chen J, Zhang C, Zhang N, Liu G. Porcine endemic diarrhea virus
infection regulates long noncoding RNA expression. Virology. (2019) 527:89–
97. doi: 10.1016/j.virol.2018.11.007

12. Fang M, Yang Y, Wang N, Wang A, He Y, Wang J, et al. Genome-wide
analysis of long non-coding RNA expression profile in porcine circovirus 2-
infected intestinal porcine epithelial cell line by RNA sequencing. PeerJ. (2019)
7:e6577. doi: 10.7717/peerj.6577

13. Ai H, Fang X, Yang B, Huang Z, ChenH,Mao L, et al. Adaptation and possible
ancient interspecies introgression in pigs identified by whole-genome sequencing.
Nat Genet. (2015) 47:217–25. doi: 10.1038/ng.3199

14. Halbur PG, Rothschild MF, Thacker BJ, Meng XJ, Paul PS, Bruna
JD. Differences in susceptibility of Duroc, Hampshire, and Meishan pigs to
infection with a high virulence strain (VR2385) of porcine reproductive and
respiratory syndrome virus (PRRSV). J Anim Breed Genet. (1998) 115:181–
9. doi: 10.1111/j.1439-0388.1998.tb00341.x

15. Reiner G, Eckert J, Peischl T, Bochert S, Jäkel T, Mackenstedt U,
et al. Variation in clinical and parasitological traits in Pietrain and Meishan
pigs infected with Sarcocystis miescheriana. Vet Parasitol. (2002) 106:99–
113. doi: 10.1016/S0304-4017(02)00041-9

16. Chen J, Qi S, Guo R, Yu B, Chen D. Different messenger RNA expression
for the antimicrobial peptides beta-defensins betweenMeishan and crossbred pigs.
Mol Biol Rep. (2010) 37:1633–9. doi: 10.1007/s11033-009-9576-5

17. Dong L, Li HM, Wang SN, Wang TL Yu LH, Wang HR. Meishan neonatal
piglets tend to have higher intestinal barrier function than crossbred neonatal
piglets. Animal. (2021) 15:100037. doi: 10.1016/j.animal.2020.100037

18. Buschmann H, Pawlas S. A study of porcine lymphocyte populations. II.
Characterization of porcine lymphocyte populations.Vet Immunol Immunopathol.
(1980) 1:215–24. doi: 10.1016/0165-2427(80)90023-9

19. Karte C, Platje N, Bullermann J, Beer M, Höper D, Blome S. Re-emergence
of porcine epidemic diarrhea virus in a piglet-producing farm in northwestern
Germany in 2019. BMC Vet Res. (2020) 16:329. doi: 10.1186/s12917-020-02548-4

20. Jung K, Hu H, Saif LJ. Porcine deltacoronavirus infection: Etiology,
cell culture for virus isolation and propagation, molecular epidemiology and
pathogenesis. Virus Res. (2016) 226:50–9. doi: 10.1016/j.virusres.2016.04.009

21. Xia L, Yang Y, Wang J, Jing Y, Yang Q. Impact of TGEV infection on the pig
small intestine. Virol J. (2018) 15:102. doi: 10.1186/s12985-018-1012-9

22. Che T, Li D, Jin L, Fu Y, Liu Y, Liu P, et al. Long non-coding RNAs
and mRNAs profiling during spleen development in pig. PLoS One. (2018)
13:e0193552. doi: 10.1371/journal.pone.0193552

23. Petersen B, Kammerer R, Frenzel A, Hassel P, Dau TH, Becker R, et al.
Generation and first characterization of TRDC-knockout pigs lacking γδ T cells.
Sci Rep. (2021) 11:14965. doi: 10.1038/s41598-021-94017-7

24. Sun J, Zhong H, Du L, Li X, Ding Y, Cao H, et al. Gene expression
profiles of germ-free and conventional piglets from the same litter. Sci Rep. (2018)
8:10745. doi: 10.1038/s41598-018-29093-3

25. Zhang Y, Xue L, Xu H, Liang W, Wu Q, Zhang Q, et al. Global
analysis of alternative splicing difference in peripheral immune organs
between tongcheng pigs and large white pigs artificially infected with
PRRSV in vivo. Biomed Res Int. (2020) 2020:4045204. doi: 10.1155/2020/40
45204

26. de Sena Brandine G, Smith AD. Falco: high-speed FastQC
emulation for quality control of sequencing data. F1000Res. (2019)
8:1874. doi: 10.12688/f1000research.21142.1

27. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis
results for multiple tools and samples in a single report. Bioinformatics. (2016)
32:3047–8. doi: 10.1093/bioinformatics/btw354

28. Kechin A, Boyarskikh U, Kel A, Filipenko M. cutPrimers: A new tool for
accurate cutting of primers from reads of targeted next generation sequencing. J
Comput Biol. (2017) 24:1138–43. doi: 10.1089/cmb.2017.0096

Frontiers in Veterinary Science 13 frontiersin.org

98

https://doi.org/10.3389/fvets.2022.1031786
https://www.frontiersin.org/articles/10.3389/fvets.2022.1031786/full#supplementary-material
https://doi.org/10.1016/j.ijbiomac.2021.11.202
https://doi.org/10.3390/biology10080726
https://doi.org/10.1007/978-3-319-42059-2_1
https://doi.org/10.1016/j.ijbiomac.2020.04.030
https://doi.org/10.1083/jcb.202009045
https://doi.org/10.1016/j.cell.2018.01.011
https://doi.org/10.1002/gcc.22691
https://doi.org/10.1038/nrm.2017.104
https://doi.org/10.1038/s41580-020-00315-9
https://doi.org/10.1016/j.ygeno.2019.10.024
https://doi.org/10.1016/j.virol.2018.11.007
https://doi.org/10.7717/peerj.6577
https://doi.org/10.1038/ng.3199
https://doi.org/10.1111/j.1439-0388.1998.tb00341.x
https://doi.org/10.1016/S0304-4017(02)00041-9
https://doi.org/10.1007/s11033-009-9576-5
https://doi.org/10.1016/j.animal.2020.100037
https://doi.org/10.1016/0165-2427(80)90023-9
https://doi.org/10.1186/s12917-020-02548-4
https://doi.org/10.1016/j.virusres.2016.04.009
https://doi.org/10.1186/s12985-018-1012-9
https://doi.org/10.1371/journal.pone.0193552
https://doi.org/10.1038/s41598-021-94017-7
https://doi.org/10.1038/s41598-018-29093-3
https://doi.org/10.1155/2020/4045204
https://doi.org/10.12688/f1000research.21142.1
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1089/cmb.2017.0096
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Shi et al. 10.3389/fvets.2022.1031786

29. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg
SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq
reads. Nat Biotechnol. (2015) 33:290–5. doi: 10.1038/nbt.3122

30. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential
gene and transcript expression analysis of RNA-seq experiments with TopHat and
Cufflinks. Nat Protoc. (2012) 7:562–78. doi: 10.1038/nprot.2012.016

31. Finn RD,Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann
T, et al. Pfam: clans, web tools and services. Nucleic Acids Res. (2006) 34:D247–
51. doi: 10.1093/nar/gkj149

32. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, et al. CPC: assess the
protein-coding potential of transcripts using sequence features and support vector
machine. Nucleic Acids Res. (2007) 35:W345–9. doi: 10.1093/nar/gkm391

33. Li A, Zhang J, Zhou Z. PLEK a tool for predicting long non-coding RNAs
and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics.
(2014) 15:311. doi: 10.1201/b16589

34. Sun L, LuoH, BuD, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic
composition to classify protein-coding and long non-coding transcripts. Nucleic
Acids Res. (2013) 41:e166. doi: 10.1093/nar/gkt646

35. Love MI, Huber W, Anders S. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol. (2014)
15:550. doi: 10.1186/s13059-014-0550-8

36. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 40:
a universal enrichment tool for interpreting omics data. Innovation. (2021)
2:100141. doi: 10.1016/j.xinn.2021.100141

37. Langfelder P, Horvath S, WGCNA. an R package for weighted correlation
network analysis. BMC Bioinformatics. (2008) 9:559. doi: 10.1186/1471-2105-9-559

38. Zhang B, Horvath S. A general framework for weighted gene
co-expression network analysis. Stat Appl Genet Mol Biol. (2005)
4:Article17. doi: 10.2202/1544-6115.1128

39. Zhang X, Cui Y, Ding X, Liu S, Han B, Duan X, et al. Analysis
of mRNA-lncRNA and mRNA-lncRNA-pathway co-expression networks based
on WGCNA in developing pediatric sepsis. Bioengineered. (2021) 12:1457–
70. doi: 10.1080/21655979.2021.1908029

40. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA
hypothesis: the Rosetta Stone of a hidden RNA language? Cell. (2011) 146:353–
8. doi: 10.1016/j.cell.2011.07.014

41. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets
in Drosophila. Genome Biol. (2003) 5:R1. doi: 10.1186/gb-2003-5-1-r1

42. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk
and competition. Nature. (2014) 505:344–52. doi: 10.1038/nature12986

43. Li X, Han X, Sun C, Li G, Wang K, Li X, et al. Analysis of mRNA and long
non-coding RNA expression profiles in developing yorkshire pig spleens. Animals.
(2021) 11:2768. doi: 10.3390/ani11102768

44. Lewis SM, Williams A, Eisenbarth SC. Structure and
function of the immune system in the spleen. Sci Immunol. (2019)
4:eaau6085. doi: 10.1126/sciimmunol.aau6085

45. Dauletbekov DL, Pfromm JK, Fritz AK, Fischer MD. Innate immune
response following AAV administration. Adv Exp Med Biol. (2019) 1185:165–
8. doi: 10.1007/978-3-030-27378-1_27

46. Zhang X, Yang W, Wang X, Zhang X, Tian H, Deng H, et al. Identification
of new type I interferon-stimulated genes and investigation of their involvement in
IFN-β activation. Protein Cell. (2018) 9:799–807. doi: 10.1007/s13238-018-0511-1

47. Sin WX, Li P, Yeong JP, Chin KC. Activation and regulation
of interferon-β in immune responses. Immunol Res. (2012) 53:25–
40. doi: 10.1007/s12026-012-8293-7

48. Sakamoto I, Tezuka K, Fukae K, Ishii K, Taduru K, Maeda M,
et al. Chemical synthesis of homogeneous human glycosyl-interferon-β that
exhibits potent antitumor activity in vivo. J Am Chem Soc. (2012) 134:5428–
31. doi: 10.1021/ja2109079

49. Feng B, Zhang Q, Wang J, Dong H, Mu X, Hu G, et al. IFIT1 expression
patterns induced by H9N2 virus and inactivated viral particle in human umbilical
vein endothelial cells and bronchus epithelial cells. Mol Cells. (2018) 41:271–
81. doi: 10.14348/molcells.2018.2091

50. Qu H, Wen Y, Hu J, Xiao D, Li S, Zhang L, et al. Study of
the inhibitory effect of STAT1 on PDCoV infection. Vet Microbiol. (2022)
266:109333. doi: 10.1016/j.vetmic.2022.109333

51. Sah V, Kumar A, Dhar P, Upmanyu V, Tiwari AK, Wani SA,
et al. Signature of genome wide gene expression in classical swine
fever virus infected macrophages and PBMCs of indigenous vis-a-
vis crossbred pigs. Gene. (2020) 731:144356. doi: 10.1016/j.gene.2020.1
44356

52. Fan W, Jiao P, Zhang H, Chen T, Zhou X, Qi Y, et al. Inhibition
of African swine fever virus replication by porcine type I and type II
interferons. Front Microbiol. (2020) 11:1203. doi: 10.3389/fmicb.2020
.01203

53. Yang B, Shen C, Zhang D, Zhang T, Shi X, Yang J, et al. Mechanism of
interaction between virus and host is inferred from the changes of gene expression
in macrophages infected with African swine fever virus CN/GS/2018 strain. Virol
J. (2021) 18:170. doi: 10.1186/s12985-021-01637-6

54. Dixit E, Kagan JC. Intracellular pathogen detection by RIG-I-like
receptors. Adv Immunol. (2013) 117:99–125. doi: 10.1016/B978-0-12-410524-9.00
004-9

55. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ, et al. New
mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature.
(2018) 560:198–203. doi: 10.1038/s41586-018-0372-z

56. Murphy MP. Newly made mitochondrial DNA drives inflammation. Nature.
(2018) 560:176–7. doi: 10.1038/d41586-018-05764-z

57. Vitour D,Meurs EF. Regulation of interferon production by RIG-I and LGP2:
a lesson in self-control. Sci STKE. (2007) 2007:pe20. doi: 10.1126/stke.384200
7pe20

58. Li XY, Han CM, Wang Y, Liu HZ, Wu ZF, Gao QH, et al. Expression
patterns and association analysis of the porcine DHX58 gene. Anim Genet. (2010)
41:537–40. doi: 10.1111/j.1365-2052.2010.02027.x

Frontiers in Veterinary Science 14 frontiersin.org

99

https://doi.org/10.3389/fvets.2022.1031786
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1093/nar/gkj149
https://doi.org/10.1093/nar/gkm391
https://doi.org/10.1201/b16589
https://doi.org/10.1093/nar/gkt646
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1080/21655979.2021.1908029
https://doi.org/10.1016/j.cell.2011.07.014
https://doi.org/10.1186/gb-2003-5-1-r1
https://doi.org/10.1038/nature12986
https://doi.org/10.3390/ani11102768
https://doi.org/10.1126/sciimmunol.aau6085
https://doi.org/10.1007/978-3-030-27378-1_27
https://doi.org/10.1007/s13238-018-0511-1
https://doi.org/10.1007/s12026-012-8293-7
https://doi.org/10.1021/ja2109079
https://doi.org/10.14348/molcells.2018.2091
https://doi.org/10.1016/j.vetmic.2022.109333
https://doi.org/10.1016/j.gene.2020.144356
https://doi.org/10.3389/fmicb.2020.01203
https://doi.org/10.1186/s12985-021-01637-6
https://doi.org/10.1016/B978-0-12-410524-9.00004-9
https://doi.org/10.1038/s41586-018-0372-z
https://doi.org/10.1038/d41586-018-05764-z
https://doi.org/10.1126/stke.3842007pe20
https://doi.org/10.1111/j.1365-2052.2010.02027.x
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Multi-omic data integration for
the study of production, carcass,
and meat quality traits in Nellore
cattle

Francisco José de Novais1, Haipeng Yu2,
Aline Silva Mello Cesar3, Mehdi Momen2, Mirele Daiana Poleti4,
Bruna Petry1, Gerson Barreto Mourão1,
Luciana Correia de Almeida Regitano5, Gota Morota2* and
Luiz Lehmann Coutinho1*
1Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo,
Piracicaba, Brazil, 2Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State
University, Blacksburg, VA, United States, 3Department of Agri-Food Industry, Food and Nutrition,
University of São Paulo, Piracicaba, Brazil, 4Department of Veterinary Medicine, School of Animal
Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil, 5Embrapa Pecuária
Sudeste, São Carlos, Brazil

Data integration using hierarchical analysis based on the central dogma or

common pathway enrichment analysis may not reveal non-obvious

relationships among omic data. Here, we applied factor analysis (FA) and

Bayesian network (BN) modeling to integrate different omic data and

complex traits by latent variables (production, carcass, and meat quality

traits). A total of 14 latent variables were identified: five for phenotype, three

for miRNA, four for protein, and two for mRNA data. Pearson correlation

coefficients showed negative correlations between latent variables miRNA 1

(mirna1) and miRNA 2 (mirna2) (−0.47), ribeye area (REA) and protein 4

(prot4) (−0.33), REA and protein 2 (prot2) (−0.3), carcass and prot4 (−0.31),

carcass and prot2 (−0.28), and backfat thickness (BFT) and miRNA 3 (mirna3)

(−0.25). Positive correlations were observed among the four protein factors

(0.45–0.83): between meat quality and fat content (0.71), fat content and

carcass (0.74), fat content and REA (0.76), and REA and carcass (0.99). BN

presented arcs from the carcass, meat quality, prot2, and prot4 latent variables

to REA; from meat quality, REA, mirna2, and gene expression mRNA1 to fat

content; from protein 1 (prot1) and mirna2 to protein 5 (prot5); and from

prot5 and carcass to prot2. The relations of protein latent variables suggest

new hypotheses about the impact of these proteins on REA. The network also

showed relationships amongmiRNAs and nebulin proteins. REA seems to be the

central node in the network, influencing carcass, prot2, prot4, mRNA1, and

meat quality, suggesting that REA is a good indicator of meat quality. The

connection among miRNA latent variables, BFT, and fat content relates to the

influence of miRNAs on lipid metabolism. The relationship between mirna1 and

prot5 composed of isoforms of nebulin needs further investigation. The FA

identified latent variables, decreasing the dimensionality and complexity of the

data. The BN was capable of generating interrelationships among latent

variables from different types of data, allowing the integration of omics and
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complex traits and identifying conditional independencies. Our framework

based on FA and BN is capable of generating new hypotheses for molecular

research, by integrating different types of data and exploring non-obvious

relationships.

KEYWORDS

Bayesian network, factor analysis, meat quality, latent variables, omics data

Introduction

Meat quality traits, which include meat tenderness, are an

important aspect for consumers and are related to the

customer’s acceptability and beef repurchase (Rust et al.,

2008). Meat quality traits are complex and influenced by

diet, pre- and post-slaughter management, meat processing,

storage methods, genetic factors, and genotype-by-

environment interaction (Wheeler et al., 2005; Adzitey, 2011;

Guerrero et al., 2013; Njisane and Muchenje, 2016). Most of the

biological mechanisms involved in meat quality traits are not

completely understood. In this context, systems biology has

been proposed to elucidate the flux of molecular information,

generating a holistic point of view for complex traits (Ideker

et al., 2001). Data from the genome, transcriptome, proteome,

microRNAome, and metabolome have been used

independently to study the molecular architecture of

complex traits and identify important genes, pathways, and

networks that underlie economic livestock traits in the last

decade (Tizioto et al., 2013; Carvalho et al., 2014; Cesar et al.,

2014, 2016; Novais et al., 2019). However, studies using single

omic data disregard the interactions among different levels of

biomolecules, postulated by the central dogma of molecular

biology (Ritchie M. D. et al., 2015).

Complex traits are regulated at different molecular levels, and

considerable effort has been made to generate multi-level studies,

integrating different omic data to understand the inherent

biological meaning of livestock traits (Widmann et al., 2013;

Suravajhala et al., 2016). However, omic data integration using a

hierarchical analysis approach or considering just the common

pathway enrichment may not reveal non-obvious relationships

that exist among omic data (Misra et al., 2018). In this context,

efforts to develop approaches to data omic integration have been

proposed (Huang et al., 2017).

Factor analysis (FA) reduces the dimensionality of data,

inferring latent (hidden) variables to explain dependencies

among observed variables that share common variations

(Meng et al., 2016). Furthermore, the Bayesian network (BN)

has the potential to generate relationships among phenotypes

and molecules by a graph-based model of joint multivariate

probability distributions that represent conditional

independence between variables (Rodin and Boerwinkle,

2005). Here, phenotypes of production, carcass, meat quality,

and multi-omic data were fitted into the FA and BN framework

to explore the potential biological interrelationships to generate

new hypotheses for complex traits in beef cattle.

Materials and methods

Animals and phenotypes

A total of 386 Nellore steers born between 2009 and 2011 at

the Brazilian Agricultural Research Corporation (EMBRAPA/

Brazil) were initially included in this study. The animals were

raised in feedlots under identical diets, and environmental

conditions, and slaughtered at age of 25 months. More details

regarding animals, diet, and experimental design can be found in

Cesar et al. (2014). The animals were handled and managed

according to the Institutional Animal Care and Use Committee

Guidelines from the Brazilian Agricultural Research

Corporation—EMBRAPA approved by the president, Dr. Rui

Machado.

Carcass ultrasound evaluations were performed by trained

field technicians and followed the standards set by the

Ultrasound Guidelines Council (UGC; www.ultrasoundbeef.

com). An Aquila Pie Medical (Pie Medical Inc., Maastricht,

Netherlands) equipped with a 172 mm-long linear transducer

with a frequency of 3.5 MHz was used to measure the initial

ribeye area (REAi) and initial backfat thickness (BFTi) obtaining

sectional images of the longissimus dorsi (LD) muscle between

the 12th and 13th ribs. The images were stored and

measurements were obtained by ODT Eview R (Pie Medical

Inc., Maastricht, Netherlands).

