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Scanning electron micrograph of an endophytic Streptomyces strain grown on ISP 2 medium for 21 
days at 28 °C.
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Actinobacteria are highly diverse prokaryotes that are ubiquitous in soil, freshwater and marine 
ecosystems. Although various studies have focused on the ecology of this phylum, data are still 
scant on the diversity, abundance and ecology of actinobacteria endemic to special and extreme 
environments, such as gut, plant, alkaline saline soil, deep sea sediments, hot springs and other 
habitats. Actinobacteria are well-known producers of a vast array of secondary metabolites, many 
of which have useful applications in medicine and agriculture. Furthermore, actinobacteria also 
have diverse functions in different environments apart from antibiotic production. For example, 
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actinobacteria are reported to contribute to the break-down and recycling of organic compounds. 
They play a significant role in fixation of nitrogen, improvement plant growth, biodegradation, 
bioremediation and environmental protection. Therefore, understanding the actinobacterial 
diversity and distribution in such special environments is important in deciphering the ecolog-
ical roles of these microorganisms and for biotechnological bioprospecting. Recent advances 
in cultivation, DNA sequencing technologies and -omics (metagenomics, metaproteomics etc) 
methods have greatly contributed to the rapid advancement of our understanding of microbial 
diversity, function and they interactions with environment. Furthermore, comparative genomic 
studies can provide overall information about actinobacterial speciation, evolution, metabolism 
and environment adaptation mechanisms. This research topic comprising reviews and original 
articles highlights the recent advances regarding the unexpectedly diverse/rare group of actin-
obacteria with special selective isolation methods or culture-independent methods, as well as 
their biological activities, ecophysiologica function and mechanisms from diverse special and 
extreme environments. 
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The Editorial on the Research Topic

Actinobacteria in Special and Extreme Habitats: Diversity, Function Roles, and Environmental

Adaptations

The phylum Actinobacteria composes a diverse group of Gram-positive bacteria with high
G + C content, which are abundant in soils and present in various special and extreme habitats.
Actinobacteria have made a significant contribution to the health and well-being of people
throughout the world (Demain and Sanchez, 2009). However, the increasing emergence of new
diseases and pathogens, and the antibiotic resistance question in recent years have caused a
resurgence of interest in finding new biologically active compounds for drug discovery. Thus,
previously unexplored ecological niches and regions in the world have been pursued as sources
of novel actinobacteria and antibiotics and other useful biologically active agents (Tiwari and
Gupta, 2012). With Prof. William C. Campbell and Satoshi Omura winning the Nobel Prize in
Physiology or Medicine in 2015 for their discovery of Avermectin, the discovery of new antibiotics
from actinobacteria is expected to enter a new golden age.

Actinobacteria have been isolated from diverse ecosystems, including alkaline saline soil,
marine sponges, and deep sea sediments, hot springs, guts, and medicinal plants. They have
broad applications potential in agriculture and environmental protection apart from antibiotic
production due to their diverse ecological functions. During the last few decades, actinobacterial
resource research has focused on special habitats and extreme environments; however, due
to the limitations of isolation and cultivation methods, our knowledge of the diversity and
ecology of extremophilic actinobacteria is at best fragmentary (Bull, 2011). Recent advances in
microbial cultivation, next generation sequencing (NGS) technologies and -omics (metagenomics,
metaproteomics etc) methods have greatly contributed to the rapid advancement of our
understanding of actinobacterial diversity from special and extreme habitats (Qin et al., 2012;
Hamedi et al., 2013; Orsi et al., 2016). Still, the physiological functions of actinobacteria and their
environmental interactions await further investigation.

We proposed this research topic to highlight the current advances and knowledge related
to actinobacteria from extreme environments. In this Research Topic e-book “Actinobacteria in
special and extreme habitats: diversity, function roles and environmental adaptations” we collected
17 articles, including 4 reviews and 13 original articles that focus on actinobacterial species
diversity from different special and extreme habitats, as well as the bioactive secondary metabolites,
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functional genes and potential ecological functions of
actinobacteria. We are grateful to all authors who have
submitted contributions to this research topic.

Actinobacteria in extreme habitats represent not only
extensive taxonomic diversity, but also high genetic diversity
of their biosynthetic pathways for synthesizing novel biological
compounds. Mohammadipanah and Wink review the diversity
and biotechnological potential of actinobacteria from arid and
desert habitats. The article by Shivlata and Satyanarayana also
reviews the taxonomic diversity of thermophilic and alkaliphilic
actinobacteria, and discusses their potential applications in
industry, agriculture and biotechnology. Sun H. M. et al.
provide an example of physiological characteristics of a
predominant actinobacterial group, found in their survey of
highly diverse culturable but rare actinobacteria in desert soil
crusts. Interestingly, the article by Riquelme et al. explores the
actinobacteria in volcanic caves using culture-dependent and
culture-independent methods; the results help fill in the gaps
in our knowledge of actinobacterial diversity and their potential
ecological roles in the volcanic cave ecosystems. Two articles
by Yang et al. and Tang et al. use 16S rRNA gene clone library
construction to describe the diversity of actinobacteria in the
ecologically sensitive Yanshan Mountains zone and in cold
springs sediments in China; they found that biogeographical
isolation and biogeochemical factors might be major factors
influencing actinobacterial distribution. Many articles focusing
on marine actinobacteria are also present. Ser et al. and
Tan et al. report bioactive Streptomyces species from coastal
mangrove soil in Malaysia and their antioxidative metabolites.
Marine actinobacteria, particularly coral and sponge-associated
actinobacteria, have attracted increasing attention in recent
years. Sun W. et al. explore the culturable actinobacterial
diversity from sponges in the South China Sea that produce
aromatic polyketides. The report by Mahmoud and Kalendar
focuses on the diversity of coral-associated actinobacteria; the
results may be helpful to understand how corals thrive under

harsh environmental conditions. The inner tissue of higher
plants is a special habitat. The article by Khieu et al. provides
evidence that actinobacteria associated with medicinal plants
have the potential to produce novel biological compounds.
Finally, Trujillo et al. review the endophytic actinobacteria,
in particular the interaction and environmental adaptations of
Micromonospora co-occurring with plants.

We are delighted to present this research topic in Frontiers in
Microbiology. We hope that this e-book will be interesting and
useful to the readers of the journal and broaden the knowledge of
actinobacteria in harsh environments. The information available
above is promising but still limited. In the future, the application
of innovative isolation and cultivation techniques, and –omics
methods will undoubtedly unveil more unexpected and exciting
aspects of actinobacteria in special and extreme habitats, and
illuminate especially their ecophysiological function in nature.
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Thermophilic and alkaliphilic
Actinobacteria: biology and potential
applications
L. Shivlata and Tulasi Satyanarayana*

Department of Microbiology, University of Delhi, New Delhi, India

Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics,

clinically useful bioactive compounds and industrially important enzymes. The focus

of the current review is on the diversity and potential applications of thermophilic and

alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology

with a variety of adaptations for surviving and thriving in hostile environments. The

specific metabolic pathways in these actinobacteria are activated for elaborating

pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive

compounds, which find multifarious applications.

Keywords: Actinobacteria, thermophiles, alkaliphiles, polyextremophiles, bioactive compounds, enzymes

Introduction

The phylum Actinobacteria is one of the most dominant phyla in the bacteria domain (Ventura
et al., 2007), that comprises a heterogeneous Gram-positive and Gram-variable genera. The
phylum also includes a few Gram-negative species such as Thermoleophilum sp. (Zarilla and
Perry, 1986), Gardenerella vaginalis (Gardner and Dukes, 1955), Saccharomonospora viridis P101T

(Pati et al., 2009), Ferrimicrobium acidiphilum, and Ferrithrix thermotolerans (Johnson et al.,
2009). Actinobacteria are either aerobes or anaerobes, motile or non-motile, and spore-/non-
spore forming bacteria with a high G+C content (>55 mol%; Ensign, 1992). The genome size
of actinobacteria ranges from 0.93Mb (Tropheryma whipplei; Bentley et al., 2003) to 12.7Mb
(Streptomyces rapamycinicus; Baranasic et al., 2013), that exists either as a circular or linear form.
Actinobacteria occur in diverse ecological niches such as terrestrial and aquatic ecosystems (fresh
and marine waters), characterized by a complex life cycle that includes their existence either as
dormant spores or actively growing hyphae. They are highly diverse in their morphology ranging
from coccoid (e.g., Micrococcus) and rod-coccoid (e.g., Arthrobacter), fragmenting hyphal forms
(e.g., Nocardia) to branched mycelium (e.g., Streptomyces; Barakate et al., 2002). Reproduction
in actinobacteria occurs either by vegetative mode via fragmentation of mycelia or by asexual
mode (spore or conidia formation). They produce either a single spore (monosporic) or a pair of
spores (bisporic), or many spores (oligosporic) on aerial or substrate mycelium. The oligosporic
actinobacteria show distinct patterns of spore arrangement (hooked, straight, or wavy) on the
mycelium, depending on the taxa.

Actinobacteria represent one of the most primitive lineages among prokaryotes (Koch, 2003)
which are believed to have evolved about 2.7 billion years ago (Battistuzzi and Hedges, 2009).
Antibiotic production by actinobacteria is considered to be a key driving factor in the evolution
of prokaryotes that led to the diversification of archaea and Gram-negative bacteria (diderm) from
Gram-positive bacteria (monoderm; Gupta, 2011). Actinobacteria form a distinct branch on the
16S rRNA gene tree (Zhi et al., 2009), and are distinguished from other bacterial taxa on the basis
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of their distinct gene arrangement patterns (Kunisawa, 2007) and
conserved indels present in both the 23S rRNA and proteins (e.g.,
cytochrome C oxidase subunit I, CTP synthetase, and glutamyl-
tRNA synthetase; Gao and Gupta, 2005). Their classification
has been revised many times in the past. According to the
recent system of classification, these are placed under Phylum
XXVI, Actinobacteria in the Domain II (Bacteria) in Bergey’s
Manual of Systematic Bacteriology, volume 5. This phylum
contains a large array of chemotaxonomically, morphologically
and physiologically distinct genera, grouped into sixmajor classes
(Actinobacteria, Acidimicrobiia, Coriobacteria, Nitriliruptoria,
Rubrobacteria, and Thermoleophilia; Goodfellow et al., 2012).

Actinobacteria are an ecologically significant group,
which play a vital role in several biological processes such
as biogeochemical cycles, bioremediation (Chen et al., 2015),
bioweathering (Cockell et al., 2013), and plant growth promotion
(Palaniyandi et al., 2013). They not only produce a large
array of pharmaceutically important bioactive compounds
(antibiotics, antitumor agents, anti-inflammatory compounds,
and enzyme inhibitors) but also an enormous number of
industrially and clinically important enzymes. Since the
discovery of streptomycin (first discovered antituberculosis
drug from actinobacteria), the drug discovery and development
programmes have inclined toward the antimicrobial agents
than chemical compounds. Subsequently, a large number of
actinobacterial species have been searched for the discovery
of clinically valuable compounds. The phylum Actinobacteria
contains several genera encompassing antibiotic producing
species. The genus Streptomyces is a prominent source of
secondary metabolites, especially antibiotics. Streptomyces
species are known to produce more than 50% of the total
known microbial antibiotics (≥10,000). Despite the availability
of enormous number of clinical drugs, many pharmaceutical
companies and research laboratories are engaged in the search
for new therapeutic drugs in order to combat the microbial
pathogens. Multidrug resistant pathogenic strains are constantly
emerging, which cause severe disease outbreaks in several
countries. In order to find novel bioactive compounds of
pharmacological and industrial relevance, actinobacteria have
been isolated from exotic and unexplored locations such as
desert (Kurapova et al., 2012), marine (Manivasagan et al., 2013),
and wetland (Yu et al., 2015) areas. On the premise that the
extremophilic actinobacteria could be a source of new valuable
metabolites (Bull, 2010) with gene clusters for the synthesis
of novel biomolecules, attempts are being made to isolate
actinobacteria from extreme environments.

Extremophilic/Extremotolerant
Actinobacteria

Actionobacteria are known to occur not only in normal
environments, but also in extreme environments, which are
characterized by acidic/alkaline pH, low or high temperatures,
salinity, high radiation, low levels of available moisture,
and nutrients (Zenova et al., 2011). The diverse physiology
and metabolic flexibility of extremophilic/extremotolerant
actinobacteria enable them to survive under hostile and

unfavorable conditions. The high abundance of actinobacterial
species was recorded in all extreme environments (Bull, 2010)
which had broken the traditional paradigm of restricted
predominance of actinobacteria in soil and fresh water habitats.
Enormous data has been reported on actinobacteria isolated
from normal environments (neutral pH and temperature
ranging 20–40◦C). Only a few investigations have been
carried out to understand the diversity of actinobacteria
in the extreme environments, their ecological role and
adaptation. Polyextremophiles and polyextremotolerant
actinobacterial species also exist in environments with two
or more extreme conditions. Polyextremophiles can adapt to
environments with multiple stresses (Gupta et al., 2014), which
include alkalithermophilic, thermoacidophilic, thermophilic
radiotolerant, haloalkaliphilic, and thermoalkalitolerant
actinobacteria. Their incidence has been documented in
distinct extremes of geographical locations such as the Arctic
(Augustine et al., 2012) and Antarctic (Gousterova et al., 2014)
regions, oceans (Raut et al., 2013), hot springs (Chitte and Dey,
2002), and deserts (Kurapova et al., 2012).

The extremophilic actinobacteria exhibit several adaptive
strategies such as antibiosis, switching between different
metabolic modes (i.e., autotrophy, heterotrophy, and saprobes)
and production of specific enzymes to survive under unfavorable
environmental conditions (high temperature, alkaline, and
saline). The thermotolerance is attributed to the presence of high
electrostatic and hydrophobic interactions and disulfide bonds in
the proteins of thermophiles (Ladenstein and Ren, 2006). They
have certain special proteins known as chaperones which aid in
refolding the partially denatured proteins (Singh et al., 2010).
Several other proteins are also synthesized that bind to DNA
and prevent their denaturation at elevated temperatures. Some
actinobacteria have acquired multiple adaptive mechanisms
to survive in environments with two or more stresses. A
thermophilic Streptomyces sp., isolated from desolated place,
produced enzymes of the autotrophic metabolic pathway such
as carbon monoxide dehydrogenase (CODH; Gadkari et al.,
1990). The enzyme CODH facilitates the microbial growth in
nutrient deprived condition by oxidizing the available inorganic
compound such as carbon monoxide into CO2 which is further
fixed by RuBisCO enzyme into microbial biomass through
Calvin–Benson cycle (King and Weber, 2007). The thermophilic
chemolithoautotroph, Acidithiomicrobium sp., isolated from
geothermal environment, utilizes sulfur as an energy source
(Norris et al., 2011). The antibiosis is another principal
strategy through which actinobacteria sustain by killing other
microbial flora under nutrient limited conditions. Acidophiles
and alkaliphiles have acquired proton pumps to regulate H+

concentrations inside and outside the cell for maintaining
physiological pH inside (Kumar et al., 2011). Alkaliphiles contain
the negatively charged cell wall polymers which stabilize the
cell membrane by reducing the charge density at the cell
surface (Wiegel and Kevbrin, 2004). The adaptive strategy
of haloalkaliphiles includes additional tolerances to the salt
environment by synthesizing and accumulating high amount
of compatible solutes (Roberts, 2005) that prevent desiccation
through osmoregulation. They also have Na+/H+ antiporter to
exclude excessive salt content from inside of the cell.
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Actinobacteria are also known to show tolerance to extremely
harmful radiations such as gamma and UV rays, and have been
isolated from various radioactive sites. The three thermophilic
Rubrobacter species such as R. radiotolerans, R. xylanophilus
(Ferreira et al., 1999), and R. taiwanensis (Chen et al., 2004) have
been reported to be radiotolerant. The resistance mechanism has
not been adequately understood, but the complete whole genome
analysis of R. radiotolerans RSPS-4 revealed the presence of genes
encoding proteins involved in DNA repair system, oxidative
stress response, and biosynthetic pathways of compatible sugars
(trehalose and mannosylglycerate) which might be playing a
role in mitigating the damage caused by radiations (Egas et al.,
2014). In recent years, a fewmore alkalitolerant and radiotolerant
actinobacterial species such as Microbacterium maritypicum
(Williams et al., 2007), Microbacterium radiodurans GIMN
1.002T (Zhang et al., 2010), Cellulosimicrobium cellulans UVP1
(Gabani et al., 2012), Kocuria sp. ASB 107 (Asgarani et al.,
2012), and Kocuria rosea strain MG2 (Gholami et al., 2015) have
been documented. These two alkalitolerant Kocuria strains were
isolated from Ab-e-Siah radioactive spring of Iran. The Kocuria
sp. ASB 107 is a psychrotrophic strain which shows tolerance
to ionizing radiation (upto 90% lethal doses) such as ultraviolet
(256 nm-UV) and corona discharge. The Kocuria rosea strain
MG2 was shown to endure the high dosage of harmful UV-C
radiation. This actinobacterium can grow in a wide pH range
(5–11with optimum growth at pH 9.2) and salt concentration (0–
15%). Gholami et al. (2015) performed the cell viability analysis
on Kocuria rosea strain MG2 under multiple stresses. After 28
days of incubation under desiccation condition, the cells of
Kocuria strain were found to be viable and showed high tolerance
to the radiation and strong oxidant such as H2O2 (1–4%). The
hydrogen peroxide is a well-known antimicrobial agent which
damages biological membranes by generating hydroxyl radicals.
They seem to exhibit both enzymatic (catalase and peroxidase)
and non-enzymatic antioxidant defense systems (carotenoids)
to diminish the effect of radiation or strong oxidants or other
stresses (Gholami et al., 2015).

The resilience and adaptability of extremophilic/
extremotolerant actinobacteria confer them a competitive
advantage over other microbes. Besides helping them
to survive under extreme conditions, the physiology and
metabolic flexibility also trigger them to produce industrially
valuable compounds (Singh et al., 2013). The production of
biomolecules by extremophiles mitigates the risks of other
microbial contaminations, besides providing thermostable,
alkalistable, and halotolerant compounds. Enzymes produced
by the extremophilic/extremotolerant actinobacteria are
functional under extreme conditions, thus, making them suitable
candidates for application in industrial processes, where harsh
conditions/treatment methods are used. This review focuses
on the physiology, phylogeny, ecological roles, and potential
applications of thermophilic and alkaliphilic actinobacteria.

Thermophilic and Thermotolerant
Actinobacteria

Thermophilic actinobacteria thrive at relatively high
temperatures ranging from 40 to 80◦C (Tortora et al., 2007).

They are widespread, commonly found in moldy hay (Corbaz
et al., 1963), self-heating plant residues, cereal grains, sugar
cane bagasse (Suihko et al., 2006), decaying vegetable materials,
and compost heaps (Henssen and Schnepf, 1967). These are of
two types: strictly thermophilic and moderately thermophilic
actinobacteria. The former can grow in the temperature range
between 37 and 65◦C, but optimum proliferation takes place
at 55–60◦C. While moderately thermophilic actinobacteria
thrive at 28–60◦C and require 45–55◦C for optimum growth
(Jiang and Xu, 1993). Another group known as thermotolerant
actinobacteria can survive at temperatures up to 50◦C (Lengeler
et al., 1999).

Physiology
Thermophilic actinobacteria are strictly aerobes and
obligate chemoorganotrophs in nature and thrive on
decaying organic matter (dead animal and plant materials).
There are certain thermophilic actinobacteria such as
Streptomyces thermoautotrophicus (Gadkari et al., 1990)
and Acidithiomicrobium sp. (Norris et al., 2011) which are
obligate chemoautotrophs, growing solely on CO2+H2 and
sulfur, respectively. Other nutritive modes such as facultative
chemoautotrophy (e.g., Strepyomyces strain G26; Bell et al., 1988)

and facultative methylotrophy (e.g., Amycolatopsis methanolica;
Boer et al., 1990) have been observed among thermophilic
actinobacteria. The diverse metabolic physiology facilitates
the colonization of thermophilic actinobacteria in distinct
topographical zones. Prevalence of thermophilic actinobacteria
has been documented in sites ranging from the Desert Steppe
Zone of Mongolia (Kurapova et al., 2012) to the subtropical area
of Argentina (Carrillo et al., 2009) and hydrothermal vents to
residential heating systems (Fink et al., 1971). Actinobacteria
found in these environments are primarily fast growing and
spore forming. The spores produced are of thermoduric type
and are stable at higher temperatures for longer duration, even
for days in some cases. This appears to provide an additional
ecological advantage over other bacteria, making them easier to
adapt back to their vegetative forms with the advent of favorable
conditions.

Systematics, Taxonomy, and Phylogeny
Thermophilic and thermotolerant species exist in the diverse
genera of phylum Actinobacteria (Table 1). Among them,
the genera such as Thermopolyspora, Thermomonospora,
Thermotunica, Thermocatellispora, Thermobispora,
Acidothermus, Acidimicrobium, and Thermoleophilum
include only thermophilic species, while other genera
include both thermophilic and mesophilic species. All
these genera belong to four classes such as Actinobacteria,
Acidimicrobiia, Rubrobacteria, and Thermoleophilia of the
phylum Actinobacteria (shown in Figure 1).

Monospore producing thermophilic actinobacteria belong
to three major genera Saccharomonopora, Thermomonospora,
and Micromonopsora. The genus Saccharomonospora was first
described by Nonomura and Ohara (1971) for monosporic
actinobacteria with cell wall type IV (meso-DAP, arabinose,
and galactose), which includes mostly mesophilic actinobacteria
except Saccharomonospora xinjiangensis (Jin et al., 1998) and
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TABLE 1 | Thermophilic and thermotolerant actinobacterial species.

Actinobacteria Growth conditions Location of isolation References

Temperature (◦C) pH

Microbispora siamensis DMKUA 245T 25–50 – Soil sample, Thailand Boondaeng et al., 2009

Georgenia sediminis SCSIO 15020T 24–60 6–10 Sea sediment, Austria You et al., 2013

Actinokineospora soli YIM 75948T 25–55 7–9 Soil sample, China Tang et al., 2012

Marinactinospora thermotolerans SCSIO 00652T 10–55 6–9 Sea sediment, Northern South China Tian et al., 2009

Saccharomonospora viridis SJ-21 35–60 7–10 Hot water spring, India Jani et al., 2012

Actinomadura miaoliensis BC 44T-5T 22–55 7.0 Soil sample, Taiwan Tseng et al., 2009

Streptosporangium sp. – – Soil of Mongolia Desert Steppe Zone Kurapova et al., 2012

Streptomyces Calidiresistens YIM 7808T 40–65 7.0 Hot spring sediment, South-west China Duan et al., 2014

Nocardiopsis yanglingensis A18 25–55 6.5–8.5 Compost of button mushrooms Yan et al., 2011

Amycolatopsis ruanii NMG112T 20–50 4–10 Soil sample Zucchi et al., 2012

A. thermalba SF45T

A. granulosa GY307T

Pseudonocardia thermophila JCM3095 – – – Yamaki et al., 1997

Thermomonospora curvata B9T 40–65 7.5–11 Composted stable manure Chertkov et al., 2011

Thermobifida fusca (formerly named as

Thermomonospora fusca)

35–53 10–11 – McCarthy and Cross, 1984

Thermotunica guangxiensis 37–65 6–9 Mushroom residue compost, China Wu et al., 2014b

Thermopolyspora flexuosa DSM 41386T 40–60 6–9 Soil from the Pamir Mountains Krasilnikov and Agre, 1964

Thermocatellispora tengchongensis 28–58 6–8 Soil sample, South-west China Zhou et al., 2012

Saccharopolyspora thermophila 216T 45–55 – Soil sample, China Lu et al., 2001

Thermobispora bispora R51T 50–65 – Decaying manure, Berlin Henssen, 1957

Thermoleophilum album ATCC 35263 45–70 6.5–7.5 Mud samples Zarilla and Perry, 1984

Acidothermus cellulolyticus 11B 37–70 4–6 Acidic hot springs, Yellowstone National Park Barabote et al., 2009

Acidimicrobium ferrooxidans TH3 45–50 2 Icelandic geothermal site Clark and Norris, 1996

Aciditerrimonas ferrireducens IC-180T 35–58 2.0–4.5 Solfataric field, Japan Itoh et al., 2011

Acidithiomicrobium sp. 50 3 Geothermal environments Norris et al., 2011

Ferrithrix thermotolerans Y005T 43 1.3 Mine site, UK Johnson et al., 2009

Rubrobacter taiwanensis LS-28 30–70 (optimum 60) 6–11 Lu-shan hot springs, Taiwan Chen et al., 2004

Rubrobacter radiotolerans 46–48 7.0–7.4 Hot springs, Central Portugal Ferreira et al., 1999

R. xylanophilus 60 7.5–8.0

S. viridis. The genus Thermomonospora was originally proposed
only for thermophilic actinobacteria (Henssen, 1957), which
comprised three thermophilic species T. curvata, T. lineata, and
T. fusca. Only T. curvata could be maintained as pure culture
among the three. Afterwards, one mesophilic actinobacterium
(T. mesophila) was transferred from the genus Actinobifida to
the genus Thermomonospora (Nonomura and Ohara, 1971).
Consequently, some other Thermomonospora species such as
T. mesouviformis (Nonomura and Ohara, 1974) and T. curvata,
T. alba, T. chromogena, T. fusca, and T. mesophila (McCarthy
and Cross, 1984) were identified. Later on, the T. mesouviformis
was reassigned as a synonym of T. alba (McCarthy and Cross,
1984). One more species, T. formosensis (Hasegawa et al., 1986),
was isolated and introduced into this genus. McCarthy (1989)
described a total of six species (T. curvata, T. alba, T. chromogena,
T. fusca, T. mesophila, and T. formosensis) in the ninth edition
of Bergey’s Manual of Determinative Bacteriology. Zhang et al.
(1998) proposed a polyphasic taxonomy based classification
system for the six Thermomonospora species. T. formosensis

and T. mesophila were reclassified as Actinomadura formosensis
and Microbispora mesophila, respectively. T. alba and T. fusca
were transferred to the genus Thermobifida and named as
Thermobifida alba and Thermobifida fusca, respectively (Zhang
et al., 1998). The genus Themomonospora is now left with
only two species (T. curvata and T. chromogena). However, T.
chromogena (shown in red square in Figure 1) appears distantly
from T. curvata on 16S rRNA tree. It shows close ribosomal gene
sequence similarity with Thermobispora bispora. The detailed
study of T. chromogena revealed the presence of total six
rRNA operons (rrn) in the genome, among which, one operon
(rrnB) shows sequence similarity with rRNA of Thermobispora
bispora. The thermophilic actinobacterium T. chromonogena
might have acquired this operon from Thermobispora bispora or
other related microorganism through horizontal gene transfer
(Yap et al., 1999). The species of Thermobifida genus produces
single spore on dichotomously branched hyphae. This genus
includes only four species (shown in Figure 1). Among
them, Thermobifida fusca is well-studied, which produces a
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FIGURE 1 | Phylogram indicating the placement and relatedness of some thermophilic and thermotolerant actinobacterial strains belonging to four

classes (Actinobacteria, Acidimicrobiia, Rubrobacteria, and Thermoleophilia) of the phylum Actinobacteria. The numbers given at branch nodes indicate

(%) bootstrap value. Phylogenetic tree was generated using Mega5.2 software with 1000 bootstrap replications. Bar 0.02 substitutions per 100 nucleotide positions.

number of industrially important enzymes and other bioactive
compounds.

Bisporic thermophilic actinobacteria are included into two
genera (Thermobispora and Microbispora). A thermophilic
actinobacterium, Thermobispora bispora [earlier known as
Microbispora bispora (Lechevalier, 1965) and Thermopolyspora
bispora (Henssen, 1957)] has been isolated from decayingmanure
in Berlin, Germany (Henssen, 1957), and described as a type
species of the genus Thermobispora based on thermal preference,
chemotaxonomic features, and ribotyping (Wang et al., 1996).
The genus contains only single species T. bispora that belongs
to the class Actinobacteria (Goodfellow et al., 2012). In recent
years, a few thermotolerant species were identified belonging to
the genusMicrobispora (shown in Figure 1).

Oligospore forming thermophilic actinobacteria are majorly
included in the genera Thermopolyspora, Saccharopolyspora, and
Streptomyces. A thermophilic actinobacterium, Thermopolyspora
flexuosa, is the only species of the genus Thermopolyspora
(Krasilnikov and Agre, 1964), which forms a short chain of
spores on sporophore. This species had been subjected to
several reclassifications and subsequently assigned into different
genera such as Nocardia (Becker et al., 1964; Lechevalier et al.,

1966), Micropolyspora (Krasil’nikov et al., 1968), Actinomadura
(Cross and Goodfellow, 1973; Lacey et al., 1978),Microtetraspora
(Kroppenstedt et al., 1990), and later into the genus Nonomuraea
(Zhang et al., 1998). Once again the taxonomic position of
this actinobacterium has been reconsidered and transferred
from the genus Nonomuraea to the genus Thermopolyspora
and rechristened as Thermopolyspora flexuosa on the basis
of 16S rRNA sequence, chemotaxonomy, morphological, and
physiological properties (Goodfellow et al., 2005).

The genus Saccharopolyspora includes both mesophilic
and thermophilic species. The thermophilic species such
as S. rectivirgula [formerly named as Micropolyspora
faeni, Thermopolyspora polyspora (Henssen, 1957), and
Thermopolyspora rectivirgula (Krasilnikov and Agre, 1964)]
has been isolated from moldy hay. It causes severe farmer’s lung
disease. Another species of thermophilic Saccharopolyspora,
S. thermophila was isolated from a garden soil collected from
the Xishan Mountain, Beijing (Lu et al., 2001). Goodfellow
et al. (1987) isolated a number of thermophilic Streptomyces
species from diverse habitats. Streptomyces thermovulgaris
had been reported as the causative agent of bacteremia
(Ekkelenkamp et al., 2004), which has been further designated

Frontiers in Microbiology | www.frontiersin.org September 2015 | Volume 6 | Article 1014 | 12

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Shivlata and Satyanarayana Thermophilic and alkaliphilic Actinobacteria

as a synonym of S. thermonitrificans (Kim et al., 1999). Some
other thermophilic Streptomyces such as Streptomyces sp. G26
(Bell et al., 1988), S. thermoautotrophicus (Gadkari et al., 1990),
S. thermocarboxydovorans, and S. thermocarboxydus (Kim
et al., 1998) have been reported to be carboxydotroph, which
are capable of oxidizing the toxic carbon monoxide gas into
innocuous CO2, thus, lowering its atmospheric concentration to
safer levels.

Non-sporulating thermophilic actinobacteria belong to the
genus Rubrobacter (Suzuki et al., 1988) which includes many
thermophiles or radiotolerant thermophiles and mesophiles. A
thermophilic and radiotolerant actinobacterium, R. radiotolerans
was formerly described as Arthrobacter radiotolerans (Yoshinaka
et al., 1973), which tolerates both gamma and UV radiations
(Suzuki et al., 1988). The complete genome sequence of
R. radiotolerans RSPS-4 has been recently annotated to elucidate
the radiation resistant mechanism (Egas et al., 2014). Other
thermophilic actinobacteria belonging to this genus are
R. xylanophilus (Carreto et al., 1996), R. taiwanensis (Chen
et al., 2004), R. calidifluminis, and R. naiadicus (Albuquerque
et al., 2014). The non-sporulating genus, Amycolatopsis
also includes a few thermophilic actinobacteria (shown in
Figure 1). Aciditerrimonas ferrireducens (Itoh et al., 2011),
Acidithiomicrobium sp. (Norris et al., 2011), Ferrithrix
thermotolerans (Johnson et al., 2009) and Acidimicrobium
ferrooxidans (Clark and Norris, 1996) are non-spore forming
thermoacidophilic actinobacteria belonging to the class
Acidimicrobiia. Aciditerrimonas ferrireducens exhibits both
heterotrophic and autotrophic mode of nutrition. It is capable
of reducing ferric ions to facilitate the autotrophic growth
under anaerobic conditions, while the last two catalyze both
the processes (dissimilatory oxidation of ferrous iron and
reduction of ferric iron). Acidimicrobium ferrooxidans displays
facultative autotrophic growth, which is capable of fixing
atmospheric CO2 in the absence of organic matter, while
Ferrithrix thermotolerans exhibits only heterotrophic mode
of nutrition. Another thermoacidophilic actinobacterium,
Acidothermus cellulolyticus 11B was isolated from hot-springs
(Mohagheghi et al., 1986), which belongs to the order Frankiales.
It produces a number of thermostable cellulases, among which,
a cellulase (endoglucanases E1) shows higher thermostability
and substrate specificity as compared to other actinobacterial
cellulases (Thomas et al., 1995).

Adaptation of Thermophilic and Thermotolerant
Actinobacteria
Thermotolerant/thermophilic actinobacteria have acquired
diverse strategies for homeostasis such as comparatively higher
GC content in their genomes, substitution of amino acids
in proteins and contain specific components in the cell wall.
Mostly thermophiles are known to incorporate comparatively
higher quantity of charged amino acids (Asp, Glu, Arg, and
Lys) than polar amino acids (Asn, Gln, Ser, and Thr) in their
proteins (Suhre and Claverie, 2003). Same trend of increased
content of charged amino acids except lysine was observed in the
proteins of Thermobifida fusca (Lykidis et al., 2007). The genus
Corynebacterium includes mostly mesophilic actinobacteria

with the exception of C. efficiens which is capable to grow up to
45◦C (Fudou et al., 2002). The comparatively high GC content
may provide the thermotolerance to the C. efficiens. Amino
acid substitution has also been noticed in the enzymes involved
in the biosynthetic pathway of industrial valuable amino acids
(glutamic acid and lysine) which enhances the production yield
of amino acids, thereby adding an industrial importance to this
actinobacterium (Nishio et al., 2003). Another thermotolerant
actinobacterium, Saccharomonospora xinjiangensis contains
specific phospholipid [unknown glucosamine-containing
phospholipids (GluNU)] in the cell wall, which is considered
to be involved in favoring the growth at high temperatures
(45–50◦C̃; Jin et al., 1998). Acidothermus cellulolyticus belongs
to the family Acidothermaceae and the order Frankiales, can
grow optimally at 55◦C and pH 5.5. It comes close to the
genus Frankia on the phylogenetic tree constructed on the
basis of the 16S rRNA (Normand et al., 1996), recA (Maréchal
et al., 2000), and shc nucleotide sequences (Alloisio et al.,
2005). The thermal adaptation in A. cellulolyticus may be
attributed to the presence of higher GC content compared
to the Frankia species. The inverse nucleotide preference for
G and A at the first and third codon positions has also been
observed. Moreover, the proteins contain repetitive patch of the
amino acids (IVYWREL) as compared to proteins of Frankia
species. The amino acid patch might provide thermostability
to proteins of Acidothermus cellulyticus (Barabote et al.,
2009).

Characteristic Features of Thermophilic and
Thermotolerant Actinobacteria
All thermophilic and thermotolerant actinobacteria except the
genera (Amycolatopsis, Rubrobacter, Ferrithrix, Acidothermus,
Aciditerrimonas, Acidimicrobium, and Thermoleophilum) are
spore formers. Mostly they are non-acid fast, non motile,
and aerobes except the genus Amycolatopsis which includes
both aerobes and facultative anaerobes. All are Gram-positive
with the exception of Thermoleophilum sp., Ferrithrix sp.,
and a species (S. viridis) of the genus Saccharomonospora.
The accurate status of thermophilic actinobacteria has been
validated only after the advent of polyphasic taxonomy. Cell
wall (peptidoglycan) composition is one of the major feature
of the genus specific classification. On the basis of amino acid
and sugar contents, actinobacterial cell wall is grouped into
four major types i.e., type-I [LL-DAP (diaminopimelic acid)
and glycine], type-II [amino acids (meso-DAP and glycine)
and sugars (arabinose and xylose)], type-III (meso-DAP with
or without madurose), type-IV (meso-DAP, arabinose and
galactose; Lechevalier et al., 1966), and other cell wall type
V–X. The majority of the thermophilic actinobacteria have
a cell wall type-III, while a few genera (Saccharomonospora,
Saccharopolyspora, and Amycolatopsis) are known to contain
cell wall type IV. Only one species of the genus Streptomyces
has cell wall type-I. Other cellular components considered
for chemotaxonomic classification include phospholipids, fatty
acids, mycolic acid, menaquinones type, and GC content (%
mol). The major respiratory menaquinones of thermophilic
and thermotolerant actinobacteria are MK-9 variants. The
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presence of other menaquinones MK-8 (Rubrobacter) and MK-
10 (Thermobifida) have also been reported (Goodfellow et al.,
2012) in thermophilic actinobacteria.

Ecological Importance
Thermophilic and thermotolerant actinobacteria are known to
possess unique metabolic rates and physical properties that prove
to be beneficial in a variety of ecological roles.

Composting
Composting is a self-heating, aerobic, and biodegradation
process that supplies humus and nutrients to the soil (Rawat
and Johri, 2013). The composting involves the synergistic
action of bacteria, actinobacteria, and fungi, wherein the
actinobacteria proliferate in the later stages of composting.
The predominance of thermotolerant actinobacteria is
generally observed in thermobiotic condition generated by the
preceding bacteria. During the initial stage of thermobiotic
condition, the compost is colonized by thermotolerant
actinobacteria (Streptomyces albus and Streptomyces griseus) and
subsequently by the thermophilic actinobacteria (Goodfellow
and Simpson, 1987). Actinobacteria genera such as Streptomyces,
Amycolatopsis, Microbispora, Cellulosimicrobium, Micrococcus,
Saccharopolyspora, Micromonospora, Thermobispora,
Thermomonospora, Thermobifida, and Planomonospora
were reported to be involved in the composting process.
The composition of actinobacterial communities varies during
various stages of composting (Xiao et al., 2011). They also
suppress the growth of plant pathogens by secreting antibiotics
along with the breakdown of organic matter which provides
an additional advantage of using compost in order to enhance
soil nutrients and also suppressing the development of plant
diseases. Moreover, the addition of compost to contaminated
soil enhances the bioremediation rates of pollutants such as
polycyclic aromatic hydrocarbons, petroleum, pesticides, and
heavy metals (Chen et al., 2015).

Antimicrobial Activity
Thermotolerant actinobacteria such as Streptomyces
tauricus, S. toxytricini, S. coeruleorubidis, S. lanatus, and
Streptosporangium sp. have been found to inhabit the rhizosphere
of many plants in the desert of Kuwait during the hot season
(Diab and Al-Gounaim, 1985). The rhizosphere inhabiting
actinobacteria exhibit antimicrobial activity, thus protect the
plant from the attack of phytopathogens (Xue et al., 2013). Some
thermotolerant actinobacteria isolated from the Himalayan
Mountains, have also been shown to exhibit antagonistic activity
against pathogenic bacteria and fungi. They include mostly
Streptomyces species such as S. phaeoviridis and S. griseoloalbus,
S. viridogens, and S. viridogens. The S. phaeoviridis and S.
griseoloalbus exhibit antibacterial activity against both Gram-
positive and Gram-negative bacteria, including methicillin
resistant and vancomycin resistant strains of Staphylococcus
aureus. The other two Streptomyces species (S. viridogens and S.
rimosus) are capable of suppressing the growth of pathogenic
fungi (Fusarium solani, Rhizoctonia solani, Colletotricum
falcatum, and Helminthosporium oryzae), therefore, these

Streptomyces species could be used as the bio-pesticides for
agricultural production (Radhakrishnan et al., 2007).

Plant Growth Promotion
Actinobacteria secrete many volatile secondary metabolites
which play significant roles in the suppression of plant diseases
and the alleviation of biotic or abiotic stresses. Moreover, many
actinobacteria species are known to secrete the iron chelating
organic molecules such as siderophores which sequester the
solubilized form of iron (Fe+3) and immobilize it in the
rhizosphere of plants growing in the iron deficient soil. The
siderophores modulate either the plant growth, directly or
indirectly, by enriching the other plant beneficial microbes in
the rhizosphere zone (Palaniyandi et al., 2013). Dimise et al.
(2008) showed that a soil dwelling cellulolytic actinobacterium,
Thermobifida fusca partakes in plant growth promotion by
synthesizing the siderophore (fuscachelins) through non-
ribosomal peptide biosynthetic pathways.

Nitrogen Fixation
The Frankia and some non-Frankia actinobacteria have
been shown to fix the atmospheric nitrogen (Gtari et al.,
2012). A thermophilic actinobacterium, Streptomyces
thermoautotrophicus which is an autotrophic carboxydotroph,
has an unusual characteristic of nitrogen fixation (Ribbe
et al., 1997). In this actinobacterium, the process of nitrogen
fixation is coupled to the oxidation of carbon monoxide. The
electrons generated during the oxidation process of CO reduce
molecular oxygen into oxygen free radicals. The manganese-
containing superoxide oxidoreductase oxidizes the formed free
radicals into O2 and release electrons. The released electrons
are further utilized by the enzyme nitrogenase in order to
reduce N2 into ammonia. The notable feature of nitrogenase of
S. thermoautotrophicus is its insensitivity to O2 and O−

2 radicals.
Furthermore, it also differs from other known nitrogenases in
terms of protein structure and requirement of Mg2+ and ATP.
Valdes et al. (2005) reported that some Thermomonospora species
are also capable of fixing atmospheric nitrogen.

Hypersensitivity Pneumonitis
Besides their beneficial activities, thermophilic actinobacteria
such as Saccharomonospora viridis (Pati et al., 2009) and
Saccharopolyspora rectivirgula (Pettersson et al., 2014) have been
reported to cause severe respiratory diseases such as Farmer’s
lung and bagassosis. The Farmer’s lung and bagassosis are a
type of hypersensitivity pneumonitis (HP). The major cause of
these allergic reactions is attributed to the exposure to moldy
molasses, when densely colonized by spore-forming thermophilic
actinobacteria.

Alkaliphilic and Alkalitolerant
Actinobacteria

The actinobacteria have long been known to thrive in soda
lakes, salt alkaline lake, and alkaline soil. Their occurrence has
also been observed in neutral environments. The alkalitolerant
actinobacteria are capable of growing in the comparatively
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broader range of environments from neutral to alkaline pH.
Alkaliphilic actinobacteria are, therefore, categorized into three
major groups: alkaliphilic (grow optimally at pH 10–11),
moderately alkaliphilic (grow in a pH range of 7–10) but
show poor growth at pH 7.0, and alkalitolerant actinobacteria
(grow in the pH range between 6 and 11; Jiang and Xu,
1993). Baldacci (1944) presented the first report on alkaliphilic
actinobacteria. Thereafter, Taber (1960) isolated alkaliphilic
actinobacteria from the soil. The occurrence of alkaliphilic and
alkalitolerant actinobacteria has been reported from various
habitats including deep sea sediment (Yu et al., 2013), alkaline
desert soil (Li et al., 2006), and soda lakes (Groth et al.,
1997). Mikami et al. (1982) studied the distinct chemotaxonomic
patterns of cell wall of a total six alkaliphilic Streptomyces species
[Streptomyces caeruleus ISP 5103 (reclassified asActinoalloteichus
cyanogriseus, Tamura et al., 2008), S. alborubidus ISP 5465
(reclassified as Nocardiopsis alborubida), and S. autotrophicus
ISP 5011, S. canescens ISP 5001, S. cavourensis ISP 5300,
and S. hydrogenans ISP 5586] which show optimum growth
at pH 11.5. Among them, the first three contained meso-
diaminopimelic acid. Subsequently, the taxonomic positions and
applications of alkaliphilic actinobacteria in various fields have
been described by Groth et al. (1997) and Duckworth et al.
(1998).

Physiology, Characteristic, and Taxonomic
Features of Alkaliphilic and Alkalitolerant
Actinobacteria
The alkaliphilic and alkalitolerant actinobacteria are known to
occur in environments of high salinity (known as haloalkaliphiles
or haloalkalitolerants) or in thermobiotic conditions
(termed as alkalithermophile or alkalithermotolerants).
Alkalithermophiles and alkalithermotolerant actinobacteria
have also been isolated from saline habitats with their
halophilic and halotolerance characteristic (Zenova et al.,
2011). One such polyextremotolerant actinobacterium,
Microbacterium sediminis has been isolated from deep
sea that possesses the psychrotolerance, thermotolerance,
halotolerance, and alkalitolerance attributes (Yu et al., 2013).
Other reported polyextremophilic actinobacteria include
alkaliphilic and thermotolerant actinobacteria [Streptomyces
alkalithermotolerans (Sultanpuram et al., 2014) and Georgenia
satyanarayanai (Srinivas et al., 2012)], thermophilic and
alkalitolerant (Streptomyces thermoalcalitolerans; Kim et al.,
1999), and haloalkaliphilic actinobacteria [Nitriliruptor
alkaliphilus (Sorokin et al., 2009)]. They are either aerobes
or microaerobes or facultative anaerobes. All alkaliphiles
and alkalitolerants are Gram-positive. These exist as either
halophiles or non-halophiles. Most alkaliphilic and alkalitolerant
actinobacteria are non-motile and spore- or non-spore formers.

Some alkaliphilic actinobacterial species belonging to the
genus Streptomyces (Mikami et al., 1982),Micromonospora (Jiang
and Xu, 1993),Nocardioides (Yoon et al., 2005),Microcella (Tiago
et al., 2005), Cellulomonas (Jones et al., 2005), Nesterenkonia
(Luo et al., 2009), Streptosporangium (Gurielidze et al., 2010),
Corynebacterium (Wu et al., 2011b), Georgenia (Srinivas et al.,
2012), Nocardiopsis, Isoptericola, Nesterenkonia (Ara et al.,

2013), Saccharomonospora (Raut et al., 2013), Saccharothrix
(Jani et al., 2014), and Arthrobacter (Kiran et al., 2015) have
been isolated and well-characterized. Among them, the genus
Nocardiopsis has been found to be prominent in alkaline
environments (Ara et al., 2013). All the genera belong to the
class Actinobacteria except the genus Nitriliruptor that belongs
to the class Nitriliruptoria (shown in Figure 2). There are a
few well-characterized alkalitolerant species such as Citricoccus
alkalitolerans (Li et al., 2005), Spinactinospora alkalitolerans
(Chang et al., 2011), and Haloactinopolyspora alkaliphila (Zhang
et al., 2014) which proliferate in sites ranging from neutral to
alkaline pH.

Ecological Significance
Microbial Decomposition in Hypersaline or

Haloalkaline Sites
The microbial degradation of recalcitrant molecules takes
place rapidly in the environment with acidic or neutral pH.
However, the hypersaline and extreme haloalkaline conditions
of lakes and mangroves limit most of the microbial hydrolytic
activity on complex biomolecules such as cellulose, lignin,
and chitin. Only haloalkaliphilic or haloalkalitolerant bacteria
and actinobacteria are capable to proliferate and contribute in
the decomposition of recalcitrant biopolymers in haloalkaline
zones. A number of alkalitolerant or alkaliphilic actinobacteria
have been isolated from mangrove, soda lakes and marine
sediment. The two Isoptericola species i.e., Isoptericola chiayiensis
(Tseng et al., 2011) and Isoptericola rhizophila (Kaur et al.,
2014) were isolated from mangrove soil sample, Taiwan and
rhizosphere of Ficus benghalensis (banyan tree) in Bhitarkanika
mangrove forest, India, respectively. These two species are
capable of hydrolyzing organic matter into simpler forms which
are further assimilated by plants. The second most abundant
biopolymer, chitin is produced by brine shrimp in bulk quantities
in hypersaline soda lakes. Sorokin et al. (2012) showed the
high prevalence of haloalkaliphilic chitinolytic bacteria and
actinobacteria in hypersaline sediments and soda soils. The
other chitinolytic actinobacteria species include Isoptericola
halotolerans, Nocardiopsis sp., Glycomyces harbinensis, and
Streptomyces sodiiphilus which are capable of degrading chitin
completely and more rapidly than the bacterial population
(Sorokin et al., 2012). Other alkaliphiles, Nocardiopsis prasina
OPC-131 (Tsujibo et al., 2003), Streptomyces and Nocardia sp.
(Bansode and Bajekal, 2006) are reported to display chitinolytic
activity.

Chitin Amendment
Chitin amendment is a soil management approach to suppress
or inhibit the growth of plant pathogens or parasites. The
addition of chitin enhances the pathogenic suppressiveness of
soil (Kielak et al., 2013). This strategy not only involves the
chitinolytic action of the soil or rhizosphere microflora but also
induces desired changes in the metabolism of the endophytic
microflora of plants (Hallmann et al., 1999). TheArthrobacter sp.,
Corynebacterium aquaticum,Micrococcus luteus,Mycobacterium
parafortuitum, and other bacterial species were found during
the chitin facilitated amendment of the soil and rhizophere
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FIGURE 2 | Phylogram indicating the placement and relatedness of some alkaliphilic, alkalitolerant, alkalithermophilic and alkalithermotolerants

actinobacterial strains belonging to two classes (Actinobacteria and Nitriliruptoria) of the phylum Actinobacteria. The numbers given at branch nodes

indicate (%) bootstrap value. Bar 0.02 substitutions per 100 nucleotide positions.

zone of cotton plants (Hallmann et al., 1999). The microbial
community has been found to change with the alteration
of physical properties (pH and temperature) of soil. The
enzyme chitinase produces short oligosaccharide chains and
chitin derivatives which have various industrial applications.
Besides biotechnological applications, the chitinases that are
particularly active at high pH find application in plant pathogen
suppression by hydrolyzing the cell wall component (chitin)
of fungi, thereby inhibiting the fungal growth and spread
of infection. The alkalistable chitinase producing Isoptericola
jiangsuensis (Wu et al., 2011a) and Nocardioides sp. (Okajima
et al., 1995) can be applicable for such soil amendment practices.
The amendment of chitin with apatite has also been found
to sequester the metals in marine sediments (Kan et al.,
2013).

Biotransformation
The nitriles (RC≡N) are organic compounds, synthesized
by chemical methods (ammoxidation, hydrocyanation, and
dehydration of amides and oximes) or biologically produced

by anaerobic degradation of amino acids (Harper and Gibbs,
1979). The cyanogenic plants also release nitrile compounds
in the environment (Vetter, 2000). The nitriles are commonly
used in the synthesis of other useful organic compounds or
manufacturing of rubber (gloves) and super glue. Moreover,
the selective hydrolysis or reduction of nitriles yields valuable
compounds such as amides, acids, and amines. Despite their
various uses, nitriles cannot be easily degraded and are known
to persist for longer periods in the environment, causing
toxic or hazardous effects on biological systems, therefore,
nitriles have to be metabolized into non-toxic forms. The
two enzymatic pathways [nitrile hydrolase/amidase (two steps)
and nitrilases (single step)] are reported to be involved in
the conversion of nitriles into carboxylic acid and ammonia.
Some nitrile degrading bacteria, actinobacteria, and fungi have
been isolated and characterized. Most of the well-known nitrile
degraders are neutrophiles. Sorokin et al. (2007) showed that
a microbial consortium could degrade nitriles completely.
This consortium consists of an actinobacterium (Nitriliruptor
alkaliphilus ANL-iso2T) and a bacterium (Marinospirillum sp.

Frontiers in Microbiology | www.frontiersin.org September 2015 | Volume 6 | Article 1014 | 16

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Shivlata and Satyanarayana Thermophilic and alkaliphilic Actinobacteria

strain ANL-isoa). Nitriliruptor alkaliphilus ANL-iso2T is an
obligate alkaliphile and moderately salt-tolerant which plays
a major role in the hydrolysis of isobutyronitrile (iBN;
Sorokin et al., 2009). This actionobacterium has a nitrile
hydratase/amidase pathway to metabolize isobutyronitrile (iBN)
into isobutyroamide, isobutyrate and ammonia which are further
scavenged by Marinospirillum sp. strain ANL-isoa. Nitriliruptor
alkaliphilus ANL-iso2T is also capable of utilizing propionitrile
(C3), butyronitrile (C4), valeronitrile (C5), and capronitrile
(C6) as carbon and nitrogen source, thus, indirectly cleaning
the environment. This strain can, therefore, be applied as a
potential candidate for bioremediation or other environmental
biotechnological purposes.

Bioweathering
Weathering is a disintegration process of rock constituents into
smaller fragments. These components are further broken down
into mobilized forms of essential nutrients (e.g., P and S) and
elements (e.g., Na, K, Mg, Ca, Mn, Fe, Cu, Zn, Co, and Ni).
The essential nutrients and elements are brought into crop
lands or fields through wind or water. Microbial populations
(bacteria and actinobacteria) occupying the rock zones show
high resistance to radiations, desiccation and limited nutrient
conditions. The filamentous microbes are capable of enhancing
the weathering process as they penetrate through the rocks
by the growing mycelia. The Streptomyces species are most
commonly observed in rock weathering sites, since they have
filamentous structure and are capable of growing as oligotroph
(Cockell et al., 2013). They have a great efficiency to utilize the
recalcitrant organic matter and form anthrospore under water
stress. Cockell et al. (2013) reported that the indigenousmicrobial
population of Icelandic volcanic rocks includes Arthrobacter,
Knoellia, Brevibacterium, Rhodococcus, and Kribbella species.
The investigation of the altered stones and monuments
in the Mediterranean basin also revealed the presence of
actinobacterial species which involved in the weathering of
stones and monuments. These species belong to the three
genera Geodermatophilus, Blastococcus, andModestobacter of the
family Geodermatophilaceae (Urzì et al., 2001). Similarly, other
actinobacterial species such as Nocardioides, Kibdelosporangium
(Abdulla, 2009),Arthrobacter, and Leifsonia (Frey et al., 2010) are
known to accelerate the weathering process. Furthermore, some
other actinobacteria capable of carrying out withering of rocks
are also alkalitolerant such as [Isoptericola nanjingensis H17T
(Huang et al., 2012) and Arthrobacter nanjingensis A33T (Huang
et al., 2015)] and have been isolated from soil samples of Nanjing,
China.

Plant Growth Promotion
Actinobacteria are well-known to exhibit antimicrobial and
insecticidal properties and help in suppression of plant
pathogenesis, thereby indirectly promoting plant growth. They
also make iron available to plants for their growth (Francis
et al., 2010). The plants and microbes can take up iron only
in its reduced form (Fe+2), while the iron exists as oxidized
form (Fe+3) in alkaline soils. Alkaliphilic actinobacteria reduce
the iron (from Fe+3 to Fe+2 forms) and make it into soluble

form which can be assimilated by plants and microbes for their
growth (Valencia-Cantero et al., 2007). These actinobacteria are
also capable of solubilizing phosphorus in alkaline conditions
as solubility of phosphorus decreases in acidic or alkaline soils
(Palaniyandi et al., 2013). An alkaliphilic strain, Kocuria rosea
HN01 reduces Fe+3 into the soluble form (Fe+2), thus, making
the iron available to plants growing in the alkaline soil (Wu et al.,
2014a).

Humic Acid Reduction
The oxidation and reduction of humic acid have a significant
importance during the anaerobic biotransformation of organic
and inorganic pollutants. The quinone moieties of humic
acid act as center for oxido-reductive reactions (Lovley
et al., 1996). The oxidized form of humic acid accepts
electrons released from mineralization of organic pollutants. In
addition, the reduced form of humic acid is also involved in
biotransformation by reducing insoluble pollutants (oxidized)
to soluble form (reduced). An alkaliphilic actinobacterium,
Corynebacterium humireducens is capable of carrying out
such biotransformation and catalyzes the reduction of the
humic acids (Wu et al., 2011b) as well as the reduction
of a quinone into hydroquinone. The hydroquinone speeds
up the process of mineralization of pollutants such as 2,4-
dichlorophenoxy acetic acid (Wang et al., 2009). The reduced
humic acid could further be used to reduce the insoluble
Fe+3 into soluble Fe+2 ions making them available for plant
assimilation.

Applications of Thermophilic and
Alkaliphilic Actinobacteria

Thermophilic and alkaliphilic actinobacteria are useful in
bioremediation, gold nanoparticle synthesis, biofertilizers
and biopesticides (Figure 3). In addition, they produce
novel bioactive compounds and enzymes with commercial
applications.

Synthesis of Gold Nanoparticles
The prokaryotes (bacteria and actinobacteria) as well as
eukaryotes (algae, fungi, and yeast) have been currently being
explored for themanufacturing of nanoparticles. Themechanism
of gold particle synthesis involves the reduction of Au3+

by microbes when they are incubated with gold chloride
(Beveridge and Murray, 1980). They synthesize nanoparticles
either intracellularly or extracellularly. Among them, the use of
prokaryotes is preferred because of their capability to tolerate
high concentration of metal (Silver, 2003), leading to the
production of a higher yield of nanoparticles. Moreover, the
synthesis of nanoparticles by actinobacteria has an additional
advantage of polydispersity property which prevents self-
aggregation of nanoparticles (Ahmad et al., 2003a). The
synthesis of gold nanoparticles by Thermomonospora sp. (Ahmad
et al., 2003a) and alkalitolerant actinomycete Rhodococcus sp.
(Ahmad et al., 2003b) was studied. The gold particles find
various applications in diagnostics, therapeutic, and catalytic
purposes.
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FIGURE 3 | Potential applications of Industrial thermophilic and alkaliphilic actinobacteria.

Bioremediation of Hydrocarbon Contaminated
Sites
The thermophilic actinobacteria decompose a large number
of biomolecules (lignin, cellulose, and hemicellulose) and
recycle the nutrient back into soil which enhances the soil
productivity. The process of biodegradation of interactive
complex substrates necessitates actinobacteria to secrete a range
of extracellular hydrolytic and oxidative enzymes. The rapid
hyphal colonization and enzyme secretion enable them as being
a good candidate for bioremediation process. Moreover, they are
capable of metabolizing recalcitrant polymers (hydrocarbons,
xenobiotic, and toxic pesticides), plastics, and rubber. Tseng
et al. (2007) isolated several plastic degrading actinobacterial

species belonging to the genera (Actinomadura, Microbispora,
Streptomyces, and Saccharomonospora). These actinobacteria
degrade various biodegradable polyesters such as poly(ethylene
succinate) (PES), poly(e-caprolactone) (PCL), poly(D-3-
hydroxybutyrate) (PHB), poly(tetramethylene succinate)
PTMH, poly(L-lactide) (PLA), and terephthalic acid, and
reduce their environmental impacts. A few other thermophilic
actinobacteria are reported to act on polymer (rubber) and
produce valuable chemicals such as carbonyl carbon atoms
(aldehydes and ketone) and bifunctional isoprenoid species
(Table 2). The toxic organic compounds include phenol
and nitriles such as acrylonitrile and adiponitrile which are
hazardous to human health. These harmful chemicals need
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TABLE 2 | List of thermophilic and alkaliphilic actinobacteria degrading plastics, rubber and organic pollutants.

