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This Research Topic is dedicated to Raja Parasuraman who unexpectedly passed on March 
22nd 2015. Raja Parasuraman’s pioneering work led the emergence of Neuroergonomics as a 
new scientific field. He combined his research interests in the field of Neuroergonomics which 
he defined as the study of the human brain in relation to performance at work and everyday 
settings. Raja Parasuraman was a pioneer, a truly exceptional researcher and an extraordinary 
person. He made significant contributions to a number of disciplines, from human factors to 
cognitive neuroscience. His advice to young researchers was to be passionate in order to develop 
theory and knowledge that can guide the design of technologies and environments for people. 
His legacy, the field of Neuroergonomics, will live on in countless faculties and students whom 
he advised and inspired with unmatched humility throughout the whole of his distinguished 
career. Raja Parasuraman was an impressive human being, a very kind person, and an absolutely 
inspiring individual who will be remembered by everyone who had the chance to meet him. 

About this Research Topic 
Since the advent of neuroergonomics, significant progress has been made with respect to meth-
odology and tools for the investigation of the brain and behavior at work. This is especially the 
case for neuroscientific methods where the availability of ambulatory hardware, wearable sensors 
and advanced data analyses allow for imaging of brain dynamics in humans in applied environ-
ments. Methods such as: electroencephalography (EEG), functional near-infrared spectroscopy 
(fNIRS), and stimulation approaches like transcranial direct-currrent stimulation (tDCS) have 
made significant progress in both recording and altering brain activity while allowing full body 
movements outside laboratory environments. 

For neuroergonomics, the application of brain imaging in real-world scenarios is highly rele-
vant. Traditionally, brain imaging experiments in human factors research tend to avoid active 
behavior for fear of artifacts and a contaminated data set that would provide limited insight 
into brain dynamics in real working environments. To overcome these problems new analyses 
approaches have to be developed that identify artifacts resulting from hostile recording envi-
ronments and movement-related non-brain activity stemming from eye-, head, and full-body 
movements. The application of methodology from the field of Brain-Computer Interfacing 
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(BCI) for neuroergonomics is one approach that has significant potential to enhance ambulatory 
monitoring and applied testing. Passive BCIs allow for assessing aspects of the user state online, 
such that systems can automatically adapt to their user. This neuroadaptive technology could 
lead to highly efficient working environments, to auto-adaptive experimental paradigms and 
to a continuous tracking of cognitive and affective aspects of the user state. Hence, deployment 
of portable neuroimaging technologies to real time settings could help assess cognitive and 
motivational states of personnel assigned to perform critical tasks. 

This Research Topic gathers submissions that cover new approaches in neuroergonomics. 
Different article type cover advanced neuroscience methods and neuroergonomics techniques 
as well as analysis approaches to investigate brain dynamics in working environments. The 
selection of papers provides insights into new neuroergonomic research approaches that demon-
strate significant advances in brain imaging technologies that become more and more mobile, 
Moreover, a strong trend for new analyses approaches and paradigms investigating real work 
settings can be seen. Together, this unique collection of latest research papers provides a com-
prehensive overview on the latest developments in neuroergonomics. 

Citation: Gramann, K., Fairclough, S. H., Zander, T. O., Ayaz, H., eds. (2017). Trends in  
Neuroergonomics: A Comprehensive Overview. Lausanne: Frontiers Media. 
doi: 10.3389/978-2-88945-203-3
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Editorial on the Research Topic

Trends in Neuroergonomics

NEW METHODS IN NEUROERGONOMICS

This Research Topic is dedicated to Professor Raja Parasuraman who unexpectedly passed on
March 22nd 2015.

Raja Parasuraman’s pioneering work led to the emergence of Neuroergonomics as a new
scientific field. Neuroergonomics is defined as the study of the human brain in relation to
performance at work and everyday settings (Parasuraman, 2003; Parasuraman and Rizzo, 2008).
Since the advent of Neuroergonomics, significant progress has been made with respect to
methodology and tools for the investigation of the brain and behavior at work. This is especially
the case for neuroscientific methods where the availability of ambulatory hardware, wearable
sensors, and advanced data analyses allow for imaging of brain dynamics in humans in applied
environments.

For neuroergonomics, the application of brain imaging in real-world scenarios is highly
desirable as an investigation tool. Traditionally, brain imaging experiments in human factors
research tend to avoid active behavior for fear of artifacts contaminating the signal of interest. Here,
the development of new data analyses techniques as well as the combination of different methods
providing complementary insights into brain and behavioral dynamics allow for new insights into
the human-machine interaction. To overcome the problem of artifactual data in mobile recordings
and to allow analyses of brain activity in real working environments new portable sensors and
improved analyses approaches have to be developed. Hence, deployment of portable neuroimaging
technologies to real time settings could help assess cognitive and motivational states of personnel
assigned to perform critical tasks.

THE “TRENDS IN NEUROERGONOMICS” RESEARCH TOPIC: A

BRIEF INTRODUCTION

The eBook of this Frontiers Research Topic is divided into four sections, defined by the primary
research methods used to address a variety of neuroergonomic research questions. The scientific
topics range from air traffic control and automation, over mental load detection and the use of
brain activity to control a system (brain computer interfaces, BCI), to physical work, rehabilitation,
and training. Across the diverse research areas, the majority of studies in this Research Topic
used electroencephalography (EEG), followed by functional near infrared spectroscopy (fNIRS),

7
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reflecting the constantly growing use of these methods in
neuroergonomics. At the same time this eBook clearly
demonstrates a trend to investigate physical and cognitive activity
outside standard laboratory settings, moving neuroergonomics
“into the wild.” In addition, traditional methods like the
measurement of eye movements, pupil metrics, (ECG), and
established imaging approaches like functional magnetic
resonance imaging (fMRI) are used in combination with other
methods to better understand the physiological responses to
cognitive or physical tasks and their coupling to hemodynamic
changes. The different sections include original research articles,
but also reviews and opinion pieces. Here, we provide short
summaries as an orientation for the interested reader.

The first section in this eBook thus comprises studies that
used EEG to investigate ergonomic research questions with three
studies using EEG in a mobile setting. The first of these by
Jungnickel and Gramann uses a mobile brain/body imaging
approach (MoBI; Makeig et al., 2009; Gramann et al., 2012,
2014) to investigate the brain and behavioral dynamics of human
participants interacting with dynamically moving objects. The
results indicate increased activity in parietal regions when active
physical behavior as compared to standard laboratory button
press behavior was required to respond to relevant changes in
the environment. The findings point to changes in brain dynamic
states dependent on the behavioral state. The study by Wascher
et al. demonstrates that mobile EEG allows for a non-obtrusive
assessment of mental fatigue in natural working situations. The
authors investigate EEG variations time-locked to eye-blinks as a
new tool to unobtrusively monitor cognitive processing in real-
life environments. Mijović et al. also use EEG in a naturalistic
work environment to show that instructed responses can increase
attention as reflected in brain dynamics without changes in
response parameters. The results point to the possibility to use
instructed responses to increase attentional processing without
compromising work performance in manual assembly tasks.
Again, explicitly allowing movement of participants, Meinel
et al. demonstrate that EEG can be used to improve motor
rehabilitation approaches. Better performance inmovement tasks
can be achieved by identifying comodulation of different sources
in the EEG before a movement is executed. The results provide
participant-specific prediction of performance fluctuations that
could be used to enhance neuroergonomic and rehabilitation
scenarios. The last study by Zander et al. investigates how well
a passive brain-computer Interface can work in an autonomous
driving scenario using a dry EEG system. The results reveal
comfort issues but acceptable usability of the tested EEG system
and sufficient signal quality for use in an autonomous driving
context.

A number of EEG-studies use the recorded brain electrical
signals for system interaction through brain-computer interfaces
(BCIs, Zander and Kothe, 2011). In this context, Kirchner et al.
demonstrate that event-related potentials can be used on a single
trial level to infer task-engagement of an operator controlling
multiple robots and to adapt the man-machine interface to the
individual operator. The results could be used to adapt the task
load to operators with different qualifications or capabilities
to avoid mental overload. Alonso-Valerdi et al. suggest that a

wider variety of control commands in motor imagery-based
BCIs might lead to an accelerate brain-computer communication
while Callan et al. increase response speed in flight simulation by
using a passive BCI based on MEG. The former study provides
insights into the use of control commands to increase BCI-
based system communication while the latter study demonstrates
the potential to decode motor intention faster than manual
control in response to hazardous change in the system interaction
cycle. Roy et al. investigate mental workload based on auditory
evoked potentials. The authors present a new minimal intrusive
paradigm that paves the way to monitor operators’ mental state
in real-life settings to allow adaption of the user interface without
interfering with the primary task. Caywood et al. increase the
interpretability of BCI models by using the approach of Gaussian
Process Regression for assessing cognitive workload. Ewing et al.
describe the development of an adaptive game system that
measures spontaneous EEG activity in real-time in order to adjust
the difficulty level of the game. In two studies the concept of a
biocybernetic control loop (Fairclough, 2009) is introduced in
detail with a particular emphasis on validating EEG measures
experimentally prior to their incorporation into an adaptive game
system.

Studies using EEG in combination with other methods show
that different physiological parameters can lead to an improved
understanding of the construct under investigation. Ko et al.
demonstrate the advantage of integrating the high resolution in
the time and spatial domain for EEG and fMRI, respectively, in a
stop-signal paradigm. Their results from multimodal recordings
provide new insights into the complex brain networks underlying
inhibitory control in naturalistic environments. Using EEG in
combination with ECG and fNIRS, Ahn et al. investigate mental
fatigue in drivers. They show that a combination of different
physiological measures substantially improves the classification
of sleep deprived or well-rested drivers. Scheer et al. investigate
the demands on mental resources during a closed-loop steering
task in simulated car driving scenarios. The results indicate an
impact of steering demands on event-related EEG activity for
task-irrelevant distractor probes allowing for an evaluation of
mental workload in steering environments.

The second section summarizes the use of fNIRS in traditional
stationary settings but also in new mobile applications. The
first study of these, Von Lühmann et al. describe the
development of a wireless and low-cost open source fNIRS
hardware with details on system concept, hardware, software
andmechanical implementation. The proposed systemwas tested
in a mental arithmetic BCI experiment. Mandrick et al. discuss
electrocortical and neurovascular measures with respect to the
measurement of mental workload. They propose that EEG and
fNIRS are complementary methods in the context of applied
testing in the sense that the weakness of each approach, e.g., poor
spatial and temporal resolution, respectively, is counteracted by
the strength of the other. They argue for a combined fNIRS-EEG
approach to index neurovascular coupling during the assessment
of mental workload.

In Bediz et al. the effects of supramaximal exercise on
cognitive task related oxygenation changes are investigated.
Performance in a working memory task before and after
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exercise indicated higher task related activation changes in
prefrontal cortex post-exercise and higher cognitive task related
brain activation increase in high-performing participants. The
study by Carrieri et al. investigates the neural correlates of a
cognitive/motor task in a virtual reality (VR) environment. The
findings support the use of VR in combination with fNIRS as
a very good platform for neuroergonomic studies to objectively
evaluate cortical hemodynamic activity. Mckendrick et al. utilize
ultra-portable, wearable and miniaturized fNIRS sensors on
participants walking outdoors in the open air. The battery-
operated miniaturized system implementation was described
by Ayaz et al. (2013). The results of a spatial navigation task
indicated greater mental capacity reserves for users with head
mounted displays but also unwanted attention capture and
cognitive tunneling as indicated by hemodynamics measures.
The final contribution in this section by Durantin et al. provides
evidence for using Kalman filter as a suitable approach for real-
time noise removal for fNIRS signals in ecological situations and
the development of BCI. The findings from working memory
tasks indicate Kalman filter increased the performance of the
classification of task load levels based on brain signal.

Section three comprises studies using stimulation methods
alone or in combination with other methods to investigate
stimulation-based improvement of motor or cognitive functions.
The introductory commentary by Besson et al. prepares the
stage for this section by providing a critical commentary on
existing transcranial direct current stimulation (tDCS) protocols
to enhance neuroplasticity and enhance performance in real-
world settings. They argue that priming tDCS protocols have
significant potential to improve learning andmotor performance.
Callan et al. demonstrate the simultaneous use of tDCS and
fMRI to investigate the effect of neurostimulation on resting
state functional connectivity and behavioral performance. The
results reveal greater spontaneous resting state activity for the
tDCS group with higher resting state functional connectivity
for participants demonstrating performance improvement in a
visual search task. Choe et al. investigate the use of tDCS along
with multimodal neuroimaging (EEG and fNIRS) demonstrating
that tDCS stimulation to the dorsolateral prefrontal or left motor
cortex during flight simulation training enhances behavioral
performance and changes neurophysiological measurements
(EEG and fNIRS) indicating improved skill acquisition consistent
with previous studies (Ayaz et al., 2012). The final contribution
in this section is the review of Teo et al. providing a discussion
of the theoretical framework underlying the use of VR in
combination with neuroimaging and neuromodulation as a
therapeutic intervention for neurorehabilitation. The authors
provide evidence for the use of VR in treating motor and mental
disorders such as cerebral palsy, Parkinson’s disease, stroke,

schizophrenia, anxiety disorders, and other emerging clinical
areas.

The fourth and last section in this eBook then covers
research approaches using eye movement measures including
pupilometric methods and other peripheral physiological
methods like ECG. The first study in this section by Causse et al.
uses EEG and pupilometry to investigate the impact of high
working memory load on language processing during piloting.
The results demonstrate high working memory load to disrupt
visual and language processing and a subtle effect of congruency
that was observable only at an electrophysiological level. In the
study by Leff et al. the authors use a collaborative gaze channel
(CGC) to detect and display trainer gaze behavior to trainees
in surgery tasks. The results of a simulated robotic surgery task
imply liberation of attentional resources with the use of CGC
potentially improving the capability of trainees to attend to
additional safety critical events during the procedure. Causse
et al. then demonstrate that the pupil diameter correlates with
inattentional deafness in an air traffic control task with varying
perceptual and cognitive load.

The final contribution to this Research Topic is a review
on neuroscientific methods in automation research by Drnec
et al. The authors provide a comprehensive overview on
neuroscientific methods in trust in automation research and
summarize how neuroscience can improve interaction design.

CONCLUDING REMARKS

Neuroergonomics has demonstrated an incredible development
since the introduction of the field by Raja Parasuraman. This
Research Topic demonstrates how different methods can be used
to better understand the mind, body, and brain at work and to
create and design systems that are better adapted to and make
use of the human information processing structures, including
the body and the brain. This research is important, because it
allows for a human-centered design of environments that include
natural behaviors.
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The non-invasive recording and analysis of human brain activity during active movements
in natural working conditions is a central challenge in Neuroergonomics research.
Existing brain imaging approaches do not allow for an investigation of brain dynamics
during active behavior because their sensors cannot follow the movement of the
signal source. However, movements that require the operator to react fast and to
adapt to a dynamically changing environment occur frequently in working environments
like assembly-line work, construction trade, health care, but also outside the working
environment like in team sports. Overcoming the restrictions of existing imaging methods
would allow for deeper insights into neurocognitive processes at workplaces that
require physical interactions and thus could help to adapt work settings to the user.
To investigate the brain dynamics accompanying rapid volatile movements we used
a visual oddball paradigm where participants had to react to color changes either
with a simple button press or by physically pointing towards a moving target. Using a
mobile brain/body imaging approach (MoBI) including independent component analysis
(ICA) with subsequent backprojection of cluster activity allowed for systematically
describing the contribution of brain and non-brain sources to the sensor signal. The
results demonstrate that visual event-related potentials (ERPs) can be analyzed for
simple button presses and physical pointing responses and that it is possible to
quantify the contribution of brain processes, muscle activity and eye movements to the
signal recorded at the sensor level even for fast volatile arm movements with strong
jerks. Using MoBI in naturalistic working environments can thus help to analyze brain
dynamics in natural working conditions and help improving unhealthy or inefficient work
settings.

Keywords: mobile brain/body imaging, EEG, embodied cognition, independent component analysis, P300, oddball
paradigm, MoBI

INTRODUCTION

Studying human brain dynamics accompanying natural cognition (Gramann et al., 2014) works
best by studying the brain under naturalistic conditions. The embodied cognition paradigm claims
that the body’s interactions with the world are an essential root of cognitive processes (Wilson,
2002). Thus it appears that perception and action should both be considered when studying
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cognitive processes and their neural basis. However,
conventional neuroimaging studies consider electrical
potentials generated by eye movement or muscle activity during
physical movements as artifacts that have to be avoided not to
contaminate the signal of interest. This view led to experimental
setups that restrict participants’ mobility and require them
to sit still or lie even in tasks that would require standing or
moving (Makeig et al., 2009; Gramann et al., 2011, 2014). These
constraints are changing the way information is perceived
and processed by the human agent as becomes obvious, for
example, with respect to the integration of proprioceptive and
vestibular information (Gramann, 2013). This kind of idiothetic
information is absent when movement is restricted or altered
in case the body orientation differs from its natural state for
a particular task. Following the embodied cognition approach
those alterations will change the concurring cognitive processes
and thereby lead to different brain activity.

Neuroergonomics as the scientific study of the human brain
in relation to performance at work and everyday settings
(Parasuraman, 2003) is faced with the challenge to investigate
the brain dynamics in environments that require physical
interaction of the operator with a system. New insights into brain
activity during physical human-machine interaction allow for the
improvement of systems to adapt to the operators’ physical and
cognitive resources (see e.g., Wascher et al., 2016; Mijovic et al.,
2016). However, traditional brain imaging approaches do not
allow for any kind of movement (Makeig et al., 2009; Gramann
et al., 2011). Mobile brain/body imaging (MoBI), in contrast, is
a general research approach that embraces a variety of (the best
fitting) hardware and software solutions to record and analyze
brain dynamics in actively behaving participants. Lightweight
and mobile sensors like electroencephalography (EEG) or
near infrared spectroscopy (fNIRS) agree with experimental
paradigms using a MoBI approach to study the brain and
body dynamics that accompany natural cognition and behaviors
including physical interaction with an environment (Mehta
and Parasuraman, 2013; Gramann et al., 2014). While fNIRS
provides relatively high spatial resolution of a restricted cortical
surface, this methods lacks the high temporal resolution that
is desirable when investigating fast cognitive processes. EEG
provides the necessary temporal resolution but has only limited
spatial resolution. However, recent investigations using MoBI
have demonstrated that equivalent dipole reconstruction of
independent components (ICs) as decomposed by independent
component analysis (ICA) allow for reconstructing the origin
of EEG activity with reasonable spatial accuracy (Gramann
et al., 2010a; Acar and Makeig, 2013). In conclusion, mobile
EEG allows for an investigation of cognitive processes in
working environments with high temporal resolution and with
sufficient spatial resolution to allow for conclusions regarding
the underlying cortical sources and their neuroanatomical
function. Such a MoBI approach no longer considers eye
movements and muscle activity as artifacts but as aspects
of cognitive activity associated with the accomplishment of
a task (Gramann et al., 2010a). By using high density EEG
recordings synchronized with motion tracking of participant’s
movements and data-driven analyses methods it overcomes

existing imaging restrictions and enables participants to behave
more naturally (Makeig et al., 2009; Gramann et al., 2011,
2014).

First MoBI studies investigated participants walking and
running on a treadmill and clearly demonstrated that brain
activity can be analyzed under such conditions (Gramann
et al., 2010a; Gwin et al., 2010, 2011). However, walking is
a highly symmetric recurrent behavior that does not include
fast movements associated with jerk. Stereotyped movements
like walking further allow for extracting templates of artifacts
based on recurrent movement patterns (Gwin et al., 2010). It
is important to investigate to what extent MoBI can be used to
measure and analyze brain dynamics during nonstereotyped and
aperiodic behaviors that include sudden orientation movements
or manual interaction with dynamic systems. First, such an
approach could be used to determine how much traditional
brain imaging results restricting participants’ movements deviate
from results in actively moving, more naturally behaving
participants. Secondly, if feasible, such an approach would
significantly increase the number of conceivable neurocognitive
studies especially in the fields of physical ergonomics and in
human-machine interaction that require physical manipulation.
Insights gained from MoBI studies comprising natural recurrent
and non-stereotyped movements would thus open up new
vistas for investigating cognition and action within the field of
Neuroergonomics and beyond.

This study investigated the feasibility of MoBI during
physical interaction with a dynamic system based on non-
stereotypical fast movements. The setup mimicked real-world
working environments that require physical interaction in a
dynamically changing system. Dynamic changes in the system
were simulated using a three-stimulus visual oddball paradigm
(Grillon et al., 1990) with participants reacting either by simple
button presses or by pointing at the moving stimulus. We
examined whether it is possible to record and analyze an event-
related P3 component during rapid pointing movements that
include strong eye movement and neck muscle activities. To this
end we compared event-related potentials (ERPs) at the sensor
level with ERPs back projected from ICs that decomposed the
sensor data into maximally statistically independent time source
series using ICA. By separating brain processes from activity
generated by muscles and eye movement and comparing these
to the scalp recorded potential allowed for a direct comparison
and evaluation of the feasibility of standard sensor based analyses
approaches during active pointing movements. In addition,
isolation of brain related activity patterns and their contribution
to the surface signal allowed for a quantification of how much
certain ICs representing brain processes contributed to the
surface signal.

MATERIALS AND METHODS

Participants
Data was collected from 15 healthy right-handed adult volunteers
(7 females, 8 males) with a mean age of 26.1 years (σ = 2.9).
All participants had normal or corrected to normal vision,
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FIGURE 1 | (A) Experimental setup: top view of a participant standing in front of the screen. The setup comprised a motion capture system with six cameras (black
rectangles) and 16 emitters (red dots), an EEG system with 156 wireless actively amplified electrodes (black dots), and the transmission system placed in a backpack
(gray). (B) Task design. Top row: a black sphere moved over the projection screen and bounced off the walls of the screen. After changes to the target color
participants responded according to the response condition either with a button press (button press condition) or a pointing movement towards the sphere (physical
pointing condition). After a response or 4 s after a color change the sphere stopped and remained on the screen for 500 ms. Subsequently the next trial started.
Bottom row: example of a trajectory of the sphere changing to the target color.

none reported a history of neurological disease and all provided
written informed consent before the experiment in compliance
with the standards as defined in the Declaration of Helsinki.
The study was approved by the local ethics committee of the
Institute of Psychology and Ergonomics of the Berlin Institute
of Technology according to the guidelines of the German
Psychological Society. Volunteers were compensated 12 e/h for
their participation. Due to technical issues the behavioral data of
three participants had to be excluded from further analysis and all
results reported are based on the final group of 12 participants.

Experimental Design and Procedure
Participants stood in front of a projection screen (W × H: 1.2
m × 1.0 m) with a light gray background placed one arm length
in front of them (Figure 1). Participants had to attend to a three-
stimulus visual oddball paradigm and were asked to react to color
changes of a moving sphere by either pointing to the stimulus
with their right index finger (physical pointing condition)
or pressing a response button (button press condition) on a
Bluetooth remote (Logitech wireless presenter R400, Logitech,
Apples, Switzerland). The response conditions were blocked
and block order was counterbalanced across participants. Each
response condition consisted of five blocks with 50 trials each.

Breaks between blocks within each response condition were
adapted to the participants needs.

Every trial began with a black sphere (ø14 cm) moving from
the middle of the screen in a randomly chosen direction and
being reflected from the borders of the projection screen. Color
changes took place uniformly randomized between 1 and 5 s after
onset of a trial. A change from black to blue indicated a target
stimulus (15%), a change to green indicated a distractor stimulus
(15%), and a change to yellow indicated a standard stimulus
(70%). Participants were instructed to react as fast and correct as
possible to the onset of the target color. After a response, or after
4 s in case no response was given, the sphere stopped moving
and remained on the screen for 500 ms. Thus, the trial duration
for correct non-target trials ranged from 5.5 to 9.5 s with an
average duration of 7.5 s. For target trials the mean trial duration
was shorter because button presses or pointing movements were
executed before the 4 s time window closed. Thus, the duration
of target trials depended on the response onset, movement speed
and movement path. Altogether the experiment lasted about 1 h.

EEG Recording
The EEG was recorded from 156 active electrodes referenced
to Cz with a sampling rate of 500 Hz and band-passed from
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0.016 Hz to 250 Hz (BrainAmps and Move System, Brain
Products, Gilching, Germany). To allow for recording of neck
muscle activity resulting from participants’ head movements, 28
electrodes were placed around the neck using a custom neck
band (EASYCAP, Herrsching, Germany). The remaining 128
electrodes were placed on the head using an elastic cap with
a custom design (EASYCAP, Herrsching, Germany). Electrode
impedances were brought below 7 kΩ. Due to a technical
problem the neck EEG data of one participant was not recorded.
Individual electrode locations were recorded using an optical
tracking system (Polaris Vicra, NDI, Waterloo, ON, Canada).

Motion Capture Recordings
Motion was captured using six cameras tracking the position of
16 red active LEDs (Impulse X2 System, PhaseSpace Inc., San
Leandro, CA, USA) placed on the shoulders, the chest, and the
right arm as well as the right index finger of the participants.
The motion tracking system generated a data stream containing
x, y, and z location and a reliability value for each LED with a
sampling rate of 480 Hz. Before each data acquisition the screen
position and orientation was calibrated to align with the motion
capture coordinate system.

All data streams, namely EEG, motion capture, events
from the experimental protocol, and behavioral data, were
synchronized and recorded using the Lab Streaming Layer
Software (Kothe, 2014).

Behavioral Analysis
In the physical pointing condition, online tracking of the LED
on the participants’ right index finger allowed to stop sphere
movement as soon as the distance between the LED and
the projection screen was smaller than 10 cm (labeled ‘‘hot
zone’’ in Figure 1). This information was also used to create
corresponding event markers. The LED was placed 5 cm apart
from the fingertip approximately over the proximal phalanx
of the index finger. The distance of 10 cm was chosen to
avoid damage to the setup due to impact of the participants’
finger with the screen. Because of occlusions the position of
the finger LED was not recorded correctly in some trials
and event markers were generated that did not match the
movement profile of the participant. For the statistical analyses
only trials with consistent event markers and motion tracking
data of the right index finger were considered. This led to the
exclusion of about 34.4% of the trials per participant in the
physical pointing condition (range: 5.2–69.9%, σ = 21.7%) with
the highest percentage of removals in standard (x̄ = 38.0%)
and distractor trials (x̄ = 38.3%) that required no response.
In these cases event markers indicated a movement even
though in most cases the velocity profile did not indicate a
response. In case of target trials on average only 13.1% were
rejected.

To calculate velocity profiles from the motion capture data
the MATLAB toolbox MoBILAB (Ojeda, 2011) was used.
Occluded samples for each LED were interpolated by using spline
interpolation and the data stream was smoothed by applying a 6
Hz low-pass zero phase distortion FIR filter before computing

the velocity data. Subsequently the velocity profiles in the
z-dimension of the LED placed on the index finger were analyzed
with custom MATLAB scripts detecting pointing movements in
the physical pointing condition on the basis of velocity peaks.
To identify response movements, only the z-axis of the motion
capture data was used indicating motions towards or away from
the screen. This excluded smaller movements not related to the
response. Based on velocity peaks defined as maximum positive
deflections preceding and being followed by lower values, the
onset, and offset of the corresponding movement were defined.
For each color change the time window from 200 to 1800 ms
after stimulus onset was selected to exclude movements unrelated
to the stimulus response. As estimated from visual inspection
only peaks with a velocity of at least 22% of the participants’
maximum finger velocity in the physical pointing condition were
regarded. This excluded smaller jerks and other movements not
related to the pointing behavior. The definition of the movement
onset is important in this context since its time-lag to the color
change was taken as response time and used for further statistical
analysis. The earliest movement onset was defined as the time
point with a velocity of 5% of the subsequent peak velocity.
To allow for a more conservative comparison of response times
in the physical pointing condition with response times in the
button press condition, increasing percentage values (>5%) of
the subsequent maximum peak velocity were analyzed. The
resulting movement onset distributions were then compared
to response time distributions in the button press condition
where no velocity profiles or force time-series could be derived.
Response time statistics were calculated by means of a one-
way analysis of variance (ANOVA) with subsequent correction
for multiple comparisons using honestly significant difference
(HSD) contrasts (Tukey, 1949).

EEG Analysis
EEG Data Preprocessing
Data analysis was done by custom Matlab scripts based on the
open source EEGLAB toolbox1 (Delorme and Makeig, 2004) .
Figure 2 shows a flow chart explaining the whole data processing
pipeline. The data was filtered using a high-pass filter (1 Hz)
and a low-pass filter (120 Hz) and subsequently down sampled
to 250 Hz. Single channels and time periods containing artifacts
were removed by visual inspection of the data. Eye movements
were not considered as artifacts. Artifact rejection was performed
with an EEGLAB function automatically removing channels in
case they contained zero activity for more than 5 s or revealed a
correlation value below 0.6 with neighboring channels and time
windows containing more than 30% noisy channels. On average,
132 EEG channels remained for further analyses (range: 114–142;
σ = 8.1).

In a next step the data was re-referenced to an average
reference and then parsed into maximally temporally
independent and spatially fixed components (ICs; Makeig
et al., 1996) using an adaptive ICA mixture model
algorithm (AMICA; Palmer et al., 2006, 2008) which is a

1http://www.sccn.ucsd.edu/eeglab
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FIGURE 2 | Flow chart explaining the data processing pipeline.

generalization of former ICA approaches as the infomax
(Bell and Sejnowski, 1995; Lee et al., 1999a) and the
multiple mixture approach (Lee et al., 1999b; Lewicki
and Sejnowski, 2000). After the first iteration the model

was trained for 10 iterations rejecting time windows with
a likelihood below 4 standard deviations (SDs). For the
remaining parameters the default settings were used (Palmer,
2016).
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For each IC an equivalent dipole model was computed
using a boundary element head model (BEM) based on the
MNI brain (Montreal Neurological Institute, MNI, Montreal,
QC, Canada) as implemented by DIPFIT routines (Oostenveld
and Oostendorp, 2002). To this end corresponding landmarks
(nasion, ion, vertex and ears) were aligned by rotating and
rescaling each individually measured electrode montage. The
use of an average head model decreases the accuracy of
source localization and thus we refer to the approximation
of the spatial origin of surface activity using the description
‘‘in or near’’ a specific structure. ICs primarily accounting
for brain, eye or neck muscle activity were selected for
further analysis based on their time courses, spectra, and scalp
topographies as well as the location and residual variance
of their corresponding dipoles. Dipoles placed outside of the
head model were not further considered. This resulted in 594
remaining ICs for all participants with an average of 49.5
ICs per subject (range: 31–92, σ = 17.3,

∑
= 594). The

weights and spheres returned from the AMICA decomposition
were copied to the down sampled, high- and low-pass filtered
continuous EEG data excluding the same channels that were
excluded for ICA decomposition. Missing channels were
interpolated.

EEG Group Level Analyses
The continuous data was epoched into 3 s long epochs
with onset of a color change including a 1 s pre-stimulus
baseline. Only epochs with correct responses were included
in the study. Artifactual epochs containing fluctuations above
1000 µV or data values outside of 5 SDs on the sensor level
were rejected in an iterative fashion keeping at least 95% of
the total trial numbers per iteration. The remaining epochs
( x̄ = 370.5 per participant, σ = 53.1) were subsequently
combined into a study. The study comprised a 2 (response
condition) × 3 (stimulus type) factorial design providing main
effects for the two independent variables as well as their
interaction.

Distances between all ICs were calculated with the weighted
measures of ERP, power spectrum (for a frequency range of
3–75 Hz), event-related spectral perturbations (ERSPs), inter-
trial coherences (ITCs), the components’ scalp maps and
their equivalent dipole model locations using the EEGLAB
preclustering function. For all measures (except dipole location
with only three dimensions) a principal component analysis
(PCA) reduced the dimensionality to the first 10 principle
components. The resulting measures were normalized, weighted
and combined into cluster position vectors. Dipole locations
were weighted by a factor of 25 to promote spatially
tight clusters and to compensate for its low dimensionality.
ERSPs were weighted with a factor of 10 as they were
assumed to express the most relevant time-varying information
regarding the task. All other measures were weighted with
the standard weighting of 1. Subsequently a PCA restricted
the resulting cluster position vectors to a 10-dimensional
subspace.

Clustering was done via a K-means algorithm implemented
in EEGLAB with the number of clusters set to 36. By default,

ICs with a distance of more than 3 SDs to the mean of
any cluster centroid in joint measure space were assigned to
an outlier cluster. The same was done manually for ICs if a
cluster contained more than one IC of a participant relying
on the same measures as for the calculation of the cluster
position vectors. The residual variance of the equivalent dipole
models of the remaining ICs was about 10.5% for all ICs
representing brain processes (range: 1.3–47.7%, σ = 7.4%) and
about 23.7% for all other ICs (range: 2.8–69.1%, σ = 14.3%).
Overall, 302 ICs were assigned to the outlier cluster and
292 ICs were assigned to the other clusters (range: 20–30,
x̄ = 24.3, σ = 2.6 ICs per participant). Of those 292 ICs, 106
ICs revealed equivalent dipole locations within the gray matter
of the head model (range: 7–11, x̄ = 8.8, σ = 1.4 ICs per
participant).

RESULTS

Behavioral Data
An exemplary velocity profile for one physical pointing response
with corresponding events derived from the velocity profile and
the system generated markers is displayed in Figure 3 illustrating
a typical pointing movement. In most cases, movements towards
the screen were faster than the subsequent backward movements
to the initial position.

Response times were significantly faster in the physical
pointing condition (x̄ = 383.1 ms, σ = 40.7 ms) than in the
button press condition (x̄ = 515.8 ms, σ = 52.9 ms) when
response onsets in the physical pointing condition were defined
as starting at 5% of the subsequent peak velocity (p < 0.001).
The means for each condition and participant are shown in
Figure 4. Significant differences in response onsets between the

FIGURE 3 | Pointing movement velocity profile as a function of time
with corresponding markers. The y-axis displays the z-component of the
velocity in m/s with positive values corresponding to motion towards the
screen. The blue vertical line indicates a color change of the moving sphere to
the target color. The green and magenta vertical lines indicate the movement
onset and offset, respectively. The red vertical line indicates the velocity peak.
The black vertical line indicates a distance between LED and projection screen
below 10 cm.
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FIGURE 4 | Mean onset response times (threshold criterion 5% of
subsequent max. velocity) for all participants in the physical pointing
and button press condition. x-axis displays the participant index, y-axis the
response time in ms. Error bars show standard deviation.

two response conditions were observed up to a threshold of
53% of the subsequent peak velocity (p < 0.05; x̄ = 474.3 ms,
σ = 41.5 ms).

Response accuracies were very high with an average
of only 0.24% and 7.99% false alarms to color changes
indicating a standard stimulus in the button press and
physical pointing condition, respectively. Incorrect responses
to distractors revealed comparable tendencies with 1.13% and
7.47% false alarms for button presses and physical pointing
responses, respectively. In cases of color changes indicating
a target stimulus only 0.20% misses were observed for the
button press condition and no incorrect responses at all (0%)
in the physical pointing condition. While for both standard and
distractor stimuli more incorrect responses were observed in the
physical pointing condition, target stimuli were associated with
less incorrect responses when participants had to point at the
moving object. However, only 3 out of 12 participants committed
errors in the physical pointing condition while eight participants
committed errors in the button press condition. Due to the
absence of incorrect responses in the majority of participants no
further statistical analyses was conducted. Table 1 displays mean
and standard deviations of response errors in all conditions.

TABLE 1 | Means and standard deviations of response errors for all
conditions.

Physical pointing Button press

Standard x̄ = 7.99%, σ = 0.2155 x̄ = 0.24%, σ = 0.0036
Distractor x̄ = 7.47%, σ = 0.2407 x̄ = 1.13%, σ = 0.0175
Target x̄ = 0.00%, σ = 0.0000 x̄ = 0.20%, σ = 0.0067

FIGURE 5 | Probability of electrodes to be included in subsequent
analyses as a function of electrode location. Warm (red) colors indicate
higher probabilities.

EEG Data
Rapid volatile pointing movements were associated with
increasing artifactual activity stemming from both physiological
and mechanical sources. To correct for artifactual activity, the
EEG signal was cleaned in the time and channel domain (see
‘‘Materials and Methods’’ Section). Cleaning in the channel
domain revealed a specific topography for channels with a high
probability to be removed. Figure 5 displays the probability for
each channel to be included in the analysis plotted with respect
to its scalp position.

Channels were most likely to be removed in five different
regions of the montage with the highest likelihood of removal for
channels located to the left and right posterio-inferior locations
in the montage. One position over the midline located near
Cz and two lateralized areas around FT7 and TP8 also showed
a high likelihood of channel removal. On average, a subset of
24 channels were removed from the montage before further data
analyses (range: 14–42).

Event-Related Potentials on the Sensor
Level
Changes in the color of the moving sphere were associated
with ERPs including a late positive complex at parietal sensors
in the time range of the P3. Figure 6 displays ERPs with
onset of color changes indicating standard, distractor, and target
stimuli for the button press and the physical pointing condition
for the electrode closest to the parieto-central electrode of the
international 10–20-system (referred to as Pz’ in the following).
To investigate differences in the P3 component measured at
the scalp, mean amplitudes in the time range from 400 to
800 ms after a color change were submitted to a 2 (response
condition) × 3 (stimulus type) repeated measures ANOVA.
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FIGURE 6 | Grand average event-related potential (ERP) at Pz’. Upper
panel displays scalp potentials in the button press condition, lower panel
displays scalp potentials in the physical pointing condition. Blue: standard
stimuli, green: distractor stimuli, magenta: target stimuli. The dark gray area
displays the latency range of the mean topographic EEG maps for the different
stimuli and response conditions.

Greenhouse-Geisser corrected p-values are reported in case of
non-sphericity. The results revealed a significant main effect
of stimulus type (F(2,22) = 8.58, p = 0.010, η2 = 0.343) and a
tendency for the response condition (F(1,11) = 3.32, p = 0.084,
η2 = 0.247) but no interaction effect (F(2,22) = 2.99, p = 0.208,
η2 = 0.133). Post hoc HSD contrasts (Tukey, 1949) revealed
that the P3 amplitude for targets in the pointing condition
was significantly higher than for standards in both response
conditions (all ps < 0.009) as well as distractors in the button
press condition (p = 0.02). Comparing P3 amplitudes for targets
and distractors in the pointing condition revealed only a trend
towards significance (p = 0.09) and there was no significant
difference between targets in the physical pointing and the button
press condition (p = 0.14). There were no significant differences
between any of the stimuli in the button press condition (all
ps> 0.70).

While both response conditions were associated with
increased P3 amplitudes for targets as compared to standard
stimuli and distractors, the physical pointing condition
demonstrated stronger amplitude increases in the time range of
the P3 as compared to the button press condition. The stronger
effect in the pointing condition could have been caused by
increased processing demands or a generally higher alertness in
a condition that required fast responses to a dynamically moving
target. However, because the P3 component was located in a time

FIGURE 7 | (A) Equivalent-dipole locations of neck muscle (dark gray), eye
movement (bright gray) and brain-based independent components (ICs) and
their cluster centroids (large spheres, corresponding color) projected to the
horizontal, sagittal, and coronal views of the standard Montreal Neurological
Institute (MNI) brain. (B) Mean projections to the scalp of brain-based IC
cluster centroids with index (Cls #), number of participants (# Ss), and number
of ICs (# ICs) for each cluster.

window that also comprised participants pointing responses,
increased P3 amplitudes might have been confounded with
non-brain related processes. The rather strong jerks of the rapid
pointing movements could have added mechanical artifacts
induced by the movement. In addition, physical pointing at a
moving target required constant coordination of eye, head, and
arm movements that, due to volume conduction of the corneo-
retinal potential and neck muscle activity, likely contributed to
the P3 component at the sensor level. To further investigate to
what extent signals from brain and non-brain sources like eye
movements or muscle activity contributed to the sensor signal
the correspondent independent component processes were
analyzed.

Contributions of Brain, Neck Muscle and
Eye Movement Activity Related ICs
Clustering of ICs resulted in 26 clusters with cluster centroids
located to the gray matter of the brain model or in
regions of the model indicating eye movement or neck
muscle activity. Figure 7 displays clusters of IC processes
(smaller spheres) and their respective cluster centroids (larger
spheres) reflecting brain dynamics, eye movement and muscle
activity.
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TABLE 2 | Variance in µV2 in the −200 to 1000 ms time range for the total data and separately for clusters of eye movement, neck muscle, and brain
activity.

Total variance Eye variance (pvaf) Neck variance (pvaf) Brain variance (pvaf)

Standard Physical pointing 2.39 1.58 (82.4%) 0.03 (3.6%) 0.17 (7.4%)
Button press 3.45 2.12 (87.9%) 0.01 (−0.2%) 0.07 (3.8%)

Distractor Physical pointing 4.46 1.26 (38.2%) 0.56 (12.0%) 0.53 (13.8%)
Button press 3.04 2.71 (83.3%) 0.04 (−2.7%) 0.14 (8.2%)

Target Physical pointing 19.32 1.98 (15.3%) 6.09 (56.6%) 1.33 (10.6%)
Button press 3.17 1.62 (63.9%) 0.05 (3.6%) 0.43 (34.3%)

Brackets show the corresponding pvaf in %. Columns are displaying values separately for the cluster combinations and rows display values to standard, distractor and

target stimuli in the physical pointing and button press condition.

Back projection of event-related activity originating from
different clusters to the sensors allowed for quantifying the
contribution of brain and non-brain sources to the sensor P3
component. ERPs of clusters with a centroid located to the gray
matter of the brain as well as clusters representing eye movement
and neck muscle activity were selected for back projection. The
absolute variance and the percent residual variance accounted
for (pvaf) with respect to the P3 envelope was computed for all
clusters for the time interval between 200 ms before stimulus
onset to 1000 ms post stimulus. The pvaf of a specific cluster
is defined as 1 − R where, R is the quotient of the absolute
variance of the remaining clusters (after excluding the considered
one) and the absolute variance of all clusters. The pvaf has an
upper bound of 100% but can be negative if its projection to the
scalp electrode cancels the projected signal of another cluster.
This can happen in case ICs are spatially non-orthogonal. Pvaf
values were used to estimate the relative share of certain clusters
within one condition. Absolute variances, in contrast, allowed
for comparing the contributions of one or more clusters to
the sensor level in different response conditions where relative
values could be misleading due to differences in overall absolute
activity.

Table 2 shows the resulting absolute variances and pvafs.
Here, the total variance refers to all 36 clusters resulting
from the clustering, while neck variance refers to 12 clusters
indicating neck muscle activity, eye variance refers to two clusters
contributing to horizontal and vertical eye movements, and
brain variance to 12 clusters located to the gray matter of the
brain. Figure 8 displays in gray the back-projected summed
sensor signal envelope based on all brain, eye, and neck muscle
clusters and in red from left to right the contribution of clusters
accounting for eye movements, neck muscle activity, and brain
activity, respectively.

Relative Contribution of Clusters to the
Envelope
Button Press Condition
The relative contributions to the ERP envelope for standard
stimuli in the button press condition was high for eye movement
activity, only marginal for neck muscle activity, and low
for brain processes (eye: 87.9%, neck: −0.2%, brain: 3.8%).
Decreasing contribution of eye movement activity and increasing
contributions of brain processes was observed for distractor

stimuli (eye: 83.3%, neck: −2.7%, brain: 8.2%) and target stimuli
(eye: 63.9%, neck: 3.6%, brain: 34.3%).

Physical Pointing Condition
The contributions to the envelope of the ERP for standard
stimuli in the pointing condition (eye: 82.4%, neck: 3.6%, brain:
7.4%) were similar to those in the button press condition with
slightly stronger contributions of neck muscle activity and brain
processes. This trend grew stronger for distractor stimuli (eye:
38.2%, neck: 12.0%, brain: 13.8%) with a pronounced drop in
eye movement contribution. For targets neck muscle activity
exceeded all other processes considerably (eye: 15.3%, neck:
56.6%, brain: 10.6%).

Absolute Contribution of Clusters to the
Envelope
Button Press Condition
In the button press condition the absolute variance of
all non-brain and brain processes was relatively stable for
standard (3.45 µV2), distractor (3.04 µV2) and target stimuli
(3.17 µV2). The absolute contribution of clusters representing
eye movements revealed 2.12 µV2 for standards, 2.71 µV2 for
distractors, and 1.62 µV2 absolute variance for targets. For
clusters with the equivalent dipole model of the cluster centroid
located in or near regions of the head model indicative of
neck muscles the absolute variance increased from standard
(0.01 µV2) to distractor (0.04 µV2) and target stimuli (0.05 µV2).
The same trend was observed for clusters representing brain
activity contributing 0.07, 0.14, and 0.43 µV2 absolute variance
for standard, distractor, and target stimuli, respectively.

Physical Pointing Condition
In the physical pointing condition the absolute variance
of all non-brain and brain processes strongly increased
from standard (2.39 µV2) and distractor (4.46 µV2) to
target stimuli (19.32 µV2). The absolute contribution of
clusters representing eye movements revealed lower values
compared to the button press condition explaining 1.58 µV2

for standards, 1.26 µV2 for distractors, and 1.98 µV2,
for targets. The absolute variance for clusters representing
neck muscle activity increased from standard (0.03 µV2)
to distractor (0.56 µV2) and target stimuli (6.09 µV2). A
comparable pattern was observed for brain activity with
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FIGURE 8 | (A) Bigger spheres represent cluster centroids and smaller spheres display individual ICs representing horizontal and vertical eye movement activity (left),
neck muscle activity (middle) and brain activity (right). The two clusters representing eye activity in the left column consisted of 12 ICs and 11 ICs, respectively. Neck
muscle activity in the middle column is represented by 12 clusters comprising an average of 7.8 ICs (range: 4–10, σ = 1.5). Brain activity is represented in the right
column by 12 clusters comprising on average 8.8 ICs (range: 6–11, σ = 1.5) from 12 participants. Cluster locations are projected onto the standard MNI brain volume
and displayed in sagittal, horizontal, and coronal views. (B) Red: ERP contributions of clusters representing eye movement (left), neck muscle (middle), and brain
(right) activity. Light gray: ERP envelopes of all 36 back-projected clusters. The dark gray area displays the latency range of the P3 component from 400–800 ms
after a color change. The left and right columns display envelopes for the button press and the physical pointing condition, respectively, with rows displaying from top
to bottom the different stimuli (standard, distractor and target).

the lowest absolute variance for standard (0.17 µV2) and
distractor stimuli (0.53 µV2), followed by target stimuli
(1.33 µV2).

In summary, the absolute variance and the increase in
absolute variance for clusters representing brain and neck
muscle activity were more pronounced in the physical pointing
condition, with clusters representing neck muscle activity
explaining by far the highest amount of the sensor envelope
for target stimuli. In contrast, eye movement contributions were
lower for standard and distractor stimuli in the physical pointing
condition.

Compared to neck muscle and eye movement activity, the
contribution of brain processes to the surface potential was
relatively small in both response conditions demonstrating a
prominent role of non-brain sources for sensor based ERP
analyses during active movements of the head and upper torso.

To further investigate the brain dynamics accompanying
target processing in the physical pointing as compared to the
button press condition, all non-brain clusters were excluded and
only brain-related activity was back projected to the sensor level.

Relative Contributions of Brain Activity to
the Sensor Event-Related Potential
Examining the grand average ERP from back-projecting all
clusters representing brain activity revealed which clusters

TABLE 3 | Variance in µV2 in the 400–800 ms time range for all clusters
contributing to brain activity and separately for the parietal and ACC
clusters.

Total Parietal ACC
brain variance variance

variance (pvaf) (pvaf)

Standard Physical pointing 0.32 0.004 (6.2%) 0.098 (68.6%)
Button press 0.14 0.004 (3.6%) 0.055 (72.5%)

Distractor Physical pointing 0.43 0.020 (11.7%) 0.094 (39.5%)
Button press 0.25 0.010 (20.1%) 0.076 (58.8%)

Target Physical pointing 3.11 0.954 (55.4%) 0.486 (0.3%)
Button press 0.87 0.130 (38.2%) 0.084 (1.5%)

Brackets show the corresponding pvaf in %. Columns are displaying values

separately for the cluster combinations and rows display values to standard,

distractor and target stimuli in the physical pointing and button press condition.

contributed most to the sensor level variance in the time window
of the P3 component of the ERP. Table 3 displays the explained
absolute and relative (pvaf) variance for the parietal and anterior
cingulate cortex (ACC) clusters for each condition in the 400–800
ms time window. For pvafs and absolute variances of all brain
clusters, see Supplementary Table 1.

The absolute variance of the sensor ERP explained by brain
processes increased from standard (0.14 µV2) to distractor
(0.25 µV2), and target stimuli (0.87 µV2) in the button press
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FIGURE 9 | (A) Bigger spheres represent cluster centroids and smaller spheres individual ICs with the cluster centroid located in or near the anterior cingulate cortex
(ACC; left) and the dorsal parietal cortex (right). Cluster locations are projected onto the standard MNI brain volume and displayed in sagittal, horizontal, and coronal
views. One cluster, located in the left ventral ACC (talairach coordinates: x = −5, y = 9, z = 34, corresponding to BA 24/BA 32) consisted of nine ICs. A second
cluster located near the right ventral ACC (x = 3, y = 24, z = 6, near to BA 24) comprised eight ICs and a third located near to the right dorsal ACC (x = 12, y = 26,
z = 31, corresponding to BA 9/BA 32) comprised 10 ICs from 12 participants. For the clusters near the parietal cortex, one was located in the left parietal cortex
(talairach coordinates: x = −19, y = −42, z = 39, corresponding to BA 31) and consisted of 11 ICs. A second cluster located in the posterior parietal cortex (x = 11,
y = −66, z = 38, corresponding to BA 7) comprised seven ICs from 12 participants. (B) Red: ERP contributions of the clusters located in or near the ACC and the
parietal cortex, respectively; light gray: ERP envelope computed by back-projecting all clusters located in the gray matter of the brain model. The dark gray area
displays the latency range of the P3 component from 400–800 ms after a color change which was used for calculating corresponding pvafs. The left and right
columns display envelopes for the button press and the physical pointing condition, respectively, with rows displaying from top to bottom the different stimuli
(standard, distractor and target).

condition. The same trend was observed for the physical pointing
condition with lowest absolute variance for standards (0.32 µV2)
and distractor stimuli (0.43 µV2), followed by target stimuli
(3.11 µV2). The amount of variance explained and the increase
in explained variance was stronger in the physical pointing
condition.

The general pattern observed for the contribution of all brain
clusters was also observed for the backprojection of a subset
of clusters with their centroids located in or near the anterior
cingulate and parietal cortex. Three clusters (Cls 5, 21, and
24) representing brain activity in or near the ACC explained
lower absolute variance for standard (0.098 µV2) and distractor
stimuli (0.094 µV2) than for target stimuli (0.486 µV2) in
the physical pointing condition. A different contribution was
observed in the button press condition with increasing absolute

variance for standards (0.055 µV2) to distractors (0.076 µV2),
and targets (0.084 µV2). Because of the general increase in
absolute variance in the target condition the relative contribution
of the ACC clusters was considerably more pronounced for
standard and distractor stimuli than for the target related P3
(see Figure 9). The relative contribution of the ACC clusters
for standard stimuli was 68.6% and 72.5%, for distractor
stimuli 39.5% and 58.8% and for target stimuli 0.3% and
1.5% in the physical pointing and the button press condition,
respectively.

Parietal clusters explained increasing variance with the lowest
contribution for standard stimuli (0.004 µV2), followed by
distractor (0.010 µV2) and target stimuli (0.130 µV2) in the
button press condition. This increase from standard to target
was also observed for the physical pointing condition with 0.004,
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0.020, and 0.954 µV2 for standard, distractor and target stimuli,
respectively. With 55.4% in the physical pointing condition and
38.2% in the button press condition the two parietal clusters
contributed the most to the P3 signal for target stimuli. The
right panel of Figure 9 displays two clusters located in or
near the parietal lobe and their summed backprojected ERP
activity relative to the envelope of all ICs representing brain
activity.

Beyond the contribution of the described clusters located in or
near the ACC and parietal lobe, other clusters also contributed
to the sensor envelope for target stimuli in the P3 time range
in the physical pointing condition. These clusters were located
in or near the junction of the left parietal and occipital cortex
(x = −40, y = −73, z = 27 corresponding to BA 39/BA 19)
explaining 38.3%, the right motor and premotor cortex (x = 40,
y = −6, z = 54, corresponding to BA 6/BA 4) explaining 14.8%,
and the left dorsolateral prefrontal cortex (x = −43, y = 22,
z = 31, corresponding to BA 9) explaining 9.8% of variance of
the sensor envelope (see Supplementary Table 1 for additional
cluster contributions in the button press condition).

The Contribution of Brain Activity to the P3
at Pz’
To analyze the brain dynamic contribution to the maximum
of the P3 at the central parietal electrode, only ICs with their
equivalent dipole model located to the gray matter of the brain
were back projected to Pz’ (see Figure 10). The resulting summed
activity was analyzed with respect to the response condition and
stimulus type. To this end mean ERP amplitudes at Pz’ were
calculated for a time window ranging from 400 to 800 ms after
a color change of the sphere and tested for statistical differences
using a 2 × 3 repeated measures ANOVA with the factors
response condition (physical pointing vs. button press) and

FIGURE 10 | Grand average ERP at Pz’ based on backprojection of
clusters representing brain activity. Upper row displays scalp potentials for
the button press condition, the lower row for the physical pointing condition.
Blue: standard stimuli, green: distractor stimuli, magenta: target stimuli.

stimulus type (standard, distractor, target). Greenhouse–Geisser
correction was performed in cases where the assumption of
sphericity was violated.

The analysis revealed a significant main effect of the response
condition (F(1,11) = 11.70; p = 0.006; η2 = 0.515) and stimulus
type (F(2,22) = 16.04; p = 0.001; η2 = 0.593). The interaction
of both factors was also significant (F(2,22) = 12.47; p = 0.003;
η2 = 0.531). Post hoc HSD contrasts revealed that P3 amplitudes
were significantly higher for targets in the pointing condition as
compared to standards and distractors in the pointing condition
(all ps < 0.001) as well as for standards, targets, and distractors
in the button press condition (all ps< 0.001). In the button press
condition the P3 amplitude was significantly higher for targets
than for standard stimuli (p < 0.02) but did not differ from
distractor stimuli (p> 0.19).

DISCUSSION

In the present study, a visual oddball paradigm was used
to investigate the feasibility of MoBI during volatile rapid
movements. The systematic manipulation of response
requirements to color changes of a dynamically moving object
allowed for a direct comparison of ERPs during simple button
presses and active physical pointing. Whereas earlier studies
demonstrated that treadmill walking introduces comparatively
more eye movements than neck muscle activity (Gramann
et al., 2010a) the impact of neck muscle activity was much
stronger in the present study with non-stereotyped pointing
movements accompanying a wide range of different velocities
and movement directions. To react properly in the physical
pointing condition participants were requested to move fast
and accurately requiring continuous tracking of the stimulus
accompanied by eye and head movements and, whenever a target
appeared, rapid arm and head movements integrating visual
information from the dynamically moving object to intercept
the target. This mimicked the fundamental difference between
traditional imaging approaches using simple button responses
and the MoBI approach allowing for natural interaction with the
environment.

The present study revealed important new insights into
the brain dynamics accompanying physical interaction with
a moving object. Firstly, the study clearly demonstrated that
MoBI is feasible for recording and analyzing embodied cognitive
processes and the accompanying brain/body dynamics during
volatile rapid movements in a realistic 3-D environment.
Secondly, applying blind source separation methods to the EEG
signals recorded during the visual oddball paradigm allowed
for separating and clustering ICs corresponding to neck muscle
activity, eye movements or brain processes. This way it was
possible to analyze the contribution of different clusters to the
scalp signal revealing strong activity of neck muscles during
the physical pointing response resulting from head orientation
changes and compensation of shoulder and arm movements
during pointing. Thirdly, movement onsets and corresponding
reaction times in the physical pointing condition demonstrated
significantly faster response onsets as compared to the button
press condition. Fourthly, analysis of the data in the time range

Frontiers in Human Neuroscience | www.frontiersin.org June 2016 | Volume 10 | Article 306 | 22

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Jungnickel and Gramann Measuring EEG during Prompt Movements

of the P3 component revealed a clear P3 in both response
conditions at the sensor level as well as the level of cluster
activity. This manifested in significantly higher mean ERP
amplitudes for target stimuli as compared to standard stimuli as
well as increasing absolute variance for standard, to distractor,
and target stimuli in both response conditions. Finally, back-
projecting all brain-related clusters to the centro-parietal sensor
showed significantly higher P3 amplitudes for target stimuli in
the physical pointing condition compared to the button press
condition. This finding indicates different brain dynamics for
different behavioral states and has far-reaching implications in
the field of Neuroergonomics.

Natural Cognition and the Contribution of
Brain and Non-Brain Sources
During physical interaction with a dynamically moving object,
non-brain sources stemming mainly from eye movements and
neck muscle activity as well as mechanical artifacts strongly
diminished the observable fraction of brain activity recorded
on the scalp and avoided meaningful analysis of sensor-based
potentials without further preprocessing. However removing all
ICs not associated with brain activity allowed for analyzing the P3
component and the contribution of different clusters to its time
course revealing the following findings.

Clusters contributing to the sensor P3 component were
mostly in line with the results of previous studies. As in Makeig
et al. (2004), central parietal, motor and occipital processes
contributed to the P3 with the largest contribution of parietal
clusters to the onset of target stimuli. The contribution of brain
processes located near or in the ACC was in line with previous
findings using an oddball paradigm during treadmill walking
(Gramann et al., 2010a).

The explained variance of brain related sources increasing
from standard, to distractor, and target stimuli were found in
both response conditions, with a stronger effect in the physical
pointing condition. This is consistent with the assumption
that a potential physical interaction with the environment
requires additional cognitive and motor processes and thus
leads to higher computational effort. In the present study it
was necessary to track the position and movement direction
of the relevant object and body parts required for orienting
to and interacting with the stimulus. Physical interaction with
target stimuli required action planning, execution, and control.
Those processes were not required for frequent standard and
rare distractor stimuli reflected in smaller amplitudes and
lower variance in clusters reflecting brain processes. However,
distractors attracted more attention and potentially triggered an
initial response. This response had to be suppressed resulting in
additional inhibitory processes and accompanying brain activity
as indicated by higher variance for distractor stimuli than for
standard stimuli.

Clusters representing neck muscle activity also accounted
for increasing variance from standard, to distractor and target
stimuli in both conditions. The increase was stronger in the
physical pointing condition where a correct response to the target
required a pointing movement comprising movement of the
head, shoulder and arm. Those movements were accompanied

by strong neck muscle activity as observed for target stimuli
in the physical pointing condition. Since the readiness to act
was very high, as indicated by faster response times and the
absence of any misses, it is likely that rare distractor stimuli
caused the initiation of response movements. Even in case
the response was subsequently inhibited for distractor stimuli,
response initiation would be reflected in higher neck muscle
contribution to distractor than to standard stimuli.

Finally, clusters representing eye movements explained more
variance in the sensor signal in the button press as compared
to the physical pointing condition for standard and distractor
stimuli. One possible explanation is that in the physical pointing
condition head alignment to the stimulus position facilitated
physical movements in that direction. As a consequence of
increasing head movements during stimulus tracking, less eye
movements were required for keeping the moving stimulus
in the visual field. However, since the sphere kept moving
after the color change, successful pointing movements to
targets required an ongoing prediction of its future position.
This caused extended coordination of eye and arm movement
resulting in an increase of variance explained by eye movements.
In the button press condition a simple button press was
sufficient to respond to a color change requiring no further
coordination of eye movement and physical response. In
addition, the visual stimulus stopped moving after response
execution rendering stimulus tracking unnecessary. This would
have resulted in a decrease of corresponding variance for
target trials compared to distractor and standard trials in both
conditions.

Limits of MoBI
The present study required continuous head and eye movements
during stimulus tracking causing electrical potentials on
the surface electrodes superposing the EEG signal. This
happened especially for target stimuli in the physical pointing
condition where a correct response demanded arm movements
accompanied by strong jerks associated with increased neck
muscle activity. Subsequently no significant mean ERP difference
was found on the scalp electrodes in the P3 time range between
physical pointing and button press for target stimuli. Volume
conducted non-brain activity in the recorded EEG signal is an
inevitable consequence of active movements of the participants.
Using ICA for separating brain related from non-brain related
activity and back projecting the former to the Pz’ revealed
the expected differences between those conditions. Thus, MoBI
proved feasible for analyzing event-related EEG dynamics of
participants performing rapid pointing movements in a realistic
3-D environment.

However some caveats were identified in this study indicating
potential constraints of the MoBI approach for investigating
natural movements. These included an increase of artifact
contaminated trials and channels as well as higher residual
variances compared to EEG studies with stationary participants
that are not allowed to move their heads.

A relatively high number of trials had to be removed
due to inconsistencies between markers written online
during the experiment and those derived afterwards from
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the velocity profiles. Thus the amount of considered data
was decreased impeding statistical analysis especially in the
physical pointing condition. Future MoBI experiments will
need a setup fully covered with fixed cameras minimizing the
risk of LED occlusions and camera movement causing such
inconsistencies.

Related to the reduced number of trials due to technical
problems, the impact of movement-related mechanical artifacts
like cable sway was reflected in a specific distribution of
the probabilities for channels to be removed. Jerks and
micromovements of the electrodes over the skin surface
associated with fast response movements led to impedance
changes with strong artifactual activity affecting the outmost
neck electrodes in the posterio-inferior regions. The central
midline area as well as the two lateral regions over the scalp
in contrast were most likely affected by cable pull during head
movements due to the cable routing over the scalp to the back.
This is one likely explanation for the high rejection rate of
those electrodes. The lateral regions near the mastoid processes
were predestined for bad contact with high impedance leading
to artifactual activity due to the fit of the cap. For further
MoBI experiments a redesign of electrode attachment or cable-
free electrodes has to be considered to increase the number of
channels that can be analyzed.

Finally, in contrast to non-MoBI studies the ICA results
revealed many ICs with large residual variances that would
not be included into the clustering process applying standard
selection criteria (e.g., Gramann et al., 2010b). However muscle
activity and eye movements originate in regions of the head
that are usually not included in the head model for source
reconstructions rendering it difficult to calculate suitable dipole
models. Moreover, muscle contraction causes tissue movements
which could result in dipole displacement. Thus, although in
general higher residual variance is associated with decreased
result accuracy, dipoles with relatively large residual variances
were included in the analysis. A future improvement would be
the introduction of forward models including neck muscles and
their contraction profiles as additional parameter for the inverse
solution.

Implications on Neuroergonomics
Research
The faster response onsets in the physical pointing condition
might be the consequence of another brain dynamic state caused
by the need of physical interaction with the stimulus. In addition,
the physical pointing condition might have led to increased
motivation and more fun for this response format as reported by
the participants after the experiment. However, using movement
and velocity profiles for the purpose of additional brain activity
analysis requires the definition of corresponding features that
are widely used and accepted. Defining the movement onset
as a fixed percentage of the corresponding maximum velocity
as in this study was only one possible solution. Other criteria
might be useful in different contexts like a fixed absolute
velocity or acceleration value which would be independent of
individual movement differences. A general definition should
be discussed and established to increase comparability of

experimental results in the field of Neuroergonomics and for
MoBI research in general. Importantly, comparing different
onset criteria starting from 5% of the corresponding peak velocity
up to 53% of the corresponding peak velocity still indicated
faster responses in the physical pointing condition as compared
to button presses. Whether this was simply due to the fact that
participants enjoyed the physical response format or whether
interception of a dynamically moving objects was associated
with a generally different behavioral and brain dynamic state
will have to be investigated in future experiments. There are
clear arguments in favor of state differences in brain dynamics
depending on the behavioral state. Introducing a task that
requires large volatile movements not only produces muscle
activity and eye movements but also requires additional processes
that allow for movement planning, control and execution.
This additional processes will be reflected in changes in brain
dynamics. Moreover, the oddball paradigm required constant
attention directed towards a sphere that moved within the
borders of a large screen in front of participants. In addition,
the physical pointing condition necessitated the prediction
of the targets’ movement to integrate this information with
proprioceptive information about position and orientation of
the arm and hand for concurrent dynamic motor planning
and execution. Continuous observation and integration of
environmental aspects with complex motor programs causes
higher computational effort and can be assumed to lead to
different brain dynamic states compared to passive observation.
This is indicated by the significantly increased amplitude of the
P3 and faster response onsets in the physical pointing condition
compared to the button press condition. It would be important
for future investigations to analyze the impact of stimulus speed
on the brain dynamic state since higher speeds increase task
difficulty and thus affect head and eye movement velocities.

This has significant implications for Neuroergonomics
investigating the brain at work, especially in case the working
environment requires physical interaction with a dynamic
system. The physical pointing task required the participants
to actively interact with their environment using fast, precise
movements of the upper torso and the arm and hand. This
generalizes to a wide range of working tasks where people
have to manipulate objects as, for example, in assembly-line
work or construction trade. Future studies might investigate the
brain dynamics underlying spatially extended movements with
different velocities including team sports or spatial orientation
with or without navigation assistance. Studying the brain activity
in the described work settings could provide valuable insights
into the cognitive processes and the limits of the cognitive
system and thus allow for suggestions how to increase system
safety. For example, the degree of interaction seems to be
one factor improving working environments by influencing
motivation, reaction time and task complexity. Another factor
to be considered is the body posture since active movement is
naturally associated with an upright posture whereas cognitive
neuroscientists still investigate sitting or lying participants.
Changes in brain dynamics due to different body postures could
have an impact on result quality and information processing
speed.
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Investigating the human brain dynamics accompanying
physical interaction with dynamically moving objects for the first
time, this study clearly demonstrated that it is possible to record
and analyze EEG activity during volatile rapid movements.
Thus, future MoBI studies examining the mentioned aspects will
have an important impact on Neuroergonomics specifically and
cognitive neuroscience in general.
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Ergonomic assessment of a workplace requires the evaluation of physical as well as

cognitive aspects of a particular working situation. In particular the latter is hardly

possible without interfering in the natural setting. Mobile acquisition of neurophysiological

measures (such as parameters of the EEG) may close this gap. At a simulated workplace

we tracked older and younger participants with mobile EEG during a 4–5 h work

shift. They had to perform either a monotonous cognitive task, a self-paced cognitive

task or a self-paced physical task in a predefined order. Self assessment, behavioral

performance and spectral measures of the EEG (before most alpha power) indicated

that younger participants suffered from monotony. Older adults, on the other hand, were

overall impaired by inefficient information processing. This was visible in EEG variations

time-locked to eye blinks (blink-related synchronizations), a new measure to investigate

cognitive processing in real life environments. Thus, we were able to distinguish between

active and passive task-related aspects of mental fatigue without impinging on the natural

working situation.

Keywords: working environment, mental fatigue, mobile EEG, aging

INTRODUCTION

Evaluation of workplaces may take place on quite different levels. Traditional ergonomics focuses
on physiological and physical factors of working environment, applying surveys to different aspects
of the workplace in order to support and protect the worker (McAtamney and Corlett, 1993;
Hignett and McAtamney, 2000; Halim et al., 2012). More recently, virtual models of humans help
to evaluate many of these aspects of work (Lämkull et al., 2007; Bandouch et al., 2008). Cognition,
however, and human factors affecting cognition, can be addressed only superficially in real life
situations. While experimental psychology may address distinct cognitive aspects that play a role in
working situations, this can hardly apply for the complex interaction of cognitive requirements that
a worker faces during a work shift. Neurophysiological measures that can be taken while regular
work is performed may help to close this gap. In particular, the increasing accessibility of mobile
neurophysiological technology that allows for an “online” registration of work-related parameters
is a huge challenge and chance for ergonomic evaluation (Wascher et al., 2014a).
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In the present study, we focused on a neuroergonomic
evaluation of the interaction between mental fatigue and age-
related changes in cognitive performance. The proportion of
employed older adults is continuously increasing with the general
demographic change. While older employees may benefit in
many cases from professional experience, they are also facing
physiological and cognitive decline, which makes it difficult
to keep up with their younger colleagues, in particular when
long-term working situations are considered. There is some
evidence from laboratory experiments that not only physical
but also mental fatigue raises faster with higher age (Wascher
and Getzmann, 2014). On the other hand, it has been shown
that varying the cognitive task may prevent older adults from
accelerated raise of mental fatigue (Falkenstein et al., 2002).
However, does this finding hold also for situations in which
varying tasks require flexible retrieval of cognitive and physical
capabilities continuously, as it may be the case during a working
shift?

We addressed this question based on a multi-level model
of fatigue and its possible relation of age-related cognitive
decline by pinning the observed behavior measures down to
neurophysiological mechanisms.

Long lasting activity, independently whether it is physical or
cognitive, leads to a decline in capabilities of a worker (Halim
et al., 2012; Lerman et al., 2012). Despite this communality
and the usage of the common term of “fatigue,” physical and
cognitive declines have quite different underlying mechanisms
and consequences. Physical fatigue goes along with metabolic
changes in the muscle, which leads a decline in physiological
capabilities. Additionally, an increase in the plasma fatty acid
level may lead to an increase in tryptophan. This is assumed
to increase the 5-HT concentration in the brain and thereby
contributing to central fatigue (Newsholme et al., 1992), a mental
contribution to physical fatigue. Although central aspects may
play an important role for the accessibility of physical resources
(Marcora et al., 2009; Mehta and Parasuraman, 2013), the
peripheral exhaustion of resources is the core aspect of physical
fatigue.

Mental fatigue, on the other hand, is not known to go along
with any physiological resource consuming aspect (Hockey,
2013). Apart from circadian rhythms and sleeping behavior
(sleep-related fatigue = SR), mental fatigue may derive either
from cognitive overload (active task-related fatigue = aTR) or
from mental underload (passive task-related fatigue = pTR) due
to, e.g., monotony (May and Baldwin, 2009). Those latter two
mechanisms end up in distinct types of fatigue that have different
consequences for subsequent activity. While mental aTR was
found to persist even after completion of the task and not to
depend on the amount of motivation (van der Linden et al.,
2003), pTR is strongly coupled with the motivational system
(Boksem et al., 2006; Boksem and Tops, 2008; Bonnefond et al.,
2011). Both in laboratory basic research studies as well as in
applied contexts it was demonstrated that pTR can be efficiently
effaced by incentives. Even after long lasting mental tasks, the
instruction to put more effort into a given task is efficient to
restore cognitive performance almost completely to the level that
has been shown at the beginning of the experiment (Boksem

et al., 2006). Therefore, pTR has been framed in motivational
terms. Boksem and Tops (2008), for example, proposed that pTR
reflects an imbalance between resources invested and outcome.
Whenever the effort that is needed to perform on an adequate
level is too high in relation to the outcome that is generated,
motivation declines and, as a consequence, cognitive processing
becomes less efficient.

Until now, the different aspects of mental fatigue have been
investigated in isolation and under controlled laboratory settings.
However, one has to be aware that most working activities
that require physical and cognitive effort also contain periods
in which monotonous cognitive tasks have to be performed.
Such changes in duties may prevent at least from pTR, as
has been demonstrated in studies that investigated effects of
aging on mental fatigue. When tasks changed during the
experimental session no mental fatigue was observed in older
adults (Falkenstein et al., 2002), whereas performing the same
task for a longer period of time led to a clear age-related decline
of attentional performance (Wascher and Getzmann, 2014).

Age-related effects on pTR are insofar of central interest in
fatigue research as the well-known decline of structures in the
frontal lobe of the human brain (Chao and Knight, 1997) affects
primarily those structures that are also involved in motivational
processes and thereby in upholding cognitive performance
in non-demanding situations (Berridge and Robinson, 1998).
Beside this, lowermuscle strength with higher agemay contribute
to central fatigue when physical demanding tasks are part of a
working situation.

We designed a simulated workplace that resembled the post
room of a German wholesale house (see Funding). The tasks of
the participants recreated parts of the real workflow but were
nevertheless controlled experimental settings. Participants had
to perform a monotonous stimulus-response task, a self-paced
cognitive task, and a physical task (moving and sorting boxes
of different weights and sizes) in a repetitive sequence for about
4–5 h. Behavioral performance was measured in the cognitive
tasks and self estimation of experienced fatigue and motivation
were repeatedly taken. One of the core questions of the present
study was, to what degree a neuroergonomic approach may help
to get objective data from task load, effort, and fatigue-related
changes in cognitive processing. To this end, beside the “classical”
measures of behavioral performance and self estimation, mobile
EEG was recorded continuously, while the participants were
freely moving in an office-like room, dealing with the different
tasks.

Since there is hardly any literature to such experimental
setting, we focused firstly on well-known aspects of the EEG
that have been related to mental fatigue. This includes before
most oscillatory activity. It has been repeatedly shown that brain
oscillations are slowing down with mental fatigue, indicated by
increasing power in the alpha and the theta band of the EEG
(Lal and Craig, 2001; Akerstedt et al., 2004; Wascher et al.,
2014b). Given that most of these studies used longer lasting
monotonous tasks, these effects may be related before most to
pTR. In particular, the increase in alpha activity may well be a
correlate of decreasing motivation and a withdrawal of attention
that lead to a kind of idle state in the sensory and attention
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related structures of the brain (Hanslmayr et al., 2012) that should
be most pronounced in the monotonous stimulus-response task.
The increase in theta activity may be rather related to increasing
effort that is invested to keep performance high (Sarter et al.,
2001, 2006) which should be stronger in self-paced tasks. Most
interestingly, a kind of slowing has been also reported with
increasing age, as indicated by a reduction in the individual alpha
frequency (for a review see Klimesch, 1999), but so far not for
mental fatigue.

Besides these rather energetical aspects of brain activity, we
asked for specific neuronal processes that can be related to
information processing, and how they change with age and
fatigue. In laboratory settings, stimuli are presented at distinct
time points and cortical activity is measured time-locked to
these events (so-called event-related potentials or oscillations).
Such events are not accessible in real life situations. Adding
additional stimuli to a real life situation may substantially alter
the task of participants, leading to, e.g., attentional distraction.
Distinct events from the surrounding that may be identified
by scene cameras would be not comparable across different
tasks, and no sufficient number of repetitions of comparable
events is guarantied. Events that occur independently of a
particular task, repetitively also in real life situations are so-
called eye events. Horizontal eye-movements (e.g., saccades)
are the core human behavior related to spatial orientation of
attention. More interesting for the temporal segmentation of
incoming information are eye blinks that occur primarily at
the end of an information processing sequence (e.g., Doughty,
2001; Wascher et al., 2015). Recently, we demonstrated that time
locking of EEG activity to eye blinks provide reliable measures
for cognitive effort (Wascher et al., 2014a). Because event-
related potentials did not reliably show time on task related
changes in a previous task (see Wascher and Getzmann, 2014),
we applied event-related synchronization/desynchronization
(ERS/ERD; Pfurtscheller and Aranibar, 1979) analyses to the
eye-blink related data. Due to the lower time resolution, these
data might be more robust in complex experimental situations
like a workplace simulation. Moreover, phasic changes in brain
oscillatory activity (in particular in the Alpha band) appear to
be reliable correlates of signal processing (Klimesch et al., 2002;
Müller et al., 2009).

Taken together, applying these methods to a working situation
that resembles a real workplace should provide information
about age and fatigue-related changes in information processing
and the underlying neuronal mechanisms. The aim of the present
study was to go beyond the description of age-related differences
in performance.

METHODS

Participants
Thirteen younger adults (20–29 years old, mean age 25.3) and
12 older adults (55–73 years old, mean age 64.4) took part
in the experiment. All participants had normal or corrected
to normal vision, were of good physical health, and reported
no history of psychiatric or neurological diseases. For the

entire procedure (lasting around 5–6 h including preparation)
participants received 60 e.

Prior to the experiment participants gave written informed
consent. The study was approved by the local ethics committee
and according to the Declaration of Helsinki.

Task, Stimuli, and Procedure
The experiment took place in an office room (3.50 × 4.80m)
with partly covered windows. Tables stood along the walls where
the boxes for the physical task were placed (see Figure 1).
On one of the tables, a computer monitor was positioned
for the presentation of instructions for the physical task and
the cognitive tasks. A research assistant who controlled the
experiment sat in another room and monitored the EEG
recordings. Participants could reach the assistant via phone at all
times. The assistant only entered the room during breaks or to
correct any technical failures if necessary.

The experiment consisted of three tasks, which were repeated
in a predefined sequence within each block. Blocks started
and ended with a computerized version of the d2-task, that
was closely oriented on the original paper-pencil version
(Brickenkamp, 1962). In between, a block of the Simon task was
presented, followed by the physical task and again the Simon task
had to be performed. This procedure was repeated three times
with short breaks in between and added up to an overall duration
of the work shift of about 4–4.5 h. Each subtest was defined for a
pre-defined duration, thus the self-paced tasks were stopped no
matter how many passes were finished.

In the d2-task, three lines of 57 d’s or p’s each with one
to four marks (in the form of single or double quotes) above
and/or below the letter were presented. The participants had to

FIGURE 1 | Schematic layout of the workplace simulation (A). In an

office-like room, participants either had to perform a monotonous or a

self-paced cognitive task at a computer. In between they had to move boxes

between two zones. Thereby they had to follow randomly changing sorting

instructions. This procedure was repeated 3 times in a 4–4.5 h lasting work

shift (B).
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mark as much d’s with exactly two marks as possible in a given
time window using a computer mouse, while simultaneously
ignoring all p’s and the d’s with less or more than two marks. The
participants had 20 s per line. Then a sound signaled to proceed
with the next line. After the three lines were done, a new screen
appeared with three new lines. In each d2-task block, five screens
with three lines each were presented. Overall, one d2-task block
took about 5min. The d2-task served as a self-paced cognitive
task.

In the Simon task (Simon, 1969) one of two symbols (either
a square or a diamond) was presented on the left or the right
side of a fixation cross for 150ms. The participants had to
decide which one of the symbols was shown by responding
with either the left or the right hand, while ignoring the side
on which the stimulus was presented. Thus, a trial could be
either corresponding (stimulus presentation and response on
the same side) or non-corresponding (stimulus presentation
and response on different sides). The inter-stimulus interval
was 1800 (±500) ms, and 704 stimuli were presented overall.
Each block of the Simon task took about 21min. The Simon
task served as an externally-paced, monotonous cognitive
task.

Before and after each Simon task the participants were asked
to rate their subjectively experienced amount of mental fatigue
and their motivation to continue with the task on a 9-point Likert
scale.

In the physical box-sorting task (Boxes), participants had to
handle 12 cardboard boxes of three different sizes and three
different weights (0.5–15 kg). The boxes were placed on waist
high tables, which formed two “zones” on opposite sides of
the room. The distance between the two opposite zones was
about 190 cm. Participants had to carry the boxes between these
zones. They had to sort them according to size, weight, or label,
consisting of either a letter (A, B, C) or a number (1–12) both
attached to the boxes. Boxes always had to be arranged in three
groups of four objects each. In case of sorting by numbers, boxes
1–4, 5–8, and 9–12 had to be put together. In case of sorting by
letters, boxes A, B, and C had to be put together. The sorting rules
were presented on a computer screen. After finishing one sorting
task the participant had to press a button on the keyboard to get
new instructions. The order of the sorting rules was randomized.
There was no time limit for a single sorting task. Overall, one
physical task block was performed for 25min. A message on the
screen signaled the ending of the block. The physical task was not
paced at all.

EEG Data Recording and Processing
EEG was recorded from 60 standard electrode sites using an
active electrode system (ActiCap; BrainProducts). Vertical eye
movements and blinks were measured from two electrodes
above and below the right eye (vEOG). Two electrodes at the
outer canthi of both eyes were used for the measurement of
horizontal eye movements (hEOG). Electrode impedance was
kept below 10 k�. EEG and EOG were digitized at 1000Hz
and submitted via a WiFi module (MOVE; BrainProducts) to
a BrainAmp MR plus EEG amplifier (BrainProducts). Data was
recorded with a resolution of 0.1µV, a Low Cutoff at DC

and a High Cutoff at 250Hz. Transmitter and the ActiCap
Control Box were placed in a belt bag at the lower back
of the participants. They could move around without any
restrictions.

Data were offline re-referenced to averaged mastoids and
a bandpass filter (0.5–45Hz) was applied. Data were set up
both for regular and event-related frequency analyses (event-
related desynchronizations/synchronizazions = ERD/ERS: see
Pfurtscheller and Aranibar, 1979; Klimesch, 1999; Pfurtscheller
and Lopes da Silva, 1999). Because of the large structural
differences between tasks, no task-inherent temporal markers
for event-related analyses were available across tasks. Therefore,
we referred to eye blinks as temporal marker for information
processing (Wascher et al., 2014a, 2015). Only singular blinks
were used for this procedure, which were not followed
by another blink within 700ms. Additionally, blinks were
excluded that were accompanied by marked horizontal eye
movements (for more detailed information about the blink
detection mechanism, see Wascher et al., 2015). Data segments
from −1000 to 2000ms around the maximum of blink-related
activity in the bipolar vEOG were extracted. An interval
between −450 and −250ms served as baseline. This interval
was selected to avoid any temporal overlap with ongoing
vertical eye movements. After statistics-based artifact removal
as implemented in EEGLAB (Delorme and Makeig, 2004), an
independent component analysis (ICA) was applied (data down-
sampled to 250Hz). Independent components (ICs) reflecting
artifacts were identified and rejected using ADJUST (Mognon
et al., 2011). The remaining ICs were tested for biological
plausibility based on their scalp maps. The goodness of fit
for modeling each IC with a single equivalent current dipole
was calculated by submitting individual component maps to an
automatic source localization algorithm (DIPFIT, contributed to
EEGLAB by Oostenvelt et al., 2003), using a standard four-shell
spherical head model. Any IC with a residual variance of more
than 40% was automatically removed from the data (for a similar
procedure see Debener et al., 2005).

For the analyses of frequency spectra, fast-fourier
transformations (FFTs) were applied to the extracted segments,
using the spectopo function of EEGLAB. In order to provide a
sufficient resolution of frequencies, data were padded with zeros
to a length of 2048 data points (freqfrac = 4). For ERD/ERS
analyses, the matrix of valid ICs was projected back to the
continuous data set for band-pass filtering (4–7.5Hz for Theta
activity; 8–12Hz for Alpha activity). Segments that were marked
as artificial in the preprocessing pipeline were removed from
those data as well.

Data Analysis
Self Assessment
Analyses of variance for repeated measurements (ANOVAs)
were conducted for the subjective measures (i.e., the
rated mental fatigue and rated motivation to continue
the task) with the between-subject factor Age (younger,
older), and the within-subject factors Time on Task (ToT;
across the three blocks) and Sequence (order within each
block).
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Behavioral Data (Simon Task)
ANOVAs were conducted for response times and error rates in
the Simon task with the between-subject factor Age (younger,
older) and the within-subject factors ToT, Sequence (task run
before vs. after physical task), and S-R Correspondence (relates
to the spatial relation between stimulus and response location:
corresponding vs. non-corresponding).

EEG Data
All EEG analyses were restricted to FCz and POz, two electrodes
that are commonly reported in studies investigating mental
fatigue.

Since several individuals in the sample showed either multiple
peaks in the EEG spectrum or no peak at all, we chose the gravity
frequency method in order to determine the individual Alpha
frequency (IAF; see Klimesch, 1999). Gravity frequency (GF) is
defined as the weighted sum of spectral estimates in the Alpha
range divided by the total Alpha power (Goljahani et al., 2012).
Extracted power measures were individually adjusted to GFs (for
a review see Klimesch, 1999). Lower alpha power was defined as
the mean power between GF–2Hz and GF. Upper Alpha ranged

fromGF to GF+ 2Hz, Theta fromGF− 5 to GF− 3Hz and Beta
from GF + 5 to GF + 18. GF and the mean power in all bands
were entered into ANOVAs with the between subject factor age
and the within subject factors Task (3; D2, Simon task, Boxes),
Time on Task (3), and Electrode (2; FCz, POz).

For ERD/ERS analyses, band-pass filtered data were squared
and set into relation to the mean power in the baseline (−1000 to
0ms relative to the blink maximum). The most impressive effect
occurred immediately after the re-opening of the eyes (see also
Figure 8). Therefore, ERD/ERS were measured in a distinct time
windows between 0 and 300ms after the blink maximum. Mean
ERD/ERS were calculated for this time window and entered into
the same analysis as power values and GF.

For factors with more than two levels, Greenhouse-Geisser
adjusted p-values are reported where appropriate. Additionally,
effect sizes by means of partial eta squared (η2

p) are reported for
significant results. Post-tests were Bonferroni corrected. Signal
analyses were performed on MATLAB R©. All statistical analyses
were conducted using GNU R (R Core Team, 2012). Plots were
drawn using VEUSZ (Jeremy Sanders, 2013; http://home.gna.
org/veusz/).

FIGURE 2 | Sequence of task and outcome of the self assessment. Fatigue increased and motivation decreased with time on task. In particular after the

monotonous Simon task (t1 and t3).
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RESULTS

Self Assessment
Fatigue increased with ToT, F(2, 48) = 9.70, p = 0.001, η2

p = 0.29,

and motivation decreased, F(2, 48) = 13.92, p < 0.001, η2
p = 0.37.

For both scales (see Figure 2), a clear modulation was found
with the task performed [fatigue: F(3, 72) = 56.04, p < 0.001,
η
2
p = 0.70, motivation: F(3, 72) = 28.94, p < 0.001, η2

p = 0.55].
In particular, after the Simon task self-experienced fatigue was
high and motivation was low. The time on task effect was more
pronounced in older participants for mental fatigue, interaction
ToT by Age: F(2, 48) = 3.33, p = 0.061, η2

p = 0.12, but not for
motivation ratings, F(4, 48) = 0.069, p > 0.2, indicating that
older adults experienced a stronger increase in mental fatigue
than younger adults. On the other hand, for both measures some
evidence for an interaction of age by task was found, fatigue:
F(3, 72) = 2.44, p = 0.108, η2

p = 0.09, motivation: F(3, 72) = 3.23,

p = 0.045, η2
p = 0.12, indicating more impact of the Simon task

in younger compared to older adults.

Behavioral Data (Simon Task)
Older adults responded marginally slower than younger
participants in the Simon task (see Figure 3), F(1, 23) = 3.99,
p = 0.058, η

2
p = 0.15, and responses were faster for S-R

corresponding trials, F(1, 23) = 6.25, p < 0.001, η
2
p = 0.76.

No overall effect of ToT was found, F(2, 46) = 2.16, p = 0.132,
η
2
p = 0.09, however, within blocks (Sequence), response times

were faster after the physical task, F(1, 23) = 7.67, p = 0.007,
η
2
p = 0.25. This phenomenon was most pronounced at the

beginning of the experiment, interaction of ToT by Sequence:
F(2, 46) = 3.99, p = 0.007, η2

p = 0.21. No systematic variation
of time on task parameters with age was found.

No age effect was found for error rates, F(1, 23) = 0.40,
p = 0.534, η

2
p = 0.02, but there was an increase of error rates

with non-corresponding trials, relative to corresponding trials,
F(1, 23) = 39.31, p < 0.001, η

2
p = 0.63. Error rates slightly

increased with ToT, F(2, 46) = 5.16, p = 0.013, η2
p = 0.18. The

latter effect was more pronounced in younger adults, interaction
ToT by age: F(2, 46) = 2.79, p = 0.079, η2

p = 0.18, indicating that
younger participants committed more errors in the last block of
the experiment.

EEG Data
Gravity Frequency (GF), Alpha, and Theta power
GF (see Figure 4) did not overall vary with age, F(1, 24) = 1.70,
p = 0.205, η

2
p = 0.07, but an interactions of age by channel

F(1, 24) = 26.91, p < 0.001, η
2
p = 0.53, was found. No age

effect was visible at the anterior lead, F(1, 24) = 0.10, p >

0.05, whereas GF was reduced with higher age at the posterior
electrode, F(1, 24) = 8.12, p = 0.018, η2

p = 0.25. Also the effect
of ToT did not reach significance, F(1, 24) = 2.93, p = 0.200,
η
2
p = 0.11. However, GF strongly varied with the task performed,

F(2, 48) = 12.14, p < 0.001, η
2
p = 0.34, and the effect of task

was qualified by electrode position, F(2, 48) = 13.74, p < 0.001,
η
2
p = 0.36. At frontal leads, GF was higher in the Simon task

compared to the self-paced D2 task (D2), F(1, 24) = 17.18, p <

0.001, η
2
p = 0.41. Also, the physical task showed higher GFs

than the D2 at the anterior lead, F(1, 24) = 10.00, p = 0.008,
η
2
p = 0.29. At POz, again the Simon task evoked higher GFs

compared to the D2, F(1, 24) = 19.79, p < 0.001, η
2
p = 0.45.

At this electrode location no difference in GF was found between
the two self-paced tasks (D2 and Boxes), F(1, 24) = 2.31, p > 0.2.

Alpha power (see Figures 5, 7) increased with ToT, F(1, 24) =
17.76, p < 0.001, η2

p = 0.43 and varied with task, F(2, 48) = 10.96,

FIGURE 3 | Response times and error rates from the Simon task (“repetitions” reflect the factor sequence). Older adults responded slower but not less

accurate. In particular in the last block, error rate in young participants markedly increased due to mental fatigue.
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FIGURE 4 | Mean Gravity Frequency (with standard error of mean), separately for tasks and channels. Most evident is the reduction of GF at posterior leads

in all tasks.

p < 0.001, η
2
p = 0.31. Pairwise comparisons revealed that in

the cognitive tasks, alpha power was higher in the monotonous
Simon task than in the self-paced D2 task, F(1, 24) = 15.40, p =

0.002, η
2
p = 0.39. Comparing the two self-paced tasks (D2 and

Boxes), alpha power was higher when participants performed the
physical task, F(1, 24) = 18.18, p < 0.001, η2

p = 0.43. The effect
of task was modulated both by age, F(2, 48) = 5.81, p = 0.012,
η
2
p = 0.19, and by ToT, F(2, 48) = 6.97, p = 0.004, η2

p = 0.23.
While ToT effects were obtained for both cognitive tasks [D2:

F(1, 24) = 17.69, p < 0.001, η2
p = 0.42; Simon: F(1, 24) = 14.72,

p = 0.003, η
2
p = 0.38; Boxes: F(1, 24) = 4.44, p = 0.138,

η
2
p = 0.16], the age effect was restricted to the Simon task.

Alpha power was enhanced in younger adults, F(1, 24) = 4.83,
p = 0.076, η2

p = 0.17.
Theta power (see Figures 6, 7) was reduced in older adults,

F(1, 24) = 5.29, p = 0.030, η
2
p = 0.18, and varied with the

task performed, F(2,48) = 26.64, p < 0.001, η
2
p = 0.53. Theta

power did not differ between the two cognitive tasks (D2 and

Simon), F(1, 24) = 0.19, p > 0.5, but was markedly increased
in the physical task compared to the self-paced cognitive D2
task, F(1, 24) = 37.66, p < 0.002, η

2
p = 0.61. No effect of ToT

was observed, F(1, 24) = 0.20, p > 0.5. Task effects were more
pronounced at frontal leads, F(2, 48) = 46.81, p < 0.001, η2

p =

0.66, and varied across age groups, F(2, 48) = 3.67, p = 0.033,
η
2
p = 0.13. Significant age effects were only observed in the

cognitive tasks, D2: F(1, 24) = 8.96, p = 0.018, η2
p = 0.27, Simon:

F(1, 24) = 10.48, p = 0.012, η2
p = 0.30, but not in the physical

task, F(1, 24) = 0.56, p > 0.5.

Blink-Related Desynchronization/Synchronization

(ERD/ERS) of the EEG
As depicted in Figure 8, alpha activity synchronized after the eyes
were opened. This effect was strongly modulated by experimental
factors and differed across age groups. In the following, statistics
will be reported for the mean ERD/ERS in the time window
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FIGURE 5 | Mean Alpha power (with standard error of mean), separated for tasks and channels. Besides a general effect of ToT, younger adults show a

massive increase in alpha power in the monotonous Simon task.

between 0 and 300ms after the maximum of the blink in the
EOG.

Alpha ERD/ERS
Event-related synchronizations in the alpha band (see
Figures 8, 9) after the blink were enhanced for older adults,
F(1, 24) = 9.81, p = 0.005, η2

p = 0.29, and varied with the task

performed, F(2, 48) = 6.97, p = 0.002, η
2
p = 0.23. Pairwise

comparisons of tasks, however, did not show any significant
effects [Simon vs. D2, F(1, 24) = 3.95, p = 0.118, η

2
p = 0.14,

D2 vs. self-paced physical task, F(1, 24) = 2.21, p = 0.300,
η
2
p = 0.08]. In the overall analysis also a number of interactions

was observed, Age by ToT: F(1, 24) = 5.91, p = 0.023,
η
2
p = 0.20, Age by Task by Channel: F(2,48) = 3.93, p = 0.026,

η
2
p = 0.14, Age by Channel by ToT: F(1, 24) = 4.38, p = 0.047,

η
2
p = 0.15, Age by Task by channel by ToT: F(2, 48) = 3.52,

p = 0.038, η2
p = 0.13, indicating that ERS was modulated by all

experimental factors. ERS systematically increased with ToT in

younger adults, F(1, 12) = 11.25, p = 0.012, η2
p = 0.48, but not

in older ones, F(1, 12) = 1.49, p = 0.492, η2
p = 0.11. Post-tests

separate for each task revealed no significant interactions of
Age by ToT [D2: F(1, 24) = 4.72, p = 0.120, η2

p = 0.16, Boxes:

F(1, 24) = 5.47, p = 0.084, η2
p = 0.19, Simon task, F(1, 24) = 0.09,

p > 0.5].

Theta ERD/ERS
Overall, Theta ERS (see Figure 10) was enhanced in older adults,
F(1, 24) = 7.52, p = 0.011, η2

p = 0.24, and varied with the task

performed, F(2, 48) = 3.00, p = 0.059, η2
p = 0.11. Theta ERS was

slightly higher in the Simon task compared to the self-paced D2
task, F(1, 24) = 4.31, p = 0.049, η

2
p = 0.15, but did not differ

between the two self-paced tasks, F(1, 24) = 0.21, p = 0.652,
η
2
p = 0.01. The effect of task was modulated by a number of other

variables, Age by Channel by Task: F(2, 48) = 3.01, p = 0.059,
η
2
p = 0.11, Age by Task by ToT: F(2, 48) = 5.69, p = 0.006,

η
2
p = 0.19, Channel by Task by ToT: F(2, 48) = 5.38, p = 0.008,
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FIGURE 6 | Mean Theta power (with standard error of mean), separated for tasks and channels. Most prominently, frontal Theta was reduced in older adults

across all tasks. At POz, reduction of Theta power in older adults was restricted to cognitive tasks.

η
2
p = 0.18. All of those interactions reached significance in the

young group, but failed to do so in older adults, reflecting the
fact that Theta ERS strongly increased in variance in older adults.
Post-hoc Tests revealed evidence toward an increase in Theta ERS
for older adults in all tasks, D2: F(1, 24) = 5.00, p = 0.105,
η
2
p = 0.17, Simon: F(1, 24) = 7.21, p = 0.039, η2

p = 0.23, Boxes:

F(1, 24) = 5.10, p = 0.099, η
2
p = 0.18. An interaction of Age

by ToT was only observed in the self-paced cognitive task, D2:
F(1, 24) = 7.31, p = 0.036, η

2
p = 0.23, Simon: F(1, 24) = 0.94,

p > 0.5, Boxes: F(1, 24) = 0.00, p > 0.5.
In sum, the EEG data showed a pattern that is well comparable

to previous experimental settings. Alpha power increased with
ToT (see Wascher et al., 2014b) and showed a marked reduction
in older adults. The latter effect, however, was restricted to
the monotonous cognitive task that resembled most a regular
cognitive experiment. Theta power was reduced in older adults
and also systematically varied with the task performed. Age-
related effects in this measure were more pronounced in

cognitive tasks. Finally, a strongly enhanced synchronization
of both frequency bands was observed when ERS/ERD were
investigated time-locked to the blink maximum in the EEG.

DISCUSSION

In the present study, participants simulated a short (4–5 h)
working shift in the post room of a wholesales house. Theymoved
parcels and interacted with a computer in a repetitive sequence.
The cognitive tasks on the computer were either repetitive (and
rather monotonous) or self-paced. The design of the study
was inspired by the real workflow in this particular working
environment. During the entire shift, the EEG of the participants
was recorded by mobile EEG equipment that did not restrict free
movement and thus allowed natural behavior at any moment.

On average, subjectively experienced fatigue remained rather
stable in younger adults during the entire shift, but increased
for older adults. For both groups, however, fatigue was highly
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FIGURE 7 | Topographical maps of Theta and Alpha Power for the three tasks, separated for young and old adults.

FIGURE 8 | Time course of Alpha synchronization for the three tasks and two channels, superposed for the three Blocks in the experiment (BL1, BL2,

BL3). Data are time locked to the maximum of vEOG activation during the blink. Most prominently, Alpha synchronization was more pronounced in older adults.

related to the task performed. After the monotonous computer
task, fatigue ratings were substantially increased compared to the
physical task. This finding nicely stresses the role of monotony
for the experience of mental fatigue, which wasmore pronounced
in younger adults who were obviously subjectively more affected
by the monotonous task compared to older participants. These
effects go along with a local decline in motivation in the
monotonous cognitive task that was found only in the younger
participants.

The enhanced impact of monotony upon younger participants
is also nicely mirrored in behavioral and neurophysiological data.
With increasing time on task, error rates but not response times
increased in younger adults. At the end of the working shift, this

led to an accuracy in the Simon task that was even lower in the
younger, than in the older participants. Considering the EEG,
younger participants showed markedly increased alpha activity
in this particular task. Referring to the assumption that high
alpha power is related to an idle state of the attentional system
(Hanslmayr et al., 2012), younger adults might have switched to
a state of attentional withdrawal (see Wascher et al., 2014b).

Within the theoretical framework described in the Section
Introduction, in which mental fatigue may result either from
cognitive overload or from mental underload (May and Baldwin,
2009), the fatiguing factor in this case is a passive one (pTR),
namely monotony and the decline of motivation that goes along
with that. Older adults appear to deal better with monotony.
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FIGURE 9 | Mean Alpha synchronization in a time window between 0 and 300ms after the maximum of the eye-blink activity in the vEOG. Enhanced

Alpha synchronization in older adults was visible in all tasks. Due to effects of ToT, ERS/ERD measures became more similar between age groups with the duration of

the ongoing experiment.

Factors that made them tired were more widespread across
tasks. We can’t rule out that in particular the physical task was
more demanding for older adults. Factors like central fatigue,
i.e., a decrease of cognitive capabilities due to muscular strain
(e.g., Davis, 1995; Blomstrand, 2001) might have influenced
their behavior in terms of an active task-related (aTR) factor.
Both, age (Müller et al., 2009) and central fatigue (Hilty et al.,
2011) have been reported to go along with larger cortical phase
synchronization. In particular early synchronizations in the EEG
might indicate that older adults were far more driven by external
signals (see Klimesch et al., 2002) compared to young participants
(Zacks and Hasher, 1997; Lustig et al., 2007; Wascher et al., 2011,
2012). This is in accordance with a number of laboratory studies
that showed amplified early EEG responses both in evoked
potentials and in time frequency based analyses (e.g., Müller
et al., 2009). This stronger impact of stimulation is assumed to
be due to reduced executive cognitive control with increasing age
that may affect numerous cognitive functions (Gazzaley et al.,
2005, 2008; Grady et al., 2006). As a neurophysiological correlate
for this deficit, reduced frontal theta activity has been discussed

(Cummins and Finnigan, 2007) which was also found in the
present study. This latter effect, however, was restricted to the
computer-based cognitive tasks and disappeared when boxes
had to be sorted. Thus, we can demonstrate that the decrease
in theta power is not a global fact with increasing age, but
rather is a task-dependent decline. Thus, cognitive tasks appear
to be more demanding for older adults, because of deficient
signal handling when information enters the system. Too much
irrelevant information might be processed (Wascher et al., 2012)
which is resource consuming. Therefore, mental fatigue in older
adults is at least in parts related to the exhaustion of cognitive
functions.

Finally, regarding effects of time on task, alpha activity
showed the well-known pattern of increasing power. In contrast
to pure laboratory experiments (Wascher et al., 2014b), no
saturation is visible in any task in the present study. This
phenomenon might be due to the alternation of tasks that
interrupted monotony. In particular, the huge increase of
alpha power in younger participants in the Simon task
indicate that monotony was an important factor that drove
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FIGURE 10 | Mean Theta synchronization in a time window between 0 and 300ms after the maximum of the eye-blink activity in the EOG. Also in this

frequency band, more synchronization was observed in older adults. As for Alpha ERS/ERD a kind of convergence across age groups appeared, at least for the

self-paced cognitive D2 task.

alpha power. More interestingly, both measures of event-
related synchronization/desynchronization showed convergence
between age groups with time on task. When younger
participants were impaired in particular by the passive task-
related factor of monotony, a decline in motivation should go
along with that. Reduced motivation is correlated with reduced
activity in the frontal dopaminergic motivation system (Berridge
and Robinson, 1998). An impairment of executive control
functions was the consequence and lead to more stimulus-driven
behavior. This transient state resembles the aging brain that lacks
frontal activity due to physical decline (Bäckman et al., 2000).

Taken together, these results show that applying neural
measures to a real life work situation provided substantial
information about mechanisms and causes of mental fatigue
in younger and older adults. The core results were highly
comparable to laboratory studies and therefore, validity and
reliability of data appears to be sufficient. The diversity of tasks
additionally provided important insight into the meaning and
usefulness of particular neurophysiological measures for neuro-
ergonomics. Most importantly, blink-related activity in the EEG

(Berg and Davies, 1988) was systematically changing with the
task performed and with other experimental factors. As has been
shown before (Wascher et al., 2014a), cognitive demands and
cognitive strategies are reflected in these measures. Thus, it can
be assumed that the re-opening of the eyes, after a blink has been
executed, denotes a moment when new information enters the
system, very similar to the presentation of a visual stimulus. This
fact allows to measure event-related EEG analyses without any
external stimulation. In particular in working situations, nothing
has to be changed to the natural environment. Nevertheless,
aspects of information processing can be specifically addressed.

In summary, the present study demonstrates that mobile EEG
provides substantial information about information processing
at the workplace and its alteration due to fatigue or age related
aspects. The data pattern in self assessments, behavioral data,
and neurophysiological measures nicely indicates that younger
participants suffered before most from monotony. Passive task-
related fatigue led to deficits in information processing with
time on task. Older adults, on the other hand, were challenged
from the very beginning of the work shift by altered information
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processing. Due to declined executive control mechanisms, their
information processing was much more stimulus-driven. Thus,
the active process of overcoming this deficit appears to play a
major role for mental fatigue in older worker in this particular
working situation. Addressing this issue when designing working
environment and work flow could substantially improve life
quality of employees.
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p.mijovic@kg.ac.rs

Received: 01 October 2015
Accepted: 04 April 2016
Published: 20 April 2016

Citation:
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The majority of neuroergonomics studies are focused mainly on investigating the
interaction between operators and automated systems. Far less attention has been
dedicated to the investigation of brain processes in more traditional workplaces, such
as manual assembly, which are still ubiquitous in industry. The present study investigates
whether assembly workers’ attention can be enhanced if they are instructed with
which hand to initiate the assembly operation, as opposed to the case when they can
commence the operation with whichever hand they prefer. For this aim, we replicated
a specific workplace, where 17 participants in the study simulated a manual assembly
operation of the rubber hoses that are used in vehicle hydraulic brake systems, while
wearing wireless electroencephalography (EEG). The specific EEG feature of interest
for this study was the P300 components’ amplitude of the event-related potential
(ERP), as it has previously been shown that it is positively related to human attention.
The behavioral attention-related modality of reaction times (RTs) was also recorded.
Participants were presented with two distinct tasks during the simulated operation,
which were counterbalanced across participants. In the first task, digits were used as
indicators for the operation initiation (Numbers task), where participants could freely
choose with which hand they would commence the action upon seeing the digit. In
the second task, participants were presented with arrows, which served as instructed
operation initiators (Arrows task), and they were instructed to start each operation with
the hand that corresponded to the arrow direction. The results of this study showed that
the P300 amplitude was significantly higher in the instructed condition. Interestingly, the
RTs did not differ across any task conditions. This, together with the other findings of
this study, suggests that attention levels can be increased using instructed responses
without compromising work performance or operators’ well-being, paving the way for
future applications in manual assembly task design.

Keywords: neuroergonomics, wireless electroencepholagraphy, event-related potentials, P300, attention, manual
assembly
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INTRODUCTION

The importance of studying the human brain processes
while executing everyday complex tasks in naturalistic
environments was pinpointed by Parasuraman (2003),
through a new direction in human factors and ergonomics
(HF/E) research. This novel direction was tentatively named
neuroergonomics (Parasuraman, 2003; Parasuraman and Rizzo,
2006; Parasuraman, 2011). Although Parasuraman and Wilson
(2008) modestly stated that neuroergonomics should not be
thought of as revolutionary, but rather as another step in
HFE research, the growing body of neuroergonomics research
refutes this statement. In fact, ever advancing technology has
facilitated neuroergonomics research and only 12 years from
its inception it has become one of the principal directions
in HFE research. Ultimately, understanding brain processes in
naturalistic environments can lead to improvement of existing
industrial processes design and to creation of safer and more
efficient working conditions (Parasuraman, 2003), consequently
improving the operators’ overall well-being.

Neuroergonomics has had significant success in evaluating
brain activity in its interaction with automated systems, through
the studies of mental workload, dual-task performance (Ayaz
et al., 2013) and operators’ vigilance (Warm and Parasuraman,
2006; Warm et al., 2009). Additionally, it has gone a step
further with the development of state-of-the-art neuroadaptive
systems facilitating the mutual interaction between an automated
system and operators, in the sense that both human and the
system can initiate a change in the level of automation when
needed (Scerbo, 2006; Mehta and Parasuraman, 2013). On
the one hand, this trend is understandable as industry, over
several decades, has tried to reach the ‘‘lights-out manufacturing’’
concept (Tompkins et al., 2010), i.e., completely automated
factories which can operate without the direct presence of human
operators in the production processes. In that case, human
supervisory control of automated systems becomes essential
(Sheridan and Parasuraman, 2005), as human operators would
be solely responsible for controlling the automated production
systems (Warm et al., 2008). On the other hand, although
automation is becoming ubiquitous in industry and everyday
life (Parasuraman and Wilson, 2008), the ‘‘lights-out’’ concept
is still rather futuristic and there is still a need for human
manual operations in production processes. This is especially
notable in assembly tasks and processes where costs related to
process automation are generally not justifiable (Tang et al.,
2003).

For these reasons, it is evident that neuroergonomics
studies should pay additional attention to more traditional
workplaces, through investigation of concurrent physical and
cognitive work. This approach has received far less attention in
neuroergonomic studies (for review see Mehta and Parasuraman,
2013). For example, in the car manufacturing industries
the majority of processes are automated, however human
operators play a crucial role in the final car cockpit and
interior assembly, i.e., final assembly (Michalos et al., 2010).
Typically, manual assembly tasks require a large number of
repetitions and are monotonous in nature, thus leading to

hypo-vigilance of operators (Spath et al., 2012). In turn,
operators have difficulty in sustaining the desired level of
attention during the task, and therefore, the risk of work-
related injuries, material damage or even accidents is increased
(Kletz, 2001). Therefore, employing existing neuroimaging
techniques to understand the way the brain processes various
stimuli in this class of tasks could be beneficial, as the task
design could be optimized in such a way as to obtain and
maintain sufficient operator attention, thereby avoiding possibly
hazardous situations.

An extensive review of neuroimaging techniques applicable
to neuroergonomics research has been recently published by
Mehta and Parasuraman (2013). Although functional near
infrared spectroscopy (fNIRS) presents a convenient technique
for the neuroergonomics research in naturalistic setting due
to its light weight and portability (Ayaz et al., 2010, 2012;
Mehta and Parasuraman, 2013), it suffers from low temporal
resolution and its use in dynamic everyday environments is
still somewhat limited (Gramann et al., 2011). On the other
hand, Electroencephalography (EEG) and therefrom derived
event related potentials (ERPs) belong to the neuroimaging
techniques that directly measure brain activity (Gramann et al.,
2011; Mehta and Parasuraman, 2013) and both EEG and ERPs
possesses high temporal resolution (down to the order of
milliseconds) making them suitable for real-time investigation of
brain dynamics in complex environments (Gramann et al., 2011).
Even though Parasuraman (1990) proposed the introduction
of ERPs in ergonomics research, until recently the traditional
EEG recording suffered from long wiring between the electrode
cap and amplifier unit, which engenders the artifacts that
degrades signal quality (Debener et al., 2012). Additionally,
EEG recordings usually required shielded, dimly lit and sound
attenuated rooms, which was one of the main precondition for
its recording, thus limiting its use in naturalistic environments
(Gramann et al., 2011). However, these problems were recently
overcome by the development of wearable EEG systems,
empowering its use in everyday and applied settings (Debener
et al., 2012; De Vos et al., 2014; Wascher et al., 2014;
Mijovíc et al., 2016). Consequently, operators’ brain dynamics
can nowadays be successfully investigated with wearable EEG
in faithfully replicated workplaces, by simulating the work
activity (Wascher et al., 2014; Mijovíc et al., 2016). This can
provide insight in how the brain responds to complex industrial
tasks and these findings can contribute to more efficient task
designs.

The aim of this article is the investigation of assemblers’
mental states, by utilizing ERPs in a realistically replicated
workplace. Neuroergonomics implies that overt performance
measurements are unreliable (Parasuraman, 2003), since they
do not provide the possibility for timely investigation of the
underlying covert cognitive processes during everyday tasks. To
get better insights into the temporal course of the underlying
attention processes engaged in manual assembly operation, we
selected two tasks in which we triggered goal-directed actions
of workers by presenting them with either digits (in one) or
arrows (in the other task) prior to initiating the operation. In
this way we wanted to elicit the P300 ERP component (also
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called P3 or P3b), which is represented by the positive ERP
voltage deflection that usually appears between 300 and 500 ms
after appearance of the task-relevant stimuli (Polich and Kok,
1995; Verleger et al., 2005). The P300 component is often used
to identify the depth of cognitive information processing and
its amplitude and latency are considered to be related to the
human attention level (Johnson, 1988; Polich, 2007; De Vos et al.,
2014).

The P300 complex is the most prominent over the midline
scalp sites (Polich, 2007) and it is among the most prominent
ERP components (Verleger et al., 2014), making it one of the
most studied components of human ERP. However, there is still
a lack of consensus regarding what brain functions the P300
component represents (the arguments are briefly summarized
in Verleger et al., 2014). One influential view is that the P300
component can be explained through the context updating
hypothesis that was proposed by Donchin (1981) and which
governs that the P3 reflects the updating of working memory
that is related to task-relevant and unexpected events. The
context updating theory assumes that the mental process that
elicit the P3 component reflects a revision of the model of
the environment rather than serving to organize a response to
the eliciting stimulus (Verleger et al., 2005). In other words,
it is assumed that following an initial sensory processing,
an attention-related process evaluates the presentation of the
previous event in working memory and if a new stimulus in
a train of standard stimuli is detected, the attention-related
process updates, which is followed by production of the P300
component (Polich, 2007). However, we have also witnessed
arguments against the context updating theory (Verleger et al.,
2005, 2014). In fact, Verleger et al. (2005) proposed a new
hypothesis in which they argued that the P300 component is
related both to stimuli processing and organizing the response.
In order to prove this hypothesis, Verleger et al. (2005) compared
the P3 amplitude in stimulus- and response-locked ERPs and
they found that both P3 amplitudes were comparable. Therefore,
it was confirmed that P300 amplitude does not reflect just
the simple reaction to stimulus change. Rather, P300 reflects a
process that mediates between perceptual analysis and response
(Verleger et al., 2005), i.e., it is related to the organization of the
response and it depends on the stimulus-response links (Verleger
et al., 2014).

Based on these findings, the present study investigated
whether and how the neural correlates of goal-directed actions
would differ if the operators were requested to initiate the
simulated assembly operation spontaneously (upon seeing a
digit), as opposed to the condition where participants were
instructed with which hand to commence the operation (upon
seeing an arrow). In the spontaneous condition (the Numbers
task), we adopted the stimuli from the original SART paradigm
that is a simple ‘‘go/no-go’’ task, which consists of consecutively
presenting digits from ‘‘1’’ to ‘‘9’’ and participants are required to
give a speedy response on all stimuli, with the exception of digit
‘‘3’’ (Robertson et al., 1997). The main difference between the
original SART and the Numbers paradigm (used in our study)
is that the digits in Numbers are randomized. Further, in the
original SART paradigm it is requested that participants provide

the speedy response with the index finger upon the stimulus
presentation. However, this would impede the simulation of the
real working operation, since it would require an additional,
task-unrelated operation from participants. Instead, in the
Numbers paradigm, participants were instructed to initiate the
assembly operation as soon as the visual (target) stimulus
appeared on the screen, with whichever hand they felt more
comfortable (the assembly operation is explained in detail in
Section ‘‘Simulated Assembly Operation’’). For the instructed
responding (the Arrows) task, we adopted the stimuli and
procedures from Donkers and van Boxtel (2004). The Arrows
task is essentially a choice reaction task, where the arrows
pointing to the left and right appear on the screen; white arrows
represent the target (‘‘go’’) condition, while red arrows represent
the ‘‘no-go’’ stimulus. The main difference between the Numbers
and Arrows tasks was that in the Numbers task participants
could freely choose the hand with which they would initiate
the assembly operation, while in the Arrows task, participants
were instructed to commence each operation with the hand
that corresponds to the direction in which the white arrow on
the screen was pointing. An important notion is that not only
the simple stimulus difference between the tasks was varied
(digit vs. arrow), but also the informational value of those
stimuli: the Arrows task arguably requires stimulus-response
mapping, which in turn requires more cognitive evaluation,
consequently inducing higher-level attentional processing than
in the simple ‘‘go/no-go’’ task. In both the task specific and
spontaneous condition, the visual stimuli (digits and arrows)
appeared in the center of a screen that was placed in front of the
participants.

We expected attention, when assessed through the P300
amplitude, to be more enhanced in the instructed responding
(Arrows) task, compared to the one where participants could
initiate the assembly operation upon seeing the task unspecific
cue (Numbers task). Further, we wanted to investigate whether
the difference in the task condition would also influence the
reaction times (RTs), as the performance of the participants
is also important, since this study simulates the naturalistic
assembly task replicated from the industry. In other words, we
wanted to investigate whether the participants would be slower
in the case when they are instructed with which hand they should
start the assembly operation, as compared to the condition when
they can spontaneously initiate the assembly operation with
whichever hand they prefer.

MATERIALS AND METHODS

Participants
Seventeen healthy subjects, from which one was left-handed,
aged between 19 and 21 years volunteered as participants in the
study. Due to abnormalities in the recording three subjects were
excluded from further analysis, leaving a total of 14 participants.
The study was restricted to male participants, both to exclude
possible inter-gender differences and to replicate the selected job
task more faithfully, since in the company that supported our
research only males occupy the specific workplace under study.
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Participants did not report any past or present neurological
or psychiatric conditions and were free of medication and
psychoactive substances. They were instructed not to take any
alcoholic drinks prior to, nor on the day of, participation in the
study. All participants had normal or corrected-to-normal vision.
They agreed to participate in the study and signed informed
consent after reading the experiment summary in accordance
with the Declaration of Helsinki. The Ethical Committee of the
University of Kragujevac approved the study and procedures for
the participants.

Replication of the Workplace
As we stated in the introduction, reliable EEG recording
still relies on wet electrodes, limiting on-site industrial EEG
recording. For that reason, we simulated the production process
of the rubber hoses, which are used in hydraulic brake systems
in the automotive industry, in a faithfully replicated workplace
(Figure 1). Full-scale replica of the specific workplace was created
at the laboratory of University of Kragujevac, in consultation
with the car sub-component manufacturing company. In order
to create a naturalistic environment, all major elements from
the real factory settings have been included while preserving
respective spatial ratios and replicating ambient conditions.

The laboratory was air-conditioned and microclimate
conditions controlled, keeping the ambient temperature at
24 ± 1◦C while the measured relative air humidity value was
between 40% and 60%. The luminance at the real workplace
was also replicated from the industrial settings, using the
same lighting and maintaining the luminance value at 810 lx.
Finally, the noise trace was obtained by recording sounds in
the vicinity of the original production facility, using cardiodid
condenser microphone AT2020USB (Audio-technica, Japan),
and this was replayed during the experiments with an SW-HF
5.1 6000 surround multimedia speaker (Genius, Taiwan).
The ambient (light, noise) and microclimate (temperature,
humidity) condition values were obtained using multifunctional
environmental meter device PCE-EM882 (PCE instruments,
UK).

The experimental setup used in this study was similar to
previously reported studies (Mijovíc et al., 2015a,b, 2016), while
the experimental task and procedure were modified. For clarity,
we will repeat the detailed experimental setup here.

Simulated Assembly Operation
In the production process, an operator carries out a crimping
operation in order to join a metal extension to a rubber hose. This

FIGURE 1 | Left image—Real workplace (replicated from our industrial partner); Right image—Replicated workplace.
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Mijović et al. Benefits of Instructed Responding: ERP Approach

single operation, carried out in a sitting position, consists of eight
simple steps (actions). Step-by-step simulated operation, carried
out by participants in the replicated working environment, is
graphically presented in Figure 2A and explained in detail
further in the text.

The major production steps can be summarized as follows
(Figure 2A): first, the information to initiate the simulated
assembly operation is presented to the participant, in the
form of visual stimulus (step 1, explained in detail in Section
‘‘Experimental Procedure’’), upon which he is instructed to
instantly initiate the operation by taking the metal part (step 2)
and the rubber hose (step 3). Following this, participants should
place the metal part on the hose (step 4) and place both
inside the crimping machine (step 5). Once the rubber hose
and metal part are correctly placed inside the opening, the
industrial green lamp lights and presents a visual cue to the

participant, informing him that the part has been correctly
placed. Participant then proceed by promptly pressing the
pedal, which initiates the improvised machine and replicates
the real machines’ crimping sound with a duration of 3500 ms
(step 6). The real crimping operation that would happen upon
pressing the pedal was avoided, preserving its major aspects
from operator’s perspective—the sound it produces and the
cessation of which indicates the end of machine operation,
analogously to the real case. Upon completion of the simulated
crimping process, the participant removes the component and
places it in the box with completed parts (step 7). Finally,
following these steps, the participant sits still, waiting for
the subsequent stimulus (step 8) indicating the next-in-line
operation.

Although the assembly task consists of eight sub-actions,
the whole operation lasts less than 10 s and a single operator

FIGURE 2 | (A) Step by step representation of the simulated working process. Step 1—Stimulus presentation; Step 2—Taking the rubber hose; Step 3—Taking the
metal part; Step 4—Placing metal part on the rubber hose; Step 5—Insertion of the uncompleted part inside the improvised machine opening; Step 6—Pressing the
pedal in order to initiate the simulated crimping operation; Step 7—Placing the completed into the box with completed parts; Step 8—Waiting for the successive
stimulus presentation. (B) Graphical representation of the Numbers Task. (C) Graphical Representation of the Arrows task.
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completes between 2500–3000 elements during a work shift.
Hence, this workplace represents a typical example of a
repetitive, monotonous operational task in industrial assembly
settings.

Preparation
Each participant arrived to the laboratory at 9:00 a.m. Upon
carefully reading the experiment summary and signing the
informed consent for participation in the study, participants
started the training session in order to gain familiarity with
the task. Due to its simplicity, they were given 15 min for
practicing, following which they confirmed their readiness to
start the experiment. Finally, an EEG cap and amplifier were
mounted on the participant’s head (as explained in the Section
‘‘EEG Recording’’) and the recording started around 9:30 a.m.

Experimental Procedure
During the experiment, at least two experimenters were
constantly present in the laboratory in order to assure
that experimental procedures were strictly followed. The
experimenters were seated behind an opaque board (so that
participants could not see them during the task) and they
observed the participants through a red-blue-green (RGB)
camera that recorded the entire experiment.

Participants were seated in a comfortable chair in front of
an improvised workplace including the improvised machine
(Figure 1). In order to extract the ERP component from
continuous EEG recording, a single functional modification in
the simulated assembly task was made. Simultaneously with
the simulated assembly process, the participants were subjected
to either the Numbers (Figure 2B) or Arrows (Figure 2C)
task to prompt initiation of the assembly operation. Both
tasks were presented on the 24’’ screen from a distance of
approximately 100 cm in a balanced order across participants
(with a 15 min break between the tasks). The screen was
height adjustable and the center of the screen was set to be
level with participants’ eyes. Upon presentation of the stimuli
on the screen, the participants were instructed to complete
the previously explained assembly operation (also graphically
presented in Figure 2A).

All the stimuli were presented for 1000 ms on a black screen
background. In both tasks the appearance of the stimuli was
randomized, with the condition that forbade the two consecutive
appearance of the ‘‘no-go’’ stimuli (digit ‘‘3’’ in Numbers, and
red arrow in Arrows task). Additionally, in the Numbers tasks,
five randomly allocated digit sizes were presented to increase
the demands for processing the numerical value and to minimize
the possibility that subjects would set a search template for some
perceptual feature of the ‘‘no-go’’ trial (the digit ‘‘3’’). Digit font
sizes were 60, 80, 100, 120 and 140 in Arial text font (similar
to Dockree et al., 2005). The main difference between the tasks
is that in the Arrows tasks the participants were instructed to
initiate the simulated operation with the right hand (step 2) if
the white arrow was pointing to the right, or with the left hand
(step 3) if pointing left (as depicted on Figure 2C), while in the
Numbers task, the participants could freely choose between step

2 or step 3 (from the Figure 2A) upon seeing the digit. Each task
consisted of 500 stimuli, where the probability of appearance of
the ‘‘no-go’’ stimuli was set at 10% (50 in total), while the ‘‘go’’
stimuli were presented 450 times. The inter-stimulus interval
(ISI) between two consecutive ‘‘go’’ stimuli was on average 11,240
ms (STD = 410 ms), while between ‘‘no-go’’ and following ‘‘go’’
stimuli the average ISI was 3210 ms (STD = 120 ms). The
duration of the each task was around one and a half hours, upon
which participants had a 15 min break, before starting the second
task. Thus, the whole experiment lasted around 3 h and 15 min.

The task specifications were programmed in Simulation and
Neuroscience Application Platform (SNAP)1, developed by the
Swartz Center for Computational Neuroscience (SCCN). As
explained in Bigdely-Shamlo et al. (2013) and Gramann et al.
(2014), SNAP is a python-based experiment control framework
that is able to send markers as strings to Lab Streaming Layer
(LSL)2. LSL is a real-time data collection and distribution
system that allows multiple continuous data streams as well as
discrete marker timestamps to be acquired simultaneously in an
eXtensible Data Format (XDF)3. This data collection method
provides synchronous, precise recording of multi-channel, multi-
stream data that is heterogeneous in both type and sampling
rate (Bigdely-Shamlo et al., 2013; Gramann et al., 2014), and is
obtained via a local area network (LAN).

EEG Recording
EEG data acquisition was performed using the SMARTING
(mBrainTrain, Serbia) wireless EEG system, with a sampling
frequency of 500 Hz and 24-bit data resolution. The small and
lightweight EEG amplifier (85 × 51 × 12 mm, 60gr) is tightly
connected to a 24-channel electrode cap (Easycap, Germany)
at the occipital site of the participant’s head, using an elastic
band. The connection between the EEG amplifier and recording
computer was obtained using a Bluetooth connection, and the
data were streamed to the described LSL recorder. The design
of the cap-amplifier unit ensured minimal isolated movement
of individual electrodes, cables, or the amplifier, which strongly
reduced electromagnetic interference and movement artifacts.
Further, the small dimensions of the recording system provided
full mobility and comfort to the participants, as movement
constraints were not imposed. The electrode cap contained
sintered Ag/AgCl electrodes that were placed based on the
international 10–20 System: Fp1, Fp2, Fz, F7, F8, FC1, FC2,
Cz, C3, C4, T7, T8, CPz, CP1, CP2, CP5, CP6, TP9, TP10,
Pz, P3, P4, O1 and O2. The electrodes were referenced to
FCz and the ground electrode was AFz. Before initiation of
the experiments, the experimental procedure imposed that the
electrode impedances must be below the 5 kΩ value, which was
confirmed by the device acquisition software.

ERP Processing
EEG signal processing was performed offline using EEGLAB
(Delorme and Makeig, 2004) and MATLAB (Mathworks Inc.,

1https://github.com/sccn/SNAP
2https://code.google.com/p/labstreaminglayer/
3https://code.google.com/p/xdf/
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Natick, MA, USA). EEG data were first bandpass filtered in the
1–35 Hz range, following which the signals were re-referenced
to the average of the mastoid channels (Tp9 and Tp10). Further,
an extended infomax Independent Component Analysis (ICA)
was used to semi-automatically attenuate contributions from
eye blink and (sometimes) muscle artifacts (as explained in
Viola et al., 2009; De Vos et al., 2010, 2011). After this data
preprocessing, ERP epochs were extracted from −200 to 800 ms
with respect to timestamp values of ‘‘go’’ and ‘‘no-go’’ stimuli
indicated by the SNAP software. Baseline values were corrected
by subtracting mean values for the period from −200 to 0 ms
from the stimuli. The identified electrode sites of interest for
the ERP analysis in this study were Fz, Cz, CPz and Pz, as the
P300 component is most prominent over the central and parieto-
central scalp locations (Picton, 1992).

For the ‘‘no-go’’ condition we extracted and averaged the
ERPs across the trials. For the ‘‘go’’ condition, the ERPs that
preceded the ‘‘no-go’’ condition were calculated. Following these
steps, the grand average (GA) ERPs across participants were
formed. Further, the P300 amplitude was calculated for both ‘‘go’’
and ‘‘no-go’’ conditions and for each experimental condition,
using mean amplitude measure (Luck, 2005) in the time window
from 350 to 450 ms, with regard to the time stamps of the stimuli.
Finally, the statistical analysis on the obtained results was carried
out.

Reaction Times
As already stated in Section ‘‘Experimental Procedure’’, our
experimental design did not allow subjects to react with the
button press upon seeing the visual ‘‘go’’ stimulus. Therefore,
the RT could not be measured in the traditional fashion, as
the time elapsed between the stimulus presentation and the
response by the participants (usually executed with the right
index finger). Instead, the RTs here were measured as the time
elapsed between the stimulus presentation (step 1) and the pedal
press (step 6 from the Section ‘‘Preparation’’, also depicted on the
Figure 2A). The pedal used in our study was actually a modified
mouse button and it was connected to the recording computer
via USB connection. As LSL is capable of real-time recording
of the timestamps of the mouse button press, it enabled us to
gather precise information regarding the time when pedal was
pressed. This allows the calculation of RTs, as the difference
between timestamps from stimulus presentation (operation
initiation) and the beginning of the machine simulated crimping
process.

Error Processing
Errors of omission were classified as the errors occurring when
participants did not respond to the appearance of the ‘‘go’’
stimuli. The commission errors processing was challenging, since
our task did not require a speeded button press and therefore,
the errors of commission were difficult to interpret. In fact, the
most obvious classification of commission errors would be when
participants completely execute the simulated operation upon
appearance of the ‘‘no-go’’ stimuli. However, it is important to
note that participants sometimes made slight movements upon

appearance of the ‘‘no-go’’ stimuli (in sense that they showed
intention to initiate the action) and then they inhibited the
response upon realization that it was a ‘‘no-go’’ stimulus. This
kind of error we classified as near-misses. The identification of
the near misses and commission errors was conducted initially
by the experimenters in the room and subsequently confirmed
in an off-line analysis, by replaying the videos recorded with the
RGB camera during the experiment.

Statistical Analysis
The statistical analysis was performed using IBM SPSS software.
The ERPs used for statistical analysis included all ERPs related to
the ‘‘no-go’’ condition and 50 ERPs related to ‘‘go’’ preceding the
‘‘no-go’’ condition. The 4 × 2 × 2 × 2 repeated measures analysis
of variance (ANOVA) was conducted with Site (Fz, Cz, CPz and
Pz), Task (Arrows vs. Numbers) and Condition (‘‘go/no-go’’)
as within subject factors and Order of presentation (first vs.
second) as between-subject factor. Additionally, a 2 × 2 ANOVA
comparing RTs across Task (Arrows vs. Numbers) as within
subject factors and Order of presentation (first vs. second) as
between subject factor was conducted. Finally, we carried out a
2 × 2 ANOVA comparing near misses across Task (Arrows vs.
Numbers) as within subject factors and Order of presentation
(first vs. second) as between subject factor. Greenhouse-Geissser
corrections (FG) were applied where necessary. Since the
participants did not make any omission errors and only seven
commission errors occurred across the participants they were
exempted from further statistical analysis.

RESULTS

Behavioral Results
Reaction Times
The 2 × 2 ANOVA comparing RTs across Task (Arrow
vs. SART) condition as within subject factor and Order of
presentation (first vs. second) as between subject factor revealed
neither significant main effects, nor interaction effects.

Errors
As stated in the ‘‘Materials and Methods’’ Section (Section
‘‘Statistical Analysis’’), the participants did not make any
omission errors and the low number of omission errors were
not statistically analyzed. However, regarding near-misses, the
ANOVA revealed only a significant effect of task (F(1,8) = 11.9,
p < 0.01, η = 0.60) with more near-misses occurring in the
Numbers compared to the Arrows task.

ERP Results
The GA ERPs for each task (Arrows and Numbers), each
condition (‘‘go/no-go’’) and each electrode site under study
(Fz, Cz, CPz and Pz) are depicted in Figure 3.

The 4 × 2 × 2 × 2 ANOVA revealed that the ERPs differed
depending on the condition (Go/No-Go: F(1,12) = 5.99, p < 0.05,
η = 0.33), the task (Task: F(1,12) = 17.06, p < 0.001, η = 0.59),
the order of presentation (Order of presentation: F(1,12) = 15.635,
p < 0.01, η = 0.57) and across the scalp (Site: F(1.48,17.75) = 5.352,
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FIGURE 3 | Graphical representation of the grand average (GA) event-related potentials (ERPs) for each task and each electrode location under
study. The black line represents the “go” condition, while the gray line depicts the GA ERPs for the “no-go” condition.

p < 0.05, η = 0.31). Namely, the P300 amplitudes elicited for
‘‘go’’ trials were higher than for ‘‘no-go’’ trials (M = 5.73, SD
= 1.47; M = 2.25, SD = 1.41, respectively). Further, the Arrow
task produced higher amplitudes in comparison to Numbers
(M = 5.24, SD = 1.11; M = 2.73, SD = 1.46, respectively).
The P300 amplitudes elicited with regard to the Order of
presentation demonstrated higher amplitudes for whichever task
was presented first in comparison to second task (M = 5.11,
SD = 1.31; M = 2.86, SD = 1.54, respectively). Finally, amplitudes
elicited at Pz were significantly higher than the amplitudes at the
other three sites and amplitudes at CPz site were higher than at
Cz and Fz sites at the p < 0.05 level. All the other comparisons
were significant in the same direction apart from the Fz-Cz
difference.

Figure 4 depicts the GA ERPs elicited over all four electrode
sites under study for the ‘‘go’’ condition.

The P300 amplitude differences for all four sites and
depending on the task representation order are presented in
Figure 5.

DISCUSSION

The present study investigated whether operators’ attention is
enhanced when they are instructed with which hand to initiate
the manual assembly operation, as compared to spontaneous
and free choice of preferred hand. The attention was assessed
through the P300 amplitude, as it is widely accepted that the
P300 amplitude is positively related to the human level of

attention (Ford et al., 1994; Polich, 2007; De Vos et al., 2014).
For this aim we simulated a manual assembly operation, where
we provided the participants with two distinct psychological
tasks (Numbers and Arrows) simultaneously with the simulated
operation.

The P300 components’ amplitude was significantly higher in
magnitude for the frequent ‘‘go’’ (target), than for the infrequent
‘‘no-go’’ condition (as presented on the Figure 3). This finding is
in contrast to the majority of previously reported studies where
an infrequent target condition elicits a higher magnitude of the
P300 amplitude, since the participants are usually required to
note the occurrence of infrequent targets by button press or
by silent counting (Strüber and Polich, 2002). On the other
hand, in our task target stimuli were the frequent ones, as
the continuity of operation in manual assembly is essential,
while the participants were instructed just to sit still and with
no actions during the infrequent ‘‘no-go’’ condition. As such,
it is not surprising that the lower magnitude of the P300
amplitude were elicited in infrequent non-target condition, as
passive stimulus processing induces smaller P300 amplitudes
than active tasks (Polich, 2007). This was also supported by
the results from the study of Potts et al. (2004), where they
reported that the P300 amplitude was larger in frequent ‘‘go’’
condition as compared to rare non-target condition in the task
where the ratio between ‘‘go’’ and ‘‘no-go’’ condition was 80/20.
Moreover, it was found that the ISI between target stimuli
influences the P300 amplitude, in the sense that a short ISI
leads to decreased amplitude, while relatively long ISIs elicit the
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FIGURE 4 | The GA ERPs elicited for “go” condition in all four experimental conditions. ERPs elicited for The Numbers task are represented with the gray
color, while the ERPs elicited in the Arrows task are depicted with the black color. The full line represents that the task was presented as a first task and the dashed
line if the task was presented as second task.

higher P300 amplitude, which is the case even in the single-
stimulus paradigm (Strüber and Polich, 2002; Polich, 2007).
This was the case also in our study, since the ISI was relatively
long (approximately 11 s) and we believe that it was suitable
for eliciting the P300 amplitude even in the frequent target
condition.

The main finding of the present study is that the
P300 amplitude was considerably higher in magnitude when
participants were instructed with which hand to initiate the
simulated assembly operation, as compared to the case when
participants could freely choose the preferred hand for the
operation initiation. This may not be surprising, since in the
choice reaction task (Arrows) participants were subjected to
slightly higher demands of the incoming stimuli evaluation, as
they were un-aware of the direction in which the white arrow
stimuli would point. On the other hand, the digit stimulus carries
considerably lower information, as participants are required just
to make distinction whether it is a ‘‘go’’ or ‘‘no-go’’ stimulus
and to perform their action accordingly, i.e., the participants

may stop evaluating the content of the stimuli after some
time. Therefore, the response selection requirements during the
Arrows task are substantially higher than in Numbers task,
which may lead to increased P300 amplitude in the condition
which required instructed responding from the participants
(Verleger et al., 2005, 2014). Following this finding, it may
be proposed that the workers on repetitive and monotonous
assembly tasks should not receive information solely on whether
they should initiate the operation or not, but it should be
beneficial if they receive information that carries slightly higher
cognitive demands. In fact, the task that consisted of the stimuli
with the higher cognitive demands induced the higher P300
amplitude, which may be related to the attention of the worker
for the task in hand. An important notion, however, is that
there is possibility that the P300 amplitude in this study does
not reflect solely the attention level of a worker, but it also
may be influenced by the different cognitive demands of the
tasks. For that reason, it is important to further investigate
whether the P300 amplitude was influenced by the presented
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Mijović et al. Benefits of Instructed Responding: ERP Approach

FIGURE 5 | The amplitude values for all four electrode sites and for all experimental conditions. The black color depicts the Arrows task, while the
Numbers task is represented with the gray color. The error bars represents ±2 SE.

task demands, or it was solely related to the attention of the
workers.

Interestingly, although it was expected that the RTs could
differ between the two tasks, this was not the case in our
study. One of the possible reasons for the absence of the
response time effect could be the methodology used for the
RTs calculation. In fact, the time period for RT calculation
is much longer than in the conventional studies, where a
speeded response from the participants is expected. Apart from
that, the RT calculation includes several coordinated hand
movements before the foot switch is pressed. All of these could
induce a large variation within and between subject conditions,
which may induce inaccuracy of the RT methodology used in
this study. Further, with regard to behavioral measurements,
the number of commission errors was relatively low and did
not differ between the tasks. However, there was significantly
higher amount of near-misses in the Numbers than in the
Arrows task. The fact that there was larger number of near-
misses in the Numbers task may be expected, as the Arrows
task imposes a higher workload on the participants, due to

the higher response selection requirements, and as it was
previously reported, the errors and mental workload are
related according to a U-shaped curve (Desmond and Hoyes,
1996).

Although we showed that the Arrows task produced a higher
P300 amplitude than the Numbers task, one could argue about
the selection of the tasks, as the stimulus type between task
conditions significantly differed (digits vs. arrows). The main
reason for not investigating the difference between instructed
and non-instructed condition with the same type of stimuli was
the avoidance of the interference effect (Pashler, 1994). In fact,
if only stimuli from Numbers task were used and dedicated
the directions to specific digits in the hand instructing task
(e.g., odd numbers means left and even numbers right hand
first), it would be highly likely that the memory would strongly
influence the attention processing. On the other hand, if we
only used the Arrows stimuli type, an undesired bias would
be included in the condition when participants could initiate
the operation with their preferred hand. An additional concern
is whether the two distinct psychological tests trigger different

Frontiers in Human Neuroscience | www.frontiersin.org April 2016 | Volume 10 | Article 171 | 49

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive
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attentional resources, given that they are composed of different
stimulus types and that the Arrows task alternates the response
hand, while in the Numbers task participants could respond
with whichever hand they preferred. The answer to this doubt
could be found in premotor theory of attention (Rizzolatti
et al., 1994), which states that attention orienting processes are
triggered during uni-manual response preparation and that the
orienting processes are assumed to be equivalent to the processes
elicited during instructed endogenous shifts of spatial attention
(Eimer et al., 2005). Moreover, Ranzini et al. (2009) also used
the tasks with Arabic digits and Arrows and they demonstrated
that processes evoked by these cues are alike and that the
volitional and non-volitional attentional shifts rely on the same
fronto-parietal brain networks. Thus, both Numbers and Arrows
tasks should evoke the same cognitive resources of attention,
which gives legitimacy to the choice of the tasks used in this
study.

One of the limitations of the present study is that it was
conducted in a simulated working environment, instead of a real
factory setting. The main reason for this was usage of the wet-
electrode EEG recording system, which is still uncomfortable for
application in actual industrial environments. Nevertheless, we
replicated both the spatial dimensions and ambient conditions
and performed the wearable EEG study, demonstrating its
applicability for the investigation of covert cognitive processes in
naturalistic environments for HF/E studies. Another limitation
is that, simultaneously with the simulated operation, we used
two distinct psychological tests, with the aim of eliciting
the P300 ERP component. Although it could be argued that
psychological tests could interfere with the simulated operation,
an important notion is that the assembly workers should be
provided with timely information regarding the performed
operation (Stork and Schubö, 2010). Therefore, we believe that
this modification did not significantly differ from the actual
assembly operation in industrial environments. Moreover, in
naturalistic settings it is usually hard to isolate and analyze
the specific cognitive process, since they should first be evoked
and co-occurring cognitive factors should be isolated (Bulling
and Zander, 2014). Thus, this modification in the information
presentation to the participants was necessary in order to elicit
the anticipated P300 ERP component during the simulated
assembly operation. Unfortunately, the present study is unable
to compare brain responses between self-paced (as in this
specific workplace) and externally paced work routines that we
used in our study. This issue should be addressed in future
studies.

The present study demonstrated that wearable EEG recording
could be beneficial for task design in HF/E studies. Future
studies should investigate whether the reported findings also
hold for similar job positions, which are monotonous and
repetitive in nature but require continuous focus of the worker
on the industrial task (e.g., quality control tasks). Although the
present study utilized wearable EEG in a faithfully replicated
workplace environment, it seems that it is just a matter of
time until EEG systems will be willingly accepted for everyday
use (van Erp et al., 2012; Mihajlovic et al., 2015). This
could even lead to the application of passive brain-computer

interfaces, which could be used for real-time assessment of
the cognitive user states in industrial environments (Zander
and Kothe, 2011). Nevertheless, the fact that it is nowadays
possible to investigate brain dynamics during natural movements
(without imposing movements constraints) of the recorded
individual brings us a step closer to the guiding principle of the
neuroergonomics, that is, to investigate how the brain carries out
the complex tasks of everyday life and not just simplified and
artificial tasks in the laboratory settings (Parasuraman and Rizzo,
2006).

CONCLUSION

Comparing monotonous (‘‘go/no-go’’) Numbers task to the
choice-reaction (Arrows) task, which instructs the participants
with which hand to commence the assembly operation, the
present study indicates that the latter is more suitable to preserve
participants’ attention during the initiation of externally-paced
assembly task. This finding was achieved through investigation of
the ERP waveform, where it was found that the P300 amplitude,
which is related to the level of attention, was enhanced in the
task that instructed the participants with which hand to initiate
the simulated assembly operation. This study demonstrated the
potential benefits of introducing the EEG measurements in the
industrial task design, as from the presented results it may be
concluded that in in monotonous assembly tasks, instructed
responding, or a similar method of engagement, should be
imposed on operators, since it is indicated that additional
engagement enhances the worker’s attention.
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We propose a framework for building electrophysiological predictors of single-trial motor

performance variations, exemplified for SVIPT, a sequential isometric force control task

suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of

20 subjects with mean age of 53 years was recorded prior to and during 400 trials of

SVIPT. They were executed within a single session with the non-dominant left hand, while

receiving continuous visual feedback of the produced force trajectories. The behavioral

data showed strong trial-by-trial performance variations for five clinically relevant metrics,

which accounted for reaction time as well as for the smoothness and precision of the

produced force trajectory. 18 out of 20 tested subjects remained after preprocessing

and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG

data of a short time interval prior to the start of each SVIPT trial. For 11 subjects,

SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity

are predictive for the performance of the upcoming trial. Since SPoC may overfit to

non-informative subspaces, we propose to apply three selection criteria accounting

for the meaningfulness of the features. Across all subjects, the obtained components

were spread along the frequency spectrum and showed a variety of spatial activity

patterns. Those containing the highest level of predictive information resided in and

close to the alpha band. Their spatial patterns resemble topologies reported for visual

attention processes as well as those of imagined or executed hand motor tasks. In

summary, we identified subject-specific single predictors that explain up to 36% of

the performance fluctuations and may serve for enhancing neuroergonomics of motor

rehabilitation scenarios.

Keywords: single-trial performance prediction, trial-by-trial variability, isometric force modulation, hand motor

rehabilitation, visuomotor integration, EEG, oscillatory subspace, spatial filtering

1. INTRODUCTION

Motor training is utilized in rehabilitation scenarios to accelerate the re-gain of lost motor function
after brain injury. State-of-the-art rehabilitation concepts are based on repetitive training tasks
with the aim to reach a functional gain (Dobkin, 2004; Timmermans et al., 2009; Langhorne
et al., 2011). Most prominent training paradigms comprise mirror training (French et al., 2007),
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constraint-induced movement therapy (Wolf et al., 2002),
simultaneous bilateral training (Coupar et al., 2010), BCI-
supported training (Ang and Guan, 2013) and robot-assisted
techniques (Kwakkel et al., 2008). Recent rehabilitation
approaches include the training of novel, unfamiliar motor skills
instead of training well-known habitual motor tasks, attempting
to optimize functional cortical reorganization.

Repetitive paradigms allow for the assessment of motor
performance on a very fine-granular time scale. The performance
of each single trial can be monitored by metrics such as
the length, speed or smoothness of the produced movement
trajectory. The distributions and temporal characteristics of
trial-wise motor performance variations have been studied by
different groups (Abe and Sternad, 2013; van Beers et al.,
2013; Wu et al., 2014; Hadjiosif and Smith, 2015). While
practicing a motor task over several sessions enables a user
for skill acquisition (Lage et al., 2015), trial-by-trial variability
of motor performance is a prominent feature which does not
fully vanish with training (Cohen and Sternad, 2009; Osu et al.,
2015). The underlying neural mechanisms of motor performance
fluctuations on short time scales is subject of controversial
discussion in literature and is not fully resolved yet (Faisal et al.,
2008; Hadjiosif and Smith, 2015; Osu et al., 2015).

In the present work, we aim toward closing this gap.
Therefore, trial-wise performance fluctuations of a sequential
visuo-motor task (SVIPT; Camus et al., 2009; Reis et al., 2009;
Fritsch et al., 2010 are investigated while registering a user’s brain
activity by EEG. In SVIPT trials, the quality of a movement
changes within seconds and from repetition to repetition.

Our hypothesis is that subject-specific pre-trial brain signals
can partially explain and temporally predict the trial-by-trial
fluctuations of the upcoming motor performance. Given that
such informative neural markers exist, then the SVIPT paradigm
could be altered in order to meet the cognitive ergonomic
requirements of each single user. Practically, the starting time
point of the upcoming trial can be determined based on the
information contained in this pre-trial neural marker. Ideally,
such a neuroergonomic closed-loop gating strategy could provide
control over the level of difficulty. This should allow to causally
influence user performance and ultimately support SVIPT motor
learning on the long run.

Paradigms which include brain-state-dependent experimenting
(see Jensen et al., 2011; Horschig et al., 2014c) require that an
informative neural marker can be extracted robustly from brain
signals. Given the high dimensionality and noisy characteristic of
most types of brain signals, the extraction and decoding of such
individual neural markers is a challenging task.

Screening literature on relevant neural markers of visual
and motor performance, it is important to make a distinction
between the use of single-trial decoding in contrast to the
extraction of statistical differences, which may even be reported
as group averages. Neural features which correlate with the task
performance on the grand average (GA) of a set of subjects
have limited usefulness for closed-loop experimenting with a
given individual. As inter-subject differences get lost during the
averaging, GA features may have low predictive power when
tested with data of a novel subject. Research in the field of

brain-computer interfaces (BCI) has pushed forward methods
for single-trial decoding of individual brain activity (mostly EEG
signals) (Millán et al., 2010; Makeig et al., 2012). Results from
this field affirm that brain signals and informative features vary
strongly between individuals (Müller et al., 2008). To obtain
optimal decoding results, BCI data processing pipelines thrive to
identify subject-specific informative features. Technically, these
are gained either from a calibration recording prior to the
online use of the BCI (Blankertz et al., 2007), or by transfer
learning methods (Kindermans et al., 2014) which exploit
features from pre-trained machine learning models of earlier
sessions or previous users. Furthermore, attention needs to be
paid to temporal dependencies: brain features may correlate with
previous behavior, with simultaneous behavior or may even be
predictive for future behavior. Only the latter brain features can
serve as a tool for brain-state-dependent experimenting.

Statistical correlates of visual perception performance are
reported by several groups. For stimuli near the perception
threshold, the pre-stimulus occipital alpha bandpower correlates
with the detection performance (van Dijk et al., 2008), even on
a single-trial basis using predictive features (Hanslmayr et al.,
2007). In addition to bandpower, the pre-stimulus alpha phase
was reported to correlate with the detection performance (Busch
et al., 2009). Single-trial decoding methods were not applied
in those auditory studies, but the reported correlates precede
the perception, which may open the possibility for closed-loop
experimenting. Based on the findings of Hanslmayr et al. (2007)
and van Dijk et al. (2008), there are two examples that set
up an online experiment based on occipital alpha bandpower
features. Tonin et al. (2013) using EEG data and Horschig
et al. (2014b), who employed MEG signals, both decoded covert
visual attention in a closed-loop experiment by utilizing single-
trial feedback on the detected attention shift. However, both
groups did not fully close the loop e.g., by manipulating the
perception performance, which may have been possible by
selecting suitable brain states for stimulation. Gonzalez Andino
et al. (2005) studied a cued reaction time task and identified
that gamma band oscillatory activity observed in fronto-parietal
regions prior to the stimulus onset correlates with reaction time.
Similarly, Hoogenboom et al. (2010) stated that the strength
of visually induced gamma band activity is predictive for the
detection of stimulus motion. Somatosensory stimuli of low-
intensity, but above threshold were delivered and combined
with a distracting masker stimulus by Schubert et al. (2009).
Investigating perceived vs. missed stimuli in an offline analysis,
pre-stimulus beta bandpower over the left frontal cortex was
found predictive for the perception performance on the grand
average, as well as mu and beta bandpower over the pericentral
sensorimotor areas.

In the motor domain, several groups have successfully
decoded hand kinematics, using the center-out task as the
dominating experimental approach. In their ownwork, Jerbi et al.
(2011) provide a review over the decoding of hand movement
parameters such as direction, position and velocity based on
brain signals. ECoG signals were used by Pistohl et al. (2008)
to decode two-dimensional hand movement trajectories using
an autoregressive filtering approach. Considering non-invasive
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techniques, Waldert et al. (2008) have decoded (but not
temporally predicted) the hand movement direction based
on MEG and EEG. Neural correlates which encode the
velocity of a movement have been investigated by Bradberry
et al. (2009). The decoding of produced grip force based
on a phase feature extracted from the beta range has been
reported on data of three subjects by Logar et al. (2008).
Zaepffel et al. (2013) reported an increased centro-parietal beta
power during the planning period of grasping movements,
but it was not investigated, if decoding may work on the
basis of single trials. Focusing on single-trial methods, Lew
et al. (2014) used slow cortical potentials of the EEG
from fronto-parietal areas to predict self-paced movement
directions a few hundred milliseconds prior to movement
onset. Similarly, Hammon et al. (2008) inspected predictive
EEG features for planning target directions using a cue-based
paradigm.

In the field of BCI research, Maeder et al. (2012) studied a
motor imagery paradigm. The single-trial decoding performance
of left vs. right hand movement imagery tasks could be correlated
to the level of pre-trial alpha bandpower over the sensorimotor
cortices. Despite used offline, this neural marker would allow
for a predictive intervention in a closed loop. In their statistical
analysis, Yang et al. (2014) identified frontal alpha and beta
bandpower features which correlate with performance metrics
of a reaching task. Proceeding to single-trial methods, Meyer
et al. (2014) reported on data of six subjects, who performed
a hand positioning task. Their offline analysis revealed that the
normalized time-to-target could be predicted based on pre-cue
alpha-band activity of the EEG.

The state-of-the-art can be summed up as follows: In
the perception domain, several studies have established
single-trial performance prediction, partially even in closed-
loop applications. The situation is different for the motor
domain since only very few studies have investigated
subject-specific motor performance prediction in single-
trial upon a sufficiently large subject group. Closest to
all of these requirements is the study by Meyer et al.
(2014). Our research hypothesis builds exactly upon this
point. In the context of a hand force task, we propose
a generalized workflow which identifies subject-specific
predictive oscillatory EEG features evaluated on a single
trial basis.

First, by means of a simulated online analysis, an approach
to extract robust and meaningful EEG components is
developed. We evaluate, if the information contained in
selected components is able to partially explain the trial-by-
trial variation of SVIPT performance in a predictive fashion,
i.e., the pre-trial component is required to predict the outcome
of the upcoming trial. Second, the characteristics of the best
performance predictors are investigated by a group-level analysis.

2. MATERIALS AND METHODS

2.1. Hand Motor Paradigm
In the context of hand motor skill learning, Reis et al. (2009)
investigated the Sequential Visual Isometric Pinch Task (SVIPT),

which demands an isometric force control of thumb and
index finger. Interestingly, training-induced improvement of the
SVIPT generalizes well to other hand motor control tasks, even
though pinch grasp activities are rarely displayed during natural
behavior patterns. Compared to the original SVIPT setup, brain
activity is recorded using electroencephalogram (EEG) during a
training session for post-hoc offline analysis. The resulting SVIPT
setup follows the proposal in Meinel et al. (2015) and is sketched
in Figure 1.

Each SVIPT trial consists of three phases: a light blue
(inactive) cursor appears on the leftmost edge of the T0 field
(corresponding to zero force), while the user is touching the
sensor only slightly with his non-dominant left hand. The
appearance of the cursor indicates the start of the get-ready
phase, which corresponds to a waiting period with enhanced
attention level. Its duration is varied randomly between 2 and 3 s.
The transduction of force into cursor movements is deactivated
during the get-ready phase. Fixating the cursor, the user will
observe a distinct color change of the cursor from light to dark
blue. This go-cue indicates the beginning of the running phase, in
which the cursor position can be controlled by applying force to
the sensor. As force is transduced into horizontal cursor position,
increasing force will move the dark blue cursor to the rightmost
position, which is pre-calibrated at session start to represent
30% of the user’s maximum force. The user has been instructed
to navigate the cursor as quickly and accurately as possible,
in order to visit a sequence of target fields (T0, T1, and T2).
Overshoots of the cursor are to be avoided. The current target
field is visually indicated to the subject by a green shading (see
Figure 1). Reaching a target field, a dwell time of 200ms must
be fulfilled in order to achieve a successful hit of this target field.
Hit events are indicated visually by a switch of the target field
(another field is shaded in green), or by the end of the trial.
Trials were chosen randomly from two conditions, each with a
specific required target field sequence (T1-T0-T2-T0 or T2-T0-
T1-T0). A trial was finished by fulfilling the complete sequence
– skipping a target was not allowed. Trial duration is presented
visually as an immediate performance feedback during the pause
phase between trials.

2.2. Subjects and Ethics
Overall, 20 right-handed normally aged subjects (8 female,
average age: 53 years, std: 6 years) were recruited. The subject
group resembles the target group of first-stroke patients with
respect to age and gender (Ovbiagele and Nguyen-Huynh, 2011).
The term normally aged was chosen to indicate our selection
criteria: the participants did not have any known neurological or
psychological history and were probably healthy—even though
we can not exclude the possibility that some participants had a
history of unrecognized micro stroke events.

The offline study was approved by the Ethics Committee of the
University Medical Center Freiburg. Following the principles of
the Declaration of Helsinki, written informed consent was given
by subjects prior to participation. In one session of about 3–4 h
(including EEG setup and washing the hair), every participant
controlled the cursor with their left hand for 20 blocks of 20 trials
each.
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FIGURE 1 | Schematic setup of the EEG-tracked SVIPT. The subject applies force to a sensor using a pinch grasp. Force is transduced into positions of a

horizontally moving cursor. EEG activity is recorded before, during and after repeated trials.

2.3. SVIPT Performance Scores
SVIPT enables to capture single trial motor performance. Given a
high order motor control, the force profile F(t) of a single-trial is
characterized by a quick force ramp up upon the presentation of
the go-cue and the avoidance of overshoots. The requested speed-
accuracy trade-off can be translated into various performance
scores of the SVIPT task. In Tangermann et al. (2015), the
authors selected a set of scores, which describe the single-trial
performance:

• Reaction Time/RT: A quick response upon the go-cue is a
good start for a successful trial. The time interval between the
go-cue at time tgo and the time point tT0,exit , which indicates
the cursor leaving the starting field T0, is defined as reaction
time.

• Duration/DUR: Comparable to RT, a short time duration
from the go-cue at time tgo until the hit of the first target field
at time point thit characterizes a successful trial.

• Cursor Path Length/CPL: The total path length the cursor
is moved from the go-cue to the hit of the first target field is
described by the integral over the first temporal derivative of
the force profile F(t):

CPL ≡

∫ thit

tgo

|Ḟ(t)| dt′

• Integrated Squared Jerk/ISJ: The level of fine-granular motor
control is reflected in variations of the trajectory smoothness.
Therefore, jerk—defined as the third derivative of the force
profile—is expressed by the ISJ metric, which is defined as:

ISJ ≡

∫ thit

tgo

|
d3F(t)

dt3
|2 dt′

• Normalized Jerk/NJ: A unit-free variant of ISJ captures
smoothness variations. It is given by the normalized jerk:

NJ ≡

√

ISJ · DUR5

2 · CPL2

Since there are two conditions of target field sequences, a
standardization of the performance scores (except for RT) is
the prerequisite for pooling trials of both conditions. Therefore,
the extracted metrics of each condition were standardized (zero
mean and standard deviation one) prior to pooling. Except
RT, the metrics are defined with respect to some end point
(e.g., thit). Choosing this boundary represents a trade-off between
(a) harvesting a metric which is temporally close and thus related
to the get-ready interval (the interval before the go-cue), and (b)
including thorough information about the force trajectory of the
current trial. To balance the two conflicting goals, we chose the
hit of the first target field.

2.4. Data Acquisition and Preprocessing
During a single session, subjects were placed in a chair at 80 cm
distance from a 24-inch flat screen. EEG signals from 63 passive
Ag/AgCl electrodes (EasyCap) were recorded, which were placed
according to the extended 10–20 system. Impedances were kept
below 20 k�. All channels were referenced against the nose.
The signals were registered by multichannel EEG amplifiers
(BrainAmp DC, Brain Products) at a sampling rate of 1 kHz. An
analog lowpass filter of 250Hz was applied before digitization.
The signal of the force sensor was recorded by an additional
amplifier system (BrainAmp ExG, Brain Products).

For outlier identification, the offline preprocessing consisted
of high-pass filtering the raw EEG signals at 0.2Hz, low-pass
filtering at 48Hz and sub-sampling to 500Hz sample frequency.
Therefore, linear butterworth filters of 5th order were applied.
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For each trial and all 63 channels, an epoch of 2000ms duration
prior to the go-cue was extracted. In order to identify outlier
epochs, three rejection methods were applied. First, EEG epochs
violating a min-max threshold of 60µV on frontal channels were
excluded from further analysis. Second, a variance threshold on
single epochs and channels was applied to remove high-frequent
muscular artifacts. Therefore, the variance of single epochs needs
to be within Pup = 90th percentile and is not allowed to
exceed 2 · (Pup − Plow) with Plow = 10th percentile. Third,
epochs belonging to extreme trials, represented by outliers of
the motor performance metric, were removed. For this purpose,
the following min-max thresholds were defined based on earlier
pilot recordings (Meinel et al., 2015). The thresholds were [150,
900] ms for RT, [−1.5, 1.5] for ISJ, [−0.6, 0.6] for CPL, [−1.5,
2] for DUR, and [0, 1300] for NJ. They were applied prior to
further data analysis. The total number of trials Ne entering the
following offline analysis procedures varied across subjects and
performance metrics. Only for 2 out of 20 subjects less than
150 out of the original 400 epochs were remaining after the
EEG preprocessing. We discarded data of these subjects from the
following analysis. The frequency filtering for our main analysis
will subsequently be described in Section 2.6.

2.5. Single-Trial Performance Prediction
In the following, the multivariate variable x(t) ∈ R

Nc

characterizes the EEG signal recorded from Nc sensors. In
addition, s(t) defines the time course of a neural source. The
physics of volume conduction assumes a linear mapping of the
source space to the sensor space. The forward (or generative)
model thus reads :

x(t) = A s(t) (1)

where the matrix A ∈ R
Nc×M describes the projection of the M

sources to the EEG sensor space.
The main goal is to approximate the true neural source s(t)

by ŝ(t), whose power achieves the highest correlation with a
predefined external variable z(t), called target variable from this
point onwards. Several methods can be used to estimate such a
source, among them Blind Source Separation (BSS) and source
reconstruction techniques. BSS techniques rely solely on an
unsupervised framework, which may be a suboptimal approach
given the availability of labels in the form of the target variable
z. Source reconstruction techniques may provide a high level of
interpretability for the results directly in the source space, and
may describe non-stationarities in the data and other complex
dynamics (Castaño-Candamil et al., 2015b). However, there are
three potential drawbacks of source reconstruction approaches
(Grech et al., 2008): First, the estimation of ŝ(t) usually creates a
rather high computational burden. Second, the methods require
a forward model A for each individual subject, which may not
be available in most situations since it corresponds to the exact
anatomical description of a subject’s brain. Third, as source
reconstruction problems are intrinsically ill-posed, the quality of
an estimated source depends on additional assumptions, such as
the density of sources or their location within the brain.

An alternative to both, BSS and source localization approaches
is the family of the so-called supervised spatial-filtering

methods. One widely known approach is the Common
Spatial Patterns algorithm (CSP; Ramoser et al., 2000), which
searches for spatial filters that enhance the contrast between
two classes. Consequently, it is well suited for supervised
classification problems. A more recent approach, the Source
Power Comodulation algorithm (SPoC; Dähne et al., 2014) is
adequate for regression problems. As the five SVIPT metrics are
continuous variables, we preferred to include the SPoC algorithm
into our data analysis framework.