The details of carcass and meat quality trait evaluations were

previously described by Nascimento et al. (2016). The visceral

organs were removed during slaughter, and the heart, kidney,

liver, and perirenal, pelvic, and inguinal fats were weighed.

Carcasses were weighed and chilled for 24 h at 5°C. The

carcass was weighted at 24 h, and the carcass depth was

measured on the fifth rib from top to bottom, measuring the

distance from the sternum to the middle of the spine where the

marrowbone passes.

Steaks of 2.54 cm thick from the LDmuscle between the 12th

and 13th ribs were collected 24 h after slaughter. Steaks were

vacuum packed and used to measure the shear force (SF; Kg),

backfat thickness (BFT; mm), ribeye area (REA; cm2),

myofibrillar fragmentation index (MFI), color parameters
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(L* = lightness, a* = redness, and b* = yellowness), intramuscular

fat (IMF; percentage), pH at 24 h, moisture, water holding

capacity, and cook loss. Briefly, the final backfat thickness

(BFTf) was measured using a ruler in millimeters (Filho,

2000). Color parameters L*, a*, and b* were measured after

exposing the steaks to atmospheric oxygen for 30 min prior to

analysis using a Hunter Lab colorimeter model MiniScan XE

with Universal Software v. 4.10 (Hunter Associates Laboratory,

Reston, VA), illuminant D65, and 10° standard observer.

Additionally, muscle pH was measured at three locations

across the steak using a Testo pH measuring instrument

model 230 (Testo, Lenzkirch, Germany). The final ribeye area

(REAf) was calculated as the area of LD muscle using a grid.

Cooking losses were measured as the weight difference between

the steaks before and after cooking. For IMF, approximately

100 g of muscle samples, previously lyophilized and ground, were

obtained using an Ankom XT20 extractor as described in AOCS

official procedure Am 5-04 (Horwitz, 2000). The myofibrillar

fragmentation index was determined according to Hopkins et al.

(2000). The SF values were obtained from 2.54 cm thick steaks

after 24 h of aging at 2°C in a cold chamber using the texture

analyzer TA-XT2i coupled to a Warner–Bratzler blade with

1.016 mm thickness.

mRNA data processing and WGCNA

For total RNA extraction, a sample of 100 mg of the LD

muscle was processed using the Trizol reagent (Life

Technologies, Carlsbad, CA, United States), following the

manufacturer’s guidelines. After extraction, RNA integrity was

verified using the Bioanalyzer 2100 (Agilent, Santa Clara, CA,

United States), and the samples presenting RNA integrity

numbers lower than 7.0 were removed from further analysis.

A total of 2 µg of RNA from each sample was used for the cDNA

library preparation, in accordance with the protocol described in

the TruSeq RNA Sample Preparation kit v2 guide (Illumina, San

Diego, CA, United States). The libraries were sequenced using the

HiSeq2500 ultra-high-throughput sequencing system (Illumina,

San Diego, CA, United States) with the TruSeq SBS kit v3-HS

(200 cycles). All sequencing analyses were performed at the

ESALQ Genomics Center (Piracicaba, São Paulo, Brazil).

The FastQC software v0.10.1 (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) was applied to check the

quality of the sequencing data. Low-quality reads were filtered

and adapter sequences were trimmed using Seqyclean package

version 1.4.13 (Neapolitan, 2004). The details of data acquisition

were previously described by de Lima et al. (2020).

The read alignment was carried out against the bovine

reference genome Bos taurus ARS-UCD1.2 (available at the

Ensembl database https://www.ncbi.nlm.nih.gov/assembly/

GCF_002263795.1) and read counts using STAR software

(Spliced Transcripts Alignment to a Reference) version 2.7

(Dobin and Gingeras, 2015) with the Ensembl (release 95,

January 2019) gene annotation file. Subsequently, genes with

zero counts for all samples were removed. Next, the genes were

filtered by the counts different from zero in at least 70% of the

samples and counts per million (CPM) > 5 using the EdgeR

Bioconductor package (ChenH.-J. et al., 2018). This was followed

by normalizing counts using the DESEq2 Bioconductor package

(Love et al., 2014), and a batch effect was identified using the

limma R package (Ritchie M. E. et al., 2015).

Clustering analysis was performed on the mRNA dataset

using the weighted gene co-expression network analysis

(WGCNA) R package (Langfelder and Horvath, 2008). To

measure the connectivity among genes, an adjacency matrix

was generated by calculating the Pearson’s correlation

coefficients among all genes and raising it to a power ß (soft

threshold) of 6, which is chosen using a scale-free topology

criterion (R2 = 0.8). Modules containing at least 30 genes were

retained. Modules with hub genes that had a module

membership (MM) > 0.95 and gene significance (GS) with a

p-value < 0.001 were kept for further analysis. Enrichment

analysis was performed using MetaCore software (MetaCore,

2021) to elucidate biological processes and pathways represented

by the hub genes of modules.

miRNA and data acquisition

Small RNA libraries were constructed from 1 μg of total RNA

from each sample using the Illumina TruSeq small RNA Sample Prep

Kit (Illumina Inc, San Diego, CA, United States), in accordance with

the manufacturer’s protocol. High Sensitivity DNA Chip and an

Agilent 2100 Bioanalyzer (Agilent Technologies) was used to

determine library quality and qPCR with the KAPA Library

Quantification kit (KAPA Biosystems, Foster City, CA,

United States) for quantification. Sequencing was performed using

a Miseq Reagent Kit v3 for 150 cycles in an Illumina Miseq

Sequencing System (Illumina Inc., San Diego, CA, United States).

The Illumina CASAVA v1.8 was used to generate and de-multiplex

the raw fastq sequences. The quality of Illumina deep sequencing data

was determined using the FastQC program (version 0.9.5) (Andrews,

2010). Adapters and low-quality reads were trimmed using Cutadapt

(version 1.2.1) (Martin, 2011). Filtered reads were then processed

following the mirDeep2 analysis pipeline (Friedländer et al., 2012).

Sequences were aligned to the Bos taurus ARS-UCD.1.2 reference

genome (available at the Ensembl database (https://www.ncbi.nlm.

nih.gov/assembly/GCF_002263795.1). Only alignments with zero

mismatches in the seed region (first 18 nucleotides of a read

sequence) of a read mapped to the genome were retained. More

details about data acquisition were provided by Kappeler et al. (2019).

Briefly, miRNAs with zero counts for all samples were

removed. Next, the miRNAs were filtered by the counts that

are different from zero in at least 70% of the samples and

CPM >5 using the EdgeR Bioconductor package (Chen Y.
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et al., 2018). The miRNA counts were normalized using the

DESEq2 Bioconductor package (Love et al., 2014), and the limma

R package was used to identify a batch effect (Ritchie M. E. et al.,

2015).

Proteome and data acquisition

The details for data acquisition and processing are previously

described in Poleti et al. (2018). Frozen muscles (500 μg) of

106 animals were ground on liquid nitrogen, then transferred to a

microcentrifuge tube, and weighed to minimize protein

degradation. The muscle was homogenized in 2.5 ml lysis

buffer containing 8 M urea , 2 M thiourea, 1% DTT, 2%

CHAPS, and 1% protease inhibitor cocktails (Sigma-Aldrich)

in an ULTRA-TURRAX® IKA homogenizer on ice for 2 min. The

extracts were vigorously shaken for 30 min on ice and centrifuged

at 10,000 x g for 30 min at 4°C. The supernatants were collected,

the total protein concentration was determined by the PlusOne

2-D Quant Kit (GE Healthcare), and then stored at −80°C for

further analysis.

The protein extract was desalted with a 3-kDa cutoff

Amicon® Ultra centrifugal filter (Millipore, Ireland), where the

lysis buffer was exchanged using a solution of 50 mm ammonium

bicarbonate and 2 M urea five times. The concentration of the

retained protein solution was quantified using a Bradford Protein

Assay Kit (BioRad). For protein digestion, 50 μg of proteins of

each sample were denatured with 25 μL of 0.2% RapiGest SF

(Waters Corporation, United States) at 80°C for 15 min, reduced

with 2.5 μL of 100 mm dithiothreitol (DTT) (Sigma,

United States) at 60°C for 30 min, and alkylated with 2.5 μL of

300 mm iodoacetamide (AA) (Sigma, United States) at room

temperature in the dark for 30 min. Enzymatic digestion was

performed with sequencing grade modified trypsin (Promega) at

a 1:100 (w/w) enzyme: protein ratio at 37°C for 16 h. Digestion

was stopped by the addition of 10 μL of 5% (V/V) trifluoroacetic

acid and incubated at 37°C for 90 min to hydrolyze the RapiGest

(Yu et al., 2003). The peptide mixture solution was then

centrifuged at 18,000 x g for 30 min at 6°C. The supernatant

was transferred to a new vial, dried down in a vacuum centrifuge,

and stored at −20°C.

Qualitative and quantitative bidimensional nanoUPLC

tandem nanoESI-HDMSE analyses were conducted using both

1-h reversed-phase gradient from 7% to 40% (v/v) acetonitrile

(0.1% v/v formic acid) and 500 nL*min−1 on a nanoACQUITY

UPLC 2D Technology system (Gilar et al., 2005). A

nanoACQUITY UPLC HSS T3 1.8 μm, 75 μm × 15 cm

column (pH 3) was used in conjunction with a reverse-phase

(RP) XBridge BEH130 C18 5 μm 300 μm × 50 mm nanoflow

column (pH 10). The ion mobility cell was activated and filled

with nitrogen gas, which operates at the cross-section resolving

power of at least 40Ω/ΔΩ (Lalli et al., 2013). The effective

resolution has the conjoined ion mobility of >1.5 M FWHM

(Silva et al., 2014). The ionization of samples was performed

using a NanoLockSpray ionization source (Waters, Manchester,

United Kingdom) in the positive ion mode nanoESI (+). The

mass spectrometer was calibrated with an MS/MS spectrum of

[Glu1]-fibrinopeptide B human (Glu-Fib) solution

(100 fmol*uL−1) delivered through the reference sprayer of the

NanoLockSpray source. Data acquisition was performed using a

Synapt G2-S HDMS mass spectrometer (Waters, Manchester,

United Kingdom). A mass–charge value ranges from m/z

50 to 2000.

Mass spectrometry data were acquired with Waters

MassLynx v.4.1 software and processed using Progenesis QI

for Proteomics (QIP) 2.0 software (Nonlinear Dynamics,

United Kingdom). Progenesis QIP software was used to run

alignment, peak picking, ion drift time data collection, ion

abundance measurements, normalization, quantification,

peptide and protein identification, and statistical analysis.

The processing parameters for Progenesis included the

following: automatic tolerance for precursor and product

ions based on peptide identification and normal

distribution (Geromanos et al., 2009), one missed cleavage,

carbamidomethylation of cysteine as a fixed modification, and

oxidation of methionine as variable modification. For protein

identification and quantification, the obtained raw data were

searched against a Nellore transcriptome database built from

RNA-sequencing data from LD muscle. Data quality

assessment was performed accordingly (Souza et al., 2017),

and proteins were selected based on the detection and

identification in at least 80% of biological samples. The

assembled data were compared to the NCBI’s UniProt

database (https://www.uniprot.org/) as functional analysis.

Factor analysis

This section closely follows the work of Yu et al. (2020) and

Momen, et al. (2021). The exploratory factor analysis (EFA) was

applied to search the structure of underlying latent variables

(factors) that drive the observed phenotypes and omic data. First,

the caret R package (Kuhn, 2008) was used to check collinearity,

and one of the features with correlation >0.9 was removed. Then,

the Kaiser–Meyer–Olkin (KMO) test was applied to measure the

sampling adequacy using the psych R package (Revelle, 2017)

assessing the factor ability of the data (Cerny and Kaiser, 1977).

The measure of sampling adequacy ranges between 0 and 1, and

values closer to 1 are preferred. Here, KMO >0.7 was considered
acceptable. The number of underlying latent variables q was

determined using a parallel analysis (Horn, 1965) using the psych

R package, as described in more detail in a previous work of our

group (Momen et al., 2021). The EFAmodel is given as a function

of latent factor scores.

Y � ΛF + ε,
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where Y is a p × nmatrix of pmolecular features or phenotypes of

n animals, Λ is the p × q matrix of factor loading connecting the

relation between features and latent common factors, F is the q ×

nmatrix of latent factor scores, and ε is the p × n vector of unique

effects that is not explained by q underlying common factors. The

variance–covariance matrix of Y is

Σ � ΛΦΛ′ + Ψ,

where Σ is the p × p variance–covariance matrix of phenotypes,V
is the variance of factor scores, andѰ is a p × p diagonal matrix of

unique variance. The elements of Λ, V, and Ѱ are parameters of

the model to be estimated from the data. With the assumption of

F ~ Ɲ(0, I), Λ and Ѱ were estimated by maximizing the log-

likelihood of L (Λ, Ψ|Y) using the R package psych (Revelle,

2017) along with a varimax rotation (Kaiser, 1958). A parallel

analysis was performed to determine the number of underlying

factors. A feature having loading > |0.55| was assigned to only

one of the factors based on the factor loadings.

The Bayesian confirmatory factor analysis (BCFA) is an

alternative to frequentist CFA generating an important role

in the assessment of the reliability and validity of latent

variables. We fitted BCFA to estimate the factor scores

according to the phenotype-factor structure inferred from

the earlier EFA step. BCFA was applied to concatenated data,

including phenotypes, proteins, miRNA, and the hub genes

of modules obtained from WGCNA. Briefly, the blavaan R

package (Merkle and Rosseel, 2018) was used with three

Markov Monte Carlo chains, each with 6,000 Gibbs samples

after 6,000 burn-in. Then, the posterior means of the factor

scores of latent variables were estimated and treated as the

new phenotypes for further analysis.

Bayesian network

In the Bayesian network (BN), a direct acyclic graph is

generated, and each random variable is associated with a

node, the edges represent conditional dependency between

variables, whereas the absence of an edge implies that the

variables are conditionally independent of other variables

(Choi, 2015). The details of BN procedures can be found in

more detail in Yu et al. (2019) and Momen et al. (2021). Briefly,

the BN structure learning with the bnlearn R package (Scutari,

2010) was applied to study the probabilistic relationships among

the omic and latent variables. The BN is given by

BN � (G,XV),

where G represents a direct acyclic graph composed of nodes (V)

connected by edges (E), describing the probabilistic relationships

and the vector XV = (X1, ... , Xk) where k is the random variable

(Yu et al., 2019). The joint probability of distributions is therefore

given by

P(XV) � ∏
k

v�1
P(XV |Pa(XV)),

where Pa(XV) expresses a set of parent nodes of XV. The

score-based (hill climbing and tabu) and hybrid algorithms

(max–min hill climbing and general 2-phase restricted

maximization) were used to perform structure learning

(Scutari, 2010). Candidate networks were compared based

on the Bayesian information criterion (BIC) and Bayesian

Gaussian equivalent score (BGe). The BIC score was

calculated as a criterion for the selection of the candidate

model, and BGe reflects the posterior probability of the

networks. A larger BIC score is preferred since it is

rescaled by −2 in the bnlearn R package. In addition,

1,000 bootstrapping replicates were used to estimate the

uncertainty of the edge’s strength and the direction of the

network. Edges showing presence in at least 80% (strength)

among all the 1,000 models were kept in the BN through

model averaging.

Results

Data preprocessing for analysis

In this study, we investigated the effective application of FA and

BN framework to generate networks with biological meaning on for

three different phenotypic categories: 1) production trait category

included pre-feedlot body weight (BWi), post-feedlot body weight

(BWf), initial backfat thickness (BFTi), and initial ribeye area

(REAi); 2) carcass trait category included final backfat thickness

(BFTf), final ribeye area (REAf), hot carcass weight (carcass_hot),

cold carcass weight (carcass_cold), carcass depth (carcass_depth),

kidney fat content (fat_kidney), and pelvis fat content (fat_pelvis);

and 3) meat quality category included the shear force at 24 h (SF),

pH at 24 h (pH), meat moisture (moisture), free water (water_free),

water-holding capacity (w_ret_cap), cooking weight loss

(cook_loss), color parameters (L*, a*, and b*), myofibrillar

fragmentation index (MFI), and intramuscular fat (IMF) along

with three different omic datasets: 1) mRNA sequencing, 2)

miRNA sequencing, and 3) protein abundance.

Pearson’s correlations (Figure 1) showed that BWf, carcass_hot,

and water_free were highly correlated with carcass cold and water-

holding capacity (correlation>0.9), therefore; they were removed for

further analysis to avoid duplicate information. For example, the

correlation between water_free and w_ret_cap was −1 because both

traits represent oppositional and complementary information

(Pearce et al., 2011).

For the RNA-Seq (mRNA) data, after the quality control

and filtering procedure, 13,023 genes were included in

WGCNA. The WGCNA method identified 20 modules, and

two modules (mRNA1 and mRNA2) showed module

membership (MM) > 0.95 and gene significance p-value <
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0.001. The mRNA1 module was composed of seven hub genes

and the mRNA2 module of four hub genes (Supplementary

Table S1).

A total of 192miRNAs were used for further analysis after the

preprocessing steps. One animal was excluded as an outlier. After

normalization, limma was used to identify a batch effect

(Figure 2). Principal component analysis (PCA) revealed

clusters based on the total counts of samples (Figure 2A).

limma was applied to remove the batch effect in the miRNA

data for further analysis (Figure 2B).

For proteomic data, 159 proteins from 106 animals were used

in the analysis after the quality control steps. PCA was applied

and a batch effect due to the equipment used was identified

(Figure 3A). The batch effect was accounted for by normalizing

every data separately (Figure 3B).

Exploratory and Bayesian confirmatory
factor analysis

The factor analyses were performed using a subset of 102 animals

that have phenotypes, miRNA, mRNA, and protein data. First, the

phenotypes,miRNA, and protein data were used individually to fit an

exploratory factor analysis (EFA). EFA can reduce data dimension

without any prior assumptions about the observed data and latent

factors structures. The parallel analysis suggested that phenotypes,

FIGURE 1
Correlation plot of 22 phenotypes. The degree of shading and the value reported correspond to the correlations among the traits. BWi: pre-
feedlot body weight; REAi: initial ribeye area by ultrasonography; REAf: final ribeye area on steak; BFTi: initial backfat thickness by ultrasonography;
BFTf: final backfat thickness by carcass; fat_pelvis: pelvis fat content at carcass; fat_kidney: kidney fat content; carcass_hot: hot carcass weight;
carcass_cold: cold carcass weight; carcass_depth: carcass depth; pH: pH at 24 h; water_free: free water; w_ret_cap: water holding capacity;
moisture: meat moisture; SF: shear-force; MFI: miofibrilar fragmentation index; L*, a*, b*: color parameters; and IMF: intramuscular fat.
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miRNA, and protein data were composed of five, ten, and eight latent

variables, respectively. Each omic dataset was assigned to a factor

according to the highest loading value (>|0.5|), filtering some latent

variables composed of a few features. The final underlying latent

structures from EFA of the phenotype, miRNA, and protein data are

shown in Figures 4, 5.

The BCFA was used to estimate factor loadings and scores

based on the structure obtained from the EFA analysis, assuming

that these latent variables determine the observed phenotypes

and molecular profile levels (Supplementary Tables S2, S3).

The five phenotype latent factors showed strong

contributions to the observed phenotypes, with

FIGURE 2
Principal component analysis of total counts as a batch effect in miRNAs. Principal component analysis of miRNAs before (A) and after (B) the
limma batch effect normalization. The total counts refer to the total number of reads per sample. Three colors were used to represent 1) samples with
a higher total number of reads: higher than mean +standard deviation (345,281 reads) (blue); 2) samples with a lower total number of reads: lower
than mean—standard deviation (125,193 reads) (red); 3) samples with the average total number of reads: between mean > + standard deviation
and mean < + standard deviation (green).