Actinobacteria strains Substrate degraded References

PLASTICS DEGRADATION

Actinomadura miaoliensis BC 44T-5T PHB Tseng et al., 2009

Actinomadura keratinilytica T16-1 PLA Sukkhum et al., 2012

Thermobifida fusca Terephthalic acid Kleeberg et al., 1998

Thermobifida alba AHK119 Terephthalic acid. Hu et al., 2010

Microbispora rosea subsp. aerata IFO 14046 PTMH and PCL Jarerat and Tokiwa, 2001

Microbispora rosea subsp. aerata IFO 14047

Excellospora japonica IFO 144868

E. viridilutea JCM 339

Streptomyces sp. strain MG PTMH and PCL Tokiwa and Calabia, 2004

Streptomyces thermoviolaceus subsp. thermoviolaceus 76T-2 PCL Chua et al., 2013

Streptomyces bangladeshensis 77T-4 PHB Hsu et al., 2012

Dietzia sp. Strain GS-1 Disodium terephthalate Sugimori et al., 2000

RUBBER DEGRADATION

Streptomyces strain La 7 Latex and natural rubber Gallert, 2000

Actinomadura nitritigenes Poly(cis-1,4-isoprene) Ibrahim et al., 2006

Nocardia farcinica

Thermomonospora curvata

ORGANIC POLLUTANTS DEGRADATION

Streptomyces setonii strain ATCC 39116 Phenol and benzoate An et al., 2000

Pseudonocardia thermophila JCM3095 Acrylonitrile Yamaki et al., 1997

Kocuria rosea HN01 DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) Wu et al., 2014a

Dietzia natronolimnaea JQ-AN Aniline Jin et al., 2012

Georgenia daeguensis 4-Chlorophenol Woo et al., 2012

Nocardioides sp. 2,4-Dichlorophenol and 2,4,5-trichlorophenol Maltseva and Oriel, 1997

Dietzia sp. Strain DQ12-45-1b Petroleum hydrocarbons and crude oils Wang et al., 2011

Dietzia cinnamea P4 Petroleum hydrocarbons Weid et al., 2007

Dietzia sp. PD1 Azo dyes Das et al., 2015

Dietzia sp. E1 Long chain n-alkane Bihari et al., 2010

Dietzia sp. H0B Prestige oil spill Alonso-Gutierrez et al., 2011

to be degraded. Some thermophilic actinobacteria (listed in
Table 2) are capable of metabolizing these lethal chemicals into
non-toxic form by producing various enzymes such as phenol
hydroxylase, polyphenol oxidase, catechol 2,3 dioxygenase,
laccase, peroxidase, and nitrile converting enzymes (amidases,
nitrilases, and nitrile hydratases). The pentachlorophenol is an
organochlorine compound which works as a broad spectrum
biocide and is used mainly in sawmills to preserve the woods.
The soil and water resources of an area surrounding sawmills
are contaminated with the chlorophenols causing hazardous
effects on biological systems. The chlorophenols, therefore, need
complete degradation. The Saccharomonospora viridis isolated
from mushroom compost is capable of hydrolyzing this phenolic
compound into non-toxic form (Webb et al., 2001).

A number of alkalitolerant and alkaliphilic actinobacteria
have been reported to mineralize the hydrocarbon and
other pollutants. The Dietzia species were found to have
organic pollutant degradability and produce biosurfactants or
bioemulsifiers by degrading n-alkanes (Nakano et al., 2011).
The biosurfactants can be used in pharmaceuticals, detergents,

textiles, and cosmetics. The species of other genera have also
been reported to degrade hydrocarbons (listed in Table 2). A
biofilm isolated from hypersaline liquids, has been shown to
remove the hydrocarbon pollutants (60–70% of crude oil, pure
n-hexadecane, and pure phenanthrene; Al-Mailem et al., 2015).
The two alkalitolerant actinobacteria such as Kocuria flava
and Dietzia kunjamensis along with other bacterial community
was reported in the biofilm. A biofilm is densely packed
microbial community, formed by irreversible organization,
cooperation, and secretion of polymers which facilitate the
adherence of microbes to the substrates and hasten the process
of biodegradation of toxic compounds. The alkaliphilic and
alkalitolerant actinobacteria are known to play a role in
bioremediation of hydrocarbon and other organic contaminants
are listed in Table 2.

Bioleaching
Bioleaching is a process of extracting the metals from ores. The
occurrence of alkaliphiles is comparatively less than acidophiles
in metal leaching sites. The two alkaliphilic actinobacteria such as
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Nocardiopis sp. (Kroppenstedt, 1992) andNocardiopsis metallicus
strain KBS6T (Schippres et al., 2002) have a tendency to leach
metals from the alkaline slag dump, could be applied in the
process of metal extraction in alkaline sites.

Bioremediation of Radionuclides Contaminated
Sites
The nuclear power plants generate huge amount of radioactive
wastes (radionuclides) which contaminate the land areas and
water resources e.g., lakes and rivers. The radionuclides
contaminated sites contain other toxic compounds as well such as
heavy metals (e.g., mercury) and toxic hydrocarbons. Exposures
to these lethal compounds cause cancer, birth defects, and other
abnormalities. Conventionally, the chemical (solvent extraction
and chemical oxidation) or physical remediation (soil washing
and soil vapor extraction) methods are employed to extract
these hazardous pollutants. However, these methods are quite
less efficient and expensive. The microbial remediation has
been found to be cost effective with high efficacy and prevents
spreading of radioactive wastes over a wider area. However, the
radionuclides are highly unstable and disintegrate spontaneously
to emit energy in the form of harmful radiations, which act
as a principle factor to limit the use of bioremediation. Since
most of the microbial population is sensitive to radiations
and other stresses which necessitates to search and use of
radiation resistant microbes for removal or oxidation of toxic
metals (Gholami et al., 2015). Some alkaliphilic (Kocuria rosea
MG2) and alkali tolerant actinobacterial species [Kineococcus
radiotolerans (Phillips et al., 2002), Rubrobacter taiwanensis
(Chen et al., 2004), Microbacterium radiodurans (Zhang et al.,
2010), and Cellulosimicrobium cellulans UVP1 (Gabani et al.,
2012)] are resistant to lethal radiations and can sustain under
harsh conditions, thus, could be potential candidates for this
purpose.

Biocontrol Agent
Actinobacteria are known to improve the quality of compost
and increase its nutrient content. In addition, they also reduce
the odor of compost as they are able to completely digest the
organic matter present in compost (Ohta and Ikeda, 1978).
The thermophilic actinobacteria (Streptomyces sp. No. 101 and
Micromonospora sp. No. 604) have been shown to degrade
yeast debris completely and deodorize the compost (Tanaka
et al., 1995). Mansour and Mohamedin (2001), reported that
the Streptomyces thermodiastaticus produced many extracellular
enzymes involved in the cell lysis of pathogenic fungi like
Candida albicans. Some thermophilic actinobacteria are capable
of suppressing plant diseases, thereby promoting good health of
crop plants which leads to increase in crop yield (Iijima and
Ryusuke, 1996), therefore, these thermotolerant actinobacteria
could be used as alternative to commercial pesticides.

Bioactive Compounds Production
Actinobacteria are a rich source of clinically important
compounds, most importantly the compounds having antitumor,
antimicrobial and immunosuppressive activities (Pritchard,
2005). They are the largest antibiotic producers among all

microbes, and produce approximately 55% of the total known
antibiotics (Raja and Prabakarana, 2011). Among these, 75%
were discovered from Streptomyces and remaining 25% were
from non-Streptomyces species. The bioactive compounds
discovered till date are largely of mesophilic origins. A very
few natural compounds have been reported from thermophilic
and alkaliphilic actinobacteria (shown in Table 3). Most of the
antibiotics of mesophilic origin are thermolabile that is they
require low temperature to sustain their effectiveness, which
may be problematic for longer storage and shipping practices.
Routine use of such antibiotics leads to their degradation
due to repeated freezing and thawing (Eisenhart and Disso,
2012). Some antibiotics are water insoluble (Stone, 1960)
and organic solvent labile, therefore, need to be dissolved in
warm water to improve their solubilization; this necessitates
exploring thermophilic actinobacteria that produce thermostable
alternatives to currently available antibiotics.

Synthesis of Pharmaceutical Valuable
Compounds
Actinobacteria synthesize a large array of secondary metabolites
(antioxidant, anti-inflammatory compounds, and clinically
important enzymes; shown in Table 4). The antioxidants
produced by the thermophilic and alkaliphilic actinobacteria
are melanin, ferulic acid, and canthaxanthin. These antioxidants
have multiple uses in the medical field, which have been used
in the treatment of cancer, heart diseases and neurodegenerative
disorders such as Alzheimer and Parkinson’s diseases. Ferulic
acid is a component of lignin, which is linked via the ester
bonds to the polysaccharides (Scalbert et al., 1985). Ferulic
acid is formed upon hydrolysis of lignin by feruloyl esterase
(Huang et al., 2013). Apart from functioning as antioxidants,
ferulic acid can also be used as a precursor for the synthesis
of vanillin (food aromatic compounds), polymers, epoxides,
and aromatic compounds (alkylbenzenes, protocatechuic acid-
related catechols, guaiacol, and catechol; Rosazza et al., 1995).
An alkalitolerant, Dietzia sp. K44 produces canthaxanthin
(diketocarotenoid) which has comparatively more antioxidant
property than β-carotene and zeaxanthin. Canthaxanthin is
naturally produced in animal and plant tissues to scavenge the
free radicals (Venugopalan et al., 2013). Another important
secondary metabolite, carotenoids (tetraterpenoid) is produced
by Dietzia natronolimnaea HS-1 (Gharibzahedi et al., 2014).
Carotenoids can be used as vitamin A precursor, free radicals
scavenger and enhancer of the in vitro for the production
of antibodies. Dietzia natronolimnaea HS-1 also produces
canthaxanthin which was tested in the formulation of stable
nanoemulsion (NE). The nanoemulsion system is a method
to solubilize the hydrophobic antitumor compounds, which
uses 2-hydroxypropyl-b-cyclodextrin (HP-β-CD) to formulate
the water based drugs. The stability of NE was enhanced by
mixing canthaxanthin with HP-β-CD to yield the stable inclusion
complex. The stable NE has imperative therapeutical applications
(Gharibzahedi et al., 2015).

Some clinically important enzymes have also been reported
from thermophilic actinobacteria such as Streptomyces sp. (Chitte
and Dey, 2002; Chitte et al., 2011) which have been shown
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TABLE 3 | List of bioactive compounds produced by thermophilic and alkaliphilic actinobacteria.

Actinomyces isolates Bioactive compounds Activity References

THERMOPHILIC ACTINOBACTERIA

Excellospora viridilutea SF2315 [reclassified as

Actinomadura viridilutea (Zhang et al., 2001)]

SF2315A and B Antibacterial Sasaki et al., 1988

Streptomyces thermophilus Thermomycin Antibacterial Schone, 1951

Thermomonospora sp. T-SA-125 Antibacterial Dewendar et al., 1979

Streptomyces refuineus subsp. thermotolerans Anthramycin Antitumor Antimicrobial Hu et al., 2007

Microbispora aerata Diketopiperazine Neuroprotective agents Ivanova et al., 2013

Microbispora aerata Microbiaeratin Antiproliferative and cytotoxic drug Ivanova et al., 2007

Marinactinospora thermotolerans β-Carboline and indolactam alkaloids Antimalarial Huang et al., 2011

ALKALIPHILIC ACTINOBACTERIA

Streptomyces werraensis Erythromycin Antibacterial Sanghvi et al., 2014

Nocardiopsis dassonvillei WA52 WA52-A Macrolide Antifungal Ali et al., 2009

Streptomyces sp. No. 1543 Antimycin A Antifungal Sato et al., 1985

Streptomyces sp. DPTTB16 4′Phenul-1-napthyl-phenyl acetamide Antifungal Dhanasekaran and

Panneerselvam, 2008

Streptomyces griseus Var. autotrophicus Faeriefungin Antimicrobial and insecticidal activity Nair et al., 1989

Streptomyces strain Pyrocoll Antiparasitic Antitumor Dietera et al., 2003

Nocardiopsis sp. Griseusin D Anticancer Li et al., 2007a

Nocardiopsis alkaliphila YIM-80379 Nocardiopyrones A and B Antimicrobial Wang et al., 2013

Nocardiopsis terrae YIM 90022 Quinolone alkaloid and N-acetyl-anthranilic acid Antimicrobial Tian et al., 2014

to produce fibrinolytic enzymes. Fibrinolytic enzymes dissolve
the blood clot (fibrin) into smaller peptides and decrease
the blood viscosity, and can be used for reducing the risk
of arteriosclerosis, heart attack, and stroke. Asparaginase is a
well-known anticancer enzyme which inhibits the growth of
uncontrolled rapidly dividing cells by hydrolyzing the amino
acid asparagine which is required by the rapidly proliferating
cancer cells. Hatanaka et al. (2011a) cloned and expressed the
asparaginase of Streptomyces thermoluteus subsp. fuscus NBRC
14270 Another pharmaceutically valuable enzyme, X-prolyl-
dipeptidyl aminopeptidase (XDAP) is known to be produced by
thermophilic Streptomyces sp. (Hatanaka et al., 2011b), which
acts on proline rich proteins and produces short peptides. These
peptides act as inhibitors of dipeptidyl peptidase-4 (DPP-IV) and
can regulate the blood sugar levels as DPP-IV degrades glucagon
like protein-1 (GLP-1) which regulates insulin production and
lowers the blood sugar level. Thus, it could be used along
with GLP-1 to treat diabetes (Hatanaka et al., 2011b). Another
clinically important enzyme, vitamin D3 hydroxylase converts
cholecalciferol (VD3)to its biologically active form calcitriol
[1α,25(OH)2VD3]. The cholecalciferol (VD3) is an inactive form,
synthesized from 7-dehydrocholesterol in the epidermal layer of
skin through electrocyclic reaction on irradiance of ultraviolet.
The bioconversion of VD3 is a two step process, first it gets
converted to calcidiol [25(OH)VD3] by P450 in the liver, and
then subsequently hydrogenated to calcitriol by P450 in the
kidney. The calcitriol is a physiologically active form of vitamin
D,which is involved in the regulation of calcium and phosphate
concentration in the blood plasma. This calcidiol and calcitriol
can be artificially synthesized from cholesterol by a multistep
chemical process, but the yield is very low. There is, thus, a

need of an enzyme that can catalyze the hydrogenation of VD3

in a single step. Fujii et al. (2009) showed that Pseudonocardia
autotrophica produces vitamin D3 hydroxylase catalyzing the
conversion of VD3 into calcitriol, thus, could be used in
the production of vitamin D (Fujii et al., 2009). Another
important enzyme, aldose reductase catalyzes the conversion
of glucose into sorbitol through polyol pathway. The high
accumulation of sorbitol causes diabetes and other complications
like retinopathy and neuropathy. An inhibitor YUA001 was
identified from alkaliphilic Corynebacterium sp., that acts as a
potent inhibitor of aldose reductase (Bahn et al., 1998). The two
thermophilic species,Thermomonospora alba (Suzuki et al., 2001)
and Thermobifida alba (Suzuki et al., 1998) produce compounds
such as topostatin and isoaurostatin, respectively. These two
compounds act as inhibitors of DNA topoisomerase and
interfere with cellular processes like replication, transcription
and translation of viruses, and therefore, could function as
potential antiviral compounds.

Industrially Important Enzymes
Other than the listed uses, thermophilic and alkaliphilic
actinobacteria produce a number of enzymes (amylase, proteases,
lipase, cellulase, xylanase, inulinase, dextranase, and keratinase;
Table 5) which are being produced commercially and used
in industries all over the world (shown in Figure 4). Some
important actinobacterial enzymes are briefly described below.

Amylase
A starch hydrolyzing process yields oligosacchharides and other
simpler sugars (glucose, maltose, and maltotriose) which are
either used in food application or syrup industry. The industrial
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TABLE 4 | Pharmaceutically valuable compounds and enzymes produced by thermophilic and alkaliphilic actinobacteria.

Biological compounds Actinobacteria isolates Uses References

ANTIOXIDANTS AND ANTI-INFLAMMATORY COMPOUNDS

Melanin Streptomyces lusitanus DMZ-3 Cytotoxic compound Madhusudhan et al., 2014

Streptomyces sp. Antioxidant Quadri and Agsar, 2012

Streptomyces species D5 Neurogenic disorder treatment Diraviyam et al., 2011

Ferulic acid Thermobifida fusca PU13-13 Antioxidant Huang et al., 2013

Anti-inflammatory

Canthaxanthin Dietzia sp. K44 Antioxidant Venugopalan et al., 2013

Feed additive

Cosmetics

Carotenoids Dietzia natronolimnaea HS-1 Antioxidant Gharibzahedi et al., 2014

Feed additive

Cosmetics

PHARMACEUTICALLY VALUABLE ENZYMES

Vitamin D3 hydroxylase Pseudonocardia autotrophica Bone metabolism Fujii et al., 2009

Immunity

Cell growth regulators

Fibrinolytic enzyme Streptomyces sp. MCMB-379 Blood clot dissolution Chitte et al., 2011

Streptomyces megasporus SD5 Chitte and Dey, 2002

Recombinant Asparaginase Streptomyces thermoluteus subsp.

fuscus NBRC 14270

Leukaemia treatment Hatanaka et al., 2011a

L-Glutaminase Alkaliphilic Streptomyces sp. SBU1 Leukaemia treatment Krishnakumar et al., 2011

Ribonuclease Alkaliphilic Streptomyces sp. M49-1 Antiviral Demir et al., 2013

PrPSc-degrading enzyme keratinase Nocardiopsis strain TOA-1 Antiprion drug Mitsuiki et al., 2010

Recombinant X-prolyl-dipeptidyl

aminopeptidases (XDAP)

Streptomyces thermoluteus subsp.

fuscus NBRC 14270

Antidiabetic agents Hatanaka et al., 2011b

S. thermocyaneoviolaceus NBRC 14271

ALDOSE REDUCTASE INHIBITOR

YUA001 Corynebacterium sp. YUA25 Antidiabetic agents Bahn et al., 1998

DNA POLYMERASE INHIBITORS

Topostatin Thermomonospora alba Strain No. 1520

III [reclassified as Thermobifida alba

(Zhang et al., 1998)]

Antiviral Suzuki et al., 1998

Isoaurostatin Thermomonospora alba [reclassified as

Thermobifida alba (Zhang et al., 1998)]

Antiviral Suzuki et al., 2001

starch processing involves two high energy requiring steps:
(1) Liquefaction (or gelatinization of starch molecules) which
runs at very high temperature (105–110◦C) for 5min. (2)
Saccharification (conversion of starch into simpler sugars) which
requires the temperature at 55–60◦C (Vieille and Zeikus, 2001).
The raw starch binding thermostable amylases have become
increasingly attractive to lower the process cost since they
do not require gelatinized substrate for hydrolysis. The two
thermophilic actinobacteria such as Streptomyces sp. (Kaneko
et al., 2005) and Streptomyces sp. No. 4 (Primarini and Ohta,

2000), produce raw starch binding amylases which could be
applied to reduce the energy input at industrial level making
the overall process cost effective. Few other thermophilic
actinobacteria are known to produce high maltotriose forming
thermostable amylases which could be applicable in the food
industries (listed in Table 5). Some alkaliphilic/alkalitolerant
actinobacteria were reported to produce amylases functioning
at alkaline pH, which are being used in detergent formulation
to improve the detergency. At present, many modern laundries
prefer amylase containing detergent for washing clothes at a
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TABLE 5 | Commercially relevant enzymes produced by thermophilic and alkaliphilic actinobacteria and their potential uses.

Enzyme Actinobacteria strains Optimum temperature and pH Industrial applications References

Amylase Thermomonospora viridis TF-35 60◦C and 6.0 Detergent Takahashi et al., 1992

Baking

Paper and pulp

Thermomonospora curvata 65◦C and 5.5–6.0 Textile industry Glymph and Stutzenberger, 1977

Protease Saccharomonospora viridis SJ-21 70◦C and pH 9 Detergents Jani et al., 2012

Pharmaceutical

Nocardiopsis prasina HA-4 55◦C and pH 7–10 Leather Ningthoujam et al., 2009

Brewing

Keratinase Actinomadura keratinilytica strain Cpt29 70◦C and pH 10 Leather industry Habbeche et al., 2014

Thermomonospora curvata 65◦C and pH 6 Pharamaceutical uses Stutzenberger, 1971

Xylanase Thermomonospora fusca 60◦C and 7.0 Paper and pulp McCarthy et al., 1985

Baking

Kocuria sp. RM1 30–85◦C and pH 4.5–9 Animal feed Krishna et al., 2008

Streptomyces sp. Ab 106 60◦C and pH 9.0 Techapun et al., 2002

Acetylxylan esterase Thermobifida fusca NTU22 80◦C and 8.0 Paper and pulp Yang and Liu, 2008

Dextranase Streptomyces sp. NK458 60◦C and 9.0 Sugar mills Purushe et al., 2012

Nitrile hydratase Pseudonocardia thermophila JCM 3095 Thermostable (50–80◦C) Acrylamide production Martinez et al., 2014

Laccase Thermobifida fusca BCRC 19214 Stable at 50◦C and pH 10.0 Waste treatment Chen et al., 2013

Textile dye treatment

Carbon monoxide

dehydrogenase

Streptomyces sp. strain G26 69◦C Bioenergy generation Bell et al., 1988

Biofilters

lower temperature in order to save energy (Chakraborty et al.,
2012).

Proteases
Proteases are one of the most important class of hydrolytic
enzymes, which constitute >65% of the total industrial
applications. A large array of actinobacterial species (including
both alkalitolerant and alkaliphiles) produces alkalistable
proteases and keratinase of commercial interest. The alkalistable
proteases possess considerable applications in various industries
such as detergent, leather, and food industries (Ellaiah et al.,
2002). The alkalistable proteases are also used in the process
of silver recovery from used X-ray or photographic film. The
proteases of alkaliphilic actinobacteria are not only alkalistable
but also thermostable (Gohel and Singh, 2012a), salt tolerant,
and function actively in the presence of organic solvent (Thumar
and Singh, 2009). The alkali-thermostable proteases could be
a potent candidate in leather industries where the alkaline
condition and high temperature are maintained during tanning
process. In addition, salt and organic solvent tolerant proteases
of actinobacteria find various applications in industrial processes
requiring high salt concentration and solvents. The organic
solvent tolerance increases the industrial value of proteases as
organic solvents enhance the catalytic properties of hydrolytic

enzymes (Klibanov, 2001) and preclude the occurrence of
undesirable side reactions during the process.

Cellulases, Xylanase, and Acetyl Xylan Esterase
Cellulase and xylanase are the two industrially important
enzymes that enable us to utilize the agricultural residues in
generation of biofuel in a sustainable manner. The extreme
operational conditions of industries demand highly thermostable
enzymes. The two thermophilic actinobacteria, Acidothermus
cellulolyticus (Mohagheghi et al., 1986) and Thermobifida fusca
(Kim et al., 2005) are significantly fascinating the biofuel industry
as well as several others (food, animal feed, textile, paper and
pulp industry) as they are known to possess the robust enzymatic
system to degrade cellulose and xylan fractions of lignocelluloic
residues. The cellulases of T. fusca and A. cellulyticus have
extensively been studied and are being used in bioethanol
production from plant cell components. A cellulase from T. fusca
has an additional advantage of extracting phenolics from apple
peel, which can be used as antioxidants (Kim et al., 2005).
This moderately thermophilic actinobacterium also secretes
thermostable acetyl xylan esterase which catalyzes the removal
of acetyl group from acetylxylan making easy access of xylanases
to the substrate leading to its complete degradation (Yang and
Liu, 2008). Thermostable and alkalistable enzymes capable of
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FIGURE 4 | Application of important enzymes produced by thermophilic and alkaliphilic actinobacteria.

degrading lignocelluloic substrate have also been characterized
from other thermophilic and alkaliphilic actinobacteria (listed in
Table 5).

Dextranase
The process of sugar production from sugarcane juice
requires high temperature and alkaline pH. The indigenous
microorganisms present in the juice may produce dextran which
needs to be degraded, otherwise it blocks the filter and slows
down the clarification process, thus, decreasing the yield and
quality of sugar produced (Purushe et al., 2012). Since the process
occurs at high temperature and alkaline pH, the addition of
alkalithermostable dextranase before processing can improve the
yield as well as quality of sugar produced. Therefore, dextranase
produced by some thermoalkaliphilic actinobacteria such as
Streptomyces sp. NK458 is well-suited for such application
(Purushe et al., 2012).

Nitrile Hydratase
Another enzyme kown as nitrile hydratase has been reported
from a large number of mesophilic and thermophilic
actinobacteria, and is involved in the biotransformation of
nitriles into useful compounds such as amines, amides, amidines,
carboxylic acids, esters, aldehydes, and ketones (Banerjee
et al., 2002). The industrial applicability of thermostable
nitrile hydratases demands detailed investigation on enzymes
from thermophilic actinobacteria. The thermostable nitrile
hydratase from Pseudonorcardia thermophila has recently
been immobilized in the gel matrix for acrylamide production
(Martinez et al., 2014).

Laccase
Laccase catalyzes the oxidation of phenolics (2,6-
dimethylphenylalanine and p-aminophenol) and produces
colors, therefore, it is being used as a hair coloring agent. The
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coloring occurs best at alkaline pH, as in alkaline condition, hair
tends to swell up leading to easy penetration of dye molecules.
Therefore, an alkalistable laccase would be the best candidate
to be used for such application. Actinobacteria are known to
produce thermoalkalistable laccase (e.g., Thermobifida fusca
BCRC 19214; Chen et al., 2013). Therefore, laccase can be
produced from such actinobacterial strains for hair coloring
application.

Alginate Lyase
The alginate is a linear acidic polysaccharide and produced as
a major component of cell wall of seaweeds. It consists of 1,4-
linked α-d-mannuronate (M) and its epimer α-l-guluronate (G).
These monomers polymerize in three ways: homopolymerization
of G blocks [poly (G)] and homopolymerization ofM blocks
[poly (M)], and heteropolymerization of MG blocks [poly (MG)]
(Gacesa, 1992). Alginate lyases act on these polymers to produce
alginate oligosaccharides which can be used as therapeutic agents
(anticoagulant, antitumor agent. and anti-inflammatory agent;
Iwamoto et al., 2005). Alginate lyases are classified into two
types (monofunctional and bifunctional) on the basis of their
substrate specificity. Monofunctional enzymes can either act
on poly(M) or poly(G) and bifunctional enzymes prefer the
poly(MG) (Tondervik et al., 2010). But there are fewer reports
on bifunctional and thermostable alginate lyase. An alkalitolerant
actinobacterium, Isoptericola halotolerans CGMCC 5336 has
been shown to produce moderately thermostable bifunctional
alginate lyase (Dou et al., 2013).

Alditol oxidase
Oxidation of primary and secondary alcohols yields oxidative
products that are used to synthesize other useful compounds.
Chemical oxidation methods mediate the reaction by using
heavy metals such as chromium and manganese. Interestingly,
biocatalysts can also be employed to derive such oxidation
reactions e.g., alcohol dehydrogenase. However, this enzyme
requires NAD(P)+ as cofactor for the reaction which is
very costly. To overcome this demerit, the research is
being focused on isolating and characterizing thermostable
flavoprotein alditol oxidase (AldO) from microbial sources for
industrial applications. The gene of AldO of a thermophilic
actinobacterium (Acidothermus cellulolyticus) was identified
while searching for the homologs of the well-characterized AldO
of Streptomyces coelicolor in the genome database (Winter et al.,
2012). The gene of AldO was cloned and expressed in E. coli and
the recombinant enzyme AldO displays a high thermostability
(half-life at 75◦C of 112min) and requires cheaper molecular
oxygen as terminal electron acceptor. Therefore, this enzyme
can be used as an alternative of chemical catalysts in industrial
processes.

Carbon Monoxide Dehydrogenase
Carbon monoxide dehydrogenase is an oxidoreductase enzyme
that catalyzes the interconversion between carbon monoxide and
carbon dioxide. This enzyme is produced in both anaerobic and
aerobic microbes during autotrophic mode of nutrition. The
enzyme has a great affinity to bind CO, thereby trapping the

CO from the environment, therefore, can be applied in biofilters
to purify these toxic gases released by industries. Streptomyces
sp. G26 (Bell et al., 1988) and Streptomyces thermoautotrophicus
(Gadkari et al., 1990) have been reported to produce the
thermostable carbon monoxide dehydrogenase which is well-
suited for filtering the hot air released from industries. This
can also be employed in the biosensor to detect and quantitate
atmospheric CO concentration.

Cutinase
Cutinase is a serine esterase that acts on the ester bonds of cutin
(a component of cuticle layer of plant aerial parts). Thermobifida
fusca produces two types of cutinases which display higher
thermostability than the fungal cutinases (Chen et al., 2010). The
enzyme exhibits broad substrate specificity such as plant cutin
and soluble/insoluble esters and hydrolyzes them into hydroxyl
and hydroxy epoxy fatty acids as end products. These fatty acids
can be used as substrate in the enantioselective esterification
reactions or in the production of phenolic compounds as well as
the oil and dairy products. The enzyme can also metabolize the
synthetic polyesters and other organic pollutants (Kleeberg et al.,
2005), therefore, could be used in the in vitro biodegradation
processes.

Genome Annotation, Molecular Insights,
and Genetic Manipulation of Thermophilic
and Alkaliphilic Actinobacteria

The mechanisms, biosynthetic pathways and mode of action of
several antibiotics of mesophilic origin have been elucidated.
Classical randommutagenesis and rational genetic methods such
as ribosome engineering, genome shuffling, down-regulation,
and up-regulation of structural genes have been used to
manipulate the genetic makeup of wild type actinobacteria
strain for obtaining strains with desirable properties for
e.g., enhancement in the antibiotic production titer (Olano
et al., 2008). However, despite having prospective and novel
characteristics, the biosynthetic pathways of bioactive compound
and enzymatic system of the thermophilic and alkaliphilic
actinobacteria are comparatively less explored. The inadequate
information is available related to the heterologous gene
expression, in vitro genetic engineering, structural elucidation
and molecular insight on the catalysis of thermostable and
alkalistable enzymes of actinobacteria. Only two thermophilic
actinobacterial species, Thermobifida fusca and Acidothermus
cellulyticus have been well-studied which are known to secrete a
large array of highly thermostable and broad pH stable glycoside
hydrolases. Their glycoside hydrolases are gaining considerable
attention in the fuel biotechnology. The genes of thermo- or
alkali-stable enzymes of some other thermophilic and alkaliphilic
actinobacteria were cloned and expressed as well (shown in
Table 6).

The complete genome sequence analysis reveals the presence
of genes encoding industrially useful enzymes or enzymes
involved in the biosynthetic pathway of novel bioactive
compounds (Velásquez and van der Donk, 2011). This also
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TABLE 6 | Summary of heterologous expression of proteins of thermophilic and alkaliphilic actinobacteria.

Actinobacteria Enzymes Expressi on Host Optimum pH and

temperature

Km Vmax References

Acidothermus

cellulolyticus 11B

Thermostable

endoxylanase

(Xyn10A)

E. coli BL21 pH 6 and 90◦C 0.53mg/ml ND Barabote et al., 2010

Acidothermus

cellulolyticus

Endoglucanase (E1) Pichia pastoris pH 5.1 and 80◦C 372 ± 50µM 0.523 ±

0.070µM/min

Lindenmuth and

McDonald, 2011

Acidothermus

cellulolyticus

Glucose isomerase E. coli BL21 pH 6.5 and 80◦C 0.40M 6.41 Mu et al., 2012

Acidothermus

cellulolyticus

Alditol oxidase E. coli BL21 pH 6–9 Varies with different

substrates

Varies with different

substrates

Winter et al., 2012

Saccharomonospora

viridis

Xylanase (Svixyn10A) E. coli BL21 8.0 and 60◦C 0.68mg/ml 217.93U/mg Wang et al., 2012

Nocardiopsis

prasina OPC-131

Chitinase E. coli BL21 pH 9.0 ND ND Tsujibo et al., 2003

Isoptericola

jiangsuensis CLG

Chitinases IS-chiA

and IS-chiB

E. coli BL21 pH 5 and 30◦C and

pH 9 and 50◦C,

respectively

11.66 and 17µM,

respectively

10.93 and

12.24µmol min−1

mg−1, respectively

Wu et al., 2011a

Brachystreptospora

xinjiangensis OM-6

and Nocardiopsis

alba OK-5

Proteases E. coli BL21 pH 10 ND ND Gohel and Singh,

2012b

Thermobifida fusca Cytochrome P450

monooxygenase

CYP154H1

E. coli BL21 50◦C ND ND Schallmey et al.,

2011

Thermobifida fusca

TM51

β-D-mannosidase E. coli BL21 7.17 and 53◦C 180µM 5.96µmol min−1

mg−1,

Beki et al., 2003

Thermobifida

halotolerans

Endoglucanase E. coli BL21 pH 8 and 55◦C 12.02mg/ml 105.26µM min−1 Zhang et al., 2011

Thermobifida fusca Trehalose synthase Pichia pastoris 25◦C and pH 6.5 ND ND Wei et al., 2004

Corynebacterium

glutamicum

Flavin containing

monooxygenase

E. coli BL21 pH 8 and 25◦C Varies with substrate Varies with substrate Ameria et al., 2015

*ND, not determined.

provides better understanding of the genetic makeup and cellular
mechanisms of an organism which enables us to engineer
microbes in order to enhance their efficacy for biotechnological
purposes. The genome sequence of some important thermophilic
and alkaliphilic actinobacteria were annotated and analyzed
which provides some valuable information related to these
microbes (summarized in Table 7). For instance, the genome
annotation of cellulolytic actinobacterium, Thermobifida fusca
revealed the presence of additional 29 putative glycoside
hydrolases (cellulose-, dextran/starch-, and xylan-degrading
enzymes) than the previously characterized glycosidases (Lykidis
et al., 2007). This actinobacterium has been designated as a
model organism for the cellulose degradation.Thermobifida fusca
YX has been metabolically engineered to be used in biofuel
production (Deng and Fong, 2011). The gene of bifunctional

butyraldehyde/alcohol dehydrogenase (adhE2) from Clostridium
acetobutylicum ATCC 824 was introduced into the genome of
T. fusca to enhance its efficacy for cellulose degradation. This
genetically engineered strain can utilize untreated lignocellulose
and convert it directly into primary alcohols (1-propanol and
1-butanol). T. fusca is known to produce six structurally and
functionally distinct cellulases (El–E6; Irwin et al., 1993). Out
of these, the three enzymes [E1 (Cel9B), E2 (Cel6A), and E5
(Cel5A)] are β-(1, 4)-endoglucanases and catalyze the conversion
of insoluble cellulose into cellobiose and other simpler sugars
(Hu and Wilson, 1988). The other two cellulases such as E6
(Cel48A) and E3 (Cel6B) (Zhang et al., 1995) are β-(1,4)-
exoglucanases and one cellulase E4 (Cel9A) has the ability to
catalyze the endo- and exo-cellulysis. These six cellulases are
produced in small quantities under uninduced conditions. But
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the constitutive expression of E2 was comparatively higher
than others. The cellulase E2 has been shown to play a vital
role in the early growth period of T. fusca (Spiridonov and
Wilson, 1998). A transcriptional regulator CelR (340-residue
polypeptide) binds to the operator (14-base pair inverted repeat)
which is present in the upstream region of genes of six cellulases
and represses the transcription of the cellulase genes in T. fusca
(Spiridonov andWilson, 1999). The binding of CelR is controlled
by the presence of cellobiose which acts as an inducer and
binds with repressor protein (CelR). Binding of cellobiose
brings conformational changes in CelR protein and facilitates its
dissociation from operators, thereby inducing the transcription
of mRNA of cellulases. The cellulase Cel9A-90 (E4) shows highest
activity among other cellulases in crystalline form. It has catalytic
domain (CD) of a family 9 cellulases, a cellulose binding module
(CBM3c), a fibronectin III-like domain, and a family 2 CBM
domain (Li et al., 2010). A active site cleft is present in the CD
that consists of six glucose binding sites, numbered from −4
to +2. These residues are aligned with a flat binding surface of
the CBM3c. The mutein Cel9A-51 (without CBM3c) revealed
the significant role of CBM3c in processivity of the enzyme.
The enzymatic activity of Cel9A was shown to be enhanced
upon replacement of a conserved residue (D513) of the CBM
domain (Li et al., 2007b). A mutein Cel9A-68 was constructed
by deleting CBM2 domain from a Cel9A-90 gene, which showed
comparatively higher cellulolytic activity (Li et al., 2010). Another
mutein Cel9A-68 (T245-L251) R252K (DEL) showed slightly
improved filter paper activity and increased binding affinity
toward bacterial microcrystalline cellulose (Zhou et al., 2004).
An enzyme E5 (Cel5A) was found to be detergent stable, which
has total six cysteine residues involved in the formation of three
disulfide bonds. Among them, one bond is exposed outside which
gets easily reduced to free sulfahydryl group while the other two
bonds are not accessible. The reduction of one accessible bond
does not affect the activity of an enzyme (McGinnis and Wilson,
1993). Thermobifida fusca also produces other thermostable
enzymes (amylase, xylanase, and mannase). Xylanase reported
from T. fusca is thermostable. Random mutagenesis was carried
out to improve catalytic efficiency (12-fold increased), substrate
affinity (4.5-fold decreased) and alkalistability of this xylanase.
The thermostability of the mutein, however, decreased with the
improvement of other functional characteristics (Wang and Xia,
2008).

Another cellulolytic actinobacterium, Acidothermus
cellulyticus, is reported as a potent decomposer of plant cell
material. The complete genome annotation revealed that it
harbors 43 genes encoding carbohydrate active enzymes. Out
of 43, total 35 proteins are glycoside hydrolases and remaining
eight belong to carbohydrate esterases type. The 17 plant
cell wall degrading enzymes (cellulolytic and hemicellulose
hydrolysis), 10 fungal cell wall degrading enzymes (chitinases,
N-acetylglucosaminidase, GH16 endo-1,3-beta-glucanase
and others) and 16 other proteins (glycogen and trehalose
synthesizing and degrading enzymes including GH13 family
α-amylase) were identified from this actinobacterium. Among 43
enzymes, only 21 are actively secreted, while others are produced
intracellularly (Barabote et al., 2009). The endoglucanase
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(E1 or Cel5A) of A. cellulolyticus is well-studied, which is
ultra-thermostable, acid-stable, and displays higher substrate
specificity (Tucker et al., 1989). The Cel5A belongs to glucoside
hydrolases family 5 and 4/7 superfamily, and has been cloned in
a number of hosts such as transgenic plants [tobacco (Dai et al.,
2000), maize (Biswas et al., 2006), rice (Chou et al., 2011), and
many others], and Pichia pastoris (Lindenmuth and McDonald,
2011). The endoglucanase producing transgenic plants ease
the process of bioconversion of lignocellulosic materials into
biofuels. The catalytic efficiency of Cel5A was increased by
replacing of Tyr245 of WT-Cel5A with Gly (Y245G). This
mutation reduces the end product inhibition and enhances the
activity by 1480%. The mutein also releases 40% extra soluble
sugar than wild type E1 enzyme (Baker et al., 2005). The gene
of GH12 endoglucanase (not previously characterized) of A.
cellulolyticus along with Cel5A gene were expressed into the
Zymomonas mobilis to construct a consolidated bioprocessing
(CBP) organism. Consolidated bioprocessing (CBP) is a new
biotechnological approach to convert pretreated lignocellulosic
materials to ethanol by using a single organism producing
multiple hydrolytic enzymes (Linger et al., 2010).

Xylanase producing alkalitolerant actinobacterium,
Streptomyces viridochromogenes strain M11 was isolated
from marine sediment samples collected from the Xiaoping
Island, China. This Streptomyces sp. produces thermostable
and a broad pH stable xylanase. The xylanase production in
this strain was increased (14% higher activity) by ribosome
engineering. The ribosome engineering is an approach to
introduce mutation in ribosome by using high concentrations of
various antibiotics [10 times more concentration than minimal
inhibitory concentration (MIC)]. This engineered strain
produces antibiotic resistant mutants by causing mutation in the
gene rpsL (ribosomal protein S12) and gene rsmG (16S rRNA
methyltransferase). The K88R mutation of rpsL of this strain
enhanced the xylanase production level (Liu et al., 2013). The UV
mutants of Streptomyces griseoaurantiacus have also been shown
to produce efficient cellulases (stable at high temperature and
broad pH range) in relatively higher titers (Kumar, 2015). Crude

oil degrading alkalitolerant actinobacterium, Dietzia strain
DMYR9 has been isolated from oilfield and was metabolically
engineered by irradiating with 12C6+ heavy ions to enhance its
biodegradability (Zhou et al., 2013).

Conclusions and Future Perspectives

Thermophilic and thermotolerant actinobacteria are found
in 25 genera belonging to four major classes (Actinobacteria,
Acidimicrobiia, Rubrobacteria, and Thermoleophilia). The
taxonomic status of many thermophilic actinobacteria is
ambiguous, therefore, has been revised repeatedly in the past.
Bioprospecting of thermophilic actinobacteria represents an
extensive pool of industrial and pharmaceutically relevant
biomolecules. Their high abundance and metabolic versatility
offer a new robust gateway to bioremediation of pollutants
and organic residues. Although the first description on
alkaliphilic actinobacteria appeared 70 years ago, the literature

available on biodiversity, physiology, and ecology of alkaliphilic
actinobacteria is quite inadequate. The growing industrial
demand for alkalistable enzymes and biomolecules calls
for further research on isolation, characterization, and
bioprospecting of novel alkaliphilic actinobacteria. The use
of metagenomic approaches will throw light on the novel
genera of non-culturable actionobacteria and their genes in
alkaline and hot environments. The availability of genome
sequences of alkaliphilic and thermophilic actinobacteria is
expected to encourage microbiologists and biotechnologists
to go for gene mining that may lead to the discovery of novel
biomolecules.
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The lack of new antibiotics in the pharmaceutical pipeline guides more and more

researchers to leave the classical isolation procedures and to look in special niches and

ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped

strains and avoiding resiolation of known biomolecules is among the most promising

strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant,

psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been

obtained from respective habitats. Among these, little survey exists on the diversity of

Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt

concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems

which can be recruited for the isolation of uncommon Actinobacteria with new metabolic

capability. At the time of this writing, members of Streptomyces, Micromonospora,

Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus,

Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However,

metagenomic data present dominant members of the communities in desiccating

condition of areas with limited water availability that are not yet isolated. Furthermore,

significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide

synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria

and some bioactive compounds are reported from them. Rather than pharmaceutically

active metabolites, molecules with protection activity against drying such as Ectoin

and Hydroxyectoin with potential application in industry and agriculture have also been

identified from xerophilic Actinobacteria. In addition, numerous biologically active small

molecules are expected to be discovered from arid adapted Actinobacteria in the future.

In the current survey, the diversity and biotechnological potential of Actinobacteria

obtained from arid ecosystems, along with the recent work trend on Iranian arid soils,

are reported.
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INTRODUCTION

The need for new bioactive structures is substantially emphasized
due to the serious consequence and dynamic nature of antibiotic
resistance in pathogens. Correspondingly, the need for novel
bioactive compound discovery, because of their potential
agricultural, pharmaceutical or industrial applications, is great
(Thumar et al., 2010).

Among different resources, the privileged chemical scaffolds
and metabolic potential of Actinobacteria have made them
among the most promising bioprospecting resources (Bérdy,
2015). The rate of discovery of novel bioactive compounds
has dramatically reduced in bioprospecting. As a consequence,
searching for undiscovered species is imperative to address
this reduction. For this purpose, either the rare genera
from normal habitats or under investigated species found
in unusual habitats like deserts are recommended (Harwani,
2013). Finding new actinobacterial species will presumably lead
to the discovery of potentially new structural and beneficial
secondary metabolites (Thumar et al., 2010). The discovery of
new bioactive compounds from taxonomically unique strains of
extremophilic or extremotrophic Actinobacteria has led to the
anticipation that mining these groups could add an alternative
dimension to the line of secondarymetabolite resources (Thumar
et al., 2010). Extremophilic and extremotolerant Actinobacteria,
including acidtolerant and alkalitolerant, psychrotolerant and
thermotolerant, halotolerant and haloalkalitolerant or xerophiles
comprise the group of less investigated of this bacteria.
Actinobacteria dwelling in deserts are capable of growing
under selective conditions of pH or salinity and encompass
remarkable gene clusters to produce compounds with unique
antibacterial activity. However, little data is available related
to the Actinobacteria from arid habitats, which are among the
most plenteous ecosystems with regard to the occurrence of new
bacterial species (Thumar et al., 2010).

By analysis of the literature data, in this review, we
present the necessity of mining drought adapted Actinobacteria,
exploring arid ecosystems for actinobacterial distribution;
reporting Actinobacteria of arid ecosystems including studies of
Iranian arid soils and bioactive metabolites of drought adapted

Actinobacteria.

ACTINOBACTERIA AS THE OLDEST AND
MOST PROMISING RESOURCE

Actinobacteria are a Gram positive group often distinguished by a
high mol% G+C ratio content, filamentous or non-filamentous,
among which some genera produce spores (Ludwig et al., 2012).
The class Actinobacteria comprises 5 subclasses, 10 orders, 56
families, and 286 genera (Euzeby, 2015).

Actinobacteria are autochthonous and often among the
dominant population of their ecosystems. They have a ubiquitous
distribution in the biosphere, including the extremobiosphere,
and are regarded as being among the predominant components
of the soil microbiota (Bull, 2011). Since the discovery of
Streptomycin in 1943 (Schatz et al., 1944), the greatest number of
antibiotics introduced into the market, including carbapenems

(Cephalosporin), macrolides (Erythromycin), ansamycins
(Rifampicin), glycopeptides (Vancomycin), and Tetracyclines
(Demelocyclin), have been discovered from Actinobacteria.
The number and diversity of biosynthetic gene clusters in their
genomes, attendant with respect to the fact that only a fraction
of the actinobacterial bioactive chemicals have been discovered
to date, justify continuing their bioprospecting as the most
promising source of novel bioactive molecules discovery.

NEW SOURCE FOR EXTREMOPHILIC
ACTINOBACTERIA

A number of environments can be considered extreme, either
in terms of chemical (pH, salinity, water content) or physical
parameters (temperature, pressure, radiation) (Bull, 2011). The
extremophiles are evolved to thrive at or approximate to the
extreme ranges of these physicochemical parameters. In contrast,
a large number of microorganisms, referred to as extremotrophs,
can grow but are not essentially optimized despite extreme
conditions such as dilute nutrient availability that can be
considered oligotroph rather than oligophile (Bull, 2011).

Members of Actinobacteria are recovered from a complete
spectrum of extreme ecosystems. The existence of acidtolerant,
alkaliphilic, psychrotolerant, thermotolerant, halotolerant,
alkalitolerant, haloalkalitolerant, and xerophilous Actinobacteria
has been reported (Lubsanova et al., 2014). Novel chemodiversity
is more probable to be found in rare or recently cultivated strains.
Therefore, the diversity of the extremobiosphere can resolve the
challenge of rediscovery of previously known metabolites for a
substantial period of time. For this reason, exploring the thriving
Actinobacteria in extreme environments in order to obtain
untapped strains is suggested. Although a few comprehensive
investigations have been attempted on the bacterial diversity
of arid ecosystems, the diversity of Actinobacteria from such
environments has not been fully surveyed (Okoro et al., 2009).

ARID HABITATS AND EXISTENCE OF
BIOGEOGRAPHICAL BARRIERS

Arid regions comprise the largest continental ecosystems
(covering approximately 30% of all land area, of which 7% are
hyper-arid) that are water-constrained. The arid areas are defined
as biomes with a ratio of mean annual rainfall to mean annual
evaporation of less than 0.05 and below 0.002 for extreme hyper-
arid areas (Bull, 2011). The extreme desiccation condition of
hyper-arid deserts is often accompanied by high temperature, nM
concentrations of nutrients, low water activity, and intense
radiation, while in some ecosystems, low temperature, high
salinity, pH or concentrations of metals, nitrate or sulfate and
inorganic oxidant anions prevail in the arid area (Bull, 2011;
Koeberl et al., 2011). Among these, the availability of water
and nutrients are the cardinal limiting parameters of biological
activity in arid and semi-arid ecosystems (Saul-Tcherkas et al.,
2013). Bacteria embedded in low water activity niches must
expend rather more energy to accumulate a defined amount of
water and even the most resilient bacteria usually eventuates
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a state of hydrobiosis when water activity is reduced to below
0.88 aw, in which cells cease to metabolize, however, remain
viable (Connon et al., 2007). Bacteria that thrive in arid habitats
adjust their access to water required for their physiological
requirements. Most of them are adjacent to mineral soils such
as quartz, halites or gypsum; through dispersal, some water
trapped in these minerals can be accessed for bacterial growth
(Azua-Bustos et al., 2012).

The correlation between environmental selection or
stochastic processes related to the non-random dispersal of
prokaryotes indicates the existence of bacterial biogeography,
however, because of the exhaustive sampling required,
differentiating the endemic species is difficult. Contrary to
some definite similarities, arid habitats comprise diversified
local physicochemical conditions that influence community
structures. As a consequence, the composition of a bacterial
community is the result of local environmental selection (Ragon
et al., 2012) and is therefore endemic to the arid area. However,
considerable population size and cell dormancy inActinobacteria
may have a much more determining effect on the structure of
the various microbial communities, leading to different
biogeographic patterns. The phylogeny-based biogeography
investigation of bacteria is scarce and their functional-trait-based
evaluations are even more rarely addressed (Krause et al.,
2014). In addition to strain biogeography, conserved secondary
metabolome enrichment patterns that are soil type–specific are
also recognized in the bacterial world (Charlop-Powers et al.,
2014).

Arid regions are the interface across the often vegetated
semi-arid areas and the biologically unproductive hyper-
arid deserts (Neilson et al., 2012). They harbor numerous
unexplored xerophilic, thermophilic, halophilic and alkaliphilic
Actinobacteria producing new bioactive metabolites.
Applications of new methods can lead to the discovery of
cultivable bacteria from deserts which were supposed to be
sterile (Koeberl et al., 2011). The desert habitats are among
the target ecosystems for the isolation of new extremophile or
extremotroph strains of Actinobacteria which are more likely
to produce new metabolites. Actinobacteria have exclusive
tolerance to desiccation and solute stress among bacteria and
they have been isolated from diverse, hostile environments such
as arid and hyper-arid deserts, which are considered analogs
of potential habitats on Mars (Neilson et al., 2012; Stevenson
and Hallsworth, 2014). Although high levels of germination and
growth at 0.5 aw is reported for Actinobacteria, non-halophilic
species of Actinobacteria are unlikely to be metabolically active
below 0.80 aw, however, they may be ecologically active in
water constrained soil microhabitats that contain water activity
above this value (Stevenson and Hallsworth, 2014). Despite the
geographical extent of arid ecosystems, little is known about
the bacterial populations of these habitats and their metabolic
potential (Neilson et al., 2012). In this regard, few reports are
available pertaining to the isolation, screening and ecological
distribution of rare Actinobacteria from the desert ecosystem
(Harwani, 2013). Additionally, habitats other than soils are also
considered as new source areas with limited water availability
(Azua-Bustos et al., 2012).

XEROPHILIC STRAINS ISOLATED FROM
ARID AREAS

Recovered Actinobacteria from extremely hot and/or acidic
ecosystems or habitats with severe radiation/desiccation
conditions (such as deserts and other arid regions) tend
to be representative of the deepest clads of Actinobacteria
(Acidimicrobidae, Rubrobacteridae) (Bull, 2011). The extreme
desiccating condition of deserts has been the main driving
force in the evolution of the DNA repair mechanisms that has
generated the resistance to ionizing radiation (UV and gamma),
which is a characteristic of several desert-derived Actinobacteria
(Makarova et al., 2001). The most resistant genera of such
ecosystems are strains of Deinococcus and Geodermatophilus that
tolerate up to 30 Gy of irradiation. Members of these genera
have not yet been recovered from non-arid soil, even using
irradiation pretreatments (Bull, 2011). Xerophilic Actinobacteria
Geodermatophilus arenarius and G. siccatus were isolated from
Saharan Desert sand in Chad (Harwani, 2013; Montero-Calasanz
et al., 2013). Other members of the genus Geodermatophilus have
been isolated fromNegev Desert soil and fromMojave Desert soil
along the California-Nevada border, together with Actinoplanes
and Streptomyces strains using selective chemoattractants
(Kurapova et al., 2012). The Geodermatophilaceae contains
only two other genera of Blastococcus and Modestobacter,
which thrive in the conditions of low availability of water
and nutrients. Geodermatophilus prefers arid soils as natural
habitats and out of 15 species described in this genus, at least
nine species are isolated from the desert area (Euzeby, 2015),

whereas Blastococcus and Modestobacter are inhabitants of rock
surfaces (Montero-Calasanz et al., 2012). An actinobacterium
from a desert soil in Egypt, Citricoccus alkalitolerans, was
recognized as alkalitolerant and that its optimum growth
occurs at pH 8.0–9.0 (Li et al., 2005). Novel strains of the
non-sporulating actinobacterium Mycetocola manganoxydans
that had the ability to oxidize manganese ions were isolated
from the Takalima Desert (Luo et al., 2012). Members of the
Terrabacteria genus are also characterized by adaptations to
desiccation, radiation, and high salinity (Bull, 2011). Members
of the genus Streptomyces such as Streptomyces deserti from the
hyper-arid Atacama Desert are also reported from arid habitats
(Harwani, 2013; Santhanam et al., 2013), Streptomyces bullii
from the hyper-arid Atacama Desert (Santhanam et al., 2013)
or the moderately thermophilic xerotolerant Streptomyces sp.
315 from Mongolian desert soil (Kurapova et al., 2012). In
addition to Streptomyces, strains belonging to Micromonospora,
Saccharothrix, Streptosporangium, and Cellulomonas were
obtained from the Qinghai-Tibet Plateau (Ding et al., 2013a),
while Micromonospora, Actinomadura, and Nocardiopsis were
reported from soda saline soils of the ephemeral salty lakes in
Buryatiya (Lubsanova et al., 2014).

Thermotolerant and thermophilic actinomycetes were
found in high abundance, exceeding that of the mesophilic
forms, in Mongolian desert soils. Members of Streptomyces,
Micromonospora, Actinomadura, and Streptosporangium were
the most widespread thermotolerant species in desert soils
(Kurapova et al., 2012). Beside Streptomyces, members affiliated
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to the actinobacterial genera of Micromonospora, Nocardia,
Nocardiopsis, Saccharopolyspora, and Nonomuraea have been
identified from the solar salterns of the Bay of Bengal and the
Arabian Sea and inland around the Sambhar Salt Lake (Jose and
Jebakumar, 2012). Interestingly, it is reported that Actinobacteria
(20.7% of desert soil and 4.6% of agricultural soil) occur at
lower concentrations in farmland compared to the surrounding
desert (Ding et al., 2013b).. The genus Rhodococcus was among
the dominant Actinobacteria in desert soil (Koeberl et al.,
2011).

In particular, the resistance of halotolerant Actinobacteria
(isolated from saline soils of arid territories) to alkaline
conditions, high temperature and drought has experimentally
been demonstrated. It was found that all the halotolerant
strains (which were capable of growth at 5% NaCl), unlike
unhalophilic strains, were able to grow on a medium that
contained soda at pH 10, while non-halophilic strains do not
possess such an ability. In this respect, a moderate thermophilic
strain of Streptomyces fumigatiscleroticus 315 HE578745 that
was isolated from the desert soil was experimentally shown
to be xerotolerant (Lubsanova et al., 2014). The halotolerant
alkaliphilic Streptomyces aburaviensiswas isolated from the saline
desert of Kutch in India that selectively inhibits the growth
of Gram positive bacteria. It was able to grow at 15% w/v
NaCl with slow growth at neutral pH, while optimum growth
was in the range of 5–10% NaCl and at pH 9 (Thumar
et al., 2010). Mesophilic Actinobacteria of the Mongolian desert
soils ecosystem was represented by the genus Streptomyces,
whereas thermotolerants were represented by the genera
of Micromonospora, Actinomadura, and Streptosporangium
(Kurapova et al., 2012).

Records of plant associated Actinobacteria from deserts also
exist. Drought tolerant endophytic Actinobacteria, Streptomyces
coelicolor DE07, S. olivaceus DE10, and S. geysiriensis DE27
were recovered from plants of arid and drought affected
regions. These strains exhibited plant growth promotion activity
and intrinsic water stress tolerance (−0.05 to −0.73MPa)
(Yandigeri et al., 2012). Some extremophilic bacteria, such as
Acidimicrobium, Rubellimicrobium, and Deinococcus-Thermus,
dramatically diminish following agricultural use. In contrary,
indigenous desert bacteria can improve plant health in desert
agro-ecosystems (Koeberl et al., 2011).

Actinobacteria from a low water activity area of Antarctica
(similar to the situation in deserts) are also described. The
bacterial diversity of Lake Hodgson, the Antarctic Peninsula,
was recognized as 23%Actinobacteria, 21% Proteobacteria, 20.2%
Plantomycetes, and 11.6% Chlorofllexi (Pearce et al., 2013),
while from Antarctic Dry Valley soil Cyanobacteria (13%),
Actinobacteria (26%), and Acidobacteria (16%) represented the
majority of the identified resident bacteria (Smith et al., 2006).
Culture-independent survey of multidomain bacterial diversity
in the cold desert of the McKelvey Valley demonstrated that
highly specialized communities colonize in distinct lithic niches
occurring concomitantly within this ecosystem. Despite the
relatively devoid soil, the greatest diversity was observed in
endoliths and chasmoliths of sandstone. It indicated that the
dominant communities are Acidobacteria, Alphaproteobacteria,

and Actinobacteria. The only ubiquitous phyla in the Dry
Valley zone wereAcidobacteria andActinobacteria. The overlying
rock creates a favorable sub-lithic microhabitat where physical
stability, desiccation buffering, water availability and irradiation
protection are further provided for bactaeria (Pointing et al.,
2009).