SPoC learns an optimal spatial filter wopt ∈ R
Nc×1 that allows

to estimate the source as ŝ(t) by projecting x(t) into a subspace,
which maximizes the correlation between the band power of ŝ(t)
and the target variable z(t):

ŝ(t) = wopt
⊤x(t) (2)

Without loss of generality, the objective function for SPoC may
be defined in terms of the epoched data x(e), where e refers
to the e-th epoch. Assuming that the EEG sensor signal has
been bandpass-filtered to a narrow frequency band and that the

norm of the spatial filter is constrained, e.g., Var[w⊤x(t)]
!
= 1,

the optimization problem can be solved by maximizing the
covariance:

wopt = argmax
w

{Cov[8x(e), z(e)]} ∀ e

s.t. Var[w⊤x(t)]
!
= 1

(3)

where 8x(e) = Var[ŝ](e). This formulation of the algorithm –
called SPoCλ – can be transformed into a generalized eigenvalue
problem and thus delivers a set of Nc spatial filtersW ∈ R

Nc×Nc .
In this paper, the SPoCλ algorithm is utilized which subsequently
will be abbreviated by the term SPoC.

Applying a SPoC filter wtr learned from training data xtr(t),
the method allows to estimate the target variable zest on novel,
unseen test data xte(t) on a single-trial basis by calculating the
bandpower of the narrowband subspace signal:

zest = Var[wtr
⊤xte(t)](e) (4)

Using this relation, we will focus on the prediction of single-
trial SVIPT performance using EEG activity within the get-ready
phase of the trial.

As Haufe et al. (2014) have been pointing out, there is an
existing forward model of the form of Equation (1) for every
backward model as in Equation (2). Thus, the corresponding
spatial activation patterns can be obtained from the spatial filters
W via the covariance matrix Cx of the data x(t) via:

A = CxW (5)

Note, that any subspace components resulting from the SPoC
analysis dependmainly on four hyperparameters. In the temporal
domain, two of them define the epoching interval [t0, t0 + 1t]
where t0 is the starting time relative to the go-cue and a duration
1t. In the frequency domain, the lower frequency f0 and the
band width 1f are the hyperparameters describing the band
[f0, f0 + 1f ] in which x(t) is bandpass-filtered.
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Even though simple regression of bandpower features on the
channel level does not fulfill the requirements of the assumed
forward model, we added this simple method for comparison
with SPoC. Therefore, channel-wise bandpower features of the
training and test set were calculated.

2.6. Selection Criteria for Informative
Oscillatory Components
Performing a grid search across subjects and SPoC parameters,
we restrict the evaluation to a fixed predictive time interval given
by t0 = −800ms prior to the go-cue and a window size of
1t = 750 ms.

As sketched in Figure 2, logarithmically increasing and
overlapping frequency bands ranging from ≈ 1–100Hz (55
configurations in total) were evaluated from the original non-
filtered signals. For bandpass filtering, linear butterworth filters
of 5th order were utilized. As a trial-wise target variable
z, the five different performance metrics introduced in
Section 2.3 were considered. Evaluating SPoC across the
complete study group of 18 subjects, using five different
motor performance metrics, sweeping through 55 discrete
frequency bands and selecting the highest-ranked components
(see details below) per configuration, results in more than
12,000 oscillatory components. In this section, we will
describe an offline selection strategy in order to identify
a subset of the most robust and informative oscillatory
components which qualify to predict single-trial motor
performance.

Upon each parameter configuration, a K = 5-fold
chronological cross-validation procedure was employed
upon the calculation of SPoC (Lemm et al., 2011). Only
trials were considered, which survived the data preprocessing
(see Section 2.4). From these, Ne EEG pre-trial epochs and
their corresponding target variable values z were extracted in
chronological order and split into 5 equally-sized folds. Thus,
4-folds served as training data while the remaining one was
used for validating the SPoC filter as described in Equation (4).
Since each fold served as test fold once, the estimated target
variable zest,j of fold j can be concatenated for all Ne epochs,
resulting in zest = [zest,j]j∈[1,K]. According to Equation (5),
on each fold j the corresponding test pattern is given as

FIGURE 2 | Frequency parameter configurations characterized by the

frequency f0 and the corresponding band width 1f. In total, 55

configurations were used for computing SPoC filters. The omitted points (gray

area) correspond to the power line frequency range.

aj = Cte,jwtr utilizing the covariance matrix Cte of the test data
xte(t).

The same cross-validation scheme was applied upon the
linear regression model. The whole parameter space of 3600
configurations was screened. Note, that this number is smaller
than the number of components delivered by SPoC analysis, since
the latter may deliver more than one component per parameter
configuration. The regression, which delivers a single component
per configuration only, was trained on the training data and
finally applied on test data such that an estimate zest was gained
on all N(e) trials which had survived the data preprocessing step.

For a given parameter set, SPoCλ returns a set of Nc filters.
As described in Tangermann et al. (2015), it is sufficient to take
only the first-ranked components into consideration1. For this
purpose, we applied a rank-based criterion. First, removed the
linear trend from the ordered set of Nc eigenvalues. A threshold
of 1.5·σ (r) relative to the standard deviation σ of the resultingNc

residuals r was defined.We restricted the investigation to positive
eigenvalues.

Given a single componentw, the following set of scores enable
to characterize its predictive strength and stability:

• Correlation characteristics:As a measure to verify the quality
of the predictive strength of a SPoC configuration, the overall
correlation of the Ne-many measured performance labels ztrue
with the corresponding predictions zest can be considered:

Rall = Corr[ztrue, zest] (6)

Similarly, the predictive strength in terms of single-trial
performance can also be verified by checking the mean of the
fold-wise correlations Rj = Corr[ztrue,j, zest,j], which rewards
temporally stable components:

Rfolds =
1

K

K
∑

j=1

Corr[ztrue,j, zest,j] (7)

The correlation based metrics Rall and Rfolds come closest to
the original optimization objective of the SPoC algorithm. If
the trained spatial filters model trial-to-trial fluctuations well,
Rall and Rfolds will report a large value, but only Rfolds allows to
discriminate between single-trial predictors and session-trend
models. Furthermore, a stable component requires that the
correlation of each fold j shares the same sign with Rall. Thus,
it is reasonable to require a high homogeneity Hfolds:

Hfolds =

K
∑

j=1

2(sign(Rall) · sign(Rj)), (8)

with 2(x) = 1 for x ≥ 0 and 2(x) = 0 for x < 0 representing
the unit-step function.

• Separability of estimated performance: Simulating the
trial-wise online application, the continuous prediction is
transferred into a two-class problem. Therefore, we split

1The components are sorted according to their eigenvalues. In case of SPoCλ, they

equal to the covariance between the bandpower features and the target variable.
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the Ne prediction values zest into two distributions (zest,h
and zest,l) based on the 50th percentiles of the true target
variable distribution from ztrue, thus representing high and
low performance. The separability of zest,h and zest,l can
be quantified by a statistical test. Here, the area under
the receiver-operating-characteristic curve (Fawcett, 2006) is
reported. It is denoted as z-AUC and has a chance level of 0.5.

• Stressing the stability: SPoC is a supervised method, which
uses label information to guide the spatial filter calculation.
Thus, the robustness of a resulting component can be stressed
by introducing label noise. The concept of a step-wise
reduction of the SNR of the labels has been introduced by
Castaño-Candamil et al. (2015a). Here, SNR levels were varied
from −20 dB to 10 dB by adding white noise. Applying SPoC,
we estimated the target variable zest for all Ne epochs using
5-fold cross-validation. At each SNR level, three sets of noisy
labels z were calculated. For each SNR level, the separability of
the resulting zest distribution is verified by the z-AUC value.
Regarding the z-AUC values as a function of the SNR, the
area under this curve—referred to as AAUCSNR—describes the
stability of the component.

To finally identify and select robust and predictive components,
we propose to apply three out of these five criteria in parallel. As
a prerequisite, the data set needs to consist of at least Ne = 150
trials in order to ensure the convergence of the SPoC algorithm
(see Dähne et al., 2014; Castaño-Candamil et al., 2015a):

1. The separability of the predicted performance zest can be
verified by the resulting z-AUC value. A corresponding
threshold z-AUCmin = 0.59 was determined according to the
85th percentile across all configurations.

2. The stability of the component is assessed by the AAUCSNR.
Here, a threshold AAUCmin = 0.18 was determined from the
85th percentile.

3. As an additional stability criterion, we require all fold-
wise correlations Rj to share equal sign as Rall such that
Hfolds,min = 5.

3. RESULTS

3.1. SVIPT Performance Metrics
Single-trial based SVIPT performance can be assessed by
different metrics, as described in Section 2.3. In Figure 3

examples of the trial-to-trial fluctuations of different metrics
are visualized for two subjects. The visualization covers the full
sessions, but omits trials removed during the preprocessing.
Figures 3A,D show the metric reaction time (RT) for two
subjects. It is not affected by a session trend. Its distribution
is slight asymmetric, which is caused by a physiological limit
for the minimal RT. The normalized jerk (NJ) in Figures 3C,F

behaves in a similar manner. It is affected only slightly by a global
trend, but shows a more skewed distribution compared to RT.
In contrast, integrated squared jerk (ISJ) depicted in Figure 3B,
and cursor path length (CPL) in Figure 3E both show a strong
session trend, which can be explained by the user learning (data
not shown here). A comparably strong session trend is present
also in the duration metric DUR (data not shown).

The cross-correlations between all five metrics and the shape
of their distributions were reported in Tangermann et al. (2015).
Metrics ISJ, CPL and DUR showed strong correlations to each
other, while RT as well as NJ both are rather independent from
the four other metrics.

FIGURE 3 | Examples of trial-wise variations of different performance metrics over a full session, and their distributions. (A–C) are taken from data of

subject S9, while (D–F) are from S13.
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3.2. Contrasting SPoC with Linear
Regression on Sensor Level
As a baseline comparison for the predictive power of SPoC
components, a linear regression model employing channel-wise
bandpower features was evaluated as described in Section 2.6.
The resulting distributions of the overall correlation Rall and the
performance separability z-AUC are reported in Figure 4. Across
all configurations, SPoC delivers a median correlation Rall,med =

0.07 and a separability of z-AUCmed = 0.54, while on average the
regression performs on chance level. While both methods come
up with components revealing z-AUC values above chance level,
those with the strongest predictive information are generated by
the SPoC method.

3.3. Single-Trial Motor Performance
Predictors
In Figure 5, five exemplary predictive and robust SPoC
components, gained from five different subjects are
characterized. Although SPoC components are computed
from band-pass filtered data, the resulting filter w (gained on all
available Ne trials) of a component can be re-applied to non-
frequency-filtered epoched data. This spectral content of a SPoC
component is shown in Figure 5A. The frequency band in which
the component was extracted from is indicated by the dashed
gray area. Using all available epochs, Figure 5B shows the spatial
activity pattern gained via Equation (5). In Figure 5C, the SPoC
filter weights on the 2D-scalp projection are shown. The scatter
plot in Figure 5D reports on the measured performance metric
ztrue as a function of the predicted performance zest according
to the CV scheme described in Equation (4). The data points
are colored by the fold index (1–5), which corresponds to the
temporal order of the session. Fold 1 represents the beginning
of the session, fold 5 its end. In addition, the overall correlation
Rall reports on the predictive strength of the component. The
distributions shown in Figure 5E illustrate the separability
of the single-trial performance values zest . For this purpose,

FIGURE 4 | Contrasting the predictive outcome of all 3600 tested

parameter configurations for linear regression (LinReg) and over

12,000 configurations for SPoC. In (A), the overall correlation Rall between

predicted and estimated target variable values is depicted. (B) Shows the

performance separability z-AUC. Gray lines indicate the median, boxes

enclose the 25th to 75th percentile. The whisker length is set to two

inter-quartile ranges.

the estimated labels zest have been reduced to the lower and
upper quartile. The corresponding true labels ztrue were used
to compute the quartiles Qlow,est and Qhigh,est and were fitted
by a kernel distribution (solid lines). In an ideal case, those
quartiles would converge toward the extreme quartiles (Qlow and
Qhigh) of ztrue, which are indicated by dashed lines. As a score of
their separability, the score z-AUC as described in Section 2.6 is
reported based on the 50th percentile.

The exemplary components in Figure 5 are selected across the
investigated frequency range depicted in Figure 2. The predictor
of S7 can be assigned to the theta band, those of S9 and S13
correspond to the alpha range, the component for S5 originates
from the beta range and the one of S8 was found in the gamma
range. Regarding the scatter plots, there are two different types of
patterns recognizable: single-trial predictors showing a confined
point cloud without a clear trend over time (all examples except
for S13), whereas the scatter plot of subject S13 shows a clear
trend over the course of the session. The separability plots
indicate that the predictive power of a single component nicely
matches with the z-AUC value.

3.4. Testing the Stability of SPoC
Components
The stability of an oscillatory component can be challenged by
varying the signal-to-noise ratio (SNR) of the target variable z.
In Figure 6, the z-AUC score is investigated as a function of
the SNR for two parameter configurations. Figure 6A shows a
stable component, where z-AUC is expected to decrease, while
for a non-informative component in Figure 6B the z-AUC can
be expected around the noise floor. Thus, the resulting area
under the z-AUC curve can be assessed as a tool for mapping
the stability of the subspace component under challenging
noise conditions. In Figure 6C, the distribution of this so-called
AAUCSNR is reported for all evaluated SPoC components across
all 18 subjects. The distribution of AAUCSNR values has its
median at 0.07 and is slightly skewed.

3.5. Identification of Robust and Predictive
Components
As described in Section 2.6, the first highest ranked components
of each parameter configuration have been evaluated, resulting
in about 12,000 different subspace components. In Figure 7, the
configurations are characterized by their stability under noise
(AAUCSNR), which is plotted in Figure 7A as a function of
the separability measure z-AUC, in Figure 7B as a function
homogeneity of the fold-wise sign of the correlation Hfolds

and in Figure 7C as a function of the overall correlation Rall.
A few observations can be made: First, the metrics are not
centered at zero. Second, based on all initial configurations
(blue data points), AAUCSNR correlates with the z-AUC as
well as with Rall. The largest AAUCSNR values are evoked
by the most homogeneous fold-wise correlation signs with
Hfolds ≥ 3.

The threshold criteria applied to select the best of the 12,000
subspace components are indicated by red dashed lines, and
red dots indicate the components finally selected. As shown in
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FIGURE 5 | Characterization of exemplary predictive SPoC features. Each component is characterized line-wise labeled by the used performance metric and

the rank according to the full-session filters. (A) Power spectrum of the component applied on non-bandpass filtered full data. The frequency band where the

component has been trained is marked by the dashed lines. Note that for the component of S8 a broader frequency range is visualized compared to the other

examples. (B) Spatial activity pattern. (C) Filter weights visualized. (D) Scatter plot between true labels ztrue and the predicted ones zest, color coded by the fold of the

chronological cross-validation. (E) To illustrate the separability of the prediction, the distribution of ztrue values has been split using the corresponding trials of the

upper and lower quartiles of zest, which resulted in Qlow,est and Qhigh,est. As a reference, the extreme quartiles Qlow and Qhigh of ztrue are also given (dashed curves).

In addition, the z-AUC value based on the 50th percentile split is reported.

Figure 8, the overall correlation Rall is strongly correlated with
the z-AUC metric, such that an additional threshold criterion on
Rall was not necessary. The most predictive components achieve
a correlation value of up to 0.6, corresponding to Rall

2 = 0.36.
Assuming a linear relationship between ztrue and zest as well as
normally distributed data, this means that zest can explain up to
36% of the performance variance contained in ztrue.

In Figure 9, all 361 selected components are characterized
by histograms in terms of their input parameters. Figure 9A
displays the subject-wise grouping. In total, 11 out of 18

subjects contribute at least one component, for three subjects
more than 50 configurations survive the selection procedure.
Figure 9B shows the histogram over the number of trials
available for the offline analysis. Note, that this histogram is
dominated by the best three subjects reported in Figure 9A, who
contributed a large number of the selected 361 configurations.
Figure 9C characterizes the selected components assigned to
their underlying frequency band [f0, f0+1f ] (see Figure 2). Most
components are gained from the alpha- and beta-band range.
Interestingly, robust features detected in the gamma band were
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FIGURE 6 | Stressing the stability of two exemplary SPoC components for two different parameter configurations (A,B). While stepwise decreasing the

SNR ratio (indicated by the red arrow), z-AUC-values (solid lines) describing the separability of the prediction are plotted together with standard deviations (dashed

lines). The area under the z-AUC curve—further on called AAUCSNR—describes the stability of the component under the challenge of added noise. (C) Shows the

histogram of all AAUCSNR scores evaluated for the considered parameter configurations.

FIGURE 7 | Characterizing the space of SPoC components by several metrics, which describe their stability and predictive information. The

SNR-challenged AAUCSNR is given as a function of the performance separability z-AUC (A), in relation to the homogeneity of the correlation sign Hfolds (B), and

dependent on the overall correlation Rall (C). Red data points describe the selected SPoC components after applying thresholds (dashed red lines).

dominantly selected for their ability to predict CPL. The slow
frequency (<4 Hz) components are dominated by artifactual
subspaces. Figure 9D reports on the occurrences of the different
performance metrics among the selected components. Most
components could be extracted for RT (61%), followed by CPL
(16%) while all other metrics contribute almost equally well
with 6–8% of the selected components. Figure 9E provides an
overview over the SPoC ranks of the surviving components.
The rank ordering corresponds to the eigenvalue ordering of
the complete data set. As the number of selected components
drop with increased rank, the ranking is associated with the
information content of the subspace component.

SPoC as a linear filtering method allows for a limited
neurophysiological interpretation of spatial activity patterns.
A representative subset of typical scalp topographies from
the selected stable and informative subspaces are plotted in
Figure 10. The components were assigned to three groups. About
70% of components fall into group G1, which comprises patterns
ranging from activations in occipital, to central or frontal areas.
The maximum activity of those components often is found
over one of the hemispheres. About 10% of the components

fall in group G2. They show patterns of probable non-neural
sources and may represent e.g., eye artifacts, muscular activity or
single noisy channels. Group G3 comprises noisy topographies.
As indicated by patterns in the intersection area of the three
groups, mixed components were observed as well. The detailed
parameter configurations of each of the plotted components is
listed in Table 1.

4. DISCUSSION

We hypothesized that subject-specific pre-trial brain signals
contain information which allows to partially explain and
temporally predict the trial-by-trial variability of the upcoming
motor performance in SVIPT. To test the hypothesis, we
developed a workflow which is capable to extract informative
oscillatory EEG subspace components and to identify the most
robust ones. Simulating an online application, our analysis
revealed strong evidence that the band power of the selected
components is predictive for the single-trial SVIPT performance.
Major findings were that these components indeed exist, but need
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to be optimized for individual users. With 11 out of 18, not all,
but a majority of the subjects revealed the desired informative
features.

In the following we will first discuss the decision to utilize
SPoC instead of other alternative analysis methods. In this
context, the proposed selection procedure and the stability of
SPoC components over time is discussed, with a special focus
onto the role of SNR, frequency and the illiteracy phenomenon.
In addition, the detected components will be related to existing
literature and characterized on a group-level with respect to
the covered frequency bands, sub-processes reflected by the
components and the time courses revealed. Before concluding,
we will describe a neuroergonomically enhanced rehabilitation
paradigm as a possible use case of our contribution.

4.1. SPoC and its Alternatives
Designing the data analysis workflow, we built upon our
background in BCI. Accordingly, we carefully selected

FIGURE 8 | Relation between separability metric z-AUC and the overall

correlation Rall for all SPoC configurations (blue dots) and the selected

ones (red dots). The dashed red line indicates the threshold z-AUCmin

applied to select most informative components. The red bars indicate the

distribution of Rall values for the selected components.

algorithmic building blocks only, if they can be applied in
single-trial analysis [e.g., the application of the spatial SPoC filter
according to Equation (4)]. This decision should simplify the
translation of the presented workflow to closed-loop experiments
in the future. The choice of the supervised SPoC algorithm for
extracting informative components is supported by its good
performance compared to a supervised linear regression of
bandpower features on the sensor level (see Section 3.2). This
is in accordance with findings of Dähne et al. (2014). On data
from an auditory steady-state evoked potential paradigm, these
authors reported better results for SPoC compared to both,
linear regression and an unsupervised subspace decomposition
using independent component analysis (ICA). SPoC does
not reconstruct sources of the brain, but instead performs a
supervised subspace decomposition. Thus, a SPoC subspace
component can not be expected to correspond to a single
physical source or even a dipole source (even though such SPoC
components are possible). Theoretically even several spread-out
brain areas may contribute to a single SPoC component, if they
share oscillatory activity which co-varies over time with the
labels. The choice between SPoC and source reconstruction
approaches (Gonzalez Andino et al., 2005) represents a trade-
off—while the latter may facilitate the interpretation of results,
SPoC components avoid several of the drawbacks mentioned in
Section 2.5. As our workflow was aligned in terms of applicability
for single-trial online paradigms, our decision was biased toward
SPoC.

4.2. Selection Criteria for Robust and
Predictive Components
Over-fitting is a general issue for supervised methods and for
SPoC in particular, as no form of regularization was applied. This
requires some form of post-hoc selection of SPoC components.
The situation is aggravated, as SPoC returns full rank filter
matrices, which result in a very large numbers of subspaces.
However, only a fraction of these can be expected to be
informative about the labels. As robustness over time as well
as with respect to label noise are important criteria for the
potential closed-loop applicability of a component, a single
selection criterion (e.g., a threshold on the correlation value) is
not sufficient. By that, we selected three criteria (see Section 2.6),
which suited best these requirements. Out of the initial five
selection criteria, the two scores Rall and Rfolds turned out to

FIGURE 9 | Histograms of different parameters solely for the selected SPoC components. (A) Shows the assignment over the 18 subjects. (B) Gives the

allocation over data set sizes Ne (with a lower limit of 150 trials). (C) Visualizes the distribution across frequency bands. (D) Depicts the spread of components over

the five utilized motor performance metrics, while (E) shows the split according to their SPoC rank positions.
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FIGURE 10 | Overview over typical activity patterns resulting from the selected components, grouped in three categories: G1 consists of components

with neural origin, G2 comprises artifact-related subspaces and G3 captures non-informative components. Details on their parameter configurations are given in

Table 1.

TABLE 1 | Parameter configurations for components of groups G1, G2 and G3 as visualized in Figure 10.

G1 G2 G3

Comp. no. Subject f0 [Hz] Metric Rank Subject f0 [Hz] Metric Rank Subject f0 [Hz] Metric Rank

1 S13 7.9 NJ 2 S14 1.0 RT 2 S12 27.5 ISJ 1

2 S9 8.7 ISJ 3 S11 27.5 ISJ 1 S10 20.3 RT 1

3 S13 7.9 RT 3 S10 5.0 DUR 1 S9 8.7 ISJ 1

4 S13 8.7 NJ 2 S9 39.0 DUR 2 S15 19.2 CPL 1

5 S10 15.3 RT 6 S10 3.7 RT 3 S10 74.4 NJ 2

6 S5 30.4 RT 3

7 S9 14.4 RT 5

8 S9 10.2 ISJ 4

9 S9 18.2 DUR 1

10 S8 77.4 CPL 4

11 S13 74.4 CPL 1

be beneficial for characterizing the extracted components. Thus,
they were omitted for the selection process, since a strong
correlation between z-AUC and Rall was observed (see Figure 8).
The same holds for the correlation between z-AUC and Rfolds (not
shown).

An alternative to the current selection procedure would be
to relax the thresholds and combine it with additional methods
to judge the plausibility of the remaining components post-
hoc. For ICA components, workflows have been proposed, such
as MARA, an automatic classification of artifactual components
by Winkler et al. (2014). MARA uses features based on
topology, time-frequency analysis and source reconstruction.
Similar approaches have been proposed by Daly et al. (2015)
and Grosse-Wentrup et al. (2013).

4.3. Influence of SNR on SPoC
Components
By applying rather strict selection criteria, weaker but still
informative components may have been removed. As a result,

the data of some subjects did not reveal informative pre-
go oscillatory components. Reasons may be a lower SNR of
their data, which hides potential informative content from
the SPoC analysis, especially in combination with the limited
number of trials used. The work of Castaño-Candamil et al.
(2015a) on robustness testing of SPoC components backs
this interpretation. In this case, future improvements may be
expected by regularization techniques introduced to SPoC, a
reduction of the dimensionality prior to applying SPoC, using
more data or from transfer learning approaches. However, we
can not exclude that informative oscillatory components may
not be visible to the EEG or may be absent in some subjects.
This problem has been described as BCI “illiteracy." It has
predominantly been studied in the context of motor imagery
paradigms for the control of BCI applications (Hammer et al.,
2012), where decoding the imagery class usually is not possible
for a subset of subjects. The BCI illiteracy problem was tackled
by novel experimental setups like hybrid BCI paradigms (Allison
et al., 2012; Müller-Putz et al., 2015), but could also be alleviated
by more advanced decoding methods (Sannelli et al., 2010).
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FIGURE 11 | Relation between SPoC rank stability and pattern homogeneity over five cross-validation folds (chronological order). (A) Stationary case:

component is first-ranked across all five folds (data of subject S9, f = [9.4,11] Hz, RT). (B) Rank switching: Two almost stable components switch rank positions

between folds (S5, f = [27.5,30.3] Hz, RT). Lines connect the corresponding topologies. (C) Intensity variation: intensity of first-ranked component decreases over

time folds (S13, f = [13.6,15.3] Hz, CPL).

4.4. Rank Stability of SPoC Components
over Time
In Section 4.3, the relation between SPoC solutions and the
SNR of the data has been touched. As SPoC ranks the detected
components according to their covariance values, solutions
may seem unstable when only the first-ranked component
is considered. In real-life data sets, variation of the SNR
over time can induce rank switches or mixed components.
Tracking a component over multiple runs of the subspace
decomposition method is a challenging task, especially as
mixtures theoretically can not be distinguished from a single
source. However, as similar problems arise for online learning
of blind source separation methods like ICA, practical solutions
are available (Hsu et al., 2015). Figure 11 gives examples of
stable, stationary components (Figure 11A) and of unstable
SPoC components (Figures 11B,C), both observed over the five
chronological cross-validation folds. Instable components may
be evoked if the stationarity assumption of SPoC is violated
e.g., by slow temporal intensity variations due to user learning.
For Figure 11B, arrows indicate a possible path through rank
positions across folds by connecting corresponding components.
Please observe, that SPoC generates cases with even severe
variation between folds as those depicted in Figures 11B,C.
However, such components typically have been removed during
the selection process. While mixed, yet stable components may
be hard to interpret, they can still be useful for predicting the task
performance.

We have observed a high sensitivity of SPoC for small
differences in the frequency parameters. Seemingly unstable
components which display rank switching behavior (see
Figure 12 at 8.7Hz) can sometimes be stabilized by slightly
changing the frequency, e.g., to 9.4Hz in this example. Further

increase of the frequency to 10.2Hz again induces instability in
this example.

4.5. Characterization of Informative SPoC
Components and Sub-Processes
The proposed SPoC workflow delivers a diverse set of oscillatory
components, which vary in their topological patterns as well as
in their underlying frequency band. This is not surprising, since
SVIPT requires the interaction of several cognitive sub-processes
in order to reach a good overall performance. For each sub-
process, one or more specific neural features may exist, with all of
them being informative about the overall outcome of the complex
task.

The best components differ between subjects and
predominantly occur in the alpha band, followed by beta
and gamma band. Our findings are supported by informative
features in the alpha and beta-range observed during pre-
movement intervals of a hand grasping task (Zaepffel et al.,
2013; Meyer et al., 2014; Yang et al., 2014). Furthermore, the
informative frequency ranges for SVIPT are comparable to
those reported for attention related tasks (Gonzalez Andino
et al., 2005; Hoogenboom et al., 2010; van Ede et al., 2012).
We obtained best results when using RT as a performance
metric, which supports our earlier findings on disjunct data from
younger subjects (Castaño-Candamil et al., 2015c; Meinel et al.,
2015). RT of course does not automatically lead to a successful
trial, but it can be seen as an indicator for a quick ramp-up phase
and alertness. For fewer users, presumably those with highest
SNR characteristics, informative oscillatory features could be
identified for other performance metrics of the force task, too.

Comparing the topological plots of group G1 in Figure 10

with those reported in literature, it can be observed that many
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FIGURE 12 | Influence of the frequency band upon the rank stability. While stable at f0 = 9.4 Hz, a component develops rank instability with slight

increase/decrease of its frequency band (data of subject S9).

of them resemble patterns emerging for motor imagery tasks in
BCI (Krauledat et al., 2008). These often display a clearmaximum
of activity in channels located over one of the sensorimotor
areas (cp. pattern 5 of G1 in Figure 10 and the pattern of S5 in
Figure 5) or are located centrally over both hemispheres. While
similarity of patterns are by no way a proof for an origin of these
oscillatory components in the sensorimotor cortices, the hand
force action required to succeed in the SVIPT task would allow
for such components.

Other components show a maximum intensity over parietal
and occipital areas and may reflect the involvement of the visual
system in the SVIPT task. Pattern 2 of Figure 10 and patterns in
Figure 11A display a lateralization similar to patterns reported
for directed and covert visual attention processes (Hanslmayr
et al., 2007; Horschig et al., 2014a). Components with a centrally
located maximum (cp. pattern 1 of Figure 10 or the pattern of
S9 in Figure 5), or with double wing shapes (e.g., pattern 3 of
Figure 10) resemble components reported for generalized visual
attention processes (van Dijk et al., 2008; Meyer et al., 2014).
Again,most of these rather clear patterns originate from the alpha
frequency band.

While the relevance of several of the selected components
cannot be fully interpreted, we do consider these features as
added value for neurologists, e.g., by tracking the power time
course over sessions for a subject-specific component. Further
insight into underlying sub-processes and participating brain
areas may be obtained from a post-hoc source reconstruction
applied upon single SPoC subspaces.

4.6. Behavioral Variability on Different Time
Scales
Independent of the choice of the exact motor task, subjects
generally display two types of performance variations
(Chaisanguanthum et al., 2014). First, a large trial-to-trial

FIGURE 13 | The identification of session trends vs. single-trial

variations of performance is possible by localizing a predictor’s

characteristic with respect to two selection criteria. The scatter plot

visualizes AAUCSNR as a function of the mean correlation value across folds

Rfolds for all configurations (light blue) and the selected ones only (red). Two

classes of predictors can be identified: single-trial predictors showing a high

Rfolds value while session-trend predictors show a very low Rfolds value.

performance variability is observed from behavioral data.
Second, slow performance drifts can occur over the course of
a session. Accordingly, SPoC can deliver components, which
reflect either one of the two types of performance variations.
To tell them apart, a comparison between Rall and Rfolds is
helpful. High values for Rall, but low for Rfolds indicate a session
trend. If both are high, then the component is informative for
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trial-by-trial variation (see single-trial predictors and session trend
predictors in Figure 13 as well as the examples given in Figure 5).

For the purpose of brain-state-informed closed-loop
experimenting, single-trial predictors may be more suitable.
Session trend predictors, however, may still be useful for pre-
cleaning the performance labels. While session trend predictors
may reflect an increasing fatigue or a learning effect, it is
much harder to determine underlying mechanisms, which
cause the rapidly changing trial-to-trial performance of the
single-trial predictors (Wu et al., 2014; Hadjiosif and Smith,
2015; Osu et al., 2015). However, our identified components
reveal strong evidence that the pre-trial brain activity is
partially informative about trail-by-trial variability of motor
performance. This in accordance with Churchland et al. (2006)
who reported on monkey experiments that at least 30% of
behavioral variability could be explained by the fluctuations
of preparatory neural activity in the dorsal premotor cortex.
However, Chaisanguanthum et al. (2014) stated only a weak
relationship between motor cortex activity (PMd/M1) in
monkeys and trial-wise fluctuations of behavior.

4.7. Closed-Loop Experimenting as
Neuroergonomical Application
The predictive EEG features are extracted from a pre-go
interval of each trial. Our pipeline carefully simulated an online
scenario, but this approximation of course can not replace
the evaluation within a future online study. However, the
informative trial-by-trial performance predictors may serve to
enhance the neureorgonomical needs of motor rehabilitation
scenarios. Since motor performance variability was reported
to become larger for stroke patients (Lodha et al., 2010),
applying identified patient-specific components within brain-
state dependent closed-loop experimenting may enable to
causally influence their performance e.g., by manipulating
difficulty levels in motor rehabilitation paradigms. So far, BCI
methods in stroke rehabilitation (Ang and Guan, 2013) have
been used to detect the attempted movement of the affected
hand by analyzing informative ERD/ERS features of the EEG
and subsequently close the feedback loop for the patient either
by triggering a simulated hand movement on a screen (Pichiorri
et al., 2015) or by triggering a passive movement of the
affected hand, e.g., via an external robotic device or an active
orthesis (Ramos-Murguialday et al., 2013).

When implemented in future closed-loop applications, it
may be worth to combine SPoC features across multiple

frequency bands e.g., by a regression approach. This might
allow for enhancing the trial-wise performance prediction, in
case the information contained in different frequency bands is
independent. Similarly, the combination of predictors based on
different performance metrics might serve to gain an enhanced
performance estimate.

5. CONCLUSION

In summary, we have shown that the proposed workflow is
a suitable basis to identify subject-specific single-trial based
neural markers which are predictive for the performance of
an upcoming motor task. Those predictors may be valuable
building blocks for neuroergonomic applications since they are
informative about the status of the visual subsystem as well as
the sub-processes involved in hand motor control. Moreover,
exploiting those features in future closed-loop experimenting,
e.g., by temporal gating of upcoming trials, they will allow for
brain-state-informed rehabilitation paradigms. Furthermore, the
group-level analysis motivated to utilize our workflow to gain
a better understanding of trial-to-trial variations of cognitive
sub-processes, which are relevant for a successful rehabilitation
outcome.
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Logar, V., Škrjanc, I., Belič, A., Karba, R., Brežan, S., Koritnik, B., et al. (2008).

Gripping-force identification using EEG and phase-demodulation approach.

Neurosci. Res. 60, 389–396. doi: 10.1016/j.neures.2007.12.009

Maeder, C. L., Sannelli, C., Haufe, S., and Blankertz, B. (2012). Pre-stimulus

sensorimotor rhythms influence brain–computer interface classification

performance. Neural Syst. Rehabil. Eng. IEEE Trans. 20, 653–662. doi:

10.1109/TNSRE.2012.2205707

Makeig, S., Kothe, C., Mullen, T., Bigdely-Shamlo, N., Zhang, Z., and Kreutz-

Delgado, K. (2012). Evolving signal processing for brain–computer interfaces.

Proc. IEEE 100, 1567–1584. doi: 10.1109/JPROC.2012.2185009

Meinel, A., Castaño-Candamil, J. S., Dähne, S., Reis, J., and Tangermann,

M. (2015). “EEG band power predicts single-trial reaction time in a hand

motor task,” in Proceedings of International IEEE Conference on Neural

Engineering (NER), (Montpellier: IEEE), 182–185. doi: 10.1109/ner.2015.71

46590

Meyer, T., Peters, J., Zander, T. O., Schölkopf, B., and Grosse-Wentrup, M. (2014).

Predicting motor learning performance from electroencephalographic data. J.

NeuroEng. Rehabil. 11, 24. doi: 10.1186/1743-0003-11-24

Millán, J. D. R., Rupp, R., Müller-Putz, G. R., Murray-Smith, R., Giugliemma,

C., et al. (2010). Combining brain–computer interfaces and assistive

technologies: state-of-the-art and challenges. Front. Neurosci. 4:161. doi:

10.3389/fnins.2010.00161

Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., and

Blankertz, B. (2008). Machine learning for real-time single-trial EEG-analysis:

from brain–computer interfacing to mental state monitoring. J. Neurosci.

Methods 167, 82–90. doi: 10.1016/j.jneumeth.2007.09.022

Müller-Putz, G. R., Leeb, R., Tangermann, M., Höhne, J., Kübler, A., Cincotti,

F., et al. (2015). Towards non-invasive hybrid brain-computer interfaces:

framework, practice, clinical application and beyond. Proc. IEEE 103, 926–943.

doi: 10.1109/JPROC.2015.2411333

Osu, R., Morishige, K.-i., Nakanishi, J., Miyamoto, H., and Kawato, M. (2015).

Practice reduces task relevant variance modulation and forms nominal

trajectory. Sci. Rep. 5:17659. doi: 10.1038/srep17659

Ovbiagele, B., and Nguyen-Huynh, M. N. (2011). Stroke epidemiology: advancing

our understanding of disease mechanism and therapy. Neurotherapeutics 8,

319–329. doi: 10.1007/s13311-011-0053-1

Pichiorri, F., Morone, G., Petti, M., Toppi, J., Pisotta, I., Molinari, M., et al.

(2015). Brain–computer interface boosts motor imagery practice during stroke

recovery. Ann. Neurol. 77, 851–865. doi: 10.1002/ana.24390

Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., and Mehring, C. (2008).

Prediction of arm movement trajectories from ecog-recordings in humans. J.

Neurosci. Methods 167, 105–114. doi: 10.1016/j.jneumeth.2007.10.001

Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, Ö., Brasil, F. L., et al.

(2013). Brain–machine interface in chronic stroke rehabilitation: a controlled

study. Ann. Neurol. 74, 100–108. doi: 10.1002/ana.23879

Ramoser, H., Muller-Gerking, J., and Pfurtscheller, G. (2000). Optimal spatial

filtering of single trial EEG during imagined hand movement. Rehabil. Eng.

IEEE Trans. 8, 441–446. doi: 10.1109/86.895946

Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., et al.

(2009). Noninvasive cortical stimulation enhances motor skill acquisition over

multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. U.S.A.

106, 1590-1595. doi: 10.1073/pnas.0805413106

Sannelli, C., Dickhaus, T., Halder, S., Hammer, E. M., Müller, K.-R., and Blankertz,

B. (2010). On optimal channel configurations for SMR-based brain-computer

interfaces. Brain Topogr. 23, 186–193. doi: 10.1007/s10548-010-0135-0

Schubert, R., Haufe, S., Blankenburg, F., Villringer, A., and Curio, G.

(2009). Now you’ll feel it, now you won’t: EEG rhythms predict the

effectiveness of perceptual masking. J. Cogn. Neurosci. 21, 2407–2419. doi:

10.1162/jocn.2008.21174

Tangermann, M., Reis, J., and Meinel, A. (2015). “Commonalities of motor

performance metrics are revealed by predictive oscillatory EEG components,”

in Proceedings of the 3rd International Congress on Neurotechnology,

Electronics and Informatics (NEUROTECHNIX 2015) (Lisbon), 32–38. doi:

10.5220/0005663100320038

Timmermans, A. A., Seelen, H. A., Willmann, R. D., and Kingma, H. (2009).

Technology-assisted training of arm-hand skills in stroke: concepts on

reacquisition of motor control and therapist guidelines for rehabilitation

technology design. J. Neuroeng. Rehabil. 6:1. doi: 10.1186/1743-0003-6-1

Tonin, L., Leeb, R., Sobolewski, A., and del R Millán, J. (2013). An online EEG BCI

based on covert visuospatial attention in absence of exogenous stimulation. J.

Neural Eng. 10:056007. doi: 10.1088/1741-2560/10/5/056007

van Beers, R. J., van derMeer, Y., andVeerman, R.M. (2013).What autocorrelation

tells us about motor variability: insights from dart throwing. PLoS ONE

8:e64332. doi: 10.1371/journal.pone.0064332

van Dijk, H., Schoffelen, J.-M., Oostenveld, R., and Jensen, O. (2008). Prestimulus

oscillatory activity in the alpha band predicts visual discrimination ability. J.

Neurosci. 28, 1816–1823. doi: 10.1523/JNEUROSCI.1853-07.2008

van Ede, F., Köster, M., and Maris, E. (2012). Beyond establishing involvement:

Quantifying the contribution of anticipatory α-and β-band suppression to

perceptual improvement with attention. J. Neurophysiol. 108, 2352–2362. doi:

10.1152/jn.00347.2012

Waldert, S., Preissl, H., Demandt, E., Braun, C., Birbaumer, N., Aertsen, A., et al.

(2008). Hand movement direction decoded from MEG and EEG. J. Neurosci.

28, 1000–1008. doi: 10.1523/JNEUROSCI.5171-07.2008

Winkler, I., Brandl, S., Horn, F., Waldburger, E., Allefeld, C., and Tangermann,

M. (2014). Robust artifactual independent component classification for

bci practitioners. J. Neural Eng. 11:035013. doi: 10.1088/1741-2560/11/3/0

35013

Wolf, S. L., Blanton, S., Baer, H., Breshears, J., and Butler, A. J. (2002). Repetitive

task practice: a critical review of constraint-induced movement therapy in

stroke. Neurologist 8, 325. doi: 10.1097/01.nrl.0000031014.85777.76

Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., and Smith,

M. A. (2014). Temporal structure of motor variability is dynamically

regulated and predicts motor learning ability. Nat. Neurosci. 17, 312–321. doi:

10.1038/nn.3616

Yang, L., Leung, H., Plank, M., Snider, J., and Poizner, H. (2014). “Alpha and beta

band power changes predict reaction time and endpoint error during planning

reaching movements,” in Biomedical Engineering and Informatics (BMEI), 2014

7th International Conference on, (IEEE), 264–268.

Zaepffel, M., Trachel, R., Kilavik, B. E., and Brochier, T. (2013). Modulations of

EEG beta power during planning and execution of grasping movements. PLoS

ONE 8:e60060. doi: 10.1371/journal.pone.0060060

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Meinel, Castaño-Candamil, Reis and Tangermann. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Human Neuroscience | www.frontiersin.org April 2016 | Volume 10 | Article 170 | 69

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH
published: 28 February 2017

doi: 10.3389/fnhum.2017.00078

Frontiers in Human Neuroscience | www.frontiersin.org February 2017 | Volume 11 | Article 78 |

Edited by:

Mikhail Lebedev,

Duke University, USA

Reviewed by:

Nima Bigdely-Shamlo,

Qusp, USA

Tjeerd W. Boonstra,

University of New South Wales,

Australia

Tomas Emmanuel Ward,

Maynooth University, Ireland

*Correspondence:

Thorsten O. Zander

tzander@gmail.com

Received: 08 January 2016

Accepted: 08 February 2017

Published: 28 February 2017

Citation:

Zander TO, Andreessen LM, Berg A,

Bleuel M, Pawlitzki J, Zawallich L,

Krol LR and Gramann K (2017)

Evaluation of a Dry EEG System for

Application of Passive

Brain-Computer Interfaces in

Autonomous Driving.

Front. Hum. Neurosci. 11:78.

doi: 10.3389/fnhum.2017.00078

Evaluation of a Dry EEG System for
Application of Passive
Brain-Computer Interfaces in
Autonomous Driving

Thorsten O. Zander 1, 2*, Lena M. Andreessen 1, 2, Angela Berg 1, Maurice Bleuel 1,

Juliane Pawlitzki 1, Lars Zawallich 1, Laurens R. Krol 1, 2 and Klaus Gramann 1, 3

1 Biological Psychology and Neuroergonomics, Technical University of Berlin, Berlin, Germany, 2 Team PhyPA, Biological

Psychology and Neuroergonomics, Technical University Berlin, Berlin, Germany, 3Center for Advanced Neurological

Engineering, University of California San Diego, San Diego, CA, USA

We tested the applicability and signal quality of a 16 channel dry electroencephalography

(EEG) system in a laboratory environment and in a car under controlled, realistic

conditions. The aim of our investigation was an estimation how well a passive

Brain-Computer Interface (pBCI) can work in an autonomous driving scenario. The

evaluation considered speed and accuracy of self-applicability by an untrained person,

quality of recorded EEG data, shifts of electrode positions on the head after

driving-related movements, usability, and complexity of the system as such and wearing

comfort over time. An experiment was conducted inside and outside of a stationary

vehicle with running engine, air-conditioning, and muted radio. Signal quality was

sufficient for standard EEG analysis in the time and frequency domain as well as for

the use in pBCIs. While the influence of vehicle-induced interferences to data quality

was insignificant, driving-related movements led to strong shifts in electrode positions. In

general, the EEG system used allowed for a fast self-applicability of cap and electrodes.

The assessed usability of the system was still acceptable while the wearing comfort

decreased strongly over time due to friction and pressure to the head. From these results

we conclude that the evaluated system should provide the essential requirements for

an application in an autonomous driving context. Nevertheless, further refinement is

suggested to reduce shifts of the system due to body movements and increase the

headset’s usability and wearing comfort.

Keywords: autonomous driving, passive BCI, EEG, usability, ERP

INTRODUCTION

Driving has become a part of everyday life, which makes the drive to work or for recreational
activities a simple routine task. However, the effects of the mental workload and effort required
by driving often go unnoticed. A study by Borghini et al. (2014) found that mental workload,
fatigue, and drowsiness are significantly increased while driving. Especially long periods of constant
driving, as often performed by professional truck drivers, result in an accumulation of these effects
over time, decreasing the driver’s cognitive capabilities and driving performance, thus increasing
the chances of traffic accidents.
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The field of automotive human factors and ergonomics is
concerned with minimizing safety risks depending on human
performance in driving tasks. Today, many automations and
small devices have found their way into cars in order to help
reduce the mental workload required to operate the vehicle
(Young and Stanton, 1997; Tadaka and Shimoyama, 2004; Ma
and Kaber, 2005). A different approach aims to fully or at least
partly automate the task of driving, so the human driver can be
eliminated as a risk factor in most instances. The scientific field
working toward this goal is called Autonomous Driving (Franke
et al., 1998) and has grown more important over the past years.

One particular problem with autonomous driving is the
question of responsibility: Who is accountable in case of an
accident? Most countries still define the human driver of a car
as the entity responsible for anything that happens while driving
(Beiker, 2012). Therefore, experts believe it would be best to only
automate some of the tasks that arise while driving, but to leave
the most complex tasks to a human driver for the time being.
According to Sukthankar et al. (1997), the task of driving consists
of different levels, which are the strategic level (route planning),
the tactical level (maneuver selection), and the operational level
(maneuver operation). Automation of the lowest, operational
level is thus legally the least complex, and also technically possible
(Dickmanns and Zapp, 1987; Pomerleau, 1992). Driving along
a highway could relatively easily be automated, but once the
traffic situation changes, the human may be required to take
over control. This approach thus requires an important exchange
of information between the human driver and the automated
system: The human must be timely and appropriately informed
of the pending takeover. As stated by Llaneras et al. (2013), people
tend to focus their attention on secondary tasks once the primary
objective of driving has been taken over by automation. As a
consequence, in a situation where the car drives autonomously,
a signal given by the system to indicate the necessity for takeover
might be missed, or might catch the human by surprise. This may
result in loss of control over the vehicle.

As a solution to the above problem, the car could monitor
the driver’s mental state, and adapt the notification process
to the current context. A completely attentive driver might
quickly perceive and understand even simple signals, whereas
for example a sleeping driver may need to be woken carefully
by the car in advance of leaving the highway. Passive brain-
computer interfaces (passive BCIs, Zander and Kothe, 2011)
are promising approaches for such monitoring and automated
adaptation (Zander et al., 2011). This technology enables real-
time detection of mental conditions like fatigue, workload, and
degree of relaxation (Blankertz et al., 2010; Gerjets et al., 2014),
which offer a good estimate of whether or not the driver is
ready to take over control of the car. But the passive BCI
approach during autonomous driving is not limited to this. More
general information—like mood or situational awareness—and
also very specific information about the subjective interpretation
of the current context—that might be reflected in the driver’s
brain as error responses—could be assessed by the passive
BCI (Zander and Jatzev, 2012). This information could then
be integrated in the autonomous decisions of the car. The
car learns how the driver interprets the context and gains a

degree of context-awareness by utilizing the driver’s brain as a
sensor.

Passive BCIs are commonly based on electroencephalography
(EEG). Traditional EEG systems are relatively cumbersome to
apply and use, requiring preparation of the skin, application of
conductive gel, and cleaning of the cap afterwards. To make
EEG applicable for non-scientific uses, e.g., to be used by drivers,
its application and handling needs to be as easy as possible.
This is why alternative electrode systems (e.g., described in
Zander et al., 2011; Liao et al., 2012) are an important focus
of autonomous driving related BCI research. Primarily, the use
of gel is eliminated, and the caps containing the electrodes are
made for quick application, resulting in less preparation time
and, ideally, more comfortable for the wearer. Recent laboratory
studies provided evidence of good signal quality, comparable to
that of standard gel-based electrodes. It is still unclear however
that the signal quality can be maintained in real-world contexts.

This study focused on evaluating the use and application
of a dry electrode EEG system in the context of a running
vehicle. It was assessed how easy it is for untrained person to
apply the system on their own head, how well the electrodes
can be positioned and remain in place, and whether the signal
quality is sufficient for BCI usage when the system is self-applied.
Two common features in the EEG, an N200-P300 ERP and the
parietal alpha rhythm, were analyzed as examples of signals that
potentially can be used in a passive BCI application. Furthermore,
interference in the EEG signal resulting from usage inside a
running car—a noisy environment—was investigated. Finally,
wearing comfort over a prolonged period of time as well as
general user acceptance were evaluated.

MATERIALS AND METHODS

Participants
Ten participants, five male, participated in the experiment. The
mean age was 28 years (SD = 3.4). Two participants reported to
have sensitive skin. All participants gave their written informed
consent to participate in the study and were paid 20 euros as
expense allowance. The overall duration of the experiment was
on average 165min (SD= 39min.), including breaks.

Apparatus
Vehicle
The vehicle we used to evaluate the influence of vehicle-
induced noise on the recorded EEG was a Volkswagen Touran
(year of manufacture 2003). The car was stationary during the
experiments, but had the engine running, the radio switched on
(though muted), and the air conditioning enabled. A 7.6′′ TFT-
display was mounted to the right of the steering wheel near the
center console.

Experimental Room
The experimental room used for baseline recordings was a non-
frequented room at the TU Berlin with constant light, right next
to the parked car. Diversions and disturbances were kept to a
minimum.
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FIGURE 1 | Overview of the used EEG system, the Brain Products

actiCAP Xpress. Image courtesy of Brain Products GmbH.

Computer System
The EEG system was connected to a laptop (Sony Vaio Z, 2012)
and EEG data was recorded using the BrainVision Recorder,
BrainVision RDA (Brain Products GmbH, Munich, Germany),
and LabRecorder (as part of the BCILAB framework, Delorme
et al., 2010). The experimental paradigms were run using SNAP1

(Iversen and Makeig, 2013). To analyze the data, we used the
EEGLAB toolbox (Delorme and Makeig, 2004), an open source
toolbox embedded in MATLAB. For classification we used the
open source toolbox BCILAB (Kothe and Makeig, 2013), also
embedded in MATLAB.

EEG System
The system examined in this study was the Brain Products
actiCAP Xpress dry-electrode EEG system (see Figure 1)
provided by Brain Products GmbH for the duration of the
experiment. The system included 16 active data electrodes plus
one reference and one ground electrode. Electrodes were applied
to one of two differently-sized flexible caps, depending on the
head circumference of the participant (52–58, or 58–64 cm). To
ensure fixation on the participant’s head, a chin belt was attached
to the cap. Each cap provided 78 possible electrode positions
most of the extended international 10% system, with additional
options to set up regions of interest. We used electrode positions
Fp1, Fp2, Fz, FC5, FC6, C3, C4, Cz, CPz, Pz, CP5, CP6, PO3, PO4,
POz, and Oz.

To adjust the system to an individual participant, the
electrodes can be extended to different shapes and sizes by
attaching so-called QuickBits (see Figure 2). The kit used in
the study came with six T-shaped flat tips (with a diameter of
7mm) to be attached to the forehead and earlobes, as well as
32 mushroom-head tips for application on the scalp. These latter
come in different lengths of 8, 10, 12, and 14mm, which can be
attached to the electrodes according to head shape and required
pressure. This enabled a personalization of the system: Optimal

1Simulation and Neuroscience Application Platform (SNAP). Available:

https://github.com/sccn/SNAP.

FIGURE 2 | The different QuickBit types provided with the actiCAP

Xpress. Image courtesy of Brain Products GmbH.

sensor lengths for electrode positions can be noted, stored and
re-applied in follow-up experiments.

Prior to applying the actiCAP Xpress, the electrodes were
cleaned using a disinfectant spray. This was done even in case
the electrodes and sensors had not been used before to remove
dust and particles to improve connectivity.

The electrode array was connected to a V-Amp EEG signal
amplifier (Brain Products GmbH, Munich, Germany), which in
turn was connected to a laptop computer through a universal
serial bus (USB) 2.0.

Experimental Procedure
Experimental Rationale
This study was designed to assess different requirements to an
EEG system for application in real-world driving scenarios. We
defined the following requirements: (1) self-applicability of the
system, (2) impact of interfering noise signals inside a running
vehicle on EEG signal quality, (3) stability of cap and electrode
positions after context-related movements, and (4) usability and
wearing comfort of the system.

The experiment was divided into four blocks covering these
four issues, answering the following questions.

1. How easy and accurate is self-application of the system in
comparison to application by another person? (Block I)

2. How strong is the effect of interfering signals in a running car
on EEG recording? (Block II)

3. How do electrode positions change during typical body
movements inside a car? (Block III)

4. How do participants rate the system’s usability? (Block IV)

Figure 3 summarizes the experimental session. After arrival of
the participant, the experiment was explained and a demographic
survey was conducted. While the cap was personalized by the
investigator by exchanging electrode tips where necessary, the
participant was asked to read the instruction manual of the
system, in preparation for Block I.

Block I: Self-application
Self-application of the cap, as opposed to having the cap fitted to
you by a trained operator, may take a different amount of time
and may affect the positioning of the electrodes and the signal
quality. To estimate these effects, we compared cap application
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FIGURE 3 | Experiment timeline.

in two conditions: Application by the experimenter, and self-
application by the participant. Customization of the cap was not
included here, as it is assumed to be a one-time effort.

Participants were seated in the experimental room, in front of
a laptop. A stopwatch was used to first measure the time required
by the experimenter to apply the EEG cap to the participant’s
head.

Once the cap and ground/reference electrodes were in place,
electrode positions were measured using the Polaris Vicra system
(Northern Digital Inc., Waterloo, ON, Canada), allowing for
measuring 3-dimensional electrode locations.We chose to record
the 16 electrode positions, as well as the inion, the nasion and
the left and right preauricular points. The latter three were
used as coordinate references to allow the transformation of
coordinates taken from different measuring sessions into one
coordinate system to allow comparison (described below in the
section “Analysis Procedures”). To achieve comparable, stable

positions for the reference points in each measurement during
the experiment, we marked them by a small dot on the respective
positions on the participant’s skin using a removable eudermic
marker.

Following this, signal quality was optimized by relatively
fine-grained adjustments to the electrodes. As the system did
not provide an objective measure of signal quality or electrode
contact (e.g., impedance), signal quality was assessed visually.
The signal was monitored using the BrainVision Recorder
software, with all 16 channels displayed at once, set to a resolution
of 50 µV. A display filter was enabled, bandpass-filtering the
visible signal from 0.1 to 40Hz, not affecting the recording. The
duration of this optimization was again timed using a stopwatch.
The resulting signal quality was also recorded, as rated by the
experimenter. The indication for signal quality was the visual
form of the signal on the display, artifacts had to be recognized
visually. The rating followed predefined guidelines and was done
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on a 5-point scale with 5 meaning “perfect signal” and 1 meaning
“no signal at all” (see Figure 4). This rating was done twice: Once
for the signals with the display filter switched on, and once based
on the unfiltered raw signal.

Following this, the cap was removed and participants, who
read the instructions manual, were asked to put on the cap by
themselves, after all of their questions about the procedure had
been answered by the experimenter. Application time was again
measured, as were the electrode positions and the resulting signal
quality.

Block II: EEG Recording
For investigating signal quality in standard EEG analyses we
chose the well-known N200 and P300 components of the visual
event-related potential and the parietal alpha rhythm. Both
time- and frequency domain parameters are well-examined
phenomena in EEG research. Hence, clear expectations about
morphology, topography and signal strength can be drawn, that
build the baseline of comparison for our results.

In order to assess the EEG signal and the possible influence
on it of the electromagnetically noisy environment that is the
car, participants performed in two established experimental
paradigms of BCI research (Zander et al., 2011), once in the
experimental room, and once inside the car. The order of these
two conditions was randomized between participants.

The first paradigm focused on the elicitation of visual event-
related potentials (ERPs) using a standard oddball approach: An

infrequent deviant stimulus sometimes appeared instead of the
frequent standard stimuli (Duncan-Johnson and Donchin, 1977;
see Figure 5). This is a common approach when researching
ERPs referred to as the N200-P300 complex (Polich and Kok,
1995; Linden, 2005). ERP detection during autonomous driving
can be useful, as they may allow a car to detect how drivers react
cognitively to perceived stimuli/information.

On the screen, participants saw a circle divided by lines into
30◦ angles. First, a bar appeared, like a clock’s arm pointing 12
o’clock. This bar then rotated clockwise in discrete steps, once
every second. A standard stimulus had it rotate by 90◦; a deviant
consisted of an initial 60◦ rotation, followed by a 100ms pause
and a 15◦ counterclockwise rotation. After each deviant, the bar
disappeared and reappeared at the 12 o’clock position.

10% of all stimuli were deviants. In total 400 trials were
displayed (360 standard, 40 deviant).

The second paradigm focused on features in the spectral
domain, specifically the parietal alpha rhythm. This feature is
of special interest to autonomous driving, as parietal alpha can
be used as an indicator of whether the participant is currently
in a relaxed state or performing some mentally demanding task
(Berka et al., 2007). It also is a standard example for features in
the spectral domain.

The paradigm (see Figure 6) presented to the participant
was designed to induce changes in parietal alpha activity by
alternating between two states of mind: Engaged and relaxed.
To engage the participant, a six-letter word was presented letter

FIGURE 4 | Examples for signal quality ratings on a scale from one to five. Green colored parts indicate adequate signal quality, yellow parts moderate signal

quality, and red parts unacceptable signal quality.
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FIGURE 5 | Oddball Paradigm.

FIGURE 6 | Induced Alpha Paradigm.

by letter, with letters appearing on random locations on the
screen amidst visual noise. Each letter was only visible for
1 s. Participants were instructed to read the word. After each
engagement trial, the participant was instructed simply to relax
for 6 s with their eyes open. This relaxation phase was introduced
using an auditory signal and ended by a similar one with lower
pitch.

There were 32 trials of each condition. The order of words in
the engaged condition was randomized across participants.

These two paradigms were presented in fixed order to the
participants in the two conditions (room vs. car).

Block III: Driving-Related Movements
The third block investigated the influence of movements on the
position of the electrodes.

Electrode positions were recorded, using again the Polaris
system mentioned earlier, at the start of this block. Participants
then performed a series of three different types of driving-
related movements inside the car, and the electrode positions
were measured again after each group of movements. Because
measurements were not done inside the car but in a nearby
room, some walking was required. Electrode cables were
bundled together and fixed to the participant’s clothing in
a relaxed way to minimize their strain on the cap while
walking.

To make movements comparable between participants, we
placed markers (sticky notes) at certain places in the car: One
on the left rear window, one above the driver’s seat, one in
the legroom of the front passenger seat and one in the center
of the rear bench seat. Before seating the participant in the
driver’s seat, the markers were shown to them. The EEG system
was not connected to the amplifier during the movements.

All instructions for different movements were given through
pre-recorded audio files played back using a laptop and speakers
inside the car.

Block IV: Usability
To assess the usability of the system, the participants were
asked to fill out a questionnaire right after Block I. This
questionnaire was the System Usability Scale (SUS; Brooke, 1986)
was employed, also used in other BCI related studies prior to
this one (Pasqualotto et al., 2011; Duvinage et al., 2012). SUS is a
standardized questionnaire consisting of ten questions based on
Likert scales with five options ranging from “strongly disagree”
to “strongly agree.” In total, SUS contains five positively and
five negatively formulated questions about the system being
assessed, for example “I think that I would like to use this system
frequently” or “I found the system unnecessarily complex.” From
the answers given, a SUS score is calculated, ranging between
0 (worst possible system) and 100 (best possible system). This
score has to be interpreted taking the individual context of system
usage into account. In contrast to qualitative assessments, the
SUS does not yield any insight into which usability problems
exactly are present within the system. It provides however a quick
and reliable way to determine whether or not major changes are
necessary in order to make the system safe and comfortable to
use.

Additionally, the participants were asked to rate the level
of comfort wearing the system after each of the previously
described experimental blocks (I–III) on a scale from 1 to 10,
one meaning “extremely bad” and ten “very comfortable.” We
acquired these three subjective impressions to gather insight into
how the system’s perceived comfort changed over the course of
the experiment.
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To get an even deeper insight into the comfort of wearing the
system, participants were asked to fill out another questionnaire
after the third experimental block, after roughly 140min
of wearing the system almost constantly. We adapted a
questionnaire for the evaluation of the wearing comfort for
firemen helmets (Fabrizio and Cimolino, 2014), by only keeping
questions deemed fitting to our context. All questions were rated
on a five point Likert scale. In addition to these questions, we
asked two yes-no questions: Whether or not the participant
believed the cap had moved, and whether or not it induced the
feeling of dents on their head. Finally, we asked the participants
to mention any discomfort associated with wearing the system,
like the feeling of pressure on the head, headaches, or nausea.

Analysis Procedures
Block I: Self-application
Comparison of time needed by the experimenter and the
participant to apply the system and to adjust the electrodes was
done by two-sample t-tests.

The signal quality ratings were subjected to a three-way mixed
measures ANOVA with the two within-subject factors visual
filters (no filters vs. 0.1–40Hz bandpass) and electrode (Fp1 vs.
Fp2 vs. vs. Fz vs. FC5 vs. FC6 vs. C3 vs. C4 vs. Cz vs. CPz vs.
Pz vs. CP5 vs. CP6 vs. PO3 vs. PO4 vs. POz vs. Oz) and the
between-subject factor applicant (investigator vs. participant).

Because a total of six different measurements of electrode
positions were taken during the course of this experiment, these
measurements were first transformed into one coordinate system
to allow a unified comparison. To this end, all measurements
were re-referenced to a mean head middle and radius, within
participants, as follows.

1. All coordinates of recording j, j = 1, ..., 6 were referenced to
the head midpoint hmj, which is calculated with the recorded
reference points (nasion nj and left and right preauricular
points, lpj and rpj) by

a. Drawing a line through both preauricular points lpj and
rpj:

Calculate the slope by computing new coordinates

(uj)i : = (lpj)i − (rpj)i, for i = 1, 2, 3 denoting the

scalars of the three-dimensional vector uj.

Define the line by

gj := lpj + rjuj with rj to be determined.

b. Construction of a plane Hj through nj, which is
perpendicular to the line gj:

Find the variables x, y, z to determine the plane equation
for Hj

Hj : (uj)1 x + (uj)2y + (uj)3z := e.

To find e, insert the coordinates of the nasion reference
point nj into the equation

Hj(nj) : (uj)1 (nj)1 + (uj)2 (nj)2 + (uj)3 (nj)3 = e.

c. For the purpose of finding the intersection of the line gj
with the planeHj, insert the coordinates of gj into the plane
equation above and solve for rj:

Hj

(

gj
)

: rj =
e− (uj)1(lpj)1 − (uj)2(lpj)2 − (uj)3(lpj)3

(uj)
2
1 + (uj)

2
2 + (uj)

2
3

.

Inserting rj into the plane equation yields the head
midpoint:

hmj = lpj + rjuj.

2. After calculating the head midpoints hm1 to hm6, we compute

the arithmetic average hm over all recordings as the final
reference point in order tominimize the error ofmeasurement
in the system.

3. The deviation of the recorded head midpoint hmj to hm is
calculated for each recording:

dj := hmj − hm , j = 1, ..., 6.

4. Then, all recorded electrode positions (epk)j, k = 1, ..., 16

are re-referenced to hm by addition with dj and the euclidean
distance edj1j2 between different recordings j1, j2 is calculated:

(dj1j2 )i := ((epk)j1 + dj1 )i
− ((epk)j2 + dj2 )i

,

edj1j2 : =

√

(dj1j2 )
2
1 + (dj1j2 )

2
2 + (dj1j2 )

2
3

The value used for comparison of different recordings j1, j2 was
this euclidean distance edj1, j2 .

For Block I, recorded positions from the investigator-applied
cap were compared to the positions from the self-applied cap.
Mean differences of electrode positions were then compared to
the expected value of no difference in positions using a one-
sample t-test against zero.

Block II: EEG Recordings

Oddball paradigm: ERP analysis
EEG data was first preprocessed by applying a bandpass-filter
from 1 to 30Hz, retaining all frequencies relevant for later
analyses. Then, epochs of 1100ms were extracted, starting 100ms
before stimulus onset of the standard and deviant events. Baseline
correction was performed with a 100ms pre-stimulus interval.

To compare event-related activity between car and indoor
recordings, amplitudes and latencies of the N200’s and P300’s
were extracted.

First, the indoor condition was used as a baseline as it
conforms to laboratory conditions. Inspection of the grand
average revealed a global negative minimum at 300ms over
the centro-parietal lead (Pz) and a global positive maximum
at 400ms over the centro-central lead (Cz). Based on these
peaks, a search window was defined around 300 ± 70 and
400 ± 70ms to search for maxima in the individual averages.
Once for each individual the global peaks were identified, the
peaks on individual channels were identified using a ± 25ms
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window around the individual global peak. Mean amplitudes and
latencies were extracted for all channels. This procedure resulted
in a 4 x 16 vector for each participant, consisting of the mean
amplitudes and the latencies of the two components at each
channel.

For comparison of mean peak amplitudes two repeated
measures ANOVAs were performed. Mean amplitudes from
electrode Pz were used for the negativity and from Cz for the
positivity. Each 2x2 ANOVA had the two within-participant
factors recording condition (indoor vs. car) and stimulus
(standard vs. deviant).

In order to examine disparities ofmean peak latencies between
conditions (indoor vs. car), mean difference peak latencies were
calculated by subtracting the negative from the positive peak
latency. The mean difference was taken per participant for the
two conditions and subjected to a paired sample t-test.

To test for equivalence of EEG measures between recording
conditions the two one-sided tests (TOST, Schuirmann, 1981,
1987; Westlake, 1981) procedure was applied to mean peak
amplitudes and mean difference peak latencies with an epsilon
of the standard deviation of the indoor condition, which was
regarded as the control group (R-package “equivalence” May 14,
2016; V0.7.2). A p-value of 0.05 was taken as the significant
threshold for all TOST.

Induced alpha paradigm: frequency analysis
To compare oscillatory features between car and indoor
recordings, three different measures were taken: The
power spectral density function covering 0.1–40Hz, single
measurements of the band power in the alpha band, and the
time course of the alpha band power during the 6-s trials of the
paradigm (engaged vs. relaxed).

Fluctuations in alpha power occur with a broader distribution
over posterior areas of the scalp (Sauseng et al., 2005). Since we
were interested in parietal alpha as potential indicator of mental
load, analyses were restricted to five posterior electrodes, namely
Pz, PO3, PO4, POz, and Oz. The data was bandpass filtered from
0.1 to 40Hz and time epochs of 6 s were selected, covering each
full trial.

Power spectral densities (PSD) were calculated for each entire
epoch and averaged per participant, resulting in 2 x 2 x 5 PSD
distributions for each participant (2 experimental conditions x 2
mental states x 5 channels). We used these participant-individual
PSDs as well as the averaged PSDs over all participants (grand
average), resulting in a total of 11 (2 x 5+1) PSD-distributions
for each experimental condition.

Individual and grand average Pearson Correlation of the PSD
in the frequency band of 0.1 Hz to 40Hz were calculated for
each electrode between indoor and car conditions and tested for
significance using one sample t-tests against zero.

The alpha band (7–13Hz) being of prime interest here, we
also calculated a single bandpower value in this frequency range
for each participant, electrode, and trial. We used epochs of 4 s
length, starting 2 s after stimulus onset. Logarithmic variances
of each trial per electrode of each participant were calculated
and normalized with the maximum value of each electrode.
These measures were then averaged over all trials, resulting in

a normalized mean alpha band power for each participant under
each experimental condition on the five investigated electrodes.
Effects between recording conditions, stimuli and electrodes were
investigated in a 2 x 2 x 5 ANOVA with the three within-
participant factors recording condition (indoor vs. car), stimulus
(standard vs. deviant) and electrode (Pz vs. PO3 vs. PO4 vs.
POz vs. Oz). The factor electrode is a repeated measure here as
EEG measures at one electrode depend on values measured by
other electrodes. Again, the TOST procedure with an epsilon of
the standard deviation of the indoor condition was applied to
normalized mean alpha band power values to test for equivalence
between recording conditions.

As a third measure, the time course of the band power in
the alpha band was used. It was calculated by shifting a 500ms
window over each single trial and calculating the band power
for each window position. To avoid leakage effects, the window
was multiplied with a Gaussian bell curve of the same size.
Afterwards the single-trial measurements were normalized with
themean of all band powers. The normalizedmeasurements were
averaged, resulting in 2 x 5 time courses for each participant (2
experimental conditions x 5 channels). As above, we also took the
grand average into account, resulting in 11 time courses in total
per experimental condition.

To examine the difference in the time course of the
band power in the alpha range between conditions, Pearson
Correlations were calculated for each participant, channel and
condition.

BCI Analysis of both paradigms
BCILAB’s built-in classification approaches were used to evaluate
the offline single-trial accuracies as an estimate of potential online
performance.

For the oddball paradigm, data was bandpass filtered from 0.1
to 15Hz and downsampled to 100Hz. Epochs of 800ms were
extracted starting at each stimulus marker. A windowed-means
approach (Blankertz et al., 2011) was used to extract features,
using 8 consecutive windows of 50ms starting at 300ms post-
stimulus. As a classifier we used linear discriminant analysis, LDA
(Webb, 2002). Mean ERP classification error rates of all eight
participants were subjected to a paired samples t-test.

Logarithmic band power was used for feature extraction (Solis-
Escalante et al., 2010; Zander et al., 2011) of the data of the
second paradigm. This was applied to epochs of 6 s, as above. We
performed a (10 x 10)-fold cross-validation, and classified using
LDA. Mean classification error rates were subjected to a paired
samples t-test.

Classification error rate results from both paradigms were
subjected to a TOST procedure with an epsilon of the standard
deviation of the indoor condition to test for equivalence between
recording conditions.

Block III: Driving-Related Movements
Each of the three movement groups had one electrode position
measurement before, and one after it. Mean differences of
electrode positions prior to and after each movement group were
compared to the expected value of no difference in positions
using a one-sample t-test against zero.
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Block IV: Usability
The System Usability Scale was interpreted following the
guidelines set by Brooke (1986). To determine the resulting SUS
score of the system, all given answers were weighted accordingly
and added up. This resulted in a total score per participant, which
then was multiplied by the factor 2.5.

After experimental blocks I to III, participants were asked to
give a subjective estimate of how comfortable the system felt. The
median of the comfort ratings of all participants was used as the
overall comfort rating here. To test for differences between the
three time points, a Wilcoxon Signed-rank test was applied. The
wearing comfort questionnaire was evaluated descriptively.

RESULTS

Block I: Self-application
Application Time
A two-samples t-test indicated that the mean time needed
for application of the cap did not differ significantly between
experimenter (M = 123.2 s, SD = 43.8) and participants (M =

104.9 s, SD = 49.0), t(9) = 0.880, p = 0.391, though showing a
tendency that participants perform faster. Mean times needed for
adjustment of electrodes also did not differ significantly between
investigator (M = 256.3 s, SD = 221.3) and participants (M =

310.2 s, SD= 285.1), t(9) = 0.472, p= 0.642, showing a tendency
that experimenters are faster.

Electrode Signal
The three-way mixed measures ANOVA on signal quality ratings
revealed no significant main effect of applicant, F(1, 18) = 0.341,
p = 0.341, η2 = 0.019. The main effect of filter was significant,
F(1, 18) = 66.861, p = 0.000, η2 = 0.788. Since the main effect
of electrode violated the assumption of sphericity Greenhouse-
Geisser corrected values were used. The main effect electrode was
significant, F(5.167, 93.012) = 2.876, p = 0.017 η2 = 0.138. None of
the interaction effects were significant, all ps > 0.281.

Electrode Positions
The t-test against zero performed on mean differences of
electrode positions (M = 13.76mm, SD = 5.12mm) between
investigator- and self-applied cap yielded significance, t(9) =

8.498, p = 0.00001. The electrode positions varied most on
the midline of the head, with 15.5mm variation (averaged over
all 10 participants) at Oz to 16.1mm averaged variation at Fz.
This could be due to the structure of the cap: It has two holes
for the ears, so electrodes in this area are fixated more clearly
than electrodes elsewhere. Electrodes on the forehead can be
positioned up to 1 cm higher or lower without any obvious effects
on the cap like inconvenience or ill-fittingness, so it was hard for
both participants and investigators to position the cap correctly
around the midline of the head (see Figure 7).

For Block I, recorded positions from the investigator-applied
cap were compared to the positions from the self-applied cap.
Mean differences of electrode positions were then compared to
the expected value of no difference in positions using a one-
sample t-test against zero.

FIGURE 7 | Shifts in electrode positions after self application in mm

compared to application by investigator.

Block II: EEG Recordings
Due to software problems on a laptop EEG data of two
participants had to be excluded. Analyses of the EEG data were
based on the remaining eight participants.

Oddball Paradigm: ERP Results
Grand average ERPs from the oddball paradigm are depicted in
Figure 8. The repeated measures ANOVA performed on mean
amplitudes of the negativity measure yielded significance for the
main factor stimulus, F(1, 7) = 21.745, p = 0.002, η2 = 0.756.
Amplitudes of the deviant stimuli (M = −5.44 µV, SD = 6.21
µV) were more negative than in standard stimuli (M = −0.01
µV, SD = 2.66 µV). The main factor environment was not
significant, F(1, 7) = 0.101, p = 0.760, η2 = 0.014. There was also
no significant interaction, F(1, 7) = 0.261, p = 0.625, η2 = 0.036.
Results of a TOST procedure with an epsilon of the standard
deviation of the indoor condition were not significant (mean
difference = 0.145; epsilon = 3.95; confidence-interval: −6.79 to
7.08; df = 7; p= 0.166).

For the positivity measure there was no significant main
effect of stimulus, F(1, 7) = 5.001, p = 0.060, η2 = 0.417. The
main effect environment also was not significant, F(1, 7) = 2.767,
p = 0.140, η2 = 0.283. The interaction between stimulus and
environment was significant, F(1, 7) = 31.800, p = 0.001, η2 =

0.820. Amplitudes of the deviant trials were higher indoors (M =

9.54µV, SD= 9.05µV) than in the car (M= 5.18µV, SD= 10.57
µV), while amplitudes in standard trials indoors (M = 0.02 µV,
SD = 1.25 µV) were only slightly smaller than in the car (M =

0.92 µV, SD= 2.27 µV). Due to this significant interaction effect
no TOST was performed.

Results from the t-test performed on mean peak latency
differences of the indoor (M = 85ms, SD = 46.3ms) and the
car condition (M = 101.5ms, SD= 75.1ms) were not significant
(p= 0.569). The TOST procedure with an epsilon of the standard
deviation of the indoor condition showed no significance for
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FIGURE 8 | Grand average ERPs of the indoor condition (top left) and the running car condition (top right) on channel Cz. Deviant (bottom left) and standard

(bottom right) ERPs in comparison between indoor and car condition.

mean peak latency differences (mean difference = −16.5; epsilon
= 46.3; confidence-interval:−68.8 to 35.8; df = 7; p= 0.158).

Induced Alpha Paradigm: Frequency Results
All individual correlation values for power spectral densities
between conditions were higher than 0.79 on all five electrodes,
with a mean correlation value of 0.97 (SD = 0.046). All t-tests of
these correlations against zero were significant with ps < 0.0001.
For the grand average, correlation values between indoor and car
condition were both higher than 0.989, with a mean of 0.997 (SD
= 0.004). T-tests against zero yielded significance (ps < 0.0001)
for both conditions (engaged/relaxed).

The three-way repeated measures ANOVA with within-
subject factors recording condition (p = 0.061), stimulus
(p = 0.177), and electrode (p = 0.24) performed on mean
alpha band powers was not significant on main or interaction
effects, with non-significant interactions (all ps > 0.272). The
TOST procedure with an epsilon of the standard deviation of the
indoor condition assigned to mean alpha band powers showed
significance on electrodes PO4 (mean difference = 0.049; epsilon
= 0.129; confidence-interval: −0.031 to 0.128; df = 7; p = 0.049)
and Oz (mean difference = 0.001; epsilon = 0.127; confidence-
interval: −0.079 to 0.076; df = 7; p = 0.009). The TOST was not
significant for electrodes PO3, POz, and Pz, all ps > 0.340.

Alpha band time course (see Figure 9) correlations between
indoor and car condition yielded a mean correlation of r = 0.27
for the relaxed condition (Pz: r = 0.43, PO3: r = 0.26, PO4: r =

0.29, POz: r = 0.30, Oz: r = 0.09). Correlations in this condition
were significant on all five electrodes for five participants (ps <

0.00001), on four electrodes for one participant (ps < 0.005), and
for the other three participants on three electrodes (ps < 0.021).
In the engaged condition the mean correlation of all participants
was r = 0.23 (Pz: r = 0.34, PO3: r = 0.19, PO4: r = 0.18, POz:
r = 0.31, Oz: r = 0.14). Tests yielded significance of correlations
on all five channels for three participants (ps < 0.043). For three
participants correlation was significant on four channels (ps <

0.00001) and for two participants on three electrodes (ps <

0.00001).

BCI Results of Both Paradigms
A paired samples t-test indicated that the error rates for ERP
classification in the indoor condition (M = 0.126, SD = 0.086)
did not differ significantly from the error rates in the car
condition (M = 0.145, SD = 0.116), t(7) = −0.68149, p =

0.518. Furthermore, the TOST procedure with an epsilon of
the standard deviation over participants in the indoor condition
confirmed significant equivalence classification results in the two
recording conditions (mean difference = 0.018; epsilon = 0.086;
confidence-interval:−0.032 to 0.069; df = 7; p= 0.020).

A paired samples t-test indicated that the error rates of band
power classification for the indoor condition was lower (M =

0.283, SD = 0.160), but did not differ significantly from the
error rates in the car condition (M = 0.351, SD = 0.137), t(7) =
−1.608, p = 0.152. The TOST procedure with an epsilon of the
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FIGURE 9 | Grand Averages of the alpha band time courses for relaxed and engaged conditions indoors and in the car. For the red and the green curve,

displaying the relaxed conditions, a similar pattern starting 1 s after onset of stimulus presentation is observed. Similarities over time are also apparent for the engaged

conditions, represented in the black and blue curve. Clear co-variation of indoor and in car alpha time courses for both relaxed and engaged conditions is proven by

high correlation between the signals.

FIGURE 10 | Shifts in electrode positions after movements of the head (A), the arms (B), and the whole body (C) in mm.

standard deviation over the participants in the indoor condition
confirmed significant equivalence for classification results in the
two recording conditions (mean difference = 0.066; epsilon =

0.162; confidence-interval:−0.012 to 0.144; df = 7; p= 0.026).

Block III: Driving-Related Movements
Figure 10 shows the shifts in electrode positions after each of the
three groups of movements.

After head-related movements the difference between
electrode positions (M = 9.6, SD = 9.1) differed significantly
from zero, t(9) = 3.3237, p = 0.009. The apparent lateralization
of this effect (25.3mm mean variation at CP5 vs. 19.6mm at
CP6) may be due to the direction of the shoulder check.

After performance of arm movements the mean difference
between electrode positions (M = 7.6, SD = 4.8) differed
significantly from zero, t(9) = 5.0241, p = 0.001. Variations were
located mainly to the right side of the head with a maximum of
10.5mm mean variation at PO4. The cause for this may be the
direction of the rotation and/or handedness of participants.

Mean electrode position differences after whole-body
movements (M = 8.4, SD = 6.4) differed significantly from zero,
t(9) = 4.1691, p = 0.002. The greatest shift was on the forehead
with 10.1mm average variation on Fp2 and on the midline of the
head (8.2 and 9.3mm mean variation at POz and Fz). This could
be caused by the cables, which were tied together, but interfered
with the seatbelt nevertheless.

Block VI: Usability
The total SUS score of the system added up to 65. Following
the official SUS score interpretation, this is slightly above the
threshold for an acceptable system.

Due to minor delays during the experiments, the time
points of the additional questionnaires varied slightly for each
participant. On average, questions were answered after 60 (Block
I), 122 (Block II), and 137.5 (Block III) min.

After the first 60min, the system got a comfort rating of 7.5,
which then decreased significantly over the next hour resulting
in a rating of 3 after 122min. In the following quarter of an
hour needed for block III, the comfort rating stayed stable at 3.
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A Wilcoxon signed-rank test showed that there was a significant
difference between the first time point of the rating after 60min
(Mdn = 7.5) and the second rating after 122min (Mdn = 3),
(W = 0, Z = −2.69, p = 0.008). No valid Wilcoxon signed-rank
test could be performed to compare the second and third ratings,
because the number of effective samples was less than 6 after
subtraction of ratings equaled zero for six participants (W = 4,
Z = −0.82, p = 0.625). Rating scores of the first and the third
rating again showed significant differences, (W = 0, Z = −2.67,
p= 0.008).

The six examined items of wearing comfort of the system are
summarized in Figure 11. A feeling of pressure on the head was
rated as the most irritating with a mean score of 2.2. The overall
impression of wearing comfort got a mean score of 2.7, and was
therefore also perceived as bad. The overall weight of the system
on the head was on average rated as the most pleasant aspect of it
with a score of 4.2.

Furthermore, the wearing comfort questionnaire yielded the
following insights. Seven participants complained about dents
and chafe marks on their heads, four about headaches, and
one each about neck pains, nausea, and dizziness. Moreover,
one participant had the subjective impression that the system
had moved over the course of the experiments. None of the
participants reported skin irritations due to wearing the cap.

DISCUSSION

Block I: Self-application
We found that the participants were equally fast as the
experimenter in applying the cap, and equally capable in
optimizing signal quality. We thus conclude that this type of dry
electrode EEG system can indeed be used by individual end-
users. We should note, however, that there was no objective
measure of when the application was finished; it was based on
individual judgements of the experimenter.

We did not investigate the personalization of the cap by
adjusting the length of each electrode pin, because this task needs
to be done only once. Therefore, we did not investigate how easy
it is to personalize the cap while wearing it. Personalization did,
however, take up quite some time. We assume that the QuickBit
approach would benefit from improvement: Continuously
adjustable bits would probably simplify personalization and
optimize the result.

While it is not surprising that the signal quality was rated
better with active display filters, we had assumed that the signal
quality would be better after adjustments by an expert operator
than compared to that adjusted by the participant. This, however,
was not the case: Participants reached a similar, sometimes even
better signal quality. We assume the reason for this to be that
participants had a better feeling for how hard, and where exactly
the electrodes pressed against their heads, allowing them to
fit them even better to the scalp than the experimenter could
without the risk of harming the participant.

For the electrode positions, some variation in the
measurements must be taken into account. The used system
has known variations in measured data points, and for some
electrodes (primarily at the back of the head), the measuring
stylus may have moved slightly due to head shifts that were
sometimes necessary for the measurement. This problem was
addressed mathematically, as described above. It was also not
possible to point the stylus exactly at the electrode’s point of
contact with the skin, but only at the electrode’s body. It remains
unclear, whether or to what extent the differences in electrode
positions we measured, imply that the points of contact changed
as well.

Block II: EEG Recordings
For the oddball paradigm ERP analysis revealed highly similar
morphology of ERPs elicited by deviant stimuli in both recording
conditions. We found highly significant effects for the negative

FIGURE 11 | Mean score of questions about wearing comfort.
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peak in the ERP condition. The deviant trials were significantly
different from the standard trials in both the indoor and the
car condition, showing no difference between conditions. This is
not the case for the positivity. The main effect is not significant.
It should be mentioned though that we have a clear tendency
into the right direction with a p value slightly missing the
threshold criteria of 5%. Peaks of the P300 are reduced in the
car environment as a result of other signals interfering with
the recorded signal in the car. No significant differences were
found between peak latencies between indoor and car recordings.
We conclude that the main information carried in the signal
is comparable for indoor and in car recordings, but its signal
strength is attenuated slightly in the car condition.

For the alpha recordings, we have a slightly more complex
case. We clearly see a correlation between conditions—alpha
values show a similar development over time outside of and in the
car. However, there is no significant difference between relaxed
and engaged trials on average over all participants, which was
expected from the experimental design. When we take a closer
look at the individual values (see Figure 12), we see that some
participants managed to get relaxed in the corresponding task,
while others did not. This explains why we do not get significant
main effects—several participants were not able to relax in the
appropriate condition. This effect can be seen consistently on
both conditions, inside and outside the car. However, we do
perhaps see a tendency on the main effect of condition that, even
though it’s not significant, indicates a small change in alpha power
between recordings inside and outside of the car.

For all comparisons that showed no significant difference
between conditions an equivalence test was performed. Features
of the ERP were not equivalent between conditions while spectral
features were equivalent on some of the tested electrodes.

These results show that even thoughwe do not have significant
differences, the recoded data cannot be taken equivalent. For
strict neurophysiological measurements it hence might be worth
a consideration whether the tested headset should be used or not.

For ERP and spectral data classifications were not significantly
different, and were furthermore clearly equivalent. We, hence,

assume that the evaluated system measured the differences
in cognitive states, well, in both conditions. Despite small
morphological and power differences, classification results were
comparable in both domains. Therefore, a BCI can be applied
with equal reliability to data from both conditions.

The results we found on the EEG components examined
here are as expected from the literature and replicate
results from a previous comparison study (Zander et al.,
2011). Therefore, we conclude that the dry electrode system
investigated here provides comparable data to a conventional
gel-based system when used in an autonomous driving
context.

It still remains unclear whether the results can be fully
transferred to a real-world autonomous driving context where
the car would most likely be moving. A driving car would bring
additional factors like increased vibration from the engine, jerks
due to uneven roads, or inertial effects induced by direction
changes. Moreover, the driving task itself could lead to additional
artifacts, such as stress related sweating on the scalp and the
user scratching their own skin. Also head movements against
the headrest might lead to changes of electrode positions in
a way that was not examined here. Another factor would be
the radio not being muted in a real-world-driving scenario:
Environmental noises between 70 and 120 decibels have been
found to increase the amplitude of measured P300 events (Nam
et al., 2008). Drivers will also be moving e.g. their heads and
hands, which they minimized during data recording. This study
however presents a first step in investigating the applicability
of dry systems in a car environment, revealing initial insights
in a scenario with controlled artifact activity. These results can
form the basis for future studies in active driving study scenarios,
where that control is further relaxed.

Block III: Driving-Related Movements
The results showed that the electrodes shifted in position when
executing different driving-related movements.

The most significant shifts occurred during movements
involving the head directly, primarily at the rear left of the head.

FIGURE 12 | Mean alpha power in relaxed and engaged trials for individual subjects.
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We assume this was due to the shoulder check, which required a
sudden, fast turn of the whole head to the left and back. We can,
however, not be sure as to whether the shoulder check or the look
at the ceiling had more effect on the electrodes positions since
they were measured together as one movement group. Either
way, the resulting differences may well-influence the quality of
the data recorded by the system.

The performed arm movements had less impact on the
electrode positions, though the shifts were still significant.

The third group of movements resulted in the least position
changes for all electrodes although the participants had to
move their whole upper body—including the head. The most
pronounced shifts were observed at the right frontal area. The
instruction to touch the marker in the legroom of the passenger
seat might offer an explanation for this, as the head had to be
moved rather far to the right and down. Also in the area around
the left ear increased shifts in position were observed. Most likely,
this was a result of fastening and unfastening the seatbelt which
may have induced some strain in that area, maybe by pulling on
the cables.

Finally, since the movements were always performed in the
same order (head, arm, and body), order effects cannot be
excluded.

For future use, the cap could be applied e.g., only after the seat
belt has been fastened, which often requires some effort. Since the
cables may also have caused some of the position shifts, a wireless
system is preferable.

Block IV: Usability
The System Usability Scale is a general questionnaire to evaluate
the usability of technical systems, and is not specifically designed
for BCI systems. As SUS provided significant insights in other
BCI-related studies, we decided to use it here as well (Duvinage
et al., 2012; Käthner et al., 2013). Some questions however,
especially about the interaction with the system, did not fit the
current purpose and even confused some of the participants.
The resulting SUS score might therefore not be entirely accurate,
but, we believe, still provides a good indication about the overall
usability of the system in an autonomous driving context.

The evaluation of the wearing comfort was better tuned to
the current context and raised no questions from participants.
The results showed that the first hour of using the system did
not bother the participants much, which qualifies it for short-
term usage at least. After the second hour of using the system,
however, the subjective comfort ratings dropped significantly and
participants began to complain about dents, slight headaches,
neck pain, even nausea and dizziness, which clearly shows that
the EEG system with the current cap design is not suitable for
long-term use. We did not investigate recovery time: How long a
break is needed, before the cap can be comfortably worn again?
This remains an open question.

The most annoying features of the system, according to the
participants, were its rather tight fit onto the head resulting in
the feeling of pressure. The overall weight of the system was, in
contrast, rated to be quite pleasant which might be caused by
the flexible, thin material of the cap. Also, participants rated the
adaptability of the cap as quite high. The cap was rated as being

fixated well, thanks to the chin belt and the holes for the ears
providing a lot of stability–only one participant had the feeling
the cap had moved at all.

CONCLUSION

Concluding in brief, the EEG system allowed for technically
sound recordings, even with car-induced interferences present.
It thus appears to be suitable for passive BCIs in autonomous
driving scenarios, allowing mental states to be detected in real
time.

In only a few minutes, individuals were able to apply and
adjust a pre-customized cap, with the help of a little mirror, like
the rear view mirror of a car. A system to better support the
evaluation of signal quality would be beneficial, however.

According to the system usability scale, the system is at
the edge of acceptability in terms of usability. This may
suffice for professional drivers, who likely stand to gain the
most from autonomous driving and supportive systems, but
room for improvement remains. In particular the reported
discomfort after longer use is unacceptable. Here, major
improvement is necessary to decrease pressure on the scalp
so the system is no longer obstructive and uncomfortable,
hindering the users from focusing on themselves and their
tasks.

Seeing now that EEG technology has made clear progress
toward ease of use and mobile scenarios, we can envision the
application of passive BCIs in the context of autonomous driving.
Passive BCIs can provide essential information about the driver’s
cognitive or affective state, which can be combined with other
sensor data of the car. In that way, the car can adapt to, and
make decisions informed by, individual aspects of the driver. As
passive BCIs do not rely on directed or even conscious actions
of the driver (Zander and Kothe, 2011), the car will still drive
autonomously but gains an additional stream of information,
pertaining to the subjective situational interpretation of the
driver.

For example, we can clearly imagine applications improving
safety and comfort. In cases where the driver is required to take
over control, the communication of this requirement can be
adapted to the current, actual state of the driver. Another scenario
would be the detection of whether or not communicated alarm
signals were perceived and processed by the driver. These are
only a few, simple examples of a broad range of applications to
be thought of.

Moreover the investigated system could be used in a broader
field of scenarios and might be of special interest for the field
of Mobile brain/body imaging (MoBI). The field’s objective is
to acquire neurophysiological recordings of human cognition
in real world environments where subjects perform real-world
tasks. A portable, wireless, high-quality data recording and fast to
prepare dry contact system would prove useful for brain activity
recordings on actively behaving participants (Gramann et al.,
2011, 2014; De Sanctis et al., 2012).

The application of passive BCI during autonomous driving
however provides an exemplary use case for technology that
adapts to the (neuronal) state of its operator during automation
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in general. Such Neuroadaptive Technology is a clear additional
step toward closing the cybernetic loop (Pope et al., 1995).
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Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots

at remote and hardly accessible places. Such MMIs make use of a virtual environment

and can therefore make the operator immerse him-/herself into the environment of the

robot. In this paper, we present our developed MMI for multi-robot control. Our MMI can

adapt to changes in task load and task engagement online. Applying our approach of

embedded Brain Reading we improve user support and efficiency of interaction. The level

of task engagement was inferred from the single-trial detectability of P300-related brain

activity that was naturally evoked during interaction. With our approach no secondary

task is needed to measure task load. It is based on research results on the single-stimulus

paradigm, distribution of brain resources and its effect on the P300 event-related

component. It further considers effects of the modulation caused by a delayed reaction

time on the P300 component evoked by complex responses to task-relevant messages.

We prove our concept using single-trial based machine learning analysis, analysis of

averaged event-related potentials and behavioral analysis. As main results we show (1)

a significant improvement of runtime needed to perform the interaction tasks compared

to a setting in which all subjects could easily perform the tasks. We show that (2) the

single-trial detectability of the event-related potential P300 can be used to measure the

changes in task load and task engagement during complex interaction while also being

sensitive to the level of experience of the operator and (3) can be used to adapt the

MMI individually to the different needs of users without increasing total workload. Our

online adaptation of the proposed MMI is based on a continuous supervision of the

operator’s cognitive resources by means of embedded Brain Reading. Operators with

different qualifications or capabilities receive only as many tasks as they can perform to

avoid mental overload as well as mental underload.

Keywords: EEG, P300, machine learning, space robotics, teleoperation, task load, man-machine interaction,

embedded brain reading
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1. INTRODUCTION

Human-robot interaction with semi-autonomous robots has to
be improved to be safe and intuitive. This can be achieved by (1)
building robots with advanced “on-board” solutions that support
natural interaction behavior between human and robot (Kirchner
et al., 2015) and (2) by developing intelligent man-machine
interfaces (MMIs). Especially in cases of tele-operating robots at
remote places the MMI has to be easy, intuitive and comfortable.

Usually only experienced people are chosen to remotely
operate robotic systems (Cornellă et al., 2012), since their
performance is robust. During remote control of several robots
in a complex mission, task load and task engagement change
tremendously over time, which can lead to mental over- or
underload as well as fatigue. Therefore, an online-adaptable
MMI can be applied to act on these changes. For this,
reliable measures for online changes in the human’s state must
be detected (Allanson and Fairclough, 2004). Such realtime
indicators have to consider theories about brain capacity and
resources (Kahneman, 1973; Wickens, 1984, 1992, 2008), which
propose that brain resources are limited and must be shared
between tasks. Comprehensive work showed that certain patterns
in the electroencephalogram (EEG), e.g., the amplitude of the
event-related potential (ERP) P300 (Prinzel et al., 2003), or ratios
of EEG power bands like alpha, beta or theta bands (Pope
et al., 1995), can be used to measure the processing capability of
the brain, mental workload and task demands. In earlier work
from Pope et al. (1995) it is shown that an EEG-based index
of user engagement and arousal could indeed be used to, i.e.,
adapt the level of system automation in response to changes in
mental workload demands. It was found that especially the P300
is a reliable measure for changes in task load (Kok, 2001; Prinzel
et al., 2003). Earlier work that examined the P300 in response to
primary and secondary task demands showed that an increase in
demands on the primary task resulted in fewer resources for the
secondary task accompanied by a smaller P300 amplitude (Isreal
et al., 1980).Many studies make use of the dual-task design (Isreal
et al., 1980; Prinzel et al., 2003) to detect an increase in workload
or task load in the primary task by analyzing the P300 amplitude
evoked by the secondary task, e.g., listening to auditory stimuli
presented in an oddball fashion (Prinzel et al., 2003) or P300 that
is evoked by ignored probes (Kramer et al., 1995).

With the focus on online user state detection based on
the analysis of brain activity, which is naturally evoked
during human-machine interaction and deeply embedded into
the systems control, embedded Brain Reading (eBR) was
developed (Kirchner and Drechsler, 2013; Kirchner, 2014, 2015).
The main focus of embedded Brain Reading is to passively
infer on the human’s intention to implicitly improve interfaces
like an exoskeleton which is used for explicit interaction, such
that the intended interaction or behavior can be supported
best (Folgheraiter et al., 2012; Kirchner et al., 2013a,b, 2014).
However, embedded Brain Reading can also be applied to
passively infer on the users’ neurophysiological state, such as their
current workload or task load, to adapt an interface implicitly in
such a way that the user is neither stressed nor bored (Kirchner
et al., 2010, 2013b; Wöhrle and Kirchner, 2014a) which would

both have negative impact on human-robot interaction. We
already showed that eBR can utilize P300-related activity to infer,
whether subjects recognize and will respond to important task
messages, which were presented interleaved with task-irrelevant
messages in an oddball fashion, while performing a complex
interaction task like playing a labyrinth game (Kirchner et al.,
2013b). In a later work we showed that eBR can indeed be
applied to improve interaction in an application scenario in
which subjects had to respond to warnings interleaved with
task-irrelevant status messages while remotely controlling a
robotic arm via an exoskeleton (Wöhrle and Kirchner, 2014a).
In both cases, the information about the operator’s capability
of recognizing task-relevant warnings was used to adapt the
developed MMI with respect to the timing of repetitions of
task messages. To this end, the MMI was adapted before the
operator would respond to the task message. In our previous
work, subjects had to perform two tasks: controlling a machine
and responding to task-relevant warnings. Thus, we did not
make use of the primary and secondary task design just for
the purpose of measuring task load on the user. The second
task was indeed required to be performed by the user with the
goal to estimate an operator’s capability to perform two tasks at
the same time. We also believe that even when using ignored
probes to measure load on the user, i.e., workload (Kramer
et al., 1995), any extra stimulation which is only added for the
purpose of measuring load on the user will likely disturb the
operator in a complex and demanding interaction task. Instead,
we used the single-trial detectability of the naturally evoked
P300 components in case that rare task-relevant stimuli were
presented (i.e., warnings that anyway requested responses of
the operator) and had to be answered as index of load, here,
task load and task engagement. However, in many real world
applications the occurrence of task-relevant target stimuli is
likely not interleaved consistently with task-irrelevant stimuli
as it was implemented in the previous studies by using the
oddball design. Thus, it is of interest to investigate whether
single-target stimuli successfully and reliably evoke P300 ERP
components during human-machine interaction, as suggested by
comprehensive work performed under controlled conditions of
the single-stimulus paradigm (Mertens and Polich, 1997; Polich
and Margala, 1997). Polich and Margala (1997) for example
showed, that single-target stimuli evoke P300 components with
similar characteristics as target stimuli presented in an oddball
fashion as long as the probability and the inter target interval
(ITI) were kept the same.

One research interest of the current work is therefore to
investigate whether P300 ERP components are reliably evoked
under application conditions in case of a single-stimulus
presentation that was naturally embedded into a human-machine
interaction task. We further investigate whether eBR can be
used to adapt the frequency of task messages that are presented
to the user by an MMI instead of modulating task repetitions
as in a former work (Kirchner et al., 2013b; Wöhrle and
Kirchner, 2014a). The adaptation of the MMI should again be
performed online. However, the proposed MMI is designed for
multi-robot control. Hence, an adaptation of the MMI with
respect to the inferred task load and the users current task
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engagement in preceding, still ongoing, tasks for other robots can
be investigated. Again, task engagement or task load was inferred
from P300-related ERP activity that is naturally evoked during
interaction. Both a high task load and a high task engagement to
a preceding task were expected to reduce the amplitude of P300-
related activity evoked by a new task message. In the presented
work, subjects performed only one type of task: controlling
different robots with respect to different requested tasks. Hence,
we break down dual-task execution into sequential and timely
overlapping task execution to investigate the influence of task
load and task engagement between subsequent tasks. We again
show that it is not necessary to artificially add an extra task
or probe, like in the dual task or ignored-probe design, to
evoke P300-related activity for measuring task load and task
engagement. Instead we directly infer the task load and task
engagement of the operator from the P300-activity evoked by
task messages.

Hence, our approach matches natural requirements on the
user during robot control since it avoids to add potentially
disturbing stimuli, like auditory stimuli, just for the goal to
measure and adapt for task load.

We further present and describe the developed MMI, which
makes use of a virtual control environment, i.e., a Cave
Automatic Virtual Environment (CAVE) (Figure 1). This MMI
can be adapted based on the changes in task engagement of the
user measured by EEG, i.e., P300-related ERP activity. While the
presentation of each task-relevant message was expected to evoke
a P300 we further assumed that the amplitude of a single-trial
P300 evoked by a new task message is reduced in case that the
user is still involved in executing a previous task. This is due to
the fact that mental resources are still bound to the previous task.
The more frequently such task conflicts occurred the stronger
we expected a reduction in averaged P300 peak amplitude. We
further assumed that the expected changes in P300 amplitude
were mainly caused by effects like task engagement or task load
but not by target probability, since the inter-stimulus interval
(ISI) between stimuli was very long. Polich (1990) showed
by means of an auditory discrimination task that the target
probability has no effect on P300 amplitude in case of longer
ISIs, i.e., ISIs longer than 6–8 s (Polich, 2007). For longer ISIs,
the probability effect (Tueting et al., 1970; Duncan-Johnson and
Donchin, 1977) is missing since brain resources can be redirected
fast enough to process a new target stimulus.

It is important to state that in the present work the level
of task load and task engagement as well as the occurrence of
task conflicts may strongly depend on different factors, e.g., the
general capability of the user in controlling the robots, fatigue
levels or secondary requirements on attention that are not related
to the main task, i.e., distractions of any kind that may occur
while the operator was controlling the robots. While the concept
of workload is distinct from the concept of multiple resource
theory (Wickens, 2008), both concepts do overlap in real world
applications and it is not always clear what contributes most.
Moreover, additional mechanisms like confusion, cooperation
between task elements like ongoing task engagement to the
preceding task and unwanted diversion of attention influence the
allocation of brain resources (Wickens, 2008). Additionally, as

known from educational research, changes in the motivational
state influence perception of workload, task complexity and
cognitive strategies (Kyndt et al., 2011). Real world applications
are therefore not a good paradigm to decouple components and
dimensions of influencing parameters, but they can be used as
a test case on whether certain measures can be used to predict
the general state and capacities of a subject. Since the goal
of our study was to measure the current task engagement or
task load of an operator and to use this measure to adapt an
MMI continuously to avoid an overall state of overload, we took
measures to avoid excessive workload.

In summary, the scope of this study was to artificially evoke
task conflicts to (I) not only show that P300-related activity was
naturally evoked when task messages were presented, but also
that it was indeed modulated by generally high demands on
the operator and by task engagement to previous tasks and (II)
that the detectability of P300-related activity could be used to
adapt an MMI with regards to task engagement and therefore
enabling a kind of steady-state task involvement. This should
result in higher subjective contentment and high overall task
performance.

The paper is structured as follows. In Section 2 we describe
the experimental setting, i.e., the developed MMI, the kind of
human-machine interaction task which can be performed and the
interaction tasks that the subjects had to solve, the experiments
that were performed for this work, and data recording procedure.
We further describe our research goals and hypotheses in more
detail and describe the performed data processing and analysis.
In Section 3 we describe our results with respect to behavioral,
machine learning and ERP average analysis. Finally in Section 4
we will discuss the outcome of our work and its relevance for the
improvement of MMIs for multi-robot control.

2. MATERIALS AND METHODS

2.1. Experimental Design
We developed an experimental setup in which a subject can
control several simulated robots. For this, we designed a virtual
environment using the in-house developed software “Machina
Arte Robotum Simulans” (MARS) (Rommerman et al., 2009;
DFKI - RIC, 2015), which can be run as a 3D environment in,
e.g., a CAVE (see Figure 1), as a 2D environment on a standard
personal computer and monitors or a multi-screen system (see
Figure 2). In both environments the operator can use different
input devices to control the robot, e.g., a 3D mouse, a wand,
an exoskeleton or an eye tracking device. In the future, the
developed virtual 3D environment will be used to control real
robots. To allow this, we use a physical simulation with close to
realistic physical simulations of the real robots developed at our
institute. In this work a 2D multi-screen system was used as the
environment and a wand was used as the interface to control the
simulated robots in the simulated environment. The used wand
is a hardware device and functions in a 3D environment similar
to a mouse in a 2D environment. It is tracked in 3D space using
an ultrasound-based tracking system combined with an IMU and
has five buttons as well as a pressure-sensitive joystick as input
options. We used the inertial-ultrasonic hybrid tracking device
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FIGURE 1 | Immersive virtual 3D multi-robot control using a CAVE supported by embedded Brain Reading (eBR).

InterSense IS-900 (Thales Visionix, Inc., Billerica, USA) in our
experiments.

2.1.1. Human-Robot-Interaction
In general, the task of the operator in the multi-robot control
environment (see Figure 2) was to supervise all robots and to
assign new tasks to individual robots as indicated by messages
presented to the user on the screen (see Figures 3A,B upper
part for examples of different messages). Individual robots were
labeled with different colors. Task messages were presented as
icon based widgets supporting fast recognition by the operator.
The operator used the interface to select a robot he or she
wanted to control by either selecting the robot directly or
by selecting the robot’s icon in the upper part of the middle
screen (see Figure 3A: 2). Moreover, information about the
chosen system was presented to the operator on the right screen
via an icon based information panel. Information such as the
robot’s name, its energy level, its current task as well as robot
control commands were presented here (see Figure 3A: middle
picture lower right corner). On the left monitor, tasks for the
operator were listed as soon as the operator confirmed that
he/she had seen the message by clicking on the appropriate
robot icon on the monitor in the middle. By selecting the robot’s
icon with a double click, the virtual camera was additionally
moved such that the chosen robot was in the focus of the
operator. After selecting a robot, the operator can issue a task
by clicking the corresponding robot control command icon.
(see Figure 3A: 4). In case that an operator was not sure or
did not recognize the robot to whom a task was assigned,
he or she could select an unknown icon displaying a gray
robot with a question mark (see Figure 3A). After clicking the
unknown icon, all the missed tasks were displayed in the task
list on the left screen. However, in the experiments presented
here this gray robot button was disabled to force the subjects
to focus on the task messages as much as possible. In case
that a user did not recognize the task message correctly she

or he had to wait for the automatic repetition of the task
message.

2.1.2. Interaction Tasks
As mentioned in Section 2.1.1 the operator had to fulfill different
tasks with the robots. Within the experiment there were three
kinds of tasks with varying complexity:

• Send message The task with the lowest complexity is
sending a message. This task can be solved by selecting the
corresponding robot and clicking on the send-message icon
within the robots control elements (see Figure 3A bottom
number 4). An example of such a message for the green robot
can be seen in the upper left part of Figure 3B.

• Go to landmark The task with a medium complexity is
the navigation task. Within the experiment there are five
different landmarks (for example see the cube labeled with 1
in Figure 3A). The goal of this task is to navigate the robot to
one of these landmarks. Therefore the operator needs to select
the robot and afterwards plan the path by creating waypoints.
Waypoints will be put at the position of the cursor, when
clicking a specific button. The robot will consecutively travel
from waypoint to waypoint on straight lines. When the robot
reaches the landmark the task is fulfilled. An example of such
a message for the red robot with target position 3 can be seen
in the upper middle part of Figure 3B.

• Recharge robot The most complex task is recharging the
robot. Again the correct robot needs to be selected first.
Afterwards the operator has to plan a path to the lander (see
in the top right corner of Figure 3A). The path planning is
realized as explained above in the “Go to landmark” section.
After reaching the lander the robot needs to be selected again
and the recharge icon from the robot’s control elements needs
to be activated by clicking on it. This task is more complex
than the “Go to landmark” task due to a gap in between the
two stages of the task and therefore the operator must track the
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FIGURE 2 | Experimental setup. Upper part: Virtual multi-robot control in 2D using a multi-PC system supported by embedded Brain Reading (eBR). Lower part:

Interaction is controlled by different software managers and schedulers. Widget-based icons are used to display information about the robots, messages for the user

and to select robot commands. The user “Need-to-Know Area” is the part of the system visible to the user. The robot interface with connections to the real robots

(depicted by dotted lines) is not yet implemented.

robot’s state. The operator may also forget to click the recharge
icon after the robot reached the lander. An example of such a
message for the red robot can be seen in the upper right part
of Figure 3B.

All tasks were pseudo-randomly chosen, such that no more than
one task at a time was assigned per robot. When creating a new
“Go to Landmark” task for a specific robot the robot’s distance
to the landmarks will be computed first. In order to solve the
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FIGURE 3 | Description of experimental setting and tasks performed by the operator. A (top) initial state, a task message was shown to the operator (1). The

message contained information about the type of the task (e.g., send a message) and the corresponding robot (e.g., the green robot). The subjects had to confirm the

task by clicking on a response button (2). A (middle) after the task was confirmed, it was shown in the task manager (3). A (bottom) when the green robot was

selected, a menu with all possible control commands was shown. In this example, the mission could be accomplished by clicking on the send-message button of the

control menu (4). When a task was accomplished, it was removed from the task manager (5). (B) The scenario contained three possible tasks, which were depicted

by an intuitive symbol. All tasks were related to a specific robot, encoded by a colored symbol, see the following examples. B (top left) send a message with the

green robot. B (top middle) send the red robot to waypoint 3. B (top right) recharge the red robot. Different robots (encoded by color) and different task messages

were randomly combined. B (bottom) messages are sorted in order as they are presented. Some messages (repetitions of tasks) get a higher priority and will be

presented earlier.

task the robot has to be in a specific radius around the chosen
landmark. If the robot is already within the specific radius the
new task would directly be solved when the robot is selected. In
such a case the target landmark will be chosen among the other
landmarks. Further, there was an automated mechanism which

generated a “Recharge Robot” task in case that the energy level
of a robot dropped bellow a certain value. This was necessary to
ensure that a robot would remain fully functional. If a robot runs
out of energy it would get stuck at its position and no more tasks
could be solved by this robot.
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When a message was presented requesting interaction the first
response of the user like selecting the correct robot was counted
as correct behavior. The message was not repeated. On the other
hand, a predefined response time (in our experiments 13 s) and
a predefined ISI was set for the operator. The predefined ISI was
important for our experiments and research questions as will be
explained in Section 2.4. Task messages were put into a message
queue. To avoid unfair scheduling due to different urgency of
information pending messages may change their priority over
time (see Figure 3B lower part). So far it is implemented that a
message is repeated as a warning in case that a complex task with
longer duration is started, i.e., a robot is sent to a landmark, but
does not arrive after a certain amount of time. Since the robot
might have got stuck the warning is repeated with higher priority.
To give the user an overview on initiated but still running tasks,
they were visualized in a icon panel in the upper left corner of
the left monitor in the order as they appeared with the newest
depicted on the top (see Figure 3A: 5). As soon as a task was
fulfilled the task message was removed.

2.2. Performed Experiments
Six subjects participated in the study. All subjects were male with
normal or corrected to normal vision and aged between 20 and
38 years (mean: 28.74, SD: 6.92). All subjects were intensively
trained in the scenario on a different day to get used to the tasks,
i.e., to control the robots by using the developed MMI. On the
same day of the study just before data recording subjects were
asked to get comfortable with the scenario. The study consisted
of 6 runs, performed in the same order. In each run, subjects had
to complete 30 tasks. The response behavior was supervised and
logged by the message scheduler (see Figure 2 lower part).

In case no response was detected within 13 s after presentation
of a taskmessage, the same taskmessage was again attached to the
message queue. Since the queue is implemented as a FIFO (first
in first out), the message is repeated after presentation of all other
messages within the queue.

Task messages (Figure 3 top illustration and Figure 3B) were
presented for 1.1 s. The duration of presentation was determined
by empirical tests with a different group of 4 subjects. The goal
was to keep the duration of message presentation as short as
possible to allow the evaluation of event-related activity in the
EEG while ensuring that subjects were able to recognize and
understand the presented messages.

2.2.1. Adaptation of the Inter-Stimulus Interval (ISI)
Between the 6 runs experimental conditions were varied with
respect to the ISI (Table 2.1: EEG data). For runs 1 to 4 ISIs were
fixed. We used two different ISIs: a long ISI (25 s) in runs 1 and 2
and a short ISI (15 s) in runs 3 and 4. In both cases an additional
random jitter of ±5 s was added. Appropriate time intervals for
long and short ISIs were empirically determined beforehand by
tests with 4 subjects that were not involved in this study. The
time interval for the short ISI was chosen such that the overall
workload or overall task load caused by the message frequency
was not too high. We were successful in empirically determining
an appropriate time interval for short ISIs as supported by results
of the evaluation of the NASATask Load Index questionnaire (see

Section 3.1.3). The time interval for the long ISI was empirically
chosen to be clearly higher in the subjective perception of the
4 test subjects. A very low ISI could not be chosen, since we
experienced that subjects easily gave up the run in cases of very
short ISIs, i.e., with a duration of 5 s or even with a duration
of 10 s. Further, no P300 was evoked under extremely stressful
circumstances, as in runs with an ISI of 5 s. Moreover, to train
the classifier qualitatively good training examples were required.
And finally, we had to limit the number of runs and thus total
experiment time to avoid overstraining the subjects.

For runs 5 and 6 the ISI was adapted online with respect to
detectability of the P300 and related ERP activity. For the online
detection of single-trial ERP activity a classifier was trained on
examples from either runs 1 and 2 (for application in run 5)
or on examples from runs 3 and 4 (for application in run 6)
(see Section 2.8 for more details). Adaptation in runs 5 and 6
of the ISI was increased gradually (up to a maximum of 35 s
in steps of 5 s) in case that an expected P300 was not detected
two times in a row after a new task message or was decreased
stepwise (down to a minimum of 5 s in steps of 5 s) in case that
an expected P300 was detected two times in a row. For both
adapted runs the ISI was preset to 25 s. We always startet with
the fixed ISI condition with an ISI of 25 s in runs 1 and 2 to
allow subjects to get comfortable with the control task. This was
done since long training sessions just before the experimental
session were not possible since they would have increased the
total experiment time to an unacceptable long duration. For
our experimental setting it was more important to record all
runs in the same session to avoid between-session effects on
the shape of the ERPs as well as the single-trial classification
performance. Although subjects were intensively trained, they
needed to readapt to the control of the robots, since the control
task was very complex. Next, in runs 3 and 4 training data was
recorded under the fixed ISI condition. We did not perform a
run with adapted ISI right after the recording of training data
with ISI 25 to keep both runs with adapted ISI close together
and thus condition of the subjects similar. Further, interleaving
runs with fixed and adapted ISIs were not performed, since this
might have had an influence on the motivation of the subject
during the recording of training data after a run with adapted
ISI.

2.2.2. Ethics Statement
The study has been conducted in accordance with theDeclaration
of Helsinki and approved with written consent by the ethics
committee of the University of Bremen. Subjects have given
informed and written consent to participate.

2.3. Recorded Data
During each executed run EEG was recorded with 64 electrodes
referenced against electrode FCz. An actiCap system (Brain
Products GmbH, Munich, Germany) arranged as an extended
10–20 system was used for recording. Electrode impedance was
kept below 5 k�. EEG signals were sampled at 5 kHz, amplified by
two 32 channel BrainAmpDC amplifiers (Brain Products GmbH,
Munich, Germany) and filtered with a low cutoff of 0.1Hz and
high cutoff of 1 kHz.
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2.4. Research Goals & Hypotheses
The presented work addresses two different research goals with
specific subgoals. (I) We want to show that a P300-related
activity is naturally evoked when task messages are presented
and recognized. (Ia) We investigate whether the evoked P300
is modulated by factors like demands on the operator or the
operator’s task engagement to previous tasks. (II) We want to
show that single-trial detection of P300-related activity can be
used to adapt the interaction with respect to the task engagement
of the operator. (IIa) In particular, we investigate whether an
individual balanced task involvement of the operator can be
achieved by adaptation of the ISI resulting in a higher subjective
contentment of the operator and in an individually optimized
overall task performance.

By means of data recorded in runs 1–4 we investigated
research goal (I). We artificially modulated the current task
engagement (on the previous task) by presenting a new task.
This was achieved by modulating the time interval between both
consecutive tasks: long ISIs of 25 seconds in runs 1 and 2; short
ISIs of 15 s in runs 3 and 4. Changes in P300 characteristics
were investigated by averaged ERP analysis andmachine learning
methods. To support the usage of single-trial P300 detection
we had to assure that the detection performance is adequately
high and not too strongly influenced by ISI per se such that
for very short ISIs possibly no P300 would be detectable in
single-trial. For this, an offline machine learning analysis was
performed first with training and test on runs with the same ISI.
These results were used as a baseline for other experiments. This
condition was called “baseline” condition. Using this analysis,
we investigated whether P300-related activity is detectable in
single-trial under application conditions and for different ISIs as
well as how strongly different ISIs would influence classification
performance.

Further, we investigated the effect of classifier transfer between
runs with different ISIs. More precisely, a transfer of classifier
between training runs (runs 1 and 2 or runs 3 and 4) and test
runs (runs 5 and 6 with adapted ISI) was applied. This condition
was called “transfer” condition. This offline analysis was relevant
because under the online condition the classifier was transferred
between different ISI conditions. Different ISIs were caused by
the adaptation of the ISI under the online condition. Results allow
to estimate the sensibility of the classifier for changes in ISI.

To achieve research goal (II) we adapted the developed MMI
with respect to the current task engagement of the user to
previous tasks when a new task was presented in runs 5 and 6
(Table 2.3: online stCL). Current task engagement was measured
by the online single-trial classification of P300-related activity
evoked by recognized target stimuli, i.e., task messages: (1) task
engagement to a previous task was expected to be high in case
that the P300-related activity was weakly evoked by a new task
and thus not detected by a classifier, (2) task engagement to
a previous task was expected to be low in case that P300-
related activity was more strongly expressed and thus detected
by a classifier. Note that in the online case each EEG trial
after a presented first task message was classified, thus in case
the operator completely missed a task message no P300 was

expected to be evoked and could therefore not be detected.
Hence, our approach did not only account for reduced P300
activity but also for missed P300 in case of missed target
events.

To prove that the interaction of the user was improved by
online adaptation of the ISI, we analyzed the total runtime,
median reaction time and number of late responses and missed
messages. We expected a reduction in total runtime by online
adaptation of the ISI compared to the case of a fixed long ISI (ISI-
25; runs 1 and 2). We did not expect a significant difference to be
found for reaction times, since our approach would avoid user
overload and responses were rather complex (see Section 2.1).
However, we expected some late responses and missed messages
in cases that the user was strongly involved in ongoing tasks when
a new task was presented.

Our approach of online adaptation of the ISI allows to adapt
an MMI with respect to the current task engagement or task
load, improves user performance by equalizing the level of
task engagement over all tasks and by selectively avoiding task
overload. To further support this, we investigated the effect
of an online adaptation of the ISI on averaged P300-related
activity, i.e., we investigated whether expected changes related
to task engagement in P300 amplitude could be found. For this
evaluation, we compared averaged activity evoked in case of a
fixed ISI of 25 s (runs 1 and 2) and a fixed ISI of 15 s (runs 3 and
4) with averaged P300-related activity evoked in runs 5 and 6.

Based on the research goals, we had three hypotheses: (1) The
online adaptation of the ISI reduces total runtime if compared
to the long fixed ISI condition (ISI of 25 s). (2) The modulation
of the ISI influences amplitudes of averaged ERP. In particular,
we expect differences between ISI types with respect to peak
amplitudes of the averaged ERP. (3) The usage of historic data
is feasible to detect P300 in the current data (e.g., a transfer
of the classifier trained on historic data to the current data is
possible).

2.5. Analysis of Subjects’ Behavior
2.5.1. Analysis of Total Runtime
The total runtime was measured as the time between the first
and the 30th task message within the experiment. This procedure
was chosen since the total number of tasks differs slightly. This
happens if the last task is from one of the categories “go to
landmark” or “recharge robot” and if the adapted ISI is quite
low. Solving one of these more complex tasks may take some
time since the traveling distance can be rather long. Therefore, all
robots may get one of these tasks.When one of the robots reaches
its goal position the experiment is finished, but in this way more
than 30 task messages could have been displayed to the user (see
Figure 5).

For the statistical analysis, the value of total runtime was
merged depending on the ISI type. This leads to three groups:
ISI-25 (runs 1 and 2), ISI-15 (runs 3 and 4), and ISI-online
adaptation (runs 5 and 6). The three ISI groups were compared
by the Friedman test. For multiple comparison, the Wilcoxon
signed-rank test was performed (the p-value was adjusted by the
Bonferroni-Holm correction).

Frontiers in Human Neuroscience | www.frontiersin.org June 2016 | Volume 10 | Article 291 | 93

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kirchner et al. An Intelligent Man-Machine Interface

2.5.2. Analysis of Reaction Times
To calculate the reaction times, the EEG marker files were
analyzed in order to deduce all important operator- and scenario-
related events. Whenever a message was presented to the
operator or the operator issued a control command this was
marked in the EEG file. Based on the markers we calculated the
reaction times, i.e., the amount of time the operator required
to react to a task message by clicking on the correct response
button for the robot. Only first task messages were considered
in the analysis. Repetitions of task messages were not analyzed.
The median of reaction time was calculated because of strong
deviations and outliers. For a comparison with the ERP average
analysis an additional analysis was performed considering only
reaction times after target trials with ISIs that were used for
the average analysis, i.e., target trials which belonged to one
of the both groups: ISI-long or ISI-short (see Table 1). Note
that for the ERP analysis not all trials could be used since in
run 5 6.82% of the ISI-long trials and 13.33% of the short ISI
trials and in run 6 18.57% of the ISI-long trials and 12.05% of
the ISI-short trials contained artifacts and were discarded from
analysis.

For the statistical analysis, the value of reaction time was
merged depending on ISI type and this leads to three groups:
ISI-25 (runs 1 and 2), ISI-15 (runs 3 and 4), and ISI-online
adaptation (runs 5 and 6). The three ISI groups were compared
by the Friedman test. For multiple comparison, the Wilcoxon
signed-rank test was performed (the p-value was adjusted by the
Bonferroni-Holm correction).

Additionally to median reaction times we calculated late
responses after 15 s, and missed messages. EEG trials after
messages with responses later than 15 s as well as missed message
trials were not considered during training of the classifier (see
Section 2.8).

2.5.3. Questionnaires
Before the experiments started, each subject was instructed to
assess its skills related to the use of computers by filling out
the “Computer usage questionnaire” (CUQ) (Schroeders and
Wilhelm, 2011). For the statistical analysis, the Friedman test
was performed to compare the patterns of computer usages
between subjects. Formultiple comparison, theWilcoxon signed-
rank test was performed (the p-value was adjusted by the
Bonferroni-Holm correction). Furthermore, after each of the
six runs of the experimental session, the subjects had to fill
out the NASA Task Load Index (TLI) questionnaire (Hart
and Staveland, 1988). For the statistical analysis, the value
of task load index was merged depending on the ISI type
and this leads to three groups: ISI-25 (runs 1 and 2), ISI-
15 (runs 3 and 4), and ISI-online adaptation (runs 5 and 6).
The three ISI groups were compared by the Friedman test.
For multiple comparison, the Wilcoxon signed-rank test was
performed (the p-value was adjusted by the Bonferroni-Holm
correction).

2.6. Analysis of the MMI Behavior
The behavior of the MMI was analyzed by plotting the changes
in the ISI for each subject in case of ISI adaptation (run 5 and

6, see Figure 5). Figure 5 illustrates what kind of tasks were
presented to the operator and which ISI was used, therefore
the trace is the same as it was during the actual experiment.
The purpose of this analysis was to give an impression of
how “good” the adaptation worked and which ISI was most
comfortable for the operator over the course of the run. For
a comparison of the mean ISI between subjects, the mean
ISI for each subject and run was calculated and the mean
ISI of each run was compared between subjects by using
the Friedman test. For a multiple comparison, the Wilcoxon
signed-rank test was performed (the p-value was adjusted by
the Bonferroni-Holm correction). Furthermore, we investigated
whether the mean ISI is a useful indicator for the analysis
of the MMI behaviors. To this end, the correlation between
the mean ISI and the total runtime was calculated using the
Spearman’s rank correlation. We expected a positive correlation
such that a longer ISI leads to a longer total runtime. In
addition, we investigated task type as another factor with a
potential effect on the total runtime. For example, the task
types “go to landmark” and “charging robot” required a longer
total runtime compared to the task type “send message.” The
frequency and order of task types were randomly chosen. Thus,
differences in frequency of task types can in principle lead to
differences in total runtime between subjects. However, we did
not expect a strong correlation between task type and total
runtime.

2.7. ERP-Average Analysis
Continuous EEGs were bandpass-filtered (0.1–30Hz) and
segmented into “target” trials from−100 to 1000ms with respect
to the stimulus onset (baseline correction: from −100ms before
the stimulus onset to 0ms). As for the machine learning analysis
only trials after the first taskmessages which have been responded
to within a time period of 15 s were labeled as “target” trials
when analyzing runs 1–4. For runs 5 and 6 again only trials
with answered task messages were used as “target” trials and
averaged as explained in Table 1. This procedure copies the
procedure of the offline analysis. Trials after missed taskmessages
were not averaged to exclude their contribution to the average
ERP characteristic. We used a common average reference (CAR)
and recalculated the data from channel FCz. For ERP average
analysis only artifact-free segments were used (see Table 1).
Artifact detection was performed semi-autonomously with a
maximum amplitude of −100µV and 100µV. We compared
average artifact-free ERP activity evoked in runs with ISI-25 and
ISI-15 as well as ISI-long and ISI-short. Trials for ISI-25 were
conducted in runs 1 and 2 and trials for ISI-15 in runs 3 and
4. An adaptation of the ISI in runs 5 and 6 did not only result
in various ISIs but also in individual ranges of ISIs for different
users (see Table 1). Therefore, we individually divided the EEG
segments of runs 5 and 6 into two ISI groups with respect to
trials being evoked after short or long ISIs for each subject. For
example, from the data of the subject depicted in Figure 9 we
merged examples after ISI-15 and ISI-20 to calculate average
ERP activity after long ISIs and ISI-5 and ISI-10 to calculate
average ERP activity after short ISIs (see Table 1). By means of
this procedure, we could compare averaged P300-related activity
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TABLE 1 | Number of artifact-free targets for each run and distribution over different ISIs.

Subject Number of targets for each run

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

S1 26 25 28 27 32 21

S2 31 30 32 33 29 29

S3 23 19 9 27 23 17

S4 21 24 25 25 38 21

S5 23 19 25 23 25 22

S6 29 22 29 30 29 30

Average 25.50± 3.89 23.17 ± 4.17 24.67 ± 8.12 26.83 ± 4.02 29.33 ± 5.32 23.33 ± 5.09

Subject Number of targets for all possible ISI-groups within runs 5 and 6

Run 5

ISI-05 ISI-10 ISI-15 ISI-20 ISI-25 ISI-30

S1 4 15 10 3 0 0

S2 14 7 5 2 1 0

S3 0 7 6 6 4 0

S4 0 2 10 20 6 0

S5 0 2 4 10 9 0

S6 8 12 3 4 2 0

Average 4.33 ± 5.72 7.50 ± 5.24 6.33 ± 3.01 7.50 ± 6.75 3.67 ± 3.39 0.00 ± 0.00

Run 6

S1 4 9 0 6 2 0

S2 1 12 11 3 2 0

S3 1 4 6 5 1 0

S4 0 1 2 6 7 5

S5 0 0 3 11 7 1

S6 19 6 3 0 2 0

Average 4.17 ± 7.41 5.33 ± 4.63 4.17 ± 3.87 5.17 ± 3.66 3.50 ± 2.74 1.00 ± 2.00

Run 5 + Run 6

Average 4.25 ± 6.31 6.42 ± 4.85 5.25 ± 3.49 6.33 ± 5.31 3.58 ± 2.94 0.50 ± 1.45

For average ERP analysis different ISIs were categorized in two ISI-groups: ISI-short (marked as red) and ISI-long (marked as blue).

for ISI-short and ISI-long of runs 5 and 6 with the activity evoked
in runs 1 and 2 (fixed ISI of 25ms: ISI-25) or runs 3 and 4 (fixed
ISI of 15ms: ISI-15) (Table 2.2). For peak detection, we selected
a single window of the interval 0.3 –0.7 s after a “target” trial.
The positive maximum peak was detected within the selected
window.

For the statistical analysis of average ERP amplitude values
with a sample size of 6 (i.e., 6 subjects), we performed the
Wilcoxon signed-rank test to compare different ISI types (ISI-25
vs. ISI-15 and ISI-long vs. ISI-short).

2.8. Machine Learning Analysis
The data flow of the machine learning algorithm is depicted
in Figure 4A. For the analysis the software framework

pySPACE (Krell et al., 2013a) was used. First the continuous
EEGs were processed by a DC removal filter, which is an
online-capable method for centering the signal around zero. The
normalized EEGs then were decimated from 5000 to 25Hz.A
cutoff frequency of 4Hz was used for the anti-alias filter in the
decimation process (Jansen et al., 2004; Ghaderi et al., 2014).
Afterwards the EEGs were segmented into chunks of 1 s length.
Chunks cut right after a first task message (not after repetitions
of messages) were labeled as “targets.” Within the training, these
windows were only cut if the operator responded to the first
task message within 15 s after presentation, in the online case
every first task message was analyzed. We further cut “standard”
windows of length 1 s while training. These windows were
needed to train the used binary classifier. The standard windows
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FIGURE 4 | Data Processing. (A) data flow for signal processing and single-trial classification. (B) example of an ERP (black line) being processed as local slopes of

a straight line.

were cut every second with the constraint that no other action
relevant for task recognition was performed in a range from
[−1, 1] s around the cut window. For the task recognition,
actions such as the presentation of a task message or the response
of the operator of one of these messages were used. The segments
were further processed with the xDAWN spatial filter (Rivet
et al., 2009). The xDAWN is a spatial filter especially designed
for P300 detection. It (1) enhances the separability of the P300
ERP and noise and (2) reduces the dimensionality of the data.
To achieve this, a set of filters maximizing the signal-to-signal-
plus-noise ratio is computed on a training data set. The resulting
filters can be used to create a set of pseudo-channels that contain
the filtered signal. From the newly created pseudo channels the 8
most relevant channels were used for further processing.

As features we used local straight line features, i.e., polynomial
features. To fit a polynominal function EEG data must be
segmented (see Figure 4B). Earlier investigations showed that
the longer the segments are chosen, the more coefficients are
needed to keep the performance level high. For this paper every
120ms, segments of length of 400ms within the 1 s segments after
stimulus onset were cut. Polynominal features of order one, i.e.,
straight lines were fitted to the 400ms long segments of the ERP
data with 120 ms steps to describe the ERP in terms of a series
of slope values (see Figure 4B). Polynominal features of order
one have been chosen since in former investigations of P300 ERP
activity the highest value was obtained with this low coefficient.
Previous analyses, too, as performed for example in Wöhrle and
Kirchner (2014b) support our choice.

After this preprocessing a Support Vector Machine
(SVM) (Chang and Lin, 2011) was used as classifier. During
training the complexity of the SVM was optimized with a grid
search and an internal five-fold cross validation. The possible
complexities were 10n with n ∈ 0,−1, . . . ,−6. Further a
threshold optimization was applied (Metzen and Kirchner,

2011). Further a threshold optimization was applied (Metzen
and Kirchner, 2011). After building the model of a SVM the
decision boundary is defined as 0 and the two classes (here
target and standard) are at the positive and negative side of the
boundary. The threshold optimizations gives the opportunity
to further improve the classification performance with respect
to a given metric, here the balanced accuracy. The threshold is
shifted into the negative or positive direction, in a way that for
the training data the highest classification performance in terms
of balanced accuracy is achieved.

We used the balanced accuracy (bACC), i.e., the mean
of true positive rate (TPR) and true negative rate (TNR),
as the performance metric due to the insensitivity of this
metric to changes in class distribution (Krell et al., 2013b;
Straube and Krell, 2014). Area under the curve (AUC) values
were additionally calculated. Classification performance was
compared between all conditions. For details see Table 2.3.
Although the adaptation of the ISI was evaluated online
(Table 2.3: online stCL), we additionally analyzed the data in the
offline mode (Table 2.4: offline stCL). This procedure was chosen
for reasons of fair comparison. While in the online mode data of
two runs (runs 1 and 2 or runs 3 and 4) were used for training,
this was not possible for evaluating the general P300 detectability
in case of fixed ISIs since here only one run could be used for
training while the other was used for testing. By means of the
chosen offline approach we were able to analyze the no-transfer
case (as baseline/control) and the transfer case equally.

For the statistical analysis on single-trial classification
performance, two separate comparisons were performed by using
the Wilcoxon signed-rank test. First, we compared two online
cases: online P300 detection in run 5 vs. run 6 (see (e) vs. (f)
in Table 2.3: online stCL). Here, two samples per subject were
obtained for each online case. Altogether, we obtained a sample
size of 12 (2 samples × 6 subjects) for each online case. Second,
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TABLE 2 | Design for the recording of EEG data, evaluation design for ERP analysis and design for the analysis of single-trial classification performance

(online/offline-mode).

Table 2.1. EEG data Table 2.2. Evaluation design for ERP analysis

(a) run 1: fixed ISI of 25 s Average ERP in (a)
ISI-25: average of (a) and (b)

(b) run 2: fixed ISI of 25 s Average ERP in (b)

(c) run 3: fixed ISI of 15 s Average ERP in (c)
ISI-15: average of (c) and (d)

(d) run 4: fixed ISI of 15 s Average ERP in (d)

(e) run 5: online adapted ISI Average ERP in (e) Various ISIs are grouped in short and long ISI

(f) run 6: online adapted ISI Average ERP in (f) for each subject: (e), (f), or average of (e) and (f)

Table 2.3. Online stCL Table 2.4. Offline stCL

Adapted ISI Adapted ISI (e) ISI-25 (control) Adapted ISI (f) ISI-15 (control)

classifier transfer transfer no transfer transfer red no transfer

Training Test Training Test Training Test Training Test Training Test

ISI-25 (fixed ISI of 25 s)

(e)

(a) (e) (c) (e)

(a) + (b) merged (b) (e) (d) (e)

Mean (e) (a) (b) Mean (e) (c) (d)

ISI-15 (fixed ISI of 15 s)

(f)

(a) (f) (c) (f)

(c) + (d) merged (b) (f) (d) (f)

Mean (f) (b) (a) Mean (f) (d) (c)

ERP, event-related potentials; online stCL, online single-trial classification; offline stCL, offline single-trial classification; and ISI, inter-stimulus interval. Each run contained 30 trials. For

online single-trial classification, 60 trials (e.g., runs 1 and 2) were used to train a classifier and 30 trials (e.g., run 5) were used for evaluation. For offline single-trial classification, 30 trials

were used for training and testing in both cases (no transfer/classifier transfer).

two adapted ISI conditions were compared with two fixed ISI-
conditions in offline mode depending on the type of training
data (ISI-25 or ISI-15) used to train the classifier: (1) adapted
ISI (e) vs. ISI-25 (control) (see in Table 2.4: offline stCL) and
(2) adapted ISI (f) vs. ISI-15 (control) (see in Table 2.4: offline
stCL). In the offline analysis, the number of training examples
for the fixed ISI conditions (run 1 or run 2 / run 3 or run 4,
see Table 2.4) was half the number of training examples used for
the adapted ISI conditions in case of online evaluation (run 5 or
run 6, see Table 2.3). For a fair comparison between the adapted
and fixed ISI-condition, only one run (run 1 or run 2) was used to
train the classifier to test it on run 5, and themean of classification
performance obtained by using run 1 or run 2 for training was
calculated in the case of the adapted ISI(e) (see Table 2.4 (e) in
offline stCL). Similarly, in the case of the adapted ISI(f), only one
run (run 3 or run 4) was used to train the classifier to test it on run
6 and the mean of classification performance obtained by using
run 3 or run 4 for training was calculated (see Table 2.4 (f) in
offline stCL). Each adapted and fixed condition has two samples
per subject. Altogether, we obtained a sample size of 12 (2 samples
× 6 subjects) for each condition.

3. RESULTS

3.1. Behavior of Subjects
3.1.1. Total Runtime
Figure 5 shows how the ISI changed over one run based
on the inferred task load and task engagement of the user

measured by P300 detectability. Subjects reported that the
online adaptation made them feel to have just the right
task frequency. This indicates that online adaptation of the
MMI has a positive effect on the interaction. The finding
was supported by the results of the behavioral analysis of
the total runtime (see Figure 6). The online adaptation of
the ISI reduced total runtime significantly if compared to
the ISI-25 condition [p < 0.001]. Moreover, there was no
significant difference in total runtime between the case of online
adaptation of ISI and the case of ISI-15 condition [p =

n.s.].

3.1.2. Reaction Time
Figure 7A shows themedian reaction time for individual subjects
over all runs. It can be seen that median reaction times are
very similar over all conditions and runs for each subject. When
merging the two runs of each condition (ISI-25, ISI-15, and
ISI-adapt) we found no significant difference between ISI types.
However, when analyzing median reaction time individually for
ISI-long and ISI-short groups of runs 5 and 6 as performed
for average ERP analysis it can be seen that the reaction time
on task messages presented after short ISIs showed a higher
variance compared to task messages presented after long ISIs (see
Figure 7B).

A descriptive analysis of the sum of late responses and missed
messages per subject for each run is visualized in Figure 8. It can
be seen that for some subjects the number of late responses and
missed messages was higher than for others (subjects 3 and 4).
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FIGURE 5 | Changes in ISI over each run in case of the adapted ISI condition (runs 5 and 6) for each subject are depicted.

Table 3 provides information about the number of late responses,
missed messages and the sum of both as depicted in Figure 8.

3.1.3. Questionnaires
The analysis of the “computer usage questionnaire” shows
a significant difference between subjects, especially subject 4
differed significantly from the other subjects [p < 0.03]. The
analysis of the “NASA Task Load Index (TLI) questionnaire”
shows no significant differences between runs [p = n.s].

3.2. Behavior of MMI
Figure 5 depicts the changes of the ISI for both adapted runs
(runs 5 and 6) for each subject. It can be seen that the adaptation
of the ISI is very individual for each subject and even for
each run. While for some subjects and runs, as for subject
2 in run 5, the ISI goes down to the minimum of 5 s and
stays there for almost 20 trials, for other subjects the ISI is
not reduced that much (see for example subject 5 for both
runs).
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FIGURE 6 | Mean runtime for different ISI conditions. The means of both

runs for each ISI type are depicted. The median across all subjects for each ISI

type was 17.59 for ISI-25, 11.49 for ISI-15 and 12.45 for ISI-adapt.

In most cases the ISI gradually decreases just to later increase.
However, there are exceptions from these findings. For example
subject 1 shows a reduction of ISI at the end of run 6 and subject
6 stays with a low ISI during both runs. For all subjects the ISI
starting with 25 s was reduced to a lower mean ISI with average
values of 14.67 and 15.62 s (runs 5 and 6) (seeTable 5).Moreover,
we could also find differences in the mean ISI between subjects.
For example, while the mean ISI for subject 4 and subject 5 is
around 19 and 22 s (runs 5 and 6), the mean ISI for subject 6
is at 10.45 and 8.43 s (runs 5 and 6) and for subject 2 at 9.85
and 12.42 s (runs 5 and 6). The mean ISI for Subject 4 and
subject 5 was significantly higher compared to the other subjects
[p < 0.017]. Furthermore, the mean ISI correlated strongly with
the total runtime [r = 0.874, p < 0001], but not the task type
(e.g., send message, go landmark, etc.).

3.3. Average P300-Related Activity
As shown in Figures 9,10, we observed differences in averaged
ERP shape depending on the ISI condition (short/long ISI). Note
that the ISI in case of long ISIs and short ISIs differ for both
average analysis conditions (fixed-ISI condition and adapted-
ISI condition, see Table 5). While for ISI-long average analysis
condition the ISI is set to 25 s, ISI-long for the adapted-ISI
condition is around 19 s. Similar differences can be found for the
ISI-short average analysis condition (fixed short ISI: 15 s versus
adapted ISI around 10 s). The peak amplitude of the averaged
P300-related activity was not significantly reduced in case of ISI-
15 (runs 3 and 4) compared to ISI-25 condition (runs 1 and
2) [p = n.s.]. However, we observed a significant reduction in
averaged P300 amplitude in run 5 and run 6 for short ISI groups
compared to long ISI groups [p < 0.04]. Furthermore, there was
a significant difference between ISI-15 and ISI-short [p < 0.04],
but not between ISI-25 and ISI-long [p = n.s.].

3.4. Online P300 Detectability
Finally, we achieved high classification performances in both the
online and offline analysis. In the online evaluation, we found
no significant difference between both online runs [adapted ISI
(e) vs. adapted ISI (f): bACC of 0.77 vs. bACC of 0.78, p =

n.s., see adapted ISI (e) vs. adapted ISI (f) in Table 4.1]. In

the offline evaluation, classification performance obtained by
using the classifier trained on ISI-25 statistically differed from
classification performance obtained in case of no transfer [ISI-
25 vs. adapted ISI: bACC of 0.84 vs. bACC of 0.75: p < 0.003,
see adapted ISI (e) vs. ISI-25 in Table 4.2]. However, we found
no significant difference in classification performance when using
the classifier trained on ISI-15 compared to the case of no transfer
(ISI-15) [ISI-15 vs. adapted ISI: bACC of 0.80 vs. bACC of 0.79:
p = n.s., see adapted ISI (f) vs. ISI-15 in Table 4.2]. There was no
significant difference between the online and offline evaluation
for the case of ISI-adaptation [adapted ISI (e) in Table 4.1 vs.
adapted ISI (e) in Table 4.2: p = n.s. ; adapted ISI (f) in Table 4.1

vs. adapted ISI (f) in Table 4.2: p = n.s.]. In summary, we found
a transfer effect on classification performance in case that the
classifier was trained on data from the ISI-25 runs. However,
such an effect was missing when the classifier was trained on data
from the ISI-15 runs. It must be emphasized that the classification
performance was very similar in case of both classifier transfer
analyses, i.e., adapted ISI (e) and adapted ISI (f) (see Table 4.1).

4. DISCUSSION

4.1. Improvement of Interaction
Supporting our hypothesis (1) behavioral data showed that
total runtime in runs with adapted ISI was significantly shorter
compared to an unadapted condition with an ISI of 25 s.
Although there was no significant difference between the adapted
ISI and the fixed shorter ISI of 15 s the mean total runtime was
still very low considering the fact that runs with ISI adaptation
did start at an ISI of 25 s. Significant differences in the total
runtime between runs with adapted ISI and the fixed shorter ISI
of 15 s were not expected, since the time needed until a task was
performed by a robot does (although not strongly) depend on
the type of task. For example, sending data was very fast and
instant while reaching a certain landmark could take a long time
depending on the current position of the robot and the landmark.
Thus, some deviation in runtime depending on the kind of tasks
that had to be performed by the robot, was expected. On the other
hand, we did not choose subjects with a certain qualification but
chose subjects independent of their experience in robot control
or video gaming. Thus, we expected differences in the subjects’
performances resulting in different “suitable” ISIs and hence also
in different total runtimes. Important was that a significantly
shorter runtime could be achieved compared to the fixed ISI-25
condition under which all the subjects could perform the tasks
without being stressed.

Besides, the goal was not to reduce the total runtime to a
minimum but to adapt the ISI with respect to the demands of
the user of the MMI. Indeed, for some subjects the mean ISI
was reduced to mean values around 10 s while for other subjects,
i.e., subjects 4 and 5, the ISI was clearly above 15 s (around
19 s, see Section 3.2). On the other hand, even for subjects
for whom the ISI was not reduced that much, mean ISI was
clearly below 25 s, supporting our presupposition from the 4
test subjects that were not included in this study that a fixed
ISI of 25 s ensures that all subject can easily perform the tasks
but will probably make the subjects feel bored. An interesting
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FIGURE 7 | Median response time. (A) median reaction times for each run and each subject are depicted. (B) median reaction times for each run and each subject

sorted with respect to trials with short and long ISI as defined for average ERP analysis are depicted.

finding is that subject 4 for which the ISI was reduced only
to a still high value (around 19 s) significantly differed from
the other subjects with respect to computer usage as evaluated
by the “Computer usage questionnaire” (CUQ). This finding
supports our assumption that the MMI could be adapted based
on the detectability of the P300 to support the user with respect
to her or his general capabilities. Note that subject 4 showed
the lowest classification performance in both runs compared to
the other subjects (although no significant differences between
subjects could be found, see Table 4). Moreover, subject 4 had
a high amount of late responses and missed messages (see
Figure 8). Another interesting finding is that the median reaction
time does not significantly differ between subjects. This finding

suggests that in our application behavioral data is probably not
a good indicator for task load. Moreover, it shows that using
our approach subjects were exposed to an appropriate workload.
In summary, the results suggest that by using the developed
MMI utilizing embedded Brain Reading, theMMI cannot only be
adapted to the general capabilities of the user (e.g., experienced or
rather inexperienced in computer usage) but also to the changes
in task load over time.

4.2. Changes in the Characteristic of
Average P300 Depending on the ISI
Applying average ERP analysis, we were able to show that during
a complex multi-robot control task a P300-related activity is
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FIGURE 8 | Sum of late responses and missed messages for each run and each subject is depicted.

TABLE 3 | Number of tasks with late or no response in runs 5 and 6.

Run 5 Run 6

Subject Late Missed Total Late Missed Total

S1 4 0 4 2 0 2

S2 0 0 0 2 2 4

S3 4 0 4 8 0 4

S4 5 0 5 8 0 8

S5 0 1 1 1 0 1

S6 1 0 1 0 2 2

evoked by task messages which are presented to the operator.
This finding is the most important basis for our approach to
adapt anMMI based on P300 detectability. As expected we found
no significant differences in the averaged-peak P300 amplitude
for both fixed ISI conditions. This supports earlier findings that
the ISI has no influence on the P300 amplitude in case of
long ISIs (longer than 6–8 s as found by Polich, 2007). More
importantly this finding supports our assumption that on both
fixed ISI conditions the general workload on the subjects was
rather modest and comparable. Hence, any found differences in
the P300 peak amplitude should be caused by changes in the
current task load and task engagement. This finding is supported
by the fact that in case of an ISI adaptation the average P300
peak amplitude was significantly reduced for trials after short ISIs
compared to trials after long ISIs.

Our results from the average ERP analysis support hypothesis
(2): we could show differences in the P300 peak amplitude for
average conditions with a high task load (averaged ERP activity
after ISI-long in adapted ISI condition) compared to average
conditions with low task load (averaged ERP activity after ISI-
long in adapted ISI condition).

The finding that the peak amplitude of the average P300
activity after trials with ISI-short (adapted ISI condition) is

significantly smaller compared to the peak amplitude of the
average P300 activity of both fixed ISI conditions (ISI-25 and ISI-
15) suggests that for all subjects the MMI was indeed adapted to
achieve the best performance without enhancing the workload
too much such that no P300 would be evoked. Tests on 4 subjects
(not included in this study) showed that in cases in which the
workload was too high no P300 was evoked on average or could
not be detected in single-trial while subjects reported that they
were very stressed and could not perform the tasks. Hence, the
MMI is adapted such that subjects perform best while avoiding an
excessive general workload. Some subjects were able to keep their
performance high with a short ISI all through the experiment
while others did not. For the latter, theMMI was again adapted to
longer ISIs reducing the task load back to normal. The task load
and thus the general workload being modest under the adapted
condition after long ISIs is supported by the finding that the
average P300 peak amplitude evoked after long ISI trials under
the adapted ISI condition is comparable to the average P300
peak amplitude under the fixed ISI conditions (ISI-25 and ISI-
15). This was even the case although the mean long and short
ISI differed strongly between subjects (see Tables 1, 5). Based on
these findings we suggest that the P300 ERP is indeed a good
indicator for the current and individually different task load of
a subject while controlling the robots.

4.3. Detectability of P300 in Single-Trial
The results of the offline machine learning analysis support that
the P300-related activity which was evoked by task messages
can be detected in single-trial even in case that the classifier is
transferred between different ISI conditions. Thus, the results
support hypothesis (3).

When comparing online classification with offline
classification a performance drop can be observed. This
can be explained as follows: In the online case each first message
was classified independently of having been responded to.
Therefore, trials after missed task messages which likely did
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FIGURE 9 | Adaptation of the ISI over one run and the evoked averaged ERP activity at Pz for one subject: (A) depicts online adaptation of ISI in case of

using the classifier trained on data with ISI of 25 s (i.e., training data: ISI-25, test data: run 5, see (e) in Table 2.3: online stCL) and (B) the corresponding

averaged ERP curve evoked during the same run (Table 2.2: ERP analysis). Only artifact-free trials were used: 7 trials for ISI of 15 s and ISI of 20 s; 21 trials for

ISI of 5 s and ISI of 10 s. Different types of tasks (tasks of type: message, way point and charging, see Figure 3 for details) had to be solved by the subjects.

not contain a P300 were classified, leading to “false negative”
results. It was therefore expected that classification performance
was lower for the online case, since the approach is sensitive to
missed targets. The small difference between online and offline
results support that the MMI was well designed such that only
few target events (messages) were completely missed (see also
Table 3).

Besides this, in both transfer cases similar classification
performance can be achieved. Hence, for an application it is
not that relevant for the classification on which data a classifier
is trained. While we found no significant differences between
subjects for online classification performance it is noticeable that
subject 4 had the worst classification performance in both runs
compared to the other subjects (Discussion see Section 4.1).

4.4. P300 Detectability as Index for Task
Load or Task Engagement
By reducing the ISI to way shorter ISIs compared to the ISI-15
condition (see Table 5) we strongly enhanced the task load and
likelihood of conflicts since subjects might still be engaged in
a former task when a new task message was presented. This is
supported by two findings: (1) the higher variance in reaction
time found for the ISI-short group (based on grouping for
average analysis) and (2) the smaller average P300 evoked after
short ISI trials in the adapted ISI condition (see Figure 10).
Likely, subjects were still involved in a previous task and often
could therefore respond to a new task only with a delay.

We found a similar effect in a previous study (Kim and
Kirchner, 2012). In this previous study, subjects played a
labyrinth game and had to respond to target stimuli which were
presented in an oddball design. However, subjects were not
allowed to respond to target events right away. We asked the
subjects to steer the ball in a save corner first before answering
a target event. When analyzing the average P300 potential we
grouped the data with respect to reaction time such that the first
group consisted of EEG trials with only short reaction times up to

1.4 s, for the second group trials were added which had reaction
times up to 1.6 s, for the third group up to 1.8 s, the fourth up to
2.0 s, and the fifth up to 7.0 s. Although keeping the trials with
short reaction times up to 1.4 s for the second group and up to
1.6 s for the third group, we still found descriptive differences
in average peak amplitude of the P300 component between all
groups with highest amplitude for the group of 1.4 s and lowest
for the group of 7.0 s. When classifying between standard and
target trials we found significant differences between the group
of 1.4 s compared to all other groups with the exception of
group 1.4 s compared to group 1.6 s and significant differences
between the group of 7.0 s compared to all other groups with
highest classification performance of 0.85 for the group of 1.4 s
and lowest classification performance of 0.76 for the group
of 7.0 s. These results suggest that ongoing task engagement,
i.e., playing the labyrinth game, reduced the P300 evoked by
a new target stimulus tremendously and would also reduce
classification performance.

4.5. Summary and Outlook
In summary, our results show that complex interaction between
humans and robotic systems can be improved by the application
of an MMI adapted by eBR. The time between tasks can be
adjusted such that a reduction of run time compared to a
safe mode is possible. The strength of adaptation does further
correlate with the experience of the user. Thus, the MMI can
be adapted to the needs of the user within a range of workload
that can otherwise not be resolved. Our approach shows that
EEG activity like the P300-related activity that is naturally evoked
during interaction can be used to adapt an MMI with respect to
online changes in task load or task engagement of an operator.
Thus, the dual-task design (with a primary and usually artificially
introduced secondary task) that is often applied to infer on
current processing capacity of the brain must not be applied to
adapt for task engagement. The ERP activity can be used rather
naturally, similar to approaches that make use of ratios of EEG
power bands (Pope et al., 1995) while being specific to certain
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TABLE 4 | Online and offline classification performance.

Table 4.1. Online single trial classification performances (cf. Table 2-3. Online stCL)

bACC AUC

Adapted ISI (e) Adapted ISI (f) Adapted ISI (e) Adapted ISI (f)

classifier transfer classifier transfer classifier transfer classifier transfer

S1 0.7646 0.7586 0.8481 0.8343

S2 0.8403 0.8177 0.8692 0.8596

S3 0.7892 0.7422 0.8516 0.8681

S4 0.6486 0.7083 0.7620 0.7365

S5 0.7981 0.7631 0.8790 0.8621

S6 0.7931 0.9021 0.9292 0.9375

Mean 0.7723 0.7820 0.8565 0.8497

Table 4.2. Offline single trial classification performances (cf. Table 2.4. Offline stCL)

bACC AUC

Adapted ISI (e) ISI-25 Adapted ISI (f) ISI-15 Adapted ISI (e) ISI-25 Adapted ISI (f) ISI-15

transfer no transfer transfer no transfer transfer no transfer transfer no transfer

S1 0.7057 0.8086 0.7595 0.7725 0.8063 0.8815 0.7979 0.7966

S2 0.7690 0.9536 0.8366 0.9361 0.8183 0.9873 0.8870 0.9604

S3 0.6987 0.7568 0.7912 0.7406 0.8643 0.8923 0.476 0.8159

S4 0.6772 0.7310 0.7195 0.7187 0.7670 0.7451 0.7170 0.8459

S5 0.7722 0.8135 0.7685 0.7650 0.8054 0.8942 0.8193 0.8745

S6 0.8625 0.9600 0.8843 0.8864 0.9037 0.9692 0.9549 0.9045

Mean 0.7476 0.8373 0.7933 0.8032 0.8275 0.8951 0.8373 0.8663

TABLE 5 | Mean ISIs in case of online ISI-adaptation (runs 5 and 6).

Mean ISI in sec.

Table 5.1 Table 5.2

Subject Run 5 Run 6
Run 5 Run 6

ISI-long ISI-short ISI-long ISI-short

S1 12.7 ± 5.01 13.94 ± 5.47 16.15 8.95 21.25 8.46

S2 9.85 ± 5.97 12.42 ± 5.09 16.47 6.67 16.07 9.62

S3 16.25 ± 4.84 15.15 ± 5.43 22.00 12.31 17.27 9.00

S4 19.22 ± 5.46 21.94 ± 5.63 21.15 14.17 22.69 13.33

S5 19.55 ± 4.33 21.82 ± 3.44 22.37 13.33 25.63 8.57

S6 10.45 ± 6.08 8.43 ± 5.95 17.86 8 .00 15.00 6.20

Average 14.67 ± 4.29 15.62 ± 5.35 19.33 ± 2.84 10.57 ± 3.10 19.65 ± 4.19 9.20 ± 2.33

Table 5.1: mean over all trials. Table 5.2: mean over a selected group of trials with ISI-short and ISI-long as defined for average ERP analysis (see Table 1).

stages of information processing (Prinzel et al., 2003). Hence,
for the user, our approach of measuring brain states and task
engagement remains invisible and avoids any possible additional
load on the user, since the task itself is used to measure task load,
without any additional task.

In the future, we will have a closer look at the long term
effect of adaptation of the ISI compared to a high task load

condition, i.e., ISI of 10 s or even lower. For this, it is required
to avoid the recording of extra training data since this requires a
considerable amount of time. The total time for one experiment
(6 runs) was already between three to 4 h including preparation.
Thus, for a long term study, preparation and especially training
of the classifier must be kept to a minimum. This can be
achieved by using zero-training approaches (Krauledat et al.,
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FIGURE 10 | Averaged ERP activity over all subjects at electrode Pz under offline condition (left side) and under online condition (right side). Grand

averages over all subjects are depicted. Each run contained 30 trials. Only artifact-free trials were used: 292 trials for ISI-25 and 313 trials for ISI-15, 139 trials for

ISI-long and 164 trials for ISI-short.

2008; Kindermans et al., 2012) or by using old training data
from either previous recordings of the same subject or other
subjects (Lotte and Guan, 2010; Devlaminck et al., 2011; Samek
et al., 2013). To reduce transfer effects (between sessions and
between subjects) adaptive algorithms for the spatial filter (Rivet
et al., 2011; Ghaderi and Straube, 2013), the classifier (Li et al.,
2008; Lu et al., 2009; Tabie et al., 2014) or both (Wöhrle et al.,
2015) can be applied. Moreover, we want to investigate whether
adaptive measures can be used to even improve the classification
performance and the support for the user as we could already
show for the prediction of movement onsets (Tabie et al., 2014).
Finally, we will investigate transferability of the final approach
to a mobile analysis system which makes use of hardware
accelerators as already tested for the current application. Even
for an adaptive approach hardware accelerators have shown to
be feasible for the detection of both the P300 event-related
potential (Wöhrle et al., 2013b,a, 2014a) and the movement-
related ERP activity (Wöhrle et al., 2014b).
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A motor imagery (MI)-based brain–computer interface (BCI) is a system that enables 
humans to interact with their environment by translating their brain signals into control 
commands for a target device. In particular, synchronous BCI systems make use of cues 
to trigger the motor activity of interest. So far, it has been shown that electroencepha-
lographic (EEG) patterns before and after cue onset can reveal the user cognitive state 
and enhance the discrimination of MI-related control tasks. However, there has been 
no detailed investigation of the nature of those EEG patterns. We, therefore, propose 
to study the cue effects on MI-related control tasks by selecting EEG patterns that best 
discriminate such control tasks, and analyzing where those patterns are coming from. 
The study was carried out using two methods: standard and all-embracing. The stan-
dard method was based on sources (recording sites, frequency bands, and time win-
dows), where the modulation of EEG signals due to motor activity is typically detected. 
The all-embracing method included a wider variety of sources, where not only motor 
activity is reflected. The findings of this study showed that the classification accuracy 
(CA) of MI-related control tasks did not depend on the type of cue in use. However, 
EEG patterns that best differentiated those control tasks emerged from sources well 
defined by the perception and cognition of the cue in use. An implication of this study 
is the possibility of obtaining different control commands that could be detected with 
the same accuracy. Since different cues trigger control tasks that yield similar CAs, and 
those control tasks produce EEG patterns differentiated by the cue nature, this leads to 
accelerate the brain–computer communication by having a wider variety of detectable 
control commands. This is an important issue for Neuroergonomics research because 
neural activity could not only be used to monitor the human mental state as is typically 
done, but this activity might be also employed to control the system of interest.

Keywords: brain–computer interface, motor imagery, classification accuracy, electroencephalographic patterns, 
human factors
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inTrODUcTiOn

A brain–computer interface (BCI) is a system that enables 
humans to interact with their environment by translating their 
brain signals into control commands for a device of interest 
(Graimann et  al., 2010). The mechanism of a BCI system fun-
damentally consists of two steps: (1) detecting and decoding the 
user intentions for controlling the system and (2) maintaining a 
continuous user-system communication. The user intentions of 
controlling a BCI system are changes in the user brain signals 
that are regulated through control tasks. A control task can be 
based on exogenous or endogenous paradigms (Jackson and 
Mappus, 2010). Particularly, the endogenous paradigm is based 
on the quantification of brain oscillations that are modulated 
via cognitive tasks such as motor imagery (MI). The user-system 
communication is established by a control interface. A control 
interface can be synchronous or asynchronous (Hassanien and 
Azar, 2015). In a synchronous interface, the user-system com-
munication is allowed only in fixed time windows; whereas in 
an asynchronous interface, the user initiates the communication 
with the system at will. Both synchronous (Obermaier et al., 2003; 
Leeb et  al., 2006; Maeder et  al., 2012; Bamdadian et  al., 2014) 
and asynchronous (Scherer et al., 2007; Galán et al., 2008; Lotte 
et al., 2008; Tseng et al., 2015) systems have been developed over 
the past few years. For real-world applications, the prototyping 
of asynchronous systems is preferred because these allow users 
to interact naturally with their environment. The relevance of 
synchronous systems cannot, however, be ignored, even in real 
applications. The cueing process facilitates the early and accurate 
detection of the user control tasks, despite the user ability for 
modulating his/her brain signals. This, in turn, raises confidence, 
persistency, and autonomy in the users toward the mastery of 
BCI skills. Furthermore, the identification of MI onset allows to 
analyze prior and post periods, which have been associated with 
the improvement of BCI performance and the recognition of the 
user cognitive state (Maeder et al., 2012; Bamdadian et al., 2014; 
Gutierrez et al., 2015).