FIGURE 3
Principal component analysis of proteomic data. (A) Principal component analysis with all animals normalized together. (B) Principal
component analysis when animals were normalized separately by equipment acquisition. The colors denote the equipment batch effect. The
samples in red, green, dark blue, and blue colors are from equipment 1. The samples in pink are from equipment 2.
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standardized regression coefficients ranging from 0.989 to

0.986 for backfat thickness, −0.993 to 0.956 for meat

quality, 0.654 to 1 for the carcass, 0.942 to 0.992 for fat

content, and 0.973 to 0.991 for ribeye area. The seven latent

variables for miRNA and protein also showed strong

contributions to the molecular level profiles, with

standardized regression coefficients ranging from -0.999 to

0.999 for factor mirna1 (miRNA), −0.971 to 0.979 for factor

mirna2 (miRNA), −0.914 to 0.989 for factor mirna3 (miRNA),

0.842 to 0.990 for factor prot1 (protein), 0.774 to 0.973 for

factor prot2 (protein), 0.963 to 0.997 for factor prot4 (protein),

and 0.976 to 0.990 for factor prot5 (protein).

FIGURE 4
Final underlying latent structures of phenotypes generated by exploratory factor analysis. BWi: initial body weight on feedlot trial; REAi: initial
ribeye area by ultrasonography; REAf: final ribeye area on steak; BFTi: initial backfat thickness by ultrasonography; BFTf: final backfat thickness by
carcass; SF: shear-force; MFI: myofibrillar fragmentation index; and L*, a*, b*: color parameters.

FIGURE 5
Final underlying latent structures of miRNA (yellow), proteins (green), and mRNA (blue) generated by exploratory factor analysis. N denotes the
total number of features in each latent variable.
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The latent factor backfat thickness (BFT) had a positive

contribution to BFTi and BFTf (0.989 and 0.986, respectively;

Supplementary Table S2), indicating that larger values for the

latent factor can be interpreted as a greater thickness on the

backfat content. The latent factor meat quality has a positive

contribution to shear force (0.956; Supplementary Table S2),

and a negative contribution to the colors b*, L*, and MFI

(−0.993, −0.959, and −0.785, respectively) indicating that

lower values on the latent factor can be interpreted as more

tender meat. The latent factor carcass showed the largest

positive contributions to traits describing carcass (e.g.,

weight to carcass cold, 1; weight to carcass depth, 0.990;

weight to the kidney’s fat content, 0.987; and pH of meat at

24 h, 0.863), suggesting that this latent factor is an overall

representation of carcass. The latent factor ribeye area (REA)

has a strong positive contribution to the REAf and REAi

(0.991 and 0.973, respectively; Supplementary Table S2),

indicating that larger values for the latent factor can be

interpreted as a greater ribeye area.

The latent factor mirna1 has a positive contribution to

18 miRNAs (0.876–0.999; Supplementary Table S2), and a

negative contribution to seven miRNAs (−0.995 to −0.999,

respectively). The mirna2 latent variable has a positive

contribution to miRNA “bta.let.7e” (0.979; Supplementary

Table S2), and a negative contribution to miRNA

“bta.miR.339b” (−0.971, respectively; Supplementary Table

S2). The latent factor mirna3 has a positive contribution of

two miRNAs, “bta.let.7 g” (0.889) and “bta.miR.26b” (0.987),

and a negative contribution to miRNA “bta.miR.423.5p”

(−0.914). The latent factors prot1, prot2, prot4, and

prot5 have a positive contribution to all proteins, including

28 proteins (0.842–0.990), 10 proteins (0.774–0.973), two

proteins (0.976–0.997), and two proteins (0.976–0.990),

respectively.

Correlation among latent variables

Pearson correlation coefficients were calculated to understand

the relationships among latent variables (Figure 6). Negative

correlations were observed between mirna1 and mirna2 (−0.47),

REA and prot4 (−0.33), REA and prot2 (−0.3), carcass and prot4

FIGURE 6
Correlation plot of 14 factor scores. The degree of shading and the value reported correspond to the correlation between each pair of latent
variables.
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(−0.31), carcass and prot2 (−0.28), and BFT and mirna3 (−0.25).

Positive correlations are observed between all protein factors; meat

quality and fat content (0.71), fat content and carcass (0.74), fat

content and REA (0.76), and mirna2 and mirna3 (0.59). The latent

variables REA and carcass correlated at 0.996. These results suggest

that protein levelsmight have a negative impact on carcass, REA, and

fat content factors.

Bayesian network

A BN was used to infer the interrelationships between

latent variables. The BN algorithm learned with the most

favorable network score in terms of BIC (1801.31) and BGe

(1903.46) was the score-based hill climbing algorithm

(Figure 7). The structure of BN was refined by model

averaging with 1,000 networks from bootstrap resampling

to reduce the impact of local optimal structures. The labels

of the arcs measure the percentage of the uncertainty,

corresponding to strength and direction (in parenthesis).

The strength measures the frequency of the arc presented

among all 1,000 networks from the bootstrapping replicates

and the direction is the frequency of the direction shown

conditionally in the presence of the arc.

We observed no difference in the structures between the

two score-based algorithms used, the hill climbing and tabu.

The two score-based algorithms produced a greater number

of edges than the hybrid algorithms. The hill climbing

algorithm produced 17 directed connections from the

14 latent variables.

Discussion

We integrated a multi-omic dataset with production,

carcass, and meat quality traits and explored non-

conventional relationships that led to new hypotheses in the

meat quality field. Here, we applied EFA, BCFA, and BN to

infer interrelationships among latent variables underlying

complex traits and omic data. First, EFA and BCFA were

used to reduce the dimensions of datasets by constructing

latent variables and estimating their factor scores (de los

Campos and Gianola, 2007). These latent variables represent

more straightforward biological meanings than the original

features measured in a population (Yu et al., 2019). Then, we

applied a BN to understand the interrelationships among the

latent variables (Neapolitan and others, 2004). We generated a

network with 14 latent variables involving 17 directed

connections. Moreover, this approach elucidated both direct

and indirect relationships among latent variables. However, a

precaution is essential to interpret the network as a causal

relationship because causal statements require more

assumptions (Pearl, 2009).

Yu et al. (2019) and Momen et al. (2021) applied a

similar approach to obtain genetic insights on rice and

wheat complex traits. Leal-Gutiérrez et al. (2018) studied

the potential of using latent variables, obtained by

structural equation analysis, on carcass and meat quality

traits in beef cattle. They reduced the complexity of the data

and reported biological mechanisms, such as postmortem

proteolysis of structural proteins and cellular

compartmentalization, cellular proliferation and

FIGURE 7
Bayesian network between latent variables based on the score-based (hill climbing and tabu) algorithms. The quality of the structure was
evaluated by bootstrap resampling and model averaging across 1,000 replications. Orange nodes: phenotype latent variables; yellow nodes: miRNA
latent variables; green nodes: protein latent variables; blue node: gene expression of mRNA1 module (WGCNA); and white node: gene expression of
mRNA2 module (WGCNA). The labels of the arcs correspond to the strength and direction (in parenthesis).
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differentiation of adipocytes, and fat deposition. In recent

work, Yu, et al. (2020) applied factor analysis to beef cattle

behavior to better understand latent factors underlying

temperament traits.

Biological meaning of latent variables and
their relationships

The latent variable for the carcass, mainly composed of

carcass cold weight, carcass depth, and fat kidney content

(Supplementary Table S2), can be interpreted as the overall

representation of the carcass, a higher value indicates a larger

and heavier carcass. Its direct and indirect relationships with the

latent variable REA (Figure 7) suggest the positive impact of the

carcass yield on the ribeye area. Aass (1996) reported a positive

phenotypic correlation (0.26) between the carcass depth and

ribeye area corroborating our findings. Dinkel and Busch (1973)

also estimated a positive genetic correlation (0.32) between

growth rate and carcass yield, impacting the ribeye area

positively.

The carcass has a relationship with the latent variable

prot2 that also impacts REA. The latent variable prot2 is

composed of 10 proteins (Supplementary Tables S2, S4),

including UQCRC2 related with proteolysis (GO:0006508);

ATP5F1A and ATP5F1B related with ATP synthesis coupled

proton transport (GO:0042776 and GO:0015986); TNNT1 and

TRIM72 related with muscle contraction (GO:0006936),

regulation of muscle contraction (GO:0006937), sarcomere

organization (GO:0045214), and muscle organ development

(GO:0007517); GOT1 and GOT2 related with aspartate

biosynthetic and catabolic processes (GO:0006532, GO:

0006533), cellular response to insulin stimulus (GO:0032869),

fatty acid homeostasis (GO:0055089), glutamate catabolic

process to aspartate (GO:0019550), glycerol biosynthetic

process (GO:0006114), and oxaloacetate metabolic process

(GO:0006107); and MDH1 and MDH2 related with the

carbohydrate metabolic process (GO:0005975), malate

metabolic process (GO:0006108), NADH metabolic process

(GO:0006734), oxaloacetate metabolic process (GO:0006107),

tricarboxylic acid cycle (GO:0006099), and aerobic respiration

(GO:0009060).

The ATP synthase F (0) complex subunit B1 (ATP5F1) has

been positively correlated with meat color parameter a*, which

impacts meat discoloration (Yu et al., 2017). Our findings

show an indirect relationship between prot2 and the fat

content latent variable that includes the parameter a*.

Although prot2 and meat quality are not directly connected

(Figure 7), both impact REA. However, prot2 is mainly

composed of enzymes involved with energy metabolism

that have been reported as putative candidate proteins for

meat tenderness. The aspartate aminotransferase (GOT1) has

been considered a putative candidate protein usable for meat

tenderness prediction (Boudon et al., 2020). Rodrigues et al.

(2017) reported that Nellore cattle have a higher abundance of

malate dehydrogenase (MDH1) compared to Angus. This

enzyme is important in gluconeogenesis, catalyzes the

oxidation of malate to oxaloacetate, and is a relevant player

in meat quality characteristics because this enzyme is involved

in energy metabolism and affects how pH drops, changing the

conversion of muscle to meat (Rodrigues et al., 2017). The

ubiquinol-cytochrome C reductase core protein 2 (UQCRC2)

gene, which is an important energy promoter for the

development of cell functions was reported as up-regulated

in a study analyzing gene expression on tough beef groups

compared to the tender group in Nellore cattle (Muniz et al.,

2021). The degradation of troponin T1 (TNNT1) proteins

during post-mortem has been associated with meat tenderness

(Zakrys-Waliwander et al., 2012; Contreras-Castillo et al.,

2016; Wright et al., 2018).

The prot4 latent variable also shows a relationship with REA,

which has two proteins (Supplementary Tables S2, S4) and

includes the TNNI2 and MYH4. Troponin I, fast-twitch

isoform (TNNI2) is a subunit of the troponin complex and

plays a role in calcium regulation during muscle contraction

and relaxation. The TNNI2 gene was associated with pH, meat

color value, and intramuscular fat content in pigs (Yang et al.,

2010). The myosin heavy chains are relevant to muscle

contraction velocity and power, MYH4 is one of the isoforms

associated with IIb fibers types (Cho et al., 2016) and myotube

hypertrophy in beef cattle (Bordbar et al., 2020). Our findings

suggest new hypotheses of the impact of these proteins of

prot2 could affect the REA and carcass traits.

The latent variable meat quality composed of shear force,

myofibrillar fragmentation index, and the color parameters L*

and b* can be interpreted as the overall representation of meat

tenderness, and lower levels of this factor indicate more tender

meat. It has a direct relationship with the latent variable REA and

fat content. The relationship among tenderness, REA, and fat

content has been discussed in the literature (Dinkel and Busch,

1973; Bonin et al., 2020). The mRNA1 latent variable has a

relationship with REA and fat content. The mRNA1 factor is

composed of the genes LTN1, NFIA, ATP11B, FILIP1, RANBP2,

N4BP2, and CERT1. The nuclear factor IA gene (NFIA) has been

studied indicating the potential to stimulate lipid accumulation

in cattle (Chen H.-J. et al., 2018). According to the enrichment

analysis (Supplementary Tables S5), these genes have been

associated with an important cholesterol pathway called

cholesterol and sphingolipid transport. Examples are the

RANBP2 gene which is associated with proteolysis and the

CERT1 gene which is related to intracellular cholesterol

transport and sphingolipid metabolism. A further

investigation is necessary to understand these relationships

with REA or fat content.

The latent variable mirna3 is a child node of BFT and

mirna2. The miRNAs are small RNA molecules that inhibit
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translation or induce degradation of protein-coding mRNAs

that contain complementary sequences to miRNAs. mirna3 is

constituted by three miRNAs, namely, bta. let.7g, bta.

miR.26b, and bta. miR.423.5p. bta. let.7 g was found in

studies related with lactation and infection in cattle (Ma

et al., 2019; Rani et al., 2020). mirna2 is composed of two

miRNAs, namely, bta. let.7e and bta. miR.339b. Gu et al.

(2007) identified the expression of bta. let.7e on adipose tissue

in cattle. bta. miR.339b was found in studies related to fatty

acid metabolism and lactation (Do et al., 2017; Palombo et al.,

2018; Poleti et al., 2018). mirna2 has a direct relationship with

fat content (Figure 7). Further studies are necessary to better

understand the functions of mirna2 and its association with

fat metabolism in beef cattle.

The latent variable prot5 is composed of two isoforms of

nebulin (NEBU) which are important structural components

involved in meat aging (Koohmaraie et al., 1984; Ouali et al.,

1995). Post-mortem degradation of nebulin has been associated

with meat tenderness in cattle in which animals with a lower

degradation have less tender meat (Anderson and Parrish, 1989;

Wu et al., 2014). The prot5 latent variable is an important node

that has relationships with prot2 and prot4 and has an indirect

relationship with REA and fat content.

The generated network identified interomic relationships,

bringing simplicity without losing complexity. This is one of the

challenges found in studies of this nature. Often a methodology

used ends up providing the interpretation of unfeasible results,

which was not in our approach. Additional investigations are

essential to understand the relationships of molecules and

phenotypes on latent variables REA, prot2, prot4, prot5,

mRNA1, carcass, mirna3, mirna2, and fat content. The

network demonstrated a relationship between miRNAs and

nebulin protein isoforms that will not be found in studies

using single or multi-level omics. Finally, REA appears as a

central node in the network, influenced by carcass, prot2, prot4,

and meat quality, suggesting that REA is a good indicator

phenotype for meat quality because it can be easily measured

during slaughter or by ultrasonography.

Conclusion

The FA identified latent variables, decreasing the

dimensionality and complexity of data. The BN analysis

was capable of identifying interrelationships among latent

variables from different types of data, allowing the

integration of different types of omic data and complex

traits. The EFA, BCFA, and BN approaches can be used to

generate new hypotheses on molecular research in the meat

quality area, by integrating different types of data and

exploring non-conventional relations.
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University, Xianyang, China, 4The Hainan Animal Husbandry Technology Promotion Station, Haikou,

China, 5School of Life Science, Hainan University, Haikou, China, 6Key Laboratory of Tropical Animal

Breeding and Disease Research, Haikou, China

N6-methyladenosine (m6A) is an abundant internal mRNA modification and

plays a crucial regulatory role in animal growth and development. In recent

years, m6A modification has been found to play a key role in skeletal muscles.

However, whether m6A modification contributes to embryonic breast muscle

development of Pekin ducks has not been explored. To explore the role

of m6A in embryonic breast muscle development of ducks, we performed

m6A sequencing and miRNA sequencing for the breast muscle of duck

embryos on the 19th (E19) and 27th (E27) days. A total of 12,717 m6A

peaks were identified at E19, representing a total of 7,438 gene transcripts.

A total of 14,703 m6A peaks were identified, which overlapped with the

transcripts of 7,753 genes at E27. Comparing E19 and E27, we identified

2,347 di�erential m6A peaks, which overlapped with 1,605 m6A-modified

genes (MMGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses revealed that MMGs were enriched in multiple

muscle- or fat-related pathways, which was also revealed from our analysis

of di�erentially expressed genes (DEGs). Conjoint analysis of m6A-seq and

RNA-seq data showed that pathways related to β-oxidation of fatty acids and

skeletal muscle development were significantly enriched, suggesting that m6A

modification is involved in the regulation of fat deposition and skeletal muscle

development. There were 90 upregulated and 102 downregulated miRNAs

identified between the E19 and E27 stages. Through overlapping analysis of

genes shared by MMGs and DEGs and the targets of di�erentially expressed

miRNAs (DEMs), we identified six m6A-mRNA-regulated miRNAs. Finally, we

found that m6A modification can regulate fat deposition and skeletal muscle

development. In conclusion, our results suggest that m6A modification is a

key regulator for embryonic breast muscle development and fat deposition of

ducks by a�ecting expressions of mRNAs and miRNAs. This is the first study

to comprehensively characterize the m6A patterns in the duck transcriptome.
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These data provide a solid basis for future work aimed at determining the

potential functional roles of m6A modification in adipose deposition and

muscle growth.

KEYWORDS

ducks, embryo, breast muscles, m6A sequencing, miRNAs sequencing

Introduction

More than 150 chemical modifications to RNA have

been described (1), and these structural modifications

play regulatory roles by affecting gene expression. In

recent years, with the identification of enzymes capable of

reversing N6-methyladenosine (m6A) and the development

of transcriptome-wide sequencing methods to map modified

sites (2–5), the prevalence and functional significance of

internal mRNA modifications have been recognized. Therefore,

there is a renewed interest in the biological function of

RNA modification.

N6-methyladenosine was first discovered in 1974 and refers

to the RNA methylation modification on the sixth N atom of

base A with the active adenosine acid as the methyl donor (6).

m6A is the most abundant internal mRNAmodification and has

been observed in various species, accounting for over 80% of all

RNA base methylations (7–9). The enzymes that modify m6A

methylation include “writers,” “erasers,” and “readers,” which

refer to methylated transferases, demethylases, and methylated

reading proteins, respectively (10). Methyltransferase-like 3

(METTL3) andmethyltransferase-like 14 (METTL14), regulated

by the association of a subunit proteinWilms tumor 1-associated

protein (WTAP), belong to methylated transferase and can form

complexes to catalyze the deposition of m6A in mammalian

mRNA (11, 12). AlkB homolog 5 (ALKBH5) and fat mass and

obesity-associated (FTO) protein act as m6A demethylases to

removemethyl from target regions (13, 14), while heterogeneous

nuclear ribonucleoprotein and YTH domain-containing RNA-

binding protein act as m6A-methylated reading proteins (15).

N6-methyladenosine is closely involved in the regulation

of gene expression, RNA transcription, translation, shearing,

degradation, and nuclear transportation (16, 17). More

importantly, m6A methylation modification plays an essential

role in animal growth and development. METTL3 knockdown

inhibited myoblast proliferation and myogenic differentiation,

whereas METTL3 overexpression promoted these processes

(18). A complete transcriptome map of m6A was obtained by

transcriptome sequencing of muscle tissue from three different

pig breeds, and m6A was found to be widely distributed in

muscle tissue (19). However, to our knowledge, no study

has addressed m6A modification in the breast muscle tissues

of ducks.

China is a major producer and consumer of ducks in the

world, and in 2019, duck production and consumption in China

accounted for about 75% of the world’s duck stock, according to

the Food and Agriculture Organization (FAO). Pekin duck is a

famous meat breed for its fast growth rate. Therefore, a study

on the regulation mechanism of breast muscle development is

crucial for improving the meat yield of Pekin duck and is also

the basis of breeding a new lean meat type of Pekin duck. Our

previous research showed that the 19th day of hatching (E19) is

the fastest point of breast muscle development—as well as the

crucial transition point for breast muscle development during

the embryonic stage of Pekin ducks—and that the weight of

the breast muscles was largely constant from E19 to E27 (20).

Subsequently, miRNA and mRNA patterns of breast muscles

at the E13 (13th day of hatching), E19, and E27 (27th day

of hatching) stages were studied (21, 22), and candidates that

may play key roles in the breast muscle development of Pekin

duck were identified. However, no studies have shown whether

m6A and miRNA expressions are different in E19 and 27 and

the potential role of m6A in the breast muscle development of

Pekin duck.

The aim of this study was to explore whether m6A and

miRNA cooperatively regulate breast muscle differentiation in

Pekin duck embryos. We conducted m6A sequencing on the

breast muscle tissues of ducks at E19 and E27 to explore

whether m6A modification existed in these two periods. We

also performed miRNA-seq to explore whether some genes were

regulated by both m6A and miRNA in Pekin duck embryos.