The culture independent study of Actinobacteria has
demonstrated the dominant diversity and distribution of this
phylum in arid areas. Hyper-arid soils of Yungay were shown
to harbor actinobacterial OTUs (Operational Taxonomic Unit)
mostly related to Frankia rather than the Nitriliruptoraceae and
Rubrobacteraceae families that are recognized as dominant at the
hyper-arid margin (Connon et al., 2007). Contrary to the fact
that both regions have a sorely low level of organic substrates,
higher bacterial diversity was found in the hyper-arid margin,
potentially related to the mean annual rainfall and exposure to
past vegetation history. Even within the hyper-arid margin, fine
variations in physicochemical parameters may have a strong
effect on the taxonomic diversity of actinobacterial communities
(Neilson et al., 2012).

Actinobacteria comprised 94% of the 16S rRNA gene clones,
represented the dominant group of high-powered soils of the
Atacama Desert (Connon et al., 2007). The majority of isolates
from this ecosystem belonged to the genera Amycolatopsis,
Lechevalieria, and Streptomyces with a high incidence of non-
ribosomal peptide synthase genes (Okoro et al., 2009). FISH
analysis has revealed that the biomass of the metabolically
active mycelial Actinobacteria in the prokaryotic community
of Mongolian desert soils exceeded that of the unicellular
Actinobacteria (Kurapova et al., 2012).

The overall phylum-level composition of many arid areas is
shown to be dominated by Actinobacteria. They were shown
to be the most dominant phylum (72–88%) in the case of
the Atacama Desert (Crits-Christoph et al., 2013), while in
other arid areas, they are among the three most abundant
phyla (usually along with the Firmicutes and Proteobacteria)
such as the desert soil of Aridic Calcisols in Kazakhstan
(Kutovaya et al., 2015), saline–alkaline (Keshri et al., 2013),
a shrub root zone of deserts (Steven et al., 2012) and high
elevation desert (Lynch et al., 2014). Prevalent actinobacterial
genera are not reported in almost all metagenomic studies,
other than a study on the semi-arid haloalkaline ecosystem
of India, in which two thirds of actinobacterial clones
were recognized in the order Rubrobacteriales (Keshri et al.,
2013).

BIOLOGICALLY ACTIVE METABOLITES
REPORTED FROM XEROPHILIC
ACTINOBACTERIA

It was hypothesized before that extremophiles can’t produce
secondary metabolites unless complex conditions are provided
(Pettit, 2011). In contrast, now it is shown that bacteria from
extreme ecosystems can produce new secondary metabolites
even under regular conditions (Rateb et al., 2011). Although
some antibiotic structures have been described from desert
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Actinobacteria (Table 2), reports on the natural products of
Actinobacteria from arid environments are rare.

Bioactive molecules of the arid inhabiting Actinobacteria
have exhibited relatively high thermal stability, bioavailability
and solubility. Two new Streptomyces species from Atacama
Desert soils (Santhanam et al., 2011, 2013) were shown to
produce new ansamycin and 22-membered macrolactones with
antibacterial and antitumor activity (Rateb et al., 2011). Another
Streptomyces strain isolated from the Chilean highland soil of
the Atacama Desert produces novel aminobenzoquinones which
show inhibitory activity against bacteria and dermatophytic fungi
(Schulz et al., 2011).

The diversity of a population comprising 52 halophilic
desert actinomycetes showed the presence of strains from
the Actinopolyspora, Nocardiopsis, Saccharomonospora,
Streptomonospora, and Saccharopolyspora genera. Half of the
strains were bioactive and harbored genes encoding polyketide
synthetases and non-ribosomal peptide synthetases (NRPS).

NRPS genes were widely distributed among these taxa, whereas
PKS-I genes were detected in fewer genera (Meklat et al., 2011).

Endophytic Actinobacteria obtained from arid living
plants belonging to the genera including Streptomyces,
Micromonospora, Nocardia, Nonomuraea, and Amycolatopsis
exhibit a high percentage of bioactivity and broad spectrum
bioactivity (Huang et al., 2012). In another study, 53
Actinobacteria isolated from the Qinghai-Tibet Plateau were
grouped into four RFLP patterns and identified as Streptomyces,
Micromonospora, Saccharothrix, Streptosporangium, and
Cellulomonas. Most of these strains had the potential to produce
active compounds in addition to the detection of NRPS, PKS-I,
and PKS-II genes (Ding et al., 2013a). Hence, the metagenomic
analysis of the bioactive secondary metabolites (Schofield and
Sherman, 2013; Wilson and Piel, 2013) can also be assessed
in the future, in order to distinguish the chemical potential of
drought adapted Actinobacteria and their conserved secondary
metabolites biosynthetic pathways.

TABLE 1 | Genera of the order Actinomycetales containing members which are resistant to the dominant physicochemical condition in arid areas other

than members of Rubrobacteraceae and Acidimicrobidae.

Suborder Family Genus Physicochemical stress References

Micrococcineae Intrasporangiaceae Terrabacteria Desiccation, UV-radiation,

high salinity

Battistuzzi and Hedges, 2009

Microbacteriaceae Mycetocola Desiccation, oligotrophic Luo et al., 2012

Micrococcaceae Micrococcus Low temperature,

UV-radiation

Miteva et al., 2009

Microbacteriaceae Microbacterium Oligotrophic Miteva et al., 2009

Micrococcaceae Citricoccus Desiccation Li et al., 2005

Dermabacteraceae Brachybacterium Low temperature,

UV-radiation

Miteva et al., 2009

Corynebacterineae Nocardiaceae Rhodococcus Low temperature, high

radiation, pressure

Koeberl et al., 2011

Nocardiaceae Nocardia Low temperature,

UV-radiation

Babalola et al., 2009

Gordoniaceae Gordonia Desiccation Brandao et al., 2001

Propionibacterineae Nocardioidaceae Nocardioides Desiccation Tuo et al., 2015

Pseudonocardineae Pseudonocardiaceae Amycolatopsis Desiccation Okoro et al., 2009

Pseudonocardiaceae Lechevalieria Desiccation, high salinity Okoro et al., 2010

Streptosporangineae Thermomonosporaceae Actinomadura High temperature Kurapova et al., 2012

Streptosporangiaceae Streptosporangium High temperature Kurapova et al., 2012

Frankineae Geodermatophilaceae Geodermatophilus Desiccation,

gamma-radiation,

UV-radiation

Harwani, 2013

Geodermatophilaceae Modestobacter Desiccation, low nutrient,

high radiation

Chanal et al., 2006

Micromonosporineae Micromonosporaceae Micromonospora High temperature Kurapova et al., 2012

Streptomycineae Streptomycetaceae Streptomyces Low/high temperature,

salinity,

Desiccation, pressure

Okoro et al., 2009; Santhanam et al.,

2011, 2013; Kurapova et al., 2012;

Harwani, 2013
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TABLE 2 | Bioactive metabolites of Actinobacteria isolated from arid area.

Producer

strain

Source of strain Compound Structure Bioactivity References

Streptomyces

sp. strain

DB634

Chilean highland

of the Atacama

Desert

Abenquines A–D Antibacterial, antifungal

and inhibition of

phosphodiesterase

type 4b

Schulz et al., 2011

Streptomyces

sp. strain C34

Chilean hyper-arid

Atacama Desert

Chaxalactins A-C Antibacterial Rateb et al., 2011

Saccharothrix

sp. SA198

Saharan soil Antibiotic A4 Antibacterial and

antifungal

Boubetra et al., 2013

Streptomyces

sp.

TK-VL_333

Southwestern

Algeria

4-(4-hydroxyphenoxy)

butan-2-one

Antibacterial and

antifungal

Kavitha et al., 2010

Streptomyces

sp.

TK-VL_333

Southwestern

Algeria

Acetic acid-2-hydroxy-

6-(3-oxo-butyl)-phenyl

ester

Antibacterial and

antifungal

Kavitha et al., 2010

ENZYMES REPORTED FROM XEROPHILIC
ACTINOBACTERIA

Two thermophilic Rhodococcus and Streptosporangium were
isolated from a mud volcano in India (Ilayaraja et al., 2014).
According to another report, the abundance of thermotolerant
Actinobacteria can reach the number of mesophilic ones
in deserts and volcanic regions (Zenova et al., 2009) that
belonged to Thermomonospora,Microbispora, Saccharopolyspora,
Saccharomonospora, and Streptomyces (Kurapova et al., 2012).
A number of hydrolytic enzymes such as amylases, xylanases
and cellulase from thermotolerant Actinobacteria can maintain
their enzymatic activity, even at high temperatures (50–65◦C)
(Stutzenberger, 1987). A number of Actinobacteria like members
of Streptomyces have been reported that grow well at 50◦C
(Kim et al., 1999). Thermo stable enzymes derived from such
strains can be explored for potential application in industry for
enzymatic digestion purposes at higher temperatures (Ilayaraja
et al., 2014). Proteolytic activity of alkaliphilic, halotolerant
Actinobacteria is also reported. Out of 42 alkaliphilic isolates, 30
isolates were reported as halotolerant alkaliphilic Actinobacteria
with the ability to produce extracellular protease (Ara et al.,
2012).

ACTINOBACTERIA FROM ARID REGIONS
OF IRAN AND THEIR POTENTIAL
BIOTECHNOLOGICAL ACTIVITIES

Themajority of Earth’s deserts have an average annual rain (AAR)
of less than 400mm per year. In turn, “true deserts” receive
less than 250mm of AAR (Azua-Bustos et al., 2012). Iran has
substantial areas of arid ecotopes, including deserts (Figure 1),
which are presumed to harbor xerophiles including those from
the phylum Actinobacteria. The Plateau of Iran has two plains.
Dasht-e Lut (Lut Desert) and Dasht-e Kavir (Great Salt Desert)
are the main deserts of this plateau. The Great Salt Desert is
about 800 km long and 320 km wide (the world’s 23rd largest
desert) and has mosaic-like salt plates. The Lut Desert, 480 km
in length and 320 km in width (the world’s 25th largest desert),
is a large salt desert. It is amongst the world’s driest and hottest
deserts (temperatures as high as 70.7◦C have been recorded) and
is largely considered an abiotic zone (Mildrexler et al., 2011).

These deserts are exposed to high solar radiation, including
elevated UV-B. The Lut Desert is the hottest place on earth and
the Great Salt Desert contains unusually high concentrations of
salt deposits. It has been assumed that the Lut Desert represents

the dry and high temperature limit of bacterial metabolism and
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FIGURE 1 | Desert area of Iran indicated in light pink and cream in this biotope (Fabienkhan., 2006). , Forests and woodlands; , Forest steppe;

, Semi-desert; , Desert lowlands; , Steppe; , Salted alluvial marshes.

very low or zero viable bacterial content is predicted for the Lut
Desert, which should be confirmed by the inability to recover
amplifiable DNA from this region in future works.

Although studies on the world’s deserts are increasing,
information on the diversity of Actinobacteria in the arid
areas of Iran is scarce. Up until now, only four new species
of Actinobacteria, which belonged to the genera Nocardiopsis,
Kribbella, and Promicromonospora, have been reported from the
semi-arid soil of Iran (Hamedi et al., 2011; Mohammadipanah
et al., 2013, 2014). Adaptation of these strains to the extreme
environmental conditions of low relative humidity, high salt
concentration (including toxic ions) or high UV radiation, etc.
can confer on them different metabolic potential, which may lead
to the exploration of new bioactive molecules.

The diverse ecological habitats of the deserts in Iran
predict diverse actinobacterial species in these ecological niches.
However, the ecological habitat of Iran’s deserts is underexplored
and yet to be investigated for their actinobacterial diversity, as
reported above. Only a few actinobacterial members have been
introduced from the arid areas of Iran and their secondary
metabolite potential is still under investigation. Seven new species
of halophilic and alkaliphilic Actinobacteria are described and a
number of them are in the pipeline of polyphasic identification
at University of Tehran. Nevertheless, their comprehensive
exploitation and utilization is underinvestigated.

Application of drought adapted Actinobacteria in the
discovery of unique bioactive compounds, enzymes, or
environmental protection and sustainable agricultural
application is recommended. For instance, production of
the metabolite from the radiation resistant strains, halotolerant
microorganisms and enzymes from thermotolerant and
alkaliphilc Actinobacteria of these ecosystems are encouraged.
Further focus on indigenous Actinobacteria from the deserts
of Iran would increase our knowledge of their occurrence,
distribution, ecology, taxonomy and biotechnological potential.

DISCUSSION

Diverse chemical structure, wide taxonomical spectrum, and
environmental dispersal have kept Actinobacteria among the
most reliable sources for new antibiotic discovery. Drought,
extreme temperature, salinity and alkalinity and oligotrophy
led to the isolation of halophilic, alkaliphilic, thermophilic and
radiation resistant Actinobacteria (Pan et al., 2010). Designing
competent culture conditions for extreme environments is an
approach to exploit more biodiversity from such habitats.
Additionally, their extensive stress tolerance makes them more
amenable to biotechnological applications (Ding et al., 2013a).

Actinobacteria from Salar and extreme hyper-arid soils
have been isolated using the application of pretreatment or
selective media and members of at least 12 genera have been
reported. A remarkable proportion of these isolates belonged
to rare genera and represented new species. Members of
the Streptomyces genus are reported as being remarkably
abundant in Atacama Desert habitats and a distinguished
clade with a widespread range of antibacterials and differing
modes of action has been isolated from this desert. These
Streptomyces strains are in fact Salar adapted ecovars (Bull and
Asenjo, 2013). By application of a confined type of isolation
media, strains of genera, including Nocardia, Microlunatus,
Prauserella, and Streptomyces were recovered, and around 50%
of them produced carotenoids with antibacterial activity, even
against Gram negative bacteria (Namitha and Neqi, 2010).
Aminobenzoquinones (rare combinations of benzoquinones
and a range of amino acids) are reported from Streptomyces
strains isolated from the Salar de Tara. Despite the poor
antibacterial and antifungal activities of abenquines, inhibitory
activity against type 4 phosphodiesterase (PDE4b) was revealed
for them, suggesting that they can be further assessed for their
anti-inflammatory activities (Schulz et al., 2011; Bull and Asenjo,
2013). The bacterial communities of another high altitude Salar,
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the Salar de Huasco (3800m) were reported to be prevailed
by members of Alphaproteobacteria, specifically, the Roseobacter
clade. Radiation protection, sulfur cycling or regulation of the
community structure by quorum sensing and the production of
bioactive compounds are among the ecological functions of these
bacteria in such ecosystems (Bull and Asenjo, 2013).

It is postulated that extremotolerants may have larger
genetic and metabolic plasticity. Drought and radiation are life-
controlling determinants, while habitat availability, temperature,
pH and toxicants (high localized concentrations of elements such
as arsenic) are among other principal determinants. Avoidance
strategies to desiccation and intense radiation are evolved
by bacteria, such as growth niche (hypo- and endo-lithic),
extracellular polymer synthesis and pigmentation that protect
the cell during epilithic colonization. Melanins are produced by
many Actinobacteria thriving in extreme hyper-arid ecosystems.
The dominant abundance of bacteria in a hyper-saline habitat
was detected at a depth of about 2m where water films had
been formed by the aid of halite, nitrate and perchlorate salts.
These suggest enough evidence to show that microorganisms
in desert environments can be metabolically functional and not
necessarily dormant or non-functional cells (Bull and Asenjo,
2013).

In desert habitats, the availability of water and organic
substrates are among the main parameters limiting the ability
of bacteria to maintain their metabolic functions (Saul-Tcherkas
et al., 2013). Organic substrates can originate from the chemical
profile of the plant root exudates, which induces variability
in the associated bacterial composition of the arid soil (Saul-
Tcherkas et al., 2013). These ecophysiological conformities such
as excretion of chemicals, support an allelopathic habitat by
altering the levels of organic matter and soil moisture. The
significant differences in plant ecophysiological allelopathic
adaptation reflect a strong influence on the soil bacterial
community composition.

FUTURE PERSPECTIVE

The current focus of the natural product discovery is mainly on
marine ecosystems (Bull and Asenjo, 2013), and arid habitats
are underinvestigated habitats for this purpose. Microorganisms
thriving in deserts are evolved to be less dependent on
water. Other than the metabolic potential for pharmaceutical,

environmental or agricultural purposes, diversity assessment
of the desert ecosystems can advance our knowledge on
actinobacterial ecology under extreme stress (Pointing et al.,
2009).

There is a need for the development of new approaches and
conditions to recover the actinobacterial strains from arid areas,
nevertheless, in some cases Actinobacteria are the only bacteria
that can be isolated (Okoro et al., 2009). The results obtained
using metagenomic approaches to Actinobacteria in extreme
environments has not yet been adequate to clearly indicate the
dominant taxa in these habitats. Consequently, this level of data
is not extensive enough to lead us toward their functional ecology
in order to deduce their metabolic state of being metabolically
active or dormant (Bull, 2011).

The ability of actinobacterial spores to germinate in very low
available water environments (−96.4MPa, 0.50 aw) enables their
adaptation to drought conditions. Investigation of the desert
soils demonstrates a high abundance of mycelial Actinobacteria,
with actinobacterial isolates often adapted to high temperature,
high salt concentration, and radiation (Kurapova et al., 2012). A
broader spectrum of selective techniques used for the isolation
of Actinobacteria from desert soils and of specific primers for
molecular biological investigation will improve our knowledge
of the diversity of Actinobacteria from the above mentioned
ecosystems.

Desert habitats are especially rich in Actinobacteria, not
necessarily extensive in taxonomic diversity (Table 1), and
also in the genetic diversity of their biosynthetic pathways
for synthesizing novel new secondary metabolites. Mining the
natural habitats of the arid areas in Iran and designing improved
procedures for selective isolation of key taxa is encouraged, as
the inhabitants of the extreme areas are likely to produce new
chemical entities.

Advanced or more targeted investigations are required to
more fully explore and exploit the abundance, diversity, or even
the plasticity and function of actinobacterial members in desert
habitats.
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For a long time, it was believed that a healthy plant did not harbor any microorganisms

within its tissues, as these were often considered detrimental for the plant. In the last three

decades, the numbers of studies on plant microbe-interactions has led to a change in

our view and we now know that many of these invisible partners are essential for the

overall welfare of the plant. The application of Next Generation Sequencing techniques

is a powerful tool that has permitted the detection and identification of microbial

communities in healthy plants. Among the new plant microbe interactions recently

reported several actinobacteria such asMicromonospora are included.Micromonospora

is a Gram-positive bacterium with a wide geographical distribution; it can be found

in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last

years our group has focused on the isolation of Micromonospora strains from nitrogen

fixing nodules of both leguminous and actinorhizal plants and reported for the first time

its wide distribution in nitrogen fixing nodules of both types of plants. These studies

have shown how this microoganism had been largely overlooked in this niche due to

its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated

from nodules is very high and several new species have been described. The current

data indicate that Micromonospora saelicesensis is the most frequently isolated species

from the nodular tissues of both leguminous and actinorhizal plants. Further studies

have also been carried out to confirm the presence of Micromonospora inside the

nodule tissues, mainly by specific in situ hybridization. The information derived from the

genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful

information as to how this bacterium may relate with its host plant. Several strategies

potentially necessary for Micromonospora to thrive in the soil, a highly competitive,

and rough environment, and as an endophytic bacterium with the capacity to colonize

the internal plant tissues which are protected from the invasion of other soil microbes

were identified. The genome data also revealed the potential of M. lupini Lupac 08 as

a plant growth promoting bacterium. Several loci involved in plant growth promotion

features such as the production of siderophores, phytohormones, and the degradation

of chitin (biocontrol) were also located on the genome and the functionality of these

genes was confirmed in the laboratory. In addition, when several host plants species

were inoculated with Micromonospora strains, the plant growth enhancing effect was

evident under greenhouse conditions. Unexpectedly, a high number of plant-cell wall

degrading enzymes were also detected, a trait usually found only in pathogenic bacteria.
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Thus, Micromonospora can be added to the list of new plant-microbe interactions.

The current data indicate that this microorganism may have an important application in

agriculture and other biotechnological processes. The available information is promising

but limited, much research is still needed to determine which is the ecological function

of Micromonospora in interaction with nitrogen fixing plants.

Keywords: Micromonospora, legumes, PGPB, actinorhizal, endophytic, nodule

INTRODUCTION

Bacteria, archaea, and viruses are present in every niche present
in our planet and have a great impact on other forms of life.
Since the appearance of plants on Earth, their capacity to adapt
to different ecosystems and their evolutionary process have
inherently been associated to microorganisms (Reid and Greene,
2012).

Microbial communities present in soil account for the richest
reservoir of biological diversity in our planet (Berendsen et al.,
2012). Microorganisms that live in the rhizosphere, the soil
region influenced by plant roots, are of great importance as this
is where most plant-microbe interactions occur (Schenk et al.,
2012) and this complex plant-associated microbial community
is for the most part beneficial to the plant (Berendsen et al.,
2012). Despite the importance of microorganisms for plants,
these extremely complex microbial communities have remained
largely uncharacterized mainly due to our lack of culturing
most microorganisms under laboratory conditions (Schenk
et al., 2012). Fortunately, our awareness of mutually beneficial
relationships and their potential application in biotechnological
processes is expanding, in part due to the new sequencing
technologies and information derived from their use.

Microbes that interact with plants are termed rhizospheric
or endophytic depending on their localization outside or
inside the plant, respectively, and many endophytes originate
from the rhizosphere or phyllosphere (Dudeja et al., 2012).
These organisms can accelerate seed germination, promote
plant establishment under adverse conditions, enhance plant
growth or prevent pathogen infections (Hurek et al., 2002;
Ryan et al., 2008). Thus, a complex and invisible ecosystem
sustains plant growth and health (Reid and Greene, 2012).
The potential application of beneficial microbes in different
fields (e.g., agriculture, biotechnology, medicine, etc.) is immense
provided progress is made in understanding these complex plant-
microbe interactions in a global context.

Hitherto, plant associated Gram-negative bacteria are the best
studied given their relative facility to be recovered from internal
plant tissues and also because mutants can be easily generated
for interaction studies (Francis et al., 2010). However, many
Gram-positive bacteria included in the phyla Firmicutes and
Actinobacteria (e.g., Bacillus, Micromonospora, Streptomyces,
etc.) have excellent biocontrol, plant growth-promoting and
bioremediation activities. In addition, several characteristics
observed including pigment and spore production, biosynthesis
of secondary metabolites and unique lifestyles present in
these microorganisms can be advantageous for different
biotechnological applications, including agriculture.

In this review, the diversity and interaction between
actinobacteria and plants will be discussed, focusing on their
ecological aspects and potential applications in agriculture. The
second part of this revision will focus on the specific interaction
of the genusMicromonospora with nitrogen fixing plants.

PLANT-ASSOCIATED ACTINOBACTERIA

Actinobacteria represent approximately 20–30% of the
rhizospheric microbial community (Bouizgarne and Ben
Aouamar, 2014). They are Gram-positive and show a wide
morphological spectrum ranging from unicellular organisms
to branching filaments that form a mycelium. A unique
feature is their high guanine plus cytosine content (>50%)
in their genome. These microorganisms are for the most part
saprophytic, soil-dwelling organisms with an important role
in the turnover of organic matter. In addition, many species
are sporulated and spend the majority of their life cycles as
semidormant spores (Coombs and Franco, 2003a).

Several taxa are well-known to interact with plants and these
include examples of both endophytic and plant-pathogenic
species. The first actinobacterial endophyte isolated, Frankia
(Callaham et al., 1978), is a nitrogen-fixing microorganism that
induces nodulation on several angiosperm plant families and has
received a lot of attention due to its role in the nitrogen economy
of its hosts (Verma et al., 2009). Several plant-pathogenic taxa
include Streptomyces acidiscabies, Streptomyces europaeiscabiei,
Streptomyces scabies, and Streptomyces turgidiscabies which cause
potato scab (Loria et al., 2006; Bignell et al., 2010); Clavibacter
michiganensis with several subspecies and pathogen for alfalfa
(C. michiganensis subsp. insidiosus), maize (C. michiganensis
subsp. nebraskrensis), potato (C. michiganensis subsp.
michiganensis) and wheat (C. michiganensis subsp. tessellarius);
Leifsonia xyli subsp. xyli which causes ratoon stunting disease of
sugarcane (Young et al., 2006); Curtobacterium flaccumfaciens
which affects several Phaseolus and Vigna species, Beta vulgaris
species (red and sugar beet), Ilex opaca (American holly), Tulipa
species (tulips), and Euphorbia pulcherrima (poinsettia) (Saddler
and Messenber-Guimaraes, 2012); Rathayibacter iranicus and
Rathayibacter tritici which cause gumming in several grasses and
wheat (Evtushenko and Dorofeeva, 2012).

In the last decade, many reports on the isolation and diversity
of plant-associated and endophytic actinobacteria from wild
plants and crops have been published. In many of these studies,
a neutral or a plant growth promotion effect was observed. The
isolation and identification of actinobacteria in healthy internal
root tissues of wheat was reported by Coombs and Franco
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(2003a); these authors further demonstrated the colonization of
germinating wheat by one of the isolated strains, Streptomyces
sp. EN27 (Coombs and Franco, 2003b). A Streptomyces strain,
WYEC108, isolated from linseed rhizosphere soil in Great
Britain (Crawford et al., 1993) was able to colonize the roots of
Pisum sativum, increased the number and size of root nodules,
and enhanced the assimilation of iron and other nutrients by
the plant (Tokala et al., 2002). Several actinobacterial strains
recovered from wild plants adapted to poor soil and severe
climate conditions of the Algerian Sahara desert were reported by
Goudjal et al. (2013). Some of these strains produced the auxin
indol acetic acid (IAA), which promoted seed germination and
root elongation when tomato seeds were treated with bacterial
supernatants.

The search of endophytic actinobacteria as biological control
agents of plant disease is also of interest given their ability to
colonize healthy plant tissues and produce antibiotics in situ
(Kunoh, 2002; Cao et al., 2004). Maize (Zea mays), an important
crop cultivated in many countries, especially in tropical areas,
was also screened for the presence of bioactive actinobacteria
(de Araújo et al., 2000). Endophytic streptomycetes isolated from
healthy banana plants (Musa sp.), were studied for the ability
to produce antifungal molecules that inhibited the growth of
Fusarium oxysporum, which causes fusarium wilt (Cao et al.,
2005). Similarly, Streptomyces strains were isolated from tomato
and native plants of the Algerian Sahara and screened for
biocontrol activity against Rhizotocnia solani (Goudjal et al.,
2014).

Several studies have focused on the diversity and distribution
of actinobacterial communities in plants, these works have
provided information about the most common taxa found,
e.g., the genus Streptomyces, but have also discovered new
plant-actinobacteria associations as those represented by the
interactionMicromonospora-nitrogen fixing plants.

Members of the genera Microbispora, Micromonospora,
Nocardia, Streptosporangium, and Streptoverticillium were
recovered from the surface of sterilized roots of different plant
species in Italy (Sardi et al., 1992) and of maize in Brazil (de
Araújo et al., 2000). Interestingly, the genus Microbispora
was the most abundant genus recovered in maize (44%),
followed by Streptomyces and Streptosporangium. A diverse
collection of 11 native Korean plants were screened for the
presence of endophytic actinobacteria. Streptomyces was
the most common taxon accounting for almost 50% of the
strains isolated and followed by the genera Microbacterium,
Microbispora, Micrococcus, Micromonospora, Rhodococcus,
and Streptacidiphilus. Single isolates representing the
genera Arthrobacter, Dietzia, Herbiconiux, Kitasatospora,
Mycobacterium,Nocardia, Rathayibacter, and Tsukamurella were
also recovered (Kim et al., 2012).

Kaewkla and Franco (2013) demonstrated the high diversity
of actinobacterial strains distributed in native Australian
plants using highly designed isolation protocols which
included low concentration isolation media, plating larger
quantities of plant sample and long incubation times (up
to 16 weeks). These authors reported the isolation of >500
actinobacterial strains that were identified in 16 different genera.

Again, the genus Streptomyces accounted for >60% of the
isolates.

Although the percentage of plant species sampled at present
is very low, medicinal plants have received special attention
given their importance as potential reservoirs of actinobacterial
communities that produce compounds with biotechnological
application. Qin et al. (2009, 2012) conducted a thorough
study screening medicinal plants growing in the tropical
rain forests in Xishuangbanna, China. These authors focused
on the isolation of non-streptomycetes and found that the
genus Pseudonocardia was the predominant taxon, followed
by Nocardiopsis, Micromonospora, and Streptosporangium while
almost 25% of the strains could not be identified at the
genus level. An in depth analysis of the plant Maytenus
austroyunnanensis applying culture- dependent and independent
methods revealed an immense diversity reporting genera
such as Actinostreptospora, Amnibacterium, Catenuloplanes,
Quadrisphaera, and Pseudokineococcus which were previously
unknown to reside inside plant tissues (Qin et al., 2012).

A list of endophytic and plant-associated actinobacteria
recovered from different plant species and their potential
application in agriculture is presented in Table 1.

In recent years, metagenomic analyses have been used to
determine the bacterial communities of several agriculturally
important crops. These studies have shown that actinobacteria
are present in many of these plant microbiomes. Okubo
et al. (2014) demonstrated that while the shoots of two field-
grown rice cultivars collected in Nipponbare and Kasalath were
dominated by Alphaproteobacteria (approximately 52%), the
actinobacterial populations made up to 15% of the bacterial
community structure. The characterization of the natural
microbiome of Vitis vinifera leaves in Portugal reported a
high diversity of proteobacteria, firmicutes, and actinobacteria,
where the latter group accounted for approximately 19% of the
microbial community composition and members of the families
Corynebacteriaceae,Microbacteriaceae, andKineosporiaceaewere
identified (Pinto et al., 2014).

A recent study to determine the bacterial communities of
Olea europaea L. cultivars collected from different regions
in the Mediterranean basin also confirmed the presence of
actinobacterial populations on the olive leaf endosphere. An
interesting conclusion of this work was that soil, climate
conditions, and geographical distances had little effect on the
endophytic microbial community composition (Müller et al.,
2015). In another study, the root microbiota of Lactuca sativa
cultivars and its wild ancestor Lactuca serriola were analyzed,
the lettuce microbiota was dominated by Proteobacteria and
Bacteriodetes, but Chloroflexi and Actinobacteria were also
abundant (Cardinale et al., 2015). The composition of the
actinobacterial population included members of the families
Micromonosporaceae and Nocardioaceae but also the genera
Actinoplanes, Aeromicrobium, Arthrobacter, Demequina, and
Streptomyces. Interestingly, the domesticated cultivar (L. sativa)
was richer in species diversity than its wild counterpart L. serriola.
Unfortunately for most of the above studies, the function of
these microorganisms on their host plants is unknown. In the
case of lettuce, which is one of the raw foods widely consumed,
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TABLE 1 | Endophytic and plant-associated actinobacteria reported in the literature.

Genus Host plant Isolation source References Potential use

Frankia* Comptonia Root nodule Callaham et al., 1978 Nitrogen fixation

Actinosynnema Grass blade – Hasegawa et al., 1978 Not determined

Streptomyces Allium porrum, Amaryllis belladona, Betula

pendula, Brassica oleracea, Calluna vulgaris,

Chelidonium majusCichonum intybus,

Euphorbia sp., Fragaria vesca, Lactuca

scariola, Quercus sp., Rubus idaeus

Roots Sardi et al., 1992 Not determined

Streptomyces Linum usitatissimum Rhizosphere soil Crawford et al., 1993 Growth promotion

Microbispora, Streptomyces, Streptosporangium Zea mays Roots de Araújo et al., 2000 Biocontrol

Microbispora, Micromonospora, Nocardioides,

Streptomyces

Triticum aestivum Roots and leaves Coombs and Franco,

2003a

Biocontrol agent

Streptomyces Licopersicon esculentum Roots Cao et al., 2004 Biocontrol

Streptomyces, Streptoverticillium,

Streptosporangium

Musa sp. Roots Cao et al., 2005 Biocontrol of

Fusarium

oxysporum

Agromyces, Microbacterium Retama taetam, Ononis natrix, Argyrolobium

uniflorum, Astragalus armatus

Root nodules Zakhia et al., 2006 Not determined

Actinoplanes, Micromonospora, Streptomyces Cucumis sativus Roots El-Tarabily et al., 2009 Biocontrol; growth

promotion

Microbispora, Nocardia Sacchromonospora,

Streptomyces, Streptosporangium,

Streptoverticillium

Azadirachta indica Leaves, stems,

roots

Verma et al., 2009,

2011

Siderophore

production;

biocontrol

Pseudonocardia, Nocardiopsis,

Micromonospora, Streptosporangium

Phyllanthus urinaria, Kadsura heteroclita,

Maesa indica, Rauvolfia verticillata, Paris

yunnanensis, Maytenus austroyunnanensis,

Gloriosa superba, Scoparia dulcis, Tadehagi

triquetrum, Goniothalamus sp., Cephalotaxus

sp., and Azadirachta sp.

Leaves, stems,

roots

Qin et al., 2009 Secondary

metabolites

Arthrobacter, Dietzia Herbiconiux,

Intrasporangium, Kitasatospora, Microbacterium,

Microbispora, Micrococcus Micromonospora

Mycobacterium, Nocardia Rathayibacter,

Rhodococcus, Streptacidiphilus, Streptomyces,

Tsukamurella

Artemisia princeps, Capsella bursa-pastoris,

Chelidonium majus, Conyza canadensis,

Erigeron annuus, Iris rossii, Lamium

purpureum, Physostegia virginiana, Rudbeckia

bicolor, Setaria viridis, Viola mandshurica

Roots Kim et al., 2012 Growth promotion,

biocontrol

Actinomadura, Amycolatopsis,

Cellulosimicrobium, Gordonia, Glycomyces,

Janibacter, Jiangella, Microbacterium,

Micromonospora, Mycobacterium, Nocardia,

Nocardiopsis, Nonomuraea, Plantactinospora,

Polymorphospora, Promicromonospora,

Pseudonocardia, Streptosporangium,

Streptomyces, Saccharopolyspora, Tsukamurella

Maytenus austroyunnanensis Root, stem, leaves Qin et al., 2012 Not determined

Actinomadura, Actinomycetospora,

Actinopolymorpha, Amycolatopsis, Gordonia,

Kribbella, Micromonospora, Nocardia,

Nocardioides, Nocardiopsis, Nonomuraea,

Polymorphospora, Promicromonospora,

Pseudonocardia, Streptomyces, Williamsia

Callitris preissii, Eucalyptus camaldulensis,

Eucalyptus microcarpa,Pittosporum

phylliraeoides

Leaves, stems,

roots

Kaewkla and Franco,

2013

Not determined

(Continued)
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TABLE 1 | Continued

Genus Host plant Isolation source References Potential use

Actinomadura, Kibdelosporangium,

Kitasatospora, Micromonospora,

Microtetraspora, Nocardia, Nocardioides,

Nocardiopsis, Promicromonospora,

Pseudonocardia, Saccharopolyspora,

Streptoalloteichus, Streptomyces

Achillea fragrantissima, Artemisia judaica,

Centaurea scoparia, Chiliadenus montanus,

Echinops spinosus, Iphiona mucronata,

Pulicaria crispa, Scariola orientalis, Seriphidium

herba-album, Tanacetum sinaicum

Not specified El-Shatoury et al., 2013 Growth promotion

Streptomyces Cleome arabica, Solanum nigrum, Astragallus

armatus, Aristida pungens, Panicum turgidum

Roots Goudjal et al., 2013,

2014

Biocontrol, IAA

production,

growth promotion

Amycolatopsis, Isoptericola, Micromonospora,

Microbispora, Nocardia, Nonomuraea,

Promicromonospora, Pseudonocardia,

Streptomyces

Acacia auriculiformis, Bauhinia purpurea,

Canavalia gladiate, Cassia fistula, Clitoria

ternatea, Erythrina variegata, Leucaena

leucocephala, Mimosa pudica, Peltophorum

pterocarpum, Pithecellobium dulce, Poinciana

pulcherrima, Pterocarpus macrocarpus,

Samanea saman, Sesbania grandiflora,

Tamarindus indica

Roots, rhizosphere Mingma et al., 2014 Biocontrol

Microbacterium Trichilia elegans Leaves Rhoden et al., 2015 Not determined

The data presented is based on the references provided in column 4.

*Frankia is known to induce root nodules on a diverse group of angiosperm plants termed actinorhizals.

it has been suggested that bacteria present in the plant’s root
such as Streptomyces, may serve as biological control agents by
producing antibiotics to eliminate potential human pathogens
(e.g., enterobacteria) (Cardinale et al., 2015).

Several soil microbiomes related to Andropogon gerardii,
Schizachyrium scoparium, Lespedeza capitata, and Lupinus
perennis grown in communities which varied in plant richness
(1–16 species) were determined (Bakker et al., 2014). In this
study the antagonistic activity and community structure of
Streptomyces populations was assessed in relation to the species
plant richness. The authors reported that the diversity and
richness of bacterial and Streptomyces communities displayed
different relationships with biotic and abiotic soil characteristics,
therefore influencing bacterial communities.

The roots, leaves, and stems are the main plant tissues
that have been screened for the presence of bacteria, however,
nitrogen fixing nodules produced by legumes and actinorhizal
plants are also an important reservoir of microorganisms.
Nodules are rich in nutrients and therefore can also be colonized
by bacteria unrelated to rhizobial or Frankia symbiotic nitrogen
fixation.

Actinobacterial strains identified in the genera Agromyces,
Curtobacterium, Microbacterium, Micromonospora, and
Streptomyces have been reported from nodule tissues (Sturz
et al., 1997; Trujillo et al., 2006, 2007, 2010; Zakhia et al., 2006;
Muresu et al., 2008; Stajkoviæ et al., 2009; Deng et al., 2011;
Hoque et al., 2011; Li et al., 2011; Carro et al., 2012a). Of these,
the genera Microbacterium and Micromonospora were the most
frequently isolated. Host plants inoculated with some of these
strains showed better growth and development in comparison
with non-inoculated controls suggesting a beneficial effect
(Trujillo et al., 2010, 2014b; Deng et al., 2011; Martínez-Hidalgo

et al., 2014). However, our knowledge about these new plant-
microbe interactions is still very poor given the limited data
currently available.

In light of their ecological importance, Frankia as a provider
of nitrogen to actinorhizal plants, and Streptomyces as a plant
pathogen for important crops such as potato, these bacteria
have been under research for many decades, but this is
not the case for most of other reported plant-actinobacteria
interactions. However, in the last 10 years the interaction
Micromonospora-nitrogen fixing plants is gaining attention
due its potential application in downstream biotechnological
applications, especially in the area of agriculture. In the following
sections we will provide a general overview on the past and
present status of Micromonospora and its close interaction with
legumes and actinorhizal plants.

MICROMONOSPORA AND NITROGEN
FIXING NODULES: A UNIVERSAL
PLANT-MICROBE INTERACTION?

The actinobacteriumMicromonosporawas first described in 1923
(Ørskov, 1923). The first strains originated from soil and Jensen
(1932) pointed out the importance of this microorganism in this
niche. This bacterium belongs to the familyMicromonosporaceae
and includes aerobic, filamentous, spore-producing and
mesophilic microorganisms. Micromonospora colonies are
usually pigmented and range in color from orange, red, or
brown. In many old cultures a brown-black, or black mucous
mass of spores is observed. The formation of single spores is the
main morphological characteristic of the genusMicromonospora;
however, spores are also produced in dense clusters on the
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surface or completely embedded in the substrate mycelium
(Figure 1) (Genilloud, 2012; Trujillo et al., 2014a).

The presence of Micromonospora has been reported from
many geographical sites worldwide and although soil is the
most frequent source of isolation, marine, aquatic sediments
and mangrove environments are also inhabited by this
microorganism (Maldonado et al., 2009; Genilloud, 2012; Trujillo
et al., 2014a). In recent years Micromonosporae have been
reported as major components of nitrogen fixing root nodules
of both leguminous and actinorhizal plants (Valdés et al., 2005;
Trujillo et al., 2006, 2007, 2010; Garcia et al., 2010; Carro et al.,
2012a, 2013a). Isolation ofMicromonospora strains from internal
nodular tissues has been reported from the legumes Arachis
hypogaea, Cicer arietinum, Glycine max, Lens culinaris, Lupinus
angustifolius, Lupinus gredensis, Medicago sativa, Melilotus sp.,
Mucuna sp., Ononis sp., Ornithopus sp., Phaseolus sp., Trifolium
sp., and Vicia sp. The isolation ofMicromonospora strains usually
requires selective isolation procedures to favor its slow growth,
however, in all the above examples, the same isolation protocol as
that used for the isolation of rhizobia was applied (Cerda, 2008;
Rodríguez, 2008; Carro, 2009; Alonso de la Vega, 2010; Trujillo
et al., 2010).

Actinorhizal plants that have been sampled to date in Mexico,
Spain, Canada, and France include the species Alnus viridis,
Casuarina equisetifolia, Coriaria myrtifolia, Elaeagnus x ebbingei,
Hippophae rhamnoides, Myrica gale, and Morella pensylvanica
(Valdés et al., 2005; Trujillo et al., 2006; Carro et al., 2013a).
Except for the study of Valdés et al. (2005), the isolation of
Micromonospora from actinorhizal nodules also followed the
same isolation protocols as that of legumes, using yeast-mannitol
agar as isolation medium (Vincent, 1970). Currently our group
maintains a collection of ∼2000 isolates recovered from diverse
legume and actinorhizal plants species collected in Spain, France,
Germany, Ecuador, Nicaragua, and Australia but our hypothesis
is that Micromonospora is also present in those plant species
which have not been sampled to date. In the case of legumes,
the above examples indicate how Micromonospora had been
largely overlooked in this niche due to its slow growth as
compared to rhizobial strains which can be readily recovered
from isolation plates after 3–5 days whileMicromonospora strains
usually appear after 7–10 days on the same plates. While the
work carried by Carro et al. (2013a) strongly suggests that this

microorganism is also a normal occupant of actinorhizal nodules.
Thus, the systematic recovery of Micromonospora populations
strongly suggests that this bacterium closely interacts with the
host plant and nitrogen-fixing bacteria occupying the same
niche.

The biogeographical and species distribution of
Micromonosporae isolated from nitrogen fixing nodules of
legumes and actinorhizal plants sampled hitherto is presented in
Table 2.

DISTRIBUTION, LOCALIZATION AND
GENETIC DIVERSITY OF
MICROMONOSPORA IN NITROGEN
FIXING NODULES

The distribution ofMicromonospora strains in the nitrogen fixing
nodules sampled so far indicate that its distribution is not
homogeneous and it varies from nodule to nodule and plant to
plant (Trujillo et al., 2010; Carro et al., 2012a).

The distribution pattern ofMicromonospora in Lupinus spp. is
highly variable with no isolates for some nodules to as many as
approximately 30 (Alonso de la Vega, 2010; Trujillo et al., 2010).
Variation is also reported from plant to plant and from different
nodules of the same plant (Trujillo et al., 2010). A comparison of
the species Lupinus angustifolius and Lupinus gredensis collected
in the same geographical area in Spain, indicated that 67 and
60% of the plant samples screened (17 in total) contained the
target microorganism, respectively. Out of the 45 nodules chosen
for isolation, 95Micromonospora strains were recovered, 74 from
L. angustifolius and 21 from L. gredensis. Interestingly, 48% of the
nodules did not appear to contain any Micromonospora strains
(Alonso de la Vega, 2010).

In terms of the bacterial species distribution,Micromonospora
saelicesensis andMicromonospora lupiniwere the most abundant,
nevertheless the diversity determined on the basis of 16S rRNA
gene sequencing was very high (Alonso de la Vega, 2010; Trujillo
et al., 2010). These authors also screened lupine plants at different
growth stages which corresponded to young, maximum growth,
and flowering plants. In this case, the number of bacteria
increased in parallel to the plant growth and decreased as the
plants became old.

FIGURE 1 | Morphological features of Micromonospora. (A) Micromonosporae isolates recovered from a nitrogen fixing nodule. (B) 14 day old colony producing

brown-black spores. (C) Scanning electron micrograph of a mucous mass of spores. Bar, 1µm (Carro, 2009; Alonso de la Vega, 2010).
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TABLE 2 | Biogeographical and species distribution of Micromonosporae in nitrogen fixing nodules of legumes and actinorhizal plants sampled.

Host plant (Legumes) Common name Geographical origin Closest species identification (16S rRNA gene) References

Arachys sp. Peanut Nicaragua M. chaiyapumensis, M. endolithica Cerda, 2008

Cicer arietinum Chickpea Spain ND Trujillo et al., 2010

Glycine max Soy Nicaragua ND Trujillo et al., 2010

Lens culinarium Lentil Spain ND Trujillo et al., 2010

Lupinus angustifolius Blue lupine Spain M. aurantiaca, M. auratinigra, M. chaiyapumensis, M.

coriariae, M. coxensis, M. echinospora, M. fulviviridis, M.

lupini, M. matsumotoense, M. narathiwatensis, M.

olivasterospora, M. sagamiensis, M. saelicesensis

Trujillo et al., 2007;

Rodríguez, 2008; Alonso de

la Vega, 2010

Lupinus gredensis Lupine Spain M. chaiyapumensis, M. chersina, M. coxensis, M.

echinofusca, M. echinospora, M. lupini, M. olivasterospora,

M. saelicesensis, M. viridifaciens

Alonso de la Vega, 2010

Lupinus sp. Lupine Germany M. saelicesensis Trujillo et al., 2010

Medicago sp. Alfalfa Australia, Spain M. aurantiaca, M. chokoriensis, M. lupini, M. saelicesensis,

M. schwarzwaldensis,M. tulbaghiae, M. viridifaciens

Martínez-Hidalgo et al.,

2014

Mucuna sp. Mucuna Ecuador ND Trujillo et al., 2010

Ononis sp. – Spain ND Trujillo et al., 2010

Ornithopus sp. – Spain ND Trujillo et al., 2010

Phaseolus vulgaris Bean Nicaragua M. chaiyapumensis, M. chersina, M. endolithica Cerda, 2008

Pisum sativum Sweet pea Spain M. aurantica, M. auratinigra, M. chaiyapumensis, M. chersina,

M. coerulea, M. coriariae, M. coxensis, M. fulviviridis, M.

lupini, M. matsumotoense, M. pattaloongensis, M.

saelicesensis, M. sagamiensis„ M. siamensis

Carro, 2009; Carro et al.,

2012a

Trifolium sp. Clover Spain ND Trujillo et al., 2010

Vicia sp. Vetch Spain ND Trujillo et al., 2010

HOST PLANT (ACTINORHIZALS)

Alnus glutinosa Alder France M. cremea, M. coxensis, M. lupini, M. matsumotoense, M.

olivasterospora, M. saelicesensis, M. siamensis

Carro et al., 2013a

Alnus viridis Alder France M. chokoriensis, M. coriariae, M. lupini, M. matsumotoense,

M. pisi, M. rifamycinica, M. saelicesensis

Carro et al., 2013a

Casuarina equisetifolia Coast sheoak Mexico M. aurantiaca Valdés et al., 2005

Coriaria myrtifolia Redoul Spain, France M. coriarie, M. saelicesensis, M. peucetia Trujillo et al., 2006; Carro

et al., 2013a

Elaeagnus x ebbingei – France M. aurantiaca, M. auratinigra, M. chaiyaphumensis, M.

coriariae, M. coerulea, M. cremea, M. coxensis, M. equina,

M. lupini, M. matsumotoense, M. mirobrigensis, M. peucetia,

M. saelicesensis, M. siamensis

Carro et al., 2013a

Hippophae rhamnoides Sandthorne France M. chaiyapumensis, M. chersina, M. coxensis, M. equina, M.

lupini,M narathiwatensis, M. saelicesensis, M. siamensis, M.

viridifaciens

Carro et al., 2013a

Morella pensylvanica – France M. coriariae, M. cremea, M. olivasteraspora, M. peucetia, M.

saelicesensis

Carro et al., 2013a

Myrica gale Canada M. lupini, M. tulbaghiae Carro et al., 2013a

As for the legume Pisum sativum, a similar pattern of
distribution was observed. However, for this plant, at least
one Micromonospora strain was recovered from every nodule
sampled (Carro et al., 2012a). It is also important to note that
while lupine plants were collected in the field, all Pisum sativum
samples originated from cultivation fields where chemical
fertilizers are applied periodically (Carro et al., 2012a).

In a recent study, Carro et al. (2013a) screened several
actinorhizal plants and recorded the number ofMicromonospora
strains and species found. Micromonospora strains were
recovered from all plants sampled, and, as in the case of legumes,

the number of isolates also varied significantly. High numbers
of Micromonospora strains were isolated from Alnus, Elaeagnus,
and Hippophae nodules, while the number of isolates was much
lower in Myrica, Morella, and Coriaria nodules. Similarly to
legumes, most isolates were related to M. saelicesensis and M.
lupini but M. coriariae was also isolated in high numbers. The
latter species was first reported from Coriaria myrtifolia nodules
(Trujillo et al., 2006).

The first Micromonospora strains isolated from nitrogen
fixing nodules were considered contaminants because it was
assumed that the spores produced by this microorganism were

Frontiers in Microbiology | www.frontiersin.org December 2015 | Volume 6 | Article 1341 | 53

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Trujillo et al. Endophytic Actinobacteria and Micromonospora

soil contaminants that had resisted the sterilization protocols.
However, the absence of other fast-growing sporulating
microorganisms, e.g., fungi or Streptomyces strongly indicated
that the strains had originated from the internal plant tissues
(Trujillo et al., 2010). Applying fluorescent in situ hybridization
(FISH) and transmission electronic microscopy (TEM),
Micromonospora lupini Lupac 08 was localized inside the
nodular tissues of lupin suggesting a close interaction between
the host plant and the bacterium (Rodríguez, 2008; Trujillo
et al., 2010). Further experiments using aMicromonospora strain
tagged with green fluorescent protein to trace the microorganism
in planta are in the process of completion.

The degree of genetic variation of Micromonospora strains
recovered from the nitrogen-fixing nodules of various plants
was analyzed using several molecular typing techniques (e.g.,
BOX–PCR, ARDRA, RFLP, RAPDS) (Cerda, 2008; Carro, 2009;
Alonso de la Vega, 2010; Trujillo et al., 2010; Carro et al., 2012a;
Martínez-Hidalgo et al., 2014). Highly diverse genetic fingerprint
profiles were found among the isolates studied, indicating that
they were not clones; the diversity found was unexpectedly high
considering that in some cases, the strains analyzed were isolated
from the same nodule (Alonso de la Vega, 2010). Subsequently,
taxonomic studies carried for some of these isolates confirmed

that many of these bacterial strains represented new species
and include Micromonospora coriariae (Trujillo et al., 2006);
Micromonospora lupini and Micromonospora saelicesensis
(Trujillo et al., 2007); Micromonospora pisi (Garcia et al., 2010);
Micromonospora cremea, Micromonospora zamorensis, and
Micromonospora halotolerans (Figure 2). The latter three strains
were isolated from the rhizospheric soil of the sampled plants
(Carro et al., 2012b, 2013b).

The species M. saelicesensis is the most frequently isolated
from the nodule tissues in both legume and actinorhizal plants,
followed by the species M. lupini (Cerda, 2008; Carro, 2009;
Alonso de la Vega, 2010; Trujillo et al., 2010; Carro et al.,
2012a). Furthermore, the number of new species found in this
niche also appears to be very high as commented above. To
expand the taxonomic studies of the genus Micromonospora,
Carro et al. (2012a) carried out a multilocus sequence analysis
study based on five loci and over 90 Micromonospora isolates
recovered from the rhizosphere and plant tissues (nodules)
of P. sativum. These studies were complemented with DNA-
DNA hybridization analyses to confirm the high diversity at
the species level (Carro et al., 2012a) and revealed that many
of the new isolates represent new species (Carro et al., 2012b,
2013b).

FIGURE 2 | Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences of Micromonospora species isolated from plant material and

rhizospheric soil. There were 1408 nucleotides in the final dataset. Analyses were carried in MEGA 6 software. Bar indicates 0.005 substitutions per nucleotide

position (Based on references provided in Table 2).
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GENOME FEATURES OF
MICROMONOSPORA ISOLATED FROM
NODULES

Very few Micromonospora strains have been sequenced. At
present, only five Micromonospora genomes are available
in the public databases: Micromonospora sp. strain L5 and
M. lupini Lupac 08 and isolated from nodules of Casuarina
equisetifolia and Lupinus angustifolius, respectively (Alonso-
Vega et al., 2012; Hirsch et al., 2013). The remaining are the
soil isolates Micromonospora aurantiaca ATCC 27029T (Hirsch
et al., 2013), Micromonospora sp. ATCC 39149 (Accession No.
GCF_000158815.1) and Micromonospora carbonacea JXNU-1
(Jiang et al., 2015). Several genomic characteristics of the strains
are presented in Table 3. Actinobacterial genomes are usually
larger than those of most other bacteria, e.g., proteobacteria
and Micromonospora is no exception, the currently available
genomes range from 6.9 to 7.3Mb and share a similar GC content
(72–74%).

The genome sequence of strain Lupac 08 was determined to
identify genomic traits potentially involved in this plant-microbe
interaction (Alonso-Vega et al., 2012; Trujillo et al., 2014b). The
annotated genome disclosed various traits potentially involved
in the capacity of this bacterium to alternate a lifestyle as a
saprophyte in the soil and as an endophyte inside the root
nodules (Trujillo et al., 2014b). The genome of strain Lupac
08 has a circular chromosome of 7.3 Mb with a GC content
of 71.9% and lacking plasmids. A total of 10 rRNA genes
were identified, specifically 3 5S rRNA, 4 16S rRNA, and 3
23S rRNA genes. In addition 77 tRNA genes were predicted
(Alonso-Vega et al., 2012). Approximately, 62% (4338 CDSs)
of the genes were assigned a biological function while 38%
were annotated hypothetical open reading frames with unknown
biological activities (Alonso-Vega et al., 2012). The genome
of Micromonospora sp. L5 is smaller, 6.9 Mb, a GC content
of 72.9% and 6332 open reading frames (Hirsch et al., 2013).
This strain is highly related to M. aurantiaca ATCC 27029T

and average nucleotide identity values (ANI) of their genomes
strongly suggest that Micromonospora sp. L5 belongs to this
species. The number of tRNAs identified in Micromonospora
sp. L5 is 52 (Hirsch et al., 2013) which is much lower when
compared to the 77 tRNAs identified inM. lupini 08. Indeed, the
latter strain has one of the largest numbers of tRNAs reported

for actinobacteria sequenced to date. The number of rRNA and
tRNA genes in a genome appear to be correlated and is an
indication of positive selection related to the time of response of a
bacterium to adapt to its environment (Dethlefsen and Schmidt,
2007; Yano et al., 2013).

The core genome of the strains M. lupini Lupac 08,
M. aurantiaca ATCC 27029T and Micromonospora sp. L5 was
determined and the results indicated that the strains shared a
common gene pool of only approximately 32% suggesting a high
degree of genomic diversity (Trujillo et al., 2014b). As expected,
the strains M. aurantiaca and Micromonospora L5 with 85%
genome similarity confirm their close relationship. M. lupini on
the other hand appears to be very different, with 66.6% of its
genome being strain specific. As moreMicromonospora genomes
are sequenced the core genome should be better defined.

A number of genomic traits that probably participate in
the plant/soil life style of endophytic Micromonospora include
transport and secretion systems. Several genes coding for
transport and secretion systems which may be involved in plant
colonization were also identified. The number of transporters is
slightly higher in M. lupini Lupac 08 than in Micromonospora
L5, and included ATP dependent (mainly of the ABC family
type), ion channels, PTS (phosphotransferase) and secondary
transporters (Trujillo et al., 2014b).

MICROMONOSPORA LUPINI LUPAC 08: A
FRIENDLY BACTERIUM HIGHLY
EQUIPPED WITH PLANT CELL WALL
DEGRADING ENZYMES

Micromonosporae are well-known for their capacity to produce
high numbers of cellulases, these enzymes very likely contribute
to the turn-over of decayed material in different habitats (de
Menezes et al., 2008, 2012). However, the presence of high
numbers of these molecules and other plant-cell wall degrading
enzymes in beneficial endophytic bacteria is usually very low
(Krause et al., 2007; Mastronunzio et al., 2008; Taghavi et al.,
2010; Pujic et al., 2012).

The genome of strain Lupac 08 contains a high number
of genes encoding enzymes potentially involved in plant cell
wall degradation. Approximately 10% of the genome codes
for carbohydrate metabolism, and almost 200 out of the 685

TABLE 3 | Genomic features of sequenced Micromonospora strains available in the databases.

Feature M. lupini M. aurantiaca Micromonospora Micromonospora Micromonospora

Lupac 08 ATCC 27029T sp. L5 sp. ATCC 39149 carbonacea JXNU-1

Size (Mb) 7.3 7 6.9 6.8 7.6

GC% 72 73 73 72 74

rRNA Operon 10 9 9 6 7

tRNA 77 52 53 51 50

CDS number 7054 6676 6617 5633 6247

Genes in COGs (%) 70.20% 68.30% 69% nd nd

nd, not determined.
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genes have a putative hydrolytic function. Hydrolytic activities
for cellulose, pectin, starch, and xylan, were confirmed in
the laboratory and indicate that this strain could degrade
plant cell wall components in a way similar to that of
phytopathogen bacteria (Trujillo et al., 2014b). Plant-polymer
degrading enzymes are thought to be involved in internal plant
colonization (Compant et al., 2005). Plant pathogenic fungi and
bacteria usually enter plant tissues by degrading plant cell wall
components using several hydrolases which include cellulases
and endoglucanases. On the other hand, genome data show
that non-pathogenic (endophytic or symbiotic) microorganisms
contain a low set of plant-polymer degrading enzymes (Krause
et al., 2007; Mastronunzio et al., 2008; Taghavi et al., 2010). In
the case ofM lupini, the genome of this microorganism revealed
a high number of hydrolytic enzymes (e.g., cellulases, xylanases,
endoglucanases) with the potential to degrade plant tissues
(Figure 3). However, green-house experiments show that when
host plants are inoculated with strain Lupac 08 no damage is
produced. On the contrary, M. lupini stimulates nodulation and
plant growth (Cerda, 2008; Trujillo et al., 2014b). Therefore, if
the plant does appear to be negatively affected by these enzymes,
what is their potential function when the bacterium interacts with
its host plant? Our group is currently working on this subject,
some of the loci, especially those related to cellulose metabolism
may participate in other processes such as cellulose biosynthesis
(Robledo et al., 2008, 2012; MbaMedie et al., 2012). Several genes
coding for plant cell-wall degrading enzymes were also located
in the genome of Micromonospora sp. L5 (Hirsch et al., 2013).
Similarly to strain Lupac 08, target substrates include cellulose,
hemicellulose, pectin, starch, and xylan, however, the number

of loci involved in carbohydrate transport and metabolism are
slightly lower in strain L5 (8.9%), as compared to strain Lupac 08
(9.7%) (Trujillo et al., 2014b).