As brain signals are modulated by neural networks that modify 
their degree of synchronization according to the sensory–cogni-
tive input, it is not surprising that control tasks (particularly those 
based on MI) contain much more information than only that 
related to the user intention of controlling the system (Kropotov, 
2010). MI-related control tasks are a source of information that 
has been exploited not only to generate control commands for a 
target device, but also to enhance BCI performance, to predict 
classification accuracy (CA), or to determine the user mental 
state. For example, Pfurtscheller and Neuper (2001), and then 
Obermaier et al. (2003), reported that left- and right-hand MIs 
were correctly discriminated as early as 250 ms after the onset of a 
specific visual cue. They attributed the early discrimination to the 
cue properties, concluding that the control tasks were the result 
of conscious (MI) and unconscious (visual stimulation) processes 
over the sensory–motor area of the brain. Furthermore, in a later 
and more detailed study, Pfurtscheller et  al. (2008) found that 
distinct short-lasting brain patterns appeared within a time win-
dow of about 500–750 ms after cue onset. Those brain patterns 
produced different features for different imaginary movements 

(hands and feet), facilitating and accelerating the discrimination 
of MI-related control tasks in naïve subjects. Another example is 
the study carried out by Grosse-Wentrup and Scholkopf (2012) 
in which high gamma range (55–85  Hz) between two fronto-
parietal networks were used to predict BCI performance on a 
trial-to-trial basis. Additional and important examples are two 
studies, respectively, undertaken by Maeder et  al. (2012) and 
Bamdadian et al. (2014). Those researchers demonstrated that the 
user performance in classical synchronous BCIs can be predicted 
by quantifying the modulation of the brain signals on pre-cue 
stages because they reflected somehow the user cognitive state. 
Finally, and more recently, Scheel et al. (2015) found that visual 
and auditory cues provoked significant differences of the peak 
amplitude of movement-related cortical potentials in synchro-
nous BCIs. They also found that potentials from the auditory-cue 
paradigm had a wider spatial distribution than those from the 
visual cue.

Overall, all aforementioned studies support the view that 
brain patterns extracted from MI-related control tasks can 
provide much more information than that used to control a 
target device. In particular, the cue effects on MI-related control 
tasks have been studied. Researchers in the field have shown 
that both perception (e.g., sensory–cognitive processing of the 
cue) and cognition (e.g., imaginary motor activity) are reflected 
on the brain signals wherefrom BCI control tasks are extracted. 
Studying the influence of human factors on BCI control tasks 
may help to design a more versatile human–machine interaction 
for this type of systems because of the active (e.g., extraction of 
control commands for manipulating a target device) and passive 
(e.g., monitoring of the level of attention of an individual) use of 
the brain signals. This work could have further applications in 
Neuroergonomics, where neural activity is registered in order to 
monitor human mental state. Making use of neural activity in an 
active and passive way may be much more fruitful.

So far, it has been shown that brain patterns before and after 
cue onset can reveal the user cognitive state and enhance the dis-
crimination of MI-related control tasks. However, there has been 
no detailed investigation of the nature of those brain patterns. We, 
therefore, propose to study the cue effects on MI-related control 
tasks by selecting the brain patterns that best discriminate such 
control tasks, and analyzing where those patterns are coming 
from in order to answer two questions:

 (1) If different cues provoke significant changes on MI-related 
control tasks, can different cues improve BCI performance 
as Scheel et al. (2015) suggested in their research? and

 (2) If MI-related control tasks are defined by motor activity per se 
and the cue in use, do brain patterns proceed from sources 
(recording sites, frequency bands, and time intervals) not 
only associated with motor activity, but also related to the 
sensory–cognitive processing of the cue?

The present study was conducted as follows. First, brain activ-
ity was registered by means of electroencephalography (EEG). 
Second, the frequently used stimulation modalities (SMs) for 
cueing in training sessions were applied. These were auditory 
(Nijboer et al., 2008) and visual (Boostani et al., 2007) stimuli. 
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In addition, a bimodal cue (combination of auditory and visual 
stimuli) was included in the study because previous investigations 
in sensory encoding (Basar et al., 1999; Isoğlu-Alkaç et al., 2007) 
have shown that simultaneous presentation of auditory, visual, and 
somatosensory stimuli significantly enhances sensory responses. 
Third, as preparation and imagination of movements evoke 
similar neural desynchronization events over the sensory–motor 
areas (Neuper et al., 2006) and both of them are widely used as 
control task, the two motor activities were included in the study. 
Finally, given that brain oscillations occur in a wide range of EEG 
recording sites, frequency bands, and time intervals (Kropotov, 
2010); brain patterns were analyzed using two methods: stand-
ard and all-embracing. The standard method was restricted to 
the well-established motor activity sources (Pfurtscheller et al., 
2007), while the all-embracing method involved all the available 
EEG information.

MaTerials anD MeThODs

experimental Procedure
Participant Recruitment and General Instructions
Nine participants (four females and five males) took part in this 
study, which was previously authorized by the Ethics Committee 
of the University of Essex. All of them were aged between 28 and 
41  years. None of them reported auditory impairments, seven 
of them had normal vision, and two of them had corrected-to-
normal vision. Eight of the nine reported to be right-handed and 
only one was left-handed.

The participants were informed about the experimental 
procedure and signed a consent form. Only two of the nine had 
previously engaged in cognitive tasks related to imagination of 
movements. At the beginning of the experiment, every partici-
pant was carefully instructed as follows:

• Get ready to imagine the movement of the hand that indicates 
a track playing “left” or “right” (audio), an arrow pointing to 
left or right (visual), or both of them (bimodal).

• Imagine yourself opening and closing your formerly pointed 
hand as soon as you listen to an increasing tone, see a green 
bulb, or perceive both of them.

• Stop the MI process and relax as soon as you listen to a 
decreasing tone, see a red bulb, or perceive both of them.

Organization of the Experiment
In order to collect sufficient EEG data, the participants attended 
two sessions. The sessions lasted 48  min each and followed an 
identical procedure. Every session consisted of six runs and one 
run had 50 trials. One trial took from 8500 to 9500 ms (Figure 1), 
resulting in runs of ~8 min. Within each trial, there were three 
phases: MP (0–2500  ms), MI (2500–6000  ms), and relaxing 
(6000–8500 ± 1000 ms). In the latter phase, a random variation 
of 1000 ms was included to reduce expectation effects.

As there were three SMs (audio, visual, and bimodal) and both 
hands (left and right) were involved, there were six categories of 
trials: audio-left, audio-right, visual-left, visual-right, bimodal-
left, and bimodal-right. Each of these categories was randomly 
presented 50 times and distributed over the six runs. We thereby 

obtained 12 conditions (six categories of trials  ×  two control 
tasks) and one condition had 100 trials (2 sessions × 50 trials).

Timing Protocol
The duration of the cues was standardized to 500 ms in accordance 
with sensory recognition and reaction time studies (Teichner, 
1954; Shelton and Kumar, 2010). The movement preparation 
(MP) was adjusted to 2000 ms, which is the necessary period to 
achieve readiness in the neural networks over the sensory–motor 
area (Jeannerod, 2006; Neuper et al., 2006). The MI was limited to 
3000 ms, as is commonly done in synchronous BCIs. The relaxa-
tion span varied from 2000 to 3000 ms, guaranteeing a proper 
recovery of the longest desynchronization process, i.e., the alpha 
one (Pfurtscheller et al., 1996). See Figure 1.

EEG Data Collection
The EEG signals were recorded by means of Biosemi equipment 
(Amsterdam, The Netherlands), the integration of ActiveTwo 
system and ActiView software (Honsbeek et  al., 1998). The 
ActiveTwo system was configured to acquire the signals within a 
bandwidth between DC and 400 Hz, and at a sampling frequency 
of 2048 Hz. The ActiView software was programed to decimate 
the signals at 512  Hz. Such configuration limited the effective 
digital bandwidth to 104 Hz by default.

The EEG signals were sensed via 61 active electrodes, plus 
driven-right-leg and common-mode-sense electrodes. The 61 
active electrodes were mounted on a head-cap labeled as stated 
in the 10/10 system. The other two electrodes were only used for 
referencing electrically the ActiveTwo system, but they were not 
recorded. In addition, three external electrodes were included 
for recording the eye movements (EOG). Two of them (EOGL 
and EOGR) were placed 1 cm below and above the lateral canthus 
of the left and right eyes, respectively. The third one was placed 
on the right mastoid (MR) for referencing EEG and EOG signals 
(Figure 2). At the end of the experiments, we gathered 18 datasets 
(9 participants × 2 sessions).

Data analysis
The datasets of one participant were excluded from the study. 
Those showed electrode-pop artifacts over the occipital area of 
the scalp. There were then 16 datasets for the study purposes.

Processing of Continuous EEG Data
To attenuate the interference in the EEG channels, these were pro-
cessed by using the open-access toolbox for electrophysiological 
signal processing, EEGLAB (Delorme and Makeig, 2004). First, 
every channel from each of the 16 datasets was processed as fol-
lows: (1) referencing against MR, (2) high-pass filtering at 0.1 Hz 
using a Butterworth filter of order 4, (3) low-pass filtering at 41 Hz 
using a Butterworth filter of order 7, and (4) down-sampling from 
512 to 256 Hz. Second, every dataset was scanned to eliminate 
discontinuities and detect high-impedance electrodes. Up to three 
electrodes under this condition were detected per dataset. Third, 
independent component analysis was applied to each dataset for 
rejecting artifacts such as EOG and electrocardiography. Only 
EEG channels without high-impedance difficulties were involved 
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FigUre 2 | 10/10 eeg layout of 61 channels, along with three external 
electrodes. All the EEG channels (■, ) were used for the all-embracing 
method, 15 of them ( ) were used for the standard method, EOGL/EOGR 
were used for recording eye movements, and MR was used for referencing 
EEG and EOG signals.
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in such analysis. EOGL and EOGR channels were used to identify 
all the independent components related to EOG activity. Finally, 
the EEG channels with high-impedance difficulties were replaced 
by interpolating their nearest neighboring channels as reported 
by Gargiulo et al. (2010). See Figure 3.

Processing of the Control Tasks (MP and MI)
The processing of the control tasks was carried out through 
the miBCI software1, package published by Alonso-Valerdi and 

1 Available at https://github.com/LuzAlondra/BrainComputerInterfaces/tree/
master/MI-based_BCIsystem

FigUre 1 | Timing protocol: audio, visual, and bimodal stimuli for cueing MP and Mi.

Sepulveda (2015). From every EEG channel of the 16 datasets, the 
control tasks were extracted in line with the cue onset (Figure 1). 
The MP and MI were thus 2500 and 3500 ms long, respectively. 
Having obtained the EEG signals of interest, they were spatially 
filtered via large Laplacian in order to obtain more localized 
electrical activity (Dornhege et al., 2007).

Feature Extraction
It is well-established that MP and MI provoke neural desynchro-
nization with peak power around 10 and 20 Hz (Neuper et al., 
2009). As band power (BP) estimation has been validated as a 
stable and consistent method for quantifying EEG power changes 
due to motor activity (Neuper et al., 2005), this was selected as 
feature extractor. BP estimation was applied in line with the 
methods described below.

Standard Method
Previous investigations have empirically established the follow-
ing criteria to effectively discriminate hand imaginary move-
ments. First, 18 central recording sites have been validated as the 
maximum number of EEG channels for satisfactory classification 
(Ramoser et al., 2000). Second, narrow frequency bands around 
the maxima 10 and 20 Hz have been widely used in synchronous 
BCI systems (Pfurtscheller et  al., 2007; Neuper et  al., 2009). 
Third, it has become common practice to discard 1 s post-cue, 
wherein evoked potentials are typically detected (Boostani et al., 
2007). With these criteria in mind, we laid down the standard 
method. This method was based on 15 central recording sites 
(Figure  2), four frequency bands, and EEG segments taking 
place 1 s post-cue. The frequency bands were established as fol-
lows: lower alpha (αL) from 8 to 10 Hz, upper alpha (αU) from 10 
to 12 Hz, lower beta (βL) from 16 to 20 Hz, and upper beta (βU) 
from 20 to 24 Hz.

All-Embracing Method
EEG signals are regulated by brain oscillators that adjust their 
state of synchrony according to sensory (e.g., cue decoding) 
and cognitive (e.g., MP and MI) events. These oscillators are 
neural networks that enter into synchrony in a wide range 
of resonant frequencies (from 0 up to about 80  Hz) and over 
specific periods of time (Krause, 2003). In view of this fact, we 
extended the scope of the standard method by establishing the 
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FigUre 3 | eeg signal analysis: from raw signals to feature extraction. At the end of the analysis, feature vectors for 12 cases of study resulted. Note that 
the term “All” refers to all-embracing method, and the term “Std” refers to standard method.

November 2015 | Volume 9 | Article 636 |

Alonso-Valerdi et al. Cue Effects on Control Tasks

Frontiers in Human Neuroscience | www.frontiersin.org

all-embracing method. This method was based on 61 recording 
sites (Figure 2), seven frequency bands, and whole trace of MP 
and MI. In addition to the previously mentioned bands, the 
following ones were also considered: lower theta (θL) from 4 to 
6 Hz, upper theta (θU) from 6 to 8 Hz, and gamma (γ) from 39 
to 41 Hz. These bands were included in the analysis on the basis 
of the following evidence. Theta band rhythms resonate at the 
frequency band 4–8 Hz and emanate from the frontal midline 
due to audio–visual information encoding, attention demands, 
memory retrieval, and cognitive load. Moreover, these rhythms 
enhance after practice on the cognitive tasks at hand. They are 
more prevalent when the subject is focused and relaxed, and pro-
longed activity is related to selective attention (Basar et al., 1999; 
Krause, 2003; Kropotov, 2010). The upper theta band (6–8 Hz) 
generally reflects levels of alertness (Pineda, 2005). On the other 
side, gamma band rhythms oscillate near 40 Hz during sensory 
encoding, perceptual–cognitive functions, and motor behaviors. 
These rhythms are phase-locked to the stimulus and short-
lasting, and appear 100 ms post-stimulus in sensory–motor tasks 
(Pfurtscheller and Lopes da Silva, 1999; Ward, 2003; Altermaller 
et al., 2005).

Bearing in mind the criteria of standard and all-embracing 
methods, we can now briefly describe the feature extraction based 
on BP. The MP/MI signals were first filtered through Butterworth 
band-pass filters of order 7, with cut-off frequencies defined by 
the afore-stated bands. Afterwards, the signals were squared per 
sample and segmented by using time windows of 500 ms length 
with 50% overlapping rate. Finally, the resulting time segments 
(herein denoted by δn) were averaged and logarithmically 
transformed (refer to Figure 3), obtaining nine features per 
MP signal and 13 features per MI signal.

By the standard method, there were 15 channels and 4 frequency 
bands under consideration. In addition, three time segments 
[δ1 (0–500  ms), δ2 (250–750  ms), and δ3 (500–1000  ms)] were 
discarded. Hence, vectors of 300 features for MP and vectors of 
540 features for MI were obtained. By the all-embracing method, 

vectors of 3843 features for MP and vectors of 5551 features for 
MI were similarly obtained.

Feature Selection and Classification
After the feature extraction, there were 24 types of feature vectors 
that proceeded from three SMs, two control tasks, two hands, 
and two methods. These feature vectors were grouped by merging 
left and right MIs. Having obtained 12 different cases of study 
(Figure  3), Davies–Bouldin indexes (DBIs) were determined 
in each case to increasingly sort the corresponding features 
(Sepulveda et al., 2004; Kovács et al., 2005). DBI is a method for 
measuring the linear separability among m classes (Equation 1). 
This metric is based on comparing the similarity (R) among 
classes. Such similarity is determined by the class dispersion (s) 
and the distance (d) between centroids (Eq. 2). The class disper-
sion is the average distance between every element (τ) in the class 
and the centroid of the class (v). See Eq. 3. Thereby, the features 
within each vector were ranked from the most to the least suitable 
feature in terms of linear separability between two classes: left and 
right (Kovács et al., 2005). Note that smaller DBIs correspond to 
major linear separability.
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where Ti is the number of features in class i.
After ranking the features, a classification process took place 

in order to select the appropriate number of features that best 
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FigUre 4 | Feature selection and classification: obtaining the highest quality feature vectors (hQFVs). For each case of study, a HQFV was obtained. A 
HQFV was the feature vector that reached the maximum CA and wherein each feature (f) was ranked according to DBI.
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discriminated between left and right. If there were two classes 
and κ denoted the total number of features in each vector, K 
classifications were run for each case of study (Figure 4). From 
the K resulting CAs, the feature vector yielding the maximum 
performance was selected from each case of study. Thereby, we 
obtained 12 feature vectors for every participant. They were 
called the highest quality feature vectors (HQFVs). Note that 
the term “maximum performance” refers to 1.5 times the inter-
quartile range plus the upper quartile of the general distribution 
of all the CAs obtained at the end of the process. As a result, 
any peak value that was beyond the 99% of the distribution was 
discarded.

Every classification process2 was based on Fisher discrimi-
nant analysis (FDA) and consisted of two phases: training and 
testing. The 100 available trials per cluster were distributed half 
and half; that is, 50 trials (session 1) for training and 50 trials 
(session 2) for testing. The classifier was trained via 10-fold cross 
validation. That is, 50 training trials were split into a training set 
and a validation set. Through the validation set, the model was 
optimized by adjusting the regularization term that generally 
avoids overfitting problems due to the large number of features 
in use (Bishop, 2006). Once the classifier had been trained, this 
was tested by the rest of the trials and the percentage of the total 
number of correct predictions was estimated. The resulting CA 
in the testing phase was the parameter for acquiring the HQFVs. 
See Figure 4.

2 Before undertaking the classification process, note that the features were nor-
malized using normalization and standardization methods developed by mlpy 
(high-performance Python package for predictive modelling avaliable at http://
mlpy.sourceforge.net/) developers, to avoid BP estimates in greater numeric ranges 
dominate those in smaller numeric ranges. 

In this study, all statistical analyses were performed using the 
non-parametric method Kruskal–Wallis one-way ANOVA, and 
significance levels were set at 5%.

statistical evaluation of the hQFVs
The features of the HQFVs proceeded from specific recording 
sites (e.g., C3, Cz, or C4), frequency bands (e.g., αL, αU, βL, or βU) 
and time windows (δn). The origin of a feature in any of these three 
domains (location, frequency, and time) was referred as to feature 
source. On this basis, the HQFVs were statistically evaluated in 
accordance with those three domains and under two parameters: 
index of dispersion (ID) and mode.

The ID was calculated by using Eq. 4 and was an approach 
to quantify how spread a HQFV was over the feature sources 
in each domain. In Eq.  4, k is the number of feature sources 
in the domain of interest, fi is the number of occurrences of 
each feature source, and N is the total number of features in 
the HQFV under analysis (Norman and Streiner, 2008). Note 
that ID is 0 when all the features fall into one feature source. By 
contrast, it is 1 when the features are equally divided among the 
k feature sources.

 
ID =

−( )
−( )
∑k N f

N k
i

2 2

2 1
 (4)

The mode was the central tendency of a HQFV, i.e., the 
most frequently occurring feature source in the domain at 
hand. Having gathered the modes of all the HQFVs, these were 
graphically represented via a 2D-histogram (modal distribu-
tion) for each domain. In every 2D-histogram, the number of 
occurrences of each mode (fmode) was normalized by diving fmode 
by N.
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FigUre 5 | ca of the hQFVs. MP and MI analyzed using the standard method are illustrated in (a,B), respectively. MP and MI analyzed using the standard 
method are shown in (c,D), respectively.
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resUlTs

classification accuracy of the hQFVs
The CAs reached by the HQFVs are arranged in Figure 5. This 
figure indicates that there is no significant difference of CAs 
among SMs (p = 0.935). The figure also indicates that there is a 
significant increase of CAs (p = 1.11 × 10−16) between standard 
and all-embracing methods for both control tasks (MP and MI) 
and the three SMs (audio, visual, and bimodal). Finally, the figure 
shows that CAs (p = 0.707) between MP and MI are comparable 
for the three SMs and the two methods in use.

index of Dispersion of the hQFVs in 
location, Frequency, and Time
The IDs of the HQFVs, which were obtained from the standard 
method, are presented in Figures  6A–C. In location and time, 
the HQFVs are generally spread over all the feature sources 
showing IDs above 0.52 and 0.7, respectively. By contrast, IDs 
range between 0 and 1 in frequency. The IDs of the HQFVs, 
which resulted from the all-embracing method, are provided in 
Figures 6D–F. These IDs are above 0.85, 0.5, and 0.87 in loca-
tion, frequency, and time, respectively. The statistical comparison 
of the IDs between both methods in location, frequency, and 
time resulted in the following p-values: 1.461 × 10−9, 0.049, and 
4.767 × 10−7. Note that all the remarks mentioned in this section 
apply to MP and MI.

Modal Distribution of the hQFVs in 
location, Frequency, and Time
Standard Method
Figure 7 presents the modal distribution of the HQFVs over the 
following feature sources: (a) 15 recording sites, (b) 4 frequency 
bands, and (c) 5/9 time windows for MP/MI. With regard to 
the location domain, Figure 7A shows that modes from audio 
cues mainly tend toward FC3 and C3, while those from visual 

cues mostly tend to FC2, FC4 (only applicable for MI), and C4. 
Modes from bimodal cues are essentially distributed among FC3, 
C3, FC4, and C4. In all the cases, MI displays greater tendencies 
than MP.

We can see from Figure 7B that the overriding band for the 
three SMs is αU. In this case, the highest and the lowest tendencies 
are reached by modes from visual and bimodal cues, respectively. 
The MI control task shows a second dominant band. Such domi-
nant band for modes from audio and visual cues is βL, while that for 
modes from bimodal cues is βU. The MP control task only shows 
a second dominant band for modes from bimodal cues, which is 
βL. As in the location domain, MI reveals stronger tendencies in 
comparison with MP.

Lastly, Figure  7C provides the modal distribution in time. 
Keeping in mind that MP only involved five time windows 
(from δ5 to δ9), we can see that modes from the three SMs are 
evenly distributed along most of them. Although MI involved the 
nine time windows, the modes from the three SMs are mostly 
distributed across δ5 and δ9 as well. In both cases, the major modal 
tendencies for audio, visual, and bimodal cues are, respectively, 
the following: δ7/δ8 (1500–2000  ms), δ6/δ8/δ9 (1250–2500  ms), 
and δ5/δ9 (1000–1500 ms and 2000–2500 ms). There is addition-
ally a relevant modal distribution over δ13 for the three SMs in MI, 
regardless of the decreasing trend of the foregoing time windows.

All-Embracing Method
Figure 8 provides the modal distribution of the HQFVs over the 
following feature sources: (a) 61 recording sites, (b) 7 frequency 
bands, and (c) 9/13 time windows for MP/MI. With respect to the 
location domain, Figure 8A indicates that modes from the three 
SMs are distributed over about 40% of the feature sources in both 
control tasks. Specifically, modes from audio cues are distributed 
among 24 of the 61 recording sites. From those, 62% are on central 
areas, 25% are on parieto-occipital areas, and 13% are on frontal 
areas. Modes from visual cues are also distributed among 24 of 
the 61 recording sites. However, those are differently spread. Over 
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FigUre 7 | Modal distribution of the hQFVs that resulted from the standard method. The modal distribution is illustrated in three domains: (a) 15 recoding 
sites, (B) 4 frequency bands, and (c) 5/9 time windows for MP/MI.

FigUre 6 | iDs of the hQFVs. For the standard method, the indexes of the HQFVs over feature sources in location, frequency, and time are depicted in (a–c), 
respectively. For the all-embracing method, the indexes of the HQFVs over feature sources in location, frequency, and time are presented in (D–F), respectively.
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half of them are distributed between frontal and parieto-occipital 
areas (33% and 21%, respectively), while less than half of them 
are related to central areas (46%). Modes from bimodal cues are 
distributed among 27 of the 61 recording sites. From those, 56% 
are on central areas, 37% are on parieto-occipital areas, and 7% 
are on frontal areas.

Figure 8B illustrates the prevalence of αU band in the modes 
from the three SMs in both MP and MI. The figure also reveals 
the secondary but not insignificant role of βL band. The modal 
distribution between θL and αL bands is moderate for the three 
SMs, whereas that between θU and βU bands is negligible for the 
three SMs. Furthermore, the modal distribution over γ band is 

considerable for bimodal cues. In all these cases, MI shows much 
higher tendencies than MP.

Last but not least, Figure 8C depicts the modal distribution 
in time, considering that MP only involved 9 of the 13 time win-
dows. It can be seen from this figure that the modes from audio 
cues are spread across δ1 and δ9 (0–2500 ms), while those from 
visual and bimodal cues are spread across δ1 and δ7 (0–2000 ms). 
Particularly for MI control tasks, the modes from audio, visual, 
and bimodal cues strongly tend toward δ3 (500–1000  ms), δ4 
(750–1250 ms), and δ2/δ3 (250–1000 ms), respectively. In addi-
tion, there is an unexpected modal tendency to δ13 for the three 
SMs in MI.
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FigUre 8 | Modal distribution of the hQFVs that resulted from the all-embracing method. The modal distribution is illustrated in three domains: (a) 61 
recording sites, (B) 7 frequency bands, and (c) 9/13 time windows for MP/MI.
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DiscUssiOn

This paper set out with the aim of analyzing the cue effects on 
the discriminability of MP and MI control tasks. The analysis 
was carried out using two methods: standard and all-embracing. 
The standard method was based on feature sources, where the 
modulation of brain signals due to MP/MI is typically detected. 
For the all-embracing method, the scope of the standard 
method was extended by including a wider variety of feature 
sources, where not only motor activity is reflected. The analysis 
was limited to the HQFVs, i.e., the feature vectors that yielded 
the highest CAs during a DBI-FDA process. The following is a 
discussion of the most relevant results of the analysis.

classification accuracy of the hQFVs
On the question of improving CA by using different cues, we found 
that there was no significant difference in the discrimination of 
MI-related control tasks triggered by three SMs: audio, visual, 
and bimodal. However, there was a significant increase in the CA 
of control tasks analyzed under the all-embracing method over 
those analyzed using the standard method. These findings dem-
onstrated that an unbiased approach in location, frequency, and 
time leads to a better performance, but different cues do not make 
a difference. Although Scheel et al. (2015) suggested that different 
stimuli might improve the CA of the control tasks at hand, this 
study has been unable to demonstrate that. Nevertheless, it is a 
fact that more distinguishable EEG patterns are extracted from no 
MI-related sources. Possibly, other type of stimuli could improve 
the differentiation of MI-related control tasks. In accordance with 
the findings of Pfurtscheller and Neuper (2001) and Obermaier 
et al. (2003), control tasks are result of conscious and unconscious 
processes. As different stimuli may evoke different unconscious 

processes, more differentiable EEG patterns could be found. 
However, this needs further investigation.

Another important result was the analogous performances of 
MP and MI for the three SMs and the two methods. It is well 
established that both control tasks generate similar event-related 
oscillations, but the “no-go” signal accompanying MI is frequently 
overlooked (Krepki et  al., 2007). An imaginary movement 
activates motor areas of the brain almost to the same extent as a 
real one, except for the visible contractions. This means that the 
neural commands for muscular contractions are blocked at some 
level of the motor system by an active inhibitory mechanism. 
This questions whether MI in motor-disabled people takes place 
like that in healthy ones, or it is rather a real movement process 
(Jeannerod, 2006). In addition, the use of MI as control task 
involves the development of an electromyographic detector so 
as to eliminate undesirable muscular activity un- or consciously 
triggered by healthy BCI users. Based on these two factors and 
given that both control tasks achieved analogous performances, 
MP may be a better option for BCI systems.

index of Dispersion of the hQFVs in 
location, Frequency, and Time
For both methods, the distribution of the HQFVs over the avail-
able feature sources was much more even in location and time 
than in frequency. This indicates that the most gainful features 
for discriminating between left and right MIs mainly proceeded 
from the entire set of recording sites and the total duration of the 
control task, but only from a specific frequency band (αU). The 
finding is in agreement with that of other studies (Pfurtscheller 
and Neuper, 2001; Neuper et  al., 2009) which showed that the 
correct discrimination between left and right started 250–500 ms 
after cue onset and where the most discriminating frequency band 
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was the αU. With reference to the location domain, although this 
finding differs from some published studies (Ramoser et al., 2000; 
Leeb et al., 2006), it is consistent with those of Meckes et al. (2004) 
and Sepulveda et al. (2004). They suggested giving attention to 
non-motor locations, even when the mental task of interest was 
movement related.

The current study also found that the HQFVs tended to be 
more widely spread over the feature sources in the all-embracing 
method than in the standard method. It is worth mentioning 
that the inclusion of more feature sources increased the diversity 
of HQFVs. This result corroborate the ideas of Pfurtscheller 
and Neuper (2001) and Obermaier et al. (2003), who suggested 
that control tasks are result of the mental effort demanded by 
the control task (conscious process) and the sensory–cognitive 
processing of the cue (unconscious process).

Modal Distribution of the hQFVs in 
location, Frequency, and Time
The modes of the HQFVs fundamentally tended toward the 
expected sources (Pineda, 2005). These were the C3/C4 recoding 
sites and the αU/βL frequency bands. The modes also revealed clear 
tendencies toward feature sources that reflected the nature of the 
cue in use. Before going on to discuss this further, it is necessary 
to mention that the modal tendencies were much greater in MI 
than in MP. The reason for this is not clear, but it may be due to 
the mental effort involved in each control task. MP is such an 
intention, whereas MI is a dynamic process that goes through 
many of the central phases of actual movements.

Standard Method
The modes from audio cues tended to the left hemisphere, where 
some language-related functions take place, whereas those from 
visual cues tended to the right hemisphere, where visual percep-
tion is processed (Kropotov, 2010). Being the bimodal cue, a 
composition of audio and visual cues, the corresponding modal 
tendency was to both hemispheres. This result suggests that the 
most discriminating features were defined not only by the MP/
MI mechanisms but also by the sensory–cognitive processing of 
the cue in use. With respect to the frequency domain, the involve-
ment of high frequency bands took importance successively in 
modes from audio, visual, and bimodal cues. This result may be 
related to previous work of Giannitrapani [whose work is cited in 
Kropotov (2010)], who found that high beta activity (21–33 Hz) 
increased when the stimulus structure complexity also increased. 
It is possible, therefore, that the cue complexity had played a 
significant role in the discrimination process of features as well. 
Regarding the time domain, the highest tendencies took more 
time (after the cue onset) to appear in modes from audio than 
from bimodal cues. Hence, it is also possible to hypothesize that 
more informative features were found earlier when a more direct 
cue was employed.

All-Embracing Method
The modes from audio cues mostly tended to central recording 
sites, where auditory evoked potentials are typically recorded 

(Proverbio and Zani, 2003), and to δ3 (500–1000 ms) time win-
dow, where brain rhythms normally respond to the recognition 
and/or retrieval of acoustic stimuli (Krause, 2006). On the other 
hand, the visual stimulation is registered around 200  ms post-
stimulus as a response to modulations of alpha band rhythms 
over parieto-occipital areas and beta band rhythms over fronto-
parieto-occipital areas (Kropotov, 2010; Andreassi, 2013). This 
may be a reason why modes from visual cues tended to fronto-
parieto-occipital recording sites, αU band, and δ2 (250–750 ms) 
time window. Finally, the modes from bimodal cues displayed a 
well-balanced distribution between central and fronto-parieto-
occipital recording sites and between δ2 (250–750  ms) and δ3 
(500–1000  ms). This finding confirms that bimodal stimuli 
require feature sources that are also required by audio and visual 
stimuli separately (Isoğlu-Alkaç et  al., 2007). In the frequency 
domain, the remarkable tendency of these modes toward γ band 
accords with previous findings of Ward (2003), who found that 
the sensory decoding around 250 ms post-stimulus is reflected in 
modulation of γ band rhythms.

In the three SMs, one unanticipated finding was the minor 
role occupied by βU band that is well-known as one of the major 
contributors in the discrimination process of MI activity. A pos-
sible explanation for the small contribution of this band is that 
neural desynchronization around 20 Hz has been considered as a 
harmonic response of desynchronization around 10 Hz, whereas 
the one around 16 Hz is an authentic response to motor activity 
(Pfurtscheller et al., 1996). Moreover, Pfurtscheller et al. (1999) 
found that the most discriminating frequency components 
throughout MI-related tasks were found within the αU band in 
three of four subjects, while those were found within the βU band 
only in one subject.

Lastly, it is worth noting the underlying tendency of modes 
from visual and bimodal cues toward the δ9 (2000–2500 ms) time 
window in the standard method. There was also another clear ten-
dency of modes from the three SMs toward the δ13 (3000–3500 ms) 
time window in both methods. For visual and bimodal stimula-
tion, we believe that gaze fixation at the screen center provoked by 
cues “left”/“right” could have driven the participants to anticipate 
the upcoming cue “start.” Similarly, the cue “start” appearance 
caused the cue “stop” expectation. For audio stimulation, once the 
participants had received the cue “start,” and owing to the likeness 
between increasing and decreasing tones (cues “start” and “stop,” 
respectively), the anticipation of the audio cue “stop” was likely 
to have arisen. This speculation is supported by the findings of 
Scherer et al. (2008), who found that the involuntary expectations 
for the approaching cues provoked false control commands dur-
ing virtual navigation. Another interesting tendency of modes of 
the three SMs is toward δ2 (250–750 ms) and δ3 (500–1000 ms) 
time windows in the all-embracing method. These results are in 
agreement with the findings of Pfurtscheller et  al. (2008), who 
showed that distinct short-lasting brain patterns appeared within 
a time window of about 500–750 ms after cue onset.

All these interpretations must be, however, taken with caution. 
More research on this topic need to be undertaken because these 
findings can only be conclusive in early training sessions. The 
effects observed in this study could diminish or vanish, either 
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in further training sessions or in online applications. Another 
source of uncertainty is associated with the ambiguity of multi-
variate classifiers (such as FDA) to determine the brain regions, 
frequency, and time intervals where cognitive processes are 
reflected. Haufe et al. (2014) demonstrated that backward models 
(e.g., multivariate classifiers) combine information from different 
channels to separate the brain patterns of different classes. These 
models may, however, give significant weight to channels unre-
lated to brain processes of interest. By contrast, forward models 
(e.g., blind source separation) explain how the measure data are 
generated from the neural sources, providing a neurophysiologi-
cal meaning of the outcomes. Furthermore, Haufe et al. showed 
that brain patterns were much smoother and covered more diverse 
cognitive-related areas, when those patterns were obtained via 
forward methods. These findings are of particular interest due the 
nature of our study. It seems that the present results are limited 
by the methods applied to select the features vectors. Possibly, by 
transforming the backward model in use (DBI-FDA process) into 
a forward model such as proposed Haufe et al. (selection of brain 
patterns according to the neurophysiological contribution of each 
EEG channel), a clearer feature distribution over unrelated MI 
sources could have been achieved.

implications on neuroergonomics 
research
This is a key issue for Neuroergonomics research because neural 
activity could not only be used to monitor the human mental 
state, but this might be also employed to control a system of inter-
est. In fact, Myrden and Chau (2015) have suggested to develop 
a BCI system on the basis of an overt adaptation to keep user 
mental within the optimal region, and a covert adaptation that 
automatically adjusts BCI parameters according to such mental 
state.

An important application may be on driver modeling and 
vehicle simulation environments (Xu et  al., 2015). These two 
areas of research have been of interest to develop driver assis-
tance systems for safer driving and intelligent transportation. For 
example, EEG signals of a driver can be used to model the driver 
neuromuscular dynamics (Bi et al., 2015) and, thus, improving 
the performance of a driver simulator. Such EEG signals can also 

be employed to detect the fatigue (Wang et al., 2014) and level of 
attention (Wang et al., 2015) of the driver to activate the driver 
simulator and, hence, preventing driving accidents. Furthermore, 
the performance of the driver simulator can be improved by 
analyzing the human reaction to traffic cues such as car horn, 
direction indicators, and traffic lights. All of these cues produce 
specific EEG patterns on the driver brain signals as has been 
shown in this study.

cOnclUsiOn

The findings of this study have provided a new understanding of 
how MI-related control tasks used to control a BCI system may 
become modified by their preceding cues. Although previous 
investigations have somehow studied the cue effects on MI-related 
control tasks; in this study, we have shown that the CA of those 
control tasks does not depend on the type of cue in use. Moreover, 
we found that the EEG patterns that best differentiate MI-related 
control tasks emerge from recording sites, frequency bands, and 
time windows well defined by the perception and cognition of 
the cue in use. An implication of this study is the possibility of 
obtaining different control commands that could be detected 
with the same accuracy. Since different cues trigger control tasks 
that yield similar CAs, and those control tasks produce EEG 
patterns differentiated by the cue nature, this leads to accelerate 
the brain–computer communication by having a wider variety 
of detectable control commands. This is an important issue for 
Neuroergonomics research because neural activity could not only 
be used to monitor the human mental state, but this might be also 
employed to control the system of interest.
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The goal of this research is to test the potential for neuroadaptive automation to improve

response speed to a hazardous event by using a brain-computer interface (BCI) to

decode perceptual-motor intention. Seven participants underwent four experimental

sessions while measuring brain activity with magnetoencephalograpy. The first three

sessions were of a simple constrained task in which the participant was to pull back

on the control stick to recover from a perturbation in attitude in one condition and to

passively observe the perturbation in the other condition. The fourth session consisted

of having to recover from a perturbation in attitude while piloting the plane through

the Grand Canyon constantly maneuvering to track over the river below. Independent

component analysis was used on the first two sessions to extract artifacts and find

an event related component associated with the onset of the perturbation. These two

sessions were used to train a decoder to classify trials in which the participant recovered

from the perturbation (motor intention) vs. just passively viewing the perturbation. The

BCI-decoder was tested on the third session of the same simple task and found

to be able to significantly distinguish motor intention trials from passive viewing trials

(mean= 69.8%). The same BCI-decoder was then used to test the fourth session on the

complex task. The BCI-decoder significantly classified perturbation from no perturbation

trials (73.3%) with a significant time savings of 72.3 ms (Original response time of

425.0–352.7ms for BCI-decoder). The BCI-decoder model of the best subject was

shown to generalize for both performance and time savings to the other subjects. The

results of our off-line open loop simulation demonstrate that BCI based neuroadaptive

automation has the potential to decode motor intention faster than manual control in

response to a hazardous perturbation in flight attitude while ignoring ongoing motor and

visual induced activity related to piloting the airplane.

Keywords: neuroadaptive automation, brain computer interface, brain machine interface, neuroergonomics,

decoding, independent component analysis, MEG, aviation
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INTRODUCTION

Safe and effective performance in many occupational settings is
critically dependent on people making timely and correct split-
second decisions to avoid an impending hazard. Consider a
speeding driver having to swerve to avoid hitting a child running
unexpectedly onto the roadway; a nurse having to administer
defibrillation to a patient having sudden cardiac arrest; or a pilot
having to execute a rapid maneuver to recover from a stall or
other abrupt perturbation during high-speed flight. Although
some drivers, nurses, and pilots may be sufficiently skilled to
make quick decisions and avoid mishaps in these situations,
there are many conditions—fatigue, stress, mind wandering, task
overload, to name a few—that can degrade human performance
so that a correct and timely response is not possible and an
accident may result.

One approach to this problem is to enhance human
performance in such time-critical situations by decoding a
person’s neural activity associated with the intention to act.
Once intention has been detected, one could provide appropriate
feedback to the human operator or trigger computer aiding.
Brain activity precedes motor action, so if neural signals
associated with the intention to act could be successfully
decoded in real time, one could use the decoded output to
aid the human user. Using computer technology to augment
human performance based on an assessment of human operator
cognitive states is termed adaptive automation (Parasuraman
et al., 1992; Scerbo, 2008; Parasuraman and Galster, 2013).
Neuroadaptive automation is when neural signals are used to
assess operator state, an approach that has been successful
in mitigating human performance decrements in a variety of
cognitive tasks (Byrne and Parasuraman, 1996; Prinzel et al.,
2000; Scerbo et al., 2003; Wilson and Russell, 2007; Ting et al.,
2010; Durantin et al., 2015; Gateau et al., 2015). Such an approach
is consistent with the field of passive Brain Computer Interfaces
(BCI), also referred to as Brain Machine Interfaces (BMI), in
which user neural states are monitored in order to enhance
human interaction with external devices (Blankertz et al., 2010;
Lotte et al., 2013).

There is extensive research on the use of BCIs to support
partially or fully disabled persons to control devise such as
computers and prosthetic limbs (Reiner, 2008), and a smaller
but growing literature on their use for healthy individuals so
as to enhance human-system interaction (Zander and Kothe,
2011; Lotte et al., 2013). Comparatively little work has been
conducted comparing the effects of neuroadaptive automation
or passive BCIs to human performance in time-critical (split-
second) decision-making situations [For related research see
the studies by Haufe et al. (2011, 2014) and Kim et al.
(2015) concerned with detection of braking intention by EEG].
In particular, when a critical event has to be detected and
responded to quickly, can one decode the associated neural
states of the human operator to achieve a faster response
than the operator’s manual action? We can rephrase the
question as follows: given that the brain is faster than the
hand (or foot or other effector), can one solve the problem
that human manual actions are sometimes too sluggish to

avoid a mishap when very little time is available by using
the decoded brain activity to respond to a critical hazardous
event?

We addressed this issue in the present study by examining
whether neural signals could be decoded to enhance human
performance in a time-critical decision-making task. We chose
a decision-making situation that is encountered in aviation
tasks: responding quickly to an in-flight perturbation, such as
turbulence, micro-bursts, severe windshear, structural damage
(e.g., from trim tab failure, bird strike, etc.). While such
perturbations can occur in many types of flight, they can be
a major contributor to mishaps in military aviation, given
the greater exposure to risky situations requiring split-second
decision-making, such as low-level flight over terrain, or high G-
force maneuvers (Knapp and Johnson, 1996; Moroze and Snow,
1999; Nakagawa et al., 2007). When flying at high speed and very
close to terrain, a savings of even a fewmilliseconds in responding
to a perturbation can represent the difference between life and
death (Haber and Haber, 2003).

Decoding neural states corresponding to cognitive states has
been the object of considerable attention in the neuroimaging
literature. A major approach to the problem has been to
apply pattern-classification algorithms to multi-voxel functional
MRI data in order to decode information representation
in a participant’s brain (Kamitani and Tong, 2005, 2006;
Norman et al., 2006; Nishimoto et al., 2011; Poldrack,
2011; Shibata et al., 2012; Callan et al., 2014; Christophel
and Haynes, 2014; Hutzler, 2014). However, the relatively
low temporal resolution of fMRI and other neuroimaging
methods based on cerebral hemodynamics renders them
unsuitable for decoding neural states associated with split-
second decision-making. Instead, electroencephalography (EEG)
or magnetoencephalography (MEG) provide methods with
sufficient temporal resolution to decode neural states associated
with rapid decision-making. In the present study we used MEG
as our primary source of neural activity, but also conducted an
fMRI study to allow for better localization of MEG activity to
brain areas.

A number of studies have applied pattern classification
methods to neural signals in order to decode specific cognitive
states. Typically these approaches train the classifier on part
(e.g., half) of the neuroimaging obtained during performance
of a cognitive task and then evaluate the effectiveness of the
classifier on the remaining (untrained) half of the data (Garrett
et al., 2003; Wilson and Russell, 2007; Baldwin and Penaranda,
2012). This is certainly an accepted criterion for evaluating
how well a particular decoding algorithm works in a particular
domain of human performance. But a stricter test is necessary
if such neural BCI-decoders are to be useful in a general
way. The more stringent test would involve application of
a trained classifier to untrained data taken from a different
task in the same general cognitive domain. Such a strategy,
if successful, can provide for a more generalizable test of
the efficacy of neural state decoding for a given cognitive
function. We used this approach in the present study by
training a MEG classifier during performance of a simple
flight task involving a perturbation and applying it to a more
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complex flight task involving similar types of perturbations
during ongoing piloting. It is important to note that the
ongoing piloting task uses the same control stick (controlled
by articulation of the hand, wrist, and arm) as that needed to
recover from the perturbation. It is therefore necessary for the
BCI-decoder to be able to distinguish between brain activity
responding to changes in the visual field and motor intention
that are a result of piloting from brain activity responding
to changes in the visual field and motor intention that arise
from a perturbation (even though the BCI-decoder has not
been specifically trained to do so). We additionally evaluated
the generalizability of a trained model across participants’ by
using the weights of the model of the best participant to test
performance over the trials of the complex flying task of the
remaining participants.

SeveralMEG and EEG studies have identified neural correlates
of visual and motor responses that suggest our goal of predicting
motor intention to a visually presented hazard prior to actual
movement is possible. Single trial response times to visual
coherent motion onsets were predicted by MEG activity from
150 to 250 ms before the manual response of the observer
(Amano et al., 2006). While the focus of the Amano et al.
(2006) study is on the onset of visual perception, not on motor
intention, it does provide a potential link between response
time and the identification of the perceptual event. In a study
investigating neural correlates of speeded motor responses to
a visual stimulus it was found that larger low-theta complexes
in EEG preceded more rapid button presses (Delorme et al.,
2007). It has also been found that self-paced motor intention
of reaching direction can be successfully decoded prior to
movement onset (62.5 ms with 76% classification performance)
using slow cortical potentials (0.1–1 Hz) recorded by EEG (Lew
et al., 2014). In addition, research conducted on the detection
of braking intention in simulated (Haufe et al., 2011; Kim
et al., 2015) and real (Haufe et al., 2014) driving using EEG
was able to make predictions about 130 ms earlier than the
corresponding behavioral responses. The real-world task set
out in our experiment to be able to predict motor intention
to a visual hazard in the presence of complex ongoing motor
control and a dynamically changing visual field goes beyond what
was investigated in these previous studies. Nevertheless, we do
believe that these studies taken together suggest that there may
potentially be some features present in theMEG (and EEG) signal
that can be decoded prior to movement onset in response to a
visually presented hazard even under the robust conditions set
out in our experiment.

There have been previous studies (Blankertz et al., 2002; Parra
et al., 2003) using online BCI to detect error-related potentials to
reduce error-rate and improve overall performance. While these
methods are promising they utilize data that occurs after the
response is made and are thus not applicable to our objective of
detecting motor intention prior to movement. It is the goal of our
study to utilize an off-line BCI-decoder to evaluate the feasibility
of using real-time neuroadaptive automation to enhance piloting
performance by reducing response time to recover from an
impending hazard (see Figure 1).

MATERIALS AND METHODS

Participants
A total of seven right–handed adults participated in this study.
Five (three females and two males) were glider pilots from local
university clubs. The two participants (males) that were not pilots
had considerable experience with driving or flying related video
games. The age of the participants ranged from 19 to 40 years
with amean of 23.9 years and SE= 2.7 years. All participants gave
written informed consent for experimental procedures approved
by the ATR Human Subject Review Committee in accordance
with the principles expressed in the Declaration of Helsinki.

Experimental Tasks
Two different tasks were used, a simple piloting task of level
flight over the ocean and a more complex piloting task through
the Grand Canyon. We used the first task to develop a
method for decoding of neural states associated with response
to a perturbation and the second task to investigate the
generalizability of the method to a related but more complex
situation. In both tasks the participant was given a first-person
unobstructed view from the airplane (the view was as if from
a camera in the front of the aircraft, see Figures 2A–D). The
aircraft model simulated was an F22—Raptor using the X-
plane flight simulator (Version 9.75, Laminar Research). The
data for various flight parameters (elevator, aileron, rudder
deflections, pitch, roll, yaw, heading, speed, dive rate, structural
g-forces, latitude, longitude, altitude, etc.) and the control stick
(NATA Technologies MRI and MEG compatible) deflections
were collected at a mean sampling rate of 400 Hz using a
UDP Matlab interface. The experimental conditions could be
controlled via Matlab by using the UDP interface to give
commands to the flight simulator.

Simple Piloting Task
This task had four conditions, two involving the presence or
absence of a perturbation, and two in which the participant
had the choice to either pilot the plane or passively watch the
screen without moving the control stick [see Supplementary
Videos 1–4; (1) fly_perturbation; (2) fly_noperturbation; (3)
watch_perturbation; (4) watch_noperturbation; The participants
viewed the 1st person perspective given on the left side of the
video]. The primary task required the participant to pull back on
the control stick (causing an upward elevator deflection resulting
in the plane to climb) as rapidly as possible in response to a
perturbation in attitude (orientation of the plane with respect
to the horizon) causing the plane to dive at a steep rate (see
Figures 2A,B). The participant was instructed to hold the control
stick but not to move it until after the perturbation occurred. The
perturbation consisted of instantaneous maximum downward
deflection of the elevator for 200 ms causing the plane to
enter a steep dive. The trial started with the plane flying at an
altitude of 107m above sea level at a speed of 1040 kph. The
perturbation occurred on 67% of the trials at a random time
between 2 and 4 s (randomly determined) after the beginning
of the trial. If the plane descended to 30m above sea level the
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FIGURE 1 | Outline of processing procedures for the implementation of the hypothesized neuroadaptive automation to speed recovery to perturbation

in flight attitude. The goal of this system is to speed up response time for the aircraft to recover from a perturbation by decoding the motor intention of the pilot. In

this way the pilot is always in control of the aircraft rather than relying on automation in which the pilot is out of the loop. It should be noted that all processing was

done offline and that the online parts of the system were simulated. The processing times for each of the procedures if ran in real-time online are given. As we were

carrying out an offline simulation to determine the feasibility of signal processing and the BCI-decoder performance during training and testing stages for

implementation in a real-time neuroadaptive automation system the aircraft computer was not actually implemented in this study. The system is theoretically able to

work in real time with only a 5–7.5 ms loss in time savings because the weights of the ICA and BCI-decoder are determined before hand and applied to the online

system. The aircraft computer is a necessary part of the neuroadaptive automation system that receives commands from the BCI-decoder to implement the recovery

maneuver (in this case upward elevator deflection). The aircraft computer can also send information to the BCI-Decoder that can signal the onset of potential

perturbations to the airplane. This information can be used to reduce the occurrence of false-alarms made by the system (executing upward elevator deflection when

there is no actual perturbation or motor intention to recover). The aircraft computer can use up to 120 ms (time of the processing window for the BCI-decoder) to

determine the presence of a non-pilot initiated perturbation in attitude without causing a loss in the time savings afforded by the neuroadaptive automation system.

ICA, Independent Component Anayalsis; BCI, Brain Computer Interface; LSPC, Least Squares Probabilistic Classification; UDP, Universal Datagram Protocol.

simulator was paused before the plane crashed into the ocean.
At the end of each trial the simulator was paused for 1.5–
2.5 s (randomly determined). The timing was the same for trials
in which there was no perturbation. Before the beginning of
each trial participants chose by button press whether they were
going to pilot the plane or passively watch without moving the
joystick. Participants were instructed to try to make about twice
as many piloting trials as passive trials. The rational for having
the participant select whether they were to fly or watch rather

than to direct them which condition it was by instruction was to
better insure that they were actually doing the task correctly. If
given visual directed instructions, participants would often try to
recover from the perturbation even when they were instructed to
just watch. Allowing participants to choose which condition to
fly or watch helped to alleviate this problem. In this study, for
the simple piloting task, only the trials containing a perturbation
(fly_perturbation and watch_perturbation) were used to train
the BCI-decoder. Please see the section under Decoding Pilot
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FIGURE 2 | First person view the participant observes while carrying

out the simple piloting task over the ocean (A,B) and the complex

piloting task (C,D). The first panel for each task (A,C) shows a representative

image of what the view may appear like prior to the perturbation. The second

panel for each task (B,D) shows a representative image of what the view may

appear like during the perturbation. Notice that in the simple piloting task over

the ocean (A,B) the bank angle is always level, whereas, in the complex

piloting task the bank angle is continuously changing based on the control

stick inputs to maintain the goal of tracking the river (See Supplementary

Videos 1–6).

Intention below for the rational. After the button was pressed
there was a delay of 0.8–1.3 s (randomly determined) before the
trial begins. The passive trials were the same as the piloting trials
with the exception that the plane would pause when it reached an
altitude of 30m above the ocean, which occurred at a mean time
of 1.3 s after the onset of the perturbation.

There were 90 trials per session. On average there were 40
piloting perturbation trials, 20 piloting no-perturbation trials,
20 passive viewing perturbation trials, and 10 passive viewing
no-perturbation trials. The actual number of trials for each
condition was dependent on the participant’s choice to pilot or
passively view. The percentage of perturbation trials (67%) was
experimentally determined and presented randomly within each
of those conditions. Each session was ∼13 min. Bad trials (plane
did not fly straight and level until time of perturbation) were
removed from the analysis. Additionally, trials with response
times slower than 700 ms from the onset of the perturbation were
removed from the analysis.

Complex Piloting Task
This task involved flying through the Grand Canyon
and consisted of two conditions: perturbation (67% of
trials) or no perturbation (33%) [See Supplementary
Videos 5, 6; (5) Grand_Canyon_perturbation; (6)
Grand_Canyon_noperturbation]. Unlike the simple flying
task, the participant was always required to pilot the plane. There
were no passive viewing conditions. In the complex task the
participant was constantly required to move the elevator and
ailerons of the plane with the control stick to track the river

through the Grand Canyon. The perturbation was caused by an
instantaneous maximum downward deflection of the elevator
for 200 ms. Depending on the attitude (particularly the angle of
bank–roll) of the plane, the perturbation would cause a rapid
departure from the trajectory of flight toward the ground and/or
one of the cliffs (see Figures 2C,D). The plane started each trial
at approximately 30m above ground level at a speed of 1135
KPH. As in the simple task, the perturbation occurred between
2 and 4 s (randomly determined) after the beginning of the trial.
There was also a pause for 1.5–2.5 s (randomly determined)
at the end of each trial. Unlike the simple task, in which the
participant specified by button press whether they were going
to pilot the plane or passively watch, in the complex task every
trial was a piloting trial. The instructions on the screen denoted
that the participant could push the button when they were
ready to begin the trial. After the button was pressed there
was a delay of 0.8–1.3 s (randomly determined) before the trial
began. Unlike the simple task, in the complex task the plane
was allowed to crash into the ground or cliff. Upon a crash the
system would pause the screen. There were 90 trials total in the
complex piloting task. There were 60 perturbation trials and 30
no-perturbation trials. The order was randomly determined.
Each session was approximately 14 min. Trials in which the
plane crashed before the onset of the perturbation were removed
from the analysis.

Functional MRI
Our goal to develop a classifier of operator intention to undertake
a rapid action to avoid a perturbation was to use a neuroimaging
method with high temporal resolution, such as EEG or MEG.
We used MEG in the current study, but in order to bolster our
ability to localize MEG activity to intracortical sources, we also
conducted an fMRI study of the same piloting tasks in order
to establish seeds for conducting source localization analyses of
MEG data. In the fMRI experiment participants underwent two
sessions of the simple piloting task. Visual presentation of the
flight simulation was projected by mirrors to a screen behind
the head coil that could be viewed by the participant by a
mirror mounted on the head coil. An fMRI compatible control
stick (NATA technologies) was used by the right hand of the
participant to control the elevator (back = pitch up; forward =

pitch down) and aileron (roll left and right) deflections. Trigger
timing of the fMRI scanning was directly read into one of the
flight parameters of the flight simulator by means of a National
Instruments Hi Speed USB NI USB-9162 BNC analog to digital
converter.

A Siemens Verio 3T scanner was used to obtain functional T2∗

weighted images with a gradient echo-planar imaging sequence
(echo time 30 ms; repetition time 2500 ms; flip angle 80◦). A
total of 40 interleaved axial slices were acquired with a 4 × 4
× 4 mm voxel resolution covering the cortex and cerebellum. A
single run consisted of approximately 340 scans. (The number
varied depending on the randomized time and how long the
participant took to make a button response to start the trial).
The first three scans were discarded. Structural T2 images, later
used for normalization, were also collected using the same axial
slices as the functional images with a 1 × 1 × 4 mm resolution.
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Images were preprocessed using SPM8 (Wellcome Department
of Cognitive Neurology, UCL). Echo planar images EPI were
unwarped and realigned. The T2 image was co-registered to
the mean EPI image. The T2 images were acquired during
the same fMRI session as the EPI images with the same slice
thickness. Since the head was in approximately the same position
it is thought that this will facilitate coregistration. The EPI
images were then spatially normalized to MNI space (3 ×

3 × 3 mm voxels) using a template T2 image and the co-
registered T2 image as the source. Normalization was done
using the T2 image rather than EPI because we believe it
gives better results due to better spatial resolution. The images
were smoothed using an 8 × 8 × 8 mm FWHM Gaussian
kernel. Regional brain activity was assessed using a general linear
model employing an event-related analysis in which the onset
times were convolved with a hemodynamic response function.
High pass filtering (cutoff period 128 s) was carried out to
reduce the effects of extraneous variables (scanner drift, low
frequency noise, etc.). Auto-regression was used to correct for
serial correlations. The six movement parameters were used as
regressors of non-interest in the analysis to account for biases
in head movement correlations present during the experimental
conditions. Anatomical T1 weighted images were acquired with a
1× 1× 1 voxel resolution for use in constructing source models
for localizing brain activity recorded by MEG.

MEG
In the MEG experiment participants underwent three sessions of
the simple piloting task and one session of the complex piloting
task. The first two sessions of the simple piloting task were used
for training the decoding algorithm. The third session of the
simple piloting task was used to evaluate the effectiveness of the
trained algorithm in decoding neural states when participants
perform the same task. As discussed previously, however, an
effective classifier should be able to decode not only neural states
on the same task that it has been trained on, but on more
complex versions of the task that the classifier has not been
trained on—that is, whether the classifier can achieve transfer.
Accordingly, we also assessed the effectiveness of the classifier in
decoding neural activity preceding detection and response to a
perturbation in the complex piloting task. Visual presentation of
the flight simulation was projected to a mirror to a screen above
the participant’s head. An fMRI compatible control stick (NATA
technologies) was used by the right hand of the participant to
control the elevator (back = pitch up; forward = pitch down)
and aileron (roll left and right) deflections. Trigger timing for the
start of each trial and the start of the perturbation was registered
by a photodiode placed on the screen. A small white square was
constantly presented on the lower center part of the screen (out
of the view of the participant) at the start of each trial and at the
onset of the perturbation the small square turned black for 20 ms.
The light intensity change was detected by the photo diode and
written directly to one of the extra channels on the MEG.

The data was recorded using a Yokogawa 400 channel MEG
supine position system. Head movement was restrained by using
a strap across the forehead. A sampling rate of 1000 Hz was
used with input gain of ×5 and an output gain of ×100. The

trials were segmented 1000 ms before and after the onset of the
perturbation. For trials with no perturbation the timing of the
virtual perturbation was given by the photodiode and used as
the onset point for segmentation. The data were down sampled
from 1000 to 250 Hz and filtered using a causal Butterworth
online bandpass filter from 2 to 100 Hz. Only bad trials in
which there was a machine failure in the flight simulator causing
the plane to verge from a straight and level course (for the
simple piloting task) or bad trials in which the plane crashed
before the onset of the perturbation (for the complex piloting
task) were removed from the data. Besides bandpass filtering
there was no manual or automated artifact cleaning of the data
prior to independent component analysis. Infomax independent
component analysis (EEGLAB, Delorme and Makeig, 2004) with
principal component analysis PCA reduction to 64 components
was conducted on the first two sessions of the simple piloting
task (processing time was approximately 7 min). ICA has been
shown to be well suited for separation of artifact and task related
components (Delorme et al., 2007). The weights derived from the
ICA were used to calculate component activation waveforms for
the trials in sessions one and two. They were also used to calculate
component activation waveforms for the trials in sessions three of
the simple piloting task and the session of the complex piloting
task. There were two reasons that the weights from the first two
sessions were used to calculate the activation waveforms of the
later sessions: first, we did not want to bias the classification
results of the BCI-decoder used for training by including the
test data of the later sessions; and second, we wanted to simulate
conditions required to run the BCI-decoder as if we were running
it online in real-time. The independent components showing
evoked responses to the averaged perturbation piloting trials were
considered for training of the BCI-decoders. Each participant had
one evoked potential related component with an ICA spatial filter
showing a prominent sinc and source (See Figures 3A,B). All
preprocessing steps described above were automated except for
the selection of the independent components showing evoked
responses, which was done by visual inspection of the averaged
activation waveform and the ICA spatial filter. This step can also
be automated if desired.

MEG Source Localization Analysis
Source localization analysis involves the following steps: (1)
Determining the position of the head (brain) within the MEG
device, (2) Segmentation of the cortex of the brain, (3) Estimation
of the leadfield model on the vertex points of the segmented
cortex, and (4) Current source estimation on the cortex.

1. Five coils attached to the participant’s head (one behind each
ear, and three across the forehead) were used to determine the
position of the head within the MEG. The positions of the five
coils on the participant’s head were measured by the Polhemus
FastSCAN Cobra system. This system allows for a 3D laser
scan of the face as well as the coordinate location for the five
markers to be obtained. Matlab software (part of the VBMEG
toolbox) was used to register the coordinate space of the 3D
face image to the participant’s anatomical T1 MRI structural
image. Once the position of the five coils in reference to the
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FIGURE 3 | Source localized activity for each participant (P01–P07 denotes participant identification number). (A) On the left the independent component

analysis spatial filters for the MEG channels are shown for each participant. (B) The mean activation waveform for session one with the peak latency given in the upper

corner for each participant. The blue boxes over the peak denote the three 40 ms windows the decoder was trained on. The mean response time is denoted by the

gray line in the plot. The corresponding value is shown to the bottom right of this line for each participant. (C) The estimated current using variational Baysian

multimodal encephalography VBMEG is shown rendered on the surface of the brain for each participant.
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MEG sensors are known the position of these sensors can be
registered in the coordinate space of the participant’s T1 MRI
structural image.

2. The cortex was segmented from the brain using FreeSurfer
software (Fischl et al., 1999). This software was also used to
make an inflated model of the cortex used for display.

3. The segmented vertex points of the cortex were used to
estimate the leadfield matrix using the Sarvas equation
(Sarvas, 1987).

4. Current source on the surface of the cortex was estimated
using variational Bayesian multimodal encephalography
(VBMEG) that uses fMRI information as a prior constraint in
the analysis. See the articles by Sato et al. (2004) and Yoshioka
et al. (2008) for a detailed description as well as the tested
accuracy of source localization for VBMEG.

The VBMEG analysis used the fMRI t-values of the contrast
of the perturbation piloting condition vs. the no perturbation
piloting condition on the simple piloting task. The results of
the SPM analysis for the contrast for each participant (using a
threshold of p < 0.05 uncorrected, with a spatial extent of 50
voxels, andmasking out activity in the cerebellum and subcortical
areas) were projected onto the brain of their own T1 image
using their individual specific normalization parameters. For
one of the participants for which fMRI data was not collected
the random effects analysis across all of the participants for
the same contrast (using a threshold of p < 0.05 uncorrected,
with a spatial extent of 50 voxels, and masking out activity in
the cerebellum and subcortical areas) was used as a prior and
projected back to the individuals T1 image using their specific
normalization parameters. The fMRI T-values were thenmapped
to the vertex points of the segmented brain serving as prior
information for the VBMEG analysis. A lenient uncorrected
threshold of p < 0.05 was used to ensure that sufficient
vertex points of the brain were given prior information for the
VBMEG analysis. Using a conservative threshold corrected for
multiple comparisons for the fMRI analyses may considerably
restrict the extent of prior information for the VBMEG
analysis.

The activation waveforms of the trials from all conditions and
sessions for both the simple and complex tasks were projected
to the MEG sensor space (400 channel) using the weights of the
independent components as determined from the ICA on the
trials from the first two sessions of the simple piloting task. The
mean activity of the trials for each condition was used in the
VBMEG analysis. The noise model, serving as a baseline, was
calculated using the activity from the no perturbation passive
viewing condition. The VBMEG analysis estimated current
activity over the entire cortex using a variance magnification
factor= 500 and a confidence parameter= 500 [these parameters
are such that they give somewhat less weight to the fMRI prior
activity in determining the location of the source activity Sato
et al. (2004) and Yoshioka et al. (2008)]. The time period for
current estimation was 250 samples and the time step for the next
period was 100 samples. The output of the analysis was the mean
estimated current across trials for each cortical vertex point for
each condition.

To determine the location of current on the brain thought
to underlie the response to the perturbation and to be able to
compare the results across participants the following procedure
was used for each participant using data from the complex
piloting task: For each of the vertex points (there were ∼6000
for each participant), the root-mean-squared RMS current was
determined for perturbation recovery and for a baseline period
prior to perturbation: The RMS current for perturbation recovery
was calculated from 12 ms before and 8 ms after the new mean
response time (utilizing performance of the adaptive automation
BCI-decoder—see Results section). The RMS current for the
baseline period was calculated from 400 ms before onset of the
perturbation to just before the onset of the perturbation. The
current for each vertex point was normalized by subtracting 20
times the mean RMS current of the baseline period (across all
vertex points) from the RMS current of perturbation recovery
for each vertex point and then dividing by the maximum RMS
current across all vertex points. The normalized current of the
vertex points that were greater than zero were projected to the
standard template brain (2 × 2 × 2 mm) (given in SPM8)
using the MNI coordinates determined during segmentation
by Free Surfer. The resulting images were smoothed using a
FWHM 8× 8× 8 mm Gaussian kernel. Because smoothing may
cause activity to be spread to regions that were not originally
active a threshold was used such that only voxels showing
mean RMS values greater than the lowest value of the original
smoothed voxels (corresponding to the original projected vertex
points) were considered to be significant (using a spatial extent
threshold of 100 voxels). The intersection of active voxels across
all seven participants was used to define common activity. The
SPM Anatomy Toolbox v1.8 (Eickoff et al., 2005) was used to
determine the labels of active brain regions.

Decoding Pilot Intention
We developed a method to decode the participant’s intention
to perform an action in response to a perturbation by training
a classifier on neural data taken from the first two sessions of
the simple piloting task. The classifier was then evaluated by
testing its ability to decode participant intention on the third
session of the same task. As a more stringent test of classifier
performance—an examination of its transfer generalizability—
we then examined its ability to decode intention in the complex
piloting task. It should be noted that this classifier represents an
open loop simulation of a BCI in order to test the feasibility of
such a method for real-time implementation of neuroadaptive
automation using a closed loop BCI-decoder. See Figure 1 for a
depiction of the hypothesized neuroadaptive automation system
implemented in this study.

The training of the classifiers was conducted using trials from
the first two sessions of the simple piloting task. The two classes
to be decoded were presence of perturbation while piloting the
plane vs. presence of perturbation while passively viewing. The
reason for selecting these contrasts to train on was because we
wanted to ensure that the BCI-decoder was not just picking
up the visual evoked response induced by the perturbation but
was extracting activity related to the attentional components of
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the response to the perturbation in relation to the intention to
recover from the change in attitude. Rather simple features were
used for decoding in the hope that they would generalize across
sessions, tasks, and participants. The first step in calculating the
features used for decoding was to determine the time point of
the absolute peak in the mean evoked response (that was less
than 300 ms) to the onset of the perturbation in the selected
independent component of the perturbation piloting trials of
the first session of the simple task used for training (the peak
time for the participants was as follows: S1 = 232 ms; S2 =

236 ms; S3 = 284 ms; S4 = 196 ms; S5 = 228 ms; S6 = 284
ms; S7 = 264 ms; mean = 246 ms) (See Figure 3B for the
mean activation waveforms for the Fly and Watch conditions for
each participant from session 1). For each trial RMS amplitude
was calculated within two consecutive 40 ms windows prior
to the time of the peak of the averaged evoked potential and
one 40 ms window after (These windows are depicted as blue
bars at the top of the mean activation waveforms in Figure 3B

for each participant). The RMS amplitude values in these three
windows served as the features for decoding for the perturbation
piloting trials. To help in generalization and to bias the classifier
to make fewer false alarms the perturbation passive trials used
three separate time points to extract the features (120, 60, and
0 ms before the onset of the perturbation). This had the effect
of increasing the number of training trials for the perturbation
passive condition by three. Since there were originally half
as many perturbation passive trials than perturbation piloting
trials this increased the training ratio to be about 1.5 times
as many trials for the perturbation passive condition to that
of the perturbation piloting condition. The greater number of
training trials and the greater variability for the perturbation
passive condition is used to increase the ability to reject trials
that are not from the perturbation piloting condition (reduce
false-alarms) and increase the noise variability with regards to
timing such that the classifier may more readily generalize to the
complex task in which the attitude of the plane (and thus the
visual image on the screen) is constantly changing as a result of
the continuous piloting task of tracking the river in the Grand
Canyon. The reason we did not use the no perturbation piloting
task as one of the conditions to train the BCI-decoder on is
that it would likely just extract the visual evoked response to the
perturbation piloting task and not extract the attention related
component of the motor intention for attitude recovery that we
are interested in determining. Given the continuous changes in
attitude of the plane while maneuvering on the complex task
a BCI-decoder that is based on visual evoked perturbations
from the simple task may result in a large number of false
alarms.

The BCI-decoder was trained on approximately 80 trials of
the perturbation piloting task and 120 trials of the perturbation
passive task using the Matlab Least Squares Probabilistic
Classification (LSPC) toolbox (Sugiyama et al., 2010). LSPC uses
a linear combination of kernel function to model the class-
posterior probability. Regularized least-squares fitting of the
true class-posterior probability is used to learn its parameters
(Sugiyama et al., 2010). The use of least-squares fitting to
determine a linear model allows for a global solution to be made

analytically providing a considerable speedup in computational
time. The default parameters were used in training of the LSPC
models (see Matlab code: Sugiyama et al., 2010). The time
required to train the classifier is approximately 0.25 s. Prior to
training the features for the trials were normalized by subtracting
the mean and dividing by the standard deviation. The mean
and standard deviation from the training trials were used to
normalize the trials used for testing. The first test set consisted
of trials from the session of the simple piloting task that was not
used during training. There were approximately 40 perturbation
piloting trials and 20 perturbation passive trials to be classified
using the train LSPC model. Balanced accuracies (Brodersen
et al., 2010) are reported to account for biases in unequal number
of trials in the two conditions to be classified. The test data
consisted of features computed at the time point specified by
the peak of the evoked response determined from the training
data. No information about the distribution of the test data was
used. The BCI-decoder treats each test trial as independent. One
hundred BCI-decoders were trained and then tested using trials
from the simple piloting task. The primary parameter that is
random for training of the model for each BCI-decoder is the
order of the trials in the training cross validation steps. The BCI-
decoder with the best performance as determined by balanced
accuracy was used to test the trials from the complex piloting task.

The goal for the BCI-decoder in the complex piloting task was
to be able to detect the intention to recover from a perturbation in
attitude faster than by movement of the control stick by the hand.
The selected LSPC model trained on the simple piloting task
was used for testing of the complex piloting task. Additionally
the same parameters (mean and standard deviation) used during
training were also used on the test set for normalization of
the features. For the perturbation piloting trials and the no
perturbation piloting trials the LSPC model began testing at time
point zero when the perturbation started. The window for the
BCI-decoder was 120 ms encompassing the three 40 ms time
windows in which the RMS amplitude was calculated. Therefore,
the earliest time the perturbation could be detected was at 120
ms. The 120 ms time window tested by the BCI-decoder was
incremented in 8 ms steps through 1000 ms of the data for each
trial. The earliest point at which the BCI-decoder detected the
presence of a perturbation piloting trial was the point at which the
adaptive automation would be implemented to recover attitude.
The time between detection by the BCI-decoder and the onset of
the control stick by the hand to recover from the perturbation
in attitude was used to evaluate the time benefit (time savings)
of the implementation of the adaptive automation. The trial was
only considered a hit if the BCI-decoder predicted time was faster
than the actual movement time of the control stick. To determine
the statistical significance of the BCI time savings, BCI-decoders
were trained using 1000 random permutations of the labels and
each was tested on the complex piloting task. All 1000 permuted
models used for evaluation had less than 25% false positives. This
criterion was used in order to be comparable to the false positive
performance of that of the BCImodels trained with correct labels.
The perturbation time benefit were calculated for each of the 1000
permuted models and used as a distribution to compare against
the model trained with the actual labels.
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In order to evaluate the generalizability of a single model
across participants the weights of the model of the participant
with the best performance were used to test the trials of
the complex flying task of the remaining six participants.
Performance measures including BCI time savings were
determined using the same method as applied when using each
participants corresponding model to test the trials of the complex
piloting task (see above).

Procedure
Participants underwent the fMRI and MEG sessions on separate
days. The fMRI experiment was used to calculate a prior
for the MEG source localization analysis using Variational
Bayes Multimodel Encephalography (VBMEG). Six of the
seven participants participated in the fMRI experiment. One
participant only did the MEG experiment. All of the participants
that participated in the fMRI experiment did it prior to the
MEG experiment. MRI anatomical T1 scans were acquired for
all seven participants and used to make models for source
localization analysis using VBMEG. All analyses were conducted
using Matlab software unless otherwise stated.

RESULTS

Behavioral Performance
The response times (RTs) for each of the participants to initiate
pull back on the control stick in reaction to a perturbation
causing the plane to enter a steep dive for both the simple piloting
task and the complex piloting task are presented in Table 1. The
RT in the complex task (median = 436.5) was not found to be
significantly higher than in the simple task (median = 368.5), p
= 0.0781 (df= 6). However, there is a tendency in this direction.
The number of trials the plane crashed into the ground/cliff, as
well as the number of bad trials (resulting from machine failures
and/or movement before the onset of the perturbation for the
simple task and crashes before the onset of the perturbation
for the complex task) are also presented in Table 1. As Table 1
indicates, these numbers were relatively small, but were greater
in the complex task. It should be noted that bad trials were
excluded from analysis and not used for calculation of response

times or training/testing of the BCI-decoders. In some cases
on the complex task there were crashes after the onset of the
perturbation. These trials were not excluded from analysis.

Source Localization
The smoothed RMS current centered around the time of the
perturbation on the complex piloting task of the activation
waveform of the projected task related independent component
rendered on the surface of the brain (See Methods for details
of source localization analysis) is displayed for each participant
along with the corresponding independent component spatial
map in Figure 3C. There was some degree of variability
in the extent to which different brain regions were active
across participants (Figure 3C, Table 2). As can be seen in
Figure 4 and Table 3 brain regions that were commonly active
for all participants include the pre-central gyrus (including
premotor cortex), post- central gyrus, the superior parietal
lobule, the primary visual cortex, and human occipital cortex
visual motion processing area V5 (hOC5). It should be noted
that while source localization is interesting in determining
the brain regions associated with the independent component
upon which decoding is made it is not a necessary step
in implementation of the proposed neuroadaptive automation
brain-machine interface.

BCI-Decoder Performance
The results of the performance of the BCI-decoder are presented
in Tables 4–9. The performance of the best (as determined by the
highest balanced accuracy score) out of 100 BCI-decoders tested
on the novel sessions of the simple piloting task is presented
in Table 4 for each participant. The average over all 100 BCI-
decoders is given in the table for comparison. The BCI-decoder
for six of the seven participants showed significant differences (p
< 0.05) in being able to distinguish between perturbation piloting
trials and perturbation passive viewing trials. The mean balanced
accuracy performance was approximately 70%. Certainly the
selection of the best BCI-decoder out of 100 trained biases these
results, however, it was our goal to find the model that may
best extract attentional information related to the intention of
recovering from the perturbation in attitude. In this respect

TABLE 1 | Response time to pull back on control stick after start of perturbation for the two training sessions and two test sessions.

ID RT train BT train RT train BT train RT test BT test RT test BT test CT test

Ses1 (ms) Ses1 Ses2 (ms) Ses2 simple (ms) simple complex (ms) complex complex

1 356.4 1 387.7 2 370.4 1 357.9 0 0

2 377.7 0 427.0 2 452.6 3 436.5 8 9

3 386.5 2 371.4 0 384.4 0 454 2 6

4 295.1 0 303.7 0 305.5 0 359.8 2 6

5 323.9 0 336.9 0 342.3 0 462.2 1 1

6 355.0 0 386.3 9 368.5 3 480.4 5 0

7 348.4 0 347.1 0 337.8 0 424.1 4 9

Group mean 349.0 0.43 365.7 1.86 365.9 1.0 425.0 3.14 10.33

ID, Participant identification number; RT, Response Time; Ses, Session; BT, Bad Trial; CT, Crash Trial.
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TABLE 2 | MNI coordinates of clusters of brain activity for each participant.

Brain region P1 MNI P2 MNI P3 MNI P4 MNI P5 MNI P6 MNI P7 MNI

Orbital Gyrus −22,58, −4 −34,56, −6 26,45, −13 −6,56, −14

−12,54, −16 48,36, −10 22,46, −12

SFG, MFG −14,44,32 −38,40,30

−32,40,36 42,51,7

IFG BA44 −52,4,10 54,14,10 −49,5,6 −50,10,6 54,18, −2

56,16,22 56,8,34 58, −1,7

IFG BA45 45,44,2 58,30,0 −50,25, −1 −48,36,4 48,44,12

56,26,2

SFG SMA BA6 1, −16,66 −4,0,58 −4, −3,68

11, −13,67

PMC BA6 −35, −25,68 −34, −23,68 −30, −27,68 −36, −28,68 −38, −8,64 −26, −21,70 −33, −25,67

46, −8,48 28, −8,64 22, −31,76 58,4,31

Pre−CG BA4 −48, −16,56 −35, −25,58 −35, −25,54 −32, −28,69 −42, −18,54 −9, −42,75 −30, −38,70

42, −10,46 12, −27,74 8, −34,76 −28, −27,59

38, −30,61 9, −38,75

Post−CG BA1,2,3 −18, −36,76 −24, −36,72 −40, −41,61 −30, −34,70 −30, −44,64 −35, −35,67 −40, −44,58

−48, −30,58 −52, −32,54 44, −22,60 −44, −34,58 −62, −8,10 −47, −26,55 56, −20,46

46, −32,60 38, −32,60 53, −24,55 44, −30,60

62, −24,26

SPL −10, −76,52 10, −70,56 −38, −48,57 −14, −54,66 −24, −60,62 −16, −74,48 −16, −70,62

−22, −82,48 24, −56,56 −8, −65,58 −10, −90,34 20, −66,60 18, −66,48 −16, −86,38

12, −56,68 9, −64,61 16, −68,56 13, −66,62

26, −50,66 41, −45,58

IPC −54, −70,16 −46, −74,18 −52, −44,38 −58, −39,35 −58, −18,28

−56, −24,30 46, −70,14 48, −43,35 57, −34,40 60, −30,30

60, −22,34 68, −30,20 58, −30,40 46, −82,20

hOC5 (V5) MT, IOG 52, −67, −1 −44, −74,18 −40, −70, −2 −52, −72, −2 52, −62, −16 −44, −72,5 −52, −70,0

56, −62,4 54, −67,13 50, −70,0 53, −69,1 56, −64, −2

hOC4 −38, −72, −12 32, −71, −1 46, −80, −15 −32, −77,0

40, −72, −12

Cuneus Calcarine Gyrus BA17,18 −12, −104,4 −4, −72,2 −8, −68,4 −2, −80, −2 16, −94,16 −10, −98,2 −4, −72,0

−24, −102, −6 −10, −94,26 −8, −94, −8 8, −82,10 20, −98, −10 12, −90,0 10, −70,0

20, −98,22 −10, −100,8 18, −92, −14 12, −102,4 6, −86,16

14, −98,0 10, −70,2

16, −100, −14 16, −96,20

MTG −56, −64, −2 −48, −24, −10 55, −66, −2

−56, −59,8

60, −26, −16

54, −63, −2

ITG −54, −50, −18 60, −48, −12 −46, −60, −10 54, −54, −20 50, −56, −16 −44, −63,0

48, −50, −12 −52, −32, −20 −44, −62, −16 −56, −20, −24

−58, −24, −20 60, −46,0

Temporal Pole −50,6, −15 −48,12, −20

58, −2, −6

P, participant identification number; IFG, Inferior Frontal Gyrus; SFG, Superior Frontal Gyrus; SMA, Supplementary Motor Area; PMC, Premotor Cortex; Pre-CG, Pre Central Gyrus;

Post-CG, Post Central Gyrus; SPL, Superior Parietal Lobule; IPC, Inferior Parietal Cortex; hOC5 (V5), Human Occipital Cortex Visual motion processing area V5; MT, Middle Temporal

Cortex overlaps area hOC5; IOG, Inferior occipital gyrus; MTG, Middle Temporal Gyrus; ITG, Inferior temporal gyrus. MNI coordinates of Clusters of root-mean-squared RMS current

12 ms before and after the mean time in which the decoder detected motor intention to the presence of a perturbation. The threshold of significant RMS current activity at a specific

vertex point was set at 20x the mean baseline RMS current from −400 to 0 ms across all vertex points. A spatial extent threshold of 100 voxels was used on the smoothed projection

into MNI space.

Frontiers in Human Neuroscience | www.frontiersin.org April 2016 | Volume 10 | Article 187 | 130

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Callan et al. Neuroadaptive Automation Improves Response Time

FIGURE 4 | Source localized activity common to all participants. Activity is present in the left pre- central gyrus, the left post central gyrus, the right superior

parietal lobule, the right primary visual cortex V1, and the right visual motion processing area V5.

TABLE 3 | MNI coordinates of clusters of brain activity common across all

participants.

Brain region All seven participants MNI

Pre-CG, PMC BA4,6 −36,−26,68

Post-CG BA1,2,3 −30,−38,68

SPL 7P 7A Precuneus 12 −68,60

Cuneus (V1) BA17 16,−96,10

hOC5(V5) 52,−62,0

Pre-CG, Pre Central Gyrus; Post-CG, Post Central Gyrus; SPL, Superior Parietal Lobule;

hOC5 (V5), Human Occipital Cortex Visual motion processing area V5.

MNI coordinates of Clusters of root-mean-squared RMS current 12 ms before and after

the mean time in which the decoder detected motor intention to the presence of a

perturbation that are common across all seven participants. The threshold of significant

RMS current activity at a specific vertex point was set at 20x the mean baseline RMS

current from −400 to 0 ms across all vertex points.

we feel justified in selecting the best model trained and tested
on the simple piloting task to use for testing in an unbiased
manner on the complex piloting task. Although training the BCI-
decoder to distinguish between the perturbation piloting and no
perturbation piloting trials on the simple piloting task may have
provided better performance when testing on the novel session
from the same task it is likely that the model would have learned
the response to the visual aspects of the perturbation rather than
the neural activity related to the intention to recover attitude.

As discussed above the model with the highest balanced
accuracy on the test session of the simple piloting task was used
to test the session of the complex piloting task. The goal was
to simulate the use of a brain computer interface in real time
that would initiate the use of adaptive automation to initiate
recovery from a perturbation in attitude faster than could be done
by moving the control stick by the hand. In accomplishing this
goal the BCI-decoder was used on a 120 ms window starting
at the time of the perturbation and stepping through the data
in 8 ms steps. The BCI-decoder was also tested on trials in
which there was no perturbation within the same time region
in which the perturbation may have occurred. This point was
determined randomly during the experiment and triggered on
the MEG trace using a photodiode (see Methods). Bad trials were
eliminated from the analysis (see Table 1). The first instance of
the classification by the BCI-decoder as a perturbation piloting

trial is the time point at which the adaptive automation is
initiated. Only trials in which the BCI-decoder is faster than
the movement of the controls stick are counted as hits (true
positives). The results of the classification performance for
the complex piloting task are presented in Table 5. Because
unequal number of trials existed for perturbation piloting and
no perturbation piloting trials balanced accuracies were used
(Brodersen et al., 2010). All seven participants showed significant
classification performance above chance even with the additional
criteria that the detection of a perturbation piloting trial had to
be before movement of the control stick. In these cases where
there was classification of a perturbation trial after control stick
movement, the trial was counted as a miss (false negative). The
ratio of correct rejections (true negatives) to false alarms (false
positives) was greater than the ratio of hits (true positives) to
misses (false negatives). The mean balanced accuracy across
participants was 73%. Table 6 shows the performance on the
complex piloting task of the six subjects tested using the weights
from the model of the best participant. The results indicate that
the balanced accuracies of all six participants showed significant
classification performance above chance (Table 6). While there
were significant differences in hit rate and false alarm rate
between the generalized and own model tests there were no
significant differences, using theWilcoxon signed rank test, in the
primary performance measures including balanced accuracy, d′,
and a′ (a′ a prime or area under the curve was calculated by the
method given inMacmillan and Creelman (1991) (See Table 3B).

The improvement in response time afforded by the use of
the neuroadaptive automation is given in Table 7. In trials in
which there was a miss, neuroadaptive automation was not
employed and the original response time was used. The mean
response time difference was calculated from the original onset
time minus the onset of the neuroadaptive automation for all
perturbation piloting trials. The mean improvement in response
time across participants was a reduction from 425 to 353
ms under neuroadaptive automation, or an average of 72 ms
improvement. Figures 5A,B depicts the decoded response times
plotted on the single trial activation waveforms of the adaptive
automation (black circles) for participant 1 (best performer) and
3 (median performer), respectively. The single trials are arranged
in increasing order of behavioral response time from bottom
to top (white line). The significance of the time savings was
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TABLE 4 | Novel test session classification performance: simple piloting task over ocean: detect perturbation piloting vs. perturbation passively watch.

ID bacc_mean bacc_ppi1 bacc_ppi2 bacc_p tp fn fp tn hr far d′ a′

1 61.5 (58.4) 48.6 73.5 0.039 21 16 6 13 0.57 0.32 0.65 0.70

2 58 (51.2) 45.9 69.3 0.093 15 21 5 16 0.42 0.24 0.50 0.67

3 73.1 (72.4) 61.1 83.0 0.023 26 15 2 14 0.63 0.13 1.49 0.85

4 73.8 (67.1) 62.2 83.7 0.009 27 13 3 16 0.68 0.16 1.46 0.85

5 76.3 (75.0) 67.3 84.4 0.0002 23 17 0 19 0.58 0.05 1.86 0.89

6 81.1 (78.8) 70.9 89.4 0.0001 27 10 1 18 0.73 0.05 2.23 0.91

7 64.8 (62.6) 52.9 75.6 0.009 21 19 4 16 0.53 0.20 0.90 0.76

Group mean 69.8 (66.5) 58.4 79.8 0.016 23 16 3 16 0.59 0.16 1.30 0.80

ID, Participant identification number; bacc_mean, Balanced accuracy mean in percent; bacc_ppi, Posterior probability intervals; bacc_p, p value; TP, true positive (hit); FN, false negative

(miss); FP, false positive (false alarm); TN, true negative (correct rejection); HR, hit rate; FAR, false alarm rate; d′, d prime; a′, a prime.

In the case when the FAR = 0 calculation of FAR is made by adding 1 to the original FP and TN values.

The performance scores are for the best out of 100 BCI-decoders trained on the first two sessions and tested on the novel simple piloting task session. The average balanced accuracy

for all 100 BCI-decoders is given in parentheses for comparison.

The bacc_p value for the group mean is the Wilcoxon signed rank test over the bacc_mean values for the 7 subjects that the values are greater than 50.

TABLE 5 | Novel test session classification performance: complex piloting task through Grand Canyon: detect perturbation piloting vs. no perturbation

piloting.

ID bacc_mean bacc_ppi1 bacc_ppi2 bacc_p tp fn fp tn hr far d′ a′

1 85.6 78.3 91.5 0.0001 47 13 1 29 0.78 0.03 2.62 0.93

2 66.6 58.1 74.6 0.02 22 30 2 28 0.42 0.07 1.31 0.81

3 74.7 65.5 82.7 0.0001 38 20 4 26 0.66 0.13 1.51 0.85

4 76.7 67.1 85.1 0.0001 46 12 7 23 0.79 0.23 1.55 0.86

5 66.1 56.3 75.1 0.001 32 27 6 24 0.54 0.20 0.95 0.76

6 79.4 70.1 87.4 0.0001 45 10 6 24 0.82 0.20 1.75 0.88

7 63.7 54.5 72.2 0.003 24 32 4 26 0.43 0.13 0.93 0.76

Group mean 73.3 64.3 81.2 0.016 36 21 4 26 0.63 0.14 1.52 0.84

ID, Participant identification number; bacc_mean, Balanced accuracy mean in percent; bacc_ppi, Posterior probability intervals; bacc_p, p value; TP, true positive (hit); FN, false negative

(miss); FP, false positive (false alarm); TN, true negative (correct rejection); HR, hit rate; FAR, false alarm rate; d′, d prime; a′, a prime.

The bacc_p value for the group mean is the Wilcoxon signed rank test over the bacc_mean values for the seven participants that the values are greater than 50.

TABLE 6 | Generalization of performance using best subjects weights: novel test session classification performance: complex piloting task through

Grand Canyon: detect perturbation piloting vs. no perturbation piloting.

ID bacc_mean bacc_ppi1 bacc_ppi2 bacc_p tp fn fp tn hr far d′ a′

1 – – – – – – – – – – – –

2 57.7 51.9 63.8 0.007 9 43 0 30 0.17 0.03 0.91 0.79

3 73.8 64.9 81.6 0.0001 35 23 3 27 0.60 0.10 1.54 0.85

4 68.6 60.3 76.3 0.0001 27 31 2 28 0.47 0.07 1.41 0.82

5 63.4 54.8 71.4 0.002 23 36 3 27 0.39 0.01 1.00 0.77

6 80.8 71.9 88.3 0.0001 43 12 4 26 0.78 0.13 1.89 0.89

7 64.3 56.0 72.0 0.0007 21 35 2 28 0.38 0.07 1.18 0.79

Group mean 68.1 (71.2) 60.0 (61.9) 75.6 (79.5) 0.032 (0.032) 26* (35) 30* (21) 2* (5) 28* (25) 0.47* (0.61) 0.07* (0.16) 1.32 (1.33) 0.82 (0.82)

ID, Participant identification number; bacc_mean, Balanced accuracy mean in percent; bacc_ppi, Posterior probability intervals; bacc_p, p value; TP, true positive (hit); FN, false negative

(miss); FP, false positive (false alarm); TN, true negative (correct rejection); HR, hit rate; FAR, false alarm rate; d′, d prime; a′, a prime.

The bacc_p value for the group mean is the Wilcoxon signed rank test over the bacc_mean values for the six subjects that the values are greater than 50.

The number in parentheses are the group mean values of the original decoder excluding sub01. *Denotes p < 0.05 on paired Wilcoxon signed rank test for the comparison between

the original decoder and the one trained with sub01 model over the six participants.
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TABLE 7 | Improvement in response time by adaptive automation complex piloting task through the Grand Canyon.

ID N TP FP Org Mean Org Se BCI mean BCI Se BCI rt diff BCI rt diff Perm rt diff Perm P

(ms) (ms) (ms) (ms) mean (ms) se (ms) Mean (ms)

1 60 47 1 357.9 5.2 283.1 9.8 74.8 7.8 5.2 0.002

2 52 22 2 436.5 13.8 369.7 15.6 66.7 14.3 6.4 0.023

3 58 38 4 454.0 10.2 405.2 13.6 48.7 7.9 4.5 0.014

4 58 46 7 359.8 7.3 277.0 10.6 82.8 10.4 4.9 0.001

5 59 32 6 462.2 6.6 404.2 12.7 58.0 11.8 3.1 0.003

6 55 45 6 480.4 7.3 341.4 14.1 138.9 15.4 13.5 0.002

7 56 24 4 424.1 9.3 388.0 13.3 36.1 8.6 7.4 0.041

Group mean 59 36 4 425.0 8.5 352.7 12.8 72.3 10.9 6.4 0.016

The p-value in the last column denotes the significance of the time savings improvement of the BCI adaptive automation over the original joystick based response times based on

permutation testing of 1000 models trained with random labels.

ID, Participant identification number; N, Number of Perturbation Piloting Trials; TP, True Positives (hits); FP, False Positives (false alarms); rt diff, response time difference; Org, Original;

se, standard error; Perm, Permuted; BCI Brain Computer Interface.

The Perm P-value for the group mean is the paired Wilcoxon signed rank test comparing the BCI rt diff values to the Perm rt diff values for the seven participants.

TABLE 8 | Generalization of performance using best subjects weights: improvement in response time by adaptive automation complex piloting task

through the Grand Canyon.

ID N TP FP Org Mean Org Se BCI mean BCI Se BCI rt diff BCI rt diff Perm rt diff Perm P

(ms) (ms) (ms) (ms) mean (ms) se (ms) Mean (ms)

1 – – – – – – – – – – –

2 52 9 0 436.5 13.8 408.7 15.6 27.8 10.7 7.9 0.026

3 58 35 3 454.0 10.2 407.3 13.5 46.7 7.7 5.5 0.009

4 58 27 2 359.8 7.3 327.9 9.3 31.9 7.9 4.1 0.001

5 59 23 3 462.2 6.6 427.7 11.2 34.5 9.5 2.9 0.001

6 55 43 4 480.4 7.3 347.9 15.8 132.5 15.7 17.8 0.002

7 56 21 2 424.1 9.3 388.7 11.8 35.4 9.2 2.8 0.006

Group mean 56 26* (35) 2* (5) 436.2 9.1 384.7* (364.3) 12.9 (13.3) 51.5* (71.9) 10.1 (11.4) 6.8 (6.3) 0.032 (0.032)

The p-value in the last column denotes the significance of the time savings improvement of the BCI adaptive automation over the original joystick based response times based on

permutation testing of 1000 models trained with random labels.

ID, Participant identification number; N, Number of Perturbation Piloting Trials; TP, True Positives (hits); FP, False Positives (false alarms); rt, response time; Org, Original; se, standard

error; Perm, Permuted; BCI Brain Computer Interface.

The Perm P-value for the group mean is the paired Wilcoxon signed rank test comparing the BCI rt diff values to the Perm rt diff values for the six subjects.

The number in parentheses are the group mean values of the original decoder excluding sub01. *Denotes p < 0.05 on paired Wilcoxon signed rank test for the comparison between

the original decoder and the one trained with sub01 model over the six participants.

evaluated by comparing the neuroadaptive automation response
time difference (to that of the control stick response) relative
to the distribution of response time differences of over 1000
models trained with randomly permuted labels (See Methods
Section). The p value was computed by the number of times
the models with permuted labels had larger response time
differences than the BCI trained with the correct labeling over
the 1000 permuted models (see Table 7). Table 8 shows the
time savings of the six participants tested using the weights
from the model of the best participant on the complex piloting
task. The same permutation technique as discussed above was
used to evaluate statistical significance. While all participants
showed a significant difference in time savings even using a
model trained by a different participant, the time savings were
significantly (p < 0.05; paired Wilcoxon signed rank test) greater
when using their own model (median = 62.4 ms; mean = 71.9

ms) vs. the generalized model (median = 35.0 ms; mean =

51.5 ms).

DISCUSSION

The present study examined whether it is possible to decode
neural signals associated with the intention to act in response
to an impending hazard. Using MEG, the results showed that
neural activity could be decoded so as to decrease the time needed
to respond to the hazard, compared to manual action. As such,
the results demonstrate that neuroadaptive automation can be
implemented to speed up intentional action when there is very
little available to respond.

There has been extensive prior research showing the
effectiveness of both neuroadaptive automation (Byrne and
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TABLE 9 | Flight characteristics of F22 on Grand Canyon task.

ID Avg altitude at

time of

perturbation

(m)

Avg airspeed

at time of

perturbation

(Km/h)

Avg airspeed at

time of

perturbation

(m/s)

Descent rate

DR mean

(m/s)

Descent rate

DR greatest

(m/s)

Avg response

Improvement by

BCI over all

trials (ms)

BCI Savings in

Descent

Altitude based

on Mean DR (m)

BCI Savings in

Descent

Altitude based

on Greatest

DR (m)

1 81.4 1122 311.6 69.1 87.4 75 5.2 6.5

2 79.8 1082 300.7 65.4 94.7 67 4.4 6.3

3 80.2 1117 310.3 56.2 83.7 49 2.8 4.1

4 79.8 1115 309.8 79.7 103.2 83 6.6 8.6

5 82.4 1117 310.2 71.8 124.6 58 4.2 7.2

6 82 1122 311.7 75.4 111 139 10.5 15.4

7 79.9 1113 309.1 69.6 93.3 36 2.5 3.4

Group

mean

80.8 1113 309.1 69.6 99.7 72 5.2 7.4

ID, Participant identification number; DR, Decent Rate; Avg, average.

The climb/descent rate is variable depending on the attitude of the plane at time of perturbation. The values given are the (1) mean of the maximum slope of descent calculated over a

200 ms period across trials and (2) the greatest maximum slope of descent calculated over a 200 ms period across trials.

It is important to note that time and distance to ground saved by earlier elevator engagement is not only the savings in less descent toward ground but also allows for gain in altitude

relative to time because of earlier climb.

Parasuraman, 1996; Wilson and Russell, 2007; Ting et al., 2010)
and passive BCI (Blankertz et al., 2010; Zander and Kothe, 2011)
in enhancing human performance. However, the present study
represents the first successful attempt to show that decoded
neural activity can be used to potentially speed up split-second
decision making in response to an impending hazard on a novel
complex task that neither the participant or the classification
model has been trained on. While the brain is indeed faster than
the hand in responding to a hazard, its activity must be accurately
decoded so as to accrue a savings in time. In the piloting task
used in the present study, the mean savings in response time was
72 ms (ranging from 36.1 to 138.9 ms). Although this may seem
relatively small, in situations where humans are moving at high
speed toward a hazard, as in driving or piloting, the savings may
be sufficient to avert disaster.

To put a time savings of 72 ms in context, consider the flight
characteristics of a F22 aircraft on the complex piloting task.
Table 9 gives the response times to the in-flight perturbation
for each participant [Figures 5A,B depicts the decoded response
times plotted on the single trial activation waveforms of the
adaptive automation (black circles) for participant 1 (best
performer) and 3 (median performer), respectively]. Even with
an average improvement of 72 ms in response time this can result
in an average savings of up to 7.4m of lost altitude as a result
of earlier initiation of recovery in attitude to the perturbation.
This could make a difference between a successful and failed
attempt to avoid a collision. It should be noted that the large
variability in savings between participants is likely a result of
the quality of the MEG data in terms of separating task related
activity from artifacts rather than expertise on the task. There
was no apparent relationship between the savings afforded by the
simulated neuroadaptive automation and manual response time
on the task. It is known that there is considerable variability in
the quality of MEG and EEG data across individuals that impacts
successful BCI performance (Lotte et al., 2013).

It must be acknowledged, however, that the improvement
in response time using neuroadaptive automation comes at the
expense of making false alarms on a small number of trials. As in
any automated alarm system, the tradeoff between correct early
warning (hits) and false alarms has to be considered when setting
the decision criterion of the alarm (Swets, 1973; Parasuraman and
Riley, 1997). It may be possible in some cases to adjust the criteria
of the BCI-decoder to make less false alarms at the expense of
making less hits as well and reducing the overall response time
improvement afforded by the neuroadaptive automation. For
example in the study by Blankertz et al. (2002) the classifier was
trained such that it was optimal under the constraint that the false
positive (false alarm) rate attains a preset value.

The presence of a false alarm by the BCI-decoder could
be somewhat problematic. Without some type of system that
would identify externally induced perturbations from changes
in attitude induced by the pilot in flight the neuroadaptive
automation would initiate a recovery maneuver. Which in this
case is to reverse the pitch down elevator deflection caused by
the perturbation. Without the presence of a real perturbation,
if the plane was in level flight and the BCI decoder made
a false-alarm the neuroadaptive automation would cause the
plane to make an abrupt climb. With respect to the pilot,
this would constitute a pitch up perturbation. The goal of the
hypothesized neuroadaptive automation is not to take control
away from the pilot but rather to speed up the response of the
pilot’s motor intentions to unexpected flight conditions such
as perturbation of attitude. While the use of detecting error-
related potentials to decrease error rate has been successful
in some implementations (Blankertz et al., 2002; Parra et al.,
2003) it, unfortunately, is not likely to be of benefit in detecting
motor intention to improve response time. This is because the
relevant features for detecting the error-related potential on a
single trial basis is after the response is made. One way to
possibly keep the pilot in the loop and reduce the effects of
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FIGURE 5 | The decoded response time (circles) plotted on the single

trial activation waveforms (ranging from: red: large positive amplitude

to blue: large negative amplitude) of the selected independent

component of the simulated neuroadaptive automation on the

complex piloting task for (A) the best participant (P01) and (B) the

middle range participant in terms of classification performance (P03).

Both perturbation absent trials (top of each plot) and perturbation present trials

(bottom of each plot) are shown. The perturbation present trials are arranged

in order of fastest manual response time (bottom) to the slowest (top). The

manual response times are denoted by the thick white line for the perturbation

present trials. The decoded response time, by the simulated neuroadaptive

automation (BCI classifier), of each trial is denoted by a black circle. For

perturbation present trials the black circles denote hits when their time is faster

than the manual response time (white line). For perturbation absent trials the

black circles denote false alarms. A red circle is shown over the original

response time in the case when the simulated neuroadaptive automation failed

to classify the trial as a hit (misses) or in which it was slower than the original

response time (slow responses).

false-alarms is to engage the neuroadaptive automation for only
a couple hundred milliseconds and immediately disengage it in
response to opposite deflection of the flight controls by the pilot.
This would reduce the detrimental effects of false-alarms and at
the same time would speed up response to recover from true
perturbations in the case of hits. Given that the BCI-decoder is
extracting motor intention related activity it would be interesting
to determine whether the pilot actually notices the engagement
of the neuroadaptive automation in the case of hits or rather

just feels that they are really fast in reacting. The extent to
which pilot-automation induced oscillations arise and offset the
beneficial affects of time savings of the neuroadaptive automation
need to be investigated using closed-loop implementation of the
system during flight simulation (It should be noted that our
study reported here only uses an open-loop BCI decoder tested
offline to test the feasibility of implementation in neuroadaptive
automation).

Although the BCI-decoder was trained using a specified
window (120 ms) centered at the time of the peak evoked
response prior to movement onset to detect a perturbation
causing a pitch down attitude while in straight and level flight
over the ocean (simple visual field) it was able to generalize to
a novel complex flight condition in which the pilot maneuvered
the plane through the Grand Canyon. In this complex condition
the orientation of the perturbation with respect to the horizon
is dependent on the roll angle (bank angle) of the plane at the
time of the perturbation. The magnitude of the perturbation
reflected in negative deflection in the pitch axis is dependent
on the planes attitude (pitch, roll, yaw axes), speed, airflow
over the flight surfaces, and the time in which it takes for the
pilot to initiate recovery (the longer it takes the bigger the
perturbation effect). It is impressive the BCI-decoder is able
to generalize to the novel complex flight condition given that
the nature of the perturbation and the corresponding visual
aspects of the scene and ongoing motor control are quite
different from the training situation. As we envision the closed-
loop operational neuroadaptive automation system it would not
need to know the magnitude of the perturbation (although
this information may be available by flight instruments) as its
job is to only initiate recovery based on the decoded motor
intention of the pilot. It is up to the pilot to appropriately
control the plane within the first couple hundred milliseconds
after the neuroadaptive automation has been initiated. As it
stands now the system is only set up to recover from a pitch
down attitude. Ideally, we would like a system that could recover
from a perturbation in attitude to any of the axes (pitch, roll,
yaw) or combinations thereof. By comparing data from flight
instruments that precisely measure attitude of all axes of the
plane and pilot directed control movements the neuroadaptive
automation could initiate the proper combination of control
surface deflections to recover from various types of non-pilot
induced perturbations. It would be interesting to test whether
our system would generalize to other types of perturbation
in attitude even though it was only trained on a pitch down
perturbation. While this system using constraints determined
by flight instruments may work in the case of perturbations it
may not be effective in situations involving collision avoidance
(e.g., with another aircraft or bird, etc.). In these situations it
would be necessary to additionally build a BCI-decoder that can
determine the desired direction of motor intention as it relates
to the flight controls governing the attitude of the plane. This
task may be difficult to accomplish within the framework of
achieving the desired time savings to initiate recovery as fast as
possible.

For the complex flying task no information was given
concerning the timing of the peak of the event related evoked
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response to the onset of the perturbation used during training.
Rather, the 120 ms window of the BCI-decoder progressed
through the data in 8 ms steps until it identified an occurrence
of a perturbation. The initial time window for the perturbation
present trials started at the onset of the perturbation (the onset
of the perturbation absent trials was randomly determined).
However, there is no implicit information in this starting time
that would reference the time of the evoked response upon which
the BCI-decoder was trained. The presence of false alarms for
the perturbation absent trials may be problematic for application
of neuroadaptive automation working in a continuous manner
given that the occurrence of true perturbations is quite sparse.
As was discussed above, one way to reduce the number of false
alarms made by the BCI-decoder is to only attempt to decode
motor intention at points in which a perturbation is detected by
flight instruments and then the appropriate recovery maneuver is
applied by the neuroadaptive automation. One could implement
a system that automatically recovers from a perturbation without
regards to the pilot’s intention (“Automation”). However, this is
not the intention of the neuroadaptive automation proposed here
for which the goal is to always keep the pilot intentions in control
of the aircraft.

Previous research conducted on detection of driver braking
intention, using EEG (Haufe et al., 2011, 2014; Kim et al., 2015),
is relevant to the discussion of our results. In their studies as well
as in ours simple amplitude based features related to the onset of
the visual event were used for decoding the onset of movement
intention. The visual event signaling the onset to move in the
Haufe et al. (2011, 2014) and Kim et al. (2015) studies was the
flashing of the brake light on the car just in front of the one the
participant was driving. In our study the visual event signaling
the onset to move was the changes in the optic flow field and
the change in the position of the horizon (sky relative to ground)
(See Figure 2). The finding that the best participant’s decoding
model generalizes to the remaining six subjects on detecting
perturbation on the complex flying task with significant, although
reduced, time savings (See Tables 6, 8), does suggest that the
features selected by the model are not individual specific but
are to some degree common across participants. As it stands
now at least one session of the simple flying task is necessary
to extract the task related independent component that help in
artifact extraction. However, the finding that the BCI-decoder
generalizes across participants (See Tables 6, 8) is promising in
future attempts to make a generic system that does not require
training.

There are three important aspects that distinguish our study
from that of previous studies investigating braking intention.

The first is that our test condition was on a novel task that
was fairly different from the one the BCI-decoder was trained
on rather than just using a subset of trials on the same task
for testing as is commonly done in decoding studies (Garrett
et al., 2003; Wilson and Russell, 2007; Haufe et al., 2011, 2014;
Baldwin and Penaranda, 2012; Callan et al., 2015; Kim et al.,
2015). Our study demonstrates that a BCI-decoder trained on a
simple task can generalize to amore complex one characteristic of
real world conditions with significant performance in identifying
perturbation events (mean bacc= 73%, p< 0.05; mean d′ = 1.52;

mean a′ = 0.84; Table 5) with a significant time savings of 72 ms
(Table 7).

The second is that the testing session (complex piloting task)
requires that the participant use the same control stick to recover
from the perturbation as used to maneuver the plane tracking
above the river. Under these conditions it is necessary for the
BCI-decoder to be able to distinguish brain activity related
to the perturbation and the intention to move from ongoing
changes in the visual field and motor intention required to
pilot the plane. This is substantially different from decoding
of movement intention of the foot from the accelerator to
the brake in response to a flashing light. In order to extract
neural activity related to movement intention in response to a
perturbation, rather than that just related to the visual event, the
BCI-decoder was trained to distinguish between trials in which
the participant was to pull back on the control stick in response to
a perturbation vs. just passively viewing the perturbation. All but
one of the subjects showed significant classification performance
in identifying movement intention trials from passive viewing
trials on the test session (mean bacc = 69.8%, p < 0.05; mean
d′ = 1.30; mean a′ = 0.80; See Table 4). The ability of the
BCI-decoder to be able to identify cases of motor intention in
response to identical visual events likely contributes to its ability
to distinguish between variations in brain activity in response
to changes in the optic flow pattern and movement intention
in response to a perturbation rather than changes in the optic
flow pattern induced by piloting while maneuvering through the
Grand Canyon.

The third is the difference in response time for emergency
braking, that is approximately 650 ms (Haufe et al., 2011, 2014;
Kim et al., 2015), compared to pulling back on the stick to recover
from a perturbation, which took approximately 437 ms for the
complex flying task and 369 ms for the simple flying task. One
reason why the time savings in the braking studies [up to 222 ms
using combined EEG and EMG (Haufe et al., 2014)] is larger than
in our study (72 ms) may be attributed to the longer response
time for emergency braking (over 200 ms longer). The mean
peak of the event related potentials used as the target range to
train the BCI-decoders in our study was 246 ms (See Figure 3B).
Because of the relatively fast response times the slower event
related potentials could not be used for decoding because they
occur after the behavioral response has already been given. The
mean response time for the complex flying task for the adaptive
automation is 352.7 ms compared to the original of 425.0 ms.
The mean time in which decoding performance reached an area
under the curve (A′) value of 0.8 was also around 350 ms in the
emergency braking studies (Haufe et al., 2011, 2014; Kim et al.,
2015). It should be mentioned that the improvement in response
time afforded by the adaptive automation in our study for some
of the participants allowed them to have almost superhuman
performance on this piloting task.

Given that the perturbation we employed abruptly alters
the optic flow field we predict that visual motion processing
areas as well as brain regions involved with motor intention
(premotor cortex, motor cortex, somatosensory cortex, parietal
cortex) are involved in decoding the decision for rapidmovement
in response to an impending hazard. While there is considerable
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variability in the extent and location of brain activity of the
selected independent component used for the BCI-decoder
for each participant there are regions that are commonly
activated across the participants (See Figures 3, 4 and Tables 2,
3). Consistent with our predictions all subjects showed some
degree of activity in visual motion processing areas (hOC5,
MT, IOG), as well as the premotor cortex, pre-central gyrus
(motor cortex), post-central gyrus (somatosensory cortex), and
parietal cortex (superior parietal lobule) (See Figures 3, 4 and
Tables 2, 3). The visual cortex (BA17,18) also showed some
degree of activity from all subjects (See Figures 3, 4 and
Tables 2, 3). Our findings are consistent with fMRI research
investigating action intentions from preparatory brain activity
(Gallivan et al., 2011). In the Gallivan et al. (2011) study,
decoded activity from voxels in multiple parietal, premotor, and
motor regions was found to successfully predict intended future
grasp and reachmovements. A study using electrocortiocography
(ECoG) revealed that in addition to motor and premotor activity
somatosensory activity also precedes voluntary movement (Sun
et al., 2015). The finding of predominantly caudal rather
than rostral dorsal premotor cortex activation found for most
participants in our study (See Figures 3, 4 and Tables 2,
3) is interesting as it relates to studies showing that that
action intention is processed more caudally and attention is
processed more rostrally in the premotor cortex (Boussaoud,
2001).

A potential limitation of our study is the low number of
participants. However, the primary aim of our study is to show
the feasibility of the proposed approach for the development
of neuroadaptive automation and to determine limitations that
need to be addressed in future research. In our study the
results from each individual participant are given. Even when
individually tailored models were trained specifically on data
from that participant there is some degree of variability in
performance at predicting presence/absence of a perturbation
(ranging from 63.7 to 85.6%, See Table 5), and the corresponding
time savings (ranging from 36.1 to 138.9 ms, See Table 7), as
well as the pattern of brain activation (See Figures 3, 4 and
Tables 2, 3). In the future, it may be interesting to investigate
why some participants have better predictive models than others.
These results strongly suggest that best performance will be
achieved by individually tailored systems rather than using a
generalized system that works across individuals. The drawback
of individually tailored systems is the time necessary to train
the system including ICA and the BCI-decoder. While this
study does demonstrate that it is potentially possible to enhance
response time by using an off-line BCI-decoder in these select
participants it will be necessary to test a larger sample to see how
well they generalize to the population in general and to determine
factors predicting model efficacy.

Given that themean time savings is 72ms in the simulated off-
line open loop neuroadaptive automation system demonstrated
here, it is important to discuss whether the processing time
would be of sufficient speed to be used in a real-time closed loop
neuroadaptive automation system (see Figure 1). The Yokogawa
400 channel MEG system at ATR is set up with a real-time
processing system. The hardware and software for acquiring

MEG channel data in real time and analog to digital conversion
includes the following: National Instruments A/D Converter
boards (6 Boards: 80 channels per board) can convert 400 MEG
channels plus additional channels (EEG, EOG, triggers, etc.)
sampled at 1000 Hz. To get high temporal precision that is stable
the National Instruments real-time operating system “Pharlab”
is used on a dedicated computer. Pharlab carries out filtering
operations on 400 channel MEG and sends the analog to digital
converted MEG channel data via UDP to a different computer
for further processing in ∼1.5 ms. The application of the ICA
weight matrix of the selected independent component to the
400 channel MEG data as well as the weight matrix of the BCI-
decoder over the computed activation waveform is <0.1 ms.
The ICA and BCI-decoder can operate in such a short time
because the weights have been trained ahead of time based on
data from previous sessions. Therefore, the data acquisition,
preprocessing, and BCI-decoding can all be accomplished in
<2 ms in the real-time system. The X-Plane flight simulator is
running at around 400 Hz. It takes ∼2.5–5 ms for the flight
simulator computer to receive the command from the BCI-
decoder computer over UDP and initiate the directed command.
Based on the specifications of the system at ATR the loss in
time savings afforded by the simulated neuroadpative automation
resulting from processing time would be ∼4.5–7 ms. This would
still leave a mean time savings afforded by the neuroadaptive
automation ranging from 65 to 67.5 ms, which could be of
substantial benefit in hazardous time critical situations. Most
of the delay (resulting in reduction of time savings) is in the
processing speed of the flight simulator, which theoretically could
be improved if using dedicated hardware and software in a real
aircraft.

While this system is specific to the MEG setup at ATR it is
possible to make such a dedicated real-time system that will work
with EEG that can be used in real-world settings. In order for
the system to be feasible in real aircraft it will be necessary to use
a more portable technology such as EEG. The signal processing
techniques used in this study together with automatic subspace
reconstruction have been shown to be able to separate artifacts
from brain related activity in flight even in an open cockpit
biplane (Callan et al., 2015). It is uncertain whether moving
from 400 channels to 64 or 20 channels with an EEG setup will
have a large effect on system performance. Source localization
would likely be considerably worse in the case of EEG especially
with 20 channels compared with that of MEG. The number of
channels will also play an important part in the ICA in the
number of brain and artifact components that can be separated.
In future research we will test an EEG based closed-loop version
of this neuroadaptive automation system on a motion platform
based flight simulator to determine its feasibility and additional
processing that may be necessary if it were to be realized in actual
manned or unmanned aircraft.

CONCLUSION

Our study explores the potential that neuroadaptive automation
may have in facilitating human performance. Our goal is to
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develop a system that enhances performance to super human
levels during normal hands on operation of an airplane (vehicle)
by reducing the response time by directly extracting from the
brain the movement intention in response to a hazardous
event. This approach differs considerably from those that
utilize BCI to maneuver a vehicle by hands-off control by
such methods as decoded mental imagery or attention related
steady state visual evoked potentials (Blankertz et al., 2010;
LaFleur et al., 2013). These applications of BCI, although
impressive, are severely limited in performance compared to
normal hands on control with the addition of greater workload
as well as divided attention away from the task at hand (It
should be noted however, that these types of BCI are of
extreme benefit when the normal channels of motor control
are impaired). Advantages of the neuroadaptive automation
BCI implementation proposed here, afforded by the use of
only brain activity naturally occurring during the perceptual
motor task, include improved performance with no additional
workload or attentional demands for the pilot (operator), as
well as no training by the pilot to fit the BCI. However, it
should be noted that human training protocols for utilizing
BCI are likely to improve performance (Lotte et al., 2013). Our
proposed BCI-decoder works continuously over time without
any a-priori knowledge of when a perturbation may occur.
In addition it was shown to be able to generalize to more
complex tasks and differentiate between motor intention to
an unexpected perturbation from that used during normal
maneuvering. Future research needs to test the proposed
neuroadaptive automation online using EEG in motion based
flight simulators as well as in real airplanes to evaluate its real-
world performance. It is interesting to conjecture whether the
participants will notice when the neuroadpative automation is
active or will they just think they are responding really fast.
This research adds to the growing field of neuroergonomics
and specifically to aviation cerebral experimental sciences. Our
results, using an off-line BCI-decoder, suggest that indeed
neuroadaptive automation can be implemented that is faster than

the hand. The data can be shared with interested scientists upon
request.
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Mental workload is a mental state that is currently one of the main research
focuses in neuroergonomics. It can notably be estimated using measurements in
electroencephalography (EEG), a method that allows for direct mental state assessment.
Auditory probes can be used to elicit event-related potentials (ERPs) that are modulated
by workload. Although, some papers do report ERP modulations due to workload using
attended or ignored probes, to our knowledge there is no literature regarding effective
workload classification based on ignored auditory probes. In this paper, in order to
efficiently estimate workload, we advocate for the use of such ignored auditory probes
in a single-stimulus paradigm and a signal processing chain that includes a spatial
filtering step. The effectiveness of this approach is demonstrated on data acquired
from participants that performed the Multi-Attribute Task Battery – II. They carried out
this task during two 10-min blocks. Each block corresponded to a workload condition
that was pseudorandomly assigned. The easy condition consisted of two monitoring
tasks performed in parallel, and the difficult one consisted of those two tasks with
an additional plane driving task. Infrequent auditory probes were presented during the
tasks and the participants were asked to ignore them. The EEG data were denoised
and the probes’ ERPs were extracted and spatially filtered using a canonical correlation
analysis. Next, binary classification was performed using a Fisher LDA and a fivefold
cross-validation procedure. Our method allowed for a very high estimation performance
with a classification accuracy above 80% for every participant, and minimal intrusiveness
thanks to the use of a single-stimulus paradigm. Therefore, this study paves the way to
the efficient use of ERPs for mental state monitoring in close to real-life settings and
contributes toward the development of adaptive user interfaces.

Keywords: workload, classification, auditory evoked potentials, spatial filtering

INTRODUCTION

Mental workload is frequently defined as task difficulty and the associated mental effort (Gevins
and Smith, 2007). It is therefore of critical interest to better assess this state to the human
factor community who aims at developing smart technologies that enhance operator’s safety and
performance. The impact of workload on behavior has been extensively documented. Participants’
reaction time is known to increase linearly with the increase in the number of items to memorize

Frontiers in Human Neuroscience | www.frontiersin.org October 2016 | Volume 10 | Article 519 | 141

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2016.00519
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fnhum.2016.00519
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2016.00519&domain=pdf&date_stamp=2016-10-13
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00519/abstract
http://loop.frontiersin.org/people/237124/overview
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-10-00519 October 8, 2016 Time: 16:28 # 2

Roy et al. Workload Classification Using Ignored Probes

(Sternberg, 1969), as well as with the number of tasks to perform
in parallel (Cain, 2007). However, behavioral responses are not
always enough for mental state monitoring (MSM) systems,
mainly due to their latency of occurrence, and to the fact that
some mental states are not necessarily or systematically reflected
by a specific response. Physiological data give more insight into
the operator’s state, especially electroencephalography (EEG),
a method that allows for direct mental state assessment. The
use of physiological markers derived from the cerebral activity
for human factor purposes has given rise to a new field:
neuroergonomics (Parasuraman et al., 2012).

Amongst the various markers derived from the EEG activity,
event-related potentials (ERPs) are frequently used for MSM.
ERPs correspond to the EEG activity that is temporally locked
to the appearance of a given stimulation, or probe. Although,
ERPs only allow for a discontinuous evaluation of the operator’s
mental state -unlike frequency measures, according to Roy et al.
(2016) frequency measures are very sensitive to mental fatigue
and vigilance states whereas ERPs are more robust to these states.
Therefore, ERPs may be more suitable for ecological settings.
Moreover, the literature describes numerous workload-related
ERP modulations, such as early and late components’ amplitude
decreases. Hence, the P300 component’s amplitude is reduced
by an increase in workload (Kok, 2001; Schultheis and Jameson,
2004; Gomarus et al., 2006; Holm et al., 2009; Friedrich et al.,
2011), and so is the N1, N2, and P2 components’ amplitude
(Kramer et al., 1995; Ullsperger et al., 2001; Gomarus et al., 2006;
Allison and Polich, 2008; Miller et al., 2011; Boonstra et al., 2013).
In the specific context of simulated flight, the P300 component’s
amplitude elicited by auditory probes has also been shown to
decrease when the primary task’s complexity increases (Natani
and Gomer, 1981; Kramer et al., 1987; Sirevaag et al., 1993).

In order to determine an operator’s mental state to modify
the behavior of a system, one needs to compute an index
or a class of workload to be fed as an input. This can be
done using machine learning algorithms developed for brain–
computer interfaces (BCIs). When those algorithms are used for
applications that are not directed toward the voluntary control of
an effector, those systems are often referred to as passive BCIs
(Zander and Kothe, 2011; van Erp et al., 2012). Although, the
number of publications regarding mental workload assessment
has drastically increased this decade, only a few articles actually
propose a classification based on ERPs. Brouwer et al. (2012)
used seven electrodes and achieved 64% of correct binary
classifications. Recently, it was proved that ERP spatial filtering
could significantly enhance workload classification (Mühl et al.,
2014; Roy et al., 2015). The authors achieved 72 and 98% of
correct classifications using respectively a Fisher spatial filtering
(FSF; Hoffmann et al., 2006) and a canonical correlation analysis
filtering (CCA; Hotelling, 1936). However, these authors used
task-dependent probes, i.e., items that were paramount for the
task at hand, which is therefore quite unrealistic for real-life
settings. Very recently, Roy et al. (2016) showed that ERPs elicited
by visual task-independent probes could be used for mental
workload estimation. They inserted a basic detection task in
a Sternberg memory task and used the ERPs elicited by the
targets to classify the workload level of the memory task. They

reached 91% of correct binary classifications by filtering the
ERPs using a CCA. This is very promising, however the probes,
although task-independent, still required an overt answer from
the participant. This kind of dual task setting can therefore lead
to decreased attentional engagement to the primary task, which
seems rather unwelcome for operators’ monitoring in hazardous
work situations (e.g., driving, plant monitoring, custom control).
Hence, the best approach to use ERPs in ecological settings would
be a stimulation paradigm with task-independent and ignored
probes. And as the ultimate goal should be to develop systems
based on minimally intrusive probes, these stimulations should
be as scarce as possible. As reported by Mertens and Polich
(1997), the ERPs elicited in a single-stimulus paradigm by visual
or auditory probes are a viable alternative to the traditional
oddball procedure, although late components’ amplitude is
reduced when the stimuli are ignored compared to when they
are counted or await a motor response. The authors even report
that auditory probes elicit ERPs that are more robust to response
type. That is to say that ignored auditory stimuli generate early
and late components which amplitude is quite similar to that of
stimuli awaiting an active answer. This makes them very good
candidates for the features to use in a mental workload estimation
procedure.

This study intends to provide an evaluation of the efficiency of
a workload estimation based on the ERPs elicited by infrequent,
task-independent and ignored auditory probes. Workload was
modulated by modulating the number of tasks to perform in
parallel with the Multi-Attribute Task Battery – II (MATB;
Comstock and Arnegard, 1992). A single-stimulus paradigm was
used to elicit ERPs which were then spatially filtered with a
CCA and classified. The performance of this processing chain
was also compared to that of a simpler chain without spatial
filtering. The contributions of this paper are threefold: (1) to
assess the validity of the single-stimulus paradigm for effective
mental workload estimation; (2) to assess the relevance of a
processing chain that includes a spatial filtering step in order to
classify accurately the auditory evoked potentials (AEPs) of those
ignored, infrequent probes; (3) to assess the relevance of both the
stimulation paradigm and the processing chain for an ecologically
valid task, the MATB.

MATERIALS AND METHODS

This research was promoted by Grenoble’s clinical research
direction (France) and was approved by the French ethics
committee (ID number: 2014-A00040-47) and the French health
safety agency (B140052-31).

Experimental Setup
Eight healthy right-handed volunteers (three females; 29.9 years
old ± 5.9) performed two 10-min experimental blocks of
the Multi-Attribute Task Battery-II, the last version of task
developed by NASA to study divided attention and multitasking
(Comstock and Arnegard, 1992; Figure 1). In this experimental
setup, each block corresponded to a different workload level
(low/high), which was pseudo-randomly assigned. In the low
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FIGURE 1 | Multi-Attribute Task Battery – II. The participants performed two out of three of the circled sub-tasks during the low workload condition (system
monitoring and resource management tasks), and an additional third task during the high workload condition (tracking task).

workload condition, the participants performed two monitoring
tasks using the keyboard, i.e., the system monitoring and
the resource management tasks. The system monitoring task
was presented in the upper left window of the display. As
explained in the article of Comstock and Arnegard (1992),
the demands of monitoring gages and warning lights were
simulated here. The participants had to respond to the absence
of the green light, the presence of the red light, and to
monitor the four moving pointer dials deviation from midpoint.
Regarding the resource management task, it simulated the
demands of fuel management. The participants had to maintain
tanks A and B at 2500 units each. This was done by turning
on or off any of the eight pumps, which can sometimes
fail.

In the high workload condition, they had an additional
tracking task to manage in parallel. The tracking task was located
in the upper middle window and simulated the demands of
manual control. The participants had to keep the target at the
center of the window using the joystick. Therefore, in both
the low and high workload conditions perceptual, attentional,
and decision making processes are recruited, along with motor
preparation and performance. The difference between the low
and the high workload conditions only stems in the additional
workload imposed by the additional task.

FIGURE 2 | Single-stimulus paradigm using ignored and infrequent
auditory probes.

In addition to the visual stimulations induced by the MATB-II,
the participants received auditory stimuli. They were instructed
to ignore these auditory stimuli and to focus on the task at
hand. These stimuli were sent by the Eprime software (E-prime
Psychology Software Tools, Inc., Pittsburgh, PA, USA) into their
Sennheiser audioset. In a similar fashion to the single-stimulus
paradigm of Allison and Polich (2008), they consisted of 100 ms
1000 Hz pure tones (10 ms rise/fall, 65 dB SPL), with a random 6–
30 s inter-tone interval (Figure 2). A minimum of 30 stimulations
per block were presented.

Data Acquisition
Data acquisition was performed at the IRMaGe Neurophysiology
facility (Grenoble, France). The participants’ answers to the
Rating Scale Mental Effort questionnaire (RSME; Zijlstra, 1993)
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and their resource management task root mean square (RMS)
error scores were recorded, as well as their EEG activity using
an Acticap R© (Brain Products, Inc.) equipped with 32 Ag-AgCl
unipolar active electrodes that were positioned according to the
10–20 system. The reference and ground electrodes used for
acquisition were those of the Acticap, i.e., FCz for the reference,
and AFz for the ground. The electro-oculographic activity was
also recorded using two electrodes positioned at the eyes outer
canthi, and two respectively above and below the left eye.
Impedance was kept below 10 k� for all electrodes. The signal
was amplified using a BrainAmpTM system (Brain Products, Inc.)
and sampled at 500 Hz with a 0.1 Hz high-pass filter and a 0.1 µV
resolution. Participants were instructed to limit eye and body
movements during the task.

Signal Processing
The processing chain is detailed in Figure 3. In a general
manner, the raw data was preprocessed, then spatially filtered,
and lastly classified. Details are given in the following sub-
sections regarding each step of this chain. It should be noted
that the same processing chain was replicated without the spatial
filtering step in order to evaluate if spatial filtering enhances the
discriminability of the two workload levels.

Preprocessing
The digital EEG signal was band-pass filtered between 1 and
40 Hz, and re-referenced to a common average reference. The
signal was then epoched starting 100 ms before and ending
600 ms after the auditory stimulation. Next, artifacts related to

ocular movements (saccades and blinks) were corrected using the
signal recorded from the electrooculographic electrodes (EOG)
and the Second Order Blind Identification algorithm (SOBI;
Belouchrani et al., 1997). This algorithm was chosen to perform
the source decomposition because thanks to its assumption of
non-correlation –and not mutual independence- it has been
shown to be more suitable for electrophysiological data by
Congedo et al. (2008). In order to get closer to a system that could
be implemented on-line in a real-life setting, the two sources that
were the most correlated to the EOG activity were canceled. All
trials were kept for analysis. The AEPs were then extracted by
subtracting a 100 ms baseline (i.e., mean signal amplitude) to the
600 ms segment that starts at the onset of the stimulation. Lastly,
the data was decimated to 100 Hz using a five-point moving
average.

Spatial Filtering
Then, the preprocessed data X (Ns – number of samples × Ne –
number of channels) were spatially filtered, resulting in the signal
Z = WX (Ns – number of samples × Nf – number of spatial
filters). Each column of the matrix W contains a spatial filter with
its spatial pattern in the corresponding column of A = (W−1)T.
In this paper, we use CCA as a spatial filtering method. As
Spüler et al. (2014) detailed it , in a two-class scenario the
CCA filters are computed in order to maximize the correlation
between the EEG signal X and the matrix Y = D1P1+D2P2 that
contains the time replication of the average ERP responses Pi
for each class. The matrix Di is a Toeplitz binary matrix that
indicates the stimulation onset for the ith class (Rivet et al., 2009).

FIGURE 3 | Flow diagram of the signal processing chain applied on the EEG data in order to estimate mental workload.
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Several methods have been proposed to solve CCA by computing
orthonormal bases for the data matrices either by QR or singular
value decomposition – SVD (Björck and Golub, 1973).

The CCA spatial filters were computed using the training data
only. Then, the spatial filters with the two highest associated
canonical correlations were selected. When these filters are
applied on the testing data, the feature vector for the jth trial
is given by the column concatenation fj= vec(Xj[w1w2]) with
dimension 120x1 (i.e., 60 samples× 2 virtual electrodes). In order
to have the same number of features for both processing chains
(with and without spatial filtering), for the chain without spatial
filtering the feature vector was composed of the concatenated
signals of the C3 and Pz electrodes (chosen visually using the
average spatial patterns presented in Section “Spatial patterns”).

Classification
A single-trial classification was performed on the feature vector
f using a Fisher linear discriminant analysis (FLDA), with a
shrinkage estimation of the covariance matrices (Schäfer and
Strimmer, 2005). As explained by Blankertz et al. (2011), this
estimation method allows the use of LDA with high dimensional
features and gives good results that can generalize well (Blankertz
et al., 2011). We used a random fivefold cross-validation
procedure. The spatial filters were learned on the training set,
and applied on the testing set. In the same way, the shrinkage
estimation was learned on the training set. The performance of
the processing chains was assessed based on their intra-subject
binary classification accuracy.

Statistical Analyses
Statistical analyses were carried out on all results, i.e., subjective
results from the RSME questionnaire, N1, P1, N2, P2, and
P3 peak amplitude and latency from the AEP components,
and classification results obtained using the processing chains
with and without spatial filtering. All results were compared
between themselves using repeated measures ANOVAs and
Tukey post hoc tests. The significance level was set at
0.05.

RESULTS

Behavioral and Subjective Data
In a similar manner to Fournier et al. (1999), behavioral
responses were standardized within each participant by
dividing their response times to the resource management
tasks by their proportion of correct responses. There was
a significant effect of workload on this performance score
(t = 2.99, p < 0.05), the participants’ performance was
significantly degraded in the high workload condition
compared to the low workload condition (m1_perf = 0.33;
sd1_perf = 0.12; m2_perf = 0.43; sd2_perf = 0.12).
Moreover, the participants reported having furnished a
significantly bigger effort in the high workload condition
than in the low workload one [F(1,7) = 38.04, p < 0.01;
m1_RSME = 45.5; sd1_RSME = 18.2; m2_RSME = 71.6;
sd2_RSME= 24.3].

FIGURE 4 | Grand average (in bold) and standard deviation (dotted line) of the auditory evoked potentials (AEPs) elicited by the ignored infrequent
auditory probes depending on workload condition at major midline electrode sites (Fz, Cz, Pz, and Oz), as well as at auditory processing relevant
sites (T7 and T8).
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Auditory Evoked Potentials
Figure 4 gives the grand-average AEPs across participants at
major median electrode sites (Fz, Cz, Pz, and Oz), as well as at
electrode sites located close to the auditory cortex (T7 and T8).
Figure 5 also gives the individual AEPs for the eight participants
at the Pz electrode site (chosen to illustrate the results that
follow regarding early components). The typical components
reported to be modulated by workload can be noticed, i.e., N1,
P1, P2, N2, and P3 (Kramer et al., 1995; Kok, 2001; Ullsperger
et al., 2001; Schultheis and Jameson, 2004; Gomarus et al.,
2006; Allison and Polich, 2008; Holm et al., 2009; Miller et al.,
2011; Boonstra et al., 2013). However, the statistical analyses
revealed only few significant results at the group level, which
is understandable given the mostly overlapping variance of
both signals (see standard deviations in Figure 4). Indeed, with
increasing workload there were only trends at the Pz electrode for
a decrease in amplitude of the P1 component (p= 0.11; Figure 5)
and for a decrease in latency of the N1 component (p = 0.07).
Moreover, when workload increased there was a significant
decrease in latency of the P2 component at all electrode sites
[F(1,7)= 6.74, p < 0.05].

Spatial Patterns
The topographical representation of each of the two CCA spatial
patterns obtained for each participant using the processing chain

proposed in this paper are presented respectively in Figures 6 and
7 (average across training folds). The first spatial pattern reveals
that in order to better discriminate workload levels, our first
selected spatial filter enhances the activity from centro-parieto-
occipital regions -consistent with attentional processing, while
the second one enhances the activity from temporal regions -
consistent with auditory processing- as well as prefrontal areas
which could be related to ocular activity.

Filtered EEG Signal
The filtered EEG signals obtained from the testing sets for
each participant using the first and second CCA filters are
presented respectively in Figures 8 and 9 (grand average across
cross-validation folds). Both filters seem to mainly enhance the
ERP activity of the low workload condition while decreasing it
for the high workload condition from around 50 to 400 ms.
This is particularly true for participants 3 and 4 for the early
components. The signal’s polarity fluctuates in a different manner
depending on the participant and the filter, however, a general
pattern emerges. Particularly, for both filters we can see an
enhancement in the low workload condition of the amplitude
of the early components that peak between 80 and 250 ms, be
it in the negative or in the positive range. Therefore it seems
that the filters act in a way so that they enhance the relevance
of early auditory evoked components but not so much of later
components.

FIGURE 5 | Auditory evoked potentials elicited by the ignored infrequent auditory probes depending on workload condition at the Pz electrode site
for all participants (grand average across trials).
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FIGURE 6 | Individual CCA spatial patterns of the first filter used to
enhance the discrimination of the workload condition (grand average
across training folds).

Classification Accuracy
The workload level classification results obtained using the
single-stimulus paradigm and both the processing chain that
includes a CCA spatial filtering step and the simpler processing
chain without spatial filtering are given by Figure 10 for each
participant. There was a significant effect of the type of processing
chain [F(1,7)= 39.90, p < 0.001]. Indeed, the chain that included
the CCA spatial filtering step gave higher classification results
than the one that didn’t. The mean percentage of correct binary
classification across the eight participants was 90.51% ( ± 10.7
SD) and 71.49% ( ± 15.9 SD) respectively for the processing
chains with and without spatial filtering. Using the chain that
included the CCA filtering, the performance was optimal for
participant 4 with a classification accuracy of 100% and a null
standard deviation, and the lowest performance was obtained for
participant 7 with a classification accuracy of 80% and a very large
standard deviation of 21.73.

DISCUSSION

Studies have demonstrated that workload modulates the ERPs
elicited by attended or ignored auditory probes in a classical
oddball paradigm involving deviant and standard tones (Kramer
et al., 1995). Allison and Polich (2008) had also demonstrated this

FIGURE 7 | Individual CCA spatial patterns of the second filter used to
enhance the discrimination of the workload condition (grand average
across training folds).

phenomenon using only infrequent standard tones (i.e., single-
stimulus paradigm). However, to our knowledge, there was no
literature regarding effective workload classification based on
ignored auditory probes. Indeed, no signal processing chain had
been applied to estimate workload in an automatic way from the
ERPs of ignored auditory stimuli. Hence, this study was intended
to bring new light on the potential use of ignored infrequent
task-independent probes to efficiently and automatically assess
mental workload in a minimally intrusive way. In order to
do so, a single-stimulus paradigm similar to that of Allison
and Polich (2008) was used, along with a processing chain
that included a CCA spatial filtering step. The participants
rated their effort as significantly higher for the high workload
condition than for the low one and also exhibited a decrease in
performance in the high workload condition compared to the
low workload condition akin to that observed by Fournier et al.
(1999). Their ERPs revealed only trends for a decrease in P1
amplitude and N1 latency, as well as a significant decrease in
P2 latency. These results are in line with the literature regarding
resource allocation processes. In a general manner, the amplitude
of the ERP components that occur within the first 250 ms
following stimulus onset has been demonstrated to be influenced
by attentional capacity allocated to the eliciting stimulus and
task operations (for a review see Kok, 1997). For instance, the
P1 component amplitude is larger in active relative to passive
viewing conditions (Fu et al., 2010). As for the N1 and the
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FIGURE 8 | Individual filtered test data – using the first CCA filter – depending on workload condition (grand average across cross-validation folds).

P2 latency, it has also been shown to decrease with a decrease
in allocated attentional resources (Okita, 1979; Callaway and
Halliday, 1982). However, more differences in amplitude were
expected based on articles that describe workload modulations
for ERPs elicited by task-dependent stimuli, specifically on late
ERP components’ amplitude (Kok, 2001; Ullsperger et al., 2001;
Schultheis and Jameson, 2004; Gomarus et al., 2006; Holm et al.,
2009; Miller et al., 2011; Boonstra et al., 2013). Yet, Kramer
et al. (1995) had found that only the early components of the
ERPs elicited by ignored task-irrelevant probes were relevant to
perform a non-intrusive workload assessment, and that the late
P300 component was not a good marker for such a goal. Our
results confirm theirs as to which components are significantly
modulated by workload using ignored auditory probes.

Despite the few significant results obtained at the group level
regarding AEP components’ amplitude, very accurate mental
workload estimations were obtained using a signal processing
chain that included a CCA spatial filtering step with at least 80%
of correct binary classification accuracy for all participants, and
an average of 90.51%. This result is in line with the literature
that shows that classifiers can reveal statistical differences when
standard statistical tests between ERPs do not (Noh and de
Sa, 2014). Also, here the use of the CCA spatial filtering step
significantly enhanced the estimation performance, as already
demonstrated by Roy et al. (2015), and also reduced the variance
in the results. Besides, this is only slightly lower than what Roy

et al. (2016) obtained using task-independent visual probes -91%.
This is very promising given that here, opposite to their protocol,
the task-independent probes required no overt response and were
ignored by the participants. Moreover, the probes used in this
experiment are auditory while they were visual in their protocol.
Lastly, those results are also higher than that obtained by previous
studies that classified raw or spatially filtered ERPs elicited by
task-dependent probes (Brouwer et al., 2012; Mühl et al., 2014).
Therefore, the use of the single-stimulus paradigm coupled to
a processing chain that includes a spatial filtering step allows a
precise estimation of mental workload for a task that is very close
to an actual work task. A limitation to this study is the number
of trials, although in ecological settings it will be difficult to use
more probes and to remain minimally intrusive. Nevertheless,
according to Combrisson and Jerbi (2015), if we have more than
20 trials our performance should be over 70% in order to account
for a significant detection with a p < 0.05 significance rate. Here,
using the spatial filtering step we obtained at least 80% of correct
detections, and an average of 90.51% with a minimum of 30
trials per condition. Therefore, we can say that our results were
significantly above chance and that our method is quite efficient.

The spatial patterns of the selected CCA filters revealed that
an enhancement of temporal and centro-parietal activity allowed
reaching such high classification results. This is in accordance
with the auditory nature of our probes. It is interesting to note
that the activity that was enhanced by the spatial filters in the
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FIGURE 9 | Individual filtered test data – using the second CCA filter – depending on workload condition (grand average across cross-validation
folds).

FIGURE 10 | Workload level classification accuracy reached for each participant using the raw data of two electrodes or a CCA spatial filtering step
(mean and standard deviation of the percentage of correct binary classification across the random fivefold cross-validation procedure).

previously mentioned study of Roy et al. (2016) who used task-
independent visual probes originated from the occipital sites,
in accordance with the visual nature of their stimuli. In our

study, given that the probes were auditory, we observed a specific
enhancement of the activity from the temporal electrode sites.
The signal from the centro-parietal sites was also enhanced in
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their study as in ours. These sites are known to be involved
with attentional processing, and more generally with resource
engagement (Kok, 1997). Additionally, the patterns also revealed
an implication of prefrontal sites, which could stem from an
under-efficient ocular artifact correction step in our processing
chain. Indeed, in order to preserve the cerebral activity as
much as possible, we only deleted the 2 out of 32 sources
that were the most correlated to respectively the vertical and
horizontal EOG channels. Also, given that the MATB-II is a
task that is very close to a real work task, it elicits more
ocular movements than classical laboratory tasks during which
participants are asked to fixate the center of the screen and
to limit eye movements and blinks. In any case, if it is
indeed ocular activity that our second spatial filter enhanced, it
means that this ocular activity allows efficient mental workload
estimation. This is not surprising given that blink frequency
has been reported to vary depending on task difficulty (Holland
and Tarlow, 1972; Tanaka and Yamaoka, 1993). Moreover, it
is known that the appearance of an unexpected stimulation
leads to a startle eyeblink reflex. This reflex is attenuated
during a multiple-task –high workload- compared to a single-
task condition –low workload (Neumann, 2002). Therefore, the
ocular activity produced in response to an infrequent auditory
probe could be an efficient marker of task engagement and
mental workload. As Roy et al. (2014) already argued , if
ocular activity is helping to discriminate workload levels, why
remove it? Hence, it might be interesting for future developments
to use a processing chain that either does not include an
ocular artifact correction step, or, that does but performs
classification by fusing two feature vectors, a clean EEG one
and an ocular activity one. Multimodality in terms of origin
of the physiological markers (e.g., cerebral or ocular) could
therefore be the key to enhance classification accuracy for real-life
implementations.

Besides, this study evaluates the relevance of a stimulation
paradigm and its dedicated processing chain for an ecological
task which is the MATB. Although still in a laboratory
setting, this task is very close to that performed by pilots
and air traffic controllers. However, it modulates workload
only by varying the number of tasks to perform in parallel,
that is to say by varying the participants’ degree of divided
attention. In order to pursue the evaluation of the relevance
of this stimulation paradigm, future work should focus on
an evaluation of its relevance for several tasks that modulate
workload based on different cognitive functions, e.g., working
memory load, divided attention, executive functions. To our
knowledge, only Berka et al. (2007) assessed the relevance
of an EEG marker across several types of tasks. But, they
focused on frequency power in the classical EEG bands.
Thus, in order to progress toward an efficient estimation
in real-life settings, the literature still lacks a thorough
comparison of ERP modulations due to workload across
several tasks. Also, although the participants of our study told

us that they were not annoyed by the auditory infrequent
stimulations and generally entirely forgot about it, a more
thorough investigation of the real cost of such a paradigm
in terms of operator fatigue and efficiency should be carried
out. What’s more, in order to increase the practicality
of EEG measures, the number of electrodes should be
diminished. However, this study, along with that of Roy
et al. (2015) clearly establishes the relevance of a spatial
filtering step in order to enhance the discriminability between
the two workload levels. Therefore, future studies should
evaluate how to reduce the number of electrodes while
keeping enough channels to efficiently apply such a filtering
step.

Consequently, this study contributes to the neuroergonomics
research topic on mental workload estimation by uncovering
three main points. First, the single-stimulus paradigm in which
participants are probed by infrequent task-independent and
ignored probes allows minimally intrusive workload estimation.
Second, a spatial filtering step such as a CCA filtering enables
a very accurate AEP-based workload classification. Lastly, the
combination of this single-stimulus paradigm with infrequent
ignored probes and its dedicated processing chain allows efficient
workload estimation for an ecologically valid task such as the
MATB.

CONCLUSION

This study has demonstrated as a proof-of-concept that a single-
stimulus paradigm based on infrequent ignored auditory probes
and its dedicated processing chain could allow a very accurate
estimation of mental workload with a classification performance
above 80% for every participant. This is also the first study to
effectively classify workload based on ERPs elicited by ignored
stimuli for a task that is very close to a real-life work situation.
It paves the way toward the efficient use of ERPs for MSM and
brings us closer to the implementation of user adaptive systems
in ecological settings.
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There is increasing interest in real-time brain-computer interfaces (BCIs) for the passive
monitoring of human cognitive state, including cognitive workload. Too often, however,
effective BCIs based on machine learning techniques may function as “black boxes”
that are difficult to analyze or interpret. In an effort toward more interpretable BCIs, we
studied a family of N-back working memory tasks using a machine learning model,
Gaussian Process Regression (GPR), which was both powerful and amenable to
analysis. Participants performed the N-back task with three stimulus variants, auditory-
verbal, visual-spatial, and visual-numeric, each at three working memory loads. GPR
models were trained and tested on EEG data from all three task variants combined,
in an effort to identify a model that could be predictive of mental workload demand
regardless of stimulus modality. To provide a comparison for GPR performance, a
model was additionally trained using multiple linear regression (MLR). The GPR model
was effective when trained on individual participant EEG data, resulting in an average
standardized mean squared error (sMSE) between true and predicted N-back levels
of 0.44. In comparison, the MLR model using the same data resulted in an average
sMSE of 0.55. We additionally demonstrate how GPR can be used to identify which
EEG features are relevant for prediction of cognitive workload in an individual participant.
A fraction of EEG features accounted for the majority of the model’s predictive power;
using only the top 25% of features performed nearly as well as using 100% of features.
Subsets of features identified by linear models (ANOVA) were not as efficient as subsets
identified by GPR. This raises the possibility of BCIs that require fewer model features
while capturing all of the information needed to achieve high predictive accuracy.

Keywords: EEG, BCI, Gaussian Process Regression, machine learning, neuroergonomics
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INTRODUCTION

Neuroimaging methods, particularly inexpensive and non-
invasive techniques such as electroencephalography (EEG)
and functional near infrared spectroscopy (fNIRS), are
increasingly being used to continuously assess the cognitive
state of individuals during task performance, an example of
Neuroergonomics (Parasuraman, 2003; Parasuraman and Rizzo,
2006). This information can be used to better understand the
demands of the task being performed, assess the limitations
of the individual, or be fed back into the system to adjust
the task relative to the individual’s current state. The use of
physiological data to assess operator state has also recently
been described as a ‘passive’ brain-computer interface (BCI)
(Zander et al., 2009; Zander and Kothe, 2011), in contrast to
traditional ‘active’ BCIs which utilize physiological data to allow
an individual to act on the outside world (Wolpaw and Wolpaw,
2012).

Workload, the demand on the individual’s attention and
working memory, is a cognitive state of special interest for passive
measurement during task performance. Cognitive Load Theory
(CLT) (Sweller et al., 1998) for example, suggests that maintaining
an optimal level of workload for a given task can assist in
learning new material. Further, Coyne et al. (2009) incorporate
CLT with Multiple Resource Theory (MRT) (Wickens, 2008),
which distinguishes between different modes of mental demand,
suggesting that real-time measurement of participant workload
could be utilized to optimally redirect mental demand across the
several modes of resources available, for example presentation of
information in a spatial versus verbal code as delineated by MRT
(see Coyne et al., 2009). Physiological measures of workload have
been sought in a variety of tasks including N-back (Grimes et al.,
2008; Baldwin and Penaranda, 2011; Ayaz et al., 2012; Brouwer
et al., 2012), the Sternberg Memory Scanning Task (Wilson and
Fisher, 1995; Baldwin and Penaranda, 2011), memory span tests
(Baldwin and Penaranda, 2011; Chaouachi et al., 2011), the MAT-
B multi-tasking scenario (Wilson and Russell, 2003b; Kothe and
Makeig, 2011); and operational simulations (Wilson and Russell,
2003a; Ayaz et al., 2012). The extent of this literature reflects
scientific awareness of the limitations of behavioral or subjective
workload assessment techniques, including limited sensitivity
(Gevins and Smith, 2003; Just et al., 2003), subjective bias, and
intrusiveness.

EEG based workload monitoring has been explored
using a variety of different machine learning approaches,
including step-wise linear discriminant analysis (SWDA)
(Wilson and Fisher, 1995; Wilson and Russell, 2003a),
artificial neural networks (ANN) (Wilson and Russell, 2003a;
Baldwin and Penaranda, 2011), naïve Bayes models (Grimes
et al., 2008), and least-angle regression (Kothe and Makeig,
2011).

To estimate workload as defined above based on EEG spectra,
we applied a supervised machine learning approach, performing
a statistical regression to take processed neurophysiological
signals as inputs and to predict the load parameter N from the
N-back task as an output. Many previous projects seeking to
predict mental workload have used a classifier rather than a

regressor approach. For example Baldwin and Penaranda (2011)
used three working memory tasks, each with two levels of
imposed difficulty, Wilson and Fisher (1995) used a battery of
tasks, each with two levels of difficulty, while both Wilson and
Russell (2003b) and Kothe and Makeig (2011) used the Multi-
Attribute Task Battery with two levels of difficulty. Wilson and
Russell (2003a) distinguished between up to seven conditions,
using three different simulated ATC tasks with three, three,
and one level of difficulty, respectively. However, the condition
levels were treated as categorical, with the authors using ANN
and stepwise discriminant analysis as classifiers to discriminate
between data from each condition. Similarly, Grimes et al. (2008)
predicted working memory load within 4 levels of the N-back task
(0- through 3-back), but classified the levels as categorical labels,
rather than as a continuous construct.

Treating mental workload as a series of categorical states
has the effect of forcing estimates of workload to reside in
discrete categorical bins without any continuous variation. The
N-back task is comprised of discrete task load levels N = 1,
2, 3, and considered in isolation, this task is readily amenable
to prediction based on a classifier. However, we conceptualize
the mental state of workload as potentially lying along a
continuum of values that the N-back task visits at discrete levels
due solely to the structure of the task, not necessarily due
to the inherent structure of working memory and attentional
resources. The neurophysiological data is continuous in nature,
and in order to preserve any potential information about
workload as a continuously varying mental state, we treated
the predicted N as a continuous variable even though all the
training data for N was discrete. This required the use of a
regression method rather than a classification method. One
consequence of treating workload as a continuous measure
is that the appropriate measure of error to be minimized
in supervised training, as well as for operational testing, is
continuous rather than discrete. For this reason, we present
predictor performance primarily in standardized mean square
error (sMSE), discussed more fully in the Section “Materials and
Methods.”

Our choice of regression on a continuous task load variable
was also motivated by a follow-on application of methods
described here for estimating cognitive workload in a highly
realistic en-route air traffic control (ATC) simulation, in which
task difficulty was multivariate, and in each dimension highly
granular and ordinal. This required a regressor rather than a
classifier. The results presented here are meant to relate workload
estimation to the dominant baseline literature on workload, and
to generalize those studies to a broad variety of operational
contexts including but not limited to ATC.

We employed Gaussian Process Regression (GPR; Rasmussen
and Williams, 2005), a type of non-parametric regression, in
which a single unknown target variable’s status (in this case, the
number ‘N’ back) is estimated as a function of the state of one or
more known input variables (in this case, power spectra at each
electrode in the EEG montage).

Parametric regression methods, for example multiple linear
regression (MLR), replace training data with a user-specified
function, such as a line or curve or surface in the geometric
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space of inputs and outputs, whose parameters can be fitted to
optimize estimation of outputs from inputs over the training
data. For parametric methods, after the regression weights have
been obtained, the original training data may be discarded.
Non-parametric regression methods, by contrast, may keep the
original training data to use as a scaffold for constructing a
regressor function. Test data is compared to the training data
points, with output value of the test point estimated via the
distance of the test data input to the training data input. As
a result of this weighting, estimates of output values form a
locally smooth surface spanning the input data, in a process often
referred to simply as smoothing. Non-parametric regression only
assumes that data points with similar input values will be close
in the output space. For GPR specifically, the form of the local
weighting is defined by the covariance function and associated
hyperparameters learned during model training.

This non-parametric GPR approach has several benefits
with respect to cognitive monitoring. First, GPR makes few
assumptions about the shape of the estimator function beyond
the assumptions associated with the choice of covariance
function. This is beneficial especially in high-dimensional
input spaces, as is the case when there are many known
variables for each data point, and the shape of the relationship
between knowns and unknowns cannot easily be visualized and
understood by a researcher.

Second, a GPR model can be constructed to change the
width of the local weighting functions separately for each known
input dimension during training, providing an indirect measure
of that input dimension’s relevance. Measuring relevance adds
interpretability to the model, and can be used to relate the features
used by the model to existing literature, or aid in understanding
which of the input variables could be left out of the analysis with
little or no reduction in predictive accuracy.

A third benefit of GPR is its robustness to spontaneous failure
of sources of input during operational test use of a BCI, such
as the loss of good electrical contact by an EEG electrode or
other equipment failure. Changes in the set of features available
to machine learning methods challenge parametric methods such
as linear or quadratic models, which typically have dependencies
between features. In contrast, GPR depends more directly on the
data and is robust to such changes; it can even be applied to data
containing many fewer features than the model received during
training.

Finally, a fourth major benefit of GPR for cognitive
monitoring is its inherently probabilistic nature, returning
both point predictions and confidence intervals around those
predictions. Confidence values associated with each prediction
may be used to dynamically inform decisions about when to trust
a trained model’s predictions in operational settings.

While GPR has been used to classify EEG in the context of a
BCI task involving imagined hand movement (Zhong et al., 2008;
Wang et al., 2009), its use in cognitive state assessment has been
limited (although see Chaouachi et al., 2011, 2015).

A reasonable assumption in cognitive neuroscience is
that similar regions of the brain are engaged in similar
functions across individuals during a specific task. This
assumption motivates an approach to research that seeks

constant neurophysiologic signatures for cognitive functions
that generalize broadly among human participants. The present
study has employed a more conservative and directed approach
based on another reasonable assumption, which is that brain
function involves learning, and that as a result, meaningful
idiosyncratic differences may be expected among individuals with
different learning histories, or within an individual over learning
timescales. As such, we focused our analysis on a same-day,
same-individual construct for training and testing our machine
learning methods. Further, we did not set out to evaluate the
neural basis of working memory and attention during task
loading, although we regard this as an important goal for other
research. Our goal was simply to evaluate the effectiveness and
interpretability of a best-of-class machine learning approach for
real-time, passive BCI targeted to cognitive monitoring in its
simplest and most direct form.

We present a paradigm for assessment of cognitive workload
for an operator, specifically the working memory and attentional
demand based on measurable task load. We predict workload
within several N-back tasks by training a GPR model, then testing
it on held-out data from the same participant and session. The
N-back task variants, which were designed to have face validity
to an operational ATC task, include the following variations:
auditory, numeric, and spatial. Finally, we analyze the GPR model
to identify which EEG electrode sites, frequency bands, and
derived features are essential to the predictive accuracy of the
model, which serves to set a lower bound on the number of
features required for accurate prediction.

MATERIALS AND METHODS

Participants
The study included 16 male participants, aged 39–62 years old,
selected for operational experience in the target operational
domain of ATC. All participated voluntarily, and provided
written informed consent after having had the procedures
of the study described to them. Personally identifiable
information for all participants was anonymized and kept
secure by a trusted agent. All participants were salaried
employees of the MITRE Corporation, and were compensated
by allowing them to apply the time spent participating in
the study to their work hours. Human subjects procedures
were approved by the MITRE Corporation Institutional
Review Board (MIRB), to which the Code of Federal
Regulations, Title 45 (Public Welfare), Department of
Health and Human Services, Part 46 (Protection of Human
Subjects) applies for federally funded research involving human
subjects.

Task
To change working memory load in a controlled manner, we
used an N-back working memory task in one of three stimulus
modes (Auditory, Numeric, Spatial) and three task levels (N = 1,
2, 3) for each mode. The N-back task required participants to
view a series of stimuli and press the spacebar key when the
currently presented stimulus matched the stimulus presented

Frontiers in Human Neuroscience | www.frontiersin.org January 2017 | Volume 10 | Article 647 | 155

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-10-00647 January 10, 2017 Time: 17:14 # 4

Caywood et al. Predictive Interpretable Machine Learning Models

N stimuli before the current one. The task was implemented
in BrainWorkshop (Hoskinson, 2011), modified to synchronize
with the EEG system.

The Auditory stimuli were NATO letters (‘Alpha,’ ‘Bravo,’
‘Charlie,’ etc.) spoken by a computer-generated voice. Numeric
stimuli were numbers of 3 or 4 digits, e.g., “505” or “6099,”
presented in the center of the screen. Spatial stimuli were blue
squares presented in one of eight spatial locations on the screen,
in a 3 × 3 grid leaving out the center square (Figure 1). Within
each condition, eight unique stimuli were presented over the
course of the block. Within the spatial condition, these eight
stimuli were the aforementioned eight spatial positions. Within
the Auditory and Numeric blocks, these eight stimuli were
eight sounds or images randomly selected from a pool of 26
possible NATO letter sounds or 26 possible Numeric images.
Each trial lasted 3 s, with visual stimuli in the Numeric and
Spatial conditions remaining onscreen for the first 500 ms of the
trial. The stimuli for each trial were selected pseudorandomly
from the eight possible stimuli within the block, with an N-back
match additionally forced on 1/8 of trials. The combination of the
inherent 1/8 probability of random match and the independent
forced match probability of 1/8 results in an overall 76.56%
(7/8 ∗ 7/8) chance of non-matching stimuli and 23.44% chance
of matching stimuli. Participants were instructed to respond to
matching stimuli by pressing the spacebar key on a standard
computer keyboard, while non-matching trials did not require a
response.

The task was performed in blocks of 100 comparison trials
of a single modality and task level. Participants were allowed
to take short breaks between 100 trial blocks. Three 100-trial
blocks of each N-back level were performed for each of three
stimulus modes, totaling 900 trials for each participant. Stimulus
modes were counterbalanced across participants, while N-back
levels were performed in the order 1-Back, 2-Back, 3-Back,
within each modality block. Before each block, a resting baseline
condition was recorded, however, data from this resting baseline
condition was not included in the regression models. Prior to
the experimental blocks, participants completed 20 practice trials
at each N-back level of a Color variant, in which participants
indicated if the color of the current stimulus (a square presented
in the center of the display) matched the color of the stimulus
presented N stimuli prior.

FIGURE 1 | N-back working memory tasks used three stimulus modes:
Numeric, Spatial, and Auditory. The visual and auditory stimuli associated
with each mode are shown.

Following each block, participants reported their subjective
rating of block difficulty (subjective workload) on a 1–7 Likert
scale from low to high workload. Subjective workload ratings
were collected in order to confirm that the N-back task was
subjectively experienced as more demanding as N-back level
increased, as well as to investigate any subjective differences in
demand between N-back modalities used (Auditory, Numeric,
Spatial).

Behavioral Data
Accuracy on the N-back task is evaluated within each block as
the number of true positive (TP) responses (correctly responding
when the current stimulus matched the stimulus presented “N”
back), divided by the sum of the TP responses, false positive (FP)
responses (incorrectly responding when the current stimulus did
not match the stimulus presented “N” back), and false negative
(FN) responses (incorrectly failing to respond when the current
stimulus matched the stimulus presented “N” back). This is
equivalently described as accuracy= TP/(TP+ FP+ FN). As the
N-back match probability was 23.44%, this places an upper limit
of chance performance at 23.44%. For example, responding to all
stimuli regardless of N-back match would generate an accuracy
of 23.44%, while responding to no stimuli regardless of N-back
match would generate an accuracy of 0%.