We determined the distribution of m6A and miRNA regulation

during breast muscle differentiation in Pekin duck embryos. The

results of this study will offer a basis for unraveling the role of

m6A modification and miRNA in breast muscle differentiation.

Materials and methods

Ethics approval

This study was approved by the Institute of Animal Science

& Veterinary Medicine, Hainan Academy of Agricultural

Sciences (IASVM-HAAS, Haikou, China; ethical approval

reference number: IASVMHAAS-AE-202012), and followed

the Regulations for the Administration of Affairs Concerning

Experimental Animals of China.
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Searching of duck homologous
sequences in m6A RNA modification

The duck reference genome sequences (BGI_duck_1.0) and

complete genome annotation GFF3 file were downloaded from

the NCBI database, which ensured that genes affected by m6A

methylation were accurately located. Related enzyme sequences

in m6A RNA modification were searched by blasting the duck

reference genome, and the duck sequences were compared with

those of human.

Sample collection

The experimental duck embryos were obtained from the

Z-type Pekin Duck Breeding Farm of the Beijing Institute of

Animal Science, Chinese Academy of Agricultural Sciences. The

eggs were incubated at a temperature of 37 ± 0.5◦C and a

humidity of 86–87%. The breast muscle samples were obtained

from E13, E19, and E27 stages. The duck embryo and breast

muscle were taken out and spun off under aseptic conditions.

Three eggs at each stage were used to collect breast muscles. The

left and right breast muscles were placed in separate centrifuge

tubes, placed in liquid nitrogen, taken back to the laboratory,

and stored in a −80◦C cryogenic refrigerator. The left and right

breast muscles from each duck embryo were used for m6A-seq

and miRNA-seq sequencing analyses, respectively.

RNA extraction

Total RNA was isolated and purified using Trizol reagent

(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s

instructions. The RNA concentration and purity of each sample

were quantified using a NanoDrop ND-1000 (NanoDrop,

Wilmington, DE, USA). The RNA integrity was assessed by a

Bioanalyzer 2100 (Agilent, CA, USA) with RIN number >7.0

and confirmed by electrophoresis with denaturing agarose gel.

Poly (A) RNA was purified from 50 µg total RNA using

Dynabeads Oligo (dT)25-61005 (Thermo Fisher, CA, USA).

Then, the poly (A) RNA was fragmented into small pieces using

a Magnesium RNA Fragmentation Module (NEB, cat. e6150,

USA) at 86◦C for 7 min.

Expression pattern of m6A-associated
methylase

Total RNA of each breast muscle sample from three

embryonic stages was isolated using Trizol reagent (Invitrogen,

USA) following the manufacturer’s instructions. The SYBR

PrimeScript RT-PCR Kit (TaKaRa, Japan) was used for reverse

transcription polymerase chain reaction (RT-PCR). The relative

TABLE 1 Primers information of genes.

Primer labels Sequence (5′

− 3′) Annealing

temperature
◦C

GAPDH-F CACACGAAGACAGTGGATG 60

GAPDH-R GAGGCTGGGGATAATGTTCTG

METTL3-F GCTCCACCAGCCATAAACC 56

METTL3-R TGAACTGCGCCACCACAT

METTL14-F TGAACAGTAAGGATGACCA 60

METTL14-R TTGGAGCAGAGGTATCATAA

WATP-F TCCAGGAGAATCAAGAGC 53

WATP-R CATTGCTTGGTCCGTTAG

KIAA1429-F TTCTTCTTGCCAGCCTATG 55

KIAA1429-R ATCCCAGTGTATCCGAGTA’

FTO-F ACCTGCTGAAGAAACTTATGAT 60

FTO-R TTGGTGAAGTGGTATTGCTAAT

ALKBH5-F GGAGGGTTACACCTACGGC 57

ALKBH5-R CCTGATGGGTTTGAACTGGA

YTHDF1-F GACTCAACCACAGTATCAGA 60

YTHDF1-R GTTACCAGTTCCTCCACTT

YTHDF2-F CTCTCACGGCTTCCTAAT 60

YTHDF2-R CGCTTCTGTTGGTCTTATC

expression levels of METTL3, METTL14, WATP, KIAA1429,

FTO, ALKBH5, YTHDF1, and YTHDF2 were examined by

quantitative RT-PCR (qRT-PCR) using reference gene GAPDH.

The primer sequences are listed in Table 1.

Quantitative RT-PCR was carried out with an iCycler IQ5

Multicolor Real-Time PCR Detection System (Bio-Rad, USA).

The qRT-PCR contained 1µL of cDNA, 12.5µL of SYBR Premix

Ex-Taq, 10.5 µL of ddH2O, and 0.5 µL of 10 pmol/µL forward

and reverse primer (Table 1). The thermal cycling parameters

were one cycle at 95◦C for 30 s and 40 cycles at 95◦C for

10 s and 60◦C for 40 s. An 80-cycle melting curve analysis was

performed after each PCR run to confirm product specificity,

with one cycle at 95◦C for 1min, one cycle at 55◦C, and then

increasing temperature of 0.5◦C for every 10 s until 95◦C while

fluorescence was continuously monitored. qRT-PCR analysis of

each sample was repeated three times.

m6A immunoprecipitation (IP), library
construction, and sequencing

The cleaved RNA fragments were incubated at 4◦C for

2 h with an m6A-specific antibody (Synaptic Systems, cat.

202003, Germany) in IP buffer (50mM Tris–HCl, 750mM

NaCl, and 0.5% Igepal CA-630). Then, the IP RNA was reverse

transcribed to create the cDNA by SuperScriptTM II reverse
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transcriptase (Invitrogen, cat. 1896649, USA), which was then

used to synthesize U-labeled second-stranded DNAs with E. coli

DNA polymerase I (NEB, cat. m0209, USA), RNase H (NEB,

cat. m0297, USA), and dUTP solution (Thermo Fisher, cat.

R0133, USA). An A-base was then added to the blunt ends of

each strand for ligating to the indexed adapters. Each adapter

contained a T-base overhang for ligating the adapter to the A-

tailed fragmented DNA. Single- or dual-index adapters were

ligated to the fragments, and the sample size selection was

performed with AMPureXP beads. After the heat-labile UDG

enzyme (NEB, cat. m0280, USA) treatment of the U-labeled

second-stranded DNAs, the ligated products were amplified by

PCR under the following conditions: denaturation at 95◦C for

3min, eight cycles of denaturation at 98◦C for 15 s, annealing at

60◦C for 15 s, extension at 72◦C for 30 s, and final extension at

72◦C for 5min. The average insert size for the final cDNA library

was 300 ± 50 bp. Finally, the 2 × 150bp paired-end sequencing

(PE150) was performed on an Illumina NovaSeqTM 6000 (LC-

Bio Technology Co., Ltd., Hangzhou, China) following the

vendor’s recommended protocol.

Data analysis of m6A-seq and RNA-seq

The fastp tool (https://github.com/OpenGene/fastp) was

used to remove the reads that contained adaptor contamination,

low-quality bases, and undetermined bases with default

parameters. Then, sequence quality of IP and Input samples

was also verified using fastp. We used HISAT2 (http://

daehwankimlab.github.io/hisat2) (23) to map reads to the

reference genome of Anas platyrhynchos. The mapped reads of

IP and Input libraries were provided to an R package exomePeak

(https://bioconductor.org/packages/exomePeak), which can

identify m6A peaks with bed or bigwig format files that can be

adapted for visualization on the IGV software (http://www.igv.

org). Peaks were examined by the Poisson distribution matrix

with default parameters (P < 0.05). MEME (http://meme-

suite.org) and HOMER (http://homer.ucsd.edu/homer/motif)

were used for de novo and known motif findings, followed by

localization of the motif with respect to peak summit. Called

peaks were annotated by intersection with gene architecture

using the R package ChIPseeker (https://bioconductor.org/

packages/ChIPseeker). Then, StringTie (https://ccb.jhu.edu/

software/stringtie) was used to determine the expression level

for all mRNAs from Input libraries by calculating FPKM [total

exon fragments/mapped reads (millions) × exon length (kB)].

The differentially expressed genes (DEGs) were selected with

log2 (fold change) >1 or log2 (fold change) <-1 and p-value

< 0.05 using the R package edgeR (https://bioconductor.org/

packages/edgeR) (24). Gene enrichment analysis was performed

by Gene Ontology (GO) (http://www.geneontology.org/) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://

www.kegg.jp/).

Conjoint analysis of m6A-seq and
RNA-seq data

To comprehensively study the roles of methylated m6A

level and gene expression abundance, we performed correlation

analyses of m6A-seq and RNA-seq data. Through the analyses

of m6A-seq and RNA-seq data, we obtained differentially

methylated m6A peaks in abundance and DEGs. We divided

the differentially methylated m6A peaks into upregulated m6A

sites (higher methylated m6A sites at E27 than those at E19)

and downregulated m6A sites (higher methylated m6A sites at

E19 than those at E27). Similarly, DEGs were also divided into

upregulated genes (higher expression levels at E27 than those at

E19) and downregulated genes (higher expression levels at E19

than those at E27). We overlapped up- and down-methylated

m6A sites with up- and downregulated genes and then obtained

the upregulated genes with upregulated methylated m6A sites

(up–up), downregulated genes with upregulated methylated

m6A sites (down–up), upregulated genes with downregulated

methylated m6A sites (up–down), and downregulated genes

with hypo-methylated m6A sites (down–down). GO and KEGG

functional analyses for genes shared by DEGs and DMGs were

performed to investigate the functions of these genes.

miRNA library construction, sequencing,
and data analysis

The miRNA libraries were constructed with a similar

method to Gu et al. (22). In brief, the isolated total RNA of each

individual from E19 and E27 was used for the generation of the

small RNA libraries where the population of recovered small

RNAs, ranging in size from 18 to 30 nucleotides, was purified

using 15% polyacrylamide gel. Then, 5′ adaptors (Illumina,

USA) were ligated to the purified small RNAs, followed by

purification of ligation products on Novex 15% TBE–urea gel.

The 5′ ligation products were then ligated to 3′ adaptors

(Illumina), and products with 5′ and 3′ adaptors were purified

using Novex 10% TBE–urea gel (Invitrogen). Subsequently,

reverse transcription reactions were performed using the RT

primer, and PCRs were performed using the forward and

reverse Illumina primers. The PCR product was purified by

phenol/chloroform extraction and ethanol precipitation, and

miRNA libraries were obtained. After purification and quality

detection, miRNA libraries were sequenced on an Illumina

Genome Analyzer (LC-Bio Technology Co., Ltd., Hangzhou,

China), and raw reads were produced.

The raw reads were subjected to an in-house program,

ACGT101-miR (LC Sciences, Houston, TX, USA), to remove

adapter dimers, junk, low complexity, common RNA families

(rRNA, tRNA, snRNA, and snoRNA), and repeats. Subsequently,

unique sequences with lengths of 18–26 nucleotides were
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mapped to specific species precursors inmiRBase 22.0 by BLAST

search to identify known miRNAs and novel 3p- and 5p-

derived miRNAs. Length variation at both the 3′ and 5′ ends

and only one mismatch inside of the sequence were allowed

in the alignment. The unique sequences mapping to specific

species mature miRNAs in hairpin arms were identified as

known miRNAs. The unique sequences mapping to the other

arm of known specific species precursor hairpin opposite to the

annotated mature miRNA-containing arm were considered as

novel 5p- or 3p-derived miRNA candidates.

The unmapped sequences were BLASTed against the specific

genomes, and the hairpin RNA structures containing sequences

were predicated from the flank 80 nt sequences using RNAfold

software (http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/

RNAfold.cgi). The criteria for secondary structure prediction

were as follows: (1) number of nucleotides in one bulge in

stem (≤12); (2) number of base pairs in the stem region of the

predicted hairpin (≥16); (3) cutoff of free energy (kCal/mol

≤-15); (4) length of the hairpin (up and down stems+ terminal

loop ≥50); (5) length of the hairpin loop (≤20); (6) number of

nucleotides in one bulge in the mature region (≤8); (7) number

of biased errors in one bulge in the mature region (≤4); (8)

number of biased bulges in the mature region (≤2); (9) number

of errors in the mature region (≤7); (10) number of base pairs

in the mature region of the predicted hairpin (≥12); and (11)

percent of mature in stem (≥80).

Differentially expressed miRNAs were selected by the t-test

method (http://en.wikipedia.org/wiki/Students_t-test), which

compares the significance level of difference between the

E19 and E27 stages. A heatmap was used to analyze the

cluster pattern in different control sets with log10 values.

Target genes of DEMs with a significant difference were

predicted by the TargetScan algorithm (25–27) with default

parameter and miRanda algorithm (28, 29) (Max_Energy<-10)

according to the score standard. Finally, the overlapped genes

predicted by both algorithms were deemed as the target genes

of DEMs.

Integrative analysis of miRNA-seq,
mRNA-seq, and m6A-seq data

Differentially expressed miRNAs were identified through

the analysis of miRNA-seq data, and we predicted the

targets of DEMs. Then, we overlapped the targets of

DEMs and the genes shared by MMGs and DEGs (called

m6A-mRNA-miRNA genes). Subsequently, we identified

the miRNAs that were targeted by m6A-mRNA-miRNA

genes (called m6A-mRNA-regulated miRNAs). Finally, we

performed GO and KEGG functional enrichment analyses

of targets of m6A-mRNA-regulated miRNAs to study their

potential roles.

Availability of data

Sequences are available from GenBank with the Bioproject

accession numbers SRR13051312–SRR13051329.

Results

Comparison of homologous genes of
methylase

The sequences of m6A-methylated enzymes in ducks were

obtained by blasting on NCBI. Through comparison with

human homologous genes of methylases, we found that all duck

METTL14, FTO, and YTHDF1 genes had homologous genes in

humans. All the E-values of these three genes were 0.0, and their

max scores were 674, 605, and 802, respectively.

m6A modification levels and the
expression of m6A RNA modification
enzymes

We previously found that duck breast muscles grew much

faster at E19 than those at E13 and E27. To explore whether m6A

modification played a role in duck embryonic breast muscle

development, we examined the levels of m6A in the total RNAs

of breast muscles at E13, E19, and E27. Using the colorimetric

m6A quantification strategy, we found that the m6A level at E19

was much higher than those at E13 and E27 (Figure 1A), which

indicated that the expression of the total RNA methylation level

of m6A in duck breast muscle was significantly higher in the

period of vigorous proliferation and differentiation than that

during the period of cessation of proliferation.

According to our previous transcriptome sequencing (RNA-

seq) results, the expression ofMETTL14, FTO, and YTHDF1was

significantly different among the E13, E19, and E27 stages (P <

0.01) (Figure 1B). Then, qRT-PCR was used to test the mRNA

expression levels of several m6A RNA modification enzymes

during different stages. The results revealed that the expression

levels of METTL14, FTO, YTHDF1, and YTHDF2 were higher

in the breast at E19 than those at E27, while WATP, KIAA1429,

and ALKBH were more highly expressed at E27 than at E19

(Figure 1C). Therefore, we speculated that the expression of

methylase was significantly correlated with the proliferation and

differentiation of duck breast muscle cells.

Transcriptome-wide m6A modification
patterns

Through sequencing of m6A-seq and RNA-seq, 68.19–81.52

million clean reads were generated from each m6A-seq dataset
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FIGURE 1

Gene expression levels of m6A methylation enzymes in di�erent stages. (A) Heatmap of m6A modification levels of E13, E19, and E27 in duck

embryonic breast muscles. (B) Gene expression levels of m6A methylation enzymes at E13, E19, and E27 from RNA-seq data. (C) Detection of

gene expression levels of m6A methylation enzymes at E13, E19, and E27 detected by qRT-PCR. Statistically significant di�erences are indicated

by *p ≤ 0.05, **p ≤ 0.01.

and 65.48–88.88 million clean reads were generated from the

RNA-seq dataset (Table 2). HISAT2 was used to map reads to

the genome of Anas platyrhynchos (BGI_duck_1.0) with default

parameters. The percentages of mapped reads for m6A-seq

ranged from 75.25 to 77.01% and for RNA-seq ranged from

74.45 to 77.62% (Supplementary Table S1).

To study the distribution of m6A peaks, we first detected

the enrichment of reads near the transcriptome initiation site

(transcription start sites, TSS). The results showed that the m6A

peaks were enriched in the vicinity of transcription start sites

(TSS) (Figure 2A). We then divided the duck genes into 5’UTR,

3’UTR, first exon, and other exons and found that the reads

from m6A-IP samples are highly accumulated around the other

exons (except the first exon) at both E19 (53.81%) and E27

(36.17%) stages (Figures 2B,C). For E19, the ratios of peaks were

similar on the first exon (18.81%) and 3′UTR (18.69%), while

peaks distributed at 5′UTR were the least (8.69%). For E27, the

percentages of peaks on the first exon and the other exons were

also similar, all accounting for about 36%. A total of 12,717

m6A peaks were identified by exomePeak at E19, representing

the transcripts of 7,438 genes. At E27, 14,703 m6A peaks were

identified, which correspond to the transcripts of 7,753 genes.

There were 5,091 and 5,406 unique peaks for E19 and E27,

but only 2,347 peaks were shared by E19 and E27, indicating

their significant difference in global m6A modification patterns

(Figure 2D).

Enrichment analysis of m6A-modificated
genes

The abundance of the m6A peaks between the E19 and E27

stages was compared to identify the abundance differential peaks

(Supplementary material 1). We found 2,347 differential m6A

peaks between the E19 and E27 stages, which overlapped 1,605

genes (called m6A-modified genes, MMGs). The MMGs were

mainly located at other exons and 3′UTR regions (Figure 3A).

GO and KEGG analyses were then performed to explore

the function of m6A-modified genes. GO analysis displayed

that MMGs were mostly enriched in cellular component and

molecular functions (Figure 3B). Moreover, there were 179

genes located in the nucleus. Furthermore, 169 genes had a

vital impact on protein binding. Pathway analysis revealed that

peroxisome was the most significantly enriched pathway, and

m6A-modified genes were significantly enriched in the Wnt

signaling pathway and calcium signaling pathway (Figure 3C).

Identification of di�erentially expressed
genes

There were 12,869 genes detected at E19 and E27. The

number of genes expressed in three individuals ranged from

11,226 to 11,494 at E19, while that ranged from 9,966 to 10,491

at E27. In general, the number of expressed genes was higher

at E19 than that at E27. However, the overall gene expression

levels were similar in both periods, which was shown from the

gene expression box plot (Figure 4A).We also found 5,337DEGs

between these two stages, including 3,344 highly expressed genes

at E27 and 1,993 highly expressed genes at E19 (Figures 4B–D).

Differentially expressed genes were selected for Gene

Ontology (GO) and KEGG pathway enrichment analyses.

According to the GO results, DEGs were not directly involved

in the biological process, but more concentrated in the

aspects of cellular components and molecular function. Eight

hundred and three DEGs were enriched in the nucleus, and

681 DEGs were enriched in the cytoplasm. Furthermore,

723 DEGs participated in the molecular function of protein

binding (Figure 4E). Through GO enrichment analysis, we

found that the plasma membrane was the most significant term

with the largest number of genes (436 genes). In addition,

the selected DEGs were enriched in some skeletal muscle
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TABLE 2 Descriptive statistics of sequenced data.

Sample_ID Raw_Reads Raw_Bases Clean reads Clean bases Clean % Q30% GC%

E19_1_IP 87574914 13.14G 81524514 11.42G 86.90 93.80 56.63

E19_2_IP 84509772 12.68G 79209738 10.66G 84.07 94.38 55.98

E19_3_IP 74910974 11.24G 70367178 9.77G 86.99 93.59 55.31

E27_1_IP 71935808 10.79G 68192750 9.47G 87.75 94.02 55.20

E27_2_IP 74993630 11.25G 70405880 9.40G 83.54 93.80 54.21

E27_3_IP 75376878 11.31G 70574208 9.60G 84.93 94.30 55.61

E19_1_input 70475228 10.57G 65476148 8.59G 81.23 94.65 57.09

E19_2_input 88583582 13.29G 82522530 10.06G 75.72 94.86 56.84

E19_3_input 70391384 10.56G 66478036 9.16G 86.75 94.40 56.41

E27_1_input 86824864 13.02G 81526132 10.73G 82.36 94.75 55.79

E27_2_input 93174910 13.98G 88875790 11.83G 84.68 94.66 55.35

E27_3_input 94960962 14.24G 88872294 11.39G 79.97 94.54 56.37

FIGURE 2

Analysis of transcriptome-wide m6A-seq data. (A) Distribution of reads in the upstream and downstream 3kb range from the TSS–TES

(transcription end sites). The abscissa is the gene location, and the ordinate is the coverage depth of reads. (B) Pie chart of m6A peaks at E19. (C)

Pie chart of m6A peaks at E27. (D) Pie chart of unique and shared m6A peaks between E19 and E27.

development and fat deposition GO terms, such as negative

regulation of canonical Wnt signaling pathway, muscle organ

development, activation of MAPKK activity, and activation of

MAPK activity (Figure 4F). Moreover, KEGG analysis showed

that DEGs were enriched in several pathways related to muscle

development. For example, the Wnt signaling pathway was

enriched, which is also related to skeletal muscle development.