Bacterial endophytic colonization is still a poorly understood
process, in part because it is very complex. For microorganisms
that colonize the roots, plant exudates appear to play a crucial
role (Badri et al., 2009). Molecules present in root exudates
may serve as carbon sources for microorganisms and therefore,
these are attracted to the plant roots (Shidore et al., 2012).
Thus, plant exudates may act as signals that influence the
ability of a bacterium to colonize the root or survive in
the rhizosphere. These signals may induce the alteration of
specific gene expression patterns in the bacterium, which in
turn may influence its interaction with the plant (Morrissey
et al., 2004; Mark et al., 2005; Shidore et al., 2012). While it is
considered that plant exudates affect the behavior of rhizospheric
microorganisms, our knowledge as to how these molecules
influence bacterial gene expression is still very limited (Mark
et al., 2005). Furthermore, it is not known how these altered
bacterial genes affect the plant-microbe interaction process and
only a few studies are available (Morrissey et al., 2004; Mark et al.,
2005; Shidore et al., 2012).

In the case of the Micromonospora-plant interaction, it could
be that the plant’s root exudates might be involved in the
repression of hydrolytic enzyme genes (e.g., cellulases, xylanases,
etc.) from the bacteriumwhich, if expressed during its interaction
with the plant would be detrimental upon infection. The effect
on Azoarcus sp. gene expression upon exposure to plant root
exudates was recently reported (Shidore et al., 2012). This
study concluded that the genes expressed by Azoarcus strain

FIGURE 3 | Circular genome representation of Micromonospora lupini, Lupac 08. (A) Distribution of various plant-cell wall hydrolytic enzyme loci. Red,

cellulases, and cellulose-binding sites; blue, pectinases; yellow, xylanases. (B) In vitro cellulase degradation. (C) In vitro starch degradation. (D) In vitro xylanase

degradation (Based on Trujillo et al., 2014b).
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BH72 upon exposure to the plant’s root exudates influenced the
colonization of the roots (Shidore et al., 2012). In this sense,
the genome of M. lupini contains many regulatory genes located
near plant cell wall degrading loci suggesting that these genes are
under strong regulation, which in turn, may be directly related to
the surrounding environment, soil, or plant tissues (Trujillo et al.,
2014b).

MICROMONOSPORA, A PLANT GROWTH
PROMOTER WITH WIDE APPLICATION IN
AGRICULTURE

Plant growth promoting bacteria (PGPB) are defined as soil
bacteria that facilitate plant growth and are often found in
association with plant roots, leaves, flowers, or within plant
tissues. Many of these bacteria are found in the plant rhizoplane
and rhizosphere but other are endophytic and able to colonize
the internal plant tissues (Glick, 2015). Plant growth promoting
bacteria have been reported to positively affect plants in a number
of ways, directly by facilitating resource acquisition (e.g., nitrogen
fixation, phosphorous, iron) or controlling plant hormone levels,
or indirectly by lowering the inhibitory effects of plant pathogen
microorganisms (e.g., biocontrol agents).

The current data about the interaction of Micromonospora
with legume and actinorhizal plants is limited, and therefore
the bacterium’s ecological role inside the roots nodules and its
interaction with the nitrogen fixing bacteria (rhizobia/Frankia)
is unknown. Plant co-inoculation studies indicate that
Micromonospora acts as a plant growth promoting bacterium
with a positive effect on the plant (Martínez-Hidalgo et al.,
2014; Trujillo et al., 2014b). Nodulation and nitrogen tests were
carried out on Lupinus and Phaseolus, these studies showed that
Micromonospora is not able to induce nodules or fix nitrogen
but a positive effect on the growth of the plant was observed
by an increase in the number of nodules and the height of the
plants which had been inoculated with both microorganisms
when compared to the plants treated with only one of the two
strains (Cerda, 2008). Furthermore, when Micromonospora and
the nitrogen-fixing bacterium (Bradyrhizobium or Rhizobium,
respectively) were grown together, they were compatible
and did not inhibit the growth of each other. Interestingly,
Micromonospora did inhibit the growth of several Frankia
strains; furthermore the latter strains came from different plant
species (Carro et al., 2013a). On the other hand no inhibition
was observed between Micromonospora and Frankia when the
strains originated from the same plant (Carro et al., 2013a).

Studies carried out with Trifolium plants yielded similar
results.Micromonospora lupini Lupac 08 stimulated plant growth
when it was co-inoculated with Rhizobium sp. on clover plantlets
and these were grown in a greenhouse (Trujillo et al., 2014b).
In general, the number of nitrogen-fixing nodules increased in
plants treated with both bacteria as compared to the plants
inoculated only with the Rhizobium strain. Overall, the plants
inoculated with both bacteria exhibited better growth and
increased shoot length compared to single-strain treatments
(Trujillo et al., 2014b).

Solans (2007) studied the plant promotion effect of
three actinobacterial strains isolated from the plant species
Discaria trinervis which included a Micromonospora strain. The
inoculation experiments of D. trinervis grown in glass tubes
with vermiculite-sand was done using pure mycelia suspensions
and/or supernatants obtained from the actinobacterial cultures
grown for 8 days. Plants inoculated with mycelium plus
supernatant from Micromonospora strain BCRU-MM18 had a
higher shoot length than the control plants and it was proposed
that this effect was probably due to the presence of several plant
hormones such as zeatin, IAA, and gibberellic acid. Further
studies confirmed that strain BCRU-MM18 produced significant
amounts of IAA (9.03 ng/ml), giberellic acid (9.03 ng/ml), and
zeatin (270µg/ml); in all cases these amounts were higher than
those produced by the nitrogen fixer Frankia sp. BCU110501
(Solans et al., 2011). The same Micromonospora strain (BCRU-
MM18) was co-inoculated in Medicago sativa which had also
been inoculated with the nitrogen fixer Sinorhizobium meliloti
in the presence of high nitrogen content. Unexpectedly, a
promotion of nodulation was observed despite the high amounts
of nitrogen present (7mM) which usually inhibit nodulation
(Solans et al., 2009). The above studies showed the positive effect
that Micromonospora had on the symbiosis of both leguminous
and actinorhizal plants, especially in increasing nodulation rates.

Recently, Micromonospora strains isolated from wild alfalfa
plants collected in several sites in Spain were studied for their
plant growth and nutrient content effect on this legume. Selected
strains significantly increased the nodulation of Medicago sp.
inoculated with Ensifer meliloti and also the plant’s efficiency
for nitrogen uptake. Furthermore, aerial growth, shoot-to-root
ratio and increase in levels of key nutrients was also reported
(Martínez-Hidalgo et al., 2014). These authors also discussed the
importance of choosing the most effective strains.

The wide distribution of Micromonospora among nitrogen
fixing plants (both legumes and actinorhizals) differs from that of
rhizobia or Frankia which are limited to a narrow host range of
legumes and angiosperms, respectively. The capacity of infection
by Micromonospora with a positive effect for its host plant may
be regarded as an advantage for downstream biotechnological
applications and the potential to use this bacterium as a plant
growth promoter in combination with rhizobia or Frankia.

THE MICROMONOSPORA METABOLOME
AND ITS POTENTIAL ROLE IN
PLANT-MICROBE COMMUNICATION
SIGNALS

Microbial secondary metabolites have been the subject of
many research projects, mainly with the aim to discover
new compounds with biotechnological application (Miao and
Davies, 2010; Genilloud, 2014). However, our knowledge about
the ecological role of these compounds is very limited. It is
proposed, that in the environment, these natural products serve
as allelochemicals and signaling molecules to communicate with
organisms, in this case, with the plant (Badri et al., 2009).
Udwary et al. (2011) recently reported the identification of several
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biosynthetic gene clusters coding for secondarymetabolites in the
genome of Frankia. In this work, it was proposed that some of
these compounds could function as communication molecules
to establish the symbiotic interaction between Frankia and the
host plant (Udwary et al., 2011). The potential role of lectins
produced by Frankia alni ACN14a to permit binding of the
bacterial cells to the roots of the host plant was suggested by
Pujic et al. (2012). In another study, a hybrid (PKS)/NRPS protein
produced by Trichoderma virens was proposed to induce the
defense mechanisms of maize (Mukherjee et al., 2012).

Moreover, Conn et al. (2008) demonstrated that culture
filtrates obtained from Micromonospora sp. strain EN43 isolated
from healthy wheat tissues were able to induce several plant
defense systems inArabidopsis thaliana. When the bacteriumwas
grown in a minimal medium, the culture filtrate applied to the
plant induced the systemic acquired system pathway; however,
when grown in a complex medium, the jasmonic acid/ethylene
pathway was activated (Conn et al., 2008). Based on these results,
the authors suggested that different metabolites were produced
under the two conditions tested and that these compounds were
responsible for the activation of the different defensemechanisms
in the plant (Conn et al., 2008). In addition, it was also proposed
that a physical contact of the bacterium and the plant may be
required for the defense mechanisms to be activated. Overall, the
above examples show the potential ecological role of secondary
metabolites in plant-microbe interactions.

The information derived from sequenced actinobacterial
genomes have revealed that these microorganisms have the
biosynthetic potential to make far more natural products than
was realized before genome sequences were available (Genilloud,
2014). Only a small fraction of endophytic bacteria have been
characterized and they remain as an untapped resource of novel
bioactive small molecules (Qin et al., 2011; Brader et al., 2014).
As mentioned above, some of these metabolites are speculated
to affect the physiological conditions of host plants including
growth and disease resistance (Conn et al., 2008; Udwary et al.,
2011). Micromonosporae strains are also a good source for
obtaining natural products (Weinstein et al., 1963; Thawai et al.,
2004; Antal et al., 2005; Anzai et al., 2010; Kyeremeth et al., 2014).
In this sense, the model strainMicromonospora lupini Lupac 08 is
no exception and a family of new anthraquinone molecules with
antitumoral activity were isolated and identified (Igarashi et al.,
2007, 2011). Moreover, 15 clusters involved in the biosynthesis of
secondary metabolites were identified in the genome ofM. lupini
Lupac 08. These included siderophores, terpenes, butyrolactones,
polyketides (PKS), non-ribosomal peptides (NRPS), chalcone
synthases and bacteriocins. Approximately 7.4% of the genome
was related to genes coding for secondary metabolites.

The production of siderophores by endophytic bacteria is
suggested to promote plant growth by sequestering iron from
the environment and providing the nutrient to the plant.
Alternatively, plant growth promoting bacteria can protect plants
by binding the available iron surrounding the roots and limiting
access to the nutrient by phytopathogen microorganisms (Glick,
2015). Recently it was shown that a siderophore-producing

endophytic streptomyces strain significantly increased root and
shoot biomass as compared to a siderophore deficient mutant
strain (Rungin et al., 2012). Furthermore, Misk and Franco
(2011) reported the capacity of several endophytic siderophore
producing Streptomyces strains to suppress root rot in chickpea
produced by Phytophtora. In this case, the streptomycete strains
were isolated from several legumes. Several gene loci related
with the synthesis of siderophores were identified in the genome
of M. lupini Lupac 08 and the strain was shown to produce
these molecules in the laboratory (Trujillo et al., 2014b).
Siderophores produced by Micromonospora may also contribute
to the increased root and shoot biomass observed when host
plants are inoculated with this bacterium (Martínez-Hidalgo
et al., 2014; Trujillo et al., 2014b).

The characterization and identification of secondary
metabolites produced by Micromonospora strains isolated
from nitrogen fixing plants is at present reduced to three
anthraquinones, lupinacidins A, B, and C (Igarashi et al., 2007,
2011). However, the genome of strain Lupac 08 revealed that
other metabolites are potentially produced (e.g., terpenes,
butyrolactones, polyketides, non-ribosomal peptides etc.). These
compounds may act as communication molecules between the
microorganism and the plant to allow bacterial colonization
(Udwary et al., 2011). Alternatively, as suggested by other studies
these metabolites may provide protection against pathogens,
either by producing specific control agents or by activating
plant defense systems (Conn et al., 2008). Furthermore, some
metabolites may be necessary for nutrient uptake (Barry and
Challis, 2009; Rungin et al., 2012) All these areas remain to
be studied in the interaction Micromonospora-nitrogen fixing
plants.

CONCLUDING REMARKS

Our knowledge of the interaction betweenMicromonospora with
legumes and actinorhizal plants is in its infancy and a lot more
work is required to fully understand this ecological process. Apart
from the studies presented above, there is no other information
regarding the molecular interaction between Micromonospora
and its host plants and how it interacts with other bacteria present
in the nitrogen fixing nodules. The current data is promising as
it strongly suggests that Micromonospora provides a benefit to
the plant. The genome of strain Lupac 08 revealed many features
that make this microorganism an excellent candidate as a plant-
growth promoter which could be applied to a large number of
agriculturally important crops.
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Studies on actinobacterial diversity in limestone habitats are scarce. This paper
reports profiling of actinobacteria isolated from Hundung limestone samples in Manipur,
India using ARDRA as the molecular tool for preliminary classification. A total of
137 actinobacteria were clustered into 31 phylotypic groups based on the ARDRA
pattern generated and representative of each group was subjected to 16S rRNA gene
sequencing. Generic diversity of the limestone isolates consisted of Streptomyces
(15 phylotypic groups), Micromonospora (4), Amycolatopsis (3), Arthrobacter (3),
Kitasatospora (2), Janibacter (1), Nocardia (1), Pseudonocardia (1) andRhodococcus (1).
Considering the antimicrobial potential of these actinobacteria, 19 showed antimicrobial
activities against at least one of the bacterial and candidal test pathogens, while 45
exhibit biocontrol activities against at least one of the rice fungal pathogens. Out of the
137 actinobacterial isolates, 118 were found to have at least one of the three biosynthetic
gene clusters (PKS-I, PKS-II, NRPS). The results indicate that 86% of the strains isolated
from Hundung limestone deposit sites possessed biosynthetic gene clusters of which
40% exhibited antimicrobial activities. It can, therefore, be concluded that limestone
habitat is a promising source for search of novel secondary metabolites.

Keywords: actinobacterial diversity, limestone habitat, Hundung, antibacterial, biocontrol, biosynthetic genes,
Streptomyces

Introduction

Actinobacteria are major producers of secondary metabolites such as antimicrobial compounds,
anticancer molecules and immunosuppressant agents (Takahashi and Omura, 2003). Since the
beginning of antibiotic revolution, actinobacteria especially the genus Streptomyces have played
major roles as antibiotic producers (Bérdy, 2005). However, the discovery of new antibiotics has
not been in pace with the increase in demand for new antibiotics. The exhaustion of the usual

Abbreviations: ARDRA, Amplified Ribosomal DNA Restriction Analysis; DGGE, Denaturing Gradient Gel Electrophoresis;
GM1, Gauze Medium No. 1; NRPS, Non-Ribosomal Peptide Synthetase; PKS, Polyketide Synthase; RFLP, Restriction
Fragment Length Polymorphism; SCNA, Starch Casein Nitrate Agar.
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terrestrial sources and the rise of resistant pathogens dictate
the search for new antibiotics. To meet urgent clinical needs,
screening for secondary metabolites from actinobacteria residing
in unexplored habitats is warranted to, possibly, generate novel
compounds.

Limestone habitats have high deposition of CaCO3 salts
and may be considered a special habitat. Limited studies have
been done for systematically exploring such habitats for novel
actinobacterial strains (Kim et al., 1998; Groth et al., 1999a,
2001; Jurado et al., 2009; Nakaew et al., 2009; Niyomvong
et al., 2012). Some reports are available on actinobacterial
diversity in hypogean environments but the studies were focused
on biodeterioration and conservation of paleolithic cave art.
Actinobacteria implicated in deterioration of art work are
considered serious risk factors if environmental changes promote
their massive proliferation (Groth et al., 1999b; Portillo et al.,
2009). To date, four new genera Beutenbergia, Fodinibacter,
Hoyosella, and Knoellia have been reported from limestone
habitats and related limestone ecosystems such as cave biofilms
(Groth et al., 1999b, 2002; Jurado et al., 2009; Wang et al., 2009).

Manipur has a huge reserve of good quality limestone suitable
for use in the manufacture of cement. The major limestone
reserves have been located by Geological Survey of India near
Ukhrul district, Manipur. Other limestone deposit sites include
areas in Hundung, Phungyar, Meihring, Mova, Khonggoi,
Lambui, and Paoyi. This paper reports the actinobacterial
diversity profiling of the Hundung limestone deposit sites using
ARDRA as the molecular tool for preliminary classification.
ARDRA has been originally designed to decrease selection of
duplicate clones in molecular analysis. It has been less frequently
used in the study of bacterial diversity profiling unlike techniques
such as DGGE. The paper also incorporates the results of
antimicrobial screening of the Hundung actinobacterial strains.

Materials and Methods

Sampling
Samples for the isolation of actinobacteria were collected from
limestone deposit sites, Manipur, India (25.05◦N, 94.33◦E). The
samples included limestones from the quarry site and rice field
soil from the adjoining areas. These samples were aseptically
packed in polyethylene bags and taken to the laboratory at the
earliest possible time. Samples were then kept refrigerated till
processing for isolation.

Isolation of Actinobacteria
Two synthetic media, Gauze’s Medium No. 1 (GM1, pH 5.3)
(Atlas, 1997) and Starch Casein Nitrate Agar (SCNA, pH
8.5) (Kûster and Williams, 1964), were used for the isolation
of actinobacteria. Isolation was done using the procedure as
described earlier (Nimaichand et al., 2012). The strains were
preserved as lyophilized cultures and as glycerol suspension (20%
w/v) at−80◦C.

Amplified Ribosomal DNA Restriction Analysis
(ARDRA; Heyndrickx et al., 1996)
Genomic DNA extraction and amplification of the 16S rRNA
gene was done as described by Li et al. (2007). The amplified

products were checked and purified by HiPurA™ 96 PCR
product purification kit (HiMedia, India). Restriction digestion
of the amplified 16S rRNA gene product was done using the
enzymes HhaI and HinfI (New England Biolabs, UK). The
reaction mixture containing 10μl amplified 16S rRNA gene
product, 2μl NEB buffer 4 (10X), 1μl restriction enzyme (10
U/μl) and 7μl deionized water was incubated at 37◦C for 2 h
and inactivated by heating at 70◦C for 10min. To 20μl of the
restriction digest, 4μl loading dye (6X) (Promega) was added.
Each sample was loaded in a well in agarose gel (3%, w/v)
and the gel was run at 100V for 90min. In another well, 1μl
DNA ladder (100 bp) (Promega) was loaded to estimate the
size of the restriction fragment. The gel was visualized in a gel
documentation system (BIORAD Gel Doc EZ Imager). Bands
between 100 and 1000 bp were used as reference points and
banding patterns were analyzed by scoring the prominent bands.
ARDRA band profiles for all the strains were scored with the
help of GelBuddy software (Zerr and Henikoff, 2005) for the
presence or absence of restriction fragments. A dendrogram was
generated using the software package NTSYSpc version 2.02.
The phylogenetic relationship was determined according to the
method of unweighted pair group method with arithmetic mean
(UPGMA; Sneath and Sokal, 1973). Based on the similarity
indices (70% and above) in the dendrogram, all the strains were
clustered into different phylotypic groups.

Sequencing of 16S rRNA Genes
Sequencing of a randomly-selected representative strain for
each phylotypic group was done. The partial 16S rRNA gene
sequence of the strain was identified using the EzTaxon-e server
database (Kim et al., 2012).The phylogenetic tree of these strains
based on neighbor-joining method (Saitou and Nei, 1987) along
with related type species were constructed using the software
package MEGA version 5.2 (Tamura et al., 2011). Distances were
calculated according to Kimura’s two-parameter model (Kimura,
1983). To determine the support of each clade, bootstrap analysis
was performed with 1000 resamplings (Felsenstein, 1985).

Nucleotide Accession Numbers
The partial 16S rRNA gene sequences were deposited in GenBank
with the following accession numbers: KP883248-KP883278.

Antimicrobial Screening
The indicator pathogens used for antimicrobial screening
were: Bacillus subtilis MTCC 121, Escherichia coli MTCC
739, Pseudomonas aeruginosa DN1, Candida albicans MTCC
227, Candida vaginitis CV, Curvularia oryzae MTCC 2605,
Fusarium oxysporum MTCC 287, Helminthosporum oryzae
MTCC 3717, Pyricularia oryzae MTCC 1477, Rhizoctonia
oryzae-sativae MTCC 2162 and Rhizoctonia solani MTCC 4633.
All the test pathogens were procured from Microbial Type
Culture Collection (MTCC), Institute of Microbial Technology
(IMTECH), Chandigarh, India except for DN1 (lab collection)
and CV (clinical isolate gifted from the Centre for DNA
Fingerprinting and Diagnostics (CDFD), Hyderabad).

Antimicrobial assays against the bacterial and candidal strains
were performed by agar well diffusionmethod (Hugo and Russell,
1983). Antifungal bioassay was done by dual culture technique
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(Khamna et al., 2009). The mycelial growth inhibition was
calculated using the formula:

Percentage growth inhibition = [(C− T)/C]× 100%

where, C = Radial growth of the test pathogen in the control
plate, and T= Radial growth of the test pathogen in the test plate.

Screening for Biosynthetic Genes
Three sets of degenerate primers were used for amplification
of PKS-I, PKS-II and NRPS specific domains (Metsä-Ketalä
et al., 1999; González et al., 2005). The primers used are
listed in Table 1. PCR amplifications were performed in
eppendorf mastercycler in a final volume of 25μl containing
5μl reaction buffer (with Mg2+) (10x) (Bioline, USA), 0.5μl
of each primer (100μM) (IDT, USA), 2.0μl of dNTPs mixture
(2.5mM) (Bioline, USA), 0.15μl of Taq DNA polymerase (2.5
U/μl) (Bioline, USA), 2.5μl DMSO (HiMedia, India), 11.85μl
deionized water and 2.5μl of extracted DNA. Amplification was
done using the following protocol: one denaturation step of 94◦C
for 5min; 30 amplification cycles of 94◦C for 1min, 57◦C (for
K1F-M6R and A3F-A7R) or 58◦C (for KSαF-KSαR) for 1min,
and 72◦C for 2min; and a final extension at 72◦C for 5min.
Amplification products were analyzed in agarose gel (1%) using
DNA ladder (100 bp) (Promega) as reference.

Results

Description of Sampling Sites
For the actinobacterial isolation, six Hundung samples were
collected and used. The sample collection sites included: an
abandoned cement factory site (Sample 1), quarry sites (Sample
2–5) and a rice field adjoining the quarry site (Sample 6). The
limestones in Hundung, with color ranging from light gray
to brown, are of good quality grade which are suitable for
production of cement (Bhatt and Bhargava, 2005). The estimated
reserve of this Hundung limestone is about 1.88 million tons
(Sadangi, 2008; Lisam, 2011). The general characteristics of the
samples used for isolation are highlighted in Table 2.

Actinobacterial Isolation
Among the isolates obtained, 137 morphologically distinct
putative actinobacterial strains were selected for further studies.
These included 51 strains from Sample 1, 48 from Sample 2, 10
from Sample 3, 17 from Sample 4, 2 from Sample 5 and 9 from

Sample 6. The coding scheme for the actinobacteria from the
Hundung samples is shown in Table 2.

Diversity Analysis of Hundung Actinobacteria
Upon analysis of the ARDRA-based dendrogram
(Supplementary Figure S1), the isolates were classified
into 31 phylotypic groups (see Supplementary Table S1 for
classification pattern of the Hundung actinobacteria based on
ARDRA-dendrogram). The 16S rRNA gene sequence profile for
these 31 phylotypic groups is given in Table 3. Fifteen of these
phylotypes belong to the genus Streptomyces. In addition, four
phylotypes belong to the genus Micromonospora, three each
to Arthrobacter and Amycolatopsis and two to Kitasatospora.
Remaining phylotypes comprise of the genera Janibacter,
Rhodococcus, Nocardia, and Pseudonocardia. Among the
different sites, sample 2 gave the highest diversity (16 phylotypes),
followed closely by sample 1 (15 phylotypic groups). Sample
1 yielded the genera Streptomyces, Janibacter, Arthrobacter,
Amycolatopsis, and Micromonospora while sample 2 generated
Streptomyces, Rhodococcus, Amycolatopsis, Micromonospora,
Arthrobacter, Nocardia, and Pseudonocardia. Sample 3 which
contained 5 phylogenetic groups yielded the genera Streptomyces
and Micromonospora. Four genera viz., Streptomyces, Janibacter,
Amycolatopsis, and Kitasatospora were present in sample 4 while
sample 6 contained 3 genera: Streptomyces, Amycolatopsis, and
Arthrobacter. Sample 5 yielded Streptomyces strains only though
this may not reflect the true actinobacterial diversity in this
sample, as we have selected only 2 strains from the isolates
obtained from this sample. Nonetheless, overall analysis of the
Hundung sites (1–6) indicated Streptomyces to be the dominant
genus in these habitats. Figures 1, 2 depict the dendrograms
based on the 16S rRNA gene sequences of the Streptomyces and
rare actinobacterial strains obtained from Hundung limestone
habitats.

Antimicrobial Activities
Antibacterial and Anticandidal Activities
Antibacterial and anticandidal activity was assessed against a
set of indicator organisms. The antibacterial and anticandidal
profiles of the Hundung actinobacteria are shown in Table 4. Of
137 actinobacterial isolates, 19 exhibited antimicrobial activities
against at least one of the test pathogens. In case of Bacillus
subtilis, 18 strains showed inhibition, of which 5 (MBRL 5,
MBRL 10, MBRL 201, MBRL 204, MBRL 251) showed inhibition
zones above 17mm diameter. Against Escherichia coli, 5 strains

TABLE 1 | PCR primers for screening the biosynthetic genes.

Primer
name

Sequence (5′–3′) Target gene Length of target References

gene fragment (bp)

K1F
M6R

TSA AGT CSA ACA TCG GBC A
CGC AGG TTS CSG TAC CAG TA

PKS-I 1200–1400 González et al., 2005

KSαF
KSαR

TSG CST GCT TGG AYG CSA TC
TGG AAN CCG CCG AAB CCG CT

PKS-II 600 Metsä-Ketalä et al., 1999

A3F
A7R

GCS TAC SYS ATS TAC ACS TCS GG
SAS GTC VCC SGT SCG GTA S

NRPS 700–800 González et al., 2005
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TABLE 2 | Profile of the Hundung limestone samples and coding scheme for the actinobacterial strains.

Sample Sampling sites pH of the sample Isolation medium No. of strains Isolate code

1 Cement factory location 9.26 GM1 29 MBRL 1–MBRL 29

SCNA 22 MBRL 200–MBRL 221

2 Quarry site 1 8.70 GM1 33 MBRL 30–MBRL 61

SCNA 15 MBRL 222–MBRL 237

3 Quarry site 2 7.45 GM1 – –

SCNA 10 MBRL 238–MBRL 247

4 Quarry site 3 6.50 GM1 14 MBRL 62–MBRL 75

SCNA 3 MBRL 248–MBRL 250

5 Quarry site 4 7.91 GM1 – –

SCNA 2 MBRL 251–MBRL 252

6 Soil sample from the adjoining rice field 4.89 GM1 6 MBRL 76–MBRL 81

SCNA 3 MBRL 253–MBRL 255

Total number of strains 137

TABLE 3 | Sequence analysis profile of representative strain of each phylotypic group.

Phylotypic group Strain Accession number Closest homolog Pairwise similarity (%)

I MBRL 216 KP883268 Streptomyces badius NRRL B-2567T 100.00

II MBRL 221 KP883270 Janibacter limosus DSM 11140T 99.52

III MBRL 6 KP883248 Streptomyces phaeofaciens NBRC 13372T 99.20

IV MBRL 77 KP883262 Streptomyces rubiginosohelvolus NBRC 12912T 100.00

V MBRL 207 KP883264 Streptomyces roseolus NBRC 12816T 99.74

VI MBRL 241 KP883276 Streptomyces drozdowiczii NBRC 101007T 100.00

VII MBRL 26 KP883252 Streptomyces omiyaensis NBRC 13449T 99.30

VIII MBRL 243 KP883278 Streptomyces roseofulvus NBRC 13194T 100.00

IX MBRL 213 KP883266 Arthrobacter nitroguajacolicus G2-1T 100.00

X MBRL 219 KP883269 Arthrobacter subterraneus CH7T 98.96

XI MBRL 46 KP883255 Rhodococcus canchipurensis MBRL 353T 98.45

XII MBRL 57 KP883256 Amycolatopsis lurida DSM 43134T 97.46

XIII MBRL 222 KP883271 Streptomyces scabiei ATCC 49173T 100.00

XIV MBRL 76 KP883261 Amycolatopsis thailandensis CMU-PLA07T 98.95

XV MBRL 32 KP883253 Micromonospora kangleipakensis MBRL 34T 98.42

XVI MBRL 64 KP883259 Kitasatospora phosalacinea JCM 3340T 99.35

XVII MBRL 70 KP883260 Kitasatospora cheerisanensis KCTC 2395T 99.40

XVIII MBRL 210 KP883265 Micromonospora coxensis 2-30-b/28T 99.27

XIX MBRL 240 KP883275 Micromonospora schwarzwaldensis HKI0641T 99.48

XX MBRL 8 KP883249 Streptomyces violacerectus NBRC 13102T 100.00

XXI MBRL 18 KP883251 Streptomyces exfoliatus NBRC 13191T 100.00

XXII MBRL 14 KP883250 Streptomyces fragilis NRRL 2424T 99.44

XXIII MBRL 63 KP883258 Amycolatopsis keratiniphila subsp. keratiniphila DSM 44409T 99.92

XXIV MBRL 34 KP883254 Micromonospora coerulea DSM 43143T 98.52

XXV MBRL 242 KP883277 Streptomyces griseorubiginosus NBRC 13047T 100.00

XXVI MBRL 226 KP883272 Streptomyces shaanxiensis CCNWHQ 0031T 99.52

XXVII MBRL 215 KP883267 Streptomyces rubiginosohelvolus NBRC 12912T 100.00

XXVIII MBRL 79 KP883263 Arthrobacter defluvii 4C1-aT 100.00

XXIX MBRL 230 KP883273 Nocardia asteroides NBRC 15531T 98.64

XXX MBRL 235 KP883274 Pseudonocardia carboxydivorans Y8T 100.00

XXXI MBRL 59 KP883257 Streptomyces olivaceoviridis NBRC 13066T 99.49
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FIGURE 1 | Dendrogram of the representative Streptomyces strains based on the 16S rRNA gene sequences. Numbers at nodes are levels of bootstrap
support (%) for branch points (1000 resamplings). Bar, 0.002 substitutions per nucleotide position.

exhibited antagonistic activities of which 2 (MBRL 5, MBRL 10)
showed inhibition zone sizes above 17mm diameter. No strain
had activity against Pseudomonas aeruginosa. Against Candida
albicans, 5 strains showed inhibitory activity and 4 against
Candida vaginitis (See Supplementary Table S2 for complete
antibacterial and anticandidal profile).

Biocontrol Activities
Several actinobacterial strains exhibited biocontrol potential
against rice fungal pathogens. Forty five actinobacterial
strains from Hundung limestone habitat showed biocontrol
activities against at least one of the rice fungal pathogens.
Frequencies of biocontrol activities against the indicator fungal
pathogens were as follows:Helminthosporum oryzaeMTCC 3717
(22.6%), Rhizoctonia solani MTCC 4633 (18.2%), Rhizoctonia

oryzae-sativae MTCC 2162 (16.8%), Pyricularia oryzae MTCC
1477 (14.6%), Curvularia oryzae MTCC 2605 (10.9%) and
Fusarium oxysporum MTCC 287 (9.5%) respectively. Table 4
summarizes the biocontrol profile of the Hundung actinobacteria
(See Supplementary Table S3 for complete biocontrol activity
profile).

Screening for Biosynthetic Genes
It is well known that many bioactive metabolites in actinobacteria
are produced by PKS andNRPS gene clusters. Screening for genes
associated with secondary metabolism is helpful in evaluating
the biosynthetic potential of actinobacteria. Of 137 Hundung
actinobacterial strains, 118 possessed at least one of the three
biosynthetic gene clusters. A total of 43 strains had a single type
of biosynthetic gene cluster (PKS-I, 5 strains; PKS-II, 27; NRPS,
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FIGURE 2 | Dendrogram of the representative rare actinobacterial strains based on the 16S rRNA gene sequences. Numbers at nodes are levels of
bootstrap support (%) for branch points (1000 resamplings). Bar, 0.01 substitutions per nucleotide position.

11). The remaining 75 strains had two ormore of the biosynthetic
gene clusters: 9 strains possessed both PKS-I and PKS-II; 8 had
both PKS-I and NRPS; 36 had both PKS-II and NRPS while 22
strains had all the three biosynthetic gene clusters. Table 4 shows
the amplication profile for biosynthetic genes in the Hundung
actinobacteria (see Supplementary Table S4 for complete PCR
profile of biosynthetic genes).

Discussion

Diversity profiling focused on actinobacteria in limestone
habitats started when Kim et al. (1998) reported the diversity
of actinobacteria antagonistic to phytopathogenic fungi in
caves of Korea. They reported the presence of Streptomyces,
Micromonospora, Nocardioform actinobacteria, Actinomyces,
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Dactylosporangium, Saccharomonospora, and Streptosporangium
in these habitats. Groth et al. (1999a) studied the actinobacterial
diversity in Karstic caves (Altamira and Tito Bustillo)
located in northern Spain and reported members of the
genera Streptomyces, Nocardia, Rhodococcus, Nocardioides,
Amycolatopsis, Saccharothrix, Brevibacterium, Microbacterium,
and coccocid actinobacteria of the family Micrococcaceae. Groth
et al. (2002) reported the isolation of a new genus Knoellia from
limestone caves. To the repertoire of the actinobacterial diversity
in caves, Nakaew et al. (2009) added the genera Nonomuraea,
Actinocorallia, Catellatospora, Microbispora, and Sprillospora.
Jurado et al. (2009) reported the new genus Hoyosella from cave
biofilms in Spain. Niyomvong et al. (2012) found the presence of
the genera Streptomyces, Actinomadura, Actinoplanes, Gordonia,
Microbispora, Micromonospora, Nocardia, Nonomuraea, and
Saccharopolyspora in the tropical limestone caves of Khao
No-Khao Kaeo karst in Thailand.

Considering the rich diversity of actinobacteria in limestone
habitats, the present study on actinobacterial diversity
of limestone deposit sites in Hundung, Manipur, India,
has special significance. As per our findings, the genus
Streptomyces is predominantly present in these limestone
habitats. This is also indicated by the presence of phylotypic
group III (represented by the genus Streptomyces) in all
the six samples used for actinobacterial isolation. Apart
from Streptomyces, we also observed the presence of rare
actinobacteria Micromonospora, Arthrobacter, Amycolatopsis,
Kitasatospora, Janibacter, Rhodococcus, Nocardia, and
Pseudonocardia. This work forms the first report of the isolation
of Janibacter and Kitasatospora from limestone and related
habitats.

ARDRA is preferable to other molecular genome typing
methods for preliminary phylogenetic grouping as it is faster
and more cost effective than the other approaches. Moreover,
as ARDRA is based on the presence of restriction sites within
the ribosomal DNA, duplicate strains will most likely have
the same restriction pattern. The use of ARDRA in this
study, therefore, helped reduce the number of duplicate strains
among the isolates from the community, indicating the true
diversity of the community even when the sample size is
small.

In the course of a screening program for novel antibiotics
from strains obtained from Grotta dei Cervi, a cave in Italy,
Herold et al. (2004) identified a bioactive complex, Cervimycins
A–D, from a strain of Streptomyces tendae. Cervimycins are
potent antibiotics against multidrug resistant Staphylococcus
aureus (MRSA) and vancomycin-resistant Enterococcus faecalis
(VRE) strains (Herold et al., 2005). Quadri and Agsar (2012)
have investigated antimicrobial activities of actinobacteria of
limestone quarries located at Deccan traps, India. Of 63
actinobacteria from this habitat, six strains (belonging to the
genera Streptomyces, Micromonospora, Nonomuraea, Kribbella,
Lechevalieria, and Saccharothrix) showed potent antimicrobial
activity against Bacillus subtilis, Escherichia coli, Klebsiella
pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus,
Salmonella typhi, and Candida albicans. Carlsohn (2011) found

novel strains of Amycolatopsis saalfeldensis, Kribbella aluminosa,
and Streptomyces strains from a mine in Germany and they were
strongly inhibitory to Stapthylococcus aureus, Mycobacterium
smegmatis, and Candida albicans, and moderately antagonistic
to Escherichia coli. Rule and Cheeptham (2013) reported some
Streptomyces strains from a volcanic cave in Canada (Cheeptham
et al., 2013) as antagonistic to Micrococcus luteus, MRSA,
Mycobacterium smegmatis, Pseudomonas aeruginosa, Escherichia
coli and Candida albicans.

In the present study, 5 Hundung actinobacteria were found to
be potent antimicrobial strains. Of these, 2 Streptomyces species
MBRL 201 and MBRL 251 showed strong antimicrobial activity
against Bacillus subtilis, but less bioactivity against Escherichia
coli, Candida albicans, and Candida vaginitis. Besides these two,
two other Hundung Streptomyces species (MBRL 5 and MBRL
10) also exhibited promising antimicrobial activities. MBRL 204,
another Hundung Streptomyces strain, exhibited relatively lesser
antimicrobial activity compared to the other 4 isolates (MBRL 5,
MBRL 10, MBRL 201 and MBRL 251).

Soil actinobacteria have been proposed as promising
biocontrol agents (Goodfellow and Williams, 1983; Chater,
1993). However, actinobacteria from limestone habitats have
not been investigated for their biocontrol potential. Quadri
and Agsar (2012) have reported that only 9.5% of the strains
isolated from limestone habitats have antifungal activities
against Aspergillus fumigates, Aspergillus niger, and Fusarium
solani. In the current investigation, many strains belonging to
the genera Streptomyces and Amycolatopsis (e.g., Phylotypic
group I, III and XII) were found to have biocontrol activities
against selected rice fungal pathogens Curvularia oryzae,
Fusarium oxysporum, Helminsthosporum oryzae, Pyricularia
oryzae, Rhizoctonia oryzae-sativae, and Rhizoctonia solani.
Rare actinobacteria belonging to genera Janibacter and
Pseudonocardia obtained from Hundung limestone habitats also
exhibited significant biocontrol potential against some fungal
pathogens.

The biosynthetic gene clusters play a crucial role in microbial
natural product biosynthesis. The biosynthesis of cervimycin
complex (metabolites reported from limestone related
habitats) involved the type II PKS system. Other antibacterial
metabolites such as Ravidomycins from Streptomyces rabidus
are biosynthesized by type II PKS system (Kharel et al., 2010).
Hence, it is imperative to screen for the presence of these
biosynthetic gene clusters in the actinobacterial isolates. In our
studies, 118 of the 137 actinobacterial isolates were found to
have at least one of the three biosynthetic gene clusters. Of these
118 actinobacteria possessed the biosynthetic gene clusters, 47
exhibited antimicrobial and/or biocontrol activities indicating
that less than 50% of the strains possessing biosynthetic gene
clusters were bioactive under the screening condition. The
findings of the various experiments indicate that 86% of the
strains isolated from Hundung limestone rocks possessed
biosynthetic gene clusters of which 40% exhibited antimicrobial
activities. It can, therefore, be concluded that limestone
habitats is a promising source for search of novel secondary
metabolites.
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The goal of this study was to gain insight into the diversity of culturable actinobacteria in

desert soil crusts and to determine the physiological characteristics of the predominant

actinobacterial group in these crusts. Culture-dependent method was employed to

obtain actinobacterial strains from desert soil samples collected from Shapotou National

Desert Ecological Reserve (NDER) located in Tengger Desert, China. A total of 376

actinobacterial strains were isolated and 16S rRNA gene sequences analysis indicated

that these isolates belonged to 29 genera within 18 families, among which the

members of the family Geodermatophilaceae were predominant. The combination of

16S rRNA gene information and the phenotypic data allowed these newly-isolated

Geodermatophilaceae members to be classified into 33 “species clusters,” 11 of which

represented hitherto unrecognized species. Fermentation broths from 19.7% of the

isolated strains showed activity in at least one of the six screens for antibiotic activity.

These isolates exhibited bio-diversity in enzymatic characteristics and carbon utilization

profiles. The physiological characteristics of the isolates from different types of crusts

or bare sand samples were specific to their respective micro-ecological environments.

Our study revealed that members of the family Geodermatophilaceae were ubiquitous,

abundant, and diverse in Shapotou NDER, and these strains may represent a new major

group of potential functional actinobacteria in desert soil.

Keywords: Geodermatophilaceae, 16S rRNA, diversity, physiological characteristics, desert

Introduction

It has become increasingly clear that the overuse of antibiotics and the subsequent rise in antibiotic-
resistant pathogens will force us to search for new antibiotics to meet urgent clinical needs
(Talbot et al., 2006). Previous studies have indicated that environments considered to be extreme
habitats are rich sources of novel actinobacteria (Subramani and Aalbersberg, 2013). It has been
hypothesized that unusual climate conditions and ecological factors may endow the organisms in
such habitats with the unique capacity to produce novel bioactive compounds (Bull et al., 2005;
Okoro et al., 2008).

The Shapotou desert region (latitude 36◦39′-37◦41′N, elevation 104◦25′-105◦40′E) is recognized
as the first “National Desert Ecological Reserve” (NDER) in China. This NDER is renowned
worldwide as a teaching and scientific research base for studying controlled desertification. It is
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located on the southeast edge of the Tengger Desert, south of the
Yellow River, in the northwest part of China. This region is at an
altitude of 1300–1700m, has an annual average precipitation of
186.2mm, an annual mean temperature of 9.7◦C, and an annual
average wind speed of 2.8m/s with a typical temperate desert
climate.

In desert regions, microbiotic crusts play a significant role
in controlling desertification by providing surface stability.
Microbiotic crusts are important in stabilization of the sandy
surface, soil formation, and in carbon and nitrogen assimilation
(Evans and Johansen, 1999). Microbiotic crusts in Shapotou
NDER are generally categorized into the following three typical
types: Cyanobacteria-dominated crusts (CC), Moss-dominated
crusts (MC), and Lichen-dominated crusts (LC). Samples were
therefore, collected from these three types of crusts and bare
sands. Culture-dependent method was employed to evaluate the
diversity of culturable actinobacteria in Shapotou NDER, and to
explore the potential functional actinobacterial resources from
this extreme environment.

Actinobacterial strains were discovered and identified from
the three types of soil crusts and bare sands samples
from the Shapotou NDER. We found that the members
of the family Geodermatophilaceae were ubiquitous in the
different types of crusts, as well as the bare sands samples.
Based on the physiological characteristics of these diverse
Geodermatophilaceae members, we characterized the influence
of micro-ecological niche environments on the phenotypic
characteristics of these isolates.

Materials and Methods

Sample Collection
A total of 50 samples for isolation of actinobacteria were collected
from four different micro-ecological environments in Shapotou
NDER (latitude 36◦39′-37◦41′N, elevation 104◦25′-105◦40′E).
The detailed information regarding the sample number, type
of sample, and specific collection location of the 50 samples is
displayed in Table 1. All the samples were placed in sterilized
envelopes following collection and taken to the laboratory within
1 week of collection. All samples were immediately processed for
isolation after arriving at the laboratory.

Actinobacteria Isolation and Maintenance
The following four types of media were prepared to isolate the
actionbacterial strains. The main components of the media were
as follows: M1 (g l−1): glucose 10, yeast extract 1, beef extract
1, casein (enzymatic hydrolysate) 2, agar 15; M2 (g l−1): 1/5
strength R2A (Difco); M3 (g l−1): cellobiose 2, yeast extract 5,
CaCO32, K2HPO4 1, MgSO4·7H2O 0.5, agar 15; M4 (g l−1):
sodium propionate 2, NH4NO3 0.1, KCl 0.1, MgSO4·7H2O 0.05,
agar 15. The isolation media were adjusted to pH 7.2–7.5 using
1M NaOH and/or 1M HCl. In addition, betaine (0.125% w/v),
sodium pyruvate (0.125% w/v), compound trace salts solution
(0.1% v/v), and compound vitamins (0.1% w/v) were added to
the media to facilitate the isolation of strains that are difficult to
culture (Yue et al., 2006). Aztreonam (25mg l−1) and potassium
dichromate (50mg l−1) were also added to the media to prevent

or stymie the growth of Gram-stain negative bacteria and fungi
that may be present.

The procedure for actinobacteria isolation was carried out
as described in Zhang et al. (2010). Briefly, 0.3ml of 10−3 soil
suspension was spread on each isolation plate and the plates were
incubated at 28◦C for 3 weeks. Single colonies were transferred
to freshly prepared PYG plates [(g l−1) (peptone 3, yeast extract
5, glycerol 10, glycine betaine 1.25, sodium pyruvate 1.25, agar
15, pH 7.5), supplemented with compound trace salts solution
(FeSO4·7H2O0.2 g,MnCl·2H2O0.1 g, ZnSO4·7H2O0.1 g, 0.1%
v/v) and compound vitamins (vitamin B1 1 mg, vitamin B2 1 mg,
vitamin B3 1 mg, vitamin B6 1 mg, phenylalanine 1 mg, biotin
1 mg, alanine 0.3 mg, 0.1% w/v)] and subsequently purified. The
pure cultures were maintained on PYG slants at 4◦C and also as
glycerol suspensions (20%, v/v) at−80◦C.

Identification of Geodermatophilaceae
Purified isolates were transferred to PYG medium and
International Streptomyces Project (ISP) medium 2 for
observation of the morphological characteristics. Extraction of
genomic DNA and PCR amplification of the 16S rRNA gene were
performed as described in themethods section of Xu et al. (2003).
The purified PCR products were sequenced with an ABI PRISM
automatic sequencer. The sequences obtained were compared
with available 16S rRNA gene sequences from GenBank using
the EzTaxon-e server (http://eztaxon-e.ezbiocloud.net; Kim
et al., 2012). The server was used to determine an approximate
phylogenetic affiliation of each strain. Multiple alignments with
sequences of the related strains and calculations of levels of
sequence similarities were carried out using MEGA version 5
(Tamura et al., 2011). A phylogenetic tree was constructed using
the neighbor-joining method described in Saitou and Nei (1987).
The topology of the phylogenetic tree was evaluated by the
bootstrap resampling method of Felsenstein (1985) with 1000
replicates.

Bioactivity Screening
Antimicrobial activities of the isolated strains were investigated
by using media containing Enterococcus faecalis HH22,
Klebsiella pneumonia ATCC 700603, Mycobacterium smegmatis
CPCC240556, Sporobolomyces salmonicolor SS04, and
Xanthomonas campestris pv. oryzae PXO99A, respectively,
all at a concentration of 108 colony forming units (CFU) per
ml. The anti-viral activity against the human immunodeficiency
virus (HIV) was investigated using the procedure described in
Yang et al. (2013). Results were considered positive if the HIV
inhibition ratio was above 90% and at least 80% of the cells
survived. This assay was performed under conditions where the
sample concentration was 1% (v/v).

Physiological Characteristics Determination
From the 70 newly-isolated Geodermatophilaceae members,
the physiological characteristics were determined for 34
representative strains. Carbohydrate utilization tests were carried
out using API 50 CH test kits (bioMérieux) and Biolog GEN
III MicroPlates (Biolog Inc.) according to the manufacturer’s
instructions. Enzymatic activities were determined using API
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TABLE 1 | Samples collected in the Shapotou region.

Sample number Sample Site information Sample number Sample Site information Sample number Sample Site information

type type type

BCL12001 BS 37◦25′38.72′′N MSY12018 MS 37◦27′38.50′′N BSY12035 BS 37◦27′38.66′′N

104◦35′8.13′′E 104◦59′58.79′′E 104◦59′58.52′′E

1701 mH 1329 mH 1329 mH

MCL12002 MS 37◦25′37.85′′N MSY12019 MS 37◦27′38.36′′N CSY12036 CC 37◦27′38.12′′N

104◦35′8.26′′E 104◦59′59.10′′E 104◦59′58.79′′E

1701 mH 1329 mH 1329 mH

BCL12003 BS 37◦25′38.89′′N MSY12020 MS 37◦27′38.18′′N CSY12037 CC 37◦27′37.81′′N

104◦35′9.01′′E 104◦59′59.54′′E 104◦59′59.47′′E

1701 mH 1329 mH 1329 mH

CCL12004 CC 37◦25′38.65′′N MSY12021 MS 37◦27′38.04′′N CSY12038 CC 37◦27′37.76′′N

104◦35′7.67′′E 104◦59′59.84′′E 104◦59′59.72′′E

1701 mH 1329 mH 1329 mH

MCL12005 MS 37◦25′39.09′′N MSY12022 MS 37◦27′37.86′′N CSY12039 CC 37◦27′37.60′′N

104◦35′7.97′′E 105◦00′0.17′′E 104◦59′59.72′′E

1701 mH 1329 mH 1329 mH

CYW12006 CC 37◦25′30.86′′N MSY12023 MS 37◦27′37.89′′N CSY12040 CC 37◦27′37.40′′N

104◦43′52.00′′E 105◦00′0.51′′E 104◦59′59.86′′E

1698 mH 1329 mH 1329 mH

LYW12007 LC 37◦25′30.76′′N MSY12024 MS 37◦27′38.09′′N CSY12041 CC 37◦27′37.45′′N

104◦43′53.52′′E 105◦00′0.28′′E 105◦00′0.13′′E

1698 mH 1329 mH 1329 mH

LYW12008 LC 37◦25′29.83′′N MSY12025 MS 37◦27′38.29′′N BSY12042 BS 37◦27′37.29′′N

104◦43′53.65′′E 105◦00′0.04′′E 104◦59′59.86′′E

1698 mH 1329 mH 1329 mH

BYW12009 BS 37◦25′30.14′′N BSY12026 BS 37◦27′38.63′′N BSY12043 BS 37◦27′37.32′′N

104◦43′51.19′′E 104◦59′59.68′′E 104◦59′59.59′′E

1698 mH 1329 mH 1329 mH

MYW12010 MS 37◦25′31.17′′N CSY12027 CC 37◦27′38.87′′N CSY12044 CC 37◦27′37.34′′N

104◦43′51.13′′E 104◦59′59.44′′E 104◦59′59.18′′E

1698 mH 1329 mH 1329 mH

BYW12011 BS 37◦25′31.35′′N MSY12028 MS 37◦27′39.09′′N BSY12045 BS 37◦27′37.36′′N

104◦43′52.09′′E 104◦59′59.24′′E 104◦59′58.79′′E

1698 mH 1329 mH 1329 mH

BHW12012 BS 37◦27′3.06′′N MSY12029 MS 37◦27′39.16′′N CSY12046 CC 37◦27′37.55′′N

104◦47′41.19′′E 104◦59′59.63′′E 104◦59′58.97′′E

1619 mH 1329 mH 1329 mH

BHW12013 BS 37◦27′3.45′′N CSY12030 CC 37◦27′39.03′′N CSY12047 CC 37◦27′37.76′′N

104◦47′42.21′′E 104◦59′59.89′′E 104◦59′58.65′′E

1619 mH 1329 mH 1329 mH

MHW12014 MS 37◦27′3.67′′N MSY12031 MS 37◦27′38.83′′N BSY12048 BS 37◦27′37.96′′N

104◦47′40.92′′E 105◦00′0.15′′E 104◦59′58.32′′E

1619 mH 1329 mH 1329 mH

LHW12015 LC 37◦27′4.05′′N BSY12032 BS 37◦27′38.54′′N BSY12049 BS 37◦27′37.90′′N

104◦47′41.63′′E 105◦00′0.61′′E 104◦59′58.03′′E

1619 mH 1329 mH 1329 mH

LHW12016 LC 37◦27′3.24′′N MSY12033 MS 37◦27′38.38′′N CSY12050 CC 37◦27′37.99′′N

104◦47′41.36′′E 105◦00′0.81′′E 104◦59′59.11′′E

1619 mH 1329 mH 1329 mH

MSY12017 MS 37◦27′38.52′′N BSY12034 BS 37◦27′38.17′′N

104◦59′59.89′′E 105◦00′0.06′′E

1329 mH 1329 mH

CC, Cyanobacteria-dominated soil crusts; MC, Moss-dominated soil crusts; LC, Lichen-dominated soil crusts; BS, Bare sand.
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ZYM test kits (bioMérieux) according to the manufacturer’s
instructions. Bacterial growth was tested at 4, 10, 20, 28, 30, 32,
37, 40, and 45◦C on PYG agar medium incubated for 15–30
days. The ability of the strains to grow at different concentrations
of NaCl was tested at the following concentrations: 0, 1, 3,
and 5–20%, w/v, with 5–20% being tested at intervals of 1.0%.
Growth ability in this experiment was determined according to
the protocol described by Wang et al. (2001). The pH tolerance
was assayed in PYG medium at pH values from 5.0 to 11.0 at
intervals of 0.5 pH units. Other physiological and biochemical
tests were performed according to the methods established by
Williams et al. (1983) and Kämpfer et al. (1991).

The sensitivity of the bacteria to 33 different antibiotics
was tested on PYG agar using the following concentrations:
amikacin (1500µg/ml), ampicillin (510µg/ml), aztreonam
(1500µg/ml), cephalothin (1500µg/ml), cefazolin (1500µg/ml),
cefepime (1500µg/ml), cefoperazone (3700µg/ml), cefotaxime
(1500µg/ml), ceftazidime (1500µg/ml), ceftriaxone
(1500µg/ml), cefuroxime (1500µg/ml), chloromycetin
(1500µg/ml), ciprofloxacin (250µg/ml), clarithromycin
(750µg/ml), clindamycin (100µg/ml), erythromycin
(765µg/ml), gentamycin (515µg/ml), gentamycin (6000µg/ml),
levofloxacin (250µg/ml), macrodantin (15,000µg/ml),
minocycline (1500µg/ml), norfloxacin (500µg/ml), ofloxacin
(250µg/ml), oxacillin (50µg/ml), penicillin G (500µg/ml),
piperacillin (5000µg/ml), streptomycin (540µg/ml),
streptomycin (15,000µg/ml), sulfamethoxazole/trimethoprim
(1187.5µg/ml and 62.5µg/ml), sulfanilamide (15,000µg/ml),
tetracycline (1500µg/ml), tobramycin (500µg/ml), and
vancomycin (1500µg/ml).

Numerical comparative analysis of the physiological and
biochemical characteristics tested was performed using the
NTSYSpc package (version 2.2 for Windows; Exeter Software)
(Rohlf, 2000). A binary 0/1 matrix was created based on
the positive or negative respective values of 173 physiological
characteristics, some of which are described above.

Results

Isolation of Actinobacteria
A total of 470 purified isolates were obtained in the present study.
The 16S rRNA gene sequences revealed that 376 actinobacterial
strains were isolated from the 50 samples. These isolates belonged
to 18 families and 29 genera, among which the members of
Geodermatophilaceae were predominant, including 70 strains of
three genera. (Supplementary Figure S1). Among the four types
of isolation media, M2 resulted in the most successful isolation
of actinobacterial strains. Specifically, 35% of the actinobacterial
strains were obtained from M2. While 29, 26, and 10% of the
actinobacterial isolates were purified from M1, M4, and M3,
respectively (Supplementary Figure S2).

The actinobacterial strains, measured in number of
isolates per sample, accounted for 35, 30, 24, and 11%,
from cyanobacteria-dominated soil crusts, lichen-dominated
soil crusts, moss-dominated soil crusts, and bare sands
respectively. At the genus level, the diversity of the isolates
from the lichen-dominated soil crusts was higher (33%) than

cyanobacteria-dominated soil crusts (30.8%) moss-dominated
soil crusts (23.6%), and bare sands (12.6%).

Diversity of Geodermatophilaceae
In total, 70 Geodermatophilaceae strains, including 34
Blastococcus spp., 11 Geodermatophilus spp., and 25
Modestobacter spp. were collected from the 50 samples (Table 2).
In the phylogenetic dendrogram based on 16S rRNA gene
sequences analysis of the isolates and the type stains of 25 validly
described species in the family Geodermatophilaceae, these 70
newly-isolated members of the family Geodermatophilaceae fell
into 23 “species clusters,” with the 16S rRNA gene sequence
similarity below 98.65% to the closest homolog as the threshold
for differentiating two species (Kim et al., 2014) (Figure 1). As
indicated in the phylogenetic dendrogram, six Modestobacter
“species clusters,” two Blastococcus “species clusters” and three
Geodermatophilus “species clusters” may represent hitherto
unrecognized species.

Bioactivities of Newly-isolated Strains
Among the 70 Geodermatophilaceae strains, 3 exhibited activity
against Enterococcus faecalis (4.3%), 3 against Klebsiella
pneumonia (4.3%), 4 against Mycobacterium smegmatis (5.7%),
6 against Sporobolomyces salmonicolor (8.6%), 2 against
Xanthomonas campestris pv. oryzae PXO99A (2.9%), and 6
against HIV (8.6%), respectively. Additionally, 9 of the isolates
exhibited activities in more than one of these screening models.
In total, 19.7% of the newly-isolated Geodermatophilaceae
strains showed activity in at least one of the six antibiotic
screens.