Behavioral accuracy and subjective workload were assessed
via separate two-way repeated-measures ANOVAs, with factors
N-back level (1, 2, 3) and task mode (Auditory, Numeric, Spatial).
Mauchly’s test was used to assess sphericity, with F-values
adjusted via Greenhouse–Geisser correction where appropriate.
Effect size is indicated by generalized eta squared (η2

G) (Olejnik
and Algina, 2003), a measure of effect size appropriate for
repeated measures designs (Bakeman, 2005).

EEG Collection
EEG data were collected via a 32-channel actiCAP active
electrode system and BrainAmp amplifier at a sampling rate of
500 Hz using Recorder software (Brain Products GmbH), with
online reference at electrode FCz and online bandpass filter from
0.1 to 250 Hz.

Processing
Offline data analysis was completed with the EEGLAB toolbox
for MATLAB (Delorme and Makeig, 2004) and custom MATLAB
scripts. EEG signals were band-pass filtered to 1–50 Hz, down-
sampled to 250 Hz, and re-referenced to the average of the left
and right mastoid sites (TP9 and TP10).

Trial epochs were extracted from 0 to 3 s post stimulus
onset, and labeled according to N-back level, stimulus mode,
and behavioral accuracy. Channels and epochs containing
paroxysmal artifacts such as gross EMG or cap movement
were identified via visual inspection, and were removed from
further analysis (Delorme et al., 2007). Between 0 and 4
electrodes were removed per participant (mean of 0.75 electrodes
were removed). The remaining epochs were decomposed via
independent component analysis (ICA), using the extended
InfoMax algorithm as implemented in EEGLAB. For each
participant, independent components (IC) representing sources
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of artifact including eye blinks, lateral eye movements, and
muscle activity were manually identified based on IC topography,
frequency spectra, and time-domain activity, and were removed
from the data.

Feature Extraction
Band-power features were extracted by transforming each epoch
from the time to frequency domain via the Welch method.
The Welch method averages the Fast Fourier Transform (FFT)
results from several overlapping Hamming windowed segments.
A window size of 500 points (2 s) and overlap of 250 points (1 s)
were used, along with a 512 point FFT.

For each channel, frequencies were averaged into 6 pre-
specified bands, delta: 1–3 Hz, theta: 4–7 Hz, low alpha: 8–10 Hz,
high alpha: 11–12 Hz, beta: 13–25 Hz, gamma: 26–40 Hz.

Band power values were then converted to the natural
logarithm of their original values to more closely approximate a
Gaussian distribution, and each feature was then zero-centered
and normalized by its standard deviation on the training set. The
same normalization was applied to trials from both training and
test sets; both were z-scored relative to the mean and standard
deviation of the training set. Trials from the test set were z-scored
relative to the mean and standard deviation of the training set,
rather than the test set, to place the test trials on the same scale
as the training set. Scaling the test set trials to the test set mean
and standard deviation could eliminate meaningful differences
that could be present between training and test sets. For example,
when using a trained model to derive workload predictions on
a new task that is on average more difficult than the training
task. In addition, for online prediction applications the mean and
standard deviation of the full test set are unknown in advance.

Machine Learning: Gaussian Process
Regression
The Information present in EEG band-power features about task
level was analyzed using a continuum of methods including
ANOVA, MLR and GPR. Additionally, while imposed task level
(the number ‘N’ back) was of primary interest, models were
additionally constructed using participants’ subjective rating of
their mental demand as labels.

For machine learning, a feature vector composed of each of
the 6 bands at each of the 32 electrode sites, less any electrodes
rejected due to excessive artifact or poor electrode contact, was
taken as input. The features were normalized as described in
Section “Feature Extraction.” The length of the feature vector is
the product of the number of bands and number of electrode
sites analyzed, and was thus of length 192 (6 ∗ 32) for the 11
participants for whom no electrodes were rejected due to artifact,
and six elements (frequency bands) less for each rejected channel
for the remaining five participants.

Gaussian Process Regression
A GPR model, a form of Bayesian non-linear regression, was
trained using the Gaussian Processes for Machine Learning
(GPML) library for MATLAB (Rasmussen and Williams, 2005;
Rasmussen and Nickisch, 2010). A GPR model is defined
primarily by the selection of a covariance function, which defines

how the expected value of the target variable changes as values
change across the input space. Here, a squared-exponential
covariance function with automatic relevance determination
(ARD) was used, in conjunction with a constant zero mean
function. ARD refers to the inclusion of a length-scale for each
feature within the covariance function, which can be examined
after training to determine the relative importance of that
feature to prediction. As described by Rasmussen and Williams
(2005), the squared exponential covariance function with ARD is
defined as:

k(xp, xq) =

σ2
f ∗ exp

(
−

1
2
(xp − xq)ᵀ ∗ (diag(`)−2) ∗ (xp − xq)

)
(1)

Where xp and xq represent values in the input space, σ2
f

represents the noise free signal variance, and ` is a vector of
length-scales (one for each feature).

This covariance function is stationary in the sense that the
relationship between values in the input space depends only on
their distance, not to their particular location in the space. The
squared exponential covariance function was selected a priori
based on its relative simplicity, the assumption inherent in its use
is that data points that are close in the input space will tend to
be close in the output space. The constant zero mean function
was selected as the data was normalized to have zero mean in the
training set. Rasmussen and Williams (2005) present an in-depth
presentation of the properties of different covariance and mean
functions in the context of GPR.

The covariance and mean functions were used in conjunction
with a Gaussian likelihood for prediction via the following
equations, all from Rasmussen and Williams (2005):

f∗|X, y,X∗ ∼ N(f
∗
, cov(f∗)) (2)

Where f∗ is a posterior distribution, X is a matrix of training
inputs, y is a vector of training targets,X∗ is a matrix of test inputs,
f
∗

is the posterior mean, and cov(f∗) is the posterior covariance.
The posterior mean is specified as:

f∗
1
= E [f∗|X,Y,X∗] = K(X∗,X)[K(X,X)+ σ2

nI]
−1y (3)

The posterior covariance is specified as:

cov(f∗) =

K(X∗,X∗)− K(X∗,X)[K(X,X)+ σ2
nI]
−1K(X,X∗) (4)

Where K indicates a covariance matrix, and σ2
n is a noise

variance term.
The covariance function contains several hyperparameters,

which are optimized during model training. Hyperparameters for
the covariance function include a length-scale for each feature (`),
and a noise free signal variance (σ2

f ). In addition, the covariance
function is evaluated using a Gaussian likelihood function, which
has a single hyperparameter, the noise variance (σ2

n). The constant
zero mean function has no hyperparameters.
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FIGURE 2 | Participant performance and subjective workload on the N-back task changed monotonically with level.

Prior to each model run, these hyperparameters are set to
default values, which are subsequently adjusting during model
training. Here, for hyperparameters associated with the squared
exponential covariance function with ARD, the length-scale for
each feature was set to 10, and the signal variance was set
to 1. Additionally, for the hyperparameter associated with the
Gaussian likelihood function, the likelihood variance was set
to 1. These hyperparameters are then optimized within each
model run by the GPML library, by minimizing the negative
log marginal likelihood on the training set, over 100 function
evaluations.

After training the model, new predictions are made via the
conditional distribution of target output values, given the test
inputs, training inputs, training targets, covariance function,
and associated hyperparameters. The mean and variance of
the posterior target distribution are used to generate point
predictions and confidence intervals, respectively.

Evaluation of Model Performance
Model performance at predicting N-back task level (N) was
assessed via fivefold cross-validation with a five trial buffer
between training and test sets. Data from each modality and
N-back level block (9 blocks total) was split into five partitions,
with each partition containing a contiguous block of trials.
On any given fold of the fivefold cross-validation procedure,
4 of the 5 partitions (80% of data) were used for training
the GPR model, with the remaining partition held out as a
test set for assessing model performance. Additionally, any
trials from the test set that occurred within five trials of
a member of the training set were removed from the test
set and not included in measures of model performance.
Trials were removed from the test set, and not the training

set, to ensure a constant amount of training data (4 of 5
partitions or 80%) across runs. These neighboring trials were
removed in order to reduce any short-time scale effects of
attention or participant posture on model performance. After
identification of the training and test trials from each of the
9 blocks, the data, from these 9 blocks (3 N-back levels and
3 modalities) were pooled for training and testing, labeled
by N-back level and subjective workload rating provided by
each participant after each block, but not labeled by modality.
Data from the three modalities were pooled in an attempt to
identify features indicative of working memory load independent
of any particular stimulus modality. Measures of prediction
quality were obtained for each participant by combining
the results from the five model runs. Specifically, for each
participant, the true and predicted values from each model
run of collected and used to compute a single sMSE and
a single Pearson correlation coefficient for that participant.
On average, 661.25 trials were included in each training set,
and 88.66 trials were included in each test set. Despite the
use of fivefold cross-validation, the number of trials in the
average test set is less than 1/4 of the trials in the average
training set due to the removal of trials from the set test
partitions that occurred within five trials of a trial from the
training set.

As a parametric regression model for performance
comparison to GPR, we used MLR with one linear term
per feature plus a constant term. The model training and testing
functions were implemented using BCILAB (Kothe and Makeig,
2013). Our BCILAB plugins for Gaussian Processes (a BCILAB
wrapper around the GPML library), and for MLR (a BCILAB
wrapper around the ‘regress’ function in MATLAB), are available
as open source code.
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TABLE 1 | Predictive ability of feature subsets.

max # features Correlation r Standardized MSE

Feature subset

All 192 0.75 ± 0.03 0.44 ± 0.04

GPR-ARD subsets

50% shortest length scales 96 0.75 ± 0.03 0.44 ± 0.04

25% shortest length scales 48 0.74 ± 0.03 0.46 ± 0.04

ANOVA subsets

Top 50% ANOVA features 96 0.73 ± 0.03 0.47 ± 0.05

Top 25% ANOVA features 48 0.68 ± 0.03 0.59 ± 0.06

Electrode site subsets

B-Alert X-10 channels 54 0.53 ± 0.04 0.72 ± 0.04

Emotiv EPOCa channels 96 0.73 ± 0.03 0.46 ± 0.04

Parietal channels only 54 0.56 ± 0.04 0.68 ± 0.05

Occipital channels only 30 0.52 ± 0.04 0.72 ± 0.05

Frequency band subsets

Delta 32 0.21 ± 0.03 0.95 ± 0.02

Theta 32 0.23 ± 0.04 0.94 ± 0.02

Low alpha 32 0.24 ± 0.04 0.92 ± 0.03

High alpha 32 0.25 ± 0.04 0.93 ± 0.02

Beta 32 0.65 ± 0.03 0.57 ± 0.05

Gamma 32 0.74 ± 0.03 0.45 ± 0.04

Feature subsets are categorized by whether they are subsets of electrode sites (over all frequency bands), frequency bands (at all electrode sites), or selected from
sites × bands. aFor this analysis, Emotiv EPOC sites AF3 and AF4, which were not included in our configuration, were substituted by adjacent sites Fp1 and Fp2.

Continuous prediction accuracy was quantified using two
metrics: standardized mean squared error (sMSE) and Pearson
correlation coefficient (r). sMSE is the mean squared error
(MSE) of true and predicted values, divided by the variance
of the true values. sMSE has a characteristic scale of 0–1
and, due to the standardization on the variance of the true
values, is dimensionless, unlike the MSE. Like MSE, sMSE
equals 0 for a perfectly accurate prediction. However, due
to standardization sMSE equals 1 for a naïve model which
always predicts the mean of the ground truth values, and
exceeds 1 for predictions that are more erroneous than could
be obtained by only predicting the mean of the ground truth
values. For machine learning purposes, r ranges from 1 (perfect
accuracy) to 0 (uncorrelated); however, a naïve model predicting
a constant output will show positive r. Additionally, although
mental workload is argued to be best treated as a continuous,
rather than discrete, variable, we have also included discretized
versions of the continuous MLR and GPR output. These
predictions were included to allow the presented results to be
more readily compared with other reports in which discrete
classification is performed, and are computed by rounding each
continuous prediction to the nearest label in the training set
(i.e., a continuous prediction of 2.4 is relabeled as 2), then
computing the fraction of predictions which have the correct
label.

While predicting the imposed task load is of primary focus, an
additional model was trained to predict subjectively experienced
workload, using the reports provided by each participant
following each task block. This model was computed in the same
manner as the previously described model for imposed task load,
with the exception of each trial being labeled according to the

subjective workload provided by that participant for that block
(a value that can range from 1 to 7), rather than the imposed task
load (1–3).

Additionally, models were constructed with data from single
task variants, in order to investigate the ability of the model to
predict the task load within task variants relative to across task
variants. Data from each task variant and load was split into
five partitions, with a separation of at least five trials between
partitions, as previously described for the primary analysis.
While the primary analysis combined data across the three
task variants for a given fold, the present analysis used data
from only a single task variant for training, and a single task
variant for testing. For example, the first run of training on
the Auditory task and testing on the Auditory task uses the
first training fold and first testing fold of exclusively Auditory
task data. In contrast, the first run of training on Auditory
task and testing on Spatial task uses the first training fold of
exclusively Auditory task data, and first testing fold of exclusively
Spatial task data. As three task variants were included in the
experiment, generating nine combinations of training and test
task variants.

Feature Analysis
To illuminate the association between individual participants’
EEG features and working memory load prediction, we used
two techniques. First, we applied a one-way ANOVA for task
level (the number N-back; 1, 2, 3) to individual participants’
EEG data. Second, using the trained GPR predictive model, we
examined ARD length scales of each feature to identify which
played the greatest role in prediction. ARD length scales were also
used to evaluate the predictive power of alternate EEG electrode
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FIGURE 3 | GPR predictions of N-back level for participants 1–8. The figure displays predictions derived from the 5 cross-validation folds in a single graph.
Main graph shows ground truth task load (black line). Predicted load is represented as the point prediction for each trial, for both Gaussian Process (GP) and Multiple
Linear Regression (MLR) predictors, displayed in blue x’s and green o’s, respectively. Task block for each section of the experiment (Auditory, Numeric, Spatial) is
indicated by colored labels above the predictions. The gray region shows the ± 2σ confidence interval for each GP point prediction generated by the model. sMSE
for both GP and MLR models are included in the lower left of each participant panel. Participant behavioral performance is shown in the line graph at top of each
subplot (+ = correct, − = incorrect, with incorrect points also colored in red) in order to visually examine the relation between model prediction and participant
behavioral performance on the task.
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FIGURE 4 | GPR predictions of N-back level for participants 9–16. The figure displays predictions derived from the 5 cross-validation folds in a single graph.
Main graph shows ground truth task load (black line). Predicted load is represented as the point prediction for each trial, for both Gaussian Process (GP) and Multiple
Linear Regression (MLR) predictors, displayed in blue x’s and green o’s, respectively. Task block for each section of the experiment (Auditory, Numeric, Spatial) is
indicated by colored labels above the predictions. The gray region shows the ± 2σ confidence interval for each GP point prediction generated by the model. sMSE
for both GP and MLR models are included in the lower left of each participant panel. Participant behavioral performance is shown in the line graph at top of each
subplot (+ = correct, − = incorrect, with incorrect points also colored in red) in order to visually examine the relation between model prediction and participant
behavioral performance on the task.

Frontiers in Human Neuroscience | www.frontiersin.org January 2017 | Volume 10 | Article 647 | 161

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-10-00647 January 10, 2017 Time: 17:14 # 10

Caywood et al. Predictive Interpretable Machine Learning Models

TABLE 2 | Predictive ability of Gaussian Process Regression (GPR) model in comparison to multiple linear regression (MLR) model, predicting either task
load or subjective workload using all model features.

Predicted Variable Prediction method r sMSE Classification

Task load GP 0.75 ± 0.03 0.44 ± 0.04 0.70 ± 0.02

Task load MLR 0.69 ± 0.03 0.55 ± 0.04 0.63 ± 0.02

Subjective workload GP 0.76 ± 0.03 0.43 ± 0.04 0.52 ± 0.03

Subjective workload MLR 0.70 ± 0.02 0.54 ± 0.04 0.44 ± 0.02

Model performance is provided via Pearson’s correlation coefficient ‘r’, standardized mean squared error (sMSE), and categorical classification accuracy. Values displayed
are the mean performance across participants ± the standard error of the mean across participants.

montages mapped to other commercial EEG equipment, as is
further explained in Section “Results.”

RESULTS

Behavioral Data
Participants completed all N-back working memory tasks
(Auditory, Numeric and Spatial tasks) at above chance perfor-
mance within all N-back levels. As N-back level increased,
performance significantly decreased. Across all participants and
modalities, mean 1-back performance was 97%, mean 2-back
performance was 79%, and mean 3-back performance was 46%
(Figure 2). There was a main effect of level, F(2,30) = 135.108,
p < 0.001, η2

G = 0.747, as well as a main effect of mode,
F(2,30) = 14.457, p < 0.001, η2

G = 0.097, and a level by mode
interaction, F(4,60)= 3.336, p= 0.016, η2

G = 0.033.
As indicated by the reported measure of effect size generalized

eta squared (η2
G), the effect of N-back level on performance was

of greater magnitude than the effect of modality of performance.
Participants reported subjective workload levels spanning

from 1 to 7, with mean 1-back workload 2.0, mean 2-back
workload 3.9, and mean 3-back workload 5.9 (Figure 2).
For subjective workload, there is both a main effect of level,
F(2,30) = 181.449, p < 0.001, η2

G = 0.735, and a main effect of
mode, F(2,30)= 7.773, p= 0.002, η2

G = 0.042, while the level by
mode interaction was not significant (p > 0.10).

Similar to task accuracy, according to the reported measure
of effect size, generalized eta squared, the effect of N-back level
on subjective workload was of greater magnitude than the effect
of modality on subjective workload. Participants performed the
Spatial task more accurately, and additionally rated it as lower in
subjective workload, in comparison to the Auditory or Numeric
tasks. Although each task used only 8 stimuli within each block,
it is possible that the consistent use of the same 8 spatial locations
across blocks of the spatial task contributed to this performance
and subjective workload difference.

Predictive Accuracy of BCI
The GPR with ARD was trained to predict task level for individual
participants on a mixture of all three N-back tasks, and tested on
the left-out test data using fivefold cross-validation.

Individually trained GPR models were able to predict task level
across participants with high accuracy. sMSE mean and standard
error across multiple participants was 0.44 ± 0.04, where 0 is
perfect prediction and 1 is a model which performs no better

than a naive model always predicting the mean of ground truth
(Table 1). Pearson’s r correlation was 0.75 ± 0.03, where r = 1
is perfect, r = 0 is uncorrelated. (All error estimates are given as
standard error of the mean.) The GPR predictions of task level
for each trial are presented within Figure 3 (participants 1–8)
and Figure 4 (participants 9–16). The predictions derived from
the 5 model folds have been merged into a single dataset for
presentation.

The models trained using GPR and all features performed
significantly better than models trained using MLR and all
features, using the same training and test folds. GPR models had
mean sMSE of 0.44 ± 0.04, while MLR models had mean sMSE
of 0.55 ± 0.04, t(1,15) = −6.28, p < 0.001. Similarly, models
trained to predict subjective workload ratings performed better
using GPR than MLR. The subjective workload model trained
using GPR had mean sMSE of 0.43 ± 0.04, while the analogous
model trained using MLR had mean sMSE of 0.54 ± 0.04,
t(1,15) = −6.07, p < 0.001. Measures of model quality in
terms of Pearson r and discretized classification are provided
in Table 2 for comparison with other paradigms. The GPR
predictions of subjective workload for each trial are presented
within Figure 5 (participants 1–8) and Figure 6 (participants 9–
16). The predictions derived from the 5 model folds have been
merged into a single dataset for presentation. Table 3 additionally
displays the sMSE for each participant, both collected across the
5 runs prior to calculating sMSE, and the mean and standard
deviation of sMSE calculated by first computing sMSE within run.
The sMSE for each participant collected across the 5 runs prior to
calculating sMSE is very similar to the mean of sMSE calculated
by first computing sMSE within runs.

Comparing the performance of the GPR model trained on task
level to the equivalent model trained on subjective workload, the
ability to predict the two label types was not significantly different
t(1,15)= 0.53, p= 0.606.

Feature Analysis in the ANOVA, GPR, and
MLR Models
To determine which EEG band-site features were significantly
associated with N-back level, we applied a one-way ANOVA for
level to individual participants’ EEG data. Because the predictive
model was also individualized, it was necessary to analyze
individual data rather than group effects as is commonly done
in cognitive neuroscience.

Using the GPR predictive model, we examined the set of
features to identify which played the greatest role in prediction.
When ARD is used in training a GPR, the resulting length scale
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FIGURE 5 | GPR predictions of subjective workload for participants 1–8. The figure displays predictions derived from the 5 cross-validation folds in a single
graph. Main graph shows ground truth subjective workload (black line) provided by the participant at the end of the block. Predicted subjective workload is
represented as the point prediction for each trial, for both Gaussian Process (GP) and Multiple Linear Regression (MLR) predictors, displayed in blue x’s and green
o’s, respectively. Task block for each section of the experiment (Auditory, Numeric, Spatial) is indicated by colored labels above the predictions. The gray region
shows the ± 2σ confidence interval for each GP point prediction generated by the model. sMSE for both GP and MLR models are included in the lower left of each
participant panel. Participant behavioral performance is shown in the line graph at top of each subplot (+ = correct, − = incorrect, with incorrect points also colored
in red) in order to visually examine the relation between model prediction and participant behavioral performance on the task.
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FIGURE 6 | GPR predictions of subjective workload for participants 9–16. The figure displays predictions derived from the 5 cross-validation folds in a single
graph. Main graph shows ground truth subjective workload (black line) provided by the participant at the end of the block. Predicted subjective workload is
represented as the point prediction for each trial, for both Gaussian Process (GP) and Multiple Linear Regression (MLR) predictors, displayed in blue x’s and green
o’s, respectively. Task block for each section of the experiment (Auditory, Numeric, Spatial) is indicated by colored labels above the predictions. The gray region
shows the ± 2σ confidence interval for each GP point prediction generated by the model. sMSE for both GP and MLR models are included in the lower left of each
participant panel. Participant behavioral performance is shown in the line graph at top of each subplot (+ = correct, − = incorrect, with incorrect points also colored
in red) in order to visually examine the relation between model prediction and participant behavioral performance on the task.
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TABLE 3 | Individual participant GPR model performance.

Participant Total sMSE sMSE Mean
Over 5 Runs

sMSE standard
deviation over 5 runs

1 0.50 0.47 0.24

2 0.37 0.34 0.11

3 0.33 0.30 0.14

4 0.49 0.45 0.27

5 0.18 0.18 0.10

6 0.34 0.32 0.15

7 0.68 0.66 0.21

8 0.57 0.54 0.17

9 0.34 0.32 0.17

10 0.42 0.40 0.15

11 0.43 0.41 0.19

12 0.72 0.65 0.45

13 0.33 0.31 0.23

14 0.71 0.67 0.28

15 0.39 0.37 0.22

16 0.18 0.18 0.04

The total sMSE combines the results of each run into vectors of true and predicted
values, which weights each test example equally. The sMSE mean over 5 runs
averages the sMSE results derived from each test run. The sMSE standard
deviation is the standard deviation of the sMSE results derived from each test run.
The total sMSE and sMSE mean are not equal because each test run can have
different numbers of test trials, due to the removal of any test trials that occurred
within 5 trials of a training trial.

of each feature indicates the relative sensitivity of the model to
changes in that feature’s value (MacKay, 2003; Rasmussen and
Williams, 2005). A model is more sensitive to features with short
length scales and least sensitive (most invariant) to features with
long length scales.

Figures 7 and 8 show one-way ANOVA F-values compared
to GPR length scales for each channel × band power feature,
for each of the 16 participants. The values displayed are the
average of the values for that participant, over the 5 runs of cross-
validation performed. Although there is substantial between-
participant variability, gamma band features at occipital and
temporal sites are commonly utilized by the GPR models for
prediction.

Unlike the features with significant level effects in ANOVA,
the (most sensitive) features with the shortest length scales are
not generally clustered into individual frequency bands, with
the exception of the gamma band, where several channels are
uniformly short in length scale. This lack of spatial patterning was
also typical across participants.

As the MLR predictions were derived from a multivariate
regression, multicollinearity between features can make
interpretation of the resulting regression coefficients difficult or
misleading (Haufe et al., 2014). Weights from the MLR models
were therefore transformed into activation patterns via Equation
(6) from Haufe et al. (2014). Specifically, the activations are
derived by:

A =
∑

x
W
∑−1

Ŝ
(5)

Where
∑

x is the covariance of the data, W is the multivariate
regression weights, and

∑
−1
Ŝ

is the inverse covariance matrix

of the latent factors, in this case simply the N-back level labels.
Figure 9 displays the activation patterns from the MLR models
predicting task load.

Feature Selection and Prediction
Accuracy
For each participant, we compared the predictive ability of several
feature subsets. The feature subset “All” (i.e., all electrodes × all
bands) was the upper bound on predictive accuracy for this data
set (Table 1).

To illuminate which frequency bands are important to the
task, we considered the predictive accuracy of feature subsets
corresponding to single frequency bands (e.g., the 32 features
corresponding to the beta band at all electrodes). While all bands
contributed to predictive accuracy, the largest contribution came
from features in the beta and gamma frequency range. This
suggests that information that might be discounted by standard
EEG analysis can be highly informative in the context of a BCI
predicting workload.

How important was it for the BCI to include all 32 electrodes
for this task? We considered feature subsets with a smaller
number of EEG electrode sites than were actually measured (but
all frequency bands). The model’s accuracy for several subsets of
electrode sites, averaged over all 16 participants, is also shown
(Table 1). We compared the montage of our laboratory EEG
headset to the montage of two EEG headsets including fewer
electrodes, one focused on rapid deployment (B-Alert X10) and
one on affordability for home use by consumers (Emotiv EPOC).
In this task, the 16 channels present in the Emotiv EPOC device,
primarily near equatorial sites such as F7, F8, P3, P4, P7, and
P8, capture much of the model’s predictive ability. However,
the montage of channels present in the B-Alert X-10, more
along midline sites such as Fz, Cz, and POz are less effective,
generating similar performance as achieved by only looking at
a single region’s channels (e.g., parietal channels or occipital
channels).

One operationally relevant scenario is that a full laboratory
electrode cap might be used to calibrate a model for a participant
before switching to a simpler EEG device for operational use.
We tested this concept by training the GPR model on the full
feature set, leaving out features using ARD or ANOVA F-values,
then testing the newly reduced model’s predictive power. With
this paradigm, we found that selecting a reduced feature model
using GPR length-scales was more resilient than reducing models
using ANOVA features. For both the top 25% and top 50%
of features, selection based on training data GPR length-scale
generated a model with lower test set sMSE in comparison to
selection based on training data ANOVA F-value, as evaluated
with paired samples t-tests; [t(1,15) = −5.62, p < 0.001 for the
top 25% of features, t(1,15) = −2.68, p = 0.017] for the top 50%
of features, see Table 1.

A similar method allowed us to measure the absolute
minimum number of features required for prediction of task
level. Each individual’s feature length scales were sorted from
shortest to longest, and the GPR model was tested on subsets of
increasing size, from 1 to 100% of total features, in increments of
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FIGURE 7 | EEG features (bands and sites) for participants 1–8. Top of each participant plot: ANOVA F-values for memory load. Red (higher values)
corresponds to larger F-value for feature. Bottom of each participant plot: log scaled Gaussian Process model length scales. Red (lower values) corresponds to
higher sensitivity for feature. The directionality of the colormap is swapped between ANOVA and GPR in order for warmer (redder) colors to always indicate greater
feature relevance.

1% (Figure 10). As features are added beyond the minimum level
required for the model to function, the trend is for classifier error
to decrease monotonically until it plateaus near the minimum
sMSE of the full model. Approximately 20% of the total number
of features are sufficient for prediction quality near the full
model.

Prediction within and across Task
Variants
Predictions obtained using single task variants for training and
testing are obtained in Table 4. When the training and test data

are from the same task variant (the diagonal of the table), sMSE
is approximately the same or lower than what was obtained
by combining training and test data across pooled modalities.
However, when training and test data are obtained from differing
task variants, prediction is no better than what could be obtained
by naively predicting the mean of the target distribution.

DISCUSSION

We used GPR to train a model capable of accurately predicting
N-back working memory load or workload. When data from
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FIGURE 8 | EEG features (bands and sites) for participants 9–16. Top of each participant plot: ANOVA F-values for memory load. Red (higher values)
corresponds to larger F-value for feature. Bottom of each participant plot: log scaled Gaussian Process model length scales. Red (lower values) corresponds to
higher sensitivity for feature. The directionality of the colormap is swapped between ANOVA and GPR in order for warmer (redder) colors to always indicate greater
feature relevance.

all three task variants were pooled for training and testing,
above chance predictions were obtained. This result is consistent
with a meta-analysis of functional magnetic resonance imaging
(fMRI) studies using N-back variations which showed a
frontoparietal network which, although affected by the nature
of the information retained, is generally active across all
N-back variants (Owen et al., 2005). However, if data was
trained exclusively on a single task variant, then prediction
on alterative task variants was no better than a naïve model
which always predicts the mean task load. Training exclusively
on a single task variant may overfit to that particular variant,

impairing prediction when the test variant differs. It is possible
that improved cross-variant prediction could be obtained by
modification of the GPR model to account for greater uncertainty
in predicting a new task variant.

For the pooled data, predictive accuracy was high overall
(sMSE = 0.44, r = 0.75), although the GPR model was less able
to predict (or extrapolate to) extreme values, tending to smooth
extreme values to middling values. This limitation is typical
of interpolation based regressors such as GPR, especially given
the limited number of data points (∼800) relative to the high
dimensionality of the data (up to 192 per participant, dependant
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FIGURE 9 | Activations derived from the Multiple Linear Regression models predicting task load, at each band and electrode site for all participants.
Red values indicate more positive activations; blue values indicate more negative activations.

on whether any channels were removed due to excessive artifact).
Extrapolation might be improved by the use of alternative
covariance functions incorporating linear terms.

GPR performed significantly better than the baseline
performance established by a simpler parametric technique,
MLR. This was the case for models trained and tested on N-back
task load, as well as for models trained and tested on subjective
workload ratings provided by the participants after each block
of the task. Model performance between N-back task load and
subjective workload was similar, likely due to the strong relation
between N-back task load and subjectively reported workload as
reported in the behavioral results.

Applying feature subset selection to the model revealed that
feature subsets selected based on techniques such as ANOVA are

significantly less efficient at prediction than the subsets identified
by GPR with ARD. For example, using the top 25% of features
derived from GPR generates model performance approximately
equivalent to the top 50% of features derived from an ANOVA
model. Similarly, models using GPR consistently outperformed
models utilizing MLR, a simpler but less flexible approach.

Periods of data containing obvious muscular artifacts were
manually rejected from the dataset prior to training the machine
learning model. Despite this, features in the gamma band of
the EEG were most sensitive to variations in N-back level.
Several works have cautioned against the use of higher frequency
band power features such as beta and gamma for workload
estimation (Gerjets et al., 2014; Brouwer et al., 2015), due to EMG
contamination from differential motor activity in different blocks
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FIGURE 10 | Model accuracy increases as features are added in order of informativeness. Black line indicates model performance as the percentage of
features are increased, averaged across participants. Gray shading indicates the standard error of the mean, across participants. Below a minimum number of
features, model error increases due to bias from insufficient dimensionality. After approximately the top 20% of features have been included in the model, adding
additional features provides little improvement to model performance. The left panel displays 1–100% of features, while for clarity the right panel displays only
5–100% of features, where the GPR model is able to function.

TABLE 4 | Predictive ability of Gaussian Process Regression (GPR) models
trained and tested on trials from single working memory task variants.

Test task

Training task Auditory Numeric Spatial

Auditory 0.45 ± 0.06 1.15 ± 0.13 0.97 ± 0.09

Numeric 1.07 ± 0.12 0.33 ± 0.04 1.15 ± 0.13

Spatial 1.13 ± 0.14 1.11 ± 0.13 0.35 ± 0.05

The predicted variable for all models was task load. Model performance is provided
as the mean and standardized error of the mean of standardized mean square error
(sMSE).

of the task. Here, the N-back task was utilized, in which mental
workload between task levels is varied by task instruction rather
than alteration of the perceptual or motor demands of the task.
While perceptual demands do vary between the modality variants
of the task utilized (auditory, numeric, spatial), as our predictor
was trained and tested on a random selection of data from each of
three modalities at each N-back level, the N-back level groupings
do not contain systematic differences in perceptual or motor
demands that would aid prediction.

As gamma band power is susceptible to contamination from
muscular artifact (Muthukumaraswamy, 2013), the source of
these features cannot be assumed to be of neural origin. However,
the consistency of the gamma band features across participants
despite the constant motor demands of the N-back suggests that,
if predictions result in part due to EMG activity, more direct

measures of EMG activity may prove useful for mental workload
classification. It is possible that the diagnosticity of the gamma
band feature is due not to a confound in how participants respond
between levels of the task, but subtle postural changes on the
part of participants as mental demand increases. In this sense,
gamma band features may be considered an artifact when EEG
is used to measure electrical activity of exclusively neural origin,
but in our analysis may also represent a feature that is truly
diagnostic of mental demand, and not simply an experimental
design confound.

It is often desirable to minimize the number of electrode sites
required for a BCI. In laboratory settings with standard electrode
caps, using fewer sites can reduce experimental preparatory time
or allow experimenters to allocate more time to ensuring a low-
impedance connection at key sites, improving data quality. In
custom-designed electrode caps, fewer sites may also reduce
the size, weight, and power (SWaP) and cost of BCI systems
intended to operate in real-time. Taking advantage of our
non-parametric GPR model, we were able to demonstrate a
method for determining subsets of channels that capture the
full predictive accuracy of the entire electrode cap – and even
determine the minimum number of channels, or even EEG
features, required for accuracy. We observed that the 16 channels
present in a commercial off-the-shelf device, mostly lateral
sites near the head’s equator, capture a very large fraction of
the predictive ability of the full 32 channel laboratory cap.
Devices with such electrode montages might be used in future
experiments, provided their EEG signal quality is acceptable.
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Despite what we believe to be an overall contribution to the
field, several limitations of the current report should be noted.
The present paradigm used 80% of the available data for training
on each cross-validation fold. This amount of training data may
not be practical to acquire before a real-time device could be
utilized. Additionally, our models were trained and tested within
each participant. A more optimal model would be participant
independent. It possible that these issues could be partially
mitigated by adapting data or Gaussian Process hyperparameters
that were learned from previous participants to reduce the
training time required for new participants. Additionally, the
present work contains data from 16 participants, all of whom
are male and middle-aged. Future reports should expand
workload prediction using larger and more demographically
variable participant samples. Finally, while stimulus modality
was randomized, participants completed increasingly demanding
experimental blocks within each modality. Therefore, fatigue or
tiredness could potentially contribute to estimations of mental
demand.

CONCLUSION

There is potentially great value in real-time, non-invasive
monitoring of cognitive states by ‘passive’ BCI using methods
such as electroencephalography (EEG). Cognitive variables
such as workload, which are predictive of operational errors,
are potentially valuable targets for real-time monitoring.
Information about these variables may be useful in a variety
of downstream applications, including providing situational
awareness for human operators, alerting operators about high-
workload situations, testing and training operators, redesign of
interfaces, and redesign of working practices to optimize operator
performance.

In this paper, we used EEG to monitor cognitive workload
during a simple working memory task (N-back) in multiple
sensory and cognitive modalities (Auditory, Numeric, and
Spatial). Calibration from training data was demonstrated to
be effective using GPR, out performing a more basic model
utilizing MLR. GPR also provided the ability to assess the relative
predictive value of each input variable (EEG electrode sites,
and frequency bands at each site, together summarized as EEG
‘features’) in predicting the workload variable of interest. The
GPR approach was superior to conventional analysis of variance

(ANOVA) methods in determining which reduced subsets of
EEG features from the training set would be most predictive
about the cognitive variable of interest in the test set. This type of
analysis may inform engineering efforts to produce EEG systems
with few electrodes placed at the most highly informative sites on
the scalp for the desired evaluations.

The current approach can be placed within a class of methods
that seek to use techniques from machine learning to not only
make predictions, but glean useful information about the neural
or behavioral processes under study. In another example, Noh
and de Sa (2014) have reported that a machine learning model
trained on a subset of EEG data can be used to select features
for traditional hypothesis testing on an independent test set.
As this method derives candidate features for discriminating
between conditions from the independent training set, it avoids
the issue of multiple comparisons encountered when performing
traditional hypothesis testing on several potential features within
a single set of data.

In addition, in contrast to more traditional statistical methods
such as MLR, the GPR approach provides confidence intervals
around each prediction. Information regarding the confidence
of a predictor may be useful in operational domains in order to
determine when to trust the outputs of the predictive model. For
example, a test point that contains data that is far outside what
was observed within the training set would be predicted with a
large confidence interval.
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Biocybernetic adaptation is a form of physiological computing whereby real-time data
streaming from the brain and body is used by a negative control loop to adapt the
user interface. This article describes the development of an adaptive game system
that is designed to maximize player engagement by utilizing changes in real-time
electroencephalography (EEG) to adjust the level of game demand. The research
consists of four main stages: (1) the development of a conceptual framework upon
which to model the interaction between person and system; (2) the validation of the
psychophysiological inference underpinning the loop; (3) the construction of a working
prototype; and (4) an evaluation of the adaptive game. Two studies are reported. The
first demonstrates the sensitivity of EEG power in the (frontal) theta and (parietal) alpha
bands to changing levels of game demand. These variables were then reformulated
within the working biocybernetic control loop designed to maximize player engagement.
The second study evaluated the performance of an adaptive game of Tetris with respect
to system behavior and user experience. Important issues for the design and evaluation
of closed-loop interfaces are discussed.

Keywords: psychophysiology, EEG, gaming, physiological computing, adaptive interface, effort, engagement

INTRODUCTION

Biocybernetic control describes how the implicit measurement of physiological signals from the
brain or body can be transformed into a control input for real-time software adaptation. This
category of physiological computing system (Fairclough, 2009) has also been described as a passive
brain-computer interface (Zander and Kothe, 2011) because the user simply responds to events
at the interface without any requirement for volitional control. The purpose of biocybernetic
adaptation is to create a seamless and tacit form of human-computer interaction where software
adaptation is timely and intuitive from the perspective of the user.

The biocybernetic model has been applied to a range of domains, such as: adaptive
automation (Bailey et al., 2006), detection of negative emotions (Kapoor et al., 2007),
adaptive robotics (Liu et al., 2007) and support for social behavior (Chanel and Mühl, 2015).
An early example of a working biocybernetic control loop was developed by NASA in the
1990s where the real-time analysis of electroencephalography (EEG) signals was converted
into an input variable for the control of the level of system automation during simulated
aviation tasks (Pope et al., 1995; Freeman et al., 1999; Prinzel et al., 2000; Scerbo et al.,
2003). This control loop was designed to sustain operator engagement within an optimal
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zone that avoided complacency and inattention by selectively
disabling system automation in order to oblige the operator to
engage with a manual interface. This example of biocybernetic
control set a blueprint for a data processing protocol wherein
electrocortical activity interacts with a computerized system
within a negative feedback loop. This model of closed-loop
control detects deviations from an optimal state of brain activity
and uses these variations to cue changes at the human-computer
interface in order to ‘‘pull’’ the psychological state of the user in a
desired direction.

The design of a biocybernetic closed-loop incorporates
a number of distinct processing stages: (1) data collection
from sensors, (2) filtering of raw data coupled with artifact
correction techniques, (3) data analysis for the extraction of
meaningful metrics that permit a valid inference of the user state,
(4) conversion of the metrics in order to instigate adaptation at
the user interface, i.e., defining criteria/triggers for adaptation or
by categorizing data usingmachine learning algorithms (Baldwin
and Penaranda, 2012; Novak et al., 2012); and (5) adaptation of
the user interface in a manner designed to promote a desirable
user state.

All biocybernetic closed-loop systems are rooted in a psycho-
physiological inference; for example: inferring increased arousal
from increases in skin conductance level, inferring negative affect
from activation of the corrugator supercilli. The validity of this
inference is fundamental to the integrity of a working loop,
but the process of establishing validity is complex (Cacioppo
and Tassinary, 1990). The loop is designed to utilize software
adaptation in order to influence a key psychological concept
or dimension in the user, e.g., engagement, mental workload,
attention. If the fundamental link between input measures,
the psychological concept targeted by those measures and
the adaptive logic of the loop is weak or tenuous, then the
effectiveness of the closed-loop system will be compromised
(Fairclough, 2007, 2009). Because the loop works in real-time,
it is important that measures are: (a) sufficiently sensitive
to changes in the relevant psychological dimension; and
(b) specific to that dimension, i.e., not confounded with other
psychological variables. Consequently it is important to construct
biocybernetic loops on the basis of measures that have either
been scientifically validated according to research literature
or tested and validated in the context of the target task or
application.

This article describes the development of an adaptive
computer game where the software responds in real-time in
order to enhance the experience of the player by making the
game appropriately challenging. Optimizing task difficulty is
one of several methods of adapting gaming experiences using
biocybernetics, others include enhancing emotional engagement
and reducing player frustration (Gilleade et al., 2005). This
closed-loop approach employs the same logic that underpins the
integration of biofeedback mechanics into gaming applications
(Nacke et al., 2011) and the design of adaptive games dedicated to
the creation of a specific emotion (Dekker and Champion, 2007).
One goal for an adaptive game is to deliver a level of difficulty
tailored to the skills of the player via closed-loop control such that
the game is personalized to the skills and abilities of each player.

This article will describe the development of an adaptive game
of Tetris designed to sustain player engagement (see also Chanel
et al., 2011) and also an experimental study intended to validate
the psychophysiological inference underpinning the system that
was conducted prior to the creation of the working prototype.

Game construction began with the formulation of a
conceptual framework upon which to model the responses of the
adaptive game. Our framework was based upon the Motivational
Intensity Model (MIM: Wright, 2008) which describes the
relationship between effort investment and task demand; amodel
that has been corroborated via a number of experimental studies
(e.g., Wright and Kirby, 2001; Richter et al., 2008; Richter
and Gendolla, 2009). One prediction of this model is that
effort rises proportionally with increases in task difficulty until
demand is so great that the human deems task success unlikely
and withdraws effort, the result of which is a shark-fin shaped
effort curve (Figure 1). The MIM was adapted to provide a
conceptual framework for defining a desirable state of player
engagement that could serve as the target for the biocybernetic
loop. The adaptation took account of research upon the gaming
experience to define an ideal ‘‘zone’’ state for the player. For
instance, Csikszentmihalyi (1990) described the ideal or optimal
level of engagement as ‘‘flow’’; a state where engagement with a
task is full to the point that time seems to slip away. According
to Nacke and Lindley (2008) flow is characterized by an absence
of undesirable mental states (i.e., boredom) and entails a positive
emotional experience. Similar states, such as being in the zone or
total immersion have been described by Chen (2004) and Ryan
et al. (2006) respectively. The observation has also been made
that situations of high effort promote skill development and an
opportunity to demonstrate mastery or competence that leads
to a positive gaming experience (Ryan et al., 2006). Thus, the
MIM was adapted to represent four broad categories of player
state; boredom, engagement, zone and overload (Figure 1). The
conceptual distinction between these four categories was used to
define adaptive goals for the biocybernetic loop, namely:

• To avoid boredom by increasing game demand whenever
boredom was detected

• To reduce demand when overload was detected

FIGURE 1 | Motivational Intensity Model (MIM) adapted by the addition
of four categories of user state.
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• To make no adjustment when the player occupied the target
states of engagement and zone

In order for the control loop to work within this
framework (Figure 1) the model must be operationalized
using psychophysiological measures. The MIM has been
extensively corroborated by cardiovascular indices of mental
effort (e.g., Wright and Dill, 1993; Wright and Kirby, 2001;
Richter et al., 2008; Richter and Gendolla, 2009), however
cardiovascular measures have a number of limitations as inputs
to a biocybernetic loop including an inability to diagnose
and monitor individual psychological dimensions of effort,
e.g., reactivity in blood pressure is simultaneously sensitive
to motivation, cognitive effort and physical effort (Cacioppo
et al., 2000). By contrast EEG provides a wide choice of metrics
that permit a multidimensional monitoring of engagement,
including spontaneous oscillations, evoked and event-related
potentials (EPs and ERPs), different frequency bands, scalp
locations and power values. Multivariate combinations of EEG
measures have demonstrated impressive levels of accuracy
at discriminating user workload (e.g., Gevins et al., 1998;
Prinzel et al., 2003; Scerbo et al., 2003; Chanel et al., 2008;
Christensen et al., 2012). Of particular interest are EEG
oscillations in the alpha (7.5–13 Hz) and theta (4–7 Hz)
bands, which are reliable measures of cortical activation
and mental effort (e.g., Gevins et al., 1998; Klimesch, 1999;
Wilson, 2002, 2003). In an earlier study (Fairclough et al.,
2013), measures of power in the alpha and theta bands
were sensitive to manipulations of cognitive demand and
motivational incentives using the N-back working memory
task, however, the capacity of these metrics to index demand
and motivation in the context of a computer game remained
unknown.

STUDY ONE: VALIDATION OF INPUT
MEASURES

Introduction
An experimental study was conducted to evaluate the sensitivity
and reliability of the EEG alpha and theta bands to variations in
game demand and motivation during the play upon the popular
game Tetris. The study aimed to establish: (a) the most suitable
EEG measures to use as inputs to a real-time biocybernetic loop;
and (b) an appropriate framework for the operationalization of
the MIM with respect to measures of spontaneous EEG. The
study employed a within subjects design and involved game
based manipulations of motivation and demand: three levels
of game demand were tested (low, high, excessive) along with
two incentive conditions whereby a game-based incentive was
present in one condition and absent in the other. It was expected
that changes in oscillatory EEG activity in the alpha and theta
bands would capture: (1) situations of low effort (i.e., due to
boredom or overload); (2) instances of effort increasing in line
with demand (when players were engaged with the game) and
most significantly; and (3) when players were in the ‘‘zone’’
(when maximal effort was apparent; Figure 1). It was also
anticipated that the addition of an incentive would increase

effort investment provided that game success was likely (Wright,
2008).

Method
Participants
Twenty participants (11 females) took part in the experiment.
Participants were aged between 19 and 36 years, and had a mean
age of 23.2 years (SD = 4.02). All participants were volunteers
who gave their written informed consent prior to data collection
in accordance with the Declaration of Helsinki.

Game Demand
Cognitive demand was manipulated using an adapted version of
the Tetris game. The game requires participants to rotate and
move falling pieces in order to build rows of blocks at the bottom
of a game board. Falling pieces were one of seven possible colored
shapes; each comprised of four squares arranged in different
configurations. Pieces were selected to fall in random order.
In order to allow gameplay for a fixed duration of 180 s the
conventional Tetris game-board was adapted to prevent game-
death (when pieces stack to the top of the board to signal
game-over). The adaptation consisted of shifting the game-board
upwards so that the highest stacked piece was maintained at the
center of the game board, and was unable to rise above this level
(Figure 2).

The speed and quantity of the falling pieces were
systematically manipulated to create three levels of game
demand (low, high or excessive). In the low demand condition,
an average of 22.1 pieces fell with a drop speed of 2.5 board
squares s−1 An average of 66.2 pieces fell with a drop speed of 6.7
board squares s−1 in the high demand condition. In the excessive
demand condition, an average of 217 pieces fell at a drop speed
of 20 board squares s−1. These parameters were determined on
the basis of a small pilot study (N = 7).

Incentives
Games were presented in one of two incentive conditions
(incentive + performance feedback vs. no incentive + no
performance feedback). Each participant completed both
incentive conditions (i.e., within-subjects). In the incentive +
feedback condition, game coins could be earned for completing
rows of Tetris pieces. Coins were accrued in proportion to the
number of rows cleared relative to the maximum possible row
clearance, such that a maximum of 70 coins could be earned
(representing 100% possible clearance). Between zero and seven
coins were accumulated every 10 s depending on the proportion
of maximum cleared rows achieved at the time of accrual, i.e.,
at the end of each game, best performance = 70 coins and
worst performance = 0 coins (Figure 2). Sounds were presented
with each award of coins: ‘‘kerching’’ with an award (if current
total was less than 35 coins) or ‘‘coin jackpot’’ (if total was over
35 coins). In the no-incentive (+ no feedback) condition, the
display related to the coin incentive was absent and no sound
effects related to the award of coins were played. For both
incentive conditions sound effects occurred when rotating the
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FIGURE 2 | Game-board during incentive + feedback condition: coins are displayed pictorially in a 7 × 10 matrix on the left of the screen and turn
from dark blue to gold to indicate coin achievement. A separate row of coins above indicates the number of coins awaiting award at the next 10 s time-point
(one coin in this example). The coin score (bottom) and remaining game time are presented in numerals on the left of the screen.

pieces (small ‘‘pop’’) and shifting the pieces left or right (small
‘‘snap’’).

Experimental Design
The experiment consisted of six 180 s games (2 incentive
blocks × 3 levels of demand per incentive block). Incentive
blocks were delivered in a counterbalanced order and each level
of demand presented in random order within each incentive
block. Post hoc T-tests questionnaires were completed after each
game. Throughout each game EEGwas measured along with task
performance; the total duration of the experimental session was
approximately 40 min. Participants practiced by playing each
of the six game versions once prior to the experiment and the
fitting of EEG equipment. The procedure for the experiment
and data collection protocol was approved by the Liverpool
John Moores University (LJMU) University Research Ethics
Committee and the experiment was conducted in accordance
with the recommendations of the LJMU University Research
Ethics Committee.

Subjective Questionnaires
Subjective workload was assessed using the NASA Task Load
Index (TLX; Hart and Staveland, 1988) which consists of six
scales (subjective effort, mental demand, temporal demand,
physical demand, perception of performance and frustration).
Subjective levels of motivation were assessed using the Dundee
State Stress Questionnaire (DSSQ) v1.2 motivation scale, which
includes eight items relating to motivation, task enjoyment,
desire for success, task value, mental effort, agreeableness on
completion, concern over poor performance and eagerness to
do well (Matthews et al., 1999). Participants completed one
version of each questionnaire immediately after each of the six
experimental conditions.

EEG Recording and Analysis
EEG was recorded monopolarly from 64 Ag–AgCl pin-type
active electrodes mounted in a BioSemi stretch-lycra head cap.
Electrodes were positioned using the international 10–20 system
and recorded activity from the following sites: frontal pole (FPz,
FP1 and FP2), anterior-frontal (AFz, AF3, AF4, AF7 and AF8),
frontal (Fz, F1, F2, F3, F4, F5, F6, F7 and F8), fronto-central
(FCz, FC1, FC2, FC3, FC4, FC5 and FC6), central (Cz, C1, C2,
C3, C4, C5 and C6), temporal (FT7, FT8, T7, T8, TP7 and
TP8), parieto-central (CPz, CP1, CP2, CP3, CP4, CP5 and CP6),
parietal (Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9 and P10), occipito-
parietal (POz, PO3, PO4, PO7 and PO8) and occipital/inion (Oz,
O1, O2 and Iz). Two reference electrodes, the ‘‘common mode
sense’’ (CMS) and ‘‘driven right leg’’ (DRL) were used; these
function via a feedback loop to drive the participant’s voltage
(acquired via CMS) as close as possible to zero. AC differential
amplifiers performed continuous digitization at 16,384 Hz which
was then down-sampled online to 256 Hz. No filters were
applied online to allow visual inspection of noise. Offline filtering
was performed using a notch filter of 50 Hz and high and
low pass filters of 0.05 and 40 Hz respectively. The data were
visually inspected for artifacts from external electromagnetic
sources. Automatic correction of blink artifacts and horizontal
and vertical saccades was performed using detection through
predefined topographies. Muscle activity over 100 µV was
also excluded. Fast fourier transforms (FFTs) were computed
over 50% overlapped windows of 2 s (512 points). The total
power in µV2 was obtained for lower alpha frequency band
(7.5–10 Hz), upper alpha frequency band (10.5–13 Hz) and theta
frequency band (4–7 Hz; Klimesch, 1999). For the analysis of
spectral power in the alpha bands data from the electrodes most
spatially representative of the regions of interest were used i.e.,
frontal (F3, F4); temporal (T7, T8); central (C3, C4); parietal
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(P3, P4); occipital (O1, O2). This selection permitted analysis
of distributed signals whilst minimizing type one error. The
theta band used in this study consisted of a 1 Hz window
taken around the frequency of peak modulation within the
4–7 Hz theta range for each participant. This was in order
to individualize measurements and maximize their validity. As
the majority of participants tend not to produce a clear peak
frequency within the theta band, and because there tends to
be a large inter-individual variability in the magnitude of the
theta response to demand, individualization of the measure was
deemed necessary (Gevins et al., 1998). The method involved
(for each participant) plotting the spectral power values that
lay within the 4–7 Hz theta band for each demand condition
on a graph where frequency was represented on the x-axis and
spectral power on the y-axis. The graph for each participant
was then visually inspected to discern the theta frequency
possessing the greatest demand related modulation of power.
Many participants did not display a unique frequency with
the greatest power modulation, but instead a small window of
similar frequencies that displayed greater modulation than the
other theta frequencies; for this reason a 1 Hz window was
selected for each participant. Power spectra values for both
alpha and theta bands were log transformed (using the natural
log) to normalize distribution. A single 180 s continuously
recorded data segment was analyzed for each experimental
condition.

Statistical Analysis
A priori hypotheses concerning effects for demand were
tested using repeated measures analyses of variance (ANOVA).
Multivariate analyses are reported using the Pillai’s Trace statistic
and where multivariate tests failed to reach significance, due
to a small sample size (N = 20) significant univariate analyses
are reported. Greenhouse-Geisser corrections were applied for
violations of sphericity as indicated by Mauchly’s test. Alpha
levels for a priori tests were set at 0.05. Significant omnibus effects
have been followed up with post hoc tests where the alpha levels
were corrected to minimize Type one errors using the Bonferroni
adjustment.

Results
Performance
A 2 × 3 (incentive × demand) repeated measures ANOVA was
performed on game performance scores (i.e., the percentage of
successful line completions), which revealed an omnibus effect
for demand (F(2,18) = 504.8, p < 0.01, η2 = 0.98). There
were no main or interaction effects for the incentive. Post hoc
tests revealed that performance was significantly reduced at
excessive compared to high demand (p < 0.01) and low demand
(p < 0.01). Performance scores were also significantly lower at
high compared to low demand (p < 0.01), descriptive statistics
are presented in Table 1.

Subjective Self-Report Data
A 2 × 3 (incentive × demand) MANOVA on scores for the
six scales of the NASA TLX revealed significant main effects for

TABLE 1 | Mean scores and standard deviation (in brackets) for Tetris
performance (the percentage of rows completed; N = 20).

Demand Low High Excessive

Incentive Inc. No inc. Inc. No inc. Inc. No inc.

Performance 70.67 63.44 58.59 49.63 2.98 2.41
(12.67) (13.43) (26.9) (28.55) (3.26) (2.35)

demand (F(12,220) = 22.64, p < 0.01, η2 = 0.55) and incentive
(F(6,109) = 2.85, p < 0.05, η2 = 0.14). Ratings of mental,
physical and temporal demand increased significantly with each
increment in demand (all p < 0.05). Effort ratings increased
from low to high demand (p < 0.01) and showed a marginally
significant increase at excessive vs. high demand (p = 0.05).
Perceptions of performance quality were reduced at excessive
vs. high and low demand (both p < 0.01) while frustration was
elevated at excessive vs. high and low demand (both p < 0.01).
Ratings of mental demand, physical demand and effort all
increased with incentive (p< 0.05). However there was no effect
for incentive upon the ratings of temporal demand, frustration
and perception of performance quality; descriptive statistics are
provided in Table 2.

Scores on items from the DSSQ Motivation subscale had
a high internal consistency (Cronbach’s alpha = 0.88) so
were collapsed into one index of subjective motivation. A
demand (3)× incentive (2) repeated measures ANOVA revealed
significant main effects for demand (F(2,18) = 29.42, p < 0.01,
η2 = 0.77) and incentive (F(1,19) = 15.16, p < 0.05, η2 = 0.44).
Post hoc T-tests indicated enhanced motivation at high demand
(high vs. low: p < 0.01; high vs. excessive: p = 0.01). Motivation
was also elevated when the incentive was present for all demand
conditions (p= 0.01; Table 2).

EEG Theta Power
A 2 × 3 repeated measures MANOVA was conducted on theta
power data from five frontal (F, FC) and AF sites (AFz, Fz,
FCz, F1, F2). This analysis produced a main effect for demand
(F(2,18) = 21.89, p < 0.01, η2 = 0.71) and site (F(4,16) = 38.73,
p < 0.01, η2 = 0.91). A quadratic trend for demand was
significant (F(1,19) = 19.71, p < 0.01, η2 = 0.51) indicating
maximum power at high demand. There was no effect of
incentive on frontal theta power.

To locate the effects for demand paired sample T-tests were
conducted on data that had been collapsed across the levels of site
and incentive. Theta power was significantly elevated at high vs.
low and excessive demand (p< 0.01). There was also amarginally
significant increase of theta power during excessive compared to
low demand (p= 0.05).

EEG Alpha Power (7.5–13 Hz)
To discern effects of the manipulations upon spectral power
in the alpha band, repeated measures (2 × 3 × 5 × 2)
ANOVAs with factors of incentive (incentive, no
incentive) × demand (low, high, excessive) × site (frontal
(F3, F4), parietal (P3, P4), occipital (O1, O2), central
(C3, C4), temporal (T7, T8)) × hemisphere (left, right)
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TABLE 2 | Mean and standard deviation (brackets) scores for the six NASA TLX Scales (mental demand, physical demand, temporal demand, frustration,
effort and perception of performance) and the DSSQ motivation scale.

Demand Low High Excessive

Incentive Inc. No inc. Inc. No inc. Inc. No inc.

Mental demand 3.77 (2.29) 3.00 (2.17) 6.50 (1.87) 5.32 (2.03) 7.73 (1.95) 7.00 (2.77)
Physical demand 3.00 (2.25) 2.09 (1.51) 5.50 (2.8) 4.05 (2.58) 6.73 (2.79) 7.00 (2.77)
Temporal demand 2.00 (0.87) 1.95 (1.48) 6.09 (1.45) 6.00 (1.8) 9.27 (1.13) 8.72 (1.92)
Frustration 4.18 (2.58) 3.95 (2.42) 4.18 (2.33) 4.36 (2.53) 8.18 (2.02) 7.64 (2.4)
Effort 4.41 (2.4) 2.95 (1.93) 7.23 (1.78) 5.68 (2.24) 8.41 (1.53) 6.77 (2.61)
Perception of performance 7.27 (2.54) 7.55 (2.05) 7.14 (2.41) 5.73 (2.64) 1.50 (0.99) 2.23 (1.78)
Motivation 6.14 (0.91) 4.86 (1.88) 7.60 (1.04) 6.20 (1.38) 5.73 (1.68) 5.40 (1.31)

Inc., incentive; No inc., no incentive; N = 20.

were performed separately on lower and upper alpha band
power.

The omnibus analyses for lower alpha band power
(7.5–10 Hz) produced main effects for site (F(4,16) = 41.05,
p < 0.01, η2 = 0.91) and hemisphere (F(1,19) = 4.92, p < 0.04,
η2 = 0.21). Trend analysis showed a linear trend for hemisphere
with reduced lower band power in right hemisphere (statistic
as for effect). Interactions were also present in the analysis of
lower alpha power for incentive × hemisphere (F(1,19) = 5.73,
p< 0.03, η2 = 0.23) and demand× site (F(4,82) = 4.01, p< 0.01,
η2 = 0.17). Post hoc tests indicated the incentive × hemisphere
interaction was related to greater reduction of alpha power in
right hemisphere during the incentive condition (p = 0.02).
The demand × site interaction was linked to a reduction of
lower alpha power at occipital sites during high compared to
excessive demand (p = 0.03); lower alpha was also suppressed
at high compared to low demand at temporal sites (p < 0.01).
Summary statistics for the post hoc tests are presented in
Table 3.

The omnibus ANOVA for upper alpha band (10.5–13 Hz)
produced main effects for incentive (F(1,19) = 6.41, p < 0.03,
η2 = 0.25), demand (F(2,18) = 6.62, p < 0.01, η2 = 0.42) and
site (F(4,16) = 25.22, p < 0.01, η2 = 0.86). There were significant
linear trends indicating that upper alpha power decreased as
demand increased (F(1,19) = 13.63, p< 0.01, η2 = 0.42) and when
the incentive was offered (statistic as for effect). Interactions
were also present for incentive × hemisphere (F(1,19) = 6.81,
p < 0.02, η2 = 026) and demand × site (F(4,81) = 8.69, p < 0.01,
η2 = 0.31).

Post hoc T-tests revealed a reduction of upper alpha power
when game coins were present (p = 0.02). Upper alpha was
also suppressed at excessive compared to high and low demand
(p < 0.01) and at high compared to low demand (p = 0.02)

TABLE 3 | Differences in power between levels of Tetris demand by region
for lower alpha band (N = 20).

Lower alpha band power

Site t p η2

Occipital excess > high 2.29 0.03 0.22
Temporal high > low 2.92 0.01 0.31

indicating a concomitant drop in upper alpha power as game
demand increased.

Analysis of the demand × site interaction revealed a stepwise
reduction of upper alpha power as demand increased at parietal,
frontal and central sites. However, this demand effect was not
apparent at occipital and temporal sites. Post hoc tests indicated
that the hemisphere× incentive interaction was related primarily
to a reduction in power during the incentive condition compared
to the no-incentive condition in the right hemisphere (p< 0.01).
The t-values and effect sizes for these post hoc tests are displayed
in Table 4.

Discussion
This study was performed to assess the suitability of oscillatory
EEG metrics for the real time monitoring of effort and cognitive
demand during Tetris play. The results indicated frontal theta
was robustly sensitive to objective game demand but that
alpha activity only responded to demand at specific sites.
For both frontal theta power and subjective motivation there
were significant quadratic trends with maxima at high demand
indicating that this level stimulated the highest subjective
motivation and effort investment, as predicted by the MIM
(Figures 1, 3). Upper alpha band (10.5–13 Hz) indicated a
linear increase in cortical activation as the challenge of the game
increased (Figure 4), which corresponded with the trend in
subjective workload (Table 2). There was no main effect for
either manipulation upon the lower alpha band (7.5–10 Hz)
however, an interaction with site revealed sensitivity to demand

TABLE 4 | Differences in power between levels of Tetris demand by region
for upper alpha band (N = 20).

Upper alpha band power

Site t p η2

Central low > excess 5.14 <0.01 0.58
low > high 4.72 <0.01 0.54
high > excess 3.95 0.01 0.45

Parietal low > excess 4.24 <0.01 0.49
low > high 3.55 0.02 0.40
high > excess 3.18 <0.01 0.35

Frontal low > excess 4.18 <0.01 0.48
high > excess 3.31 <0.01 0.37
low > high 2.46 0.02 0.24
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FIGURE 3 | Grand average topographic distribution of spectral power
at the frequency of peak power for low, high and excessive demand
(N = 20: incentive and no-incentive conditions are collapsed). Peak
frequency = 6 Hz (the frequency at which a clear peak in EEG power was
evident within the 4–7 Hz range); this was identified by visual inspection of the
grand average frequency-power spectral plot. Images were constructed using
spherical spline interpolation.

over temporal and occipital areas of the scalp. The sensitivity
of upper alpha activity to game demand was specific to frontal,
central and parietal sites. In addition, upper alpha was the
only frequency band to respond to the incentive coins (greater
power reduction when game coins were present over the right
hemisphere).

Augmentation of frontal theta has been widely reported in
association with sustained attention, increased cognitive control
and working memory (Gevins et al., 1998; Klimesch, 1999;
Jensen and Tesche, 2002; Gevins and Smith, 2003; Sauseng
et al., 2005; Cavanagh and Frank, 2014; Hsieh and Ranganath,
2014; Clayton et al., 2015). However, the decline of frontal
theta power under conditions of excessive demand (Figure 3)
has not previously been observed. The reproduction of this
pattern in Tetris players provided an indication of the ecological
validity of this metric and the ability of frontal theta to retain
sensitivity to demand when generalized to spatial cognition
in a gaming context. The capacity of frontal theta to act as
a ‘‘generic’’ index of mental effort makes it an appropriate
input to a closed-loop system since games typically use different
elements of cognition at different stages of play. In addition,
frontal theta demonstrated a degree of face validity owing to
the similar pattern of modulation between EEG activity in this
band and subjective motivation. The large effect sizes attest to
the sensitivity of this measure and its capacity to discriminate
between three or more categories of demand as well as detect
the ‘‘tipping point’’ where effort is withdrawn due to overload
(Figure 1).

Alpha power in the upper band, which is associated with task-
specific cognitive processes (Klimesch, 1999), was suppressed as
demand increased from low to high to excessive levels (Figure 4);
a finding supported by a significant body of literature on cortical
activation (e.g., Pfurtscheller, 1992; Gevins et al., 1998; Fournier
et al., 1999; Klimesch, 1999). However, this main effect did
not extend to lower band power (an index of cortical arousal
and alertness), instead an interaction between demand and site
showed that sensitivity of lower alpha band was limited to
occipital and temporal areas. The lessening of power in the

FIGURE 4 | Grand average spectral electroencephalography (EEG)
power at 11.5 Hz (N = 20) for low, high and excessive cognitive
demand on the Tetris game with and without a game based incentive
(spherical spline interpolated; image displays rear of scalp).

upper alpha band, and hence the level of cortical activation,
was maximal during excessive demand despite a reduction
of frontal theta power at this level. This suggests that upper
alpha reflected the objective level of task demand upon spatial
cognition (e.g., the processing of high numbers of fast moving
stimuli in the form of falling Tetris blocks) whereas frontal
theta represented the level of effort mobilization in the face of
excessive demand (i.e., a withdrawal of effort). These findings
suggested that a two-dimensional space could be created akin
to the MIM (Figure 1) wherein demand is represented by upper
alpha power and frontal theta power is used as an index of mental
effort.

The sensitivity of the alpha band was found to vary
across recording sites. Upper band effects occurred at frontal,
central and parietal sites which provides some agreement
with other studies linking these cortical areas with mental
rotation—a key cognitive component of Tetris play (e.g.,
Inoue et al., 1998; Yoshino et al., 2000). Conversely, the
effects of demand in the lower alpha band were restricted
to temporal and occipital electrodes. In addition, the lower
band revealed stronger activation in right hemisphere, which
is traditionally associated with spatial tasks (Hellige, 1993),
whereas the upper band indicated bilateral sensitivity to game
demand. This regional variation indicates the importance of
targeting the right cortical sites in order to maximize the
sensitivity of the EEG metrics to the chosen psychological
variables.

The results from the study identified two EEG measures
as suitable inputs to a biocybernetic loop designed to control
an adaptive game of Tetris. Frontal theta was selected to
index mental effort due to its sensitivity to this variable, its
reliability and its specificity (i.e., theta did not respond to
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the incentive+feedback manipulation), The sensor location Fz,
which generally lies at the center of the scalp area associated
with frontal theta augmentation was selected as the recording
site. Power in the upper alpha band (10.5–13 Hz) was selected
to index the level of task cognition; this variable was sensitive
to the objective difficulty of the task and demonstrated a linear
pattern over the three levels of demand in accordance with
subjective workload ratings. There is also strong literature based
support for the involvement of upper alpha band with task
related cognition, including mental rotation (for a review see
Klimesch, 1999). The right parietal site P4 was the chosen
sensor input for the sampling of upper alpha oscillations. A
parietal site was selected because in the first study parietal
sites P3 and P4 detected sensitivity to game demand; central
sites were also responsive but there were concerns that these
would be subject to confounds from motor activity associated
with game play. Although sensitivity was recorded at frontal
sites this was smaller in magnitude than the parietal response
to demand (Table 4). The choice of recording site was also
constrained to the set of sites analyzed in study one i.e., frontal
(F3, F4), temporal (T7, T8), central (C3, C4), parietal (P3,
P4) and occipital (O1, O2) to preserve the validity of the
psychophysiological inference regarding game-related cognition.
Although there was no interaction of demand with hemisphere
in the first study to guide this selection of site, the right
hemisphere electrode P4 was selected on the basis of a robust
association of right hemisphere with spatial cognition (Klimesch,
1999).

To summarize, the selection of the two EEG inputs to the
biocybernetic loop made it possible to operationalize the adapted
MIM (Figure 1) i.e., frontal theta was used to represent effort
and parietal upper alpha to represent game demand (Figure 5).
According to this conceptual model the desirable states of
‘‘zone’’ and ‘‘engagement’’ are associated with high effort while
undesirable states are defined by low effort combined with high
demand (overload) or combined with low demand (boredom).

DEVELOPMENT OF THE REAL-TIME
ADAPTIVE GAMING SYSTEM

The working biocybernetic loop was created from a network
that involved the connection of two PCs; one PC that ran the
adaptive Tetris Software and a second PC that hosted a virtual
instrument (VI) constructed with LabVIEW. Raw EEG data
were transmitted to the VI to be filtered and averaged prior to
transformation into estimates of motivation and workload by
a state classification algorithm. These estimates were defined
in terms of the four states of boredom, engagement, zone and
overload (Figure 5). If the state fell within the undesirable
categories of boredom or overload, a signal would be transmitted
to the adaptive Tetris Software in order to adjust the level of
game demand. The components of this loop are illustrated in
Figure 6.

EEG data was recorded monopolarly from two Ag-AgCl
pin-type active electrodes mounted in a BioSemi head cap
at the locations Fz and P4 (sites determined by the 10–20
system). AC differential amplifiers amplified signals at source

FIGURE 5 | Two dimensional representation of the user state using
EEG measures (cortical activation is inversely proportional to alpha
band power).

FIGURE 6 | Components of the biocybernetic loop.

with continuous digitization at 16,384 Hz and online down
sampling to 512 Hz. No filters were applied online to allow
visual inspection of noise. The EEG signal was filtered using a
Kasier Finite Impulse Response (FIR) of 2–30 Hz then subjected
to a FFT in real time using a 2 s Hanning window. Theta
activity between 4–8 Hz was obtained from the midfrontal
electrode Fz and activity in the upper alpha band (10.5–13 Hz)
was derived from right parietal site P4. The FFT calculated
power spectra for each frequency band to generate total power
values for each measure. These values were then converted to
estimates of workload (upper alpha) and motivation (frontal
theta).

For the operational model to trigger adaptations of game
demand in real-time, it was necessary to select criteria for
adaptation so that the four regions of the user state model
could be defined (Figure 5). To maximize the effectiveness of
adaptation, it was desirable to calibrate the criteria or trigger
levels to individual players to counteract individual variability in
the magnitude of EEG responses to game demand (Gevins et al.,
1998).
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The criteria for triggering adaptations of the Tetris interface
were developed based upon patterns of theta and upper alpha
oscillations that were observed relative to a baseline reading.
Our participants were required to watch a relaxing video clip
(Piferi et al., 2000) in order to establish baseline EEG levels
of frontal theta and (parietal) upper alpha for each participant.
Baselined derivatives of theta and alpha were captured in
5-s windows during subsequent game play. For example, if
frontal theta activity increased or decreased from baseline by
100% in any 5-s window whilst parietal alpha increased or
decreased by 100% then system adaptation may be triggered.
In practice, frontal theta and parietal alpha were assessed
every 5 s as the participant played the adaptive version of
Tetris. If the system detected that frontal theta had decreased
by 100% or more (from baseline) whilst parietal alpha had
increased by 100 or more (from baseline), the player was
assessed to be in a state of boredom (Figure 5). If the
decrease of frontal theta was accompanied by a decrease of
parietal alpha, the player was deemed to be in a state of
overload.

A straightforward strategy for the adaptation of the game
interface was used, i.e., reducing or increasing the drop speed of
the falling Tetris blocks to manipulate game difficulty. Speed was
increased if the player was deemed to be in a state of boredom and
decreased if overload was detected (Figure 5). If neither of those
states were detected by the system, the drop speed of the Tetris
blocks was maintained. This assessment took place in 5-s epochs,
hence the drop speed of the game increased or decreased over a
period of play depending on the relative frequency of ‘‘boredom’’
or ‘‘overload’’ epochs that occurred within that period.

A series of pilot tests were conducted to determine an
appropriate magnitude of the drop speed changes and whether
or not to incorporate feedback of drop speed into the interface.
The outcomes from these tests indicated that small adjustments
without any overt feedback of drop speed were the most
acceptable version of the Tetris interface from a user perspective.
This design corresponded to a covert adaptive strategy where
the adaptive process is expected to produce a gradual impact
rather than an immediate impact on player state. This strategy
was adopted in order to focus the attention of the players on
the game as opposed to the ongoing activity of the biocybernetic
loop.

STUDY TWO: EVALUATION OF THE
BIOCYBERNETIC LOOP

Introduction
A study was conducted to evaluate the adaptive Tetris game with
respect to two questions: (1) does adaptation improve player
experience compared to a manual adjustment of game demand;
and (2) how does varying the reactivity of the biocybernetic
loop (i.e., liberal vs. conservative trigger levels) impact upon
player experience and the behavior of the closed-loop. The first
question contrasts a covert, automated process of adjustment
with a scenario where adjustments of game demand are both
overt and manually instigated by the player. The second question
pertains to the design of the trigger events for adaptation and

how psychophysiological criteria can impact upon the process of
system adaptation and the player experience.

Method
Design
Three types of biocybernetic loop were compared: (a) a
conservative system that produced an upward or downward
adjustment of game demand (i.e., drop speed) when changes
in frontal theta and parietal alpha substantially deviated from
baseline (greater than 200%); (b) a liberal system that adjusted
game demand in response to smaller deviations from baseline
EEG activity (100%); and (c) a moderate system that responded
to moderate changes in EEG (150%). It was anticipated that
the conservative system would be the least reactive and would
respond slowly and only to extreme examples of boredom and
overload. By contrast, the liberal system was expected to make
frequent adjustments and be the most responsive to instances
of boredom/overload. For the fourth system, which operated
under manual control, participants were required to speak aloud
an instruction to increase (‘‘higher’’) or decrease (‘‘lower’’) the
speed of the falling blocks. These adjustments were made in
real-time by an experimenter sitting behind a screen in the
laboratory. Ten participants played each of the four Tetris
games (conservative closed-loop, liberal closed-loop, moderate
closed-loop, manual) for 5 min. The order of presentation of
each system was counterbalanced and participants were given
a 5 min rest break between each game. Every game began
on the slowest speed setting. If the blocks reached the top
of the board and ‘‘game death’’ occurred, the game would
restart with an empty board on the slowest speed setting. The
procedure for the experiment and data collection protocol was
approved by the LJMU University Research Ethics Committee
and the experiment was conducted in accordance with the
recommendations of this same committee.

Participants
Ten volunteers (6 females) participated in the evaluation
session. A repeated measures design was used where each
participant encountered each of the four versions of the system
(conservative/liberal/moderate/manual). All participants were
volunteers who gave their written informed consent prior to data
collection in accordance with the Declaration of Helsinki.

Subjective Measures
Player experience was analyzed using subjective measures of
mood and game immersion. The mood adjective checklist
(UMACL; Matthews et al., 1990) assesses three components
of mood: energetical arousal (EA: tired-alert), tense arousal
(TA: relaxed-tense) and hedonic tone (HT: happy-sad). The
UMACL was administered before and after each game to
allow calculation of the change scores (post- minus pre-game)
for each mood component. Participants also completed the
Immersive Experience Questionnaire (IEQ) designed to capture
the immersive quality of the gaming experience (Jennett et al.,
2008); this scale was administered after each game.
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Measures of System Behavior
Data were obtained in order to quantify the behavior of each
version of the system. This enabled the three versions of the
adaptive closed-loop to be contrasted with one another and an
understanding to be acquired of how they differed from the
manual control system. Three aspects of system behavior were
measured for each system version:

• The mean frequency of increases and decreases in game
demand

• The mean frequency of game deaths/resets (when blocks
reached the top of the board and the game required resetting)

• The average demand level of each game (game difficulty could
vary between 1 and 10 in accordance with the drop speed of
falling blocks)

Results
An ANOVA analysis was conducted on each of the three
measures of system behavior (see Table 5 below for
the descriptive statistics). Each measure (mean freq. of
increases/decreases in demand, mean freq. of game deaths
(resets), average game difficulty) was subjected to a one-
way ANOVA to assess statistical significance. The number
of adjustments to increase task demand was significantly
higher for the conservative system compared to the other
three systems; unsurprisingly, all three biocybernetic systems
exhibited a higher rate of upward adjustment compared to
the manual system (F(3,7) = 79.40, p < 0.01). The analysis of
downward adjustment (to decrease game demand) revealed
that automated decreases of demand occurred more frequency
during games played with the moderate and liberal versions of
the biocybernetic loop (F(3,7) = 18.4, p < 0.01). The analysis
of reset frequency indicated that resets were most common
in the conservative system, however, this increase failed to
reach statistical significance. The analysis of mean demand level
indicated that difficulty was significantly lower for the liberal
system compared to all other systems (F(3,7) = 12.3, p< 0.01).

The impact of system adaptation on the user experience was
assessed using two types of subjective questionnaire; the IEQ
and the UMACL mood adjective checklist. The UMACL was
administered before and after each game session in order for us to
calculate a change score that quantified the changes in the three
components of mood: EA (alert-tired), TA (tense-relax) and HT
(happy-sad). All three components were subjected to a one-way
ANOVA; mean values are displayed in Table 6.

TABLE 5 | Mean values for measures of system adaptation across the four
systems (N = 10).

System Increase Decrease Mean Mean
demand demand reset difficulty level

Conservative 63.6 43.2 1.3 3.8
Moderate 41.7 56.6 0.6 2.4
Liberal 28.6 62.4 0.4 1.9
Manual 9.4 1.7 0.5 3.3

Highest difficulty level = 10; lowest difficulty = 1.

TABLE 6 | Mean values for subjective data: EA, energetic arousal (change
score); TA, tense arousal (change score); HT, hedonic tone (change
score); IEQ, immersion (N = 10).

System EA TA HT IEQ

Conservative 4.3 3.1 0.0 64.7
Moderate 2.0 2.4 −1.9 65.5
Liberal 0.2 1.1 −2.0 66.1
Manual 1.1 0.7 −1.6 73.9

The mean values for the changes in mood indicated some
consistent trends, namely that participants found the game to
be alerting and conducive to tension and negative affect. An
ANOVA analysis of all three mood components revealed a
significant effect for EA (energetic arousal) only (F(3,7) = 5.48,
i.e., p < 0.05), i.e., participants found the experience of playing
the conservative version of the biocybernetic game to be more
alerting compared to the liberal version (p < 0.05). The analysis
of responses to the immersion questionnaire was insignificant,
but a trend was observed that participants found the manual
version of the game to be the most immersive.

Discussion
This evaluation study demonstrated how the reactivity of the
biocybernetic loop affected the performance of the system and
the experience of players.

The analysis of system behavior revealed that the conservative
system provided the greatest level of challenge, i.e., it produced
the highest average level of demand and made the largest
number of adjustments to increase game demand. This skew
towards increased adjustment of demand was mirrored by the
liberal system, which tended to adjust difficulty in the opposite
direction, such that the liberal version produced the lowest
number of game deaths and lowest average level of demand. The
moderate system produced a pattern of upward and downward
adjustments that represented a midpoint between that of the
conservative and liberal systems. As anticipated, the number of
adjustments made manually by participants was lower than the
numbers produced by the biocybernetic loop as they tended to
simply increase the level of difficulty to their preferred level
early in the game without making any subsequent adjustments.
The mean level of difficulty during play on the manual system
(included as benchmark to compare with the adaptive protocols)
provided an indication of the optimal level of demand for
the group (3.3). By contrast the conservative system generally
pushed the players to a higher level of demand (3.8), resulting
in the greatest number of game deaths; the moderate and
liberal systems tended to set difficulty at a lower level than
the manual system on average. Therefore, the three adaptive
systems and their respective triggers tended to either over- or
undershoot the mean level of demand that was preferred by our
participants.

It was noteworthy that the conservative system produced a
large number of upward adjustments in game demand (63.6)
suggesting that this system was detecting boredom via the EEG
(i.e., a 200% decrease in theta and increase in alpha relative to
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baseline; Figure 5). Boredom may have resulted from games
starting on the slowest drop speed setting and the return to
the slowest speed when the game was reset (Table 5). By
contrast, the liberal system produced more downwards than
upwards adjustments even though games started at the easiest
level, meaning on some occasions where the trigger criteria
for a downward adjustment was fulfilled the interface was
unable to slow the speed because the player was already at
the lowest level. The liberal system was also detecting more
player overload than the other two adaptive systems (more
downward adjustments), i.e., the trigger criteria of a 100%
decrease in theta and alpha power relative to baseline were
fulfilled the most frequently (Figure 5). This is surprising in
view of the low levels of demand delivered by the liberal system.
One explanation may be that the EEG indicators of overload
used were incorrect and that simultaneous decreases in alpha
and theta power of around 100% indicate low effort (reduced
frontal theta) combined with low levels of sensory processing
(reduced parietal alpha) instead of overload (Klimesch, 1999).
It may be that deviations of 200% or more are required to
indicate overload where excessive demand leads to a high level
of alpha power suppression, as occurred when demand was
excessive in the first study (Figure 4). This underlines the
importance of not only selecting the best combination of input
measures for the biocybernetic loop, but also of defining accurate
trigger criteria in terms of the relative magnitudes of the input
variables.

It was expected that player experience would be affected by
the different outcomes in system behavior between the four
versions of the system. However, there were few statistically
significant effects on mood and immersion. Alertness was
enhanced under the conservative system relative to the liberal
system but there were no other significant effects. Of the
four systems analyzed the conservative version of the loop
produced the most desirable overall impact on player mood,
i.e., it evinced the greatest increase in arousal and least negative
affect which may be because participants were too challenged
to dwell upon their emotional state. This may be because
the conservative system was the most successful at detecting
boredom and alleviating it with increases in demand. Conversely
ratings of immersion in the game were greatest for the manual
system, which may reflect the impact of taking momentary
breaks from the game to voluntarily control difficulty with
a verbal instruction. Even very short breaks from a task are
known to increase vigilance performance (Ariga and Lleras,
2011) and opportunities for control can increase the intrinsic
motivation for a task (Fisher, 1978). Alternatively, it may be
argued the level of demand during the manual control condition
was optimal for enhancing immersion. The observation that
play on the game increased negative affect under all but
the conservative system was unanticipated and may reflect
the impact of the lower levels of challenge experienced by
participants.

Based upon the results, it would appear that the criteria used
to define the three versions of the biocybernetic loop were too
similar to evince much difference in player experience. It may
be speculated that if players were provided with more time to

experience play upon each version of the system they may have
been better able to differentiate their respective experiences.

The biocybernetic loop employed a straightforward linear
process of calibration to the individual instead of machine
learning algorithms. The rationale for this approach was that
our psychophysiological measures, EEG theta and upper alpha
frequency power, had been validated prior to construction of
the loop—and we wished to preserve the transparency of both
measures and criteria when testing the working loop. However,
there may have been scope to use machine learning during
calibration such that more precise linear models may have been
generated especially for each participant.

The results highlighted a number of questions surrounding
the evaluation of working biocybernetic systems, particularly
with respect to the benchmarking of system performance. In
this study, a manual system was selected as the benchmark
for comparative purposes on the assumption that participants
would tailor gameplay to their personal preference. However,
this comparison was asymmetrical because the locus of system
control for a manual system resided with the user while control
was automated within the biocybernetic loop. This is a significant
factor when comparing player experience across automated and
manual systems since the opportunity for control over a task
(as provided by the manual system) is known to affect the
level of engagement with that task (Fisher, 1978; Wright and
Kirby, 2001). Comparisons with other autonomous systems
may therefore be more informative. For example, benchmarking
against a system that adapts game demand in a random fashion
without an objective rationale, or by using a ‘‘yoked’’ system
where the game responds to the physiology of another individual
(Bailey et al., 2006). Either of these options may have provided
a more parsimonious comparison with the three versions of the
working biocybernetic loop.

GENERAL DISCUSSION

This article has described the process of creating a working
biocybernetic loop whereby hypotheses derived from
experimental work on EEG were first validated in a gaming
context in order to select the input measures for the loop.
Predictions regarding the modulation of EEG frontal theta and
alpha power by variations in the level of cognitive demand
and effort were validated during Tetris play; subsequently an
adaptive game of Tetris was built that used a biocybernetic loop
with the EEG measures tested during the validation stage. Our
development process for this prototype exemplifies the principle
of designing interactive technologies based upon a theory-driven
process of psychophysiological inference (Fairclough, 2009).

The evaluation of autonomous, closed-loop control systems
raises important issues for the development of biocybernetic
adaptation. The relationship between criteria or categories
of psychophysiological activity and the triggering of adaptive
responses at the interface requires careful design. The derivation
of valid input measures and effective categorization of
psychophysiological data in real-time is one stage of this
process. Once a method of categorizing the states of the user
has been defined (Figure 5), these classes must be mapped onto
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appropriate responses at the interface. This mapping reflects
more than a simple linkage between state x and response y;
decisions must be made regarding the frequency and likelihood
of those responses as well as the temporal characteristics and
relative magnitude of the adaptations. As was demonstrated
in the evaluation study, once a working biocybernetic loop
has been constructed, responses may be adjusted to optimize
the user experience, a process that inevitably involves exploring
the interaction between the user and the adaptive response. The
behavior of the biocybernetic loop and the interaction between
user psychophysiology and adaptive control is an object of study
in itself.

Together these two studies provide a potential blueprint
for the development and evaluation of a biocybernetic
loop. However, further research is required to incorporate
psychophysiological theory into the design of physiological
computing systems and to develop an effective methodology for
system evaluation.
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The stop-signal paradigm has been widely adopted as a way to parametrically quantify
the response inhibition process. To evaluate inhibitory function in realistic environmental
settings, the current study compared stop-signal responses in two different scenarios:
one uses simple visual symbols as go and stop signals, and the other translates
the typical design into a battlefield scenario (BFS) where a sniper-scope view was
the background, a terrorist image was the go signal, a hostage image was the stop
signal, and the task instructions were to shoot at terrorists only when hostages were
not present but to refrain from shooting if hostages appeared. The BFS created a
threatening environment and allowed the evaluation of how participants’ inhibitory
control manifest in this realistic stop-signal task. In order to investigate the participants’
brain activities with both high spatial and temporal resolution, simultaneous functional
magnetic resonance imaging (fMRI) and electroencephalography (EEG) recordings were
acquired. The results demonstrated that both scenarios induced increased activity
in the right inferior frontal gyrus (rIFG) and presupplementary motor area (preSMA),
which have been linked to response inhibition. Notably, in right temporoparietal junction
(rTPJ) we found both higher blood-oxygen-level dependent (BOLD) activation and
synchronization of theta-alpha activities (4–12 Hz) in the BFS than in the traditional
scenario after the stop signal. The higher activation of rTPJ in the BFS may be
related to morality judgments or attentional reorienting. These results provided new
insights into the complex brain networks involved in inhibitory control within naturalistic
environments.

Keywords: electroencephalography (EEG), function magnetic resonance imaging (fMRI), inhibitory control, theta-
alpha band, right temporoparietal junction (rTPJ)

INTRODUCTION

Inhibitory control is a crucial aspect of cognitive control processes. It allows one to stop ongoing
action when it is deemed inappropriate (Aron, 2007). Bari and Robbins (2013) suggested to
divide inhibitory control into two categories: cognitive inhibition and behavioral inhibition.
Cognitive inhibition can be defined as ‘‘the stopping or overriding of a mental process, in
whole or in part, with or without intention’’ (MaCleod, 2007), and is usually measured by
the interference task (Kipp, 2005; Leroux et al., 2006). In contrast, behavioral inhibition,
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which is the focus of the current study, refers to the suppression
of actualizing behavioral outcome, and can be measured by
the stop signal task (SST) or go/no-go task (GNGT). Both SST
and GNGT use frequent go trials which require participants to
perform an action (e.g., press a key button) and infrequent stop
(no-go) trials which requires participants to inhibit preparative
action (e.g., not to press a key button) upon receiving an
additional SST or a different target stimulus (GNGT).

Previous studies have adopted either GNGT or SST to
explore the neuroanatomical loci and temporal characteristics
of associated brain activities with functional magnetic
resonance imaging (fMRI) and electroencephalography
(EEG), respectively. In the neuroanatomical domain, many
studies found that the prefrontal gyrus (PFG) is important
for executive control (for a comprehensive review, see Miller
and Cohen, 2001). Consistent activation for response conflict,
novelty, working memory (number of elements and delay)
and perceptual difficulty has been observed in the inferior
frontal gyrus (IFG), dorsal anterior cingulate gyrus (ACG),
dorsolateral prefrontal gyrus (DLPFG), but not other frontal
regions, regardless of the specific contrast task (Duncan and
Owen, 2000). Aron et al. (2004) concluded that the right
IFG (rIFG) was more closely related to inhibitory control
because damage of the rIFG crucially affected performance in
executive cognitive control paradigm, apparently by disrupting
inhibition.

However, a number of studies have also proposed that the
rIFG is recruited across different task conditions that require
sustained attention (Shallice et al., 2008a,b; Simmonds et al.,
2008). Hampshire et al. (2010) also suggests that the rIFG
serves a general role in attentional control, which rapidly
adapts in order to respond to relevant and salient stimuli
related to inhibitory control in GNGT and SST. Hence, the
suppression of an already initiated response likely depends on
rIFG, yet exactly how the inhibitory function is manifested in
the motor system remained to be investigated. On the other
hand, Aron and Poldrack (2006) had shown that the subthalamic
nucleus (STN), which is a part of the basal ganglia, may play
a role to suppress the ‘‘direct’’ fronto-striatal pathway that
is activated by response initiation and also involved the pre-
supplemetary motor area (preSMA). The findings by Mostofsky
et al. (2003) suggest that the preSMA appears necessary for
inhibiting unwanted movements (stop or no-go condition).
Based on previous studies (Aron and Poldrack, 2006; Nachev
et al., 2008; Verbruggen and Logan, 2008), Duann et al. (2009)
had applied Granger causality analysis in an fMRI study on stop-
signal task to explore the functional connectivity of IFG and
preSMA. Their study found that preSMA and primary motor
gyrus (PMG) have functional interconnectivity via the basal
ganalia circuitry to mediate response inhibition, whereas IFG
connects with preSMA to modulate the basal ganglia circuitry.
According to Duann et al. (2009), the PMG is mediated by
IFG and preSMA via basal ganalia circuitry and the functional
connectivity between IFG and preSMA is ‘‘bi-directional’’ in
SST. Recently, IFG has been hypothesized to serve various
functions including resolution of stimulus conflict, attentional
orienting or the monitoring of behavior. Consequently, results

from some studies have suggested that preSMA is more directly
related to response inhibition than IFG, given its involvement
in motor control (Bari and Robbins, 2013; Obeso et al., 2013;
Aron et al., 2014).

Although the imaging studies are informative about the
neuroanatomical loci of response inhibition in the brain,
equallythe brain, equally important is how the inhibitory process
evolved across time upon its inception. Huster et al. (2013)
reviewed EEG studies on the response inhibition under GNGT
and SST. Most empirical reports mainly examined event-related
potentials (ERP), and it is commonly observed that both stop
and no-go conditions evoked two different ERP components
which are usually absent in the go condition: a fronto-central
negativity occurring around 200–300 ms after stimulus onset
(stop or no-go stimulus), followed by a positive potential with
a delay of approximately 150 ms exhibiting a fronto-central to
centro-parietal topography. These two components have often
been conjointly referred to as the N2/P3 complex. Nevertheless,
N200s and P300s were also evoked in a broad range of paradigms,
including but not limited to response inhibition (e.g., SST,
GNGT, Stroop task, Flanker task and Simon task; Kopp et al.,
1996; Liotti et al., 2000; Falkenstein et al., 2002; Nieuwenhuis
et al., 2004; Ramautar et al., 2006; Johnstone et al., 2007;
Bruchmann et al., 2010).

To more specifically determine the temporal marker(s) for
response inhibition, an alternative way of analyzing EEG data is
through time-frequency analysis for uncovering the oscillatory
components involved in inhibitory response (e.g., Herrmann
et al., 2005). Basar et al. (1999) demonstrated that EEG can be
investigated in the frequency domain and oscillations of specific
frequencies are related to specific cognitive functions, such as
alpha band (8–12 Hz) fluctuations during both sustained and
directed attention (Mathewson et al., 2014). While ERP analysis
generally compares latencies or magnitudes of components
elicited by different conditions (e.g., go condition vs. stop or
no-go conditions), in time-frequency analysis the oscillations
of frequency bands associated with different conditions are
usually compared. Recently, a number of studies have applied
time-frequency analysis in response inhibition tasks. The most
common findings from these time-frequency analyses are a
burst in frontal-midline theta power for no-go and stop signal
conditions as compared to the go condition between 200 and
600 ms after the no-go or stop signal presentation, which falling
well into the time range of N2/P3 complex (Huster et al.,
2013). In addition, Schmiedt-Fehr and Basar-Eroglu (2011) also
reported activity in the delta power for the same time window
using a GNGT. These time-frequency components seem to more
specifically associated with response inhibition.

Most studies explored the ‘‘inhibitory network’’ by using
stimuli with simple configuration in SST or GNGT (e.g., circle
as the go stimulus, and an ‘‘X’’ as the stop (no-go) signal; Chang
et al., 2014; Lavallee et al., 2014) to investigate the properties
of the inhibitory network. How this inhibitory network for
typical SST generalizes to response inhibition in more realistic
scenarios remains to be investigated. The generalizability issue
is not new in cognitive experiments, and not many studies have
explored how well cognitive phenomena established in simple
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scenes can be generalized to more complex and realistic ones.
Lapenta et al. (2014) used transcranial direct current stimulation
(tDCS) to explore inhibitory control of EEG under food craving
using realistic food picture as go signal in GNGT. They first
induced the participant’s food craving by a brief movie showing
scenes of food and then required the participant to complete
a visual analog scale for appearance, smell and taste of the
exposed food. All participants were then required to perform
GNGT twice: one was performed with active tDCS at F4 and
F3 (10–20 EEG coordinate system) and the other with sham
tDCS. Their results indicated that tDCS reduced magnitude of
frontal N2 component but enhanced the P3a component, as
compared with the sham condition. Regenbogen et al. (2010)
used real and virtual computer game scenarios to compare the
pattern of brain activation between gamers and non-gamers.
They analyzed fMRI data by contrasting different combination of
conditions, including Violent vs. Nonviolent scenarios under real
and virtual modality for gamers and non-gamers, respectively.
The activity pattern of non-gamers under the contrast Violent
vs. Nonviolent is more complex than gamers in both real and
virtual scenes. More importantly, when the neural activities of
real modality were compared with virtual modality between
gamers and non-gamers, they found non-gamers have more
activated brain regions when contrasting Violent vs. Nonviolent
conditions, and when contrasting Real vs. Virtual scenes. Based
on the findings above, it seems that real and virtual scenes may
recruit the brain in distinct ways.

Given the paucity in literature exploring response inhibition
by combining methods with high spatial and temporal
resolutions, by applying time-frequency analyses, and by
contrasting performance under simple vs. naturalistic scenarios,
the current study aims to compare behavioral performance
and neural mechanisms of inhibitory response under simple
and realistic scenarios with simultaneous recording of EEG
and fMRI. Scenes from a well-known shooting game ‘‘Count
Strike’’ were adopted as the visual background in the battlefield
scenario (BFS), where image of a ‘‘terrorist’’ holding a gun
served as the go sign, and a ‘‘hostage’’ image as the stop
signal. Besides higher extent of visual complexity, this scenario
is supposed to induce stressful feelings in the participants. As
a control condition, the conventional SST in which simple
symbols represent go and stop signals, namely a symbol scenario
(SBS), was also adopted. In order to investigate both the
rapid brain dynamics and precise spatial loci of the inhibitory
process, simultaneous fMRI and EEG recordings were carried
out to acquire signals of brain activation from sources with
high spatial and temporal resolutions, respectively. Comparing
to independent recording of fMRI and EEG, simultaneous
fMRI-EEG can confirm that the characterization of functional
activations and frequency oscillations of brain networks are
under the same experimental condition, and thus more likely
the same neural networks (Mulert, 2013). The current study
examined significant differences in fMRI and EEG responses
associated with successful-stop (SS) vs. successful-go (SG)
trials to identify inhibition-related brain activations/dynamics,
and SS vs. fail-stop (FS) trials to identify error-related brain
activations/dynamics (Li et al., 2006; Boehler et al., 2010;

Swick et al., 2011). Based on the literature of inhibitory control
reviewed above, we predict that preSMA will show fMRI
activation and modulations in theta-alpha band power under
both scenarios of SST. However, for the comparison between SBS
and BFS, it remains an empirical question whether additional
neural networks related to cognitive processing of emotional or
social information, such as amygdala or middle temporal gyrus
would be involved.

MATERIALS AND METHODS

Participants
All participants (n = 35; mean age = 23.39; SD = 1.86) were
right-handed, had normal or corrected-to-normal vision, and
none reported history of neurological or psychiatric disorders.
Each participant provided written informed consent approved
by the Research Ethics Committee of the National Taiwan
University prior to participation. Data from three participants
were excluded from analyses due to low performance in SST
(SG ratio is lower than 2SD below the group mean). Among
the remaining participants, simultaneous fMRI-EEG data were
successfully acquired from 11 participants, and 21 participants
only have fMRI data. Therefore, the fMRI results were based on
32 datasets, whereas the EEG results were based on 11 datasets.
Although there were only 11 participants for the EEG analysis,
given that each participants made responses to 105 trials, the
total amount of epochs is 1155. These epochs are distributed into
the four conditions (SG = 705, SS = 170, FG = 92, FS = 188).
We consider this amount of epochs are sufficient for our EEG
analyses.

Experimental Design
The experiment implemented the stop-signal task under two
different scenarios (Figure 1), where one consisted of simple
symbol (i.e., SBS) and the other battlefield images (i.e., BFS).
Every participant was asked to respond to a go stimulus (a circle
for SBS and a ruffian for BFS). They hold their response (stop
stimulus), when appeared (a cross for SBS and a hostage for BFS),
when it was presented after the go stimulus. The critical stop
signal delay (cSSD), which is approximately 50% probability of
SS, was measured by using a staircase tracking procedure before
they performed formal experimental trials in the scanner. The
staircase tracking procedure worked in the following way: SSD
started at 150 ms and if the participant successful-stopped their
response, SSD would increase by 50 ms; on the contrary, SSD
would reduce 50 ms and the lower bound of SSD was 150 ms.
The formal task used five different SSDs (cSSD, cSSD ± 40 ms,
and cSSD ± 80 ms) and each SSD had equal number of trials.
The participant performed four runs in the fMRI experiment
and each run was equally divided into one half for BFS and
the other for SBS, where the order of scenario was completely
counterbalanced across runs. Each block of scenario in a run
had 105 trials of which 25% were stop trials while the rest were
go trials. Each go trial began with a fixation cross lasting for a
random duration (0.5–6.5 s), followed by a go-signal lasting for
1 s or until response. In a stop trial, the stop-signal is presented
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FIGURE 1 | Experimental design. (A) Stimuli in two scenarios; (B) order of events in the battlefield scenario (BFS). SSD indicates stop signal delay, and there are
five different SSDs including SSD (cSSD), cSSD ± 40 ms, and cSSD ± 80 ms.

N milliseconds after the go-signal, where N was defined by the
SSD assigned to that trial.

fMRI Signal Acquisition and Preprocessing
Participants performed the task in a Siemens 3T MAGNETOM
Skyra scanner located in the Taiwan Mind and Brain Imaging
Center at National Chengchi University, Taipei. Structural T1-
weighted images were acquired using the MPRAGE sequence
(TR: 2530 ms; TE: 3.03 ms; flip angle: 7◦; matrix size:
224 × 256; field of view: 224 × 256 mm; in-plane resolution:
1 × 1 mm; slice thickness: 1 mm; 192 slices). Functional
brain images were acquired using a gradient echo-planar
imagine sequence (TR: 2000 ms; TE: 25 ms; flip angle:
90◦; matrix size: 64 × 64; field of view: 220 × 220 mm;
voxel size: 3.438 × 3.438 × 4.0 mm3; 292 volumes per
run). The preprocessing stream as well as statistical analyses
was completed using the Analysis of Functional Neuroimages
(AFNI) software (Cox, 1996). The preprocessing stream included
image reconstruction, slice-time correction (time-shifting the
time series using Fourier interpolation), and motion-correction
(linear least-squared alignment via affine transformation with
three translational and three rotational parameters). Activation
outside the brain was removed using edge detection techniques.
After the preprocessing, each participant’s anatomical image

was transformed into the standard space of the Montreal
Neurological Institute (MNI) 152 brain template using an
automated feature-matching algorithm (Collins et al., 1994).
Each participant’s functional data was first aligned to their own
anatomical image and then transformed into the standardized
MNI space.

EEG Signal Acquisition and Preprocessing
An MR-compatible 34-channel amplifier (BrainAmp MR;
Brain Products) and a MR-compatible EEG cap (BrainCap-
MRI 32-Channel-Standard) with a head volume coil were
applied in this study. EEG was recorded in the MR scanner
room simultaneously with fMRI acquisition. The EEG
cap had 31 electrodes for brainwave recording and one
for electrocardiography (ECG) recording. Electrode-skin
impedance was kept smaller than 10 kOhms by using abrasive
electrolyte-gel (ABRALYT HiCl). Data were transferred
through fiber-optic cables to an IBM-compatible laptop
and recorded by the BrainVision Program (BrainVision
Recorder, Brain Products) synchronized with the BOLD
signals via triggers from the MR scanner. The EEG signals
were recorded with a passband of 1–250 Hz, digitized at
5000 Hz with 32-bit of resolution (equivalent to 0.5 µV;
dynamic range: 16.38 mV). The EEG data were band-pass
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(1–50 Hz) filtered, re-referenced to the average of channel
TP9 and TP10. The MR gradient artifacts in the EEG data
were corrected. The MR-denoised EEG data were then down-
sampled to 500 Hz, and the cardioballistic signals from the
ECG recording were used to adjust EEG signals via peak-
detection algorithms in the BrainVision Analyzer software.
Severe artifacts of EEG signal induced by muscle activities,
environmental noise, eye movements, and blinking were
manually removed to minimize their impacts on the subsequent
analysis.

Behavioral Data Analysis
We calculated SG and SS ratio of both scenarios to verify if
each participant’s performance met the criterion. Behavioral
characteristics of performance in the stop-signal task, including
the go reaction time (Go-RT) and cSSD were analyzed with
student’s t test (BFS vs. SBS). Furthermore, the stop-signal
reaction time (SSRT) based on the horse-race model of
stopping (Logan et al., 1984) was computed to represent
one’s inhibitory ability. Since the stopping mechanism itself
cannot be directly measured, the SSRT was calculated by
subtracting SSD from the Go-RT. The inhibition function
was computed as the number of SS trials divided by the
number of all stop trials, and subjected to a two-way within-
subject ANOVA to assess the effect of Scenarios (BFS vs. SBS),
SSD (cSSD, cSSD ± 40 ms, and cSSD ± 80 ms), and their
interaction.

fMRI Data Analysis
The fMRI analysis was also completed in AFNI. Stimulus
types and participant’s response conjointly determined four
conditions for each scenario, including SG, SS, FS and fail
go. The first-level statistical analysis for each participant was
carried out in a general linear model (GLM) by convolving
the onset of go stimulus in the SG, SS, and FS conditions,
respectively, with a canonical hemodynamic response function
(the BLOCK function in 3dDeconvolve of AFNI). Here the
effects of interest are inhibitory control and error detection.
The active brain areas for inhibitory control was defined
by the contrast between SG and SS; on the other hand,
the active brain regions for error detection was defined
by the contrast between SS and FS. The scenario effect
of inhibitory control and error detection were examined
by comparing the ‘‘difference of difference’’, namely (SS −

SG)BFS − (SS − SG)SBS and (FS − SS)BFS − (FS − SS)SBS,
respectively. In the second level analysis, the between-scenario
differences were analyzed with a linear mixed-effect model
(3dMEMA), and the whole-brain type I error was controlled at
a cluster threshold (alpha) of 0.05 via Monte Carlo simulation
(3dClustSim).

To more sensitively detect activations associated with
inhibitory control and error detection, we also carried out
region of interest (ROI) analysis by both adopting ROIs
related to stop-signal task in the literature (literature-based
ROIs) and by selecting ROIs surviving the whole-brain analysis
from the inhibitory control and error detection contrasts,

respectively, regardless of scenarios (empirical-based ROIs). For
the empirical-based ROIs, the leave-one-subject-out (LOSO)
method (Esterman et al., 2010) was applied to extract the
GLM coefficients, and the differences between scenarios were
statistically assessed. It turned out the literature-based ROIs
did not yield any significant difference between scenarios
and will not be further described. On the other hand, six
ROIs empirically identified from the whole brain analysis of
inhibitory control and error detection, respectively, regardless
of scenarios were analyzed to verify the between scenario
difference. Empirical-based ROIs for inhibitory control included
rIFG, left insula, preSMA, left inferior parietal gyrus (IPG),
right middle occipital gyrus (rMOG) and left MOG. ROIs for
error detection included right middle frontal gyrus (rMFG),
left IFG, right IPG, right superior temporal gyrus (STG), right
inferior occipital gyrus (IOG) and left MOG. The empirical
MNI coordinates of inhibitory control and error detection
were listed in the Supplementary Materials Table 1, while the
literature-based ROIs were listed in the Supplementary Materials
Table 2.

EEG Data Analysis
The EEG analysis was completed in EEGLab. Independent
Component Analysis (ICA; Makeig et al., 1996; Delorme
and Makeig, 2004) was used to separate out temporally
independent time course of the activation of which dipole
source location (Oostenveld andOostendorp, 2002) was localized
in the brain of each participant for group analysis (cross-
subject analysis). We removed artifact components manually
and then performed component clustering based on k-means
(k = 5) criteria and dipole-fitting coordinates to identify the
most representative clusters. The value of k was determined
both by considering potential number of sources associated
with the stop-signal task, and the number of ROIs identified
in the fMRI results. One of the five resultant clusters was
excluded because less than 70% of participants have it.
Therefore, four clusters (preSMA, rMFG, and bilateral MOGs)
and their dipole locations were identified (see Figure 2) to
investigate brain dynamics following the go events and the
subsequent stop events. Note that the preSMA and bilateral
MOG clusters were in anatomical proximity of the inhibitory
control ROIs of fMRI results, and the rMFG and the left
MOG cluster was close to the error detection ROIs of fMRI
results.

Each epoch was separately transformed into the time-
frequency domain using the event-related spectral perturbation
(ERSP) routine (Delorme and Makeig, 2004). Three conditions,
namely SG, SS and FS, were identified as the effect of interest.
The baseline was defined as the signals between −0.5 and
0 s before Go-stimulus for comparing response magnitudes
of corresponding epochs. A two-way Scenario × Condition
ANOVA was conducted on the baseline data to verify whether
they are equivalent across scenarios and conditions. We have
explored not only the power spectrum of each condition, but also
the power spectrum of inhibitory control and error detection,
respectively, in each scenario which was also done in the fMRI
analyses.
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FIGURE 2 | Clusters of dipole locations for the analysis of EEG
dynamics. PreSMA and rMFG are for of inhibitory control and error detection,
whereas lMOG and rMOG are used for processing visual stimul. Small spheres
indicate individual participant’s dipole location, while large spheres indicate
diploe locations of each cluster. lMOG, Left middle occipital gyrus; rMOG,
Right middle occipital gyrus; preSMA, Pre-supplementary motor area; rMFG,
Right middle frontal gyrus.

RESULTS

Behavioral Results
In SBS, the Go-RT, cSSD, SSRT, SG ratio and SS ratio of SBS
were 425 ± 62 ms, 188 ± 50 ms, 240 ± 60 ms, 94.0 ± 7.6% and
45.6 ± 16.5%, respectively. In BFS, the Go-RT, cSSD, SSRT, SG
ratio and SS ratio of SBS (BFS) were 422 ± 58 ms, 195 ± 68 ms,
230 ± 53 ms, 93.0 ± 10.3% and 45.6 ± 13.6%, respectively.
When compared between scenarios, none of these behavioral
outcomes reached significance (all ps > 0.05; Figure 3). In
addition, the averaged inhibition function approached 50% at
cSSD and error rate level increased with the length of SSD
(Figure 3).

Imaging Results
Inhibitory Control
Whole Brain Analysis
Tables 1A,B summarized brain regions that were more activated
in the SS than in the SG condition, namely the inhibitory
control component, under SBS and BFS, respectively. Figure 4
also shows these activations under the two scenarios conjointly
so that overlapping brain regions are explicit. In SBS, the
MOG and a few different frontal areas were activated in
this contrast (see Table 1A and Figure 4 right panel). On
the other hand, the brain areas activated by the BFS (see
Table 1B and Figure 4 left panel) was similar to those
in SBS (see the purple regions colored in purple in the
Figure 4 middle panel). Moreover, when directly contrasting
the two scenarios under inhibitory control, the only significant

FIGURE 3 | Inhibition function. Error rates (%) were calculated by dividing
number unsuccessful stop trials with all stop trials under each SSD.

loci (BFS > SBS) fell within the right temporal-parietal
junction (rTPJ; MNI: x = 48, y = −74, z = 11; cluster
size = 39).

ROI Analysis
Pairwise t tests between the BFS and SBS in the six empirically
defined ROIs for inhibitory control revealed significantly higher
activation in BFS than in SBS at the left IPG (t(32) = 2.4, p = 0.02)
and rMOG (t(32) = 2.5, p = 0.02).

Error Detection
Whole Brain Analysis
Tables 1C,D summarized brain regions more activated in SS
than fail stop under SBS and BFS, respectively. Figure 5 also
shows these activations in both volumetric (left and right
panels) and surface (middle panel) views as described in section
‘‘Inhibitory Control’’ for the inhibitory control. In SBS, theMOG,
the bilateral IFG, the rMFG and right postcentral gyrus were
activated in this contrast (see Table 1C and Figure 5 right panel).
On the other hand, the rMFG, left IFG, the right IPG, the
fusiform gyrus, the right precuneus and the rMOGwere activated
by the BFS (Table 1D and Figure 5 left panel). There was very
few overlapping brain regions (purple regions in themiddle panel
of Figure 4). When directly contrasting the two scenarios under
error detection, no region showed significant difference.

ROI Analysis
Paired t tests between the BFS and SBS in the six ROIs mentioned
above revealed only significantly higher activation in BFS than in
SBS at right IOG (t(32) = 2.7, p = 0.01).

EEG Results
Figure 2 shows the four clusters (rMFG, preSMA, and bilateral
MOGs) and their dipoles that fulfilled the cluster selection
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TABLE 1 | Brain regions more activated in (A) SS compared with SG under SBS, (B) SS compared with SG under BFS, (C) SS compared with FS under
SBS, (D) SS compared with FS under BFS.

Side Region BA MNI coordinate (mm) Cluster
Size (Voxels)

X Y Z

(A) SS > SG under SBS
R Middle Frontal Gyrus 10 38 56 19 40
R Superior Frontal Gyrus 8 2 26 59 159
R Inferior Frontal Gyrus 47 48 16 1 844
L Inferior Frontal Gyrus 13 −34 16 13 193
R Superior Temporal Gyrus 21 50 −28 1 56
L Inferior Parietal Gyrus 40 −60 −40 41 528
R Middle Occipital Gyrus 19 44 −86 5 1752
L Middle Occipital Gyrus 18 −34 −98 7 944

(B) SS > SG under BFS
R Superior Frontal Gyrus 6 12 10 71 32
R Middle Frontal Gyrus 6 50 −2 43 555
L Inferior Frontal Gyrus 9 −40 −2 37 35
L Inferior Frontal Gyrus 47 −30 20 1 95
R Inferior Parietal Gyrus 40 60 −38 55 43
R Superior Parietal Gyrus 7 32 −64 55 218
L Superior Parietal Gyrus 7 −28 −68 55 31
R Middle Occipital Gyrus 18 50 −74 11 1257
L Inferior Occipital Gyrus 19 −42 −80 −5 694

(C) SS > FS under SBS
R Inferior Frontal Gyrus 47 32 22 5 20
R Inferior Frontal Gyrus 46 56 26 19 52
R Middle Frontal Gyrus 8 48 2 49 21
L Inferior Frontal Gyrus 45 −52 32 7 35
R Postcentral Gyrus 4 66 −28 49 32
L Middle Occipital Gyrus 18 −28 −82 −5 37

(D) SS > FS under BFS
R Middle Frontal Gyrus 6 42 −2 49 21
L Inferior Frontal Gyrus 45 −58 14 29 20
R Inferior Parietal Gyrus 40 44 −40 59 89
L Fusiform Gyrus −34 −74 −7 216
R Precuneus 7 26 −58 59 49
R Middle Occipital Gyrus 19 32 −94 13 501

Voxelwise threshold, p = 0.0001; cluster alpha < 0.01; BA, Brodmann Area; R, Right; L, Left.

criteria (see ‘‘EEG Data Analysis’’ Section). Because the rMFG
is considered as a crucial area for sustaining attention rather
than stopping action and preSMA is considered as directly
related to response inhibition, preSMA and rMFG were subject
to the analysis at the time period when sustained attention and
response inhibition were supposed to be ongoing. On the other
hand, because bilateral MOGs were considered only relevant
to visual perception that are relatively minor to the stop-signal
task, their power ERSPs were analyzed at the time period of
visual processing and described in the supplementary materials
(Supplementary Figures 5, 6). For the rMFG and preSMA clusters
described in the main text, the focus is on the contrasts for
inhibitory control (i.e., SS vs. SG) and for error detection (i.e.,
FS vs. SS) in each scenario. The significant modulations within
the individual conditions (i.e., SS, SG, and FS) can be found
in Figures 6–9, which are mainly described in the following
sections.

The baseline power of EEG oscillations were supposed
to be equivalent between the SS and SG conditions as well
as between the FS and SS conditions in both scenarios,

because participants should be under similar state before
the presentation of stimulus in each condition. Consistent
with this assumption, one-way ANOVAs comparing SS and
SG in BFS and SBS found no significant difference, and
so did the one way ANOVAs comparing FS and SS. The
analyses of baseline power are described in the Supplementary
Figures 2, 4.

Inhibitory Control
Figures 6, 7 show the results of time-frequency analyses in
preSMA and rMFG, respectively. In the preSMA component
(Figure 6), the brain dynamics for inhibitory control can be
examined by contrasting the SS and SG conditions. In this
contrast, the burst of delta and theta band power was observed
in BFS, whereas the suppression of alpha and beta band power
was observed in SBS.

In the rMFG component (Figure 7), the brain dynamics for
inhibitory control (SS vs. SG) showed delta, theta and alpha
band power desynchronization after response in BFS, whereas
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FIGURE 4 | Inhibitory control related brain areas. All results were mapped onto a standard brain surface model in Caret (Van Essen et al., 2001). Left panel:
horizontal sections under the BFS; middle panel: visualization of significant activations on the cortical surface for both scenarios (Red: BFS; Blue: symbol scenario
[SBS]; Purple: overlap of both scenarios); right panel: horizontal slices under the SBS. The top-left number besides each slice indicate the z-axis. Right hemisphere is
at the right side of the figure. Voxelwise statistical threshold was set at p < 0.0001, and cluster threshold alpha <0.01.

FIGURE 5 | Error detection related brain areas. Left panel: horizontal sections under the BFS; Middle panel: visualization of significant activations on the cortical
surface for both scenarios (Red: BFS; Blue: SBS; Purple: overlap of both scenarios); right panel: horizontal slices under the SBS. The top-left number besides each
slice indicate the z-axis. Right hemisphere is at the right side of the figure. Voxelwise statistical threshold was set at p < 0.0001, and cluster threshold alpha <0.01.

beta band power was in synchronization after go stimulus
in SBS.

Error Detection
In the preSMA component (Figure 8), the brain dynamics for
error detection (SS vs. FS conditions) showed the suppression

of theta and alpha band power in BFS; on the other hand, all
frequency bands power of FS condition displayed much greater
magnitude than SS in SBS.

In the rMFG component (Figure 9), the brain dynamics
for error detection (SS vs. FS) showed that delta and theta
band power were in desynchronization after response in the
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FIGURE 6 | The event-related spectral perturbation (ERSP) images of preSMA cluster under inhibitory control. Red solid line: onset of the go stimulus;
yellow dash line: onset of the stop signal; purple dash line: onset of response; color bars indicate the magnitude of the ERSPs; statistical threshold at p < 0.01.

FIGURE 7 | The ERSP images of rMFG cluster under inhibitory control. Red solid line: onset of the go stimulus; yellow dash line: onset of the stop signal;
purple dash line: onset of response; color bars indicate the magnitude of the ERSPs; statistical threshold at p < 0.01.

BFS, whereas beta band power was in synchronization after go
stimulus in SBS.

DISCUSSION

The current study aims to compare inhibitory functions
and the associated brain mechanisms underlying realistic

and simplified scenarios. Based on the behavioral results,
participants successfully performed the stop-signal task under
BFS and SBS (the SG ratio was above 90% and SS ratio
approached 50% for both scenarios). The SSRT has been
suggested to be an indicator of one’s inhibitory ability
(Band et al., 2003). Since SSRTs of the two scenarios do
not differ, performance on response inhibition does not
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FIGURE 8 | The ERSP images of preSMA cluster under error detection. Red solid line: onset of the go stimulus; yellow dash line: onset of the stop signal;
purple dash line: onset of response; color bars indicate the magnitude of the ERSPs; statistical threshold at p < 0.01.

FIGURE 9 | The ERSP images of rMFG cluster under error detection. Red solid line: onset of the go stimulus; yellow dash line: onset of the stop signal; purple
dash line: onset of response; color bars indicate the magnitude of the ERSPs; statistical threshold at p < 0.01.

seem to be influenced by different scenarios one faces,
likely due to highly adaptive nature of human’s inhibitory
processing. The brain mechanisms for inhibition under the two
scenarios can be compared on equivalent bases of behavioral
performance.

To summarize, main findings in the fMRI and EEG data
are as the following: in the whole-brain analysis of fMRI data,

significant difference between the battlefield and SBSs was found
only in rTPJ for inhibitory control, and no significant region
was found for error detection. In the ROI analysis of fMRI data,
significant difference between the two scenarios (BFS > SBS)
was found in left IPG and rMOG for inhibitory control, and
in right IOG for error detection. As for the EEG results, for
inhibitory control in the preSMA, the burst of delta and theta
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band power was observed in BFS, whereas the suppression of
alpha and beta band power was observed in SBS. In the rMFG,
there were delta, theta and alpha band power desynchronization
after response in BFS, and beta band power synchronization after
go stimulus in SBS. For error detection in the preSMA, there
was the suppression of theta and alpha band power in BFS, and
broadband synchronization in SBS. In the rMFG, there were delta
and theta band power desynchronization after response in the
BFS, and there was beta band power synchronization after go
stimulus in SBS.

Neural Mechanisms of Inhibitory Control
The fMRI results show that, under the contrast of inhibitory
control, the stop-signal task in BFS and SBS activate overlapped
brain areas including preSMA, rIFG, bilateral IPG, bilateral
MOG. All of these brain areas are either involved in target
detection or attention to salient events (Corbetta and Shulman,
2002; Eckert et al., 2009; Menon and Uddin, 2010). Specifically,
one of MOG functions is visual form perception and recognition
(Grill-Spector and Malach, 2004), the parietal lobe is a crucial
locus for spatial attention (Yantis et al., 2002), and the rIFG
and preSMA show significant activation for contrast between
SS and SG conditions (Boehler et al., 2010; Swick et al., 2011).
While participants performed stop-signal task in both scenarios,
we expect to observe stronger activations in BFS than SBS
because BFS contains more complex visual information and
may evoke other cognitive functions involved in the inhibitory
network.

With respect to the main goal of the current study, when
contrasting the inhibitory control component in both scenarios
in the whole-brain analysis, we observe higher activation
for the BFS in the rTPJ. The rTPJ has been implicated,
together with the rIPG, in detecting behaviorally relevant
salient events (Corbetta and Shulman, 2002; Husain and
Nachev, 2007). Chang et al. (2013) uses transcranial magnetic
stimulation (TMS) to interfere with bilateral TPJ to probe
the function in attentional networks, and find that the rTPJ
is critically involved in attentional reorienting. In addition,
rTPJ is also involved in the ‘‘theory-of-mind’’ (ToM) network
which includes the medial PFG, precuneus, right superior
temporal sulcus and bilateral TPJ (Saxe and Kanwisher, 2003;
Aichhorn et al., 2009). The ToM network increases metabolic
activity when one thinks about other people’s thoughts. Koster-
Hale et al. (2013) use multi-voxel pattern analysis to examine
the difference between intentional and accidental harms on
other people, and conclude that rTPJ is associated with moral
judgments. In the current study, the rTPJ may serve one or
a few of the functions mentioned above in BFS because the
task involve shooting decision which may aim at innocent
hostage.

There is a greater potential negative consequence of failing
to stop a shooting response in the presence of an innocent
hostage, which may actually decrease response impulsivity but
yet still increase the level of activation of inhibitory systems. To
verify this speculation with enhanced sensitivity, six brain areas
are selected from the whole-brain analysis of inhibitory control
that were localized by contrast orthogonal to the scenario effect,

including the rIFG, preSMA, left insula, left IPG, rMOG and left
MOG. The left IPG and rMOG show a greater activation in BFS.
To relate the findings with the roles of these ROIs in previous
studies, the left IPG has been implicated in tool manipulation
(Ishibashi et al., 2011) or executive function (Kübler et al., 2003),
which are both relevant in the current study because participants
might have connected the task to firing with a gun (using a
tool) to shoot terrorist in BFS. According to Slotnick et al.
(2003), the reallocation of visual attention to external stimulus
will result in an increase in occipital activation. In ROI results,
the stronger activation of rMOG suggests that participants might
have focused on terrorist and hostage and ignore the battlefield
background. However, as BFS and SBS not only differed in
their contextual information but also their visual complexity
and emotional implications, the above conjectures need to be
considered with caution.

With respect to the temporal dynamics, we first examine
common findings in SS and SG conditions of both scenarios.
In the preSMA source, there is a burst of each frequency band
power except the beta band following the go stimulus, which
lasted for 400–600 ms. This phenomenon is consistent with
what was found after no-go and stop signal trials in previous
studies (Schmiedt-Fehr and Basar-Eroglu, 2011; Huster et al.,
2013). Because the preSMA is essential for the conversion
from volitional thoughts to actions (Penfield and Welch, 1951;
Fried et al., 1991), the beta band power has been generally
considered as a marker of explicit responses. The event related
desynchronization (ERD) of beta band occurs before and during
response and then the event related synchronization (ERS) would
follow actual response (Schulz et al., 2014). In the current
experiment, the ERD of beta band occurs in SS and SG conditions
of two scenarios likely because participants have already prepared
to respond when they see the go stimuli; however, the ERS of
beta band only occurs in SG condition of both scenarios because
participants do not make actual response in the SS condition.
Furthermore, the spectral perturbation of SS between BFS and
SBS show that the power of theta-alpha band is much greater
in BFS. According to Huster et al. (2013), the burst of frontal
theta band power is associated with successful inhibition. In the
current study, we observed synchronization of theta-alpha band
power of SS under BFS and SBS in the preSMA. Furthermore, the
theta-alpha band power in preSMA of BFS is higher than SBS,
which suggests that the impulsivity in BFS is stronger than in
SBS.

One thing worth noticing is that, in the preSMA brain source
(Figure 6), there is no difference in the baseline power between
scenarios, likely because each go stimulus may or may not be
followed by a stop signal. This indicates that these two scenarios
had the same baseline states when preparing for inhibiting
prepotent response in the current trial regardless of stop signal.
However, unlike in fMRI analysis, the rTPJ does not show
significant differences between scenarios in the EEG analysis.

On the other hand, Swann et al. (2012) demonstrate that
the power of 4–15 Hz is suppressed and beta band power
would increase in right frontal lobe after the stop signal. Beta
band power from the right frontal lobe may serve to compute
coherence with preSMA. Therefore, they suggest that right
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frontal lobe monitors and detects the stop signal and then
transfers the information to preSMA (coherent beta activity).
This finding about the role of the right frontal lobe is similar to
our results of SS of SBS at the rMFG, but not in the BFS. Perhaps
the rMFG is involved in transferring information but not directly
in inhibitory control so that different scenarios evoked different
spectral perturbation. Finally, the spectral perturbation of two
scenarios under bilateral MOG are similar, likely due to their
similar roles in processing visual stimuli.

Neural Mechanisms of Error Detection
In the whole-brain analysis, we observe higher activation in the
IFG, MFG and MOG for the SS than the FS condition in both
scenarios. These brain regions may reflect different cognitive
functions in attention during visual processing, decision making,
response execution and post-response processing (Iannaccone
et al., 2015). Previous fMRI studies have indicated that
attention neural network modulates visual cortical activation
and facilitation of visual stimulus processing through inhibition
of unattended stimulus information (Brefczynski and Deyoe,
1999; Smith et al., 2000; Slotnick et al., 2003). Although higher
activation in MOG for error detection can be observed in both
scenarios, we expect to observe stronger activations in BFS
than SBS because BFS is a more complex situation requiring
participants to correct their error and evoke other cognitive
functions involved in inhibitory control (see also ‘‘Neural
Mechanisms of Inhibitory Control’’ Section).

To verify the above speculation with improved sensitivity,
rMFG, left IFG, right STG, right IPG, right IOG and left MOG
were identified as ROIs from a contrast (SS—FS) orthogonal
to the scenario effect in the whole-brain analysis. Only the
rMOG shows greater activation in BFS than SBS. This result
supports the idea that participants need to pay more attention
to SS in BFS (Slotnick et al., 2003). Although we did not
find significantly different activation of MFG between the two
scenarios, the current findings still suggest that these middle and
inferior frontal regions may differ in the post-response processes
in the error detection (i.e., FS vs. SS). The middle and inferior
frontal areas have been implicated in error detection and conflict
monitoring (Braver et al., 2001; Menon et al., 2001; Rubia et al.,
2003, 2005; Rushworth et al., 2004).

The current study also finds that both scenarios have stronger
activation of MFG in error detection. The activation of MFGmay
reflect stronger performance monitoring after FS. Furthermore,
we observed only the activation of fusiform gyrus in BFS
(Table 1D) due to our stimuli design and may reflect face
recognition (George et al., 1999).

With respect to the temporal dynamics, when analyzing
the effect of scenarios, although ROI analysis in fMRI results
reveal significant differences in the right IOG, we do not
observe significant difference between scenarios in rMOG
(Supplementary Figure 5). Although we do not find the effect
of scenarios, we observe the suppression of theta band after
response in error detection in both scenarios. Previous EEG
studies have indicated that the oscillation of theta-alpha band
is associated with the attention network (Fan et al., 2007).

The current study finds that the suppression of theta band
may be associated with the activation of right occipital gyrus
for greater attention to the visual stimuli during SS when
compared with FS. On the other hand, we explore the temporal
dynamic in preSMA and rMFG brain source and observe the
duration of burst of delta, theta and alpha band power in
the FS condition were longer then SS condition in preSMA
and rMFG. The prolonged duration of the FS condition may
reflect error detection. The findings of previous EEG studies
suggest that the burst of theta and alpha band power after
response in the frontal lobe reflect error processing (Cavanagh
and Frank, 2014; Cohen, 2015; Shou and Ding, 2015). Finally,
this study reveals that the EEG oscillation of preSMA brain
source is related to not only inhibitory control but also error
detection.

CONCLUSION

This study uses BFS to translate stop signal paradigm in
simulated threatened situation and demonstrates that when
human inhibits their action under threatened situation, the
rTPJ is involved in the mediation of inhibitory control. The
power of theta-alpha band under threatened situation is greater
than normal situation that may be associated with the rising
activation level of preSMA. Through over half a century of
investigations on cognitive functions, significant amount of
knowledge of basic cognitive processes has been acquired using
stimuli with extremely simple configuration. From the behavioral
performance of the current study we demonstrated that findings
discovered with simple stimuli remains valid when carefully
and comparably transformed into complex and realistic ones.
At the meantime, additional brain regions relevant to the
new configuration may be involved dynamically for the more
complex stimuli, as can be identified from sources of signals
differentially specialized in spatial and temporal resolutions.
How these simultaneously recorded sources of signals (e.g., EEG
and fMRI) are conjointly related to the valence, complexity,
and motivational effects induced by scenes embedding the basic
cognitive process remain an intriguing and important issue for
future studies.
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Investigations of the neuro-physiological correlates of mental loads, or states, have

attracted significant attention recently, as it is particularly important to evaluate

mental fatigue in drivers operating a motor vehicle. In this research, we collected

multimodal EEG/ECG/EOG and fNIRS data simultaneously to develop algorithms to

explore neuro-physiological correlates of drivers’ mental states. Each subject performed

simulated driving under two different conditions (well-rested and sleep-deprived) on

different days. During the experiment, we used 68 electrodes for EEG/ECG/EOG and

8 channels for fNIRS recordings. We extracted the prominent features of each modality

to distinguish between the well-rested and sleep-deprived conditions, and all multimodal

features, except EOG, were combined to quantify mental fatigue during driving. Finally, a

novel driving condition level (DCL) was proposed that distinguished clearly between the

features of well-rested and sleep-deprived conditions. This proposed DCL measure may

be applicable to real-time monitoring of the mental states of vehicle drivers. Further, the

combination of methods based on each classifier yielded substantial improvements in

the classification accuracy between these two conditions.

Keywords: EEG/ECG/EOG/fNIRS, neuro-physiological correlates, drivers’ mental fatigue, sleep deprivation,

simulated driving, multimodal integration, driving condition level

INTRODUCTION

Neuroergonomics is an emerging field that investigates human mental states and their workloads
in order to improve the reliability of human performance, and ensure its stability in various
environments (Parasuraman, 2003; Parasuraman and Rizzo, 2008). In neuroergonomics, both the
fundamental principles of neuroscience and human factors are considered thoroughly, and neural
behaviors have been investigated primarily when people are engaged in tasks in a work environment
(Parasuraman and Wilson, 2008). Due to the implications for public safety, a major application of
neuroergonomics is the assessment of driver fatigue. In general, driver fatigue is categorized as
either mental or physical. Mental fatigue occurs because of gradual and cumulative mental effort
(Grandjean, 1979) during driving, or sleep deprivation before driving (Durmer and Dinges, 2005).
In contrast, physical fatigue represents reduced muscular strength and coordination. Physical
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fatigue may be countered by deliberate action; however, mental
fatigue is difficult to resolve. Because of mental fatigue, drivers
begin to doze involuntary, which often results in traffic accidents
(Horne and Reyner, 1999; Connor et al., 2002; Herman et al.,
2014).

One potential method that may be used to reduce traffic
accidents is to measure inherent mental fatigue before or during
driving, in order to predict a driver’s mental condition and
determine whether s/he can drive safely. Because driving requires
complex cognitive processes and sustained concentration,
predicting a driver’s mental fatigue before or during driving could
be effective in preventing traffic accidents. Thus, we attempted
in this work to explore neuro-physiological correlates in two
different conditions, one well-rested with a low risk of fatigue,
and the other sleep-deprived with a high risk of fatigue.

Among many studies performed to evaluate drivers’ fatigue
in real-time, computer vision-based systems have been used
widely. Bergasa et al. (2006) proposed a noninvasive system to
monitor a driver’s vigilance using several parameters, including
percentage or duration of eye closure, blinking, and the frequency
of nodding. By using a fuzzy classifier, the researchers then
inferred the level of the drivers’ fatigue. However, the reliability
of the findings decreased when the drivers wore glasses or the
surrounding brightness changed. To address these problems,
D’Orazio et al. (2007) designed an experimental paradigm that
incorporated conditions in which some subjects had different
eye colors, wore glasses, and drove vehicles in light of varying
intensities. Using the proposed visual framework, the authors
obtained robust results. In addition, various visual cues that
characterized eyelid, gaze, and head movements, as well as facial
expressions were employed in a probabilistic model developed
to predict fatigue (Ji et al., 2004) that yielded even more
robust results. Recently, Wang et al. (2014) developed an online,
closed-loop lapse detection system featuring a mobile wireless
electroencephalograph (EEG), and were able to extract certain
EEG signatures associated with fatigue.

To date, EEG has been found to be a promising indicator
for investigations of driver fatigue (Lal and Craig, 2001). EEG
data have shown that there is a significant increase in theta
and delta activity, and a decrease in heart rate (HR) associated
with fatigue (Lal and Craig, 2002). Further, in a subsequent
study that considered three phases of fatigue (early, medium,
and extreme), software was developed to monitor driving fatigue,
and was validated with EEG data from 35 subjects engaged in
a simulated driving task (Lal et al., 2003). Another study (Lin
et al., 2005) estimated drowsiness and driver performance by
correlating changes in log power spectra. To detect drowsiness,
they constructed an individualized linear regression model to
assess EEG dynamics continuously based on an independent
component analysis. Because drowsiness is a crucial factor
in driving, Lin and his colleagues investigated the effect of
continuous arousing auditory feedback on sustained attention in
a driving simulator (Lin et al., 2010). They found that spectral
powers in alpha and theta bands were suppressed and lasted
30 s or longer after feedback. This finding was introduced to
estimate classification accuracy; as a result, they achieved a
classification accuracy of approximately 78% using the maximum

likelihood classifier (Lin et al., 2013) and applied it to develop
an online, closed-loop system for practical lapse detection in real
environments (Wang et al., 2014).

Various other methods have been used to explore drivers’
mental fatigue, such as a support vector machine (SVM) (Shen
et al., 2008; Yeo et al., 2009), Bayesian network (Yang et al.,
2010), wavelet analysis (Kar et al., 2010; Li and Chung, 2013), and
others. In addition to EEG studies, electrocardiography (ECG)
and electrooculography (EOG) have been used to determine
neuro-physiological correlates of drivers’ mental fatigue. One
study (Patel et al., 2011) used neural network analysis and
demonstrated that the variability in drivers’ HRs differed
significantly in alert and fatigued states. They investigated the
power spectral density behaviors between the two states during
long-term driving and reported that the neural network was 90%
accurate in classifying mental state.

Eyelid-related features fromEOGdata also have been reported
to be possible candidates to detect whether or not a driver
is drowsy (Hu and Zheng, 2009). In this report, they used
vertical and horizontal EOG channels to extract and validate
eye blinks according to eyelid movement parameters, such as
blink duration, speed, and amplitude. Three conditions (alert,
sleepy, and very sleepy) were classified with high reliability
using SVM. Simultaneous recording of EEG/ECG (Zhao et al.,
2012) and the combination of multimodal features from EEG,
EOG, and ECG data (Khushaba et al., 2011) demonstrated
significant differences during long-term driving. In this study,
the researchers developed an efficient, fuzzy mutual information-
based wavelet packet transformation that combined EEG, EOG,
and ECG features to detect drivers’ drowsiness; this technique
yielded a classification accuracy greater than 90%.

An emerging portable and noninvasive brain functional
imaging technique, functional near infra-red spectroscopy
(fNIRS), has been introduced to monitor cognitive workload or
fatigue in simulated environments (Ayaz et al., 2012). fNIRS data
from the prefrontal cortex were collected during a complex air-
traffic control task that required the subjects to prevent collisions
between aircraft in their sectors. As the number of aircraft in
their sector increased, a concomitant increase in prefrontal cortex
activation was observed, which suggests that fNIRS provides a
sensitive index of cognitive workload. fNIRS also demonstrated
changes in prefrontal activation during skill acquisition in both
basic working memory tasks (McKendrick et al., 2014) and more
complex piloting tasks (Harrison et al., 2014; Gateau et al., 2015).

A portable fNIRS device was developed for use in mobile
neuroimaging of the prefrontal cortex (Ayaz et al., 2013). In a
driving environment, Li et al. (2009) observed changes in cerebral
oxygenation during prolonged simulated driving. Forty healthy
subjects were divided randomly into two groups (driving vs.
non-driving), and the driving group performed a simulated 3 h
driving task. The authors found a relative increase in frontal
cortex oxygenation in the driving group by comparison to the
non-driving group, and oxygenation decreased gradually after
the driving task. Considering real driving situations, Yoshino
et al. (2013) investigated the changes in cerebral oxygen exchange
during actual driving on an expressway. An fNIRS signal was
recorded in the subjects’ parietal and prefrontal cortices using
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an fNIRS device mounted in the vehicle. They found that the
areas activated varied depending on the driving task, such as
parking, acceleration, driving at constant speed, deceleration, and
U-turns. Thus, the use of fNIRS may be an effective approach to
evaluate brain activity in various driving environments.

Recently, hybrid approaches that combine two different
modalities (Pfurtscheller et al., 2010) to improve performance
and reduce classification error have been reported as promising
for future brain-computer interfaces (BCI). One example of a
hybrid BCI that incorporates both EEG electrical activity and
fNIRS hemodynamic changes yielded improved classification
performance in sensorimotor rhythm-based BCI systems (Fazli
et al., 2012). The researchers calculated classification accuracies
in the movements executed and motor imagery by estimating a
meta-classifier. After the estimation of both classifiers (EEG and
fNIRS), the combination of outputs of each classifier resulted
in improved classification accuracy. Khan et al. (2014) decoded
four movement directions (left, right, forward, and backward)
using the mixed features of EEG and fNIRS, in which EEG
features were used to classify left/right, and fNIRS features were
used to classify forward/backward. In addition, hybrid BCI may
be used as a brain switch that determines whether a certain
task is active. Koo et al. (2015) employed a novel experimental
paradigm to detect the occurrence of motor imagery in fNIRS
data. Threshold-based detection with a feature value of the fNIRS
data determined whether or not the action of a motor imagery
task was attempted. The combination of EEG and fNIRS is
also applicable to language studies (Wallois et al., 2012) and
cortical current estimation (Morioka et al., 2014). Hybrid BCIs
may provide a good opportunity to increase BCI performance
by offering the synergistic effects of multimodal brain imaging
techniques.

In this work, we recorded multimodal EEG/ECG/EOG and
fNIRS data simultaneously in a driving simulator and combined
their features to distinguish drivers with high- and low-risks of
fatigue using neuro-physiological correlates and a classification
method. Hemodynamic changes in the prefrontal cortex (Li et al.,
2009; Ayaz et al., 2012, 2013; Yoshino et al., 2013; Harrison et al.,
2014; McKendrick et al., 2014; Gateau et al., 2015) have been
used to neuro-physiological correlates, and these activities were
reported to play an important role in neuroergonomics, such as
mental workload (Mandrick et al., 2013a), cognitive operation
(Mandrick et al., 2013b), and emotional function (Doi et al.,
2013). Furthermore, it is clear that EEG, ECG, and EOG are also
promising indicators that may be used to investigate the neuro-
physiological correlates of drivers’ mental fatigue (Lal and Craig,
2001). Therefore, combining this hybrid system with prefrontal
fNIRS may be a far more informative measure for identifying
neuro-physiological correlates under varying driving conditions.
To the best of our knowledge, this multimodal approach has been
tested rarely to explore neuro-physiological correlates of drivers’
mental fatigue.

Thus, the goal of this study was to determine modality-
specific features of EEG, EOG, ECG, and fNIRS. These features
were then used to distinguish between well-rested and sleep-
deprived conditions, and resulted in a classifier that showed
whether or not a driver was in an alert mental state. The

use of a reasonable combination of these multimodal features
may improve classification accuracy and its quantification
may yield a real-time strategy to monitor drivers’ mental
fatigue.

MATERIALS AND METHODS

Experimental Procedure
Eleven healthy subjects (10 males, 1 female, aged 26.6 ± 1.4,
range = 24–28) who had valid driver’s licenses participated in
a custom-built virtual driving simulation task, as depicted in
Figure 1A. The subjects practiced repeatedly until they were
familiar with the simulation system. The purposes of, and
instructions for, the experiment were explained in advance, and
all of the subjects signed an informed consent. Subjects received
approximately $10 per h as compensation for their participation.
Each subject performed simulated driving under two conditions
(well-rested and sleep-deprived) on different days. Under the
well-rested condition, subjects were instructed to sleep at least 7 h
before the experiment, as sleeping seven or more hours is known
to maintain healthy mental alertness (Kripke et al., 2002). In the
sleep-deprived condition, the subjects were instructed to stay up
all night in order to produce mental fatigue.

Driving tests in both conditions were performed before
9 a.m. In this experiment, we assumed that subjects would
be significantly mentally fatigued after one night of sleep
deprivation. To determine the degree of fatigue produced by
sleep deprivation, a subjective questionnaire was administered
to the subjects before the experiment to score their levels of
fatigue, and the scores demonstrated clearly that the sleep-
deprived subjects were substantially more fatigued than were the
well-rested subjects. The subjects sat in a comfortable driver’s
seat and drove on an oval track for a minimum of 30min. The
maximum driving speed was set at 100 km/h in both conditions.
The steering wheel vibrated whenever the vehicle collided with a
crash barrier in order to prevent the drivers from falling asleep
completely. A high-definition webcam (Logitech HD Pro C920)
was used to record each subject’s behavior in real-time. This
experiment was approved by the Institutional Review Board at
the Gwangju Institute of Science and Technology (20150615-HR-
18-02-06).

Data Recording of EEG/ECG/EOG and
fNIRS
Sixty-four EEG electrodes were attached to the drivers’ scalps
according to the 10–20 international position system. Horizontal
and vertical EOGs were used and two ECG electrodes were
attached to the left/right chest (Biosemi ActiveTwo System).
These data were collected at a 512Hz sampling rate using
BCI2000 software (Schalk et al., 2004). Biosemi ActiView
software monitored the stability and reliability of the EEG signal.
After the experiment, bad channels that contained abnormal
noise were identified by visual inspection and excluded from the
analysis.

A custom-built fNIRS system (continuous wave, 10Hz
sampling rate) was used to record hemodynamic changes in
the brain. This was an updated version of one described in a
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FIGURE 1 | Experimental setup for simulated driving. (A) Driving simulation environment with EEG/ECG/EOG/fNIRS measurements. (B) fNIRS setup in the

prefrontal cortex. Two emitters and eight detectors (eight channels) were attached to the forehead. The distance between emitter and detector was 3 cm.

previous work (Kim et al., 2015). The system consists of probe
and control circuits. The probe includes 2 LEDs (emitters) and 8
photodetectors (detectors). The LEDs emit near infrared (NIR)
light at two wavelengths (735 and 850 nm). The emitter and
four surrounding detectors were separated by 3 cm, as Homma
et al. (1996) suggested that in soft tissues, NIR is able to
attain a penetration depth equal to half of the emitter-detector
separation. Therefore, with a 3.0 cm emitter-detector separation,
our system should have been able to collect brain activity at
a depth of 1.5 cm below the scalp. An emitter-detector pair
form one fNIRS channel that measures hemodynamic changes
midway between the emitter and the detector. Given a suitable
geometric arrangement, many detectors may receive light from
one emitter. This enabled us to design an 8-channel probe with
2 LEDs and 8 photodetectors. The 8-channel probe was attached
to the prefrontal region to investigate the subjects’ mental state,
as illustrated in Figure 1B (Li et al., 2009; Sato et al., 2013).
The control circuit receives a signal from the probe, amplifies it,
and sends it to the computer via serial communication. Matlab-
based software was programmed to record, process, and display
the hemodynamic signals. Interference between EEG/EOG/ECG
electrodes and fNIRS emitters has been observed and is believed
to result from light leakage from the emitters, which may cause
deterioration in the quality of electrical data (Koo et al., 2015).
This interference was removed by blocking light leakage from
the emitters and applying a simple pre-processing technique.
Two desktop computers were used to record the EEG/ECG/EOG
and fNIRS data simultaneously. Triggers for start and end times
were sent to the BCI2000 software to synchronize themultimodal
EEG/ECG/EOG and fNIRS data. The computer that recorded
EEG/ECG/EOG data sent a start trigger, at which time the second
computer began to record fNIRS data. The end time of the
experiment was marked in the same way.

Data Analysis
Feature Extraction and Classification from EEG

After the experiment, the data collected were inspected
visually and bad channels were rejected. The logistic infomax
independent component analysis (Bell and Sejnowski, 1995) was

used to remove EOG artifacts and the data were then band-
pass filtered from 1 to 50Hz. We analyzed data from the first
30min only after the drivers began the task, because fatigue levels
between well-rested and sleep-deprived subjects were likely to be
quite different during the initial minutes of driving. From the
real-time webcam video monitoring data, we observed that even
some well-rested subjects became drowsy and quite bored after
that length of time.

EEG data (30min) were divided into 10 s (a trial) to yield
a total of 180 trials for each driving condition. A power
spectral density was computed for each trial using the EEGLAB
library (Delorme and Makeig, 2004), and a relative power
level (RPL) was computed in order to reduce session/subject
variability (Ahn et al., 2013a,b, 2014; Cho et al., 2015). To
calculate the RPL, we considered five spectral band ranges:
delta (1–4Hz), theta (4–8Hz), alpha (8–13Hz), beta (13–
30Hz), and gamma (30–50Hz). Next, each band-power was
normalized by the total power, defined as the sum over all
band powers, after which we extracted the most informative
RPL features between the two driving conditions. On the
other hand, to discriminate between the well-rested and sleep-
deprived conditions, pre-processed data (180 trials) from each
driving condition (well-rested and sleep-deprived) were firstly
divided into 2 groups (training and test) and according to
time sequence; training and test groups were composed of
126 (70%) and 54 trials (30%), respectively. Then, to avoid
temporal dependency between groups, last 6 trials (1min)
for each group were excluded; thus, for each of driving
conditions, 120 and 48 trials for training and test were obtained,
respectively. By this grouping, temporal dependency (adjacency)
was included within groups, but was excluded between groups.
This procedure was repeated 30 times by sliding temporal
window of 1min (6 trials) and then choosing training and
test groups. Thereafter, each feature vector of the training and
test data using RPL was fed into the classifier. The training
group was used to construct a classifier based on Fisher’s linear
discriminant analysis (FLDA), and the test group was input
to a constructed classifier in order to measure classification
accuracy. A classifier was generated from the training data and
the classification accuracy was estimated from the test data.
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Finally, 30 classification accuracies were estimated to obtain an
average accuracy.

Feature Extraction and Classification from ECG and

EOG

The HRs of each subject were extracted using two ECG channels
(left/right chest). During pre-processing, ECG data were band-
pass filtered from 0.1 to 30Hz and were detrended to remove
the baseline shift. After detrending, a QRS-complex was observed
to be the most prominent repeating peak in the ECG signal.
The QRS-wave is used commonly to determine subjects’ HRs
or predict abnormalities in cardiac function. Specifically, the
emergence of an R-peak indicated a subject’s HR clearly and
was extracted easily by adjusting a deterministic threshold of the
ECG magnitude. Next, the number of R-peaks per minute was
counted and used to determine HR per minute. HRs from the
two ECG channels on the left and right chest were calculated
for the entire 30min and averaged to reduce possible detection
error and bias. To classify mental state from the ECG data, we
adopted the extraction of RR-peak interval features (de Chazal
et al., 2004). After detection of the R-peak in each 10-s trial, the
intervals between one R-peak and the next were averaged, and
the procedure was repeated for all trials. In this way, 180 R-peak
intervals were estimated as a feature set. The EOG signal was
used to extract the rate of eye blinking in each 1-min trial, which
has been reported to be associated well with a human’s mental
state (Schleicher et al., 2008): when the eye blinks, a clear, sharp
wave is observed. After baseline drift removal was applied, a peak
detection algorithm (Pettersson et al., 2013) was used with a given
threshold of signal magnitude. Finally, the number of peaks per
minute, which represented the eye-blinking rate, was used as the
EOG feature.

Feature Extraction and Classification from fNIRS

We adopted the modified Beer-Lambert’s law (mBLL) to retrieve
relative concentration changes from the light intensities of the 8
detectors (Cope et al., 1988; Kocsis et al., 2006). The change in
optical density at two wavelengths (735 and 850 nm) is related
to changes in oxy-hemoglobin concentration (HbO) and deoxy-
hemoglobin concentration (HbR). Data with abnormal noise
were removed by visual inspection, and the remaining data were
filtered with a 0.01Hz high-pass filter to remove baseline drifts.
Light intensities for 30 s after the initiation of the experiment
were averaged and set as baseline intensities. HbO and HbR were
estimated with the following equations:
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where
Iλ
b

: baseline intensity (λ1 : 735 nm λ2 : 850 nm)

Iλt : transient intensity

d: emitter − detector separation
ε
λ
Hb

: extinction coefficient
DPF : differential path length factor

In continuous wave fNIRS, the differential path length factor
(DPF) is unknown. However, it is similar for both wavelengths
and is included conventionally in the unit of hemodynamic
changes as a scaling factor. Thus, HbO and HbR have the same
unit of mM/DPF, and the extinction coefficients are specific
for HbO and HbR at each wavelength. Matcher et al. (1995)
measured extinction coefficients of hemoglobin at different
wavelengths as follows:

at wavelength λ1= 735 nm,

ε
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= 0.4646mM−1cm
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and ε
λ1
HbR
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,

at wavelength λ2= 850 nm,

ε
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and ε
λ2
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= 0.7861mM−1cm
−1

.

Like EEG feature extraction, 10 s of data were defined as one trial,
which yielded a total of 180 trials per condition. Next, relative
concentration changes were estimated for each trial. To reduce
the effects of fluctuations and noise, fNIRS data were smoothed
using 10-s temporal windowing with a 50% overlap. Finally, the
amplitudes of HbO and HbR were used as informative features
for classification of the two driving conditions.

RESULTS

Relative Power Level from EEG
We investigated RPL values over five spectral bands—delta, theta,
alpha, beta, and gamma—and found that the RPL values for
delta, theta, and gamma did not differ statistically between the
two driving conditions. However, alpha and beta RPL values
differed clearly in the two conditions, as shown in Figure 2A.
Grand-averaged topographies were described for each condition,
and alpha RPL in the sleep-deprived condition was activated
to a greater degree in the right centro-parietal region. Such an
increase in alpha power has been reported in the literature as
a notable marker in driving (Lal and Craig, 2001; Simon et al.,
2011). A decrease in beta RPL over the fronto-central region was
observed in the sleep-deprived condition. This decrease in beta
power may indicate a lack of arousal, which is consistent with
the results of several studies (Tanaka et al., 2012; Zhao et al.,
2012).

Figure 2B shows the distributions of alpha and beta RPLs
from subject S5 in a two-dimensional Cartesian coordinate
space. We note that most subjects showed similar physiological
behaviors, and S5’s results were chosen as representative because
they yielded the highest classification accuracy in the EEG,
as shown in Table 3. For the purposes of consistency and
comparison, the other results (ECG, fNIRS) from subject S5
are also illustrated in the subsequent sections. Each RPL was
averaged spatially over significant regions, such as the centro-
parietal for alpha and the fronto-central for beta. Each dot
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FIGURE 2 | Relative power levels from EEG in two different conditions. (A) Grand-averaged alpha and beta RPLs in well-rested and sleep-deprived conditions.

Alpha and beta RPLs differed significantly in the right centro-parietal and frontal regions, respectively. (B) Scatter plot of alpha (x-axis) and beta (y-axis) RPLs in two

driving conditions (red asterisk: well-rested, blue circle: sleep-deprived) for subject S5. (C,D) Indicate alpha and beta RPLs in the well-rested and sleep-deprived

conditions, in which subject S5 had the highest and S2 had the lowest classification accuracy, respectively.

represents corresponding alpha (x-coordinate) and beta (y-
coordinate) RPLs for one trial in each condition (well-rested
and sleep-deprived). In the well-rested condition, most RPL dots
were distributed in the upper left area in R2 space, while they
were distributed in the lower right area in the sleep-deprived
condition. Thus, these features (centro-parietal alpha RPL and
fronto-central beta RPL) in the dataset collected allowed us to
achieve a discriminative classification between the two driving
conditions quite well.

To investigate inter-subject variability (Ahn and Jun, 2015),
we plotted RPL topographies in Figures 2C,D, respectively, for

two subjects who achieved the highest (S5) and the lowest
(S2) EEG classification accuracies (Table 3). As depicted in the
figures, subject S5 showed a clear alpha RPL increase in the
right centro-parietal region and beta RPL decrease in the fronto-
central region in the sleep-deprived condition. In contrast,
subject S2, who demonstrated the lowest classification accuracy,
showed a slight alpha RPL increase and a beta RPL decrease
in the sleep-deprived condition. Interestingly, this subject (S2)
was likely to have been fatigued already, despite being in the

well-rested condition before the experiment. Our investigation
of this subject will be described in detail in the Discussion
section.

Time Course of Relative Concentration
Changes from fNIRS
The time course of the relative concentration changes of HbO
and HbR were estimated through mBLL. Figure 3 depicts
the concentration changes at channels 1 and 5 for subject
S5. Because all channels were attached to the prefrontal
cortex, they all showed similar behaviors over time. Thus,
for the purpose of illustration, we chose two representative
channels (1 and 5). The concentration changes of HbO
increased gradually over time in the well-rested condition
and demonstrated the highest level at channels 1 and 5
between 20 and 30min. Paying attention while driving a vehicle
requires high oxygen consumption in the brain, which induces
an increase in cerebral blood flow; this increase in cerebral
oxygenation, as shown by an increase in HbO and decrease in
HbR, indicates that the cerebral blood flow increased during
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FIGURE 3 | Time course of relative concentration changes of HbO and HbR (channels 1 and 5). Solid, thick red and blue-colored lines indicate HbO for

well-rested and sleep-deprived conditions, respectively. Dashed thin lines indicate HbR in the two conditions.

driving under the well-rested condition. On the other hand,
concentration changes of HbO decreased slightly (Channel 1)
or remained stable (Channel 5) compared to the baseline, and
HbR concentration maintained baseline values while driving
under the sleep-deprived condition. Less oxygen may be
consumed when mentally fatigued, and therefore, brain activity
is likely to be suppressed, resulting in less blood flow to the
brain.

Reduced Heart Rate and Eye Blinking in
the Sleep-Deprived Condition
The mean HRs of all subjects were calculated from ECG signals
over the entire 30-min driving period (average of varied HRs),
as tabulated in Table 1 and depicted in Figure 4A. As shown in
the table and figure, HRs in the sleep-deprived condition were
significantly lower than were those in the well-rested condition
for all subjects (p < 0.01, Wilcoxon signed-rank test). Figure 4B
shows the HR of subject S5 over time (from initiation to 30min of
driving). HRs in the well-rested condition were higher than those
in the sleep-deprived condition; however, the difference in the
HR between the two conditions decreased gradually as driving
time increased and became quite small at the end of the driving
task (∼30min). We deduced from this time variance in the HR
that even a well-rested driver began to feel fatigued after some
duration of driving and was considerably fatigued by the end of
the task.

Because of the EOG signal, we expected that subjects in the
sleep-deprived condition would demonstrate a relatively higher
rate of eye blinking than those in the well-rested condition.
Instead, we observed (not shown here) that some subjects
showed higher rates of eye blinking in the well-rested than
in the sleep-deprived condition, although the differences were
not statistically significant. From the video data, we found
that these subjects closed and opened their eyes frequently to
overcome drowsiness, and this action on their part may have

affected seriously the rate of eye blinking derived from the EOG
data.

Driving Condition Level and Relative
Driving Condition Level
We attempted to demonstrate that it may be possible to evaluate
neuro-physiological correlates of drivers’ mental fatigue using
the significant features found in EEG, ECG, and fNIRS data. To
that end, we used the three factors extracted from multimodal
signals in the previous sections: RPL (ratio of beta to alpha)
from EEG, HbO from fNIRS, and the averaged HR from ECG.
Each feature was normalized by scaling between 0 and 1 for
equal contribution, as formulated in Equation (3). Each value
of the EEG, ECG, and fNIRS was distributed well between
those values. Significantly abnormal values—greater than 95%
(mean ± 2∗σ)—were considered outliers and were shrunk to
their maximum or minimum values in the feature set. The
summation of all three normalized factors was proposed as the
driving condition level (DCL), as depicted in Equation (4). In
addition, we estimated the relative difference in DCL between
the well-rested and sleep-deprived conditions (rDCL), which
represented the degree of the drivers’ fatigue compared to that
in the well-rested condition, as defined in Equation (5); a higher
rDCL indicates greater fatigue.

norm(x) =
x−min(x)

max (x) −min(x)
, (3)

DCL = norm

(

beta RPL

alpha RPL

)

+ norm(HbO)

+ norm(HR), (4)
(

0 ≤ norm
(

beta RPL
alpha RPL

)

norm(HbO)norm(HR)

≤ 1, 0 ≤ DCL ≤ 3
)

rDCL (%) = 100−
DCLsleep−deprived

DCLwell−rested
∗ 100, (5)

Frontiers in Human Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 219 | 206

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Ahn et al. Neuro-Physiological Correlates of Drivers’ Mental Fatigue

FIGURE 4 | Heart rates from ECG in two different conditions. (A) Averaged heart rates for all subjects in well-rested and sleep-deprived conditions. (B) Subject

5’s HRs over time. Each HR was estimated every minute.

TABLE 1 | Averaged heart rates (HRs) in well-rested and sleep-deprived conditions.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean p-value

Well-rested 71.6

(2.0)

65.3

(2.2)

78.5

(2.3)

76.2

(2.5)

71

(2.8)

68.2

(1.4)

68.1

(2.3)

76.8

(2.2)

66.7

(3.1)

65.7

(1.9)

60.9

(2.9)

69.9

(3.3)
0.0009

Sleep-deprived 62

(0.5)

58.2

(2.7)

61.3

(2.1)

55.7

(2.6)

62.3

(2.2)

64.2

(1.1)

63

(2.2)

67.3

(3.7)

64.2

(3.8)

62.4

(1.4)

59.2

(1.9)

61.8

(3.5)

Values in parentheses indicate standard deviations for each HR. The Wilcoxon signed-rank test was performed.

Using our proposed definition of DCL (Equation 4), DCL values
were estimated in the two conditions for each subject. For all
subjects, 30min of multimodal data were used to estimate the
values. DCL ranged from 0 to 3, with a smaller DCL indicating
greater fatigue. These DCL values are tabulated in Table 2.
Subject S8 showed the highest DCL value in the well-rested
condition, while subject S4 showed the lowest DCL value in
the sleep-deprived condition. We found that the two drivers’
conditions (well-rested and sleep-deprived) differed significantly
(p < 0.01, Wilcoxon signed rank test). In addition, rDCL,
which represents the percentage of the fatigue in a drivers’
mental condition, was introduced in this work. All rDCLs
were consistently greater than 30%, except for those for two
of 11 subjects (S7 and S9); thus, when rDCL is tuned more
finely with more data, it may be used as a predictor of mental
fatigue.

To investigate the drivers’ mental fatigue over time, each
DCL value (per a minute) was estimated by extracting features
of RPL (beta over alpha), HbO, and averaged HR. Figure 5
shows the DCL values of subject S5, in which the values
decreased gradually over time in the well-rested condition, and
remained consistent at approximately 1 in the sleep-deprived
condition. Sleep-deprived subjects were quite fatigued already

at the beginning of the driving task. From the questionnaire,
we found a weak correlation (r2 = 0.42) between rDCL
values in the sleep-deprived condition and subjects’ reported
degree of sleepiness (1: rarely sleepy to 5: very sleepy). The
average scores for sleepiness over all subjects were 1.4 and 4.1
in the well-rested and sleep-deprived conditions, respectively,
while the average hours of sleep reported were 7.36 and 0 h,
respectively.