Additionally, pathways of dilated cardiomyopathy (DCM),

fatty acid metabolism, viral myocarditis, and cardiac muscle

contraction—which are associated with fat deposition and

cardiac muscle development—were revealed through KEGG

analysis (Figure 4G).

Conjoint analysis of m6A-seq and
RNA-seq data at E19 and E27

As mentioned above, we had found 2,347 differential

m6A peaks between the E19 and E27 stages, with 1,512

downregulated peaks and 835 upregulated peaks in abundance.

Through conjoint analysis of m6A-seq and RNA-seq data, the

downregulated peaks overlapped with 394 decreased expression

genes (down–down genes) and 689 increased expression genes

(down–up genes). Conversely, 227 genes with upregulation

in m6A abundance showed downregulated gene expression

(up–down genes) and 380 genes with upregulation in abundance
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FIGURE 3

GO and KEGG analyses of m6A-modified genes. (A) Distribution of m6A-modified genes (MMGs) along genes. (B) Analysis of GO enrichment.

(C) Statistics of KEGG pathway enrichment.
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FIGURE 4

Global gene expression in the two stages and GO and KEGG analyses of DEGs. (A) Global expression levels of expressed genes. (B) Number of

upregulated and downregulated DEGs between the two stages. (C) Volcanic map of DEGs. (D) Heatmap of DEGs. (E) Statistics of GO

enrichment. (F) GO analysis of DEGs. (G) KEGG analysis of DEGs.
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FIGURE 5

Conjoint analysis of m6A-seq and RNA-seq data. (A) Distribution of genes with a significant change in both m6A methylation level and gene

expression between E19 and E27. Up–up, up–down represent genes with increased m6A methylation level and increased gene

(Continued)
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FIGURE 5 (Continued)

expression and genes with increased m6A methylation level and decreased gene expression, respectively. Down–up, down–down represent

genes with decreased m6A methylation level and increased gene expression and genes with decreased m6A methylation level and decreased

gene expression, respectively. (B) GO terms of genes shared by MMGs and DEGs. (C) GO enrichment analysis of genes shared by MMGs and

DEGs. (D) KEGG enrichment analysis of genes shared by MMGs and DEGs. (E) Visualization of m6A abundances in WINT7a mRNA transcripts at

E19 and E27.

showed upregulated gene expression (up–up genes) (Figure 5A,

Supplementary material 1).

Gene Ontology analysis for genes shared by MMGs and

DEGs showed that plasma membrane, peroxisome, and calcium

ion transport were the most significant three GO terms

(Figures 5B,C), among which peroxisome is involved in β-

oxidation of fatty acids and calcium ion transport is involved

in muscle development), indicating some genes shared by

MMGs and DEGs are potential regulators of skeletal muscle

development and fat deposition.

Kyoto Encyclopedia of Genes and Genomes analysis showed

that peroxisome (related to β-oxidation of fatty acids), Wnt

signaling pathway, and calcium signaling pathway (tightly

associated with skeletal muscle development) (Figure 5D) were

the most significantly enriched pathways (the peroxisome

pathway ranked the first), which were consistent with the GO

results described above. In addition, we found many genes

related to skeletal muscle development in MMGs such as

BCL9, SOX11, EPHB1,MYOCD, BVES, SLC8A3, ASB2, CFLAR,

EPHB1, WNT7A, and SCN4A (Table 3), suggesting that m6A

modification plays crucial roles in duck muscle development.

Among the skeletal muscle development-related genes, we

picked out Wnt7a to compare the status of m6A modification

levels in various stages and samples using Integrative Genomics

Viewer (IGV) software (30). We also found that the m6A levels

on theWnt7a gene were significantly different when comparing

E19 and E27 (Figure 5E).

Association analysis of miRNAs-seq,
mRNA-seq, and m6A-seq data

We also tested the differentially expressed miRNAs (DEMs)

between the E19 and E27 stages. There were 90 upregulated

miRNAs and 102 downregulated miRNAs between the E19

and E27 stages. Through overlapping analysis of genes shared

by MMGs and DEGs and the targets of DEMs, we identified

six m6A-mRNA-regulated miRNAs, namely, cli-miR-1467-

3p_1ss19AG, PC-3p-28816_21, efu-miR-9226_2ss4AG22GA,

gga-miR-338-5p, gga-miR-338-3p, and apl-miR-11588-3p.

To verify the potential role of m6A-mRNA-regulated

miRNAs, we performed the GO and KEGG analyses of the

targets of m6A-mRNA-regulated miRNAs. The GO results

showed that the most significant GO term (P = 4.10E-04) was

phosphatidylinositol phosphorylation, which is involved in

skeletal muscle development. Then, the second most significant

GO term (phosphatidylinositol-mediated signaling) and other

significant GO terms (kinase activity, phosphatidylinositol

3-kinase complex, and phosphatidylinositol 3-kinase

complex, class IA) were all associated with skeletal muscle

development (Figure 6A, Supplementary material 2). Being

consistent with the GO results, the KEGG pathway analysis

also found that some pathways were involved in skeletal

muscle development, such as inositol phosphate metabolism,

phosphatidylinositol signaling system, and focal adhesion

(Figure 6B, Supplementary material 3).

Discussion

N6-methyladenosine is the most prevalent internal form

of modification in polyadenylated mRNAs and long non-

coding RNAs in higher eukaryotes, having been described in

yeast, Arabidopsis, fruit flies, and mammals (31, 32). Recent

studies have shown that m6A modifications to mRNA have

a variety of biological functions and play key roles in gene

expression regulation (33), animal development (16), and

human diseases (34).

We aimed to describe the m6A modification profiles in

embryonic breast muscle of ducks so as to lay a foundation

for further exploring how m6A modifications contribute to the

growth and development of duck breast muscle. In addition, we

also did miRNAs-seq. MiRNA is also an important regulator

of breast muscle development. The combination of the m6A-

seq and miRNAs-seq will help us find the key target of breast

muscle development.

Skeletal muscle development is a complex and multi-

stage process that includes the formation of muscle cells

into myotubes and the formation of muscle fibers (35,

36). However, almost no animals increase the number of

muscle fibers after birth; thus, the amount of muscle meat

production in adult livestock and poultry is determined during

embryogenesis. Therefore, it is important to study embryonic

muscle development (20).

Gu et al. (20) reported that E19 is the fastest point for

breast muscle development. Before the E19 stage, breast muscle

is mainly involved in muscle fiber proliferation events, while

afterward, the crucial event is muscle fiber fusion to form more

multinucleated myotubes. Therefore, we selected breast muscles
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FIGURE 6

GO and KEGG analyses of m6A-mRNA-regulated miRNAs data. (A) GO terms of target genes of m6A-mRNA-regulated miRNAs. (B) KEGG

enrichment analysis of target genes of m6A-mRNA-regulated miRNAs.
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TABLE 3 List of 11 genes that exhibit a significant change in both m6A modification and mRNA expression related to muscle development in duck

embryonic breast muscle tissues.

Gene name Chromosome Peak start Peak end Peak length Transcript ID Pattern P-value

BCL9 chr1 95237263 95242335 5073 ENSAPLT00000032721 Down–up 1.79414E-11

MYC chr2 146787275 146787752 478 ENSAPLT00000014574 Down–up 0.000850783

BVES chr3 71742456 71742814 359 ENSAPLT00000040909 Up–down 9.19716E-45

SOX11 chr3 78759336 78759927 592 ENSAPLT00000046689 Down–up 6.90452E-07

SLC8A3 chr5 28282453 28282632 180 ENSAPLT00000016237 Up–down 5.18455E-16

ASB2 chr5 48558337 48559238 902 ENSAPLT00000011413 Up–down 9.51065E-58

CFLAR chr7 98022 99193 1172 ENSAPLT00000015969 Up–down 0.045676673

EPHB1 chr9 10474372 10474638 267 ENSAPLT00000034231 Up–down 1.85369E-09

WNT7A chr13 3117467 3117616 150 ENSAPLT00000014453 Up–down 0.000245641

MYOCD chr19 620339 620964 626 ENSAPLT00000046004 Up–down 1.04238E-21

SCN4A chr28 715525 716182 658 ENSAPLT00000005205 Up–down 5.4444E-155

at the E13, E19, and E27 stages for the preliminary experiment

and found that the expression levels of m6A and methylation

modification enzymes were all highest at E19. This is consistent

with the duck breast muscle development model and suggests

that m6A methylation modification plays some key role in the

development of embryonic breast muscle of ducks. These results

encouraged us to perform m6A sequencing of embryonic breast

muscle at the E19 and E27 stages.

Through m6A-seq, we obtained a list of m6A peaks that

overlapped with genes at the E19 (7,438) and E27 (7,753) stages,

indicating that m6Amodification might be a common approach

for duck gene regulation. The methylated genes obtained in

this study are much higher than those detected in pigs and

chickens, respectively, finding 5,864 and 3,303 methylated genes

for muscle tissues and adipose tissues of pigs, and 2,893 and

4,593 transcripts for pre- and post-selection follicles (19, 37).

Recently, two independent studies combining m6A

immunoprecipitation with high-throughput analysis revealed

that the m6A modification tends to occur in the termination

codon, 3′UTRs, mRNA exons, and protein-coding regions

(12, 38). Our research also manifested similar distribution

patterns in which the peaks from m6A-IP samples were highly

accumulated around the other exons (except the first exon)

in two embryonic periods, accounting for 53.81 and 36.17%,

respectively (Figures 3B,C). At the E19 stages, peaks on the first

exon and 3′UTR accounted for 18.81 and 18.69%, respectively,

while peaks on the first exon and the other exons both accounted

for ∼36%, suggesting the conservation of m6A distribution in

various species.

The skeletal muscle development and fat deposition are

both complicated multi-step processes involving some crucial

signaling pathways, e.g., initiation and mediation. For skeletal

muscle development (39), the Wnt signaling pathway (40),

the activation of MAPK activity (41), and the calcium

signaling pathway (42) are all tightly associated with skeletal

muscle development. For fat deposition, both fatty acid

metabolism and peroxisome (43) play key roles. In this

study, many MMGs were enriched in both muscle-related

pathways (Wnt signaling pathway, calcium signaling pathway,

and/or MAPK activity) and fat-related pathways (peroxisome).

m6A modification was tightly related to biological processes,

including skeletal development and fat deposition, which

suggested m6A modification might play crucial roles in duck

breast muscle development and fat deposition. Moreover, a

negative correlation between m6A methylation enrichment and

gene expression levels was found in chicken follicles (37). In

addition, our previous study also indicated that E19 was the

fastest point of breast muscle development (20). Therefore, we

propose that MMGs with lower m6A levels may be the positive

regulators for the breast muscle development of ducks, while

MMGs with higher m6A levels might be the negative regulators.

However, the results obtained above need to be validated in

future by molecular experiments.

N6-methyladenosine modification has a regulatory

effect on the mRNA of the gene, thus affecting the gene’s

function. “Writers” were responsible for determining the sex

of Drosophila development by adding m6A modifications to

the pre-mRNA of Sxl (44). YTHDF2 can regulate the mRNA

level during the maternal-to-zygotic transition (MZT) and

regulate the development of zebrafish offspring (45). Therefore,

association analysis of MMGs and DEGs is important in

investigating the regulatory roles of m6A.

In this study, we overlapped MMGs and DEGs and obtained

the shared genes. Thus, the shared genes might be the genes

affected by m6A. We further picked out 11 muscle-related

development genes from the shared genes, including four “up–

up” genes (BCL9, SOX11, EPHB1, and MYOCD) and seven

“down–down” genes (BVES, SLC8A3, ASB2, CFLAR, EPHB1,

Frontiers in Veterinary Science 13 frontiersin.org

126

https://doi.org/10.3389/fvets.2022.933850
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Gu et al. 10.3389/fvets.2022.933850

Wnt1a, and SCN4A) (Table 3), which can be used to explore

the regulation mechanism of m6A modification in embryonic

breast muscle of ducks. In particular, Wnt7a is implicated in

playing roles in homeostasis maintenance of skeletal muscle,

and Wnt7a treatment may be potentially applied in skeletal

muscle dystrophy (46). In addition, Wnt7a induces satellite

cell expansion, myofiber hyperplasia, and hypertrophy in rat

craniofacial muscle (47). Therefore, we selected Wnt7a for

visualization analysis.

It has been reported that the transcript of argonaute-2

(AGO2), a catalytic protein in miRNA-mediated gene silencing,

was highly methylated in young peripheral blood mononuclear

cells although less so following aging (48). The study also

showed a correlation of m6A-methylated AGO2 mRNA

with miRNA expression, and it indicated a negative effect

of m6A methylation on miRNA expressions during cellular

senescence. In this study, we found that six DEMs with their

target genes overlapped with genes shared by DEGs and

DMGs, suggesting that these six DEMs are regulated by m6A

modification. The GO and KEGG analyses for the targets of

the six DEMs showed many significantly enriched GO terms

or KEGG pathways involved in the regulation of skeletal

muscle development. Among them, phosphatidylinositol

3-kinase complex and phosphatidylinositol 3-kinase complex

class IA may regulate AMPK activity (49) and subsequently

promote skeletal muscle regeneration (50). In addition,

phosphatidylinositol phosphorylation, phosphatidylinositol-

mediated signaling, and inositol phosphate metabolism are all

related to the phosphatidylinositol signaling system. Safi et al.

(51) showed that the PI3K pathway, a pathway belonging to the

phosphatidylinositol signaling system, can impede the effect of

CKIP-1 on C2C12 cell differentiation. Based on our results and

the available literature data, we speculate that m6Amodification

might play a key role in the skeletal muscle development of

ducks by affecting miRNA.

In conclusion, we compared the homologous methylase

sequences between ducks and humans and illustrated the overall

m6A level and the expression of methylases at the E19 and

E27 stages. We also revealed the global m6A modification

patterns in duck embryonic breast muscles and found that

MMGs were enriched in skeletal muscle development-related

pathways. In addition, our results strongly indicated that genes

shared by DEGs and MMGs might be associated with skeletal

muscle development and fat deposition. Finally, we found

miRNAs were also regulated by m6A modification, revealed

by association analysis of miRNA-seq, RNA-seq, and m6A-

seq data.
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As the most typical deposited fat, tail fat is an important energy reservoir

for sheep adapted to harsh environments and plays an important role as a

raw material in daily life. However, the regulatory mechanisms of microRNA

(miRNA) and circular RNA (circRNA) in tail fat development remain unclear.

In this study, we characterized the miRNA and circRNA expression profiles

in the tail fat of sheep at the ages of 6, 18, and 30 months. We identified

219 di�erentially expressed (DE) miRNAs (including 12 novel miRNAs), which

exhibited a major tendency to be downregulated, and 198 DE circRNAs,

which exhibited a tendency to be upregulated. Target gene prediction analysis

was performed for the DE miRNAs. Functional analysis revealed that their

target genes were mainly involved in cellular interactions, while the host

genes of DE circRNAs were implicated in lipid and fatty acid metabolism.

Subsequently, we established a competing endogenous RNA (ceRNA) network

based on the negative regulatory relationship between miRNAs and target

genes. The network revealed that upregulated miRNAs play a leading role

in the development of tail fat. Finally, the ceRNA relationship network with

oar-miR-27a_R-1 and oar-miR-29a as the core was validated, suggesting

possible involvement of these interactions in tail fat development. In summary,

DE miRNAs were negatively correlated with DE circRNAs during sheep tail

fat development. The multiple ceRNA regulatory network dominated by

upregulated DE miRNAs may play a key role in this developmental process.

KEYWORDS

Sunite sheep, tail fat, microRNA, circular RNA, competing endogenous RNA

Introduction

Adipose tissue is distributed in various parts of the sheep body and plays a crucial role

in maintaining the balance of homeostatic metabolic processes in the body. Generally,

adipose tissue can be found in the subcutaneous layer under the skin, around the kidneys,

and within the abdominal cavity, and the tail, especially the tail fat is one of the most

typical deposited fat. The “fat tail” trait of sheep is regarded as an adaptive response to

the harsh environments and the fat stored in the tail is a valuable reserve for sheep during

migration and in winter when food is scarce (1).
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MicroRNAs (miRNAs) are single-stranded non-coding RNA

molecules which are encoded by genes and bind to target mRNA

transcripts via complementary base-pairing to exert their effects

on expression (2). Several recent studies have analyzed sheep tail

fat via miRNA-seq. The miRNA expression profiles of tail fat

from Guangling large-tailed sheep and small-tailed Han sheep

have been analyzed (2). A total of 40 differentially expressed

(DE) conserved miRNAs were identified, in addition to 150

significantly expressed miRNAs, suggesting that these may play

a role in the regulation of tail fat metabolism. Another study

compared tail fat miRNA expression between Kazakhstan sheep

(fat-tailed) and Tibetan sheep (thin-tailed) (3), revealing 539

miRNAs that were found in both breeds, of which 35 were novel.

These miRNAs were involved in the MAPK, FoxO, and Wnt

signaling pathways via their target mRNAs, thus influencing

fat deposition and lipid metabolism in the fat tail. Current

miRNA-seq studies have focused on other sheep tissues such as

intramuscular fat (4), testis (5), and uterus (6), but studies related

to tail adipose tissue are relatively lacking. Thus, the involvement

of miRNAs in sheep tail fat metabolism requires further in-depth

research. Different types of non-coding RNA perform a wide

variety of biological functions and are involved in the regulation

of diverse important pathways. These constitute endogenous

RNA (ceRNA) networks, in which miRNAs play a central

role. Recent studies have found that circular RNA (circRNAs)

act as miRNA sponges, isolating miRNAs through competitive

interactions with target mRNAs (7). CircRNAs are another class

of non-coding RNAs, which are formed by covalent binding

(reverse splicing) of the 5′ end of a linear RNA to the 3′ end (8).

Since circRNAs have no free 5′ or 3′ end, they are not cleaved

by exonucleases, which makes them more stable than most

linear RNAs (9). A recent study in pig adipose tissue revealed

that circRNA26852 and circRNA11897 target genes may be

involved in adipocyte differentiation and lipid metabolism

(10). Similarly, in buffalo, circRNAs 19:45387150|45389986 and

21:6969877|69753491 were shown to regulate fat deposition

(11). In our previous study, we characterized the lncRNA

and mRNA expression profiles of tail adipose tissue from

Sunite sheep (SS) (12). The results showed that a total of

223 differentially expressed genes (DEGs) and 148 differentially

expressed lncRNAs were found in tail fat, and the interaction

of these genes may be involved in the metabolism of sheep tail

fat. However, related research on miRNA and circRNA in SS

tail fat is still lacking, including the regulation mechanism of

fat metabolism.