Physiological Characteristics of Newly-isolated
Strains
The strains assayed for physiological characteristics were
similar in their physiological characteristic profiles in the
following capacity: more than 60% of the strains tested could
utilize dextrin, D-fructose, D-fructose-6-PO4, D-galactose, α-
D-glucose, glucuronamide, α-keto-glutaric acid, D-malic acid,
D-maltose, D-mannose, D-trehalose, D-turanose and sucrose
as their sole carbon source, and 91% of the strains tested
assimilated esculin ferric citrate and potassium 5-ketogluconate
and produced acid. In the API ZYM assay, none of the strains
tested was positive for β-fucosidase, N-acetyl-β-glucosaminidase,
or α-mannosidase. Twenty-nine strains showed the enzymatic
activities of acid phosphatase, alkaline phosphatase, esterase
(C4), esterase lipase (C8), leucine arylamidase, lipase (C14), and
valine arylamidase. Most of the tested strains were resistant
to aztreonam (1500µg/ml), sulfanilamide (15,000µg/ml), and
sulfamethoxazole/trimethoprim (1187.5µg/ml and 62.5µg/ml).
The phylogenetic dendrogram based on 173 physiological
characteristics of the tested strains showed that the micro-
ecological environment from which the strains were isolated
was an important factor correlating with the physiological
characteristic profiles of the isolates. The strains exhibited
characteristics specific to the micro-ecological environment
where they were found (Figure 2).
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TABLE 2 | Newly-isolated Geodermatophilaceae members.

Strain Accession The closest homolog 16S rRNA gene similarity Sample Sample Geographical Isolationmedium

number number with the closest number type location

homolog (%)

I12A-02628 KR184357 Blastococcus aggregatus ATCC 25902(T) 98.1 MSY12029 MC G4 M1

I12A-02647 KR184375 Blastococcus aggregatus ATCC 25902(T) 98.3 MYW12010 MC G2 M1

I12A-02683 KR184408 Blastococcus aggregatus ATCC 25902(T) 98.4 CSY12047 CC G4 M3

I12A-02696 KR184418 Blastococcus aggregatus ATCC 25902(T) 98.5 CSY12044 CC G4 M2

I12A-02698 KR184420 Blastococcus aggregatus ATCC 25902(T) 99.4 CSY12040 CC G4 M3

I12A-02663 KR184391 Blastococcus aggregatus ATCC 25902(T) 99.4 MSY12019 MC G4 M3

I12A-02636 KR184365 Blastococcus aggregatus ATCC 25902(T) 99.4 MSY12028 MC G4 M1

I12A-02691 KR184415 Blastococcus aggregatus ATCC 25902(T) 99.5 CSY12030 CC G4 M3

I12A-02992 KR184448 Blastococcus aggregatus ATCC 25902(T) 99.5 CSY12040 CC G4 M1

I12A-02653 KR184381 Blastococcus aggregatus ATCC 25902(T) 99.7 BYW12011 BS G2 M2

I12A-02672 KR184399 Blastococcus aggregatus ATCC 25902(T) 99.7 CSY12038 CC G4 M3

I12A-02689 KR184413 Blastococcus aggregatus ATCC 25902(T) 99.7 CSY12040 CC G4 M3

I12A-02692 KR184416 Blastococcus aggregatus ATCC 25902(T) 99.7 CCL12004 CC G1 M2

I12A-02936 KR184433 Blastococcus aggregatus ATCC 25902(T) 99.7 CSY12040 CC G4 M2

I12A-02941 KR184436 Blastococcus aggregatus ATCC 25902(T) 99.7 CSY12040 CC G4 M1

I12A-02999 KR184469 Blastococcus aggregatus ATCC 25902(T) 99.7 CSY12040 CC G4 M2

I12A-02654 KR184382 Blastococcus aggregatus ATCC 25902(T) 99.7 LHW12015 LC G3 M2

I12A-02660 KR184388 Blastococcus aggregatus ATCC 25902(T) 99.7 MHW12014 MC G3 M2

I12A-02639 KR184368 Blastococcus aggregatus ATCC 25902(T) 99.7 MSY12025 MC G4 M3

I12A-02626 KR184355 Blastococcus aggregatus ATCC 25902(T) 99.7 MSY12029 MC G4 M3

I12A-02666 KR184394 Blastococcus endophyticus YIM 68236(T) 98.9 BHW12013 BS G3 M1

I12A-02971 KR184446 Blastococcus endophyticus YIM 68236(T) 98.9 MCL12005 MC G1 M3

I12A-02953 KR184441 Blastococcus endophyticus YIM 68236(T) 99 CSY12027 CC G4 M2

I12A-02649 KR184377 Blastococcus endophyticus YIM 68236(T) 99.1 BHW12012 BS G3 M2

I12A-02599 KR184501 Blastococcus endophyticus YIM 68236(T) 99.1 MSY12019 MC G4 M1

I11A-00338 KR184318 Blastococcus endophyticus YIM 68236(T) 99.1 MSY12025 MC G4 M2

I12A-02986 KR184467 Blastococcus endophyticus YIM 68236(T) 99.2 BSY12034 BS G4 M1

I12A-02609 KR184338 Blastococcus endophyticus YIM 68236(T) 99.6 LHW12015 LC G3 M2

I12A-02939 KR184434 Blastococcus jejuensis KST3-10(T) 98.6 CSY12040 CC G4 M2

I12A-02700 KR184422 Blastococcus jejuensis KST3-10(T) 98.8 CSY12040 CC G4 M1

I12A-02972 KR184463 Blastococcus jejuensis KST3-10(T) 98.8 CSY12040 CC G4 M2

I12A-02929 KR184429 Blastococcus jejuensis KST3-10(T) 98.8 MSY12029 MC G4 M2

I12A-02646 KR184374 Blastococcus jejuensis KST3-10(T) 98.8 MYW12010 MC G2 M1

I12A-02985 KR259823 Blastococcus saxobsidens BC448(T) 99.7 CSY12040 CC G4 M3

I12A-02622 KR184351 Geodermatophilus amargosae G12(T) 99.8 CSY12050 CC G4 M1

I12A-02606 KR184335 Geodermatophilus normandii CF5/3(T) 99.8 MYW12010 MC G2 M3

I12A-02614 KR184343 Geodermatophilus nigrescens YIM 75980(T) 99.5 CSY12030 CC G4 M4

I12A-02620 KR184349 Geodermatophilus nigrescens YIM 75980(T) 100 CSY12044 CC G4 M2

I12A-02675 KR184402 Geodermatophilus obscurus DSM 43160(T) 97.8 CSY12039 CC G4 M2

I12A-02940 KR184435 Geodermatophilus obscurus DSM 43160(T) 97.8 CSY12040 CC G4 M1

I12A-02924 KR184427 Geodermatophilus obscurus DSM 43160(T) 98 CCL12004 CC G1 M2

I12A-02624 KR184353 Geodermatophilus obscurus DSM 43160(T) 99.1 MSY12029 MC G4 M3

I12A-02694 KR184417 Geodermatophilus ruber CPCC 201356(T) 97.8 CSY12030 CC G4 M3

I12A-02611 KR184340 Geodermatophilus ruber CPCC 201356(T) 97.8 LHW12016 LC G3 M3

I12A-02630 KR184359 Geodermatophilus ruber CPCC 201356(T) 98.4 CSY12050 CC G4 M1

I12A-02982 KR184447 Modestobacter marinus 42H12-1(T) 97.8 CSY12040 CC G4 M1

I11A-00468 KR184323 Modestobacter marinus 42H12-1(T) 97.8 CSY12040 CC G4 M1

I12A-02690 KR184414 Modestobacter marinus 42H12-1(T) 98.1 CSY12030 CC G4 M1

I12A-02938 KR184455 Modestobacter marinus 42H12-1(T) 98.1 CSY12040 CC G4 M1

(Continued)
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TABLE 2 | Continued

Strain Accession The closest homolog 16S rRNA gene similarity Sample Sample Geographical Isolationmedium

number number with the closest number type location

homolog (%)

I12A-02915 KR184423 Modestobacter marinus 42H12-1(T) 98.1 MSY12017 MC G4 M2

I12A-02627 KR184356 Modestobacter marinus 42H12-1(T) 98.2 CSY12027 CC G4 M1

I12A-02662 KR184390 Modestobacter marinus 42H12-1(T) 98.2 MCL12002 MC G1 M3

I12A-02951 KR184459 Modestobacter marinus 42H12-1(T) 98.3 CSY12040 CC G4 M1

I11A-00199 KR184503 Modestobacter marinus 42H12-1(T) 98.3 CSY12050 CC G4 M2

I12A-02657 KR184385 Modestobacter marinus 42H12-1(T) 98.6 MHW12014 MC G3 M1

I12A-02575 KR184483 Modestobacter marinus 42H12-1(T) 98.6 MSY12029 MC G4 M4

I12A-02993 KR184449 Modestobacter marinus 42H12-1(T) 99.4 LYW12008 LC G2 M2

I12A-02588 KR184494 Modestobacter marinus 42H12-1(T) 99.5 BSY12032 BS G4 M4

I12A-02613 KR184342 Modestobacter multiseptatus AA-826(T) 96.1 CSY12040 CC G4 M2

I12A-02616 KR184345 Modestobacter multiseptatus AA-826(T) 96.3 CSY12040 CC G4 M2

I12A-02615 KR184344 Modestobacter multiseptatus AA-826(T) 97 CSY12040 CC G4 M1

I12A-02617 KR184346 Modestobacter multiseptatus AA-826(T) 97.1 CSY12040 CC G4 M2

I12A-02988 KR184468 Modestobacter multiseptatus AA-826(T) 97.2 CCL12004 CC G1 M2

I12A-02577 KR184485 Modestobacter multiseptatus AA-826(T) 97.5 CSY12027 CC G4 M1

I12A-02573 KR184481 Modestobacter multiseptatus AA-826(T) 97.8 BSY12026 BS G4 M2

I12A-02618 KR184347 Modestobacter multiseptatus AA-826(T) 97.8 MSY12029 MC G4 M2

I11A-00478 KR184324 Modestobacter multiseptatus AA-826(T) 98.8 MSY12029 MC G4 M1

I12A-02991 KR259822 Modestobacter roseus KLBMP 1279(T) 100 MSY12025 MC G4 M4

I12A-02955 KR184442 Modestobacter versicolor CP153-2(T) 98.6 MHW12014 MC G3 M1

I12A-02641 KR184370 Modestobacter versicolor CP153-2(T) 98.8 BYW12009 BS G2 M4

CC, Cyanobacteria-dominated soil crusts; MC, Moss-dominated soil crusts; LC, Lichen-dominated soil crusts; BS, Bare sand. G1, 37◦25′37′′−37◦25′40′′N, 104◦35′7′′−104◦35′10′′ E,

∼1700 mH; G2, 37◦25′29′′−37◦25′32′′N, 104◦43′51′′−104◦43′54′′ E, ∼1700 mH; G3, 37◦27′3′′−37◦27′5′′N, 104◦47′40′′−104◦47′43′′ E, ∼1620 mH; G4, 37◦27′37′′−37◦27′40′′N,

104◦59′58′′−105◦0′1′′ E, ∼1330 mH.

Discussion

The family Geodermatophilaceae is a newly-established
actinobacterial taxon. Normand et al. (1996) proposed the
family Geodermatophilaceae in 1996, which was regarded as
an invalid taxon at that time. In 2006, based on the common
characteristics of the genera Geodermatophilus, Blastococcus,
and Modestobacter, Normand (2006) summarized the typical
characteristics of Geodermatophilaceae. Subsequently, the
family Geodermatophilaceae was finally accommodated as
a validly described taxon in the phylum Actinobacteria. To
date, the family Geodermatophilaceae consists of three genera:
Geodermatophilus, Blastococcus, and Modestobacter, that
includes 25 validly described species.

The members of Geodermatophilaceae were found from

various environments, including soil samples (Zhang et al., 2011;
Jin et al., 2013), soil crusts (Reddy et al., 2007), deep sub-

seafloor sediment (Ahrens and Moll, 1970), even stone habitats

(Salazar et al., 2006; Chouaia et al., 2012; Gtari et al., 2012;
Normand et al., 2012), dry-hot valley (Nie et al., 2012), and arid
sand from desert (Montero-Calasanz et al., 2012, 2013a,b,c). In

this study, we foundGeodermatophilaceaemembers ubiquitously
in desert soil samples, and we obtained Geodermatophilaceae
cultures from three different types of desert soil crusts, as well
as from the bare sands. These four environments represent

typical micro-ecological environments in the Shapotou region.
As we have observed, most Geodermatophilaceaemembers could
form tiny motile spores or dormant spores, allowing them to
spread around and survive long periods of desiccation.Moreover,
most of the Geodermatophilaceae members we tested formed
pink to black colonies on different types of agar plates. The
pigmentation, cell wall composition and a high G+C content
may increase protection of these strains from UV damage in
the desert environments, where the UV transparency is often
high.

The abundance and ubiquitous distribution of the
Geodermatophilaceae in desert environments exhibited in
relation to their resident microbiota, and in turn, the micro-
ecological environments endowed the microorganisms with
some specific metabolic characteristics. We found that the
abundance and diversity of the Geodermatophilaceae in lichen-

and cyanobacteria-dominated soil crusts were much higher than
those of the bacteria found in moss-dominated soil crusts or bare
sands. In the desert, the moisture, organic, and nitrogen content
of the soil were the vital factors in determining physiological
characteristics of the organisms. The lichen- and cyanobacteria-
dominated soil crusts may contain a much higher proportion
of clay and humic colloidal material, which can markedly
affect the physiological activities of the strains from different
micro-ecological environments.
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Modestobacter sp. I12A-02993(KR184449)
Modestobacter versicolor CP153-2T (AJ871304)

Modestobacter marinus 42H12-1T (EU181225)
Modestobacter sp. I12A-02991(KR259822)
Modestobacter roseus KLBMP1279T (JQ819258)

Modestobacter sp. I12A-02662(KR184390)
Modestobacter sp. I12A-02575(KR184483)
Modestobacter multiseptatus AA-826T (Y18646)

Modestobacter sp. I11A-00478(KR184324)
Modestobacter sp. I12A-02627(KR184356)
Modestobacter sp. I12A-02657(KR184385)
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The assayed physiological characteristics of the
Geodermatophilaceae also showed a probable relationship
with the resident microbes of the respective micro-ecological
environments. In the dendrogram based on 173 physiological
characteristics of the 34 tested Geodermatophilaceae strains,
strains from the same micro-ecological environment were
more likely to gather closely. The clusters shown in the
phylogenetic dendrogram based on 16S rRNA gene sequences
were interrupted in the dendrogram based on the physiological
characteristics profile, which indicated that the micro-ecological
environments where the strains were isolated significantly
influenced the physiological characteristic profiles of the isolates
(Figure 2).

Compared to our previous study and other related studies
in the literature, we discovered many interesting diverse
bioactivities for rare actinobactieria, which may be caused
by characteristics of the extreme environments where these
strains were found. Isolation and analysis of the bioactive
compounds underlying these bioactivities will provide more
detailed information on the mechanism of these activities. In
this context, the members of the family Geodermatophilaceae are
found to be the biological pioneers in extreme environments,
especially in extreme arid environments. Further study on the
cultures in this family will be advantageous to those seeking
to understand mechanisms of environmental stress resistance,
desertification control, and environmental remediation. In

addition, studying these organisms will aid in the discovery of
novel metabolic compounds.
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Marine sponges often harbor dense and diverse microbial communities including

actinobacteria. To date no comprehensive investigation has been performed on

the culturable diversity of the actinomycetes associated with South China Sea

sponges. Structurally novel aromatic polyketides were recently discovered from

marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that

sponge-associated actinomycetes can serve as a new source of aromatic polyketides.

In this study, a total of 77 actinomycete strains were isolated from 15 South China

Sea sponge species. Phylogenetic characterization of the isolates based on 16S rRNA

gene sequencing supported their assignment to 12 families and 20 genera, among

which three rare genera (Marihabitans, Polymorphospora, and Streptomonospora) were

isolated from marine sponges for the first time. Subsequently, β-ketoacyl synthase

(KSα) gene was used as marker for evaluating the potential of the actinomycete

strains to produce aromatic polyketides. As a result, KSα gene was detected in 35

isolates related to seven genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis,

Saccharopolyspora, Salinispora, and Streptomyces). Finally, 10 strains were selected for

small-scale fermentation, and one angucycline compound was detected from the culture

extract of Streptomyces anulatus strain S71. This study advanced our knowledge of the

sponge-associated actinomycetes regarding their diversity and potential in producing

aromatic polyketides.

Keywords: marine sponges, actinomycetes, diversity, aromatic polyketides, KSα gene

Introduction

As one of the oldest multicellular animals (Love et al., 2009), marine sponges (phylum Porifera)
often harbor dense and diverse microbial communities, and the sponge-microbe associations
represent one of the most complex symbioses on earth (Taylor et al., 2007). Actinobacteria are
commonly found in association with sponges (Simister et al., 2012). In the past decade, extensive
efforts have been made in isolating actinomycetes from sponges (Zhang et al., 2006; Abdelmohsen
et al., 2010, 2014b; Vicente et al., 2013). To date, at least 60 actinobacterial genera have been set apart
from marine sponges (Abdelmohsen et al., 2014a). The investigations on the culturable diversity
of sponge-associated actinomycetes not only advanced our knowledge of those actinomycetes in
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special habitats but also provided new opportunities for natural
product search and discovery (Abdelmohsen et al., 2014a). In
China oceans, the largest group of sponges inhabits the South
China Sea (Zhang et al., 2003). To our knowledge, in previous
studies 15 actinobacterial genera have been isolated from South
China Sea sponges (Jiang et al., 2007, 2008; Sun et al., 2010; Li
et al., 2011; Xi et al., 2012). Nevertheless, previous cultivation
attempts were set to a few South China Sea sponge species
out of thousands of South China Sea sponges, which probably
underestimated the culturable diversity of sponge-associated
actinomycetes. Thus, collecting as many sponges as possible from
the South China Sea is significant to comprehensively explore
their associated actinomycetes.

Previous surveys have demonstrated that sponges are
chemically defended from predation and marine pathogens
either by the compounds they produce or those produced by
symbionts or associated microorganisms (Puglisi et al., 2014).
Actinomycetes are known to produce aromatic polyketides by
type II polyketide pathway (Schneider, 2005). Actinomycete-
derived aromatic polyketide compounds have exhibited a wide
range of bioactivities and clinical importance (Hertweck et al.,
2007). Notably, a few anthracyclines and tetracyclines have
emerged as clinical drugs for decades, such as doxorubicin
(antineoplastic) and tetracycline (antibiotic). Furthermore, many
of these compounds are promising drug candidates (Hertweck
et al., 2007). Therefore, sponge-associated actinomycetes
may provide chemical defense for their hosts by producing
aromatic polyketides. Recently, in exploring new sources of
aromatic polyketides the sponge-associated actinomycetes
warranted particular attention. Particularly, a few structurally
novel aromatic polyketides were discovered from sponge-
associated actinomycetes such as Saccharopolyspora and
Streptomyces strains (Perez et al., 2009; Motohashi et al., 2010;
Schneemann et al., 2010a). In view of the remarkable diversity
of sponge-associated actinomycetes, the producers of aromatic
polyketides are not merely limited to Saccharopolyspora
and Streptomyces. Thus, we opine that the potential of
sponge-associated actinomycetes in producing aromatic
polyketides is underexplored and it is worth investigating in
depth.

Over the past decade, sequence-guided genetic screening
strategy has been used in the discovery of certain compound
classes from actinomycetes, such as halometabolites (Hornung
et al., 2007), type I polyketides (Gontang et al., 2010),
and phenazines (Karuppiah et al., 2015), indicating that a
small amount of sequence from appropriate genetic loci
can be used to predict secondary-metabolite production
in cases where the sequences have high identity level to
experimentally characterized biosynthetic pathways. The gene-
compound route has become a feasible approach for natural
product search and discovery. Therefore, genetic screening
strategy together with small-scale fermentation and chemical
analyses was used in this study to specifically search for aromatic
polyketides.

In this work, we aimed to investigate the culturable diversity
of sponge-associated actinomycetes from the South China
Sea and explore the potential use of the sponge-associated

actinomycetes as a novel source of aromatic polyketides. As a
result, we cultivated as many as 20 actinomycete genera, screened
seven genera as potential producers of aromatic polyketides
and identified one angucycline compound from a Streptomyces
strain. This study advanced our knowledge of South China Sea
sponge-associated actinomycetes in respect to their diversity and
metabolic potential of aromatic polyketides.

Materials and Methods

Sample Collection
A total of 15 sponge species were collected by scuba diving
from the South China Sea, including six at a depth of 5–
10m from coastal waters, respectively Sanya Bay (18◦13′N;
109◦29′E), Xinying Harbor (19◦90′N; 109◦52′E), and Xincun
Harbor (18◦40′N; 110◦00′E) and nine at a depth of 10–20m from
a remote island, Yongxing Island (16◦50′N; 112◦20′E) (Table 1).
The sponges were identified based on their morphology or
18S rRNA gene/internal transcribed spacer (ITS) sequences
(Table 1). The samples were placed into plastic bags and
transported to the laboratory using ice box, then stored at
z−20◦C until analysis.

Isolation of Actinomycetes
Five media were used for the isolation of sponge-associated
actinomycetes (Table S1), four of which were chosen based on
previous studies on the culturable diversity of marine sediment-
derived and sponge-associated actinomycetes (Mincer et al.,
2002; Zhang et al., 2006; Abdelmohsen et al., 2010) and one
was designed in this study. All media were supplemented
with K2Cr2O7 (50µgml−1) to inhibit fungi and nalidixic
acid (15µgml−1) to inhibit Gram-negative bacteria. Sponge
samples were rinsed with sterile artificial seawater (26.52 g
NaCl, 5.228 g MgCl26H2O, 3.305 g MgSO4, 1.141 g CaCl2,
0.725 g KCl, 0.202 g NaHCO3, 0.083 g NaBr, 1 L distilled
water) to remove the microbes loosely attached on the surface.
Subsequently, a few tissue cubes were excised from different
sections (including cortex and endosome) of the sponge samples.
They were cut into pieces and aseptically ground using sterilized
pestles and mortars. Actinomycetes were isolated by means of
serial dilution and plating techniques. The inoculated plates
were incubated at 28◦C for 3–6 weeks. The colonies bearing
distinct morphological characteristics were picked up and
transferred onto freshly prepared media until pure cultures were
obtained.

Genomic DNA Extraction
To prepare cultures for the extraction of genomic DNA from
the isolates, a single colony was transferred to a 5ml microtube
with 1ml of liquid medium from which the isolate was originally
picked up. The cultures were incubated for 3–5 days at 28◦C
with shaking at 180 rpm. Bacterial cells from these cultures were
collected by centrifugation and genomic DNA was extracted as
described by Sun et al. (2010).

PCR Amplification and Sequencing of 16S rDNA
The Actinobacteria-specific primers S-C-Act-0235-a-S-20 (5′-
CGCGGCCTATCAGCTTGTTG-3′) and S-C-Act-0878-a-A-19
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TABLE 1 | Sponge samples collected from the South China Sea and their actinomycete isolates.

Sponge species Identification method (NCBI accession no.) Geographical location Collection month No. of isolates No. of genera

Haliclona sp. morphology Sanya Bay 2009.07 11 6

Trachycladus laevispirulifer morphology Xinying Harbor 2010.06 3 3

Amphimedon queenslandica ITS sequence (KC762728) Xincun Harbor 2011.05 6 3

Haliclona mediterranea 18S rRNA gene sequence (KC762723) Xincun Harbor 2011.05 3 2

Lamellodysidea sp. ITS sequence (KC762730) Xincun Harbor 2011.05 8 5

Cliona sp. ITS sequence (KC762729) Xincun Harbor 2011.05 5 2

Phyllospongia foliascens morphology Yongxing Island 2011.05 1 1

Agelas clathrodes 18S rRNA gene sequence (KC762715) Yongxing Island 2011.05 2 2

Ircinia felix 18S rRNA gene sequence (KC762716) Yongxing Island 2011.05 2 2

Hippospongia lachne 18S rRNA gene sequence (KC762719) Yongxing Island 2011.05 2 1

Cinachyrella sp. 18S rRNA gene sequence (KC762720) Yongxing Island 2011.05 5 4

Aplysina fistularis 18S rRNA gene sequence (KC762723) Yongxing Island 2011.05 8 2

Arenosclera heroni 18S rRNA gene sequence (KJ675584) Yongxing Island 2013.07 5 4

Plakortis simplex morphology Yongxing Island 2013.07 12 4

Phakellia fusca morphology Yongxing Island 2013.07 4 3

(5′-CCGTACTCCCCAGGCGGGG-3′) were used for the
amplification of actinobacterial 16S rRNA gene fragment
(Stach et al., 2003). Cycling conditions were as follows: initial
denaturation at 95◦C for 4min, 30 cycles of 95◦C for 45 s, 68◦C
for 45 s, and 72◦C for 1min, and a final extension of 5min at
72◦C. Subsequently, the universal bacterial primers 27F (5′-GAG
TTTGATCCTGGCTCAG-3′) and 1500R (5′-AGAAAGGAG
GTGATCCAGCC-3′) were used to amplify nearly complete 16S
rRNA gene of the actinomycete candidates (Woese et al., 1983).
Cycling conditions were as follows: initial denaturation at 95◦C
for 3min, 30 cycles of 94◦C for 30 s, 54◦C for 40 s, and 72◦C for
2min, and a final extension of 10min at 72◦C. The PCR products
were purified and sequenced on the ABI 3730 automated
sequencer at Majorbio Bio-Pharm Technology Co. Ltd.
(Shanghai).

PCR Amplification, Cloning, and Sequencing of
KS Gene
To screen aromatic polyketide producers from all the isolates, the
degenerate primers IIPF6 (5′-TSGCSTGCTTCGAYGCSATC-3′)
and IIPR6 (5′-TGGAANCCGCCGAABCCGCT-3′) were used
to amplify type II polyketide KSα gene fragment (Metsä-Ketelä
et al., 1999). This primer pair was reported to be favorable
for the majority of known KSα gene and previously used in
the investigation on marine sponge-associated actinobacteria
(Schneemann et al., 2010b). Cycling conditions were as follows:
initial denaturation at 95◦C for 5min, 30 cycles of 95◦C for
35 s, 55◦C for 40 s, and 72◦C for 1min, and a final extension
of 10min at 72◦C. The amplified products of approximately
600 bp were recovered and purified using Agarose Gel DNA
Purification Kit (Takara, Dalian). Purified PCR products were
cloned into pMD18-T vector (Takara, Dalian) and transformed
into CaCl2-competent Escherichia coli DH5α. The positive
recombinants were screened on X-Gal-IPTG-ampicillin plates.
Respectively five positive clones were randomly selected from
each library and sequenced using M13F primer on the

ABI 3730 automated sequencer at Sangon Biotech Co. Ltd.
(Shanghai).

Sequence Analysis
All the sequence data were proofread using Chromas, version
1.62 (Technelysium). The 16S rRNA gene sequences were
compared with those from the type strains available in NCBI
(http://www.ncbi.nlm.nih.gov/) using the Basic Local Alignment
Search Tool (BLAST) (Altschul et al., 1990). For KSα gene
analysis, the nucleotide sequences were translated to amino acid
sequences using the web tool ORF Finder in NCBI (http://
www.ncbi.nlm.nih.gov/projects/gorf/). The deduced amino acid
sequences were compared with the KSα sequences in PKMiner
database (http://www.webcitation.org/6C9a5WoFY) using the
type II PKS domain classifiers (Kim and Yi, 2012). The top
matches were derived from the KSα sequences associated with
42 experimentally characterized pathways. For phylogenetic
analysis, multiple sequence alignment was performed using
CLUSTALX, version 1.81. Phylogenetic tree was constructed
using Mega 4.1 (Tamura et al., 2007). The consistency of the trees
was verified by bootstrapping (1000 replicates) for parsimony.

Small-scale Fermentation
To test the production of aromatic polyketides, small-scale
fermentation studies were performed targeting 10 representative
strains, which were selected based on KSα sequence analyses.
They were grown in 250ml Erlenmeyer flasks each containing
100ml of medium GYM4 (10 g glucose, 4 g yeast extract, 4 g malt
extract, 1 liter water, pH 7.2) for 5 days at 28◦C with shaking (at
120 rpm) in the dark. Each culture was inoculated separately with
a 1 cm2 piece from a culture grown on a GYM4 agar plate for 2
weeks at 28◦C in the dark.

Chemical Analysis of Culture Extracts
After mycelium was removed by vacuum filtration, the
fermentation broth was extracted with 100ml of acetic ether

Frontiers in Microbiology | www.frontiersin.org October 2015 | Volume 6 | Article 1048 | 84

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/projects/gorf/
http://www.ncbi.nlm.nih.gov/projects/gorf/
http://www.webcitation.org/6C9a5WoFY
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Sun et al. Actinomycetes associated with sponges

(EtOAc) and taken to dryness by rotary evaporation. EtOAc
extract was dissolved in methanol for HPLC-DAD analysis on an
Agilent 1200 series (Agilent Technologies, USA) with an Diode
Array Detector (DAD) and a C18 RP-column (Eclipse XDB-
C18 5µm, 4.6 × 150mm), with a gradient from 5% acetonitrile
in water to 100% acetonitrile over 20min. Ultraviolet-visible
(UV-vis) absorption spectra ranging from 200 to 600 nm of the
components in each crude extract were examined. Compounds
owning characteristic UV-vis absorption of aromatic polyketides
were searched and designated as putative candidates. Prior to
LC/MS analysis, the compound candidates were preliminarily
separated from the crude extracts by semi-preparative HPLC
with methanol gradient elution. This procedure was conducted
on an Agilent 1200 series (Agilent Technologies, USA) with
a variable wavelength detector (VWD) and a C18 RP-column
(Unitary C18 5µm, 10× 250mm).

Collected fractions were dried in vacuo and dissolved in
methanol for LC/MS analysis. The fractions were detected on
an ultra-performance liquid chromatography and quadrupole
time of flight mass spectroscopy (UPLC-QTOF-MS Premier,
Waters Corporation, USA). The analytes were separated
on a C18 RP-column (ACQUITY BEH-C18 1.7µm, 2.1 ×

100mm, Waters Co.) with methanol gradient elution. High-
resolution mass spectrum (HR-MS) of target ion was acquired
in positive electro-spray ionization mass spectrum (ESI-MS)
mode.

MS data was analyzed using the software MassLynx. The
major ion peaks with a mass range of 300–1000 Da were
preferentially selected. Corresponding to each peak ([M+H]+ or
[M+Na]+), a few suggested molecular formula were obtained.
After those not matching aromatic polyketide compounds were
excluded, the remaining ones were used as queries (subtracting
one H or Na) to match reported aromatic polyketides
in SciFinder database (https://scifinder.cas.org/scifinder/). For
those retrieved compounds, their UV-vis absorption spectra were
compared with our target substance.

Nucleotide Sequence Accession Numbers
The sequences obtained in this study were deposited to GenBank
with the 16S rRNA gene sequences under the accession numbers:
JX007945–JX008000, KJ094386–KJ094406 and the KSα gene
sequences under the numbers: JX008002–JX008015, KJ094407–
KJ094410.

Results

Culture-dependent Diversity of
Sponge-associated Actinomycetes
In this study, a total of 77 isolates were identified as
actinomycetes, which were assigned to 12 families and 20
genera (Table 2). Among the 20 genera, Micromonospora,
Mycobacterium, Nocardia, Nocardiopsis, Pseudonocardia,
Rhodococcus, Salinispora, and Streptomyces were previously
isolated from South China Sea sponges (Jiang et al., 2007, 2008;
Sun et al., 2010; Li et al., 2011; Xi et al., 2012), the other 12
genera marked in Table 2 were cultivated from South China Sea
sponges first time. Based on the latest reviews (Abdelmohsen

et al., 2014a; Valliappan et al., 2014) and our retrievals of
sponge-derived 16S rRNA gene sequences in GenBank, we found
this was the first report of three rare genera, i.e., Marihabitans,
Polymorphospora, and Streptomonospora, isolated from marine
sponges.

The highest number of the isolates was affiliated with
Salinispora, followed by Streptomyces, Kocuria, Serinicoccus,
Micromonospora, Nocardiopsis, Polymorphospora, and other
genera (Figure 1A). The number of the isolates differed
considerably among different marine sponges. Plakortis simplex
yielded the highest number of isolates, followed by Haliclona
sp., Lamellodysidea sp., Aplysina fistularis, Amphimedon
queenslandica, and other sponges (Table 1). Similarly, the
actinobacterial diversity at the genus level also varied as sponge
species. The highest diversity was observed in Haliclona sp.
with six genera cultivated, followed by Lamellodysidea sp. and
other sponges (Table 1). The 77 isolates were assigned to 40
operational taxonomic units (OTUs) based on 99.5% sequence
identity, representing 40 species. The most diverse group was
Streptomyces with 14 OTUs obtained, followed by Kocuria and
other genera (Figure 1B).

On the whole, Streptomyces and Salinispora were most
common groups in the South China Sea sponges. The
former was isolated from nine sponges and the latter from
six sponges. Streptomyces was widespread in the sponges
from distinct geographical locations whereas Salinispora was
mainly distributed in the open sea sponges. Additionally,
Kocuria was derived from four sponges inhabiting the
same site, Xincun Harbor, indicating its distribution
specificity.

Structure Diversity Evaluation of Putative
Aromatic Polyketide Products
PCR fragments of KSα gene were amplified from 35 out of 77
isolates (Table 2). The 35 isolates were assigned to 17 OTUs. In
total, 17 PCR fragments from 17OTUswere selected for KSα gene
cloning and sequencing, and 18 unique sequences were obtained.
Based on homology comparison (Table 3) and phylogenetic
analysis (Figure 2), high structural diversity of putative aromatic
polyketide products was observed, concerning different subtypes.
Homology-based searches on the amino acid level indicated that
the putative KSα sequences, respectively displayed 85.2–100%
maximum similarity to those KSs associated with experimentally
characterized biosynthetic pathways (Table 3). By comparing
those known KSα sequences in PKMiner database, it was
observed that most sequences grouped in the same subtype
share ≥93.6% amino acid similarity with each other. Thus,
this similarity was used as sequence clustering criterion in this
work. Of the obtained 18 KSα sequences, eight shared ≥93.6%
similarity with their top matches, which were derived from six
Streptomyces strains, one Micromonospora, and one Nocardia
strain. The matches for these eight sequences were to KSs
responsible for the biosynthesis of three subgroups, respectively
benzoisochromanequinones, angucyclines, and pentangular
polyphenols. Specifically, one strain (S97) corresponded to
benzoisochromanequinone subtype, three strains (S41, S71,
and S107) were linked with angucycline subclass and four
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TABLE 2 | Molecular identification of the actinomycetes from South China Sea sponges based on 16S rRNA gene and KSα gene detection.

Family Genus OUT no. Strain (NCBI accession no.) Nearest type strain (NCBI accession no.) Identity (%) PKS II

Brevibacteriaceae Brevibacterium* 1 S49 (JX007974) B. linens (NR_026166) 99.3 −

Dermabacteraceae Brachybacterium* 2 S26 (JX007960) B. squillarum (GQ339911) 99.5 −

Intrasporangiaceae Marihabitans* 3 S53 (JX007977) M. asiaticum (NR_041559) 100 −

Serinicoccus* 4 S11 (JX007953) S. chungangensis (HM068886) 98.7 −

4 S24 (JX007958) S. chungangensis (HM068886) 98.7 −

4 S38 (JX007966) S. chungangensis (HM068886) 99.0 −

4 S69 (JX007986) S. chungangensis (HM068886) 98.6 −

Microbacteriaceae Microbacterium* 5 S15 (JX007956) M. chocolatum (AM181503) 99.8 −

5 S25 (JX007959) M. chocolatum (AM181503) 99.9 −

Micrococcaceae Arthrobacter* 6 S70 (JX007987) A. protophormiae (NR_026195) 99.8 −

Kocuria* 7 S12# (JX007954) K. gwangalliensis (EU286964) 96.8 +

8 S14 (JX007955) K. turfanensis (NR_043899) 98.8 −

8 S42 (JX007970) K. turfanensis (NR_043899) 98.6 −

8 S50 (JX007975) K. turfanensis (NR_043899) 98.7 −

8 S61 (JX007984) K. turfanensis (NR_043899) 98.7 −

9 S43 (JX007971) K. flava (NR_044308) 99.7 −

10 S45 (JX007972) K. palustris (NR_026451) 100 −

10 S62 (JX007985) K. palustris (NR_026451) 99.9 −

11 S48 (JX007973) K. marina (NR_025723) 99.7 −

Micrococcus* 12 S23 (JX007957) M. endophyticus (NR_044365) 99.8 −

Micromonosporaceae Micromonospora 13 S60 (JX007983) M. aurantiaca (NR_074415) 99.6 −

13 S80 (JX007997) M. aurantiaca (NR_074415) 99.5 −

13 S97# (KJ094396) M. aurantiaca (NR_074415) 99.4 +

Polymorphospora* 14 S07 (JX007949) Polymorphospora sp. (NR_044592) 98.7 −

14 S09 (JX007951) Polymorphospora sp. (NR_044592) 98.8 −

15 S85 (KJ094387) P. rubra(NR_041314) 100 −

Salinispora 16 S06 (JX007948) S. arenicola (NR_074612) 99.9 +

16 S08 (JX007950) S. arenicola (NR_074612) 100 +

16 S32 (JX007962) S. arenicola (NR_074612) 99.8 +

16 S33# (JX007963) S. arenicola (NR_074612) 99.7 +

16 S55 (JX007979) S. arenicola (NR_074612) 99.9 +

16 S56 (JX007980) S. arenicola (NR_074612) 99.9 +

16 S58 (JX007981) S. arenicola (NR_074612) 99.9 +

16 S83 (JX008000) S. arenicola (NR_074612) 100 +

16 S84 (KJ094386) S. arenicola (NR_074612) 100 +

16 S87 (KJ094389) S. arenicola (NR_074612) 99.9 +

16 S93 (KJ094392) S. arenicola (NR_074612) 99.8 +

16 S94 (KJ094393) S. arenicola (NR_074612) 100 +

16 S99 (KJ094398) S. arenicola (NR_074612) 99.9 +

16 S100 (KJ094399) S. arenicola (NR_074612) 100 +

16 S102 (KJ094401) S. arenicola (NR_074612) 99.9 +

16 S108 (KJ094405) S. arenicola (NR_074612) 100 +

17 S34# (JX007964) S. tropica (NR_074502) 99.5 +

17 S54 (JX007978) S. tropica (NR_074502) 99.5 −

17 S96 (KJ094395) S. tropica (NR_074502) 99.5 −

17 S98 (KJ094397) S. tropica (NR_074502) 99.4 −

17 S101 (KJ094400) S. tropica (NR_074502) 99.5 −

17 S103 (KJ094402) S. tropica (NR_074502) 99.4 −

(Continued)
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TABLE 2 | Continued

Family Genus OUT no. Strain (NCBI accession no.) Nearest type strain (NCBI accession no.) Identity (%) PKS II

Mycobacteriaceae Mycobacterium 18 S01 (JX007945) M. poriferae (NR_025235) 98.9 −

18 S02 (JX007946) M. poriferae (NR_025235) 98.9 −

Nocardiaceae Nocardia 19 S107# (KJ094404) N. araoensis (NR_028652) 98.6 +

Rhodococcus 20 S106 (KJ094403) R. opacus(NR_074632) 98.2 −

20 S109 (KJ094406) R. opacus(NR_074632) 98.0 −

Nocardiopsaceae Nocardiopsis 21 S77 (JX007994) N. alba (NR_026340) 100 +

21 S78# (JX007995) N. alba (NR_026340) 99.9 +

22 S92# (KJ094391) N. halotolerans (NR_025422) 99.1 +

Streptomonospora* 23 S05 (JX007947) S. halophila (NR_044207) 97.7 −

Pseudonocardiaceae Pseudonocardia 24 S76 (JX007993) P. carboxydivorans (NR_044092) 99.2 −

Saccharopolyspora* 25 S36# (JX007965) S. gloriosae (EU005371) 99.2 +

25 S79 (JX007996) S. gloriosae (EU005371) 99.4 +

Streptomycetaceae Streptomyces 26 S10# (JX007952) S. parvulus (NR_041119) 99.8 +

27 S31# (JX007961) S. carnosus (AB184263) 100 +

28 S39# (JX007967) S. djakartensis (NR_041178) 99.5 +

29 S40# (JX007968) S. luteosporeus (AB184607) 97.6 +

30 S41# (JX007969) S. rochei (NR_041091) 100 +

31 S52 (JX007976) S. flavofuscus (DQ026648) 98.2 −

32 S59 (JX007982) S. resistomycificus (NR_042100) 99.8 −

33 S71# (JX007988) S. anulatus (NR_041062) 99.8 +

34 S72# (JX007989) S. xiamenensis (NR_044035) 99.4 +

35 S73 (JX007990) S. sclerotialus (NR_025620) 98.3 −

35 S74 (JX007991) S. sclerotialus (NR_025620) 98.2 −

36 S75 (JX007992) S. albidoflavus (NR_041095) 99.3 −

37 S81# (JX007998) S. diastaticus (NR_043486) 99.6 +

38 S82 (JX007999) S. marinus (AB473554) 97.8 −

39 S86# (KJ094388) S. griseorubens (NR_041066) 100 +

39 S95 (KJ094394) S. griseorubens (NR_041066) 100 +

Streptosporangiaceae Nonomuraea* 40 S88 (KJ094390) N. ferruginea (NR_025996) 98.7 −

The 12 genera marked with *were cultivated from South China Sea sponges for the first time and the 17 strains marked with # were selected for KSα gene analysis.

strains (S31, S40, S81, and S86) with spore pigment group.
In addition, 10 sequences displayed < 93.6% similarity with
their top matches, whose products could not be correlated
with specific subtypes. Subsequent phylogenetic analysis
also supported our clustering patterns based on maximum
similarity.

Small-scale Fermentation and Aromatic
Polyketide Discovery
Based on KSα sequence analysis, 10 strains were selected
for small-scale fermentation (Table 3), among which one
strain (Micromonospora aurantiaca S97) was used to test
the production of putative benzoisochromanequinone, three
strains (Streptomyces rochei S41, Streptomyces anulatus S71 and
Nocardia araoensis S107) for putative angucyclines and other
six strains (Streptomyces parvulus S10, Saccharopolyspora gloriosa
S36, Streptomyces djakartensis S39, Streptomyces xiamenensis S72,
Nocardiopsis alba S78, and Nocardiopsis halotolerans S92) for

putative other subtypes. Expected products were preliminarily
distinguished from the metabolite profiles according to their
UV/vis absorption characteristics. Finally, one major metabolite
present in the extract of Streptomyces anulatus strain S71
(Figure 3A) showed its UV-vis absorption (Figure 4) similar
to that of typical angucyclines such as landomycin, which
was absent in the control (Figure 3B). Subsequently, by
using LC-MS, both HR ESI-MS ([M+H]+m/z = 467.1326)
(Figure 5) and UV data (λmax: 252, 434 nm) (Figure 4) of
the target substance almost corresponded to the data reported
for one angucycline amycomycin B (HRESIMS: m/z 489.1154
[M+Na]+; UV λmax: 249, 427 nm) (Figure 6) (Guo et al., 2012),
indicating that the detected compound was either amycomycin
B itself or its analog. This finding indicated that S. anulatus
S71 produced angucycline compound under the lab culture
condition. Unfortunately, we did not detect any expected
aromatic polyketide from other strains under lab fermentation
condition.
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FIGURE 1 | Number of isolates (A) and OTUs per actinobacterial genus (B).
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TABLE 3 | KSα amino acid sequences.

Strain Nearest type strain No. of unique

clones

NCBI accession

no.

Top BLAST matcha(source organism) BLAST match

pathway producta

(chemotypeb)

Similarity (%)

S12 Kocuria gwangalliensis 1 JX008015

AFO70129

ketosynthase(Streptomyces cyaneus) Cur pigment (Pen) 85.2

S97* Micromonospora aurantiaca 1 KJ094408

AHN91973

ketosynthase(Streptomyces violaceoruber) Granaticin (Ben) 95.6

S107* Nocardia araoensis 1 KJ094407

AHN91972

ketosynthase(Streptomyces sp.) Unknown (Ang) 95.1

S78* Nocardiopsis alba 2 JX008012

AFO70126

ketosynthase(Streptomyces halstedii) sch pigment (Pen) 88.2

JX008013

AFO70127

ketosynthase(Streptomyces sp.) Benastatin (Pen) 89.2

S92* Nocardiopsis halotolerans 1 KJ094409

AHN91974

ketosynthase(Streptomyces tendae) Lysolipin (Pen) 88.7

S36* Saccharopolyspora gloriosa 1 JX008003

AFO70117

ketosynthase(Streptomyces antibioticus) Simocyclinone (Ang) 93.1

S33 Salinispora arenicola 1 JX008009

AFO70123

ketosynthase(Streptomyces griseus) fredericamycin (Pen) 91.1

S34 Salinispora tropica 1 JX008010

AFO70124

ketosynthase(Streptomyces griseus) fredericamycin (Pen) 90.1

S10* Streptomyces parvulus 1 JX008008

AFO70122

ketosynthase(Streptomyces antibioticus) simocyclinone (Ang) 92.1

S31 Streptomyces carnosus 1 JX008007

AFO70121

ketosynthase(Streptomyces coelicolor) whiE pigment (Pen) 100

S39* Streptomyces djakartensis 1 JX008002

AFO70116

ketosynthase(Streptomyces sp.) sch 47554 (Ang) 93.1

S40 Streptomyces luteosporeus 1 JX008004

AFO70118

ketosynthase(Streptomyces halstedii) sch pigment (Pen) 96.6

S41* Streptomyces rochei 1 JX008005

AFO70119

ketosynthase(Streptomyces ambofaciens) Unknown (Ang) 99.0

S71* Streptomyces anulatus 1 JX008006

AFO70120

ketosynthase(Streptomyces sp.) sch 47554 (Ang) 94.6

S72* Streptomyces xiamenensis 1 JX008011

AFO70125

ketosynthase(Actinomadura hibisca) Pradimicin (Ant) 88.2

S81 Streptomyces diastaticus 1 JX008014

AFO70128

ketosynthase(Streptomyces coelicolor) whiE pigment (Pen) 98.0

S86 Streptomyces griseorubens 1 KJ094410

AHN91975

ketosynthase(Streptomyces cyaneus) Cur pigment (Pen) 97.0

aTop BLAST matches are to the KSα domains associated with experimentally characterized biosynthetic pathways of aromatic polyketides.
bPen-Pentangular polyphenols, Ben-Benzoisochromanequinones, Ang-Angucyclines, Ant-Anthracyclines.

The 10 strains marked with *were selected for small-scale fermentation.

Discussion

In this study, comprehensive investigation of 15 sponge species
and combination of five culture media led to the isolation of
20 actinobacterial genera. The isolation of indigenous marine
genera (Marihabitans, Salinispora, and Serinicoccus) showed the
marine characteristic of the actinomycetes from the South China
Sea sponges. Actinobacteria are widely dispersed throughout
the marine environments, including water column, marine
organisms, marine snow, and sediments (Ward and Bora,

2006). Here, we respectively compare the culturable diversity
of the South China Sea sponge-associated actinomycetes

with that of marine sediment-derived, coral-associated, and

seawater-derived actinomycetes (Table 4). It is apparent that

the actinobacterial diversity in any individual habitat cannot

cover the diversity revealed in present study. Specifically, among
the 20 genera from the South China Sea sponges, one genus
(Marihabitans) has not been found from marine sediments,
four genera (Marihabitans, Nonomuraea, Polymorphospora,
and Streptomonospora) not isolated from corals, and six
genera (Nonomuraea, Polymorphospora, Pseudonocardia,
Saccharopolyspora, Salinispora, and Streptomonospora) not
cultured from seawater. Consequently, South China Sea
sponges displayed their advantage as a prolific source
of culturable actinomycetes compared with other marine
habitats.

Prior to our study, 15 actinomycete genera have been
cultivated from South China Sea sponges, including
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FIGURE 2 | Neighbor-joining tree constructed using aligned KSα domain amino acid sequences (203 amino acid positions). The sequences obtained in

this work are marked by black dot. Next to the KSα gene name, the identified, or predicted compounds and GenBank accession number of the gene cluster are

indicated. Boot strap values calculated from 1000 resamplings using neighborjoining are shown at the respective nodes when the calculated values were 50% or

greater. The scale bar represents 0.1 substitutions per amino acid position.

Actinomadura, Catenuloplanes, Cellulosimicrobium, Gordonia,
Micromonospora, Mycobacterium, Nocardia, Nocardiopsis,
Pseudonocardia, Rhodococcus, Saccharomonospora, Salinispora,
Sphaerisporangium, Streptomyces, and Verrucosispora. By

investigating as many as 15 previously unexplored South
China Sea sponges, the known diversity of sponge-associated
actinomycetes was significantly extended, with a total of
27 genera successfully cultivated (including previously
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FIGURE 3 | HPLC of the ethyl acetate extract of S. anulatus S71

fermentation broth. Target peak was eluted at 11.3min (A). HPLC of the

ethyl acetate extract of broth medium as a negative control (B). Detection

wavelength: 210 nm.

FIGURE 4 | UV/vis spectra of selected peak at tR 11.3min.

reported 15 genera and newly cultivated 12 genera in this
study). Excitingly, three rare genera (Streptomonospora,
Polymorphospora, and Marihabitans) were isolated from marine
sponges for the first time. Streptomonospora is a group of strictly
halophilic filamentous actinomycetes in Nocardiopsaceae.
Streptomonospora strains were previously derived from
hypersaline soil (Cai et al., 2008) and salt lake (Cai et al.,
2009). Until recently, two Streptomonospora strains were found
from marine sediments, indicating its existence in the marine
environment (Zhang et al., 2013a). Polymorphospora is a genus in
Micromonosporaceae, and Polymorphospora strains were mainly
isolated from soil surrounding mangrove roots (Tamura et al.,
2006). Marihabitans is a genus in Intrasporangiaceae (Kageyama
et al., 2008). Notably, the genus is quite rare and only one strain

was previously cultured from surface seawater (Kageyama et al.,
2008).

Over the past decade, actinomycetes have been intensively
isolated from sponges inhabiting the Yellow Sea, the
Caribbean Sea, the Red Sea, and the Mediterranean Sea
as well (Abdelmohsen et al., 2014a). By comparing the
diversity of the sponge-associated actinomycetes from the
separate geographical locations, we found that different
region generally harbored distinct sponge-associated
actinomycetes, including both common actinomycete
genera (Micromonospora, Nocardiopsis, Rhodococcus,
and Streptomyces) and respective different actinomycete
groups (Table 5). Notably, seven genera (Catenuloplanes,
Marihabitans, Polymorphospora, Saccharopolyspora, Serinicoccus,
Sphaerisporangium, and Streptomonospora) not found from the
sponges in other oceans were cultivated from the South
China Sea sponges, indicating the biogeographic variability
in the South China Sea sponge-associated actinobacterial
communities.

The use of molecular approaches for describing microbial
diversity has greatly enhanced the knowledge of population
structure in sponge-associated bacterial communities. Diverse
actinobacterial groups belonging to Actinobacteridae have
been detected from various sponges (Simister et al., 2012). To
our knowledge, at least 22 sponge-associated actinomycete
genera have been revealed by molecular techniques, including
Actinomyces, Agromyces, Amycolatopsis, Arthrobacter,
Brevibacterium, Cellulosimicrobium, Corynebacterium, Kocuria,
Microbacterium, Micrococcus, Microlunatus, Micromonospora,
Mycobacterium, Nocardioides, Nocardiopsis, Propionibacterium,
Pseudonocardia, Rhodococcus, Ruania, Saccharopolyspora,
Streptomyces, and Verrucosispora. This number is much lower
than that of the cultivated genera (60 genera) (Abdelmohsen
et al., 2014a). Two factors are thought to lead to this result. First,
the majority of the amplicon libraries were constructed using
bacterial universal primers, thus it is difficult to detect those
low-abundance actinobacterial groups. Second, environmental
surveys based on 16S rRNA gene sequencing preferred to
describe the bacterial community structure at the phylum
level but not genus level. Therefore, the diversity of sponge-
associated actinomycetes was mainly revealed by culture-based
methods. Notably, to date several genera (Actinomyces,
Amycolatopsis, Microlunatus, Propionibacterium, Ruania)
detected by molecular techniques have not been isolated from
sponges, suggesting that the diversity is still worth exploring in
future.

Sponges contain diverse actinobacterial groups, however,
the ecological functions of the actinobacteria are hardly known.
Sponge-associated actinomycetes produce bioactive small
molecules like their terrestrial counterparts do. The possibility
cannot be excluded that some compounds play an important
role in the chemical ecology of sponge hosts. Considering
actinomycete-derived secondary metabolites commonly occur
in a very low concentration, the compounds are difficult to
be extracted directly from sponges. Consequently, exploring
the metabolic potential of the sponge-associated actinomycete
strains facilitates the discovery of novel bioactive molecules.
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FIGURE 5 | High-resolution mass spectrum of selected ion at tR 5.15min in TIC. mmu, milli-mass units.

Aromatic polyketides are known to be produced by a few
taxa among diverse actinomycetes. Thus, knowing their
taxonomic distribution facilitates the prioritization of strains
for aromatic polyketide search and discovery. In this work,
seven genera (Kocuria,Micromonospora, Nocardia, Nocardiopsis,
Saccharopolyspora, Salinispora, and Streptomyces) were screened
out as potential producers of aromatic polyketides, including
both recognized and previously not recognized producers.
Notably, strains related to Streptomyces, Micromonospora,
Nocardia, Nocardiopsis, Saccharopolyspora, and Salinispora
were known producers of aromatic polyketides (Sun et al.,
2007; Perez et al., 2009; Ding et al., 2012; Sousa et al.,
2012; Xie et al., 2012; Jensen et al., 2015). However, one
genus (Kocuria) not traditionally associated with aromatic
polyketide production was detected as well, suggesting that
poorly studied genera may be potential producers of aromatic
polyketides. To date, aromatic polyketides have not been

isolated from strains related to Kocuria, therefore, their
potential in aromatic polyketide biosynthesis deserves further
exploration.

In recent years, phylogenetic prediction has been successfully
applied in the discovery of type I polyketides (Gontang et al.,
2010). By bioinformatic analyses of KS sequence the prediction
was preliminarily made, and test for the production of target
compounds was subsequently preformed to confirm the
sequence-based analyses. Considering diverse tailoring enzymes
involved in the aromatic polyketide biosynthesis (Schneider,
2005), we think it is not feasible to accurately predict target
substance merely based on KSα sequence analysis. However,
due to the conserved property of KSα domain, it is possible
to correlate one KSα sequence (one strain) with one specific
subtype (Metsä-Ketelä et al., 2002). Among 17 representative

FIGURE 6 | Structure of amycomycin B.

strains, eight were specifically related to three subgroups,
respectively angucyclines, benzoisochromanequinones, and
spore pigments (Figure 2). The angucycline group is the
largest group of aromatic polyketides, rich in chemical
scaffolds and biological activities (Kharel et al., 2012). The
benzoisochromanequinone group comprises fewer compounds
than angucyclines but its members show a wide range of
biological activities as well (Brimble et al., 1999). Additionally,
other nine strains cannot be correlated with specific chemotypes
(Figure 2). However, these strains should not be neglected
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TABLE 4 | Comparison of the culturable diversity of South China Sea sponge-associated actinomycetes with that of marine sediment-derived,

coral-associated, and seawater-derived actinomycetes.

South China Sea

sponge-associated

actinomycetes

Marine sediment-derived

actinomycetes

Coral-associated

actinomycetes

Seawater-derived

actinomycetes

References

Arthrobacter + + + Wietz et al., 2012; Yang et al., 2013; Zhang et al., 2014

Brachybacterium + + + Wang et al., 2010; Yang et al., 2013; Zhang et al., 2014

Brevibacterium + + + Wang et al., 2010; Yang et al., 2013; Zhang et al., 2014

Kocuria + + + Wang et al., 2010; Yang et al., 2013; Zhang et al., 2014

Marihabitans − − + Kageyama et al., 2008

Microbacterium + + + Wang et al., 2010; Yang et al., 2013; Zhang et al., 2014

Micrococcus + + + Harwati et al., 2007; Yang et al., 2013; Zhang et al., 2014

Micromonospora + + +* Chen et al., 2011; Yang et al., 2013

Mycobacterium + + + Al-Awadhi et al., 2012; Yang et al., 2013; Zhang et al., 2014

Nocardia + + +* Chen et al., 2011; Zhang et al., 2013b

Nocardiopsis + + +* Maldonado et al., 2005; Zhang et al., 2013b

Nonomuraea + − − Maldonado et al., 2005

Polymorphospora + − − Tamura et al., 2006

Pseudonocardia + + − Maldonado et al., 2005; Zhang et al., 2013b

Rhodococcus + + + Chen et al., 2011; Al-Awadhi et al., 2012; Yang et al., 2013

Saccharopolyspora + + − Maldonado et al., 2005; Zhang et al., 2013b

Salinispora + +* − Gontang et al., 2007

Serinicoccus + +* + Yi et al., 2004; Gontang et al., 2007

Streptomonospora + − − Zhang et al., 2013a

Streptomyces + + + Chen et al., 2011; Zhu et al., 2011; Yang et al., 2013

+, The actinomycete genera are also cultivated from other marine habitats.

−, The actinomycete genera have not been cultivated from other marine habitats.

*16S rRNA gene sequences were submitted to GenBank but paper is unpublished.

because they potentially have the capacity to produce novel
subtypes.

For the rapid identification of aromatic polyketides from
crude culture extracts, it is critical to develop an efficient
approach. At present, it is feasible to determine the elemental
composition of compounds in mixtures and identify natural
products using LC/MS and UV/vis spectra (Nielsen et al., 2011;
El-Elimat et al., 2013). In the case of aromatic polyketides, UV/vis
spectra provided important clues on the presence of unsaturated
cyclohexanedione structure and polyphenolic ring system and
thus indicated the compound type, and LC/MS analysis gave
precise molecular weight and suggested molecular formula of
target signal. Subsequently, the molecular formulas were used
as queries to match those reported aromatic polyketides in
database. If some compounds were retrieved, then their UV-vis
absorption maxima are compared with target substance. Only
when both UV/vis spectra and high-resolution molecular weight
were consistent, the compound was identified as known one or
its analog. This method avoided large-scale fermentation and
purification processes, thus saved time and resource. It can
be used as a dereplication protocol for aromatic polyketides
and enhance the efficiency of discovering novel aromatic
polyketides.