Multimodal Integration to Determine
Neuro-Physiological Correlates
In this work, we recorded simultaneous EEG/ECG/EOG and
fNIRS signals for multimodal analysis. Multimodal integration
is an efficient technique that yields important insights into brain
processes (Uludağ and Roebroeck, 2014). Even though the EOG
signals did not differ statistically in this work, they were used
to eliminate eye movement artifacts in the EEG data. On the
other hand, EEG/ECG and fNIRS data yielded clear features
that discriminated between the driving conditions, and each
feature from the three different modalities differed significantly
between the well-rested and sleep-deprived conditions. Based on
these features, DCL (summation of these normalized factors) was
proposed to determine neuro-physiological correlates of drivers’
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TABLE 2 | Driving condition level (DCL) in well-rested and sleep-deprived conditions.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean

Well-rested 2.52 2.48 2.31 2.04 2.24 2.75 1.94 2.80 1.94 2.01 2 2.34

Sleep-deprived 1.47 1.17 1.44 1.07 1.11 1.73 1.42 1.88 1.54 1.19 1.21 1.39

rDCL (%) 41.7 52.8 37.7 47.5 50.2 37.1 26.7 32.9 21 40.8 39.5 40.7

Relative DCL (rDCL) indicates percentage of fatigue level by comparison to well-rested condition.

FIGURE 5 | Comparative driving condition level behavior in well-rested

and sleep-deprived conditions while subject S5 was driving. Each point

represents the averaged DCL value during one minute of driving. Red circles

and blue squares represent the DCL in the well-rested and sleep-deprived

conditions, respectively.

mental fatigue in a quantitative manner. As a result, we observed
that DCL may offer a reasonable method to discriminate well
between the two driving conditions. To illustrate the individual
contribution of each modality to the differences in DCL between
the two driving conditions, the modality-specific contributions
are shown for all subjects in Figure 6. Accumulation of the
three colored bars indicates DCL differences in the multimodal
data (EEG+ECG+fNIRS), which represent the synergistic effect
of these data. As shown in this figure, subjects S2 and S4
demonstrated the greatest differences in DCL, while the DCL of
subjects S7 and S9 differed the least between the two conditions.
Because of the unbiased combination, the averaged contributions
of each modality (EEG, ECG, and fNIRS) to the DCL differences
were quite similar (0.46, 0.45, and 0.46, respectively).

Comparison of Hybrid Approaches Using
EEG/ECG and fNIRS
To investigate the hybrid effect of the classification for the two
different driving conditions, we compared various combinations
of modalities with respect to the classifiers’ outputs. For the
combined classifiers in each modality, each classifier’s outputs
(EEG, ECG, and fNIRS) were regarded as features of the second
classifier. Thereafter, the outputs of the second classifier represent
the results of the combined classifiers. A flow diagram of this
procedure is depicted in Figure 7.

Classification accuracies of single modalities (EEG, ECG,
fNIRS) and all combinations of modalities (EEG+ECG,

FIGURE 6 | DCL difference (subtraction of sleep-deprived from

well-rested) for all subjects. Each color represents modality-specific

contribution to DCL difference (red: EEG, green: ECG, blue: fNIRS).

Summation of the three colored bars indicates the synergistic effect of

multimodal data on classification between the two driving conditions.

EEG+fNIRS, ECG+fNIRS, and EEG+ECG+fNIRS) at the
classification level are summarized in Table 3. Most of the
subjects (8 of 11) achieved improved performance in the
combined EEG+ECG+fNIRS, and the average performance of
this combination was greater than that of the others. A one-way
ANOVA conducted on the seven different approaches indicated
that there was a considerably significant difference [F(6, 70)
= 4.38, p = 0.0008 < 0.10]. Further, the EEG+ECG+fNIRS
combinations differed significantly from the others (p < 0.05,
Wilcoxon signed-rank test). Each level of significance is marked
with asterisks in Table 3. Notably, subject S6 showed the greatest
improvement (∼30.5%) in the EEG+ECG+fNIRS combination
compared to EEG only.

DISCUSSION

EEG Spectral Changes and Driving
Conditions
To date, most researchers have investigated driving fatigue
using EEG changes, which are promising indicators of this
phenomenon (Lal and Craig, 2001), and EEG has the
advantages of being portable, noninvasive, inexpensive, and
safe to measure during driving. With EEG recording, Lal
and Craig (2002) found substantial increases in delta, theta,
and alpha activity in the transition to fatigue, which was
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FIGURE 7 | Flow diagram for classifier combination. Each classifier’s output is regarded to second classifier’s input.

TABLE 3 | Classification accuracies in well-rested and sleep-deprived conditions.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean

**EEG 61.3 52.1 58.9 54.4 70.8 55.2 68.9 64.3 61.0 52.2 58.1 59.7

**ECG 79.4 72.0 52.8 76.3 60.5 52.3 63.9 72.2 61.2 58.8 59.7 64.5

*fNIRS 68.4 84.5 55.6 65.9 76.8 80.8 72.9 61.5 52.6 57.7 58.3 66.8

**EEG+ECG 76.2 60.0 74.3 68.1 72.9 68.9 64.3 73.5 71.4 60.4 69.5 69.0

**EEG+fNIRS 83.3 63.3 66.7 65.5 72.7 63.3 63.3 70.0 73.3 60.3 70.0 68.3

**ECG+fNIRS 82.8 64.8 63.3 73.3 73.3 73.3 60.0 76.7 63.3 56.7 73.3 69.2

EEG+ECG+fNIRS 84.5 73.7 71.8 77.9 78.1 85.7 67.0 83.8 74.6 62.4 75.2 75.9

The highest accuracies among seven approaches are displayed in bold. Asterisks indicate the level of signficance with the EEG+ECG+fNIRS combination (**p < 0.01: *p < 0.05).

consistent with existing findings described in a review paper
(Sahayadhas et al., 2012). Alpha activity is believed to be
the most prominent indicator of driver fatigue. With this
reasoning, Simon et al. (2011) verified alpha spindle activity
based on a short-time Fourier transformation in real traffic
conditions. Statistical analysis of these actual driving data
revealed significant increases for all alpha spindle parameters,
such as rate, duration, amplitude, and power, between the
awake and drowsy states during 20min of driving. Similarly,
in the EEG recordings in this work, we observed a significant
increase in alpha based on RPL. To reduce session and subject
variability, a normalized alpha RPL was introduced and a
significant alpha RPL difference was found in the centro-parietal
region.

It is known that attention is also correlated with alpha
power suppression. In our experiment, visual attention may
be expected to be related closely to a simulated driving task.
Such visual attention-related alpha power suppression may
be observed normally in the occipital region, as reported in
previous studies (Worden et al., 2000; Sauseng et al., 2005;
Rihs et al., 2007). However, in our study, notable alpha
suppression was observed in the centro-parietal region alone,
which is consistent with results in previous studies of fatigue
(Lal and Craig, 2001, 2002; Simon et al., 2011; Sahayadhas
et al., 2012). For this reason, it is clear that a reduction
in power in the alpha band was correlated with fatigue in
this experiment. We observed beta RPL changes in the sleep-
deprived condition, and beta power may be an additional
indicator of mental fatigue. Tanaka et al. (2012) found that
beta power densities decreased significantly after tiring cognitive

tasks. They calculated EEG power spectra in each band and
showed that beta waves decreased significantly in the fronto-
central region with increased driving times. It also has been
reported that beta rhythm is associated closely with increased
alertness and arousal (Okogbaa et al., 1994), which is likely
to be applicable to driving situations (Yeo et al., 2009; Yang
et al., 2010; Zhao et al., 2012). In this work, we inferred that
the lack of arousal and alertness caused by mental fatigue and
sleep deprivation may result in a decreased beta rhythm during
simulated driving.

Until now, most studies related to the detection of mental
fatigue during driving have been experimental, and driving
conditions have been divided according to the elapsed duration
of driving. For example, data from the first 10min have been
considered to be the normal condition, while those from the
last 10min were specified as the fatigued condition (Li et al.,
2009; Simon et al., 2011). Such an approach may not be
appropriate, however, as some people may not develop fatigue
even after 2–3 h of driving, especially professional drivers.
Therefore, in order to discriminate between high- and low-risk
conditions explicitly, each subject was both at high and low
risk of fatigue before the driving tests, depending on how
many hours they slept at night. Because sleep deprivation
is well known to affect decision-making, attention, vigilance,
human performance, and mental fatigue (Åkerstedt et al., 2004;
Alhola and Polo-Kantola, 2007), it is appropriate to refer
to sleep deprivation as analogous to fatigue. In addition, in
our driving simulator, the steering wheel vibrated whenever
the car crashed into a barrier to prevent drivers from
actually falling asleep. Preventing the subjects from falling
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asleep may have suppressed activation in the delta and theta
bands because these waves are associated closely with deep
sleep (Maquet et al., 1997) and REM sleep (Jouvet, 1969),
respectively.

Observations of Fatigue in the Well-Rested
Condition
Before the experiment, all subjects with well-rested condition
were instructed to sleep over 7 h to ensure that they were
mentally alert and physically refreshed. However, several subjects
experienced fatigue in the driving task nonetheless, due to
various internal or external environmental factors, even though
they reported that they had slept well the previous night.
Subjects S7 and S9 had the lowest DCL values in the well-
rested condition, as shown in Table 2 and Figure 6. According
to their questionnaires, these two subjects recorded a score of
2 in the sleepiness section (1: rarely sleepy to 5: very sleepy)
prior to the experiment, yet they often nodded off during driving.
Their behavior was recorded on the HD-Webcam, and showed
clearly that they were drowsy. Furthermore, they reported
scores of 4 and 5, respectively, on the sleepiness scale after the
experiment. Figure 8 represents the DCLs for these two subjects
over time. As shown, their DCLs in the well-rested condition
were similar to those in the sleep-deprived condition. The DCLs
fluctuated in the well-rested condition, as shown by repeated
increases and decreases. Moreover, these two subjects achieved
low classification accuracies in a single modality, as shown in
Table 3, although their accuracy improved when measured with
mixed features. Clearly, we believe that these two subjects were
likely to have been fatigued despite their assignment to the well-
rested condition. In this work, we used the HD-webcam only to
monitor the subjects, and did not measure or analyze behavioral
data. Analyzing subjects’ behavior in real-time, such as head

or eye movements, may offer supporting evidence that some
subjects slept well but experienced mental fatigue nonetheless.
We will collect such behavioral data in the online mental fatigue
monitoring system, which is currently under investigation.

Temporal Mismatch between EEG and
fNIRS
Recently, many studies have tried to combine EEG and fNIRS
to improve classification accuracy or increase the degrees of
freedom in BCI systems (Fazli et al., 2012; Khan et al., 2014;
Putze et al., 2014; Koo et al., 2015; Yin et al., 2015). However, the
fNIRS systemmeasures hemodynamic change, which is a delayed
response compared to neuronal electrical activity, and it also has
a relatively low temporal resolution (<10Hz), both of which are
critical drawbacks in fNIRS measurements. Because of their low
temporal resolution, it is sometimes difficult to combine fNIRS
data with other brain imaging data. Nevertheless, one of the most
significant merits of the fNIRS system is its ability to measure
oxygen consumption related to blood flow in the brain, similar
to that in functional magnetic resonance imaging (fMRI), and
fNIRS has been nicknamed the portable fMRI for this reason.

Considering the advantages and drawbacks of the fNIRS
system, we calculated the features during each 1-min period
throughout the dataset in this work. Each minute in the 30min
of data yielded a DCL value, which was used to discriminate
between the well-rested and sleep-deprived conditions. In
addition, oxygen consumption in the prefrontal cortex may
represent cognitive workload or fatigue (Ayaz et al., 2012, 2013;
Harrison et al., 2014; McKendrick et al., 2014). Therefore, it
is likely that fNIRS may be a significant indicator of mental
fatigue, and we are sure that employing multimodal data is quite
useful in monitoring mental fatigue. Also, the prefrontal cortex
is related closely to mental workload (Mandrick et al., 2013a)

FIGURE 8 | Driving condition level of subject S7 and S9 in two conditions per 1min over time. Red-circle and blue-square represent the driving condition

level in well-rested and sleep-deprived conditions, respectively.

Frontiers in Human Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 219 | 210

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Ahn et al. Neuro-Physiological Correlates of Drivers’ Mental Fatigue

and the performance of cognitive tasks (Mandrick et al., 2013b).
For these reasons, we introduced the prefrontal fNIRS in this
work. However, whole head fNIRS would be beneficial and will
be considered in our future work.

Limitations and Future Work
We proposed here an indicator of drivers’ mental fatigue
(Equation 4) that was able to discriminate the drivers’ mental
conditions well. To include equal contributions of EEG, ECG,
and fNIRS features in the indicator, we normalized and
summed all three. Further, all three were weighted equally
to calculate the indicator, although this might not be an
optimal method of quantification. Therefore, we calculated a
new indicator using a weighting factor of [DCL = a ∗

norm
(

beta RPL
alpha RPL

)

+ b ∗ norm
(

HbO
)

+ c ∗ norm(HR)]. Each

weighting factor was defined between 0 and 1 with increments
of 0.10; thus, we were able to search for the highest DCL
difference in the two conditions (subtraction of sleep-deprived
from well-rested). As a result, they had values comparable
to those with equal weights and we observed no significant
improvement. Even though we were able to apply elegant
optimization methods, a somewhat better indicator may be
achieved.

The primary reason to monitor drivers’ mental fatigue is to
prevent car accidents by providing drivers with a rapid and
reliable alarm. To achieve this purpose, both making predictions
before driving and monitoring a driver’s condition in real-time
are potential approaches. Our proposed rDCL (Equation 5) can
predict a driver’s fatigue prior to driving if training data can
be obtained when the driver is in an alert state. Compared
with DCL in the well-rested condition, the driver’s condition
prior to driving may be pre-checked by estimating the DCL.
Although we used the entire dataset obtained during 30min in
the well-rested condition in this work, data of a shorter duration
could be used for baseline. We are investigating the minimum
duration needed to predict drivers’ fatigue now. Another
approach to accident prevention is to monitor drivers’ fatigue in
real-time.

We performed only an offline analysis in this work, and
normalized DCL values were estimated each minute. For online
monitoring, however, normalization of each modality’s features
is quite difficult to implement based on current methods
available. One possible approach to solve the normalization
issue is to record resting data before driving and use them
as baseline data. Alternatively, an adaptive normalization
method that updates feature values in real-time is a candidate.
We are investigating the most appropriate normalization
method for a subsequent online mental fatigue monitoring
system.

In this work, we attempted to analyze multimodal data
with simultaneous recordings of EEG/ECG/EOG and fNIRS.
One of the advantages of multimodal signal integration is that
each imaging method provides a physiologically and physically
filtered view of one or more brain processes of interest. Thus
far, the EEG-fMRI combination has been investigated widely,
especially in epilepsy research, to help localize specific regions

(Rosenkranz and Lemieux, 2010) by improving spatial and
temporal resolution. Now, the EEG-fNIRS combination may be
an alternative imaging method with merits that include low cost
and simple implementation.

In this study, we custom-built an fNIRS that was already
validated in previous study (Kim et al., 2015), and thus enabled
us to design the experiment well. Although, a lengthy preparation
time was required to attach the detectors and emitters, and test
the quality of the light intensity for fNIRS measurement, this
EEG-fNIRS integration may be quite beneficial in developing a
monitoring system, as reported in the existing literature (Fazli
et al., 2012; Wallois et al., 2012; Khan et al., 2014; Morioka
et al., 2014; Putze et al., 2014; Koo et al., 2015; Yin et al., 2015).
Another concern in analyzing multimodal data is how their
differences (physical values, temporal resolution) are considered
in an integrated frame. An in-depth investigation is needed to
enhance the synergistic effect of multimodal data recording.
Similarly, in this study, we were unable to guarantee that the
EEG, ECG, and fNIRS, or their combined features, are related
linearly to the fatigue level, although in the multimodal results,
each modality influenced the fatigue level to some degree, as
shown in Figure 8.

CONCLUSIONS

The purpose of this study was to use simultaneous
EEG/ECG/EOG and fNIRS recordings to determine neuro-
physiological correlates that can be used to discriminate sleep
deprivation-induced mental fatigue in drivers by comparison to
those who are well-rested. To achieve our purpose, we introduced
two driving conditions (well-rested and sleep-deprived), and
were able to extract significant features from their EEG, ECG,
and fNIRS data. However, no significant feature was found in the
EOG due to high variability in the subjects’ data. The features
observed allowed us to determine the mental condition of each
driver, and also yielded good discriminative results between
two driving conditions. Further, we investigated the synergistic
effects of multimodal data to compare the various combinations
at the classification level with a single modality. In conclusion,
our proposed combined approach of simultaneous EEG/ECG
and fNIRS data may be a promising tool with which to monitor
drivers’ mental fatigue.
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The current study investigates the demands that steering places on mental resources.
Instead of a conventional dual-task paradigm, participants of this study were only
required to perform a steering task while task-irrelevant auditory distractor probes
(environmental sounds and beep tones) were intermittently presented. The event-related
potentials (ERPs), which were generated by these probes, were analyzed for their
sensitivity to the steering task’s demands. The steering task required participants to
counteract unpredictable roll disturbances and difficulty was manipulated either by
adjusting the bandwidth of the roll disturbance or by varying the complexity of the control
dynamics. A mass univariate analysis revealed that steering selectively diminishes the
amplitudes of early P3, late P3, and the re-orientation negativity (RON) to task-irrelevant
environmental sounds but not to beep tones. Our findings are in line with a three-stage
distraction model, which interprets these ERPs to reflect the post-sensory detection
of the task-irrelevant stimulus, engagement, and re-orientation back to the steering
task. This interpretation is consistent with our manipulations for steering difficulty.
More participants showed diminished amplitudes for these ERPs in the “hard” steering
condition relative to the “easy” condition. To sum up, the current work identifies the
spatiotemporal ERP components of task-irrelevant auditory probes that are sensitive
to steering demands on mental resources. This provides a non-intrusive method for
evaluating mental workload in novel steering environments.

Keywords: steering, mental workload, distraction, MMN, early P3, late P3, RON

INTRODUCTION

Safety concerns have strongly motivated research in determining the demands, or
workload, that users experience while performing closed-loop steering tasks, particular
in the context of driving a car or piloting an aircraft (for a general review about
workload, see Kramer, 1991; Wickens, 2008; Young et al., 2015). Even if competence
can be maintained in spite of high mental workload, such scenarios leave little spare
capacity for handling unexpected occurrences. There is no doubt that steering places high
requirements on visual and motoric resources (Land and Lee, 1994; Salvucci and Gray, 2004).

Frontiers in Human Neuroscience | www.frontiersin.org March 2016 | Volume 10 | Article 73 | 214

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2016.00073
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2016.00073&domain=pdf&date_stamp=2016-03-01
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00073/abstract
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00073/abstract
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00073/abstract
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00073/abstract
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00073/abstract
http://loop.frontiersin.org/people/108666/overview
http://loop.frontiersin.org/people/3344/overview
http://loop.frontiersin.org/people/45064/overview
https://creativecommons.org/licenses/by/4.0/
mailto:heinrich.buelthoff@tuebingen.mpg.de
mailto:lewis.chuang@tuebingen.mpg.de
http://dx.doi.org/10.3389/fnhum.2016.00073
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Scheer et al. Steering Decreases Involuntary Distraction

Besides this, some aspects of steering have also been shown to
require mental resources (Wickens et al., 1983, 1984). This has
been typically demonstrated with the use of dual-task paradigms
that induce a competition for mental resources between the
primary steering task and an appropriately chosen secondary task
(McLeod, 1977; Wickens and Gopher, 1977). The purpose of this
article is to evaluate the demands that steering places on mental
resources without requiring the user to perform a secondary task.
To do so, we investigate how steering demands modify the event-
related potentials (ERPs) to task-irrelevant auditory probes. The
steering task is further manipulated for two aspects of steering
that are known to influence handling difficulty, namely the
bandwidth of disturbance and the complexity of (vehicle) control
dynamics.

Workload can be defined as the ratio between the demands
of a task and the resources of the human operator. Its
concept originates from the idea that human operators
possess, at any given time, a limited reserve of mental
resources (Kramer, 1991; Wickens, 2008). By introducing
a competition for this limited reserve, for example by
requiring participants to perform two tasks simultaneously,
researchers are able to investigate how difficulty manipulations
in a primary task can create a demand for resources that
are drawn away from an accompanying secondary task.
Changes in resource demands are indexed by secondary task
performance. A comparison of performance measures on
competing tasks typically demonstrate that participants are
capable of varying the relative prioritization of competing
tasks (Wickens and Gopher, 1977), but only when the
tasks overlap in their resource requirements (McLeod, 1977).
The ‘‘Multiple Resource Theory’’ provides a framework that
allows researchers and practitioners to define the resource
requirements of different tasks and in doing so, predict
possible conflicts (Wickens and Yeh, 1983; Wickens, 2002,
2008). Within this framework, a steering task places obvious
demands on visual perception and motoric responses. By using
electroencephalography (EEG) to measure the ERP to secondary
task stimuli, Wickens and colleagues were able to demonstrate
the demands of various aspects of steering on mental resources
as well.

To date, ERP studies have broadly demonstrated that steering
demands tend to reduce the amplitude of the P300, an ERP
component that is generated by the target stimuli of a secondary
task (e.g., Wickens et al., 1977; Isreal et al., 1980; Wickens and
Yeh, 1983). Dual-task studies that investigate steering demands
typically require participants to detect and explicitly respond
to infrequently presented ‘‘oddball’’ targets as a secondary task.
‘‘Oddballs’’ elicit a prominent P300 component in the EEG
signal. The P300 is a positive deflection between 250–400 ms and
its amplitude has been used to index the level of experienced
workload (Kok, 1997). The finding that steering demands
diminish P300 amplitudes in an accompanying ‘‘oddball’’
detection task is commonly interpreted as follows. The primary
steering task places prioritized demands on mental resources,
resulting in the reduced availability of mental resources that
would otherwise be recruited for the detection of secondary
‘‘oddball’’ targets (Wickens et al., 1977; Isreal et al., 1980;

Wickens and Yeh, 1983). Hence, the reduced availability of
mental resources is reflected in the reduced amplitudes of P300
that are elicited by the detected ‘‘oddballs’’. This serves as a
proxy for evaluating the demands for mental resources, given
different manipulations of steering difficulty. Some steering
parameters exert a uniform cost on P300 amplitudes regardless
of their manipulated difficulty levels, while increasing the
difficulty levels of other parameters can induce decreased P300s
to secondary ‘‘oddball’’ targets. For example, increasing the
number of simultaneously tracked dimensions (Wickens et al.,
1977; Kramer et al., 1983; Sirevaag et al., 1989), tracking
speed (Kida et al., 2004), and the frequency bandwidth of the
tracked target (Isreal et al., 1980) do not result in a decrease
of P300 amplitudes. In contrast, increasing the complexity of
control dynamics (e.g., from a first-order to a second-order
integrator; Wickens et al., 1983, 1984; Sirevaag et al., 1989) or
the unpredictability of the tracked target (Kida et al., 2004)
result in corresponding decreases in P300 amplitudes. Other
ERP components have also been analyzed for their sensitivity
to changes in steering demands, albeit with mixed results. Kida
et al. (2004) reported a decrease in the amplitude of the N140
component to the somatosensory targets of a secondary oddball
task, which did not vary with the predictability of the steering
task.

Until now, ERP studies of steering demands have mainly
been performed in the presence of a secondary task that
contains the stimuli for eliciting the ERP. It is generally
believed that ERP probes are only effective for evaluating the
resource demands of tasks that they are in explicit conflict with.
Indeed, Wickens et al. (1983) have shown that the influence
of steering demands on P300 amplitudes is removed when
the ERP probes were task-irrelevant. Unfortunately, dual-task
paradigms present several limitations in understanding steering
demands. First, requiring an overt response to a secondary task
interferes with the performance of the primary steering task
(Wickens et al., 1983). In this regard, the secondary task is
not a passive consumer of residual mental resources but is,
rather, in direct competition with the primary task for shared
resources. Second, the researcher has little control over how
participants might choose to divide their resources between
primary and secondary task, regardless of explicit instructions.
Finally, estimated workload from ERP measurements could be
due to the interaction of the primary and the secondary task
demands, instead of the primary task alone. These reasons,
amongst others, have motivated the development of non-
intrusive methods for estimating primary task demands that do
not necessitate a secondary task.

In contrast to Wickens et al.’s (1983) findings, ERPs to task-
irrelevant stimuli can sometimes be demonstrated to vary with
the demands of a task that is performed in isolation. This has
been shown with the use of ERP probe stimuli that are more
likely to recruit larger momentary shifts of resources than simple
beep tones, such as complex environmental sounds (Courchesne
et al., 1975; Ullsperger et al., 2001; Polich, 2003). Such stimuli
are task-irrelevant and reliably elicit a positive ERP component
termed the novelty-P3 (P3a)—that has a similar time-course to
the P300 but with a frontal instead of a parietal distribution
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(Polich, 2007). Given their task-irrelevant nature, it is more
reasonable to assume that their elicited ERP components reflect
residual resources that are not consumed by the demands of
the investigated task. Task-irrelevant probes have been used to
estimate the demands of a variety of tasks including arithmetic
and visual monitoring (Ullsperger et al., 2001), working memory
task (i.e., n-back task; SanMiguel et al., 2008), Tetrisr (Miller
et al., 2011; Dyke et al., 2015), first-person-shooter (Allison and
Polich, 2008) and car racing games (Burns and Fairclough, 2015).
It has not always been necessary to employ novel environmental
sounds in order to generate ERPs for the evaluation of task
demands—simple beep tones have proven to be sufficient in
some instances (Burns and Fairclough, 2015). Nonetheless, there
are also other examples whereby simple beep tones do not
generate ERPs (i.e., P3a) that are sensitive to task demands (e.g.,
Ullsperger et al., 2001; Muller-Gass et al., 2007). Environmental
sounds have the added value of generating larger novelty-P3s
that are further separable for an early and late P3 component,
which are claimed to be functionally distinct (Alho et al., 1998;
Yago et al., 2003; McDonald et al., 2010). Early P3 is claimed
to reflect post-sensory detection of unexpected events that
contradict the observer’s representation of the external world,
while late P3 is claimed to reflect attentional processing of the
unexpected event. Besides novelty-P3, other ERP components
of task-irrelevant probes (i.e., N1/MMN; Ullsperger et al., 2001;
Dyke et al., 2015; P2 and N2; Allison and Polich, 2008; late
positive potential or LPP; Miller et al., 2011) have also been
claimed to be diminished by increased task demands, albeit less
consistently.

Taken together, ERP probes can be regarded as distractors
that demand resources either through explicit competition with
the primary task (Isreal et al., 1980; Wickens et al., 1983,
1984) or by implicitly drawing upon residual resources that
are unconsumed by the primary task (SanMiguel et al., 2008;
Miller et al., 2011; Burns and Fairclough, 2015; Dyke et al.,
2015). Previous work that assessed steering demands might have
required ERP probes to be task-relevant because the employed
probes (i.e., beep tones) did not recruit sufficient resources to
indicate the influence of steering demands.

ERP components that are elicited by distracting stimuli have
been suggested to reflect three stages of distraction (Schröger
and Wolff, 1998; Escera and Corral, 2007; Wetzel and Schröger,
2014). Based on the specific ERP components that are decreased
with an increase of the task demands, inferences about the stages
of distraction that are influenced can be drawn. The first stage of
distraction is the detection that the model of the environment
was violated. When engaged in a task, participants can be
expected to be primarily focused on this task. At the same
time, the regularities of the acoustic environment are encoded
and used to form a predictive model of the surroundings.
Whenever a current event violates this predictive model, the
distraction process is initiated. This first stage of distraction
is reflected in the elicited ERP by the mismatch negativity
(MMN). The MMN is an early, negative ERP component that
is apparent in the difference wave between the distractor- and
the standard stimuli, for example in an oddball paradigm.
Thus, the presence of a MMN indicates early sensory detection

of an unexpected change in the environment. The second
stage is the, voluntary or involuntary, orientation of attention
towards the distracting event. Depending on the level of readily
available resources and the eliciting event, resources might
be directed towards the distracting event in order to process
it. This stage is reflected by the occurrence of the novelty-
P3 component. The third stage describes a disengagement of
resources from the distracting event and a re-orientation back
to the task at hand. Disengagement from the distractor stimuli is
reflected by the re-orientation negativity (RON), a late negative
component.

The current study investigates the influence of steering
demands on ERP components that are generated by task-
irrelevant auditory distractor stimuli. In the viewing baseline
condition, we expect distractor stimuli to elicit ERP components
that correspond to the three-stage distraction model, regardless
of whether they are infrequently presented beep tones or
infrequently presented environment sounds. However, we
expect these ERP components to be larger when generated
by environment sounds. Furthermore, we expect these ERP
components to decrease when participants are required to
perform a steering task, but only when they are generated by
environmental distractors. We employ a data-driven approach
(i.e., mass univariate analyses; Groppe et al., 2011) to ensure
the validity of any correspondence between distractor ERP
components and steering demands. This approach allows
us to define each affected component in terms of its
spatial and temporal characteristics, as opposed to restricting
our analyses to an a priori selection of components (cf.,
Miller et al., 2011; Dyke et al., 2015). ERP components
that are found to be sensitive to steering demands are
subsequently submitted for permutation tests to evaluate their
suitability for discriminating between manipulated levels of
steering difficulty. We manipulate steering difficulty by either
increasing the frequency bandwidth of the disturbance that
is experienced during steering (cf., Isreal et al., 1980), or
by varying the complexity of the control dynamics (cf.,
Wickens et al., 1983). We expect more participants to
demonstrate a significant reduction in these targeted ERP
components in the ‘‘hard’’ condition compared to the ‘‘easy’’
condition.

MATERIALS AND METHODS

Participants
We tested 24 right-handed volunteers (seven women, mean
age = 27.9 years, SD = 5.2). All participants reported normal
or corrected-to-normal vision, no hearing impairment and no
history of neurological diseases. The experimental procedure was
approved by the MPG Ethics Council and all participants gave
written informed consent.

Stimuli and Apparatus
The experiment was set up in a dimly-lit, low noise environment.
It consisted of a primary steering task and the presentation
of task-irrelevant, auditory stimuli. The steering task was
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presented via a central display (1027 × 581 mm, resolution
1920 × 1080 px), approximately 180 cm away from the
seated participants. Auditory stimuli were presented to both
ears via headphones (MDR-CD380, Sony), that where driven
by a soundcard (sampling frequency: 96 kHz; DELTA1010LT,
M-Audio). A secondary heads-down display informed the
participants of their most recent steering performance and the
current experimental status. Data collection was performed,
using customized software, written in Matlab Simulink. The
software version of the NASA-TLX questionnaire (Hart and
Staveland, 1988) was presented on a separate notebook.

Two lines (length: 16◦ visual angle, thickness: 2 px) were
presented on a blue background. These lines were a white
horizontal non-moving reference line and a second black line
that rotated around the joint center of both lines. A right-handed
sidestick (Extreme 3D Pro, Logitech) with a spring constant of
0.6 N/degree was used as input device.

During the entire experiment, participants were probed
with task-irrelevant stimuli with a random inter-stimulus
interval (mean = 1.20 s, SD = 62 ms). Infrequently presented
environmental sound distractors (prob. of presentation: p = 0.1)
were intermixed with frequent, standard (p = 0.8) and infrequent
distractor (p = 0.1) beep-tones. Two easily discriminable beep-
tones were used (i.e., 300 and 700 Hz) and their probability
(p = 0.1 and p = 0.8) was counter-balanced across participants.
The environmental sounds consisted of a set of 30 recognizable
complex sounds (e.g., human laughter) that were selected from a
database obtained from the New York State Psychiatric Institute
(Fabiani et al., 1996). The environmental sounds were presented
in quasi-random order without replacement. Environmental
sounds, as well as standard and distractor beep-tones, had amean
duration of 336 ms (SD = 62.5 ms) and a mean intensity of 60 dB
SPL (SD =0.31 dB). Both, environmental and beep sounds were
always preceded by at least one standard beep.

Task
Participants performed a steering task in which they were
required to continuously counteract a quasi-random roll motion
of a rotating line. This unpredictable roll motion was defined
by the forcing function ft(t) (see Equation (1) and Table 1).
Participants were instructed to minimize the displacement e(t)

of the rotating line (black in Figure 1) relative to the reference
line (white in Figure 1), with lateral deflections of the sidestick.

Task-irrelevant sounds were presented that our participants
were instructed to disregard. The experiment consisted of
steering as well as of viewing trials. The viewing trials presented
the same visual feedback in all sessions and served as a baseline.
In this condition, participants viewed the steering task that
was prerecorded. By comparing the steering trials against these
viewing trials that both presented the same visualization, we
could determine how the demands of the steering task influenced
the measured ERPs, independent of the visualization.

Two aspects of the steering task were used to influence the
level of workload in the task: (1) the frequency bandwidth
of the roll disturbance and (2) the complexity of the internal
control dynamics. In every steering trial, one of these aspects
was manipulated, leading to two levels of steering task difficulty,
namely ‘‘easy’’ and ‘‘hard’’ for each of the two manipulations.
The second aspect was kept constant and will be referred to as
‘‘standard’’, in the following. The objective was to create two
levels of workload for independent manipulations (cf. Isreal et al.,
1980; Wickens et al., 1984). Details of these manipulations of
engagement are given in the following.

Manipulation of the Bandwidth of Roll Disturbance
The roll disturbance was designed as a sum of ten sine waves
that could be manipulated for the number and intensity of roll
reversals by adjusting the frequency bandwidth, such that the
‘‘easy’’ condition presented less power in the higher frequencies,
compared to the ‘‘hard’’ condition. The ‘‘standard’’ condition was
designed to be an intermediate of these two conditions.

In all conditions, the forcing function was formalized as the
sum of ten sine waves that were non-harmonically related, as
described in (1):

ft(t) =
10∑
j=1

A(j) · sin
(
ω(j) · t + φ(j)

)
(1)

The amplitude A(j), frequency ω(j) and phase φ(j) of these
10 sine waves, for the ‘‘standard’’, the ‘‘easy’’ and the ‘‘hard’’
condition, are given in the Table 1.

TABLE 1 | Amplitude A(j), frequency ω(j) and phase φ(j) of the ten sine waves, contained in the forcing function, for the “standard”, “easy” and “hard”
condition.

Standard Easy Hard

j A(j) in degree ω(j) in rad/s φ(j) in rad A(j) in degree ω (j) in rad/s φ(j) in rad A(j) in degree ω(j) in rad/s φ(j) in rad

1 1.34 0.39 2.69 1.36 0.39 3.27 1.33 0.39 2.42
2 1.03 0.83 5.74 0.93 0.83 5.95 1.10 0.83 2.20
3 0.51 1.76 5.72 0.40 1.76 3.95 0.63 1.76 2.35
4 0.26 2.85 5.92 0.19 2.85 3.93 0.34 2.85 4.59
5 0.16 3.90 1.66 0.12 3.90 2.26 0.21 3.90 4.57
6 0.09 5.45 1.53 0.07 5.45 0.59 0.13 5.45 5.67
7 0.06 7.76 1.90 0.05 7.76 1.65 0.08 7.76 0.74
8 0.04 10.50 4.74 0.04 10.50 3.80 0.05 10.50 0.71
9 0.04 13.11 4.06 0.03 13.11 0.15 0.04 13.11 0.21
10 0.03 17.33 4.53 0.03 17.33 4.83 0.03 17.33 3.39
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FIGURE 1 | The steering task required the participants to counteract
the quasi-random displacement e(t) of the rotating line (black) to the
non-moving reference line (white), with lateral sidestick deflections.

The forcing function in the ‘‘standard’’ condition had a
variance of 1.61 degree2, adapted from Nieuwenhuizen et al.
(2013). In the ‘‘easy’’ condition a variance of 1.47 degree2 and
in the ‘‘hard’’ condition a variance of 1.78 degree2 was applied.

To sum up, the ‘‘hard’’ condition presented larger amplitudes
in the higher frequencies that resulted in more instances of roll-
reversals than the ‘‘standard’’ and ‘‘easy’’ condition.

Manipulation of the Control Dynamics
Bymanipulating the control dynamics, themotion of the rotating
line, relative to the sidestick input of the participants, was
manipulated. The control dynamics can be formally described as
the transfer function H(s).

In the ‘‘standard’’ condition the transfer function had the
form of:

Hstandard(s) =
2.75

s (s+ ωb)
(2)

This represents a hybrid controller that reacts to the sidestick
input with a weighted mixture of velocity and acceleration
control. In other words, depending on the frequency of
the sidestick input of the participant, either the velocity or the
acceleration of the rotating line was influenced. To manipulate
the internal control dynamics for difficulty levels, we removed
either the velocity or the acceleration component, resulting in
either a pure velocity controller with the following form for the
‘‘easy’’ condition:

Heasy(s) =
1.5
s

(3)

or a pure acceleration controller with the following form for the
‘‘hard’’ condition:

Hhard(s) =
5
s2

(4)

These transfer functions were adopted from Zollner et al. (2010).

Controlling the acceleration has been shown to be more
demanding than controlling the velocity (e.g., Wickens et al.,
1984; Sirevaag et al., 1989). When the velocity is controlled,
the angle of the sidestick translates to the velocity of
the controlled line. In this case, keeping the sidestick in
the center results in no motion of the controlled line.
When the acceleration is controlled instead, keeping the
sidestick in the center results in no further acceleration,
but the controlled line will maintain its current velocity.
Thus, participants have to anticipate the future consequence
of their input commands when using a pure acceleration
controller.

Design and Procedure
The experiment consisted of two sessions on 2 separate days,
one that contained the manipulation of the bandwidth of the
roll disturbance and one that contained the manipulation
of the complexity of the control dynamics. Session order
was counterbalanced across participants. Each of the two
sessions consisted of four blocks that contained three trials
each. The four blocks differed in terms of the implemented
difficulty (‘‘easy’’ or ‘‘hard’’). Each block contained two
steering and one viewing trial, where the order of the
trials was randomized for every participant. Each of the
trials lasted 4 min 26 s and trials were separated by 20 s
of rest. During EEG preparation, participants were trained
on every difficulty level and for each manipulation for at
least one trial. Over the whole course of the experiment,
after each trial, participants were presented with their
performance (normalized root-mean-square error, nRMSerror)
to keep them motivated. At the end of each block,
participants were asked to rate their perceived workload in
the NASA-TLX questionnaire for each level of difficulty,
separately.

EEG Signal Processing
The EEG was recorded with 26 active g.tec Ag/AgCl electrodes
(g.LADYbird, g.tec), mounted in an elastic cap (g.GAMMAcap,
g.tec). The electrooculogram (EOG) was recorded from four
additional electrodes: at the outer canthi of the left and right eye,
and above and below the left eye. All recorded signals were re-
referenced off-line to the linked mastoids. The ground electrode
was placed at FPz. The signals were amplified in the range
between 0 and 2.4 kHz and digitized with a sampling rate of
256 Hz (g.USBamp, g.tec).

Further processing and analysis of the ERP signal was
performed with Matlab and the open source Matlab toolboxes
EEGLAB (Delorme and Makeig, 2004) and ERPLAB (Lopez-
Calderon and Luck, 2014). In the off-line preprocessing, the
data was high pass filtered at 1 Hz and low pass filtered
at 15 Hz. Second-order Butterworth filters were used for
both filters. From the filtered data, epochs from −200 to
1000 ms, relative to the onset of the presented sounds,
were extracted. Epochs that showed blink or eye movement
characteristics, in any of the electrodes, were rejected. The
remaining epochs were averaged for each auditory stimulus
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type (environmental distractor, beep distractor, standard beep
tone) and baseline corrected with reference to the pre-
stimulus interval. The statistical analysis of the ERPs was
based on the difference wave between ERPs that were
elicited by distractors (the beep and environmental distractors,
separately) and standards. This difference wave has been
also referred to as distraction potential (DP; Escera et al.,
2003).

Statistical Analysis of the ERPs
We adopted a 2-stage approach for analyzing the ERPs
elicited by the environmental and beep distractors. First,
we employed mass univariate analyses to: (i) determine
the ERP components that were elicited by the distractors;
(ii) determine the ERP components that differed between the
environmental and beep distractors; and (iii) identify and
define the spatiotemporal characteristics of ERP components
that were significantly reduced during steering, relative to
the viewing baseline condition. To perform the mass univariate
analyses, measured brain potentials were compared between the
relevant conditions at all time points (between 100–900 ms
after the presentation of the auditory stimuli) and all measured
electrodes (26 electrodes distributed over the scalp). Two-tailed
t-tests were performed between the compared conditions
to yield t-values for every time-point of each electrode.
The false discovery rate (FDR) was controlled using the
Benjamini and Yekutieli (2001) procedure with a FDR level
of 5%. This particular FDR procedure guarantees that the
true FDR will approximate the nominal FDR level of 5%,
regardless of the dependency structure of the multiple tests
(a tutorial review of the mass univariate analysis is provided
by Groppe et al., 2011). This revealed ERP time points and
their corresponding electrodes that were significantly different
between the conditions.

Second, the ERP components that were identified to be
sensitive to steering demands were submitted to permutation
tests for each individual participant, in order to determine
if these components were influenced by our difficulty
manipulations for either disturbance bandwidth or control
dynamics. A description of these single-subject permutation
tests and their interpretation is provided by Maris and
Oostenveld (2007). In brief, four key steps are performed
for each participant: First, the selected electrode’s mean
amplitude over the time-range of interest was computed for
every trial. Second, these mean amplitudes were submitted
to a one-tailed, paired-samples t-test to yield a test t-value.
Third, a null-distribution of t-values was generated. All trials
were pooled and randomly distributed (without replacement)
to two subsets. A paired t-test was performed between these
two sub-sets to generate a single t-value. This was repeated
10,000 times to generate a null distribution. Fourth, the test
t-value was compared to this generated null-distribution to
determine its z-value. An alpha-level of 0.05 was adopted
to determine if the tested participant showed a significant
difference for the difficulty manipulations. This procedure
was repeated for each participant and each ERP component of
interest.

RESULTS

Steering Performance and Perceived
Workload
Steering performance and the perceived workload were analyzed
for our manipulations of steering demands. This was performed
independently for our manipulations of disturbance bandwidth
and control dynamics complexity with the use of a paired-
samples t-test. This was to validate that our participants
responded appropriately to our difficulty manipulations for
‘‘easy’’ and ‘‘hard’’. An alpha-level of 0.05 was adopted for
significance testing. The Cohen’s d is reported for the effect size.
Overall, we found medium to large effects in our manipulations
of difficulty for both performance and perceived workload.

Steering performance was evaluated based on the root-mean
squared deviation of the rotating line from the reference line (i.e.,
RMSerror). The mean RMSerror was significantly higher in the
‘‘hard’’ than in the ‘‘easy’’ condition for manipulations of the
disturbance bandwidth (t(23) = −6.6, p < 0.001, d = −1.4) and
control dynamics (t(23) =−2.2, p = 0.04, d =−0.4).

Perceived workload was based on the participants’ responses
in the NASA-TLX questionnaire. The resulting workload score
is the weighted sum of six subscales that were perceived
by the participants as contributing to the overall workload
in the following proportions: Effort: 24.5%, Mental Demand:
23.1%, Temporal Demand: 17.7%, Performance: 14.3%, Physical
Demand: 13.4%, and Frustration: 7.0%. The ‘‘hard’’ condition
was rated as being significantly more demanding than the ‘‘easy’’
condition for bothmanipulations (disturbance bandwidth: t(23) =
−3.4, p = 0.00, d = −0.7; control dynamics: t(23) = −3.6,
p< 0.001, d =−0.7). Figure 2 illustrates the distribution of the six
subscales over the two manipulations and two levels of difficulty.

ERP Results
This section is divided into three parts that describe the three
analyzed aspects of the elicited ERP components. First, we
present the comparison of the two distractor stimuli. Second, we
present the results of the comparison between the viewing and
steering trials. Third, we present the results of the comparison
between the two applied manipulations of steering demands.

Comparison of the Two Distractor Stimuli
To begin, we separately identified ERP components that were
elicited by the environmental and beep distractors. Therefore,
we identified, with mass univariate analysis, the time-periods for
which ERP amplitudes were significantly different from the pre-
stimulus time interval. Figure 3 illustrates the grand averaged
waveforms and indicates significant ERP components with black
bars. The environmental sounds elicited, in the steering and
the viewing condition, a MMN, an early and late P3, a RON,
a late positive potential (LPP) and a late negativity (LN). The
beep distractors elicited a MMN, a P3a that was not further
discriminable for early and late P3 sub-components, a RON, and
(only in the steering condition) a LN.

Subsequently, we contrasted the ERPs that were elicited by
the environmental and beep distractors. This was performed
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FIGURE 2 | Weighted sum of the six subscales of the NASA-TLX that were perceived by the participants as contributing to the overall workload.
The error bars represent the 95% confidence interval.

FIGURE 3 | Grand averaged waveform of the event-related potentials (ERPs) that were elicited by the environmental distractors (left column) and the
beep distractors (right column), separately for the viewing (top row) and steering (bottom row). The grand averaged waveform shows the difference wave
between the ERPs elicited by the environmental/beep distractors and the standard beep-tones. Every line represents one electrode. The dashed vertical lines
represent the time window of interest (100–900 ms). The black bars specify the time range when the ERP amplitudes were significantly different from the
pre-stimulus time-interval. The gray areas highlight the time-periods where the ERPs of the beep and environmental distractor differed significantly from each other.
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separately for the steering and the viewing trials with the use of
mass univariate analyses. Figure 3 highlights (in gray) the time-
periods where the ERPs of the beep and environmental distractor
differ significantly. This reveals that environmental distractors
generate larger P3, RON, LPP and LN components than the beep
distractors. The beep distractor generated an MMN that peaked
earlier than the environmental distractor.

General Demands of the Steering Task
Here, we determined the influence of steering demands on the
elicited ERP components. In the grand averaged waveform (see
Figure 4), the influence of the steering demands can be mainly
observed in the ERPs that were elicited by the environmental
distractor stimuli and to a lesser degree, in the beep distractors.
As expected, for the ERPs that were elicited by the standard beeps
the steering demands did not have a visible influence.

Using a mass univariate analysis, we determined the
electrodes and time points for which ERPs were significantly
decreased during the steering trials, relative to the viewing
trials. This was performed separately for the ERPs that were
elicited by the environmental distractors and those elicited by
the beep distractors. The ERPs elicited by the beep distractors
were not significantly influenced by steering demands for any
electrode at any time point. In contrast, the ERPs elicited
by the environmental distractors were selectively decreased
by steering demands at specific time-points and electrodes.
Figure 5 provides a raster diagram to indicate the time-points
and electrodes where ERPs of the environmental distractors
were sensitive to steering demands. The scalp topographies for
significant ERP components are provided together with the
significant electrodes, indicated as white filled circles. Altogether,
we find that steering demands diminish an early and late
sub-component of the novelty-P3, and the RON. These ERP
components have a frontocentral distribution.

Steering demands significantly decrease the early P3
generated by the environmental distractor in the time window
between 280–330 ms in the frontocentral electrodes (AF3, AF4,

F3, F4, FC5, FC1, FC2, C3, T7, Fz, Cz). The late P3 was
significantly decreased between 330–430 ms in the central
electrodes (FC1, FC2, FC6, C3, C4, CP1, CP2, P3, CP6, Cz,
CPz, Pz). Interestingly, steering demands influence late P3
amplitudes at electrodes that do not correspond with the frontal
electrodes, which exhibit the largest late P3 amplitudes. The RON
was significantly decreased in the time window of 500–550 ms
over the left electrodes (AF3, F3, FC1, FC2, FC5, FC6, C3, CP1,
CP2, CP5, P3, PO3, Fz, Cz, CPz, Oz).

Following this, we employed permutation tests to analyze
the influence of steering demands on the early P3, late P3, and
RON of individual participants, when elicited by environmental
distractors. Single trials of the two steering conditions (‘‘easy’’
and ‘‘hard’’) were independently compared to the baseline
viewing condition. For each participant, we submitted the
recorded data from the electrodes and time points of the targeted
ERP components to the permutation test. This was performed
independently for the two different manipulations of steering
difficulty, namely disturbance bandwidth and control dynamics
complexity. Figure 6 plots the number of participants that
produced significantly larger ERP amplitudes in the viewing
compared to the ‘‘easy’’ or ‘‘hard’’ steering trials for the targeted
ERP components.

The single-subject analysis produced results that were
consistent across both manipulations (i.e., disturbance
bandwidth and control dynamics complexity) and all three
analyzed components (early P3, late P3 and RON). More
participants showed a significant reduction in the three targeted
ERP components for the ‘‘hard’’ condition than the ‘‘easy’’
condition, relative to the ‘‘viewing’’ baseline. Figure 6 also
indicates differences across individuals, in terms of how they
varied in response to the difficulty manipulations. White bars
represent participants whose selected ERP components were
diminished in both the ‘‘easy’’ and ‘‘hard’’ conditions. The dark
gray bars represent participants whose ERP components were
only diminished by the ‘‘hard’’ condition but not by the ‘‘easy’’
condition. The light gray bars represent participants whose ERP

FIGURE 4 | Grand averaged waveforms after the stimulus presentation of the environmental distractors, beep distractors and standard beeps for the
viewing (red) and steering (black) trials.
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FIGURE 5 | The raster diagram (bottom) shows the comparison results
of the environmental distractor ERPs across viewing and steering
trials. A mass univariate analysis analyzed every time point (256 Hz) between
100–900 ms for all 26 electrodes. Red/blue rectangles represent time points
and electrodes where the difference between the ERPs in the viewing and
steering trials was significantly positive/negative. Scalp topographies are
provided (top) for the three significant time-intervals where significant
differences were found. Scalp potential amplitudes are illustrated as heat
maps and significant electrodes that differentiated between the viewing and
steering conditions are marked white.

components were only diminished by the ‘‘easy’’ condition but
not by the ‘‘hard’’ condition. Overall, the results are in line with
our expectations. More participants whose ERPs were unaffected
by the ‘‘easy’’ condition were, nonetheless, affected by the ‘‘hard’’
condition than vice versa.

Influence of the Steering Manipulations
Permutation tests were conducted to identify the number of
participants who reliably exhibited lower amplitudes for the
targeted ERP components (i.e., early P3, late P3, and RON)
in the ‘‘hard’’ trials relative to the ‘‘easy’’ trials. Figure 7
represents these results as gray bars. The same analysis was
performed based only on the peak-amplitude electrode and
corresponding time-window (i.e., ±20 ms around the grand
average peak). This is the approach that is employed by
comparable research (cf., Miller et al., 2011; Dyke et al., 2015).
Figure 7 represents these results as black bars. A comparison
shows that a mass univariate analysis approach identified
ERP components that were more sensitive to the current
steering manipulations. Finally, more participants responded
in the expected direction for the targeted ERP components
when the complexity of the control dynamics was manipulated

for difficulty than when the bandwidth of disturbance was
manipulated.

DISCUSSION

The current study was designed to investigate if the demands
of a steering task would attenuate the amplitudes of ERPs to
task-irrelevant stimuli. It is in this regard that the current work
sets itself apart from previous work that evaluated steering
demands by measuring the ERPs to the task-relevant stimuli of
a concurrent secondary task (e.g., Wickens et al., 1983, 1984;
Sirevaag et al., 1989). The main findings of the current study are
that steering demands can significantly reduce the amplitudes
of three ERP components (i.e., early P3, late P3, and RON)
of task-irrelevant auditory probes. However, this requires the
probes to be complex environmental sounds and not simple
beep-tones. Two aspects of the steering task (i.e., disturbance
bandwidth and control dynamics complexity) were manipulated
for steering demands and the found ERP components were
significantly diminished in more participants during the difficult
conditions relative to the easy conditions for bothmanipulations.
The current results agree with a three-stage distraction model,
whereby the ERP probes can be regarded as distractor stimuli
that consume mental resources involuntarily (Schröger and
Wolff, 1998; Escera and Corral, 2007; Wetzel and Schröger,
2014). Therefore, we will discuss our results within this simple
framework. The discussion will be organized as follows. First,
we shall discuss the differences between complex environmental
sounds and simple beep tones in order to understand why the
former elicit ERPs that are sensitive to steering demands while
the latter do not. Second, we will discuss the implications of
each ERP component that was found to respond to steering
demands. Third, we will discuss the observed differences in the
ERPs between manipulating either the disturbance bandwidth or
the control dynamics complexity.

Comparison of Complex Environmental
Sounds and Beep-Tones Distractor Stimuli
Both types of task-irrelevant distractor sounds elicited a
characteristic waveform that contained ERP components, which
were significantly different from the baseline (see Figure 3).
In temporal order, they are the MMN, the novelty-P3, and
the RON. Respectively, they are claimed to represent the
three subsequent stages of how users respond to distraction
(Schröger and Wolff, 1998; Escera and Corral, 2007; Wetzel
and Schröger, 2014): (1) detection of the unexpected stimulus;
(2) orientation towards the stimulus; and (3) disengagement
from the distractor to re-orient back to the steering task. In
other words, infrequently presented sounds are preferentially
processed by the brain in spite of being task-irrelevant, whether
they are complex environmental sounds or beep-tones. Two
other ERP components (i.e., LPP and LN) were also elicited, but
were not sensitive to steering demands.

Environmental sounds elicited ERPs that differed from the
beep tones in two ways. First of all, they elicited larger ERPs.
Second, their ERPs contained components that were sensitive
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FIGURE 6 | Permutation tests were performed to evaluate steering manipulations of the disturbance (left) and control dynamics (right). Bar plots
indicate the number of participants that exhibit a significant difference in their early P3, late P3 and RON for the steering condition (“easy”, ”hard”) relative to the
viewing baseline. White bars indicate participants who showed a reliable difference for both “easy” and “hard” conditions. Light/Dark gray bars indicate participants
who showed a reliable difference for only the “easy”/“hard” condition.

FIGURE 7 | Permutation tests were performed to evaluate steering manipulations of the disturbance (left) and control dynamics (right). Bar plots
indicate the number of participants that exhibit a significant difference in their early P3, late P3 and RON between the “easy” and “hard” conditions. Light gray bars
indicate participants who showed a reliable difference between the “easy” and “hard” conditions when the analysis was based on the electrodes and time points
indicated by mass univariate analysis. Black bars indicate participants who showed a reliable difference between the “easy” and “hard” conditions when the analysis
was based on the peak in the grand averaged waveform.

to steering demands. These two aspects are related. To begin, it
can be argued that the larger novelty-P3 and RON amplitudes
(see gray areas in Figure 3) indicate that environmental sounds
recruit more corresponding mental resources than the beep
sounds (Kok, 1990, 1997). This difference is apparent in the
baseline viewing condition during which the participants’ mental
resources were unoccupied and readily available. Involuntary

resource recruitment is attenuated when participants are
required to perform a steering task (i.e., in the steering trials),
but only for the novelty-P3 and the RON of the environmental
distractors (see Figure 5). This is because the steering task
reduced the amount of available resources to a lower level
than task-irrelevant environmental distractors would typically
recruit. In view of this, we believe that our use of task-irrelevant
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environmental distractors is a more direct assessment of the
resource demands of the steering task, when compared to
dual-task paradigms that increase the resource demands of
task-relevant stimuli that actively compete for resources with
the steering task (Wickens et al., 1983, 1984; Sirevaag et al.,
1989).

What are the properties of environmental sounds that allow
them to recruit more mental resources and hence, generate
larger ERPs even when they are task-irrelevant? Previous
work suggests that distractor stimuli tend to recruit more
resources if they are personally meaningful and/or exhibit
high dissimilarity from their context. The personal meaning
and dissimilarity from the context are respectively referred
to as being stimuli specific and aspecific (Eimer et al., 1996;
Hughes, 2014). Specific aspects are parameters that are inherent
to the stimulus, which represent its meaning to the observer
(Hughes, 2014). For example, one’s personal ringtone is more
distracting, as reflected by larger elicited ERPs, than another
person’s ringtone (Roye et al., 2007). In the current study,
the environmental distractors represented familiar objects (e.g.,
dogs, cats, babies), which have more personal meaning than
the beep-tone distractors. Thus, they can be expected to recruit
more resources. Aspecific aspects of the eliciting stimulus
recruit resources involuntarily due to its embedded presentation
context. For example, a task-irrelevant female voice has been
shown to be less distracting, as reflected by a decrease of
performance in a visual recall task, when presented in a series
of female voices than when presented in a series of male voices
(Hughes et al., 2013). In the current experiment, we presented
the environmental sounds as well as the beep sounds against
a context of frequent beep tones. Arguably, environmental
sounds that are a complex combination of multiple frequencies
are more dissimilar to this context than their beep tone
counterparts. This raised the likelihood that the environmental
sounds would recruit more resources than their beep tone
counterpart.

To sum up, task-irrelevant stimuli are more likely to be
sensitive to task demands if they are personally meaningful
and differ sufficiently from their embedded context. Some
studies have been reported that have been successful in using
task-irrelevant beep tones to evaluate task demands. However,
these studies investigated complex tasks—that is, first person
shooter (Allison and Polich, 2008) and racing games (Burns
and Fairclough, 2015)—that, presumably, induced higher task
engagement and varied in their resource demands at levels that
beep tones were sensitive to. We expect the ERPs of task-
irrelevant environmental sounds to be even more sensitive than
beep tones to the resource demands of such complex tasks.

Influence of Steering Demands on the
Measured ERP Components
The current study is the first to employ task-irrelevant ERP
probes in a task that allows for the systematic manipulation
of different steering demands. Such task-irrelevant probes,
in particular environmental sounds, continue to elicit ERPs
with components that we have identified to be selectively

diminished by steering demands: early P3, late P3 and RON (see
Figures 3, 5). As noted before, these components correspond
to the mid and late stages of a three-stage distraction model
(Schröger and Wolff, 1998; Escera and Corral, 2007; Wetzel and
Schröger, 2014). From the perspective of this model, steering
demands did not inhibit our participants’ capacity for detecting
unexpected occurrences. Instead, steering demands significantly
diminished the extent to which available mental resources
could be directed towards the processing of distractor stimuli.
In turn, this hinders an efficient re-orientation away from
the distractor stimuli. Altogether, these findings demonstrate
that steering places demands on mental resources that would
otherwise be directed towards an instinctive evaluation of
unexpected events. These resources are based on attentional
processes, but at a cognitive rather than a perceptual level.
It is interesting to note that our participants were able
to articulate this in that they rated the ‘‘hard’’ condition
as being more demanding than the ‘‘easy’’ condition in
terms of mental rather than physical effort (see Figure 2).
This supports our research motivation in understanding the
demands of a steering task beyond its perceptual and response
requirements.

The ability to maintain an appropriate level for ‘‘distraction’’
is a fundamental capability of our attentional system and
a critical aspect of effective vehicle handling. On the one
hand, the capacity to be distracted by unexpected events is
necessary when these events reflect potential dangers in the
environment. For example, the phenomenon of ‘‘attentional
tunneling’’ refers to scenarios when high-performance pilots
miss unexpected hazards given their increased engagement
with vehicle handling. Such undesirable instances have even
been observed in novel cockpit environments that are designed
to promote engagement with vehicle handling, for example
when synthetic vision displays with intuitive flight guidance
were employed for fixed-wing control (Wickens and Alexander,
2009). On the other hand, distraction presents a danger
when it interrupts and prevents one to carry out a safety-
critical task. In the United States, driver distraction raises
the risk of a light-vehicle near-crash/crash to approximately
three times of the baseline level (Klauer et al., 2006; Regan
et al., 2011). Task-irrelevant or task-relevant probes can
be judiciously employed in steering environments depending
on whether the goal is to investigate either involuntary or
voluntary distraction. A perspective that considers steering
environments in terms of the driver’s engagement with the
steering task and potential distractions (both voluntary and
involuntary) is more likely to yield practical insights and
operational recommendations than one that simply evaluates
driving workload.

In this study, we show that both, early and late P3
components, were influenced by steering demands. These
components are discriminable from each other in terms of their
spatial and temporal characteristics. Functionally, the early P3
reflects a sensitivity towards violations of one’s model of the
environment at a post-sensory stage (Ceponiene et al., 2004).
The late P3 relates to the attending of the unexpected event
itself, presumably for the purpose of updating one’s model
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of the environment when deemed necessary (Escera et al.,
1998; Yago et al., 2003; SanMiguel et al., 2008). Earlier studies
have provided mixed evidence on the relationship of workload
and these components. Difficulty manipulations in a complex
Tetrisr gaming environment have been found to only diminish
early P3 amplitude (Dyke et al., 2015), while other studies, in
particular those that target memory load, identified the late P3
as the only P3 sub-component that is influenced by workload
(Escera et al., 1998; SanMiguel et al., 2008). Until the subtle
interactions between workload and these P3 sub-components
are better understood, we recommend employing approaches
such as mass univariate analyses to determine the role of either
sub-components in new task paradigms (e.g., steering), so as to
reduce the risk of false positives.

Characterizing the relevant sub-components in terms of
their spatial and temporal distributions provides an additional
benefit. It allowed us to discriminate between manipulations
of steering demands that would not be noticeable by only
analyzing the peak, given inter- and intra-individual differences
(cf., Munka and Berti, 2006; Miller et al., 2011; Dyke et al.,
2015). In the current work, we show that more participants
discriminated for the ‘‘easy’’ and ‘‘hard’’ steering trials compared
to when the analysis was based on the highest peak in the grand
average (see Figure 7). Mass univariate analysis also offers an
additional benefit in that it more accurately defines the spatial
location of the effect of interest. In the case of late P3, we
find that the electrodes that are sensitive to steering demands
have a more parietal distribution than the peak amplitude
electrode. This agrees with the work of Yago et al. (2003) who
also defined a discriminable parietal aspect of late P3 that is
claimed to be involved with working memory updating and is
believed to originate from the posterior and superior parietal
lobes.

Besides early and late P3, we found that steering demands
significantly decreased RON amplitude. RON is believed to
reflect the re-orientation of attention from the distractor
stimulus (Schröger and Wolff, 1998; Escera and Corral, 2007;
Wetzel and Schröger, 2014). In this sense, it can be regarded
as a disengagement of resources from processing distractor
stimuli. Our results are comparable to those reported by
Berti and Schröger (2003) who also found that increasing
workload in the primary forced-choice task reduced RON
amplitudes to a distracting task-irrelevant feature. In their
experiment, participants were required to discriminate between
sounds with ‘‘short’’ and ‘‘long’’ durations. Infrequent changes
in the task-irrelevant pitch of the sounds produced RONs
with an approximate latency of 500 ms. In their experiment,
workload was manipulated either by allowing participants
to respond immediately or by requiring them to respond
upon the presentation of the next stimuli. The latter was
considered to be more difficult as it involved a stimulus-
response conflict. The amplitude of RON was found to be
diminished in the difficult condition. Our current results
indicate that a similar RON component can be diminished by
increased task demands, even when the task is presented in
a separate modality from the distractor. One reason for this
could be that fewer resources were available to begin with,

that could be effectively engaged by the distractor stimuli.
Another reason could be that mental resources are more likely
to be engaged with processing distractor stimuli for longer
periods of time when sub-optimal levels of resources are
allocated for their processing. In this case, the disengagement
from the distractor stimuli could be expected to be less
efficient. Whichever the reason, it is important to realize
that RON reflects resource (re-)allocation processes at a post-
sensory stage and that its amplitude does not simply decrease
with increased workload. In fact, RON amplitudes have been
found to be larger for the 1-back working memory task
than its 0-back counterpart (SanMiguel et al., 2008). In this
example, the 1-back task required participants to reference
information of the primary task from recent history and
larger RONs could have reflected a disengagement of resources
from the distractor stimulus in addition to the re-allocation
of resources to task-relevant information. We believe that
our manipulation of steering demands resulted in decreased
RON amplitudes because it only reflected the disengagement
of resources from task-irrelevant distractor stimuli. If this is
true, a dual-task paradigm that entails resource competition
between a steering task and a task-relevant probe should
result in larger RON amplitudes when steering demands are
increased.

The Steering Demands of Manipulating
Disturbance and Control Dynamics
In the current study, we manipulated two aspects of steering
that are known to influence steering demands—that is,
disturbance bandwidth and control dynamics complexity. Both
manipulations of steering difficulty had an influence on
the identified ERP components in the expected direction
(Figures 6, 7). Comparatively, this influence was evident in
more participants when the complexity of control dynamics was
manipulated. This result is in agreement with previous work that
has shown a greater sensitivity of secondary task ERPs to the
manipulation of control dynamics in the primary task (Isreal
et al., 1980; Wickens et al., 1983, 1984; Sirevaag et al., 1989).

While encouraging, these results should be treated with
caution. Our analyses reveal that our manipulations for steering
demands do not influence the identified ERP components in
all of our participants. In fact, some participants responded
to steering demands only in the ‘‘easy’’ but not the ‘‘hard’’
condition, albeit to a lesser extent than vice versa (Figure 6). We
believe that this reflects two aspects of inter-participant variance
that are difficult to control for with the use of task-irrelevant
ERP probes. First, the amount of resources that are involuntarily
recruited for the processing of task-irrelevant probes. Second,
steering competence and engagement with the steering
task.

Participants can be expected to differ in terms of how
meaningful they perceive different environmental sounds. Such
differences could vary the extent to which these task-irrelevant
distractors attract resources for their processing. If ‘‘insufficient’’
resources are recruited, changes in the level of available resources
due to manipulations in steering demands can be expected to
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go undetected. To mediate this, future studies could consider
employing environmental distractors that are not as easily
recognizable. It has been shown that larger frontal and parietal
novelty-P3s are elicited by environment sounds that are not
as easily recognizable, compared to their more recognizable
counterparts (Opitz et al., 1999). Moreover, it has been shown
that the novelty-P3’s amplitude decreases with the repetition of
familiar sounds but not unfamiliar sounds, presumably because
participants are more effective in ignoring them (Cycowicz and
Friedman, 1998, 2007).

Participants can be expected to vary in terms of steering
proficiency. Therefore, some participants may only start to
exhibit reduced levels of available resources under highly
demanding scenarios. In fact, this is reflected in our results (see
Figure 6). The current experiment employed fixed levels of
steering difficulty. Subsequent studies could calibrate levels
of steering difficulty for individual participants so that their
performance discriminates sufficiently between ‘‘easy’’ and
‘‘hard’’ conditions. This would be similar to the use of adaptive
methods in psychophysics to calibrate stimuli settings to
individual differences in perception (Kingdom and Prins, 2010).

In spite of these limitations, our current findings are
consistent with previous findings. The ERP components, which
we have identified as being sensitive to steering demands, are
more likely to differentiate for ‘‘easy’’ and ‘‘hard’’ conditions
when disturbance bandwidth was manipulated than when
control dynamics complexity was manipulated (cf., Isreal et al.,
1980). This difference between the two manipulations is more
prominent for early P3 and RON than it is for late P3. This
suggests that increasing the complexity of the control dynamics
limits how resources are directed towards and away from
distractor stimuli.

Conclusion and Outlook
To conclude, we have shown that the demands of a steering
task influence how the brain responds to task-irrelevant stimuli.
Specifically, steering demands diminish the amplitudes of the
early P3, late P3, and RON that are elicited by task-irrelevant
auditory distractors, which are personally meaningful and
distinct from the background. A three-stage distraction model
would suggest that steering demands decreases one’s sensitivity
and likelihood to attend to unexpected events (early/late P3),
as well as one’s capacity to re-orient back to the steering task
at hand (RON). In particular, we found this to be true for
steering manipulations that increased the complexity of control
dynamics.

The three-stage model of distraction, and its associated
ERP components, is a simplification. It assumes a serial chain
of information processing of the distractor stimulus and is
agnostic to how the stages could be selectively influenced
by factors that do not pertain to the distractor stimulus
itself. Thus, its explanatory power is limited. Our finding,
that environment sound distractors are more ‘‘distracting’’
than deviant beep tones (and result in larger MMN, P3a,
and RON), is in line with the predictions of the three-stage
distraction model. However, the three-stage distraction model

does not explain why steering demands selectively influence
P3a and RON amplitudes but not MMN. In fact, there
is accumulating evidence to suggest that dissociations exist
between the three stages of distraction. Factors such as the
predictability of the distractor, which is not dependent on
the distractor per se but on the homogeneity of the sequence
of stimuli that precedes it, can influence MMN and P3a
but not RON (Horváth et al., 2008). Converse dissociations
have been reported whereby increasing the predictability of
an auditory distractor with a visual cue can decrease P3a
and RON amplitudes but leave MMN intact (e.g., Sussman
et al., 2003). Hence, more complex accounts have since been
proposed that not only consider how distractor stimuli are
processed but also how their processing might interact with
the perceived regularity of the auditory scene (for example,
see Bendixen, 2014). For now, it is sufficient to note that
the demands of a steering task are reflected in how it
modulates the distractibility of task-irrelevant environment
sounds, as reflected in the early/late P3 and RON that they
elicit. Besides electrophysiological responses, future experiments
should be designed to investigate the behavioral consequences
of distraction on steering performance (c.f., Parmentier, 2014).
This could elucidate differences between distractor stimuli that
passively reflect steering engagement and those that pose an
involuntary conflict with the cognitive processes that underlie
steering itself.

Task-irrelevant stimuli can be expected to be more easily
integrated into real-world operations than the use of ERP probes
that require an explicit response. In this regard, our current
findings raise the opportunity of estimating steering demands
across a wider range of scenarios than was previously considered
to be practical. Furthermore, the use of task-irrelevant and task-
relevant distractor stimuli can reveal complementary aspects
of how mental resources are managed during steering. In this
regard, they can be effectively employed to understand the
demands of steering and users’ level of engagement with the
steering task and their environment.
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Brain-Computer Interfaces (BCIs) and neuroergonomics research have high

requirements regarding robustness and mobility. Additionally, fast applicability and

customization are desired. Functional Near-Infrared Spectroscopy (fNIRS) is an

increasingly established technology with a potential to satisfy these conditions. EEG

acquisition technology, currently one of the main modalities used for mobile brain activity

assessment, is widely spread and open for access and thus easily customizable. fNIRS

technology on the other hand has either to be bought as a predefined commercial

solution or developed from scratch using published literature. To help reducing time and

effort of future custom designs for research purposes, we present our approach toward

an open source multichannel stand-alone fNIRS instrument for mobile NIRS-based

neuroimaging, neuroergonomics and BCI/BMI applications. The instrument is low-cost,

miniaturized, wireless and modular and openly documented on www.opennirs.org.

It provides features such as scalable channel number, configurable regulated light

intensities, programmable gain and lock-in amplification. In this paper, the system

concept, hardware, software and mechanical implementation of the lightweight

stand-alone instrument are presented and the evaluation and verification results of the

instrument’s hardware and physiological fNIRS functionality are described. Its capability

to measure brain activity is demonstrated by qualitative signal assessments and a

quantitative mental arithmetic based BCI study with 12 subjects.

Keywords: open source, functional near-infrared spectroscopy (fNIRS), brain computer interface (BCI), modularity,

wearable devices, neuroergonomics

1. INTRODUCTION

Functional Near-Infrared Spectroscopy (fNIRS) is an increasingly established technology pioneered
by Jöbsis (1977) that allows non-invasive, comparatively low-cost, compact and hazard-free
continuous measurement of cerebral oxygenation levels using near-infrared light.

While first generation instruments were rather bulky and expensive, using Laser Diodes
with Photo Multiplier Tubes (PMTs) (Cope and Delpy, 1988; Cope, 1991; Rolfe, 2000;
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Schmidt et al., 2000) and later Avalanche Photo Diodes
(APDs) (Boas et al., 2001; Coyle et al., 2004, 2007), today’s
devices often take advantage of Light Emitting Diodes (LED)
and Photo Diodes (PDs) (Vaithianathan et al., 2004; Bunce
et al., 2006; Chenier and Sawan, 2007; Ayaz et al., 2013;
Safaie et al., 2013; Piper et al., 2014) which allow safe, more
compact and mobile applications. After the initial development
of laboratory and bedside-monitoring devices for monitoring
of local oxygenation levels e.g., in newborn infants (Cope
and Delpy, 1988; Cope, 1991), in the 2000s many research
groups focused on the design of imaging instruments for
brain activitymapping from topographic information [functional
Near-Infrared Imaging (fNIRI)] (Schmidt et al., 2000; Boas
et al., 2001; Vaithianathan et al., 2004). Recently, fNIRS and
fNIRI have entered neuroscience as a reliable and trustworthy
research tool for research based on investigating groups
of subjects (Scholkmann et al., 2014), offering potentially
complementary information to fMRI, PET and EEG (e.g.,
oxygenation information or cytochrome oxidase as marker
of metabolic demands; Strangman et al., 2002). But also in
adjacent fields such as Brain Computer Interfaces (BCI) and
neuroergonomics, defined as the study of the human brain in
relation to performance at work, (Parasuraman, 2003, 2011),
fNIRS technology opens new possibilities (see e.g., Matthews
et al., 2008, for an introduction in hemodynamics for Brain-
Computer Interfaces). It is increasingly built for and used in
single-trial fNIRS applications for BCIs for control (Naseer and
Hong, 2013; Schudlo and Chau, 2015) and rehabilitation (Kanoh
et al., 2009; Yanagisawa et al., 2010) and has successfully been
used for cognitive workload assessment (Son and Yazici, 2006;
Ayaz et al., 2012), brain dynamics monitoring during working
memory training and expertise development (Ayaz et al., 2013),
hybrid NIRS-EEG based signal processing tasks (Safaie et al.,
2013; Putze et al., 2014) and recently also in combination
with trans-cranial direct current stimulation (tDCS; McKendrick
et al., 2015). Furthermore, fNIRS is found to be a promising
multimodal expansion to EEG-based BCI (Pfurtscheller et al.,
2010; Biessmann et al., 2011; Fazli et al., 2012). The major
limitation of fNIRS is the relatively slow onset of hemodynamic
processes. However, especially in the field of passive BCI (Zander
and Kothe, 2011), reaction times do not necessarily have to be
extremely fast.

An increasing number of approaches using fNIRS in the
field of mobile brain imaging (e.g., Piper et al., 2014) and
neuroergonomics (Fairclough, 2009) shows the demand for
wireless, miniaturized and customizable fNIRS technology.
So far, researchers either relied on costly and mainly static
commercial devices, or designed their own fNIRS equipment
from scratch. Trying to overcome the restrictions of commercial
tabletop instruments, the latter was done by groups such as
Ayaz et al. (2013), Safaie et al. (2013), Lareau et al. (2011) and
Atsumori et al. (2007), using LEDs with Si PDs/APDs for new
generation instruments that generally enable a mobile use. To
the best of our knowledge however, only very few of even newer
generation devices (Safaie et al., 2013) are truly miniaturized,
stand-alone, unobtrusive and mobile and can be carried on the
body without a backpack while still enabling free movement

and data transmission/processing at the same time, as often
external static instrumentation such as DAQ-equipment, lock-in
amplifiers and power sources are required. Also, in many cases,
signal extraction technologies like lock-in amplification seem to
be sacrificed for the sake of miniaturization or complexity. Probe
and attachment designs proposed in the last years, such as the use
of flexible PCBs (Vaithianathan et al., 2004; Bozkurt et al., 2005;
Bunce et al., 2006; Son and Yazici, 2006; Rajkumar et al., 2012),
eeg-cap like optodes (Kiguchi et al., 2012; Piper et al., 2014) and
mechanical mounting structures (Coyle et al., 2007) are usually
limited to static applications and/or in case of flexible PCB to
a fixation on the forehead due to obstruction by hair. An often
reported issue in the field of mobile applications, that seems not
to be resolved satisfactorily so far, is the optode attachment to
the head for both stable optical contact, sufficient light levels and
comfortable wearing.

While the recent trend of new system designs for portability
and mobility can also increasingly be observed in commercial
devices, researchers will always need custom solutions for
innovative approaches. To help reducing the time and effort
in these cases, we present the design and a first evaluation of
a configurable, miniaturized, modular, fully mobile (wireless)
multichannel fNIRS system that is provided open source on
www.opennirs.org under a CC BY-NC 4.0 license with a detailed
documentation. It is a customizable low-cost research tool that
enables both stand-alone use and the combination with custom
or external DAQ equipment. Also, the device makes use of a
new detailed spring-loaded optode fixation concept to tackle the
above mentioned optode attachment issue.

2. MATERIALS AND METHODS

2.1. Instrument Requirements
We identified aspects that are crucial to be fulfilled for a fNIRS
device in the context of mobile BCI and neuroergonomics.
Besides the criterion for the hardware to be comparatively low
cost, these can be assigned to four groups:

• Usability: Miniaturization and mobility of the device,
unobtrusiveness and robustness of the optode attachment.

• Signal Quality: Low inter channel crosstalk, low drifts
of light sources and overall system signals, high signal
sensitivity/amplifier precision, robustness to background light
and high dynamic range.

• Safety: Low heat development, harmless light intensities and
galvanic isolation to power lines.

• Configuration/Customization: Scalability of channel
number, modularity, configuration of light intensities and
receiver gain, interface to custom hard-/software.

The following subsections will provide detailed information on
our approach to fulfill these requirements on a concept, hardware
and software level.

2.2. Instrumentation Design
2.2.1. System Concept
The system concept of the modular open instrument is shown
in Figure 1. It consists of one or more stand alone 4-channel
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FIGURE 1 | System Concept.

Continuous Wave NIRS modules and a mainboard. Each
module is controlled by the mainboard via a simple parallel
4 Bit control interface. The mainboard provides the power
supply rails, AD-conversion of the NIRS signals and an UART
communication interface and can be replaced by any custom
data acquisition (DAQ-) equipment when the control interface
and symmetric ±5 V power rail are supplied. This enables

full customization of the instrument with respect to physical
channel number, power consumption and conversion rate and
depth, while spatially distributing the hardware components (and
weight), and performing local hardware signal amplification and
processing, thus minimizing noise and interferences.

The fNIRS modules were designed considering the current
understanding of fNIRS instrumentation technology as reviewed
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by Scholkmann et al. (2014) and others (Obrig and Villringer,
2003; Son and Yazici, 2006) with special regard to hardware
design and wavelength-selection for SNRmaximization/crosstalk
minimization and considering potential hazards as identified by
Bozkurt and Onaral (2004).

Each module provides four dual wavelength fNIRS channels
using 750 and 850 nm multi-wavelength Epitex L750/850-04A
LEDs. While the LEDs have a broader emission spectrum (1λ =

30/35 nm) than sharp peaked laser diodes (typically 1λ ≈ 1 nm),
their incoherent and uncollimated light allows for a higher tissue
interrogation intensity and direct contact with the scalp due to
less heating and is safer with the human eyes.

The LED current is regulated by adjustable current regulator
circuits based on high precision amplifiers (Analog Devices
AD824A) and field effect transistors (FMB2222A). Channel
activation and current modulation for lock-in amplification is
performed by analog switches (Analog Devices ADG711) that
are accessed via an analog 1:8 demultiplexer (NXP HEF4051).
After tissue interrogation, NIR light is detected by a central
Si photo detector with integrated trans-impedance amplifier
for output noise minimization (Texas Instruments OPT101, 1
M� feedback resistor, bandwidth 14 kHz) and is then amplified
and lock-in demodulated (using Analog Devices AD630). An
8 Bit Atmel Corp. AtMega16A microcontroller’s PWM module
creates the 3.125 kHz square wave reference for lock-in (de-
)modulation using an external 20 MHz crystal for jitter
minimization. It also processes incoming control signals from
the 4 Bit control interface and operates and configures the
on board hardware. For adjustment of the LED currents, an
8 Bit digital-to-analog converter (DAC; Maxim MAX5480) is
implemented. It supplies the voltage level at the current regulator
inputs that is the command variable for the current regulation
level. A programmable gain amplifier (Texas Instruments
PGA281) is implemented for pre lock-in amplification of the
detected NIR signal with a variable gain from G = 0.688
to 88.

During lock-in demodulation, the signal is filtered by a 3rd-
order Butterworth low-pass and is then again amplified (G =

5.1) and stabilized by a set of two high precision amplifiers
(Texas Instruments LMC6062) before leaving the fNIRS module
for external AD conversion.

The system is designed for Time-Division Multiplexing
(TDM) of the fNIRS channels. This is a trade-off between
minimizing inter-channel crosstalk, heating (Bozkurt and
Onaral, 2004) and battery consumption on the one hand and
sacrificing SNR, which is limited by the width of the applied time
windows. For demultiplexing of the locked-in output branches, a
variable (sample rate dependent) dwell time is inserted after each
onset of a single channel activation before sampling the steady
state photo detector signal on the mainboard or with custom
DAQ equipment.

Configurable PGA gain (G = 0.6875–88) and LED-
intensity (256 DAC levels) in combination with a feedback
“signal monitor” line allow the signal dependent adaption
for maximum amplification in the lock-in demodulation
process without reaching the dynamic range limit of one of the
components.

Modularity: The above described design of the fNIRS modules
allows operation in many configurations—only requiring
compatibility with the above mentioned interface consisting of 4
Bit control, power supply and analog output. For an extension of
the total channel count, several modules can be used. Changes
in set-up and module count only affect the control unit and its
routines chosen by the user, which activate the time division
multiplexed channels and convert the analog fNIRS signals from
the modules:

• As the objective of this work was the design of miniaturized
fNIRS modules for mobile applications, a microcontroller
(Atmel AtMega644) based mainboard was developed for
mobile data acquisition andmodule control. Using a 4 channel
16 Bit analog-to-digital converter (ADC; Linear Technologies
LTC2486) and a Bluetooth wireless controller (Amber Wireless
AMB2300), the mainboard acquires the fNIRS signal(s) from
up to 4 modules (16 channels), transmits the data to a
computer via serial protocol and processes incoming user
controls. To scale the number of channels, the user connects
the desired number of modules and configures the channel
administrator routine on the mainboard’s microcontroller
(see also Section 2.2.3). The symmetric ±5 V power rail
is created from battery DC voltage using a stabilized linear
power regulator circuit (based on ON Semiconductor MC7805
and MC7905 ICs). Running on batteries and using only low
voltages also ensures user safety.

• The mainboard is a placeholder for any (custom) peripheral
acquisition and control hardware. With DAQ-devices
providing digital I/Os and an external power supply, any
number of modules (limited by the desired dwell time
and sampling rate) can be used and controlled by control-
and acquisition routines written and customized by the
user.

2.2.2. Selection of Hardware Design Aspects
Emitter Branch: For a high accuracy of the fNIRS instrument,
a careful design of the NIR-light emitting circuit is crucial, as
fluctuations in the radiation intensity cannot be discriminated
from changes in absorption due to changes in chromophore
concentrations in the tissue.

To keep the current through the LED semiconductor
junctions constant and independent from variations in supply
voltage and temperature, and at the same time allow intensity
adjustment and current modulation for the lock-in amplification
process, a customized current regulator circuit was designed (see
Figure 2).

Similar to a solution proposed by Chenier and Sawan (2007),
an analog switch is used in the OpAmp based regulation
circuit for square-wave modulation of the current. However,
instead of disrupting the regulation process at the transistor
base, analog switches (ADG711) are used at the inputs of
the regulator circuits to pull the regulator inputs low when
deactivated. fNIRS channel activation and modulation is thus
realized by simply feeding through the square wave reference
to the corresponding current regulator switch selected by the
multiplexer.
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FIGURE 2 | Current regulator/modulator circuit.

As the regulator is modulated in the kHz-range, over- and
undershoots influence the ideally square-wave shape of the
current. To optimize the shape, a passive negative RC feedback
was added and evaluated for best performance.

Receiver Branch: The receiver branch was designed to maximize
SNR by minimizing noise influences from shot, thermal and 1/f
noise, dark currents and stray light from external light sources.

Shot noise is based on the quantum nature of the photons
and therefore unavoidable and, for detectors without internal
amplification, proportional to the square root of the average
incident intensity (Scholkmann et al., 2014). To maximize
SNR, the instrument is operated using the maximum NIR-light
intensity level for the current regulators that is feasible in the
experimental situation. Opaque cell rubber tubes are used to
cover the sides of the NIR emitters and detector and the fNIRS
module housing is covered with opaque paint to minimize shot
noise influences from background radiation.

To reduce thermal noise influences, a Si photo diode with
integrated trans-impedance amplifier circuitry (OPT101) was
selected for detection. Lock-in extraction of the detected signal
further reduces stray light, dark current and 1/f noise influences.
Placing the PGA between the detection and lock-in extraction
unit enables maximum pre-amplification of the signal while
amplifier noise components added in the amplification process
are reduced by the subsequent lock-in demodulation. Non-
physiological high frequency components of the signal are
attenuated by the 3rd order low pass filter of the lock-in
demodulation unit.

2.2.3. Interfaces and Software Design
Figure 3 shows the software concept. The fNIRSmodule software
sets up hardware components (PGA, DAC, MUX,...) and is
controlled by an interrupt-based architecture that receives its
control signals from the 4 Bit parallel interface. Therefore,
interface operation and analog signal conversion can be done
by the mainboard or any custom or standard DAQ-equipment
with 4Bit programmable digital outputs (such as e.g., NI USB600x
series). Using the mainboard, a channel administration routine
both supervises data acquisition and acts as interface between
the fNIRS modules and the PC by processing received user

FIGURE 3 | Software and Interface Concept. Stand alone fNIRS module

operated via parallel control interface by the mainboard or any custom control

and data acquisition device. Function of the 4 Bit interface (3:RST, 2:TRIG,

1:CH1, 0:CH0): Bits CH1:CH0 select one of the four physical NIRS channels.

A rising edge on the TRIG line activates the selected channel, always

beginning with wavelength 750 nm of the corresponding LED. Each

subsequent rising edge toggles the activation between 750 and 850 nm.

When the RST line is pulled up, all channels are turned off. The next rising

edge on the TRIG line starts the process again, beginning with 750 nm.

commands (configuration, start, stop...), translating them into
signals for the 4 Bit fNIRS module interface(s) and sending
acquired data packages via the UART interface. On the PC’s
operating system side, the user can control the instrument and
directly read out the data packages in ASCII CSV format via a
simple serial port command console or access the serial port with
any software such as LabView or Matlab. A LabView graphical
user interface was developed for easy configuration and control
as well as display and logging of raw and modified Beer-Lambert
Law data.

2.2.4. Mechanical and Probe Design
In the fNIRS instrument’s mechanical design, the idea of
modularity/scalability and robust fixation is continued by
providing independent custom 3D printed solutions for the
single fNIRS modules and the mainboard:

The Mainboard, Bluetooth module and batteries are worn on
the upper arm of a subject in a chainedmultiple-unit housing (see
also Figure 5, in the next section).

For the single fNIRS modules, a new mechanical spring-
loaded design was approached to optimize signal quality,
sensitivity and light penetration depth together with easy and
robust, adaptive fixation of the optodes (see Figure 4). Based on
a spherical approximation of the head with diameter D = 20 cm,
the central NIR light detector and the four NIR LEDs are placed
perpendicular to the scalp with a source-detector distance of d =
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FIGURE 4 | Mechanical spring-loaded concept: Spherical head approximation (top left), geometric channel arrangement (red: NIR LEDs, black: photo detector,

blue: measurement points of highest sensitivity; top right), spring-loaded mechanical design illustrated on one LED-holder (bottom). Spring S1 for alignment and

buffering, spring S2 and rotatory joint R for perpendicular alignment.

35 mm. To enable perpendicular fixation of the emitters/detector
and at the same time allow alignment to the natural unevenness
of the head and its deviations from the spherical approximation,
the NIR light LEDs are not stiffly connected to the module
body housing but integrated in movable spring-loaded LED
holders. These holders are based on two nested tubes that are
spring-loaded against each other (S1) and against the module
housing (S2) and are able to rotate around an axis (R): Spring
S1 presses the LED toward the surface of the head, thus enabling
alignment and preventing the loss of contact during movements.
Spring S2 and the rotary joint R keep the LED perpendicular
to the surface while enabling small deviations for comfort and
alignment.

To minimize stray light influences and for cushioning
purposes, the detector and emitters are encased by an opaque cell
rubber tubing. To fixate a single module to the head, a flexible
ribbon with hook-and-loop fastener can be used that is sewed to
the module housing.

The mechanical concept was designed to allow the modules to
be used on the forehead as well as over haired regions of the head:

The single spring-loaded optodes are easily accessible due to their
modular fixation without a cap or other concealing elements.
This enables the user to manually brush aside obstructing hair
from under the optodes for better optical contact. Even though
we successfully conducted measurements over hairy regions of
the head, it has to be pointed out that the usability of the modules
on other regions than the forehead has not been proven under
controlled conditions so far.

2.3. System Evaluation
2.3.1. Hardware Analysis
To enable a differentiated characterization of the instrument’s
hardware according to functional units, evaluation and
analysis was split into emitter branch (current regulation and
modulation), receiver branch (lock-in module), power supply
stability and overall drift characteristics:

• Current regulator/modulator speed and current
shape/oscillation characteristics: To evaluate and optimize
the current regulator design characteristics for a stable and
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FIGURE 5 | Final System. (N): single 4 channel fNIRS module. Top right/bottom: Chained mainboard module. B, bluetooth module; BAT, batteries; R1/R2, Rotatory

joints; M, mainboard.

minimally oscillating but steep square wave shape of the
regulated current signal, both LTSpice simulations and
measurements were conducted and the regulator design
parameters iteratively improved using two high-precision
operational amplifiers (Analog Devices AD824A and Linear
Technologies LMC6064). To minimize transient oscillation
and settling times, a negative feedback decoupling capacitor C
was introduced to the regulator design. For the determination
of its optimal value, the shape of the regulated square wave
current signal was investigated in a range from C = 0 pF to
C = 330 pF at different current levels.

• Lock-in performance: The sum of propagation delays that
result from each hardware component in the emitter-detector-
signal path leads to an overall phase shift between input and
reference signal in the analog lock-in amplification process.
Such a phase shift results in an attenuation of the signal during
demodulation (Meade, 1982, 1983). To minimize this effect,
all hardware elements in the signal path were selected with

respect to high-speed/low delay times. The remaining overall
phase shift 18 = 1t

T · 2π between the reference signal
(with period T) and the detected pre-amplified signal was
measured before demodulation. Using the established straight
forward mathematical model for square wave reference lock-
in demodulation, as in Meade (1983), a phase shift dependent
attenuation factor

A = cos(18) (1)

was used to estimate the resulting attenuation.
For an estimation of the receiver sensitivity using the noise

equivalent power (NEP), dark voltage noise levels (no incident
light to the photo detector) were measured at the output of the
lock-in-module.

• System drifts: The following possible sources of system drift
were considered: Changes in the 1� LED current regulation
resistance due to temperature changes, changes in the total
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radiated power of the LEDs due to semiconductor junction
temperature and changes despite constant currents and supply
voltage variations. Changes in stray light, amplifier and
thermal resistor noise are strongly suppressed by the lock-in
amplification process. Tominimize signal drifts resulting from
changes in the 1� current regulator resistance, Panasonic
current sensing resistors with a low temperature coefficient of
resistance (TCR = ±50 · 10−6/◦C) were chosen.

The overall system drift of a single fNIRS module was
specified with 20min continuous acquisition windows of a
single active channel at maximum intensity (100mA) with the
PGA set to G = 44 and the module being placed at a fixed
position in an opaque closed box.

• Mainboard power supply stability: DC supply voltage drifts
during 20min signal acquisition periods and current
modulation impacts on the supply voltage were evaluated.
As the 100mA (max.) square wave 3.125 kHz modulation
can influence the power supply voltage stability and noise
it can degrade the performance of the signal detection and
amplification elements. Their output signals during active
modulation were acquired while zero optical input to the
photo detector was ensured by encasing the active LED with
an opaque metal box. For customization, the layout of the
fNIRS module allows both separate and common supply of
the LED currents and module hardware.

2.3.2. Physiological Verification
Simple qualitative experiments were conducted using a channel
at 10–20 point Fp1 to verify significant strength of physiological
information in the raw signal and its power spectrum. Amongst
others, visibility and strength of pulse artifacts are indicators
for the signal quality and have been widely documented in
fNIRS literature with the pulse artifact’s amplitude being in
the order of metabolic variations due to brain activity (Boas
et al., 2004; Lareau et al., 2011; Scholkmann et al., 2014).
Thus, with the fNIRS module pressed firmly against the head
to reduce the sensitivity to scalp signals (decreased blood flow
under the optodes), a clearly visible pulse artifact is a first
indicator for sufficient signal quality to measure brain activation.
The pulse rate was verified with conventional reference pulse
measurements.

For verification and quantification of the device’s capability
to measure metabolic brain activity, a mental arithmetic BCI
experiment was conducted with 12 subjects. In this experiment,
it is shown that the measured hemodynamic responses can be
classified on a single-trial basis, i.e., each trial can be classified as
containing mental arithmetic or relaxation, instead of measuring
only the difference in the average hemodynamic response.

Mental arithmetic tasks are known to illicit strong
hemodynamic reactions in frontal brain areas and have
been investigated in a variate of studies with fNIRS (Ang et al.,
2010; Herff et al., 2013; Bauernfeind et al., 2014). Here, 30 trials
of mental arithmetic data were recorded for each participant.
During each 10 s trial, participants were asked to repeatedly
subtract a number between 7 and 19 (excluding 10) from a
number between 501 and 999). Both numbers were presented
on a screen at a distance of roughly 50 cm. After each mental

arithmetic trial, participants were asked to relax for 25–30 s.
These pause intervals were indicated by a fixation cross on the
screen. A longer resting period of variable length was included
after 15 trials to allow participants to rest and drink. No data of
these extended resting periods were used in our analysis.

The open fNIRS device was placed on the forehead and fixated
around the head with the flexible ribbon with hook-and-loop
fastener sewed to its housing. It was placed such that both
active emitters were placed on the locations Fp1 and Fp2 of the
international 10–20-system. The light detector was placed onAFz
resulting in an emitter-detector distance of approximately 3.5 cm.

All subjects were informed prior to the experiment and gave
written consent.

The signal processing of the recorded data was performed
in a straight-forward and simple manner, since we focus on
the developed hardware in this paper. More advanced methods
have been shown to improve accuracies for classification in
neuroimaging (Calhoun et al., 2001; Blankertz et al., 2008;
Lemm et al., 2011; Heger et al., 2014). The raw optical densities
were transferred to concentration changes of oxygenated and
deoxygenated hemoglobin (HbO and HbR, respectively) using
the modified Beer-Lambert Law (Sassaroli and Fantini, 2004).
HbO and HbR values were then linearly detrended in windows
of 300 s. Low frequency noise was attenuated by subtracting a
moving average of the mean of 30 s prior and after every sample.
Finally the data was low-pass filtered using an elliptic IIR filter
with filter order 6 and a cut-off frequency of 0.5Hz to reduce
high-frequency systemic noise like pulse artifacts.

After preprocessing, trials were extracted based on the
experiment timings. For the pause blocks, we extracted the last
10 s of the 25–30 s pause intervals, to ensure that hemoglobin
levels have returned to baseline. For each mental arithmetic trial,
we extracted 10 s of data starting 5 s after stimulus presentation,
to ensure that the hemodynamic response has already developed.
Labels were assigned to the trials referring to either mental
arithmetics or pause data. For each trial, we extracted the slope of
a straight line fitted to the HbO and HbR data of each channel as
a feature. The line was fitted using linear regression with a least-
squares approach. Slope features have been shown to work well
in previous studies (Herff et al., 2014).

Evaluation was performed using a 10-fold cross-validation
and classification by Linear Discriminant Analysis. In addition
to the single trial analysis, the average hemodynamic response is
calculated by averaging over all mental arithmetics or all pause
trials.

3. RESULTS

The developed open modular multichannel fNIRS system (see
Figure 5) proved functionality, fast set up and easy application
in all testing conditions. Wearing the mainboard module on
the upper arm and the fNIRS module on the head using
flexible ribbons and hook-and-loop fastener, the user can move
freely and is bothered minimally by the instrument while signal
quality and robustness to movement showed promising results.
It should be noted however, that the physiological signals used
for evaluation results in this paper were acquired from sitting
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subjects to reduce possible error sources and thus allow a more
explicit first performance assessment of the new open source
hardware.

The final instrument is characterized by:

• Modularity, customization and stand-alone functionality.
• Optimized adjustable current regulation and modulation with

negative decoupling.
• A lock-in-based signal extraction module with programmable

amplification.
• A 4-channel spring-loaded mechanical concept for fNIRS

probe attachment to improve user comfort and robustness
against movement artifacts.

• A microcontroller and Bluetooth based mainboard as
interchangeable peripheral control, acquisition and
transmission hardware with a Bluetooth range of max.
20m (optimal open field conditions).

Low cost components were used for the design. The total cost of
the instrument’s hardware for one 4 channel fNIRS module and
one mainboard mainly depends on PCB fabrication costs and is
approximately 200EUR/250USD.

A full documentation including detailed descriptions,
schematics, and evaluation can be found in the supplementary
materials for this article/on the web: www.opennirs.org. In the
following, we present the main evaluation results of the steps
described in section 2.

3.1. Current Regulation/modulation Circuit
Mostly due to its higher slew rate, the AD824A showed a much
faster current regulation and lower transient oscillations than
the LMC6064. The experimental results for the minimization of
oscillation and settling times with different decoupling capacitor
values C (see Figure 6) showed higher settling oscillations for
low C at low current levels, higher transient oscillation for high
C at higher current levels and allowed the identification of the

optimalC:C = 100 pF showed the best tradeoff betweenminimal
oscillations and maximal edge steepness for all current levels.

3.2. System Drifts
The signal drift of a continuously active channel in Volts per
second was calculated using linear least squares regression on the
acquired 20min. raw signals, yielding a negative drift coefficient
of CD = −1 · 10−6 V/s (measured fNIRS signals typically—
dependent on the device configuration—being in the order
of several hundred mV) and a respective long term stability
coefficient of < −0.42% for both wavelengths. It was observed
that independent from the fNIRS module, power supply heating
on the peripheral hardware can add additional drifts of up to one
order of magnitude by effecting the analog-to-digital converter.
This points out the importance of careful selection/design of
peripheral hardware for the acquisition of the fNIRS module’s
analog signal.

3.3. Lock-in Amplification, SNR and
Dynamic Range
For an approximation of the total effective phase shift between
reference and demodulator input signal in the lock-in unit, the
delays between both signals were measured at the 50% levels of
both respective rising (tdr) and falling edges (tdf ). It is the sum of
times where the logical levels of both signals do not match and
was measured as 1t = tdr + tdf = 18.5 + 7.2 µs. To estimate
the attenuation caused by non-phase-synchronous demodulation
of the signal A, Equation (1) is used with the measured 1t and
reference signal cycle duration T = 320 µs, and yields A ≈

0.875, which does not affect the overall accuracy significantly.
Evaluation of the single component phase delays in the signal
path revealed that further minimization approaches should first
target the PGA (1tPGA = 7.0+ 4.5 µs).

For the evaluation of the detector’s sensitivity and dynamic
range, the mean dark voltage signal µd (no incident light on the

FIGURE 6 | Current regulator/moulator evaluation: 3.125 kHz PWM modulation reference (red) and regulated LED currents with different decoupling capacitor

values and DAC levels (blue: selected value for design).
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FIGURE 7 | Estimation of signal and noise in the instrument: With the NEPs identified to be 2.27/2.21 nWpp, the distance between these optical powers

equivalent to the noise floor of the detection circuit and the measured powers incident to the tissue (5.70 mW/5.38 mW) at medium LED illumination can be

determined to be approximately 128dB/127.7 dB, respectively. The degree of optical loss of the incident light in the tissue is subject dependent. Here, we estimate it

to be in the order of at least 40–60dB. With the actual metabolic fNIRS signal being in the order of 1% of the measured optical signal, the distance of the fNIRS

signals to the noise floor is approximately 28 dB.

photodetector) at the output of the lock-in amplifier and post
amplification branch was measured to be µd = 0.101 Vrms with
a standard deviation of σd = 3.99 mVrms at a typical PGA gain
of G = 44 and fixed lock-in filter gain of G = 5.1. Using the
mean dark voltage plus standard deviation and the responsivities
Rλ of the OPT101 photodiode (R750 = 0.55 V/µW and R850 =

0.60 V/µW), the Noise Equivalent Powers of the whole detector
branch for a SNR of one

NEPλ =
µd + σd

Rλ · Gtotal
(2)

were estimated to be NEP750 = 2.27 nWpp = 0.80 nWrms and
NEP850 = 2.21 nWpp= 0.78 nWrms.

The optical powers radiated by the LED at medium intensity
(IF = 50mA) were measured to be 5.70mW for 750 nm and
5.38mW for 850 nm. Using these incident powers and the
NEPs allows an estimation of the signal to noise distances (for
an overview see Figure 7): The wavelength dependent ratio of
incident light to light not longer detectable as its signal is
drowning in noise, yields signal to noise distances of 128 dB750
and 127.7 dB850. These distances are largely decreased by the
optical loss due to tissue scattering and absorption that is subject
dependent and assumed to be in the order of > 60 dB. With
the physiological fNIRS signal usually being around 1% of the
measured optical signal, the distance between the fNIRS signal
components and the noise floor of the detection circuit is
further decreased by ≈40 dB and estimated to be in the order
of 28 dB.

Saturation of the detection branch occurs, when the upper
input voltage limit of the ADC, here 2.5 Vpp, is reached for
the lowest PGA gain setting of G = 0.6875, which is the case
at 1.296/1.188 µWpp incident light (750 nm/850 nm). Using
these results, the minimum system dynamic range, expressed
as the ratio of signal saturation to the NEPs, is estimated
to be in the order of 55.13/54.6 dB. It should be stated,
that the configuration of the LED intensities (25–100mA)
on the emitter side can further increase the dynamic range

TABLE 1 | Performance characteristics of the fNIRS Module.

Parameter Value

OPT101 Dark noise voltage 300 µVrms @0.1–20 kHz

OPT101 Responsivity R750 ≈ 0.55 V/µW

R850 ≈ 0.60 V/µW

Noise equivalent power NEP750 ≈ 0.80 nWrms

NEP850 ≈ 0.78 nWrms

Power to tissue (at peak wavelength)

@ILED = 50mA P750 = 5.70 mW

P850 = 5.38 mW

@ILED = 100mA P750 = 11.10 mW

P850 = 10.30 mW

Est. signal to noise distance

@ILED = 50mA ≈ 28 dB

Eff. dynamic range > 55 dB

Signal drift < −1 · 10−6 V/s/ < −0.5%

Sampling rate Variable, dwell time dependent

of the instrument. Table 1 summarizes the performance
characteristics.

3.4. Mainboard Power Supply
The ±5 V DC supply voltage drift measurements showed a
stable supply voltage of +4.959 V and −4.960 V with less than
500 µV total drift in 20-min measurement periods. Evaluation
of the maximum impact of the current modulation on the
detecting components via the power supply revealed that current
modulation flanks can create a ±2 mV high-frequency(kHz)
noise around the photo detector output baseline signal that
is further amplified by the PGA to strong ±100 mV peaks
(at G = 44) when supplying the LED current either directly
from the battery or from the regulated +5 V rail for the other
fNIRS module hardware. However, as the supply variations
are synchronous with the signals and as high-frequency noise
is effectively suppressed by the 3rd-order lock-in low-pass of

Frontiers in Human Neuroscience | www.frontiersin.org November 2015 | Volume 9 | Article 617 | 238

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


von Lühmann et al. Open fNIRS

the fNIRS module, influences on the baseline of the lock-in
demodulated signal were not observed.

3.5. Physiological Measurements
Qualitative physiological experiments showed very clear signals
and proved the basic functionality of the instrument. Figure 8
shows a representative raw signal (750 nm) during three mental
arithmetics trials performed by a subject (a) and the power
spectrum computed over the whole session for the same subject
(b). The latter shows the typical power law appearance and peaks
by systemic artifacts that have widely been reported for fNIRS
signals in the literature (e.g., Fekete et al., 2011).

The average hemodynamic response (see Figure 9A) over all
subjects of the mental arithmetics experiment shows the expected
behavior, i.e., an increase in HbO peaking after approximately
10 s during mental arithmetics. During the average pause
interval, HbO levels still slowly return to baseline after the
preceding activation.

Discrimination between pause and mental arithmetics yielded
an average of 65.14% accuracy. Of the 12 recorded participants,
9 yielded accuracies significantly higher than chance level
(one-sided t-test, p < 0.05). Classification results for all
participants can be seen in Figure 9B). In a similar study by
Herff et al. (2013), mental arithmetics could be discriminated
from pause with 71.17% using 8 channels and 67.26% when
using only two channels at similar positions as in this
study.

4. DISCUSSION AND CONCLUSION

4.1. Key Findings
In the beginning of this paper, we identified system requirements
for mobile fNIRS based neuroergonomics/BCI applications. The
results indicate, that the presented open source device satisfies the
requirements.

FIGURE 8 | (A) Excerpt of typical raw signal (blue) during mental arithmetics. Green line: binary label (high states: m. arithmetics. low states: relax), magenta line:

median filtered signal). (B) Typical power spectrum of raw signal of the same subject and complete session, showing expected shape (power spectrum follows power

law) and deviations caused by systemic artifacts.

FIGURE 9 | (A) Average hemodynamic response over all subjects during mental arithmetics and pause. (B) Classification results for single-trial discrimination between

pause and mental arithmetics. Whiskers indicate standard errors. Solid line shows chance level.
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In the course of the experiments, both, experimentators
and subjects, appraised the usability of the device to be
high. Miniaturization of the modules and mobility through
Bluetooth based wireless transmission allowed free movement,
the use of commercial reference systems usually required
longer preparation times for optode fixation and was often
uncomfortable and static because of the weight of the optical
fiber guides and the lack of cushioning of the optodes. In
contrast, the new wearable system could be applied within several
seconds and was generally perceived less cumbersome during the
experiments.

The hardware evaluation results and physiological verification
of the designed miniaturized fNIRS instrument indicated a
sufficient signal quality and system performance for brain
activity measurements with an approximated signal to noise
distance of 28 dB. The lock-in amplifier, detector sensitivity,
current modulation precision and drift evaluation of the device
showed satisfying results comparable to other documented fNIRS
devices. The physiological measurements showed the expected
hemodynamic responses, classification accuracies in single-trial
analysis exceeded chance level for 9 out of 12 participants and
yielded results comparable to those measured with a commercial
device in a similar study (Herff et al., 2013) using 2 of 8
channels at similar positions (65.14 vs. 67.26%). The open
fNIRS device can thus be used for mobile fNIRS-based BCI and
neuroergonomics applications.

Battery supply and wireless communication, low heating due
to time multiplexing of the channels and the use of LEDs as light
sources assured a safe usage of the device.

The scalable modular concept, configurable light intensities
and detector amplification gains and the flexible parallel interface
of the fNIRSmodules allow easy customization and configuration
of the hardware.

However, there are still several elements in the design that can
be optimized to further improve instrument performance in the
future.

4.2. Limitations and Next Steps
4.2.1. Mainboard/Data Acquisition and Control
An obvious but crucial component for the use of the fNIRS
module is the data acquisition unit. When using custom
hardware for data acquisition, the design and selection of
the analog-to-digital converter (ADC) determine not only
quantization depth but also the frequency resolution of the
time division multiplexed fNIRS channels, as the ADC sampling
rate has to be shared by the up to 4 active channels of one
module. The ADC (LTC2486) first used on the mainboard
offered 16 Bit conversion depth and exceptional DC accuracy
but significantly limited time resolution due to a conversion time
of type 80.3ms. Additional experiments indicated that, using
ADCs with significantly higher sample rate but lower resolution,
down to 10 Bit quantization depth can suffice for reliable brain
activation measurements. Future designs of the mainboard/DAQ
hardware should therefore aim to use a better suited (faster) ADC
to prevent the sampling frequency bottleneck. Here, the modular
concept is advantageous, as the DAQ-unit can be customized
and optimized independent from the hardware of the fNIRS
modules.

Power supply and current modulation impact evaluation
showed, that even though the implemented linear-voltage-
regulator-based symmetric supply appeared to be sufficient,
several improvements can be suggested for use with the fNIRS
module:

To minimize crosstalk between the modulated NIR-LED
current and the regulated ±5 V supply voltage rail for
the detection hardware, supplying the LEDs with a separate
additional voltage regulator circuit is preferable over the use
of a common regulator or direct battery connection in the
design. Implementation of additional high-frequency filters
and enhanced stabilization are also recommended in future
approaches to reduce noise pickup from external sources and
further minimize LED current modulation influences on the rest
of the system. The use of voltage regulators with higher efficiency
can further enhance battery life and decrease heating effects,
which also can—dependent on the supplying and acquisition
hardware’s design and layout—influence system drifts.

4.2.2. fNIRS Module
The phase delay dependent attenuation of approximately 0.875
by the lock-in detector is acceptable as it does not significantly
decrease overall system accuracy. However, it can be further
minimized: To improve the lock-in performance, an analog
adjustment of the PWM reference phase could be implemented
for overall phase shift compensation. Alternatively, a potentially
superior approach for a next-generation design would be digital
lock-in demodulation based on a microcontroller/DSP. This
bears several advantages: reduced cost of hardware components,
reduced power consumption and an adjustable phase shift
correction and thus higher precision.

The four channel set up per module using four LEDs
and one photodiode was necessary for this first approach
using a single-channel analog lock-in receiver branch for a
simple interface in favor of modularity. However, to further
reduce energy consumption and increase channel density,
future approaches should utilize configurations with more
PDs measuring simultaneously. Additionally, although the
fNIRS module is already compact and provides stand-alone
functionality, further miniaturization is possible. A next step
will be the development of entirely stand-alone modules to
redundantize peripheral hardware such as the mainboard.
Integrating the above mentioned insights and data acquisition,
digital lock in, power management and wireless transmission
components onto a further miniaturized multichannel fNIRS
module could enable even more applications in and out of the
lab.

The instrument can be improved and evaluated in several
more ways. However, providing this fNIRS device open source,
we hope that aspects of this work will be helpful to further
simplify and reduce time and effort in future custom fNIRS based
mobile BCI and neuroergonomics approaches.
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Raja Parasuraman, the father ofNeuroergonomics (the crossroads of Ergonomics andNeuroscience,
Figure 1) has opened the doors to new discoveries and techniques for advancing understanding of
human behavior with the underlying brain mechanisms (Parasuraman, 1998). As of his death in
2015, a precise and objective definition of the concept of mental workload (MWL) had still not yet
been formulated. In this opinion piece, we posit that MWL is associated through the measurement
of neurovascular coupling (NVC); innovative neuroimaging methods is now capable of measuring
such a phenomenon; all while highlighting Parasuraman’s many contributions to this field.

BEYOND THE CONCEPT OF MENTAL WORKLOAD AND TOWARD
MENTAL RESOURCES IN NEUROERGONOMICS

MWLmeasurement is an important issue in theHuman Factors field, as seen through its ubiquitous
presence in the literature. It is well acknowledged that an accurate assessment of MWL could
help to reduce human error while improving human performance. The recently founded field of
Neuroergonomics may help to reduce the ambiguity surrounding the MWL concept by providing
data on its underlying neural processes. Neuroergonomics allows for the study of the human
brain structure and function with respect to behavior during physical or cognitive performances
in the workplace (Mehta and Parasuraman, 2013). The main goal of this interdisciplinary field is to
integrate our understanding of the neural basis of cognition in relation to technologies and settings
in complex daily life tasks.

However, Neuroergonomics does not yet provide a consensual and comprehensive explanation
of the MWL. Despite being a roughly defined concept, there have been some formal attempts.
Generally, MWL reflects how hard one’s mind is working (under- over-loaded or occupied)
at any given moment or how much mental effort it will cost for brain to meet given task
demands (Parasuraman, 2003). Furthermore, Parasuraman and Caggiano (2002) and Kramer
and Parasuraman (2007) defined MWL as a set of mental and composite brain states that
modulate human performance in different perceptual, cognitive, and/or sensorimotor skills.
It is also considered as a construct used to reflect the relation between the demands of the
environment (input load), the human characteristics (capacities), and the task performances
(output performance). However, the notion of MWL is dissociated from performance as suggested
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FIGURE 1 | Illustration of Raja Parasuraman as he himself wrote in an article: “One of us (Parasuraman, 1998, 2003) has therefore coined the term

“neuroergonomics” to refer to the inclusion of neuroscience in Human Factors/Ergonomics (HF/E). Neuroergonomics can be defined as the study of brain

and behavior at work. Traditionally, ergonomics has not paid much attention to neuroscience or to the results of studies of the brain mechanisms underlying human

perceptual, cognitive, affective and motor processes. To paraphrase the philosopher Mario Bunge (1980), until recently psychology (and HF/E) has been “brainless,”

whereas neuroscience has been “mindless.” At the same time, neuroscience and its more recent offshoot, cognitive neuroscience, have been only partially concerned

with whether their findings bear any relation to human functioning in real (as opposed to laboratory) settings, with the exception of applications to clinical disorders.

Neuroergonomics is a response to this twin disregard.

by Ayaz et al. (2012). MWL presupposes that the consumption
of true brain resources supports brain activity during work,
suggesting a possible link between MWL and the key concept
of mental resources. These two concepts can be treated by the
intensity of themental costs and bemeasured by themental effort
of performing tasks to predict operator performance. As stated
by Cain (2007) “As such, [MWL] is an interim measure and one
that should provide insight into where increased task demands.”
Therefore, it is not possible to define MWL without also clearly
characterizing mental resources.

Though it is generally admitted that mental resources are
appreciable, multiple, independent, and limited (Wickens, 2008),
most studies remain vague on their exact nature. One perspective
is to think of mental resources as neural pathways. However,
this oversimplification ignores the fact that mental resources
exists in other forms. As a metaphor, an army may have efficient
firepower, but without ammunition, a supply corps, and roads, it
is useless. Similarly, the army of the brain has mental resources
composed of neural pathways, energy supply, and irrigation
(communication channel) to fuel mental effort, implemented by
the mobilization of neurophysiological cellular processes in the
operator’s brain.

ENERGY MOBILIZATION OF
NEUROVASCULAR COUPLING FOR THE
OPERATOR’S BRAIN MACHINERY

The absence of consideration of the neurophysiological
mechanisms in Neuroergonomics is certainly due to the difficulty
in investigating them. Yet, there are real energy mobilizations
that occur within the operator’s brain machinery across several
cellular levels to meet task demand. As previously compared to

a super calculator or a computer, the brain machinery supports
mental processors that need substantial and constant energy
requirements. But the human brain is devoid of intra-cellular
capacity for energy storage in oxygen, lactate, and glucose (even
if small parts of glycogen exist). Fortunately, the demand for
high-metabolic energy of the brain tissue is mainly regulated
by complex but adequate energetic substrate delivery via a
dense and redundant network of microvessels. Hence, metabolic
demands are orchestrated by the blood supply hemodynamic
response.

Since the first discoveries by Roy and Sherrington (1890), it
has been possible to better understand the close spatiotemporal
dynamics between the electrical activity of neuronal cells
and the hemodynamic phenomenon that boost the local
bloodstream circulation in localized arterioles and capillaries.
The intimate neurofunctional relationship that concomitantly
links the metabolically active neurons with the increasing
oxygenation of the blood flow near of these cells reflects the
functional hyperemia and is more widely known as neurovascular
coupling (NVC). Simply, NVC is a tight temporal association
of the neuronal activity with regional cerebral blood flow
delivery. Understanding the fundamental cellular mechanisms
underlying NVC is necessary to measure a dimension of the
local brain machinery expenditure at work. The appraisal of the
energetic costs required byNVC implies the assessment of mental
resources. For instance, when an operator is engaged in a task, the
mobilization of the neural pathways needs a synergistic support
of massive astrocyte glial cells to fuel neurons and interneurons
with oxygen and nutriments furnished by close capillaries.

NVC is observable due to changes in neuronal-astroglial and
microvasculature activities, which occur in several steps. First, the
measurable electrical neuronal activity (spiking and postsynaptic
potential activity) is accompanied by synaptic neurotransmitter
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release (glutamate, GABA) with a neuronal-astroglial regional
cerebral metabolic rate of oxygen consumption, mainly for
regional cerebral metabolic rate of glucose demand. Second, this
activity induces a cascading pathway involving the production
and the release of powerful vasodilator metabolites by neurons
and astrocytes and drives a chemical signal up to the vascular
smooth muscle and pericytes cells along the microvessels which
dilate the microvasculature. Third, the microvessels dilatation
significantly modulates the regional cerebral blood activity (flow,
volume, and oxygenation) which greatly exceeds the neuronal-
astroglial oxygen requirements, and results in a measurable
overabundance of blood flow, hence, a local hyperoxygenation.
Yet, the role of NVC as it contributes to the comprehension
of the energy mobilization in response to mental resources
is not common knowledge. The cellular measures of energy
production, delivery, and utilization are crucial to understanding
and interpreting NVC activity. How to clearly establish the
role of NVC into the operator’s brain machinery? One possible
way would be to associate the level of correlates of NVC while
interpreting the degree of task demand. It seems thus fairly
possible that an accurate measurement of NVC, spatially and
temporally and in terms of amplitude, would be a valuable
neurophysiological marker for quantifying changes in brain
activation. Although this statement is still reductionist (that
NVC activity is proportional to operator’s brain activity), this
approach links the concept of humanMWL andmental resources
to objective neurophysiological measures for Neuroergonomics
purposes.

Recent Neuroergonomics research has progressed in
neurocognitive or neuroimaging-sensing instrumentation
for determining operator states through the measurement of
NVC activity associated with the degree of mental processes
(Parasuraman and Wilson, 2008). Tremendous advances
have been made toward establishing approaches for portable
neuroimaging equipment and brain activation measurements
to assess sensitivity to NVC in human operators acting in
realistic work environments. This development is especially
the case in ambulatory functional neuroimaging methods
such as functional near-infrared spectroscopy (fNIRS) and
electroencephalography (EEG). To date, the aforementioned
non-invasive brain imaging techniques are beginning to be
well-established in the Neuroergonomics community. These
advantages will be even more beneficial in the future as the
coupling between these methods becomes more widespread.

ASSESSING NEUROVASCULAR
COUPLING WITH FNIRS-EEG METHODS:
AN OBJECTIVE NEUROERGONOMICS
APPROACH FOR EVALUATION OF THE
OPERATOR’S BRAIN ACTIVITY

Technological advances in opto- and electronic miniaturization
have improved the portability and operational flexibility in brain
imaging sensors, allowing for greater comprehension of the brain
at work in real-world applications (aeronautics, automotive,
robotics). fNIRS provides a continuous monitoring of the

hemodynamic activity using near-infrared light transmitted
between optodes. It infers the changes in the concentrations
of oxygenated and deoxygenated hemoglobin in the cortical
regions from scattering and absorption properties of light
probing beneath the surface of the skull (Perrey, 2008). These
two fNIRS signals have their origins in the metabolic response
corresponding to a shift of oxygen consumed and the vascular
response linked to a modulation of the microvasculature activity
(dilatation). This hemodynamic response disrupts the regional
cerebral blood flow and volume which exceeds oxygen intake
(functional hyperemia) consumed by the recruited neuronal
population. fNIRS responses characterize the operator’s brain
activity related to cerebral blood flow and cerebral tissue
oxygenation changes over time (Mandrick et al., 2013; Durantin
et al., 2014; Fishburn et al., 2014). Good spatial localization
can be derived if a high number of optodes are used in
an array, but temporal resolution is coarse by the delayed
nature of the hemodynamic response to cortical activity (few
seconds).

On the other hand, EEG offers a fine temporal resolution
(milliseconds) thus enabling detection of brief neuronal
processes, but is limited in its capacity for spatial resolution,
at least in real time even though dense array EEG permits
source propagation localization. EEG uses scalp electrodes
to capture weak electrical current fluctuations generated by
inhibitory or excitatory postsynaptic potentials of a pool of
neurons firing simultaneously in response to a stimulus. The
electrophysiological roots of these signals correspond to the
summation of the spontaneously and synchronously recruited
neuronal population that contributes to the neuronal activity
of the superficial layers of the cortex. EEG waves and event-
related potentials signals are particularly strong candidates for
objective measures of operator’s brain activity at the workplace
(Parasuraman and Rizzo, 2006). In general, fNIRS and EEG are
complementary as they improve on each other’s measurement
weaknesses in terms of information content (Fazli et al., 2012).
Additionally, there is no noise cross-interference between fNIRS
and EEG (light and electrical, respectively; Karanasiou, 2012).
Therefore, simultaneous fNIRS-EEG signal acquisition would
be suitable for assessing NVC in order to evaluate the operator’s
brain activity in ecological contexts (Hirshfield et al., 2009; Safaie
et al., 2013).

However, it not should limit our understanding of the
brain activity to only one perspective; looking at the brain
at work with new tools and new eyes we could have new
NVC comprehension during ecological context. Readers must
note that the multimodality using fNIRS-EEG methods is a
very promising approach in the investigation of where, when,
and how much NVC exhibits energy mobilization during
work. The spatiotemporal evolution of the functional neural
connectivity and blood flow regulation through the scalp is
permitted due to the recording of temporal electrical activity
and spatial hemodynamic activity. Consequently, the evaluation
of NVC distribution throughout the head becomes accessible.
This measurement makes it possible to dynamically map the
brain activity and identify the brain areas with the activated
main NVC. Additionally, the assessment of the power of the
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electrical signal by EEG coupled with the amplitude of the
hemodynamic signal by fNIRS will enable a better depiction of
the intensity of the NVC, thus extrapolating the effectiveness
of the metabolic effort of performing tasks. This view of the
degree of extrapolated metabolic correlates as an indicator of
the level of mental resources seems straightforward at first
glance. However, the metabolic expenditure that fuels cognitive
processes is the prerequisite for any mental resources and the
assessment of operator’s brain activity. The challenge now is
to enhance the reliability of NVC measurement in situ with
fNIRS-EEG methods.

THE FUTURE FOR NEUROERGONOMICS

It is clear that the extensive work of Parasuraman has left the
scientific community in an excellent position to objectively
define MWL and subsequently, mental resources, through the
measurement of NVC activity. It is our opinion that NVC
measurement could be achieved through the use of an efficient
fNIRS-EEG coupling. In particular, there needs to be greater
characterization of the energy mobilization of NVC with
respect to neurophysiological mechanisms (neuronal-astroglial,
metabolic and hemodynamic activity) and methods for its
assessment in work settings (Parasuraman, 2011). There rests a
great deal of work in Neuroergonomics before the development
of a standard assessment approach of NVC with innovative
neuroimaging technology for the evaluation of the operator’s
brain activity at work. In other words, there are still opportunities
for the technological deployment of coupled hybrid devices

(dry-electrodes EEG within a high density headset of fNIRS
optodes). From a broader perspective, emerging devices must
meet several criteria: discriminate different levels of workload;
not interfere with the subject’s work and environment; be
accepted by the individual; be low cost with high portability; be
easy to implement and to evaluate; be reproducible and reliable;
and dissociate the mental workload from emotional processes
(sensitivity and specificity). Theoretically, a multimodal fNIRS-
EEG approach should help to investigate the interactions
between different mental states and user behavior while
taking into account the physiological processes. Further
investigations are warranted to address newer assessments
of the neurophysiological events of the operator’s brain
at work.
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Single bout of exercise can improve the performance on cognitive tasks. However,
cognitive responses may be controversial due to different type, intensity, and duration
of exercise. In addition, the mechanism of the effect of acute exercise on brain
is still unclear. This study was aimed to investigate the effects of supramaximal
exercise on cognitive tasks by means of brain oxygenation monitoring. The brain
oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers
via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back
test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting
30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that
PFC oxygenation rise during post-exercise 2-Back task was considerably higher
than those in pre-exercise 2-Back task. In order to describe the relationship
between oxygenation change and exercise performance, subjects were divided into
two groups as high performers (HP) and low performers (LP) according to their
peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin
(oxy-Hb) values were compared between pre- and post-exercise conditions within
subjects and also between subjects according to peak power. When performers
were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test
were significantly higher than those in pre-exercise 2-Back test. HP had significantly
higher post-exercise oxy-Hb change (∆) than those of LP. In addition, PP of
the total group were significantly correlated with ∆oxy-Hb.The key findings of the
present study revealed that acute supramaximal exercise has an impact on the brain
oxygenation during a cognitive task. Also, the higher the anerobic PP describes
the larger the oxy-Hb response in post-exercise cognitive task. The current study
also demonstrated a significant correlation between peak power (exercise load) and
post-exercise hemodynamic responses (oxy-, deoxy- and total-Hb). The magnitude
of this impact might be related with the physical performance capacities of the
individuals. This can become a valuable parameter for future studies on human
factor.
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INTRODUCTION

Individuals usually feel a mental arousal and define an increase
in their cognitive abilities after exercise. The relation between
exercise and cognitive function has been investigated in several
decades. It has been proposed that exercise durations, exercise
intensity and the differences in cognitive tasks could cause some
contradicting results in previous studies (Ando et al., 2011; Endo
et al., 2013; Schmit et al., 2015). Despite the large variations of the
reported results, there is meta-analytic evidence that describes
significant beneficial effects of acute exercise on cognition in
the general population (Lambourne and Tomporowski, 2010;
McMorris and Hale, 2012). The positive effects of erobic
exercise on various cognitive tasks have been reported mostly.
However there are rarely any reports about the effect of anerobic
exercise (i.e., the protocol in the current study), characterized
as short term and highly intensive effort, on cognition. The
specific mechanisms by which exercise affects cognitive functions
remain largely unclear (Rupp and Perrey, 2008). One of the
mechanisms proposed is the relationship between prefrontal
cortex (PFC) oxygenation and cognitive function. With the
development of imaging methods, it has been possible to show
the brain oxygenation during or post exercise conditions. Most
of the studies demonstrate an increment in oxygenation of
PFC following exercise (Rupp and Perrey, 2008; Jung et al.,
2015).

In the literature, effects of exercise on cognitive performance
were investigated during exercise and after exercise period. It
is largely accepted that the metabolic activity in brain increases
during cognitive tasks. The consumption of energy in the
neurons depending on the metabolic activity increase leads
an increase in the cerebral blood flow to meet the increased
demand of oxygen and glucose. For this reason, the increment
in brain oxygenation is accepted to be/as the physiological
indicator for cognitive workload. Near infrared spectroscopy
(NIRS) is a non-invasive measurement based sensitive method
that indicates cerebral hemodynamic response (Ozgoren et al.,
2012) to cognitive tasks by means of changing levels of oxy-
and deoxy-HB (Albinet et al., 2014). Some studies reported a
relationship between cerebral oxygenation level and cognitive
test scores (Ayaz et al., 2007, 2012; McMorris et al., 2011;
McMorris and Hale, 2012). Additionally, Li et al. (2005)
and Gateau et al. (2015), describe a higher dorsolateral PFC
activation during working memory task by using functional
near infrared spectroscopy (fNIRS). Inadequate increase in
cerebral oxygenation during cognitive task defined as an
indicator of cerebral fatigue (Nybo and Rasmussen, 2007;
Mandrick et al., 2013; Mehta and Parasuraman, 2014). Dietrich
(2003) reported that, aside from cerebral fatigue, the hypo-
frontality may occur due to the challenge of source allocation
between the areas responsible for physical and cognitive
workload.

We hypothesized that the brain oxygenation during cognitive
task after the acute supramaximal exercise is higher than the
pre-exercise cognitive task. We also expected a higher behavioral
performance after the acute supramaximal exercise. This study
aimed to evaluate the hemodynamic and behavioral changes of

TABLE 1 | Ages, heights, body weights, peak powers and maximal heart
rates (Max-HR) of low performers (LP) and high performers (HP) groups
were presented as mean ± SD.

Age Height Weight Peak Power Max-HR
(yrs) (m) (kg) (Watts) (beats/min)

HP 21.0 ± 2.6 165.9 ± 22.5 72.7 ± 9.6 800.7 ± 77.3 165.4 ± 22.8
(n = 18)
LP 20.5 ± 2.1 168.9 ± 11.5 71.4 ± 11.1 634.3 ± 89.3 168.9 ± 11.5
(n = 17)

cognitive processes following an acute (anerobic) supramaximal
exercise.

MATERIALS AND METHODS

Participants and Experimental Design
Thirty-five male healthy and physically active subjects
(1.78 ± 0.07 cm height and 72.1 ± 10.3 kg weight) aged
between 18 and 23 years participated to the study (Table 1).
All subjects were informed about the procedures and signed a
written consent. Experiments were conducted in two visits. In
first visit, the subjects were informed and became familiar to
both exercise and N-Back test protocols. Within 3 days, subjects
re-visited the laboratory to perform a short term-supramaximal
acute exercise and cognitive tasks (2-Back tests) before and
after exercise (Figure 1). Brain oxygenation was continuously
measured via fNIRS during cognitive tasks and exercise. In
order to evaluate the performance dependent results, an average
peak power value was calculated for all subjects. Subjects who
had higher power values than the average (751 Watt) was
considered as high performers (HP), (N = 17 subjects) while who
had lower power values than average were considered as low
performers (LP), (N = 18 subjects). There were no statistically
significant differences in terms of age, weight and height
between the HP and LP groups. The Ethics Committee of Dokuz
Eylul University approved all procedures and experimental
design.

Cognitive Task Procedure
Cognitive performance was evaluated by N-Back test before and
after exercise. N-Back test, which mainly evaluates the working
memory as well as sustained attention, was administrated to
evaluate working memory and inhibitory control of irrelevant
information (Jonides et al., 1997; Jaeggi et al., 2010). N-Back test
was developed in OpenGL by using C programming language,
has been administered to the participants by a laptop. A
pseudorandom sequence of 120 letters consisting ‘‘K, Q, H, X,
M, F, R, and B’’ were displayed on the center of the screen,
one by one. Participants were asked to press the button on
a response pad only if a letter on the screen was the same
as the letter shown ‘‘n’’ steps earlier. In the present study
‘‘2-Back’’ condition was employed. The probability of each
letter to be same as the two-step earlier letter was 30%. Each
letter was presented on the computer screen for 500 ms and
the inter-stimulus interval was set to vary between 1500 and
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FIGURE 1 | (A) The demonstration of experimental design for the current study. (B) Participant seated at cycle ergometer during whole paradigm.

2000 ms. All tests were completed within 5 min. A brief
training session, including a practice sequence of 15 letters, was
given to all participants before the actual test to familiarize
the subjects to the protocols. In order to evaluate working
memory; reaction time for all stimuli total reaction time (TRT)
and reaction time for the correct answers (CART), number
of correct answers (CA), wrong answers (WA), and missed
answers (M) have been obtained and measured. Nexus-10
bio-amplifier, which was equipped with appropriate sensors,
was used to monitor the appearance of stimuli on the screen
and participant responses in order to measure exact reaction
times.

Exercise Procedure
Wingate Anerobic test (WAnT) protocol was applied as the
supramaximal exercise. WAnT is an exhaustive exercise for
assessment of anerobic performance (Dotan and Bar-Or, 1983).
WAnT is also accepted as a standardized anerobic exercise model
for evaluating physiological responses to supramaximal exercise
under controlled conditions (Weinstein et al., 1998). Following
a warm up on the bicycle for 5 min at intensity about 50 watts,
all subjects performed WAnT on a mechanically braked cycle
ergometer with an optical pedal counter (Monark 824E, Sweden).
Two unloaded 5-s sprints were performed during warm up.
Following the warm up, subjects were instructed to pedal as fast
as possible for 30 s against a resistance of 80 g/kg body mass.
The subjects were verbally encouraged to maintain high pedaling
rate throughout the WAnT. Pedal revolutions were monitored
and recorded at 1-s intervals. Power outputs were calculated as
described in Weinstein et al. (1998). The highest power output in

the first 5 s of the test was used to represent the peak power (PP;
PP = Distance× Load/ Time).

fNIRS Recordings
The continuous wave (CW) fNIR system used in the present
study (Imager 100, fNIR Devices LLC, MD, USA). System
was connected to a flexible sensor pad, Sensor pad contained
four light sources with built in peak wavelengths at 730 nm
and 850 nm and 10 detectors designed to scan cortical areas
underlying the forehead. The forehead area was cleaned with
alcohol swap and scrubbing cream (NuPrep, USA). After the
cleansing process the sensor was placed to the forehead region
and covered by an elastic bandage specifically designed to hold
it tightly across the head. Furthermore, a black head bandage
was placed on top to eliminate the possible ambient light
effects.

This system records two wavelengths and dark current for
each of the 16 voxels, totaling 48 measurements for each
sampling period (Ayaz et al., 2011, 2013). With a fixed source-
detector separation of 2.5 cm, this configuration generates a
total of 16 measurement locations (voxels) per wavelength. Data
acquisition and visualization were conducted using COBI Studio
software (Ayaz and Onaral, 2005). The fNIR device calculates
relative changes to baseline values of oxy-hemoglobin (oxy-Hb)
and deoxyhemoglobin (deoxy-Hb) molecules by means of a
CW spectroscopy system that applies light to tissue at constant
amplitude. The mathematical basis of CW-type measurements
uses the modified Beer Lambert Law (Cope and Delpy, 1988).
In the present study baseline condition was started at the
beginning of the each task and lasted 20 s. The summation
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FIGURE 2 | The demonstration of functional near infrared spectroscopy (fNIRS) sensor pad. Brain oxygenation was measured from 16 locations over the
forehead area via fNIRS sensor (left side). The sensor pad has 4 light sources, 10 light detectors and 16 optodes (right side). Optodes that are located on the
leftmost side of the forehead namely 1, 2, 3 and 4 denotes left prefrontal cortex (PFC), optodes that are centrally located as 7, 8, 9 and 10 denotes central PFC, and
optodes that are located on the rightmost side as 13, 14, 15 and 16 denotes right PFC.

of oxy-Hb and deoxy-Hb values was described as total-Hb.
Moreover, ∆oxy-Hb and ∆deoxy-Hb parameters were used to
describe the value differences (oxygenation change; i.e., rise
or fall) between average values of two different sessions (i.e.
1OxyHb = OxyHbpost − OxyHbpre) for both oxy-Hb and
deoxy-Hb.

fNIRS Analysis
The raw intensity measurements at 730, and 850 nm were
Butterworth low-pass filtered with MATLAB program
(MATLAB and Statistics Toolbox, 2007). Butterworth filter
was designed to eliminate possible respiration and heart
rate signals and unwanted high frequency noise (Huppert
et al., 2009). The artifact removal process has been made
according to Ayaz et al. (2012). The PFC oxygenation data
retrieved via fNIRS were examined in right, left and central
PFC areas and defined as region of interest (ROI; Figure 2).
Optodes that are located on the leftmost side of the forehead
namely 1, 2, 3 and 4 combined to denote left PFC, optodes
that are centrally located as 7, 8, 9 and 10 combined to
denote central PFC, and optodes that are located on the
rightmost side as 13, 14, 15 and 16 combined to denote right
PFC. fNIRS signals were calculated and averaged over the
whole pre- and post-exercise 2-Back sessions (Endo et al.,
2013).

Statistical Analysis
Shapiro-Wilk and Kolmogorov-Smirnov tests were used to
control the normality of the data. All of the data were distributed
normally. Age, height and weight differences between groups
were tested via independent groups t-test, and the results were
given in Table 1. We performed statistical analysis on combined
channels as ROI wise.

A two-way group (LP vs. HP) and time (pre vs. post exercise)
analysis of variance (ANOVA) was performed on fNIRS data
and behavioral data. Moreover, oxy- and deoxy-Hb change were
calculated as mentioned before (i.e., ∆OxyHb), and used for the
statistical analysis. An independent group t-test was performed
to test group differences (LP vs. HP) on oxy-, deoxy- and total-
Hb changes. Also, the correlations between peak power and
oxy-Hb, deoxy-Hb, and total-Hb changes were investigated via
Spearman’s rank order correlations test.

RESULTS

fNIRS Findings
In the present study, 35 healthy subjects were recruited. In
order to evaluate the performance dependent results, pre and
post exercise PFC oxygenation levels during 2-Back tests were
compared for both HP and LP groups with two-way mixed
ANOVA. The oxy-Hb, deoxy-Hb, and total-Hb values of the
groups were demonstrated for pre- and post-exercise 2-Back
sessions were demonstrated in Table 2. Also the demonstration
of oxy-Hb and deoxy-Hb levels in central PFC area during
pre- and post-exercise 2-Back tests were given for whole
group averages in Figure 3. All of the figures represent the
group averages during related task (pre- and post-exercise
2-back).

For oxygenation related analysis; pre- and post-exercise
2-Back tests oxy-Hb values were selected as within-subject
factor and peak power was selected as between-subject factor.
According to these analyses, oxygenation in post-exercise 2-Back
test was higher than the oxygenation in pre-exercise 2-Back test
for all three ROI of PFC [F(1,33) = 51.82, p < 0.001, η = 0.61 for
left; F(1,33) = 78.42, p< 0.001, η = 0.70 for central; F(1,33) = 54.25,
p < 0.001 η = 0.61 for right]. For right PFC area there was
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TABLE 2 | Pre- and post-exercise 2-back oxy-, deoxy, and total-Hb levels (mean ± SD) are given for total, LP and HP group in central prefrontal cortex
(PFC) area.

Pre-exercise 2-Back Post-exercise 2-Back

Oxy-Hb Deoxy-Hb Total-Hb Oxy-Hb Deoxy-Hb Total-Hb
(µMolar) (µMolar) (µMolar) (µMolar) (µMolar) (µMolar)

Total Group 3.11 (± 3.41) − 0.99 (± 0.94) 3.01 (± 3.71) 7.32 (± 4.85)∗∗∗ 0.84 (± 2.42)∗ 8.15 (± 6.56)∗∗∗

HP 3.30 (± 3.62) 0.11 (± 0.94) 3.42 (± 4.04) 9.18 (± 4.90)∗∗∗ 1.84 (± 2.74)∗ 11.03 (± 6.88)∗∗∗

LP 2.92 (± 3.30) −0.30 (± 0.93) 2.62 (± 3.44) 5.54 (± 3.30)∗∗∗
−0.11 (± 1.64) 5.43 (± 5.06)∗∗

The significant differences related to comparisons of oxygenation, deoxygenation and total-Hb between pre- and post-exercise 2-Back session are marked with “∗” (where

“∗” denotes p < 0.05, “∗∗” denotes p < 0.01, and “∗∗∗” denotes p < 0.001).

not any interaction so, the pairwise comparisons were used.
According to pairwise comparisons there was not any significant
difference between groups, but there were significant differences
between pre and post oxygenation levels in right PFC (p< 0.001).
Because of the significant interaction in left and central PFC
areas between within group effects (Pre/Post) and between group
effects (HP/LP) in terms of two-way ANOVA results, between
group analyses could not be evaluated (McDonald, 2009).
Further analyses were made to clarify the statistical significance
via within group paired samples t-test analysis. Paired samples
t-test was conducted separately for each group and post-exercise
2-Back test oxy-Hb levels were found significantly higher than
the pre-exercise 2-Back test oxy-Hb level for both group [for HP
group: in left PFC, T(16) = −5.99, p < 0.001; in central PFC,
T(16) =−8.12, p< 0.001; for LP group: in left PFC, T(17) =−3.89,
p< 0.001; in central PFC, T(17) =−4.13, p< 0.001].

Moreover, deoxy-Hb related analyses were conducted. For the
analyses; pre- and post-exercise 2-Back tests deoxy-Hb values
were selected as within-subject factor and peak power was
selected as between-subject factor. According to these analyses,
deoxy-Hb values were significantly higher in post-exercise
2-Back test than the deoxy-Hb values in pre-exercise 2-Back test
for all three ROI of PFC [F(1,33) = 9.56, p < 0.01, η = 0.23
for left PFC; F(1,33) = 7.03, p < 0.05, η = 0.17 for central PFC;
F(1,33) = 11.59, p < 0.01 η = 0.26 for right PFC]. For right and

left PFC areas there was not any interaction so, the pairwise
comparisons were used. According to pairwise comparisons
there was not any significant difference between groups, but there
were significant differences between pre and post deoxygenation
levels in left and right PFC (p < 0.01 for both). Because of the
significant interaction in central PFC area between within group
effects (Pre/Post) and between group effects (HP/LP) in terms of
two-way ANOVA results, between group analyses could not be
evaluated (McDonald, 2009). Further analysis was made to clarify
the statistical significance via within group paired samples t-test
analysis. Paired samples t-test was conducted separately for each
group and post-exercise 2-Back test deoxy-Hb levels were found
significantly higher than the pre-exercise 2-Back test deoxy-Hb
level for HP group in central PFC area [T(16) = −2.67, p < 0.05]
and there was not any significance for LP group in central PFC
area.

Also total-Hb was significantly higher in post-exercise 2-Back
test for all three interested ROI of PFC [F(1,33) = 38.55, p< 0.001,
η = 0.54 for left PFC; F(1,33) = 47.20, p< 0.001, η = 0.59 for central
PFC; F(1,33) = 42.15, p < 0.001 η = 0.56 for right PFC]. For right
and left PFC areas there was not any interaction so, the pairwise
comparisons were used. According to pairwise comparisons
there was not any significant difference between groups, but
there were significant differences between pre and post total-Hb
levels in left and right PFC (p < 0.001 for both). Because of the

FIGURE 3 | The demonstration of oxy- and deoxy-Hb average levels in central PFC area during pre- and post-exercise 2-Back tests for the whole
group. Standard deviations are also marked in line with average as vertical lines (Note that only positive deflection is displayed for the sake of simplicity). Left panel
indicated oxy-Hb and right panel indicated deoxy-Hb results. Vertical scale denotes the strength of fNIRS signal in µMolar units, which is normalized to baseline.
Horizontal scale denotes the time scale in minutes. Vertical dashed lines denote pre-, during and post- exercise onsets and durations. The dotted lines represent the
periods of warm-up and cool-down.
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TABLE 3 | Post- and pre-exercise oxy-Hb, deoxy-Hb, and total-Hb changes (∆oxy-Hb, ∆deoxy-Hb, and ∆total-Hb) are given for LP and HP groups in all
PFC area (mean ± SD).

∆Oxy-Hb (µMolar) ∆Deoxy-Hb (µMolar) ∆Total-Hb (µMolar)

Left Central Right Left Central Right Left Central Right

HP 5.66 (± 3.89)∗ 5.88 (± 2.98)∗∗ 4.87 (± 3.48) 1.89 (± 1.91) 2.32 (± 2.13)∗ 1.26 (± 1.18) 7.10 (± 5.59)∗ 7.61 (± 5.03)∗∗ 5.74 (± 4.52)
LP 2.71 (± 2.94) 2.62 (± 2.69) 3.25 (± 3.48) 1.62 (± 1.67) 1.16 (± 0.89) 1.65 (± 1.56) 3.60 (± 4.58) 2.81 (± 3.90) 4.42 (± 4.72)

Significances between groups are marked with “∗” (where “∗” denotes p < 0.05, “∗∗” denotes p < 0.01).

significant interaction in central PFC area between within group
effects (Pre/Post) and between group effects (HP/LP) in terms
of two-way ANOVA results, between group analyses could not
be evaluated (McDonald, 2009). Further analyses were made to
clarify the statistical significance via within group paired samples
t-test analysis. Paired samples t-test was conducted separately
for each group and post-exercise 2-Back test total-Hb levels
were found significantly higher than the pre-exercise 2-Back test
total-Hb level for HP group [in central PFC, T(16) = −6.24,
p < 0.001], and for LP group [in central PFC, T(17) = −3.06,
p< 0.01].

In addition to these findings, the changes of oxy-Hb, deoxy-
Hb, and total-Hb were compared between HP and LP groups
via independent samples t-test (Table 3). While comparing the
oxygenation changes (∆oxy-Hb) of the LP and HP group, PFC
oxygenation rise in central PFC (p< 0.01) and left PFC (p< 0.05)
areas were found significantly higher in HP group. While
comparing the deoxygenation changes (∆deoxy-Hb) of pre-
and post-exercise 2-Back tests, HP group’s PFC deoxygenation
changes in central PFC area was found significantly higher
(p < 0.05). While comparing the total-Hb changes (∆total-
Hb) of pre- and post-exercise 2-Back tests, HP group’s PFC
total-Hb change in central PFC (p < 0.01) and left PFC
(p < 0.05) areas were found significantly higher. Moreover, the
peak power values (PP) of the total group were significantly
correlated with ∆oxy-Hb, ∆deoxy-Hb, and ∆total-Hb values
for central PFC area (r = 0.042 p < 0.01; r = 0.035 p < 0.02;
r = 0.040 p < 0.01, respectively). The demonstration of average
oxy-Hb and deoxy-Hb levels in central PFC area during pre- and
post-exercise 2-Back Tests for HP and LP group were given in
Figures 4, 5.

Behavioral Findings
All subjects have successfully completed the whole procedure.
2-Back test scores (CA, WA, M, CART, TRT) were compared
for total group and there were no significant differences between
pre- and post-exercise 2-Back test scores. The same comparison
was made for HP and LP groups and also there were no
significant differences within (pre-exercise vs. post-exercise
sessions) and between groups (Table 4). Though not statistically
significant the reaction times, the correct answer CART were
slightly progressed after the exercise.

DISCUSSION

Both physical benefits and cognitive improvements of the
exercise have been frequently studied in the field. In the present

study, the effects of anerobic exercise on brain oxygenation
were investigated in relation to cognitive workload. The results
revealed an increment in oxy-, deoxy-, and total-Hb levels on
the post-exercise session of cognitive task. The increments in
these parameters have been found to be statistically higher than
the pre-exercise session of the cognitive task. In the related
literature, it has been demonstrated that the oxy-Hb level
increases in PFC during both physical exercise and cognitive
task. Such rise has been linked to the increase in neural-
metabolic activation (González-Alonso et al., 2004; Shibuya
et al., 2004; Rupp and Perrey, 2008; Endo et al., 2013). In
their study Tam and Zouridakis (2014) describes the oxy-Hb,
deoxy-Hb, their summation (oxy-Hb + deoxy-Hb), and their
difference (oxy-Hb—deoxy-Hb) measurements corresponding
to the changes in oxygen delivery, oxygen extraction, total
blood volume delivered, and total oxygenation, respectively.
The increasing level of oxy- and deoxy-Hb is accepted as an
indicator of an increase in blood flow (Endo et al., 2013). The
present study revealed a rise in all oxy-Hb, deoxy-Hb, and total-
Hb levels during both pre- and post-exercise cognitive tasks,
which might be related to regional increase of cerebral blood
flow. In this context, regional blood flow in PFC during post-
exercise session of cognitive task could be considered higher
than the pre-exercise session of cognitive task. Such increased
hemodynamic responses may be an indicator for the additional
effort during post-exercise cognitive task (Mandrick et al.,
2013).

In the present study, a relationship between brain’s
hemodynamic responses and physical performance (under
anerobic supramaximal exercise conditions) has been revealed.
The participants were divided into two groups by means of PP
mentioned as high- and low-performers in order to address the
performance relationship. Despite the similar hemodynamic
response patterns during pre-exercise session of cognitive task,
different hemodynamic response patterns have been observed
between groups during post-exercise sessions of cognitive task
(Figures 3, 4). As the most striking difference the rise of oxy-Hb
and total-Hb levels of HP group have been found statistically
higher than those of LP group in central and left PFC areas. These
findings may demonstrate that the rise of oxygen consumption
and demand in PFC is higher in the HP group, as known as
higher anerobic capacity, than the LP group. In this context,
Drigny et al. (2014), reported that the brain oxygenation could
change with training in obese patients. Also, Khan and Hillman
(2014) reviewed the connection between training and its effects
on brain oxygenation levels and suggested a relationship between
erobic fitness and cognitive processes that can be demonstrated

Frontiers in Human Neuroscience | www.frontiersin.org April 2016 | Volume 10 | Article 174 | 253

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Bediz et al. Post-Exercise PFC Oxygenation in Cognitive Tasks

FIGURE 4 | The demonstration of oxy- and deoxy-Hb levels in central PFC area during pre- and post-exercise 2-Back tests for group averages.
Standard deviations are also marked in line with average as vertical lines (Note that only positive deflection is displayed for the sake of simplicity). The four panels are
divided into performers (low and high performance, left and right consequently) and oxy- and deoxy-Hb (upper and lower consequently). Left panel indicated oxy-Hb
and right panel deoxy-Hb results. Vertical scale denotes the strength of fNIRS signal in µMolar units, which is normalized to baseline. Horizontal scale denotes the
time scale in minutes Vertical dashed lines denote pre-, during and post- exercise onsets and durations. The dotted lines represent the periods of warm-up and
cool-down.

FIGURE 5 | The oxygenation values for pre- and post-exercise 2-Back sessions in left (A), center (B) and right (C) areas of PFC in high and low
performance groups. Within group significances are marked with “∗” (where “∗” denotes p < 0.05, “∗∗” denotes p < 0.01, and “∗∗∗” denotes p < 0.001); between
group significances are marked with “#” (where “#” denotes p < 0.05).

via different fMRI and EEG studies. A similar relationship
was described between exercise and cognitive functions by
Davenport et al. (2012). In the light of results of the present
study, level of PFC oxygenation in physically better performing
group during post-exercise cognitive task might be higher than
the physically lower performing group during post-exercise
cognitive tasks.

The current study also demonstrated a significant correlation
between peak power (exercise load) and post-exercise change
of hemodynamic responses (∆oxy-Hb, ∆deoxy-Hb, and
∆total-Hb). This correlation also supports the aforementioned
assumptions in which the higher performers have higher
PFC oxygenation. This can become a valuable parameter for
future studies on human factor by means of physical/cognitive
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) load. Formerly using a different paradigm, our group has

demonstrated the centrofrontal shift of the active brain areas due
to cognitive load (Bayazıt et al., 2009). In that study, the cognitive
load—such as conflict resolution—displayed a physical drive
from the posterior areas towards frontal areas with an increased
demand on the frontal regions. Similarly, in the current study,
the high peak power task is not solely a motor one but also
requires a multitude of cognitive activities. In order to cope with
the higher motor (and cognitive) load, the brain has to perform
increased levels of concentration, attention, coordination,
environment monitoring, and reactive and interactive motor
control. The frontal areas are the primary areas for these and
similar executive and complex skills. Further clarification is
needed in this context to describe the effect of physical fitness on
brain oxygenation by means of new study designs and larger size
groups.

The effects of acute exercise on cognitive functions have
been investigated for decades. However, studies demonstrating
the mechanisms of physical exercise on brain oxygenation in
relation to cognitive performance via fNIRS are very limited
and these mechanism are not well understood (Albinet et al.,
2014; Drigny et al., 2014; Dupuy et al., 2015). In previous
studies, the participants’ performance for decision-making,
mental processing speed, selective attention, and reaction time
was investigated (Aks, 1998; Arcelin and Brisswalter, 1999;
Emery et al., 2001). Moreover, Brisswalter et al. (2002) and
Tomporowski (2003) reported that the cognitive performance
could be improved by acute exercise. Interestingly, previous
studies revealed different findings depending on the type of the
exercise, while intense and exhausting exercise causes fatigue
(Brisswalter et al., 2002), and light exercise (Varner and Ellis,
1998) causes cognitive performance impairment. Besides, some
studies reported a decrease in cognitive functions related with
the fatigue caused by the intensity or duration of the exercise
(Mehta and Parasuraman, 2014). The physiological basis of this
decrement could also be originated from the natural challenge
between PFC area related with cognition and motor area related
to motion, which causes a hypo-frontality (Dietrich, 2003). The
experimental setup of the current study employed a high load
but very short (30-sec) anerobic exercise, and such exercise
model could cause higher oxygenation responses in PFC similar
as erobic exercise models. As mentioned before, the behavioral
results displayed only a small but non-significant increase in
WA and slight but not significant increase in the CA after the
exercise. Our results did not provide a strong support for neither
an improvement nor decrement in cognitive scores after acute
exercise.

In the related literature, Stroop test was frequently employed
as a cognitive task, and generally the improvement of the
total test time was accepted as an indicator of improved
cognitive functions (Hyodo et al., 2012; Endo et al., 2013). In
the present study we employed the 2-Back test as a cognitive
task, and evaluated the whole parameters (CA, WA, MA,
CART, TRT), but not the total test time. Therefore 2-Back test
might not be the right tool as an indicator of the improved
cognitive functions. Also the rise of PFC oxygenation could not
fully mean an improvement in cognitive function during the
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post-exercise session. Another plausible explanation might be
that the participants had to work harder ‘‘neurally’’ (indicated by
increased oxy-Hb levels) to maintain the cognitive performance
during post-exercise session.

In another view, some studies reported an improvement
of cognitive functions after the moderate exercise (Potter and
Keeling, 2005; Coles and Tomporowski, 2008). However, a recent
meta-analysis (McMorris et al., 2011) raised an issue. Those
authors examined the effect of acute, moderate intensity exercise
on working memory tasks and found that speed and accuracy of
processing were differentially affected. In particular, the positive
effects of acute exercise seem to be disproportionately influential
on executive control processes (i.e., planning, coordination,
inhibition, mental flexibility, working memory) relative to tasks
of recall and alertness (Chang et al., 2012; McMorris and
Hale, 2012). N-Back task used in the current study indeed
involves working memory, alertness, planning, and inhibition
strategies. Therefore a possible explanation could be that
there might be an increase in the cognitive (i.e., executive
control process) functions due to prolonged total blood flow
capacity increase in the brain metabolic capacity (both oxygen
and glucose should be increased) but somehow 2-Back test
might not be tough enough to elucidate such improvement.
Another explanation could be that the increased metabolic
activity in brain might be the mean of more neural effort
to maintain the performance, not the indicator of cognitive
improvement.

The findings of current literature are not sufficient to explain
positive effects of exercise intensity on cognitive functioning
(Soga et al., 2015). This study employed a short-term high
intensity and all-out exercise model. Following this anerobic
exercise, 2-Back test was administered and its results showed a
non-significant enhancement in cognitive scores. The different
effects of anerobic and erobic exercise on cognitive scores could
cause the insignificant differences in test results despite the
increase in brain oxygenation. Also the variation in cognitive
tests that administered could lead such insignificant results.
Finally, the administration time of post-exercise tests could
affect the cognitive scores. Soga et al. (2015) reported that there
is no clear information in literature about cool-down periods
following exercise and administration time of cognitive test. In
addition, they (Soga et al., 2015) underlined the importance of
assessing both time and heart rate variables post-exercise before
administering the cognitive tests for future studies.

In the related literature, it has been suggested that the
increment in PFC oxygenation has a positive effect on PFC
functions which uses erobic exercise (Endo et al., 2013).
Our study has no statistically significant behavioral results to
demonstrate such positive effects on PFC functioning. Though
the current study used anerobic exercise model, the results
(hemodynamic responses) are in line with the studies which
consists erobic exercise model (Ando et al., 2011; Endo et al.,
2013; Byun et al., 2014). The obtained changes in oxygenation
levels are compatible with results of previous studies. But
no statistical differences were found in cognitive performance
parameters, which were positively affected by erobic exercise.
The major dividing line between the erobic and anerobic

exercise are the duration and intensity parameters. And these
erobic definitions are mostly related to the body and muscle
metabolism. As far as we know there is no certain study that
has specifically displayed the dividing line between erobic and
anerobic capacity in regard to brain only. This might be pointing
to the fact that the relationship of the body metabolic capacity
and the dynamic patterns might be different than of the brain’s.

There are findings demonstrating that cognitive functions,
especially following an intense exercise, could be impaired or
not augmented. Soga et al. (2015) reported that exercise has
different effects on working memory and inhibitory control
components. In our study, despite the PFC oxygenation
increment, no statistical differences were found between 2-Back
test scores. The different effect mechanisms, exercise intensity,
and administration time of cognitive tests could be the reason for
this insignificancy. In future studies, with an experimental design
employing both erobic and anerobic exercises, the hemodynamic
and cognitive performance changes can be demonstrated.

Current study may have a considerable limitation. Heart
rate may not recover linearly during post exercise (erobic or
anerobic), it is likely that cerebral oxygenation, which is regulated
by autonomic responses also change drastically from exhaustion
to 1 min post recovery to 5 min post recovery. Therefore even
though the oxygenation recordings were done post 5 min plus
period we may have a bias in the aspect of fluctuations within the
5 min average periods.

CONCLUSION

In summary, acute supramaximal exercise increased the
oxy-Hb, deoxy-Hb and total-Hb levels during post-exercise
session of 2-Back test. This would indicate that the functions
of PFC would increase after acute exercise but the comparison
between pre- and post-exercise sessions of 2-Back test scores
did not point out any significant improvement. These results
could not reveal any cognitive performance augmentation
despite the increased PFC oxygenation. As aforementioned
in the discussion, such post-exercise oxygenation increase in
PFC may not be only derived from cognitive performance.
To clarify the basis and effects of oxygenation rise further
studies is required with an experimental design, which consist
the cognitive tasks in all three phases (pre-, during-, post-
exercise).

HP group, who has higher PP, outperformed LP group by
means of oxy-, deoxy-, and total-Hb changes. Such difference rise
a question if the short-term brain oxygenation responses might
be affected by physical performance. The current study could
provide a methodological approach for human factor studies that
would require combining of behavioral and objective methods
(fNIRS, etc).
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Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based
functional neuroimaging technology that can assess, simultaneously from multiple
cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at
the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of
ecological validity and its very limited requirement of physical constraints to subjects,
could represent a valid tool for monitoring cortical responses in the research field
of neuroergonomics. In virtual reality (VR) real situations can be replicated with
greater control than those obtainable in the real world. Therefore, VR is the ideal
setting where studies about neuroergonomics applications can be performed. The
aim of the present study was to investigate, by a 20-channel fNIRS system, the
dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing
a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT,
its execution should require the attentional resources allocation and the integration
of different executive functions. The HCT simulates the interaction with a real,
remotely-driven, system operating in a critical environment. The hand movements
were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-
sensing device, the LEAP motion controller, a gesture-based control interface that
could be used in VR for tele-operated applications. Fifteen University students were
asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route
(VROU) reproducing a 42 m narrow road including some critical points. The subjects
tried to travel as long as possible without making VB fall. The distance traveled by
the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times
in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in
response to the HCT execution, was observed in all the subjects. No correlation
was found between the distance traveled by the guided VB and the corresponding
cortical activation. These results confirm the suitability of fNIRS technology to objectively
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evaluate cortical hemodynamic changes occurring in VR environments. Future studies
could give a contribution to a better understanding of the cognitive mechanisms
underlying human performance either in expert or non-expert operators during the
simulation of different demanding/fatiguing activities.

Keywords: functional near-infrared spectroscopy, neuroergonomics, hand-controlled task, LEAP motion
controller, virtual reality, remote control, brain activation

INTRODUCTION

The term neuroergonomics was first introduced in 1997
for depicting an interdisciplinary area of research which
involves the intersection of two disciplines: neuroscience and
ergonomics (Parasuraman and Rizzo, 2007). The studies in this
field, previously carried out using either mobile or immobile
neuroimaging techniques, have been nicely reviewed by Mehta
and Parasuraman (2013). Virtual reality (VR), a computer-based
technology that allows the creation of multisensory simulated
environments in which users can interact and receive real-
time feedbacks on their performance, was claimed by Kearney
et al. (2007) to be highly relevant for neuroergonomics. This
because VR can replicate, with a greater control than that
applicable in the real world, a wide range of conditions that
are impractical or impossible to observe in the real situations;
then allowing behavioral and neurophysiological observations
of the mind and brain at work. Given its peculiarity, VR is
also effectively used by human operators to accomplish their
work in dangerous environments, thus avoiding any physical
risk. For instance, applying gesture-based control interfaces,
VR is usually employed for tele-operated applications such
as driving robots, rovers and other devices remotely, with
the operators at a certain distance from them (Chen et al.,
2015; Liu and Zhang, 2015; Wei et al., 2015). The tele-
operated systems are very expensive, unique neither replicable
nor quickly replaceable, and from their proper use depends
the success or failure of long-planned, critical, costly and
challenging operations. Taking into account the high degree of
responsibility inherent to operators’ duties, their considerable
physical/cognitive work should be evaluated objectively by
neuroimaging techniques in the framework of neuroergonomics
(for review, see Gramann et al., 2011, 2014; Mehta and
Parasuraman, 2013).