SS is aMongolianmeat breed, and the distinctive phenotypic

feature of SS is the fat tail. SS is a representative local superior

breed within Inner Mongolia, with cold tolerance, drought

resistance, rapid growth and development, high vitality, delicate

flesh, and good flavor, which altogether make them very popular

among consumers. The fat tail, of these sheep is the most

typical deposited fat and helps SS adapt to harsh conditions

such as cold, drought, and food shortages (13, 14), making

them more adaptable than other breeds (15). The tail fat

increases continuously with age, reaching a weight of ∼3–

4.5 kg at 30 months of age. As a by-product of mutton, tail

fat is widely used as a raw material for the production of

various daily necessities. Also, it can be an important source

of dietary fat (1, 16), providing the human body with the

energy it needs. While the deposition of tail fat in sheep may

affect their intramuscular fat content to a certain extent (17),

tail fat metabolic regulation is yet to be investigated. SS are

mainly raised naturally grazing in the Sunite grassland of Inner

Mongolia. These sheep are accustomed to autonomous activity

and completely voluntary feeding. Thus, the deposition and

metabolism of SS tail fat might be affected by a large number

of potential factors (including feeding behavior, aging processes,

pasture changes, seasonal alterations, and climate impact). In the

present work, the expression profiles of miRNA and circRNA in

deposited fat (tail fat) from SS at the ages of 6 months (6M),

18 months (18M), and 30 months (30M) were analyzed. We

sought to elucidate mechanisms underlying tail fat metabolism

by constructing a ceRNA co-regulatory network, thus providing

valuable insights into the transcriptome associated with sheep fat

tissue metabolism and utilization of by-products of meat breeds

of sheep.

Materials and methods

Sample collection

The experimental animals were nine castrated Sunite rams

at 6 (6M, n = 3), 18 (18M, n = 3), and 30 months of age

(30M, n = 3). All sheep were raised under the same conditions

(food, water source, and environment) in the Xilingol grassland.

After slaughter (in October), adipose tissue from the tail fat (top

1/3) from each sheep was obtained and immediately frozen in

liquid nitrogen.

RNA extraction, sequencing, and
transcript assembly

Total RNA was extracted from each sample using TRIzol

reagent (Invitrogen, CA, USA) according to the manufacturer’s

instructions. The quantity and purity of total RNA were

determined using a Bioanalyzer 2100 and RNA 6000 Nano

LabChip Kit (Agilent, CA, USA), respectively. Approximately 1

µg of total RNA was used for small RNA library construction

with TruSeq Small RNA Sample Prep Kits (Illumina, San Diego,

USA), and single-end sequencing (36 or 50 bp) was performed

on an Illumina HiSeq 2500. Subsequently, raw reads were

subjected to ACGT101-miR (LC Sciences, Houston, TX, USA)

to remove repeats, junk and low complexity, adapter dimers, and

common RNA families (rRNA, tRNA, snRNA, and snoRNA).
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Then, unique sequences with lengths of 18–26 nucleotides

were mapped to specific species precursors and the genome in

miRBase 21.0 via BLAST search in order to identify known and

novel miRNAs.

Approximately 10 µg of total RNA was used to deplete

ribosomal RNA using the Epicenter Ribo-Zero Gold Kit

(Illumina, San Diego, USA) as per manufacturer instructions.

The remaining RNA fragments were then reverse-transcribed to

form the final complementary DNA (cDNA) library using an

RNA-seq Library Preparation Kit (Illumina, San Diego, USA)

according to the manufacturer’s protocol. Finally, paired-end

sequencing on an Illumina HiSeq 4000 was performed following

the manufacturer’s protocol. Mapped reads were assembled

into circRNA using CIRCExplorer (18, 19). Tophat-fusion and

CIRCEexporer were used to identify the back-splicing reads

among the unmapped reads.

Di�erential expression analysis

The differential expression of miRNAs based on normalized

deep-sequencing counts was analyzed using a T-test. The

threshold for differential expression was set at P < 0.05. SRPBM

was used to normalize the expression of circRNA in our study

(20). Differentially expressed circRNAs were selected based on

|log2 (fold change)| > 1 and P < 0.05 using the R package

Ballgown (21). Further, we performed trend enrichment analysis

on the DE miRNAs using the Short Time-series Expression

Miner (STEM) software (22) as well as significant enrichment

analysis with a threshold of P < 0.05.

Target gene prediction and functional
analysis

To explore the functions of DE miRNAs, circRNAs and

mRNAs were predicted as miRNA targets using TargetScan (23)

and miRanda (24). A TargetScan Score > 50 and miRanda

Energy < −20 were considered indicative of a targeting

relationship. We then performed GO and KEGG analyses

of DE miRNA targets and the host genes of DE circRNAs

using in-house scripts. Statistical significance was set at P

< 0.05. SS tail fat mRNA (including circRNA) and miRNA

data were deposited in the NCBI Sequence Read Archive

(SRA) database under accession numbers PRJNA791005 and

PRJNA790717, respectively.

Construction of ceRNA co-expression
network

After determining the target relationships of DE miRNAs

using TargetScan and miRanda, we screened miRNA-targets

with negative regulatory relationships (e.g., down regulation-

up regulation) from these target relationships to build

the mRNA-miRNA-circRNA co-expression networks. DE

mRNAs were filtered based on P < 0.05 and |log2 (fold

change)| > 1. Cytoscape (version 3.9.0) was used to visualize

the network.

qRT-PCR validation

In our study, six DE miRNAs and eight DE circRNAs

were randomly selected to validate RNA-seq data using real-

time quantitative PCR. The expression of each miRNA and

circRNA was calculated via the 2−11CT method, with GAPDH

(25, 26) and U6 used as reference genes for circRNA and

miRNA, respectively. The primer information is shown in the

Supplementary Table S1.

Dual-luciferase gene reporter analysis

The psiCHECK2-target WT (wild type) gene was

synthesized by inserting a target gene fragment containing

the miRNA-binding sequence into the luciferase gene of the

psiCHECK-2 vector. The mutant vector pCK TCP1-M was

created by mutating the miRNA-binding sites using overlapping

extension PCR. HEK293T cells were seeded into 24-well

plates at a density of 1 × 105 cells/well and incubated at

37◦C overnight. The miRNA mimics, psiCHECK2-target WT

gene, and psiCHECK2-target MUT (mutant traits) gene were

transfected into cells. At 48 h post-transfection, the Renilla

luciferase activity/firefly luciferase activity was determined

using the dual-luciferase reporter gene assay system (Promega).

Results

Summary of RNA-seq analysis

We obtained 1,942 miRNAs, including 392 novel miRNAs,

and the majority of reads were ∼21–23 nucleotides (nt) in

length, which corresponds to the typical length following

Dicer enzyme cleavage (Figure 1A). We also identified 17,531

circRNAs and 4,767 host genes. As shown in Figure 1B, 39.75%

of the circRNAs were transcribed from a unique mRNA. UTRN

(0.02%) was the most common host gene, giving rise to 109

circRNAs. Researchers have shown that the UTRN gene is

related to pig intramuscular fat (27). In addition, ACACA, which

plays a key role in the regulation of fatty acid synthesis, was a

host gene of 60 circRNAs. Thus, these circRNAs may exert a

potential regulatory effect on fat metabolism in sheep tails by

modulating host gene expression.
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FIGURE 1

(A) The length distribution of sequenced miRNAs. 6M: A1, A2, A3; 18M: B1, B2, B3; 30M: C1, C2, C3. (B) Percentage of circRNA host genes. For

example, the blue pie chart shows that 39.75% of the genes are transcribed to form 1 circRNA, meanwhile the red pie chart shows that 17.68%

of the genes can be transcribed to make 2 circRNAs, and so on.

FIGURE 2

miRNA di�erential expression analysis. (A–C) The volcano plot of DE miRNA. (A) 30M vs. 6M; (B) 30M vs. 18M; (C) 18M vs. 6M. Annotated as the

top five DE miRNA based on P-value. (D) Venn diagram analysis of DE miRNA. (E) Expression trend analysis of DE miRNA. The upper number

indicates the ordinal number of each trend, while the lower number is the number of genes enriched, and those with color are the significantly

enriched trends.

Di�erential expression analysis

We compared miRNAs (Supplementary Table S2) and

circRNAs (Supplementary Table S3) in the tail fat of SS at three

different stages (30 vs. 6M, 30 vs. 18M, and 18 vs. 6M). The

largest number of DE miRNAs were obtained for the 30 vs. 6M

comparison, with a total of 110 DE miRNAs (39 upregulated

and 71 downregulated), including four novel DE miRNAs

(Figures 2A–C). The 30 vs. 18M comparison yielded 88 DE

miRNAs (35 upregulated and 53 downregulated), including

3 novel DE miRNAs. For 18 vs. 6M, 95 DE miRNAs (44

upregulated and 51 downregulated) were obtained, including

seven novel DE miRNAs. Furthermore, 10 overlapping DE

miRNAs were identified between the three comparison groups.

These were highly expressed in 6M SS, and their expression

decreased with age (Figure 2D). Therefore, we postulated
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that these DE miRNAs may be downregulated in parallel

to the increase in tail fat, validating this hypothesis via trend

enrichment analysis and heatmaps (Figure 2E). The DEmiRNAs

were enriched in 16 terms, three of which were significantly

enriched (P < 0.05), colored in red and green. Forty-nine DE

miRNAs were enriched with downregulated trends (red), and

22 DE miRNAs were enriched with upregulated trends (green),

indicating that the DE miRNAs were mainly downregulated,

which confirmed our hypothesis.

A total of 93 (62 upregulated and 31 downregulated), 89 (56

upregulated and 33 downregulated), and 66 (38 upregulated and

28 downregulated) DE circRNAs were obtained for 30 vs. 6M,

30 vs. 18M, and 18 vs. 6M, respectively (Figures 3A–C). None

of these were found to overlap among the three comparison

groups (Figure 3D). Compared with DE miRNA, the expression

trends in DE circRNAs weremainly enriched in the upregulation

trend (green), indicating that these DE circRNAs may play a

key role in the later stages of sheep fat tail growth (Figure 3E).

Overall, the majority of DE miRNAs and circRNAs exhibited

contrasting expression, indicating that the negative regulation

between these molecules may play an important role in SS tail

fat development.

Target gene prediction analysis

To build a ceRNA network of mRNA-miRNA-circRNA in

sheep tail fat, miRNA target genes were predicted. To this end,

we used TargetScan and miRanda, and all DE miRNAs (110)

from the 30 vs. 6M comparison were shown to bind to at

least one mRNA. Four DE miRNAs were bound to more than

100 mRNAs. chi-miR-1343 targeted the most mRNAs (118),

followed by oar-miR-370-3p_R-2 (111), bta-miR-2387_R+1

(102), and oan-miR-103-3p_R+2 (100). Among 30 vs. 18M

and 18 vs. 6M, the novel PC-3p-43105_133 was the only

DE miRNA targeting more than 100 mRNAs, 109 mRNAs,

and 103 mRNAs, respectively. Thus, it could be a major

regulator of fat tail development. Likewise, chi-miR-1343 was

predicted to bind 88 mRNAs in 30 vs. 18M and 83 mRNA

in the 18 vs. 6M comparison, suggestive of a multifaceted

regulatory role.

In contrast, we predicted a binding interaction between

DE miRNAs and DE circRNAs. For 30 vs. 6M, there were 81

circRNAs bound to 99 miRNAs. Nine circRNAs were predicted

to bind oar-miR-27a_R-1 and chi-miR-27b-3p. circRNA9695

was bound to the largest number of miRNAs (24), and

three other circRNAs were bound to more than 10 miRNAs,

namely, circRNA4175 (16), circRNA1985 (11), and circRNA382

(11). Likewise, these three circRNAs were found to bind

multiple miRNAs from the 30 vs. 18M comparison group.

Thus, circRNA4175, circRNA1985, and circRNA382 could be

major regulators of fat tail development. In 30 vs. 18M, we

found 71 circRNA and 71 miRNA targeting relationships,

and the novel miRNA PC-3p-43105_133 was bound to the

most circRNAs (13), once again highlighting the importance

of this comparison group. Another miRNA family, miR-16a

(chi-miR-16a-5p and oar-miR-16b_R+3), was found to bind to

nine circRNAs. The 65 miRNAs were bound to 50 circRNAs

in 18 vs. 6M. mmu-miR-6240-p5 was found to bind the

most mRNAs (9). Taken together, we predicted that multiple

miRNAs bind to circRNAs that may play a key role in SS tail

fat growth.

Validation of sequencing results

To validate RNA-seq results, we randomly selected six

miRNAs and eight circRNAs and measured their expression in

the 6, 18, and 30M groups via qRT-PCR (Figure 4). The relative

expression data determined via qRT-PCR were consistent with

FPKM values obtained via RNA-seq, indicating that the RNA-

seq data were reliable.

GO annotation and KEGG pathway
analysis of miRNA target genes

The GO enrichment analysis of target genes was classified

into biological process (BP), cellular component (CC), and

molecular function (MF) categories (Supplementary Figure S1).

More than half of the enriched GO terms for the three

comparison groups were from the BP category, including the

lowest number. CC terms were enriched with the highest

number of genes in comparison groups, which mainly included

the membrane, nucleus, and exosomes. Taken together, tail

fat development is driven by diverse biological processes and

cellular interactions. In three different stages, the miRNA target

genes were significantly enriched for 843 GO terms, and the

top 15 most significantly enriched GO terms are presented

in a scatter plot (Figure 5A). Among the three comparison

groups, we identified five GO terms that were enriched between

two groups. These included actin cytoskeleton, intracellular

membrane-bound organelles, extracellular space, extracellular

exosome, and focal adhesion of the CC category, in addition to

fatty acid ligase activity of the MF category. These miRNAs may

play a significant regulatory role in fatty acid metabolism.

KEGG pathway analysis of the miRNA target genes was

also performed, and the top 15 KEGG pathways are shown

in a scatter plot (Figure 5B). A total of 19 KEGG pathways

were significantly enriched. Among these, we noticed that

the Rap1 signaling pathway, adherens junction, tight junction,

cell adhesion molecules (CAMs), and regulation of actin

cytoskeleton were enriched in the different growth stages.

Furthermore, butanoate metabolism was enriched in both the

30 vs. 6M and 30 vs. 18M comparison groups.
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FIGURE 3

circRNA di�erential expression analysis. (A–C) Volcano plot of DE circRNAs. (A) 30M vs. 6M; (B) 30M vs. 18M; (C) 18M vs. 6M. Annotated as the

top five DE circRNAs based on P-value. (D) Venn diagram analysis of DE circRNA. (E) DE circRNA expression trend analysis. The upper number

indicates the ordinal number of each trend, while the lower number is the number of genes enriched, and those with color are the significantly

enriched trends.

FIGURE 4

Validation of DE miRNAs and DE circRNAs via qRT-PCR. The blue bar represents qRT-PCR data, and the red line represents RNA-seq data.

Functional analysis of circRNA host genes

We employed GO and KEGG enrichment analysis to

investigate the role of circRNAs in tail fat growth mediated

via their host genes. Most enriched GO terms belonged to

the BP category, and most of the genes were enriched in

CC (Supplementary Figure S2). We obtained 350 significantly

enriched GO terms in the three comparison groups. The top 15
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FIGURE 5

The top 15 GO and KEGG terms for DE miRNAs from the three comparison groups. (A) GO analysis; (B) KEGG analysis.

GO terms are presented in a scatter plot (Figure 6A). GTPase

activator activity was enriched in both the 30 vs. 6M and 30

vs. 18M comparison groups, and fatty acid beta-oxidation was

among the significantly enriched GO terms for 18 vs. 6M. The

top 15 enriched KEGG pathways are shown in Figure 6B. There

were 22 significantly enriched KEGG pathways, among which

several fat-related pathways were identified. These processes

included propanoate metabolism, fatty acid metabolism, fatty

acid biosynthesis, unsaturated fatty acid biosynthesis, and fatty

acid elongation. Fatty acid metabolism was the only pathway

enriched in all three groups. Host genes ACACA (circRNA382,

circRNA392, and circRNA394) and HADHA (circRNA10888)

were enriched in these pathways, indicative of the involvement

of these circRNAs in fatty acid metabolism within tail fat.

Construction of the
mRNA-miRNA-circRNA co-expression
network

Using Cytoscape (version 3.9.0), we constructed co-

expression networks based on the mRNAs, miRNAs, and

circRNAs identified in sheep fat tails (Figure 7). In this

manner, we determined co-expression relationships based on the

negative correlation between miRNA expression and target gene

expression, given the targeting interactions between miRNA

(sheep species), mRNA, and circRNA. A total of 35 (down-

up-down) and 19 (up-down-up) mRNA-miRNA-circRNA co-

expression patterns were obtained. This indicates that the down-

up-down co-expression predominated the network, suggesting

that upregulated miRNAs in the ceRNA network play a central

regulatory role in tail fat. It is worth noting that oar-miR-

16b_R+3 was targeted to two mRNAs and seven circRNAs,

indicating that oar-miR-16b_R+3 also has regulatory functions

with varied expression patterns at different stages of tail fat

development. More importantly, we discovered that oar-miR-

27a_R-1 and oar-miR-29a are at the center of the regulatory

network and bind to several mRNAs and circRNAs, including

TKT, ACSL4, GPAM, and POSTN. Among them, GPAM

and ACSL4 are closely related to fat metabolism. Therefore,

we suggest that oar-miR-27a_R-1 and oar-miR-29a have an

important significance in the overall ceRNA relationship, and

play a key role in the growth and metabolism of sheep tail fat.

miRNA target validation

In our study, the dual-luciferase reporter system was used

to verify the relationship between miRNAs and their targets.

Frontiers in Veterinary Science 07 frontiersin.org

136

https://doi.org/10.3389/fvets.2022.954882
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


He et al. 10.3389/fvets.2022.954882

FIGURE 6

The top 15 enriched GO and KEGG terms for DE circRNAs. (A) GO analysis; (B) KEGG analysis.

We further analyzed sheep DE miRNAs and their targets to

identify ceRNAs that may be associated with tail fat growth. We

filtered highly expressed sheep miRNAs (average norm value

> 1,000) and sought to identify miRNAs that had a major

effect on sheep tail fat development (Supplementary Table S4).

Among these highly expressed miRNAs, oar-miR-27a_R-1 and

oar-miR-29a were included, and the analysis above revealed

that these genes were critical for the growth and metabolism

of sheep tail fat. This led us to select these two miRNAs as

the validation miRNAs. According to the ceRNA co-expression

network, oar-miR-27a_R-1 was upregulated at 30 vs. 6M and

targeted to ACSL4, which is related to fatty acid metabolism.

circRNA1985 was downregulated at 30 vs. 6M, binding to oar-

miR-27a_R-1. oar-miR-29a was upregulated at 30 vs. 6M and

18 vs. 6M, binding with 5 DEGs. Among them, GPAM was

related to glycerolipid and glycerophospholipid metabolism. As

a competitive binding RNA, circRNA3539 was downregulated

in this process. Therefore, we sought to validate the ceRNA

regulatory relationship between oar-miR-27a_R-1 and oar-miR-

29a as the core, that is, between ACSL-oar-miR-27a_R-1-

circRNA1985 and GPAM-oar-miR-29a-circRNA3539.

We found only one target site in all the targeted pairs

(Figure 8). Furthermore, compared with the negative control

(NC) group, oar-miR-27a_R-1 and oar-miR-29a significantly

downregulated the expression of luciferase in their predicted

WT (wild type) targets (P < 0.001), indicating that there is

a binding effect between all predicted targets in our study.

After mutation, these three miRNAs failed to downregulate the

expression of luciferase of mutant targets (P > 0.05) compared

with the NC group, indicating that mutation was successful.

Taken together, these results suggest that oar-miR-27a_R-1 can

decrease ACSL4 expression by targeting the ACSL4-3′-UTR, and

circRNA1985 can competitively bind with oar-miR-27a_R-1 and

thus regulate the expression of ACSL4. The same conclusion was

drawn for GPAM-oar-miR-29a-circRNA3539.

Discussion

As a part of the sheep tissue, the tail fat can store heat for

the sheep’s body and help them resist the cold winter. As a

by-product of mutton, tail fat provides the energy needed by

the human body, and it can also be used as a raw material for

human daily necessities, such as soap and medicinal materials.