To our knowledge, actinomycete strains generally contain
a number of biosynthetic gene clusters. However, only a
few corresponding metabolites have been obtained until

now. Apparently, the majority of the biosynthetic gene
clusters are unexpressed under standardized laboratory
conditions, which leads to a low efficiency in the discovery
of their secondary metabolites. Similarly, it is also present
in the aromatic polyketide discovery from the South China
Sea sponge-associated actinomycetes. Surveying recent
advances in microbial natural product discovery, we think
two strategies can be considered to exclusively explore the
metabolic potential of the strains. One is to try activating
silent biosynthetic pathways through external cues, co-
cultivation and stress since it has achieved great success in
the natural product discovery from fungi and actinomycetes
(Scherlach and Hertweck, 2009). The other is to apply genetic
manipulation techniques such as gene cluster cloning and
heterologous expression because it has shown unique advantage
in harvesting rare skeletons of aromatic polyketides (Feng
et al., 2011). They should be preferentially attempted in future
work.

In summary, a total of 20 actinomycete genera were
isolated from the South China Sea sponges, including
three rare genera (Marihabitans, Polymorphospora, and
Streptomonospora) found from sponges first time. Potential
aromatic polyketide producers were distributed in seven
genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis,
Saccharopolyspora, Salinispora, and Streptomyces). By small-scale
fermentation, one angucycline compound was detected from
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TABLE 5 | Comparison of the culturable diversity of the sponge-associated actinomycetes from the South China Sea, Yellow Sea, Caribbean Sea, Red

Sea, and Mediterranean Sea.

Actinomycete genera South China Sea

sponge-associated

actinomycetes

Yellow Sea

sponge-associated

actinomycetes

Caribbean

sponge-associated

actinomycetes

Red Sea

sponge-associated

actinomycetes

Mediterranean

sponge-associated

actinomycetes

Actinoalloteichus − + − − −

Actinokineospora − − − + −

Actinomadura + + − − −

Arthrobacter + − − + −

Blastococcus − + − − −

Brachybacterium + − − + −

Brevibacterium + − − + −

Catenuloplanes* + − − − −

Cellulosimicrobium + − + − −

Corynebacterium − − − + +

Curtobacterium − − − + −

Dietzia − − − + −

Georgenia − + − − −

Gordonia + + − − +

Kocuria + − − + +

Marihabitans* + − − − −

Microbacterium + − + + −

Micrococcus + − − + −

Micromonospora + + + + +

Mycobacterium + − − + +

Nocardia + + − + −

Nocardiopsis + + − + +

Nonomuraea + + − − −

Polymorphospora* + − − − −

Pseudonocardia + + − − −

Rhodococcus + + − + +

Rothia − − − + +

Rubrobacter − − − − +

Saccharomonospora + − − + −

Saccharopolyspora* + − − − −

Salinispora + − + + −

Serinicoccus* + − − − −

Solwaraspora − − + − −

Sphaerisporangium* + − − − −

Streptomonospora* + − − − −

Streptomyces + + + − +

Verrucosispora + − + − −

The genera marked with *were currently limited to South China Sea. The shading on rows highlight the sponge-associated actinomycete genera widely distributed in distinct oceans.

one Streptomyces isolate. This work advanced our knowledge
of sponge-associated actinomycetes regarding their diversity
and biogeography, and revealed their potential in aromatic
polyketide production.
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Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial

and temporal distribution of actinobacteria have been rarely documented. In this

study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites

lutea and in the surrounding seawater were examined every 3 months for 1 year on

Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria

were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which

demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described

families and 10 unnamed families were determined in the populations, and 12 genera

were firstly detected in corals. The Actinobacteria diversity was significantly different

between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by

the seawater and coral samples. Redundancy and hierarchical cluster analyses were

performed to analyze the correlation between the variations of actinobacteria population

within the divergent compartments of P. lutea, seasonal changes, and environmental

factors. The actinobacteria communities in the same coral compartment tended to

cluster together. Even so, an extremely small fraction of OTUs was common in all three

P. lutea compartments. Analysis of the relationship between actinobacteria assemblages

and the environmental parameters showed that several genera were closely related to

specific environmental factors. This study highlights that coral-associated actinobacteria

populations are highly diverse, and spatially structuredwithin P. lutea, and they are distinct

from which in the ambient seawater.

Keywords: actinobacteria, Porites lutea, diversity, temporal and spatial distribution, 16S rRNA gene

Introduction

Coral reef ecosystem is one of the most important tropical marine ecosystems, mainly distributed
in the Indo-West Pacific, Eastern Pacific, Western Atlantic, and the Eastern Atlantic (Moberg and
Folke, 1999). Corals provide habitats for numerous bacteria in theirmucus layer, tissue, and calcium

carbonate skeleton, as well as the dinoflagellates, fungi, archaea, and viruses (Rosenberg et al., 2007).
Coral-associated bacteria not only take part in carbon, nitrogen, and sulfur biogeochemical cycles
and provide necessary nutrient for coral, but also keep corals from being infected by pathogens
(Rosenberg et al., 2007; Raina et al., 2009; Bourne and Webster, 2013).

Highly diverse and heterogeneous bacterial communities have been revealed in different coral
species at various locations (Rohwer et al., 2002; Li et al., 2013). Actinobacteria is generally accepted
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as a ubiquitous major group in corals (Bourne and Munn,
2005; Carlos et al., 2013; Li et al., 2013, 2014a). Yang
et al. (2013) detected 19 Actinobacteria genera in soft coral
Alcyonium gracllimum and stony coral Tubastraea coccinea in
the East China Sea through analysis of 16S rRNA gene clone
libraries. Some actinobacterial genera were previously detected
in corals by using the culture-dependent method (Lampert
et al., 2006; Nithyanand and Pandian, 2009; Nithyanand
et al., 2011b; Zhang et al., 2013; Li et al., 2014b). Among
these culturable actinobacteria, Streptomyces, Verrucosispora,
Rhodococcus,Micromonospora, Nocardia, Jiangella, Nocardiopsis,
Pseudonocardia, and Salinispora showed antibacterial activities,
which were considered to contribute to coral health (Ritchie,
2006; Nithyanand et al., 2011a; Krediet et al., 2013; Zhang et al.,
2013; Li et al., 2014b).

Environmental conditions, coral species, colony physiology,
and seasonal variation are considerable influencing factors on
the coral-associated bacterial community (Hong et al., 2009).
Moreover, due to various microhabitats provided by corals’
biological structures, the spatial heterogeneity has been proved
in bacterial communities associated with a single coral colony
(Rohwer et al., 2002; Sweet et al., 2011; Li et al., 2014a). As amajor
coral-associated bacterial group, how actinobacteria is spatially
and temporally organized in corals, and what is the connection
between the actinobacteria communities in corals and in seawater
remains poorly understood. Comprehensive investigation of the
distribution of this ubiquitous group at spatial and temporal
scales will help understanding the variation of coral associated
bacteria and the potential function of actinobacteria, and will
contribute a lot to bioprospect the actinobacteria resources for
utilization as novel sources for bioactive natural products.

Coral reefs are widely distributed in the South China Sea
(Liu et al., 2009; Wang et al., 2014). Porites lutea is the
dominant, typical coral species in the Luhuitou fringing reef,
which is located in the south end of the Hainan province (Zhao
et al., 2008). In this study, the diversity and distribution of
actinobacteria were investigated in coral P. lutea and in the
surrounding seawater every 3 months for 1 year using culture-
independent method for the first time. We aimed to reveal the
coral-associated actinobacteria community structures in three
divergent coral compartments in different months, compare the
actinobacterial communities in the coral and in the surrounding
seawater, and research the actinobacteria community variation
responds to the environmental factors.

Materials and Methods

Sample Collection
The coral and surrounding sea water samples were collected in
four differentmonths (February,May, August, andNovember) in
2012 from the Luhuitou fringing reef (109◦28′E, 18◦13′N). Coral
fragments (approximately 10 × 10 cm) were collected from the
side of three healthy P. lutea colonies at the depth of 3–5m each
time using punch and hammer. Coral mucus, tissues and skeleton
were separated and stored according to the method described
previously (Li et al., 2014a). One liter of seawater adjacent to

the coral colonies was collected, and filtered through 0.22µm-
pore-size filter membrane (Millipore). The filter membranes
were stored at −80◦C until DNA extraction. As the samples
were collected at the same time, environmental parameters
including water temperature, salinity, dissolved oxygen, pH
value, ultraviolet radiation intensity, and rainfall were cited from
the published data (Li et al., 2014a).

DNA Extraction and PCR Amplification
The coral tissue and skeleton samples were homogenized
thoroughly in liquid nitrogen with sterile mortar and pestle
before added to the PowerBead Tubes. The filter membranes with
adsorbed microbial cells were cut into pieces, and then added
to the PowerBead Tubes. Total DNA was extracted using the
PowerSoil DNA Isolation Kit (MoBio, Solana Beach, CA, USA)
according to the manufacturer’s instruction.

16S rRNA genes were nest PCR amplified, the first
PCR reactions using the combination of universal bacterial
primers 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492R
(5′-TACGGYTACCTTGTTACGACTT-3′). PCR amplifications
were performed in a Mastercycler pro (Eppendorf, Hamburg,
Germany) in a final volume of 50µL, containing 2µL (10µM)
each primer, 1µL (10–20 ng) template DNA and 25µL premix
Ex Taq mixture (Takara, Dalian). The PCR conditions were
as follows: 94◦C for 5min; 30 cycles of 94◦C for 30 s, 54◦C
for 30 s, 72◦C for 90 s; followed by 72◦C for 10min. In the
second PCR reactions, the actinobacteria-specific primer pairs, S-
C-Ac-0325-a-S-20 (5′-CGCGCCTATCAGCTTGTTG-3′) and S-
C-Act-0878-a-A-19 (5′-CCGTATCCCCAGGCGGGG-3′), were
used to amplify the V3-V5 regions (about 640 bp) of the
actinobacteria 16S rRNA gene (Stach et al., 2003). In the PCR
reactions, 5µL of 1: 10 dilution of the first round PCR product
was used as DNA template, the PCR mixture (50µL) contain
2µL (10µM) each primer, 25µL premix Ex Taq mixture, the
PCR conditions were as follows: 95◦C for 5min; 30 cycles of
95◦C for 45 s, 68◦C for 45 s, 72◦C for 60 s; followed by 72◦C for
10min. Each genomic DNA sample was amplified in triplicate
PCR reactions. Amplicons from the same sample were pooled
and purified using the E.Z.N.A. R© Gel Extraction Kit (Omega
Bio-Tek, China).

Gene Library Construction and Sequencing
Sixteen clone libraries of actinobacterial 16S rRNA genes
were constructed using the pMD18-T Vector Cloning Kit
and E. coli DH5α competent cells (Takara, Dalian) following
the manufacturer′s instructions. The positive clones from
each library inoculated on MacConkey agar with ampicillin
(100µg/ml) were randomly picked and sequenced using M13F
(−47) primer on ABI 3730xl capillary sequencers (Applied
Biosystems, USA).

Libraries Analysis
The vector sequences were screened by the VecScreen
tool provided in NCBI (http://www.ncbi.nlm.nih.gov/tools/
vecscreen/). Chimeras were checked by running chimera.uchime
packaged in Mothur (Schloss et al., 2009), and potential chimeras
were removed. All valid sequences were deposited in GenBank
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(accession numbers were shown in Data S1). All qualified
sequences were identified by using the classify.seqs command
in Mothur with Silva reference alignment database (http://
www.mothur.org/wiki/Silva_reference_files, Release 119) at a
confidence level of 80%. The sequences, which do not belong to
Actinobacteria, were removed from further analysis. Sequences
were clustered into operational taxonomic units (OTUs) with
a 97% threshold using the cluster command in Mothur. The
relationships among actinobacterial communities associated
with different coral compartments and in the ambient seawater
in different months were analyzed by hierarchical cluster
analysis. Based on Bray-Curtis similarity estimated from the
OTU matrix, clustering was generated by using the complete
linkage method with the PRIMER 5 software (Clarke, 1993). The
shared OTUs were determined by using the online tool venny
(Oliveros, 2007–2015, http://bioinfogp.cnb.csic.es/tools/venny/
index.html).

The correlations between Actinobacteria assemblages of coral
samples and the environmental factors were analyzed by using
the software package CANOCO 4.5.1 (ter Braak and Šmilauer,
2002). Redundancy analysis (RDA) was carried out to determine
the relationship between the actinobacteria community and
the environmental factors including temperature, salinity,
dissolved oxygen, pH value, rainfall, and UV radiation and in
combination with two nominal variables including the coral
divergent compartments and the different sampling months. The
significance of the relation between the explanatory variables and
the actinobacterial community compositions was tested using
Monte Carlo permutation tests (9999 unrestricted permutations,
P < 0.05).

Results

Coral-associated Actinobacteria Diversity
A total of 2403 sequences were obtained from sixteen 16S rRNA
gene clone libraries, resulting in 395 OTUs (stringency at 97%).
The rarefaction analysis result showed that most of the curves did
not flatten to asymptote, but climbed less steeply (Figure 1). The
coverages ranged from 0.69 to 0.97 in 16 libraries, and the average
coverage was 0.83 (Table 1). The highest number of OTUs was
found in the tissue collected in May, while the lowest OTUs
was found in the skeleton collected in November (Table 1). The

Shannon indices in mucus collected in different months ranged
from 2.32 to 3.44, from 2.45 to 3.55 in tissues, from 1.82 to 3.35
in skeleton, and from 1.53 to 2.82 in sea water (Table 1), and
the diversity in the actinobacterial community associated with
P. lutea was higher than which in the surrounding sea water
(P = 0.045).

Coral-associated Actinobacterial Community
Composition
At a confidence threshold of 80%, 2403 qualified reads were
assigned to four classes, i.e., Acidimicrobiia, Actinobacteria,
Thermoleophilia, and KIST-JJY010. Among them, Acidimicrobiia
and Actinobacteria were ubiquitous and dominant in P. lutea
and in the seawater samples. Thermoleophilia was not detected in
corals collected in February, in the mucus and seawater in May,
and in the mucus in August, while accounted for 0.5–48.8% in
all other samples. KIST-JJY010 was detected only in the mucus in
November (0.6%), and in the skeleton in August (2.6%).

Twenty-five described families and 10 unnamed families
were detected in the 16 libraries (Figure 2). OM1_clade
and Propionibacteriaceae (genera Friedmanniella and
Propionibacterium) were ubiquitous, major groups in P. lutea.
Meanwhile, OM1_clade was not detected in the seawater in

FIGURE 1 | Rarefaction curves of Actinobacteria 16S rRNA gene

sequences.

TABLE 1 | Number of sequences and OTUs (97%) and diversity estimates of the Actinobacteria libraries in P. lutea and in the ambient seawater.

Index A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4

No. of Seq. 153 133 150 185 105 151 134 181 132 146 153 179 149 109 172 171

OTUs 56 42 41 25 46 66 31 29 37 41 54 44 40 33 17 43

Chao 343.00 147.60 69.88 34.43 108.14 201.13 44.00 55.25 63.86 64.75 124.13 106.14 55.83 48.17 19.50 66.00

ACE 600.00 756.54 131.72 56.36 194.33 388.96 61.80 63.38 535.51 93.22 182.95 108.04 68.08 46.83 21.10 114.38

Shannon 3.33 2.45 3.08 1.53 3.44 3.55 2.70 1.89 2.32 3.07 3.35 2.68 2.89 3.11 1.82 2.84

Coverage 0.73 0.75 0.85 0.94 0.71 0.69 0.90 0.92 0.79 0.86 0.78 0.83 0.87 0.87 0.97 0.86

A1, mucus in February; A2, tissue in February; A3, skeleton in February; A4, seawater in February; B1, mucus in May; B2, tissue in May; B3, skeleton in May; B4, seawater in May; C1,

mucus in August; C2, tissue in August; C3, skeleton in August; C4, seawater in August; D1, mucus in November; D2, tissue in November; D3, skeleton in November; D4, seawater in

November.
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FIGURE 2 | Actinobacteria composition profiles. Taxonomic classification of actinobacteria sequences in to family identified by using the classify.seqs command

in Mothur using Silva reference alignment database (http://www.mothur.org/wiki/Silva_reference_files, Release 119) with a confidence level of 80% were applied for

classification. A1, mucus in February; A2, tissue in February; A3, skeleton in February; A4, seawater in February; B1, mucus in May; B2, tissue in May; B3, skeleton in

May; B4, seawater in May; C1, mucus in August; C2, tissue in August; C3, skeleton in August; C4, seawater in August; D1, mucus in November; D2, tissue in

November; D3, skeleton in November; D4, seawater in November.

February and May, and rare in the other two seawater libraries,
and Propionibacteriaceae was absent in all the seawater libraries.
Micromonosporaceae was the most abundant group in the tissue
in February (47.4%) and in the mucus in August (46.2%), in
which most of the reads were affiliated with an unclassified
group. Nonetheless, Micromonosporaceae was absent in all
other coral and seawater samples. Sva0996_marine_group was
detected in all coral samples (5.2–50%) except in the skeleton
collected in November, and which also was abundant in the
ambient sea water (21.9–80%). Micrococcaceae was absent in
the coral skeleton collected in August and in November, and
in the sea water samples. Group 480-2 was abundant in the
coral tissue in August (24.7%), as well as in the skeleton in May
(26.9%) and in November (48.8%), but it was nearly absent in

the surrounding seawater. In reverse, Microbacteriaceae and
Ilumatobacter were major groups in sea water, while they were
less abundant in P. lutea.

Spatial and Temporal Distribution of
P. lutea-associated Actinobacteria
Results of hierarchical cluster analysis showed that the
actinobacteria communities were significantly different between
in the coral and in the surrounding seawater samples (p = 0.01,
R = 0.993). The actinobacterial communities associated with the
same coral compartments tended to cluster together (Figure 3).
The season factor did not significantly influence the variation in
the actinobacteria communities. The RDA results indicated that
38.9% of the total variance in the coral-associated actinobacterial
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FIGURE 3 | Hierarchical cluster analysis of actinobacteria communities associated with P. lutea. Clustering was based on Bray-Curtis similarity estimated

from the OTUs matrix by using the complete linkage method.

composition was explained by the environmental, spatial
and temporal factors (Figure 4). The first and second axes
differentiated the actinobacteria assemblages in the distinct coral
compartments (Figure 4, Table S1). This result was consistent
with the hierarchical cluster analysis. None of the environment
parameters analyzed in this study was determined as the
significant influencing factor in the variation of the P. lutea
associated actinobacteria communities. A triplot map illustrated
the relationship between major actinobacterial groups, with
abundance more than 1%, and the environmental parameters
(Figure 4). Friedmanniella and Micrococcus were positively
related with the salinity. Microbacterium, Propionibacterium,
and group 480-2 were positively correlated with seawater
temperature, but negatively correlated with dissolved oxygen.

To investigate the distribution of OTUs in the three divergent
coral compartments (mucus, tissue, and skeleton) and in
the surrounding seawater, a venn diagram was constructed.
The results showed that only 5 OTUs were present in all of
P. lutea mucus, tissue and skeleton, and in sea water, which
were identified as Sva0996_marine_group, Ilumatobacter,
Corynebacterium, OM1_clade and Microbacterium (Table 2,
Figure S1A). Another 17 OTUs, which were identified as
Candidatus_Microthrix, Corynebacteriales, Friedmanniella,
Micrococcus, Mycobacterium, OM1_clade, Propionibacterium,
Sva0996_marine_group, Yonghaparkia and 480-2 were common
in mucus, tissue, and skeleton (Table 2, Figure S1A). Twelve
OTUs distributed in Propionibacterium, Friedmanniella,
OM1_clade, Sva0996_marine_group, Kocuria, Mycobacterium,
Corynebacteriales, Brevibacterium, and Brachybacterium were
present in coral libraries in all four different months (Table 3,
Figure S1B). The most abundant OTU0003, which was classified
as Propionibacterium, was present in all coral samples with
a high abundance (128 out of total 1687 reads in the coral

libraries, 7.6%). The secondary abundance OTU0004 affiliated
with Friedmanniella was present in all libraries except in skeleton
collected in November.

Discussion

Highly Diverse Actinobacteria Associated with
P. lutea
In comparison with previously reported results (Lampert
et al., 2006, 2008; Bruck et al., 2007; Kageyama et al., 2007;
Santiago-Vázquez et al., 2007; Ben-Dov et al., 2009; Nithyanand
and Pandian, 2009; Seemann et al., 2009; Shnit-Orland and
Kushmaro, 2009; de Castro et al., 2010; Thomas et al., 2010;
Nithyanand et al., 2011a,b; Cardenas et al., 2012; Chiu et al.,
2012; Sun et al., 2012, 2014; Zhang et al., 2012, 2013; Yang
et al., 2013; Chen et al., 2014; Li et al., 2014a,b; EIAhwany
et al., 2015; Sarmiento-Vizcaíno et al., 2015), 12 genera
including Actinopolyspora, Blastococcus, Candidatus_Aquiluna,
Demetria, Fodinicola, Friedmanniella, Geodermatophilus,
Iamia, Modestobacter, Ornithinimicrobium, Tersicoccus, and
Yonghaparkia were firstly detected in corals in this study
(Table 4). Furthermore, many unclassified groups were detected
in P. lutea, including even the group at the class taxon level.
These results suggested that highly diverse and abundant
known actinobacteria were associated with P. lutea as well as
unknown groups. It was also noticed that many actinobacterial
groups were only detected by the culture-independent method
(Table 4), and some of them were ubiquitous and abundant,
such as Friedmanniella, Ilumatobacter, and OM1_clade. Their
physiological properties and ecological significance are worthy of
deep research. For this purpose, the development and innovation
of the isolation and cultivation methods in order to obtain pure
cultures from the coral holobiont is particularly important.
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FIGURE 4 | RDA ordination triplot showing the relationship among the environmental variables, coral samples, and actinobacterial components.

Correlations between environmental variables and the first two RDA axes are represented by the lengths and angles of the arrows (environmental-factor vectors). Only

abundant actinobacterial groups (>1%) were showed in the triplot. UV, ultraviolet radiation intensity; Temp, seawater temperature; DO, dissolved oxygen.

According to our summary (Table 4), genera Agrococcus,
Amycolatopsis, Arthrobacter, Brachybacterium, Brevibacterium,
Candidatus_Microthrix, Corynebacterium, Cellulosimicrobium,
Cellulomonas, Dermatophilus, Dietzia, Gordonia, Janibacter,
Jiangella, Kocuria, Kytococcus, Microbacterium,Micromonospora,
Micrococcus, Mycobacterium, Nocardioides, Nocardiopsis,
Propionibacterium, Pseudonocardia, Rhodococcus, Rothia, and
Streptomyces were detected in diverse coral species including
scleractinian corals, such as Acropora digitifera (Nithyanand and
Pandian, 2009; Nithyanand et al., 2011b), P. lutea (Li et al., 2014b;
Sun et al., 2014) and Galaxea fascicularis (Li et al., 2014b), and
gorgonian corals, Siderastrea sidereal (Cardenas et al., 2012) and
Platygyra carnosus (Chiu et al., 2012). Most of them were present
also in other marine organisms, such as sponges (Kim and
Fuerst, 2006; Zhang et al., 2006; Selvin et al., 2009; Abdelmohsen
et al., 2010, 2014; Schneemann et al., 2010; Sun et al., 2010;
Webster and Taylor, 2012; Vicente et al., 2013), mollusks
(Romanenko et al., 2008; Peraud et al., 2009), fishes (Sheeja et al.,
2011), seaweeds (Lee, 2008; Singh and Reddy, 2013), seagrasses
(Ravikumar et al., 2012), and sea cucumber (Kurahashi et al.,
2009). Moreover, some of these widely distributed groups were

considered as the bioactive compounds producers (Fiedler et al.,
2005; Tabares et al., 2011; Margassery et al., 2012; Vicente et al.,
2013; Manivasagan et al., 2014; Valliappan et al., 2014; EIAhwany
et al., 2015), and probably take part in nitrogen (Su et al., 2013)
and phosphorus (Sabarathnam et al., 2010) biogeochemical
cycles. Whether they play these functional roles in corals in situ
need to be further investigated.

Comparison of Actinobacterial Communities in
the Corals and in the Ambient Seawater
Comparing the actinobacteria communities between in P. lutea
and in the surrounding seawater will help us to understand the
source of coral associated actinobacteria, and the interaction
between the bacteria in sea water and in corals. Consisted with
previous study on bacteria communities (Li et al., 2014a), the
P. lutea associated actinobacteria communities were significantly
different from which in the ambient seawater (Figure 3).
Groups such as Propionibacteriaceae, Micromonosporaceae, and
Micrococcaceae, were specifically associated with the corals rather
than in the ambient seawater, where they originated from
should be in doubt. Whether the wide distributed groups such
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TABLE 2 | OTUs presented in all of the coral and seawater libraries, or

presented in all three divergent compartments of P. lutea.

OTUs Observed in samples Abundance Phylogenetic affiliation

OTU0001 Mucus, Tissue,

Skeleton, Sea water

303 Sva0996_marine_group

OTU0007 Mucus, Tissue,

Skeleton, Sea water

63 Ilumatobacter

OTU0011 Mucus, Tissue,

Skeleton, Sea water

46 Corynebacterium

OTU0017 Mucus, Tissue,

Skeleton, Sea water

33 OM1_clade

OTU0020 Mucus, Tissue,

Skeleton, Sea water

24 Microbacterium

OTU0002 Mucus, Tissue, Skeleton 186 480-2

OTU0003 Mucus, Tissue, Skeleton 128 Propionibacterium

OTU0004 Mucus, Tissue, Skeleton 122 Friedmanniella

OTU0009 Mucus, Tissue, Skeleton 52 Candidatus_Microthrix

OTU0012 Mucus, Tissue, Skeleton 43 OM1_clade

OTU0013 Mucus, Tissue, Skeleton 40 OM1_clade

OTU0014 Mucus, Tissue, Skeleton 40 Sva0996_marine_group

OTU0023 Mucus, Tissue, Skeleton 21 Micrococcus

OTU0025 Mucus, Tissue, Skeleton 18 OM1_clade

OTU0027 Mucus, Tissue, Skeleton 18 Mycobacterium

OTU0028 Mucus, Tissue, Skeleton 17 Corynebacteriales

OTU0030 Mucus, Tissue, Skeleton 15 Propionibacterium

OTU0032 Mucus, Tissue, Skeleton 13 Mycobacterium

OTU0034 Mucus, Tissue, Skeleton 12 Sva0996_marine_group

OTU0035 Mucus, Tissue, Skeleton 12 Sva0996_marine_group

OTU0042 Mucus, Tissue, Skeleton 8 Sva0996_marine_group

OTU0056 Mucus, Tissue, Skeleton 5 Yonghaparkia

as Sva0996_marine_group, OM1_clade, Microbacteriaceae and
Ilumatobacter travel between the ambient seawater and the corals
need to be investigated.

When researchers make a general observation of the
whole bacterial communities, which were observed significantly
different in coral mucus, tissue, and skeleton (Rohwer et al.,
2002; Bourne and Munn, 2005; Sweet et al., 2011; Lee
et al., 2012). However, it is unclear whether actinobacteria
has a similar distribution pattern. In this study, both the
hierarchical cluster analysis (Figure 3) and the RDA analysis
(Figure 4) showed that the actinobacteria communities from
the same compartment tended to cluster together. The distinct
physiochemical microenvironments provided by corals probably
is one of the causes (Le Tissier, 1990; Brown and Bythell,
2005; Sweet et al., 2011; Tremblay et al., 2011). Only a
small fraction of OTUs (22 out of 299 OTUs in the coral
libraries) was common in the coral mucus, tissue, and skeleton
libraries in this study (Table 2). This result suggested that these
members might have capabilities to adapt to different micro-
environments in divergent compartments of P. lutea. A large
amount of the OTUs was specifically associated with a certain
coral compartment. Whether and how the properties of distinct
actinobacteria assemblages in different coral compartments
actually contribute to the close relationship constructed between

TABLE 3 | OTUs presented in P. lutea collected in four different months.

OTUs Coral samples Abundance Phylogenetic affiliation

OTU0003a Feb, May, Aug, Nov 128 Propionibacterium

OTU0004 Feb, May, Aug, Nov 122 Friedmanniella

OTU0013 Feb, May, Aug, Nov 40 OM1_clade

OTU0014 Feb, May, Aug, Nov 40 Sva0996_marine_group

OTU0015 Feb, May, Aug, Nov 39 Kocuria

OTU0017 Feb, May, Aug, Nov 33 OM1_clade

OTU0022 Feb, May, Aug, Nov 21 Sva0996_marine_group

OTU0025 Feb, May, Aug, Nov 18 OM1_clade

OTU0027 Feb, May, Aug, Nov 18 Mycobacterium

OTU0028 Feb, May, Aug, Nov 17 Corynebacteriales

OTU0033 Feb, May, Aug, Nov 13 Brevibacterium

OTU0059 Feb, May, Aug, Nov 5 Brachybacterium

aOTU0003 was present in all 12 libraries. The other OTUs listed in this table were present

in either of the compartment mucus, tissue and skeleton of corals collected in four different

months.

these associates and corals should be addressed from a functional
perspective.

Relationship of environmental factors and the
P. lutea-associated Actinobacteria
It is different from previous conclusion of the distribution of
coral-associated bacteria (Chen et al., 2011; Li et al., 2014a),
actinobacteria associated with P. lutea did not show the apparent
seasonal dynamic variations. We suggest that the actinobacteria
compositions are relatively stable in distinct compartments in
P. lutea. In addition, none of the environmental factors analyzed
in this study was determined as the most significant influence
on the actinobacteria communities. Even so, some genera were
found closely correlated with specific environmental factors. For
instance, Propionibacterium showed negatively correlation with
dissolved oxygen, probably due to its capability of living in the
anaerobic conditions (Patrick and McDowell, 2012). Moreover,
the OTUs0003 and 0004 affiliated with Propionibacteriaceae
was present in almost all 12 clone libraries with a very high
abundance.Whether they are true symbionts, and what functions
they play are worth further research.

Conclusion

The diversity and distribution of coral-associated actinobacteria
were first comprehensively investigated in this study. Highly
diverse actinobacteria was revealed in the 16S rRNA gene clone
libraries of scleractinian coral P. lutea in the South China Sea.
Twelve Actinobacteria genera were detected in corals for the
first time as well as a large number of unclassified groups.
The actinobacterial community compositions were distinct in P.
lutea and in the surrounding seawater. Furthermore, the higher
similarity of actinobacteria composition was observed in the
same compartment (i.e., mucus, tissue, or skeleton) of P. lutea.
This study will help attracting the attentions on the ecological
role of actinobacteria in corals besides the natural products
bioprospecting.
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TABLE 4 | Summary of the Actinobacteria associated with corals.

Family Genus Source coral Isolate/clone References

Acidimicrobiaceae Ilumatobacter Porites lutea Clone Chen et al., 2014

Porites lutea Clone This study

Iamiaceae Iamia Porites lutea Clone This study

Actinopolysporaceae Actinopolyspora Porites lutea Clone This study

Actinospicaceae Actinospica Zoanthid Palythoa australiae Clone Sun et al., 2014

Brevibacteriaceae Brevibacterium Acropora digitifera Isolate Nithyanand and Pandian,

2009

Tubastraea coccinea Clone Yang et al., 2013

Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Porites lutea Clone This study

Dermacoccaceae Demetria Porites lutea Clone This study

Dermacoccus Tubastraea coccinea Clone Yang et al., 2013

Kytococcus Fungia scutaria Isolate Lampert et al., 2006

Porites lutea Clone This study

Dietziaceae Dietzia Leptogorgia minimata Isolate Bruck et al., 2007

Scleronephthya sp. Isolate Sun et al., 2012

Alcyonium gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Zoanthid Palythoa australiae Clone Sun et al., 2014

Porites lutea Clone This study

Geodermatophilaceae Blastococcus Porites lutea Clone This study

Geodermatophilus Porites lutea Clone This study

Modestobacter Porites lutea Clone This study

Intrasporangiaceae Janibacter Acropora gemmifera Isolate Kageyama et al., 2007

Alcyoniu gracllimum Clone Yang et al., 2013

Acropora gemmifera Isolate Valliappan et al., 2014

Porites lutea Clone This study

Ornithinimicrobium Porites lutea Clone This study

Serinicoccus Tubastraea coccinea Clone Yang et al., 2013

Mycobacteriaceae Mycobacterium Sinularia sp. Isolate Thomas et al., 2010

Scleronephthya sp. Isolate Sun et al., 2012

Alcyoniu gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Porites lutea Isolate Li et al., 2014b

Porites lutea Clone This study

Nocardiaceae Rhodococcus Iciligorgia schrammi Isolate Bruck et al., 2007

Scleronephthya sp. Isolate Sun et al., 2012

Tubastraea coccinea Clone Yang et al., 2013

Nocardioidaceae Nocardioides Palythoa caribaeorum Isolate Seemann et al., 2009

Scleronephthya sp. Isolate Sun et al., 2012

Tubastraea coccinea Clone Yang et al., 2013

Porites lutea Clone This study

Nocardiopsaceae Nocardiopsis Platygyra lamellina Clone Lampert et al., 2008

Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Porites lutea Clone This study

(Continued)
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TABLE 4 | Continued

Family Genus Source coral Isolate/clone References

Propionibacteriaceae Friedmanniella Porites lutea Clone This study

Propionibacterium Cirrhipiathes lutkeni Isolate Santiago-Vázquez et al., 2007

Mussimilia hispida Isolate de Castro et al., 2010

Acropora digitifera Isolate Nithyanand et al., 2011b

Zoanthid Palythoa australiae Clone Sun et al., 2014

Porites lutea Clone This study

Tessaracoccus Porites lutea Clone Chen et al., 2014

Pseudonocardiaceae Pseudonocardia Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Zoanthid Palythoa australiae Clone Sun et al., 2014

Porites lutea Clone This study

Amycolatopsis Galaxea fascicularis Isolate Li et al., 2014b

Zoanthid Palythoa australiae Clone Sun et al., 2014

Prauserella Galaxea fascicularis Isolate Li et al., 2014b

Saccharomonospora Antipathes dichotoma Isolate Seemann et al., 2009

Streptomycetaceae Streptomyces Iciligorgia schrammi Isolate Bruck et al., 2007

Acropora digitifera Isolate Nithyanand et al., 2011b

Antipathes dichotoma Isolate Zhang et al., 2012

Scleronephthya sp. Isolate Sun et al., 2012

Alcyonium gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Zoanthid Palythoa australiae Clone Sun et al., 2014

Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Sarcophyton glaucum Isolate EIAhwany et al., 2015

Porites lutea Clone This study

Cellulomonadaceae Cellulomonas Scleronephthya sp. Isolate Sun et al., 2012

Alcyomum gracllimum Clone Yang et al., 2013

Zoanthid Palythoa australiae Clone Sun et al., 2014

Dermatophilaceae Dermatophilus Fungia scutaria Isolate Lampert et al., 2006

Alcyonium gracllimum Clone Yang et al., 2013

Zoanthid Palythoa australiae Clone Sun et al., 2014

Micromonosporaceae Micromonospora Fungia scutaria Clone Lampert et al., 2008

Platygyra lamellina Clone Lampert et al., 2008

Antipathes dichotoma Isolate Zhang et al., 2012

Tubastraea coccinea Clone Yang et al., 2013

Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Scleronephthya sp. Isolate Sun et al., 2012

Porites lutea Clone This study

Verrucosispora gorgonian corals Isolate Zhang et al., 2013

Salinispora Nephthea sp. Isolate Ma et al., 2013

Acidimicrobiales_Incertae_Sedis Candidatus_Microthrix Alcyonium gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Porites lutea Clone This study

(Continued)
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TABLE 4 | Continued

Family Genus Source coral Isolate/clone References

Corynebacteriaceae Corynebacterium Fungia granulose Isolate Ben-Dov et al., 2009

Alcyonium gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Zoanthid Palythoa australiae Clone Sun et al., 2014

Porites lutea Clone This study

Cryptosporangiaceae Fodinicola Porites lutea Clone This study

Dermabacteraceae Brachybacterium Acropora digitifera Isolate Nithyanand and Pandian,

2009

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Porites lutea Clone This study

Microbacteriaceae Agrococcus gorgonian corals Isolate Zhang et al., 2013

Porites lutea Clone This study

Candidatus_Aquiluna Porites lutea Clone This study

Curtobacterium Acropora digitifera Isolate Nithyanand et al., 2011b

Leucobacter Siderastrea sidereal Isolate Cardenas et al., 2012

Microbacterium Siderastrea sidereal Isolate Cardenas et al., 2012

Tubastraea coccinea Clone Yang et al., 2013

Porites lutea Isolate Chen et al., 2014

Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Clone This study

Yonghaparkia Porites lutea Clone This study

Micrococcaceae Arthrobacter Stony coral Isolate Shnit-Orland and Kushmaro,

2009

Porites lutea Clone This study

Kocuria Acropora digitifera Isolate Nithyanand et al., 2011b

Porites lutea Isolate Chen et al., 2014

Zoanthid Palythoa Australia Clone Sun et al., 2014

Porites lutea Clone This study

Micrococcus Acropora digitifera Isolate Nithyanand et al., 2011b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Clone This study

Rothia Platygyra carnosus Isolate Chiu et al., 2012

Porites lutea Clone This study

Tersicoccus Porites lutea Clone This study

Gordoniaceae Gordonia Scleronephthya sp. Isolate Sun et al., 2012

Alcyonium gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Galaxea fascicularis Isolate Li et al., 2014b

Acropora millepora Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Jiangellaceae Jiangella Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Promicromonosporaceae Cellulosimicrobium Acropora millepora Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Myceligenerans Fam. Caryophillidae Isolate Sarmiento-Vizcaíno et al.,

2015

Tsukamurellaceae Tsukamurella Galaxea fascicularis Isolate Li et al., 2014b

The genera firstly reported in this study were shown in bold.
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The actinobacterial diversity was investigated in the sediments of five cold springs
in Wuli region on the Qinghai-Tibet Plateau using 16S rRNA gene phylogenetic
analysis. The actinobacterial communities of the studied cold springs were diverse
and the obtained actinobacterial operational taxonomic units were classified into
12 actinobacterial orders (e.g., Acidimicrobiales, Corynebacteriales, Gaiellales,
Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales,
Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales) and
unclassified Actinobacteria. The actinobacterial composition varied among the
investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to
environmental variables. The actinobacterial communities in the cold springs were
more diverse than other cold habitats on the Tibetan Plateau, and their compositions
showed unique geographical distribution characteristics. Statistical analyses showed
that biogeographical isolation and unique environmental conditions might be major
factors influencing actinobacterial distribution among the investigated cold springs.

Keywords: Actinobacteria, diversity, 16S rRNA gene, cold springs, Qinghai-Tibet Plateau

INTRODUCTION

A large portion of the Qinghai-Tibet Plateau (QTP) is underlain by permafrost, which is suitable
for gas hydrate development (Wang and French, 1995; Zhou et al., 2000). Recent evidence indicates
that gas hydrate is present in the permafrost zone of Qilian Mountains in the northern margin of
QTP (Lu et al., 2009; Zhu et al., 2010). Large numbers of factures and faults are present in the
identified hydrate-containing permafrost zone (Lu et al., 2009; Wang, 2010; He et al., 2012), along
which cold springs are commonly distributed (Lu et al., 2007; Li et al., 2012).

The environmental condition of the cold springs in the hydrate-containing permafrost zone is
similar to marine cold seeps in terms of geochemistry. Cold seeps occur in geologically active and
passive continental margins, where continuous methane is advected upward through sediments by
forced gradients, supporting abundant microbial populations (Levin, 2005). The methane-fueled
communities in marine cold seeps possess high metabolic rates, and they play important roles
in carbon and nitrogen cycling (Hinrichs and Boetius, 2002; Boetius and Suess, 2004; Nakagawa
et al., 2007; Reeburgh, 2007; Dang et al., 2010). Because of their potentially important role in global
climate change, microbial communities in marine cold seeps have received much attention (Sibuet
and Olu-Le Roy, 2002; Reeburgh, 2007).

As one of the largest taxonomic units within the Bacteria domain, Actinobacteria are
drawing increasing interests from microbiologists because their biotechnological and commercial
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value (Goodfellow et al., 1988; Demain, 1995). The characterized
actinobacterial strains can be grouped into six known classes:
Acidimicrobiia, Actinobacteria, Coriobacteriia, Nitriliruptoria,
Rubrobacteria, and Thermoleophilia (Goodfellow et al., 2012).
The actinobacterial diversity and community structures have
been investigated in various environments, including marine
environments (Goodfellow and Haynes, 1984; Stach et al.,
2003; Maldonado et al., 2005; Stach and Bull, 2005; Ward
and Bora, 2006), soils (Gremion et al., 2003; Cho et al., 2006;
Wu et al., 2009), terrestiral aquatic ecosystems (e.g., freshwater
rivers, saline/hypersaline lakes, hot springs, glacial meltwater;
Mohagheghi et al., 1986; Mevs et al., 2000; Zwart et al., 2002;
Hahn et al., 2003; Warnecke et al., 2004; Mancinelli, 2005;
Stach and Bull, 2005; Allgaier and Grossart, 2006; Newton
et al., 2007; Hahn, 2009; Holmfeldt et al., 2009; Liu et al.,
2009a,b; Song et al., 2009; Wu et al., 2009; Jiang et al.,
2010a, 2012a; Ghai et al., 2012, 2014; Goodfellow et al.,
2012). These previous studies show that Actinobacteria are
ubiquitous and actinobacterial community diversity is variable
among samples from different ecosystems. The actinobacterial
community in marine sediments was mainly composed of the
orders of Acidimicrobiales, Actinomycetales, Corynebacteriales,
Frankiales,Micrococcales,Micromonosporales, Pseudonocardiales,
Streptomycetales, and unclassified Actinobacteria (Stach et al.,
2003; Goodfellow et al., 2012), while the Actinobacteria in
freshwater ecosystems consisted of acI, acII, acIII, acIV, acSTL,
soilII+III, acTH1, and Luna (Hahn et al., 2003; Warnecke et al.,
2004; Ghai et al., 2012). In contrast, limited is known about
microbial communities in terrestrial cold springs up to date.
Previously, one 16S rRNA gene-based microbial study showed
the presence of Actinobacteria in the cold springs of Wuli,
QTP (Li et al., 2012). However, the actinobacterial diversity in
these cold springs might be under-represented due to the use of
universal bacterial primers (Cottrell and Kirchman, 2000; Jiang
et al., 2010a).

The objective of this study was to investigate the
actinobacterial diversity and community structure in five
Tibetan cold springs based on 16S rRNA gene phylogenetic
analyses. We also compared the actinobacterial diversity in the
sampled Tibetan cold springs with that in other habitats.

MATERIALS AND METHODS

Site Description and Sample Collection
In July 2010, five cold springs were sampled in Wuli Area
(Figure 1), Qinghai Province, China, that is adjacent to the
Daha coal mine (Zhou, 2004) and located in the Fenghuo
Mountain-Wuli gas hydrate zone (Zhu et al., 2011). The
Wuli area is located at the elevation of ∼4600 m. Water pH
and temperature were measured in the field using a digital
soil pH meter (Ferrymorse-Seed Company) and a mercury
thermometer, respectively. During sample collection (around
noon), the ambient temperature was 15–17◦C, whereas the water
temperature of the sampled cold springs was around 1–3◦C.
Sediments from five cold springs (named as QCS1, QCS3, QCS4,
QCS5, and QCS6, respectively) were collected into 50 mL sterile

Falcon tubes using a sterile spatula. The collected samples were
stored at −20◦C in the field as well as during transportation and
subsequently at −80◦C in the laboratory until further analyses.

Porewater Chemistry and Sediment
Mineralogy
Cation composition of pore water was analyzed by using
inductively coupled plasma-optical emission spectrometry (ICP-
OES; Varian Vista MPX, Varian, Palo Alto, CA, USA). Anion
composition was analyzed using ionic chromatography (IC) on
a Dionex ISC90 equipped with a conductivity detector and an
AS14A column (eluent, 10 μM Na2CO3/NaHCO3; flow rate,
1.0 mL/min; Jiang et al., 2010a). The sediment mineralogy was
analyzed by using powder X-ray diffraction (XRD) on a Rigaku
D/Max 2550/PC X-ray diffractometer with Cu Ka radiation
(40 kV; 100 mA; Zhang et al., 2009).

DNA Extraction, PCR, and Phylogenetic
Analyses
DNA of the sediment samples was extracted using FastDNAR©

SPIN Kit for Soil (MP Biomedicals, LLC, Solon, OH, USA)
according to the manufacturer’s protocols. The actinobacterial
16S rRNA gene from the extracted DNA samples was amplified
using the actinobacterial 16S rRNA gene-specific forward primer
S-C-Act-0235-a-S-20 (5′-CGC GGC CTA TCA GCT TGT TG-
3′) and reverse primer S-C-Act-0878-a-A-19 (5′-CCG TAC TCC
CCA GGC GGG G-3′; Stach et al., 2003) with the same
PCR conditions as described previously (Wu et al., 2009).
PCR products were purified using Agarose Gel DNA Fragment
Recovery Kit Ver. 2.0 (TaKaRa, Dalian, China) according to
the manufacturer’s instructions. 16S rRNA gene clone libraries
were constructed by ligating the purified PCR products into
pGEMR©-T Easy Vector system (Promega, Madison, WI, USA)
and transformed into competent Escherichia coli JM109 cells
according to the manufacturer’s protocols. Positive clones
were randomly picked for sequencing with an ABI 3730 XL
DNA Sequencer (Applied BioSystems, Foster City, CA, USA).
Rarefaction analysis was performed to evaluate the saturation
of the sampled clones using the PAST software package1 (see
Supplementary Figure S1).

All the obtained clone sequences were assembled and edited
by using Sequencher v.4.1 (GeneCodes, Ann Arbor, MI, USA)
and then checked by BLAST function in NCBI (National Center
of Biotechnology Information2). Potential chimeric sequences
were removed from further analyses. Operational taxonomic
units (OTUs) were identified at a 97% cutoff by using
Mothur v1.36.1 with furthest neighbor method (Schloss et al.,
2009). One sequence from each OTU was selected and the
closest references were picked up from the GenBank database
for phylogenetic analyses (see Supplementary Table S1). The
representative sequences of OTUs and references were combined
and aligned using ClustalW in MEGA (molecular evolutionary
genetics analysis) program, version 6.06. Maximum likelihood

1http://folk.uio.no/ohammer/past/
2http://blast.ncbi.nlm.nih.gov/Blast.cgi
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FIGURE 1 | A geographic map showing the locations of sampling sites in Wuli County, Qinghai-Tibet Plateau, China.

phylogenetic trees were constructed using the above aligned
sequences. Bootstrap replications of 1000 were assessed. The
unique clone sequences determined in this study were deposited
in the GenBank database under accession numbers JX667788–
JX667977, JF712624–JF712648, and KU052203–KU052216.

Statistical Analysis
Alpha-diversity indices, such as Simpson, Shannon, Equitability
and Chao 1, were calculated by using the PAST software
package (Hammer et al., 2001). Coverage values of the clone
libraries were calculated with the equation C = 1-n/N, where
n was the number of phylotypes that occurred only once in
the clone library and N was the total number of sequenced
clones (Jiang et al., 2010b). All obtained environmental
variables were normalized (values ranged between 1 and
100) to improve normality and homoscedasticity for statistical
analyses. Clustering analysis were performed by using PAST
software package with unweighted pair group method with
arithmatic mean. Mantel tests were performed to assess the
correlation between actinobacterial community composition
and environmental variables by using the PAST software
package. Briefly, the biotic matrices were constructed on the
basis of Bray-Curtis dissimilarity of actinobacterial community
compositions. The abiotic matrices were constructed on the
basis of the Euclidean distances of normalized environmental
variables.

In order to compare the actinobacterial community
composition difference between the QTP cold springs and other
related habitats, reference actinobacterial clone sequences from
Tibetan hot springs (Jiang et al., 2012a), Tibetan (hyper-)saline
lakes (Jiang et al., 2010a), freshwater sample of Daotang river
(Jiang et al., 2010a), Atlantic ocean deep-sea sediment (Stach
et al., 2003), the Three Gorges Dam of the Yangtze River (Jiang

et al., 2012b) and Tengchong hot springs (Song et al., 2009) were
downloaded from the GenBank database and combined with the
ones obtained in this study. In order to avoid any bias resulting
from different primers, only actinobacterial 16S rRNA sequences
amplified from the same primer set and PCR protocol as this
study were included in subsequent analysis. The combined
actinobacterial 16S rRNA sequences were aligned using ClustalW
in MEGA and then were subjected to OTU identification at the
97% cutoff using Mothur v1.36.1 with furthest neighbor method
(Schloss et al., 2009). Clustering analysis was performed to
discern the difference of actinobacterial community composition
among habitats based on Jaccard similarity using the PAST
software package.

RESULTS

Porewater Chemistry and Mineralogy
The pH of the sampled cold springs were neutral, and the
temperature ranged 1.5–2.5◦ (Table 1). The concentration of
Si4+ and total Fe were 0.6–5.1 and 0.0–6.9 mg/L, respectively.
Heavy metals Mn and Sr only occurred in the QCS1 sample. The
sediment samples were mainly composed of quartz, plagioclase,
calcite, montmorillonite, illite, and kaolinite.

Phylogenetic Diversity of Actinobacteria
Five clone libraries (QCS1, QCS3, QCS4, QCS5, and QCS6)
were constructed. A total of 484 actinobacterial 16S rRNA
gene clone sequences were obtained: 117, 85, 76, 103, and 103
clone sequences for QCS1, QCS3, QCS4, QCS5, and QCS6,
respectively. The number of sequenced clones represented
76–91% coverage for each clone library (Table 2). Out of
these clone sequences, one hundred and twenty OTUs (29,
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TABLE 1 | Geographic and geochemical parameters of the studied cold springs on the Qinghai-Tibet Plateau.

Sample ID QCS1 QCS3 QCS4 QCS5 QCS6

GPS location (N/E) 34◦20′/
94◦38′

34◦20′36.7′ ′/
92◦44′51.6′ ′

34◦20′42.5′ ′/
92◦45′1.5′ ′

34◦20′53.8′ ′/
92◦45′29.3′ ′

34◦21′19.7′ ′/
92◦45′29.7′ ′

Elevation (m) 4610 4611 4609 4637 4612

Temperature (◦C) 2.5 1.5 2.5 2 2

pH 7 6.8 7 7.2 7

Mg2+ (mg/L) 40.8 57.9 6 41 56.7

Si4+ (mg/L) 2.7 3.2 0.6 3.5 5.1

Ca2+ (mg/L) 50.1 84.2 12.7 90.4 185.2

K+ (mg/L) 5.19 5.4 4.6 9.2 96

Na+ (mg/L) 104.2 97.5 8.7 55.8 69.1

F− (mg/L) 0 4.8 2 5.1 13

Cl− (mg/L) 133 883.1 75.1 390.7 372

NO3
− (mg/L) 3.6 98.3 40.4 165.5 26

PO4
2− (mg/L) 0.4 0.0 0.0 0.0 0.0

SO4
2− (mg/L) 159.1 717.5 146.2 1609.2 3057

Total Fe (mg/L) 0.0 0.2 1.8 0.1 6.9

Total Mn (mg/L) 0.1 0.0 0.0 0.0 0.0

Total Sr (mg/L) 1.0 0.0 0.0 0.0 0.0

TABLE 2 | Ecological estimates and major group affiliation of clone
sequences retrieved from the five cold springs on the Qinghai-Tibet
Plateau.

Clone libraries QCS1 QCS3 QCS4 QCS5 QCS6

Library sizes (No. of clones) 117 85 76 103 103

Coverage (%) 91 85 76 88 86

No. of observed OTUs 29 27 32 27 31

Simpson 0.9 0.9 0.9 0.9 0.9

Shannon 2.9 2.8 2.9 2.6 3.0

Equitability 0.9 0.8 0.8 0.8 0.9

Chao 1 34.6 36.8 47.3 34.3 46.2

27, 32, 27, 31 for QCS1, QCS3, QCS4, QCS5, and QCS6,
respectively) were identified (Table 2). These identified OTUs
could be classified into Acidimicrobiales, Corynebacteriales,
Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales,
Micromonosporales, Micrococcales, Nakamurellales,
Propionibacteriales, Pseudonocardiales, Streptomycetales,
and unclassified Actinobacteria (Figure 2). The diversity
indices such as Shannon (2.6–3.0), Chao 1 (34.3–46.2) varied
among the studied cold springs (Table 2). Acidimicrobiales,
Geodermatophilales, Micrococcales, Propionibacteriales, and
Pseudonocardiales were dominant actinobacterial groups
(Figure 3C). Among the studied samples, Acidimicrobiales,
Micrococcales, Pseudonocardiales, and unclassified Actinobacteria
were dominant (relative abundance > 10%) in the QCS1
sample; Acidimicrobiales, Micrococcales, Pseudonocardiales,
and Propionibacteriales dominated in the QCS3 sample;
Acidimicrobiales, Geodermatophilales, Micrococcales, and
Propionibacteriales were dominant in the QCS4 and QCS5
samples; and Acidimicrobiales, Corynebacteriales, Kineosporiales,
Micrococcales, and Propionibacteriales dominated in the QCS6
sample (Figure 3C).

The order of Micrococcales was the most dominant (average
abundance 25.6%) group in the studied cold spring samples,
and a large portion of clones affiliated with Micrococcales were
closely related (identity: 95–99%) to cultured psychrophilic
Actinobacteria, such as Arthrobacter sp. (Reddy et al., 2000;
Fong et al., 2001; Wang et al., 2009) and Demequina sp.
(Finster et al., 2009; Figure 2 and Supplementary Table S1).
Furthermore, many clone sequences obtained in this study
were affiliated with Acidimicrobiales, and they were related to
clone sequences retrieved from cold habitats such as arctic soil
exposed by glacier retreat (Quince et al., 2011), cold spring
sediment in Shawan, Xinjiang, China (Zeng et al., 2010), and
Shule River permafrost soils on the Tibetan Plateau (Figure 2).
The remaining 5.9% (32 out of 484) of the clone sequences
retrieved in this study belonged to unclassified Actinobacteria
(Figure 2).

Relationships between Actinobacterial
Community Composition and
Environmental Variables
Cluster analysis showed that the cold spring geochemistry
(Figure 3A) presented similar grouping patterns to
actinobacterial community composition (Figure 3B) among
the studied samples. Mantel tests showed that actinobacterial
community composition of the studied cold springs was
significantly correlated (r = 0.748, P = 0.021) with the combined
environmental variables but not significantly (P > 0.05) with
any single environmental variable measured in this study.
Furthermore, cluster analysis showed that the actinobacterial
communities in the QTP samples (including clod springs, hot
springs and lakes) were grouped into one cluster, which has
little similarity (Jaccard similarity < 0.05) with that of marine
sediments from Atlantic ocean and Tengchong hot springs
(Figure 4).
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FIGURE 2 | Continued
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FIGURE 2 | Continued
Maximum-likelihood tree (partial sequences, ∼640 bp) showing the phylogenetic relationships of the actinobacterial 16S rRNA gene sequences
cloned from the studied samples to closely related sequences from the GenBank database. One representative clone sequence within each OTU was
shown. Bootstrap values of >50% (for 1000 iterations) were shown.

DISCUSSION

Actinobacterial Communities in the QTP
Cold Springs
The actinobacterial community composition in cold springs on
the QTP was similar to that of cold habitats in other locations.
The actinobacterial communities of the studied QTP cold
springs were composed of major groups related to psychrophilic
Actinobacteria species (e.g., Arthrobacter psychrochitiniphilus,
Demequina lutea) and environmental clone sequences retrieved
from cold habitats, such as snow/ice and soils in Qinghai–Tibetan
Plateau andArctic/Antarctic. This indicated that low temperature
was a major environmental factor for dominating actinobacterial
distribution in cold habitats.

Excluding low-temperature property, actinobacterial
community composition in the studied cold springs may
be affected by environmental variable composition. For example,
samples of QCS3, QCS4, and QCS5 had similar environmental
variables composition, and thus possessed similar actinobacterial
community compositions (Figures 3A,B); the environmental
variable composition of QCS1 and QCS6 was different from
the other studied samples (Figure 3A): QCS1 possess highest
concentration of Na+ and heavy metal Mn and Sr (Table 1),
and QCS6 sample has highest Ca2+ and total Fe (Table 1), thus
it is reasonable to observe distinct actinobacterial community
compositions in QCS1 and QCS6 samples from that in QCS3,
QCS4, and QCS5 samples (Figure 3B). Previous studies
have shown that microbial community composition could
be affected by multiple environmental parameters, such as
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FIGURE 3 | (A) Cluster analysis of environmental variables in the studied samples based on Euclidean distance; (B) Cluster analysis of actinobacterial community
composition in the studied samples based on Bray-Curtis similarity; (C) Schematic figures showing the frequencies of OTUs affiliated with major actinobacerial
orders in this study.

FIGURE 4 | Jaccard similarity-based cluster analysis showing the
differences between actinobacterial 16S rRNA gene clone libraries of
the QTP cold springs in this study and those from hot springs on the
QTP (Jiang et al., 2012a), (hyper-)saline lakes on the QTP (Jiang et al.,
2010a), freshwater sample of Daotang river on the QTP (Jiang et al.,
2012b), Tengchong hot springs of Yunnan Province, China (Song et al.,
2009), Atlantic ocean deep-sea sediment in the edge of the Saharan
debris flow near the Canary Islands (Stach et al., 2003), and waters
near the Three Gorges Dam in the middle reach of the Yangtze River
(Jiang et al., 2012b).

salinity (Lozupone and Knight, 2007), temperature (Lindh
et al., 2013), and heavy metals (Gong et al., 2015). Therefore,
it is not surprising to observe significant correlation between
actinobacterial community composition and environmental
variables in the studied cold springs.

It is notable that some of the retrieved actinobacterial clone
sequences from the cold springs showed high identity with those
obtained from petroleum- or coal-related environments. This
observation is expected in that the sampling sites in this study
was located in the Wuli-Daha coal-bearing belt (Zhou, 2004) and
Fenghuo Mountain-Wuli gas hydrate-bearing belt (Zhu et al.,
2010) in southern Qinghai Province. The underlying coal or gas
hydrate might provide abundant nutrients, which support diverse
actinobacterial communities in the studied cold springs (Santos
et al., 2008; Jiang et al., 2010a).