Although the most widely used immobile functional
neuroimaging modality has been undoubtedly represented by
functional magnetic resonance imaging (fMRI), the development
of portable and wearable neuroimaging devices, comprising
electroencephalography (EEG) and functional near infrared
spectroscopy (fNIRS; for review, see Mehta and Parasuraman,
2013; Gramann et al., 2014; Scholkmann et al., 2014) has
considerably facilitated the approach of neuroergonomics.
fNIRS, with its high degree of ecological validity and its
very limited requirement of physical constraints to subjects,
represents a valuable tool for monitoring cortical responses in
the research fields of neuroergonomics (for reviews, see Ayaz
et al., 2013; Derosière et al., 2013). Furthermore, compared

to fMRI, fNIRS is silent, allowing to avoid any bias in the
results due to difficulties in focusing on the task because of the
high level of noise. Briefly, fNIRS is a non-invasive vascular-
based functional neuroimaging technology which assesses,
simultaneously from multiple measurement sites, concentration
changes in oxygenated-deoxygenated hemoglobin (O2Hb/HHb,
respectively) at the level of the cortical microcirculation
blood vessels (Scholkmann et al., 2014). O2Hb/HHb, indeed,
interact differently with near infrared light, so that both
physiological indexes can be recovered from the measured
signal. This is a further advantage of fNIRS over fMRI, the
latter being able to recover only a single physiological index,
namely the blood-oxygen level dependent (BOLD) signal.
When a specific brain region is activated, cerebral blood
flow increases in a temporally and spatially coordinated
manner through a complex sequence of coordinated events,
tightly linked to changes in neural activity (i.e., neurovascular
coupling). The coupling between the neuronal activity and
the cerebral blood flow is fundamental to brain function.
fNIRS relies exactly on this coupling to reveal the activated
cortical region by measuring the associated cortical blood
oxygenation changes (i.e., the increase in O2Hb and the decrease
in HHb).

Since 1993, fNIRS has been employed for evaluating the
spatiotemporal characteristics of the cortical activation during
different motor tasks related to upper and/or lower limb exercise
(for a review, see Leff et al., 2011). In most previous fNIRS
studies, the activation of the sensory-motor cortex and the
PFC has been widely investigated in different tasks of the
lower limb like walking (Koenraadt et al., 2014; Mirelman
et al., 2014), stepping (Huppert et al., 2013), precision stepping
(Koenraadt et al., 2014), etc. Several fNIRS studies have also
investigated the PFC activation during hand tasks such as:
finger movement (Wriessnegger et al., 2012), passive finger
movement (Chang et al., 2014), isometric grasping/grasping
(Mandrick et al., 2013), handgrip exercise (Derosière et al.,
2014), learning a hand motor skill (Hatakenaka et al.,
2007), etc.

Since 2000, fNIRS has been also employed in real-world
activities realized in VR environment for evaluating the PFC
activation during the simulation of different hand-related
demanding/fatiguing activities, like airplane piloting (Ayaz
et al., 2012a; Durantin et al., 2014; Gateau et al., 2015),
car driving (Tomioka et al., 2009), grasping (Holper et al.,
2010, 2012), natural orifice transluminal endoscopic surgery
(James et al., 2011), etc. Interestingly, the inferior frontal
gyrus (Ayaz et al., 2012a) and the dorsolateral PFC (DLPFC;
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Durantin et al., 2014; Gateau et al., 2015) were found activated
during airplane piloting tasks. The bilateral ventrolateral PFC
(VLPFC) was found activated during natural orifice transluminal
endoscopic surgery when the simulation required a more
difficult navigation path through an orifice (James et al.,
2011).

It is well-known that the PFC, and in particular the VLPFC
and DLPFC, are involved in the control of the motor actions. On
one hand, it has been demonstrated that the VLPFC is involved in
visuo-motor learning tasks (Yamagata et al., 2012; Hoshi, 2013).
Moreover the reflexive orienting seems to be controlled by the
right VLPFC (Corbetta et al., 2008), whereas the goal relevant
information for the action control seems to be maintained and
retrieved by the left VLPFC (Badre and Wagner, 2007; Souza
et al., 2009). On the other hand, the DLPFC apparently plays a
specific role in learning by trial and error (Halsband and Lange,
2006). FurthermoreDLPFC, for its involvement inmediating and
monitoring of actions, is considered to be the major anatomical
correlate of the central executive (Baddeley, 2003; Gateau et al.,
2015). Therefore, the VLPFC and the DLPFC are involved in
associating visual information with motor responses (Halsband
and Lange, 2006; Tanji and Hoshi, 2008).

The PFC plays not only a crucial role in single cognitive
or motor tasks, but also in combined sensorimotor-cognitive
task (i.e., dual-task; Gentili et al., 2013; Mandrick et al.,
2013; Mirelman et al., 2014). Several fNIRS studies have
reported that, in comparison to a single task, the attention-
demanding dual-tasks (e.g., walking while talking, calculating
while stepping, balancing a ball while walking, etc.) induced
an increase of the PFC activation due to a greater cognitive
load (Holtzer et al., 2011). For instance, Mandrick et al. (2013)
investigated how an additional mental load (i.e., arithmetic
task) during isometric grasping affects the PFC activation. The
performance of the mental task was impaired when the motor
task difficulty increased, suggesting that performing a dual-task
requires more attentional resources than performing a single
task.

In the last few years, the use of VR interfaces, driven by
natural hand movements for remote control, is growing-up
thanks to the development of innovative optical 3-dimensional
(3D) systems for gesture recognition (Erden and Çetin, 2014).
The key advantage of gesture recognition technology is that
no physical contact is required between the human body
and the gesture recognition device, so that the subjects can
move freely. One of the most recent optical 3D sensors,
based on stereo-vision, is the LEAP Motion Controllerr

(LEAP). The LEAP is a high-resolution 3D hand-sensing
device, which allows the freehand natural interaction crucial
for the implementation of real-time, realistic VR systems.
This low cost non-bulky device has an extremely accurate
reactivity (Bachmann et al., 2014). In addition, the 3D rendering
technologies, including state of the art displays and visors
specifically designed for VR (Dodgson, 2013; Desai et al.,
2014; Nan et al., 2014), have permitted a large development
of VR techniques. In particular, their high visual/rendering
fidelity and an immersive wide field of view enables the
sensation of presence and the feeling being actually inside

the virtual scene with the possibility to have multi-sensorial
feedbacks.

The aim of the present study was to investigate non-
invasively by fNIRS the PFC responses in healthy subjects while
performing a complex hand-controlled task (HCT) in a VR
environment. This task emulated the interaction with a real,
remotely-driven, system operating into a critical environment.
The hand movements were captured by the LEAP, a high spatial
and temporal resolution 3D hand-sensing device. The subjects
were asked to move their right hand/forearm with the purpose
of guiding a virtual ball (VB) over a virtual route (VROU).
The VROU can be easily and purposely designed to replicate
a real track that an operator should travel to carry on a
given challenging operation. The HCT-related PFC response
was monitored non-invasively by a 20-channel fNIRS system.
The HCT involved the control of the hand/forearm movement,
and the active interaction with the virtual environment through
the hand/forearm motor actions. The attentional resources
allocation and the integration of different executive functions
(e.g., coordination, planning, decision making, etc.) are needed
in performing the HCT. Taking into account the well-
known role played by the VLPFC and the DLPFC in motor
action preparation and in the allocation of the attentional
resources to generate goals from current situations, it was
hypothesized that either VLPFC or DLPFC or both of them
would be activated bilaterally in subjects while performing
the HCT.

MATERIALS AND METHODS

Participants
Fifteen University students (all males, age: 26.6 ± 2.9 years;
level of education: 14.4 ± 2.1 years), without neurological
or psychiatric illness and normal or corrected-to-normal
vision were recruited in the study. In order to prevent
any gender differences in emotional responses (Matud,
2004) and in visuo-motor abilities (Wang et al., 2015), only
men were enrolled. To exclude left-handed subjects, all
participants completed the Edinburgh Handedness Inventory
assessing hand dominance. Following a full explanation
of the protocol and its non-invasiveness, and prior to the
starting of the experimental procedure, a written informed
consent was obtained from each participant. All procedures
were conducted in accordance with the Declaration of
Helsinki and approved by the University Ethics Committee.

Experimental Setup
Hand-Controlled Task (HCT)
A VR HCT was implemented by integrating a LEAP Motion
Controllerr with a real-time 3D engine. The LEAP provides
both a 3D hand model and real-time hand tracking information
for enabling subjects to transpose their hand movements
within the virtual 3D HCT (Figure 1). The LEAP is a
small (1.3 cm × 3.2 cm × 8 cm) 3D sensor which
uses two internal infra-red (IR) cameras and three IR
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FIGURE 1 | Experimental setting for the execution of a virtual reality
(VR) hand-controlled task (HCT). The upper large image shows the subject
with the functional near-infrared spectroscopy (fNIRS) probe holder while
sitting in front of a PC, and the positioning of the LEAP motion controller
below the operator hand. The four columns of small images show (from left to
right): the real position of the subject hand/forearm (first column); the
corresponding hand/forearm virtual model (second column); the influence of
the commands on the virtual ball (VB) during the HCT (third column); and the
corresponding effects on a real, remote, spider-like rover (fourth column, in
dashed line to indicate that the presence of the rover is just supposed). The
yellow arrow indicates the direction of the guided VB and the red arrow
indicates the corresponding effect on the rover. The length of the arrows
indicates the force amplitude impressed by the operator. Note that, during the
HCT, the hand/forearm virtual model (second column) was not shown to the
operator and the visualization of the arrows (third column) was disabled.

light emitting diodes to detect objects within a dome of
approximately 0.22 m3 above it. Its spatial and temporal
resolution is 1 mm and 15 ms, respectively. The LEAP,
connected to a computer via a USB cable, is designed
specifically to detect, in real-time, hand and finger motions
and gestures, such as pinching fingers, closing hand, tapping,
etc. This device, positioned under the palm center of the
right hand at a distance of about 25 cm (Figure 1),
was utilized to: (1) capture the movements of the hand;
(2) associate hand movements to a virtual hand model; and

(3) translate the movements of the virtual hand model to a
set of commands in order to drive a VB within a virtual
environment.

In the present study, the adopted virtual environment was
aimed at simulating the driving action of a spider-like robot
similar to the one developed by the National Aeronautics
and Space Administration (NASA). Due to its high stability,
equilibrium and ability to change quickly direction, this robot
has been proven to be adapted for moving in very rough
environments and in environments designed for humans (to
go up and down stairs). The movements of the ball, in fact,
simulated fairly those ones performed by the considered robot
(lateral, ahead, behind, and stop). The aim of this adopted
HCT was to move the VB over a VROU of a fixed length
(42 m; Figure 2), trying to travel as long as possible the
distance in a fixed time without falling (2 min). Either in
the case of VB falling or in the case of accomplishment of
a VROU in advance, subjects were requested to restart the
VROU from the beginning. To calculate the whole distance
traveled by each subject over the HCT, the completed VROU
and the distance traveled until the task end were considered. The
VROUs with failure were not considered. The VROU adopted
in this study (Figure 2) was purposely designed to reproduce
a narrow road including some critical points (i.e., stairs, turns,
a slippery part, and climbs). The Torque 3D Engine1, a cross-
platform high performance real-time 3D engine, was used both
for the editing and the rendering of the whole virtual 3D
HCT. A controllable VB and a 3D VROU were created by
using a customized version of Marble Motion, a well-known
game2. In particular, the whole native source code was rewritten
and enriched in order to fulfill the requirements of the task:
(1) a time driven version of the task in which both the start
and the end of the HCT were established by a fixed time
interval; (2) the possibility of storing information related to
the operator-task interaction process (including the number
of times in which the VB was fallen out of the VROU, the
position of the VB falls over the VROU, the distance traveled
by the VB in the given time). The software allowed also the
calculation of some dynamic parameters (followed trajectory,
VB speed and acceleration). These last parameters have been
considered to calculate the VB speed along the VROU, to get
information about resting periods occurred during the HCT,
and to evaluate the subject skills while executing the HCT.
Moreover, to increase the subject’s concentration andmotivation
during the HCT, the whole technical items, including elements
of the VROU (textures and materials), were redefined utilizing
some predefined items of the 3D engine editor (Torque 3D
Editor3.

The subject was asked to place his right forearm on a
fixed and firm support in order to allow the hand capture
(Figure 1). This support ensured the maintenance of the correct
position of the forearm, and consequently of the hand, during
the execution of the HCT. The task started with a stationary

1http://www.garagegames.com/products/torque-3d
2http://mit.garagegames.com/MarbleMotion-1-0b.zip
3http://www.garagegames.com/products/torque-3d/overview/editor
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FIGURE 2 | A perspective view of the designed virtual route (VROU)
which reproduces a narrow road including some critical points.
1: stairs; 2: turns; 3: slippery part; 4: climbs; and 5: sequential turns.

VB placed at the beginning of the VROU. The subject had
to maintain his right hand opened over the LEAP device by
keeping his forearm on the support with the center of the
palm perpendicular to the center of the device and with all
the five fingers extended (Figure 1). At the beginning of the
HCT, the subject had to guide the VB over the VROU by
using four commands (Figure 1). The first command (hand
flexion) made the VB to proceed forward; the second command
(hand extension) made the VB to decrease the speed (up to
stop the VB) and to proceed backward; the third and the fourth
commands (counter clockwise and clockwise rotations of the
wrist) made the VB to move toward left or right, respectively
(a combined use of the hand flexion/extension movements or
the rotation of the wrist made the VB to stop). These hand
movements had a real-time proportional impact on the VB.More
specifically, the command chosen by the subject transmitted the
direction and the ‘‘force’’ to the VB (e.g., a low hand downward
flexion corresponded to a low ‘‘force’’ application to the VB
in the forward direction), especially when the VB speed was
depending on the inclination degree of the downward flexion
and the time during which the hand was maintained at the same
position. Thus, the HCT was purposely designed to combine
the four main commands and when the subject assumed a
pose of his hand halfway between two commands, the system
merged both directions and ‘‘force’’ amplitude. In this way, the
subject had the feeling to guide the VB without restrictions or
constraints.

The effective range of the LEAP tracking system is
limited to roughly 60 cm due to the low near infrared
light intensity. In this study, the distance between the fNIRS
head probe and the LEAP was always greater than 60 cm.
Therefore, the LEAP should have not interfered with the
fNIRS measurements. Interestingly, several fNIRS studies in
combination with other near infrared based tracking systems
such as Kinect or eye trackers have been published (Kita
et al., 2010; Sukal-Moulton et al., 2014; Urakawa et al.,
2015). Although those systems have utilized more powerful
light emitters (than the LEAP), and the light emitters
have been directly pointed toward the fNIRS head probe,
the potential interference with the fNIRS data was not
mentioned.

fNIRS Instrumentation and Data Processing
A two-wavelength continuous wave 20-channel fNIRS system
(Oxymon Mk III, Artinis Medical Systems, Netherlands) was
utilized to map non-invasively the changes in O2Hb and HHb
over the bilateral PFC. The details of this instrumentation
have been previously reported (Basso Moro et al., 2013). The
O2Hb/HHb data from the 20 channels were acquired at 10 Hz.
The O2Hb/HHb concentration changes (expressed in ∆µM),
obtained by using the modified Beer-Lambert law and the
age-dependent differential pathlenght factor (4.99 + 0.067 ×
Age0.814) were displayed in real-time on a PC monitor. Eight
optical fiber bundles (length: 3.15 m; diameter: 4.5 mm) were
utilized to transport the light to the left and the right PFC
(four for each hemisphere), whereas ten optical fiber bundles
of the same size (five for each hemisphere) were utilized to
collect the light emerging from the PFC. The illuminating
and collecting bundles were assembled into a flexible probe
holder, consisting of two mirror-like units (9.7 cm × 8.9 cm
each) held together by three flexible junctions. In 16 out
of the 20 channels the illuminator-detector distance was
set at 3.5 cm, while in the remaining four channels the
illuminator-detector distance was set at 1 cm (short-separation
channels or SS channels). In the 16 channels, the measurement
points were defined as the midpoint of the corresponding
illuminator-detector pairs. The probe holder was placed over
the subject head by a Velcro brand fastener in order to
get a stable optical contact with the scalp (Figure 1). In
particular, the two frontopolar fibers bundles, collecting the
light at the bottom of the holder, were centered (according
to the International 10–20 system for the EEG electrode
placement) on the Fp1 and Fp2 locations for the left and
right hemisphere, respectively. The pressure created by the
fastener was sufficient to induce a partial transient blockage
of the skin circulation during the fNIRS study. The adopted
procedure would suggest that a consistent reduction of forehead
skin blood flow was occurring as a result of this approach.
The Montreal Neurological Institute coordinates of the optodes
and the relative 16 measurement points were calculated using
a probe placement method. For the details of this procedure
see Basso Moro et al. (2013). The measurement points 1, 2, 3,
9, 10, 11 corresponded to the DLPFC, which includes part of
the Brodmann’s Area (BA) 46; the measurement points 5, 6,
13, 14 corresponded to the frontopolar cortex, which includes
part of the BA 10; and measurement points 4, 7, 8, 12, 15,
16 corresponded to the VLPFC, which includes part of the
BA 45.

During the data collection procedure, the fNIRS signal
quality as well as the absence of movement artifacts were
verified on the PC monitor. The subject’s heart rate (HR)
was monitored by a pulse oximeter (N-600, Nellcor, Puritan
Bennett, St. Louis, MO, USA) with the sensor clipped to the
index finger of the left hand. The Homer2 NIRS processing
package4 was employed to analyze the data. Raw intensity
data in each channel were converted into optical density
changes (OD). Channels showing low intensity values were

4http://www.nmr.mgh.harvard.edu/PMI/resources/homer2/home.htm
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excluded from further analyses. The Wavelet motion correction
method was employed to correct motion artifacts. Based
on the method developed by Molavi and Dumont (2012),
it sets to zero all wavelet detail coefficients exceeding a
predefined threshold (iqr = 0.1). The modified Beer-Lambert
law was then applied to convert the corrected OD data
into concentration changes. A General Linear Model (GLM)
approach (hmrDeconvHRF_DriftSS) was utilized to recover
the mean hemodynamic response function (HRF) for each
subject and channel. The approach, consisting in adding
the SS channel signal with the highest correlation with the
analyzed standard channel signal in the design matrix, was
able to reduce the contribution of the mean arterial blood
pressure changes in task-evoked fNIRS signal. The less restrictive
set of Gaussian functions with standard deviation (SD) of
3 s and with their means separated by 2 s was chosen
as temporal basis functions (ranging between −20 before
and 210 s after the starting of the HCT; Gagnon et al.,
2011).

Experimental Design
A familiarization/training phase was carried out 3 days before
the study. The subjects were informed about the procedures
and familiarized with both the experimental setting and the
HCT. During this phase, the fNIRS probe holder was placed
over the head of the subjects who were trained to stay
as firm as possible to avoid movement artifacts in fNIRS
measurement during the HCT execution. After evaluating the
joint mobility of their hand and wrist, the subjects were
requested to pay attention to the presented four commands
to be used for guiding properly the VB (hand flexion,
hand extension, counter clockwise and clockwise rotations
of the wrist). Later, the subjects were asked to place their
right hand opened over the LEAP in order to verify the
correctness of the estimated hand virtual model. Once this
phase was completed, the subjects were asked to guide a
VB over a VROU. In order to avoid a potential learning
effect, a different VROU was used in this training phase. For
each subject, the training phase was considered completed
when he demonstrated his ability to guide properly the VB.
After 3 days, at the same time of the training phase, the
subjects participated in the study. A monetary reward was not
given.

This study was carried out in a quiet and dimly lit room.
The subject was asked to sit on a comfortable high-backed
chair in front of a 17′′ PC monitor, and to keep his forearm
on the firm support with the right hand opened over the
LEAP (see ‘‘The Hand-Controlled Task’’ Section; Figure 1).
The HCT protocol lasted 6 min. Specifically, the protocol
started with a 3 min baseline, during which subjects were
asked to relax (observing a white fixation cross presented on
a black screen) in order to get stable fNIRS signals. Then,
a stationary VB came into view on the PC monitor, and
a visual instruction informed the subjects that the 2 min
HCT was starting. During the HCT, the subject had to guide
the VB over the VROU through the four hand movements
(see ‘‘The Hand-Controlled Task’’ Section). When the subject

failed in guiding the VB over the VROU or the subject completed
the VROU in less than 2 min, the VB was repositioned at
the VROU starting point, and the route restarted. At the end
of the HCT execution, there was a recovery period (1 min),
in which the subject was requested to relax while observing
a white fixation cross presented on a black screen. In order
to evaluate the potential ‘‘state anxiety’’ provoked by HCT,
all the subjects completed the 20-items of the State Trait
Anxiety Inventory Form Y-1 (STAI) before and after the
protocol.

Data Analysis and Statistics
The integral values of the O2Hb/HHb (INTO2Hb/HHb) changes
of the HRFs were calculated from the beginning (at 0 s) until
the end of the HCT (at 120 s), for each measurement point
and subject, and were used as metric for the following statistical
analysis. The mean values of the HR changes (analyzed as
percentage of control) were calculated from the beginning (at
0 s) until the end of the HCT (at 120 s). Both the INTO2Hb/HHb
changes and the HR mean values were corrected for the baseline
periods, calculated over the last 20 s before the starting of the
HCT. The median of the values of the distance traveled by the
guided VBwas calculated to subdivide the subjects in two groups:
best performers (above themedian) and worst performers (below
the median). The subject of the median value was not included in
any group. Student’s t-test was conducted in order to evaluate
the presence of any difference, in terms of the distance traveled
by the guided VB between the worst and best performers.

All data were examined for normality and sphericity using
Shapiro–Wilk and Mauchly’s Sphericity tests, respectively. Each
level of the independent variables followed a normal or
approximately normal distribution in all the dependent variables
(O2Hb, HHb and HR), permitting the use of parametric
statistical analyses. When the sphericity was not assumed, the
Greenhouse-Geisser correction was utilized.

In order to investigate the PFC activation in response to
HCT, the two-way analysis of variance (ANOVA) was applied
to INTO2Hb/HHb changes. The ANOVA included two factors:
measurement point (16 levels) and cortical hemodynamic
response (CHR; i.e., corrected task period vs. zero; 2 levels).
To control for multiple significance tests, the Fisher’s least
significant difference adjustment was applied. A series of one-
way ANOVAs was performed for the HCT in order to evaluate
the influence of the CHR (2 levels) on the INTO2Hb/HHb
changes. In particular, the one-way series of ANOVAs were
performed only for the INTO2Hb/HHb changes related to the
measurement points 7, 8, 15 and 16, chosen as descriptive
measurement points of the hemodynamic response. For the
HCT, the Pearson’s correlation coefficient was calculated in
order to evaluate the relation between the distance traveled
by the guided VB and the INTO2Hb/HHb changes in the 7,
8, 15 and 16 measurement points. A one-way ANOVA was
performed for the HCT in order to evaluate the influence
of the CHR (2 levels) on the HR changes. The Pearson’s
correlation coefficient was also calculated for evaluating the
relation between the distance traveled by the guided VB and the
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HR. Student’s t-tests were conducted in order to evaluate the
presence of any difference in: (1) the anxiety state before and
after the protocol; (2) INTO2Hb/HHb changes in the 7, 8, 15 and
16 measurement points between the worst performers and best
performers; and (3) the distance traveled by the guided VB of
worst and best performers.

All statistical analyses were conducted with SPSS 20.0 (SPSS
Inc., Chicago, IL, USA). Data were expressed as mean± SD. The
criterion for significance was p < 0.05.

RESULTS

The behavioral data analysis revealed the following main results.
There was no significant difference (t = 0.64, p = 0.53) in
the anxiety state before (28.8 ± 6.4) and after the protocol
(28.9 ± 5.8). The distance traveled by the guided VB in
the 15 subjects was: 21, 26, 36, 43, 51, 53, 56, 58, 61, 83,
88, 96, 101, 132, and 148 m, respectively. The median value
was 58 m. The mean distance was 70.2 ± 37.2 m. The less
skilled subjects failed several times in guiding the VB over
the VROU. Therefore, the distance traveled by their guided
VB was shorter. Indeed, the distance traveled by the guided
VB was significantly different (t = −4.89, p < 0.001) between
the worst performers (40.9 ± 13.7 m) and best performers
(101.3 ± 29.7 m). The fNIRS data evidenced a heterogeneous
O2Hb/HHb response over the mapped cortical area in the
subjects while performing the HCT (Figure 3). In particular,
since the beginning of the HCT, a progressive O2Hb increase
and a concomitant progressive HHb decrease were observed
in the measurement points 7, 8, 15 and 16, corresponding to
the VLPFC, which includes part of the BA 45. About 15 s
after the end of the HCT, a gradual return of O2Hb/HHb to
the corresponding baseline values, was observed. This delay is
reasonable considering that the cerebral blood flow increase lasts
over the period of the HCT. The statistical analysis revealed
the following main results. The two-way ANOVA analysis,
carried out on the INTO2Hb changes, revealed a significant
main effect of: (1) the measurement point (F(2.67,37.47) = 9.52,
p < 0.001), and (2) the measurement point ∗ CHR interaction
(F(2.67,37.47) = 9.52, p < 0.001). The two-way ANOVA analysis,
carried out on the INTHHb changes, revealed a significant
main effect of the: (1) measurement point (F(2.83,39.67) = 15.70,
p < 0.001); (2) CHR (F(1.00,14.00) = 13.83, p = 0.002); and
(3) measurement point ∗ CHR interaction (F(2.83,39.67) = 15.70,
p < 0.001). The two-way ANOVAs, carried out on the
INTO2Hb/HHb changes, revealed themain significant differences
between the measurement points 7, 8, 15, 16 and all the others
(ps < 0.05). The series of one-way ANOVAs, carried out on
the INTO2Hb changes of the measurement points 7, 8, 15, and
16, revealed a significant activation in all the measurement
points (F(1,14) = 5.32, p = 0.037; F(1,14) = 23.79, p < 0.001;
F(1,4) = 7.33, p = 0.017; F(1,14) = 16.89, p = 0.001).The series
of one-way ANOVAs carried out on the INTHHb changes of
the measurement points 7, 8, 15, and 16 revealed a significant
cortical activation in all the measurement points (F(1,14) = 41.61,
p < 0.001; F(1,14) = 58.57, p < 0.001; F(1,14) = 19.12, p = 0.001;
F(1,14) = 26.23, p < 0.001). In the HCT, no correlation was

found between the distance traveled by the guided VB and
the corresponding INTO2Hb/HHb changes (ps > 0.05). During
the HCT, no differences (ps > 0.05) were found in the
INTO2Hb/HHb changes in the 7, 8, 15 and 16 measurement
points between the worst performers and best performers. The
one-way ANOVA analysis for the HR mean values revealed
a significant main effect of the CHR (F(2.88,40.40) = 8.06,
p < 0.001). However, the mean values of the HR changes
during the execution of the HCT increased only of about 15%
with respect to the mean value of the baseline. No correlation
was found between the HR and the distance traveled by the
guided VB.

DISCUSSION

In this feasibility study, the bilateral PFC was investigated
by a multi-channel fNIRS system while subjects performed a
demanding VR HCT, a remotely-driven operation simulated
by a high-resolution and low-cost 3D hand-sensing device.
The observed involvement of the bilateral VLPFC supports the
formulated hypothesis.

The results of the present study have indicated a consistent
bilateral VLPFC activation (measured as O2Hb increase and a
concomitant HHb decrease) in response to the execution of the
VR HCT (Figure 3). It has been reported that VLPFC is involved
in associating visual information with motor responses (Tanji
and Hoshi, 2008). In fact, the execution of the adopted HCT
requires the combination of the contextual visual information
in order to coordinate the hand/forearm movements for guiding
the VB over the VROU. Although the tested subjects had the
same age and level of education (University students), their skills
in performing the HCT were different. Indeed, the distance
traveled by the VB was heterogeneous: the distance traveled
by the VB guided by the best performer was about seven
times longer than the distance traveled by the VB guided by
the worst performer. These results clearly confirm that the
designed VROU (Figure 2) was really demanding. The diverse
skills of the subjects could not be attributable to emotional
factors, because no difference between anxiety state before
and after the HCT, and no correlation between the distance
traveled by the guided VB and the HR of the subjects were
found. However, a bilateral VLPFC activation was observed
indiscriminately in all the tested subjects, including the ones
who never completed at least one VROU. Therefore, the present
fNIRS data did not provide the possibility to discriminate
the subjects according to their performance. This could be
partly explained by the fact that other cortical areas were not
investigated in this study and that subcortical areas and/or
cortical-subcortical network are supposed to be responsible of
the differences between the best and the worst performers.
As well known, PFC is involved in the executive functions
(e.g., attention, coordination, planning, decision making, etc.),
the same required to perform the HCT regardless of the
performer’s skills. The combined use of a fNIRS-EEG system has
evidenced a greater involvement of the deeper structures (e.g.,
hippocampus) in the ‘‘good performers group’’ compared with
the ‘‘bad performers group’’ while executing a spatial navigation
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FIGURE 3 | Grand average of O2Hb (red line) and HHb (blue line) changes observed over the bilateral PFC [16 measurement points of the right (from
1–8) and left (from 9–16) hemisphere] in response to the VR HCT. The corresponding numbers in the brackets refer to the associated Brodmann’s Area (BA).
The vertical solid lines limit the duration of the task execution. The major cortical activation was observed in the bilateral VLPFC (measurement points 7, 8, 15, and
16). N = 15; means ± SD.

task (Kober et al., 2013). Moreover, it has been reported that a
complex sensorimotor-cognitive task, such as the adopted HCT,
would require the involvement of different cortical-subcortical
networks including: PFC, spinal cord, brainstem, cerebellum,
basal ganglia, and motor cortex (Takakusaki, 2008). This
suggests that the degree of the cognitive demand (measured by
fNIRS), required for executing the HCT, is not associated with
the subjects performance (measured as the distance traveled
by the guided VB). This in part confirms the results of
other VR fNIRS studies in which a dissociation between the
mental work demanded to execute a complex task and the
performance output was observed (Ayaz et al., 2012a; Boyer
et al., 2015). In the present study, this dissociation could be
also explained by the fact that tested subjects had only a short
familiarization/training phase. A higher activation of the PFC
was usually observed in non-expert subjects while executing a
novel VR task compared to expert (Ayaz et al., 2012b). The non-
expertise requires the employment of more attentional resources
to perform a novel task. On the contrary, the expertise implies
an increase of automaticity and does not require the same
high level of attention and control (Ayaz et al., 2012b). The
VLPFC activation, observed in the present study in non-expert
subjects while performing the novel VR HCT, suggests that
some of the well-known executive functions (e.g., attention,
coordination, planning, decision making, etc.) are required
in the learning phase. Then, it could be supposed that the

amplitude of the observed VLPFC activation would become
lower or even disappear in subjects very familiar with the VR
HCT.

Several studies evidenced the advantages of using fNIRS
technology for investigating non-invasively cortical responses
in subjects while performing different VR tasks; the most
representative studies are listed in Table 1. The common
relevant finding is represented by the activation of different
regions of the frontal cortex and the PFC. For example, the
involvement of the medial PFC (mPFC) and the frontopolar
cortex (Ayaz et al., 2012b) and the inferior frontal gyrus
(Harrison et al., 2014) was observed in subjects while executing
air traffic control tasks; an activation of the overall frontal
cortex was observed in subjects while performing a train piloting
task (Kojima et al., 2005). Very recently, the usefulness of
fNIRS as a tool to conduct driving research has been nicely
reviewed (Liu et al., 2015). For example, an activation of the
right PFC (Tomioka et al., 2009) and an activation of the
overall PFC (Tsunashima and Yanagisawa, 2009) were found
in subjects while executing different simulated car driving
tasks. However, in all of the above reported studies, no
activation of the VLPFC, and in particular of the BA 45, was
found.

The combined use of fNIRS-EEG would be an ideal tool
for carrying out studies in the field of neuroergonomics.
The pros of lightweight, high-density EEG and fNIRS recording
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TABLE 1 | Selected fNIRS studies about the effects of VR tasks on different cortical areas.

VR Tasks Subjects Age Cortical Main
(patients) (years) D Ch areas findings Reference

Air traffic control 24 24−55 D1 16 FP, PFC Medial FP/PFC activated Ayaz et al. (2012b)
Air traffic control 12 NA D1 16 PFC PFC activated Harrison et al. (2014)
Airplane piloting 9 36 ± 4 D7 1 FC FC differently activated by task

difficulty
Takeuchi (2000)

Airplane piloting 13 21−28 D1 16 FP, PFC IFG differently activated by
practice

Ayaz et al. (2012a)

Airplane piloting 12 25 ± 5 D1 16 PFC Correlation DLPFC activation/
performance

Durantin et al. (2014)

Airplane piloting 19 27 ± 6 D1 16 FP, PFC DLPFC activated bilaterally Gateau et al. (2015)
Balancing (swing) 16 29 ± 5 D2 8 PFC PFC activated bilaterally Basso Moro et al. (2014)
Balancing (tilt board) 22 26 ± 4 D2 8 PFC PFC activated bilaterally Ferrari et al. (2014)
Balancing (video game) 9 18−42 D3 32 FC, MC, SC, TC STG activated Karim et al. (2012)
Boxing (video game) 20 18−40 D4 46 ATC, SMA ATC and SMA differently

activated
Kim et al. (2015)

Car driving 9 NA D5 42 FC FC less activated during ACC Tsunashima and Yanagisawa (2009)
Car driving 14 (12 AD) NA D4 52 PFC PFC less activated in AD Tomioka et al. (2009)
Dancing 14 22 ± 1 D5 22 (L)PFC, (L)TC Training-dependent PFC

activation
Ono et al. (2015)

Dancing 26 NA D6 22 (L)PFC, (L)TC MTG activated Noah et al. (2015)∗

Grasping 23 NA D8 4 M1, PC PMC, SMA M1, PMC, SMA, PC activated Holper et al. (2010)
Grasping 17 26 ± 4 D8 4 PMC, SMA PMC/SMA differently activated

by trials
Holper et al. (2012)

Lathe operation 7 24−26 D6 45 FC, MC FC and MC activated Hou and Watanuki (2012)
Line bisection 8 28 D9 20 OC, PC OC and PC activated Seraglia et al. (2011)
Line-tracking 2 NA D8 4 PMC PMC activated Brand et al. (2011)
Maze 2 NA D1 16 PFC PFC more activated during BLK Ayaz et al. (2011)
Maze 15 GP 24 ± 1 D4 24 (R)FC, PC activated Kober et al. (2013)∗∗

12 BP 28 ± 1 (R)PC
Missile defense 30 18−31 D9 2 PFC PFC activated Boyer et al. (2015)
Shopping 6 61 ± 16 D10 16 PFC PFC more activated in BD Okahashi et al. (2014)

(10 BD) 23 ± 1
Surgery 29 32 ± 6 D4 24 PFC Lateral PFC more activated in

experts
James et al. (2011)

Surgery 20 29 ± 2 D4 24 OC, PC OC less activated by improved
performance

Leff et al. (2015)

Surgery 7 23−26 D4 24 PC IS activated Miura et al. (2015)
Train driving 2 NA D5 44 FC, OC FC widely activated in manual

condition
Kojima et al. (2005)

Walking (haptic touch on treadmill) 7 (1 CS) 25 ± 9 D4 44 PFC, PMC, SC, SMA PFC and SMA widely/locally
activated

Sangani et al. (2015)

ACC, adaptive cruise control; AD, Alzheimer’s disease; ATC, anterior temporal cortex; BD, brain damage patients; BLK, blocked order; BP, bad performers; Ch, number

of channels; CS, chronic stroke patient; D, Device; D1, Imager 1000 (fNIR Devices, USA); D2, NIRO-200 (Hamamatsu Photonics, Japan); D3, CW6 (TechEn, USA);

D4: ETG-4000 (Hitachi, Japan); D5, OMM-3000 (Shimadzu, Japan); D6, FOIRE-3000 (Shimadzu, Japan); D7, NIRO-500 (Hamamatsu Photonics, Japan); D8, Wireless

prototype (Zurich University, Switzerland); D9, Imagent (ISS, USA); D10, OEG-16 (Spectratech Inc., Japan); DLPFC, dorsolateral prefrontal cortex; FC, frontal cortex; FP,

frontopolar; GP, good performers; IFG, inferior frontal gyrus; IS, intraparietal sulcus; (L), left; M1, primary motor cortex; MC, motor cortex; MTG, middle temporal gyrus;

NA, not available; OC, occipital cortex; PC, parietal cortex; PFC, prefrontal cortex; PMC, premotor cortex; (R), right; SC, somatosensory cortex; SMA, supplemental motor

area; STG, superior temporal gyrus; TC, temporal cortex; VR, virtual reality; ∗fNIRS-fMRI study; ∗∗combined fNIRS-EEG study.

to study natural human cognition have been previously
reviewed (Gramann et al., 2011, 2014). Simultaneous fNIRS-
EEGmeasurements offer complementary functional information
about neuronal activity and hemodynamic changes in order
to provide a wider perspective on different aspects of the
cortical processes. To the best of our knowledge, Kober et al.
(2013) have first compared neuronal responses of good and bad
navigators during a VR spatial navigation task by a combined
fNIRS-EEG system. The commercial fNIRS systems, utilized
either by Kober et al. (2013) or in the present study, are
equipped with fiber optic bundles. The disadvantage of using

fiber optic bundles is that the fibers are often heavy and with a
limited flexibility. Therefore, this kind of fNIRS instrumentation
is not the best choice for studies in the neuroergonomics
field. Since 2009, different battery operated multi-channel
wearable/wireless fNIRS systems have been commercialized
(Scholkmann et al., 2014). A 64-measurement point wireless
fNIRS system was developed and integrated with simultaneous
EEG and electrocardiography (ECG) monitoring in order to
record data up to several days (Zhang et al., 2014). These most
advanced versions of integrated fNIRS-EEG systems represent
a suitable tool for evaluating brain activation in response
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to cognitive tasks executed in normal daily activities. To
make fNIRS technology more suitable for neuroergonomics
studies, in terms of robustness, mobility, user-friendliness and
customization, a very recent and successful effort has been
made to realize a dedicated fNIRS device (von Lühmann et al.,
2015). Further future hardware developments will increase
the production of miniaturized wireless integrated fNIRS-EEG
devices and their use in neuroergonomics. It is noteworthy to
mention that a 16-measurement point wireless fNIRS system
has been recently coupled with transcranial direct current
stimulation (tDCS) in order to investigate the effects of tDCS
on spatial working memory (McKendrick et al., 2015). These
authors have suggested the utility of using the combination of
simultaneous tDCS and fNIRS techniques for future applications
in the field of neuroergonomics: from enhanced/accelerated
learning and training of complex human-machine systems to
optimization of task load for improved safety and productivity.
The neuroergonomics approaches can also provide sensitive
and reliable assessment of mental workload in complex tasks
and naturalistic work settings (Parasuraman, 2011). The mental
workload has been defined as the degree of the effort to be
made by the brain to meet the task demands (Young et al.,
2015). Recently, Peck et al. (2014) have reviewed the use of
fNIRS to measure mental workload in the real world tasks,
and the different approaches for automatic detection of the
workload.

The strengths and the limitations of the fNIRS technique
have been previously discussed in detail (for review, see
Scholkmann et al., 2014). The fNIRS equipment is transportable,
completely safe and non-invasive. These advantages allow for the
investigation of brain activity in natural conditions (e.g., while
sitting on a chair) and during daily life activities (e.g., standing
and/or walking). Therefore, with respect to other functional
neuroimaging methods such as fMRI, fNIRS represents an
useful tool for neuroergonomics research (for review, see Ayaz
et al., 2013; Derosière et al., 2013), for studies in other fields
of neuroscience such as brain-computer interface (for review,
see Naseer and Hong, 2015), human-robot interaction (for
review, see Canning and Scheutz, 2013), and cognitive states
measurements (for review, see Strait and Scheutz, 2014). In
addition, very recently the integration of fNIRS with a wearable
technology, such as Google Glass, has been demonstrated
(Afergan et al., 2015). For an adequate understanding of the
current findings, some limitations should be pointed out: (1) this
study has been conducted in a small sample of healthy young
male adults subjects and the subjective cognitive load was not
tested by NASA Task Load Index; (2) the duration of the
adopted task and the length of the route were relatively short,
hence, the effect of a longer duration of the VR HCT on
the PFC hemodynamic response remains unknown; (3) this

study did not imply a control session for example including/not
including motor task with/without VR; (4) this study did
not contemplate repeated trials on separate days in order to
verify the reproducibility and the potential learning effect of
the HCT; (5) the limited number of measurement points (16)
made possible by the utilized fNIRS system did not allow the
investigation of the supposed connectivity between the PFC and
other cortical areas (e.g., premotor and motor cortices) likely
involved in performing HCT; and (6) this study did not take
into account the impact of the variability of the skull thickness
amongst the 16 measurement points within subject and amongst
subjects. This anatomical variability could be examined by
acquiring structural T1-weighted MRI scans from each subject.

CONCLUSION

The results of the present study confirm the promising
application of fNIRS technology to objectively evaluate
cortical hemodynamic changes occurring in VR environments.
The ongoing development of fNIRS technology, finalized to
deliver more dedicated, sophisticated and wireless devices,
together with the most advanced VR solutions, could provide the
best combined approach for monitoring operators training and
assessing mental work. Future studies could give a contribution
to a better understanding of the cognitive mechanisms
underlying human performance either in expert or non-expert
operators.
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Highly mobile computing devices promise to improve quality of life, productivity,
and performance. Increased situation awareness and reduced mental workload
are two potential means by which this can be accomplished. However, it is
difficult to measure these concepts in the “wild”. We employed ultra-portable
battery operated and wireless functional near infrared spectroscopy (fNIRS) to
non-invasively measure hemodynamic changes in the brain’s Prefrontal cortex
(PFC). Measurements were taken during navigation of a college campus with
either a hand-held display, or an Augmented reality wearable display (ARWD).
Hemodynamic measures were also paired with secondary tasks of visual
perception and auditory working memory to provide behavioral assessment of
situation awareness and mental workload. Navigating with an augmented reality
wearable display produced the least workload during the auditory working
memory task, and a trend for improved situation awareness in our measures
of prefrontal hemodynamics. The hemodynamics associated with errors were
also different between the two devices. Errors with an augmented reality
wearable display were associated with increased prefrontal activity and the
opposite was observed for the hand-held display. This suggests that the cognitive
mechanisms underlying errors between the two devices differ. These findings
show fNIRS is a valuable tool for assessing new technology in ecologically valid
settings and that ARWDs offer benefits with regards to mental workload while
navigating, and potentially superior situation awareness with improved display
design.

Keywords: fNIRS, situation awareness, mental workload, spatial navigation, working memory, head-mounted
display, neuroergonomics
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INTRODUCTION

The availability and use of highly mobile computing
devices is increasing. Examples include fitness trackers,
smartwatches, and smartphones; however, there are also
devices such as Google Glass, Occulus Rift and Microsoft
Hololens which promise not just mobile computing but
the coexistence of real world objects with supplementary
computer generated objects (i.e., augmented reality; Azuma
et al., 2001). Augmented reality wearable displays (ARWD)
are already being put into service by the National Aeronautics
and Space Administration (NASA). It is believed that these
devices will help astronauts on the international space station
improve their training and performance in highly demanding
situations (Schierholz et al., 2015). While it is clear that
having a hands-free display can improve physical ergonomics,
especially when both hands are required for adequate task
execution, ARWDs could also enhance cognitive ergonomics
through augmentation of mental workload and situation
awareness.

Ideal task performance is dependent on optimizing mental
workload. Mental workload refers to the limited information
processing capacity of the brain that is demanded by a
task (Parasuraman et al., 2008). When demands exceed the
brains maximum information processing capacity, further
increases in mental workload lead to ever increasing decrements
in performance (Hancock and Parasuraman, 1992). This can
be realized as incorrect responses, missed responses or even
the ‘‘shedding’’ of secondary tasks (Wickens et al., 2013).
ARWDs have the potential to reduce mental workload by
reducing the distance and time between visual fixations.
Reducing fixation time and distance could reduce the amount
of information needed to be held in working memory.
For example, during simulated emergency braking, drivers
using Google Glass to send text messages experienced less
mental workload relative to drivers using a smartphone
(Sawyer et al., 2014). ARWDs have also been used to
improve operator comfort and procedure efficiency during
cardiac surgery (Opolski et al., 2015). An ARWD allowed
cardiologists to view reconstructed tomographic images while
performing catheterization, improving landmark visualization
and verification of surgical tools.

Situation awareness, the perception of critical information
(stage 1), comprehension of its meaning (stage 2), and the
projection of this information into the future (stage 3; Endsley,
1995a) is also critical for complex task performance (Wickens
et al., 2013). High situation awareness, while not guaranteeing
successful performance, increases the probability of successful
performance. Like mental workload, situation awareness is
dependent on working memory and highly dependent on
attention (Endsley, 1995a). In this regard ARWDs have the
potential to both enhance and degrade situation awareness.
ARWDs may enhance situation awareness by freeing up working
memory capacity. Conversely, ARWDS may reduce situation
awareness from degradation of divided attention. Divided
attention relates to the optimal allocation of attention to different
inputs by splitting or rapidly shifting the focus of attention

(Parasuraman, 1998). The compellingness of ARWD symbology
is more likely to exogenously capture the focus of attention
and hold it (Thomas and Wickens, 2001, 2004). This results in
increased focused attention to display elements, and reduced
or eliminated attention to task relevant information outside
of the ARWD display. This phenomena of increased focused
attention to a display coinciding with decreased divided attention
to an external scene is referred to as cognitive tunneling
(Fischer et al., 1980). Cognitive tunneling is often implicated
in aviation studies where a failure to perceive and act on an
unexpected event reduces performance (Crawford and Neal,
2006).

Measurement of situation awareness and mental workload
in ARWDs is problematic. Traditionally situation awareness
and workload are assessed with questionnaires administered
during artificial pauses (Situation Awareness Global Assessment
Technique (SAGAT); Endsley, 1995b), in task probes (Situation
Present Assessment Measure (SPAM); Durso and Dattel, 2004),
or upon task completion NASA Task Load Index (TLX;
Hart and Staveland, 1988). Within dynamic environments
such assessments can be intrusive, thereby reducing ecological
validity, or underrepresenting time critical signals, such as
abrupt changes in workload. Workload can also be objectively
assessed via dual-task secondary task decrements. In the dual
task paradigm, interference on a cognitive process is anticipated
between the primary task and the secondary task. This results in
a decrement in performance on the secondary task, due primarily
to the mental resource demands of the secondary task exceeding
the mental resources that can be allocated. This secondary task
performance decrement can be used as an index of the cognitive
workload required of the primary task (Gopher, 1993; Wickens,
2008; Wickens et al., 2013). However, dual-task decrements have
been criticized with regard to circularity; as performance varies
with resource allocation, but resources are only inferred from
performance (Navon, 1984).

An objective, non-invasive, motion artifact robust and
portable method is needed to measure situation awareness
and mental workload in ARWDs. Functional near infrared
spectroscopy (fNIRS) provides an attractive method for
continuous monitoring of brain dynamics in both seated and
mobile participants (Ayaz et al., 2013). fNIRS is safe, highly
portable, user-friendly and relatively inexpensive, with rapid
application times and near-zero run-time costs (Villringer
and Chance, 1997; Ayaz et al., 2012a; Ferrari and Quaresima,
2012). fNIRS uses specific wavelengths of light to provide
measures of cerebral oxygenated and deoxygenated hemoglobin
that are correlated with the blood-oxygen-level dependent
(BOLD) contrast used in functional magnetic resonance imaging
(fMRI; Cui et al., 2011; Sato et al., 2013). Importantly fNIRS
measurements are objective and non-invasive to the mental task
being measured. fNIRS for mobile neural measurement is also
relatively robust to motion artifacts and allows wearable sensors
to be physically untethered to the acquisition module (Ayaz
et al., 2013; McKendrick et al., 2015). Mobile fNIRS allows for a
freedom of movement not previously possible in neuroimaging,
providing the opportunity to monitor mental workload and
situation awareness in dynamic mobile tasks.
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FIGURE 1 | Map depicting the four routes followed by participants. Exact routes depicted in red, white arrows indicate walking direction. Image © 2015
DigitalGlobe.

Hemodynamic indexes of mental workload as used by fNIRS
and fMRI assume that activity related metabolic changes in
specific functional brain regions are useful indexes of mental
workload. Prefrontal cortex (PFC) is commonly monitored due
to its functional relationship with working memory (Braver
et al., 1997; Cohen et al., 1997), decision making (Ramnani
and Owen, 2004; Figner et al., 2010), and executive control
(Badre et al., 2005; Badre and Wagner, 2007). A growing body
of research has found fNIRS hemodynamic measurements of
PFC to be a useful index of mental workload in a number of
complex cognitive and real world tasks (Ayaz et al., 2011, 2012b;
Abibullaev and An, 2012; Naseer and Keum-Shik, 2013; Bogler
et al., 2014; Derosière et al., 2014; Herff et al., 2014; Schudlo
and Chau, 2014; Pinti et al., 2015; Solovey et al., 2015). Divided
attention has also been associated with activity in PFC (Corbetta
et al., 1991; Herath et al., 2001; Loose et al., 2003; Fagioli and
Macaluso, 2009; Mizuno et al., 2012). Divided attention is a key
component of dual tasking (Pashler, 1994), and superior dual-
tasking has been associated with decreased activity/more efficient

processing in PFC (Rypma et al., 2002; Grabner et al., 2006;
McKendrick et al., 2014). Reduced demands on working memory
capacity and superior dual-tasking are factors that influence
greater situation awareness (Endsley, 1995a). Therefore, reduced
PFC activity may be implicative of greater situation awareness
during ARWD use.

TABLE 1 | List of situation awareness queries.

Query: Correct
“Did You See” response

A drinking fountain No
A large metallic sculpture Yes
A children’s playground Yes
A red “Do Not Enter” sign No
An american flag Yes
A black bike rack No
A tree wrapped in multi-colored yarn Yes
Two satellite dishes Yes
Two figures dancing No
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The present study implemented a neuroergonomics approach
(Parasuraman, 2003) to examine the cognitive differences
between an ARWD (Google Glass) and a handheld display
(Smartphone). We used mobile fNIRS to monitor lateral
PFC and complimented it with two separate secondary
tasks assessing differences in mental workload and situation
awareness during navigation. Superior performance on the
secondary tasks is anticipated to reflect reduced mental
workload and greater situation awareness respectively.
Reduced PFC activity is anticipated to index reduced
mental workload and improved situation awareness in the
absence of secondary task errors. Specifically, the ARWD
was expected to show reduced mental workload and superior
situation awareness across both behavioral and hemodynamic
indices.

MATERIALS AND METHODS

Participants
Twenty participants (12 female adults) volunteered for
the study. All participants were right handed and aged
18–29 years. Each participant was randomly assigned to
one of two experimental groups. The two experimental
groups each contained 10 participants. If complications
were experienced viewing the Google Glass display, these
individuals were moved into the other experimental condition
(two such complications occurred). All participants reported
normal or corrected to normal vision. All participants also
reported average or greater cardiovascular health, and had
no history of cardiovascular abnormalities. Each participant
gave informed consent via a form approved by the George
Mason University Institutional Review Board prior to study
participation.

Primary Task
Route Following
Participants were given a visual map of a route to walk along.
The visual map was generated via Google Maps and presented to
the subject via an Apple Iphone 4 s (which the participant held
in hand) or Google Glass (affixed to the participant’s head). In
both devices Google Maps presents a birds-eye-view of the route
with a digital arrow indicating the direction to be followed, as well
as written turn-by-turn instructions. Google maps also provides
auditory turn-by-turn instructions but these were muted in both
devices. Four different routes were used (route one = 1500 ft,
route two = 1400 ft, route three = 1600 ft, route four = 2000 ft;
Figure 1) and each participant walked all four routes, total
experiment time was between 45 and 60 min. The route following
took place on a North American college campus. Portions of the
routes were familiar to the participants, however the majority
were unfamiliar and selected specifically because these regions
are not frequented by university undergraduates. The routes also
contained portions that simulated urban and rural environments.
Each route was entered into either device by the experimenter.
Participants in the hand held device (Smartphone; Apple Iphone
4 s) group were asked to hold the device in their right hand and

lift the device near their field of view when confirmation of the
correct route was needed (to avoid excessive motion artifacts
in the fNIRS signal from tilting the head down). Participants
in the ARWD (Google Glass) group were instructed to keep
their right index finger on the Google Glass touchpad. This
was done to ensure that Google Glass did not enter ‘‘sleep
mode’’ during route following and to control for physical load
in the right arm across devices. Once the route navigation began
participants had no interaction with the devices other than
viewing the generated route. Participants were instructed to walk
at the pace they felt most comfortable with. This was done to
minimize variability in the physical load of the walking task
via self-adaptation. If errors were made during route following,
participants were tapped on the shoulder and instructed as to
the correct direction of the route. Only two such errors occurred
throughout the experiment, one in each display group in the
same navigation route, the error was related to a poor GPS
signal.

Secondary Tasks
Auditory 1-Back
While following the route, participants simultaneously
completed 37 blocks of an auditory 1-back lasting 60 s each.
The auditory stimuli consisted of tone triplets randomly
composed from fundamental frequencies of 493.88, 554.36,
698.45 and 880 Hz presented via Bluetooth in-ear headphones.
The tones were created from bandpass filtered white noise
and a tone overlay. The triplets were presented randomly in
one of three spatial locations; left, right and central (balanced
sound distribution). Five triplets were presented for each
block. Participants were asked to compare the triplet they
had just heard to the triplet they had previously heard.
If the two triplets were of the same frequencies presented in
the same sequence, then the trial was considered a match.
At the end of a block participants were prompted by the
experimenter to verbally indicate how many matches they
heard. The experimenter recorded the response within the
program administering the auditory task and participants were
immediately given feedback regarding the accuracy of their
response. An fNIRS measurement block began with each 1-back
block and ended just prior to the participant being prompted to
respond.

Scenery Probe
While route following, participants were also asked 10 questions
about their surroundings to assess and help maintain an
accurate awareness of the environment. After a prompt from
the experimenter to be ‘‘situationally aware’’, participants
maintained this search disposition for approximately 30 s after
which the experimenter asked them to stop moving and face
forward. During this time the experimenter queried whether
the participant had seen a particular object in the environment.
The participant was previously informed to respond verbally
with a response of either ‘‘yes’’ or ‘‘no’’. Queried objects could
either have been present in the environment or not present,
and there were six instances where the queried object was
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present and four where it was not. When the object was
present in the environment the participant was stopped and
queried 5 s after the object was no longer visible. Participants
were given immediate feedback regarding the accuracy of their
responses. The query list is presented in Table 1. An fNIRS
measurement trial began when participants were prompted
to be situationally aware and ended when the participant
was asked to stop walking just before the scenery probe
query.

Procedures
fNIRS Setup
Participants were seated and asked to remove any makeup
from their forehead with an alcohol swab and or adjust their
hair prior to affixing the wireless and battery operated fNIRS
neuroimaging device, Model 1100W (fNIR Devices, LLC1).
The hardware unit was connected to headband sensor pads
via cable and transmitted the data wirelessly to a remote
tablet computer. Both the pocket sized control hardware (that
contains the battery and antenna) and sensor pads were affixed
to the subject making the participant completely mobile
during recording. Two separate sensor headband pads were
placed approximately 3 cm above the participant’s brow and
centered approximately with respect to the eye pupil of the
corresponding side, laterally symmetric from the midline of
the participant’s forehead, one pad for left and the other for
right hemisphere monitoring. The positioning was intended to
capture hemodynamic changes in bilateral dorsolateral PFC.

1www.fnirdevices.com.

Draw strings attached to the sensor pads were used to prevent
the pads from moving once positioned on the participant.
A 9 cm wide self-adhesive bandage of length approximately the
circumference of the participant’s head was folded width-wise
and secured around the participant’s head across the brow just
below the fNIRS sensor pads. Next a sheet of aluminum foil
approximately half the circumference of the participant’s head
and folded width-wise was form fitted over the bandage and
fNIRS sensor pads. Care was taken to ensure that the fNIRS
sensor pads were fully encapsulated by the aluminum foil sheet.
This was done to ensure that while imaging in sunlight infrared
light from the sun would not contaminate the fNIRS signal.
Once the foil was affixed to the participant two more self-
adhesive bandages of length approximately the circumference
of the participant’s head were used. One bandage folded twice
width-wise was wrapped around the participant’s head just
below the fNIRS sensor pads, over the participant’s brow and
over the aluminum foil. The second bandage was folded once
width-wise and wrapped around the participant’s head just
above the fNIRS sensor pads and over the foil. These bandages
were used to ensure that the foil did not shift during walking,
and special care was taken to minimize constrictive pressure
over the fNIRS sensor as initial pilot tests showed this to
be extremely uncomfortable for the participants after only a
few minutes of walking. Once the sensors, foil, and bandages
were positioned, the fNIRS device was turned on and the
received light signal was adjusted by light source brightness and
detector gain for signal quality. Also, an ambient light channel
was captured to further assess signal quality. When the signal
was deemed adequate, the participant was asked to put the

FIGURE 2 | Participant in augmented reality wearable displays (ARWD) group wearing battery operated wireless functional near infrared
spectroscopy (fNIRS) sensor over the forehead, Google Glass and Bluetooth headphones (left) wireless fNIRS sensor pads (right, top) and placement
sketch (right, bottom) with four optodes identified between light source and detectors.
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FIGURE 3 | Percentage of correct responses during an auditory 1-back
while navigating with an ARWD or a HHD. ∗p < 0.05.

fNIRS transmitter in their pocket. Final setup can be viewed in
Figure 2.

Experimental Paradigm
Once the fNIRS neuroimaging setup was complete, participants
were given the Bluetooth head phones and instructed to
place the earbuds in their ears. Prior to this, the earbuds
were cleaned with alcohol swabs. If the ear buds did not
fit, a new size bud was used to optimize the setup for the
participant. Once the headphones were set up, participants
were introduced to the auditory 1-back and scenery probe
tasks as described in sections ‘‘Auditory 1-Back’’ and ‘‘Scenery
Probe’’ respectively. For the auditory task, participants were
informed as to the type of stimuli they would hear, and what
was considered a correct response, after which participants
performed one practice block to ensure they understood the
task. If participants were still unclear as to the nature of
the task following the practice block, a second practice was
given. No participant required more than two practice blocks
in order to understand the principal of the auditory task.
For the scenery probe task, participants were told they would
be prompted to be ‘‘situationally aware’’ at which point they
should be acutely aware of their surroundings. They were also
informed that after being in this state for a brief period they
would be questioned as to whether an object was or was
not present in the environment during this time. Participants
were informed that both of these tasks would take place while

TABLE 2 | Auditory 1-back secondary-task hemodynamics as a function
of device and accuracy.

Left lateral prefrontal cortex

HbO HbR

B t-value B t-value

Fixed
Correct −0.298∗∗

−2.88 −0.064 −1.76
Incorrect −0.118 −1.00 −0.008 −0.17
Incorrect-Correct 0.180∗∗ 2.60 0.056 1.39
ARWD −0.252 −1.82 −0.023 −0.48
HHD −0.164 −1.03 −0.050 −0.87
HHD-ARWD 0.088 0.42 −0.027 −0.36
ARWD: Correct −0.486∗∗

−3.54 −0.001 −0.02
ARWD: Incorrect −0.018 −0.12 −0.045 −0.74
ARWD: Incorrect-Correct 0.469∗∗∗ 5.38 −0.044 −0.87
HHD: Correct −0.110 −0.71 −0.128 −2.29
HHD: Incorrect −0.218 −1.21 0.029 0.39
HHD: Incorrect-Correct −0.108 −1.01 0.157∗ 2.49
HHD: Correct-ARWD: 0.376 1.82 −0.127 −1.73
Correct
HHD: Incorrect-ARWD: −0.201 −0.85 0.074 0.77
Incorrect

Var Std. Dev Var Std. Dev

Random
Intercept 0.150 0.387
Block slope 0.002 0.048 0.008 0.090
Residual 1.102 1.050 0.327 0.610

Notes. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

they were route following, but that the auditory 1-back and
scenery probe task would never occur simultaneously. Once
participants acknowledged they understood the nature of the
two secondary tasks, the experimenters and participant relocated
outdoors. All testing sessions took place between 7 and 11
am to minimize fatigue from midday heat. The participant
was told they would navigate a predetermined route, the route
will be displayed via a navigation device (dependent upon
their group assignment) and programed into the device by the
experimenter. The navigation task is described in detail in section
‘‘Route Following’’. The first secondary task was prepared and
the participant was instructed to begin. The secondary task
orders were randomized within-subjects across the four routes,
at least 15 s of navigation occurred between secondary task
blocks. The start and end positions along the routes for each
secondary task were preplanned so that each participant would
experience the same secondary task at the same place along
their navigation routes. Start and end times of the secondary
tasks were synchronized with the fNIRS signal via manual
entry of timing markers in the data acquisition program at
the preplanned start and end positions. Upon completing a
route, the participant was instructed to relax and asked whether
they were still comfortable and if they wished to continue. No
participant indicated they would like to stop participation due
to discomfort. The navigation device was then taken by the
experimenter, a new route was inputted, and the next route
began.
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TABLE 3 | Auditory 1-back secondary-task hemodynamics as a function
of device and accuracy.

Left medial prefrontal cortex

HbO HbR

B t-value B t-value

Fixed
Correct −0.087 −0.77 −0.201∗∗∗

−3.82
Incorrect 0.223 1.78 −0.029 −0.42
Incorrect-Correct 0.310∗∗∗ 4.17 0.172∗∗ 2.73
ARWD 0.063 0.46 −0.092 −1.46
HHD 0.074 0.41 −0.137 −1.68
HHD-ARWD 0.011 0.05 −0.045 −0.44
ARWD: Correct −0.240 −1.74 −0.113 −1.77
ARWD: Incorrect 0.366∗ 2.42 −0.071 −0.87
ARWD: Incorrect-Correct 0.607∗∗∗ 6.83 0.042 0.55
HHD: Correct 0.067 0.38 −0.288∗∗∗

−3.45
HHD: Incorrect 0.080 0.40 0.014 0.13
HHD: Incorrect-Correct 0.013 0.11 0.303∗∗ 3.01
HHD: Correct-ARWD: 0.308 1.37 −0.176 −1.67
Correct
HHD: Incorrect-ARWD: −0.286 −1.14 0.086 0.64
Incorrect

Var Std. Dev Var Std. Dev

Random
Intercept 0.126 0.354
Block slope 0.006 0.080 0.002 0.043
Residual 0.876 0.936 0.654 0.809

Notes. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

fNIRS Signal Processing
For each participant, raw light intensity fNIRS data
(4 optodes × 2 wavelengths per optode) that were sampled
at 4 Hz were low-pass filtered with a finite impulse response,
linear phase filter with order 20 and cut-off frequency of
0.1 Hz to attenuate high frequency noise, respiration and
cardiac cycle effects (Ayaz et al., 2011). Each participant’s
data was checked for any potential saturation (when light
intensity at the detector was higher than the analog-to-
digital converter limit) and motion artifact contamination by
means of a coefficient of variation based assessment (Ayaz
et al., 2010) and for each optode, a separate channel that
recorded ambient light, provided for additional verification.
The light intensity changes for 730 and 850 nm wavelengths
for each optode for each task block were extracted using
time synchronization markers of task onset and end marked
during the experiment and hemodynamic changes during
each block were calculated separately using the Modified
Beer-Lambert Law as described in Ayaz et al. (2012b). Ten
seconds (10 s) local baselines were used in the modified Beer-
Lambert law to calculate oxygenation for each task condition
to look at the relative changes in oxygenated and deoxygenated
hemoglobin within each task condition. The local baselines
were taken at the beginning of each secondary task, during
that time participants were mobile and performing the primary
task. The time series for each block was further binned, the
hemodynamic response at each optode across the trial was
temporally divided into sub-blocks of 10 s each and each

TABLE 4 | Auditory 1-back secondary-task hemodynamics as a function
of device and accuracy.

Right medial prefrontal cortex

HbO HbR

B t-value B t-value

Fixed
Correct −0.111 −0.80 −0.061 −1.24
Incorrect 0.181 1.19 0.005 0.08
Incorrect-Correct 0.292∗∗∗ 3.52 0.066 1.14
ARWD 0.010 0.50 0.013 0.19
HHD −0.029 −0.15 −0.069 −1.00
HHD-ARWD −0.129 −0.46 −0.082 −0.84
ARWD: Correct −0.195 −0.99 0.016 0.23
ARWD: Incorrect 0.395 1.83 0.010 0.11
ARWD: Incorrect-Correct 0.590∗∗∗ 4.92 −0.006 −0.07
HHD: Correct −0.026 −0.13 −0.137 −2.00
HHD: Incorrect −0.032 −0.15 −0.001 −0.01
HHD: Incorrect-Correct −0.006 −0.05 0.137 1.72
HHD: Correct-ARWD: 0.169 0.61 −0.153 −1.57
Correct
HHD: Incorrect-ARWD: −0.427 −1.40 −0.011 −0.08
Incorrect

Var Std. Dev Var Std. Dev

Random
Intercept 0.192 0.438
Block Slope 0.001 0.027 0.003 0.053
Residual 0.975 0.987 0.473 0.688

Notes. ∗∗∗p < 0.001.

sub-block was averaged across time to provide a down-sampled
hemodynamic response at each optode for each block. The
final output of each optode was mean block deoxygenated
hemoglobin (HbR), mean block oxygenated hemoglobin
(HbO).

fNIRS Analysis
Generalized and Linear Mixed Effects Models
All forthcoming statistical tests employ either linear mixed
effects, or generalized linear mixed effects models implemented
in R (R Core Team, 2012) via lme4 (Bates et al., 2014).
Denominator degrees of freedom and p-values were estimated via
Sattherwaite corrections implemented via lmerTest (Kuznetsova
et al., 2013). These models offer several advantages as extensions
of the general linear model (GLM). Such as, analysis of binomial
outcomes, treatment of effects as simultaneously fixed and
random, hierarchical modeling, analysis of unbalanced designs,
and robustness to missing data (Pinheiro and Bates, 2000; Baayen
et al., 2008; Jaeger, 2008; Verbeke and Molenberghs, 2009;
Demidenko, 2013).

Fixed and Random Effects Selection
Bayesian information criterions was used to select the fixed and
random effects in the final models for each dependent variable.
Competing models were constructed by adding potentially
meaningful random and fixed effects to a null model. The null
model was specified in each case as having no fixed effects
and a random effect of participant intercept. All competing
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TABLE 5 | Auditory 1-back secondary-task hemodynamics as a function
of device and accuracy.

Right lateral prefrontal cortex

HbO HbR

B t-value B t-value

Fixed
Correct −0.287∗∗∗

−5.23 −0.065 −1.98
Incorrect −0.122 −1.73 −0.064 −1.45
Incorrect-Correct 0.165∗∗ 2.76 0.001 0.03
ARWD −0.156 −1.95 0.058 1.24
HHD −0.252∗∗

−3.28 −0.186∗∗∗
−4.18

HHD-ARWD −0.097 −0.87 −0.245∗∗∗
−3.77

ARWD: Correct −0.366∗∗∗
−4.68 0.066 1.44

ARWD: Incorrect 0.055 0.54 0.050 0.78
ARWD: Incorrect-Correct 0.421∗∗∗ 4.89 −0.016 −0.27
HHD: Correct −0.207∗

−2.69 −0.196∗∗∗
−4.24

HHD: Incorrect −0.298∗∗
−3.08 −0.177∗∗

−2.99
HHD: Incorrect-Correct −0.091 −1.10 0.019 0.32
HHD: Correct-ARWD: 0.159 1.45 −0.262∗∗∗

−4.01
Correct
HHD: Incorrect-ARWD: −0.353∗

−2.51 −0.227∗∗
−2.60

Incorrect

Var Std. Dev Var Std. Dev

Random
Intercept 0.001 0.001
Block Slope 0.003 0.054 0.001 0.025
Residual 0.707 0.841 0.352 0.594

Notes. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

models were estimated with maximum likelihood to allow for
testing of fixed effects. The competing models were tested
simultaneously with BIC and the strength of evidence criterion
described by Kass and Raftery (1995) was employed. In the
procedure deviations of greater than two BIC are viewed as a
meaningful difference. The final model was selected based on
having the lowest BIC, with no other models of interest having
a BIC deviance of less than two. This procedure serves to both
minimize over fitting of the models random effects, and to act
as an omnibus test of variance for fixed effects and interactions
between fixed effects, as passing this procedure ensures that these
variables accounted for a meaningful amount of variance in the
data.

Multiple Comparisons Corrections
In all forthcoming analyses of fNIRS data multiple comparisons
were corrected for across hypotheses and optodes but within
secondary tasks and chromophores by adjusting p-value criterion
with false discovery rate (FDR) corrections. Controlling for
FDR can increase statistical power relative to correcting for
multiple comparisons via controlling for the familywise error rate
(FWER). The Benjamini-Hockberg FDR procedure, employed
here for controlling the FDR is adaptive in that the threshold
for rejecting the null hypothesis is dependent on the size
of the initial p-value and the number of hypotheses tested
(Benjamini and Hochberg, 1995; Lindquist, 2008). Adjustments
were made with alpha set to 0.05 in the Benjamini-Hockberg
equation.

FIGURE 4 | Relative concentrations of oxygenated hemoglobin in
RLPFC for correct and incorrect blocks of an auditory 1-back while
navigating with an ARWD (Google Glass) and HHD (Smartphone).
∗p < 0.05.

FIGURE 5 | Relative concentrations of deoxygenated hemoglobin in
RLPFC for correct and incorrect blocks of an auditory 1-back while
navigating with an ARWD (Google Glass) and HHD (Smartphone).
∗∗p < 0.01; ∗∗∗p < 0.001.

RESULTS

Auditory 1-Back
Behavioral
The results of the auditory 1-back were submitted to a
generalized linear mixed effects regression. The link function was
specified as binomial and parameter estimates were calculated
using maximum likelihood. The tested fixed effects included
condition (ARWD vs. HHD with smartphone coded as the
reference factor), trial and the interaction between the two. The
trial component was included to determine if there were any
accommodation effects within and between the two devices.
Participant intercepts were specified as the random effect.
Parameter estimates are reported here as log odds ratios (as they
are linear and non-conditional within this analysis). Participants
in the HHD group were more likely to correctly than incorrectly
report the number of matches heard (b = 0.528, SE = 0.178,
p < 0.005). Participants in the ARWD group were more likely

Frontiers in Human Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 216 | 279

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


McKendrick et al. Neuroergonomics of Displays during Navigation

FIGURE 6 | Percentage of correct responses during a scenery probe
task while navigating with ARWD or a HHD.

than the HHD group to correctly report the number of matches
heard (b = 0.551, SE = 0.257, p < 0.05; Figure 3). The effect
of trial was non-significant (b = 0.019, SE = 0.013, p = 0.137),
and this did not differ between the two device groups (b= 0.013,
SE = 0.019, p = 0.492). These results suggest that participants
in the ARWD condition experienced lower levels of cognitive
load relative to participants in the HHD condition when route
following. Furthermore, there is no evidence that this level of load
changed throughout the experiment both within and between
conditions.

fNIRS
Relative measures of HbO and HbR acquired during the auditory
1-back were submitted to a linear mixed effects regression.
Parameter estimates in the model selected from the procedure
described in section ‘‘Fixed and Random Effects Selection’’ were
calculated with restricted maximum likelihood. Fixed effects
were condition (ARWD vs. HHD) and an interaction with
performance (correct vs. incorrect). Participant intercepts and
block slope were specified as random effects for HbO, and
participant block slope was specified for HbR. The results of
models for optodes over left lateral, left medial, right medial, and
right lateral PFC are reported in Tables 2–5.

Left Lateral PFC (LLPFC)
Correct blocks while using an ARWD were associated with
a decrease in the hemodynamic response as evidenced by
a reduction in oxygenated hemoglobin relative to the null
hypothesis. Furthermore, correct blocks while using a HHD were
associated with an increase in the hemodynamic response as

evidenced by a decrease in deoxygenated hemoglobin relative to
incorrect blocks.

Left Medial PFC (LMPFC)
Correct blocks while using a HHD were associated with an
increase in the hemodynamic response as evidenced by a
reduction in deoxygenated hemoglobin. Furthermore, there is
evidence to suggest that incorrect blocks while using an ARWD
were associated with an increase in the hemodynamic response.
Specifically, relative to the null hypothesis and correct blocks,
incorrect blocks were related to an increase in oxygenated
hemoglobin.

Right Medial PFC (RMPFC)
Incorrect blocks while using an ARWD were associated with an
increase in the hemodynamic response as evidenced by increased
oxygenated hemoglobin relative to correct blocks.

Right Lateral PFC (RLPFC)
Correct blocks while using an ARWD were associated with
a decrease in the hemodynamic response as evidenced by
reduced oxygenated hemoglobin relative to the null hypothesis
and incorrect blocks. Furthermore, HHD use during correct
and incorrect blocks reduced total hemoglobin as evidenced
by the reductions in oxy and deoxygenated hemoglobin. Of
particular note for workload comparison between the display
conditions is that during correct blocks, HHD deoxygenated
hemoglobin was less than ARWD deoxygenated hemoglobin.
Finally, during incorrect blocks HHD use was associated with
decreases in oxygenated and deoxygenated hemoglobin relative
to ARWD use.

Overall, correct auditory memory performance while using
ARWD was associated with a reduction in the hemodynamic
response in bilateral PFC. Interestingly, incorrect responses were
associated with an increase in the hemodynamic response at
the more medial measurement sites. Effects of HHD use were
mainly observed in left medial PFC, where correct auditory
memory performance while using a HHD was associated with
an increase in the hemodynamic response. Workload differences
as inferred from errors on secondary tasks are most apparent in
RLPFC. Where auditory errors during HHD use were associated
with reductions in oxygenated (Figure 4) and deoxygenated
(Figure 5) hemoglobin relative to ARWD use.

Situation Awareness
Behavioral
The results of the scenery probe task were submitted to a
generalized linear mixed effects regression. The link function was
specified as binomial and parameter estimates were calculated
using maximum likelihood. The tested fixed effects were
condition (ARWD vs. HHD with HHD coded as the reference
factor), trial and the interaction between the two. The trial
component was included to determine if there were any
accommodation effects within and between the two devices.
Participant intercepts and uncorrelated trial slopes were specified
as the random effects. Parameter estimates are reported here
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TABLE 6 | Scenery probe secondary-task hemodynamics as a function of
device and accuracy.

Left lateral prefrontal cortex

HbO HbR

B t-value B t-value

Fixed
Correct −0.165∗∗

−2.82 −0.051 −1.67
Incorrect 0.008 0.10 −0.096 −2.36
Incorrect-Correct 0.173 2.18 −0.045 −1.19
ARWD 0.015 0.19 0.017 0.44
HHD −0.172 −1.94 −0.164∗∗∗

−3.53
HHD-ARWD −0.187 −1.59 −0.181∗∗

−2.97
ARWD: Correct −0.238∗∗

−3.18 −0.004 −0.11
ARWD: Incorrect 0.268∗ 2.45 0.039 0.72
ARWD: Incorrect-Correct 0.506∗∗∗ 4.80 0.043 0.85
HHD: Correct −0.092 −1.02 −0.098 −2.08
HHD: Incorrect −0.252 −2.09 −0.230∗∗∗

−3.78
HHD: Incorrect-Correct −0.160 −1.35 −0.133 −2.34
HHD: Correct-ARWD: 0.146 1.25 −0.094 −1.54
Correct
HHD: Incorrect-ARWD: −0.520∗∗

−3.19 −0.269∗∗∗
−3.31

Incorrect

Var Std. Dev Var Std. Dev

Random
Trial slope 0.009 0.097 0.005 0.072
Residual 0.568 0.753 0.128 0.358

Notes. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

as log odds ratios. Participants in the HHD group were more
likely to correctly respond to the scenery probe (b = 0.914,
SE = 0.235, p < 0.001) than not. Participants in the ARWD
group showed no significant difference relative to the HHD
group in correctly responding to the scenery probe (b = −0.155,
SE = 0.335, p = 0.644; Figure 6). The effect of trial was non-
significant (b = −0.098, SE = 0.091, p = 0.282), and this
did not differ between the two device groups (b = −0.148,
SE = 0.132, p = 0.260). These results suggest that participants
in the both conditions were able to effectively perform the
task. However, there is no measureable difference in situation
awareness for environmental objects between the two conditions.
Furthermore, there is no evidence that situation awareness
changed throughout the experiment both within and between
conditions.

fNIRS
Relative measures of HbO and HbR acquired during the
scenery probe task were submitted to a linear mixed effects
regression. Parameter estimates in the model selected
from the procedure described in section ‘‘Fixed and Random
Effects Selection’’ were calculated with restricted maximum
likelihood. Fixed effects were condition (ARWD vs. HHD)
and an interaction with performance (correct vs. incorrect).
Participant random trial slopes were specified as random
effects. The results of models for optodes over left lateral, left
medial, right medial, and right lateral PFC are reported in
Tables 6–9.

Left Lateral PFC
Correct trials while using an ARWD, were associated with a
decrease in oxygenated hemoglobin. Incorrect ARWD trials
were associated with an increase in oxygenated hemoglobin,
and the difference in relative oxygenated hemoglobin between
the two outcomes was significant. Incorrect trials while using a
HHD were related to reduced deoxygenated hemoglobin. Finally,
incorrect trials while using a HHD reduced oxygenated and
deoxygenated hemoglobin relative to incorrect trials while using
an ARWD. This is either representative of only a reduction
in total hemoglobin or a reduction in total hemoglobin and
a reduction in brain activity in this region as the decline in
oxygenated hemoglobin is greater than that of deoxygenated
hemoglobin.

Left Medial PFC
Correct trials while using an ARWD were associated with a
decrease in the hemodynamic responses as evidenced by the
reduction in oxygenated hemoglobin. Furthermore, incorrect
trials while using a HHD were associated with an increase in the
hemodynamic response as evidenced by reduced deoxygenated
hemoglobin.

Right Medial PFC
No significant differences in hemodynamics were observed in
regards to accuracy, or device use.

Right Lateral PFC
Incorrect trials while using a HHD were associated with a
decrease in the hemodynamic response as evidenced by reduced
oxygenated hemoglobin relative to the null hypothesis and
correct trials. Furthermore, incorrect trials while using an ARWD
were associated with an increase in the hemodynamic response
as evidenced by an increase in oxygenated hemoglobin relative to
correct trials, and incorrect trials while using a HHD.

Overall, high situation awareness while using glass was
associated with a reduced hemodynamic response in left PFC.
Low situation awareness while using glass was related to
an increase in the hemodynamic response in bilateral PFC.
Conversely, low situation awareness while using a smartphone
was associated with a reduced hemodynamic response in bilateral
PFC (Figure 7).

DISCUSSION

ARWDs are increasing in use and it is important that we
understand how such devices affect mental workload and
situation awareness. NASA plans to use ARWDs to improve
training and performance in highly demanding situations
(Schierholz et al., 2015). Objectively measuring mental workload
and situation awareness in ARWDs can be difficult due to the
immersive and mobile nature of the technology. To circumvent
issues of mobility and immersion we used wireless fNIRS to
examine hemodynamic differences in mental workload and
situation awareness between an ARWD (i.e., Google Glass)
and a hand-held display (i.e., a smartphone) during real-world
navigation and dual-tasking.
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TABLE 7 | Scenery probe secondary-task hemodynamics as a function of
device and accuracy.

Left medial prefrontal cortex

HbO HbR

B t-value B t-value

Fixed
Correct −0.146 −2.02 −0.080 −1.34
Incorrect −0.172 −1.58 −0.168 −1.94
Incorrect-Correct −0.026 −0.24 −0.087 −1.11
ARWD −0.155 −1.68 −0.038 −0.49
HHD −0.163 −1.38 −0.210 −2.09
HHD-ARWD −0.008 −0.05 −0.173 −1.37
ARWD: Correct −0.218∗

−2.60 −0.107 −1.52
ARWD: Incorrect −0.092 −0.66 0.032 0.29
ARWD: Incorrect-Correct 0.125 0.91 0.139 1.38
HHD: Correct −0.074 −0.63 −0.054 −0.55
HHD: Incorrect −0.251 −1.51 −0.367∗∗

−2.73
HHD: Incorrect-Correct −0.176 −1.07 −0.313∗

−2.58
HHD: Correct-ARWD: 0.021 0.24 0.053 0.44
Correct
HHD: Incorrect-ARWD: −0.158 −0.73 −0.399 −2.31
Incorrect

Var Std. Dev Var Std. Dev

Random
Trial slope 0.006 0.079 0.011 0.105
Residual 0.637 0.798 0.336 0.579

Notes. ∗p < 0.05; ∗∗p < 0.01.

Behavioral differences between the ARWD and HHD while
navigating and performing an auditory working memory task
suggest differences in experienced workload. While dual-tasking,
both tasks were preformed successfully across displays types.
However, individuals using an ARWD showed superior working
memory recall relative to HHD users. The dual-task method
of assessing mental workload (Ogden et al., 1979; O’Donnell
and Eggemeier, 1986) dictates that higher performance observed
in secondary tasks represents reduced workload during the
primary task. The increased working memory performance
observed while using an ARWD suggests that relative to hand-
held displays ARWDs induce less mental workload while being
used for navigation.

Mental workload and the hemodynamic response
representative of brain activity are positively related, especially
in working memory tasks (Braver et al., 1997; Cohen et al.,
1997; Culham et al., 2001; Ayaz et al., 2012b); from our
behavioral results, we expected a lower hemodynamic
response for ARWD users relative to HHD users. In
accordance with our behavioral results ARWD blocks were
associated with a reduction of oxygenated hemoglobin
representative of a reduction of brain activity in bilateral
PFC. Furthermore, HHD trials were associated with a reduction
of deoxygenated hemoglobin representative of an increase
in brain activity in left medial and right lateral PFC. A
direct comparison of the two conditions hemodynamics
in RLPFC revealed reduced deoxygenated hemoglobin
during HHD use relative to ARWD use during correct
auditory working memory performance. This provides

TABLE 8 | Scenery probe secondary-task hemodynamics as a function of
device and accuracy.

Right medial prefrontal cortex

HbO HbR

B t-value B t-value

Fixed
Correct −0.134 −1.98 −0.044 −0.80
Incorrect −0.118 −1.20 −0.002 −0.02
Incorrect-Correct 0.016 0.16 0.042 0.50
ARWD −0.080 −0.79 0.077 0.91
HHD −0.172 −1.77 −0.122 −1.54
HHD-ARWD −0.091 −0.65 −0.199 −1.72
ARWD: Correct −0.141 −1.50 −0.041 −0.54
ARWD: Incorrect −0.019 −0.13 0.194 1.53
ARWD: Incorrect-Correct 0.122 0.86 0.236 1.87
HHD: Correct −0.126 −1.30 −0.047 −0.59
HHD: Incorrect −0.217 −1.65 −0.198 −1.76
HHD: Incorrect-Correct −0.091 −0.72 −0.151 −1.35
HHD: Correct-ARWD: 0.015 0.11 −0.006 −0.05
Correct
HHD: Incorrect-ARWD: −0.197 −1.00 −0.392 −2.31
Incorrect

Var Std. Dev Var Std. Dev

Random
Trial slope 0.012 0.108 0.004 0.067
Residual 0.448 0.669 0.360 0.600

further evidence that even when the interference between
the auditory working memory task and the navigation task
was not overloading, neural activity was higher while using an
HHD.

With regard to the scenery probe task, we observed
no performance differences between ARWDs and hand-held
displays, but hemodynamic differences were observed. Both
display groups performed the scenery probe and navigation
tasks successfully. However, unlike when working memory
and navigation co-occurred, dual-task assessment could not
differentiate between the two displays in terms of mental
workload during the scenery probe task. This was not the case
for hemodynamic measurements made with wireless fNIRS. The
difference between the display conditions is strongest in left
lateral PFC. In this region there was a reduction in oxygenated
hemoglobin during ARWD use on correct trials. A decrement
was not present in left lateral PFC during hand-held display
use. While not as large, a similar trend can be seen between
ARWD and hand-held displays in right lateral PFC as well.
While inconclusive, considering the non-significant differences
in oxygenated hemoglobin on correct trials between ARWD
and hand-held displays, the trend is for reduced brain activity
during ARWD use. Taking the scenery probe task as a proxy
for level 1 and 2 situation awareness, less mental resources were
required during landmark perception and comprehension while
navigating with an ARWD relative to a hand-held display.

Scenery probe and working memory errors were associated
with changes in ARWD hemodynamics. Lower situation
awareness during ARWD use was associated with increased
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TABLE 9 | Scenery probe secondary-task hemodynamics as a function of
device and accuracy.

Right lateral prefrontal cortex

HbO HbR

B t-value B t-value

Fixed
Correct −0.045 −1.04 −0.060 −1.56
Incorrect −0.114 −1.98 −0.100 −1.92
Incorrect-Correct −0.069 −1.28 −0.039 −0.79
ARWD 0.043 0.75 −0.054 −1.03
HHD −0.2019∗∗

−3.17 −0.106 −1.86
HHD-ARWD −0.2453∗∗

−2.85 −0.053 −0.68
ARWD: Correct −0.055 −0.95 0.017 0.32
ARWD: Incorrect 0.142 1.83 −0.124 −1.75
ARWD: Incorrect-Correct 0.1969∗∗ 2.65 −0.141 −2.06
HHD: Correct −0.034 −0.54 −0.137 −2.41
HHD: Incorrect −0.3696∗∗∗

−4.37 −0.076 −0.99
HHD: Incorrect-Correct −0.3354∗∗∗

−4.28 0.062 0.86
HHD: Correct-ARWD: 0.021 0.24 −0.154 −1.99
Correct
HHD: Incorrect-ARWD: −0.5114∗∗∗

−4.45 0.048 0.46
Incorrect

Var Std. Dev Var Std. Dev

Random
Trial slope 0.008 0.091 0.005 0.073
Residual 0.216 0.464 0.182 0.427

Notes. ∗∗p < 0.01; ∗∗∗p < 0.001.

FIGURE 7 | Relative oxygenated and deoxygenated hemoglobin at
bilateral optodes for incorrect trials of the scenery probe task while
navigating with an ARWD (Google Glass) and HHD (Smartphone).
∗∗p < 0.01, ∗∗∗p < 0.001.

oxygenated hemoglobin in bilateral PFC. Similarly, incorrect
working memory trials and ARWD use were associated with
increased oxygenated hemoglobin across PFC. Effectively, poor
secondary task performance was associated with an increase in
PFC activity while navigating with an ARWD. This increase
in activity coincides with the increase in workload expected
due to dual-task interference. Stimulus driven attention capture
is related to increased activity in PFC (Fockert et al., 2004;
Serences et al., 2005; Asplund et al., 2010). Furthermore, head-up

display symbology is known to negatively affect performance
from unnecessary attention capture (Thomas and Wickens,
2001, 2004). The presence of cognitive tunneling during ARWD
use can parsimoniously explain the presence of an error, the
increase in brain activity and the increase in mental workload
observed across both secondary tasks. Also considering that the
display symbology was unchanged between the ARWD and
HHD conditions, and that the symbology was originally designed
for the HHD; the presence of cognitive tunneling was expected.

The association of secondary task errors on HHD
hemodynamics was the opposite of that observed during
ARWD use. Across both secondary tasks, errors were associated
with decreases in brain activity. Working memory errors
were associated with an increase in left PFC deoxygenated
hemoglobin. Lower situation awareness was associated with a
decrease in bilateral PFC oxygenated hemoglobin and RLPFC
deoxygenated hemoglobin. It is probable that HHD errors were
related to task shedding, the abandonment of one of the two
tasks being performed; a common strategy during dual-tasks
that overload mental resources (Schneider and Detweiler, 1988;
Raby and Wickens, 1994; Hancock and Szalma, 2003; Grier
et al., 2008; Schulte and Donath, 2011). Task shedding should
produce a reduction in brain activity due to reducing mental
workload. Therefore, we would expect a reduced hemodynamic
response during correct secondary task trials if the primary task
was shed. This effect was not observed. Instead, brain activity
decreased during incorrect trials. Continuing with the logic
that reduced activity is related to reduced mental workload,
reduced activity during incorrect secondary trials suggests that
the secondary-tasks may have been shed. This explanation is
consistent with the emphasis we placed on the navigation task as
well as our observed behavioral and hemodynamic effects.

LIMITATIONS

Due to the nature of the wireless fNIRS, and the miniaturized
design of our imaging unit we are limited to four optodes imaging
the PFC. Therefore, other cortical regions may have shown
significant hemodynamic differences between the two devices
that we could not measure. Furthermore, given the current
design, we could not account for all factors that might influence
difference in mental workload between the two devices. We could
only measure differences in mental workload that manifest as
dual-task interference from increased working memory load, or
increased perceptual load.

CONCLUSION

Taking a neuroergonomic approach combining dual-task
interference and wireless fNIRS, we were able to examine
differences in mental workload, and situation awareness between
a hand-held display (smartphone) and an augmented reality
wearable display (Google Glass) while navigating an outdoor
environment. ARWDs show few downsides with regards to
dual tasking while route following. Relative to a HHD, mental
workload while navigating with an ARWD was reduced, both
during a working memory and situation awareness secondary
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task; performance was also enhanced during the working
memory dual-task. Hemodynamic effects induced during errors
also suggest ways in which ARWDs can be improved, specifically
by reducing unwanted attention capture and cognitive tunneling.
Future work should identify other hemodynamic biomarkers
induced by cognitive tunneling. From an applied perspective
development of tunneling biomarkers could greatly advance
display design for navigation, training and other tasks ARWDs
are expected to enhance.
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Working memory (WM) is a key executive function for operating aircraft, especially when

pilots have to recall series of air traffic control instructions. There is a need to implement

tools to monitor WM as its limitation may jeopardize flight safety. An innovative way to

address this issue is to adopt a Neuroergonomics approach that merges knowledge and

methods from Human Factors, System Engineering, and Neuroscience. A challenge of

great importance for Neuroergonomics is to implement efficient brain imaging techniques

to measure the brain at work and to design Brain Computer Interfaces (BCI). We used

functional near infrared spectroscopy as it has been already successfully tested to

measure WM capacity in complex environment with air traffic controllers (ATC), pilots,

or unmanned vehicle operators. However, the extraction of relevant features from the

raw signal in ecological environment is still a critical issue due to the complexity of

implementing real-time signal processing techniques without a priori knowledge. We

proposed to implement the Kalman filtering approach, a signal processing technique that

is efficient when the dynamics of the signal can be modeled. We based our approach

on the Boynton model of hemodynamic response. We conducted a first experiment with

nine participants involving a basic WM task to estimate the noise covariances of the

Kalman filter. We then conducted a more ecological experiment in our flight simulator

with 18 pilots who interacted with ATC instructions (two levels of difficulty). The data

was processed with the same Kalman filter settings implemented in the first experiment.

This filter was benchmarked with a classical pass-band IIR filter and a Moving Average

Convergence Divergence (MACD) filter. Statistical analysis revealed that the Kalman filter

was the most efficient to separate the two levels of load, by increasing the observed

effect size in prefrontal areas involved in WM. In addition, the use of a Kalman filter

increased the performance of the classification of WM levels based on brain signal. The

results suggest that Kalman filter is a suitable approach for real-time improvement of near

infrared spectroscopy signal in ecological situations and the development of BCI.

Keywords: fNIRS, Kalman filtering, Neuroergonomics, working memory, SVM
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1. INTRODUCTION

The development of passive Brain Computer Interfaces (BCI) is
a key topic of research in Neuroergonomics. In contrast with
active ones, Passive BCI (Cutrell and Tan, 2008) allows the
use of unintentionally produced brain activity to derive various
cognitive states (Blankertz et al., 2010) such as excessive mental
workload. Such states inference provides an interesting insight
as they aim at dynamically adapting the nature of the human-
system interactions to overcome cognitive limitations (Zander
and Kothe, 2011; Brouwer et al., 2013). In the field of BCI
design to enhance user performance, there is a growing interest
for functional near infrared spectroscopy (fNIRS) based BCI
(Coyle et al., 2004; Derosière et al., 2014; Strait et al., 2014).
This brain imaging device uses near infrared light absorption
properties to estimate local variations of cortical hemodynamics.
It uses a modified Beer-Lambert law to link light transmittance
through brain tissues to variations in local concentrations in
oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin
(HHb) (Villringer and Obrig, 2002). fNIRS has a good spatial
resolution (around 1 cm2) and interesting signal-to-noise ratio.
Moreover, this technique has the advantage to be easy and
fast to set over the participant’s head with a short calibration
process (Naseer and Hong, 2015). However, the processing of
fNIRS signal faces a lack of methodological consensus and thus
still represents a great challenge (Bashashati et al., 2007). The
extraction of the relevant activity from brain signals requires
complex techniques (van Erp et al., 2012), and most efficient ones
often rely on long calibration times [e.g., in subspace artifact
removal techniques (von Bünau et al., 2009), adaptive filtering
(Zheng et al., 2002)]. The complexity of these methods limits
their applicability for Neuroergonomics purpose, as the signal has
to be useable in real-time.

Most BCI designs rely on classical linear bandpass filtering
techniques such as Infinite Impulse Response (IIR) (Naseer
and Hong, 2015), although current research focuses on the
investigation of alternative signal processing techniques, such
as the Moving Average Convergence Divergence (MACD) filter
(Durantin et al., 2014b; Gateau et al., 2015). On this basis,
the improvement of signal quality in real-world conditions as
suggested in the Neuroergonomics approach, makes Kalman
filtering an ideal candidate. This signal processing and estimation
technique relies both on the measurements performed on a
system and on a modeling of its dynamics to improve signal
quality (Kalman, 1960). The use of a Kalman filter including
a physiological model of brain function to improve signal
usability has been previously applied to EEG (Georgiadis et al.,
2005; Callan et al., 2015) or fMRI (Diamond et al., 2005).
However, concerning fNIRS, this technique has been limited to
the estimation of model parameters (Abdelnour and Huppert,
2009) or the correction of motion artifacts (Izzetoglu et al.,
2010), therefore not requiring the use of a physiological model
of hemodynamic response to stimulation.

One of the greatest challenges regarding Kalman filter design
is the tuning of its parameters, i.e., to evaluate the level of
measurement noise (R) affecting the signal and the state noise
(Q) in the model (Diamond et al., 2005). The value of the ratio

Q/R greatly influences the behavior of the Kalman filter. Indeed,
a Kalman filter with a low value of Q/R will put confidence in
the dynamical model, whereas a Kalman filter with a high value
of Q/R will put confidence in the measurements. In practice, the
value of this ratio often has to be chosen empirically (Abdelnour
and Huppert, 2009; Callan et al., 2015), as there exists no efficient
way to evaluate it. Consequently, the dynamics of the Kalman
filter may not be adapted to the data needed to be improved.
The challenge of this study was to design a Kalman filter suitable
for fNIRS that includes a physiological model of hemodynamic
response (Boynton et al., 1996). By applying this filter to fNIRS
data collected during both controlled and ecological experiments,
we also aimed at testing the improvements such a filter could
bring to fNIRS signal toward the implementation of a passive
BCI. To that end, we first designed a Kalman filter relying on a
model of the hemodynamic response (Boynton et al., 1996) to
improve signal quality. We then conducted a first experiment
with a prefrontal fNIRS, involving a digit sequence memorization
task used to measure Working Memory (WM) storage and
update capacity. Provided that the development of a signal
improvement technique usable in realistic operational settings
was the objective of this study, this basic task was chosen as
WM is a key executive function to operate complex systems
(Causse et al., 2011). Data collected during the first experiment
were used to select the value of the filter parameter Q/R using
an optimization procedure. Finally, the improvement of the
signal by the optimal Kalman filter was evaluated with formal
classification during an ecological experiment which involved
pilots performing a realistic WM task (i.e., recalling air traffic
instructions) in a flight simulator.

2. KALMAN FILTER DESIGN

The functional model used to design the Kalman filter for fNIRS
signal was inspired by the Hemodynamic Response Function
(HRF) proposed by Boynton et al. (1996). This function is simple
enough to be represented by a low order state-space model. This
model assumes a third order impulsional response to stimulation,
and has the following transfer function :

HRF(p) =
τ 3e−δp

(p+ τ )3
(1)

As shown in Equation (1), the response shape depends on two
parameters : δ represents the pure delay between stimulation
and the start of HbO2 increase ; τ influences the time-
to-peak delay. Typical values that were chosen here were
extracted from Boynton et al. (1996), and are δ = 2 s and
τ = 1.5 s. This choice leads to a time-to-peak delay from
pulse stimulation of around 5 s (Handwerker et al., 2004).
Then, the Kalman filter principle requires the addition to the
model of a state noise w (defined as the amount of noise
affecting the model, i.e., the amount of errors in it) and of a
measurement noise v (defined as the amount of noise affecting
the measures). As shown on Figure 1, we chose to represent
the state noise as a perturbation affecting the stimulus (i.e., the
input of the model). This choice led us to consider that
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state noise represents a stimulus perception (or
internalization) bias.

The perception bias perturbing the stimulus is noted b. In
the nominal model, Kalman filter assumptions impose that
b = w, where w is the state noise following a gaussian centered
distribution. This model, in addition to the choice of a Q/R value
(whereQ is the variance of the state noise, and R is the variance of
the measurement noise), allowed us to design a Kalman filter for
fNIRS signal improvement. The inputs of the Kalman filter were
the stimuli onsets and the fNIRS raw signal.

One of the main limitations of this approach is the fact that
the stimulus perception bias has to be centered (i.e., b = 0 on
average), which can be erroneous when the subject sustainably
disengages from the task and doesn’t pay attention to the stimuli.
To take this element into account, we built a secondmodel, which
is an augmentation of the nominal model, and in which ḃ = w.
Thus, as the first derivative of b follows the gaussian centered
distribution, it is still possible to design a Kalman filter, without
assuming that b is null on average. This augmented model, along
with the value ofQ/R, allowed the computation of the augmented
Kalman filter for fNIRS signal processing. For both filters, the
value of the ratio Q/R was fixed according to an optimization
process (see next section).

3. FIRST STEP : SETTING THE FILTER
PARAMETERS

3.1. Material and Methods
Nine healthy participants from the Institut Superieur de
l’Aeronautique et de l’Espace (ISAE ; Mean age= 21.6; SD = 1.5;

FIGURE 1 | Proposed approach for Kalman filtering of fNIRS. The state

noise is considered as a perturbation of the input of the system.

eight males, eight right handed) participated in the experiment.
The volunteers performed a computer-based digit sequence
memorization task, while fNIRS measurements of the prefrontal
cortex were recorded. Data were recorded using a Biopac R©

fNIR100 device, composed of 16 optodes placed on the forehead
(see Figure 2). Each optode of the device records hemodynamics
at a frequency of 2 Hz in term of oxygenated hemoglobin
(HbO2) and deoxygenated hemoglobin (HHb) level variations in
comparison to a baseline.

Each trial of the experiment consisted in the memorization
of a sequence of 5, 7, or 9 randomly chosen digits. The size of
the sequence defined a level of difficulty. Figure 3 summarizes
the time sequence of a trial. During each trial, the subjects were
asked to look at a fixation cross at the center of the screen.
The digit sequence was presented through the loudspeakers of
the computer using prerecorded audio tracks, at a rate of one
digit per second. After the presentation of the last digit, the
fixation cross was replaced by three crosses, indicating that the
subjects had 8 s to type the memorized sequence on the keyboard.
Between two consecutive trials, the subjects looked passively at
the fixation cross at the center of the screen for 6 to 9 s (the inter-
trial interval was chosen randomly to avoid task periodicity). The
experiment consisted of 27 trials (nine trials for each of the three
levels of difficulty), presented in a randomized order.

3.2. Data Processing
Data were processed using Matlab R©. Two different types of
Kalman filters were applied to the data, the nominal Kalman
filter (in which we assumed that the stimulus perception bias is
null on average) and the augmented Kalman filter (without this
assumption). The inputs for both filters were the stimuli onsets
and the raw fNIRS data. For each filter, the value of the Q/R
ratio chosen for the Kalman filter tuning ranged from 10−5 to
105, in order to look for the optimal results. Simultaneously, we
also applied the MACD filter (Durantin et al., 2014b) to raw data
in order to compare Kalman results with classical filtering.

For each trial, we computed the HbO2 peak response (noted
1HbO2), i.e., the difference between themaximum value ofHbO2

in the 30 s following the trial onset and the value ofHbO2 at onset
time. We similarly computed the HHb peak response (noted
1HHb).

FIGURE 2 | fNIRS device optodes location. The device is composed of four light sources and 10 light detectors. The association of one light source and one light

detector composes the optodes. The disposition of the sources and detectors leads to 16 optodes over the prefrontal cortex.
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FIGURE 3 | Time course of one trial of the experiment. The experiment

consisted of a total of 27 trials (three for each level of difficulty), presented in a

random order. N = digit sequence size (5, 7, or 9).

Preliminary, the potential good values for Q/R (i.e., those
leading to improvement in the signal) were isolated by computing
an Effect Size Index (ESI, illustrated on Figure 4. For each
filter (MACD, nominal Kalman or augmented Kalman with
a given Q/R value) and each digit sequence size N, we
computed the mean (µN) and standard deviation (σN) of the
level of 1HbO2 or 1HHb measured at each optode. We used
these values to compute a confidence interval corresponding
to one standard deviation as [µN − σN;µN + σN]. The
ESI was defined as the gap between the confidence intervals
of each condition (negative if the confidence intervals are
overlapping), i.e.,

ESI = ((µ7 − σ7)− (µ5 + σ5))+ ((µ9 − σ9)− (µ7 + σ7))

We then proceeded to visual inspection to find the best values for
Q/R ratio, by finding the parameters leading to higher ESI values.
Each set of data was finally tested using a Two-way analysis
of variance ANOVA, with two factors (16 optodes, three levels
of difficulty), performed using STATISTICA R© software. The
strength of the statistical effect of the difficulty level, evaluated
using the partial η2, was used to compare the results of the
different filters.

3.3. Results
As shown on Figure 5, the optimal results were obtained
for HbO2 at optode 2 recording mainly from the left
inferior frontal gyrus, when using the nominal Kalman filter
with Q/R = 3.98 or the augmented Kalman filter with
Q/R = 0.50. Table 1 summarizes the effect sizes obtained for
each of the signal processing techniques tested (those effects
showed an increase in the level of 1HbO2 with growing
sequence sizes).

The frequency and phase responses (Bode diagram) of the
nominal Kalman filter (Q/R = 3.98) and of the augmented
Kalman filter (Q/R = 0.50) are given on Figure 6. As the
two filters exhibit similar Bode diagrams (and therefore similar
filtering properties), we retained only the augmented Kalman
filter for testing on new data.

FIGURE 4 | Illustration of the computation of the Effect Size Index (ESI)

for HbO2. We computed the mean (µ) and standard deviation (σ ) of the level

of HbO2 across subjects for each difficulty. For a difficulty N, a confidence

interval corresponding to one standard deviation was computed as

[µN − σN;µN + σN ]. The corresponding ESI was computed as the sum of the

gaps between the confidence intervals (negative if the confidence intervals are

overlapping).

TABLE 1 | Effect sizes obtained for the effect of difficulty over all the

subjects for the level of 1HbO2 measured at optode 2, depending on the

type of filter used for signal processing.

Filter type Q/R ratio partial η
2

MACD 0.21

Nominal Kalman 3.98 0.32

Augmented Kalman 0.50 0.34

4. SECOND STEP : TESTING THE
APPLICABILITY OF THE FILTER IN
ECOLOGICAL CONDITIONS

4.1. Material and Methods
Data used for testing the Kalman filter were extracted from a
second experiment involving a digit sequence memorization in
a realistic flight simulator (see Figure 7 for an illustration of
the setup). The experiment was similar to Gateau et al. (2015),
and included 18 healthy subjects (Mean age = 27.1; SD = 6.4;
six women). Pilots heard prerecorded Air Traffic Controller
(ATC) messages and were asked to dial the corresponding flight
parameters in the Flight Control Unit (FCU) using the four
knobs ( i.e., speed, heading, altitude, and vertical speed knobs)
of the FCU. The ATC messages were delivered at 78 dB SPL
trough a Sennheiser R© headset. We defined two levels of difficulty
depending on the complexity of the message:
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FIGURE 5 | Estimated Effect Size Index (ESI) for the augmented Kalman filter (for HHb –in green– and HbO2 –in dark blue–) in function of the value of

Q/R, compared to the ESI of the MACD filter (in red for HbO2, in light blue for HHb). The index is estimated using the data from optode 2.

FIGURE 6 | Bode diagrams (frequency response, phase response) of the MACD filter, the nominal, and augmented Kalman filters.

• Low Load trial difficulty: only one major value per trial was
used to set each flight parameter (e.g., 15 for “speed 150,
heading 150, altitude 1500, vertical speed+1500”).

• High Load trial difficulty: each flight parameter value was
different from the previous one and composed of different
digits to maximize the complexity (e.g., “speed 164, heading
235, altitude 8700, vertical speed−1600”).

The task consisted in 20 repetitions of each difficulty for a total
of 40 trials. Each ATC message started with the airplane call sign
(i.e., “Supaero 32”), followed by the sequence of flight parameters.
It ended with the message “over.” The subjects were instructed
to set the parameters strictly only after they heard the “over”
message. A practice session was conducted for each subject before
the actual experiments to allow them to become familiar with the

experiment and the interface. After each message, the pilots had
18 seconds to enter the flight parameters. Trials were separated
by 11 to 13 s of rest. During the experiment, hemodynamics of
the prefrontal cortex were recorded using the same device than
in the first experiment.

4.2. Data Processing and Classification
The raw HbO2 data measured at each optode were filtered using
three types of filter. First, we used the MACD filter and the
augmented Kalman filter retained from the optimization phase
(Q/R = 0.50). We also used a classical IIR Butterworth bandpass
filter (0.02 Hz < f < 0.1 Hz), in order to compare the results
to classical filtering. The statistical effect sizes of the level of
1HbO2 (computed in the same way than in the first experiment)
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FIGURE 7 | Pilot’s interaction with the auto flight system. The participants controlled the aircraft simulator of ISAE from the left seat. The red rectangle

corresponds to the FCU (Flight Control Unit) dedicated to set the autopilot using the four control knobs, accordingly to ATC (Air Traffic Control) clearances (speed,

heading, altitude, and vertical speed selection). Adapted from Gateau et al. (2015).

FIGURE 8 | Comparison of the t-maps for the contrast High load - Low load on the level of HbO2 over the prefrontal cortex obtained in function of the

type of filter used for signal processing (classical IIR, MACD, or Kalman). The topographical view was extracted from fNIRSoft® and the threshold was fixed at

the statistical significance level with α = 0.01, to account for multiple comparisons.

were evaluated using repeatedmeasures ANOVA performed with
STATISTICA R©. The performance of the different filters were
compared in terms of partial η2. In addition, we computed the
statistical t-maps representing the differences in the contrasts
between high and low load conditions in terms of level of
HbO2 for each type of filters. This computation was done
using Matlab and plotted using the topograph tool from
fNIRSoft R©.

The improvement of the signal depending on the type of filter
used for processing was also evaluated by performing formal
classification on the data. This analysis was performed using
the Statistics and Machine Learning toolbox from Matlab. The
1HbO2 values extracted from each optode were used to train
and test a Linear Support Vector Machine (SVM) classifier
through a 10-fold cross validation process : for each subject,
data from all trials were randomly divided in 10. The difficulty
(high or low load) of the trials of each 10% of data was
predicted by a SVM classifier that was previously trained on the

90% remaining data. The predicted labels were then examined
to evaluate the Accuracy (probability of good classification),
Sensitivity (probability of good classification for high load trials),
and Specificity (probability of good classification for low load
trials) of the classifier.

4.3. Results
The partial η2 obtained for each type of filters are given in Table 2
(for each optode and across all the optodes). The results show
that the use of MACD elicits a better statistical effect size than the
classical IIR filter. Similarly, the use of Kalman filter yields better
results than both MACD and IIR filters. This result is true not
only when filtering data from optode 2, but present notably at all
optodes located in the bilateral dorsolateral areas of the prefrontal
cortex (optodes 1, 2, 3, 4 and 13, 14 ,15, 16).

The effect of trial difficulty on the level ofHbO2 measured over
the prefrontal cortex is shown on Figure 8. On this figure, we
observe that both the MACD and Kalman filter over classical IIR
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TABLE 2 | Effect sizes (partial η
2) obtained for the effect of difficulty over all the subjects for the level of HbO2 measured for each optodes (plus main

effect size over all optodes), depending on the type of filter used for signal processing.

Optode number 1 2 3 4 5 6 7 8

IIR 0.34 0.36 0.48 0.35 0.15 0.32 0.32 0.00

MACD 0.51 0.44 0.50 0.53 0.24 0.26 0.15 0.01

Augmented Kalman (Q/R = 0.50) 0.64 0.55 0.57 0.55 0.38 0.36 0.39 0.15

Optode number 9 10 11 12 13 14 15 16 All

IIR 0.29 0.26 0.32 0.11 0.41 0.34 0.33 0.30 0.36

MACD 0.15 0.01 0.31 0.12 0.50 0.25 0.39 0.38 0.33

Augmented Kalman (Q/R = 0.50) 0.42 0.35 0.53 0.39 0.55 0.55 0.52 0.49 0.52

The effect sizes corresponding to a significant effect (p < 0.05) after correction for multiple comparisons are reported in bold font.

FIGURE 9 | Accuracy, sensitivity, and specificity obtained from the 10-fold cross-validation procedure for each type of filter. The dashed red line

represents chance level (50%). The error bars represent the standard error of the mean across subjects, and statistical significance after correction for multiple

comparisons is indicated by stars (*p < 0.05 ; **p < 0.01 ; ***p < 0.001).

filter improve the discriminability between the two conditions in
the lateral areas of the prefrontal cortex.

Ultimately, the cross-validation procedure performed on the
data to classify low-load vs. high-load trials are presented in
Figure 9 in terms of accuracy, sensitivity, and specificity. The
classification results were all significantly better than chance,
although Kalman filter led to statistically better results than
IIR and MACD filters. Using Kalman filtering, the classification
accuracy reached 77.8%, with a sensitivity of 79.4% and a
specificity of 76%.

5. DISCUSSION

The objective of the study was to design a Kalman filter to
improve fNIRS signal for Neuroergonomics applications. In
particular, the main challenge concerned the tuning of the
parametersQ and R (Diamond et al., 2005), representing the state
noise andmeasurement noise variances. Based on a simple model

of the hemodynamic response to neuronal stimulation (Boynton
et al., 1996), we designed a Kalman filter model taking into
account both themeasurement noise and the stimulus perception
bias that can occur in periods of disengagement or when the level
of attention varies. During an optimization process, we showed
that it was possible to find values for the parameters which leads
to better statistical results (Q/R = 0.50) with an augmented
model. Interestingly, the relatively low value of the Q/R ratio
in the second model suggests that the Kalman filter put more
confidence in the dynamical model of hemodynamics response
than in fNIRS data. The higher optimal value obtained for this
ratio when using the first choice of model (Q/R = 3.98) suggests
this model was less consistent with the actual hemodynamics
characteristics.

We applied the optimal results found in the first experiment
on new data from an ecological experiment in a flight simulator,
and showed that the optimal Kalman filter tuning could be
applied generically. This filter led to higher effect sizes when
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looking at the effect of task difficulty in both tasks, compared
to classical filters (see Figure 8). It is argued that the use of
a dynamical physiological model by the Kalman filter implies
less variability across trials and subjects, therefore explaining the
greater stability of the results obtained with this filter. These
results suggest that this filter would be suitable to improve
the discriminability between the two conditions toward the
implementation of a BCI to assist the operator, and would
support the use of Kalman filtering to improve fNIRS signal
(Izzetoglu et al., 2010). In particular, the Kalman filter helped us
perform better during the SVM-based classification procedure
between low-load and high-load trials, which confirms its
contribution to the improvement of the signal. In addition, the
experiment also confirmed that the MACD filter brings good
results compared to classical IIR filtering, as it was previously
demonstrated (Durantin et al., 2014b; Gateau et al., 2015).
Although the discriminability obtained with this filter is not as
good as the one obtained with the Kalman filter, it presents
the advantage of not requiring any information on the stimulus
onsets.

Interestingly, the optimal results for the first experiment
were found at optode 2 recording mainly from the left inferior
frontal gyrus. More generally, when applying the optimal Kalman
filter in the second experiment, the WM solicitation elicited
an activation of bilateral areas in the inferior and middle
frontal gyri, part of the dorsolateral prefrontal cortex (see
Figure 8 and Table 2). This result is in agreement with previous
fNIRS studies that have found these regions are sensitive to
WM solicitation (Ayaz et al., 2012; Durantin et al., 2014a).
Therefore, the improvement of the fNIRS signal collected in
this region suggests that this filter could be applied to any
experiment recruiting the same functional areas. In particular,
the optimization process carried in this study would avoid the
need of a calibration phase or of a convergence phase (in
case of adaptive filtering) to improve signal quality. However,
further investigation is still needed to assess whether this
filter could be used with the same model and tuning in
experiments recruiting different brain areas. Similarly, further
investigation is also needed to assess the usability of these filters

in ecological conditions that would differ from a simulated
flight (e.g., with higher levels of light variations or motion
artifacts).

Nevertheless, some modifications of the model could lead
to better usability and performance of the Kalman filter. For
instance, the use of a stimulus onset detection technique such
as the detection technique based on the MACD filter (Durantin
et al., 2014b; Gateau et al., 2015) could replace the stimulus onsets
input of the Kalman filter, therefore reducing the complexity of
the filter. In addition, it would be interesting to compare the
results of the current Kalmanmodel relying on a simplemodeling
of the hemodynamic response to more complex physiological
models (e.g., Buxton et al., 2004). Finally, using an adaptive Q/R
gain or realizing an optimization process for each subject instead
of using a generic filter could also yield better results, although it
would add complexity and a calibration phase to the procedure.

Altogether, the promising results of the study stand in favor of
the use of Kalman filtering as a signal improvement technique

for fNIRS signals with applications in Neuroergonomics. In
particular, the improved signal would be available in real-
time and without a calibration phase, and would allow better
classification of WM levels in ecological settings.
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A commentary on

Cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and

motor cortical excitability

by Christova, M., Rafolt, D., and Gallasch, E. (2015). Behav. Brain Res. 287, 27–33. doi:
10.1016/j.bbr.2015.03.028

Consistent with a neuroergonomics approach, task performance can be facilitated by non-invasive
neuromodulation techniques, such as anodal transcranial direct current stimulation-atDCS (Clark
and Parasuraman, 2014; McKendrick et al., 2015). However, robust stimulation parameters and
protocols need to be developed for applying atDCS to enhance motor performance in clinical
and healthy populations. For instance, protocols using Online atDCS, where the motor task is
performed during the stimulation, has greater facilitative effects on motor performance/learning
than if the motor task is performed after the stimulation (i.e., Offline atDCS; Stagg and Nitsche,
2011). These greater facilitative effects of Online atDCS on motor performance/learning are
likely due to enhanced synaptic efficacy in the simultaneously engaged neural network through
a “gating” mechanism (Ziemann and Siebner, 2008). Overall, the interaction of the timing of tDCS
application and motor task are crucial parameters to optimize atDCS effects on enhancing motor
performance/learning.

The recent study of Christova et al. (2015) aimed to optimize Online atDCS effects on enhancing
motor performance/learning by applying a novel cathodal tDCS (ctDCS) priming protocol that
harnessed homeostatic metaplastic mechanisms. In the design of the study, healthy subjects were
randomly distributed into three priming tDCS groups (n = 12) and were required to perform
with their non-dominant left hand a grooved pegboard test (GPT) over four training blocks and
a retest 2 weeks later. Three priming tDCS conditions were investigated on the right primary
motor cortex (M1): (1) Sham: Sham ctDCS (15min) 10min before Sham Online atDCS (20min);
(2) Online atDCS: Sham ctDCS (15min) 10min before Online atDCS (1mA, 20min); (3) ctDCS
priming: ctDCS (1mA, 15min) 10min before Online atDCS (1mA, 20min). Transcranial magnetic
stimulation (TMS) parameters (motor evoked potential-MEP, intracortical facilitation-ICF, and
short interval intracortical inhibition-SICI) were assessed before and up to 60min after the tDCS
conditions. The results indicated that although both Online atDCS conditions improved GPT
performance (i.e., faster completion time) over Sham after the four training blocks, only the
priming ctDCS/Online atDCS condition further enhanced GPT performance 2 weeks later. These
latter findings were explained in relation to homeostatic metaplastic mechanisms based on the
Bienenstock-Cooper-Munro (BCM) theory that postulates a “sliding threshold” for bidirectional
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synaptic plasticity (Karabanov et al., 2015). Accordingly, priming
with ctDCS, which reduced cortical excitability (reduced MEP
amplitude and ICF) and increased cortical inhibition (increased
SICI) after the ctDCS session, would have reduced post-synaptic
activity in the activated neural network. Based on the BCM
model, this ctDCS-induced reduction in post-synaptic activity
would be expected to reduce the modification threshold for
long term potentiation (LTP)-like plasticity during subsequent
Online atDCS, and thus further enhanced GPT performance
2 weeks later. The prolonged increase in ICF and reduced
SICI for at least 60min afterwards provides some evidence for
this homeostatic metaplastic effect enhancing offline learning of
the GPT. However, the authors acknowledged that a limitation
of the study design was that a priming ctDCS followed by
Sham Online atDCS condition was not tested, which could
have confirmed that the results of the priming ctDCS/Online
atDCS condition were primarily due to homeostatic metaplastic
mechanisms. Nevertheless, Christova et al.’s (2015) novel
methodology and findings can be used to optimize tDCS
priming protocols to modulate neuroplasticity and enhance
motor performance/learning. The following sections will provide
a commentary on ways to optimize the timing and polarity of
tDCS applications, which could have significant implications for
the original paper’s conclusion.

An important tDCS parameter that requires further
investigation is the influence of the time delay between
priming and test tDCS application on homeostatic metaplasticity
and its effects on motor performance/learning (Karabanov et al.,
2015). A few studies have investigated the effects of altering
the delay between repeated tDCS applications of the same
polarity on cortical excitability (Fricke et al., 2011; Monte-
Silva et al., 2013; Bastani and Jaberzadeh, 2014) and motor
performance/learning (Bastani and Jaberzadeh, 2014). However,
no clear evidence of the optimal delay time period could be
ascertained from their respective priming tDCS protocols.
Christova et al. (2015) considered a 10min delay between
ctDCS and Online atDCS to be sufficient to allow homeostatic
metaplastic mechanisms to take hold. But it is still not known if a
shorter or longer time delay between priming ctDCS and Online
atDCS would differentially modulate homeostatic metaplasticity
and motor performance/learning. We (Muthalib et al., 2016)
have previously postulated a non-homeostatic approach of
priming with atDCS immediately before Online atDCS to further
facilitate the neuroplastic effects of Online atDCS. We reason
that since sub-threshold neuronal membrane depolarization
induced by atDCS has an intensity- and time-dependent
effect to strengthen synaptic efficacy (Nitsche and Paulus,
2001), performing atDCS (2mA, 10min) immediately before
Online atDCS would boost the already strengthened synaptic
connections through a further “gating” mechanism induced
with the concurrent motor task. We have recently shown that
this priming atDCS/Online atDCS protocol on the left M1 can
reduce bilateral M1 activation to perform a unilateral simple
finger sequence task at the same tapping rate (Muthalib et al.,
2016). These results could be explained by a non-homeostatic

mechanism following the “gating” theory, such that the reduced
motor task related bilateral M1 activation during the atDCS
suggests a greater efficiency of neuronal transmission (i.e., less
synaptic input for the same neuronal output) in the activated
neuronal network. Whether this priming atDCS/Online atDCS
protocol would enhance motor performance/learning greater
than a priming ctDCS/Online atDCS or Online atDCS protocol
still requires to be investigated.

Since the design of the Christova et al. (2015) study
corresponded to a learning paradigm, it is difficult to differentiate
the tDCS effect from the learning effect on improving online
GPT performance during the four training blocks. In order
to specifically test the tDCS effect, and minimize the effects
of learning, on performance would have been to include a
familiarization session to allow the GPT task to become “well
learned” and performance stabilize at near maximal levels in all
individuals prior to starting the tDCS interventions (Hummel
et al., 2010). For highly skilled individuals (e.g., elite athletes,
expert operators), it is extremely difficult to improve maximal
performance levels since learning has reached relative “ceiling”
levels. However, this “ceiling” performance can conceivably
be modulated directly using neuromodulation protocols. For
example, an excitatory TMS protocol to the dominant left
M1, which lead to increased M1 excitability, was able to
increase dominant right hand maximal finger tapping rate
and reduce the decline of the movement rate over 10 s (Teo
et al., 2012). In contrast, an inhibitory TMS protocol to the
dominant left M1, which decreased M1 excitability, was shown
to decrease maximal finger tapping rate of the dominant right
hand (Jäncke et al., 2004). We therefore, consider that applying
tDCS to the dominant left M1/right hand and utilizing a “well
learned” stable motor task, such as a simple finger sequence
task performed at maximum rate (Avanzino et al., 2008), may
provide a sensitive means to investigate the tDCS effects on task
performance.

In conclusion, priming tDCS protocols are promising
ways to optimize tDCS facilitatory effects on motor
performance/learning, which has relevance from a
neuroergonomic standpoint. Thus, future studies are necessary to
determine the optimal polarity and timing of tDCS applications
to modulate neuroplasticity and enhance performance in clinical,
sports, and real-world settings.
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This study uses simultaneous transcranial direct current stimulation (tDCS) and functional
MRI (fMRI) to investigate tDCS modulation of resting state activity and connectivity that
underlies enhancement in behavioral performance. The experiment consisted of three
sessions within the fMRI scanner in which participants conducted a visual search task:
Session 1: Pre-training (no performance feedback), Session 2: Training (performance
feedback given), Session 3: Post-training (no performance feedback). Resting state
activity was recorded during the last 5 min of each session. During the 2nd session
one group of participants underwent 1 mA tDCS stimulation and another underwent
sham stimulation over the right posterior parietal cortex. Resting state spontaneous
activity, as measured by fractional amplitude of low frequency fluctuations (fALFF), for
session 2 showed significant differences between the tDCS stim and sham groups
in the precuneus. Resting state functional connectivity from the precuneus to the
substantia nigra, a subcortical dopaminergic region, was found to correlate with future
improvement in visual search task performance for the stim over the sham group during
active stimulation in session 2. The after-effect of stimulation on resting state functional
connectivity was measured following a post-training experimental session (session 3).
The left cerebellum Lobule VIIa Crus I showed performance related enhancement in
resting state functional connectivity for the tDCS stim over the sham group. The ability
to determine the relationship that the relative strength of resting state functional
connectivity for an individual undergoing tDCS has on future enhancement in behavioral
performance has wide ranging implications for neuroergonomic as well as therapeutic,
and rehabilitative applications.

Keywords: fMRI, tDCS, resting state, functional connectivity, visual search, neuroergonomics

INTRODUCTION

In recent years there has been an explosion of research investigating a method by which to
augment human cognition by passing a low amplitude direct current (typically in the range of
0.5–2 mA) through a person’s head and enhancing human performance and abilities (Coffman
et al., 2014). This technique is called transcranial direct current stimulation (tDCS). tDCS has been
shown to enhance such abilities as attention and performance on vigilance, threat detection, and
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visual search tasks (Falcone et al., 2012; Parasuraman and
Galster, 2013; Nelson et al., 2014); to enhance learning
and performance on perceptual and cognitive tasks (Clark
et al., 2012; Parasuraman and McKinley, 2014); and to
improve motor and cognitive function in patients with brain
damage, neuropsychiatric, and neurological diseases (Flöel,
2014; Kuo et al., 2014; O’Shea et al., 2014). The underlying
neurological processes that allow for these enhancements
in ability are under ongoing investigation. It has been
shown that anodal DC stimulation decreases neural firing
thresholds, and that glutamatergic modulation of long-term
potentiation/depression may be involved with the enduring
effects of tDCS (Liebetanz et al., 2002; Nitsche et al., 2003;
Bikson et al., 2004; Coffman et al., 2014; Hunter et al., 2015).
While one may expect these effects to be localized on the
cortex near the stimulating electrode, functional MRI (fMRI)
studies have also shown modulation in activity in distal brain
regions suggesting possible network effects induced by tDCS
(Clemens et al., 2014; Ellison et al., 2014; Weber et al., 2014).

It is our goal in this study to use simultaneous tDCS and fMRI
to investigate the relationship between modulation in resting
state activity as well as resting state functional connectivity of
the brain correlated with improved performance as a result of
stimulation. Studies have shown that resting state activity and
connectivity in the brain can predict various characteristics such
as attention (Kelley et al., 2008), learning (Baldassarre et al.,
2012), memory (Hampson et al., 2006), language processing
(Koyama et al., 2011), personality (Adelstein et al., 2011), and IQ
(van der Heuvel et al., 2009; for review, see Stevens and Spreng,
2014). Previous studies using tDCS and fMRI have revealed,
that as a result of stimulation, resting state networks can show
wide spread changes in activity and connectivity in cortical and
subcortical brain regions (Saiote et al., 2013; Clemens et al.,
2014).

In our study, we investigate both resting state activity and
performance related resting state connectivity in response to
tDCS. A visual search task was employed before (pre-training),
during (training), and after (post-training) tDCS stimulation
to determine its facilitative effects on performance. Resting
state fMRI was recorded toward the end of each session after
completing the visual search task. We placed the stimulating
electrode over the posterior parietal cortex as it has been found
in previous tDCS studies to modulate visual search performance
(Bolognini et al., 2010; Ellison et al., 2014).We used the fractional
amplitude of low frequency fluctuations (fALFF) in the BOLD
signal, which has been found to be associated with spontaneous
neural activity (Biswal et al., 1995; Zou et al., 2008; Song et al.,
2011), as a measure of resting state activity. By comparing
fALFF across tDCS stimulation and sham groups we intend to
show brain regions in which the spontaneous neural activity is
being modulated. Unlike most previous neuroimaging studies,
we applied tDCS and fMRI concurrently in order to observe
the active effects of tDCS on resting state activity rather than
just the after-effects that exist following the cessation of tDCS.
Brain regions determined to show tDCS induced activity are
then used as seed regions for a functional connectivity analysis
(Song et al., 2011). It is hypothesized that resting state functional

connectivity related to improvement in behavioral performance
on the visual search task will be found to exist for these seed
regions for the tDCS group to a greater extent than for the sham
group.

Our study addresses many of the future directions concerning
the investigation of tDCS on resting state activity and
connectivity proposed by Clemens et al. (2014). Specifically,
we applied tDCS and fMRI concurrently to investigate the
immediate active effects on resting state activity and connectivity.
The after-effects of tDCS on resting state functional connectivity
were also investigated following a post-training session. In
addition, as proposed by Clemens et al. (2014), our study includes
the use of sham stimulation. By comparing between tDCS stim
and a sham group (unlike other studies that look at tDCS stim
vs. pre-stim), our study is able to investigate behaviorally related
enhancement in resting state functional connectivity that differs
between the two groups that can be attributed to modulation
by tDCS rather than changes in resting state connectivity that
normally occur as a result of task training.

MATERIALS AND METHODS

Participants
There were 28 participants that took part in this study. All
of the participants (14 males, 14 females) were Japanese right-
handed adults ranging from 18 to 25 years (mean = 20.7) of age
from Osaka University. The participants were pseudo-randomly
assigned to the tDCS stim and sham groups such that there were
seven females and seven males in each group. All participants
were screened for exclusion if there was a history of head injury,
history of mental, neurological, alcohol or drug abuse disorders,
or using medication that affects central nervous system function.
The participants gave written and informed consent to take part
in this experiment. The experimental procedures were approved
by the National Institute of Information and Communications
Technology (NICT) Human Subject Review Committee were
carried out in accordance with the principles expressed in the
WMA Declaration of Helsinki. Originally there were 18 tDCS
stim and 17 sham participants. From the tDCS stim group
two participants were excluded because of pressure pain caused
by the tight fit of the headphones within the head coil and
two participants were excluded because task performance was
below chance on session three even after completing the training
session. From the sham group one participants was excluded
because of pressure pain caused by the tight fit of the headphones
within the head coil and two participants were excluded because
task performance was below chance on session three even after
completing the training session.

Procedure
The experiment consisted of three sessions within the fMRI
scanner. During the first part of scanning the participants
conducted a visual search task. During the last 4.5 min of fMRI
scanning, for each session, resting state activity was acquired.
In this study, we will focus only on the resting state fMRI data
from these sessions.
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The visual search task was based on a search and rescue
mission that required participants to locate a red pickup truck
located in the search area amongst buildings and other similar
looking distractor vehicles. In each trial there were five non-
moving vehicles distributed throughout the search area, one of
which could be the red truck. There were a total of 60 trials in
each session and the target red truck was randomly present on
half of the trials. The task was designed so that as the unmanned
aerial vehicle UAV loitered in a circle around the search area,
all vehicles would remain in constant view despite a continually
changing view angle. Each trial lasted 10 s where the participants
searched the area looking for the target and were required to
make a button press indicating whether the search area contained
a target or not.

The three experimental sessions consisted of the following:
Session 1: Pre-training session that did not provide performance
feedback. Session 2: Training session in which tDCS stimulation
or sham stimulation was delivered. In the training session
immediate reinforcement error-feedback (‘‘ding’’ sound correct,
‘‘buzz’’ sound incorrect) after each response. Additionally, for
target present trials only, a transparent white sphere would
appear over the target at the end of the 10 s trial identifying
the target location. This type of auditory reinforcement
feedback will allow subjects to know immediately whether
the features they were attending to are incorrect, in the case
of a false alarm or a miss, or correct, in the case of a
correct rejection or a hit. This information together with the
visual feedback of the position of the target at the end of
the trial when it was present will allow for learning of the
relevant features and improve performance. Session 3: Post-
training session with no feedback. The total time of the
visual search task for session 1 and 3 was approximately
15 min and session 2 was approximately 16 min. After each
experimental session resting state activity was recorded for
4.5 min. For session 2 tDCS stimulation was given concurrently
with fMRI scanning. The task for the participants during
collection of the resting state data was to visually fixate on
a white cross mark presented in the center of the display
against a black background. Participants were instructed to
fixate on the cross on the screen, and to relax without falling
asleep.

Transcranial Direct Current Stimulation
TDCS was delivered during the training session (session 2)
using the MRI compatible NeuroConn DC-Stimulator MR.
Two rectangular-shaped (5.3 × 7.2 cm) MRI compatible
conductive rubber electrodes were placed on the participant
before entering the MRI scanner (see Figure 1 for picture
of placement of electrode on the head of a participant and
a rendered MRI showing the tDCS electrode on the head).
The anodal electrode was placed over the right posterior
parietal cortex. It was placed over where the P4 electrode
is located according to the 10–20 International EEG System.
The electrode was held in place by the conductive paste
(Ten20 conductive paste gel, Waver and Company) as well as
a padded headband. The cathodal electrode was placed over

FIGURE 1 | Top: Picture showing the placement of the anodal tDCS electrode
on the right posterior parietal cortex of the participant. Bottom: The
placement of the tDCS electrode can be seen in the rendered MRI of the
participant. Sections are shown through the brain at the site of the electrode.
For the MRI sections the right side of the image is the right side of the brain.

the contralateral left side trapezius muscle on the back of the
shoulder.

Participants in the stim group received 1 mA current for
a total of 30 min (1 mA was the highest level possible within
the MRI scanner with our version of the NeuroConn DC-
Stimulator MR). Stimulation was started 5 min before the
task in order to ensure that the full modulatory effect of
tDCS was active during task performance. Current was ramped
up over the initial 10 s and ramped down the last 10 s of
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stimulation. The participants in the sham group also received
1 mA current but only for 30 s and then the unit was turned
off. This procedure helps to conceal from the participant which
group (stim or sham) they belong to as both groups feel the
onset of the stimulation. In addition group membership of
the participant was not known by the experimenter giving the
instructions.

fMRI Data Collection and Analysis
fMRI scanning of resting state activity was acquired for 4.5 min
at the end of each session (TR = 2 s; 30 interleaved slices covering
the brain and cerebellum, 3 mm × 3 mm × 4 mm voxels;
Siemens 3T Trio Scanner; 32 Channel head coil). Preprocessing
of fMRI data was conducted using SPM8 (Wellcome Department
of Cognitive Neurology, UCL) and included realignment and
unwarping, normalization to the template EPI image (2 mm
× 2 mm × 2 mm), and smoothing (8 mm × 8 mm ×

8 mm). EPI template based normalization was used because
the source image upon which the normalization parameters
are determined is in the same space as the scans to be
normalized. This has advantages in that it avoids additional
steps of coregistration to/or from EPI space (resulting in
image distortion) that are required when using an anatomical
T1 or T2 image to determine the normalization parameters.
Because whole brain EPI was acquired the difficulties associated
with mapping partial EPI volumes to the template image are
avoided.

The REST (Song et al., 2011) Toolkit was used to
conduct the resting state spontaneous activity (fALFF) and the
functional connectivity analyses. The realignment parameters
were used as covariates of non interest and regressed out
of the preprocessed EPI data to extract potential confounds
related to head movement while scanning. The linear trend
was then removed from the data. The parameters for the
fALFF analysis included a low frequency fluctuation band of
0.01–0.08 Hz (Biswal et al., 1995) compared to the entire
frequency range (0–0.25 Hz). The fALFF results were normalized
by dividing by the mean fALFF values within the whole brain
mask to be used for second level random effects analyses.
The functional connectivity analysis was carried out over
the preprocessed covariates removed detrended and filtered
(0.01–0.08 Hz) data. Three separate functional connectivity
analyses were conducted. The seed regions of interest (ROI)
were determined from the results of the fALFF analysis (see
‘‘Results’’ Section). The ROI included the precuneus (MNI 6,
−46, 60). A Spherical region with a radius of 8 mm at the
given coordinate was used as the seed for the resting state
functional connectivity analyses conducted separately for each
session. The Pearson linear correlation was used to determine
the functional connectivity between the mean of the voxels
within the seed ROI and the rest of the voxels in the brain
according to the defaults in the REST toolbox (Song et al.,
2011). The Fisher’s z transform was used to normalize the
correlation coefficients to be used for second level random
effects analyses. SPM8 was used to conduct the random effects
analyses. Correction for multiple comparisons (p < 0.05)

across the entire brain was carried out using Monte-Carlo
simulation of the brain volume to define a voxel contiguity
threshold at an uncorrected significance level of p < 0.005
(Slotnick et al., 2003; Ellison et al., 2014). Using 10000 Monte-
Carlo simulations a cluster extent greater than 154 voxels
thresholded at p < 0.005 uncorrected, is necessary to correct
for multiple comparisons across the whole brain at a threshold
p < 0.05. Activated brain regions were identified using the
SPM Anatomy Toolbox v1.8 (Eichkoff et al., 2005) as well
as Talairach Client after transforming from the MNI to the
Talairach coordinate system using mni2tal function in Matlab.
The substantia nigra, red nucleus, and subthalamic nuclei were
identified using the regions specified in Keuken and Forstmann
(2015).

RESULTS

Behavioral Results
The behavioral results in terms of percent correct on the
visual search task for the tDCS stim and sham groups are as
follows: there was a significant enhancement in performance
post- relative to pre-training (ANOVA F(2,52) = 12.47, p < 0.05).
The enhancement was statistically significant (t = 4.05; p < 0.05)
for the stim group (pre-training mean = 64.26%; SE = 2.64;
post-training mean = 72.06%; SE = 2.36) and was statistically
significant (t = 3.15; p < 0.05) for the sham group (pre-
training mean = 64.98%; SE = 2.47; post-training mean = 73.02%;
SE = 1.99). There was no significant difference (assessed
at p < 0.05) between stim and sham groups for either
pre- (T = −0.21) or post-training (T = −0.33) sessions.
The interaction between stim and sham groups and pre- and
post-training session was not significant (F(2,52) = 0.3; p > 0.05).
Additionally there was no significant difference (T = −0.83,
p > 0.05) between stim (mean = 64.86%; SE = 2.7) and sham
(mean = 67.94%; SE = 2.74) groups for the training session 2.

Brain Imaging Results
Resting State Activity: fALFF Analysis
The results of the fALFF analysis are given in Figure 2
and Table 1. Using a random effects between groups t-test,
statistically significant (p < 0.05 corrected for multiple
comparisons, see ‘‘Materials and Methods’’ Section) differences
in fALFF between the stim and sham groups for session 2
were found to be located in three clusters of activity: Cluster
1 is located around the right superior parietal spreading into
the left parietal cortex as well as the neighboring regions
of the precuneus, post central gyrus, pre-central gyrus, and
supplementary motor area (It should be noted that since the
analysis is corrected for multiple comparisons at the cluster level
we cannot definitively know which of these regions making up
the cluster are activated, only that some of them are); Cluster 2
is located in the right inferior parietal lobule including the
temporal parietal junction; Cluster 3 is located in the premotor
cortex BA6 (see Figure 2, top and Table 1, top). Brain regions
statistically significant (p < 0.05 corrected) for the stim–sham
contrast masked by the interaction (random effects ANOVA)
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FIGURE 2 | Results of the SPM random effects analysis rendered on the surface of the brain. Top: Differential resting state activity as measured by fractional
amplitude of low frequency fluctuations (fALFF) for the stim–sham groups for session 2 corrected for multiple comparisons at the cluster level (p <0.05) using
Monte-Carlo simulation (corrected cluster extent threshold greater than 154 contiguous voxels over uncorrected significance threshold of p < 0.005). Bottom:
Activity in the session 2 stim–sham analysis above that is additionally masked by the interaction of Stim (Session 2 – Session 1) – Sham (Session 2 – Session 1)
corrected (p < 0.05) for multiple comparisons at the cluster level.

of Stim (Session 2 – Session 1) – Sham (Session 2 – Session 1)
with a corrected threshold of p < 0.05, consisted of the right
precuneus (see Figure 2, bottom and Table 1, bottom). Masking
by the interaction controls against differences in fALFF that may
exist between the tDCS stim and sham groups prior to training.
In addition the masking also allows for a more focal site that is
likely modulated by the tDCS, which can be used as a seed for
the resting state functional connectivity analyses. No statistically

significant differences in fALFF were found for session 2 for the
sham greater than stim contrast when correcting for multiple
comparisons.

Resting State Connectivity: Functional Connectivity
Analysis
Resting state functional connectivity analyses for each of the
three sessions, using post relative to pre behavioral performance

TABLE 1 | Differential resting state activity between stim and sham groups determined by fractional amplitude of low frequency fluctuations.

Brain region MNI coordinates T (df = 26) Z-score Cluster size
x, y, z

fALFF (Stim–Sham) session 2
Precuneus BA7 6, −46, 60 3.76 3.33 1902
SPL BA40 40, −44, 54 3.99 3.76
Postcentral Gyrus BA3 24, −32, 60 4.48 3.82
Postcentral Gyrus BA1, 6 −22, −32, 54 4.49 4.49
SMA BA6 6, 2, 66 3.89 3.42
IPL BA40 58, −30, 44 5.17 4.25 192
TPJ BA40 50, −30, 22 3.88 3.42
Precentral Gyrus BA4, 6 46, −14, 62 4.29 3.70 291
Premotor Cortex BA6 26, −16, 74 3.60 3.21

fALFF (Stim–Sham) session 2 masked by interaction
Precuneus BA7 6, −46, 60 3.76 3.33

Top: Brain regions showing significant differential activity for the stim–sham comparison for session 2 corrected for multiple comparisons at the cluster level (p < 0.05) using

Monte-Carlo simulation (corrected cluster extent threshold greater than 154 contiguous voxels over uncorrected significance threshold of p < 0.005). Bottom: Regions

that are also significant when masking the results by the interaction of Stim (Session 2 – Session 1) – Sham (Session 2 – Session 1) corrected for multiple comparisons

at the cluster level (p < 0.05). BA, Brodmann area; IPL, Inferior Parietal Lobule; SPL, Superior Parietal Lobule; SMA, Supplementary Motor Area; TPJ, Temporal Parietal

Junction. Negative “x” MNI coordinates denote left hemisphere and positive “x” values denote right hemisphere activity.
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as a covariate of interest, were conducted using the precuneus
(significant for the fALFF analyses; see Figure 1, bottom
and Table 1, bottom) as a seed. In order to determine
differences between the tDCS stim and sham groups in
resting state functional connectivity related to enhanced
behavioral performance, a random-effects between groups t-test
using post-minus pre-training behavioral performance as a
covariate of interest was conducted. Enhancement in behavioral
performance was defined as the percent correct score for
session 3 minus session 1 for each participant. The resting
state functional connectivity score for each participant was
the resultant Fisher’s z transformed normalized correlation
coefficient of the connectivity analysis for each voxel in the
brain.

The results of the behavioral enhancement related functional
connectivity analysis for sessions 1, 2, and 3 using the right
precuneus as the seed region to the voxels in the entire brain are
the following:

For session 1 behavioral enhancement related resting state
functional connectivity was not observed for the stim–sham
contrast, the stim alone contrast, or the sham alone contrast using
a cluster level corrected threshold of p < 0.05.

For session 2 a cluster encompassing the substantia nigra,
red nucleus, and subthalamic nuclei was found to show
statistically significant differences in behaviorally related resting
state functional connectivity when correcting for multiple
comparisons at the cluster level (p < 0.05) for the stim–sham
contrast (see Figure 3 and Table 2). For the stim alone
contrast three clusters showed statistically significant behavioral
enhancement related resting state functional connectivity
(p < 0.05 corrected). These clusters include the following:
(1) the substantia nigra, red nucleus, and subthalamic nuclei;
(2) the thalamus; and (3) the cerebellar lobule VIIIa Vermis (see
Figure 4 and Table 2, bottom). The sham alone contrast for
session 2 did not show any statistically significant behaviorally
related resting state functional connectivity using a corrected
threshold of p < 0.05.

FIGURE 3 | Session 2 results of the SPM random effects between
groups t-test for stim relative to the sham group for resting state
functional connectivity with the precuneus using post-pre behavioral
performance as a covariate of interest. Statistically significant (p < 0.05
corrected) differences in behaviorally related resting state functional
connectivity are rendered on sections of a template T1 MRI scan at MNI
coordinates for the peaks in the various significant clusters. Negative “x” MNI
coordinates denote left hemisphere and positive “x” values denote right
hemisphere activity. For the MRI sections the right side of the image is the
right side of the brain.

For session 3 two clusters (one in the cerebellum lobule
VIIa Crus I and the other in the insula) showed statistically
significant (p< 0.05 corrected) differences in behaviorally related
resting state functional connectivity for the stim–sham contrast
(see Figure 5 and Table 3). For the stim alone contrast four
clusters showed statistically significant (p < 0.05 corrected)

TABLE 2 | Behavioral enhancement related resting state functional connectivity with the precuneus session 2.

Brain region MNI coordinates T (df = 24) Z-score Stim Sham Cluster size
x, y, z r r

Stim-Sham
Substantia Nigra −4, −16, −18 5.20 4.22 0.86∗∗

−0.52 200
6, −14, −16 4.26 3.64 0.81∗∗

−0.43
Stim alone
Substantia Nigra −6, −14, −16 6.05 4.02 0.87∗∗ 387

6, −14, −16 4.74 3.49 0.81∗∗

Thalamus 6, −14, 8 5.65 3.87 0.85∗∗ 437
−4, −12, 4 4.3 3.28 0.79∗∗

−16, −14, 12 4.37 3.32 0.78∗∗

Cerebellum 8, −64, −34 4.91 3.57 0.82∗∗ 329
Lobule VIIIa Vermis 8, −72, −32 4.74 3.49 0.81∗∗

16, −70, −36 4.70 3.47 0.81∗∗

Brain regions showing significant differential resting state connectivity for session 2 corrected for multiple comparisons at the cluster level (p < 0.05) using Monte-Carlo

simulation (corrected cluster extent threshold greater than 154 contiguous voxels over uncorrected significance threshold of p < 0.005). BA, Brodmann area. Negative

“x” MNI coordinates denote left hemisphere and positive “x” values denote right hemisphere activity. Correlation coefficient r: ∗∗denotes (p < 0.005).
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FIGURE 4 | Session 2 results of the SPM random effects t-test for stim
alone contrast for resting state functional connectivity with the
precuneus using post-pre behavioral performance as a covariate of
interest. Statistically significant (p < 0.05 corrected) behaviorally related
resting state functional connectivity is rendered on sections of a template T1
MRI scan at MNI coordinates for the peaks in the various significant clusters.
Negative “x” MNI coordinates denote left hemisphere and positive “x” values
denote right hemisphere activity. For the MRI sections the right side of the
image is the right side of the brain.

behaviorally related resting state functional connectivity. These
clusters include the following: (1) the cerebellum lobule VIIa
Crus I; (2) the cerebellar lobule VI vermis and hemisphere;
(3) the thalamus; and (4) the inferior parietal cortex (see Figure 6
and Table 3, bottom). The sham alone contrast for session 3
did not show any statistically significant behaviorally related
resting state functional connectivity using a corrected threshold
of p < 0.05.

The magnitude and the direction of the correlation between
behavioral enhancement and resting state functional connectivity
are given in Tables 2, 3 (correlation coefficient r). For the tDCS
stim group an increase in resting state functional connectivity

FIGURE 5 | Session 3 results of the SPM random effects between
groups t-test for stim relative to the sham group for resting state
functional connectivity with the precuneus using post-pre behavioral
performance as a covariate of interest. Statistically significant (p < 0.05
corrected) differences in behaviorally related resting state functional
connectivity are rendered on sections of a template T1 MRI scan at MNI
coordinates for the peaks in the various significant clusters. Negative “x” MNI
coordinates denote left hemisphere and positive “x” values denote right
hemisphere activity. For the MRI sections the right side of the image is the
right side of the brain.

is statistically significantly correlated (see Tables 2, 3) with the
increase in behavioral performance. This relation is not found
for the sham group.

DISCUSSION

Resting state functional connectivity during tDCS is correlated
with future improvement in performance. Our study shows
that tDCS affects low amplitude fluctuations in spontaneous
brain activity in the precuneus region around the anodal
stimulating electrode (see Figure 2, bottom and Table 1, bottom).
Performance enhancement related differences (between tDCS
stim and sham groups that is also present in the stim alone
analysis) in resting state functional connectivity were found
from the precuneus to a cluster encompassing the substantia
nigra, red nucleus, and the subthalamic nuclei during concurrent
tDCS stimulation for session 2 (see Figures 3, 4 and Table 2).
An after-effect of tDCS stimulation on resting state functional
connectivity was measured following a post-training session
on the visual search task that occurred approximately 20 min
after the session of tDCS stimulation. Performance enhancement
related differences (between tDCS stim and sham groups that
is also present in the stim alone analysis) in resting state
functional connectivity were found from the precuneus to a
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TABLE 3 | Behavioral enhancement related resting state functional connectivity with the precuneus session 3.

Brain region MNI coordinates T (df = 24) Z-Score Stim Sham Cluster Size
x, y, z r r

Stim–Sham
Cerebellum Lobule VIIa Crus I −32, −58, −38 3.54 3.15 0.82∗∗

−0.22 174
Insula BA13 −34, 18, 12 3.77 3.31 0.67∗

−0.48 186
Stim alone
Cerebellum Lobule VIIa Crus I −32, −62, −36 5.52 3.82 0.85∗∗ 337
Cerebellum −10, −76, −26 3.75 2.99 0.74∗∗ 195
Lobule VI Vermis 12, −70, −20 3.71 2.97 0.73∗∗

and Hemisphere −4, −72, −22 3.64 2.93 0.72∗∗

Thalamus 14, −22, 18 4.81 3.52 0.81∗∗ 194
18, −32, 8 4.81 3.52 0.81∗∗

IPC 42, −42, 30 4.46 3.36 0.79∗∗ 198

Brain regions showing significant differential resting state connectivity for session 3 corrected for multiple comparisons at the cluster level (p < 0.05) using Monte-Carlo

simulation (corrected cluster extent threshold greater than 154 contiguous voxels over uncorrected significance threshold of p < 0.005). BA, Brodmann area; IPC, Inferior

Parietal Cortex. Negative “x” MNI coordinates denote left hemisphere and positive “x” values denote right hemisphere activity. Correlation coefficient r: ∗denotes (p < 0.05)

and ∗∗denotes (p < 0.005).

cluster encompassing the right cerebellum lobule VIIa Crus I for
session 3 (see Figures 5, 6 and Table 3).

The mechanisms behind tDCS-induced enhanced cognition
have been associated with that of activity-dependent plasticity.
The precuneus region revealed by the fALFF analysis to be
specifically modulated by anodal tDCS is most likely the result of
increased spontaneous neuronal firing due to excitability changes
brought on by tDCS. Spontaneous fluctuations in BOLD signal
related to cognitive abilities are known to be present at rest
(Biswal et al., 1995; Stevens and Spreng, 2014). Furthermore,
studies have shown that resting state activity is modulated by
tDCS (Saiote et al., 2013; Clemens et al., 2014).

The results of the fALFF analysis revealed that the precuneus
showed significantly greater spontaneous resting state activity
for the tDCS stim over the sham group that was not attributed
to preexisting differences between the groups in resting state
activity present prior to tDCS stimulation (see Figure 2, bottom
and Table 1, bottom). The precuneus has been found to be
involved with processes related to the visual search task employed
in this experiment. These include attentive tracking of moving
targets (Culham et al., 1998), attention orientation (Le et al.,
1998; Simon et al., 2002), attention shift between object features
(Nagahama et al., 1999), and mental rotation (Suchan et al.,
2002). It has been put forward that the precuneus is involved with
internally guided attention and manipulation of mental images
related to visuospatial processing (Cavanna and Trimble, 2006).

Using the precuneus as a seed, we were able to reveal
performance related differences in resting state functional
connectivity associated with tDCS stimulation. The resting
state functional connectivity analysis assumes that, in the
absence of ongoing task related activity, two regions that
display spontaneous fluctuations in BOLD signal that are
highly temporally synchronized are likely within the same
functional network. Using visual search performance post-
training (session 3) relative to pre-training (session 1) as a
covariate of interest in this analysis allowed us to identify
regions that were associated with improved performance as
temporal synchrony (functional connectivity) increases with

our seed ROI (precuneus). Our results revealed visual search
performance enhancement related differences in resting state
functional connectivity between the precuneus and a cluster
encompassing primarily the substantia nigra for the stim over
the sham group (that was also present for the stim group alone
contrast; Figures 3, 4 and Table 2). Interestingly, consistent with
the task presented in our study, previous research has implicated
the substantia nigra with aspects of visuospatial processing
(Matsumoto and Takada, 2013). The study by Matsumoto and
Takada (2013), using single cell recordings in monkeys, showed
that neurons in the substantia nigra were active when the task
required visual search and working memory. Consistent with the
findings in these studies, the task in our experiment required
the participant to maintain the features of the target truck and
distractors in working memory to accomplish the visual search
task. Also relevant to our study, the substantia nigra, is part of
the dopaminergic system (Björklund and Dunnett, 2007). The
dopaminergic system is thought to be intimately involved with
value dependent learning (Montague et al., 1996; Schultz, 1998;
Doya, 2002; Callan and Schweighofer, 2008). The performance
related enhancement in resting state functional connectivity for
the stim over the sham group between the precuneus and the
substantia nigra is consistent with the hypothesis that tDCS
may in part be modulating value dependent learning systems
involved with the visual search task (see Figures 3, 4 and
Table 2). While we cannot rule out that the effect of tDCS
stimulation alone is responsible for our observed performance
related resting state connectivity, given the function of the brain
regions involved, it is perhaps more likely that the effect of tDCS
stimulation interacting with the visual search task is responsible
for the changes in performance related resting state functional
connectivity that we observe in our study.

In addition to investigating the active effects of tDCS
stimulation on performance related enhancement in resting state
functional connectivity we also investigated the after-effect of
tDCS stimulation following a post-training session on the visual
search task that occurred approximately 20 min after the session
of tDCS stimulation. The session 3 results revealed visual search
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FIGURE 6 | Session 2 results of the SPM random effects t-test for the
stim alone contrast for resting state functional connectivity with the
precuneus using post-pre behavioral performance as a covariate of
interest. Statistically significant (p < 0.05 corrected) behaviorally related
resting state functional connectivity is rendered on sections of a template T1
MRI scan at MNI coordinates for the peaks in the various significant clusters.
Negative “x” MNI coordinates denote left hemisphere and positive “x” values
denote right hemisphere activity. For the MRI sections the right side of the
image is the right side of the brain.

performance enhancement related differences in resting state
functional connectivity between the precuneus and a cluster in
the cerebellum lobule VIIa Crus I for the stim over the sham
group (that was also present for the stim group alone contrast;
Figures 5, 6 and Table 3). From studies on individuals with
localized brain damage, human functional imaging studies, and
animal studies the cerebellum is known to be involved with
visuospatial processing (for review, see Molinari and Leggio,
2007). Related to our experimental task, the same region of the

cerebellum as is present in our study has been found in an fMRI
study to be involved with preparatory processes involved with
visual search (Bourke et al., 2013). Also relevant is the known
presence of anatomical connections between the precuneus and
multiple circuits in the cerebellum through the basis pontis
(Cavanna and Trimble, 2006).

One interesting finding of the analyses concerning the
after-effects of tDCS stimulation is that the locus of differential
performance related resting state functional connectivity
(between tDCS stim and sham groups) is different from that
of active tDCS stimulation. It is unclear why the focus of
performance related resting state functional connectivity to
the precuneus switches from the substantia nigra during active
stimulation to the cerebellum as an after-effect. It is possible
that the differences reflect distinctive stages of learning and
correspondent modification of resting state networks.

Also of interest was the lack of any significant performance
related resting state functional connectivity with the precuneus
for the sham group while several regions were found to be
significant for the tDCS stim group for active and after-effect
analyses (see Figures 4, 6 and Tables 2, 3). One possibility is
that multiple degenerate networks (Edelman, 1987) are utilized
for processing the visual search task for the sham group whereas
for the tDCS stim group, as a result of stimulation, specific
networks are selectively used. This is potentially why the degree
of correlation between the strength of these networks and
behavioral improvement in performance is relatively high (see
Tables 2, 3) for the tDCS stim group.

In our study as well as in others (e.g., Polanéa et al., 2011) the
seed ROIs for the resting state functional connectivity analyses
were selected based on previous, although different, analyses of
the same data. The advantage of using the results of the fALFF
analysis as seed ROIs is that we ensure that we are actually
utilizing regions that are showing potential modulation as a
result of the tDCS for the functional connectivity analysis instead
of arbitrarily selecting a region underneath the stimulation
electrode. We do not believe that this will unduly bias the
results of the functional connectivity analyses for stim over the
sham group comparison because the fALFF (fluctuations in low
frequency activity in single voxels) and functional connectivity
(correlation in time course between voxels) analyses are quite
different. Additionally, we employed the use of improvement
in behavioral performance post-relative to pre-training as a
covariate of interest in the functional connectivity analyses.
There is no a priori reason to believe that future improvement
in behavioral performance should be predicted by differences in
fALFF or functional connectivity unless of course these changes
are induced as a result of tDCS.

As with all brain imaging studies, there are many potential
limitations and confounds that need to be addressed. One
potential limitation of this study is that the changes we see in
fALFF and resting state functional connectivity may not be a
result of changes in spontaneous neural activity, but rather may
be a result of changes in cerebral perfusion or noise induced by
tDCS (this is only a potential problem for session two in which
concurrent tDCS and fMRI was applied). Previous studies using
concurrent tDCS and fMRI have suggested that tDCS induced
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distortions on fMRI SNR are minimal (Antal et al., 2011; Zheng
et al., 2011). It is unlikely that these tDCS distortion effects
would be specific to the low frequency range (0.01–0.08 Hz)
used in the fALFF analysis. Since the fALFF compares this low
frequency range to the entire range (0–0.25 Hz) it would cancel
out any effects induced by tDCS (artifacts on fMRI, etc . . .)
that are not frequency specific. In terms of the resting state
functional connectivity analyses we employed there is no reason
why changes in cerebral perfusion or noise induced by tDCS
would correlate with post-relative to pre-training behavioral
performance. It is much more likely that the behaviorally related
resting state functional connectivity we observed is a result of
changes in spontaneous neural activity resulting from tDCS
stimulation.

An additional confound that we did not test was whether the
radio frequency and gradients associated with fMRI EPI scanning
influences the tDCS current. The NeuroConn DC-Stimulator
MR that we used for this experiment includes an RF filter module
with MRI compatible cables and electrodes. These components
help to prevent effects of RF on tDCS current. In addition we
avoided cable loop formation in the setup that may result in
gradient induced currents. Furthermore, the fMRI compatible
cables used for tDCS had a high resistance (5 kΩ), which should
also decrease the induced current avoiding potential effects of
MRI on tDCS. Although we do not believe it to be the case,
since we did not measure the current during stimulation, we
cannot rule out the possibility that the tDCS current could have
been reduced or modulated such that its enhancement effects on
behavior were diminished.

One of the biggest limitations of our study was the lack of a
robust difference in behavioral performance after training for the
tDCS stim over the sham group. There are several reasons why
group differences in improved performance between the stim
and sham groups may not have been observed in our study when
they have been found in many previous studies (Coffman et al.,
2014). One reasonmay be that the task was too difficult when first
starting such that many participants were at near chance levels.
The effects of training were so great in this situation that the
modulatory benefits of tDCS were washed out in the behavioral
data. Another reason for a lack of a behavioral performance
enhancement difference between tDCS stim and sham groups
may be that training was too short for the modulatory effects
of tDCS to be revealed in behavioral performance. Relatedly,
another limitation in our study was the restriction on the level
of tDCS stimulation to be a maximum of 1 mA with our
version of the NeuroConn DC-Stimulator MR. Many tDCS
studies commonly utilize 2 mA to get robust enhancement in
behavioral performance (Coffman et al., 2014). One reason why
we did not see an overall difference between tDCS stim and
sham groups may be because the level of stimulation was too
low to induce robust enhancement in the short training time of
approximately 16 min. Given that we do see strong performance
related differences in the resting state functional connectivity
data it may be the case that we are observing the early stages
of tDCS modulated learning. The involvement of dopaminergic
brain regions involved with value dependent learning as well as
to working memory and visual attention are certainly consistent

with this hypothesis. In the future it would be interesting to
investigate whether longer training on this same task as well as
higher stimulating levels (2 mA) results in enhanced behavioral
performance for tDCS stim over sham groups.

CONCLUSION

Participants’ who showed greater resting state functional
connectivity between parietal regions and dopaminergic
subcortical brain regions (substantia nigra, hippocampus,
and amygdala) showed greater improvement in visual
search task performance. Essentially, future improvement
in performance showed a significant linear relationship with
resting state functional connectivity (thought to be) induced
by tDCS. These results suggest that it may be possible to
employ multivariate pattern analysis machine learning decoding
techniques to predict future performance, given a certain pattern
of resting state functional connectivity. Future experiments
need to be conducted to determine if changes in resting state
functional activity and connectivity induced by tDCS can
be used to predict long-term changes in task performance.
One could even use neurofeedback techniques (Fukuda et al.,
2015) in conjunction with tDCS to induce greater changes
in specific functional networks. These techniques could be
utilized to optimize performance benefits resulting from tDCS.
Our results have wide ranging implications regarding effective
utilization of tDCS for neuroergonomic as well as therapeutic,
and rehabilitative applications.
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Skill acquisition requires distributed learning both within (online) and across (offline)

days to consolidate experiences into newly learned abilities. In particular, piloting

an aircraft requires skills developed from extensive training and practice. Here, we

tested the hypothesis that transcranial direct current stimulation (tDCS) can modulate

neuronal function to improve skill learning and performance during flight simulator

training of aircraft landing procedures. Thirty-two right-handed participants consented

to participate in four consecutive daily sessions of flight simulation training and

received sham or anodal high-definition-tDCS to the right dorsolateral prefrontal

cortex (DLPFC) or left motor cortex (M1) in a randomized, double-blind experiment.