At present, sheep tail fat is gradually entering the field of vision

of researchers. Previous studies have conducted transcriptome

analysis on different breeds of sheep tails, and the results may

be affected by the breed effect to some extent (26). However, the

amount of intramuscular fat has been shown in previous study
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FIGURE 7

ceRNA regulatory network analysis in sheep tail fat. (A) Down-up-down mode. (B) Up-down-up mode. The shapes represent di�erent RNAs and

the colors represent di�erent regulations.
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FIGURE 8

ceRNA dual-luciferase reporter gene analysis. (A) Binding site validation for oar-miR-27a_R-1 and ACSL4 as well as oar-27a_R-1 for

circRNA1985; (B) Binding site validation for oar-miR-29a and GPAM as well as oar-miR-29a and circRNA3539. Bars without slashes show the

result of inserting the mutant sequence into the plasmid, while solid bars show the result of inserting the original sequence. The group with

extra miRNA sequences is shown in red, and the group without any miRNA sequences (control group) is shown in blue. ***P < 0.001.

to be significantly impacted by aging (28). Generally, Sunite fat-

tailed sheep mainly start slaughter at the age of 6 months, and

after growth and development throughout the year, the tail fat

increases continuously and reaches the weight of about 3–4.5 kg

at 30 months of age. Therefore, in our study, we used the fat tail

from Sunite sheep in three different stages, namely 6, 18, and

30 months to understand the potential molecular mechanism

in fat development. The miRNAs and circRNAs were obtained

by RNA-seq from the fat tail tissues of the three groups.

Then, we explored the potential mechanism of sheep tail fat

regulation in three different stages through functional analysis,

and finally highlighted ceRNA regulation by the construction of

co-expression networks and miRNA target validation.

With the advancement of RNA deep sequencing technology,

miRNA-seq technology is increasingly being used in various

animal species, resulting in the discovery of a large number

of novel miRNAs. In this study, miRNAs from closely similar

species found in miRBase were compared and identified during

the analysis in order to more comprehensively refer to the

registration data of miRBase. In spite of this, out of 1,942

miRNAs, we still found 392 novel miRNAs. The identification

of these novel miRNAs may inspire new avenues of research in

related areas, and additional research may provide insight on

their biological significance in regulating lipid metabolism in

sheep tail adipose tissue.

A total of 219 DE miRNAs (including 12 novel miRNAs)

were detected in three comparison groups of different growth

stages in sheep fat tail. Among these DE miRNAs, each

comparison group had DE miRNAs that are uniquely expressed,

and there were DE miRNAs that are commonly expressed

in any two comparison groups or in three groups. We

found that these DE miRNAs were mainly down-regulated

and that their expression decreased with sheep age, which

was supported by our expression trend enrichment analysis.

Previous studies in Han sheep adipose tissue yielded similar

results, and the mechanism underlying their down-regulation

remains unknown (29).

CeRNAs regulate mRNA expression via competitively

binding to miRNAs (30). We used TargetScan and miRanda

to predict miRNAs target genes, and results showed that
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110 DE miRNAs were predicted to bind to at least one

mRNA. Among them, 5 DE miRNA were bound to more than

100 mRNAs, namely oar-miR-370-3p_R-2, bta-miR-2387_R+1,

oan-miR-103-3p_R+2, chi-miR-1343, and PC-3p-43105_133. A

previous study indicated that miRNA-1343-5p was predicted to

bind to the key adipogenic gene C/EBP in bovine adipocytes

(31). In vivo and in vitro studies suggest that miR-370 may

alter fatty acid composition during adipogenesis, promote 3T3-

L1 preadipocyte proliferation, and inhibit differentiation by

directly targeting Mknk1 (32). Further, miR-370 may promote

the expression of lipogenic genes SREBP-1c, DGAT2, FAS, and

ACC1 (33). miR-103 has been described as playing a critical

role in lipid metabolism. Studies have shown that miR-103

inhibits the expression of FASN and SCD1 via direct binding,

in addition to promoting the differentiation of 3T3-L1 cells

by targeting MEF2D and activating the AKT/mTOR signaling

pathway (34, 35). miR-1343 may play a key role in sheep

intestinal tissue based on PIK3R1 being its predicted target

gene (36). In addition, chi-miR-1343 was also found to bind

to multiple mRNAs in the 30 vs. 18M and 18 vs. 6M groups.

Thus, we suggest that chi-miR-1343 may play an important

regulatory role in sheep tail fat growth and development, and

its mechanism in metabolic regulation needs to be further

elucidated. Further, the novel PC-3p-43105_133 was the only

DE miRNA targeting more than 100 mRNAs among the 30

vs. 18M and 18 vs. 6M groups. The novel miRNAs might

represent a crucial regulatory component. For instance, recent

research has demonstrated that the novel miRNA Y-56 targets

IGF-1R to regulate the proliferation and cell cycle processes

of porcine skeletal muscle satellite cells (37). However, there is

still a limitation of novel miRNAs related to adipose tissue, and

the mechanisms of many novel miRNAs remain unknown. As

a result, it is essential to investigate the mechanisms of these

novel miRNAs.

To uncover the functions of these DE miRNAs in tail

adipose tissue, we utilized GO enrichment and KEGG pathway

analyses. Among the three comparison groups, we found that

GO functions of the actin cytoskeleton, intracellular membrane-

bounded organelles, extracellular space, extracellular exosome,

and focal adhesion of the CC category, and fatty acid ligase

activity of the MF category, were enriched between two groups.

Studies have shown that the inhibition of focal adhesion

kinase (FAK) leads to an upregulation of adipogenic marker

genes AP2 and LEP and lipid accumulation (38). The FATP

family of proteins, which have fatty acid acyl-CoA ligase

activity, is present in the plasma membrane and intracellular

organelles (39). However, none of the miRNAs were found

to bind to any of the genes in the FATP family in our

study. Instead, ACSM1 and ACSM3, which are related to

fatty acid ligase activity (http://geneontology.org/), were found

to bind 24 miRNAs. These miRNAs may play a significant

regulatory role in fatty acid metabolism. We also found

several significant pathways in the KEGG pathway analysis,

including the Rap1 signaling pathway, adherens junction,

tight junction, cell adhesion molecules (CAMs), regulation of

actin cytoskeleton, and butanoate metabolism. Tight junctions

and adherens junctions are two types of cellular junctions

that fundamentally affect cell proliferation and differentiation

(40). Actin is a major component of adherens junctions, and

abnormalities in this cytoskeletal protein impede the assembly

of adherens junctions (41). Rap1 is mainly implicated in the

control of cell adhesion, cell junction formation, secretion,

and cell polarity (42). The significant enrichment of these

pathways suggests that DE miRNAs may play prominent roles

in sheep tail adipogenesis through cell-to-cell interactions.

In addition, no studies have suggested a role for the Rap1

signaling pathway in adipose tissue. The present study may

provide a theoretical basis for future research in this direction.

Butyrate is processed by acetyl-CoA to generate fatty acids,

cholesterol, and ketone bodies, thus providing specialized

substrates for lipid biosynthesis (43). Butyrate treatment

can cause adipocytes to accumulate triglycerides in vitro

(44). This indicates that the miRNA-mediated regulation of

butyric acid may be a potential regulator of SS tail adipose

tissue growth.

MiRNAs have several classical molecular regulatory

mechanisms, and in addition to binding to target mRNA

transcripts via complementary base pairing, they can also target

circRNAs to exert negative regulatory effects. Out of the 17,531

identified circRNAs, 198 DE circRNAs were screened in the

current study. We found that these circRNAs were mainly

up-regulated using expression trend enrichment analysis,

which was the opposite of the main trend of miRNAs, which

appeared to be negatively regulated. Therefore, we suggest

that negative regulation between these molecules may be

essential for the production of SS tail fat. To elucidate the

regulatory relationship between miRNAs and circRNAs, we

predicted the linkage between them. In the 30 vs. 6M and 30 vs.

18M comparative groups, it was observed that circRNA4175,

circRNA1985, and circRNA382 bind to numerous miRNAs,

which is noteworthy. In addition, we discovered that, among

the three comparison groups, three miRNA families bind to

the multiple circRNAs. They are miR-16 (chi-miR-16a-5p and

oar-miR-16b_R+3) at 30 vs. 18M, mmu-miR-6240-p5 at 18

vs. 6M, and miR-27 (oar-miR-27a_R-1 and chi-miR-27b-3p)

at 30 vs. 6M. miR-27 is among the many miRNAs involved in

cholesterol homeostasis and fatty acid metabolism. miR-27a

and−27b were found to suppress adipocyte differentiation

by regulating peroxisome proliferator-activated receptor γ

(45). Previous research found that overexpression of miR-

16a-5p can promote the expression of adipogenic marker

genes as well as 3T3-L1 adipocyte differentiation by binding

to the EPT1 gene (46). Current research on miR-6240 has

focused on human heart disease, with one study suggesting

that the downregulation of miR-6240 leads to an increase

in white adipocyte markers (47). We also found that three
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circRNAs could bind to any two of these three miRNAs

families, but only miR-27 could bind to all three. We therefore

propose that the miR-27 family occupies a more central

role in the interaction with circRNAs in the sheep tail

adipose tissue.

In addition to regulating gene expression through

competitive binding with miRNAs, circRNAs can also regulate

the expression of their host genes (20). In the GO functional

analysis of the circRNA host genes, we discovered that GTPase

activator activity was enriched in both the 30 vs. 6M and

30 vs. 18M comparison groups. Recent studies have shown

that GTPases play an important regulatory role in adipogenic

differentiation (48, 49). Fatty acid beta-oxidation, which is

crucial for the maintenance of thermogenesis, was among

the significantly enriched GO terms for 18 vs. 6M (50).

KEGG pathway analysis suggested multiple adipose-related

pathways were emphasized in our study. Among them,

fatty acid metabolism was the only pathway enriched in all

three groups, and host gene ACACA was enriched in these

pathways. Combined with the findings of the circRNA host

gene analysis (60 circRNAs from ACACA, Figure 1), we suggest

that the majority of the circRNAs play a key metabolic role in

tail fat.

Finally, we highlighted the potential regulatory mechanisms

of ceRNAs in SS tail fat metabolism based on previous analysis

of the expression profiles of miRNAs and circRNAs. In our

study, we constructed two co-expression networks based on

the mRNAs, miRNAs, and circRNAs identified in sheep fat

tails. A total of 35 (down-up-down) and 19 (up-down-up)

mRNA-miRNA-circRNA co-expression patterns were obtained.

Herein, oar-miR-27a_R-1 was linked to multiple target genes,

including TKT, ACSL4, and POSTN, which are involved in

fatty acid metabolism and adipogenesis (50–52). As previously

stated, miR-27 is a major regulator within adipose tissue,

and miR-27a has been associated with lipid accumulation

differences between intramuscular and subcutaneous adipose

tissue in sheep (53). In the present study, miR-27a targeted

multiple mRNAs and was shown to be regulated by up to four

circRNAs. Therefore, we suggest that this miRNA may be a

critical regulator of sheep tail fat development. Furthermore,

oar-miR-29a binds to multiple mRNAs and circRNAs in the

co-expression network. miR-29a was reported to associate with

multiple biological processes, including lipid metabolism (54).

In addition to TKT, miR-29a also targets to GPAM. GPAM was

related to glycerolipid and glycerophospholipidmetabolism, and

its overexpression leads to the increase of triglyceride levels

and lipid metabolism-related gene expression (55). Combined

with the expression level of these two miRNAs, we suggest

that oar-miR-29a and oar-miR-27a_R-1 play an important role

in the ceRNA network. Therefore, we constructed the ceRNA

interactions ACSL-oar-miR-27a_R-1-circRNA1985 and GPAM-

oar-miR-29a-circRNA3539 using these two miRNAs as the core,

and we successfully validated their interactions using dual

luciferase gene reporter analyses. As a result, we verified two

ceRNA expression networks and suggested multiple functions

related to fat metabolism in sheep tail fat development. However,

the involvement of these ceRNAs in sheep tail-fat metabolism

requires further investigation. Overall, the investigation into

the expression profiles of miRNAs and circRNAs at different

developmental stages fills a research gaps in the study of

the Sunite sheep tail fat metabolic mechanisms and provides

new thoughts for future studies. For instance, these studies

could focus on exploring the regulatory mechanisms of the

novel miRNAs, the circRNAs that regulate their host genes,

and the negative regulation of miRNAs, and on investigating

more potential regulatory mechanisms for ceRNAs. The current

results provide a theoretical basis for the identification of

molecular markers related to sheep tail fat metabolism.

Conclusions

In this study, we established miRNA and circRNA

expression profiles to investigate the potential regulatory

mechanisms underlying tail fat development in SS. At different

growth stages, DE miRNAs may play a role in cell-to-cell

interactions through target binding. The host genes of DE

circRNAs were shown to be more involved in lipid and

fatty acid metabolism. Based on the target prediction study,

we created a miRNA-centered ceRNA regulatory network

and filtered critical miRNAs for the validation of multiple

target loci. Among them, we highlight the relationship pair

of ACSL-oar-miR-27a_R-1-circRNA1985 and GPAM-oar-miR-

29a-circRNA3539 ceRNAs centered on oar-miR-27a_R-1 and

oar-miR-29a, revealing potential ceRNA networks involved in

the regulation of tail fat development. Our findings highlight

potential ceRNAs involved in sheep tail fat development and

provide a theoretical basis for by-product utilization.
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Incorporating genome-wide and
transcriptome-wide association
studies to identify genetic
elements of longissimus dorsi
muscle in Huaxi cattle
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Sheng Cao1, Yueying Du1, Lingyang Xu1, Lupei Zhang1,
Xue Gao1, Yang Cao2, Yuming Zhao2, Junya Li1 and
Huijiang Gao1*
1Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2Jilin Academy
of Agricultural Sciences, Changchun, China

Locating the genetic variation of important livestock and poultry economic

traits is essential for genetic improvement in breeding programs. Identifying the

candidate genes for the productive ability of Huaxi cattle was one crucial

element for practical breeding. Based on the genotype and phenotype data

of 1,478 individuals and the RNA-seq data of 120 individuals contained in

1,478 individuals, we implemented genome-wide association studies

(GWAS), transcriptome-wide association studies (TWAS), and Fisher’s

combined test (FCT) to identify the candidate genes for the carcass trait, the

weight of longissimus dorsi muscle (LDM). The results indicated that GWAS,

TWAS, and FCT identified seven candidate genes for LDM altogether: PENKwas

located by GWAS and FCT, PPAT was located by TWAS and FCT, and XKR4,

MTMR3, FGFRL1, DHRS4, and LAP3 were only located by one of the methods.

After functional analysis of these candidate genes and referring to the reported

studies, we found that they were mainly functional in the progress of the

development of the body and the growth of muscle cells. Combining advanced

breeding techniques such as gene editing with our study will significantly

accelerate the genetic improvement for the future breeding of Huaxi cattle.

KEYWORDS

longissimus dorsi muscle, GWAS, TWAS, FCT, Huaxi cattle

Introduction

In ancient China, cattle, as the primary means of production, were mainly used as the

draft ox and rarely considered the source of meat. With the rapid development of the

economy, consumers’ demand for beef, concerning quantity and quality, has increased in

China. There is an urgent need to improve the productivity and quality of beef for the beef

breed in China by directly changing the production capacity of beef cattle.
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Locating the genetic variation of important livestock and

poultry economic traits is still essential for genetic improvement.

The genome-wide association study (GWAS) has successfully

identified thousands of loci associated with complex features

(Watanabe et al., 2019). However, 90% of the associated single

nucleotide polymorphisms (SNPs) are located in the non-coding

region of the gene, and their functions still are unknown, so the

molecular mechanism of phenotypic variation cannot be

explained clearly (Cannon and Mohlke, 2018). Previous

studies have proved that gene expression is important in the

phenotype of human diseases (He et al., 2013), and many genetic

variations associated with phenotypes were likely to be

expression quantitative trait loci (eQTL) (Nicolae et al., 2010).

Furthermore, eQTL can be used to estimate the effects on gene

expression and then be combined with physical phenotypes to

conduct transcriptome-wide association studies (TWAS) to

identify pivotal expression–trait associations (Gusev et al.,

2016). The TWAS algorithm has been successfully

implemented to identify the causal genes for the essential

quantitative trait in cattle (Koupaie et al., 2019; Liu et al., 2021).

In this study, we utilized three strategies to identify the

candidate genes that significantly affect the producibility of

Huaxi cattle. First, we applied GWAS to identify the

candidate gene by using 1,478 Huaxi cattle genotypes with the

phenotypes of longissimus dorsi muscle (LDM) weight. Second,

we implemented TWAS with genotypes (1,478 individuals), gene

expression data of 120 individuals (contained in the

1,478 individuals), and phenotypes. Third, we utilized an

ensemble approach, Fisher’s test (Yu et al., 2008; Kremling

et al., 2019), combining the results of GWAS and TWAS to

identify the candidate gene. Finally, we analyzed the function and

preliminarily explored the molecular mechanism of the

candidate genes with Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses, which

was helpful to the following breeding of Huaxi cattle.

Materials and methods

Animal resources and phenotype: The Huaxi cattle population,

including 1,478 cattle born between 2008 and 2021, was established

in Ulgai, Xilingol League, and Inner Mongolia of China. After

weaning, all calves were moved to the Jinweifuren fattening farm in

Beijing, where they shared uniform management and standardized

feeding [they were fed with the total mixed ratio (TMR) according

to the eighth revised edition of the Nutrition Requirements of Beef

Cattle (NRC, 2006)]. Animals were slaughtered at 22–26 months of

age with electrical stunning, followed by bloodletting. The weight of

the longissimus dorsi muscle (LCM, kg) was weighed after being

chilled at 4°C for 24 h.

Genotype and quality control: Genomic DNA was isolated from

blood samples using the TIANampBloodDNAKit (Tiangen Biotech

Co., Ltd., Beijing, China). DNA quality was acceptable when the

A260/A280 ratio was in the range of 1.8–2.0. All individuals were

genotyped using an Illumina BovineHD BeadChip that contained

770,000 SNPs. Quality control (QC) procedures were carried out

using PLINK v1.9 (Purcell et al., 2007) to filter out SNPs with call

rate <90%, minor allele frequency (MAF) < 0.05, and a significant

deviation from the Hardy–Weinberg equilibrium (p < 10−6),

and >10% animals with missing genotype data were removed

from the analysis. Finally, 1,478 cattle with 607,198 SNPs on

29 autosomal chromosomes with an average distance of 3 kb were

included in subsequent analyses.

RNA extraction, library construction, sequencing, and quality

control: Total RNA was extracted from SAT samples using TRIzol

reagent (Invitrogen, Life Technologies) following themanufacturers’

instructions. The RNA concentration, purity, and integrity were,

respectively, analyzed on Qubit RNA Assay Kit (Life Technologies,

CA, United States), NanoPhotometer Spectrophotometer (Thermo

Fisher Scientific,MA,United States), andRNANano 6000Assay Kit

of the Bioanalyzer 2,100 system (Agilent Technologies, CA,

United States). The high-quality samples with 28S/18S > 1.8 and

OD 260/280 ratio >1.9 were applied for constructing cDNA libraries

according to the protocol of IlluminaTruSeqTMRNAKit (Illumina,

United States). Samples that presented an RNA integrity number

greater than 7.0 were then sent for paired-end RNA sequencing

(read length 150 bp) on the Illumina NovaSeq 6,000 platform (Modi

et al., 2021). The RNA sequencing was completed by Beijing

Novogene Technology Co., Ltd. Trimmomatic (v0.39) was

applied to remove the reads containing low-quality reads, poly-

N, and adaptor sequences (Bolger et al., 2014). Sequentially, the

clean reads were aligned to the Bos taurus reference genome ARS-

UCD1.2 using HISAT2 (v2.2.1) (Lachmann et al., 2020), and then

the generated SAM files were converted to BAM files through

SAMtools (v1.11). featureCounts (v1.5.2) was used to estimate

read counts (Liao et al., 2014).

GWAS: GWAS analysis of LDM traits based on the linear

mixed model (LMM) was completed using GEMMA (Zhou and

Stephens, 2012):

y � Xb + Sg + Zα + e,

where y is the vector of phenotypes, b is the vector of fixed effect

including age, sex, farm, and the days of fattening, S is the

indicator variables of SNPs (0, 1, 2), g is the effect vector of SNPs,

α is the polygenic effect vector, α ~ N(0, Kσ2g), e is the random
residual, and e ~ N(0, Iσ2e). In GWAS, the Wald test was used to

test the SNP significance, and the threshold of the p-value was set

at 1/m, where m is the number of SNPs (Wu et al., 2014).