Actinobacterial Difference between the
QTP Cold Springs and Other Habitats
The actinobacterial community in the investigated cold springs
was more diverse than other cold environments. For example, the
Actinobacteria sequences obtained in this study were distributed
into 12 orders (Figures 2 and 3C). In contrast, theActinobacteria-
related clones retrieved in the snow of four glaciers on the Tibetan
Plateau were mainly affiliated with the order Micrococcales and
unclassified Actinobacteria (Liu et al., 2009b). This suggested
Tibetan cold springs might contain more suitable growth
conditions for Actinobacteria than glaciers.

Actinobacterial communities from different habitats possessed
certain geographic characteristics. The actinobacterial clones
from the studied cold springs (this study) were closely related
to those from the QTP hot springs and saline lakes (Figure 4),
this indicated that the actinobacterial communities in the
studied cold springs were more similar to that in other QTP
samples (including hot springs and lakes) than to those in the
samples from other locations. For example, the majority of
the retrieved actinobacterial 16S rRNA gene clone sequences in
the investigated cold springs were affiliated with Micrococcales,
Propionibacteriales, and Acidimicrobiales. Actinobacterial clones
retrieved from Tibetan saline lakes were mainly classified
with Micrococcales, Propionibacteriales, and Frankiales (Jiang
et al., 2010a). In contrast, the actinobacterial communities in
Tengchong hot springs were mainly affiliated with unclassified
Actinobacteria, Rubrobacterales, and Frankiales (Song et al.,
2009). Previous studies have shown that Actinobacteria in hot
springs, soils and oceans possess geographic distributions (Ward
and Bora, 2006; Wawrik et al., 2007; Valverde et al., 2012). In
addition, the Actinobacteria communities in the studied QTP
cold spring sediments were different from those in marine
sediments (Stach et al., 2003; Goodfellow et al., 2012) and
freshwater ecosystems (Hahn et al., 2003; Warnecke et al., 2004;
Ghai et al., 2012). The observed geographic distribution of
Actinobacteria in the QTP samples could be ascribed to the
distinct conditions (e.g., dry climate, low pressure, high intensity
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of UV radiation) of the cold springs, hot springs, and saline
lakes on the QTP from other ecosystems (Jiang et al., 2010a,
2012a). However, the underlying reasons still await further
investigation.

In summary, the actinobacterial communities in the
studied Tibetan cold springs possessed unique compositional
characteristics and were mainly consisted of Acidimicrobiales,
Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales,
Kineosporiales,Micromonosporales,Micrococcales,Nakamurellales,
Propionibacteriales, Pseudonocardiales, Streptomycetales, and
unclassified Actinobacteria. Biogeographical isolation and
unique environmental conditions might be predominant
factors affecting the observed similarities and differences in
the actinobacterial communities between the investigated cold
springs and other habitats.
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Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These

volcanic caves are found worldwide, and studies are finding vast bacteria diversity within

these caves. One group of bacteria that can be abundant in volcanic caves, as well as

other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce

a variety of secondary metabolites, rare and novel Actinobacteria are being sought

in underexplored environments. The abundance of novel Actinobacteria in volcanic

caves makes this environment an excellent location to study these bacteria. Scanning

electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in

the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like

or knobby extensions, were some of the microbial structures observed within the

microbial mat samples. In addition, the SEM study pointed out that these features figure

prominently in both constructive and destructive mineral processes. To further investigate

this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the

Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal,

and Hawai`i and New Mexico, USA. This comparison represents one of the largest

sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown

to be dominated by Actinomycetales, but also included several newly described orders,

such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four

locations shared less than 97% similarity to known sequences, and nearly 71% of the

clones were singletons, supporting the commonly held belief that volcanic caves are an

untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a

wider view of the microbial diversity in Azorean volcanic caves revealing three additional

orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial

ecology in volcanic caves are still very limited. To rectify this deficiency, the results from our

study help fill in the gaps in our knowledge of actinobacterial diversity and their potential

roles in the volcanic cave ecosystems.
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INTRODUCTION

Actinobacteria are an ubiquitous phyla found to thrive in
almost any environment, from soil and marine, to less expected
environments such as insects, plants, roots, and caves (See Tiwari
and Gupta, 2013; Subramani and Aalbersberg, 2013 for reviews).
Recent culture independent studies have found Actinobacteria
in high abundance in a variety of cave types, including volcanic
caves (Pašić et al., 2010; Northup et al., 2011; Cuezva et al., 2012;
Niyomyong et al., 2012; Quintana et al., 2013; Barton et al., 2014;
Hathaway et al., 2014). Furthermore, many characterized species
of Actinobacteria have been described from caves (Groth et al.,
1999; Lee et al., 2000, 2001; Jurado et al., 2005a,b; Lee, 2006).

Primary and secondary metabolites from Actinobacteria have
been described as important sources of industrial compounds
(Miao and Davies, 2010). Rare Actinobacteria, important for
novel secondary metabolite production, have been found in
many different soil types (Tiwari and Gupta, 2012; Guo
et al., 2015), but caves, volcanic caves included, remain an
underexploited environment to screen for industrially important
compounds. Goodfellow and Fiedler (2010) suggested examining
underexploited sources of Actinobacteria and using taxonomic
diversity as a surrogate for chemical diversity, based on the
assumption that novel species may contain unique compounds,
reducing the re-discovery of the same handful of known
secondary metabolites.

Cave Actinobacteria are of particular interest because of
the unique environment in which they live. The extreme
(i.e., low nutrient inputs, low productivity) and often pristine
environment would result in bacteria exploiting different
metabolic pathways, including the capacity for biomineralization
and rock-weathering (Cuezva et al., 2012; Miller et al.,
2012a,b). Caves are characterized by microenvironments,
which result from several types of reactions, including microbial
processes that often involve redox reactions (Barton and
Northup, 2007). These mineral microniches control the
diversity of subsurface microbial populations (Jones and
Bennett, 2014), since microbial colonization of rock surfaces
is driven by the rock’s chemistry and the organism’s metabolic
requirements and tolerances, suggesting that subsurface

microbial communities have specific associations to specific
minerals. In fact, caves on Earth can harbor a wide variety
of mineral-utilizing microorganisms that figure prominently
in the formation of secondary mineral deposits and unusual
mineralized microstructures recognized as biosignatures.
Tubular mineralized sheaths (Boston et al., 2001; Northup et al.,
2011), bacteria concealed within mineral deposits (Northup
et al., 2011), microfossils preserved in minerals (Provencio and
Polyak, 2010; Souza-Egipsy et al., 2010), filamentous fabrics
(Hofmann et al., 2008) and “cell-sized” etch pits or microborings
produced by bacteria (McLoughlin et al., 2007) are some of
the proposed models for biosignatures found in subsurface
environments.

The main goal of the research presented here is to obtain a
better understanding of the actinobacterial diversity in volcanic
caves from different parts of the world. Comprehensive studies

on microbial community ecology of caves identifying abundant,
rare and novel species and their environmental implications
are still scarce. In the course of this study, we aim to unravel
the diversity and composition of volcanic cave Actinobacteria,
some of the biogeochemical role of Actinobacteria in caves
and their geomicrobiological interactions. Recently, a rapid
expansion of interest in subsurface environments has emerged
to better understand biodiversity, origins of life on Earth and
on other planets. In fact, the reported early results on liquid
water and rather recent volcanic activity yielding volcanic
caves on Mars, suggesting that the Martian subsurface can
house organic molecules or traces of microbial life (Léveillé
and Datta, 2010; Northup et al., 2011), make the search for
microbial life on Earth’s volcanic caves even more compelling.
Overall, this work helps us to understand whether volcanic
caves under study present similar levels of diversity and do
Actinobacteria found in volcanic caves show diversity across
different scales from community level tomorphology tomicrobe-
mineral interactions.

MATERIALS AND METHODS

Morphological Characterization of Colored
Microbial Mats
Sampling of Azorean, Canadian, Canarian, Hawaiian,

and New Mexican Volcanic Caves
Samples of visible white and/or yellowmicrobial mats on volcanic
cave walls and ceilings (Figure 1) were collected from: (1) Bird
Park Cave and Kipuka Kanohina Cave System, Hawai`i (USA);
(2) Helmcken Falls Cave, British Columbia (Canada); (3) Cave
12 from El Malpais National Monument, NewMexico (USA); (4)
Gruta de Terra Mole and Gruta dos Montanheiros in Terceira
and Pico Islands, Azores (Portugal), and (5) Fuente de la Canaria,
Falda de La Horqueta, Llano de los Caños and Honda del
Bejenado caves in La Palma Island, Canary islands (Spain).
Samples were taken by gently scraping the coloredmicrobial mats
with a sterile scalpel, gathering it into sterile vials and stored at
4◦C until laboratory procedures.

Scanning Electron Microscopy
Bulk samples with microbial mats from Canarian volcanic
caves (Spain) were directly mounted on a sample stub and
sputter coated with a thin gold/palladium film. Samples were
subsequently examined on a Jeol JSM-7001F field emission
scanning electronmicroscope (FESEM) equippedwith anOxford
X-ray energy dispersive spectroscopy (EDS) detector. FESEM
examinations were operated in secondary electron (SE) detection
mode with an acceleration potential of 15 kV at Instituto
Superior Tecnico, University of Lisbon, Portugal. Samples
from Helmcken Falls Cave (Canada) were prepared, processed,
and observed at the University of British Columbia (UBC)
BioImaging Facility (Cheeptham et al., 2013). Rock chips with
microbial mats from Azores, New Mexico, and Hawai`i were
mounted, processed and observed as described in Hathaway et al.
(2014).
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FIGURE 1 | (A) World map of volcanic caves studied in this work: 1—Hawaiian volcanic caves (U.S.A.); 2—Helmcken Falls Cave, British Columbia (Canada); 3—New

Mexico volcanic caves (U.S.A.); 4—Azorean lava caves (Portugal); 5—La Palma caves, Canary Islands (Spain). (B) General view of extensive yellow microbial mats

from Gruta da Terra Mole (Azores, Portugal). (C) General view of white colonies forming dendritic branches on basaltic lava from Fuente de la Canaria cave (La Palma

Island, Spain). (D) Close-up view of a yellow colony from Gruta dos Montanheiros (Azores, Portugal). (E) Close-up view of white microbial mat covered with water

droplets from Gruta da Terra Mole (Azores, Portugal).

Estimation, Description, and Novelty of
Actinobacterial Diversity
Sample Collection and Clone Library Preparation and

OTU-based Analysis for New Mexico (USA), Hawai`i

(USA), and Azores Islands (Portugal)

Microbial mat samples of various colors were collected from

the dark zone of five caves (Cave 12, Cave 255, Cave 266, Cave

261, and Cave 315) from El Malpais National Monument, New

Mexico, six caves on the Big Island of Hawai`i (Bird Park,
Epperson’s, Kaumana, and Thurston Caves and the Maelstrom
and Kula Kai Caverns Sections of the Kipuka Kanohina Cave
System), four caves on the Azorean island of Pico (Furna do
Lemos, Gruta dos Montanheiros, Gruta da Ribeira do Fundo,
and Gruta das Torres) and 11 caves on the Azorean island
of Terceira (Algar do Carvão, Gruta das Agulhas, Gruta da
Achada, Gruta dos Buracos, Gruta dos Balcões, Gruta da Branca
Opala, Gruta da Madre de Deus, Gruta do Natal, Gruta da
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Terra Mole, Gruta dos Principiantes, and Gruta da Malha), see
Figure 1 and Supplemental Table 1. DNA from microbial mats
of various colors was aseptically collected. DNA was extracted
and purified using the MoBio PowerSoil™ DNA Isolation Kit
using the manufacturer’s protocol (MoBio, Carlsbad, CA), with
the exception of the substitution of bead beating for 1.5min
(Biospec Products, Bartlesville, OK, USA) instead of vortexing
for cell lysis. 16S rDNA sequences were amplified with universal
bacterial primers 46 forward (5′ -GCYTAAYACATGCAAGTCG-
3′) and 1409 reverse (5′ -GTGACGGGCRGTGTGTRCAA- 3′)
(Northup et al., 2010).

Amplification reactions were carried out in a 25-µL volume
with 1X PCR buffer with 1.5mM Mg2+, 0.4µM of each primer,
0.25mM of each dNTPs, 5µg of 50 mg/mL BSA (Ambion,
Austin, TX, USA) and 1U AmpliTaq LD (Applied Biosystems,
Foster City, CA, USA), and carried out under the following
thermocyling conditions on an Eppendforf Mastercycler 5333
(Eppendorf, Hauppauge, NY, USA): 94◦C for 5min, followed
by 31 cycles of 94◦C for 30 s, 50◦C for 30 s, 72◦C for
1.5min, with a final extension at 72◦C for 7min. Amplicons
were cleaned and purified using the Qiagen PCR cleanup kit
(Qiagen, Germantown, Maryland) and cloned using the TOPO
TA Cloning kit (Invitrogen, Carlsbad, CA). Sequencing was
carried out at the Washington University Genome Sequencing
Facility. The subset of Actinobacteria were identified with
RDP classifier (Maidak et al., 2001), and used for further
analysis.

Alignments of the resulting actinobacterial sequences set were
generated using INFERNAL (Nawrocki et al., 2009), trimmed
to 104–1403 bp to remove ragged ends, and clustered into
Operational Taxonomic Units (OTUs) at 97% similarity with
QIIME using uclust (Caporaso et al., 2010). Taxonomy was
assigned using uclust against the greengenes 13.8 database
(Edgar, 2010; McDonald et al., 2012). Sequences were compared
with the GenBank database in March 2015 using the Basic Local
Alignment Search Tool (BLAST)1 to determine closest relatives
(Altschul et al., 1997). An identity matrix was generated using
Bio Edit2. The tree was built using FastTree with the gamma and
nt options (Price et al., 2009, 2010). OTUs and location were
added to the tree using the phyloseq package in R (McMurdie
and Holmes, 2013; R Core Team, 2015).

All other OTU-based approaches were performed with
software package mothur 1.34 (Schloss et al., 2009). Rarefaction
curves, non-parametric diversity indexes npsShannon (Chao and
Shen, 2003), Shannon (Shannon, 1948) and Simpson (Simpson,
1949) and estimator Chao1 (Chao, 1984), as well as the Good’s
Coverage (Good, 1953) were calculated to infer the richness and
evenness of the samples.

16S rRNA Gene Amplicon Library Preparation,

Pyrosequencing, Bioinformatics, and OTU-based

Analysis in Azorean Volcanic Caves
16S rRNA gene amplicon libraries were prepared from the
previously described Azorean microbial mat samples collected

1www.ncbi.nlm.nih.gov/BLAST/.
2www.mbio.ncsu.edu/BioEdit/bioedit.html.

from the previously mentioned caves with the exception of Algar
do Carvão (Supplemental Table 1). The small subunit rRNA gene
was amplified from community DNA targeting the V1 and V3
hypervariable region, with barcoded fusion primers containing
the Roche-454 A and B Titanium sequencing adapters, a
eight-base barcode sequence, the universal forward primer
5′– AGRGTTTGATCMTGGCTCAG -3′ and the universal
reverse primer 5′–GTNTTACNGCGGCKGCTG-3′. Amplicon
454 pyrosequencing, as originally described by Dowd et al.
(2008), was performed with PCR amplification as described in
Brantner et al. (2014). Following PCR, all amplicon products
from different samples were mixed in equal concentrations and
purified using Agencourt Ampure beads (Agencourt Bioscience
Corporation, MA, USA). Samples were sequenced utilizing
Roche 454 FLX titanium instruments and reagents and following
manufacturer’s guidelines.

The raw pyrosequencing reads were processed using version
1.34 of the mothur software package (Schloss et al., 2009).
Sequencing reads were assigned to the appropriate samples
based on the corresponding barcode and were quality filtered
to minimize the effects of random sequencing errors, by
eliminating sequence reads <200 bp, sequences that contained
more than one undetermined nucleotide (N) and sequences
with a maximum homopolymer length of 8 nucleotides.
Identification and removal of chimeras was performed with
Chimera.uchime (Schloss et al., 2011). Sequences not passing
these quality controls were discarded. When preparing the
inputs for analysis, the “remove.groups” command was
used to discard all sequences not belonging to the phyla
Actinobacteria.

OTUs were assigned from the uncorrected pairwise distances
between aligned 16S rRNA gene sequences, using the average
neighbor clustering (Schloss and Westcott, 2011), considering a
cut-off value of 97% similarity. All OTU-based approaches were
performed with software package mothur 1.34 (Schloss et al.,
2009) as well as the taxonomic assignment of the sequences,
performed by the Greengenes-based alignment using default
parameters. A list of GenBank accession numbers is provided in
Supplemental Table 2.

RESULTS AND DISCUSSIONS

Morphology of Colored Microbial Mats and
Associated Microbe-mineral Interactions
One of the important factors influencing the microbial diversity
of subsurface environments is the mineral microniches they
develop on (Jones and Bennett, 2014). In order to broaden our
understanding of the interactions of microorganisms in volcanic
caves and their diversity around the world, an extensive SEM
study was performed. Colored microbial mats with different
morphologies from Azorean, Canadian, Canarian, Hawaiian,
and New Mexican volcanic caves were investigated (Figure 1A).
Abundant white and yellowmicrobial mats were distinctly visible
to the naked eye (Figures 1B,C). These colored mats may consist
of large, dense expanses of microorganisms with coarse and
irregular edges covering extensive areas of volcanic cave walls and
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ceilings (Figure 1B) or small colonies spread all over the surface
(Figure 1C). Some colonies adopted the form of white spots
with irregularly radiate pattern (Figure 1C) or yellow, round
and isolated spots with a symmetrical character (Figure 1D).
They can grow on the rock surfaces or on secondary mineral
deposits, such as ooze-like deposits frequently found in these
volcanic caves. In general, the microbial mats have finely granular
surface (Figure 1D) and act as water condensation points, being
covered with water droplets, particularly during the wet seasons
(Figure 1E).

SEM images revealed the presence of possible Actinobacteria-
like structures in most of the volcanic caves from all over
the world showing a large variety of microbial morphologies
and spore surface ornamentation (Figure 2). To confirm this
observation, Sanger and pyrosequencing were performed.
In general, these microbial mats were formed by a tangled
mass of hyphae, spores, filamentous and coccoid cells
(Figures 2A–C). Coccoid elements, with a diameter of about
0.5µm, are frequently found in close heaps, intermingled
with filamentous forms (Figures 2B,E). Most of these masses
exhibited characteristic arthrospores of Streptomyces or close
relatives with hairy (Figures 2C,F), smoothly (Figure 2H),
spiny (Figure 2I) surface ornamentations. Spirals at the end
of the aerial mycelium were also observed (Figure 2J). A
notable feature of some of these bacteria is their filamentous
growth with true branching, as depicted for instance in
Figure 2H. Chains of coccoid cells resembling beads-on-
a-string (Figure 2G) were found within both white and
yellow mats. Some other microbial structures were difficult to
associate to specific genera or species (Figures 2D,E,G,K,L).
In addition, large spheres with lumpy surface connected by
a network of hairy filaments and EPS (Figure 2K) or CaCO3

spheres (EDS microanalysis) coated with a filamentous
network (Figure 2L) were occasionally observed in the
colored microbial mats. Average sizes varied between 10
and 15µm.

The microbial mats studied in this work were found to
be involved in microbe-mineral interactions as revealed by
SEM investigations (Figure 3). Cell-sized etch pits attributed
to dissolution of the substrate under attached cells were
noticed (Figures 3A–C). Microboring caused by euendolithic
growth of coccoid cells was particularly evident on the silicified
substrate, leaving imprints of their surface ornamentation on
the mineral grains (Figure 3C). These microbial mats may also
figure prominently in the deposition of minerals due to the
presence of filaments, some of which are coated with minerals
(Figures 3D–F). Among them, reticulated filaments similar to
those reported by Melim et al. (2008) and Miller et al. (2012a)
were found associated with the white microbial mats from
the Kula Kai Caverns of the Kipuka Kanohina Cave Preserve
(Hawai`i, U.S.A.) and Falda de La Horqueta cave, in La Palma
Island, Spain (Figures 3E,F). All these features evidencemicrobe-
mineral interactions and may represent mineralogical signatures
of life. Both constructive and destructivemineral features in caves
have been recognized as biosignatures valuable for the searching
of traces of life on Earth and other planets (Banfield et al., 2001;

McLoughlin et al., 2007; Hofmann et al., 2008; Northup et al.,
2011).

The role of microorganisms in biomineralization and rock-
weathering processes in caves has been discussed in recent
years (Cuezva et al., 2012; Porca et al., 2012; Saiz-Jimenez,
2012). Both processes involve destruction and construction of
mineral structures. Destructive processes include dissolution,
etching or pitting, whereas constructive processes comprise
precipitation of secondary minerals, such as calcite, struvite,
witherite, and birnessite. In terms of weathering of minerals, the
major processes promoted by microorganisms are biochemical
and biophysical mechanisms of etching, dissolution and
boring occurring via mechanical attachment and secretion of
exoenzymes or organic acids (Lee et al., 2012). Extensively etched
mineral grains such as calcite and Mg-silicate minerals were
found associated with actinobacterial morphologies on coralloid-
type speleothems from the Ana Heva volcanic lava tube cave
in Chile (Miller et al., 2014). In many cases, it is difficult
to determine the exact mechanism by which microorganisms
induce mineral dissolution, but the pitting of underlying mineral
grains, as shown in Figure 3, illustrates that it does occur.

On the other hand, microorganisms may directly precipitate
minerals as part of their metabolic activity, and they can also
indirectly impact mineral formation by altering the chemical
microenvironment such as pH or redox conditions or providing
nucleation sites for precipitation through the production of
organic polymers (Benzerara et al., 2011). Numerous biogenic
minerals have been reported in subterranean environments
(Sanchez-Moral et al., 2003, 2004; Spilde et al., 2005; De los
Ríos et al., 2011; Miller et al., 2012b, 2014), and some of
them have been associated with actinobacterial communities.
Laiz et al. (2003) found that 61% of the Actinobacteria isolated
from Altamira Cave (Spain) produced mineral crystals on
culture media. In general, culture and field sample biominerals
were composed of calcite, aragonite, Mg-calcite or vaterite.
Groth et al. (2001) also tested the ability of cave-dwelling
bacteria from Grotta dei Cervi (Italy) for producing mineral
crystals. These authors reported extensive mineral production
among Actinobacteria, which induced the precipitation of
calcite (e.g., Brachybacterium sp.) or vaterite (e.g., Rhodococcus
sp.). Needle-fiber mats were also related to biomineralization
processes by actinomycetes (Cañaveras et al., 1999, 2006).
Struvite was formed by Actinobacteria isolated from tuff in
Roman catacombs (Sanchez-Moral et al., 2003), and witherite,
a naturally occurring barium carbonate, was produced by
species of the genera Agromyces and Streptomyces isolated
from tuff (Sanchez-Moral et al., 2004). Calcium carbonate
spheres closely related to dense networks of interwoven
filaments were observed within the colored microbial mats from
Azorean, Canarian and Hawaiian volcanic caves (Figure 2L).
Similar spherical particles were previously reported by Cuezva
et al. (2012) and Diaz-Herraiz et al. (2013), who proposed
vaterite as their mineralogical phase. According to Cuezva
et al. (2012) the gray colonies found on Altamira cave walls,
dominated by Actinobacteria, were able to bioinduce CaCO3

precipitation.
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FIGURE 2 | SEM images of colored microbial mats found in Azorean, Canadian, Canarian, Hawaiian and New Mexican volcanic caves showing a large

variety of microbial morphologies and spore surface ornamentation. (A,B) Dense network of interwoven filaments in Honda del Bejenado and Fuente de la

Canaria caves (La Palma Island, Spain); (C) Dense masses of Streptomyces-like spore chains with hairy ornamentation from Cave 12 in El Malpais National

Monument (New Mexico, U.S.A.); (D) Coccoid cells with surface appendages or obtuse protuberances from Gruta da Terra Mole (Terceira Island, Azores, Portugal);

(E) Detailed view from (B) showing coccoid cells and clumps of spore chains with obtuse protuberances and surface appendages; (F) Close-up view of clusters of

Streptomyces-like spore

(Continued)
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FIGURE 2 | Continued

chains with extensive hairy ornamentation from Gruta da Terra Mole (Terceira Island, Azores); (G) Aggregates of coccoid cells with smooth surface and spherical cells

arranged in chains resembling beads-on-a-string (arrow) from Bird Park Cave (Hawai`i, U.S.A.); (H) Chain of Streptomyces-like arthrospores from Honda del Bejenado

Cave (La Palma Island, Spain); (I) Spores with spiny ornamentation from Helmcken Falls Cave, (British Columbia, Canada); (J) Spiral spore chains of Streptomyces

and a coccoid cell with obtuse protuberances (arrow) from Falda de La Horqueta Cave (La Palma Island, Spain); (K) Large spheres with lumpy surface or

protuberances connected by a network of filaments or appendages from Gruta dos Montanheiros (Pico Island, Azores); (L) CaCO3 spheres coated with a filamentous

network from the Tapa Section of the Kipuka Kanohina Cave Preserve (Hawai`i, U.S.A.).

FIGURE 3 | SEM images of biosignatures found associated with microbial mats in Azorean, Canadian, Canarian, and Hawaiian volcanic caves. (A)

Cell-shaped etched pits on mineral grain (arrow) from Helmcken Falls Cave (British Columbia Canada); (B) Cell imprints (white arrow) and rods on EPS matrix from a

white microbial mat in Gruta da Terra Mole (Terceira Island, Azores, Portugal); (C) Microborings produced by euendolithic cells on silicified mineral grains from Ana

Heva cave in Easter Island, Chile (adapted from Miller et al., 2014); (D) Tubular mineralized sheaths embedded in EPS found on black deposits from Cueva del Llano

de los Caños cave(La Palma Island, Spain). (E) Reticulated filaments found in white microbial mats in the Kula Kai Caverns of the Kipuka Kanohina Cave Preserve

(Hawai`i, U.S.A.); (F) Close-up view of mineral encrusted filaments with reticulated ornamentation associated with white microbial mats on ooze-like deposits from

Fuente de la Canaria cave (La Palma Island, Spain).

Actinobacterial Diversity Found in New
Mexico (USA), Hawai`i (USA), and Azores
islands (Portugal)
The SEM study revealed notable microbial diversity. In order

to confirm the presence of Actinobacteria in these volcanic

caves and further investigate their diversity, three geographically

distinct locations, New Mexico (USA), Hawai`i (USA) and

Azores islands (Portugal), were chosen for clone library analysis.

A total of 1176 Actinobacteria sequences generated by clone

libraries were determined to be of high quality and used

in this analysis (Supplemental Table 1). These sequences

clustered into 164 OTUs across all locations, belonging to seven

orders. Actinomycetales (sequences = 76.7%, OTUs = 52.4%),

Euzebyales (9.9%, 8.5%) and Acidimicrobiales (9.6%, 17.7%)
represented the majority of the OTUs (Figures 4A,B, upper
panel). Bifidobacteriales (0.8%, 3.0%), Gaiellales (0.9%, 5.5%),
Rubrobacterales (0.5%, 3.0%), and candidate 0319-7L1 (0.5%,
3.0%) represented less than 1% of the sequences (Figures 4A,B,
lower panel). Sequences that could not be assigned to taxonomic
affiliations were labeled as “unclassified” (1.1%, 6.7%). Singletons
and doubletons were the most common OTU type over all
(116 singletons, 23 doubletons). Of the doubletons, 14 had two
sequences from the same cave, and 20 had sequences from the
same location.

Five of the OTUs (3.05%) represented 74.1% of the total
number of sequences found. The most predominant OTU
(OTU 025) belonged to the Pseudonocardiaceae family, with 593
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FIGURE 4 | Order-Level delineation of the 16S rRNA gene sequences (A) and OTUs (B) in Azores, New Mexico and Hawai`i lava caves.

sequences (50.4%) in 59 of the 82 samples. The second most
common OTU (OTU 089), also a Pseudonocardiaceae, had 98
sequences (8.3%) in 29 samples, but was not found in Hawai`i.
Pseudonocardiaceae was the most commonly found sequence
and OTU in each location. This finding is consistent with other
cave studies, which found Pseudonocardiaceae to comprise 52%
of actinobacterial sequences in Carlsbad Cavern (Barton et al.,
2007), 30–50% in three Slovenian limestone caves (Porca et al.,
2012), and the most abundant OTU in a limestone cave in China
(Wu et al., 2015).

OTUs belonging to the orders Actinomycetales, Euzebyales,
Acidomicrobiales, and Bifidobacteriales were shared by at least
two of the three locations under study (Figure 5, Supplemental
Figure 1A). These ubiquitous OTUs may represent a core
subsurface microbiota, a hypothesis that we will test in the
future with more extensive sequencing. Furthermore, caves are
not homogeneous habitats: they are characterized by zonal
environments according to the distance to entrances (Poulson
and White, 1969; Howarth, 1983, 1993), passage geometry, and
microenvironments, which result from several types of reactions,
including microbial processes that often involve redox reactions
(Barton and Northup, 2007).

The number of shared OTUs in the three locations was
relatively low; three out of five belonged to Pseudonocardiaceae
and two were Euzebyales (Supplemental Figure 1A). Azores and
New Mexico shared six other OTUs, four Pseudonocardiaceae,
one Euzebyales and one Bifidobacteriales. Both archipelagos
shared two Acidomicrobiales, one Pseudonocardiaceae and one
unclassified OTU. Chao 1 estimator suggests that even though
a more comprehensive sampling is required to provide a

more complete assessment of these microbial communities,
our sampling effort was probably enough to describe the
cosmopolitan OTUs (Supplemental Figure 1B).

None of the sequences recovered were classified as
Streptomyces, which was odd, given that Streptomyces are
present in almost every other environment studied (i.e., soil,
marine, etc., Schrempf, 2006), and were found in cultured
isolates from the Azores (Riquelme and Dapkevicius personal
communication). We believe this anomaly is due to primer
bias. Farris and Olson (2007) showed that many Actinobacteria
were not amplified in PCR despite being 100% identical to
the universal primers used. While this does not conclusively
establish that our sequencing missed Streptomyces that are
present, it is cause for concern. Future sequencing efforts will
utilize Actinobacteria-specific primers to test our hypothesis
that Streptomyces are being missed and to better characterize the
diversity of the Actinobacteria in caves.

Euzebyales emerged as the second most abundant order
(number of sequences) in New Mexico and Hawai`i; however,
Acidomicrobiales had the second most OTUs in New Mexico
and Hawai`i, and was second for both sequences and OTUs in
the Azores (Figure 6). Euzebyales was recently described and has
two known genera (Kurahashi et al., 2010), and highly similar
sequences have been identified from numerous environments
(sea cucumbers, saline soils and caves) suggesting this order
may be widespread in numerous habitats (Cuezva et al., 2012;
Ludwig et al., 2012; Ma and Gong, 2013; Velikonja et al., 2014).
The Acidimicrobiales order was described by Stackebrandt et al.
(1997) and comprises members that are obligate acidophiles,
oxidize ferrous iron or reduce ferric iron. It has already been
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FIGURE 5 | Unrooted approximate maximum likelihood tree showing the relationship and occurrences of Actinobacteria OTUs across all four sample

locations. Bootstrap values are indicated.

described in caves (Macalady et al., 2007; Ortiz et al., 2013; De
Mandal et al., 2014), other volcanic environments (Cockell et al.,
2013) and Fe-rich environments (Sánchez-Andrea et al., 2011;
Grasby et al., 2013).

Evaluation of Diversity Coverage and
Richness of the Clone Libraries
The coverage average estimated for the different locations ranged
from 78 to 86%. Due to some variation in sampling effort in each
case, a re-sampling analysis was performed, randomly selecting
the smallest number of sequences across the different groups
(139), 1000 times per each sample, to standardize the values.
Diversity indices and estimators are summarized in Table 1A.
Non-parametric Shannon and Shannon suggested more diverse
communities within NewMexico caves compared to Hawai`i and

Azores. Simpson diversity indices suggest the highest diversity
values for Hawai`i. All indices agree with the less diverse
communities being in Azores. The Shannon index gives more
weight to the rare species and Simpson to the dominant ones.
Considering the Simpson indexes of the three locations, the
community composition in Azores caves would include more
cosmopolitan species with high abundance and Hawai`i caves
would be composed of phylotypes with narrower distribution.
In islands, population size and genetic diversity tend to be
limited due to the smaller extension of the habitats. Comparable
taxa–area relationships (Bell et al., 2005) and distance–decay
relationships for microbes and larger organisms were found to be
significant although with variations in the rates of the processes
(reviewed by Green and Bohannan, 2006; Soininen, 2012).
However, we found differences between the diversity indices for
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FIGURE 6 | Most abundant OTUs for Hawai`i, New Mexico, and Azores. OTUs were clustered at 97% similarity and represent more than 1% of the total

sequences recovered in each geographical location.

TABLE 1A | Summary of the observed richness, diversity indices,

coverage, and Chao 1 richness estimator at 97% similarity level at the

three locations under study.

Azores New Mexico Hawai`i

Richness 29.19 38.52 30

Shannon 2.01 (1.73–2.29) 2.16 (1.86–2.46) 2.13 (1.87–2.39)

Npshannon 2.35 2.69 2.48

Simpson 0.31 (0.22–0.39) 0.28 (0.20–0.35) 0.22 (0.17–0.27)

Invsimpson 3.31 (2.60–4.56) 3.62 (2.86–4.93) 4.49 (3.68–5.78)

Chao 97.79 (51.97–240.21) 158.98 (82.10–374.89) 100 (51.51–257.75)

coverage 0.86 0.78 0.85

Azores and Hawai`i, which could be related to differences in
island size, isolation and age of lava flows. We should be aware
that the amount of data available is still small and that further
studies may still reveal different trends.

Phylogenetic Analysis
When the representative sequences from each OTU were
compared to known sequences in GenBank, 17 out of 164
OTUs (10%) shared ≤90% identity with known sequences in
GenBank (Figure 7). Fifty two percent of the OTUs shared
between 91 and 96% identity and 38% shared over 97%
identity with known sequences. The most novel OTUs were
mostly singletons, and were classified as Pseudonocardiaceae
(four OTUs),Rubrobacteraceae (oneOTU), Bifidobacteriales (five
OTUs), and unclassified (seven OTUs). They were found in
all four locations, however, more of the OTUs were found in
the Azorean islands (13 out of 100) than in Hawai`i (2 out
of 30) or New Mexico (3 out of 54). Physical isolation is an
important driver of microbial evolution (Papke andWard, 2004);
thus, island isolation would promote unique evolutionary forces
that result in the development of a novel genetic reservoir.
However, in our results we did not observe significant differences
between continental and island territories according to genetic
novelty.

FIGURE 7 | Sequence identity based on BLAST comparisons to

GenBank.

An approximate maximum likelihood tree shows the
relationship between the sequences and occurrence of OTUs
(Figure 5). For this analysis Pico and Terceira were considered
separate locations. Gaiellaceae-like sequences were found in
New Mexico and the Azores, but not Hawai`i. All but one of
the sequences were singletons. Gaiellaceae, another recently
described family, was originally found in a water borehole,
and sequences from this family have subsequently been found
in soil, volcanic soil, thermal springs and marine ascidians
(Albuquerque et al., 2011; Kim et al., 2014; Rozanov et al.,
2014; Steinert et al., 2015). Rubrobacterales occurred in the New
Mexico and Hawai`i samples. The order Actinomycetales has
many polytomies with most of them occurring in the samples
from Hawai`i, Pico, and Terceira. These samples are either
unresolved parts of the tree due to missing data or represent
rapid speciation in the Actinomycetales. Representatives of
Euzebyales were found in all four locations (Figure 5). The
different clades suggest there is significant diversity within the
sequences found.
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While we acknowledge the limitation of our study to capture
the full range of diversity in these sites, the high number
of singletons found in this study suggests that there are
Actinobacteria belonging to the rare biosphere in caves. The
rare biosphere has been shown to influence both alpha and
beta diversity, exhibiting unique geographic patterns (Lynch and
Neufeld, 2015).

With over two thirds of our OTUs being singletons and
most of the doubletons from one location, there is evidence
to suggest endemism in cave Actinobacteria. Endemism in
caves has been documented for obligate cave fauna in the
United States and the Azores (Culver et al., 2003; Reboleira
et al., 2012). Furthermore, studies of Actinobacteria in other
environments have been shown to display endemism (Wawrik
et al., 2007; Valverde et al., 2012). The combination of rare
and endemic Actinobacteria, together with their abundance in
caves, support the idea that caves are a good location to further
test hypotheses regarding bacterial biogeography as well as to
look for novel actinobacterial metabolites. Rigorous testing will
require that future studies be conducted with next generation
sequencing to comprehensively sample the diversity present in
these habitats.

16S rRNA Gene Amplicon Library
Preparation, Sequencing, Bioinformatics,
and OTU-based Analysis in Azorean
Volcanic Caves
The observed structure of the microbial communities in
volcanic caves in the three locations is consistent with bacterial
communities composed of consortia of few cosmopolitan
members and a high number of low abundant phylotypes. To
test whether this structure could be biased by the fact of having
a limited number of sequences, a pyrosequencing approach was
performed with the same sample points considered for clone
libraries in Azores.

Actinobacterial sequences amplified using the universal
primers were identified and after quality control and filtering
of the crude pyrotags, 19,476 sequences with good quality
were retained, consisting of 906 unique sequences. The average
sequence length was 247.5 bp (range 233–275; median 247.1; sd
4.1). After clustering, a total of 382 OTUs were obtained.

Nine orders were found in Azorean caves with
pyrosequencing, the seven previously found, i.e., candidate
0319-7L1 (sequences = 0.4%, OTU = 2.9%), Acidimicrobiales
(1.2%, 1.6%), Actinomycetales (92.6%, 62.8%), Bifidobacteriales
(0.7%, 4.5%), Euzebyales (2.7%, 4.5%), Gaiellales (1.1%, 8.4%),
Rubrobacterales (0.04%, 0.3%), plus Coriobacteriales (0.3%,
3.4%), and Solirubrobacterales (0.3%, 4.5%) (Figure 8). While
Rubrobacterales was found in the clone libraries, it was only
found in New Mexico and Hawai`i (Figure 5). Amplicon
sequencing revealed this order to be present in the Azores as
well, highlighting the importance of pyrosequencing to capture
the full range of diversity in these samples. Actinomycetales
and Gaiellales orders showed an increase in the percentage
of sequences and OTUs recovered; Bifidobacteriales had a
higher percentage of OTUs. All other orders displayed lower

percentages both for sequences and OTUs. Unclassified
sequences represented 0.7 and 7.3%, respectively.

The amplicon libraries approach showed a more complete
picture of the subterranean diversity in Azorean volcanic caves.
Rubrobacterales comprised a group of novel OTUs, with all
sequences sharing no more than 92% similarity with known
sequences in GenBank, as well as Solirubrobacterales, with
all of the sequences ranging between 90 and 95% similarity
(Stackebrandt et al., 1997; Reddy and Garcia-Pichel, 2009).
Rubrobacterales was first described in cave environments in
Niu Cave (Zhou et al., 2007), and were also recovered from
speleothems in Kartchner Caverns. This order includes members
with heat, cold, dryness and high radiation resistance, found
in high number in biodeteriorated monuments (Gurtner et al.,
2000; Jurado et al., 2012) and volcanic environments (Cockell
et al., 2013). Solirubrobacterales have also been described in caves
(Paterson, 2012; De Mandal et al., 2014) and in other volcanic
environments (Gomez-Alvarez et al., 2007; Cockell et al., 2013).
Coriobacteriales (Stackebrandt et al., 1997; Gupta et al., 2013)
showed a high percentage of sequences, 89.1%, with more than
97% similarity. This order was previously described in cave
habitats in speleothem formations in Kartchner Caverns (Ortiz
et al., 2013), and in Lower Kane cave (Paterson, 2012).

Evaluation of Diversity Coverage and
Richness of the Amplicon Libraries
Sampling completeness assessed by Good’s coverage estimator for
each data set returned values above 98% (Table 1B). Diversity
indices revealed a higher diversity at Pico Island compared to
Terceira Island as well as chao richness estimator (Table 1B).

The dominance of the Pseudonocardiaceae family compared
to any other member of the microbial community is remarkable,
in accordance with results from both clone and amplicon
libraries. Pseudonocardiaceae encompases a wide array of
rare Actinomycetes, many of which can produce secondary
metabolites (Tiwari and Gupta, 2013). While we acknowledge
that this finding may be in part the result of primer bias, the
prevalence of this family is not uncommon in caves (Barton
et al., 2007; Porca et al., 2012; Wu et al., 2015). Little is
known of role these bacteria play in most ecosystems, however
the family encompases a wide variety of metabolic pathways
and physiologies (Huang and Goodfellow, 2011). Most of our
sequences were unable to be classified at the genus level, leaving
some doubt as to the true role of this group of bacteria
in volcanic caves. However, the ubiquity of this family in
cave studies emphasizes the need for further molecular studies
with improved primers to capture Actinobacteria diversity and
cultivation of members of this family found in subterranean
bacterial biofilms. An examination of the communities in
situ combined with metatranscriptome analysis would shed
light on the question of this group’s role in volcanic cave
ecosystems.

CONCLUSIONS

Our collective attempt to better understand actinobacterial
diversity and functions in volcanic caves led us to observe
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FIGURE 8 | Order-Level delineation of the 16S rRNA gene sequences (A) and OTUs (B) in Azorean volcanic caves obtained by amplicon library.

TABLE 1B | Summary of the characteristics of the pyrosequencing data.

Azores Pico Terceira

Richness 382 191 141.57

Shannon 1.99 (1.96–2.02) 2. 67 (2.60–2.75) 1.68 (1.61–1.75)

Npshannon 2.04 2.76 1.79

Simpson 0.40 (0.40–0.41) 0.24 (0.23–0.26) 0.45 (0.43–0.46)

Invsimpson 2.48 (2.43–2.53) 4.11 (3.88–4.37) 2.25 (2.15–2.35)

Chao 529.70 (477.26–611.02) 262.19 (229.43–322.89) 256.86 (203.65–355.78)

Coverage 0.99 0.98 0.98

I.e., observed richness, diversity indices, coverage and Chao 1 richness estimator at 97% similarity level at the two islands from the Azorean archipelago under study.

patterns of diversity and novelness through a range of data
obtained from 454 pyrosequencing to cloning. To date, within
the realm of actinobacterial community study, our work is
one of the largest sampling efforts in volcanic caves from
different parts of the world including Spain, Portugal, USA and
Canada. The sequencing effort, both in clone and amplicon
libraries, represents one of the most comprehensive studies of
Actinobacteria in volcanic caves around the world. The clone
libraries illustrate the novelness and phylogenetic relationship
of Actinobacteria in volcanic caves from three geographically
distant locations. The amplicon libraries of the Azorean
sequences gave a more in-depth view of the Actinobacteria
communities and revealed more diversity than has previously
been described. Both methods showed large numbers of
newly described orders, and a dominance of Actinomycetales.

Together they provide an outline of the community structure of
Actinobacteria in caves, and highlight the importance of caves as
a source of rare and novel Actinobacteria.

Through scanning electron microscopy examinations, we
learned about bacterial morphology, their relationships and
possible contribution of the Actinobacteria to cave environment.
The identification of Ca-rich elements coated within some
of the filamentous networks in the colored microbial mats
suggests a possible role of Actinobacteria in calcium deposition.
Both constructive and destructive mineral features, such
as biominerals, cell imprints, microboring and mineralized
filaments were some of the biosignatures found associated with
samples studied herein. We can thus consider that volcanic caves
on Earth are plausible repositories of terrestrial biosignatures
where we can look for evidence of early life.
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Beyond contributing to understanding cavemicrobial ecology,
community and microbial roles and related function in such
extreme subsurface habitats, our study hopes to initiate more
study in such an interesting and understudied frontier of the
Earth, where unique compounds could be isolated and used as
important sources of industrial processes.
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Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted
attention recently. In this study, the abundance and diversity of Actinobacteria
associated with three types of coral thriving in a thermally stressed coral reef system
north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea
and Porites harrisoni have been found to harbor equivalent numbers of culturable
Actinobacteria in their tissues but not in their mucus. However, different culturable
actinobacterial communities have been found to be associated with different coral
hosts. Differences in the abundance and diversity of Actinobacteria were detected
between the mucus and tissue of the same coral host. In addition, temporal and spatial
variations in the abundance and diversity of the cultivable actinobacterial communities
were detected. In total, 19 different actinobacterial genera, namely Micrococcus,
Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium,
Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus,
Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and
Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore,
82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus,
Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities
against representative Gram-positive and/or Gram-negative bacteria. Even though
Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they
failed to show any antimicrobial activity, whereas less dominant genera, such as
Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-
associated Actinobacteria may help to understand how corals thrive under harsh
environmental conditions and may lead to the discovery of novel antimicrobial
metabolites with potential biotechnological applications.

Keywords: culturable coral-associated Actinobacteria, Arabian Gulf, antimicrobial ability, temporal and spatial
variation, Platygyra daedalea

INTRODUCTION

The marine environment is currently recognized as the largest potential source of new
actinobacterial species because more than 70% of the planet is covered by oceans (Lam, 2006).
At present, the discovery of rare or novel marine Actinobacteria has become a major focus in the
search for the next generation of pharmaceutical agents (Bull et al., 2000). Marine Actinobacteria
are expected to differ in their characteristics from their terrestrial counterparts and may produce
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new bioactive compounds (Manivasagan et al., 2013, 2014). In
the literature, it is becoming evident that marine habitats are
an abundant and novel source of Actinobacteria for new natural
products because 716 new marine compounds were described
in the Antibiotics Literature Database in 2004 (Blunt et al.,
2006) and an additional 812 compounds were added in 2005
(Blunt et al., 2007). Culture-dependent and culture-independent
molecular approaches have shown that marine Actinobacteria
inhabit different marine habitats, including coastal and intertidal
regions, marine sediments, seaweeds, fish, shrimps, mollusks
and mangroves. Each of these environments has been found to
harbor different members of Actinobacteria, some of which have
antimicrobial activities (Mincer et al., 2002; Piza et al., 2004;
Webster et al., 2004; Sivakumar et al., 2007).

Among marine systems, very little is known about
actinobacterial diversity in coral reef systems. Corals, the
most important members of the coral reefs, harbor abundant
prokaryotic communities, including both Bacteria and Archaea
(Rohwer et al., 2002) that inhabit coral mucus (Ducklow and
Mitchell, 1979; Paul et al., 1986; Ritchie and Smith, 1997, 2004;
Lampert et al., 2006), the tissue surface (Frias-Lopez et al., 2002;
Bourne and Munn, 2005), the coral calcium carbonate skeleton
and coral tissue (Williams et al., 1987; Shashar et al., 1994;
Kushmaro et al., 1996; Banin et al., 2001). Lampert et al. (2006)
have investigated the cultured bacteria associated with the mucus
of the Red Sea coral Fungia scutaria and have found it to harbor
different bacterial members, 23% of which were Actinobacteria.
In addition, the mucus of Fungia granulose from the Red Sea
(Kooperman et al., 2007), Porites astreoides from Bocas del
Toro, Panama (Wegley et al., 2007), Montipora capitata, Porites
compressa and Porites lobata (Ritchie and Lewis, 2005) has been
found to harbor actinobacterial members. Furthermore, the
culture-independent studies conducted by Yakimov et al. (2006)
and Penn et al. (2006) have proven the presence of Actinobacteria
in the deep-water corals of the Mediterranean Sea and the Gulf
of Alaska Seamounts, respectively. Studies showed that healthy
corals harbor larger numbers of Actinobacteria than their
diseased counterparts (Frias-Lopez et al., 2002; de Castro et al.,
2010). The capability of Actinobacteria to secrete a wide range
of secondary metabolites against other microbes (Caundliffe,
2006; Piskorska et al., 2007) and their ability to fix nitrogen
are expected to explain their dominance in healthy corals
(Rohwer et al., 2002). Nithyanand et al. (2010, 2011) have found
Actinobacteria associated with the branched coral Acropora
digitifera from the Gulf of Mannar, India, with antibiotic activity
against Gram-positive and Gram-negative bacteria. All of
these studies investigated Actinobacteria associated with corals
from tropical water bodies, but no information is available for
thermally stressed corals, which are a potential reservoir for
novel Actinobacteria species.

The Arabian Gulf is known as one of the hottest water
bodies in the world (Kinsman, 1964; Sheppard et al., 1992), and
corals of the Arabian Gulf are considered to be unique because
they are able to survive extreme fluctuations in temperature
(Riegl and Purkis, 2012). Corals usually perish when the water
temperature exceeds 32◦C or drops below 19◦C; however, Gulf
corals can survive water temperatures exceeding 35–39◦C in

the summer and falling below 11–9◦C in the winter (Coles and
Fadlallah, 1991; Spalding et al., 2001; Coles and Riegl, 2012;
Riegl and Purkis, 2012). In addition, Gulf corals can survive
at high salinity levels, which usually exceed 39 psu in most of
the regions of the Arabian Gulf (Coles and Riegl, 2012; Riegl
and Purkis, 2012). Very little information is available regarding
Gulf coral holobionts, particularly the bacterial communities of
these thermally stressed corals (Ashkanani, 2008; Al-Dahash and
Mahmoud, 2013).

In our study, we investigated the variations in Actinobacteria
associated with the tissue and mucus of various coral hosts
thriving under the extreme thermal stress conditions found
in the north portion of the Arabian Gulf. The ability of the
coral-associated Actinobacteria to produce antimicrobial agents
against certain Gram-positive and Gram-negative bacteria was
assessed. Furthermore, the temporal and spatial variations in the
abundance and diversity of Gulf coral-associated Actinobacteria
were investigated.

MATERIALS AND METHODS

Sampling and Sample Processing
The cultured Actinobacteria associated with three different
massive coral genera i.e., Coscinaraea columna, Platygyra
daedalea, and Porites harrisoni, were investigated. C. columna
and P. daedalea are listed in the IUCN red list as being of least
concern, whereas P. harrisoni is listed as being near threatened.
All of the species were sampled from the Qit’at Benaya inshore
coral reef system north of the Arabian Gulf (N28 37021 E48
25702) in spring (March 2008). The spatial variation in the
cultured Actinobacteria associated with the massive brain coral
P. daedalea was investigated by sampling the tested coral from the
Qit’at Benaya inshore reef and the Umm Al-Maradim offshore
reef system (N28 40.792 E48 39.105) in autumn (October 2008).
In addition, the temporal variation in the cultured Actinobacteria
associated with P. daedalea was investigated by sampling the
tested coral from the inshore reef in March 2008, October
2008, and March 2009. Five colonies of each type of coral
were sampled, and three subsamples were collected from each
colony. The seawater salinity, pH, temperature, dissolved oxygen,
and conductivity were recorded for each site at each sampling
day using a Horiba Water Quality Checker (Horiba, USA)
(Supplementary Table S1).

Samples were collected during spring and autumn during
which the corals were not subjected to much stress. It is more
likely that the corals sampled at these two seasons would be
healthy or at least recovering from the stress during the previous
seasons.

Samples of coral tissue and mucus were collected by SCUBA
diving. Mucus samples of the corals were collected by sterile
syringes, whereas coral nubbins were removed from healthy
coral colonies (1 cm2 in size patches) and were collected in
sterile bags. The coral mucus samples were transferred from the
syringes to 15-ml sterile centrifuge tubes, and the volume of
the collected mucus was determined. The volume was brought
up to 10 ml with phosphate-buffered saline (PBS; Sambrook
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et al., 1989). In contrast, the coral samples were washed by
vigorously shaking the coral tissue with 10 ml of sterile saline
water containing 3% NaCl for 2 min to remove the secreted
mucus and any attached epiphytes. After washing the samples,
the coral nubbin weight was determined, and the coral nubbins
(coral tissue+ skeleton+mucus) were macerated with a mortar
and pestle in 20 ml of sterile PBS, the macerate were referred to
through out the study by coral tissue.

Enumeration of Microbes in the
Collected Samples Using the Direct
Count Technique
The total numbers of microbes in coral tissue and mucus were
determined using the 4’-6-diamidino-2-phenylindole (DAPI)
(Sigma, USA) direct count method (Yu et al., 1995; Christensen
et al., 1999). An aliquot of 0.25 ml of formaldehyde was added
to 5 ml of the seawater samples and to 1 g of the sediment
samples, which were suspended in 10 ml of sterile saline water.
Additionally, 0.25 ml of formaldehyde was added to 5 ml of the
coral tissue suspension and coral mucus samples. The samples
were then stained with 0.1 ml of DAPI and incubated in the dark
at room temperature for 40 min. Aliquots (50–100 µl) of the
stained samples were filtered onto black polycarbonate 0.22-µm
membrane filters (Millipore, Ireland) and enumerated by using
an epifluorescent microscope (Zeiss, Germany).

Enumeration of Cultured Actinobacteria
in Coral Tissue and Mucus
Serial dilutions of the coral mucus and tissue suspensions were
prepared, and the 10−3 and 10−5 diluents were used. An aliquot
of 0.1 ml of each diluent was inoculated on specialized media
to promote and maximize the isolation of selected mucus- and
coral-associated Actinobacteria. R2A medium (Oxoid, England),
M2 medium (Mincer et al., 2002), M4 medium (Zhang et al.,
2006), and Starch Casein Agar (SCA) medium (Atlas, 2004)
were used, and the R2A and SCA media were modified to
contain 3% (w/v) NaCl. The pH of each medium was set to
7.6, and all of the media were supplemented to obtain final
concentrations of 50 µg ml−1 potassium dichromate (K2Cr2O7),
15 µg ml−1 of nalidixic acid, 75 µg ml−1 cycloheximide and
75 µg ml−1 nystatin. Cycloheximide, potassium dichromate,
and nystatin (Sigma, USA) were added to the media to inhibit
fungal growth, whereas nalidixic acid was used to inhibit fast-
growing Gram-negative bacteria, which would otherwise have
overgrown the plates and prevented the isolation of slow-
growing Actinobacteria. All of the plates were incubated at 28–
30◦C for 3–6 weeks. The developed colonies were categorized
using morphological and cultural characteristics, counted, and
purified.

Molecular Analysis of the Isolates
The total genomic DNA from the pure bacterial cultures was
extracted using the PrepMan Ultra Sample Preparation Reagent
(Applied Biosystems, USA) following the manufacturer’s
protocol. The DNA extracted from each purified bacterial
culture was amplified using PCR techniques. The 16S rRNA

gene fragments were amplified using actinobacteria-specific
primers. The 16S rRNA genes were amplified using Ready-
To-Go PCR Beads (Amersham Biosciences, UK). Each tube
contained 25 µl of a reaction mixture composed of 25 ng
of the extracted DNA, 25 pmole of each of the forward
S-C-Act-235-a-S-20 (CGCGGCCTATCAGCTTGTTG; Stach
et al., 2003) and the reverse primers S-C-Act-878-a-A-19
(CCGTACTCCCCAGGCGGGG; Stach et al., 2003) and 23.5 µl
of molecular-grade water. PCR amplification was performed in a
thermocycler (Applied Biosystems, USA) using PCR programs
comprised of an initial denaturation at 95◦C for 4 min followed
by 30 cycles of 95◦C for 30 s, 70◦C for 30 s, and 72◦C for 30 s
and a final extension at 72◦C for 7 min (Stach et al., 2003). The
amplified PCR product with a size of 643 bp was purified using
the QIA Quick Purification Kit (Qiagen, USA) following the
manufacturer protocol, and the BigDye Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems, USA) was used for labeling
and amplifying the purified product. Two microliters of the
sequencing terminator and 2 µl of the 5X Big Dye Sequencing
Buffer were mixed with 1 µl of each primer separately and 2 µl
of the purified PCR product. The total mixture volume was
supplemented with sterile molecular water to reach 10 µl. Using
the Big Dye method, the labeling was completed in the GeneAmp
PCR system 9700 thermocycler (Applied Biosystems, USA).
The PCR program applied included 1 cycle of denaturation at
95◦C for 1 min followed by 25 cycles of denaturation at 96◦C
for 1 min, annealing at 50◦C for 5 s and extension at 60◦C for
4 min. The labeled products were purified using 3 M sodium
acetate (pH 5.2) and absolute ethanol and analyzed using a
3130xl genetic analyzer (Applied Biosystems, USA) and the
Sequencing Analyzer v5.2 Software (Applied Biosystems, USA).
The sequences obtained were compared with other sequences in
the GenBank database using BLASTn (Altschul et al., 1997). The
sequences were submitted to the GenBank under the accession
numbers (KU579016-KU579199).

Antimicrobial Assays
The agar diffusion test (Isaacson and Kirschbaum, 1986) was
used to examine the ability of actinobacterial isolates to produce
antimicrobial products. The tests were conducted against
indicator strains including Gram-positive (i.e., Staphylococcus
aureus and Bacillus subtilis) and Gram-negative bacteria (i.e.,
Escherichia coli), which were cultured on marine agar. Two
different modifications of the agar diffusion test were applied.
The first method included placing disks (i.e., 2 mm in size)
of the actinobacterial cultures, with the culture side facing the
marine agar, on agar media containing the indicator strains. The
second method was the agar-well diffusion test, which depended
on making holes in the marine agar that contained the indicator
organism and filling the holes with 0.1 ml of 0.45µm filtered
marine broth containing the actinobacterial inoculum in the
log phase of growth. Positive control (i.e., 100 mg ampicillin,
Sigma) and negative control (sterile broth) was also included in
the agar-well diffusion test. The plates were incubated at 26◦C
for 24–48 h, and the actinobacterial activity was evaluated by
measuring the inhibition zones on the plates around the disks or
the holes.
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Statistical Analysis
Between-sites variations in the actinobacterial abundance was
examined using t-test and by using SPSS (version 17) software.
In addition, within-sites variations and between-hosts variations
were examined using t-test and one-way ANOVA. Pearson
correlation coefficient was used to examine the relationship
between the microbial variables in the coral tissue and mucus.