Continuous electroencephalography (EEG) and functional near infrared spectroscopy

(fNIRS) were collected during flight simulation, n-back working memory, and resting-state

assessments. tDCS of the right DLPFC increased midline-frontal theta-band activity in

flight and n-back working memory training, confirming tDCS-related modulation of brain

processes involved in executive function. This modulation corresponded to a significantly

different online and offline learning rates for working memory accuracy and decreased

inter-subject behavioral variability in flight and n-back tasks in the DLPFC stimulation

group. Additionally, tDCS of left M1 increased parietal alpha power during flight tasks

and tDCS to the right DLPFC increased midline frontal theta-band power during n-back

and flight tasks. These results demonstrate a modulation of group variance in skill

acquisition through an increasing in learned skill consistency in cognitive and real-world

tasks with tDCS. Further, tDCS performance improvements corresponded to changes

in electrophysiological and blood-oxygenation activity of the DLPFC and motor cortices,

providing a stronger link between modulated neuronal function and behavior.

Keywords: tDCS, EEG, fNIRS, DLPFC, M1, flight simulation, skill learning
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INTRODUCTION

There has recently been a rapid increase in the number of
published studies in the field of neuromodulation due to the
availability of non-invasive stimulation technologies such as
transcranial direct current stimulation (tDCS). New tools for
training enhancement are emerging which target specific, basic
cognitive functions, with the goal of increasing performance in
high-level, real-world tasks, such as pilot training. For example,
Clark et al. (2012) demonstrated enhanced concealed image
detection training with tDCS. Others have observed enhanced
skill learning with tDCS in spatial and verbal working memories
(Martin et al., 2014; Richmond et al., 2014), language acquisition
(Flöel et al., 2008) and motor skills development (Banissy and
Muggleton, 2013; Reis et al., 2015; Rumpf et al., 2015). For a
review of tDCS enhancements (see Coffman et al., 2014).

Computerized cognitive training methods have been only
moderately successful in enhancing performance (Ball et al.,
2002). However, computerized procedural training (flight
simulation) has been an important part of airplane pilot training
since the mid 1970’s. Commercial and military pilot training
programs now utilize flight simulation extensively for training
basic flight and combat skills (Bell and Waag, 1998; Rosenkopf
and Tushman, 1998). Research on the effectiveness of flight
simulator training has historically been limited by the high
cost of full flight simulators, and occurs in the context of
ongoing pilot training programs, rather than unbiased third-
party research programs (Hays et al., 1992; Rosenkopf and
Tushman, 1998). The field has recently overcome this limitation
by the commercialization of relatively low-cost flight simulator
devices available for purchase and use in standard research
environments. These personal computer-based flight simulators
are also used in various contexts for flight training (Koonce and
Bramble, 1998), lending ecological validity to simulator studies.

Piloting an airplane is a demanding task requiring skillful
execution of learned procedures. This has been observed as a
correlation between flight simulator performance and measures
of reasoning and working memory in general aviation pilots
(Causse et al., 2011), and a concurrent decline in working
memory and flight errors (Dismukes, 2008; Engle, 2010).
Furthermore, neurophysiological markers of both short-term
(e.g., fatigue) and long-term (e.g., expertise) cognitive functions
correlate with behavioral performance (Ayaz et al., 2013;
Borghini et al., 2014). Pilot skill development requires a synthesis
of multiple cognitive faculties, many of which are enhanced
by tDCS and include: dexterity (Boggio et al., 2006), mental
arithmetic (Hauser et al., 2013), cognitive flexibility (Chrysikou
et al., 2013), visuo-spatial reasoning (Heimrath et al., 2012),
and working memory (Gill and Hamilton, 2014)—an important
predictor of flight situation awareness in novices (Sohn and
Doane, 2004).

Working memory is linked primarily with brain activity in
the dorsolateral prefrontal cortex (DLPFC) (Courtney et al.,
1996; Braver et al., 1997; Curtis and D’Esposito, 2003), an area
often targeted by non-invasive brain stimulation in cognitive
research. Most researchers agree that tDCS of DLPFC has
substantial effects on working memory (for a review see Coffman

et al., 2014); however, Horvath et al. (2015) recently reported
disconfirming evidence for this hypothesis in a meta-analysis of
selected studies investigating the cognitive effects of tDCS. In
this meta-analysis, tDCS did not have a significant effect on any
cognitive measure. However, their approach may be confounded
by calculation of effect sizes based only on post-stimulation
scores, rather than accounting for pre-stimulation differences
between groups. Chhatbar and Feng (2015) illustrated this issue
in their response paper, where they show substantial effects
of tDCS when calculating effect sizes from pre-post difference
scores rather than post-stimulation scores alone.

The focality of stimulation is also a critical component of
tDCS-driven behavioral changes, and this aspect of experimental
design is difficult to capture in meta-study. Large pad-type
electrodes used in previous studies have comparatively poor
focality and target current intensity as compared to the
multiple electrode montage approach (Dmochowski et al., 2011).
Finite elements modeling work with MRI-derived brain models
performed by various groups demonstrate optimization of
currents to the brain that improve focality and intensity to
areas of interest by 80 and 98%, respectively (Bikson et al.,
2009; Datta et al., 2011, 2012; Dmochowski et al., 2011; Faria
et al., 2011; Edwards et al., 2013). The importance of this
modeling work is underscored by clinical investigations that
show differences in targeting and stimulation intensity results in
marked differences in behavioral output and stimulation efficacy
(Valle et al., 2009; Moliadze et al., 2010; Mendonca et al., 2011).
Finally, Santarnecchi et al. (2015) have suggested that the impact
of tDCS on target brain structures is dependent on not only the
placement of electrodes and current density, but also the current
state of activity in those brain areas. This crucial point is often
overlooked in tDCS research, and investigators should carefully
consider the cognitive task performed during stimulation to
maximize the desired effect.

Despite recent controversy over the effects of tDCS on
working memory, tDCS applied to specific brain regions has
been reported to improve behavioral performance in a diverse
array of cognitive categories: attention (Coffman et al., 2014),
reaction time (Teo et al., 2011), object recognition (Clark et al.,
2012), memory (Manenti et al., 2013), creativity (Chrysikou
et al., 2013), and motor skill acquisition (Nitsche et al., 2003). In
addition to acute improvement of various performancemeasures,
some laboratories have also observed persistence of cognitive
enhancement even after the electrical current is removed
(Snowball et al., 2013; Lefebvre et al., 2014). These results indicate
that, in some cases, stimulation need only be applied initially or
periodically to achieve continual performance gains. Although
the modulation of procedural learning through enhancement of
working memory has remained an open question in the field,
non-invasive brain stimulation methods are potential vehicles to
enhance learning and performance and nootropic benefits for
commercial and military applications (Clark et al., 2012; Phillips
and Ziegler, 2014).

The application of neuroimaging techniques, such
as functional near-infrared spectroscopy (fNIRS) and
electroencephalography (EEG), allow the precisemeasurement of
spatial and dynamic functional brain activity. The development
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of these non-invasive, low overhead and high-resolution tools
have given investigators the ability to observe the activity of the
human brain in vivo with an unprecedented degree of control
(Been et al., 2007; McKendrick et al., 2015).

EEG results confirm tDCS-related modulation of brain
processes involved in working memory, as evidenced by
increased midline frontal theta-band oscillatory brain activity
(MFT) during a working memory task (Miller et al., 2015).
MFT is most commonly measured during maintenance of
information in working memory, and reflects theta coupling
between the DLPFC and anterior cingulate cortex (Sauseng
et al., 2004). MFT is positively correlated with attentional
demands during mental calculation (Ishii et al., 2014) and
workingmemory load (Jensen and Tesche, 2002), and theta-band
synchrony between frontal and parietal areas is directly related
to individual working memory capacity (Palva et al., 2010).
Further evidence supporting the functional relationship comes
from studies temporarily disrupting the DLPFCwith transcranial
magnetic stimulation—leading to performance decrements in
working memory tasks (Grafman et al., 1994; Pascual-Leone and
Hallett, 1994). Other frequency bands have also been implicated
in working memory and attentional control. For example,
tonic increases (and phasic decreases) in parietal alpha-band
power reflects greater perceptual involvement for tasks requiring
attention to the environment (Klimesch, 1999), suggesting a
role of alpha in perception. Furthermore, Sauseng et al. (2009)
showed that alpha band activity over sensorimotor areas indicates
greater excitability in that region, as measured with transcranial
magnetic stimulation. Therefore, stimulation of either M1 or
DLPFC could increase tonic alpha band activity in this study
compared to sham by enhancing sensorimotor excitability and/or
perceptual involvement.

Other imaging studies, employing fNIRS have found
significant correlations between cognitive performance
and blood oxygenation in the DLPFC (Yanagisawa et al.,
2010; McKendrick et al., 2014). fNIRS is an non-invasive
imaging technique that measures the relative concentrations of
oxygenated (Hboxy) and deoxygenated (Hbdeoxy) hemoglobin
to infer neuronal activity. fNIRS relies on differences in the near
infrared absorption spectra of oxygenated and deoxygenated
hemoglobin along with a neuro-vascular hemodynamic response
function to relate relative chances in localized cerebral blood
flow to neuronal activity (Villringer et al., 1993).

Hbdeoxy and total hemoglobin concentrations (Hbtot) are
linked to levels of cognitive workload in the anterior prefrontal
cortex (PFC) (Ayaz et al., 2012). For example, using a
Scarborough adaptation of the Tower of London task, Ruocco
et al. (2014) found that difficult problems were associated
with greater Hboxy concentrations in the DLPFC relative to a
baseline condition. The study also found that participants who
scored higher in deliberation, or careful thinking, before acting,
showed greater activation in this same region, regardless of task
difficulty. The magnitude of Hbtot and Hbdeoxy concentration
changes in specific brain regions has been used as a proxy
for mental workload and expertise. Hbtot levels increase in
the PFC during difficult trials in the N-back task, suggesting
greater recruitment of neural resources (Herff et al., 2013). In

addition, during a complex flight task, Hbtot levels decrease
in the PFC over a 9-day learning period with progression
from beginner to intermediate and finally advanced levels of
performance (Ayaz et al., 2012). Furthermore, blood oxygenation
level-dependent (BOLD) responses, which correlate with Hboxy,
Hbdeoxy and Hbtot concentrations (Cui et al., 2011), decrease
with improvements in response time, suggesting more efficient
activation of PFC (Holland et al., 2011). Decreases in hemoglobin
concentrations exist in the motor system (Hbdeoxy—Wolf et al.,
2007), and in prefrontal cortex where they were correlated with
reward value (Hboxy and Hbtot—DiStasio and Francis, 2013).

Although reported effects of primary motor cortex (M1)
stimulation on skill acquisition and procedural learning have
been promising, these methods have primarily been investigated
in standard psychological and motor tasks including the serial
reaction time task (Nitsche et al., 2003), the tower of London
task (Dockery et al., 2009); and sequential visual isometric pinch
task (Reis et al., 2009). Increasing evidence for the application of
tDCS to enhance real-world skills has been reported for vehicle
control (Beeli et al., 2008; Sakai et al., 2014), golf (Zhu et al.,
2015), threat detection in image analysis (Falcone et al., 2012),
air traffic control (Nelson et al., 2014). tDCS has also decreased
resumption lag after interruption (Blumberg et al., 2014),
and maintained vigilance (McIntire et al., 2014) in real-world
tasks.

Critical for the acquisition of these real-work skills are both
online and offline learning. Online learning is the change in
behavioral performance across trials within an experimental
session and is analogous to encoding (Reis et al., 2009). Offline
learning is the change in performance, between sequential
experimental sessions, from the last trial of the n-1th session to
the first trial of the nth session, and is analogous to consolidation
(Robertson et al., 2004). The modulation of online and offline
learning rate for practical, real-world skill acquisition with tDCS
of M1 or DLFPC stimulation have remained unexplored.

Here, we investigated changes in skill acquisition and learning
rates with tDCS applied to either DLPFC or M1 during custom
pilot training exercises developed and administered with a
commercially available flight simulator (X-Plane). These results
were recently reported in a poster presentation at the Society
for Neuroscience Meeting (Choe et al., 2015). We measured
task-evoked changes in functional activity using fNIRS and EEG
as subjects learned to complete flight simulator and N-back
training exercises at increasing levels of expertise across four
daily consecutive sessions. We hypothesized that stimulation of
DLPFC over the course of flight simulation and N-back training
would alter group variability in skill learning, MFT power, and
Hboxy andHbtot concentrations in the DLPFC. Furthermore, we
hypothesized that tDCS of M1 will alter tonic alpha-band power
over parietal cortex.

MATERIALS AND METHODS

Participants
Thirty-two right-hand dominant, healthy adult HRL
Laboratories employees (31 males) participated in this study.
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FIGURE 1 | Experimental design. (A) Experiment timeline depicting the relative timing of each task (see Table 1 for descriptions of each task). The N-Back and

Easy Landing tasks are highlighted, and the duration of tDCS is depicted in red. (B) An example of 6 trials of the N-Back task is shown. 1-back orientation and

location match trials are highlighted in yellow. (C) The flight simulator, neuroimaging (EEG and FNIRS) and tDCS setup is shown with on a subject (1). Flight simulator

equipment includes three-panel display, a radio panel (2), an instrument panel (3) with (from left to right) compass, altimeter, airspeed indicator, vertical speed indicator,

and turn/slip indicator, a multi-panel (4) with (from left to right) autopilot settings, auto throttle switch, flaps switch, and elevator trim wheel, yoke (5), and throttle

quadrant system (6). (D) Autopilot flight path for the Easy Landing task is shown in 3 dimensions, color-coded by vertical speed. Screenshots for initial descent,

approach, and landing are also shown.

Their ages ranged from 21 to 64 (mean ± STD = 38 ± 13).
Participants were randomly assigned to one of four groups:
DLFPC stim (n = 7, age = 35 ± 11), DLPFC sham (n = 7,
age = 42 ± 13), M1 stim (n = 10, age = 41 ± 16), or M1
sham (n = 8, age = 31 ± 5). HRL Laboratories employees are
a vulnerable class of subjects for this study. In order to manage
the risk of any undue influence, coercion, or confidentiality
breach we only allowed individuals who are not directly
supervised by the investigators of this study to volunteer, and
only performed experiments during normal business hours
(9 a.m.–5 p.m.) to mitigate any possibility for recourse or
reward for participation in performance evaluation or job
advancement. To maintain confidentiality, each subject was
assigned a unique number, known only to the investigators of
the study and subject identities were not shared. This design is
in line with the recommendations of Meyers (1979) on student
and employees as a vulnerable population of subjects and
complies with DHHS: protected human subject 45 CFR 46; FDA:
informed consent 21 CFR 50. Inclusion criteria were: (1) normal

or corrected-to-normal vision, (2) no prior history of epileptic
seizures or known neurological disorders, and (3) no females
who are pregnant or are likely to become pregnant during the
course of the study. All participants provided written informed
consent to participate in the experiment. JC, MDZ, and MEP are
listed as inventors in patent applications on brain stimulation
methods.

Materials
Flight Simulator
Flight simulation tasks were designed and administered with the
XForce Dream Simulator package (X-Force PC) and the X-plane
10 Flight Simulator software (Laminar Research). A depiction of
the XForce Dream Simulator package can be seen in Figure 1C,
and included a yoke, a radio panel, an instrument panel
with compass, attitude indicator, altimeter, airspeed indicator,
vertical speed indicator, and turn/slip indicator, a multi-panel
with autopilot settings, auto throttle switch, flaps switch, and
elevator trim wheel, and a throttle quadrant system. This flight
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simulator included an adjustable seat for maximum comfort for
the subject. Three monitors were placed at an optimal distance
from the subject to avoid any eyestrain. Custom scenarios
were designed using the simulator software development kit
following a model of flight training (Williams, 2012, see
Table 1).

Neuroimaging
We recorded continuous EEG and fNIRS data during flight
simulation training, N-back, finger tapping, situational
awareness, and resting-state assessments. Horizontal and
vertical electro-oculogram (EOG) was also recorded. EEG
was collected using a 32-channel acti32Champ system, with
electrodes placed in a custom, 10-10 based arrangement to
accommodate tDCS electrodes (StarStim Neuroelectrics)
and fNIRS illuminators/receivers (NIRSport NIRX) within
custom headcaps (BrainVision). EEG caps were selected for
each subject based on individual head size and aligned to Cz.
Conductive gel (Signagel) was applied onto each EEG electrode
and ultrasound gel (Aquasonic clear) was applied to each fNIRS
source and detector. fNIRS was recorded with dual-wavelength
continuous-wave (CW) near infrared (NIR) diffuse tomographic
measurements at 760 and 850 nm. A total of 20 fNIRS channels
(source-detector pairs) were recorded over the left M1 (10
channels) and right DLPFC (10 channels, see Figure 2). The
distance between source-detector pairs was <3.5 cm (see
Figure 2). EEG data were collected at 500Hz, and fNIRS data
were collected at 8Hz. Locations of EEG electrodes and fNIRS
channels can be seen in Figure 2.

tDCS
Sham or actual tDCS was applied with the Starstim system
(Neuroelectrics) following the finger tapping task (see
Figure 1A). The total current applied was 2mA, with scalp
current density of 0.04 A/m2 for active tDCS (for 60min),
or 0.1mA (0.002 A/m2) for sham tDCS (for 1min). Currents
were applied with a 1min ramp-in at initiation and a 1min
ramp-out at termination. Sham stimulation was used as a
control condition to induce the physical sensation associated
with tDCS (e.g., tingling) without directly stimulating the brain
areas located below the electrodes (Coffman et al., 2012b).
Silver/silver chloride electrodes were each 3.14 cm2 in size
(total anode area = 6.28 cm2; total cathode area = 9.42 cm2).
During stimulation the impedance value was limited to 20 k�
for operation of the device; actual impedance values typically
were below 10 k� and impedances were observed to be stable
throughout the duration of the experiment. tDCS channel
impedances were continually monitored at 1 HZ. To achieve
maximum focality for the targeted brain regions of interest,
electrode placements were derived using HD Targets (Soterix
Medical) with stimulation targets in the left M1 (right posterior
field orientation model) and right DLPFC (left anterior field
orientation model) and possible electrode locations were defined
using standard 10-10 electrode locations (see Figure 2). HD
Targets uses a MRI-derived finite element brain model that
provides predictions for current flow and alignment for multiple
interacting electrodes; this model was used to calculate maximal

FIGURE 2 | Neuroimaging and tDCS experimental setup for DLPFC

(A,C) and M1 stimulation (B,D). (A,B) EEG locations are denoted in blue

and follow the 10–20 locations where possible. fNIRS sources (red) and

detectors (green) are shown over the left-M1 and right DLPFC with channels

depicted as orange lines (M1 channels: FC3-FCC5h, FC3-FCC3h, C5-FCC5h,

C3-FCC5h, C3-FCC3h, C1-FCC3h, C5-CCP5h, C3-CCP5h, C3-CCP3h,

C1-CCP3h; DLPFC channels: AFF6h-AFF2h, AFF6h-F4, F2-AFF2h, F2-F2,

F2-FFC4h, FFC6h-F4, FFC6h-FFT8h, FFC6h-FFC4h, FC4-FFC4h, FC4-F4)

tDCS electrodes are denoted in purple (cathodes) and yellow (anodes) and

follow the current values specified in Section Neuroimaging CandDBal

prefrontal cortex (DLPFC [e confidence bound was >4x the size of the positive

confidence bound]). Predicted electric field intensities from the maximum

focality montages from the Male 1 model in the Soterix HD Targets software

(Soterix Medical).

focality and intensity for regions of interest. For M1 stimulation,
this resulted in current values of: CP1 = 1244µA, CP3 =

745µA, FP1 = −417µA, F8 = −448µA, and F9 = −1124µA.
For DLPFC stimulation, current values were F6 = 1511µA,
FC6 = 482µA, AF8 = −271µA, AF4 = −283µA, and
FP2 = −1439µA (see Figure 2). The predicted field intensities
at the target locations were 0.56V/m (DLPFC) and 0.45V/m
(M1). Groups are denoted as: DLPFC stim, DLFPC sham, M1
stim, and M1 sham.

Procedures
All participants performed flight simulation training, N-back,
finger tapping, situational awareness, and resting-state
assessments once per day for four consecutive daily sessions
(see Figure 1). Resting-state brain activity was collected for
1min both before and after the experiment. During resting
scans, subjects observed autopilot flight (level flight at 5000
ft. altitude) and were instructed to keep their eyes open and
observe the visual scene while keeping their hands in their laps.
Following the pre-experiment resting-state assessment, motor
reference scans were taken during a simple motor sequence task
in which subjects were instructed to touch each fingertip with the
thumb of the right hand in sequence/cycle, continuously for 30 s
(Figure 1A, finger-tapping task). We analyzed neuroimaging
data recorded during the finger-tapping task as a confirmatory
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TABLE 1 | Experimental task schedule performed on each of the four consecutive experimental sessions.

Task # of trials Task instruction/Description Average duration (minutes)

Survey 1 Setup and Explanation (day 1)

Learn the basic controls via explanation

1

Rest 1 Eyes open, hand resting on yoke

Observe straight and level autopilot flight

1

Finger tap 1 Using right hand, touch thumb to each finger in sequence 0.5

N-back 6 Adaptive threshold (at 80% accuracy) N-back on 3× 3 grid of visual

orientation of aircraft, flight number and spatial location (3× 3 grid)

10

Situational awareness 4 Memorize gauge cluster images with 15 s distractor task and 30 s. for recall 10

Climb to fixed altitude 1 Adjust altitude from 5000 to 6000 ft. and back to 5000 ft.

Maintain vertical speed at <1000 ft./min with level roll

5

Turn at constant roll angle 1 Change bearing/azimuth from 90◦ to 180◦ and back to 90◦ with a

maximum roll angle of 20◦
5

Descend @ constant Rate 1 Adjust altitude from 3000 to 1000 ft. at a 800 ft./min rate of descent 5

Autopilot landing (observe) 1 Observe the autopilot approach on the “Easy Landing” runway in perfect

weather and high visibility

2

Easy landing 5 Control all aspects of landing in perfect weather and high visibility 10

Nighttime landing 2 Control all aspects of landing in perfect weather at night, with runway lights

(low visibility)

4

No-lights landing 2 Control all aspects in approach with zero visibility 4

Hard landing (Mountains) 1 Difficult visual-only approach over terrain where the runway is initially

obstructed from view over a mountain range

6

Hard landing (Turbulence) 1 Control all aspects of landing with turbulence value is set to level 1 out of 10

(instead of 0), with high visibility

2

measure (see Supplementary Figures S4, S5), where sensorimotor
network activity was expected to be evident in EEG as increased
power in the beta band, and reduced power in the alpha
band, compared to baseline, and in fNIRS as an increase in
deoxygenated hemoglobin beneath M1 sensors.

Participants then performed the N-back task followed by a
series of basic flight training exercises including a situational
awareness task, climbing to fix altitude, turning at a constant
roll angle, and a controlled descent. Follow these fight control
tasks participants performed a series of landing task including
the “easy landing” task, nighttime landing, nighttime landing
without runway lights, a landing in mountainous terrain, and
a landing in turbulent weather (Figure 1A). Results for the
situational awareness, free flight, climb to fixed altitude, heading
change at constant roll angle, descent at constant vertical speed,
nighttime landing, no-lights landing, mountain, and turbulence
landing task are the subject of subsequent manuscripts.

N-Back
The Brain Workshop N-back task was implemented in
this study (Paul Hoskinson, V.4.8.8 http://brainworkshop.
sourceforge.net/). Participants monitored position and image for
N-back matches without audio feedback. Custom N-back images
were used, showing airplanes in eight different orientations with
1 of 3 possible flight numbers (24 total image possibilities, see
Figure 1B). Subjects completed six blocks of 20 trials each day.
Every subject began the N-Back task at the 1-back level, and
was instructed at the beginning of each block to focus on a
central fixation point. Subjects were free to move their eyes
during the task. Upon reaching an upper threshold of accuracy

within a given block (>80%), the task difficulty was increased
(N + 1) using an adaptive threshold paradigm (Jaeggi et al.,
2008). Upon reaching a lower threshold of accuracy (<20%),
the task difficulty was decreased (N − 1). Each time this
occurred, the changes were explained to the subjects between
blocks. At the completion of each block, subjects were allowed
to review the rules and ask clarifying questions about the
tasks.

Autopilot Landing Observation
Subjects viewed a replay video of the autopilot executing an
“optimal” landing from ∼800 ft. altitude onto a runway. Initial
aircraft position was aligned with the runway and aircraft
was already maintaining proper vertical speed for ideal glide
slope. This scenario presents a wide, long, flat runway with no
visual obstructions and no landscape features that interfere with
landing the aircraft. Subjects were instructed not to manipulate
controls or control the simulation in any way, but were told
to pay close attention to the flight parameters through the
instrumentation, as well as the visual field displayed by the
simulator as the aircraft proceeded with landing. Particular
emphasis was placed on two key parameters: azimuth (20◦)
for runway alignment, and vertical speed (∼700–800 ft./min)
for appropriate glide slope. Attention was also drawn to the
final control input to landing (pitch up at ground contact), and
subjects were instructed to minimize landing force (G-force) as a
top priority. Once the autopilot landing was viewed in its entirety,
subjects were given the opportunity to ask questions about the
landings. Most subjects asked very few, if any questions, typically
on the first trial day.
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Easy Landing Task
Subjects were instructed to complete the landing task as shown
by the autopilot under daylight conditions and 100% visibility.
Subjects attempted landing under these conditions a total
of 5 times per day. As the subject attempted replication of
the autopilot landing, the experimenter made observations in
three categories: (1) Vertical speed maintenance; (2) Runway
alignment; and (3) Final approach dynamics (pitch angle at
touchdown). Any large deviations from the autopilot in any of
these modalities were noted, then provided as feedback to the
subject after the plane had touched down and the simulator
paused. When given, feedback was ∼1–2min in length and
conducted in an informal manner. The time duration of feedback
also shortened throughout training as the subject made fewer
errors. Following feedback, the subject was offered opportunity to
ask any questions regarding landing technique, then the scenario
was restarted. If subjects passed beyond the terminal end of
the runway, the attempt was ended and the landing listed as
“missed landing.” This counted against the number of subject
attempts (i.e., attempts were not repeated due to missed landing).
Feedback methods and handling of missed landings was identical
for all landing task.

Data Analysis
EEG
EEG data were preprocessed using EEGLAB (Delorme and
Makeig, 2004) by applying a 0.5Hz high-pass filter (Butterworth,
12 dB/oct) and removing bad channels (max = 19%). Adaptive
Mixture Independent Components Analysis (AMICA)
(Delorme et al., 2012) was then used to detect and remove
artifacts associated with eye blinks, vertical and horizontal
electrooculogram, electrocardiogram, and tDCS-related voltage
fluctuation. Following artifact rejection using AMICA, data
were back-reconstructed and channels removed prior to
AMICA decomposition were interpolated back into the data
by spherical interpolation. Blocks corresponding to N-back,
resting-state, and Easy Landing tasks were then segmented from
the data.

Frequency decomposition was performed using FieldTrip
(Oostenveld et al., 2011) by first segmenting data for each task
into sequential 1-s epochs. Data were then windowed using a
hanning taper, and frequency content of each trial was assessed
at 1Hz increments from 4 to 7Hz (theta-band) or 8–12Hz
(alpha-band) using Fast Fourier Transform (multitaper method).
After frequency decomposition, epochs with average theta or
alpha power greater than two standard deviations from the
mean were rejected, and remaining epochs were averaged for
each participant, training day, and task. Data missing due to
equipment issues (i.e., amplifier battery failure: N = 4, stimulus
trigger errors:N = 1, or excessive noise/artifact during recording
which could not be removed with AMICA: N = 7) were
replaced with the mean for that participant group and training
day prior to statistical analysis.We verified sensorimotor network
activity during the finger-tapping task on the first day of flight
simulator training (prior to tDCS) within baseline-subtracted
beta and alpha band power maps, calculated across all subjects
(Supplementary Figures S4, S5).

Participants receiving tDCS were compared with sham tDCS
participants at each of the 4 days of training using independent-
samples t-tests, which separately tested differences in alpha-
band and theta-band activity at each sensor. Additionally, day
1 was compared to day 4 within each tDCS group and sensor
using paired t-tests to assess training-related effects on alpha-
band and theta-band activity. Statistical tests were corrected for
multiple comparisons using cluster-based permutation tests (500
repetitions, data point α = 0.05, cluster-level α = 0.05, minimum
spatial extent = 2 channels). Results from these comparisons
are reported separately for each cluster of significant differences
between groups/conditions. We calculated mean alpha/theta
band power within clusters for use in examining relationships
between task-related EEG and fNIRS/behavioral data.

We also examined correlations between behavioral measures,
fNIRS beta values, and mean theta/alpha power across clusters
identified during cluster-based permutation tests comparing days
1 to 4. fNIRS beta values were unavailable for 7 subjects (4
active M1 subjects and 3 sham M1 subjects) because time
stamps could not be parsed from the fNIRS data files; therefore,
the number of participants used in this analysis were: M1
stim = 6, M1 sham = 5, DLPFC sham = 7, and DLPFC
stim = 7. These correlations were examined only within the
stimulation groups where significant clusters were identified.
To investigate relationships between midline frontal theta-band
activity (Midline frontal theta-band activity was calculated as the
mean theta power across electrodes Fz and FC1, the electrodes
nearest to medial prefrontal cortex) and behavioral measures in
the easy landing and N-Back task, Pearson correlation statistics
were examined.We comparedmidline frontal theta-band activity
in the easy landing task with autopilot displacement, g-force
at landing, vertical speed at landing, roll at landing, pitch at
landing, or online/offline learning rates for number of control
inputs, autopilot displacement, vertical speed deviance from
autopilot, or vertical speed variance. In the N-Back task, we
compared midline frontal theta-band activity with average N
level achieved and online/offline learning rates. Correlations were
examined separately for DLPFC and M1 groups, stim and sham
groups, and days of training. Because of the large number of
correlation statistics examined, we used a conservative alpha of
0.001 to determine statistical significance. We additionally report
statistics with a relaxed alpha of 0.05; however, these effects will
be considered trends in this analysis.

In addition to cluster-based permutation tests across all
channels, 3-way split-plot ANOVA was used to compare midline
frontal theta-band activity between tDCS conditions (stim and
sham), days of training (day 1, 2, 3, and 4), and training
block (Block 1, 2, 3, 4, and 5) for the N-back and easy
landing tasks. Huynh-Feldt epsilon was used to correct degrees
of freedom for assumptions of sphericity, and Fishers Least
Significant Difference corrections of alpha were used for simple-
effects/pairwise comparisons (Maxwell and Delaney, 2004).

fNIRS
fNIRS data was processed within the nirsLAB analysis package
(NIRx Medical Technologies, Glen Head, NY; Xu et al., 2014).
The Gratzer Spectrum was used to measure the absorbance
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TABLE 2 | Average ± standard deviation of day 1, day 4, and day 4–day 1 Hboxy, Hbdeoxy, and Hbtot concentrations across subjects and channels for M1

and the DLPFC.

Easy landing N-Back

Day 1 Day 4 Day 4–Day 1 Day 1 Day 4 Day 4–Day 1

D
L
P
F
C
S
tim M

1

Oxy −0.00060± 0.0018 −0.0019±0.0013 −0.0013 (8) 0.00059±0.0010 −0.00041± 0.00076 −0.00099

Deoxy −0.00037± 0.00051 0.00012±0.0011 0.0005 (4) −0.00017±0.00012 0.00021± 0.00074 0.00039

Total −0.00098± 0.0017 −0.0017±0.0012 −0.00077 (8) 0.00041±0.0010 −0.00019± 0.00043 −0.00061

D
L
P
F
C Oxy 0.0030± 0.0022 0.00055±0.0014 −0.0024 (8) 0.0021±0.0014 0.00048± 0.00091 −0.0016

Deoxy −0.00024± 0.00058 −0.00034±0.00041 −0.000095 −0.00018±0.00019 −0.00014± 0.00021 0.000041

Total 0.0027± 0.0013 0.00021±0.0014 −0.0025 0.0019±0.0014 0.00034± 0.00088 0.0016

D
L
P
F
C
S
h
a
m M
1

Oxy −0.0018± 0.0020 −0.0018±0.0019 −0.0000082 (10) −0.000094±0.0012 −0.000033± 0.00098 0.000062 (10)

Deoxy −0.00022± 0.00063 0.000065±0.0011 0.00028 (4) −0.000099±0.00053 −0.00011± 0.00022 −0.00001 (4)

Total −0.0020± 0.0019 −0.0017±0.0012 0.00028 (10) −0.00019±0.00077 −0.00014± 0.00086 0.000052 (10)

D
L
P
F
C Oxy −0.000033± 0.0018 −0.00046±0.0014 −0.00043 (1) 0.00067±0.0012 0.00035± 0.0012 −0.00032 (4)

Deoxy −0.00056± 0.00043 −0.00053±0.00021 0.000035 −0.00034±0.00020 −0.00036± 0.00013 −0.000017 (8)

Total −0.00059± 0.0019 −0.00099±0.0013 −0.0004 (4) 0.00032±0.0012 −0.000015± 0.0012 −0.00034 (4)

M
1
S
tim

M
1

Oxy 0.00024± 0.0031 −0.000084±0.0015 −0.00032 (4) 0.0013±0.0017 0.00045± 0.00088 −0.00084

Deoxy −0.00019± 0.0014 −0.00049±0.00028 −0.0003 (5) −0.00048±0.00045 −0.00027± 0.00031 0.00021

Total 0.000043± 0.0039 −0.00057±0.0014 −0.00062 0.00080±0.0016 0.00017± 0.00085 −0.00063

D
L
P
F
C Oxy 0.00050± 0.0026 −0.00060±0.00055 −0.0011 0.00015±0.00051 −0.00031± 0.00036 −0.00046

Deoxy −0.000045± 0.00092 −0.00017±0.00020 −0.00012 −0.00027±0.00030 −0.00012± 0.000088 0.00015

Total 0.00046± 0.0035 −0.000766±0.00056 −0.0012 −0.00012±0.00078 −0.00043± 0.00035 −0.00031

M
1
S
h
a
m

M
1

Oxy −0.00097± 0.0010 −0.00080±0.00085 0.00017 (10) 0.00022±0.0012 0.00047± 0.0016 0.00025

Deoxy −0.00017± 0.00020 −0.00013±0.00021 0.000032 (8) −0.00015±0.00016 −0.00018± 0.00020 −0.000031

Total −0.0011± 0.00091 −0.00093±0.00089 0.0002 0.000074±0.0012 0.00029± 0.0017 0.00022

D
L
P
F
C Oxy −0.00041± 0.00087 −0.00054±0.0019 −0.00013 0.00011±0.00030 −0.00030± 0.00034 −0.00041

Deoxy −0.000019± 0.00038 0.00084±0.0013 0.00086 −0.000087±0.00019 0.00026± 0.00071 0.00035

Total −0.00043± 0.0011 0.00030±0.0032 0.00073 0.000022±0.00029 −0.000043± 0.00041 −0.000065

All values are presented are in mM concentration units. Bold numbers indicate a significant difference between days 4 and 1 as determined by a SPM (see Materials and Methods

Section fNIRS).

spectra of Hbdeoxy and Hboxy, with average wavelengths
of 760 and 850 nm, respectively. The corresponding molar
extinction coefficients ε are εHboxy [1097.0 781.0] cm-1/M and
εHbdeoxy = [645.5 1669.0] cm-1/M, (nirsLAB, NIRx Medical
Technologies). The differential path lengths were 5.98 for Hboxy
and 7.15 for Hbdeoxy (Essenpreis et al., 1993). In the Beer-
Lambert law calculation, the distance between source-detector
pair was =< 3.5 cm, and the exact distances were computed
within NIRSLab according to the corresponding distances on the
headcap.

Hbdeoxy, Hboxy and Hbtot concentration time series were
band-pass filter from 0.01 to 0.2Hz (finite impulse response
with least-squares error minimization), to remove slow drifts
in the signal and respiratory and cardiac rhythms. Inter-trail
data was removed from the time series, and the average baseline
concentration values were subtracted from the task-evoked
concentration measurements.

The average concentration value of Hbtot, Hboxy, and
Hbdeoxy were computed separately for each channel, subject,
task, and day. Concentration values were averages within days,

across all 20 trails of each of the 6 blocks in the N-back, and all 5
trials of the easy landing task. Individual channel concentration
values were then averaged across channels within regions (M1
and DLPFC) and across subjects within each group. Day1 group-
averaged concentration values were then subtracted from Day 4
concentrations to compute the change in concentrations across
the duration of the experiment.

Statistical significance of group-averaged concentrations
changes from days 1 to 4 was determined using Statistical
Parametric Mapping (SPM version 8). SPM was performed
based on a general linear model of the canonical hemodynamic
response function, with a discrete cosine transformation
used for temporal filtering. A t-statistic-thresholded, baseline-
subtracted Beta image was generated for each subject for
baseline-subtracted, task-evoked Hbtot, Hboxy, and Hbdeoxy
concentrations for days 1 and 4 (corrected for multiple
comparisons across channels using the Bonferroni correction: #
channels = 20, p < 0.0025). Paired t-statistic maps
(subtracting the day 1 from day 4 betas) were generated from
baseline-subtracted, trial/block-averaged (within day n = 5
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Easy landing, n = 6 N-back) task betas obtained from
individual subjects. If a t-statistic exceeded the corrected p-value
threshold of 0.0025 the days 4–1 concentration values were
determined to be significant (Table 2—denoted by bolded
values).

Channel-wise statistical analysis was performed on all
channels for measurements of Hboxy, Hbdeoxy, and Hbtot days
4–1 concentrations in easy landing and N-back for all subjects.
Significance was determined if the trial-wise average exceeded 3.5
standard deviations from the null hypothesis of no concentration

change (Bonferroni corrected, two-sided, Fischer’s test p <

0.00035).

Behavioral Performance

N-Back
Raw percent accuracy values for each subject and for each
block were scaled according to the information content required
for each back condition. A 100% score on a 1-back trial
requires both an image match: 9 possible plane orientations,
4 possible flight numbers, and a position match: 9 possible

FIGURE 3 | N-back learning rates across experimental groups. The average group-learning rate is shown for each group in 1 and 2 back trials (left) and for all

back trials (right column scaled by information content see Section N-Back). Learning rates computed by combining across position and image match trials (top

row), for position trails (middle row) and image trials (bottom row) are shown.
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FIGURE 4 | N-back results across all four experimental groups. (A–D) The average percent correct is plotted across all 4 days (6 trials per day) for each group.

Percent correct values are scaled based on the required information for a 100% correct response (see Section N-Back). (E) Online and offline N-back learning rates

are plotted for each experimental group across the duration of the experiment. Whole numbers on the x-axis represent the average online learning rate (slope of

scaled percent correct linear regression for each subject across 6 blocks within a day and ½ numbers of the x-axis represent offline learning rates (slope of the percent

correct on the last trials of the N-1 day to the first trial of the Nth day).

spatial location, a 100% score on 2-back doubles the required
information kept in working memory, and a 100% score on
a 3-back trial triples this value. The normalization weights
used for the 1–, 2–, and 3–back raw accuracy values were
therefore 0.33, 0.66, and 1.0. Alternative normalization schemes
(e.g., bit-wise maximum information and log-scaling) did not
generate substantial differences in the outcome metrics. Learning
rates were determined by the slope (±standard deviation) of a
linear regression over block-wise group-averaged scaled percent
accuracy: (1) across all 4 days (overall learning rate), (2) within
each day independently (online learning rate), and (3) between
the accuracy of the first trial of the nth day and the last
trial of the n-1th day (offline learning rate) (Reis et al., 2009).
Meta-learning rate was determined from the slope of the linear
regression over the combined online/offline learning rate time
series (the rate of change in the learning rates over time). The

average number of trials for each group to reach the 2 and 3
back levels in the adaptive N-back task and the average streak
(number of consecutive trials) at 2 and 3 back were calculated
for each group. Learning rates were compared using one-sample
against zero or paired, two-tailed t-tests (both α = 0.05) were
noted.

Easy landing
G-force assessment. Flight parameters were sampled from the
simulator at 10Hz, including altitude (above ground level),
longitude, and latitude. The derivative of the vertical speed
of the aircraft at runway touchdown determined the landing
impact g-force (acceleration divided by 9.8 m/s2). Smaller g-force
landings reflected improved skill with the landing task as subjects
were asked to minimize this value to the best of their ability
for each trial. The impact g-force is a “one-shot” assessment
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of landing skill at the most difficult and critical phase of the
landing task, while ignoring other factors of landing performance
(e.g., approach, glide slope, alignment, aircraft attitude). Online,
offline, and meta learning rates are negative indicating a
reduction in the applied G-force at landing (Supplementary Table
S2, Figure 4).

Flight path deviation. Latitude, longitude, and altitude were
transformed into Cartesian (X-Y-Z) coordinates and the
Euclidean distance between coordinates of subject and autopilot
were computed over the flight path 6sqrt(x2+y2+z2) using a
moving window average to resample and align the flight paths.
The Euclidean distances for each sample were then summed in
order to provide the total deviation from the autopilot flight
path. Unlike G-force, this metric takes into account the entire
approach, including all flight maneuvers leading up to the final

descent and touchdown. This measure, however, does not take
into account proficiency with aircraft controls or avionics; it
merely assesses the ability of the subject to adhere to the reference
flight path. Subjects were instructed to replicate the flight path
of the autopilot landing observation. With this metric, a better
landing would have lower deviation values (Supplementary Table
S2, Figure 5).

Vertical speed deviation. The vertical speed of the subject
throughout the landing trial was subtracted from the vertical
speed of the autopilot landing at each time step and summed
as in the flight path deviation. The vertical speed profile of
the aircraft is stereotypic for an excellent landing and this
parameter is visible on the aircraft’s instruments. Subjects could
therefore be reasonably expected to match the vertical speed of
their aircraft with that of the example shown during autopilot

FIGURE 5 | G-force at moment of landing results across all four experimental groups. (A–D) Average g-force at moment of landing across all 4 days is

plotted for each group. Note reduction in between-subject variance in days 3 and 4 of the DLPFC stim group. (E) Online and offline g-force learning rates are plotted

for each experimental group across the duration of the experiment. Whole numbers on the x-axis represent the average online learning rate (slope of scaled percent

correct linear regression for each subject across 6 blocks within a day) and ½ numbers on the x-axis represent offline learning rate (slope of the percent correct on the

last trials of the N-1 day to the first trial of the Nth day). Smaller G-force indicates improved performance.
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observation (vertical speedmaintained at 600 ft./min formajority
of approach, see Figure 1D). Replication of the autopilot-derived
demonstration flight should result in lower overall vertical speed
deviation values as performance improves (Supplementary Table
S2, Figure 5).

Vertical speed variance. The amount of vertical speed variation
throughout the landing approach was summed across trials to
represent the degree to which a subject could maintain a steady,
continuous descent. This measure does not penalize the subject
for deviating from the ideal flight path, it merely assesses the
degree to which the subject can maintain a smooth descent
with little variation. This removes the goal-directed aspect of
flight parameter maintenance while focusing on the motor aspect
of flight parameter maintenance. As a means of comparison,
the autopilot flight data only changes vertical speed in the
final 5 s before landing, which minimizes this variance in the
autopilot. In the ideal scenario, vertical speed stays constant,
with only slight changes necessary for the final phase of landing;
therefore, smaller variances indicate superior flight performance
(Supplementary Table S2, Figure 6).

Control input measure. The number of control inputs was
computed over landing trials by identifying the number of sign-
changes in the vertical speed parameter throughout the landing
period. This metric identifies to what extent subjects could
maintain a consistent vertical speed profile (negative vertical
speed indicates descent, positive ascent). Since maintaining
vertical speed with minimal control input adjustment does not
require specific planning of actions or prediction of flight path,
it was hypothesized to be a primarily motor-processing focused
measure. The number of sign-changes in the vertical speed
variable was summed between start and end of the landing. As
a means of comparison, the autopilot had 1 major control input
at the nose flair∼1 s. before touchdown.

Outlier rejection
For each metric, trial-wise data were examined for outliers across
subjects across all groups. If any trial exceeded three standard
deviations from the mean, it was determined an outlier and
removed from analysis. Outlier rejection was performed on a
trial-wise basis for all computed metrics.

Group variance analysis
For each metric, the variance in the average online learning rate
was computed as the change in the group’s average accuracy
treating each subject’s performance in a trial as a repeated sample
within days. For the n-back task, the metric used was the scaled
percent accuracy across 6 trials per day. For the easy landing task,
flight metrics, performed over the course of 5 landing trials per
day. This measure is the variance in the online learning rate linear
regression (Reis et al., 2009). Significant differences in learning
rate variance was assessed with a two-sample F-test for equal
variances. The null hypothesis that two independent samples of
two subject pools come from a single normal distribution with
the same variance was tested against the alternative that they
come from two normal distributions with different variances.
F-stat criticality was computed by generating a F cumulative

distribution function appropriate to the variance ratio and
degrees of freedom of sample pools. The resulting critical values
are asymmetric and can be used at either tail. We were then
able to determine the distance between computed F and F = 1
(null hypothesis). Across days, Bartlett’s test was performed to
test the hypothesis of equal population variance across groups.
This test was performed on the average subject metrics (across
trials within days) to preserve sample independence. Reported
p-values represent the probability of observing the given result by
chance if the null hypothesis were true (Snedecor and Cochran,
1989).

RESULTS

Finger-Tapping Task
As expected, the finger-tapping task induced beta band
oscillatory activity and increased the concentration of Hbdeoxy
over sensorimotor cortex, and reduced alpha band activity over
frontal and parietal cortex compared to baseline (Supplementary
Figures S4, S5). Power in the beta band was greatest over left
sensorimotor cortex, contralateral to the hand used during the
finger-tapping task.

N-Back Task
Behavioral Results

DLPFC stimulation
The DLPFC stim group showed significant overall learning
in five separate learning rate measures, compared to two
significant learning rates observed for the DLPFC sham
simulation group (one-sample, two-tailed t-test, see Figures 3,
4, and Supplementary Table S1). Significant overall learning was
observed for the DLPFC stim group collectively across all trial
types (combining image and position match trials—denoted as
“combined trials,” and for position match trails) aggregating
across all 1/2/3 back trials (scaled according to the methods in
Section N-Back). Significant overall learning was also observed
for the DLPFC stim group in 1-Back combined, position, and
image trials. Significant overall learning was observed for the
DLPFC sham group for combined and position trials, across all
backs (see Figure 3). Meta-learning regressions did not show
statistically significant changes in learning rates between stim and
sham groups.

Neither the initial nor the final behavioral performance were
significantly different between DLPFC stimulation and sham
groups (Supplementary Table S1). The average trial duration
to reach 2-/3-back was not significantly different between
stimulation and sham groups. In addition, the average number
of trials to reach 2-/3- back and the average 2-/3- back
streak durations were not statistically different between groups.
Significant differences in online, offline, and combined learning
rates were not observed between stimulation and sham groups
(see Supplementary Table S1, Figure 4E).

The variance in the DLPFC stim group’s learning rate was
significantly less than the variance of the DLPFC sham group.
Examined across days, the DLPFC stim group had significantly
reduced variance compared to the DLPFC sham group on
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Day 3 of experimentation [Chi(1) = 5.77, p < 0.02, see
Figures 4A,B]. Examined at the trial-level, the reduced variance
reached statistical significance in >33% of individual N-back
trials comparing DLPFC stim with DLPFC sham, and no trials
showed greater variance in the DLPFC sham group [Day 1 Trial
2: F(6, 6) = 0.21; Day 1 Trial 4: F(6, 6) = 0.18; Day 1 Trial 6:
F(6, 6) = 0.23; Day 2 Trial 5: F(6, 6) = 0.095; Day 3 Trial 1:
F(5, 5) = 0.069; Day 3 Trial 2: F(5, 5) = 0.17; Day 3 Trial 6:
F(5, 5) = 0.15; Day 4 Trial 6: F(5, 4) = 0.021; p < 0.05]. These
results support the hypothesis that tDCS of the right DLPFC
would reduce the variability in individual learning rates in a
cognitive task.

M1 stimulation
The M1 stim group showed significant overall learning in five
separate learning rate measures, compared to six significant
overall learning rates observed for the M1 sham stimulation
group. Significant overall learning was observed for the M1
stim group for combined, image and position trails aggregating
across all 1/2/3 back trials. Significant overall learning was also
observed for M1 stim in 1-Back combined and image trails.
Significant overall learning was observed for the M1 sham group
for combined trails, aggregating across all backs and for 1 and
2-Back trials as well as for position trails (all and 2-Backs) and
2-Back image trials (see Figure 3). Meta-learning regressions
did not show statistically significant changes in learning rates
between stim and sham groups.

As with the DLPFC groups, initial and final behavioral
performance between stimulation and sham groups was not
significantly different (Supplementary Table S1). The average
duration to reach 2-/3-back was not significantly different
between stimulation and sham groups. In addition, the average
number of trials to reach 2-/3- back and the average 2-/3- back
streak durations were not statistically different between groups.
Significant differences in online, offline, and combined learning
rates were not observed between stimulation and sham groups
(see Supplementary Table S1 and Figures 3, 4E).

Unlike the results observed for DLPFC stimulation, M1
stimulation resulted in minimal differences in learning rate
variance between stimulation and sham groups. Only 1 trial
showed reduced M1 stim variance compared to M1 sham
variation, while there were 3/24 trials that indicated smaller M1
sham variance when compared with the values from the M1
stim group. Examined across days, no trials shows significant
differences in variance under Bartlett’s Test.

FNIRS Results

DLPFC stimulation
Hboxy. Exclusion criterion for individual FNIRS channels were
greater than 0.001mM fluctuations between the maximum and
minimum measured concentrations during baseline. We did
not observe any concentration fluctuations above this cutoff
threshold for any of the 20 FNIRS channels (10 above the DLPFC
and 10 above the M1 cortex) across all 4 days of recording for the
25 subjects analyses (7 DLPFC stim, 7 DLPFC sham, 6 M1 stim,
5 M1 sham). Subjects were not included (n = 3 in M1 stim, and

N = 3 in M1 sham) if event time stamps could not be identified
robustly within the fNIRS data files.

Average Hboxy concentrations across subjects and channels
significantly increased between day 1 and day 4 in M1 channels,
and significantly decreased in DLPFC channels for the DLPFC
sham group and (see Table 2, Figure 7). Individual channel
analysis showed no significant change in Hboxy concentrations
from days 1 to 4.

Hbdeoxy. Average Hbdeoxy concentrations across subjects and
channels significantly decreased between day 1 and day 4 in M1
and DLPFC channels for the DLPFC sham group (see Table 2).

Hbtot. Like Hboxy, average Hbtot concentrations across subjects
and channels significantly increased between day 1 and
day 4 in M1 channels for the DLPFC sham group, and
significantly decreased in DLPFC channels for the DLPFC
sham group (see Table 2). Individual channel analysis showed
no significant change in Hbtot concentrations from days
1 to 4.

M1 stimulation
Hboxy. The average Hboxy concentration across subjects and
channels within the DLPFC channels significantly decreased
between days 1 and 4 in the M1 stim group (see Table 2).
Individual channel analysis shows no significant change inHboxy
concentrations from day 1 to 4.

Hbtot. The average Hbtot concentration across subjects and
channels within the DLPFC channels significantly decreased
between day 1 and 4 in the M1 stim group (see Table 2).
Individual channel analysis shows no significant change in Hbtot
concentrations from days 1 to 4.

EEG Results

Theta (4–7Hz)
DLPFC stimulation. In each day, significant differences in theta-
band power were found between DLPFC stim and sham tDCS
groups in frontal/central electrodes (Table 3). In days 1–3,
right frontotemporal theta power was higher in DLPFC stim
participants, compared to sham. Statistical differences were
distributed over midline frontal electrodes in day 4. Comparison
of days 1 and 4 revealed a significant increase in midline
frontal theta-band power in stim, but not sham participants
(see Figure 8A and Table 3). Split-plot ANOVA comparing MFT
in the N-back task revealed a trend-level main effect of tDCS
group, with DLPFC stim participants showing a greater effect
than DLPFC sham participants [F(1, 12) = 4.65, p = 0.052].
There was nomain effect of training or interaction between tDCS
group and day of training (p > 0.1).

M1 stimulation. For M1 stimulation, broadly-distributed
differences in theta-band power were seen between stim and
sham participants during N-Back performance on days 1 and
3, which were mostly left-lateralized, and were strongest near
the site of stimulation (Table 3). Importantly, no differences
between days 1 and 4 were seen for M1 stim or sham participants
in the N-Back (see Table 3 and Figure 8A). Split-plot ANOVA
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TABLE 3 | Cluster statistics for comparisons of alpha- and theta-band

power during the N-back task.

Electrodes t* p**

THETA (4–7Hz)

DLPFC stimulation

Actual vs. Sham

Day 1

Cluster 1

E5, FT8, T8, FC2, CP2,

CP6

2.89 0.020

Day 2

Cluster 1

FT8, FC2, E11, CP2,

CP6, PO10

3.15 0.006

Day 3

Cluster 1

FT8, E11, T8, CP6 3.11 0.020

Day 4

Cluster 1

AF3, F3, Fz 3.21 0.038

Day 4 vs. Day 1

Actual

Cluster 1

FC1, Cz, E19 3.23 0.020

M1 stimulation

Actual vs. Sham

Day 1

Cluster 1

FC5, FC1, T7, Cz, C4,

T8, E19, CP2, P7, Pz,

P8, PO10

2.82 0.004

Day 3

Cluster 1

E5, T8, Cz, CP5, CP2,

CP6, P7, Pz

2.27 0.020

Cluster 2 E5, FC2, C4, CP6 2.35 0.028

ALPHA (8–12Hz)

DLPFC stimulation

Actual vs. Sham

Day 2

Cluster 1

E5, FT8, E11, T8 2.85 0.008

Cluster 2 AF3, F7, F3 2.69 0.042

Day 4

Cluster 1

Pz, P8, Oz 2.74 0.048

Day 4 vs. Day 1

Actual

Cluster 1

FC5, T7, CP5, P7 −3.12 0.032

M1 stimulation

Actual vs. Sham

Day 1

Cluster 1

F3, Fz, FC5, FC1, FC2,

Cz

2.88 0.014

Day 3

Cluster 1

FC5, T7, CP5, P7 2.66 0.034

*Reported t-values are the average t-statistic across all electrodes in a given cluster.
**Reported p-values are corrected for multiple comparisons using cluster-based

permutation tests.

comparing MFT revealed a significant main effect of day of
training [F(3, 48) = 3.23, p = 0.048]; however no significant
or trend-level pairwise comparisons were found, There was no
main effect of tDCS group or interaction between group and day
of training.

Alpha (8–12Hz)
DLPFC stimulation. Alpha-band power differences between
DLPFC stim and sham groups were found in days 2 and 4
(Table 3). In day 2, frontal alpha power was greater in DLPFC
stim than sham participants. In day 4, differences existed in
parietal and occipital electrode sites, with DLPFC stim greater
than sham. Differences between day 1 and 4 were found only for

the DLPFC stim group, characterized by reduced alpha power at
left temporoparietal sites (see Table 3 and Figure 8B).

M1 stimulation. Greater alpha-band power was found for M1
stim compared to sham participants in days 1 and 3 (Table 3).
These differences were distributed over frontal, central, and
parietal electrode sites, mostly near the site of stimulation. No
differences in alpha power were found in the comparison of
days 1 and 4, for either M1 stim or M1 sham (see Table 3 and
Figure 8B).

EEG/fNIRS/behavioral correlations
We did not find any significant correlations between MFT or
alpha power in the N-Back task and behavioral measures (i.e.,
average N level achieved and online/offline learning rates, p’s >

0.05). No correlations were identified between fNIRS beta values
and either MFT or alpha power in the N-Back task for any group
(p’s > 0.1).

Easy Landing Task
G-Force

DLPFC stimulation
tDCS to DLPFC reduced the variability (standard deviation) of
the third and fourth day online learning rates compared to sham
(DLPFC stim: day 3 = 0.355, day 4 = 0.583; DLPFC sham: day
3 = 0.846, day 4 = 0.637, see Figure 5). First trial comparisons
of variance between DLPFC stim and DLPFC sham groups in
day 3 showed statistically significant changes in between-subject
variance [F(4, 5) = 0.046, p < 0.02]. There were no significant
differences in variance for first trials of day 1 and day 2 (p >

0.1). Trial 1 of day 4 also did not show significant changes in
variance (p > 0.1). Examined across days, Bartlett’s comparisons
of variance between DLPFC stim and DLPFC sham groups in
day 3 showed statistically significant changes in between-subject
variance [Chi(1) = 7.33, p < 0.01]. There were no significant
differences in variance for days 1, 2, or 4 (p > 0.1). These
results support the hypothesis that tDCS of the right DLPFC
would reduce the variability in individual learning rates in the
easy landing task.

Learning rates were determined by computing the rates at
which performance improved (i.e., reduction of G Force over
time, see Figures 5A–D). Meta-learning regressions did not show
statistically significant changes in learning rates between stim
and sham groups. The DLPFC stim group exhibited positive
meta-learning rates (DLPFC stim = 0.052 ± 0.090), where the
DLPFC sham group, by contrast, showed overall negative meta-
learning (DLPFC sham = −0.051 ± 0.106), but this between-
group difference did not reach statistical significance due to large
within –group variance (p > 0.1; Figure 5E).

There were also no statistically significant differences in offline
learning rates (p’s > 0.1), but DLPFC stim showed a relatively
strong offline learning between day 1 and 2 (−0.149 ± 0.52)
compared to sham (0.124± 0.990).

The number of missed landings (did not land before or during
the runway) was not different across groups over days (DLPFC
stim: day 1: 2.9%, day 2: 2.9%, day 3: 0%, day 4: 0%; DLPFC sham:
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FIGURE 6 | Flight path deviation results across all four experimental groups. (A–D) Average flight path deviation of subjects from ideal autopilot-guided glide

slope is shown for each group. (E) Online and offline flight path deviation learning rates are plotted for each experimental group across the duration of the experiment.

Whole numbers on the x-axis represent the average online learning rate (slope of scaled percent correct linear regression for each subject across 6 blocks within a

day) and ½ numbers on the x-axis represent offline learning rate (slope of the percent correct on the last trials of the N-1 day to the first trial of the Nth day). Reduced

flight path deviation indicates improved performance.

day 1: 2.9%, day 2: 14.3%, day 3: 5.7%, day 4: 0%).Missed landings
typically occurred on the first trial of the day.

M1 stimulation
tDCS to M1 resulted in no significant changes in inter-subject
variance when compared to the M1 sham group across days
(Bartlett’s Test, p’s > 0.1). M1 sham appeared to have unusually
low variance during day 2 (Figure 3D), and this was determined
to be a statistically significant reduction of variance when
compared to theM1 stim group for three of the five trials of Day 2
[F(8, 7) = 6.32, F(8, 7) = 3.86, F(8, 7) = 5.07; p < 0.05]. However,
this reduction in variance only applied to Day 2 and in single
trials only in Day 1 and 3. All trials on Day 4 had no significant
change between M1 stim and sham variances. There were no
statistically significant changes in learning rates between stim and
sham groups (Supplementary Table S2). As with DLPFC stim

group, there were also no statistically significant differences in
offline learning rates (p’s > 0.1), but M1 stim showed a relatively
strong offline learning between day 1 and 2 (−0.235 ± 0.676)
compared to sham (0.258± 1.330).

Initial starting (day 1 average), group averaged (across all
days and the final (day 4 average) G-forces were not significantly
different between experimental and control groups (paired t-test
p > 0.1), which are similar to the results found with the
N-back task. Though performance improved in both sham
and stimulation cohorts (reduced overall G-force), the ultimate
performance of each subject group was similar. It is probable
that the landing task was effectively learned over the course of
four training days, and subjects reached a G-force performance
ceiling.

The number of missed landings were not different across
groups over days (M1 stim: day 1: 10%, day 2: 10%, day 3: 2.0%,
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day 4: 0%; M1 sham: day 1: 0%, day 2: 0%, day 3: 0%, day
4: 2.5%).

3D Autopilot Displacement
No group (DLPFC stim/sham nor M1 stim/sham) exhibited
statistically significant learning (i.e., reduction of flight path
displacement over time), as inter-subject variability was very high
for this metric (Figures 6A–D). All groups showed inconsistent
positive and negative learning slopes, and though the M1
stim group had negative online learning slopes for all 4 days,
none of these reached statistical significance (p’s>0.1). When
comparing group variances for 3D autopilot displacement over
experiment days, the M1 stim group showed greater variance
compared with the M1 sham group during Day 1 [Chi(1) = 8.46,
p < 0.01]. The variance for the M1 stim group, however, was
significantly lower than that of DLPFC stim group for 3 trials
across 3 days of training [Day 1, Trial 1: F(5, 9) = 5.1032; Day
2, Trial 4: F(6, 9) = 6.03; Day 3 Trial 2: F(6, 7) = 3.99; p < 0.05].
Interestingly, this was also true for M1 sham vs. DLPFC stim
[Day 1, Trial 1: F(5, 7) = 13.67; Day 2 Trial 4: F(6, 7) = 4.74;
p < 0.001]. No other variance comparisons yielded statistically
significant results (Supplementary Table S2, Figure 6). While
the combined learning intercept for the M1 sham group was
negative (−13140 ± 13300, p < 0.05) this resulted from an
isolated day 1/2 offline learning rate with a large standard
deviation (−29011± 41147).

Vertical Speed Variance
The M1 stim group exhibited the lowest average values of
vertical speed variance on the final day of training (4.955 ±

0.433; Supplementary Figure S2C). This is similar to the M1
sham (Supplementary Figure S2D) value of 5.051 ± 0.502
and an improvement over DLPFC groups (5.684 ± 0.690 and
5.647 ± 0.718, for stim and sham groups, respectively, but this
does not reach significance under 2-way ANOVA (p > 0.1;
Supplementary Figures S2A,B). This appears to be derived from
the relatively higher online/offline learning rates in both M1
groups as compared with the DLPFC groups, though the overall
rates were not statistically significant. ANCOVA, covarying the
learning rates of vertical speed variance with group identity,
performed on this data shows that the slopes appear identical
(p > 0.9 vs. null hypothesis) but the initial performance
(intercept) approaches significance (p < 0.07).

Online, offline and meta-learning rates were largely flat, and
training effects were not observes within any group (p’s <

0.1 level (Supplementary Table S2, Supplementary Figure S2).
Because vertical speed variation is primarily a motor-centric task,
it may be subject to a different learning curve that was not
specifically measured during this study.

Autopilot Vertical Speed Deviation
M1 sham showed significant overall offline learning, with smaller
deviations of vertical speed on Day 4 as compared with Day 1
(−12.21 ± 2.51, p < 0.05, Supplementary Figure S3D). DLPFC
sham (Supplementary Figure S3B) also had a negative slope
indicating reduced deviation from ideal vertical speeds, but this
was not statistically significant (−69.71 ± 952.145, p > 0.05).

However, both of these offline learning effects were washed out
when combined into overall learning rates across the 4 days (M1
sham: −5.98 ± 20.26; DLPFC sham: −17.09 ± 25.80). Overall
performance did not significantly change over the course of
the 4 days, and initial/final performance were not significantly
different across groups (p’s > 0.1; Supplementary Figure S3E).

Unlike tests of G-force and flight path deviation, F-tests do not
show any significant difference for inter-subject variance during
1st trial comparisons across all groups (p’s > 0.1).

Number of Control Inputs
Variance between subjects for both DLPFC groups appeared
larger than that of both M1 groups (Supplementary Figure S1).
However, no meta, online, offline, or combined learning rates
reach significance, and no significant changes were observed
between groups (see Supplementary Table S2 and Supplementary
Figure S1).

fNIRS Results
DLPFC Stimulation

Hboxy
Average Hboxy concentrations across subjects and channels
significantly decreased between days 1 and 4 in M1 channels
for the DLPFC stim and DLPFC sham groups, and decreased
between days 1 and 4 in DLPFC channels for the DLPFC stim
group (see Table 2, Figure 7).

Furthermore, individual channel analysis revealed that only
two subjects (S7 in the DLPFC stim group, and S7 in the
DLPFC sham group) showered a significant change in Hboxy
concentrations from days 1 to 4 (−0.01mM decrease at DLPFC
channel: source AFF6h to detector F4 in DLPFC stim subject 7,
and 0.02mM increase at DLPFC channel: source FC4 to detector
FFC4h in DLPFC sham subject 7, see Figure 2 for channel
locations). Within the DLPFC stim group, of all 70 channels
measured across subjects in the DLPFC region (10 channels per
subject, 7 subjects per group) 65 showed a decrease in Hboxy
concentration from days 1 to 4 (compared to 40/70, 33/60, 325/50
for DLPFC sham, M1 stim, and M1 sham respectively).

Hbdeoxy
The average Hbdeoxy concentration across subjects and channels
within M1 significantly increased between day 1 and day 4
in the DLPFC stim and DLPFC sham groups (see Table 2).
Individual channel analysis shows no significant change in
Hbdeoxy concentrations from days 1 to 4.

Hbtot
Average Hbtot concentrations across subjects and channels
significantly decreased between days 1 and 4 in M1 channels for
DLPFC stim and in the DLPFC channels for the DLPFC sham
group, and increased in M1 channels for the DLPFC sham group
(see Table 2). Individual channel analysis revealed that only one
subject (S7 in the DLPFC stim group) showed a significant
change in Hbtot concentrations from days 1 to 4 (−0.01mM
decrease at DLPFC channel: source AFF6h to detector F4, see
Figure 2). Within the DLPFC stim group 64/70 channels in the
DLPFC region showed a decrease in Hbtot concentration from
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FIGURE 7 | Example fNIRS Hboxy, Hbdeoxy, and Hbtot concentration time-series and group average t-statistic beta maps. (A) N-back concentration

time series for DLPFC sham subject #S6 recorded on day 1. Traces denote DLPFC channel #10: source: FC4, detector: F4. (B) Easy landing blocked concentration

time series for DLPFC stim subject #S1 recorded on day 1. Traces denote DLPFC channel #5: source FFC6h, detector: F4 [vertical solid and dotted lines denote

blocks, solid lines indicate 1/2 and 2/3-back block types in (A), and easy landing trials in (B)]. An upward displacement in Hboxy and Hbtot concentrations can be

seen during pauses between subsequent blocks. (C) fNIRS t-statistic beta maps of Day 4 vs. Day 1 Hboxy (top) and Hbtot (bottom) in the Easy landing task. Images

are the averages for the DLPFC stim (left) and DLPFC sham (right) groups (Bonferroni corrected p < 0.0025, see Table 2 for the corresponding concentration changes

averaged over all channels within M1 and DLPFC).
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days 1 to 4 (compared to 37/70, 34/60, 32/50 for DLPFC sham,
M1 stim, and M1 sham respectively).

M1 Stimulation

Hboxy
Average Hboxy concentrations across subjects and channels
significantly decreased between days 1 and 4 in M1 channels for
the M1 stim group, and increased within M1 channels for the M1
sham group (see Table 2). Individual channel analysis shows no
significant change in Hboxy concentrations from days 1 to 4.

Hbdeoxy
Average Hbdeoxy concentrations across subjects and channels
significantly decreased between days 1 and 4 in M1 channels for
the M1 stim group, and increased within M1 channels for the M1
sham group (see Table 2). Individual channel analysis shows no
significant change in Hbdeoxy concentrations from days 1 to 4.

Hbtot
The average Hbtot concentration across subjects and channels
significantly increased between days 1 and 4 in M1 channels for
the M1 sham group (see Table 2). Individual channel analysis
shows no significant change in Hbtot concentrations from days
1 to 4.

EEG
Theta (4–7Hz)

DLPFC stimulation
In each day, significant differences in theta-band power were
found between DLPFC stim and sham groups in frontal/central
electrodes (Table 4). In days 1 and 3, right frontotemporal
theta power was higher in DLPFC stim participants. Statistical
differences were more broadly distributed in days 2 and
4, encompassing bilateral frontotemporal and midline frontal
electrode sites. Comparison of days 1 and 4 revealed a significant
increase in midline frontal theta-band power in DLPFC stim, but
not DLPFC sham participants (see Figure 8A and Table 4). Split-
plot ANOVA comparing MFT in the easy landing task revealed
a significant main effect, with DLPFC stim greater than DLPFC
sham [F(1, 12) = 4.86, p = 0.048]. Additionally, an interaction
was found between group and day of training [F(3, 36) = 4.54,
p = 0.014]. Simple-effects comparisons revealed increased MFT
in stim compared to sham for only day 4 [day 4: F(1, 12) =

6.47, p = 0.026]. Simple-effect of day within the DLPFC stim
group reached trend-level significance [F(3, 16) = 3.15, p =

0.087].

M1 stimulation
Theta-band differences between M1 groups during the easy
landing task were found only in day 3, and were restricted
to central/parietal electrodes (Table 4). Broadly-distributed
differences in theta-band power were seen between days 1 and
4 in M1 stim participants, but not M1 sham participants (see
Table 4 and Figure 8A). No main effects or interactions were
found in ANOVA comparing MFT in the easy landing task
between M1 groups.

TABLE 4 | Cluster statistics for comparisons of alpha- and theta-band

power during the Easy Landing task.

Electrodes t* p**

THETA (4–7Hz)

DLPFC stimulation

Actual vs. Sham

Day 1

Cluster 1

E5, FT8, C4, CP6 2.58 0.024

Day 2

Cluster 1

AF3, F3, E5, FT8, FC1, FC2, E11,

T7, Cz, C4, T8, E19, CP2, CP6

3.51 0.020

Day 3

Cluster 1

FT8, E11, T8, CP6 2.99 0.008

Day 4

Cluster 1

AF3, F3, FT8, FC1, FC2, E11, Cz,

C4, T8, CP5, CP2, CP6, Pz, P8,

Oz

3.81 0.002

Day 4 vs. Day 1

Actual

Cluster 1

AF3, F3 3.23 0.044

M1 stimulation

Actual vs. Sham

Day 3

Cluster 1

Cz, CP2, CP5, P7, Pz 2.72 0.030

Day 4 vs. Day 1

Actual

Cluster 1

F7, E5, FC5, FC1, T7, C4, CP5,

E19, CP2, CP6, P7, Pz, P8, Oz,

PO10

3.28 0.002

ALPHA (8–12Hz)

DLPFC stimulation

Actual vs. Sham

Day 1

Cluster 1

CP2, CP6, Pz, Oz 2.85 0.030

Day 4

Cluster 1

E5, FT8, Fz, FC2, E11, C4, T8 2.73 0.026

Cluster 2 FT8, E11, T8 3.56 0.040

Cluster 3 AF3, F3, Fz 2.94 0.048

M1 stimulation

Actual vs. Sham

Day 1

Cluster 1

F3, E5, Fz, FC5, FC1, FC2, C4,

CP2, CP5, CP6

2.85 0.014

Day 4 vs. Day 1

Actual

Cluster 1

CP5, E19, Pz 2.89 0.034

Cluster 2 E11, T8 −2.62 0.050

*Reported t-values are the average t-statistic across all electrodes in a given cluster.
**Reported p-values are corrected for multiple comparisons using cluster-based

permutation tests.

Alpha (8–12Hz)

DLPFC stimulation
Significant differences in alpha-band power were found between
DLPFC stim and sham groups in parietal/occipital electrodes
(day 1) and frontal/central electrodes (day 3), with greater power
in the DLPFC stim group (Table 4). No differences in alpha
power were found in the comparison of day 1 and 4, for either
DLPFC stim or sham groups (see Table 4 and Figure 8B).

M1 stimulation
Alpha-band differences between M1 groups during the easy
landing task were found only in day 1, and were broadly
distributed over frontal, central, and parietal electrode sites
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FIGURE 8 | Day 4 vs. day 1 average theta power (A) and alpha power (B) changes per group (t-statistic maps). Significant electrode clusters are depicted

by white circles at electrode locations. Increases in midline frontal theta power were seen between days 1 and 4 in both tasks for all groups; however, cluster-level

significance between days was found only for the DLPFC stim group. Decreased alpha power was found between days 1 and 4 for DLPFC stim in the N-Back task,

where cluster-level significance was found in left temporoparietal electrodes. For M1 stimulation, cluster-level increases in central/parietal alpha and broadly-distributed

theta power were found in the Easy Landing task.

(Table 4). Two separate clusters of significant differences in
alpha-band power were seen between days 1 and 4 for M1 stim
participants, but not M1 sham participants (see Table 4 and
Figure 8B). The first cluster revealed increased alpha power in
the M1 stim group over parietal electrode sites. The second
revealed decreased alpha power in right temporal electrodes.

EEG/fNIRS/behavioral correlations
There were positive correlations between change in MFT power
(day 4minus day 1) and both average Hbtot and average Hboxy
beta values in DLPFC channels for M1 stim subjects. The
direction of this correlation indicates that increased theta from
days 1 to 4 is correlated with less reduction of Hboxy/Hbtot
from days 1 to 4 in DLPFC fNIRS channels (Table 5). There
were also strong negative correlations between change in alpha
power and both average Hbtot and average Hboxy beta values
in M1 channels for M1 stim subjects, indicating that increased

parietal alpha power is correlated with reduced fNIRS beta values.
No correlations were identified between theta/alpha power and
fNIRS beta values for sham groups, there was no correlation
between theta and fNIRS beta values at M1 channels, and there
was no correlation between alpha power and fNIRS beta values at
DLPFC channels (p’s > 0.1).

DISCUSSION

Overview
In this study, we measured task-evoked changes in functional
neural activity and the modulation of learning from tDCS to the
right DLPFC or left M1. Simultaneous fNIRS and EEG measured
changes in neural activity as subjects learned to complete flight
simulator and n-back training exercises at increasing levels of
expertise across four daily consecutive sessions. Assessment of
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TABLE 5 | Significant correlations among EEG, fNIRS, and behavioral

results in the Easy Landing task, for the M1 stim group.

r p

SIGNIFICANT EEG/BEHAVIOR CORRELATIONS

Day 2

Online Learning

MFT × Number of control inputs

0.66 0.038

MFT × autopilot displacement 0.85 0.002

MFT × VSDFA 0.84 0.002

MFT × vertical speed variance 0.84 0.002

Offline learning

MFT × autopilot displacement

−0.85 0.002

MFT × VSDFA −0.85 0.002

MFT × vertical speed variance −0.85 0.002

Day 4

Online Learning

Broadly-Distributed Theta Power × VSDFA

−0.70 0.025

Central/Parietal Alpha Power × VSDFA −0.85 0.002

SIGNIFICANT EEG/fNIRS CORRELATIONS (DAY 4–DAY 1)

MFT × Hbtot 0.82 0.045

MFT × Hboxy 0.81 0.051

Parietal Alpha Power × Hbtot −0.95 0.005

Parietal Alpha Power × Hboxy −0.94 0.005

VSDFA, Vertical Speed Deviance from Autopilot.

TABLE 6 | Summary of behavioral and neurophysiological results.

Group N-Back G-force fNIRS EEG

DLPFC Stim - Variance - Variance - Hboxy and Hbtot

in the DLPFC

(flight only)

+ MFT power

(N-back and flight)

M1 Stim + Parietal Alpha

power (flight only)

behavioral performances were performed on n-back accuracy,
flight metrics of landing performance, as well as for online
and offline learning rates associated with practice and skill
acquisition. We report that tDCS to the right DLPFC reduced
the variability in online learning across individuals in the n-back
task, and in g-force on the easy landing task. This was associated
with decreased Hboxy and Hbtot in the DLFPC across days for
the landing task, and increased MFT power in both the n-back
and landing tasks. Additionally, tDCS to the left M1 increased
tonic parietal alpha power, which was correlated with changes in
Hboxy and Hbtot at M1 fNIRS channels.

Interpretation—Behavior
The observed reduction in group variability in online learning
may be attributed to “convergence to the mean” (i.e., increasing
online learning rates of low performing individuals and reducing
online learning rates of high performing individuals). Subjects
may have employed distinct cognitive and behavioral strategies,
with correspondingly different brain networks, to complete and
learn the n-back task across sessions. tDCS of the right DLPFC

may have therefore facilitated the deployment and consolidation
of a particular strategy in some subjects, and inhibited certain
behaviors in others. The variance in the learning rates did
not arise from individual differences of untrained performance,
as initial and final performances were similar (see Section
Behavioral Results). Furthermore, the results could indicate
that all groups reached a ceiling of behavioral performance,
or that our measures are under-powered to detect a change
in performance statistically, or that a reduction in individual
variability produced this observation.

The variability results reported for the easy-landing task
were specific to DLPFC stim subjects for the g-force metric [a
similar reduction in variance was not seen for the same data
in the autopilot displacement (Figure 6), the number of control
inputs (Supplementary Figure S1), the variability of vertical speed
(Supplementary Figure S2), and the vertical speed deviation from
autopilot (Supplementary Figure S3)]. Since both the initial and
final g-force values were not significantly different across stim
and sham groups, the reduction in DLPFC stim group variability
implies a similar convergence to themean phenomenon observed
for n-back learning. tDCS of the DLPFC may therefore, facilitate
the learning of a smoother landing procedure in subjects who
would otherwise consolidated an incorrect landing procedure
and increased landing g-forces in subsequent days. Likewise,
tDCS of the DLPFCmay have hindered some subjects who would
have otherwise consolidated a superior landing procedure and
decreased landing g-forces in subsequent days.

It should be noted that for the measure of 3D autopilot flight
path deviation (Section 3D Autopilot Displacement), it was not
readily apparent to subjects when the aircraft deviated from
the prescribed flight path of the autopilot; there is no visual
field indication that they are deviating from the glide slope,
and the Flight Director instrument does not indicate degree
of displacement from optimal glide slope. Additionally, for
deviation from the autopilots vertical speed (Section Autopilot
Vertical Speed Deviation) is possible that, because vertical speed
was a peripheral skill required for landing (i.e., non-essential for
a successful landing), subjects did not train to maintain a low
vertical speed deviation from the reference glide path. As subjects
needed only to maintain one constant vertical speed during the
landing task, they may have reached maximal capacity to do so
beginning from day 1. The combined learning rates and online
learning metrics seem to support this view (see Supplementary
Table S2, Supplementary Figure S3). Furthermore, low-G Force
landings can be performed from a wide range of glide slopes,
which can mask large deviations from the “ideal” flight path.

Interpretation—Neurophysiology
We observed an increase in MFT in the DLPFC stim group
compared to the DLPFC sham group, as well as experience-
related increase in MFT and decrease in central/parietal alpha
in DLPFC stim, indicating increased working memory and
attention (Klimesch et al., 1997; Jensen and Tesche, 2002;
Ishii et al., 2014). Increased theta/alpha band activity in M1
stim compared to M1 sham near the site of stimulation may
indicate greater motor cortex excitability (Sauseng et al., 2009).
Furthermore, experience-related increases (day 4 vs. 1) in
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broad central/parietal theta/alpha in M1 stim during flight tasks
implicate greater tactile/proprioceptivemonitoring. For example,
Baumeister et al. (2008) observed that increased parietal theta
during goal-directed learning was associated with increased
motor skill performance. Although MFT nor parietal alpha
power increases were correlated with behavioral performance
increases in this study, it is possible that increases in MFT
or parietal alpha may be indirectly associated with cognitive
performance enhancement. The significant correlations observed
between MFT and online and offline learning of autopilot
displacement, vertical speed variance and deviation in the M1
stim group support this hypothesis (Table 5).

We observed a decrease in Hboxy and Hbtot in DLPFC
channels for the DLPFC stim group in the easy landing
task (Table 2 and results Hboxy and Hbtot). This evidence
suggests that tDCS produced more efficient neural activation
to consolidate the newly-learned procedural skills as has been
previously reported (Wolf et al., 2007; Holland et al., 2011; Ayaz
et al., 2012; DiStasio and Francis, 2013). Previous literature from
McKendrick et al. (2015) suggest that some, but not all, of these
changes may be related to the task performance enhancements
associated with tDCS. However, changes in Hbtot concentration
may also be related to task reward value (DiStasio and Francis,
2013), the recruitment of additional motor resources (Herff
et al., 2013), or a behavioral ceiling effect where low-performing
subjects were not able to advance to expert performance levels as
shown by Ayaz et al. (2012). Although reward was not explicitly
manipulated in the easy landing task, subject’s motivations may
have played a role based on their prior day’s performance.
Similarly, the motor resources required for the easy landing
task may have changed as subjects learned more advanced
motor programs to complete the task. Finally, a ceiling effect
could explain the more efficient neural activation, and the
trend in meta-learning for stim groups supports this theory
(Figure 5E).

Hbtot and Hboxy were also significantly correlated with MFT
from days 4 to 1 in the easy landing task in the M1 stim group.
These results suggest that these separate neurophysiological
measures are not totally independent. Future studies should
examine the relationships between MFT, Hbtot, and behavioral
performance in a larger cohort to determine whether these effects
are truly concomitant.

Relation to Prior Investigations of tDCS in
Real-World Tasks
To date, there have been few studies in which procedural/real
world learning tasks have been tested with a tDCS intervention
(Izzetoglu et al., 2014; Nelson et al., 2014), and even
fewer with a significant motor component as the focus of
performance/training enhancement (Zhu et al., 2015). However,
tDCS enhancement of real-world skills has been reported for
complex motor control tasks. For example, Beeli et al. (2008)
reported that anodal tDCS to either the left or right DLPFC
(10/20 EEG site F3 or F4) significantly improved the care of
driving style as measures by following distance, average speed
and number of errors. Similarly, Sakai et al. (2014) reported that

anodal tDCS to the right DLPFC significantly improved car-
following and lane-keeping performance in a driving simulator
task across days. Finally, Zhu et al. (2015) reported that cathodal
tDCS to the left DLPFC suppressed verbal working memory but
improved motor learning. The results presented here support
these findings, as we observed that tDCS to the right DLPFC
reduced online learning variability in higher cognitive measures
(e.g., affecting the g-force value of landing by judging multi-
modal flight-data in a timely fashion, or n-back accuracy
variance) more than those related motor planning or judgment
(e.g., flight path deviation see Table 6).

Furthermore, real-world skill enhancement from right
inferior frontal tDCS has been reported in a perceptual threat
detection (Clark et al., 2012; Falcone et al., 2012), and tDCS of
the DLPFC has been shown to increase regional cerebral blood
oxygenation and behavioral performance in target detection in
an air traffic control task (Nelson et al., 2014). The results
presented here are indirectly related to these findings as the
reduction in behavioral variance we observed from tDCS to the
right DLPFC could be attributed to increase in spatial attention,
vigilance, or perceptual discrimination (e.g., when to judge an
n-back match or the correct time for a nose-flare maneuver
during landing). We also observed that tDCS of the right DLPFC
decreased Hboxy and Hbtot in DLFPC channels across days in
the easy landing task. One possible explanation for the difference
reported in cerebral blood oxygenation between the two studies
concerns the disparate experimental designs employed. Here, all
subjects returned for four consecutive days of testing, regardless
of physiological or behavioral measures, whereas Nelson et al.
(2014) had subjects return for days 2–4 only if performance and
blood flow velocity declined over the course of the first 40-min
session.

Relation to Prior Investigations of tDCS in
Working Memory
Previous studies have reported evidence that working memory
improvements are correlated with the administration of tDCS
in diverse contexts (Grafman et al., 1994; Nitsche et al., 2003;
Dockery et al., 2009; McKendrick et al., 2015). Specifically, tDCS
over DLPFC was associated with acute increases in working
memory accuracy (Stagg and Johansen-Berg, 2013; Chhatbar and
Feng, 2015; De Putter et al., 2015; Santarnecchi et al., 2015).
Although, we observed a reduction in learning rate variance
from tDCS to the right DLPFC in the n-back task, but did
not find an increase in working memory accuracy for tDCS of
either the DLPFC or M1. This discrepancy may be attributed to
the adaptive n-back design employed here, the long durations
of experimental sessions, and a potential ceiling effect from
repeated tDCS and n-back sessions across consecutive days. In
addition, the application of tDCS began directly prior to the
n-back task (see Figure 1) and the effects of stimulation may
require more time to produce the reported improvements in
n-back accuracy.

Limitations and Future Directions
A goal of this research was to determine if tDCS stimulation
would improve training techniques for pilots in a flight simulator.
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Such improvements could drastically reduce time and therefore
the cost of training a pilot, as it would in any training
environment. While our results show decreased variability
in training, it is too early to confirm or deny any useful
improvements to simulation training until an understanding of
the sources and contributing factors to the observed behavioral
variance is achieved.

Additional studies must be performed to further investigate
n-back accuracy improvement with tDCS by comparing different
stimulation montages, stimulation timing, and task paradigms.
Because we were unable to parametrically manipulate these
parameters in this study, we are unable to determine which of
these factors may have led to null effects of tDCS on n-back
accuracy. The baseline performance of individuals with differing
initial skill levels in n-back and flight tasks are important, and
measures of this were limited by the study design employed. In
addition, the experimental design employed here (continuous,
multiple tasks over 60min duration) did not provide a sufficient
means to control the endogenous brain state of subjects before
and throughout the experimental session given the numerous
tasks, and instructions and feedback required for subjects to
perform them. Thus, subject’s diverse experiences and resultant
brain states throughout the session may be a significant factor
in the interpretation of our findings. For example, the n-back
task was performed near the beginning of the stimulation
period, while the easy flight landing was performed near the
end of the stimulation period. Future studies should examine
relationships between tDCS effects and EEG microstates and/or
brain metabolic activity.

Some of the null findings in this study were related
to exceptionally high within-group variance. One potential
method to examine within and across group behavioral
variance is to categorize subjects by learning rate bins or
perform a cluster analysis of tDCS responders and non-
responders. Since the same tDCS protocol may have variable
effects across individuals, possibly due to neuroanatomical and
neurophysiological differences, and that the same tDCS protocol
may produce different effects within an individual over time,
due to changes resulting from neural plasticity, the absence of
post-hoc categorization of subjects likely reduces the statistical
power and interpretability of our results (e.g., Supplementary
Table S2). Future studies may benefit from real-time assessments
and individualized tDCS planning rather than a “one size fits all”
approach. While a priori selection or post-hoc classification of
subjects within experimental groups can control for differences
in baseline performance levels, it is not realistic when transferring
this technology into real-world training environments.

The high variability between subjects and the need for
personalized training becomes more important when we
recognize the subject pool for this experiment all fit the
western, educated, industrialized, rich and democratic (WEIRD)
population. Although this population of subjects for the
experiment goal of pilot training was acceptable, we speculate
that the inclusion of a wider demographic range of the world
populous may produce an even larger variability in behavioral
performance. Therefore, a systematic understanding of the
sources and contributing factors to the observed behavioral
variance is extremely important for the application of tDCS
across a wider range of subjects.

CONCLUSIONS

The results presented here underscore the importance of
developing the understanding to identify and optimize
neurostimulation protocols. Our results suggest that the
time course of both online and offline learning is critical for
the observed changes in working memory and procedural
flight performance. Repeated training sessions reveal time-
dependent factors regarding the interaction between tDCS and
the learning processes that remain unclear in the literature.
Applying such interventions in the real-world will require
a much larger investment than initially anticipated in order
for the scientific community to measure and catalog the
precise behavioral, learning, and neurophysiological changes
resulting from each component of procedural skill acquisition.
Because there appears to be a differential, region-based
effect of neurostimulation interventions, it is critical to
determine the optimal targets, stimulation parameters, timing
relative to the target behaviors, and synchrony between innate
learning processes and strategies and exogenous stimulation for
maximally-effective augmentation.
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In the last decade, virtual reality (VR) training has been used extensively in video games
and military training to provide a sense of realism and environmental interaction to its
users. More recently, VR training has been explored as a possible adjunct therapy for
people with motor and mental health dysfunctions. The concept underlying VR therapy
as a treatment for motor and cognitive dysfunction is to improve neuroplasticity of the
brain by engaging users in multisensory training. In this review, we discuss the theoretical
framework underlying the use of VR as a therapeutic intervention for neurorehabilitation
and provide evidence for its use in treating motor and mental disorders such as cerebral
palsy, Parkinson’s disease, stroke, schizophrenia, anxiety disorders, and other related
clinical areas. While this review provides some insights into the efficacy of VR in clinical
rehabilitation and its complimentary use with neuroimaging (e.g., fNIRS and EEG) and
neuromodulation (e.g., tDCS and rTMS), more research is needed to understand how
different clinical conditions are affected by VR therapies (e.g., stimulus presentation,
interactivity, control and types of VR). Future studies should consider large, longitudinal
randomized controlled trials to determine the true potential of VR therapies in various
clinical populations.
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INTRODUCTION

In the last two decades, the application of VR training has become
increasingly popular, not only as a means to enhance gaming
experiences, but also in the education and healthcare settings to
improve learning and rehabilitation outcomes. Particularly in the
area of neurorehabilitation, the use of VR technology has shown
great promise by providing a sense of realism during training,
thereby promoting skill acquisition and retention, and inducing
functional recovery (Figure 1; for review, see Adamovich et al.,
2009).

In the context of neurorehabilitation, VR therapy can be
described as a method of brain–computer interaction that
involves real-time simulation of an environment, scenario or
activity that allows for user interaction and targets multiple
senses. In particular, the combination of VR and recent
technological advances in robotic and haptic interfaces allow
users a seemingly life-like interactional experience in a VE (Jung
et al., 2012; Yeh et al., 2014). For example, VR has been used in
clinical settings as a training tool for surgeons to learn intricate
fine motor skills associated with precision surgery (Wang, 2012;
Fang et al., 2014), and as a tool to deliver cognitive-based
therapies (Kim et al., 2011; Kandalaft et al., 2013). More complex
forms of VR presentation such as augmented VR (whereby VR
is superimposed on the actual environment) and immersive
VR (first-person interaction in a VR environment) brings the
immersive experience to another level with technology such
as head-mounted displays (i.e., Oculus R© Rift and Microsoft R©

Hololens) or screens. It is through this naturalistic environment,
and allowing for interactive behaviors while being monitored
and recorded, that is the primary advantage of implementing VR
technology. This means that VR technology can be used to deliver
meaningful and relevant stimulation to an individual’s nervous
system and thereby capitalize on neuroplasticity to promote both
cognitive and motor rehabilitation.

In this review, we will discuss the theoretical framework for
the use of VR in the context of neurorehabilitation. We will
provide evidence for the use of VR in motor rehabilitation
for neurological disorders such as PD, CP and stroke and in
mood and mental health disorders such as anxiety, PTSD and
schizophrenia. We will also review the concurrent use of non-
invasive brain stimulation and neuroimaging techniques during
VR, discussing how these combined techniques may augment the
benefits and complement current VR training protocols.

THEORETICAL FRAMEWORK FOR VR
AND LEARNING

Experiential Learning
The most important aspect of using VR is to provide
new experiences by allowing users to interact physically and

Abbreviations: BCI, brain computer interface; CP, cerebral palsy; EEG,
electroencephalography; fMRI, functional magnetic resonance imaging; fNIRS,
functional near-infrared spectroscopy; PD, Parkinson’s disease; PTSD, post-
traumatic stress disorder; tDCS, transcranial direct current stimulation; VE, virtual
environment; VR, virtual reality.

emotionally within a VE that is almost identical to the real
world. The combination of physical, mental and emotional
interaction encourages active participation and involvement
of the user. In this sense, users of VR assimilate knowledge
more effectively when they have the freedom to engage in
self-directed activities within their learning context. By finding
solutions and learning new skills autonomously, users of VR
invest mental effort by constructing conceptual models that
are both consistent with what they already understand and
with the new content that is presented (Garrison and Garrison,
1997). Another key feature of VR training is that it offers
users the opportunity to acquire skills in the context where
they need to be applied. This results in more meaningful and
effective learning, as compared with learning out of context
(Nieuwenhuijsen et al., 2006). In physical rehabilitation for
example, rehabilitation of fine motor control of the hands and
wrists can be “re-trained” by simulating a VE where a stroke
patient needs to pour him or herself a glass of water in the
kitchen. In this way, patients practice and refine fine motor
control of muscles controlling the hands and wrists through
manipulating a virtual object that allows the same kind of natural
interaction with objects that patients would engage in the real
world.

Augmented Feedback: Knowledge of
Results and Performance
Another important aspect of VR therapy is the ability to
provide augmented feedback to its users. Augmented feedback
is additional information provided through any means (e.g.,
visual, auditory or kinesthetic) that is complimentary to the
inherent feedback received via the sensory systems. There is
no hard and fast rule as to how or what kinds of information
augmented feedback should provide, however, VR therapy offers
two vital pieces of information that is essential for learning
(Winstein, 1991; Lauber and Keller, 2014); (1) knowledge of
performance – information on how the participant performs
during movement (i.e., movement sequences, joint angles, force
outputs at each phase of movement etc.); (2) knowledge of
results – information on the outcome of the performance (i.e.,
overall quality and quantity of movement). Currently, most
commercially available VR games would incorporate visual,
auditory and even kinesthetic feedback that can be provided
either during or after the game. Very often, these VR games
are designed in a manner that users have to maintain or
achieve a pre-determined score or level in order for the
game to progress. For example, VR applications can provide
knowledge of performance throughout gameplay in the form
of movement kinematics (i.e., joint angles, velocity, and speed),
kinetics (i.e., ground reaction forces and torque) or even the
level of activation in specific brain regions during a particular
task. In order for users to progress to the next level, users
must maintain or exceed a threshold that has been set based
on previous trials or specific performance outcomes. Upon
task completion, knowledge of results and performance can
be provided, allowing both clinicians and users to understand
deficiencies in movement patterns that are associated with
specific dysfunctional movement outcomes, apply progressions
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FIGURE 1 | A VR environment induces multisensory feedback that contributes toward greater memory consolidation and retention.

appropriately, and address those deficiencies with a targeted
rehabilitation approach.

Observational Learning
Apart from providing feedback that is necessary for learning,
another aspect of VR training is the enhancement of
observational learning. The basis for learning, or at least its
intended outcome, is to mimic or replicate an ideal response
that brings about a desired result and induce a lasting change
in behavior. In terms of neurorehabilitation, observation
of goal-oriented movements or processes provides sensory
feedback about the movement, behavior or emotional state,
which contributes to learning (Oouchida et al., 2013; Williams
and Carnahan, 2014). These observations preferentially activate
parts of the brain that are involved with the physical performance
itself allowing a motor program to be developed based upon
the observed movements (Burke et al., 2010). Training in a VE
may facilitate observational learning in four different ways; (1)
VR applications can provide an accurate visual representation
of the user’s body and limb position using motion capture
technology; (2) VR applications commonly use an avatar to
mimic the movement of users, or conversely, the user could
mimic the movements of the avatar; (3) accurate guides or a
correct movement pattern can be produced for which users
can follow; (4) VR applications can facilitate mental imagery
by inducing optimal mood states and instructions for mental
imagery.

Motivation
Importantly, the goal-oriented nature of VR tasks may support
the maintenance and adherence of neurorehabilitation programs.
Unlike traditional therapist-led sessions, where improvements
in physical or cognitive function may be subjective or difficult
for patients to identify (Van den Broek, 2005), VR programs
can provide an objective, quantitative measure of session
outcomes and objectives. Furthermore, VR applications can
provide both users and clinicians the ability to individualize

training programs or alter the progression of a training session
based upon the user’s personal performance. The capacity to
individualize therapy intensity may enhance motivation by
allowing users to select practice sessions that are catered to
their individual time and need, and more importantly, to
manipulate treatment parameters to create optimal learning
conditions. Another important consideration for VR to improve
motivation is by incorporating competition or co-operation
between other players during therapy sessions. Engaging users
in a group environment either competing against each other
or working in teams promotes an element of enjoyment
through increased social interaction, particularly amongst
people suffering with similar conditions (Van den Broek,
2005).

EVIDENCE OF VR THERAPY IN
MOVEMENT NEUROREHABILITATION

Stroke
The use of motion-controlled VR game consoles, including
the Nintendo R© Wii and Xbox R© Kinect, have been explored
as adjuncts to conventional physical therapy (see Table 1),
specifically for improving upper limb function (Thomson
et al., 2014; Laver et al., 2015). VR programs for stroke
neurorehabilitation are based on the potential for brain
neuroplasticity after neurological injury to support acquisition
and retention of new motor skills to recover motor function.
The goal of VR therapy in stroke is to apply these motor
learning principles for stroke neurorehabilitation, such as
providing repetitive, graded intensity, and motivating task-
specific training with real time multimodal feedback of
movements and performance (Saposnik et al., 2011). Thus,
VR systems are designed to enhance conventional therapy by
providing a tool to deliver more specific, intensive and enjoyable
therapy with real time feedback of performance (Levin et al.,
2015).
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TABLE 1 | Examples of recent systematic reviews and meta-analyses demonstrating the effects of VR in neurorehabilitation of stroke, PD and CP.

Author and
year

Study aims Studies included
and sample (n)

Study outcomes Points of discussion

Stroke

Laver et al.
(2015)

Compared the effects
of virtual reality on arm
function, walking speed
and independence in
managing daily
activities after stroke
versus an alternative
intervention or no
intervention.

37 studies
(n = 1019)

12 studies found improved arm function.

4 studies found improved walking speed.

8 studies found slight improvements in
activities of daily living.

Low sample size in most studies.

Some studies reported pain, headaches or
dizziness in small number of participants, but
no adverse events overall.

Low quality evidence for arm function.

Very low quality evidence for walking ability,
global motor function and independence in
performing daily activities.

The quality of the evidence for each outcome
was limited due to small numbers of study
participants, inconsistent results across studies
and poor reporting of study details.

Corbetta et al.
(2015)

Compared the effects
of VR-based
rehabilitation on gait,
balance and mobility
versus standard
therapy.

15 studies
(n = 341)

Significant improvements in walking speed,
balance, and mobility.

Significant improvements in mobility if VR
training was combined with standard therapy.

Insufficient evidence to support to use of
combined VR and standard therapy on
balance and walking speed.

Substituting some or all of a standard
rehabilitation regimen with VR training provides
greater benefits in walking speed, balance, and
mobility.

Although the benefits are small, the cost of
administering VR is also small particularly when
patient demand is high in a clinic setting.

Luque-Moreno
et al. (2015)

Compared the effects
of VR interventions on
lower extremity
rehabilitation.

11 studies
(n = 231)

High heterogeneity in study designs.

Small sample sizes. Mean sample size of 20
per study.

Studies were ranked between 4 and 7 points
(out of 10) on the PEDro scale.

VR interventions (more than 10 sessions) may
have a positive impact on lower limb function.

Multimodal approach (i.e., a combination of VR
and conventional therapy) may elicit greater
results.

Adaptability of software seemed to adapt better
to patient’s requirements, allowing for
individualized treatments.

Lohse et al.
(2014)

Compared the effects
of custom built virtual
games and
commercially available
gaming systems.

26 studies (n = ?) Only 4 studies used commercial games while
20 studies used custom built virtual games.

Mean PEDro score for all studies was
5.42 ± 1.6 (out of 10).

Methodological limitations of studies include
subject, experimenter and therapist blinding,
small sample size, and difficulty in
determining a dose-response effect.

Significant improvements in body function
and activity outcomes.

VR intervention improves outcomes compared
to conventional therapies.

Small samples and few number of studies in
commercial games limits the assessment of
potential benefits.

Parkinson’s disease

Harris et al.
(2015)

Compared the effects
of exergaming on static
and dynamic balance in
older adults and PD.

11 studies (n = 325
healthy older
adults, 56 PD)

9 studies showed a significant improvement
in static balance and postural control in
healthy aging individuals.

2 studies found a significant improvement in
static balance and postural control people
with PD.

Studies were ranked between 4 and 8 points
(out of 10) on the PEDro scale.

Few studies in PD and small sample size limits
the interpretation of the effectiveness of
exergaming in PD.

Evidence found in this meta-analysis supports
the use of exergaming as an adjunctive tool to
improve balance and postural control.

(Continued)
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TABLE 1 | Continued

Author and
year

Study aims Studies included
and sample (n)

Study outcomes Points of discussion

Barry et al.
(2014)

Examined the safety,
feasibility and
effectiveness of
exergaming in people
with PD.

7 studies (n = 110) Only 2 studies addressed patient safety. No
objective measures (such as falls or near falls)
or subjective measures (patient’s perception)
were recorded in any studies.

Only 1 study recorded gameplay experience.
Good levels of motivation during game play
were reported although difficulties with the
fast pace and cognitive complexity of some
games were raised.

Exergaming was found to be just as effective
as standard physical therapy for improving
clinical measures of balance and cognition
even up to 60 days post-intervention.

While the effectiveness and feasibility are often
measured, more research is required to
establish the safety, particularly in home-based
VR therapy.

The use of commercial games may be too
difficult for some people with PD, and
exergames that tailor specifically to the needs
and capabilities of patients may be more
effective.

Cerebral Palsy

Dewar et al.
(2015)

Systematic review of
various interventions to
improve postural
control in children with
CP

45 studies (n = ?) 4 studies investigated the use of VR on
postural control.

2 studies were rated weak in study conduct
while 2 had a strong study design.

3 studies showed improvements in balance,
while 2 study showed improvements in
walking capacity.

The systematic review provided conflicting
evidence of VR on postural control and gait.

Due to the preliminary nature of these studies, it
is difficult to truly ascertain if indeed the use of
VR had any effects on postural control and gait.

Chen et al.
(2014)

Examined the effects of
virtual gaming on upper
extremity function in
children with CP

14 studies
(n = 122)

3 RCTs, 2 cohort studies, 7 case studies and
2 single-subject design studies.

For 3 RCTs, no difference was found between
VR therapy and conventional therapy.

Overall upper extremity function was
significantly improved after VR therapy.

Strongest effects of VR was shown in
younger children, custom-built systems in the
home or laboratory setting.

The use of VR may be highly applicable in a
pediatric population.

Small sample size and the lack of large RCT is
a limiting factor in interpreting the results.

PEDro, physiotherapy evidence database (PEDro); RCT, Randomized controlled trials; PD, parkinson’s disease; CP, cerebral palsy; VR, virtual reality.

Despite the potential utility of commercial VR game
consoles for stroke neurorehabilitation, a number of limitations
have been highlighted (Bower et al., 2015): (1) VR games
designed for the general population can be too challenging
for stroke patients with physical and cognitive deficits; (2)
the difficulty levels and control of VR games are often not
readily adjustable to rehabilitation targets, and the tasks
may lack functional relevance; (3) feedback and scoring
provided can be negative and frustrating for the user; (4)
current VR games do not include neurological assessment;
(5) VR does not integrate multiple environmental factors
that connect to motor performance. In response to some of
these limitations, there has been an emergence of research
and development of modified VR programs specifically
designed for stroke neurorehabilitation using adaptable
software and hardware components of commercial VR
systems (e.g., Kinect system) and guidance from clinicians
in their development (Laffont et al., 2014; Bower et al.,
2015). These adapted VR systems are progressively optimized
with new functions including: (1) allowing automatic
adaptation/intensity grading of the activity to the patient’s

own achievements; (2) allowing the therapist to adapt
online the task’s characteristics to the patient’s needs; (3)
allowing multiplayer VR systems via a web-service platform to
enhance interactivity; (4) automatic recording of the patient’s
movements to provide therapists with data describing the
quality and quantity of motor function recovery/progression,
including the level of compensatory movements (Laffont et al.,
2014).

While there is some evidence to suggest that VR may
be highly applicable for stroke rehabilitation, the evidence
from recent systematic reviews and meta-analyses indicate that
current studies are limited by sample size issues and study
designs (see Table 1). Early VR interventions used commercial
applications such as the Nintendo Wii that controls an avatar,
however, more recently customized systems have focused on
interactive platforms to target activities of everyday living (i.e.,
reaching and grasping tasks). However, a major challenge with
stroke is that no one stroke patient will present with the
same motor deficit and therefore an individualized approach
to therapy, including VR therapy, is needed. In this sense,
future systems must be adaptive and customizable to manage
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the heterogenous nature of stroke for patients to gain greater
benefits.

Parkinson’s Disease
Emerging VR therapies presents as an attractive option for
delivering neurorehabilitation therapies to manage the cognitive-
motor symptoms in people with PD, as it can be employed
at any stage as an adjunct to standard pharmacological
(Levodopa therapy) and/or surgical (ablation, deep brain
stimulation) treatment (see Table 1). This new possibility
in the field of neurorehabilitation aims to provide PD
patients with a motivating way to perform multiple motor
neurorehabilitation exercises with the rationale that the VR
system might promote balance training, and cognitive-motor
practice. Some commercial VR systems, such as the Nintendo R©

Wii system using a balance board, has drawn considerable
attention from both the research and clinical communities
as effective and feasible neurorehabilitation interventions to
enhance gait and balance for people with PD (Barry et al.,
2014; Harris et al., 2015). More recent studies have implemented
custom programming and hardware to their VR systems to
specifically improve balance and gait in PD (Mirelman et al.,
2011).

It has been demonstrated that a VR neurorehabilitation
program of 6–8 weeks involving 40–60 min a day, three times
per week appears to be a viable option for significantly improving
balance in a clinical population of individuals with PD (Esculier
et al., 2012). The intensity/difficulty load of interventions used
across existing studies appears a key contributing factor for the
discordant findings reported in the literature (Esculier et al.,
2012). In addition, activity selection could have contributed to
some differential findings among studies. Some studies targeted
static slow controlled movements in a closed environment such
as the Wii Fit with balance board (dos Santos Mendes et al., 2012;
Esculier et al., 2012), while others involve dynamic movements in
an open environment such as Wii Sports (Herz et al., 2013).

Despite some evidence for performance improvement in
balance, there are still limitations inherent in commercial VR
systems that may not directly apply to realistic everyday settings
for PD neurorehabilitation. Additionally, the programs are not
very scalable, or modifiable, to each individual’s needs or progress
for all stages of disease. Mirelman et al. (2011, 2013) utilized
a custom-made VR system to incorporate virtual obstacles
presented on a screen during treadmill walking (18 sessions
over 6 weeks). During the gait training they used a novel
method (V-TIME) for tracking foot position based on the X-box
Kinect technology. Interestingly, Mirelman et al. (2011) observed
significant elevated gait speed with and without a cognitive dual-
task upon completion of training and 4 weeks post-training.
However, this VR gait training protocol confines participants to
straight-walking, a gait pattern that is relatively uncommon in
real-life environments. Perhaps a more viable approach may be
the development of a VR system that may be used in conjunction
with activities of daily living. People with PD are known to use
visual and/or auditory cues to improve physical performance
(Lee et al., 2012), and perhaps the use of augmented VR, via
goggles or smart glasses, may be used to provide sensory cues

as a feedforward or feedback mechanism to improve physical
performance.

Cerebral Palsy
Cerebral Palsy (CP) is the most common pediatric physical
disability, thought to affect three to four individuals per
1000 of the population (Aisen et al., 2011; Oskoui et al.,
2013) characterized as a spectrum of disorders of motor
and postural development that cause limited functionality or
dysfunction (Monge Pereira et al., 2015). Studies investigating
exercise-based treatments for children with CP has provided
growing evidence in the last decades for effectiveness in
improving postural control (see Table 1). Although effective,
traditional physical exercise in the clinical settings consists of
repetitive tasks that limits the enthusiasm over regular periodic
application.

While the study of VR in children with CP is still at its
infancy, Denise Reid at the University of Toronto’s Virtual Reality
Laboratory (Reid, 2002a,b, 2004) has provided preliminary
evidence to support its use. In these studies, children with CP
were engaged with VR based exercises for upper extremity and
postural control. The self-reported effect of VR on perceived self-
efficacy to perform given tasks was tested in an uncontrolled
study, before and after intervention (Reid, 2002a). Based on the
self-efficacy theory, Reid (2002b) attempted to identify if use
of VR could increase the motivation for exercise in children
with CP. The pilot study yielded encouraging results for VR
use with improvement in perceived performance abilities and
satisfaction with performance. In a follow up study on upper-
extremity efficiency, improvement was also reported with VR
use (Reid, 2002b). Similarly, Reid (2004) later investigated the
effect of VR intervention on playfulness and found that VR
environments stimulated playfulness in children, specifically
the VR tasks that allowed creativity, expression, and choice
of activity. You et al. (2005) used fMRI in a case report to
investigate cortical reorganization and associated motor function
improvement after a VR therapy. Neuroplastic changes were
observed in the primary sensorimotor cortex and supplementary
motor area following VR therapy, together with enhanced
functional motor skills. A later study by Bryanton et al.
(2006) compared the VR therapy with conventional exercises
in children and found that although children completed more
repetitions of the conventional exercises, the range of motion
and hold time in stretched position was greater during VR
tasks.

While the current research for VR in children is still in
the early stages, VR therapies represent a viable option to
increase exercise adherence and physical activity as they are
both engaging and rewarding particularly in an adolescent
population. The process of gamification, one that entails an
interactive dynamic storyline and an overall goal, is likely to
better capture and retain the attention of children over traditional
physical training (Lister et al., 2014). The challenge, particularly
in children with CP, will be to incorporate a diversity of
activities performed during the game to train a repertoire of
fundamental skills so as to further develop their motor and
cognitive skills.
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EVIDENCE FOR VR THERAPY IN
COGNITIVE REHABILITATION AND
MENTAL HEALTH

Anxiety, Phobias and Post-traumatic
Stress Disorder
Anxiety can be generalized in nature [i.e., generalized anxiety
disorder (GAD)], characterized by long-lasting anxiety that is not
focused on a specific object, or may be more focal (i.e., phobias)
occurring in the presence of, or in anticipation of, a specific object
or situation. Preliminary evidence on the use of VR in GAD
indicate that a combination of relaxation, controlled exposure
and stress inoculation may help patients to cope with various
stressors and sources of worry (Gorini et al., 2010; Repetto and
Riva, 2011). Additionally, the combination of biofeedback (e.g.,
heart rate and electro-dermal skin response) may potentially help
to identify particular sources of worry and emotion that can be
used to modify specific features of the VR environment (Gorini
et al., 2010; Repetto and Riva, 2011).

Despite the limited evidence for the use of VR therapy in
GAD, there is some support for the use of VR in a range of
other anxiety disorders (see Table 2) including specific phobias
(Cote and Bouchard, 2005; Maskey et al., 2014), panic disorder
(Vincelli et al., 2002) and social phobia (Klinger et al., 2004, 2005).
Current VR therapies, particularly for phobias, use controlled
exposure therapy that allows the patient to experience a sense
of presence in an immersive, interactive VE that minimizes
avoidance behavior and facilitates emotional involvement. This
VE also allows controlled delivery of sensory stimulation via
the therapist, for which the patient confronts the feared stimuli
in a progressive manner. Another advantage of VR therapy is
being able to recreate situations that cannot be re-experienced
in vivo (i.e., combat situation or terrorist attack). VR therapy
may be used as an alternative to imaginal exposure, meaning
that patients with PTSD need not rely on internal imagery to
visualize an event. A potential limitation in imaginal exposure
therapy is that the therapist has no control over, or even
knowledge of, what imagery the patient actually evokes (Strosahl
and Ascough, 1981). Whereas in the VE, the stimuli presented
can be carefully controlled and monitored. As with phobic
patients, VR-based exposure therapy may be particularly useful
for patients with PTSD for whom avoidance and failure to engage
with therapy may hinder the therapeutic process. The efficacy of
VR therapy for the treatment of PTSD has predominantly been
examined in military populations (Cukor et al., 2009; Goncalves
et al., 2012). A systematic review found that VR therapy was
just as efficacious as traditional exposure treatment for PTSD
(Goncalves et al., 2012). Seven of the 10 studies included in
Goncalves’s review found that VR environments significantly
reduced PTSD symptoms in comparison to control, however, no
significant differences in symptoms were observed between VR
therapy and traditional exposure treatment.

Whilst the existing literature on the use of VR therapy for
phobias, panic disorder, and PTSD were promising, several
limitations must be considered (Powers and Emmelkamp,
2008; Meyerbroker and Emmelkamp, 2010; Opris et al., 2012).

Meyerbroker and Emmelkamp (2010) noted that VR as a
therapeutic tool is difficult to assess as it is often combined with
other techniques. This potentially masks any underlying benefits
of VR therapy on the patient. Furthermore, most studies do
not include behavioral avoidance tasks, which would help to
determine how transferable the results are to the real world.

Schizophrenia
As an assessment tool, VR offers the possibility of creating
unique environments allowing researchers to better identify
and understand specific areas of the brain commonly effected
in schizophrenia. It is proposed that binding errors during
the memory encoding process are responsible for the episodic
memory impairments reported in schizophrenia (Waters et al.,
2004). In this sense, VR is able to tease out areas of the
brain responsible for binding impairments by providing specific
situations or tasks for which patients have to perform. For
example, a study by Ledoux et al. (2013) examined contextual
binding in schizophrenia using fMRI during a navigation
task in a virtual town (i.e., find the grocery store from
the school). Their results showed significantly less activation
among patients relative to controls in the left middle frontal
gyrus, and right and left hippocampi. Ledoux et al. (2013)
further suggested that the reduced activation was indicative of
context and content not being appropriately linked, therefore
affecting the formation of a cognitive map representation
in the patient group and eliciting a contextual binding
deficit.

As a rehabilitation tool, VR offers a unique potential to expose
individuals to controlled rehabilitation environments and allow
for interaction within a VE. Indeed, VEs may be perceived as less
intimidating for patients as it allows for more gradual increase
in task difficulty and may therefore enhance participation with
rehabilitation (Rizzo et al., 1998). In particular, VR therapy has
been explored as an alternative option to improve cognitive
function (Marques et al., 2008) and vocational skills (Tsang
and Man, 2013) in schizophrenic patients with some success.
However, perhaps one of the most important roles of VR therapy
may be to attenuate the deficit in social skills associated with
schizophrenia. Traditionally, social skills training using role-
play has been effective in remediating these deficits (Benton
and Schroeder, 1990), however, role-playing of social skills
training are limited in that they require appropriately matched
groups, and may produce social anxiety, negative symptoms
and poor insight. VR-based techniques offer an alternative to
traditional role playing techniques by providing a computer-
generated but realistic three-dimensional world and human-like
avatars that can provide emotional stimuli. These VR-based
techniques may be highly beneficial to re-train conversational
skills (i.e., beginning a conversation, breaking silences, and
differentiating facial expressions; Ku et al., 2007; Park et al.,
2011).

While there is great potential for the role of VR in the
treatment of schizophrenia, the evidence for its use remains
contentious. Questions still remain if the effects of VR directly
affects the condition itself, or perhaps the effects of VR may
attenuate other psychiatric comorbidities such as anxiety or
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TABLE 2 | Examples of systematic reviews and meta-analyses demonstrated the use of VR in treating PTSD and anxiety disorders.

Author and
year

Study aims Studies included and
sample (n)

Study outcomes Points of discussion

PTSD

Kuester et al.
(2016)

Examined the efficacy
of internet-based CBT
and expressive writing
in people with PTSD vs.
waitlist or active
controls.

20 studies (n = 973
intervention, 805
controls)

Internet-based CBT are showed medium to
large effect sizes compared to passive
controls, but not against active controls
receiving face-to-face CBT with therapist.

Internet-based CBT may be just as
beneficial as conventional CBT.

Due to large variability in outcome
measures of included studies, subgroup
analyses was limited.

Goncalves
et al. (2012)

A systematic review of
the efficacy of VR
exposure therapy in the
treatment of PTSD vs.
waitlist or active
controls.

10 studies (n = ?) Patients in VR exposure therapy showed
insignificantly better results compared to
waitlist controls, but no differences was
observed when compared to exposure
therapy.

Majority of VR exposure therapy used
head-mounted displays and customized
virtual environment specific to the condition.

No difference in dropout rates between VR
therapy and conventional CBT.

Preliminary evidence suggests that VR
exposure therapy is just as efficacious as
conventional CBT.

Studies included did not use intent-to-treat
analysis or did not state concomitant
treatments and/or comorbidities.

Anxiety disorder

Opris et al.
(2012)

Treatment efficacy of
VR exposure therapy
vs. conventional CBT in
anxiety disorders vs.
active controls.

23 studies (n = 608) VR therapy was significantly better than
waitlist controls.

Similar improvements were observed
between VR and conventional CBT therapy.

Similar improvements in outcome measures
were maintained over time in both the VR
and conventional CBT groups.

The use of VR exposure therapy may be a
viable option.

There is a future need to determine the use
of VR exposure therapy to other forms of
VR therapies targeted at anxiety disorders.

No measure of dropout rates in studies
reviewed.

Powers and
Emmelkamp
(2008)

Examined the effects of
VR in anxiety disorders
vs. waitlist or
conventional CBT
controls.

13 studies (n = 397) VR therapy was more efficacious that
waitlist or active control.

Significant improvements were observed in
subjective distress, cognitive and behavioral
measures, and psychophysiological
measures.

VR therapy was more effective than in vivo
exposures.

Non-significant trend toward a
dose-response relationship was observed
between number of sessions and outcome
measures.

VR exposure therapy was highly effective in
treating anxiety disorders.

Behavioral avoidance tests should be
administered to assess the impact of
treatment on anxiety-provoking situations
and generalization to the real world.

CBT, cognitive behavioral Therapy; PTSD, post-traumatic stress disorder; VR, virtual reality.

depression that may trigger visual or auditory hallucinations in
sufferers of schizophrenia. As these are still early days for VR
therapy in general, there is a need to determine the precise role of
VR in treatment therapies for schizophrenia and its limitations.

FUTURE OUTLOOK TO THE MOST
PROMISING RESEARCH AVENUES -
COMPLEMENTING VR THERAPY USING
NON-INVASIVE NEUROMODULATION
AND NEUROIMAGING TECHNOLOGIES

This review so far has provided evidence for the use of VR therapy
in various clinical populations as a standalone or adjunctive

tool with mainstream neurorehabilitation treatment modalities.
However, the question remains as to whether the beneficial effects
of VR can be augmented via neuromodulation techniques such as
tDCS, or if it is possible for a more targeted approach to monitor
the effects of VR via non-invasive and portable neuroimaging
methods such as fNIRS and EEG.

Augmenting VR Therapy with tDCS
Transcranial direct current stimulation is an emerging non-
invasive brain stimulation technique that uses low-intensity
constant direct electrical currents to modulate the excitability
of cortical neurons and related networks (Nitsche and Paulus,
2000; Lang et al., 2005). By placing either a positive anode or
negative cathode electrode over the scalp of the head, tDCS
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is able to facilitate (anodal tDCS) or inhibit (cathodal tDCS)
excitability of the underlying cortical neurons in a polarity-
specific manner. Due to this robust neuromodulatory effect,
tDCS has often been used in conjunction either before (offline)
or during (online) rehabilitation therapy to improve motor and
cognitive performance in healthy and clinical populations (for a
recent reviews, see Coffman et al., 2014 and Floel, 2014).

In theory, the application of tDCS with VR therapy to
augment neurorehabilitation appear complimentary. A study by
Lee and Chun (2014) showed an improvement in stroke-specific
clinical measures, manual muscle test and the Korean-modified
Barthel Index in subacute stroke patients after 15 sessions of VR
therapy with online cathodal tDCS to the unaffected motor cortex
compared to sham. Kim et al. (2014) further demonstrated that
the addition of online anodal tDCS to the affected motor cortex
with VR therapy not only improved upper arm function, but also
increased corticospinal excitability in subacute stroke patients.

In contrast to the aforementioned findings, mixed results
were reported by Viana et al. (2014) that compared the effects
of combining VR with offline anodal tDCS over the affected
motor cortex of stroke patients, across 15 1-h VR therapy
sessions. While the results showed no statistical differences in
stroke-specific clinical measures (i.e., Fugl-Meyer assessment,
Wolf motor assessment, and modified Ashworth scale) of
upper arm function between patients receiving real tDCS
compared to sham, it is important to note that more than
50% of participants receiving anodal tDCS and VR therapy
had clinically significant improvements in wrist spasticity
following treatment. Based on these limited combined VR
and tDCS findings, it can be seen that performing tDCS
during the VR therapy is a significant factor for enhancing
the effects of VR therapy alone, which is also the case for
combining tDCS with neurorehabilitation (Rothwell, 2012).
Although combined VR and neuromodulation (tDCS) has
been primarily applied in movement disorders, to the best
of our knowledge, there are currently no known studies
that have investigated this combination in cognitive and
mood disorders. Thus therapists that are currently adopting
the use of VR therapy in mental and mood disorders can
potentially exploit the concurrent use of both VR and tDCS
to augment therapy benefits above and beyond VR therapy
alone.

It is likely that the combined effects of VR and tDCS
is influenced by a combination of several factors, namely
(1) general patient characteristics (e.g., brain region affected,
and structural/functional reserve) and (2) tDCS parameters
including electrode placement (affected or unaffected brain
region), polarity (anodal or cathodal) and timing of tDCS
application (online or offline). In such circumstances, where
the efficacy of combined VR and tDCS interventions are
both timing and location dependent (i.e., when and where
to stimulate), a method of detecting and monitoring changes
to neurophysiological function as patients receive treatment
is crucial for optimizing intervention effects. In this regard,
neuroimaging methods could be applied to monitor treatment
VR progression, which will be discussed in the subsequent
section.

Monitoring VR Therapy with
Neuroimaging
Neurophysiological changes associated with VR neurorehabi-
litation can be measured by non-invasive and portable
neuroimaging techniques including fNIRS and/or EEG, to
ascertain changes in cerebral hemodynamic responses or
oscillatory brainwaves, respectively. In particular, the use of
fNIRS as a tool to measure online cerebral hemodynamic
responses during neurorehabilitation has received attention
(for review see Irani et al., 2007; Ferrari and Quaresima, 2012).
The use of fNIRS as a neuroimaging method relies on the
principle of neurovascular coupling that measures the increase
in regional cerebral blood flow (i.e., increase in oxygenated and
decrease in deoxygenated hemoglobin) induced by neuronal
activation, which is analogous to the blood-oxygenation-level-
dependent responses measured by fMRI (Ferrari et al., 2004).
Cortical activation measurements by fMRI and fNIRS techniques
show highly correlated results in both motor and cognitive
tasks (Huppert et al., 2006; Cui et al., 2011; Muthalib et al.,
2013). While the application of fNIRS techniques is gaining
popularity, EEG has long been used to measure online brain
activity during a cognitive or motor task, and in various clinical
populations (Bonanni et al., 2008; Gosselin et al., 2011). Of
particular importance, EEG is used to detect changes in various
brainwaves (i.e., Gamma, Alpha, Beta, Theta, and Delta) which
are differentially affected by changes in mood (Huang and Lo,
2009), wakefulness (De Gennaro et al., 2001), neurological
diseases (Bonanni et al., 2008), and brain injury (Gosselin
et al., 2011). Both fNIRS and EEG have several advantages over
fMRI, as they are portable, relatively inexpensive to use, and
easy to operate with high temporal resolution. Furthermore,
new generation systems are battery operated, wireless and
further miniaturized to the size of a smartphone, ideal for
ambulatory and untethered measurements consistent with a
neuroergonomics approach (Ayaz et al., 2013; de Lissa et al.,
2015).

As the use of fNIRS and EEG techniques in VR therapy
is still relatively new, most studies to date have focused on
healthy individuals (Bayliss and Ballard, 2000; Mingyu et al.,
2005; Holper et al., 2010; Seraglia et al., 2011; Basso Moro et al.,
2014), with the potential for more studies in clinical populations
emerging as the popularity of these portable neuroimaging
technologies increases. The current use of fNIRS and EEG in
VR therapy has two proposed roles; (1) to monitor and provide
augmented feedback regarding regions of cortical activation
during therapy and (2) to use fNIRS or EEG as part of a
BCI paradigm for therapy. In support of the first role, several
studies have investigated the efficacy of fNIRS and EEG to
record cortical hemodynamic and oscillatory changes during
actual motor tasks and motor imagery in a VR environment.
These studies demonstrated the efficacy of fNIRS and EEG to
detect task-specific changes in cortical hemodynamics (Holper
et al., 2010; Seraglia et al., 2011; Basso Moro et al., 2014) and
oscillatory patterns (Bayliss and Ballard, 2000; Mingyu et al.,
2005).

The ability of fNIRS and EEG to detect changes in these
neurophysiological measures can provide both feedback on
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FIGURE 2 | Stroke participants engaged in VR therapy using an X-Box Kinect motion capture system while receiving tDCS.

location and level of activation, for which clinicians and
users can use to set intensity and progression of therapy.
Furthermore, feedback on cortical activation can also be used
to identify areas of hypo- or hyperactivity, which can be
modulated using neuromodulatory techniques such as tDCS (see
Prospective Integration of Neuromodulation-Neuroimaging with
VR Therapy). In support of the second role, identifying cortical
areas of activation, patterns and timing of cortical activation
associated with various movements or mood states may also
be recorded as classifiers for BCI training. Indeed, most BCI
studies to date have employed the use of EEG as a measure
for cortical activation for which to control a robotic limb or
avatar in a VR environment (Lin et al., 2007; Formaggio et al.,
2013, 2015). Although relatively new, there are also fNIRS-based
BCI approaches demonstrating feasibility for future integration
with VR and neurorehabilitation (Sitaram et al., 2007; Hong
et al., 2015). Moreover, joint use of fNIRS- and EEG-based
BCI approaches have also been demonstrated (Koo et al., 2015;
Xuxian et al., 2015). This shows the potential to adopt fNIRS
in a similar manner, whereby appropriate cortical hemodynamic
responses can be classified to control a robotic or computer
interface.

Prospective Integration of
Neuromodulation-Neuroimaging with VR
Therapy
In the last 5 years, new research suggests that the combination of
VR therapy with neuromodulation and neuroimaging techniques
may help to improve the effects and delivery of VR therapies.
Neuromodulation techniques such as tDCS (Figure 2) and
neuroimaging methods such as fNIRS (Figure 3) and EEG have
already been combined and have shown some success (Ang et al.,

2015; Dutta et al., 2015; Muthalib et al., 2016). While the use of
these techniques in combination with VR is still in its infancy,
the available evidence suggests highly complementary effects
when combining neuromodulation and neuroimaging with VR
therapy.

As both neuroimaging (fNIRS/EEG) and neuromodulation
(tDCS) techniques have complimentary capabilities, and they
both can be built as wearable and wireless systems, integration
of the two presents as a natural avenue for applications in natural
environments and real world settings (McKendrick et al., 2015).
One potential use is enhancing BCI applications. In its most
general form, BCI provides a route for neural output that does
not involve the neuromuscular system (Wolpaw et al., 2002).
Almost all current non-invasive BCI systems are read-only, that
is, brain signals are read directly to the system (via neuroimaging)
and the system can provide an output or feedback that relies
on sensory input mechanisms and peripheral nervous system to
reach back to the brain. A more direct BCI could eliminate the
need for sensory input with the use of neuromodulation, and
hence provide feedback directly to the brain for a read-write
BCI.

Integration of VR therapy for such a read/write BCI hold
potential for enhanced or accelerated therapeutical processes in
neurorehabilitation. A study by Ang et al. (2015) was one of
the first studies that combined VR with both tDCS and EEG
to investigate the additive effect of offline anodal tDCS on BCI
haptic training with chronic stroke patients. Although this study
reported no difference in the Fugl-Meyer assessment and block-
and-box test between groups that received real tDCS prior to
BCI training, compared to sham, the study did demonstrate an
increased state of EEG mu rhythm suppression in the real tDCS
group. Thus indicating improved neurophysiological responses
in motor preparation. Future studies are necessary to determine

Frontiers in Human Neuroscience | www.frontiersin.org June 2016 | Volume 10 | Article 284 | 345

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-10-00284 June 22, 2016 Time: 13:26 # 11

Teo et al. Virtual Reality Therapy for Neurorehabilitation

FIGURE 3 | The use of a semi-immersive VR environment and fNIRS system.

the significance of these neurophysiological improvements to
clinical outcomes.

Neuroimaging guided tDCS and VR therapy can be applied
to neurorehabilitation in general. The optimal location for
applying tDCS electrodes to modulate a target cortical region
and connected networks is a debated point in the field. Modeling
studies of current flow between the tDCS electrodes have
provided some guidance to the placement of electrodes to
stimulate a specific brain region; however, whether these models
predict the actual current flow and polarization of the targeted
brain networks is not known. Simultaneous tDCS-neuroimaging
could provide a solution to confirming the modeling predictions
and/or to guide the direction of current flow between multi-
electrode tDCS montages (Ruffini et al., 2014). For example, a
motor task could be used to activate a broad network of cortical
regions of interest that can be measured using fNIRS/EEG
neuroimaging. Once the locations of the tDCS electrodes have
been determined using neuroimaging guidance, neuroimaging
and tDCS could be simultaneously or independently used to
guide and modulate VR therapy. In this scenario, neuroimaging
during VR tasks can be used to adapt the intensity based
on the level of activation, such as the attentional hub of the
dorsolateral prefrontal cortex (DLPFC). The level of DLPFC
activation during the initial task would be expected to be high

due to the novelty of the activity, however, as the activity
progresses the learning of task requirements become automatic
and performance improves, less attentional resources would be
required, and the level of DLPFC would be expected to decrease
(Ayaz et al., 2012; McKendrick et al., 2014). In such a scenario,
the VR task can be adapted online to modulate the intensity
level and maintain optimal DLPFC activation. Also, if the levels
of DLPFC activation remain at high levels and/or performance
is stagnant, then tDCS could potentially be applied online to
upregulate neuronal networks required to perform the task.
Preliminary evidence using a modeling approach to locate tDCS
electrodes was provided by McKendrick et al. (2015) using a
spatial memory task with concurrent fNIRS and tDCS. They
showed that when task performance declined rapidly following
baseline, the application of tDCS almost immediately eliminated
the performance decrement. Furthermore, they showed that
tDCS can modulate the neural activity of specific brain regions
near the site of stimulation. However, they cautioned that
current models and protocols for determining tDCS montages
are lacking, due to complex interactions between stimulation
montage, task performance and underlying hemodynamics that
are not fully understood. Therefore, additional joint tDCS
and fNIRS/EEG studies are required to further unravel these
complexities and to better define the pattern of cortical excitation
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induced by tDCS during the performance of cognitive and motor
tasks.

CURRENT LIMITATIONS OF VR
THERAPY

While using a VE offers many unique advantages to traditional
treatment and neurorehabilitation approaches, limitations to
their efficacy and practicality must be acknowledged. Firstly,
larger clinical studies are required to establish the efficacy of
using VR in physical and cognitive rehabilitation in different
clinical populations. Much of the existing literature report mixed
findings from small sample sizes, and often lack appropriate
control comparisons (see Tables 1 and 2). Secondly, there is
little information on the transfer of the training effects of VR
into the corresponding physical environment in general, and
the VR training parameters associated with optimal transfer to
real-world functional improvements are yet to be elucidated.
Thirdly, in many clinical populations it is unclear whether
advantages of VR over real-world training exist, and if so,
precisely what these advantages are (see Tables 1 and 2
for study limitations). Furthermore, because this literature is
extremely vulnerable to selective reporting and Type-I statistical
error, there is an inherent bias of publishing results that
show correlation between rehabilitation improvements and the
application of VR. Therefore to potentially limit any bias in
future studies, it may be useful for future studies to adopt a
double-blinded protocol for the evaluation of the effectiveness
of the use of VR. Lastly, it is important to investigate any
unique rehabilitative effects of VR that may be exploited, or
whether the benefits of VR can be attributed to the enjoyment
of gaming platforms associated with VR themselves (i.e., VR
therapies may only present as more effective because they
engage and motivate participants throughout their training
session, providing increased adherence). While limitations in
VR technology exist, the potential for favorable neuroplasticity
afforded by such technology undoubtedly warrants further
investigation.

CONCLUSION

In summary, this review has discussed the strengths and
limitations for the use of VR therapies in motor and mental
health neurorehabilitation. The current evidence suggest that
a combination of VR and conventional therapies are safe and
likely to be more efficacious compared to just traditional or
VR therapy alone. However, it is not known if the use of
VR therapies can lead to cost-saving benefits (i.e., reduced
financial and manpower cost) or even if current commercial
or customized systems will be applicable by patients that are
living within the community. More importantly, there is a
need to elucidate the aspects of VR that are most effective
for rehabilitation. While this is not apparent in the current
review, future studies should attempt to systematically determine
the role of self-projection, sensory feedback or motivation on
rehabilitation in relation to specific diseases or impairments.
Furthermore, we have discussed the potential for VR therapy
to be complemented by other forms of technologies such
as neuromodulation (tDCS) and neuroimaging (fNIRS/EEG)
in order to augment training benefits of VR, and provide
a more targeted approach to neurorehabilitation. Large-scale
longitudinal studies will also be required to determine the effects
of VR therapy (in combination with tDCS/fNIRS/EEG) and the
translation of VR therapy in a non-clinical environment (i.e.,
home setting).
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In the original article, there was a mistake in the legend for Figure 2 as published. The correct
legend appears below. The authors apologize for this error and state that this does not change the
scientific conclusions of the article in any way.

Figure 2. Stroke participants engaged in VR therapy using an X-Box Kinect motion capture

system, MediMoov by NaturalPad, while receiving tDCS.
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Given the important amount of visual and auditory linguistic information that pilots
have to process, operating an aircraft generates a high working-memory load (WML).
In this context, the ability to focus attention on relevant information and to remain
responsive to concurrent stimuli might be altered. Consequently, understanding the
effects of WML on the processing of both linguistic targets and distractors is of
particular interest in the study of pilot performance. In the present work, participants
performed a simplified piloting task in which they had to follow one of three colored
aircraft, according to specific written instructions (i.e., the written word for the color
corresponding to the color of one of the aircraft) and to ignore either congruent or
incongruent concurrent auditory distractors (i.e., a spoken name of color). The WML
was manipulated with an n-back sub-task. Participants were instructed to apply the
current written instruction in the low WML condition, and the 2-back written instruction
in the high WML condition. Electrophysiological results revealed a major effect of WML
at behavioral (i.e., decline of piloting performance), electrophysiological, and autonomic
levels (i.e., greater pupil diameter). Increased WML consumed resources that could not
be allocated to the processing of the linguistic stimuli, as indexed by lower P300/P600
amplitudes. Also, significantly, lower P600 responses were measured in incongruent
vs. congruent trials in the low WML condition, showing a higher difficulty reorienting
attention toward the written instruction, but this effect was canceled in the high WML
condition. This suppression of interference in the high load condition is in line with the
engagement/distraction trade-off model. We propose that P300/P600 components
could be reliable indicators of WML and that they allow an estimation of its impact on
the processing of linguistic stimuli.

Keywords: mental workload evaluation, electroencephalography/event-related potential (EEG/ERPs), pupil size,
neuroergonomics, human factors, selective attention, attentional orienting

INTRODUCTION

Visual-Auditory Interference
Depending on the current task, the information surrounding us is roughly divided into relevant
or irrelevant. Naturally, we tend to ignore the irrelevant information and to privilege that
which is relevant. Despite such top-down attentional focus on a primary task, concurrent
stimuli can capture human attention, especially when they share common characteristics
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with the focal task (Folk and Remington, 1998). As stated
by Watkins et al. (2007), although distracting subjects, such
attentional capture may be advantageous for survival because
even a single stimulus can convey critical information about
the environment. The distraction phenomenon has been
widely investigated over the last decades (e.g., Parmentier,
2014). According to various authors, distraction may
result from three different processing steps (Escera et al.,
2000; Berti, 2008, 2013; Horváth et al., 2008). First, a pre-
attentive change detection step may occur automatically
when novel/deviant stimulus appears in the environment.
Second, once the concurrent stimulus is detected, attentional
resources may be automatically allocated to it (i.e., involuntary
orienting of attention) at the expense of goal-relevant stimuli.
Third, if the stimulus is irrelevant to the task, a voluntary
reorientation of attentional resources from irrelevant stimulus
to relevant stimulus may finally occur. These involuntary
and voluntary shifts of attention are assumed to interfere
with the processing of the information relevant to the
task at hand. Generally, the literature on visual-auditory
interference tends to support this three-step model using a
wide variety of experimental paradigms such as auditory-
visual oddball tasks (Andrés et al., 2006; Boll and Berti,
2009; Bendixen et al., 2010; Parmentier and Andrés, 2010;
Ljungberg and Parmentier, 2012), task-irrelevant auditory
distractor probes (Scheer et al., 2016), visual-auditory Stroop
tasks (Roelofs, 2005; Donohue et al., 2013; Elliott et al., 2014),
response competition paradigms (e.g., Lavie and Cox, 1997;
Tellinghuisen and Nowak, 2003), and more ecological tasks
like decision-making during aircraft landing (e.g., Scannella
et al., 2013). Overall, auditory distractors are likely to interfere
with the processing of visual targets as longer response
times and sometimes a decrement in accuracy are observed
(Stuart and Carrasco, 1993; Yuval-Greenberg and Deouell,
2009; Chen and Spence, 2011; Berti, 2013; Donohue et al.,
2013).

The electroencephalography (EEG) technique is particularly
appropriate for the study of the processing of auditory distractors
in that it has a high temporal resolution which enables to
observe the different steps of the process (Luck and Kappenman,
2011). The mismatch negativity (MMN) event related potential
(ERP), a negative deflection occurring between 150 and 250 ms
after stimulus onset, maximal at frontal and central sites, was
found to be elicited by novel/deviant auditory distractors; this
was interpreted as reflecting the pre-attentive detection of the
distractors (e.g., Friedman et al., 2001; Berti, 2013). In addition,
the novelty-P3 component, a positive deflection occurring
around 300 ms after stimulus onset and highest in the frontal
lobes, was found to index the involuntary switch of attention
to the distractors (Escera et al., 1998, 2000; Friedman et al.,
2001). Finally, the reorienting negativity (RON) component,
a later negative deflection occurring around 500 ms after the
stimulus onset, maximal at frontal site, was found to index
the reorientation of attention back to the task after distraction
(Schröger and Wolff, 1998; Schröger et al., 2000; Berti and
Schröger, 2001; Wetzel et al., 2004).

The Effect of Working Memory Load on the
Processing of Auditory Distractors
Many studies have investigated how the processing of distractors
is impacted by both perceptual load (Tellinghuisen and Nowak,
2003; Lavie, 2005; Parks et al., 2011; Lavie et al., 2014; Bonato
et al., 2015) and working-memory load (WML; Lavie et al.,
2004; Kim et al., 2005; SanMiguel et al., 2008). Lavie et al.
(2004) proposed that while an increase in perceptual load may
reduce distractor interference, an increase in WML may, on
the contrary, increase distractor interference. However, various
studies investigating the impact of WML on the processing
of both visual targets and auditory distractors found opposite
results (SanMiguel et al., 2008; Lv et al., 2010; Sörqvist et al.,
2012). In SanMiguel et al.’s (2008) study, participants performed
an auditory-visual distraction paradigm. While performing the
visual task, participants had to ignore task-irrelevant auditory
stimuli (i.e., 20% novel environmental sounds and 80% repetitive
standard tones). The WML was also manipulated by an n-
back task (Kirchner, 1958). In the low load condition (i.e.,
0-back), participants had to decide whether the two digits
appearing on screen at the same time were the same or
different, while in the high load condition (i.e., 1-back) they
had to compare the left digit appearing on the screen with the
left digit seen in the previous trial. An increase of response
times and a decrease of hit rate showed that participants
were distracted by novel sounds. Moreover, behavioral data
and an attenuation of the amplitude of the novelty-P3 showed
that high WML decreased the distraction effect. In another
study, Lv et al. (2010) asked participants to remember the
order of three (low load) or seven digits (high load). As in
SanMiguel et al. (2008), task-irrelevant auditory stimuli were
played during the working memory (WM) task with 80%
repetitive standard sounds and 20% novel environmental sounds.
Participants responded faster and performed significantly better
on the task in the low load condition than in the high
load condition. Moreover, lower novelty-P3 amplitudes were
found in the high WML condition in comparison to the low
WML condition, leading the authors to conclude that high
WML decreases the distraction effect. Finally, Sörqvist et al.
(2012) measured the auditory brainstem responses (ABR; i.e.,
a neural signal transmitted by the cochlea to the auditory
cortex via the brainstem) of participants completing a visual-
verbal version of the n-back task (i.e., low load for 1-back,
medium load for 2-back and high load for 3-back). They
were presented with a visual sequence of letters and were
asked to press the space bar on the computer keyboard when
the letter was the same as the letter previously presented
n letters back in the sequence. The results of this study
demonstrate that a medium increase in WML (i.e., 2-back
condition) may disrupt the processing of the distractor (i.e.,
lower ABR responses) without affecting task performance, while
a significant increase of WML (i.e., 3-back condition) may
not only result in lower ABR response but also in lower
accuracy.

The behavioral and electrophysiological (i.e., ERPs, ABR)
results of these three studies tend to confirm that high WML
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reduces the distraction effect. The impact of WML on distractors
processing may also depend on how WM content (e.g., tones,
digits, letters, words, geometric forms, etc.) overlaps task-
relevant information. Stroop interference was found to increase
when target types overlapped WM content (Kim et al., 2005).
This result provides a suitable explanation for the discrepancy in
results of studies investigating the impact of WML on auditory
distractor processing (i.e., an increase of distraction vs. a decrease
of distraction under highWML). However, significantly, all these
experiments only used tones as auditory distractors. Linguistic
distractors were studied previously by Mayer and Kosson (2004),
but as far as we know the impact of WML on the processing of
visual task-relevant and auditory task-irrelevant linguistic stimuli
has never been investigated.

Visual-Auditory Interference and Load on
Working Memory in the Cockpit
Operating an aircraft generates a high WML, pilots have
to simultaneously select, process, memorize and retrieve
an important amount of information, which requires high
multitasking and WM capacity (Konig et al., 2005). Previous
studies in flight simulators have demonstrated the critical
impact of human WM limitations on piloting performance
(Taylor et al., 2000; Causse et al., 2011) and how it is
likely to compromise flight safety (Borghini et al., 2014). For
instance, high WML was found to affect the ability of the
pilots to process ATC verbal instructions (Taylor et al., 2005)
and simulated auditory alerts (Dehais et al., 2013; Giraudet
et al., 2015). However, pilots find themselves confronted with
false or irrelevant information (Belcastro et al., 2016). In
order to maintain optimal performance, they sometimes need
to insulate themselves from auditory distractors to focus on
relevant visual information. For example, they have to ignore
irrelevant ATC communications and unjustified warnings (e.g.,
ground proximity system alarm, Loomis and Porter, 1982)
while always maintaining the ability to shift attention to
concurrent stimuli to decide whether or not they are task-
relevant. However, as previously stated, this ability to detect
and process concurrent stimuli might be altered, a situation
sometimes referred to as cognitive tunneling (Wickens et al.,
2015).

Present Study and Hypothesis
The present study aimed at investigating the impact of high
WML on the processing of both linguistic visual targets and
auditory distractors. Participants performed a simplified piloting
task in which they had to control an aircraft using a joystick. They
were instructed to follow one of three different colored aircraft
displayed on the left of the computer screen, according to written
instructions (i.e., the color corresponding to one of the aircraft)
displayed in the center of the screen. Similarly to Donohue
et al. (2013), each time a color was displayed on the screen, a
concurrent spoken distractor (i.e., a color to be ignored) was
simultaneously presented either congruently or incongruently
with the written instructions. WML was manipulated via an
n-back-like sub-task (i.e., the delay between the displayed

instruction and its execution). In the low WML condition,
participants were instructed to immediately apply the written
instruction. In the high WML condition, they had to apply the
2-back written instruction. We measured piloting performance
(i.e., accuracy in following the correct aircraft), ERPs, and pupil
diameter.

We expected that accuracy may be higher in the congruent
vs. incongruent condition. Also, the piloting task should be
cognitively more demanding when the WML is high (i.e., 2-back
condition) compared to when it is low (i.e., 0-back condition),
thus we expected to observe higher accuracy in the low WML
condition compared to the high WML condition (in line with
Sörqvist et al., 2012). In addition, given that less attentional
resources should be available for processing spoken distractors
in the high WML condition, in line with various authors
(e.g., SanMiguel et al., 2008; Lv et al., 2010; Sörqvist et al.,
2012), incongruence may affect accuracy only in the low WML
condition.

As pupil diameter was found to vary according to attentional
effort (Smallwood et al., 2011), and task engagement (Gilzenrat
et al., 2010), we predicted greater pupil diameter in response
to incongruent trials compared to congruent trials (Siegle et al.,
2004). This greater pupil diameter may be observed in the low
WML condition only. Pupil diameter measurements have been
also found to be a reliable psycho-physiological marker of WML
(van Gerven et al., 2004; Lisi et al., 2015; Peysakhovich et al.,
2015), with larger tonic pupil responses indicating an increase
in WML. In line with previous studies, we expected to observe
greater pupil diameter in the 2-back condition than in the 0-back
condition.

At an electrophysiological level, we expected to observe
amplitude modulations of ERP components associated with
attention allocation (i.e., novelty-P3). Various studies support
the fact that the P3a component and the novelty-P3 component
are variations of the same potential (Spencer and Polich, 1999;
Simons et al., 2001; Polich and Comerchero, 2003; Polich, 2007).
Since no novel auditory distractors were used in the present task,
we chose to use the generic term P3a and not novelty-P3 when
referring to this component. Based again on previous results
showing that an increase in WML may lower the distraction
effect (SanMiguel et al., 2008; Lv et al., 2010; Sörqvist et al.,
2012), we predicted greater P3a amplitudes in response to
incongruent trials than to congruent trials in the low WML
condition only, reflecting an involuntary switch of attention to
the spoken distractors (e.g., Escera et al., 1998, 2000; Friedman
et al., 2001). In addition, spoken distractors seem to lead to
involuntary semantic evaluation (Parmentier, 2008; Parmentier
et al., 2011; Parmentier and Hebrero, 2013). In order words,
spoken distractors are, at least partly, processed. Based on these
previous results, we predicted amplitude modulations of ERPs
associated with language processing (i.e., N400 component).
The N400 component is a negative deflection reaching the
scalp around 400 ms after stimulus onset, is highest at central-
parietal sites (for a review see Kutas and Federmeier, 2011), and
was found to index sematic incongruence processing (Pickering
and Schweinberger, 2003). Consequently, we predicted greater
N400 amplitudes in response to incongruent trials compared
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to congruent trials (Kutas and Hillyard, 1980; Kutas and
Federmeier, 2011), indicating the processing of both written
instructions and spoken distractors (in line with Donohue et al.,
2012). As for the P3a, we may also observe N400 amplitude
differences in response to incongruent trials vs. congruent trials
in the low WML condition only. Finally, we predicted a general
effect of WML with lower P3a/N400 amplitudes in the 2-back
condition than in the 0-back condition (SanMiguel et al., 2008;
Lv et al., 2010).

MATERIALS AND METHODS

Participants
Participants were 24 healthy volunteers (mean age = 24.6,
SD ± 1.86), all native French speakers. They were recruited at
the Institut Supérieur de l’Aéronautique et de l’Espace (ISAE)
and were familiar with the aeronautical domain. All were right-
handed as assessed by the Edinburgh Handedness Inventory
(Oldfield, 1971), had normal auditory acuity and normal or
corrected-to-normal vision. None of the participants reported
a prior history of neurological disorder. All participants were
informed of their rights and gave written informed consent for
participation in the study according to the Helsinki Declaration.
The research was carried out fulfilling ethical requirements in
accordance with the standard procedures of the University of
Toulouse. The experimental protocol was reviewed and approved
by a national ethic committee (CEEI/IRB00003888).

Material
The piloting task was displayed on a 22’’ monitor (1680 × 1250)
located at a distance of approximately 70 cm from the
participants. The screen luminance and the piloting task were
identical in all experimental conditions. As a consequence,
no confounding effect of light could have jeopardized pupil
measurements. Spoken names of colors (i.e., gray, red, blue,
yellow, green) were presented via two stereo speakers, positioned
on each side of the computer monitor. They were recorded
using a synthetic voice taken from the French Voxygen
startup website.1 Throughout the entire experiment, both
pupil diameter variations and EEG signals were recorded (see
‘‘Electroencephalography’’ and ‘‘Pupillometry’’ Sections).

Experiment Design
We used a full factorial design with two within-participant
factors: WML (Load: Low, High) and the congruency of
task-irrelevant auditory distractor (Congruency: Congruent,
Incongruent). Participants performed two blocks of 250 trials
each, which only presented either ‘‘Low’’ or ‘‘High’’ load
trials. Block order was counter-balanced among participants.
The congruency of the task-irrelevant auditory distractor was
randomly determined per trial. We computed accuracy for each
condition as a percentage of correctly targeted aircraft. We
considered that an aircraft was correctly followed if the vertical
distance between the user’s aircraft and the target one was less
than 100 pixels for at least 90% of the trial length.

1https://www.voxygen.fr/fr

Task and Stimuli
The task involved controlling an aircraft with a joystick in order
to follow one of three possible aircraft that were defined by
unique colors. The color name corresponding to the color of the
aircraft to target was presented in black ink every 4500 ms in
the center of the screen for 1000 ms (i.e., written instructions).
In addition, a task-irrelevant auditory distractor (i.e., spoken
distractor) was also presented simultaneously for 280 ms (i.e.,
visual-auditory Stroop paradigm; Roelofs, 2005). These written
instructions and spoken distractors created four different trial
combinations. In the first combination occurring 10% of the
time, the spoken and the written color names (i.e., blue, red,
green or yellow) were the same (i.e., congruent trials). In the
second combination also occurring 10% of the time, the spoken
and the written color names differed from one another (i.e.,
incongruent trials). In the third combination occurring 10% of
the time, the spoken color name did not correspond to any
aircraft color (i.e., neutral trials). And finally, in the fourth
combination occurring 70% of the time, the spoken color name
was ‘‘gray’’ (i.e., standard trials). The neutral and standard trials
were not analyzed. These two trial combinations were used to
inhibit habituation effects and create a rarity effect toward the
congruent/incongruent distractors, respectively.

The three aircraft to target were displayed on the left of the
computer screen. Figure 1 shows the layout of the presentation
display. The colors of the three aircraft were randomly chosen
for each block among four possible colors: red, blue, yellow
and green. The initial horizontal position of the targeted aircraft
and the control aircraft were equidistant from the center and
the edges of the display. They were respectively positioned 30%
from the left/right borders of the screen. In order to create a
continuous, engaging, and dynamic interaction with the task,
every 50 ms the position of the three aircraft on the left changed,
a random shift up to 12 pixels vertically and up to 2 pixels

FIGURE 1 | Time course of a task trial. The written instruction was
displayed for 1000 ms while the auditory distractor was played for 280 ms.
In this particular example, the written target color is “red”. Consequently, a
congruent auditory distractor would be “red”. “Yellow” or “blue” would be
incongruent distractors, and “green” would be neutral. The standard distractor
was “gray” throughout the whole experiment.
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horizontally was applied. The amplitude of this shift was chosen
by a moving average filter (of 10th order) of randomly generated
numbers (from −1 to 1 to choose the proportion of the greatest
authorized shift). A small jitter was also added to the aircraft
under control, with a maximum authorized shift up to five pixels
vertically and up to one pixel horizontally, so it would be unstable
and require continuous control.

Task difficulty was manipulated in terms of WML and
the tracking task was designed to be similar to an n-back
task. Two difficulty levels corresponded to the delay between
the displayed instruction and its execution. Contrary to the
classic n-back paradigm in which a participant has to indicate
if the current stimulus matches one from n steps earlier
in the sequence, our participants had to target the aircraft
corresponding to the current written instruction (n = 0) in
the low WML condition or corresponding to the instruction
presented two trials before (n = 2) in the high WML condition.
After each block, participants filled out the NASA Task Load
Index questionnaire (NASA TLX; Hart and Staveland, 1988),
see Figure 2. This questionnaire provides an evaluation of the
subjective mental demand elicited by the task for each level of
difficulty.

We did not manipulate piloting complexity per se, the control
of the aircraft remained constant. Neuroergonomically, this
task was designed to recreate an ecological context with an
engaging, dynamic and complex situation. Similar to piloting,
the participants had to continuously control the trajectory of
their aircraft and had to remain responsive to the written and
verbal instructions under various WML conditions. In addition,
the task also reproduced the multiple conflicting warnings that
can confuse crews (Belcastro et al., 2016). Given the voluntary
complexity of the task, we did not intend to specifically separate
all cognitive processes at each time point. However, the main
cognitive abilities engaged during the task were visuospatial
(monitoring the position of the aircraft), psychomotor (control
of the aircraft) and attentional (toward the instructions).

Procedure
Participants were comfortably seated in an armchair in
a sound-dampened experimental room. The room had no
windows and the light was kept constant and moderate.
After the training session, they were equipped with the EEG
electrode cap as well as the electrooculographic electrodes
for blink and saccade detection. Eye tracker calibration was
performed to record participants’ pupil diameter. Participants
then performed the four experimental blocks. The instructions

FIGURE 2 | Timeline of the experiment. The whole procedure lasted
85 min, including 5 min training, 30 min to install the EEG sensors, 40 min of
EEG recording and 10 min to fill the two NASA TLX questionnaires.

were generated so the participant had to change target aircraft
every trial. The tracking was continuous during the whole
task; when a new instruction was displayed, participants
still followed the previous aircraft until they processed the
new instruction and switched to the corresponding aircraft.
Participants could not repeat aloud the instructions and
they were instructed to avoid moving and talking. After
each of the four blocks, participants filled out the NASA-
TLX.

Electroencephalography
EEG was amplified and recorded with an ActiveTwo BioSemi
system (BioSemi, Amsterdam, Netherlands) from 30 Ag/AgCl
active electrodes mounted on a cap and placed on the scalp
according to the International 10–20 System (FP1, FP2, AF3,
AF4, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, CP5, CP1,
Cz, CP2, CP6, P7, P3, Pz, P4, P8, T7, T8, PO3, PO4,
O1, Oz, O2) plus two sites below the eyes for monitoring
eye movements. Analyses were focused on 23 electrodes of
interest. Two additional electrodes placed close to Cz, the
Common Mode Sense (CMS) active electrode and the Driven
Right Leg (DRL) passive electrode, were used to form a
feedback loop that maintains the average potential of the
participant as close as possible to the AD-box reference
potential. Electrode impedance was kept below 5 kΩ for scalp
electrodes, and below 10 kΩ for the four eye channels. Skin-
electrode contact, obtained using electro-conductive gel, was
monitored, keeping voltage offset from the CMS below 25
mV for each measurement site. All the signals were (DC)
amplified and digitized continuously with a sampling rate
of 512 Hz with an anti-aliasing filter with 3 dB point at
104 Hz (fifth-order sinc filter); no high-pass filtering was
applied online. The triggering signals to each word onset were
recorded on additional digital channels. EEG data was off-
line re-referenced to the average activity of the two mastoids
and band-pass filtered (0.1–40 Hz, 12 dB/octave), given that
for some participants the low-pass filter was not effective in
completely removing the 75 Hz artifact. Epochs were time-
locked to instructions onset and extracted in the interval from
−200 ms to 800 ms. The 200 ms pre-stimulus baseline was
used in all analyses. Given their synchronicity, we could not
dissociate the respective contributions of written instructions
and auditory distractors on the ERPs. Segments with excessive
blinks and/or artifacts (such as excessive muscle activity) were
eliminated off-line before data averaging. The lost data (due to
artifacts) represented 7%.

Pupillometry
The diameter of participants’ left pupil was continuously
recorded with a remote SMI RED eye-tracker (SensoMotoric
Instruments GmbH, Germany) at a sampling rate of 500
Hz. Before each condition, participants performed a 5-point
calibration procedure. The continuous pupillary recordings
were cleaned for blink artifacts using linear interpolation,
including adjacent 40 ms from each side to avoid eyelid
closure artifacts. The data was then filtered with a ‘‘two
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pass’’ 9-point filter (low-pass) and segregated into trials by
conditions. A trial was validated for the statistical analysis if
the time spent blinking during the trial did not exceed 50%
(i.e., 2250 ms). This resulted on average in 87% (SD = 18%)
of validated trials per condition and was not dependent on the
condition.

Statistical Analyses
Statistical analyses were performed using Statistica 10
(StatSoft). Differences between the experimental conditions
were investigated by using analysis of variance (ANOVA)
followed by Tukey’s honestly significant difference (HSD) post
hoc testing.

RESULTS

Performance
A 2 × 2 (Congruency [Congruent; Incongruent] × Load [Low;
High]) repeated measures ANOVA revealed a main effect of
WML on piloting performance (F(1,23) = 7.79, p < 0.05,
η2p = 0.25); the participants were better at aircraft targeting in
the low WML condition (M = 85.65, SD ± 13.26) compared
to the high WML condition (M = 75.55, SD ± 16.65; see
Figure 3). On the contrary, we found no effect of congruency
(F(1,23) = 0.08, p= 0.78, neither Load× Congruency interaction
(F(1,23) = 1.18, p = 0.29, η2p = 0.05) on piloting performance.
Figure 4 shows the temporal evolution of the distance between
the user’s and the target aircraft for each condition and correct
and incorrect trials. This fine-grained analysis confirms that
poorer piloting performance in the high WML condition cannot
be associated with slow or inaccurate following of the correct
aircraft. The decline of piloting performance under high WML
was due to incorrect targeting (i.e., the inability to correctly
encode and retrieve the aircraft to target). For the incorrect trials,
the distance between the target aircraft and the user’s was indeed
kept constant at about 220 pixels corresponding to a wrong
aircraft. On the contrary, the rare incorrect trials under lowWML
are mainly due to poor following of the correct aircraft (the
average distance oscillates just above the 100 pixel threshold).

NASA-TLX Questionnaire
The 2 × 6 (Load [low, high] × NASA-TLX dimensions [Mental
Demand, Physical Demand, Temporal Demand, Performance,
Effort, Frustration]) repeated measures ANOVA showed a
significant effect of load (F(1,23) = 32.68, p < 0.001, η2p = 0.59).
Participants evaluated the highWML condition asmorementally
demanding, see Figure 5. The ANOVA also showed a significant
effect of the NASA-TLX dimension (F(1,23) = 8.23, p < 0.001,
η2p = 0.26). The three dimensions with the highest scores
were (in descending order): Performance, Effort and Mental
Demand. Finally, a Load × NASA-TLX dimensions interaction
was found (F(5,15) = 7.83, p < 0.001, η2p = 0.25). Most notably,
in the high WML condition, the Mental Demand dimension was
rated higher on average than all other conditions (M = 72.50,
SD = 15.28). However, this is statistically significant only when

FIGURE 3 | Mean accuracy for low and high load conditions. Error bars
indicate SEM.

compared to Physical Demand and Temporal Demand (HSD:
p< 0.01 in both comparisons).

Electroencephalography
Because of EEG recording issues, data were not available for one
participant (corrupted data). First, five 3 × 2 × 2 (Electrode
[Fz, Cz, Pz] × Congruency [congruent, incongruent] × Load
[low, high]) repeated measure ANOVAs were conducted
to assess mean amplitudes of MMN, P3a, P3b, N400 and
P600 components on the three midline electrodes. ERPs
time windows were determined through both literature and
visual analysis of the peak amplitudes. Second, in order
to investigate possible topographical differences for these
ERPs, the remaining electrodes were collapsed into four
regions of interest of five electrodes each (see Siyanova-
Chanturia et al., 2012): Left Anterior (AF3, F7, F3, FC1,
FC5), Right Anterior (AF4, F4, F8, FC2, FC6), Left Posterior
(CP2, CP6, P4, P8, PO4) and Right Posterior (CP1, CP5,
P3, P7, PO3). A 4 × 2 × 2 (Region [Left Anterior, Right
Anterior, Left Posterior, Right Posterior] × Congruency
[congruent, incongruent] × Load [low, high]) ANOVA
was conducted. See Figure 6 for grand average ERP
waveforms.

MMN (200–240ms Time Window)
The MMN amplitude was assessed in terms of the mean
amplitude in the 200–240 ms time window. The statistical
analysis revealed no significant main effect or interaction
(ps> 0.05).