TWAS: REML (restricted maximum likelihood) was utilized

to evaluate the heritability of each gene base on the gene

expression and cis-SNPs located within 1 Mb of the physical

position of the gene. Then, the gene with significantly non-zero

heritability will be incorporated in the subsequent analysis. For

the preselected gene, Bayesian Sparse LMM (BSLMM) was used

to estimate the effect values of the cis-SNPs for gene expression,

and the prediction model that estimated gene expression with

Frontiers in Genetics frontiersin.org02

Liang et al. 10.3389/fgene.2022.982433

145

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.982433


cis-SNPs was constructed (Zhou et al., 2013). Afterward, the

prediction model was utilized to estimate the gene expression

values of the 1,358 individuals without transcriptome sequencing

data but with genotypes (Dai et al., 2019; Zhou et al., 2020).

Finally, all of the gene expression data were integrated with

phenotypes to implement TWAS with LMM:

y � Xb +Wu + e,

where y and b are the same as in GWAS,W is the designmatrix of

the gene expression matrix, which is constructed with transcripts

per kilobase million (TPM) (Luningham et al., 2020), u is the

vector of gene effect, e is the random residual, and e ~ N(0, Iσ2e).
In TWAS, the significant gene test was implemented with FDR,

and the threshold of the p-value was set at FDR×n/m, where

FDR = 0.01, n is the number of genes with a p-value < 0.01, andm

is the total number of genes in the LMM (Benjamini and

Hochberg, 1995).

Fisher’s combined test (FCT): The p-value in GWAS of each

SNP in the top 10% of most associated SNPs was assigned to the

nearest gene and then combined with the p-value in TWAS (linear

model with multi-dimensional scaling (MDS) principal coordinates

+ 5 probabilistic estimation of expression residuals (PEERs)) for that

same gene using Fisher’s combined test as implemented in the

sumlog method in the metap package (Dewey 2017) in R. TWAS

p-values for genes which were not tested in TWAS was set to p =

1 prior to combining with GWAS p-values (Kremling et al., 2019).

Similarly, the significant gene test was implemented in FCT using

FDR with an identical threshold of the p-value.

Gene functional analysis: Gene Ontology (GO) is a database

describing the function of genes and proteins. It annotated the

genes into three types of terms: MF, BP, and CC (Ashburner

et al., 2000). The KEGG database integrated the genome,

regulatory network, and system function information

(Kanehisa et al., 2016). To explore the function of candidate

genes, we applied DAVID (https://david.ncifcrf.gov/) to

implement GO and KEGG analyses of the genes and

constructed the associated network of the gene-participated

terms using ToppCluster (https://toppcluster.cchmc.org/).

Results

Genome-wide association studies

Figure 1A shows the Manhattan plot and QQ-plot of the

GWAS analysis of LDM. The QQ-plot showed that there was no

FIGURE 1
Identification of the candidate genes for LDM. (A) Manhattan plot and QQ plot of GWAS; the red dashed line indicates the threshold of
Bonferroni’s multiple test, p = 1.65 × 10−6. (B)Manhattan and QQ plots of TWAS; the red dashed line indicates the threshold of the corrected p-value
with FDR = 0.01 (p = 1.33 × 10−4). (C)Manhattan andQQ plots of FCT; the red dashed line indicates the threshold of the corrected p-value with FDR =
0.01 (p = 1.33 × 10−4). (D) Distribution of the estimated heritability of the genes. The blue area represents the distribution of the heritability of all
gene expression, and the blue dashed line represents themean of the heritability estimates of converged gene expression (0.152 ± 0.263); the orange
area represents the expression of 1,650 significant genes (p < 0.05), and the orange dashed line represents the mean of the heritability estimates of
significant gene expression (0.631 ± 0.324). (E) Results of GO and KEGG analyses of the candidate genes.
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apparent systematic deviation. Most of the points were

distributed around the diagonal (the expansion coefficient is

1.05), which means that only a few SNPs were associated with the

phenotype. The threshold of the p-value (p = 1.65 × 10−6) was set

with Bonferroni’s multiple test, and three SNPs in the 14th

chromosome were significantly associated with the

phenotypes, among which BovineHD1400006836 and

BovineHD4100011289 were annotated to PENK, BTB-

00557532 was annotated to XKR4, and the reference cattle

genome was ARS-UCD1.2 more details are demonstrated in

Table 1.

Transcriptome-wide association studies

After removing the genes with the average TPM

(transcripts per kilobase million) less than 0.1, the

expression levels of 15,325 genes of 120 individuals were

assigned as phenotypes and 15,401 cis-SNPs, located within

1 Mb of the physical position of the gene, were assigned as the

genotypes, and the heritability of the gene expression was

estimated with REML. As shown in Figure 1B, the heritability

of 15,324 genes converged in the progress of REML, and the

average heritability was 0.152 ± 0.263. With p < 0.05 as the

threshold, 1,650 genes were retained for the subsequent

analysis, with an average heritability of 0.631 ± 0.324.

The Manhattan plot and QQ plot of TWAS for LDM were

demonstrated in Figure 1C. The QQ-plot indicated that most

points were distributed around the diagonal (expansion

coefficient λ = 1.03), and several genes were significantly

associated with LDM. After being corrected for the false

discovery rate (FDR) of 0.01, the threshold of the p-value was

set at 1.33 × 10−4, and five genes were found to be significantly

associated with LDM. The location of these genes is listed in

Table 2. PPAT (p = 7.68 × 10−5), MTMR3 (p = 9.11 × 10−5),

FGFRL1 (p = 1.17 × 10−4), DHRS4 (p = 1.26 × 10−4), and LAP3

(p = 1.32 × 10−4) were located in chromosomes 6, 17, 6, 10, and 3,

respectively.

Fisher’s combined test

The Manhattan plot and QQ plot of FCT analysis are shown

in Figure 1D. The expansion coefficient λ of the QQ-plot was

1.02 with no systematic deviation, and most points were

distributed on the diagonal, with only a minority of points

floating above the diagonal. As with TWAS, the threshold of

the p-value was set at 1.33 × 10−4. The Manhattan plot indicated

TABLE 1 Details of the significantly associated SNPs identified by GWAS.

SNP Chromosome Locationa MAFb Lengthc Candidate gened p-valuee

BovineHD1400006836 14 23,552,180 0.35 5,312 PENK 6.09E-07

BTB-00557532 14 24,643,266 0.38 32,311 XKR4 1.26E-06

BovineHD4100011289 14 23,553,712 0.22 6,844 PENK 1.63E-06

aThe SNP position (bp) on ARS-UCD1.2.
bThe minor allele frequency.
cThe distance between SNP and the nearest gene.
dThe nearest genes found on the Ensemble database (www.ensembl.org).
ep-values calculated by LMM.

TABLE 2 Details of the five candidate genes identified by TWAS.

Gene Chr Starta Enda Effect ± SDb p-valuec h2 ± SDd

PPAT 6 71,782,614 71,821,764 -0.0031 ± 0.00089 7.68E-05 0.76 ± 0.32

MTMR3 17 68,971,211 69,102,722 -0.0060 ± 0.00020 9.11E-05 0.61 ± 0.31

FGFRL1 6 117,346,407 117,358,800 0.0020 ± 0.00068 1.17E-04 0.58 ± 0.30

DHRS4 10 21,088,232 21,100,627 -0.0069 ± 0.0022 1.26E-04 0.68 ± 0.32

LAP3 3 37,140,752 37,166,191 0.018 ± 0.0031 1.32E-04 0.70 ± 0.34

aThe SNP position (bp) on ARS-UCD1.2.
bThe effects of gene expression calculated by LMM in TWAS.
cp-values calculated by LMM.
dThe heritability of gene expression calculated by REML.
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that FCT identified two candidate genes significantly associated

with LDM, namely, PPAT (p = 9.69 × 10−5) and PENK (p = 7.26 ×

10−5), which were also identified by TWAS and GWAS,

respectively.

Functional analysis of candidate genes

Combining the results of GWAS, TWAS, and FCT, PENK,

XKR4, PPAT, MTMR3, FGFRL1, DHRS4, and LAP3 were

identified as the candidate genes of LDM. To further explore

the function of these genes, we performed GO and KEGG

analyses of these genes. The results are demonstrated in

Figure 1E. These candidate genes participated in 48 GO

terms, which contained 16 molecular function (MF) terms,

23 biological progress (BP) terms, and nine cellular

component (CC) terms. For MF, the candidate genes mainly

function in the progress of fibroblast growth factor activity

regulation (GO:0005007 and GO:0017134), NADPH activity

(GO:0004090), and serine, threonine, and tyrosine metabolism

(GO:0004722 and GO:0004725). KEGG pathway analysis found

that candidate genes were involved in 10 pathways, mainly

including amino acid and peptide metabolism, signal

transduction pathway, purine metabolism, and other biological

processes.

Discussion

Abundant studies have proven that GWAS could precisely

locate the candidate loci for the quantitative traits in livestock

breeding, especially for the traits with high heritability. It was

one of the most widespread methods used in plant and animal

improvement programs. However, the regulatory mechanism

from SNP to phenotypic variation was still unknown in most

cases, and it was impossible to determine the genuine

pathogenic gene of the trait associated with the candidate

SNPs due to the linkage disequilibrium (LD) in the SNPs. In

recent years, the innovation of sequencing technology

provided more other omics biological information,

transcriptome, metabolome, etc., and assisted in locating

candidate genes more accurately. TWAS implement the

association analysis based on the gene expression data with

the phenotype to locate the candidate genes directly. The

results of previous studies indicated that TWAS performed

well in practice (Dai et al., 2019; Luningham et al., 2020; Li

et al., 2021). In this study, we not only performed GWAS and

TWAS individually but also utilized an ensemble approach,

FCT, combining the results of GWAS and TWAS to locate the

candidate genes for LDM.

For LDM in this study, we indented seven candidate genes

by GWAS, TWAS, and FCT in total: PENK was located by

GWAS and FCT, PPAT was located by TWAS and FCT, and

the remaining five genes were only located by one of the

methods. An et al. (2019) also located PENK, which was

associated with the height of Brahman cattle and Nerol

cattle populations. The studies on humans also found that

PENK regulated cell development by encoding the opioid

peptide growth factor (ORF) to affect height (Pryce et al.,

2011). Zhan et al. (2014) found that a variation site (8p12.1) in

XKR4 was associated with human thyroid-stimulating

hormone (TSH) secretion, and it was the candidate gene for

the development traits in Brahman cattle, Korean yellow

cattle, Chinese Holstein cattle, and Chinese Sujiang pig

populations (Lindholm-Perry et al., 2012; Edea et al., 2020;

Naserkheil et al., 2020; Xu et al., 2020). The protein encoded by

PPAT was a member of the purine/pyrimidine

phosphoribosyltransferase family, which was essential in

regulating the proliferation, migration, and invasion of

thyroid cancer. Gene function analysis found PPAT

functionals in inosinic acid biosynthesis (GO:0006189), and

GART was the functional partner of PPAT, which had a

fundamental impact on nucleotide metabolism and internal

environment balance (Welin et al., 2010). MTMR3 is a

member of the MTM family associated with muscular

dysplasia, which participates in the cell progress of

proliferation, differentiation, autophagy, and division by

regulating the synthesis of myotube (Hnia et al., 2012). The

reported studies have confirmed thatMTMR3 was the virtually

candidate gene in the Holstein population for the quantitative

traits, such as milk fat rate, milk yield, and milk protein

content (Pimentel et al., 2011). FGFRL1 encoded fibroblast

growth factor receptor one, which plays a crucial role in the

progress of cell adhesion, embryonic slow muscle fiber

development, and bone tissue formation (Amann et al.,

2014; Niu et al., 2015; Yang et al., 2016). Bluteau et al.

(2014) indicated a slight reduction in the whole bone of the

FGFRL1 gene knockout mice. The study on Holstein also

identified FGFRL1 as a candidate gene for development

traits in the Holstein population (Zhang et al., 2017).

DHRS4 encodes NADP(H)-dependent retinol

dehydrogenase/reductase. The study on pigs found that

rs196958886, one of the SNPs of this gene, may induce the

peroxisome proliferator-activated receptor alpha (PPARα)
gene, affect the interaction between fatty acids and glucose

metabolism, and ultimately affect the quality of pork (Hwang

et al., 2017). LAP3 encodes leucine aminopeptidase, which is

functional in protein metabolism and growth (Yao et al.,

2020). Substantial studies on cattle found that LAP3 was a

candidate gene that affects important production traits such as

visceral organ weight, body size, and carcass traits (Setoguchi

et al., 2009; Bongiorni et al., 2012; Xia et al., 2017; An et al.,

2018; An et al., 2020). Zheng et al. (2011) implemented

association analyses between LAP3 and milking traits in the

Holstein population and concluded that LAP3 was the vital

candidate gene for milking traits.
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Conclusion

In conclusion, we identified seven candidate genes of LDM

by GWAS, TWAS, and FCT based on genome and

transcriptome information. According to the previous

relevant studies and the results of gene function analysis,

the candidate genes were mainly functional in the progress

of the development of the body and the growth of muscle cells.

Combining advanced breeding techniques such as gene

editing with our study will significantly accelerate the

genetic improvement of Huaxi cattle.
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Introduction

It was reported that Chinese goose breeds are thought to have originated from wild swan
geese (Anser cygnoides) (Shi et al., 2006). The wild swan goose, as a migratory waterfowl, has
many different characteristics compared to the domestic goose breeds. Most notable is that
the wild swan goose has long-distance flight ability. At present, the swan goose has two
biological migration routes, namely inland migration routes and coastal migration routes.
The majority of swan goose individuals in northeastern Mongolia (Inner Mongolia,
Heilongjiang, and Jilin province) relocated to the Chinese Yangtze River, and the Russian
Far East relocated to the coast of southeast China for winter (Zhu et al., 2020). Due to the lack
of analysis of the genomic characteristics and selection signals of wild swan geese, the genetic
basis underlying these characteristics is still not well investigated.

The swan goose has been listed as vulnerable in the Red List of Threatened Species of the
International Union for Conservation of Nature (IUCN), and the swan goose’s global
population has been estimated at c.60,000–90,000 (http://www.iucnredlist.org/). In China,
the wild swan goose has been designated as a Class II national protected species. Therefore, it’s
difficult to obtain wild swan goose samples to carry out genomic studies. Xianghai wetland
national nature reserve (44°55′–45°09′N, 122°05′–122°31′E), located in the Jilin province (the
northeast region of China), was one of the wild swan goose’s habitats. In 1981, the Xianghai
wetland national nature reserve was established, and it is the habitat of many protected
migratory birds e.g. Grus japonensis, Otis tarda.

We are working at the front line of geese breeding in the Xianghai wetland national
nature reserve. Our team consists of researchers from Jilin University and Jiuzhou Flying
Goose Husbandry&Technology Co., Ltd., which holds a license to domesticate swan geese
in the Xianghai Wetlands. In 1999, their farm was established for domesticating and
breeding wild swan geese in Yanya lake in the Xianghai wetland national nature reserve. In
recent years, we are working on hybrid goose breeding (swan goose × local domestic goose).
We are interested in investigating the genetic difference between the wild swan goose and
the domestic goose. Considering that sequencing the wild swan goose provides a valuable
resource not only for researchers working on animal conservation but also for those
focusing on goose genomic breeding and further genomic investigation. With this in mind,
we report and make publicly available whole genome sequencing data for 10 wild swan
geese.
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Samples collection and sequencing

The Jiuzhou Flying Goose Husbandry&Technology Co., Ltd. holds
a license to domesticate swan geese in the Xianghai Wetlands. The
experienced staff randomly picked up wild swan goose eggs from the
Xianghai Wetland National Nature Reserve for incubation and
rearing. About 2 mL of blood samples were collected from the
veins under the wings of the adult swan geese by the experienced
staff, and all the swan geese remained healthy after blood collection.
Genomic DNA was extracted from the blood following the standard
phenol-chloroform extraction procedure. For genome sequencing, at
least 0.5 μg of genomic DNA from each sample was used to construct a

library with an insert size of 350 bp. Paired-end sequencing libraries
were constructed according to the manufacturer’s instructions
(Illumina Inc., San Diego, CA, United States) and sequenced on
the Illumina HiSeq platform.

Data quality control and variant calling

The FASTP (Chen et al., 2018) software was used to perform
quality control on the raw data. The clean reads were aligned to the
swan goose genome (PRJNA826973) using Burrows-Wheeler
Alignment Maximal Extract Matches algorithm (Li and Durbin,

FIGURE 1
(A) Distribution of the SNPs on the chromosomes. The x-axis represents the chromosome position (Mb), and the y-axis represents the chromosomes.
The number of SNPs presented in each 10 kb genome block is displayed by the different colors. (B) Extent of LD average r2 values at distances up to 300 kb.
(C) The neighbor-joining tree based on 1-IBS distance.
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2009) with default parameters. The SNPs (Single Nucleotide
Polymorphisms) were called using the GATK software (McKenna
et al., 2010). For these to be called, the calling quality had to be greater
than 20 (base recognition accuracy >99%). The SNPs were filtered
with minor allele frequency <0.05 and missing rate >0.10 using the
VCFtools (Danecek et al., 2011). The distribution of the SNPs on the
chromosomes was plotted using the R “CMplot” package.

Data description

A total of 162.6 Gbp clean data was obtained. The sequence data were
deposited in the NCBI Sequence Read Archive (SRA) and the accession
number of the sequencing data is PRJNA814334. One individual was
deeply sequenced with 39.6 Gbp data obtained, and the other samples
were sequenced with about 13.7 Gbp data obtained. The sequencing
information of each sample is shown in Supplementary Table S1. The
average mapping rate was 0.90 (mapping quality value ≥20). Finally, a
total of 10,727,005 SNPs (minor allele frequency ≥0.05) were obtained,
and a total of 7,646,295 (71.28%) transitions (Ts) and 3,080,710 (28.72%)
transversions (Tv) were observed. The distribution of the SNPs in 10 kb
non-overlapping windows on the chromosomes is provided in Figure 1A.
From the information of the SNPs, Linkage disequilibrium (r2) measures
were calculated based on the PopLDdecay (Zhang et al., 2019). The decay
of LD (linkage disequilibrium) according to distance, for pair-wise SNPs
up to 300 kb is shown in Figure 1B. The LD value (r2 = 0.2) was about
200 bp in the wild swan goose, and the levels of LD at different distances
were presented in Supplementary Table S2.

To provide future researchers with an understanding of the genetic
difference between the wild swan goose and the domestic goose, here we
compared the swan goose populations with a domestic goose breed, the
Zi goose, a local domesticated breed in northeast China. The PCA and
LD analysis results are provided in Supplementary Figure S1. The plot of
the first two PCA components showed a clear genetic differentiation,
along the first component, between the swan geese and Zi geese. In
addition, the PCA patterning highlighted a wider genetic differentiation
among the swan geese samples than among the Zi geese (Supplementary
Figure S1A). Historically, the wild swan geese have not undergone
intensive selection as experienced in Zi geese. Hence, it is reasonable to
assume that the Swan geese mantain higher levels of genetic variability
than Zi geese. This assumption is also supported by the LD analysis. In
our study, we find that the LD extend of the Zi geese is higher than the
Swan geese (Supplementary Figure S1B). It is known that the LD extent
could reflect the history of the population. The strong artificial selection
could contribute to increasing the LD extent, although we can’t exclude
the possibility of other factors such as gene flow.

To provide future researchers with an understanding of the genetic
relationship among samples, we constructed an inter-individual neighbor-
joining (NJ) tree of the ten swan geese samples (Figure 1C) using the (1-
IBS) genetic distances, with the identity-by-state (IBS) values being
estimated using PLINK v1.9 (Purcell et al., 2007). Genetic distances
between individuals ranged from 0.184 to 0.291, and the average value
was 0.272. Moreover, we calculated the inbreeding coefficient of each
individual using PLINK v1.9 (Purcell et al., 2007) with the command “het.”
The inbreeding coefficient (Supplementary Table S3) ranged from−0.01 to
0.12, and the average value was 0.07. This result indicated that the extent of
inbreeding of the wild swan goose population is low.

In conclusion, this paper provides the whole genome resequencing
data of ten swan geese, which can serve as a theoretical reference for

future exploration of genetic variation or characteristics between swan
geese and domestic goose populations, and is of great value in revealing
the genetic mechanism of phenotypic differences. For example, by
comparing the genome of the wild swan goose to the local goose,
researchers may find the clue to the genetic background of the special
characteristics of the swan goose, e.g., long-term flying ability.
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