P3a (300–330ms Time Window)
The P3a amplitude was assessed in terms of mean amplitude
in the 300–330 ms time window. The analysis revealed a main
effect of load (F(1,22) = 8.13, p < 0.01, η2p = 0.27), with a
greater positivity in the low WML (M = 3.34 µV, SD ± 6.77)
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FIGURE 4 | Mean distance to a target aircraft per condition for correct and incorrect trials. The black horizontal line depicts the threshold below which the
aircraft was considered as selected. The vertical dashed black line depicts the time when the written instruction disappeared from the computer screen.

than in the high WML condition (M = 0.10 µV, SD ± 5.92).
The analysis also revealed a significant Electrode × Congruency
interaction (F(2,44) = 3.23, p < 0.05, η2p = 0.13), with
a greater positivity for incongruent trials (M = 1.21 µV,
SD ± 6.64) than for congruent trials (M = 0.39 µV,
SD ± 7.11), (HSD: p < 0.05) at Fz. No significant differences

FIGURE 5 | Mean index of perceived mental demand for low and high
load conditions. Error bars indicate SEM.

were found at Cz (HSD: p = 0.84) and at Pz (HSD:
p= 0.13).

P3b (400–490 ms Time Window)
The P3b amplitude was assessed in terms of the mean
amplitude in the 400–490 ms time window. The analysis
revealed a main effect of load (F(1,22) = 5.03, p < 0.05,
η2p = 0.19), with a greater positivity in the low WML condition
(M = 1.27 µV, SD ± 7.89) than in the high WML condition
(M = −2.03 µV, SD ± 5.24). The analysis also revealed an
Electrode × Congruency interaction (F(2,44) = 3.52, p < 0.05,
η2p = 0.14), with a greater positivity in response to incongruent
trials (M = −2.08 µV, SD ± 6.28) compared to congruent trials
(M =−3.22 µV, SD± 7.76; HSD: p= 0.01) at Fz. No significant
differences were found at Cz (HSD: p = 0.21) and at Pz (HSD:
p= 0.54).

N400 (470–540 ms Time Window)
The N400 was assessed in terms of the mean amplitude in the
470–540 ms time window. The analysis revealed a significant
Electrode × Load interaction (F(2,44) = 9.45, p < 0.001,
η2p = 0.30), with greater negativities in the high WML condition
(Fz: M = −3.70 µV, SD ± 6.00; Cz: M = −2.91 µV, SD ± 4.93;
Pz: M = −1.05 µV, SD ± 4.26) than in the low WML condition
(Fz: M = −2.09 µV, SD ± 7.72; Cz: M = −0.36 µV, SD ± 7.52;
Pz:M = 2.80 µV, SD± 7.67; HSD: ps< 0.001) on Fz, Cz and Pz.
The analysis also revealed a significant Electrode × Congruency
interaction (F(2,44) = 8.95, p < 0.001, η2p = 0.29), with a
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FIGURE 6 | Grand average ERP waveforms for low working memory (WM) load/congruent (black line), low WM load/incongruent (blue line), high WM
load/congruent (dashed black line) and high WM load/incongruent trials (dashed blue line) at Fz, Cz, Pz, and left frontal, left parietal, right frontal and
right parietal electrode-clusters. In the bottom right corner, the x-axis displays the 4 ERP components (vertical bar indicates the onset of both the written
instruction and the auditory distractor) and the y-axis displays amplitude in microvolts. Negative is plotted down.

greater N400 amplitude for incongruent trials (M = 0.48 µV,
SD ± 6.12) than for congruent trials (M = 1.27 µV, SD ± 6.82)
at Pz (HSD: p < 0.05). The opposite pattern was found at Fz
(incongruent trials:M = −2.17 µV, SD ± 6.48; congruent trials:
M = −3.62 µV, SD ± 7.34; HSD: p < 0.001; this apparent
contradiction for decreased N400 for incongruent trials in Fz
can be explained by the previous more positive P3a on this
electrode in this condition). No difference was found at Cz
(incongruent trials:M = −1.33 µV, SD ± 6.16; congruent trials:
M = −1.94 µV, SD ± 6.78, (HSD: p = 0.11). The topographical
analysis revealed no significant effect or interaction.

P600 (530–750 ms Time Window)
The P600 was assessed in terms of the mean amplitude in
the 530–750 ms time window. The analysis revealed a main
effect of load (F(1,22) = 8.15, p < 0.01, η2p = 0.27), with a
greater positivity in the low WML condition (M = 2.44 µV,
SD ± 7.08) than in the high WML condition (M = −1.02 µV,
SD ± 5.18). A significant Electrode × Congruency interaction
(F(2,44) = 5.53, p < 0.01, η2p = 0.20), was found with a greater

positivity observed for congruent trials (M= 2.97µV, SD± 6.45)
compared to incongruent trials (M = 1.62 µV, SD ± 5.43)
at Pz (HSD: p < 0.001), but not at Fz (HSD: p = 0.44) nor
at Cz (HSD: p = 0.75). The topographical analysis revealed a
significant Load × Region interaction (F(3,66) = 8.83, p < 0.001,
η2p = 0.29), with greater positivity in both left and right posterior
regions in the low load condition (respectively: M = −0.28 µV,
SD ± 3.77; M = −0.14 µV, SD ± 3.82) than in the high WML
condition (respectively: M = −1.14 µV, SD ± 7.72, p < 0.001;
M = −1.61 µV, SD ± 8.34; HSD: p < 0.001). The analysis also
revealed a second significant Load × Congruency interaction
(F(1,22) = 5.11, p < 0.05, η2p = 0.19), with a greater positivity in
response to congruent trials compared to incongruent trials in
the lowWML condition (respectively:M=−0.45µV, SD± 6.43;
M = −1.79 µV, SD ± 8.47; HSD: p < 0.05), but not in the
high WML condition (respectively: M = −0.67 µV, SD ± 3.89;
M = −0.24 µV, SD ± 4.09; HSD: p = 0.44). Moreover, a greater
positivity was also found for incongruent trials in the high WML
condition (M = −0.24 µV, SD ± 4.09) than in the low WML
condition (M =−1.79 µV, SD± 8.47; HSD: p< 0.05).
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Pupillometry
Two 2 × 2 (Load [low, high]) × Congruency [congruent,
incongruent]) repeated measure ANOVAs were carried out on
the mean value of 1.5-s recording starting from 1-s post-stimulus
for tonic pupil response (absolute diameter) and phasic pupil
response (relative dilation). This interval largely includes the
peak of pupillary reaction known to appear about 1200–1500 ms
post-stimulus (Beatty and Lucero-Wagoner, 2000). We used the
mean value of 500 ms pre-stimulus as a baseline value for
statistical analyses of the phasic pupil response.

Tonic Pupil Response
The ANOVA showed a significant effect of WML (F(1,23) = 9.14,
p < 0.01, η2p = 0.28; see Figure 7). The high WML condition
elicited larger tonic pupil response (M = 3.76 mm, SD ± 0.11)
compared to the lowWML condition (M= 3.68mm, SD± 0.11).
No Congruency (F(1,23) = 1.82, p = 0.19, η2p = 0.07), nor
Load × Congruency interaction (F(1,23) = 0.85, p = 0.37,
η2p = 0.04] was found.

Phasic Pupil Response
No significant effects of WML (F(1,23) = 0.85, p = 0.37,
η2p = 0.04), congruency (F(1,23) = 0.53, p = 0.47, η2p = 0.02),
or Load × Congruency interaction (F(1,23) = 0.24, p = 0.63,
η2p = 0.01) were found for phasic pupil response.

DISCUSSION

Operating an aircraft is cognitively demanding and requires
high multitasking and WM capacities (Konig et al., 2005).
Pilots have to simultaneously process, memorize and retrieve
an important amount of visual and auditory information. In

FIGURE 7 | Grand-averaged mean pupil diameter during trials for low
load (solid black line) and high load (dotted black line) conditions. The
horizontal axis denotes time in seconds (s) and the vertical axis denotes pupil
diameter in millimeters (mm). Zero on the timeline indicates the onset of both
the written instruction and the auditory distractor.

addition to this high cognitive load, pilots sometimes have
to ignore irrelevant auditory distractors such as background
ATC communications and false alarms. Paradoxically, they
must remain responsive to unexpected stimuli at all times.
Previous studies emphasized that attention-demanding settings
that generate a high WML can impair the perception of
unexpected/irrelevant stimuli (Berti and Schröger, 2003; Sörqvist
et al., 2012). However, the impact of WML on the processing
of linguistic material has rarely been tested in an explicit
way. In the present study, participants completed a cross-
modal version of the Stroop task paradigm (Donohue et al.,
2013) adapted to a dynamic piloting task in combination
with ERP and pupillary measurements. They were asked to
take into account a written target instruction (i.e., the name
of a color) and to ignore a concurrent spoken distractor
(i.e., also a color). We investigated how WML modulated the
processing of both target and distractors and to what extent
it affected piloting performance (this latter being dependent
on the processing/maintenance/retrieval of written instructions).
Overall results revealed a subtle effect of congruency that was
observable only at an electrophysiological level, an interaction
between congruency and load on P600 amplitude, and a major
effect ofWML at behavioral, electrophysiological, and autonomic
levels.

Impact of the Congruency
At a behavioral level, the results revealed no main effect of
the congruency between the written target and the spoken
distractor, indicating that the latter does not interfere enough
with the processing of the written instruction to affect piloting
performance. This absence of interference at a behavioral level
may be due to some limitations in the experimental paradigm.
First, a recent study showed that distraction is maximal when
an auditory distractor is presented 400 ms before the onset of
the visual information of interest, but that it is significantly
reduced when both stimuli of interest and the distractor are
presented at the same time (Donohue et al., 2013). Since
in the present study, ERP measurements were performed,
it would have been complex to interpret electrophysiological
results if the distractor and the target had been presented at
different times. Presenting the spoken distractor before the
written instruction could have led to a greater distraction
effect, observable at the behavioral level. Second, in general, the
distraction effect is observable on reaction times rather than
accuracy measures. Longer reaction times reflect the penalty
yielded by the involuntary orientation of attention to and away
from deviant sounds (Parmentier, 2008). Given the continuous
control of the aircraft trajectory with the joystick, it was not
possible to measure reaction times accurately. We could have
captured variations of reaction times if the task allowed such
measurements.

However, electrophysiological data demonstrate the increased
complexity for processing the written instructions when
incongruent spoken distractors were presented simultaneously,
with greater P3a and N400 amplitudes in incongruent trials
compared to congruent trials. According to Polich (2007), the
P3a component may be generated when focal attention on the
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task-relevant stimuli is captured by a distractor; and indexes the
automatic allocation of attentional resources to the distractor
at the expense of goal-relevant stimuli. Greater P3a amplitudes
in response to incongruent trials may reflect the recruitment
of supplementary attentional resources and the involuntary
orienting of attention to the spoken distractors (Escera et al.,
1998, 2000; Friedman et al., 2001).

The N400 component was found to index semantic
incongruence processing (Kutas and Federmeier, 2011). In
line with the literature (Hanslmayr et al., 2008; Kutas
and Federmeier, 2011; Donohue et al., 2012), greater N400
amplitudes were found at parietal sites in incongruent trials
compared to congruent trials. Some behavioral studies have
shown that not only are attentional resources allocated to spoken
distractors, but that they also lead to an involuntary semantic
evaluation (Parmentier, 2008; Parmentier et al., 2011; Parmentier
and Hebrero, 2013). The N400 component may index this
involuntary semantic analysis of the spoken distractor. However,
as the processing of the spoken distractor was not sufficient to
trigger significant distraction observable at a behavioral level,
we conclude that the mobilization of additional attentional
resources indexed by the P3a component was sufficient to
process both the relevant written instruction and the irrelevant
spoken distractor.

Impact of the Working-Memory Load
At both behavioral and subjective levels, a higher level of WML
was found to decrease the accuracy and was associated with
a higher perceived mental demand as shown by the NASA-
TLX questionnaire. Moreover, the pupil diameter was also
modulated by WML, with greater tonic pupillary responses
under high WML compared to low WML, thus objectively
confirming the increased task difficulty in the high WML
condition.

Given that difficulty levels were generated using an n-
back-like task, the tonic pupil diameter indicates the WML
that was maintained throughout the block. Thus, when
segregated into trials, the tonic reaction is always higher
during the high WM condition. Pupil diameter was found
to be correlated with WML and task difficulty (Kahneman
and Beatty, 1966; Beatty and Lucero-Wagoner, 2000; Karatekin
et al., 2007; Causse et al., 2010; Peysakhovich et al., 2015).
Greater pupil diameter observed during trials of high WML
provides additional evidence that higher WML increases
the attentional resources allocated to the task. The present
study also demonstrates that it is possible to measure
pupil dilation relative to variations in WML in a task
that requires natural eye movement if luminosity remains
constant.

At an electrophysiological level, an increase in WML was
found to affect the allocation of attentional resources (i.e.,
P3a and P3b components) and the semantic processing of
both the written instruction and the spoken distractors (i.e.,
P600 component). The amplitudes of both the P3a and P3b
components were lower in the high load condition than
in the low load condition. An increased WM demand in
the n-back task was previously shown to enlist attentional

resources and processing capacity away from the matching
subtask (i.e., the comparison process; Watter et al., 2001) and
was associated to reduced P300 amplitudes. For this reason,
decreased amplitudes of P3a and P3b in the highWML condition
of the present study is interpreted as an ‘‘overall’’ alteration of
the ability to orient attention and process environmental stimuli,
including the critical written instruction. A classic hypothesis
postulates that the P3a component originates from stimulus-
driven frontal attention mechanisms when sufficient attentional
focus is engaged (Polich, 2007). Recent research has shown
that the P3a component indicates information selection within
the WM (Berti, 2016). The P3b component originates from
temporal-parietal activity when subsequent attentional resources
promote context updating operations and memory processing
(Knight, 1996; Brázdil et al., 2001; Polich, 2007). The P3b
component is also considered to indicate stimulus analysis and
response initiation (Verleger et al., 2005). Lower P3a and P3b
responses in the 2-back condition indicate the mobilization of
resources that cannot be allocated to processing the current
written instruction since these resources are utilized by complex
operations in WM. An increased N400 negativity was found
at parietal sites in the high load condition compared to the
low load condition. However, this increased negativity could be
attributable to a decrease in amplitude of both P3a and P3b
components preceding the N400 component. Therefore, it is
difficult to draw definitive conclusions on the impact of load on
this component.

Our results also revealed an unpredicted decrease in
amplitude of the P600 in high WML compared to the low
WML condition. The P600 component is a positive deflection
occurring around 500 ms after stimulus onset and is known
to reflect language revision processes (Friederici, 1995; Kaan
et al., 2000; Papageorgiou et al., 2001). Interestingly, a recent
study suggests that the P600 component may also index
attention reorientation processes (Sassenhagen and Bornkessel-
Schlesewsky, 2015). While the voluntary reorientation of
attention was found to be indexed by the RON component
(e.g., Schröger and Wolff, 1998; Schröger et al., 2000;
Berti and Schröger, 2001; Wetzel et al., 2004), occurring
around 400 ms after stimulus onset for simple stimuli (i.e.,
tones), in the present study, this process step appears to
be delayed for linguistic stimuli (i.e., words) and indexed
by the P600 component. It is likely that both the voluntary
reorientation of attention back to the written instruction and its
reanalysis/rechecking were affected in the high WML condition
because fewer WM resources were available. This interpretation
corresponds with a recent study showing that patients with WM
deficits demonstrate lower P600 amplitudes (El-Kholy et al.,
2012).

Interaction between Load and Congruency
At a behavioral level, the results of the present study revealed no
interaction effect between the WML and target/distractor
congruency. Previously mentioned limitations in the
experimental paradigm could have contributed to this null
effect. At an electrophysiological level, congruency was found
to modulate the amplitude of the P600 component only in the
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low WML condition, with lower P600 responses in incongruent
trials compared to congruent trials. Moreover, lower P600
amplitudes were found in response to incongruent trials in the
low WML condition compared to the high WML condition.
Taken together, these results are consistent with the idea that the
interference effect is reduced as WML increases (e.g., SanMiguel
et al., 2008; Lv et al., 2010; Sörqvist et al., 2012; Scharinger
et al., 2015). We assume that attentional resources in WM were
not sufficient to intensively process auditory distractors in the
high WML condition. Consequently, no congruency effect was
observed and the voluntary reorientation of attention back
to the target instruction was easier. Higher task engagement
generated by high WML condition tended to further reduce the
effect of distraction observable only at an electrophysiological
level. According to Kim et al. (2005), WML can either impair or
benefit attentional selection depending on whether it overlaps
with target/distractor processing or not. Their results showed
that Stroop interference increased when the type of WML
overlapped with the type of information required for the task.
At the same time, Stroop interference decreased when the
type of WML overlapped with distractor processing. In the
present study, WML was elicited by exactly the same type of
content as the targets/distractors (i.e., verbal stimuli). As a
consequence, WML most likely impacted the processing of both
written instructions and distractors, as shown by the decline
in piloting performance and the mitigation of interference
caused by the incongruent distractor, demonstrated by the P600
results.

We found results in line with previous studies (SanMiguel
et al., 2008; Lv et al., 2010; Sörqvist et al., 2012) but also
apparently in contradiction with the load theory, which predicts
that high WML increases distractor interference by impeding
inhibitory cognitive control (de Fockert et al., 2001; Lavie et al.,
2004; Woodman and Luck, 2004). These contradictory results
could possibly be explained by differences in the experimental
paradigm. In the studies finding that WML enhances distraction,
two independent tasks were combined: a ‘‘WM task’’ and a
‘‘selective attention task’’. In these experiments, a trial consisted
in: first, a memorization phase (e.g., memorizing a list of digits),
second, a selective attention task (e.g., classifying a written
list of famous names such as pop stars or politicians while
ignoring distractor faces), and third, a memory probe (e.g.,
reporting the digit that followed a probe in the memory set
presented at the beginning of the trial). However, in the studies
in which high WML was found to reduce the distraction effect,
including the present study, the WM task and the selective
attention task were nested. In other words, when the distraction
task and the WM task were concomitant, WML was found to
lower distractor interference, while when they were not, WML
enhanced distractor interference. Future studies should test this
hypothesis by comparing the effect of delayed vs. concomitant
WML on distractor processing. Also, in order to get closer
to the real piloting situation, future works should use spoken
material conveying relevant, neutral or irrelevant information
to the piloting task in order to investigate top-down processing
modulations associated with spoken information according to
their value to the focal task.

CONCLUSION

In the present study, we adapted a visual-auditory version of
the Stroop paradigm (Donohue et al., 2013) to a dynamic
simulated piloting task in combination with ERPs and pupillary
measurements. WML was also manipulated using an n-
back task. Electrophysiological results revealed that more
attentional resources were mobilized during incongruent trials
(i.e., P3a component) and that the incongruence between
written instructions and spoken distractors was detected (i.e.,
N400 component), suggesting that spoken distractors were
semantically processed. This result confirms previous behavioral
findings showing that not only are attentional resources allocated
to spoken distractors but that they also lead to an involuntary
semantic evaluation of the latter (Parmentier, 2008; Parmentier
et al., 2011; Parmentier and Hebrero, 2013). However, the
semantic processing of distractors was not sufficient to
impair task accuracy, probably thanks to the mobilization of
supplementary attentional resources that enabled participants to
process both the target and the incongruent distractor.

Overall, high WML disrupted the processing of both the
visual target instruction and the spoken distractors. High WML
provoked a decline in task accuracy and increased pupil diameter.
At an electrophysiological level, an alteration of the ERPs
component was found when the WML was high. In particular
we found lower P3a/P3b responses indexing the mobilization
of resources by the WM task that could not be allocated to
orient the attention and process environmental stimuli, including
the critical written instruction. We also found lower P600
responses, showing the impairment of voluntary reorientation
of attention back to the processing of written instruction, thus
altering the reanalysis/rechecking process. In addition, lower
P600 responses in incongruent trials than to congruent trials
were significant in the low WML condition only, indexing an
easier voluntary reorientation of attention back to the target
instruction because interference was reduced in the high WML
condition. Our electrophysiological results can be related to
a recent study (Scheer et al., 2016) that support a three-
stage distraction model with ERPs that reflect the post-sensory
detection of the task-irrelevant stimulus, engagement, and re-
orientation back to the relevant task. They showed that the
difficulty of a steering task not only diminished the amplitudes
of early P3, late P3 but also the re-orientation negativity (RON)
to the steering task (reorientation being rather indexed by
P600 component in our study). Our results are also consistent
with theories such as enhancing inhibitory control (Scharinger
et al., 2015) and the task engagement/distraction trade-off model
(Sörqvist and Rönnberg, 2014) with the idea that an higher
cognitive engagement in a task can diminish the distractibility
and responsiveness to additional stimuli. From an operational
point of view, we confirm that high WML can compromise
the ability of pilots to process, maintain, and execute ATC
verbal instructions (2005) and to react to critical auditory alerts
(Giraudet et al., 2015). We also demonstrate that P300 and P600
components are good candidates to detect variations in WM
demand and that they allow estimation of its impact on the
processing of linguistic stimuli.

Frontiers in Human Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 240 | 362

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Causse et al. Memory Load Impairs Langage Processing

AUTHOR CONTRIBUTIONS

MC: designed the experiment, conducted data analysis,
interpreted the data and wrote the manuscript; EFF:
administered the experiment, conducted data analysis,
interpreted the data and wrote the manuscript; VP: designed the
experiment, developed the experimental task, conducted data
analysis and wrote the manuscript.

ACKNOWLEDGMENTS

Authors would like to thank Marine Gonzalez and Louise
Giraudet for their precious help with data collection. The
authors would also like to thank the two reviewers for
their helpful comments. We are also grateful to Zarrin Chua
and Joseph Shea for proofreading earlier versions of the
article.

REFERENCES

Andrés, P., Parmentier, F. B., and Escera, C. (2006). The effect of age
on involuntary capture of attention by irrelevant sounds: a test of the
frontal hypothesis of aging. Neuropsychologia 44, 2564–2568. doi: 10.1016/j.
neuropsychologia.2006.05.005

Beatty, J., and Lucero-Wagoner, B. (2000). The pupillary system. Handb.
Psychophysiol. 2, 142–162.

Belcastro, C. M., Foster, J. V., Newman, R. L., Groff, L., Crider, D. A., and
Klyde, D. H. (2016). ‘‘Aircraft loss of control: problem analysis for the
development and validation of technology solutions,’’ Paper presented at the
AIAA Guidance, Navigation and Control Conference, San Diego, CA.

Bendixen, A., Grimm, S., Deouell, L. Y.,Wetzel, N.,Mädebach, A., and Schröger, E.
(2010). The time-course of auditory and visual distraction effects in a
new crossmodal paradigm. Neuropsychologia 48, 2130–2139. doi: 10.1016/j.
neuropsychologia.2010.04.004

Berti, S. (2008). Cognitive control after distraction: event-related brain potentials
(ERPs) dissociate between different processes of attentional allocation.
Psychophysiology 45, 608–620. doi: 10.1111/j.1469-8986.2008.00660.x

Berti, S. (2013). The role of auditory transient and deviance processing in
distraction of task performance: a combined behavioral and event-related
brain potential study. Front. Hum. Neurosci. 7:352. doi: 10.3389/fnhum.2013.
00352

Berti, S. (2016). Switching attention within working memory is reflected in the
p3a component of the human event-related brain potential. [original research].
Front. Hum. Neurosci. 9:701. doi: 10.3389/fnhum.2015.00701

Berti, S., and Schröger, E. (2001). A comparison of auditory and visual distraction
effects: behavioral and event-related indices. Brain Res. Cogn. Brain Res. 10,
265–273. doi: 10.1016/s0926-6410(00)00044-6

Berti, S., and Schröger, E. (2003). Working memory controls involuntary attention
switching: evidence from an auditory distraction paradigm. Eur. J. Neurosci. 17,
1119–1122. doi: 10.1046/j.1460-9568.2003.02527.x

Boll, S., and Berti, S. (2009). Distraction of task-relevant information processing
by irrelevant changes in auditory, visual and bimodal stimulus features: a
behavioral and event-related potential study. Psychophysiology 46, 645–654.
doi: 10.1111/j.1469-8986.2009.00803.x

Bonato, M., Spironelli, C., Lisi, M., Priftis, K., and Zorzi, M. (2015). Effects
of multimodal load on spatial monitoring as revealed by ERPs. PLoS One
10:e0136719. doi: 10.1371/journal.pone.0136719

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., and Babiloni, F. (2014).
Measuring neurophysiological signals in aircraft pilots and car drivers for the
assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav.
Rev. 44, 58–75. doi: 10.1016/j.neubiorev.2012.10.003

Brázdil, M., Rektor, I., Daniel, P., Dufek, M., and Jurák, P. (2001). Intracerebral
event-related potentials to subthreshold target stimuli. Clin. Neurophysiol. 112,
650–661. doi: 10.1016/s1388-2457(01)00463-1

Causse, M., Dehais, F., and Pastor, J. (2011). Executive functions and pilot
characteristics predict flight simulator performance in general aviation pilots.
Int. J. Aviat. Psychol. 21, 217–234. doi: 10.1080/10508414.2011.582441

Causse, M., Sénard, J.-M., Démonet, J. F., and Pastor, J. (2010). Monitoring
cognitive and emotional processes through pupil and cardiac response during
dynamic versus logical task. Appl. Psychophysiol. Biofeedback 35, 115–123.
doi: 10.1007/s10484-009-9115-0

Chen, Y.-C., and Spence, C. (2011). Crossmodal semantic priming by naturalistic
sounds and spoken words enhances visual sensitivity. J. Exp. Psychol. Hum.
Percept. Perform. 37, 1554–1568. doi: 10.1037/a0024329

de Fockert, J. W., Rees, G., Frith, C. D., and Lavie, N. (2001). The role of
working memory in visual selective attention. Science 291, 1803–1806. doi: 10.
1126/science.1056496

Dehais, F., Causse, M., Vachon, F., Régis, N., Menant, E., and Tremblay, S. (2013).
Failure to detect critical auditory alerts in the cockpit evidence for inattentional
deafness. Hum. Factors 56, 631–644. doi: 10.1177/0018720813510735

Donohue, S. E., Appelbaum, L. G., Park, C. J., Roberts, K. C., and Woldorff, M. G.
(2013). Cross-modal stimulus conflict: the behavioral effects of stimulus
input timing in a visual-auditory Stroop task. PLoS One 8:e62802. doi: 10.
1371/journal.pone.0062802

Donohue, S. E., Liotti, M., Perez, R. III, and Woldorff, M. G. (2012). Is
conflict monitoring supramodal? Spatiotemporal dynamics of cognitive control
processes in an auditory Stroop task. Cogn. Affect. Behav. Neurosci. 12, 1–15.
doi: 10.3758/s13415-011-0060-z

El-Kholy, O. A., Ramadan, M., El-Sheikh, M., and Ali, M. (2012). Impairment in
working memory in multiple sclerosis. Egypt. J. Psychiatry 33, 117–125. doi: 10.
7123/01.ejp.0000414294.51794.7d

Elliott, E. M., Morey, C. C., Morey, R. D., Eaves, S. D., Shelton, J. T., and Lutfi-
Proctor, D. A. (2014). The role of modality: auditory and visual distractors in
stroop interference. J. Cogn. Psychol. 26, 15–26. doi: 10.1080/20445911.2013.
859133

Escera, C., Alho, K., Schröger, E., andWinkler, I. (2000). Involuntary attention and
distractibility as evaluated with event-related brain potentials.Audiol. Neurotol.
5, 151–166. doi: 10.1159/000013877

Escera, C., Alho, K., Winkler, I., and Näätänen, R. (1998). Neural mechanisms
of involuntary attention to acoustic novelty and change. J. Cogn. Neurosci. 10,
590–604. doi: 10.1162/089892998562997

Folk, C. L., and Remington, R. (1998). Selectivity in distraction by irrelevant
featural singletons: evidence for two forms of attentional capture. J. Exp.
Psychol. Hum. Percept. Perform. 24, 847–858. doi: 10.1037/0096-1523.24.3.847

Friederici, A. D. (1995). The time course of syntactic activation during language
processing: a model based on neuropsychological and neurophysiological data.
Brain Lang. 50, 259–281. doi: 10.1006/brln.1995.1048

Friedman, D., Cycowicz, Y. M., and Gaeta, H. (2001). The novelty P3: an event-
related brain potential (ERP) sign of the brain’s evaluation of novelty.Neurosci.
Biobehav. Rev. 25, 355–373. doi: 10.1016/s0149-7634(01)00019-7

Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., and Cohen, J. D. (2010). Pupil
diameter tracks changes in control state predicted by the adaptive gain theory
of locus coeruleus function. Cogn. Affect. Behav. Neurosci. 10, 252–269. doi: 10.
3758/CABN.10.2.252

Giraudet, L., St-Louis, M.-E., Scannella, S., and Causse, M. (2015). P300
event-related potential as an indicator of inattentional deafness? PLoS One
10:e0118556. doi: 10.1371/journal.pone.0118556

Hanslmayr, S., Pastötter, B., Bäuml, K.-H., Gruber, S., Wimber, M., and
Klimesch, W. (2008). The electrophysiological dynamics of interference during
the Stroop task. J. Cogn. Neurosci. 20, 215–225. doi: 10.1162/jocn.2008.20020

Hart, S., and Staveland, L. (1988). ‘‘Development of NASA-TLX (Task Load
Index): results of empirical and theoretical research,’’ in Human Mental
Workload, (Vol. 1) eds P. A. Hancock and N. Meshkati (Amsterdam: North
Holland Press), 139–183.

Horváth, J., Winkler, I., and Bendixen, A. (2008). Do N1/MMN, P3a and RON
form a strongly coupled chain reflecting the three stages of auditory distraction?
Biol. Psychol. 79, 139–147. doi: 10.1016/j.biopsycho.2008.04.001

Kaan, E., Harris, A., Gibson, E., and Holcomb, P. (2000). The P600 as an index
of syntactic integration difficulty. Lang. Cogn. Process. 15, 159–201. doi: 10.
1080/016909600386084

Frontiers in Human Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 240 | 363

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Causse et al. Memory Load Impairs Langage Processing

Kahneman, D., and Beatty, J. (1966). Pupil diameter and load on memory. Science
154, 1583–1585. doi: 10.1126/science.154.3756.1583

Karatekin, C., Marcus, D. J., and Couperus, J. W. (2007). Regulation of cognitive
resources during sustained attention and working memory in 10-year-olds
and adults. Psychophysiology 44, 128–144. doi: 10.1111/j.1469-8986.2006.
00477.x

Kim, S.-Y., Kim, M.-S., and Chun, M. M. (2005). Concurrent working memory
load can reduce distraction. Proc. Natl. Acad. Sci. U S A 102, 16524–16529.
doi: 10.1073/pnas.0505454102

Kirchner, W. K. (1958). Age differences in short-term retention of rapidly
changing information. J. Exp. Psychol. 55, 352–358. doi: 10.1037/h0043688

Knight, R. T. (1996). Contribution of human hippocampal region to novelty
detection. Nature 383, 256–259. doi: 10.1038/383256a0

Konig, C. J., Buhner, M., and Murling, G. (2005). Working memory, fluid
intelligence and attention are predictors of multitasking performance, but
polychronicity and extraversion are not. Hum. Perf. 18, 243–266. doi: 10.
1207/s15327043hup1803_3

Kutas, M., and Federmeier, K. D. (2011). Thirty years and counting: finding
meaning in the N400 component of the event related brain potential (ERP).
Annu. Rev. Psychol. 62, 621–647. doi: 10.1146/annurev.psych.093008.131123

Kutas, M., and Hillyard, S. A. (1980). Reading senseless sentences: brain potentials
reflect semantic incongruity. Science 207, 203–205. doi: 10.1126/science.
7350657

Lavie, N. (2005). Distracted and confused?: selective attention under load. Trends
Cogn. Sci. 9, 75–82. doi: 10.1016/j.tics.2004.12.004

Lavie, N., Beck, D.M., and Konstantinou, N. (2014). Blinded by the load: attention,
awareness and the role of perceptual load. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 369:20130205. doi: 10.1098/rstb.2013.0205

Lavie, N., and Cox, S. (1997). On the efficiency of visual selective attention:
efficient visual search leads to inefficient distractor rejection. Psychol. Sci. 8,
395–396. doi: 10.1111/j.1467-9280.1997.tb00432.x

Lavie, N., Hirst, A., de Fockert, J. W., and Viding, E. (2004). Load theory of
selective attention and cognitive control. J. Exp. Psychol. Gen. 133, 339–354.
doi: 10.1037/0096-3445.133.3.339

Lisi, M., Bonato, M., and Zorzi, M. (2015). Pupil dilation reveals top-down
attentional load during spatial monitoring. Biol. Psychol. 112, 39–45. doi: 10.
1016/j.biopsycho.2015.10.002

Ljungberg, J. K., and Parmentier, F. B. (2012). Cross-modal distraction by
deviance. Exp. Psychol. 59, 355–363. doi: 10.1027/1618-3169/a000164

Loomis, J. P., and Porter, R. F. (1982). The performance of warning systems in
avoiding controlled-flight-into-terrain (CFIT) accidents. Aviat. Space Environ.
Med. 53, 1085–1090.

Luck, S. J., and Kappenman, E. S. (2011). The Oxford Handbook of Event-Related
Potential Components. New York, NY: Oxford University Press.

Lv, J.-Y., Wang, T., Qiu, J., Feng, S.-H., Tu, S., and Wei, D.-T. (2010). The
electrophysiological effect of working memory load on involuntary attention
in an auditory-visual distraction paradigm: an ERP study. Exp. Brain Res. 205,
81–86. doi: 10.1007/s00221-010-2360-x

Mayer, A. R., and Kosson, D. (2004). The effects of auditory and visual linguistic
distractors on target localization. Neuropsychology 18, 248–257. doi: 10.
1037/0894-4105.18.2.248

Oldfield, R. (1971). The assessment and analysis of handedness: the Edinburgh
inventory. Neuropsychologia 9, 97–113. doi: 10.1016/0028-3932(71)90067-4

Papageorgiou, C., Liappas, I., Asvestas, P., Vasios, C., Matsopoulos, G. K.,
Nikolaou, C., et al. (2001). Abnormal P600 in heroin addicts with prolonged
abstinence elicited during a working memory test. Neuroreport 12, 1773–1778.
doi: 10.1097/00001756-200106130-00051

Parks, N. A., Hilimire, M. R., and Corballis, P. M. (2011). Steady-state signatures of
visual perceptual load, multimodal distractor filtering and neural competition.
J. Cogn. Neurosci. 23, 1113–1124. doi: 10.1162/jocn.2010.21460

Parmentier, F. B. (2008). Towards a cognitive model of distraction by auditory
novelty: the role of involuntary attention capture and semantic processing.
Cognition 109, 345–362. doi: 10.1016/j.cognition.2008.09.005

Parmentier, F. B. (2014). The cognitive determinants of behavioral distraction
by deviant auditory stimuli: a review. Psychol. Res. 78, 321–338. doi: 10.
1007/s00426-013-0534-4

Parmentier, F. B., and Andrés, P. (2010). The involuntary capture of attention by
sound. Exp. Psychol. 57, 68–76. doi: 10.1027/1618-3169/a000009

Parmentier, F. B., and Hebrero, M. (2013). Cognitive control of involuntary
distraction by deviant sounds. J. Exp. Psychol. Learn. Mem. Cogn. 39,
1635–1641. doi: 10.1037/a0032421

Parmentier, F. B., Turner, J., and Elsley, J. V. (2011). Distraction by auditory
novelty. The course and aftermath of novelty and semantic effects. Exp. Psychol.
58, 92–101. doi: 10.1027/1618-3169/a000072

Peysakhovich, V., Causse, M., Scannella, S., and Dehais, F. (2015). Frequency
analysis of a task-evoked pupillary response: luminance-independent measure
of mental effort. Int. J. Psychophysiol. 97, 30–37. doi: 10.1016/j.ijpsycho.2015.
04.019

Pickering, E. C., and Schweinberger, S. R. (2003). N200, N250r and N400 event-
related brain potentials reveal three loci of repetition priming for familiar
names. J. Exp. Psychol. Learn. Mem. Cogn. 29, 1298–1311. doi: 10.1037/0278-
7393.29.6.1298

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin.
Neurophysiol. 118, 2128–2148. doi: 10.1016/j.clinph.2007.04.019

Polich, J., and Comerchero, M. D. (2003). P3a from visual stimuli: typicality,
task and topography. Brain Topogr. 15, 141–152. doi: 10.1023/A:1022637
732495

Roelofs, A. (2005). The visual-auditory color-word Stroop asymmetry and its time
course.Mem. Cognit. 33, 1325–1336. doi: 10.3758/bf03193365

SanMiguel, I., Corral, M.-J., and Escera, C. (2008).When loading workingmemory
reduces distraction: behavioral and electrophysiological evidence from an
auditory-visual distraction paradigm. J. Cogn. Neurosci. 20, 1131–1145. doi: 10.
1162/jocn.2008.20078

Sassenhagen, J., and Bornkessel-Schlesewsky, I. (2015). The P600 as a correlate
of ventral attention network reorientation. Cortex 66, A3–A20. doi: 10.1016/j.
cortex.2014.12.019

Scannella, S., Causse, M., Chauveau, N., Pastor, J., and Dehais, F. (2013). Effects
of the audiovisual conflict on auditory early processes. Int. J. Psychophysiol. 89,
115–122. doi: 10.1016/j.ijpsycho.2013.06.009

Scharinger, C., Soutschek, A., Schubert, T., and Gerjets, P. (2015). When
flanker meets the n-back: what EEG and pupil dilation data reveal about
the interplay between the two central-executive working memory functions
inhibition and updating. [Research Support, Non-U.S. Gov’t]. Psychophysiology
52, 1293–1304. doi: 10.1111/psyp.12500

Scheer, M., Bülthoff, H. H., and Chuang, L. L. (2016). Steering demands diminish
the early-P3, late-P3 and RON components of the event-related potential of
task-irrelevant environmental sounds. Front. Hum. Neurosci. 10:73. doi: 10.
3389/fnhum.2016.00073

Schröger, E., Giard, M.-H., and Wolff, C. (2000). Auditory distraction: event-
related potential and behavioral indices. Clin. Neurophysiol. 111, 1450–1460.
doi: 10.1016/s1388-2457(00)00337-0

Schröger, E., and Wolff, C. (1998). Attentional orienting and reorienting is
indicated by human event-related brain potentials. Neuroreport 9, 3355–3358.
doi: 10.1097/00001756-199810260-00003

Siegle, G. J., Steinhauer, S. R., and Thase, M. E. (2004). Pupillary assessment and
computational modeling of the Stroop task in depression. Int. J. Psychophysiol.
52, 63–76. doi: 10.1016/j.ijpsycho.2003.12.010

Simons, R. F., Graham, F. K., Miles, M. A., and Chen, X. (2001). On the
relationship of P3a and the Novelty-P3. Biol. Psychol. 56, 207–218. doi: 10.
1016/s0301-0511(01)00078-3

Siyanova-Chanturia, A., Pesciarelli, F., and Cacciari, C. (2012). The
electrophysiological underpinnings of processing gender stereotypes in
language. PLoS One 7:e48712. doi: 10.1371/journal.pone.0048712

Smallwood, J., Brown, K. S., Tipper, C., Giesbrecht, B., Franklin, M. S.,
Mrazek, M. D., et al. (2011). Pupillometric evidence for the decoupling of
attention from perceptual input during offline thought. PLoS One 6:e18298.
doi: 10.1371/journal.pone.0018298

Sörqvist, P., and Rönnberg, J. (2014). Individual differences in distractibility: an
update and a model. Psych J. 3, 42–57. doi: 10.1002/pchj.47

Sörqvist, P., Stenfelt, S., and Rönnberg, J. (2012). Working memory capacity and
visual-verbal cognitive loadmodulate auditory-sensory gating in the brainstem:
toward a unified view of attention. J. Cogn. Neurosci. 24, 2147–2154. doi: 10.
1162/jocn_a_00275

Spencer, K. M., and Polich, J. (1999). Poststimulus EEG spectral analysis and
P300: attention, task and probability. Psychophysiology 36, 220–232. doi: 10.
1111/1469-8986.3620220

Frontiers in Human Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 240 | 364

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Causse et al. Memory Load Impairs Langage Processing

Stuart, D. M., and Carrasco, M. (1993). Semantic component of a cross-modal
Stroop-like task. Am. J. Psychol. 106, 383–405. doi: 10.2307/1423183

Taylor, J., O’Hara, R., Mumenthaler, M., Rosen, A., and Yesavage, J. (2005).
Cognitive ability, expertise and age differences in following air-traffic control
instructions. Psychol. Aging 20, 117–133. doi: 10.1037/0882-7974.20.1.117

Taylor, J., O’Hara, R., Mumenthaler, M., and Yesavage, J. (2000). Relationship
of CogScreen-AE to flight simulator performance and pilot age. Aviat. Space
Environ. Med. 71, 373–380.

Tellinghuisen, D. J., and Nowak, E. J. (2003). The inability to ignore auditory
distractors as a function of visual task perceptual load. Percept. Psychophys. 65,
817–828. doi: 10.3758/bf03194817

van Gerven, P. W., Paas, F., Van Merriënboer, J. J., and Schmidt, H. G. (2004).
Memory load and the cognitive pupillary response in aging. Psychophysiology
41, 167–174. doi: 10.1111/j.1469-8986.2003.00148.x

Verleger, R., Jaśkowski, P., andWascher, E. (2005). Evidence for an integrative role
of P3b in linking reaction to perception. J. Psychophysiol. 19, 165–181. doi: 10.
1027/0269-8803.19.3.165

Watkins, S., Dalton, P., Lavie, N., and Rees, G. (2007). Brain mechanisms
mediating auditory attentional capture in humans. Cereb. Cortex 17,
1694–1700. doi: 10.1093/cercor/bhl080

Watter, S., Geffen, G. M., and Geffen, L. B. (2001). The n-back as a dual-task: P300
morphology under divided attention. Psychophysiology 38, 998–1003. doi: 10.
1111/1469-8986.3860998

Wetzel, N., Berti, S., Widmann, A., and Schröger, E. (2004). Distraction and
reorientation in children: a behavioral and ERP study. Neuroreport 15,
1355–1358. doi: 10.1097/01.wnr.0000129858.40478.be

Wickens, C. D., Hollands, J. G., Banbury, S., and Parasuraman, R. (2015).
Engineering Psychology and Human Performance. London and New York:
Psychology Press.

Woodman, G. F., and Luck, S. J. (2004). Visual search is slowed when visuospatial
working memory is occupied. Psychon. Bull. Rev. 11, 269–274. doi: 10.
3758/bf03196569

Yuval-Greenberg, S., and Deouell, L. Y. (2009). The dog’s meow: asymmetrical
interaction in cross-modal object recognition. Exp. Brain Res. 193, 603–614.
doi: 10.1007/s00221-008-1664-6

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Causse, Peysakhovich and Fabre. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution and reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 240 | 365

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH
published: 14 October 2015

doi: 10.3389/fnhum.2015.00526

The impact of expert visual guidance
on trainee visual search strategy,
visual attention and motor skills
Daniel R. Leff 1†, David R. C. James 1†, Felipe Orihuela-Espina 1,2, Ka-Wai Kwok 1,
Loi Wah Sun 1, George Mylonas 1, Thanos Athanasiou 1, Ara W. Darzi 1 and
Guang-Zhong Yang 1*

1 Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK, 2 National Institute for Astrophysics, Optics and
Electronics (INAOE), Tonantzintla, Mexico

Edited by:
Klaus Gramann,

Berlin Institute of Technology,
Germany

Reviewed by:
Peter König,

University of Osnabrück, Germany
Frederic Dehais,

Institut Supérieur de l’Aéronautique
et de l’Espace, France

*Correspondence:
Guang-Zhong Yang,

Hamlyn Centre for Robotic Surgery,
Imperial College London, Level 4,

Bessemer Building,
South Kensington Campus,

London, SW7 2AZ, UK
g.z.yang@imperial.ac.uk

†These authors have contributed
equally to this work.

Received: 28 July 2015
Accepted: 10 September 2015
Published: 14 October 2015

Citation:
Leff DR, James DRC,

Orihuela-Espina F, Kwok K-W, Sun
LW, Mylonas G, Athanasiou T, Darzi

AW and Yang G-Z (2015) The impact
of expert visual guidance on trainee

visual search strategy, visual attention
and motor skills.

Front. Hum. Neurosci. 9:526.
doi: 10.3389/fnhum.2015.00526

Minimally invasive and robotic surgery changes the capacity for surgical mentors to
guide their trainees with the control customary to open surgery. This neuroergonomic
study aims to assess a “Collaborative Gaze Channel” (CGC); which detects trainer gaze-
behavior and displays the point of regard to the trainee. A randomized crossover study
was conducted in which twenty subjects performed a simulated robotic surgical task
necessitating collaboration either with verbal (control condition) or visual guidance with
CGC (study condition). Trainee occipito-parietal (O-P) cortical function was assessed
with optical topography (OT) and gaze-behavior was evaluated using video-oculography.
Performance during gaze-assistance was significantly superior [biopsy number: (mean
± SD): control = 5.6 ± 1.8 vs. CGC = 6.6 ± 2.0; p < 0.05] and was associated
with significantly lower O-P cortical activity [1HbO2 mMol × cm [median (IQR)]
control = 2.5 (12.0) vs. CGC 0.63 (11.2), p < 0.001]. A random effect model (REM)
confirmed the association between guidance mode and O-P excitation. Network cost
and global efficiency were not significantly influenced by guidance mode. A gaze
channel enhances performance, modulates visual search, and alleviates the burden
in brain centers subserving visual attention and does not induce changes in the
trainee’s O-P functional network observable with the current OT technique. The results
imply that through visual guidance, attentional resources may be liberated, potentially
improving the capability of trainees to attend to other safety critical events during the
procedure.

Keywords: functional near infrared spectroscopy, optical topography, neuroergonomics, graph theory,
collaborative gaze, visual attention, skills assessment, mentoring

Highlights

1. A randomized crossover study assessing the impact of trainer visual guidance upon trainee visual
cognition, occipito-parietal (O-P) brain function and technical performance.

2. Visual guidance is associated with enhanced gaze behavior, improved technical accuracy and
attenuated activity across O-P cortices.

3. Parameters of network performance such as cost and global efficiency are not detrimentally
effected by visual guidance.
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Introduction

In high-risk industry, collaboration between operators is integral
to performing goal-orientated tasks successfully (e.g., pilots, air-
traffic controller, surgeons, etc). Regarding surgery, collaboration
is necessary between surgeons and their assistant(s), theatre
nurse(s) and occasionally members of allied specialties. Recent
developments in technologies for robotic surgery such as dual
console systems (e.g., da Vincir Si) enable two surgeons to
operate simultaneously, facilitating both high-level co-operation
and mentorship as well as potentially streamlining the operators’
cognitive resources towards improved safety. However, in this
scenario, it is important that communication between both
surgeons is effective to enable a seamless flow of information
between the two operators and ensure an efficient workflow.
Similarly, excellent communication facilitates technical skills
training in surgery. During ‘‘open’’ surgery, expert trainers’
employ a variety of methods for communication with trainees
that include a combination of verbal instruction, physical
pointing or actual demonstration(s). However, during robotic
minimally invasive surgery (MIS), there may be circumstances
in which the trainee or collaborating surgeon is using both
instruments simultaneously within the operative field of view,
constraining the trainer/master surgeon and rendering them
reliant solely on verbal communication.

Within MIS and robotic surgery, techniques exist such as
telestration that aid information transfer between surgeons
and/or between trainer and trainee. Telestration allows
information to be ‘‘drawn’’ onto a monitor at a remote site
by the surgeon guiding the procedure. This information is then
displayed on the operator’s screen with the aim of guiding
performance and may be undertaken either remotely or locally
(Ferguson and Stack, 2010). Remote guidance or telementoring
enables surgeons to be guided by a mentor at a location remote
from the operation. This form of instruction has been applied to
better enable regional experts to guide surgeons at local centers
and to provide assistance and mentoring from surgical experts
in other countries (Micali et al., 2000; Schlachta et al., 2010).

There has been interest in the role that gaze behaviormay have
in improving the flow of communication between collaborating
subjects. For example, it has been demonstrated that shared
gaze during visual collaboration enables a more efficient search
strategy when compared to verbal collaboration alone (Brennan
et al., 2008). Therefore, it is anticipated that observing a guiding
surgeon’s point of regard instead of, or in conjunction with their
verbal instruction(s) will significantly improve the performance
of the operating surgeon by providing supplementary cues
critical to task success. Based on this concept, a new system
referred to as ‘‘collaborative gaze control’’ (CGC) was developed
to enable an operating surgeon to be directed by visual guidance
as opposed to or in conjunction with verbal instruction(s)
from an expert (Kwok et al., 2012). With CGC enabled,
the trainer’s gaze behavior is extracted in real-time. Their
point of regard is subsequently relayed to the trainee’s screen,
which may be in a remote location. Therefore, the trainee’s
operative manoeuvres can be directed more precisely, potentially
obviating the dependence on verbal instruction(s). Importantly,

in manipulating target salience, visual search is modulated
leading to enhanced behavioral performance (Avraham et al.,
2008).

More recently, there is evidence that workload can be inferred
from saccadic eye movements (Tokuda et al., 2011), pupillary
responses (Zheng et al., 2015) and blink frequency (Zheng et al.,
2012). Challenging, effortful visual search results in greater visual
cortical (V1) excitation (Kojima and Suzuki, 2010). Evaluating
the impact that technological manipulation of visual search has
on an operator’s cortical function helps to determine whether
performance enhancement is offset by the need for greater
attentional demands at brain level. This is encompassed by
‘‘neuroergonomics’’ which concerns the investigation of the brain
behavior at work (Parasuraman, 2003), a paradigm that has been
applied to surgery in order to investigate how recruited brain
regions may be modulated by novel performance-enhancing
tools (James et al., 2010b, 2013).

In order to examine this effect, functional Near Infrared
Spectroscopy (fNIRS) a non-invasive neuroimaging modality
is utilized to measure task-evoked fluctuations in oxygenated
and deoxygenated hemoglobin (HbO2 and HHb respectively)
within cortical tissues that reflects the magnitude of cortical
activation (Jöbsis, 1977). This is based upon the principle
that neuronal activity and the associated increased metabolic
demand within the brain leads to local hemodynamic changes,
so termed ‘‘neurovascular coupling’’ (Roy and Sherrington,
1890). Unlike functional magnetic resonance imaging (fMRI),
fNIRS is relatively resistant to motion artifact and can be used
in conjunction with ferromagnetic instruments and has been
successfully applied tomonitor the cortical responses in surgeons
(Leff et al., 2008a,b,c; Ohuchida et al., 2009; James et al., 2011,
2013). Broadly, these studies highlight the importance of the
prefrontal cortex (PFC) in supporting ‘‘cognitive phases’’ of skill
learning (Leff et al., 2008a), evolution in PFC excitation with
technical skills training (Leff et al., 2008c), and relative PFC
redundancy amongst expert surgeons (Ohuchida et al., 2009).
More recently, investigators have demonstrated the impact of
the type of learning (e.g., implicit vs. explicit) and the influence
of technology to stabilize performance and enhance neuronal
efficiency amongst surgeons (Zhu et al., 2011; James et al.,
2013).

Functional brain connectivity captured in coherence or cross-
correlation between different brain regions can be used to
investigate efficiency in brain networks (Zhu et al., 2011; James
et al., 2013). Graph Theory, a popular method for interrogating
brain networks, can model the organization, development and
function of complex networks (Sporns et al., 2004; Bullmore
and Sporns, 2009; Sporns, 2011) and has been successfully
employed to networks derived from fNIRS data (Niu et al.,
2012; James et al., 2013). In this regard, studies investigating
graph topology such as the number of connections, cost
and efficiency have demonstrated associations between task
performance and brain network efficiency or cost-efficiency
(Bassett et al., 2009). Despite the above, there have been no
studies investigating the influence of varying trainer/mentor
guidance on brain function or network architectures amongst
trainees.
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The aim of this paper is to investigate the influence of a
gaze channel on changes in visual search strategies, technical
performance, and brain behavior in a group of task naïve
subjects being instructed to perform simulated biopsy using
robotic MIS. Therefore, it is anticipated that compared to verbal
guidance technical procedural skills may be superior during gaze-
assistance owing to the improved perceptual flow of information
to the trainee. The primary hypothesis is that increased target
saliency will lead to a ‘‘bottom-up’’ search strategy, reflected in
a more focused pattern of V1 activation and a reduction in the
need for recruitment of extra-striatal visual association areas.
Conversely, verbal communication (gold standard) is anticipated
to lead to a more effortful ‘‘top down’’ visual search strategy,
necessitating recruitment of additional cortical regions outside
V1, manifest as greater excitation in centers of visual attention.
The secondary hypothesis is that collaborative gaze may facilitate
the flow of information transfer in the visual-parietal network
manifest as reduced network costs, improved efficiency and
reduced network burden.

Materials and Methods

Subjects
The study was carried out in accordance with the
recommendations of the Local Regional Research Ethics
Committee (LREC 05/Q0403/142) with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.
Following ethical approval a randomized control trial was
conducted in which 20 subjects (1 female) were recruited from
Imperial College London (mean age, years ± SD = 28.9 ± 1.5).
Left-handed subjects and those with a history of neuropsychiatric
illness or previous exposure to the task were excluded (Orihuela-
Espina et al., 2010). Subjects were included on the basis that they
were task naïve. The task was performed under both guidance
conditions (order randomized) such that subjects served as
their own controls and bias associated with learning or ordering
effects was minimized.

Task Paradigm
The robotic surgical task entailed the subject (‘‘trainee’’) and an
expert (‘‘trainer’’) collaborating in taking virtual biopsies from
a simulated gastric mucosa in a shared surgical environment
as depicted in Figure 1. Haptic manipulators (Phantom, Omni,
SensAble Technologies, USA) were used to control robotic
graspers in the virtual scene. The task necessitated the trainee
take a virtual biopsy and pass the specimen to the guiding trainer.
Both the trainee’s and the trainer’s graspers were visible within
the same field of view with the former located inferiorly and the
latter superiorly as depicted in Figure 1 (panels i–iv). Within
the operative field, seven nodules were visible to the trainee.
The choice of nodule for biopsy was randomly determined and
this selection was available only to the trainer. Therefore, the
appropriate biopsy site had to be conveyed to the trainee either
visually or verbally by the trainer. Once the biopsy was taken
by the trainee, the specimen was passed towards the trainer’s
graspers and when successfully transferred to the trainer, it

disappeared from the field of view. This process was repeated as
many times as possible during the allotted task periods.

Prior to commencing the study, all subjects received
a standardized period of task familiarization. All subjects
performed the simulated biopsy task under verbal (control) and
visual instruction (CGC; Kwok et al., 2012). The order was
randomized (random number generator) in order to control for
learning effects. Regarding the control task, the location of the
biopsy site was described by the trainer using verbal instructions.
With CGC enabled, a portable eyetracker (×50 eyetracker Tobii
Technologies, Sweden) situated beneath the trainer’s monitor
detected their fixation point and conveyed this to the trainee’s
screen as a cross. Therefore, with CGC enabled, the trainer’s
target selection would be conveyed to the trainee. For each
condition (verbal and CGC) a block design experiment was
employed comprising a baseline rest period (30 s) followed by
five task blocks each of which comprised alternating episodes of
simulated nodule biopsy (30 s) and inter-trial rest periods (30 s).
During rest periods, subjects were asked to remain still with their
eyes open regarding a black screen on the task monitor. Within
functional neuroimaging experiments, block design paradigms
have the advantage of allowing the hemodynamic response to
return to baseline between each session, therefore providing
reliable indices of task-evoked cortical activity. Furthermore, the
block design allows task data to be averaged, increasing the signal
to noise ratio.

Cortical Activity
Brain activation was assessed using a commercially available 24-
channel Optical topography (OT) system (ETG-4000, Hitachi
Medical Corp., Japan). Sixteen optodes (8 emitters and
8 detectors) were positioned in a 4 × 4 array over the O-P
cortices as displayed in Figure 1. A ‘‘channel’’ represents a
banana-shaped volume of cortex where changes in absorption
of near infrared light from the optode emitters are interpreted
as changes in HbO2 and HHb. The array was centered on ‘‘Oz’’
of the International 10–20 system (Jurcak et al., 2007) with
the intention of capturing activation within the visual cortex.
Cortical data was subject to both manual and automated data
integrity checks (Orihuela-Espina et al., 2010) to identify and
eliminate data contaminated with noise, optode movement
and saturation-related artifacts (i.e., apparent non-recordings
and ‘‘mirroring’’). Since both ambient light and near infra-red
light from eye-tracking systems have the potential to influence
OT data (Orihuela-Espina et al., 2010), laboratory lights were
dimmed and the probes were shielded using a combination of
external fixation tapes and shower cap.

Technical Performance
The number of nodules that the trainee was able to successfully
biopsy and transfer to the trainer’s graspers across the task period
and the trainee’s instrument pathlength (metres) were recorded
and used as objective metrics of technical performance. This was
preferred to restricting the overall number of moves towards
calculating time/nodule biopsied, and helped to ensure that
subjects were focusing on the task quality and not the procedural
time, or perceiving the number of movements.
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FIGURE 1 | Experimental task set up. Both the trainee (A) and trainer (B) control the virtual instruments, each with two haptic manipulators (Phantom Omni,
SensAble Tech, USA). The trainer’s right hand manipulator is highlighted (yellow). Gaze behavior is detected with portable eyetracker (X50 eyetracker, Tobii
Technologies, Sweden) situated below both monitors (trainer eyetracker highlighted yellow). An Optical topography (OT) system (ETG-4000, Hitachi Medical Corp.
Japan) positioned outside the trainee’s field of view (left, highlighted) records cortical hemodynamic data from 24 cortical loci (channels). Appropriate channel
locations (yellow circles) are understood by projecting 3D positional data onto a T1 weighted MRI image (upper subplot). The lowermost row of channels was
centered on Oz of the International 10–10 system (Jurcak et al., 2007). Task images can be appreciated on trainer and trainee monitors and sample screen shots are
represented in which the trainee’s instruments are located inferiorly (i–iv). With the collaborative gaze channel (CGC) enabled, the trainee regards the blue cross
indicating the intended biopsy target (i). The trainee then grasps the nodule (black circle) (ii) and passes it to the trainer’s instrument (iii–iv). With the channel disabled,
the trainee performs identical maneouvres but only with verbal instructions from the trainer.

Gaze Behavior
Subject and trainer gaze behavior was recorded throughout the
study with portable eyetracking technology (×50 eyetracker,
Tobii Technologies, Sweden) situated beneath the task monitor
(as displayed in Figure 1). The gaze behavior of the trainer was
interrogated to derive their fixation point in order to display
this as a cross on the trainee’s monitor thereby facilitating
gaze-guidance in CGC (study condition). The trainer’s fixation
point was not visible to the trainee during episodes of verbal
guidance (control condition). The trainee’s fixation points were
recorded to determine the time taken, termed ‘‘gaze latency’’ (GL,
seconds), to fixate on the same area of the surgical scene as the
expert.

Heart Rate Monitoring
A portable band electrocardiogram (Bioharness v2.3.0.5; Zephyr
Technology Limited, USA) was used to acquire continuous heart
rate data, from which heart rate variability (HRV) was derived
and used to infer subject stress (Task Force of the European

Society of Cardiology the North American Society of Pacing
Electrophysiology, 1996).

Data Analysis

Cortical Hemodynamics
Cortical hemodynamic data and network graph econometrics
were observed to be non-Gaussian and therefore analyzed
using non-parametric tests of significance. Channel-wise
cortical activation was determined as a task-evoked statistically
significant increase in HbO2 coupled to a significant decrease
in HHb from baseline rest (Wilcoxon Rank Sign, p < 0.05).
For each channel of data and hemoglobin species a variable
∆Hb was computed (Hb task–Hb rest). To investigate
the influence of the mode of guidance (CGC vs. control)
and stress on cortical hemodynamics (i.e., ∆HbO2 and
∆HHb) random effects models (REM) were generated
(Intercooled Stata, v10.0 for windows, Stata Corporation,
USA).
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Cortical hemodynamic data was subsequently used to
construct a task-evoked network of the 24 channels using graph
theory (Bullmore and Sporns, 2009). A 24 × 24 bidimensional
cross-correlation matrix was constructed by cross-correlating
data between all channels, as previously described (James
et al., 2013). This matrix represents the strength of functional
associations within the network of 24 channels. Comparisons
between graphs of different functional networks are potentially
sensitive to the method used for thresholding, for which an
optimal solution does not yet exist (van Wijk et al., 2010).
Therefore, to evaluate the active network, the matrix was pruned
to eliminate ‘‘inactive’’ graph nodes. This approach renders a
network for each subject during each task condition.

Econometric data from these networks was then calculated
to derive: (a) the number of network connections; (b) the
maximum global efficiency (Achard and Bullmore, 2007);
(c) the normalized cost (Achard and Bullmore, 2007);
and (d) the task-induced ‘‘network burden’’ (James et al.,
2010a). Network economy is defined as efficiency minus
cost (Achard and Bullmore, 2007). The network burden
is defined here as—economy which equates to ‘‘cost-
efficiency’’. If a network is economical the cost-efficiency is
high and accordingly the network burden is low. Network
measures were also compared between the study and control
groups using REM analysis to determine whether the mode
of guidance (CGC vs. control) significantly influenced
network econometrics. Statistical significance was set at p =
0.05.

Performance and Gaze Behavior
The number of nodules biopsied by each subject during the
allotted task time and the instrument pathlength (metres) were
determined. GL (seconds) was derived from the eye-tracking data
stream. Behavioral performance and GL data was observed to be
Gaussian and therefore analyzed using paired t-tests. These data
were subsequently incorporated into the REM analysis in order
to assess whether the guidance mode (control vs. CGC) was a
predictor of performance accuracy and efficiency in visual search.

Heart Rate Analysis
HRV as calculated by the standard deviation of the R to R interval
(SDRR) was derived from the HR data stream (Task Force of
the European Society of Cardiology the North American Society
of Pacing Electrophysiology, 1996). The SDRR decreases under
stress andwas incorporated into the REM analysis, to exclude any
potential confounding effect that differences in HRV or changes
in mean HR may exert on changes in cortical hemodynamics.
Furthermore, HRV was utilized to determine which mode of
guidance (verbal vs. CGC) trainee’s found the most stressful by
undertaking a univariate random effects analysis (p = 0.05).

Results

Technical Performance
Biopsy number and instrument pathlength was analyzed
to determine whether CGC improved trainees’ technical
performance. As illustrated in Figure 2A, gaze-guidance

FIGURE 2 | (A) Technical performance as indexed by the number of biopsies retrieved (I) and instrument path length (II). Box plots indicate mean and error bars
represent 95% confidence interval. (B) Gaze plots from a representative subject under control (I) and gaze guidance (II) demonstrate more focussed fixations during
gaze-assistance.

Frontiers in Human Neuroscience | www.frontiersin.org October 2015 | Volume 9 | Article 526 | 370

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Leff et al. Visual guidance streamlines attentional search

TABLE 1 | The influence of guidance mode on technical performance, visual search behavior, changes in cortical hemodynamics, network topological
properties and systemic effects.

Outcome variable Control condition (Mean ± SD) CGC condition (Mean ± SD) t-value p-value

Technical lerformance
Biopsy number 5.6 ± 1.8 6.6 ± 2.0 −3.394 0.003
Instrument path length (m) 0.6 ± 0.1 0.3 ± 0.7 11.765 0.000

Visual search
Gaze latency (s) 1.4 ± 0.3 0.8 ± 0.2 7.292 0.000

Outcome variable Control condition median (IQR) CGC condition median (IQR) z-value p-value

Cortical hemodynamics
1HbO2 (mMol × cm) 2.5 (12.0) 0.6 (11.2) −4.049 0.000
1HHb (mMol × cm) −1.4 (5.0) −1.0 (4.5) −1.098 0.272
1HbT (mMol × cm) 3.6 (13) 1.1 (11.6) −6.064 0.000

Cortical network
Normalized cost (a.u.) 0.10 (0.13) 0.19 (0.43) −0.722 0.470
Global efficiency (a.u.) 0.03 (0.05) 0.02 (0.08) −0.220 0.826
Network burden (a.u.) 0.09 (0.14) 0.18 (0.46) −0.847 0.397
Network edges (a.u.) 56.0 (304.0) 81.0 (120.0) −0.589 0.556

Systemic effect
Heart rate (beatsmin−1) 71.2 (10.0) 73.4 (8.1) −0.392 0.695
SDNN 57.7 (42.0) 47.2 (36.9) −0.784 0.433

p < 0.05 = bold, p < 0.001 = bold italic.

under the influence of CGC resulted in enhanced technical
performance. Table 1 highlights the differences in technical
performance according to the mode of guidance. With gaze-
assistance, trainees’ biopsied a significantly greater number of
nodules [biopsy number (mean ± SD): control = 5.6 ± 1.8
vs. CGC = 6.6 ± 2.0, p < 0.05] using significantly shorter
instrument pathlength (metres) [mean ± SD: control = 0.6 ±

0.1 vs. CGC = 0.3 ± 0.7, p < 0.001]. This implies that trainees
were faster, more productive and used virtual instruments more
economically when operating from the CGC mode.

Gaze Behavior
GL which represents the temporal delay between trainer and
trainee gaze fixation was analyzed to determine whether gaze
guidance streamlined trainee visual search. Figure 2B depicts

the visual search pattern acquired from a representative trainee
under both guidance conditions. It is apparent that whilst
operating under gaze guidance, trainee fixations appear to be
more localized to the nodule to be biopsied. GL was significantly
shorter in CGC mode [GL seconds (mean ± SD): control = 1.4
± 0.3 vs. CGC = 0.8 ± 0.2, p < 0.001]. This suggests that gaze
assistance manifests as more rapid fixation on the appropriate
target nodule to be biopsied.

Cortical Activation
Cortical hemodynamic change was analyzed to compare trainee
brain responses between verbal and gaze-assisted modes of
operation, with the hypothesis that verbal guidance would induce
higher amplitude and spatially broader O-P hemodynamic
changes. Topograms of a representative subject depicting the

FIGURE 3 | Topograms derived from task averaged HbO2 response of a representative subject for verbal (left) and gaze guidance (right) conditions,
depicting spatially broader task-evoked oxygenated hemoglobin change during verbal guidance.
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FIGURE 4 | Figure depicting group averaged (O-P) channel activation
for verbal (left) and gaze guidance (right). Magnitude of statistical changes
in cortical hemodynamics reflect intensity of brain activation as follows:
(A) statistically significant (p < 0.05) increase in HbO2 coupled to statistically
significant (p < 0.05) decrease in HHb (red circles); (B) increase HbO2 and
decrease HHb with one species reaching statistical significance, p < 0.05
(spots); (C) increase HbO2 and decrease HHb with neither species reaching
statistical significance (stripes); and (D) no coupled increase HbO2 and
decrease HHb (clear circles). Verbal guidance resulted in a greater number of
activating channels (control vs. CGC = 19/24 vs. 11/24).

average change in HbO2 overlying the O-P cortices are displayed
in Figure 3. Table 1, depicts cortical hemodynamic change as
∆HbO2 (mMol × cm) averaged across the O-P cortices for
both verbal and gaze-guidance. Cortical hemodynamic change
evoked by verbal guidance was more diffuse as illustrated in
Figure 4 (CGC: 11/24 channels active vs. verbal: 19/24 channels
active), more likely to involve bilateral parietal as well as bilateral
visual cortices and was greater in magnitude than the response
evoked by gaze guidance (∆HbO2 mMol × cm [median (IQR)]:
control = 2.5 (12.0) vs. CGC = 0.63 (11.2), p < 0.001; ∆HbT
mMol × cm [median (IQR)]: control = 3.6. (13.0) vs. CGC =
1.1 (11.6), p < 0.001). Overall, this data supports the primary
hypothesis that training in CGC mode evokes an attenuated O-
P brain response. The mode of guidance did not significantly
influence the magnitude of∆HHb [∆HHbmMol× cm [median
(IQR)]: control = −1.4 (5.0) vs. CGC = −1.0 (4.5), p = 0.27].
Similarly, as highlighted in Table 2, REM analysis revealed that
guidance mode was a predictor of ∆HbO2 (p < 0.001) but not of
∆HHb (p = 0.19).

Cortical Networks
Graph theoretical econometric data were computed and
compared between guidance modes with the hypothesis that
the performance of functional network in CGC mode would
be associated with less cost and greater efficiency. Figure 5
depicts the activated cortical network under control and CGC
conditions for a representative subject. Table 1 represent results
of econometric analysis delineating the number of cortical
connections, normalized cost, maximum global efficiency and
cognitive burden. Differences in these network topological
properties between modes guidance did not reach statistical
threshold. Additionally, even when subject-level clustering was
considered (Table 2) guidance mode was not found to predict

network properties (e.g., cost, efficiency, etc). This suggests that
CGC does not induce changes in the trainee’s O-P functional
network observable with the current OT technique.

Heart Rate Data
HR and SDRR were monitored to determine the influence of
guidance mode on stress-related change in systemic responses
(Table 1). Between-condition differences in HR and SDRR
were not statistically significant [Median HR (IQR): control =
71.2 (10.0) vs. CGC = 73.4 (8.1) p = 0.70; Median SDRR
(IQR): control = 57.7 (42.0) vs. CGC = 47.2 (36.9), p =
0.43). Additionally, upon REM analysis, neither HR nor
SDRR were observed to be predictors for changes in cortical
hemodynamics.

Harms
No harms occurred in the study.

Discussion

In this study, performance on a simulated surgical task has been
improved by modulating the manner in which collaborating
surgeons interact with one another. Communicating through
collaborative gaze-driven control leads to a greater number
of successful biopsies and a reduction in instrument path
length, the latter being a measure of dexterity previously
shown to reflect skill level in laparoscopic and open surgery
(Bann et al., 2003; Xeroulis et al., 2009). The foundation for
this improvement appears to be a change in visual search
strategy manifest as a reduced GL indicating that with gaze-
assistance, trainee fixation points more rapidly reach those
of the expert. This was accompanied by an amelioration of
cortical excitation across primary visual centers in the brain,
but without an appreciable difference in O-P network costs or
burden.

The current paper offers a potential mechanistic explanation
for improvements observed in novices’ performance when
training under the influence of expert visual cues (Wilson
et al., 2011; Chetwood et al., 2012). Experienced operators are
known to utilize more effective gaze-strategies than novices,
characterized by fixating on relevant target locations and
adopting optimal psychomotor control (Wilson et al., 2011).
Unlike novices who learn mapping rules by switching their
point of regard between tool and target, experts utilize
a target locking strategy and rarely need to check tool
locations (Leong et al., 2008). As demonstrated by Wilson
et al. (2011), novices trained to observe and then ‘‘mimic’’
the more focused gaze patterns of experts improve their
laparoscopic performance and multi-tasking capabilities more
than novices trained to observe expert performance without
the benefit of expert gaze-cues. Similarly, Chetwood et al.
(2012) observed improved completion times and reduced
errors in novices guided by expert gaze vs. expert verbal
instructions. However, unlike the current experiment, the
aforementioned studies were not designed to explain the
foundation for improved performance owing to gaze guidance,
resulting instead in speculation regarding adaptation in visual
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FIGURE 5 | Activity-guided cortical networks for a representative subject during the control condition (A) and study condition (B). Approximate channel
locations (black circles) are overlain onto reference MRI atlas. The strength of functional associations between nodes in the network is represented by the boldness of
network edges.

cognitive function. Here, improved performance as a result
of expert gaze guidance is understood as a reduction in
visual activation and hence attentional demand on the visual
cortex. This is in line with studies demonstrating learning
related plasticity in activation maps implying attenuation of
attentional resources associated with training and expertise
(Dayan and Cohen, 2011). By manipulating the visual
behavior of novices in a way that they align more closely
with those of experts it is conceivable that novices may
bypass the early ‘‘cognitive’’ phases of visual-motor learning
(Fitts and Posner, 1967). This notwithstanding confirming
that the gaze behavior of trainees operating under gaze
guidance was characterized by less random saccadic activity
and was indeed more ‘‘expert’’ cannot be confirmed using
GL alone and would necessitate a more elaborate analysis
of eye-tracking data such as using exploit/explore ratio
(Dehais et al., 2015) or visual entropy (Di Nocera et al.,
2007).

There is evidence from functional neuroimaging studies that
streamlined visual search strategies lead to reduced activation
in the visual cortex (Kojima and Suzuki, 2010). For example,
Kojima and Suzuki (2010) observed greater hemodynamic
responses in fNIRS channels centred on the visual cortex
during more effortful search strategies. However, it must be
acknowledged that the introduction of a target feature into the
surgical scene might be anticipated to increase visual attention
owing to changes in visual saliency. This is relevant since the
eye-tracking derived fixation point of the expert was projected
to trainee as a visually salient target. Interestingly, shifts in
visual attention secondary to manipulations in visual saliency
as a result of gaze-guidance (i.e., the trainer’s fixation point)
did not manifest as greater activation in the visual cortex when
compared to verbal instruction. Rather, the resultant visual
search is potentially streamlined from a ‘‘top-down’’ to ‘‘bottom-
up’’ strategy (van der Stigchel et al., 2009; Theeuwes, 2010).
Specifically, if a target markedly differs from its background, it

TABLE 2 | Results of univariate random effect models (REM), evaluating the influence of the independent variable (mode of guidance) on dependent
variables including performance, changes in cortical hemodynamics, cortical network metrics, heart rate (HR) and heart rate variability (HRV).

Dependent variable Coefficient S.E. p > z 95% C.I.

Biopsy number 0.090 0.040 0.025 0.011 to −0.168
Instrument pathlength (m) −3.20 0.312 0.000 −3.808 to −2.586
Gaze latency (s) −0.761 0.118 0.000 −0.992 to −0.530
1HbO2 (mMol × cm) −1.294 0.326 0.000 −1.933 to −0.654
1HHb (mMol × cm) −0.198 0.151 0.188 −0.494 to −0.097
1HbT (mMol × cm) −1.094 0.303 0.000 −1.689 to −0.500
No. of connections −0.000 0.000 0.754 −0.002 to −0.001
Normalized cost (a.u.) −0.036 0.101 0.720 −0.234 to −0.161
Network burden (a.u.) −0.333 0.097 0.732 −0.244 to −0.157
Global efficiency (a.u.) −0.106 0.282 0.706 −0.659 to −0.446
Mean HR (beatsmin−1) 0.008 0.009 0.353 −0.009 to −0.025
SDNN −0.002 0.003 0.595 −0.008 to −0.004

(p < 0.05 = bold, p < 0.001 = bold italic).
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is visually salient and is more likely to be detected by a ‘‘bottom-
up’’ search strategy guided by the saliency of the scene, whereas
if a target requires greater cognitive input to be identified, a
‘‘top down’’ search ensues which is dependent on the PFC and
parietal cortex (PC; van der Stigchel et al., 2009; Theeuwes, 2010).
Bottom up saliency is not coded in the primary visual cortex (Betz
et al., 2013), and thismode results in search simplification leading
to a reduction in activity in visual association areas (Kojima
and Suzuki, 2010). Enhanced saliency through visual guidance
may parallel visual processing of natural stimuli (Einhäuser and
König, 2010), whereby responses in V1 cells are optimally sparse
(Vinje and Gallant, 2000). In the current study, this effect has
been observed as a reduction in O-P cortical hemodynamic
changes with comparatively fewer channels reaching statistical
threshold for activation.

Parietal cortical activity is also associated with oculomotor
intention and attention and may be important in planning
eye movements (Kanwisher and Wojciulik, 2000). Verbal
guidance may result in demanding visual search since it
necessitates that auditory information be explicitly processed
and translated into visual-spatial co-ordinates to understand
the desired target’s location, and parietal lobe activation has
been shown to be important in spatial integration (Molholm
et al., 2006). Conversely, gaze-guidance protocols may share
many similarities with implicit learning protocols (Wilson et al.,
2011). Implicit learning, a form of unconscious, incidental
and procedural knowledge demands fewer attentional resources
than explicit learning, a form of conscious, intentional or
declarative knowledge. Implicit motor learning has been shown
to reduce non-essential co-activation or connectivity between
verbal-analytic and motor planning regions during laparoscopic
performance (Zhu et al., 2011).

Here, as well as investigating connectivity (i.e., correlations),
network topology has been explored with graph theory, which
provides a powerful method for quantitatively describing the
topology of brain connectivity (He and Evans, 2010). Graph
theory has been utilized to interrogate cortical networks in both
pathological and non-pathological brains (Achard and Bullmore,
2007; Bassett et al., 2009), and allows network parameters such
as cost and efficiency to be determined (Bullmore and Bassett,
2011). Presently, graph theory was applied to experimental data
in order to further appreciate the impact of a ‘‘gaze-channel’’
on functional brain networks. From the active network analysis
(i.e., that which retains only activated nodes), it is evident
that compared to verbal-guidance, gaze-assistance does not lead
to significant differences in O-P network topologies, therefore
disproving the secondary hypothesis. Therefore, our conclusion
is that collaborative gaze exerts a positive effect on technical
skills, alleviates burden on the visual cortices, and yet critically
does not significantly alter performance of the functional O-P
network.

Intuitively verbal instructions about target location are time
consuming to deliver, more complex to interpret and harder
to translate into the ‘‘visual’’ workspace, ultimately relying
therefore on greater cognitive work as evidenced by enhanced
task performance when visual guidance is employed (Chetwood
et al., 2012). We suspect that gaze assistance makes the flow

of information between the trainer and trainee more seamless
by increasing the perceptual fidelity of the instruction given.
Extrapolating this effect to the in vivo setting, a reduction in
the attentional demands necessary to execute a procedure may
manifest as a liberation of resources to devote to other safety
critical aspects of clinical care (e.g., reacting to unexpected events,
multitask decisionmaking, planning operative steps, etc.). Future
studies may capitalize on a framework that enables combined
analysis of brain responses, visual behavior and HRV to improve
the detection of changes in workload as has been demonstrated
in pilots (Duratin et al., 2014). Furthermore, although not
specifically investigated within the confines of this study, it is
feasible that in using visual guidance the need to verbalize the
intended target is bypassed and as such the trainer can focus on
supplementary aspects of the procedure. For example, if the site
of suture placement is already determined and displayed visually,
a trainer can then focus verbal instruction on the technical
aspects of suturing manoeuvres required to achieve accurate
tissue apposition.

Conclusion

To summarize, this study demonstrates that capitalizing on
visual behavior enhances communication between collaborating
surgeons, and improves operator performance. This may be
achieved through a bottom up allocation of resources within
the visual cortex of the surgeon being instructed. It is plausible
that trainees instructed in this fashion will be better able
to devote neural resources to other safety critical aspects
of the procedure. In investigating these hypotheses, fNIRS
technology is well placed to make an impact, as it overcomes the
limitations of traditional scanning environments (Cutini et al.,
2012). However, future validation of graph theory measures for
fNIRS connectivity analysis will necessitate comparison against
models of anticipated responses and structural connectivity
as have been observed using other neuroimaging technologies
such as fMRI (van den Heuvel et al., 2009; Zhang et al.,
2010). Critically, demonstration of correspondence between
predicted and observed patterns of functional connectivity would
support the feasibility and validity of fNIRS-derived connectivity
measures.
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The current study examines the role of cognitive and perceptual loads in inattentional
deafness (the failure to perceive an auditory stimulus) and the possibility to predict
this phenomenon with ocular measurements. Twenty participants performed Air Traffic
Control (ATC) scenarios—in the Laby ATC-like microworld—guiding one (low cognitive
load) or two (high cognitive load) aircraft while responding to visual notifications related to
7 (low perceptual load) or 21 (high perceptual load) peripheral aircraft. At the same time,
participants were played standard tones which they had to ignore (probability = 0.80), or
deviant tones (probability = 0.20) which they had to report. Behavioral results showed
that 28.76% of alarms were not reported in the low cognitive load condition and up
to 46.21% in the high cognitive load condition. On the contrary, perceptual load had
no impact on the inattentional deafness rate. Finally, the mean pupil diameter of the
fixations that preceded the target tones was significantly lower in the trials in which the
participants did not report the tones, likely showing a momentary lapse of sustained
attention, which in turn was associated to the occurrence of inattentional deafness.

Keywords: inattentional deafness, cognitive load, perceptual load, pupil diameter, neuroergonomics

INTRODUCTION

The Air Traffic Control (ATC) environment involves supervisory control of emergency response,
and security surveillance. Air traffic controllers must deal with dynamic and cognitively demanding
tasks: guiding aircraft through a controlled airspace and optimizing trajectories whilst adhering to
minimum distance and altitude separation minima requirement. This task must be completed in
the face of temporal pressure, stress, and high-risk decision-making situations. Several research
tried to identify the characteristics of the ATC environment that create cognitive demand (e.g.,
Manning et al., 2002; Loft et al., 2007). Manning et al. (2001) showed that these characteristics
include, among others, the total number of aircraft controlled, the number of aircraft changing
altitude, and the total conflict alert displayed. Other studies revealed that the dynamic density of the
airspace at a given moment accounts for approximately half the variance in workload (Laudeman
et al., 1998; Kopardekar and Magyarits, 2003). Although task demand has a strong relationship
with workload, this relationship depends on the ATC operator capacity to select priorities and
manage its cognitive resources (Loft et al., 2007).

The auditory channel is an essential means for air traffic controllers to exchange information
with pilots and other controllers through radio and phone communications. They must also
be vigilant and responsive to the occurrence of auditory alarms such as ground collision
avoidance alerts or area infringement warnings that have been increasingly integrated into ATC
workstations (Cabrera et al., 2005). Given that the auditory modality provides information without
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requiring head/gaze movements (Edworthy et al., 1991), it is
particularly suitable for the transmission of alerts and warnings
in emergency situations because perception is not dependent
on the direction of gaze at a particular moment (Harris, 2011).
However, research in the field of aviation has provided ample
evidence that individuals can still remain unaware of unexpected
task-relevant and often safety-critical auditory stimuli if deeply
involved in demanding tasks (Dehais et al., 2012, 2014; Giraudet
et al., 2015b).

Several studies support the notion of a central bottleneck of
attention processing (Jolicoeur, 1999; Arnell and Larson, 2002;
Lavie, 2005; Dux et al., 2006; Raveh and Lavie, 2015; Wahn
and König, 2015) but other works propose modality-specific
restrictions of attention (Duncan et al., 1997; Talsma et al., 2006;
Martens et al., 2010; Keitel et al., 2013). In accordance with the
first view, Tombu et al. (2011) proposed a central attentional
bottleneck that includes the inferior frontal junction, superior
medial frontal cortex, and bilateral insula that temporally limits
cognitive processes such as perceptual encoding or decision-
making. In contrast, other studies show support for modality
specific limitations by demonstrating that attentional capacity
between modalities is greater than attentional capacity within the
same modality (Talsma et al., 2006). Furthermore, Martens et al.
(2010) showed that an attentional blink is produced only when
targets are both presented within the same modality (auditory
or visual) but not cross-modally, thus favoring the idea of a
modality-specific sensory system rather than a central amodal
system. From a theoretical viewpoint, multiple resource theory
(Wickens, 1980) posits that there are multiple, independent
pools of resources and that tasks that share the same limited
resource would interfere with each other but would not affect
other tasks that require a different type of resource. For example,
Kim et al. (2005), showed that Stroop interference increased
when the type of working memory (WM) load overlapped with
the type of information required for the target task. At the
same time, Stroop interference decreased when the type of WM
load overlapped with distractor processing. Beyond this debate
between central vs. modality-specific attentional limitations,
many studies show that WM load also affects the ability to
process visual or auditory environmental stimuli. For example,
Sörqvist et al. (2012) demonstrated that brain response to an
irrelevant sound decreased as a function of central WM load,
induced by a visual-verbal version of the n-back task. In the
same way, it has been shown that manipulating the task load
of the primary task reduced markedly the sensitivity to auditory
distractors during a duration-discrimination task (Berti and
Schröger, 2003).

Given the evidence for both sides of the amodal vs. modality-
specific debate on attentional capacity, we might postulate the
existence of both central limitations in the control of attention
and executive control (Rossi et al., 2009), with a key role of
the prefrontal cortex (Asplund et al., 2010) and higher-order
multisensory cortices (Calvert and Thesen, 2004), and additional
capacity limits in modality-specific sensory brain areas (Talsma
and Kok, 2001). Such a hypothesis is supported by Vachon
and Tremblay (2008) using an attentional blink paradigm. Their
results tend to support the idea that attentional limitations are

due to a mixture of both modality-specific and amodal resource
constraints. Based on the results of Berti and Schröger (2003)
and Sörqvist et al. (2012) showing the adverse effect of WM
load, as well as similar fundamental works (Wood and Cowan,
1995; Spence and Read, 2003; Lavie et al., 2004; Hughes et al.,
2013) and observations in flight and ATC simulators (Dehais
et al., 2012, 2014; Giraudet et al., 2015a,b) indicating that a high
cognitive load context can lead to the neglect of auditory alerts,
we may reasonably postulate that the risk of missed alarms is
quite important in complex activities such as ATC.

The high cognitive and perceptual loads typical of ATC
operations may consume most of attentional resources, thus
reducing the remaining attentional capacity for processing
unexpected stimuli such as auditory alarms. This failure to
perceive auditory stimuli has been called inattentional deafness
(Macdonald and Lavie, 2011; Koreimann et al., 2014). Given
the potential impact of inattentional deafness in safety-critical
occupations, it is important to understand the factors that
promote this phenomenon and to be able to detect its occurrence.
When no visual feedback from the operator is available, or
when the alarm is triggered by a system, it is almost impossible
to interpret human reactions. However, recent studies have
found electro-encephalographic indicators of the occurrence of
inattentional deafness with diminution of the amplitude of the
P300 evoked potential (Giraudet et al., 2015a,b). These results
are promising since they allow an offline analysis to test alarm
designs and to evaluate the conditions favoring inattentional
deafness. However, the online detection of inattentional deafness
with ERP is complex under ecological conditions given the low
signal-to-noise ratio of the event-related EEG activity. A more
robust way for detecting inattentional deafness online is still to
be developed, but the ability to predict its occurrence using a
physiological measure has excellent potential. With the visual
modality monopolizing most of attentional resources, we suggest
that recording eye movements while operators are exposed to
alarms can inform about their auditory capacity in real time,
particularly if they are displaying inattentional deafness. Eye-
tracking has already proven very useful for interface design and
for usability tests (Goldberg and Kotval, 1999). Several behavioral
ocular metrics such as the number of fixations and their duration,
the scanpath direction and length, or the switching rate between
areas of interest can provide a non-invasive measure of cognitive
activity (for a review see, Jacob and Karn, 2003). Evidence
suggests that when the eye is free to move, fixation location
is strongly correlated with where attention is focused (Findlay
and Gilchrist, 2003). But while eye tracking is known to reflect
visual cognition, it is uncertain whether ocular behavior could
reflect further mental processes beyond basic visual encoding of
task-relevant information. Also, the pupil diameter is a classic
measure to index cognitive activity and is generally higher in
context of high mental workload (Kahneman and Beatty, 1966;
Palinko et al., 2010; Peysakhovich et al., 2015) or when the level
of vigilance is high (Beatty, 1982). For example, Beatty (1982)
showed that vigilance decrement was associated to decreased
amplitude of the phasic task-evoked pupillary response during an
auditory vigilance task, while tonic or baseline pupillary diameter
exhibited no such relationship.
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Inattentional deafness is generally studied by varying
perceptual load (Koreimann et al., 2009, 2014; Macdonald
and Lavie, 2011; Molloy et al., 2015; Raveh and Lavie, 2015),
while the effects of variations in mental workload (central
demand) are less well investigated (Giraudet et al., 2015b).
Importantly, no studies have examined and compared the
impact of these two loads on the ability to perceive auditory
stimuli. The present study had two main objectives: to further
understand how cognitive and perceptual loads impact auditory
detection sensitivity, and to assess the possibility of eye-
movements and pupil diameter to predict the occurrence of
inattentional deafness. Twenty participants performed a realistic
ATC simulation task called Laby (Imbert et al., 2014a) while
an auditory oddball task was presented. Participants had to
react to deviant tones (simulating auditory alarms) by button
pressing, as an indicator of their detection of the sound. We
separately examined the impact of cognitive and perceptual
loads on auditory detection sensitivity with a 2 × 2 factorial
design. The cognitive load varied with the number of central
aircraft to control, and the perceptual load with the number
of peripheral aircraft to monitor. In a previous study also
using Laby, we demonstrated that the cerebral response (P300)
to deviant auditory tones was diminished when the visual
design of Laby was poor (Giraudet et al., 2015a). Also, this
study showed that approximatively 6% of the deviant tones
were missed in the high cognitive load condition with the
poor visual design. To further understand the factors that
promote the occurrence of inattentional deafness, in the present
study we intended to increase the inattentional deafness rate
by using a more engaging and complex version of the Laby.
Inducing a high level of missed alarms would enable comparison
between the ocular behavior of missed and reported alarms. We
hypothesized that: (1) the high cognitive and perceptual load
conditions should generate more missed alerts than the low
cognitive and perceptual load conditions; (2) increased cognitive
and perceptual load should impact ocular measurements;
and (3) ocular measurements may predict the occurrence of
inattentional deafness.

MATERIALS AND METHODS

Participants
Twenty participants, all students of Université Laval were
recruited for this study (Mean age = 23.5 years, Standard
Deviation (SD) = 4.2). None had a history of neurological
disease, psychiatric disturbance, substance abuse, or took
psychoactive medications. They all received full information
on the experimental protocol, signed an informed consent and
received compensation for their participation in the study.

Experimental Design
We used a 2 × 2 factorial design crossing two independent
variables, cognitive and perceptual loads. The cognitive load was
manipulated by the number of central aircraft in the corridor.
The low cognitive load condition was the first half of the
scenarios, with one aircraft to guide. The high cognitive load

condition was the second half of the scenarios, with two aircraft
to guide. The perceptual load was manipulated by the number of
peripheral aircraft around the corridor (between 5 and 21). The
perceptual load was unique for each scenario and the order in
which low and high perceptual load scenarios was performed was
counterbalanced across participants.

The Laby Microworld and The Auditory
Oddball Task
The ATC Task
The Laby microworld is a functional simulation of ATC,
developed to create and evaluate new designs for controller’s
visualization. It is built on the main task of guiding aircraft
around a route shown on the center part of the screen (light green
path). For the first half of the Laby scenario, there was only one
aircraft to monitor. In order to increase the main task demand, at
the beginning of the second half of the scenario, a second aircraft
entered the corridor and participants had to guide both aircraft
along the route (Figure 1).

In order to maintain the central aircraft within the corridor
or to follow altitude instructions, participants had to regularly
modify their heading and altitude, using drop-down menus
(Figures 2A,B).

In addition to the central aircraft, participants had to monitor
a set of static aircraft (5 in the low perceptual load condition, 21
in the high perceptual load condition) located around the main
aircraft corridor (Figure 1). ‘‘Color-Blink’’ visual notifications
were displayed in or around the radar label located in the vicinity
of these peripheral aircraft (Figure 3). Color-Blink uses colored
text with the word ‘‘ALRT’’ which switches fromwhite to red (see
Figures 3A,B). It is used in ATC operational radar visualization
for high-priority short-term conflict alerts. The Laby interface
design is similar to operational radar visualization, and has
been used in a previous study comparing the performance of
several visual notifications in peripheral vision (Imbert et al.,
2014b). Compared to other enhanced designs, the Color-Blink
notification was found to be less salient and had a lower
detection rate among controllers (see, Imbert et al., 2014a).
We thus selected the Color-Blink notification to increase the
overall monitoring effort in the present study. In another study
also with Laby (Giraudet et al., 2015a), we showed that a high
cognitive load condition of the Laby was associated with 6%
unreported ton. Also, as we intended to increase the inattentional
deafness rate with a more engaging and complex versions of the
Laby in the present study, two modifications were performed.
In the present study, there was two aircraft to guide in the
high cognitive load condition (one in the previous study). In
addition, contrary to the previous studies in which the heading
indications to give to the aircraft was already computed by the
system and just had to be selected by the participants in a
drop-down menus, in the present study, the participants had to
mentally calculate the various heading that the aircraft should
follow to turn and stay in the corridor. An orange heading
indicator was displayed on the top left corner in order to
help participants to transform direction into heading values in
degree.
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FIGURE 1 | Screenshot of the Laby microworld simulation. An example with 21 static peripheral aircraft positioned around the corridor. The central aircraft
navigates through the corridor.

FIGURE 2 | Zoom on the Laby interface. (A) The menu used to select the heading of the central aircraft. (B) The menu used to select the altitude of the central
aircraft. The menus appeared when clicking on the radar label.
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FIGURE 3 | The visual notification Color-Blink is inspired by operational warnings triggered in Air Traffic Control (ATC) radar screens when minimum
separation between aircraft is lost. The text ALRT switches from white (A) to red (B) at a rate of 200 ms white/800 ms red.

Visual notifications were randomly displayed in the radar
label located in the vicinity of these peripheral aircraft. Only one
notification was issued at a time. The notification disappeared as
soon as the participant clicked on the aircraft. If the participant
did not react within a given time (5 s), the notification
disappeared. Thirty-four visual notifications were displayed in
each scenario.

A score was displayed on the top left of the screen. The
score decreased for the following three reasons: first, when a
participant led an aircraft outside the corridor; second, when
he/she gave an incorrect altitude instruction; third, when he/she
failed to click on a peripheral notification in the time limit. A
deviation in the assigned route resulted in the aircraft crossing
the border and initiating a visual alert in the center of the
screen. An error in the altitude instructions resulted in the
aircraft maintaining its trajectory, with no alert, and continued
control. The score aimed to engage the participant in the ATC-
like simulation in order to avoid them paying attention to the
auditory alarm detection task only. The score was not considered
in the analysis. The simulation ended as soon as the first aircraft
reached the arrival area (colored red), at the end of the corridor.

Auditory Oddball to Simulate an Alarm Detection
Task
In parallel to the ATC task, participants had to perform an
auditory alarm detection task. Standard pure tones (1000 Hz,
52.5 dB SPL, 500 ms long, probability = 0.8) and deviant pure
tones (2000 Hz, 52.5 dB SPL, 500 ms long, probability = 0.2)
were randomly played. The tones were not representative of
the auditory alerts recently integrated in ATC operations, their
frequencies were chosen from previous works (Giraudet et al.,
2014, 2015a,b). The mean time window between successive tones
was 4.2 s. Participants were told to consider the deviant tones
as auditory warnings and to report them as fast as possible by
pressing a specific button. The auditory oddball detection task
had no impact on the score. The number of auditory alarms
(10) was the same in the four experimental conditions. There
were ten tones in the first half (with one main aircraft) and ten
tones in the second half (two aircraft). In order to increase the
sound detection task difficulty, A 42 dB white noise was played
continuously during each ATC scenario and the oddball control
task. A control condition was also performed by the participant.

They only had to react to the deviant auditory tones of the oddball
while fixating a cross at the screen.

Procedure
The whole procedure lasted about 1 h. First, participants were
seated comfortably at 60 cm from the 30′′ screen in a sound-
attenuated room with their right hand on the computer mouse
and their left hand on the auditory alarm button. Second,
they completed a training phase of 5 min to familiarize with
the Laby microworld software, i.e., enter correctly path and
altitude instructions by the drop-down menus, acknowledge
visual notifications, and report deviant tones. After the training,
the eye tracker was calibrated and participants completed the
four ATC scenarios. Between scenarios, the eye tracker was
recalibrated. Finally, participants performed the auditory oddball
control task.

Eye Tracking Measurements and Data Processing
Continuous eye tracking was performed with a Tobii T1750
during the four ATC scenarios. The signal was recorded at a
sampling rate of 300 Hz. For all eye movement analyses, the
threshold to detect a fixation was set at 100 ms and the fixation
field corresponded to a circle with a 30-pixel radius (equivalent
to 1.15◦ of visual angle when seated at a distance of 50 cm). The
position of both eyes on the screen was recorded. Data analysis
was performed using MATLAB 7.1 (The Mathworks). Heatmaps
visualizations of the distribution of fixations were generated
using the open source software Open Gaze and Mouse Analyzer
(OGAMA; Vosskühler et al., 2008).

Statistical Analysis
The impact of cognitive and perceptual loads on the accuracy
to the central aircraft guiding task, peripheral notifications
detection rate and missed auditory stimuli (rare tones) were
analyzed. We also calculated the mean fixation duration on
each of the four whole scenario and the mean duration of
the fixation time that preceded the onset of a deviant tone
(time-locked analysis) as well as the mean pupil diameter of
this fixation (averaged on both eyes). Statistical analyses were
performed using Statistica 10 (StatSoft©). Differences between
the experimental conditions were investigated with the use
of within-subjects analysis of variance (ANOVA) followed by
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post hoc testing (Tukey’s honestly significant difference, Tukey
HSD). We finally computed a multivariate logistic regression
in order to further determine the variables that predicted
inattentional deafness.

RESULTS

Effects of Cognitive and Perceptual Loads
on Performance to The ATC Task
We examined if the performance in the ACT task depended
on cognitive and perceptual loads, see Figure 4. The 2 × 2
(cognitive load × perceptual load) repeated measures ANOVA
showed no significant effect of the cognitive and perceptual loads
on the accuracy to the central aircraft guiding task (respectively,
F(1,19) = 0.86, p > 0.05, η2p = 0.04; F(1,19) = 0.64, p > 0.05,
η2p = 0.03). The interaction term was not significant (F(1,19) =
0.37, p > 0.05, η2p = 0.01). Regarding the peripheral notifications
detection rate, the 2 × 2 (cognitive load × perceptual
load) repeated measures ANOVA showed a significant
effect of the cognitive load, with a lower performance
in the high cognitive load condition (F(1,19) = 37.45,
p < 0.001, η2p = 0.66). The perceptual load had a near
significant impact (F(1,19) = 3.74, p = 0.06, η2p = 0.16). The
interaction term was not significant (F(1,19) = 0.00, p > 0.05,
η2p = 0.00).

Effects of Cognitive and Perceptual Loads
on Ocular Behavior
The analysis of the dispersion of fixations across the Laby
interface is shown in Figure 5. In the high cognitive load
condition, there is an increase in the overall time spent fixating
the central part of the Laby interface where the central aircraft
are moving. Also, the time spent fixating peripheral aircraft is
increased in the high perceptual load condition.

We analyzed the extent to which the overall fixation time,
averaged across each whole condition duration, were affected

by cognitive and perceptual loads (Figure 6). The 2 × 2
(cognitive load × perceptual load) showed a significant effect
of cognitive load on fixation duration (F(1,19) = 7.69, p < 0.05,
η2p = 0.29). The effect of the perceptual load was not significant
(F(1,19) = 0.00, p > 0.05, η2p = 0.00) neither the interaction term
(F(1,19) = 0.41, p > 0.05, η2p = 0.02). Overall average fixation
durations were approximatively 420 ms (see Figure 6), which
is consistent with a previous study using the same eye tracker
during a simulated combat control system microworld. In this
latter work, participants demonstrated average fixation durations
above 300 ms in several experimental conditions (Hodgetts et al.,
2015).

Fixation durations before a saccade have been shown to be
modulated by the relative angle of the saccade (see, Wilming
et al., 2013). The alternation between the two central planes in
the high load condition could lead to systematic differences in
the angle between subsequent saccades in comparison to the
low load condition with only one central plane. This difference
in angle by means of saccadic momentum can in turn lead
to differences in fixation duration. Consequently, we compared
the average angle between two saccades in the low vs. high
cognitive load condition in order to examine a possible effect
of momentum on fixation times. This analysis revealed that
the mean angle slightly increased with increased cognitive load
(low cognitive load = 84.64◦ (SD = 0.81); high cognitive
load = 85.95◦ (SD = 1.08)) but the analysis did not reach
the significance threshold (F(1,19) = 2.24, p > 0.05, η2p = 0.10).
Saccadic momentum cannot explain by itself the variations of
fixation times across the two cognitive load conditions.

Effects of Cognitive and Perceptual Loads
on the Inattentional Deafness Rate
The control condition revealed that the inattentional deafness
rate (missed alerts = 1-hit rate) was extremely low, with 2%
(SD = 5.93) of missed alert. As a matter of fact, two participants
omitted a few deviant tones whereas the 18 others reacted
to 100% of the deviant tones. This result confirms that the

FIGURE 4 | Correct responses to the central aircraft guiding sub-task according to the levels of cognitive and perceptual loads. Validation of the
peripheral aircraft sub-task according to the levels of cognitive and perceptual load. The square in the center of the boxes represent the mean, the horizontal line in
the center of the boxes represent the 50th percentile (median), the end of the boxes represent the 25th and 75th percentiles, and the whiskers represent the 5th and
95th percentiles.
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FIGURE 5 | Heatmap visualizations of the distribution of fixations on the Laby interface. (A) Low cognitive load/low perceptual load; (B) low cognitive
load/high perceptual load; (C) high cognitive load/low perceptual load; (D) high cognitive load/high perceptual load.

FIGURE 6 | Effect of the cognitive and perceptual loads on the fixation
time averaged across the whole condition duration. The square in the
center of the boxes represent the mean, the horizontal line in the center of the
boxes represent the 50th percentile (median), the end of the boxes represent
the 25th and 75th percentiles, and the whiskers represent the 5th and 95th
percentiles.

tones were clearly perceptible despite the continuous white
noise. We then examined if the inattentional deafness rate
depended on cognitive and perceptual loads. The 2× 2 (cognitive
load × perceptual load) repeated measures ANOVA showed
a significant effect of the cognitive load on the percentage
of missed auditory alarms with an increased percentage of
missed auditory stimuli in the high cognitive load condition
(F(1,19) = 24.49, p < 0.001, η2p = 0.56), see Figure 7. The

perceptual load had no significant impact (F(1,19) = 0.10, p
> 0.05, η2p = 0.00). The interaction term was not significant
(F(1,19) = 0.49, p > 0.05, η2p = 0.02). We finally examined if
the specificity (true negative rate rate) and the discriminability
index (d′ = Z(hit rate) − Z(false alarm rate); Stanislaw and
Todorov, 1999) depended on cognitive and perceptual loads. A
first 2 × 2 (cognitive load × perceptual load) repeated measures
ANOVA revealed no significant main effect of cognitive load
(F(1,19) = 1.23, p > 0.05, η2p = 0.06) and perceptual load
(F(1,19) = 0.07, p > 0.05, η2p = 0.00) neither interaction effect
(F(1,19) = 0.22, p > 0.05, η2p = 0.01) on the specificity. A second
2 × 2 (cognitive load × perceptual load) repeated measures
ANOVA revealed significant main effect of cognitive load
(F(1,19) = 18.88, p< 0.001, η2p = 0.50) but no effect of perceptual
load (F(1,19) = 0.00, p > 0.05, η2p = 0.00) neither interaction
(F(1,19) = 3.30, p > 0.05, η2p = 0.14) on the discriminability
index. In summary, the cognitive load had a specific impact on
the sensibility (hit rate), which increased the number of missed
alerts. This is illustrated in Figure 7, the cognitive load had
a specific impact on the true positive rate, not on the false
positive rate. The d′ variations are only due to this effect of
cognitive load on the true positive rate. We finally estimated
if the variations in loads impacted the reaction time to alerts.
In all four experimental conditions, mean reaction times were
markedly below the mean time available to respond between two
tones (i.e., 4.2 s), M = 1.67 s in low cognitive load condition;
1.53 s in high cognitive load condition; 1.65 s in low perceptual
load condition; 1.55 s in the high perceptual load condition. The
2× 2 repeated measures ANOVA showed no significant effect of
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FIGURE 7 | Left: mean percentage of missed auditory stimuli according to the levels of cognitive and perceptual loads (referred to as inattentional deafness rate).
The square in the center of the boxes represent the mean, the horizontal line in the center of the boxes represent the 50th percentile (median), the end of the boxes
represent the 25th and 75th percentiles, and the whiskers represent the 5th and 95th percentiles. Right: true positive rate vs. false positive rate according to the
levels of cognitive and perceptual loads.

cognitive (F(1,19) = 1.02, p > 0.05, η2p = 0.05) and perceptual load
(F(1,19) = 1.03, p > 0.05, η2p = 0.05) neither significant interaction
(F(1,19) = 0.06, p > 0.05, η2p = 0.00) on reaction times.

Multivariate Logistic Regression Analysis
In order to further investigate the factors that promote
inattentional deafness, we performed a multivariate logistic
regression analysis stratified by trial (trials with deviant
tones only) with all participants grouped together (number
of trials = 800). We used the occurrence of inattentional
deafness (yes/no) as binary dependent variable and cognitive
and perceptual load were introduced as categorical independent
variables. Furthermore, the mean duration of the fixation that
occurred just before the occurrence of the rare tone and
the mean pupil diameter during this fixation were used as a
continuous variable. The Wald chi-square p-values confirmed
that the cognitive load was a significant predictor of the
occurrence of inattentional deafness (Wald statistic = 14.38,
p < 0.001) while perceptual load was not (Wald statistic = 0.77,
p > 0.05). In addition, the regression also showed that pupil
diameter of the fixation that preceded the rare sound was
significantly lower in the trials in which the participants
did not react to the target tones (Wald statistic = 18.66,
p < 0.001) (see Figure 8). Finally, the duration of the
previous fixation was not predictive (Wald statistic = 0.20,
p > 0.05).

DISCUSSION

Summary of Results
Our results showed that a high level of cognitive load,
manipulated by the number of planes to guide, significantly
increased the inattentional deafness rate whereas the perceptual
load, manipulated by the number of peripheral aircraft to
monitor, had no significant impact. The cognitive load also

FIGURE 8 | Pre-stimulus pupil diameter (fixation n—1) for hit and
missed auditory stimuli. The square in the center of the boxes represent the
mean, the horizontal line in the center of the boxes represent the 50th
percentile (median), the end of the boxes represent the 25th and 75th
percentiles, and the whiskers represent the 5th and 95th percentiles.

impacted ocular behavior with lower fixation time in the high
load condition, while perceptual load had no significant effect.
Finally, logistic regressions showed that the mean pupil diameter
of the fixation that preceded the onset of the tones predicted
inattentional deafness.

Effects of Cognitive and Perceptual Loads
Participants missed 28.76% of alarms in the low cognitive load
condition (irrespective of the perceptual load) compared to
46.21% in the high cognitive load condition. This strikingly
high rate of missed alerts cannot be attributed to sensorial
difficulties as only 2% of alerts were missed in the control
condition, in which the participant completed the tone detection
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task only (only 2 out of 20 participants missed any alerts).
In the high cognitive load condition, participants engaged in
greater mental effort by shifting their attention from one plane
to the other, and also had a higher workload due to the need
to calculate/modify heading and to change altitude parameters
more often. These factors increased the chance of experiencing
inattentional deafness.

Interestingly, perceptual load did not increase the missed
alarm rate. In order to disentangle cognitive from perceptual
load as much as possible, the high perceptual load did not
generate a supplementary cognitive effort as the number of
peripheral aircraft was increased while the number of associated
peripheral alerts remained constant. Indeed, as demonstrated
by Manning et al. (2001), the total conflict alert displayed
contribute to increase cognitive effort. Inattentional deafness
seems to be produced when an individual is engaged and
monopolized in a task rather than when the individual is gazing
more passively at visual information. One might argue that the
additional number of peripheral aircraft was simply ignored by
the participant which may explain this lack of effect of the high
perceptual load condition. However, the heatmap illustrating
the distribution of fixations clearly showed that fixations on
the peripheral aircraft increased in the high perceptual load
condition.

As demonstrated by the heatmaps and by a decline in the
detection rate of peripheral notifications, the high load condition
resulted in an important focus on the central aircraft, a behavior
that can be compared to attentional tunneling (Wickens and
Alexander, 2009; Régis et al., 2014). In general, fixation duration
is known to reflect the attention (Findlay and Gilchrist, 2003)
and mental effort (De Rivecourt et al., 2008) of an observer.
In this last study on simulated flights, De Rivecourt et al.
(2008) showed that momentary altitude changes can result in
increased mean fixation duration. Variation of the fixation
duration should be considered as task dependent: both shorter
and longer fixations may indicate an increase in workload,
and in particular shorter fixations indicated higher workload
and increased temporal pressure in our study. This strong
engagement of cognitive resources seemed to contribute to create
a momentarily ‘‘deafness’’ to auditory stimuli.

One might also argue that this high inattentional deafness
rate was due to an insufficient time window to report the alarm
(i.e., mean time window = 4.2 s). Yet, in all four experimental
conditions, mean reaction times were markedly below the mean
time available to respond between two tones (around 1 s), and
the reaction times did not significantly vary across the four
experimental conditions. Even if we cannot completely eliminate
the idea that a relatively small number of deviant tones were
not reported because participants reacted too late, these two
results tend to exclude this explanation as a major contributor
of variation in the inattentional deafness rate with increased
cognitive load. The analysis of d′ confirmed that the decline in
the number of reported alerts in the high cognitive load condition
is associated with a loss of sensitivity to deviant tones, and not
due to an effect on the ability to discriminate the two tones. In
this latter situation, the number of false alarms would have likely
increased.

Importantly the inattentional deafness rate of the present
study was considerably higher than in previous research using
Laby (Giraudet et al., 2015a), whereby the percentage of
unreported tones was 6% in the high cognitive load condition.
To further understand the factors that promote the occurrence
of inattentional deafness, the present study had employed two
modifications to create a more engaging and complex version
of the Laby task. First, there were two aircraft to guide in the
high cognitive load condition whereas only one was displayed
in the previous study. Second, in the current study participants
had to mentally calculate the various headings that the aircraft
should follow to turn and stay within the corridor, whereas
previously these were pre-calculated by the system and just
required selection from a drop-downmenu. These modifications
lead to a considerable rise in the incidence of inattentional
deafness. It must be noted that in both studies, the importance of
reporting the sounds was emphasized and that the time between
the two tones was identical in both. The mental calculation
of heading was undoubtedly a key factor in this increase of
inattentional deafness as even in the low load condition, in which
only one aircraft was displayed, the inattentional deafness rate
was greater than three times that observed in the previous study
in which the heading was given by the system.

Lower Pupil Diameter Predicts
Inattentional Deafness
The multivariate logistic regression confirmed that cognitive
load significantly predicted the occurrence of inattentional
deafness. Most importantly, the regression also revealed that
pupil diameter was lower during the fixation that preceded
the onset of the target tones in the ‘‘deaf ’’ trials. This result
is counterintuitive as inattentional deafness was indubitably
increased by the high cognitive load context, which is supposed
in turn to increase the pupil diameter (Kahneman and Beatty,
1966; Palinko et al., 2010; Peysakhovich et al., 2015). Yet,
as previously mentioned, Beatty (1982) showed that vigilance
decrement was associated to decreased amplitude of the phasic
task-evoked pupillary response during an auditory vigilance
task, while tonic or baseline pupillary diameter exhibited no
such relationship. In addition, a very recent study (Unsworth
and Robison, 2016) indicated that pupillary diameter can index
lapses of sustained attention. They showed that compared
to focused states, inattentive and mind-wandering states
are associated with lower pretrial baseline pupil responses
and that distracted states are associated with larger pretrial
baseline pupil diameter. These results support the notion that
pupil diameter is sensitive to different types of lapses of
attention, which is consistent with theories of locus coeruleus
norepinephrine (LC-NE) functioning. In our study, despite a
context of sustained high cognitive load, momentary lapses of
sustained attention may have occurred, which could explain
the relationship between lower phasic pupil diameter and
inattentional deafness occurrence. This assumption can be
also related to a past study that revealed that information
overload resulted in a leveling of the dilation pattern, which
suggested a momentary suspension of processing effort (Peavler,
1974).
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Our results demonstrating an effect of cognitive load but
not of perceptual load on inattentional deafness, are somewhat
contradictory to a study byMacdonald and Lavie (2011) in which
participants were engaged in a visual discrimination task of a
cross shape. In the low visual load condition, this discrimination
was made according to the line color and in the high visual-load
condition, participants had to discriminate subtle line length.
One brief pure tone was presented simultaneously at the final
trial onset. Failures to notice the presence of this tone reached
a rate of 79% in the high-visual-load condition, significantly
greater than in the low-load condition. We could postulate
that the type of perceptual load manipulated by the authors
likely generated an indirect increase in mental effort and task
engagement due to the comparison process of the line length.
For example, Fierro et al. (2000) showed that the line-length
comparison process engages the parietal cortex, indicating that
spatial cognition is also taxed in such a task. Also, the paradigm
used by Macdonald and Lavie (2011) was quite different as only
one pure sound was presented in the study while 10 target
tones per condition were presented in the current study. We
believe that our paradigm is closer to a real life context or
complex activity such as ATC in which the auditory environment
is composed of a mixture of different sounds that can be
repeated several times. As our paradigm can be related to ‘‘change
deafness’’ studies, for example in which a subtle change between
two voices is unnoticed (Vitevitch, 2003), a future study would
look to reproduce the same paradigm but with only deviant
tone.

Conclusion
The present study suggests that inattentional deafness is
promoted by cognitive load rather than by a ‘‘passive’’ perceptual
load that does not generate a supplementary amount of
work. A strong engagement of cognitive resources in a given
task can momentarily render one ‘‘deaf’’ to auditory stimuli.
In our study, the key factor that promoted inattentional
deafness was most likely the cognitive load generated by the
mental calculation of heading and by the numerous tasks

to conduct. This result confirmed previous studies showing
that inattentional deafness drastically increases in the context
of high cognitive load (Giraudet et al., 2015b), which can
have serious consequences in safety-critical occupations like
ATC. Finally, the mean pupil diameter of the period that just
preceded the rare sound onset was significantly lower in the
trials in which the participants did not react to the target
tones, likely showing a momentary lapse of sustained attention,
which in turn promoted the occurrence of inattentional
deafness.
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Human automation interaction (HAI) systems have thus far failed to live up to
expectations mainly because human users do not always interact with the automation
appropriately. Trust in automation (TiA) has been considered a central influence on
the way a human user interacts with an automation; if TiA is too high there will
be overuse, if TiA is too low there will be disuse. However, even though extensive
research into TiA has identified specific HAI behaviors, or trust outcomes, a unique
mapping between trust states and trust outcomes has yet to be clearly identified.
Interaction behaviors have been intensely studied in the domain of HAI and TiA and
this has led to a reframing of the issues of problems with HAI in terms of reliance
and compliance. We find the behaviorally defined terms reliance and compliance
to be useful in their functionality for application in real-world situations. However,
we note that once an inappropriate interaction behavior has occurred it is too late
to mitigate it. We therefore take a step back and look at the interaction decision
that precedes the behavior. We note that the decision neuroscience community has
revealed that decisions are fairly stereotyped processes accompanied by measurable
psychophysiological correlates. Two literatures were therefore reviewed. TiA literature
was extensively reviewed in order to understand the relationship between TiA and
trust outcomes, as well as to identify gaps in current knowledge. We note that an
interaction decision precedes an interaction behavior and believe that we can leverage
knowledge of the psychophysiological correlates of decisions to improve joint system
performance. As we believe that understanding the interaction decision will be critical to
the eventual mitigation of inappropriate interaction behavior, we reviewed the decision
making literature and provide a synopsis of the state of the art understanding of the
decision process from a decision neuroscience perspective. We forward hypotheses
based on this understanding that could shape a research path toward the ability to
mitigate interaction behavior in the real world.

Keywords: trust in automation, interaction decisions, decision making, human automation interaction,
neuroergonomics
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INTRODUCTION

The purpose of this review is to address a largely unexplored
aspect of human automation interaction (HAI); that is, the
human decision that leads to interaction behavior, traditionally
considered a manifestation of the user’s level of Trust in
Automation (TiA). The extension of this concept has been that,
if HAI is to be actively managed in joint human-automation
systems, one must calibrate the TiA of the user so that decisions
about interactions with automation are appropriate. Further, it
has been considered that if one could measure instantaneous
levels of TiA, inappropriate interaction decisions could be
predicted and mitigated. Research interest in HAI systems is
motivated in large part because of observations that even the
most advanced HAI systems have not yet fully realized the
ultimate vision of both safe and seamless integration of the
human into the system that would lead to improved task
performance. Specifically, successful applications of automation
within task spaces involving human operators have not yet been
realized without simultaneous definition of significant context-
specific design constraints that delineate human and automation
responsibilities. Such constraints may improve focused aspects
of performance, but also increase the risk in other ways,
particularly in circumstances and moments involving handoff of
control authority, and these constraints limit more generalized
application of HAI concepts and methods, particularly in terms
of improving joint system efficiency (Parasuraman and Riley,
1997; Dekker and Woods, 2002; Dzindolet et al., 2003; Jamieson
and Vicente, 2005; Parasuraman and Manzey, 2010).

Decades of human factors research have resulted in an
understanding of what factors affect TiA, but as of yet, it
remains unclear how specific levels of TiA translate into specific
human decisions regarding interaction with a given automation.
This knowledge gap may exist because human behavior and
joint system performance can be thought of as the result of
a combination of many factors only one of which is TiA
(Hancock et al., 2011; Schaefer et al., 2014). Research aimed
at predicting interaction behaviors has previously met with
some success, particularly with respect to decision aid systems
(Bliss et al., 1995; Meyer and Bitan, 2002; Meyer et al., 2014)
and automated driving aids (Kumagai et al., 2003; Gold et al.,
2015; Terai et al., 2015). We consider such results to suggest
that understanding the interaction behavior may be a more
fruitful and immediate route toward active, online mitigation of
problems thought to arise from mis-calibrated TiA. This idea
is developed with the appreciation that interaction behaviors
result from decisions about how and when to interact, and any
individual interaction decision may or may not be motivated by
a change in TiA.

Our specific proposal is that, as much as behavior is a
key to managing HAI, understanding the process of decision-
making in the context of HAI is critical for understanding
and predicting interaction behaviors. It is an important step
that is implicitly necessary for eventual online mitigation of
inappropriate interaction behavior. This is especially applicable
in our discussion inasmuch as we believe that TiA reflects
changing degrees of perceived risk and uncertainty and is an

instance of value based decision making in dynamic contexts.
We further suggest that physiological correlates of value based
decisions could be measured and leveraged to provide valuable
data that may increase the likelihood of predicting a consequent
interaction. To develop the connection between TiA and value
based decision making, the discussion begins by reviewing extant
human factors literature to demonstrate that, while TiA is one
of many important factors influencing HAI performance, it
is ultimately the interaction behavior that is of interest. It is
then argued that this behavior, if intentional, is the result of a
decision, and thus understanding the decision process leading to
the behavior may facilitate near- to medium-term solutions for
active mitigation strategies while understanding of the nuances
and complexities of TiA continues to evolve over the long
term. The discussion then turns towards a synthesis of selected
cognitive neuroscience literature that focuses particularly on
value based decision making. We conclude with future research
directions that would be necessary to enable decision based
monitoring and prediction of interaction behaviors and the
eventual development of active mitigations for the types of
HAI problems currently believed to be brought about by
mis-calibrated TiA.

THE IMPORTANCE OF TiA IN JOINT
SYSTEM PERFORMANCE

The term automation, or automated system, as used here
is best defined by Parasuraman et al. (2000) as a ‘‘machine
execution of functions’’. This definition includes automation
with capabilities as diverse as controlling a sophisticated cockpit
system or as simple as an automated coffee maker. Because
automation is not yet fully ‘‘intelligent’’ it has no agency
for adapting to unexpected circumstances, and therefore often
requires the supervision and/or occasional intervention of
humans. Part of this supervisory role requires that there be
HAIs, but these interactions need to be appropriate, or the
joint system performance will suffer. Decades of HAI system
research have indicated that appropriate interactions are the
result of decisions subsequent to calibrated TiA. An established
conceptual model of factors influencing HAI performance is
provided in Figure 1. As themodel suggests, TiA has traditionally
been considered to be the critical component driving human user
decisions about interactions such as intervening in an automated
task. Given the importance that TiA has been accorded to
overall joint system performance, in this section we provide
a brief review of important aspects of TiA and its dynamics.
We aim to highlight the complex relationship between TiA
and human user behavior, and implications arising from this
relationship that imply that even if moment to moment
levels of TiA were to be measured, it is unclear how such
information could be leveraged to predict an interaction
behavior.

Early theories about the construct of TiA were developed
from the psychological construct of interpersonal trust, and they
posited that calibrated TiA was critical for successful HAI system
performance (Sheridan, 1980; Sheridan and Hennessy, 1984).
There are aspects of interpersonal trust that are analogous to TiA,
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FIGURE 1 | A conceptual organization of trust and human user-automation interaction (Adapted from Hancock et al., 2011 with permission from Sage
Publishing). This article focuses on interaction decisions that are part of the overall human automation interaction (HAI).

in particular that there needs to be a sense of risk or vulnerability
on the part of the trustor for trust to develop (Lee and Moray,
1994; Muir, 1994; Corritore et al., 2003; Lee and See, 2004;
Evans and Krueger, 2011). However, it has been debated whether
the two constructs are homologous (Madhavan and Wiegmann,
2007), and so trust as it specifically applies to automation became
a central point of interest in human factors research aimed
at improving joint system performance (Lee and Moray, 1992;
Muir, 1994; Muir and Moray, 1996; Lee and See, 2004). Myriad
definitions of TiA imply that it is the result of a feeling of
trustworthiness towards the automation such that a human user
can depend on the automation to perform the task for which it
was designed. It is worth noting that if the consequence of the
task to the human user is small, if TiA develops at all, its level
becomes irrelevant because the outcome of the joint system fails
to be important. Therefore, much like interpersonal trust (Lee
andMoray, 1994; Muir, 1994), TiA develops in the face of a sense
of risk. In these situations, TiA then develops and shows dynamic
changes from the ongoing comparison of the expectations about
the automation’s behavior and observations by the human user
about the automation’s performance weighted heavily on the risk
borne by the human user (Sheridan and Hennessy, 1984; Muir,
1994; Muir and Moray, 1996).

Determinants and Dynamics of Trust in
Automation: Expectations and
Observations
One of the first explicit theories of TiA (Muir, 1994) stated that
appropriate levels of TiA would develop if three expectations
were met during the course of automation interaction. These

expectations are technical competence, persistence, and fiduciary
responsibility, but they play differential roles in TiA development
and dynamics throughout the course of automation use. For
example, perceptions of competence might be more important
in the early stages of automation use than later in time. The
expectation of technical competence is the expectation that
the automation will accurately and successfully perform the
functions for which it was designed. Persistence, perhaps here
better conceived of as predictability, relates to the issue of
reliability in that an automation that performs in a particular
manner now will be expected to perform in a same or similar
manner when it encounters similar circumstances in the future.
Finally, fiduciary responsibility addresses the notion that a
given human user will hold expectations of an automation of
a particular type that will impact role allocation. That is, the
human user will expect that the automation will necessarily be
responsible for its designed functions as they understand them
and thus fewer personal resources need to be allocated to carrying
out those functions. The importance of these expectations related
to TiA dynamics differ depending on the stage of the interaction
with the automation.

When first presented with an automated system there is
limited information available for the human user to observe,
and thus little with which to evaluate the trustworthiness of
the automation. Some key elements that significantly affect
early levels of TiA include initial expectations borne from
biases toward automations in general, and initial observations
about the design of the automation (Muir and Moray, 1996;
Nass et al., 1996; Dzindolet et al., 2002; Lee and See, 2004;
Parasuraman and Miller, 2004; Miller, 2005; Merritt and Ilgen,
2008; Merritt, 2011; Merritt et al., 2012; Pak et al., 2012). After
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having been introduced to an automation, human users tend
to explore different strategies for subsequent interaction (Lee
and Moray, 1992) and thus learn more about the automation’s
behavior. This experimentation arguably helps the human user
gauge competence, which emerges as one of the most important
predictors of TiA at this early stage. However, it is worth
noting that for various reasons, human users are notoriously
poor at making accurate judgments of competence (Sheridan
and Hennessy, 1984; Lee and Moray, 1992; Dzindolet et al.,
2002, 2003; Madhavan et al., 2006; Verberne et al., 2012; Merritt
et al., 2014). Once automation competence has been judged,
whether correct or not, the most important factor driving levels
of TiA is persistence or predictability of performance over
time (Lee and Moray, 1992). Persistence of performance is
important enough that as long as errors are predictable and the
automation error rate is at a consistent rate of approximately
30% or less, most human users will decide to continue to use
and benefit from the automation (Parasuraman et al., 2000;
Wickens and Dixon, 2007; Wang et al., 2009). As levels of
TiA dynamically change throughout the course of observations
about the automation’s behavior, theory posits that interaction
decisions, and consequent behaviors, should reflect the extant
level of TiA. If there is too much or too little TiA, as it
goes, a human user may decide to overuse or underuse the
automation, respectively. Specific patterns of behaviors resulting
from decisions about how to interact with the automation
have been well documented and are commonly referred to as
trust outcomes as they are believed to directly reflect certain
levels of TiA.

Trust Outcomes and their Relationship
to TiA
The trust outcomes most commonly discussed are misuse and
disuse and are described in detail by Parasuraman and Riley
(1997). Misuse refers to instances when the automation is
used without undo skepticism, tending to result in overuse
(Parasuraman and Riley, 1997; Bahner et al., 2008; Parasuraman
and Manzey, 2010). Misuse has two related causes; automation
bias and complacency (Manzey et al., 2006; Parasuraman and
Manzey, 2010). They are related in that they both result in
a lack of monitoring where lack of attention plays a central
role (Parasuraman and Manzey, 2010). Automation bias arises
through the mere presence of an automated system, possibly
because humans demonstrate a tendency to choose the route of
least cognitive effort, making it easier, or at least preferable, to
accept that feedback from an automation as correct (Dzindolet
et al., 1999, 2001; Skitka et al., 1999, 2000; Wang et al., 2008;
Parasuraman and Manzey, 2010; Goddard et al., 2014; Mosier
and Skitka, 1996). Complacency, less well understood, can
be said to occur when monitoring is less than optimal and
joint system performance suffers (Parasuraman and Manzey,
2010). However, both automation bias and complacency tend
to increase in cases of high workload and high consequence
environments wherein users often make conscious decisions to
rely on even imperfect automation (Dixon et al., 2007; Wickens
and Dixon, 2007). Disuse describes a continuum that spans from
the user underutilizing the automation to entirely abandoning

the automation in favor of a manual mode. Disuse tends to
occur if a human user has a high expectation of automation
performance and then observes unexpected errors or has more
self confidence in her ability to perform the task than confidence
in the efficacy of the automation for the same task (Lee and
Moray, 1994; Parasuraman and Riley, 1997; Moray et al., 2000;
Dzindolet et al., 2003).

Although trust outcomes have been well defined, a synthesis
of the literature, and recent experimental evidence (Wiczorek
and Manzey, 2010; Chancey et al., 2015) indicate a far more
complex relationship between TiA and trust outcomes than is
implied in the above discussion, and this implies that predicting
interactions based on extant TiA levels is problematic. Such
complex interactions involve perceived risk, self-confidence,
workload, and even personality type (Lee and Moray, 1994;
Muir, 1994; Parasuraman and Riley, 1997; Lee and See, 2004;
Merritt and Ilgen, 2008; Hancock et al., 2011; Schaefer et al.,
2012; Merritt et al., 2014). For instance, human users have
been documented as reporting a high level of TiA and then,
paradoxically choosing amanual operationmode, demonstrating
disuse (Lee and Moray, 1992). Conversely, even when low
TiA has been reported, human users may misuse even a
poorly competent automation, particularly under high workload
conditions (Daly, 2002; Biros et al., 2004). Clearly levels of TiA
do not map uniquely onto trust outcomes, regardless of how they
are represented (i.e., attention, intervention rate, etc.). Therefore,
they are not predictive of the way a human user will decide
to interact with an automation, limiting the use of measuring
TiA for real world applications to improve HAI. We suggest
that this is because TiA is far more complex than may be
useful for those withmore immediate concerns regarding actively
managing HAI. However, it is important to note that when TiA
is studied it is the interaction behavior that is of interest most
often. Therefore, regardless of the manageability of trust, what
might be learned if we focus more simply and exclusively on the
behavior?

TiA as Predictable Behavior
The present discussion is not the first to offer that a shift in
focus from trust to behavior is well justified. In fact, a number
of researchers in this domain have re-framed the problem
space of TiA into one of reliance and compliance, which are
defined exclusively in terms of observable behavior, and are
not intended to imply specific psychological cause such as
trust (Meyer, 2001, 2004; Parasuraman et al., 2008; Rice, 2009;
Meyer et al., 2014). Indeed, there is a non-unique mapping
of reliance and compliance to traditional trust outcomes such
that an observation of inappropriate amounts of either may
alternately signal disuse or misuse and possibly motivate
conflicting interpretations of TiA. We find these behaviorally
defined terms to be useful in their functionality for application in
real world situations. That is, objectively defined and observable
behaviors are especially valuable for the purposes of modeling
and prediction because they obviate the need for drawing
inferences to and making assumptions about manifestations of
more subjectively defined constructs, such as TiA, automation
bias or complacency that are difficult to measure objectively and
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thus unsuitable for use in attempts at active optimization and/or
mitigation.

Reliance is the tendency of the human user to accept the
lack of an alarm, alert, warning, or prompt as a true reflection
of the state of the world (Lee and Moray, 1994; Singh et al.,
1997; Parasuraman et al., 2000; Yeh and Wickens, 2000; Moray,
2003; Dixon et al., 2006). That is, in the absence of an alarm or
warning, the human user accepts, often tacitly, that all is well
and there is no reason for possible intervention. Compliance, on
the other hand, is defined when the user responds to, putatively
agrees with, and ultimately takes the action specified by an
alarm or recommendation from the automation (Meyer, 2001,
2004). Though reliance and compliance are often discussed in
terms of optimal behavior, too much of either in the wrong
context is detrimental to system performance. For instance,
if an alarm is absent and the human user assumes that no
circumstances warranting an alarm exist and thus fails tomonitor
the automation over significant time, he or she is at risk of
over-reliance and the consequences thereof. Conversely, over-
compliance occurs when the human accepts all suggestions
from the automation (when present) without confirming their
validity.

Beyond observation of general behavioral patterns, the greater
benefit of defining compliance and reliance behaviors has been in
providing an avenue towards greater precision in understanding
the factors that affect automation use during HAI, which might
eventually lead to prediction of an interaction. For instance, some
have observed that reliance and compliance are differentially
affected by error type, i.e., false alarms vs. misses in target
detection tasks (Meyer, 2004; Rice and Geels, 2010;Wiczorek and
Manzey, 2014), and by the predictive value of the alarm (Meyer
and Bitan, 2002; Manzey et al., 2014). If a human user observes
frequent failures to trigger alarms, the frequency of monitoring
the automation will increase, thereby reducing reliance on the
automated agent (Masalonis and Parasuraman, 1999; Bagheri
and Jamieson, 2004; Meyer, 2004; Madhavan and Wiegmann,
2007; Parasuraman and Manzey, 2010; Geels-Blair et al., 2013).
Compliance, however, is degraded by higher rates of false alarms.
In particular, when higher rates of false alarms are observed,
users tend to consume critical time and attentional resources to
verify alarms before choosing a response. Further progress in this
line of inquiry has resulted in more general characterization of
how interaction behaviors change with the positive and negative
predictive value of an alarm. Positive predictive value is derived
from a Bayesian calculation of the likely existence of a hazard
given an alarm and, likewise, the probability of an alarm given
no existing hazard (Meyer et al., 2014). Negative predictive value
is calculated similarly, but in the absence of an alarm. Therefore,
positive predictive value decreases as false alarm rate goes up and
negative predictive value decreases with more frequent misses
(no alarm in the presence of a hazard). Interaction behavior
is thus differentially affected by changing positive vs. negative
predictive value. Positive predictive value has been shown to
have strong effects on reliance, but only for values less than 0.75
(Meyer et al., 2014), where values below this threshold have been
associated with excessive time spent monitoring the automation.
Research in HAI domains has thus befitted considerably from

the use of these narrowly and objectively defined behavioral
terms.

We advocate here for shifting research towards more clearly
defined behaviors and the factors that affect them because of
how this shift creates important opportunities for systematic
research into HAI. The domain of application for such a
shifted focus would include contexts where TiA may be
involved, at least inasmuch as TiA reflects assessments of the
relative value of specific behavioral options defined in terms of
probable risk versus reward. We argue that such behavior-based
understandings are important for progress on multiple levels
from phenomenology to predictive modeling. The extant work
discussed above has provided an essential corpus of knowledge
regarding the relationship between automation performance
characteristics (i.e., error rate, type, and predictive value) and
human user interaction behaviors. However, we also suggest that
in order to be useful down the road for real-world mitigation
of inappropriate interactions, this shift from trust to behavior
does not go quite far enough for two important reasons. First,
to mitigate a potentially detrimental interaction behavior in
a dynamic context, prediction is necessary. This is because
a behavior that has already occurred cannot be changed and
the consequences are likely to be too immediate to offset in
post hoc fashion. Moreover, the predictive power required must
occur on a time-scale that allows a reasonable opportunity
to enact a mitigation when an inappropriate behavior is
expected. Second, the current understanding of reliance and
compliance is tied to automation design; an automation that
frequently misses events reduces reliance, and an automation
that frequently produces false alarms reduces compliance. This
understanding, then, usefully provides an improved framework
for HAI, but has yet to account for variability in individual
instances of HAI. Therefore, the predictive power of the current
understanding of interaction behaviors based on population
averages remains limited to overall design strategies whereas
we are interested in building towards eventual prediction and
mitigation of reliance and compliance at the level of individual
instances of interaction behavior. In order to improve the
ability to predict an interaction behavior we thus believe it
is necessary to consider not only the effects of automation
design on interaction behaviors such as compliance and reliance,
but also the individual internal phenomena that precedes the
behavior.

INTERACTION BEHAVIOR REFRAMED AS
A DECISION TO INTERACT WITH AN
AUTOMATION

Before an intentional behavior occurs, the human user must
make a decision as to which among a limited array of options
will be selected. Here we argue that research concerned with
improvingHAIwould benefit greatly from studying the decisions
that precede interaction behaviors. Such an approach satisfies
the need for focus on individual interactions in a manner
that affords prediction on a time-scale that is useful for active
mitigation. We define such decisions as interaction decisions,
given as specific to the intention to interact with an automation.
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While TiA has often been considered to motivate interaction
decisions, the richness of the decision process itself, as well
as accompanying stereotypical psychophysiological indicators
thereof, has not been thoroughly investigated as a source
of information that could be applied to the prediction of a
consequent interaction behavior. Our starting point in this
pursuit is to understand the underlying psychological and
physiological processes of decision making, with a particular
focus on value based decision making. This understanding can
provide a cornerstone for the advancement of scientifically based
hypotheses about how interaction behaviors may eventually
be predicted for the sake of active mitigation. Predicting
decision outcomes, or the interaction behavior in a real-
world HAI context, is of course not trivial, but laboratory-
based research in decision neuroscience has established decision
making as a reasonably stereotyped process with clear behavioral
and physiological precursors. Further, the ability to predict
decision outcomes has been pursued by both the cognitive
neuroscience (Soon et al., 2008; Haynes, 2011; Perez et al.,
2015) and brain computer interface (Musallam et al., 2004)
communities. Indeed, attempts at predicting some types of
decision outcome behaviors have already met with success in
a laboratory environment, possibly because the specifics of a
decision process in the brain begin even before there is conscious
awareness of the impending decision (Soon et al., 2008, 2013;
Haynes, 2011; Perez et al., 2015). Some of these studies have
been criticized because there lacks a sense of risk or value to
the decision maker in a controlled experiment, and therefore,
the assumption is that the decision outcomes that are being
predicted are trivial (Gold and Shadlen, 2007; Lavazza and De
Caro, 2010).

The lack of risk, value, or reward in these controlled
laboratory environments is in contrast to interaction decisions
that inherently involve some type of personal risk or reward.
For example, over relying on an automation can compromise
joint system performance, and therefore causes degradations
in joint system performance. Thus, we are chiefly concerned
with decisions that are based on expected value and risk, or
value based decisions (Rangel et al., 2008; Wallis, 2012). Value
based decisions are particularly relevant to the HAI context
because it is often required that a human user continuously
weigh the expected personal value of allowing the automation
to complete the task versus performing it manually or, rather,
whether to comply with the recommendation of an automated
system. Importantly, this assessment and subsequent judgment
of value to the user must be made against the backdrop of risk
that the decision may compromise joint system performance.
Thus, through the common elements of risk, reward, and
expected value, we believe interaction decisions during HAI
to be an instance of value based decision making. We
believe that understanding the value based decision process
is important to improving HAI and, therefore, we briefly
discuss results of value based decision making research as
it relates to HAI in order to support hypotheses forwarded
in the discussion, aimed at establishing a research path
that will allow the eventual prediction of HAI interaction
behaviors.

The Importance of Considering the
Decision Process
An important argument in favor of studying the decision process
in order to improve HAI is that significant efforts in cognitive
neuroscience have revealed decisionmaking as fairly stereotyped,
and therefore, a potentially predictable process. Moreover, this
body of research has identified a number of psychophysiological
correlates that unfold in advance of, and during a decision.
Critically, these correlates are measurable, and therefore useful
for understanding the decision process, at least in laboratory
settings. Some have observed that these correlates unfold in
predictable ways through defined cognitive stages, and therefore
measuring them has potential use for active mitigations of
inappropriate interaction decisions and behavior. This approach
is fundamentally different than attempting to measure and
calibrate TiA because the psychophysiological correlates of a
decision are measurable whereas the construct of TiA is yet to
be defined in a way that is equally useful for active monitoring.
In general, many cognitive neuroscientists model decisions
as comprising three cognitive stages (Fellows, 2004; Bogacz,
2007). However, five cognitive processes, some analogous to
stages of the cognitive models of general decisions, have been
described in value based decision making (Rangel et al., 2008)
and are therefore relevant to our discussion of interaction
decisions. These processes, which are not discrete stages per se,
are: (1) representation of the problem, i.e., identification of
alternative choices, and of internal and external states that
affect the value of the choices; (2) evaluation of gathered
evidence that allows the assignment of a value to the alternatives;
(3) comparison of these values in order to make a decision;
(4) accumulation of the comparative value for each alternative
and making the decision; and (5) generation of prediction
errors that provide feedback in order for learning to occur. The
psychophysiological processes that unfold within the first four
processes will be discussed as they relate to HAI contexts such
as risk and reward. The fifth process, generating feedback on the
decision has been studied in the context of learning, and may be
useful for later development of adaptive mitigation strategies, but
is beyond the scope of the current review (Nieuwenhuis et al.,
2005; Christie and Tata, 2009; Cohen et al., 2011; van de Vijver
et al., 2011). We note that we discuss these processes sequentially
mainly for organizational purposes, however, during the decision
process they may overlap or even occur in parallel (Rangel et al.,
2008).

The Value Based Decision Process
In order for the need to identify alternatives to arise, there
must be some recognition of the need for a decision; in a
sense it is the motivation to perform a task (Gold and Shadlen,
2007). Decisions must be initiated by either salient external or
internal stimuli. These stimuli will often produce an orienting
response (Sokolov et al., 2002; Glimcher and Rustichini, 2004;
Delgado et al., 2005), characterized in humans by a measurable
increase in tonic skin conductance (SC) levels and a decrease
in heart rate variability (Figner and Murphy, 2011). In an
HAI domain, relevant stimuli typically include those specifying
alerts from the automation, acute changes in environment,
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or internal feelings that the current behavior is inappropriate
(typically seen as an error-related potential in the brain or a
gradual shift in peripheral physiology). Once the need for a
decision has been established, however, decision alternatives are
identified. As alternatives are identified, in the case of interaction
decisions, the human user will also identify, if not consciously,
a representation of internal and external states (Rangel et al.,
2008). These representations play an important part during
the process of assigning values to individual alternatives. For
example, a human user is more likely to take control from the
automation if they detect that the automation is malfunctioning
and they perceive an associated risk. The neural basis of this
early stage in the decision process is not well understood. For
example, it is unclear how the brain decides which alternatives
should be considered, and if there is a functional limit to the
number that can be assessed at one time (Rangel et al., 2008).
Nevertheless, such questions are important for determining how
to leverage physiological indicators into models of decision
making during HAI.

Once the possible alternatives are identified evidence for or
against each alternative must be evaluated in order to make
an optimal decision. In the case of interaction decisions, which
due to the presence of risk are analogous to value based
decisions, it has been hypothesized by some (Rangel et al., 2008;
Glimcher and Fehr, 2013) Reading hidden intentions in the
human brain cognitive valuation systems that the brain might
use; the Pavlovian, Habitual, and Goal directed. We believe
the goal directed system to be most relevant to our discussion
because the goal directed system assigns values to potential
actions by calculating action-outcome associations from previous
experience and comparing this value to the perceived rewards
associated with possible outcomes of the decision (Rangel et al.,
2008). In the goal directed valuation system the value assigned
to a piece of evidence is equivalent to the potential value of the
alternative it supports, with the value assigned to an alternative
being equal to the expected reward of the action. In the context
of HAI, an important research question would be whether the
probability of success is greater by relying on the automation or
not and, moreover, how that probability scales with perceived
risk to determine the direction of a given interaction decision.

When a person valuates a piece of evidence they will do
so by observing the relevant data (e.g., visual scanning, sound
or other stimulus), consulting their memory, and integrating
this against a backdrop of expectations (Mulder et al., 2014).
In the case of visual evidence, gaze fixation is thought to support
evidence evaluation such that evidence about the value of an
alternative is sampled at each fixation (Krajbich et al., 2010;
Krajbich and Rangel, 2011). Memory consultation causes a
person to compare past decision outcomes with the available
alternatives. The brain creates a prediction error that would
represent the difference between the expected value of choosing
current decision alternatives from the value that has been
experienced in the past by choosing alternatives that are similar
in nature (Hare et al., 2008). For example, consider a human
user who has previously experienced aberrant behavior from
an automation, but there has been no decrement in joint
system performance, and joint system performance continues

to remain better than what would be expected from only one
agent performing the task. Even in risky environments such
as in the battlefield, or during a search and rescue operation,
the experienced user is more likely to rely on an automation
(Lyons and Stokes, 2012) than a user who has not experienced
the aberrant behavior because the experienced user has realized
the value in relying on the automation despite the probability
of an error.

At a cellular level, data have suggested that the cognitive
evaluation of evidence is supported by neural ‘‘evaluators’’
that store dynamic estimates of which decision alternative is
supported by the evidence. For instance, studies using fMRI
in risk reward scenarios have identified two candidate neural
evaluators; the amygdala and ventral striatum. A reward based
fMRI study indicated that the amygdala evaluates the cost or
risk of acting on an alternative (Yacubian et al., 2006; Basten
et al., 2010). In the same fMRI study the ventral striatum was
implicated in the formation of representations of the expected
value or reward of an alternative (Yacubian et al., 2006; Kable and
Glimcher, 2007; Rangel et al., 2008; Basten et al., 2010; Lim et al.,
2011). Other authors, however, have found that in addition to the
amygdala and the ventral striatum that the lateral orbitofrontal
cortex and the medial orbital frontal cortex also act as neural
evaluators for risk and reward, respectively (Hare et al., 2008;
Rangel et al., 2008; Rangel and Hare, 2010). The neural substrates
that have been observed support value based decision making
processes are detailed in Table 1.

The neural evaluators, then, form representations of the
risks and rewards for each alternative; the benefit of relying
or complying with an automation, as opposed to choosing to
complete the task manually. As the risks and rewards of a
potential interaction behavior are processed by the amygdala
and ventral striatum, the value of these representations must
be assessed relative to each other; they must be compared.
Neural correlates of this third process involved in value based
decision making, comparison of the values assigned to the
evidence, have been observed in fMRI studies. That is, value
based comparison has been suggested as supported by activation
in the ventral medial prefrontal cortex (vmPFC; Chib et al.,
2009; Gläscher et al., 2009; Basten et al., 2010), whereas
the ‘‘comparator’’ function in perceptual decisions has been
associated with increased activity in the dorsolateral prefrontal
cortex (dlPFC; Basten et al., 2010; Philiastides et al., 2011).
While the evidence comparison process unfolds, some have
hypothesized that the comparative value, also known as the
decision variable, is accumulated in the lateral intraparietal
cortex (LIP) until a decision threshold is reached, bringing about
a decision (Platt and Glimcher, 1999; Kiani and Shadlen, 2009;
Mulder et al., 2014). Evidence to support this hypothesis has
mainly been shown in primate studies of single cell recordings
during cued saccade trials (Platt and Glimcher, 1999; Platt,
2002). However, there has been evidence from fMRI studies
that the human parietal cortex is also involved in accumulating
the decision variable (Ploran et al., 2007; Heekeren et al.,
2008). It is interesting to note that the temporal integration of
activity in the frontal-parietal regions, which are considered to
be involved in comparing and accumulating compared value
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TABLE 1 | Neural substrates and their putative role in decision making.

Neural substrate Role in decision making Reference

Amygdala Processes/computes the value of negative stimuli Yacubian et al. (2006) and Basten et al. (2010)

Ventral striatum Processes/computes the value of positive stimuli Yacubian et al. (2006), Basten et al. (2010)
and Lim et al. (2011)

Ventral medial prefrontal cortex (vmPFC) Calculates the difference of value signals from
amygdala and ventral striatum in value based decisions

Basten et al. (2010) and Philiastides et al. (2011)

Dorsolateral prefrontal cortex (dlPFC) Calculates the difference of signals from amygdala
and ventral striatum in perceptual decisions

Basten et al. (2010) and Philiastides et al. (2011)

Lateral intraparietal cortex (LIP) Accumulates and integrates the value of evidence
processed by the vmPFC (evidence largely
from monkeys)

Platt and Glimcher (1999); Platt (2002); Basten
et al. (2010) and Rorie et al. (2010)

A cortical area involved in gaze fixation, saccade,
and attention, underlying evidence accumulation

Coe et al. (2002) and Goldberg et al. (2006)

signals, has been observed as preceeding the conscious decision
to act (Gold and Shadlen, 2007; Soon et al., 2013; Perez et al.,
2015).

The putative involvement of the parietal cortex in decision
making is noteworthy because of its central role in the process.
For example, gaze fixation, critical for evidence evaluation (Poole
and Ball, 2006) in visually based decisions, is controlled by the
LIP in monkeys (Coe et al., 2002). This region forms a ‘‘salience
map’’ for the oculomotor system to saccade to a target, or
maintain gaze fixation on a target (Goldberg et al., 2006). The
LIP then, not only plays a role in accumulating the comparative
value of the evidence as discussed above, but is critical for its
initial evaluation. Brain computer interface research has also
found that the medial intraparietal cortex in monkeys forms
representations of the value of an alternative that has been
encoded in the vmPFC (Musallam et al., 2004), such that the
intent of the monkey to choose one alternative over an other
can be decoded from intracellular electrodes. Although much
evidence of the importance of the parietal cortex during decision
making, and especially value based decision making, has come
from primate research, there is evidence that analogs in the
human parietal cortex are also central to decisionmaking (Ploran
et al., 2007; Heekeren et al., 2008).

Despite the hypothesized causal role of integrated frontal-
parietal activity in the conscious decision to act, there are
no measurable psychophysiological variables that allow an
accurate determination of the exact time that a decision
threshold is reached. However, psychophysiological correlates
occurring hundreds of milliseconds before a conscious decision
involving risk and reward (Cohen et al., 2009), inherent in
value based decision making, have been identified. For instance,
the readiness potential, a slow negativity in scalp recording of
cortical activity precedes fully endogenous decisions by a few
hundred milliseconds (Libet, 1993). Even more proximal to the
decision spectral correlates have been observed. In a paradigm
involving playing a competitive game against a computer,
spectral decomposition of scalp-recorded EEG led to the finding
that the decision process was accompanied by a general shift
in power between lower bands (delta, 1–4 Hz and theta, 5–7
Hz) to higher frequency bands (alpha, 8–12 Hz and beta,

13–35 Hz), as well as a broadband increase in cross-trial phase
coherence at about 220 ms post stimulus (Cohen and Donner,
2013). Similar indications were found during complex real world
choice tasks and a two-choice forced-decision paradigm. In
these cases, significant correlations of increased power were
seen in delta, theta, beta, and gamma (36 + Hz) bands of EEG
activity approximately 250–500 ms post-stimulus (Guggisberg
et al., 2007; Davis et al., 2011). In decisions involving risk, risk
is represented by an asymmetry in the alpha band such that
there is an increased alpha power in the right frontal region
(Gianotti et al., 2009). These spectral correlates of value based
decision making are measurable in real time and available for
current application outside a laboratory, which is encouraging
in the context of improving HAI. However, these scalp recorded
spectral correlates occur only hundreds of milliseconds before an
interaction decision and therefore have limited use because they
are so temporally proximal to the behavior itself.

The proximity of these value based decision correlates to
the actual decision may be discouraging in the context of
predicting and mitigating interaction behavior. Nonetheless,
research efforts in decision neuroscience and in brain computer
interface have found in fMRI studies that the correlates of an
outcome of a decision to move at a time chosen by the subject
are measurable up to 7 s before the conscious awareness of
the decision is reached. Moreover, through analysis of these
correlates, the intended goal of the decision can be decoded
before conscious awareness of it arises (Haynes et al., 2007; Soon
et al., 2008, 2013; Haynes, 2011; Perez et al., 2015). In two fMRI
studies (Haynes, 2011; Soon et al., 2013) subjects were asked
to decide at will when to either press a button on their left or
right side, or add or multiply a set of numbers, and then to
report when they were consciously aware of the decision. Spatial
pattern analysis of the blood oxygen level dependent signal, a
measure of neural activation in fMRI studies, revealed that the
frontal polar cortex appeared to encode the intentions of the
subjects before they reported having made the decision. In a
driving study using implanted EEG electrodes in human epilepsy
patients a modulation of gamma power in the posterior lateral
cortex predicted whether the subjects would turn left or right
at an intersection before they consciously made the decision
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(Perez et al., 2015). These studies made use of technology such
as fMRI that as yet is not available for real world applications,
unlike EEG, because of the need for the subject to lie still
in the large, importable fMRI equipment. Further, although
EEG is portable, it cannot directly measure activity in deep
cortical and subcortical areas, and these are exactly the areas
that showed activity prior to a conscious decision. However, the
results are encouraging for making use of the interaction decision
process to improve HAI and, moreover, can be leveraged into
research aimed at developing models that capture relations
between cortical and subcortical brain activations during value
based decision making. Identification of such relations is an
important avenue for future research aimed at active mitigation
during HAI.

Indeed, decision neuroscience and brain computer
interface research have facilitated the development of precise
understandings of decision making that could facilitate the
development of methods for identifying an interaction
decision within the contextual space of HAI. Efforts in
decision neuroscience as well as in more applied domains,
such as neuroergonomics, have shown that there are clear and
measurable behavioral and psychophysiological correlates (fMRI
activation patterns, EEG, SC, gaze fixation, heart rate, etc.)
of component processes that are antecedent to the decision.
In addition, decision neuroscience has begun to provide an
understanding of the underlying cortical and sub-cortical
processes involved in decision making. While many of these
processes have as yet only been identified by fMRI, their
understanding will allow meaningful hypotheses to be advanced
about measures that can be recorded in real time.

DISCUSSION

HAI systems have as yet to live up to their expectations, and
one critical reason is that human users often make inappropriate
decisions about how and when to interact with an automation.
These interaction decisions have traditionally been considered
to be motivated by extant levels of TiA. Therefore, if TiA
can be measured, it is expected that it can be managed
and inappropriate interaction behaviors could be mitigated.
Given that substantive theory, it was appreciated that TiA is
an important construct that undoubtedly affects human user
interaction behavior, and hence we reviewed and synthesized
the TiA literature. From that exercise, we observed that the
relationship between TiA and human behavior is complex
and not fully understood. Further, relevant to immediate real
world applications for improving HAI system performance, TiA
cannot be readily measured, and even if it were measurable
in real time it is unclear how certain levels of TiA map onto
specific interaction behaviors. By contrast, specific behaviors
such as reliance and compliance are readily observed and
measured in real time and do not have the confounding effect of
inferring psychological causality. Such cause-agnostic variables
are particularly attractive in HAI research aimed at defining
concrete methods for improving joint system performance, both
in terms of initial system design as well as for ultimate real-time
applications.

Reframing the problem space of HAI and TiA as a problem
of behavior, rather than of TiA, has been successful in
allowing general predictions of interaction behavior based on
knowledge of system design given specific environmental and
internal conditions such as increased risk or increased workload,
respectively. For example, knowing that an automation is prone
to false alarms will allow the general prediction that a human user
will often fail to comply with alerts. This understanding allows a
system designer to set thresholds for alarms that are appropriate
to intended use. For example, in high risk environments it
may be better to set an alarm threshold low so that critical
cases are not missed. This predictive ability has been significant
in designing systems, but the knowledge is unlikely to allow
active mitigation of interaction behavior on an individual basis
in real time application, an implicit goal of the aims of HAI
focused research. This is the case for two important reasons.
First, we argue that focusing attention on interaction behavior
does not go far enough because once the behavior has occurred
it is too late to mitigate it in an post hoc fashion in a timely
manner. Second, behaviorally based predictions for automation
use are by definition general because the predictive ability has
been achieved through extensive observation of how human
user behavior is affected by system design. The behaviorally
based predictions, however, do not take into account individual
variation and dynamic changes in environment. Therefore, they
are unlikely to apply to individuals on a case by case basis. For
example, it has been shown that a human user may continue
to rely on an automation that persistently commits errors of
omission, or ‘‘misses’’, due to automation independent reasons
such as increasing workload. Therefore, an approach is needed
that considers individual cognitive and behavioral aspects, as well
as ensuring that there is time to not only mitigate behavior, but
allow the prediction of the likelihood of an interaction behavior.

We note that antecedent to the interaction behavior is
a decision, which has been characterized by the decision
neuroscience community as fairly stereotyped and accompanied
by measurable psychophysiological correlates. These properties
of decisions suggest predictability, and importantly, as decisions
are individual in nature, these properties also imply the
likelihood of behavioral prediction at an individual level.We thus
believe that understanding the interaction decision is a useful
approach to improving HAI, and that with future research that
the decision correlates can be leveraged to predict the likelihood
of an individual’s impending interaction behavior. This approach
not only satisfies the problems just discussed, but takes into
consideration the human and environmental variability that is
found in real world situations in ways that research focused
on reliance and compliance has yet to achieve. While it is true
that many of the psychophysiological correlates of value based
decisions are only measurable with fMRI, we consider that
the discoveries afforded by fMRI studies provide a solid basis
to form specific scientific hypotheses to guide future research
aimed at understanding the interaction decision and consequent
interaction behavior. We understand that the fruit of decision
neuroscience research might be applied to any domain where it
would be advantageous for one decision outcome over another.
However, our domain of interest is HAI, and therefore, our focus
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is in leveraging what is known about value based decisionmaking
to understand interaction decisions in the hopes of eventually
predicting the likelihood of one decision over another. This
goal will require future research, and we begin by forwarding
hypotheses to guide research efforts.

One of our first assumptions in this review is that interaction
decisions are in fact a case of value based decisions, and that
assumption guides our first hypothesis; interaction decisions
are a special instance of value based decisions, and therefore
the neural correlates accompanying value based decisions will
be observable during interaction decisions. One of the first
avenues of research is to demonstrate that value based decisions
and interaction decisions are analogous in that the sense of risk
and reward are inherent in both. This could be achieved by
measuring bilateral frontal alpha power during an interaction
decision to look for the characteristic asymmetry found in
situations entailing risk. Further research to support this
hypothesis should necessarily include observing the predicted
vmPFC-parietal activation found in value based decisionmaking,
during an interaction decision. The strength of this evidence, if
found, could be enhanced if concurrent with the parietal-vmPFC
activation there is significantly less activation of the dlPFC.

If our first hypothesis is confirmed, we can begin to
make more specific hypotheses. Our second hypothesis relates
to the fact that there is little understanding of the first
stage of value based decision making, the observation of
alternatives and representation of internal and external states.
Understanding this stage could be particularly important for
mitigating inappropriate behavior because it is also accompanied
by physiological changes (SC, decreased heart rate variability),
which are readily observed. We believe that future research
should be aimed at revealing neural correlates of this stage.
We hypothesize that activity in the frontal polar cortex and
in areas of the parietal cortex during, or just prior to a
conscious decision to interact with an automation will occur
along with or just prior to the physiological correlates. Evidence
previously discussed, that activation patterns in the area of
the frontal polar cortex in humans, and in the area of the
mid-parietal in monkeys, can be decoded to reveal behavioral
intention supports this hypothesis. Should this hypothesis be
confirmed, it would add significant evidence that the approach
of focusing on interaction decisions will provide an improved
method to mitigate interaction behaviors on an individual
level. For example, consider the fact that users tend to rely
on an automation in the face of risk as demonstrated by
traditional behavioral research. However, if this interaction
behavior is inappropriate, but the decision to rely can be decoded,
there is a chance to mitigate the inappropriate interaction
behavior.

While not hypotheses, we believe that future research should
also be focused on understanding the psychophysiological basis
for, or correlates of, the interaction behaviors of relying or
complying on an automation. One first step should include
finding the psychophysiological correlates of the demonstrated
tendencies of users to rely or comply with automations in
circumstances such as workload and risk. For example, what
psychophysiological processes drive a human user to perhaps

over comply with an automation in conditions of increased
cognitive workload, and are there measurable correlates that
would suggest that this is the likely interaction behavior?
Conversely, what psychophysiological correlates can be found,
apart from alpha asymmetry, that appear to suggest the human
user is perceiving increased risk, and therefore more likely to
over rely on an automation? In order to mitigate disuse, potential
psychophysiological correlates, such as particular levels of heart
rate variability, SC and EEG power require future study.

Finally, though on a longer horizon, we suggest that it might
ultimately be feasible to leverage the understanding of value
based decisions in behavioral mitigations aimed at improving
HAI system performance. Logically, management of a particular
interaction between a human and an automated system requires
a minimum of three elements. First, it is essential to understand
the capabilities and vulnerabilities of both the particular operator
and the particular automation as well as how these may vary
under different task and contextual constraints. With such
knowledge, one may be able to infer an optimal strategy for
allocation of control or decision authority, such as has been
done with behaviorally based predictions. Second, though the
behavior of automated controls is relatively predictable with
knowledge of how its control system was designed, establishing
likelihood of human behaviors is a much more challenging task.
Therefore, it is also critical to develop methods for prediction
of likely changes in operator behavior on a time-scale that
leaves room for active intervention through the understanding
of the interaction decision. Third, an understanding of how to
influence the decision process of humans in principled ways is
necessary to ultimately define appropriate systems of actuation
when inappropriate behaviors are expected. Of these three
elements, it seems that the second may be the most challenging.
This is because it is relatively trivial to establish baseline
operational or performance characteristics of both humans
and automated systems and it is already known that human
behaviors and perceptions are subject to influence by a variety
of factors, including workload, display properties, transparency,
and may be amenable to influence by other task and contextual
factors. However, predicting impending behavioral choices
is particularly challenging because this requires methods to
develop advance insight into the unfolding of the decision
process that has largely been studied through the use of fMRI.
Here, we offer one way of addressing this; by the application
of modern techniques from cognitive neuroscience and
psychophysiology.

CONCLUSION

The main purpose of this review is to explore the gap
between the understanding of TiA and the actual human user
interaction behavior which does not appear to have a clear
mapping from TiA levels. We argue in this article that, in
addition to understanding the influence of changing levels
of TiA, understanding the antecedent decision of the human
user’s interaction behavior is critical for improving HAI system
performance. Decisions have not been explicitly studied in
the context of HAI and TiA specifically, but due to the
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importance of these interaction decisions we reviewed decision
making literature and summarized findings that provide a basic
understanding of the psychophysiological processes involved in
decision making. We are particularly interested in value based
decision making because, just as in the case of TiA, if there is
no risk, the behavior ceases to be important. While the value
based decision process is not yet fully understood as it relates
to interaction behaviors, there is a significant understanding
of the underlying psychophysiological processes and correlates.
This knowledge can be used to advance hypotheses that define
a research path aimed at achieving mitigation of human user
interaction behaviors.
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