RESULTS

Abundance and Diversity of Cultured
Actinobacteria Associated with Various
Coral Types
The total numbers of cultured Actinobacteria in Platygyra
daedalea, Porites harrisoni, and Coscinaraea columna in tissue
and mucus samples from the inshore reef system coral are
shown in Figure 1. Different coral hosts were found to
harbor equivalent numbers of cultured Actinobacteria in their
tissues; in particular, the average numbers detected in tissues
of P. daedalea, P. harrisoni and C. columna were 8.7 × 107

CFU g−1, 8.3 × 107 CFU g−1, and 7.7 × 107 CFU g−1,
respectively, and no significant difference was found among the
tested corals. Significant differences (P < 0.001) in the numbers
of cultured Actinobacteria were found in the comparison of
mucus samples from various coral hosts; the highest numbers
were found in P. daedalea mucus samples (9.6 × 107 CFU
ml−1), and lowest numbers were detected in C. columna
(5.1 × 107 CFU ml−1). In contrast, the comparison of the
numbers of cultured Actinobacteria in the coral mucus and
tissue samples showed that each coral host harbored significantly
different numbers (P < 0.01) of Actinobacteria in their tissue
and mucus; in particular, higher numbers were found in the
coral mucus of both P. harrisoni and P. daedalea compared
with its tissue, whereas C. columna harbored significantly
less culturable bacteria in its mucus compared with its
tissue.

FIGURE 1 | The abundance of culturable Actinobacteria in coral tissue
(�) and mucus (�) samples collected from the inshore reef system of
Qit’at Benaya on March 2008.

In general, the M4 medium produced the highest numbers
and diversity of isolates from the tissue and mucus samples
of all of the corals sampled in the current study, whereas the
R2A medium yielded the second-highest numbers and diversity,
and the SCA medium gave the lowest numbers (Supplementary
Figure S1).

The phylogenetic investigation of 169 isolates obtained from
the three investigated hosts showed the dominance of 14 different
actinobacterial genera. The similarity between the isolates and
their nearest match in GenBank ranged from 97 to 100%. The
14 different genera to which the isolates belong are Kocuria
sp., Brevibacterium sp., Rhodococcus sp., Streptomyces sp.,
Marmoricola sp., Nocardia sp., Microbacterium sp., Arthrobacter
sp., Micrococcus sp., Brachybacterium sp., Kineococcus sp.,
Dermacoccus sp., Devriesea sp., and Cellulomonas sp. The
abundance of different actinobacterial members varied across the
samples such that some of these members were significantly more
common in particular corals (Figure 2).

Kocuria sp. and Brevibacterium sp. were the most abundant
cultured Actinobacteria in the three tested coral hosts.
Dermacoccus sp. and Devriesea sp. were recovered only
from the tissue of C. columna, whereas Cellulomonas sp. was
found associated with C. columna mucus. Brachybacterium sp.
and Kineococcus sp. were identified in P. daedalea mucus and
tissue, respectively, whereas Marmoricola sp. was detected only
in the tissues of both P. daedalea and P. harrisoni. The results
showed that the P. daedalea samples harbored less diversity of
cultured Actinobacteria than the C. columna and P. harrisoni
samples (Figure 2).

Spatial and Temporal Variation in the
Abundance and Diversity of Platygyra
daedalea-Associated Cultured
Actinobacteria
Among the three investigated coral genera, Platygyra daedalea
showed the highest number but the lowest diversity of culturable
Actinobacteria in both the tissue and mucus and was thus selected
for further analysis to investigate the spatial and temporal
changes in culturable Actinobacteria associated with this type of
coral, which is very common in various coral reefs located in the
northern section of the Arabian Gulf.

No significant differences were found in the total numbers
of actinobacterial isolates obtained from P. daedalea tissue and
mucus samples obtained from the inshore and offshore reef
systems, despite the differences between the two environments.
The tissue of P. daedalea was found to harbor 7.8 × 107 CFU
g−1 and 8.5 × 107 CFU g−1 in the inshore and offshore reef
samples, respectively, whereas the mucus samples obtained from
the inshore and offshore reefs harbored 9.4× 107 CFU ml−1 and
8.7× 107 CFU ml−1, respectively (Figure 3).

The investigation of the phylogenetic diversity of the
cultured Actinobacteria associated with the tissue and mucus of
P. daedalea samples obtained from the inshore (57 isolates) and
offshore reef systems (58 isolates) in October 2008 showed a lower
diversity in the mucus sample obtained from the inshore reef
system (four different genera) compared with that observed in the
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FIGURE 2 | The identity and percentage of actinobacterial isolates obtained from (A) C. culumna tissue, (B) C. culumna mucus, (C) P. deadalea
tissue, (D) P. deadalea mucus, (E) P. harrisoni tissue, and (F) P. harrisoni mucus collected from inshore reef system on March 2008.

offshore reef samples (nine different genera; Figure 4). However,
the tissue samples were found to harbor an equivalent level of
diversity (six genera each). The dominance of Brevibacterium sp.
in the inshore reef and offshore mucus and tissue samples point
to the importance of this genus to the coral.

In contrast, the investigation of the temporal variation of
Actinobacteria in the P. daedalea tissue and mucus samples
obtained in March 2008, October 2008, and March 2009 showed
significant differences in the total numbers of Actinobacteria in
the coral tissue and mucus (P < 0.01). The highest numbers
were recorded in the tissue (9.5 × 107 CFU g−1) and mucus
(10.8× 107 CFU ml−1) samples obtained in March 2009, whereas
the lowest numbers were observed in both the tissue (7.8 × 107

CFU g−1) and mucus (9.4 × 107 CFU ml−1) samples obtained
in October 2008 (Figure 5). The variation in the diversity of
cultured Actinobacteria among the mucus and tissue samples of
P. daedalea collected from the inshore reef system at different
dates was apparent, as shown in Figures 2, 4, and 6). The
tissue samples collected in March 2009 were found to harbor

seven different genera, whereas five and six different genera
were recorded in the samples collected in March and October
2008, respectively. However, the mucus samples obtained in
March 2009 presented the highest diversity with eight different
genera, whereas the samples from March and October 2008
showed the presence of only four different genera. Some genera
were isolated only once from the tissue samples obtained at
the different sampling dates. For example, Kineococcus sp. and
Marmoricola sp. were isolated in March 2008, Renibacterium
sp. was isolated from the samples collected in March 2009, and
Micromonospora sp. was isolated from the samples collected in
October 2008. Distinctive genera, such as Brachybacterium sp.
and Ornithinimicrobium sp., were found to be associated only
with the mucus samples.

Total Microbial Abundance in Coral
Tissue and Mucus
It was important to also quantify the total numbers of
microbes in the investigated coral tissue and mucus to
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FIGURE 3 | The abundance of culturable Actinobacteria in coral tissue
and mucus samples collected from the inshore reef system of Qit’at
Benaya (�) and the offshore reef system of Umm Al-Maradim (�) on
October 2008.

estimate the proportion of Actinobacteria in the total
microbial community. No significant correlation (P > 0.05)
was detected between the cultivable Actinobacteria and
the total number of microbes in any of the investigated
environmental samples. Furthermore, the comparison of the
total microbial abundance in the three investigated corals
sampled in March 2008 (Table 1) showed no significant
differences between the total numbers of microbes detected
in the tissue and mucus of the three investigated corals.
The total numbers of microbes associated with the coral
tissue and mucus samples of P. daedalea obtained in

FIGURE 5 | The abundance of culturable Actinobacteria in Platygyra
daedalea tissue (�) and mucus (�) samples collected from the
inshore reef system of Qit’at Benaya on March 2009.

October 2008 from the inshore and offshore reef systems
showed that the microbial numbers in the tested samples
obtained from different sites on the same sampling date
were significantly different (P < 0.001). The highest
numbers were recorded in the inshore reef system samples.
Significantly different numbers were found in the tissue
samples of P. daedalea (P < 0.001) inhabiting the two sites.
Significant differences in the total numbers of microbes were
recorded in the tested samples, with the highest and lower
numbers being recorded in March 2009 and March 2008,
respectively.

FIGURE 4 | The identity and percentage of actinobacterial isolates obtained from (A) P. deadalea tissue (B) P. deadalea mucus from inshore reef
system of Qit’at Benaya (C) P. deadalea tissue (D) P. deadalea mucus collected from offshore reef system of Umm Al-Maradim (October 2008).
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FIGURE 6 | The identity and percentage of actinobacterial isolates obtained from (A) P. deadalea tissue (B) P. deadalea mucus from Qit’at Benaya
inshore reef system (March 2009).

Antimicrobial Activity Potential of
Coral-Associated Actinobacteria
Among the 342 actinobacterial isolates obtained in the study,
82 exhibited antimicrobial activity against at least one tested
bacterial culture, i.e., Staphylococcus aureus, Bacillus subtilis,
or Escherichia coli as shown in Figure 7. The isolates that
were able to produce antimicrobial activities included seven
different genera, i.e., Streptomyces (38%), Rhodococcus sp. (16%),
Micrococcus sp. (11%), Arthrobacter sp. (11%), Micromonospora
sp. (10%), Nocardia sp. (8%), and Brachybacterium sp. (6%)
(Figure 8). The majority of Streptomyces, Micrococcus,
Micromonospora, and Brachybacterium were able to inhibit
the growth of the three tested bacteria, whereas Arthrobacter and
Nocardia were able to inhibit the growth of only the two tested
Gram-positive bacteria. In addition, Rhodococcus isolates were
able to inhibit the growth of Bacillus subtilis only. The majority
of isolates showed strong antimicrobial activities against the
tested organisms where the inhibition zone formed exceeded
15 mm (Figure 7). The isolates of each genus showed variations
in the level of inhibition against the tested bacteria. For instance,
among the 31 tested Streptomyces isolates some showed very
strong inhibition against S. aureus, whereas others could not
inhibit the growth of this bacterium (Supplementary Figure S2).

DISCUSSION

The analysis of the abundance and diversity of culturable
Actinobacteria associated with Platygyra daedalea samples
collected between March 2008 and March 2009 from inshore and
offshore reef systems located in the north section of the Arabian
Gulf revealed higher abundance and diversity of Actinobacteria
in the tissue and mucus of this coral more than previously
recorded for corals from tropical waters. The results obtained
from two other massive Gulf corals, namely Porites harrisoni
and Coscinaraea columna, sampled in March 2008 from the
inshore reef system supported this finding. Gulf corals harbor
threefold higher numbers of Actinobacteria in their mucus
than the amounts that were previously reported by Nithyanand
et al. (2011) for corals from the Gulf of Mannar in India.

In addition, 82 different isolates belonging to seven different
Actinobacterial genera showed antimicrobial activity against at
least one Gram-positive or Gram-negative bacterium, and these
included some isolates of marine origin that were rarely reported
to exhibit antimicrobial activities. These include members of
Rhodococcus.

Significant differences in the numbers of culturable
Actinobacteria were obtained between the mucus and tissue
samples of the same coral. Higher numbers were found in the
mucus of both P. daedalea and P. harrisoni compared with the
respective tissue samples. This finding opposes that reported
by Bourne and Munn (2005), who found similar numbers of
culturable bacteria in the coral tissue and mucus. However, the
observation from C. columna samples, in which higher numbers
were detected in the tissue, supports the findings reported
by Koren and Rosenberg (2006), who found higher numbers
of bacteria in Oculina patagonica tissues than in the mucus.
Apparently, different coral hosts have their own mechanisms for
controlling their symbiont numbers and diversity such that they
achieve the maximum benefit from the symbiotic relationship.

Platygyra daedalea, C. columna, and P. harrisoni were found
to harbor different numbers of cultivable actinobacteria in their
mucus. The highest numbers were recorded in P. daedalea,
whereas the lowest numbers were found in C. columna samples.
This difference may be attributed to the amount and rate of
mucus secretion by the corals. The rate of mucus production
by massive spherical coral species, such as Platygyra, is higher
than that by hemispherical corals, such as Porites (Richman et al.,
1975). Platygyra contains thicker mucus layers (700-µm thick)
than other members of the Faviidae family, which have thinner
layers (∼490 µm; Jatkar et al., 2010). The chemical composition
of the mucus of the three different coral hosts may be different,
thus favoring different microbial populations. This finding is
supported by the study conducted by Rohwer et al. (2002), who
have found that the mucus of different corals harbors different
microbial populations depending on its chemical composition.

Despite harboring lower numbers of cultivable Actinobacteria,
the C. columna tissue and mucus samples exhibited more
Actinobacterial diversity than the P. daedalea samples obtained in
March 2008. It is worth noticing that there are no contradictions
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TABLE 1 | The total number of microbes in coral tissue and mucus, samples from Qit’at Benaya inshore reef and Umm Al-Maradim offshore reef system
on various sampling dates.

Site Date Coral host Total count for microbesMean (min–max) SD

Coral tissue (×109 cell g−1) Coral mucus (×109 cell ml−1)

Inshore reef March 2008 Coscinaraea columna 7.7 (7.0− 8.6) 0.7 15.1 (14.3− 17.1) 1.2

Platygyra daedalea 5.1 (4.4− 6.1) 0.6 12.0 (11.7− 12.4) 0.2

Porites harrisoni 4.4 (3.8− 4.8) 0.3 15.6 (14.9− 16.7) 0.8

October 2008 Platygyra daedalea 7.3 (6.4− 9.5) 1.2 14.8 (13.6− 15.6) 0.7

March 2009 Platygyra daedalea 8.3 (6.3− 9.9) 1.3 17.2 (14.4− 19.3) 2.4

Offshore reef October 2008 Platygyra daedalea 6.9 (6.4− 7.5) 0.4 7.3 (7.1− 7.5) 0.1

Min, minimum; max, maximum; SD, standard deviation.

FIGURE 7 | Antimicrobial activities for the actinobacterial isolates against three tested bacteria (i.e., Bacillus subtilis, Staphylococcus aureus, and
Escherichia coli). All actinobacterial isolates showed strong antimicrobial activities with inhibition zones higher than 15 mm at least to one of the tested bacteria.

in terms of the high bacterial numbers with low diversity
observed in the P. daedalea samples. Other researchers have
reported similar observations in other aquatic environments and
have ascribed this phenomenon to the lack of competition for
space and resources, resulting in microbial numbers equivalent
to or even higher than those recorded in corresponding
environments with higher microbial diversity (Mahmoud et al.,
2005). The low Actinobacterial diversity in Platygyra samples
obtained in March 2008 may suggest that this type of coral
is more selective toward its symbionts than C. columna and
P. harrisoni. It may also reflect the variation in the coral immunity
levels between the tested corals. Platygyra may exhibit a stronger
immunity level than the other two corals. Unfortunately, there
are no published data to support or refute such an assumption.
It is well known that corals are limited to innate immunity,
through which they employ physiochemical barriers, such as
mucus layers, which act as coral cellular defenses with the ability
to distinguish between coral cells and other organism cells in
the holobiont and produce both natural and inducible humoral
defenses (Sutherland et al., 2004) to protect themselves. Kelman
et al. (2006) suggested that scleractinian corals from the Red

Sea may rely on non-chemical defenses against microorganisms
that may include mucus production and sloughing. Because
Platygyra, as mentioned previously, produce more and thicker
mucus layers than the other corals examined in the current study,
this coral may rely widely on this technique to defend itself
against pathogens, whereas others that lack this feature depend
largely on their symbionts to enhance their immunity.

As mentioned above, different coral hosts harbor similar
numbers but present different diversities of cultivable
Actinobacteria in their tissues. Ritchie and Lewis (2005)
and Guppy and Bythell (2006) have shown that different coral
hosts from the same sampling sites may harbor some or no
similarities in their bacterial communities. This may also be
attributed to coral innate immunity. Although there are no
previous reports regarding the coral cellular defenses of the three
tested corals, it is possible that the corals investigated in the
current study allow selected symbionts to reach certain numbers
in their tissue, where they keep these numbers under control
and any excess can either be digested during feeding or repelled
into the mucus. This is in agreement with the scenario suggested
by Baghdasarian and Muscatine (2000), who have reported that
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FIGURE 8 | The percentage of actinobacterial isolates that showed
antimicrobial activities against at least one of the utilized tested
organisms (i.e., Bacillus subtilis, Staphylococcus aureus, and
Escherichia coli).

healthy cnidarians expel actively dividing zooxanthellae cells into
the mucus to maintain a constant algal population density within
the host tissue. However, the variation in the coral-associated
actinobacterial diversity can be attributed to the individuality of
each host.

Brevibacterium and Kocuria were the most dominant
actinobacterial isolates in the investigated coral tissue and
mucus samples. Phylogenetic trees constructed from Gulf-coral
Brevibacterium and Kocuria and their counterparts from other
environments revealed that the Gulf isolates are unique. The
Brevibacterium phylogenetic tree (Supplementary data Figure
S3) showed more than 70 Gulf coral-associated isolates clustering
together and far from Brevibacterium from other environments.
One exception when B. mcbrellneri (NZ-ADNU010000), an
isolate from human urogenital tract, is considered. Kocuria
on the other hand, showed variation among Gulf isolates but,
all Gulf isolates clustered separately from their counterparts
from other environments except for the airborne isolates K.
turfanensis (DQ531634) and K. flava (EF602041) (Supplementary
data Figure S4). Some studies have found an association between
Brevibacterium and coral samples (Sabdono and Radjasa, 2008;
Seemann et al., 2009). Kocuria has also been isolated from
coral mucus (Ritchie, 2006) and tissue (Sabdono et al., 2005).
The reason underlying why these two genera were found to
dominate the cultivable actinobacterial groups is unknown.
Mimura and Nagata (2001) have reported that Brevibacterium
sp. JCM 6894 from seawater can more efficiently degrade the
water-soluble fraction of jellyfish than other bacteria. These
bacteria also degrade organophosphorus pesticides (Sabdono and
Radjasa, 2008). In view of these abilities, Brevibacterium was
suggested by Mimura and Nagata (2001) to be a strong candidate
for use in bioremediation strategies. Could it be possible that
the capability of Brevibacterium to degrade various chemical
compounds facilitates their successful association with corals?
Recent studies have shown that coral-associated Brevibacterium
(Seemann et al., 2009) are able to produce palytoxin (PTX) such
that it can accumulate in the tissue of the marine animals that

feed on corals (Gleibs and Mebs, 1999; Seemann et al., 2009).
Is it possible that corals accommodate these toxin producers to
participate in reducing the grazing pressure exerted by other
marine animals on corals? Or it is only a coincidence that the
most dominant Actinobacteria are associated with corals that
produce PTX? The literature has not revealed any special role of
Kocuria in the marine system. Kocuria has been described as a
marine organism (Kim et al., 2004), but only a few papers have
reported its occurrence in the marine environment, and even
fewer papers have reported its association with corals.

Although no significant differences were found in the
number of culturable Actinobacteria between the inshore and
offshore reef systems, a higher diversity was found in the
offshore P. daedalea mucus samples collected in October 2008.
Coral-associated microbial communities present differences with
changing depth, water quality, and geographic location (Rohwer
et al., 2001, 2002; Frias-Lopez et al., 2002; Reshef et al., 2006;
Klaus et al., 2007). Therefore, variations would be expected
in the actinobacterial diversity associated with the same coral
host occupying different sites. In addition, changes in coral
genotypes between the two sites may provide an explanation
for the variation in their associated microbes, including
Actinobacteria. This phenomenon of genotype variation is
supported by the DGGE findings reported by Rohwer et al.
(2001), who have shown that the microbial populations of 25
Montastraea franksi colonies from five different reef systems
share only one common band due to variations in the coral
genotypes. However, the species-specific microbiota principle
suggested by Ritchie and Smith (1997) and Rohwer et al.
(2001, 2002) should not be neglected. The results of the
current study showed that the same coral samples of different
individuals collected from two sites shared a number of identical
actinobacterial genera, and this number was higher than that
detected in both mucus and tissue samples of the same
individual.

The total numbers of microbes in various environmental
samples were higher in the inshore reef than the offshore reef
system. This finding may be attributed to the high sewage
input seeding the inshore water with high numbers of microbes,
which may have an indirect effect on coral health in the
area. It has been documented that the inshore reefs of Kuwait
are less healthy than their offshore counterparts (Carpenter
et al., 1997; Ashkanani, 2008; Al-Sarraf, 2009). Unfortunately,
the correlation test did not reveal any significant correlation
between the total numbers of microbes and the numbers
of culturable Actinobacteria in the coral samples. Therefore,
no direct relationship can be established between the two
variables.

In contrast, the temporal investigation of P. daedalea-
associated culturable Actinobacteria showed higher diversity
and numbers of culturable Actinobacteria and total numbers
of microbes in the mucus and tissue samples collected in
March 2009, whereas the lowest numbers were recorded in
the samples collected in November 2008. A natural variation
in coral communities is expected to be observed over time,
and many studies that monitored certain reef systems for
a sufficiently long time have reported that disturbing these
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systems due to various man-made or natural factors results
in alterations in coral abundance and survival (Connell et al.,
1997). However, few studies have attempted to explain how
this alteration affects the microbial population of the corals
themselves. The increment in water temperature to levels
exceeding certain thresholds leads to significant changes in
the mucus bacterial population (Ritchie and Smith, 1995;
Guppy and Bythell, 2006) due either to decomposition of the
coral mucus with extracellular proteases (Bourne and Munn,
2005) or to a reduction in the antibiotic content of the
coral mucus (Ritchie, 2006). The “Coral Probiotic Hypothesis”
suggested by Reshef et al. (2006) may provide an explanation
for the changes in the actinobacterial abundance and diversity
of P. daedalea sampled from the inshore reef system at
different times. Under this hypothesis, corals experiencing
changes in environmental conditions adapt rapidly by changing
their microbial partners to accommodate more antimicrobial
producers. By doing so, corals gain the ability to develop
resistance to pathogens.

Nithyanand and Pandian (2009) reported that actinomycetes
associated with corals and their produced metabolites had not
yet been explored, and since then, few studies have focused
on this topic, but all of these targeted corals from tropical
regions. Our study targeted the actinobacterial community
of the thermally stressed corals of the Arabian Gulf. The
results showed that Streptomyces-related isolates dominated
(∼38%) the group of isolates with antimicrobial activities,
even though Streptomyces were not the cultured Actinobacteria
that dominated the tissue and mucus of Gulf corals. This
is expected because more than 500 species of Streptomyces
account for 70–80% of secondary metabolites and it is well
documented that marine Streptomyces are able to produce
bioactive compounds with a range of activities, including
anticancer, antimicrobial, and enzyme inhibition functions
(Lam, 2006; Solanki et al., 2008). The second most dominant
genus in this group was Rhodococcus, which made up 16%
of the total isolates with antimicrobial activities. This is
an interesting finding because papers reporting the ability
of isolates of this genus from marine origin to produce
antimicrobial products are few (Zhang et al., 2013). In addition
to Rhodococcus, few have reported the antimicrobial activity
potential of Brachybacterium (Radjasa, 2007). In the current
study, 6% of the isolates with antimicrobial activities were
related to Brachybacterium. Radjasa (2007) has investigated
sponge-associated Actinobacteria that had 99% 16S rRNA-
gene similarity to Brachybacterium rhamnosum and reported
their ability to contain polyketide synthase (PKS) and non-
ribosomal peptide synthase (NRPS) responsible for structurally
synthesizing bioactive secondary metabolites and to inhibit
the growth of E. coli. It is likely that novel isolates and
new findings will be obtained because the isolates in this
study showed antimicrobial activities against E. coli, S. aureus,
and B. subtilis and were related to B. paraconglomeratum,
B. phenoliresistens, and B. zhongshanense. In other words,
they are quite different from that reported by Radjasa (2007).
Arthrobacter-related isolates, which made up 11% of the total
isolates with antimicrobial activities, deserve attention. The

ability of Arthrobacter to produce antibiotics has been reported
previously by a few investigators working on isolates of
marine origin. However, Shnit-Orland and Kushmaro (2008)
reported that Micrococcus and Arthrobacter isolated from
corals showed no antimicrobial activities. Hentschel et al.
(2001) obtained an isolate from a Mediterranean sponge,
whereas Radjasa et al. (2008) isolated an Arthrobacter species
from corals of the North Java Sea that shows antimicrobial
activities. Even though Rhodococcus and Arthrobacter are
common soil Actinobacteria, their marine counterparts appear
to have more antimicrobial potential than the terrestrial
ones, which agrees with the conclusions reported by Lam
(2006).

The other three actinobacterial genera that showed
antimicrobial activities, namely Micromonospora, Micrococcus,
and Nocardia, were previously isolated from various marine
habitats and were reported to be a potential source of
bioactive compounds (Bultel-Poncé et al., 1998; Hentschel
et al., 2001; Lam, 2006, 2007; Radjasa et al., 2008; Solanki
et al., 2008; Nithyanand and Pandian, 2009; Olano et al.,
2009). It is likely that some of the isolates obtained in
the current study contain novel compounds that have not
previously been described. Even though Brevibacterium and
Kocuria were the most dominant actinobacterial isolates,
they failed to show any antimicrobial activity, whereas less
dominant genera, such as Streptomyces, had antimicrobial
activity.

CONCLUSION

The variations in the culturable actinobacterial populations
associated with corals in inshore and offshore reef systems
of the north section of the Arabian Gulf were observed.
Different coral host types harbored different cultivable
actinobacterial populations. Differences in the abundance
and diversity of Actinobacteria were detected between
the mucus and tissue of the same coral host. In addition,
temporal and spatial variations in the abundance and
diversity of the cultivable actinobacterial population were
detected. Focusing on the diversity of coral-associated
Actinobacteria may lead to the discovery of novel
antimicrobial metabolites with potential biotechnological
applications.
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The Yanshan Mountains are one of the oldest mountain ranges in the world. They are

located in an ecologically sensitive zone in northern China near the Hu Huanyong Line.

In this metagenomic study, we investigated the diversity of Actinobacteria in soils at 10

sites (YS1–YS10) on the Yanshan Mountains. First, we assessed the effect of different

soil prtreatment on Actinobacteria recovery. With the soil pretreatment method: air drying

of the soil sample, followed by exposure to 120◦C for 1 h, we observed the higher

Actinobacteria diversity in a relatively small number of clone libraries. No significant

differences were observed in the Actinobacterial diversity of soils from sites YS2, YS3,

YS4, YS6, YS8, YS9, or YS10 (P > 0.1). However, there were differences (P < 0.05)

from the YS7 site and other sites, especially in response to environmental change.

And we observed highly significant differences (P < 0.001) in Actinobacterial diversity

of the soil from YS7 and that from YS4 and YS8 sites.. The climatic characteristics

of mean active accumulated temperature, annual mean precipitation, and annual

mean temperature, and biogeochemical data of total phosphorus contributed to the

diversity of Actinobacterial communities in soils at YS1, YS3, YS4, and YS5 sites.

Compared to the climatic factors, the biogeochemical factors mostly contributed in

shaping the Actinobacterial community. This work provides evidence that the diversity

of Actinobacterial communities in soils from the Yashan Mountains show regional

biogeographic patterns and that community membership change along the north-south

distribution of the Hu Huanyong Line.

Keywords: ecological sensitive zone, a Yanshan mountains, Actinobacteria, phylogenetic diversity, 16S rRNA

Actinobacterial clone library

INTRODUCTION

Microbial communities can diverge rapidly, and result in distinct biogeographic patterns (Green
et al., 2008). However, based on different evolution, biogeographic patterns are posited to consist
of dramatic range expansion as a result of effect at the genotype level (Ramette and Tiedje,
2007). For microbial biogeography, the traditional view has been that “Everything is everywhere,
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but the environment selects” (Baas, 1934). There has been
a debate over whether variation in microbial communities
through space results from environmental, or from geographic
barriers and other human activities that contribute to community
structure (Eisenlord et al., 2012). If not all microbes are
evenly dispersed over time, this would suggest that forces
structuring the microbial communities are more complex than
only adaptive evolution via natural selection (Bissett et al.,
2010; Kuang et al., 2015; Yang et al., 2015). We addressed
this issue by examining the community structure of a deeply
diverse and divergent phylum, the Actinobacteria. Actinobacteria
are important organisms that mediate plant litter decay and
the subsequent formation of soil organic matter in terrestrial
ecosystems. This phylum is phylogenetically divergent and the
closest prokaryotic relative is yet to be identified (Ventura
et al., 2007; Mendes et al., 2015). Actinobacteria express a
variety of morphologies and life-history traits that could be
advantageous for dispersal, including sporulation. Here, we
evaluated by metagenomic technology whether environmental
disturbance of an ecologically sensitive zone is associated with
a highly structured community of soil Actinobacteria in the
Yanshan Mountains of northern China. Microorganisms are
the most diverse and abundant group of organisms on Earth;
however, in soil microbial communities, work to understand this
diversity has been primarily directed toward general rather than
group-specific diversity. Actinobacteria, ubiquitously found in
terrestrial (Han et al., 2015), freshwater (Mullowney et al., 2015),
and marine (Sun et al., 2015) ecosystems, are the dominant soil
bacterial phylum and they are believed to play multiple roles in
the environment (Barka et al., 2016).

The construction of metagenomic libraries and other DNA-
based metagenomic projects are initiated by the isolation of high-
quality DNA that is suitable for cloning and that covers the
microbial diversity present in the original sample. Since Pace
et al. (1985) first proposed the direct cloning of environmental
DNA, soil DNA extraction techniques, including both direct
and indirect methods (Robe et al., 2003; Delmont et al., 2010),
have been developed. These efforts have led to the development
of various homemade DNA extraction protocols, as well as
commercial kits, which have been used in more than 1000
studies reported yearly. Therefore, high quality DNA has been
isolated from a variety of environments. In addition, cultivation-
independent methodologies, particularly sequence analyses of
cloned 16S ribosomal RNA genes (16S rDNA) are powerful tools
to investigate microbial diversity. Most approaches target the
16S rRNA gene for PCR amplification and subsequent Sanger
sequencing of the clone libraries (Sogin et al., 2006), ribosomal
sequence tags (SARST; Poitelon et al., 2009), denaturing gradient
gel electrophoresis (DGGE; Yim et al., 2015), terminal restriction
fragment length polymorphism (T-RFLP; Lazzaro et al., 2015),
Pyrosequencing (Schäfer et al., 2010), or 454 Life Sciences and
Illumina analyses (Vasileiadis et al., 2012; Logares et al., 2014).
However, there is no specific primers for Actinobacteria to
construct a full or near full-length 16S rDNA clone libraries. And
the Actinobacterial-specific primers used for high-throughput
technique can obtain some information of Actinobateria, but
sometimes the recovered sequence is too small to gain complete

genetic information and detailed phylogenetic characterization
of Actinobacteria, especially for a greater number of unclassified
Actinobacteria.

Therefore, in this study, it was purpose to obtain a full or near
full-length 16S rDNA sequence of Actinobacteria. To increase
the proportion of Actinobacteria in the 16S rDNA library, we
developed a method of soil pretreatment to concentrate the
Actinobacterial community, and used a PCR primer system to
capture Actinobacteria from prokaryotes in the 16Sr DNA full-
length clone library. The purpose of the present study was to
compare the community structure and phylogenetic diversity of
Actinobacteria among various sites in the Yanshan Mountains.

METHODS

Sample Collection
Soil samples were collected from various locations in the Yanshan
Mountains (Figure 1) on October 2–10, 2011. Descriptions of
soil collection sites are presented in Table 1. In each of the 10
sites, there were 3 randomly selected 30m × 30m replicate plots
100–150m apart. In each plot, we collected 10 soil samples using
a 2.5 cm diameter soil core, which extended to a depth of 10 cm.
The 10 soil samples in each plot were composited and passed
through a 2-mm sieve in the field. By pooling the 10 soil cores, we
aggregated spatial heterogeneity at the scale of individual plots.
The 3 soil plot samples were combined into a representative
sample for each site. From the sieved composite sample, a 5.0-
g sample was removed for DNA extraction. This was done to
allow a characterization of the Actinobacteria community at the
scale of the entire Yanshan Mountains, and to explore regional
trends in community similarity that may have been structured by
environmental factors.

DNA Extraction Methods
We design three kinds of soil pretreatment method to improve
the proportion of Actinobacteria DNA. (i) For protocol A, air
dried soil sample were treated by 120◦C 1 h (A1), 2 h (A2), 3 h
(A3) respectively; (ii) For protocol B, soil sample were treated
by air drying processing 15 days (B1), 30 days (B2), 45 days
(B3) respectively; (iii) For protocol C, soil sample were treated
by 0.1% Polymyxin B Sulfate immersion 1 h (C1), 2 h (C2),
3 h (C3) respectively; After pretreatment of soil samples, and
centrifugal washing three times with sterile water for removing
DNA of release, DNA extraction from 1.0 g soil samples was
carried out using the PowerSoilTM DNA Isolation Kit (Mo Bio
Laboratories), according to the manufacturer’s instructions. The
yield and integrity of the environmental DNA obtained were
confirmed through electrophoresis in 1% agarose gel.

Construction of 16S rRNA Gene Libraries
The purified DNA was used as a template to specifically
amplify 16S rRNA gene fragments, a ∼1500 bp region
using the bacteria-specific primers (Lane, 1991): 27F
(5-AGAGTTTGATCC/ATGGCTCAG-3) and 1525R (5-
AAGGAGGTGA/TTCCAA/GCC-3). To recondition the PCR
product for elimination of heteroduplexes in mixed-template
PCR (Janelle et al., 2002), the amplified reaction was diluted
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FIGURE 1 | Various sampling points along ecological sensitive Yanshan mountains zone. The circular mark denotes the stations. The photograph and

topographic map were provided by the Mapword (http://map.tianditu.com/map/index.html. Red line is Hu Huanyong Line).
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TABLE 1 | Actinobacteria sequencing statistics and α diversity measures of different pretreatment of soil samples.

Sourcea Total no. of clones Detection rate (%) OTUb Shannon diversity index (H/ (loge)) Equitability_J Buzas and Gibson’s evenness (E) index

A1 102 20.4 74 4.161 0.9668 0.866

A2 30 6.0 19 2.731 0.9674 0.807

A3 73 14.6 64 4.101 0.9762 0.943

B1 44 8.8 38 3.595 0.9783 0.958

B2 28 5.6 26 3.233 0.9724 0.975

B3 84 15.8 61 4.020 0.9779 0.913

C1 55 11.0 37 3.464 0.9693 0.863

C2 29 5.8 23 3.062 0.9767 0.929

C3 24 4.8 20 2.925 0.9765 0.931

CK 18 3.6 15 2.659 0.9720 0.952

aSources of data are from the following libraries: uncultured Actinobacteria are from treated samples A1, A2, A3, B1, B2, B3, C1, C2, C3, and CK.
bOUT were defined as clone sequences with <97% 16S rRNA gene sequence similarity to other clones.

10-fold into a fresh reaction mixture of the same composition
and cycled three times. The size and quality of the resulting
PCR products was confirmed by agarose gel electrophoresis
(1.4% agarose). They were then cloned into the pUCm-T linear
plasmid vector (Takara Bio Group, Code D101A) and then into
E. coli DH5a competent cells (Takara Bio Group). After the
transformants were grown overnight, single-clone colonies were
picked up with sterile toothpicks and transferred into 1.5mL
microcentrifuge tubes containing 50mL of TE buffer. The tubes
were heated for 15min at 95 C to lyse the cells, and then chilled
on ice. Insert 16S rDNA sequences were identified by M13/pUC
sequencing primer andM13/pUC reverse primer (approximately
1.5 kb).

Amplification and Sequencing of
Actinobacteria 16S rRNA Genes
Two different Actinobacteria-specific primer sets specifically
targeting 16S rRNA gene were used to confirm the presence of
selected Actinobacteria genotypes in soil DNA. The first primer
set, Com2xf /Ac1186 (Schäfer et al., 2010), was used to detect
most Actinobacteria species. The 25-µL PCR reaction mixture
contained 2.5µL PCR buffer, 2µL MgCl2 (25mM), 2µL dNTPs
(2.5mM), 0.5µL each primer (10µM, Shenggong Biotech,
Shanghai, China), 17.7µL H2O, 0.2µL BSA (20 mg/mL−1),
and 0.1µL Taq polymerase (5 U/µL−1) (Takara, Japan). This
mixture was added directly to cloned cells. PCR was carried out
in a thermocycler (Bio-Rad, München, Germany) with an initial
denaturation step at 95◦C for 10min, followed by 25 cycles of
30 s at 94◦C, 30 s at 60◦C, and 30 s at 72◦C, followed by a final
extension at 72◦C for 5min. A second PCR using the primer
set SC-Act235-aS-20/SC-Act878-aA-19 (Stach et al., 2003) was
carried out to increase the amount of detectable Actinobacteria
DNA. The 25-µL reaction mixture contained 2.5µL PCR buffer,
2.5µL MgCl2 (25mM), 2µL dNTPs (2.5mM), 0.5µL each
primer (10µM, Shenggong Biotech, Shanghai, China), 17.7µL
H2O, 0.2µL BSA (20 mg/mL−1), and 0.1µL Taq polymerase (5
U/µL−1) (Takara, Japan). The reaction mixture was also added
directly to cloned cells. PCR was performed with an initial
denaturation step at 95◦C for 10min, followed by 25 cycles of
30 s at 94◦C, 30 s at 60◦C, and 1min at 72◦C, followed by a final

extension at 72◦C for 5min. The success of PCR reactions were
determined by subjecting the amplified products to 1% agarose
gel electrophoresis and ethidium bromide staining. All positive
clones and the A3 clone library were recultured in LB broth, and
sequenced using Shenggong Biotech, Shanghai, China.

Phylogenetic Analyses
The 16S rRNA gene sequences were taxonomically assigned
using the Naïve Bayesian rRNA classifier of the Ribosomal
Database Project II (RDP; Wang et al., 2007). Sequences from
this study were subsequently aligned using the ClustalWmultiple
alignment tool from BioEdit v7.0.5.3. The program DNADIST
v3.5c in BioEdit was used to compute a distance matrix from
the aligned nucleotide sequences. The distance matrix was input
into the DOTUR program (v1.53) to assign the sequences to
operational taxonomic units (OTUs) using the furthest-neighbor
clustering algorithm (Schloss and Handelsman, 2005) at 97,
95, and 90% identities. Sequences from each clone library
were aligned separately, and OTUs were identified at 97%
identity. One representative sequence was selected for each
OTU. Representative sequences from each OTU (97%) in 10
libraries determined in this study were deposited in the NCBI
database under accessions no. KC554071–KC554721. Coverage
(C) was used as a measure of captured diversity, where C
is expressed by 1_n1/N, in which n1/N is the ratio of the
number clones that appeared only once (n1) to the total number
of clones (N). Rarefaction curves were produced by standard
calculations by comparing the total number of clones obtained
to the number of clones representing unique OTUs. Sampling
sufficiency of each library was determined as described by
Kemp and Kemp and Aller (2004) using the “Large Enough”
estimator available online at http://www.aslo.org/lomethods/
free/2004/0114a.html. The Shannon index, Simpson’s diversity
index, and nonparametric richness estimators ACE and Chao1
were calculated using the DOTUR program (Schloss and
Handelsman, 2005). A neighbor-joining tree was created using
MEGA version 4 software. The bootstrap values represent 1000
samplings. Multiple environments were simultaneously analyzed
using phylogenetically comparing the microbial communities
using weighted and unweighted UniFrac to conduct a principal
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coordinates analysis (Lozupone et al., 2006). The neighbor-
joining tree generated for input to UniFrac was limited to 999
sequences. The environmental input file for UniFrac contained
a count of how many times the selected sequence appeared in
the clone library. The UniFrac significance test with abundance
weights was used to determine significant differences in the
Actinobacteria community structure. P−values were corrected
for multiple comparisons by multiplying the calculated P−value
with the number of comparisons made (Bonferroni correction;
Lozupone et al., 2006).

Environmental Variables and Multivariate
Statistical Analysis
Environmental characteristics were assembled into two data
sets: (1) a biogeochemical data set composed of factors, and
(2) climatic characteristics. The biogeochemical data matrix
included soil pH and total nitrogen (TN); total phosphorus
(TP); available phosphorus (AP); available potassium (AK);
organic matters (OM) (Supplementary Table 1). The second
matrix characterized climatic variation by including annual
mean temperature (MT); annual mean precipitation (MP);
mean sea level elevation (ME); annual mean sunshine duration
(SD); mean active accumulated temperature (>10◦C) (AAC)
(Supplementary Table 2). The climatic data used in this study
were averages from the years 1981 to 2012. Environmental
vectors, of biogeochemical and climatic data sets, were fit
to nMDS ordinations of biological data, which identified
the individual variables correlated with community patterns.
Redundancy analysis (RDA) was used to examine the correlations
between species patterns and environmental variables to evaluate
which variables explained significant proportions of variation
in Actinobacteria community composition. Additional statistics
were conducted in the R package vegan (Oksanen et al., 2011).

RESULT

Testing of an Actinobacteria Primer System
The Actinobacteria specific primer systems detected 75 positive
clones from the 16S rDNA clone library of the A3 sample. To
determine the validity and specificity of the primer system, all
clones in the library were sequenced and classified. Two out
of 75 positive clones and another 425 clones belonged to the
Acidobacteria, Proteobacteria and Firmicutes, and 73 positive
clones were Actinobacteria belonging to 20 known and 34
unknown genera.

Effect of Different Soil Pretreatments on
Actinobacteria Recovery
After soils were pretreated, we detected a larger number
and phylotype s of Actinobacteria in the same numbers of
prokaryotic microorganisms in the 16S rDNA cloned library
(Table 1). It were corroborated by the diversity indices,
which were significantly higher than direct extraction of Kit
(CK). In addition, the number Actinobacteria clones detected
was significantly different among samples treated by the 3
pretreatment methods. The total detection rate using each of
these methods were: A (13.7%)> B (10.4%)> C (7.2%). Protocol

A1 yielded 102 clones with a 20.4% detection rate (from 500
clones); protocol B3 yielded 84 with 15.8% detection; protocol
A3 yielded 73 with 14.6% detection; CK yield 18 with 3.6%
detection. Sequences with 97% similarity in the 16S rRNA gene
used for phylogenetic analyses were combined into OTUs. A
total of 252 OTUs were present in the 10 clone libraries. Most
of them were A1 (74 out of 102 clones), next were A3 (64 out
of 73 clones), third were B3 (62 out of 84 clones), while CK
had only 15 (out of 18 clones). In addition, only A1 contained
all OTUs recovered by CK. Even if the rarefaction curves did
not approach an asymptote (Figure 2), meaning that we did
not capture the full diversity of the Actinobacterial community,
10 clones representing 37 known genera out of a total of 186
genera were detected, with A1 yielding 21 (out of 56) known
genera; A3 yielding 20 (out of 54) genera; B3 yielding 17 (out
of 54) genera. They were all far more than CK, 8 out of 12
genus. Nocardioids and Conexibacter and some unclassified
groups were detected in the 10-clone library. Unique known
genera detected using the A1 method were Dactylosporangium,
Lechevalieria, and Amycolatopsis; A3 resulted in the detection
of Kineosporia and Angustibacter; B2, Microlunatus and
Actinoplanes; B3, Geodermatophilus and Kribbella; C1,
Acidothermus and Phycicoccus; and C2, Nesterenkonia and
Aeromicrobium. The A2, B1, and C3 had not unique known
genus but unclassified group (Figure 3). The Actinobacterial
compositions at the order/suborder levels were significantly
different between the pretreated or untreated soil samples
(Figure 4). The pretreated soil allowed increased detection
of specific orders/suborders, including Solirubrobacterales,
Propionibacterineae, Frankineae, Acidimicrobiales, and
Micrococcineae. However, Corynebacterineae, Kineosporiineae,
and Rubrobacterales were only detected in the A3 library,
which clearly indicated that pretreatment of soil could
lead to an underestimation of some Actinobacteria groups.
Furthermore, the Actinobacterial library was dominated by the
Solibubrobacterales (A2, 6.8%; C1, 38.2%) of the Actinobacteria
clones and A2, 0.4%; B3,−6.4% of all 16S rDNA clones, whereas
Propionibacterineae dominated the A1 and A2 libraries (24.0%
of the Actinobacterial clones and 24.1% of all 16S rDNA

FIGURE 2 | Phylotype richness curves for clone and culture libraries.

Sampling curves were calculated by rarefaction56,57.
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FIGURE 3 | Distribution of Actinobacteria clones from different pretretment in taxonomy.
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FIGURE 4 | Relative clone frequencies in major phylogenetic groups of the clone libraries from different pretreatment of soil sample.

clones; Figure 4). The B3 library allowed the detection of a
greater number of unclassified Actinobacteria, unclassified
Rubrobacteridae, and unclassified Actinomycetales than the A1
library.

Actinobacteria Community Composition at
Stations in the Yanshan Mountains
Soil samples from 10 stations were treated at 120◦C for 1 h,
then the bacterial 16S rDNA clone library was constructed. We
randomly selected 1000 clones (for sufficient Actinobacterial
coverage) from each station to detect Actinobacteria using 2
Actinobacteria-specific primer sets. From the 10,000 clones
generated, approximately 13% (n = 1327) resulted in PCR
products from the Actinobacteria-specific primers.

Depending on the station surveyed, the proportion of
Actinobacteria among total clones varied between 10.8 and
20.4% (Table 2), and resulted in 575 OTUs grouped at
the 97% similarity level. The “Large Enough” calculator
was used to determine whether individual clone libraries
were sampled sufficiently. If the estimated phylotype richness
reached an asymptote, we inferred that the library was large
enough to yield a stable estimate of phylotype richness.
According to the figure, all sites appeared to have been
sufficiently sampled (Supplementary Figure 1). We identified
OTUs in 28 of 39 Actinobacterial families, classified by the
RDP (Figure 5). For the most abundant OTUs, the closest
similarity to known organisms was 100% to members of
the Blastococcus genus, Frankineae family. UniFrac metrics
were used to assess community similarity between 2 or more
samples according to their structure (weighted/quantitative) and
membership (unweighted/quantitative). In the 2-dimensional
plot visualized by the UniFrac weighted distance matrix principle
coordinates analysis (3% dissimilarity), the samples of each

system distinctively responded to the majority of the variation
detected in the samples across 2 axes (Figure 7A). Axis 1
accounted for 21.82% of the variation, and Axis 2 accounted for
19.29% of the variation. In Figure 7B, the same 2-dimensional
plot was shown for the unweighted method, which showed that
samples from the same type, were in consideration of community
membership, although less distinctive (Axis 1= 16.72%, Axis 2=
13.14%). The results from the UniFrac weighted and unweighted
PCA plots demonstrate distinctions in structure and composition
of the Actinobacterial communities from different stations.
Furthermore, the UniFrac significance test results revealed
significant differences in community membership between sites
YS1 and YS6 (P < 0.001), sites YS4 and YS7 (P < 0.001), and sites
YS7 and YS8 (P < 0.001) (Supplementary Figure 2). Diversity
estimates, Ace and Chao1, indicated that YS6, YS7, and YS9 were
more diverse than the other sites.

Conexibacteraceae, Geodermatophilaceae, Micrococcaceae,
Micromonosporaceae, Nocardioidaceae, Propionibacteriaceae,
Pseudonocardiaceae, and Solirubrobacteraceae represented 46.4–
66.9% of the bacterial community in each station. These taxa
together accounted for an average of 55% of the Actinobacterial
clones obtained from soil of the 10 stations in the Yanshan
Mountains. Geodermatophilaceae, Micromonosporaceae,
Nocardioidaceae, Propionibacteriaceae, Pseudonocardiaceae,
Streptomycetaceae, and Solirubrobacteraceae were common
to the 10 libraries, and they were identified as contributing
substantially to the relative abundance of Actinobacteria
(Figure 5). To demonstrate the differences in Actinobacterial
community composition, relative abundances of Actinobacteria
were also assessed. Table 3 displays the relative abundances
and Shannon diversity indices of the salient families of
Actinobacteria identified in the soils from the 10 stations.
Groups of family, YS10 were fewest, YS4 were most. The UniFrac
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metric identified the unique phylogenetic branch belonging
to Actinobacterial communities within each site compared to
the entire community (P = 0.001). The unique family of site
YS3 was Cryptosporangiaceae, YS4 was Rarobacteraceae, and
YS6 was Jiangellaceae, and the unique families of YS7 were
Acidothermaceae and Cellulomonadaceae.

Non-metric multi-dimensional Scaling of a Bray-Curtis
distance matrix demonstrated that some soil properties
and/or spatial factors resulted in greater divergence within
the Actinobacteria population (Figure 8). Axes 1 and 2

TABLE 2 | Actinobacteria sequencing statistics and α diversity measures

of soil samples of Yanshan mountains zone.

Sourcea Total no. OTUb Shannon Pielou’s Chao 1 ACE

of clones diversity evenness

index (H/) (J’) index

YS1 114 76 4.127 0.9529 198.04 255.21

YS2 125 54 3.563 0.8932 161.51 154.02

YS3 108 77 4.151 0.9557 171.64 321.31

YS4 115 65 3.869 0.9269 159.91 209.37

YS5 121 59 3.741 0.9275 106.86 142.94

YS6 149 66 3.771 0.9001 466.81 200.04

YS7 149 107 4.459 0.9543 373.64 579.72

YS8 129 62 3.834 0.9290 126.77 131.93

YS9 204 138 4.713 0.9565 498.87 548.14

YS10 113 51 3.495 0.8889 80.75 126.56

explained 71.8% of the Actinobacteria community variation.
Concentrations of MP, MT, TN, AP, and ME were strongly
associated with Axis 1 (loadings of −0.66, −0.63, 0.63, 0.58,
and 0.56, respectively). MT, MP, ME, and TP were also
strongly associated with Axis 2 (−0.59, −0.53, 0.47, and −0.40
respectively), and the pH (0.29, −0.15), OM (0.25, 0.25), and
AK (0.26, −0.22) content had lower loadings than the other
factors on both axes. AAC, MP, MT, and TP were correlated
with YS1, YS3, YS4, and YS5 samples. OM, AP, TN, SD, and ME
were correlated with YS2, YS7, YS8, YS9, and YS10 samples.
An RDA analysis was employed to determine the influence
of environmental factors on the Actinobacteria community
(Figure 9). The first and second dimensions explained 42.2%
of the total variance. The RDA analysis revealed that the
Actinobacteria community compositions were related to
multiple environmental factors, and other factors that were not
studied in this paper.

DISCUSSION

Actinobacteria is one of the major phyla within the domain
Bacteria. Because of the high diversity of members in this
phylum, it is very difficult to develop a primer system
that amplifies full-length, 16S rRNA gene sequences from all
Actinobacteria. In spite of this, in the present study, it was
possible to adopt indirect methods so that a larger number of full
sequences could be screened from the bacterial 16S rDNA clone
libraries. To simplify the screening process, we used 4 primers

FIGURE 5 | Composition of different family based on classification of 16S rRNA sequences of Actinobacteria from soil of ten sites.
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FIGURE 6 | The UniFrac significance were calculated by way of each

pair of pretreatmental procotol, which tests whether each pair of

environments differs from one another. Air dried soil sample were treated

by 120◦C 1h (A1); 2 h (A2); 3 h (A3); soil sample were treated by air drying

processing 15 days (B1); 30 days (B2); 45 days (B3), soil sample were treated

by 0.1% Polymyxin B Sulfate immersion 1 h (C1); 2 h (C2); 3 h (C3).

at the same time, and selected clones showed amplification
bands (∼270 and/or ∼640 bp) for sequencing. Sequencing of
the clone libraries clearly indicated that Actinobacteria DNA
was primarily detected, with a false positive rate of 2.5%. The
primer systems, Com2xf/Ac1186r/SC-Act235-aS-20/SC-Act878-
aA-19, were suitable to screen for Actinobacteria in the 16S rDNA
clone libraries.

One of the aims of this study was to improve methods for
detection and identification of Actinobacteria represented in
16S rDNA clone libraries derived from environmental samples.
In the soil, the majority of bacterial 16S rDNA products were
from non-Actinobacterial strains; Actinobacteria from the 16S
rDNA clone library were relatively rare. In this study, we
studied the effect of air-drying, heating, or 0.1% Polymyxin B
Sulfate on analysis of Actinobacteria diversity using culture-
independent methods. These pre-treatment methods for the
culture and isolation of Actinobacteria have been suggested by
several researchers (Demain and Davies, 1999; Seong et al.,
2001; Jiang et al., 2010; Jensen et al., 2015; Sun et al., 2015).
Employing pretreatments of soil by drying and heating has
been shown to increase the number of actinomycetes that were
isolated. In this study, when the total DNA of untreated soils was
extracted, the colonies recovered was mainly from other orders
of bacteria (Table 1). However, no matter which pretreatment
method was applied, pretreatment significantly increased the
numbers of Actinobacterial colonies (P < 0.01), while drastically

FIGURE 7 | PCoA plots are presented of the first two axes based on (A)

weighted and (B) unweighted Unifrac distance matrices showing the

quantitative and qualitative clustering of samples.

reducing the numbers of other bacterial colonies (P < 0.01).
The rarefaction analysis of OTUs at the 97% level suggested
that the number of clones screened (500) was insufficient to
cover the diversity of Actinobacteria and the data were rarefied
(Figure 2). Therefore, in our analysis of Actinobacteria diversity
in the Yanshan Mountains, we increased the number of clones
screened to 1000. Data confirmed that the pretreatment of soil
led to an increase in the detection of Actinobacteria taxa and
access to amore genetically diverse community of Actinobacteria.
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At the same time, we found that each of the soil pretreatments
could not only increase the detection rate of Actinobacteria,
but showed a bias toward the detection of some groups of

FIGURE 8 | Non-metric Multidimensional Scaling (NMDS) projection of

a Bray–Curtis distance matrix showing the response of Actinobacteria

communities to environmental vector. Axis 1 explains 45.6% of variance,

while Axis 2 describes an additional 26.2% of variance among samples.

Environmental variables abbreviations are TN, total nitrogen; TP, total

phosphorus; AP, available phosphorus; AK, available potassium; OM, organic

matters; MT, mean temperature; MP, mean precipitation; ME, mean sea level

elevation; SD, mean sunshine duration; AAC, mean active accumulated

temperature.

Actinobacteria. It provides a reference for the separation of the
corresponding groups of Actinobacteria. Each of these treatment
methods has both positive and negative aspects, in terms of
their efficiency and ability to yield DNA extracts that truly
represent the natural microbial community. Altogether, our
results indicate that the Actinobacterial abundance and diversity
that was detected might be affected by pretreatment procedures
used to recover soil metagenomic DNA. Understanding these
biases has become critical with the expansion of 16S rDNA
technologies, which allow a more comprehensive investigation
of specific microbial diversity. Our study confirms the pivotal
importance of soil sample pretreatment in the DNA extraction
procedure. It also emphasizes the need for thorough technical
surveys to increase species richness per sequencing effort to
be useful in microbial diversity studies. Consequently, we need
to revisit our choice of pretreatment protocols to ensure that
the DNA recovered from soil is not only of good quality,
but also sufficiently representative in terms of richness and
evenness of the Actinobacterial populations. In contrast to
untreated soils, where Actinobacteria are believed to represent
only about 3.6% of the total bacterial community, investigations
of pretreated soils revealed that Actinobacterial 16S rRNA genes
accounted for between 4.8 and 20.4% of the total community.
The detected Actinobacteria were highly diverse (A1). Compared
with other pretreatment methods, Actinobacteria diversity from
methods A1 and A2 were not different with CK, as determined
by the UniFrac significance test (0.13 and 0.24, respectively;
Figure 6). Moreover, A1 yielded 102 clones with a detection
rate of 20.4%, which was much higher than those found
with the other pretreatment processes. Therefore, in order to
gain accurate and representative phylogenetic information on
Actinobacteria in the Yanshan Mountains, we chose the A1 soil
pretreatment method: air drying of the soil sample, followed by

TABLE 3 | Abundance and diversity of main family from Actinobacteria.

YS1 YS2 YS3 YS4 YS5 YS6 YS7 YS8 YS9 YS10

RAa SIb RA SI RA SI RA SI RA SI RA SI RA SI RA SI RA SI RA SI

Nocardioidaceae 2.1 1.39 8.5 1.77 8.5 1.91 7.8 1.91 4.2 1.33 5.7 1.56 4.3 2.20 17.0 2.82 15.6 1.91 26.2 3.02

Micromonosporaceae 8.7 1.58 15.4 1.06 6.7 1.95 3.8 1.39 2.9 1.10 18.3 1.77 10.6 1.70 17.3 2.51 6.7 1.55 9.6 2.39

Conexibacteraceae 9.7 1.75 8.7 1.87 12.6 2.49 13.6 1.58 21.4 1.64 4.9 1.73 7.8 1.61 2.9 0.69 6.8 0.00 11.7 2.06

Pseudonocardiaceae 7.4 1.79 11.1 0.00 23.5 1.32 7.4 1.56 3.7 1.10 4.9 1.10 14.8 0.50 3.7 1.10 11.1 1.58 12.4 2.04

Propionibacteriaceae 16.4 1.10 11.0 0.74 1.4 0.00 6.8 1.33 16.4 0.72 6.8 0.60 9.6 0.50 11.0 1.39 5.5 0.00 15.1 2.03

Acidimicrobineae_incertae_

sedis

15.8 1.79 0.0 0.00 0.0 0.00 5.3 0.69 21.1 0.41 0.0 0.69 10.5 0.00 18.4 1.33 10.5 0.00 18.4 1.75

Micrococcaceae 8.5 1.00 17.9 0.69 3.8 1.39 5.7 0.87 0.0 0.00 1.9 0.38 10.4 0.64 16.0 1.66 13.2 0.69 22.6 1.71

Geodermatophilaceae 4.0 0.50 5.6 0.41 2.4 1.10 9.6 0.84 10.4 0.91 20.0 0.43 9.6 1.44 18.4 1.62 8.8 1.30 11.2 1.43

Streptomycetaceae 6.1 0.69 3.0 0.00 9.1 0.64 18.2 0.87 6.1 0.69 3.0 0.64 12.1 0.69 9.1 0.00 18.2 0.69 15.2 1.39

Solirubrobacteraceae 7.1 1.61 21.4 0.41 4.3 0.00 1.4 0.00 2.9 0.69 2.9 0.69 18.6 0.69 1.4 0.00 14.3 1.23 25.7 1.21

Streptosporangiaceae 0.0 0.00 0.0 0.00 10.0 0.00 0.0 0.00 10.0 0.00 0.0 0.00 0.0 0.00 20.0 0.69 10.0 0.00 50.0 0.95

Mycobacteriaceae 6.2 0.00 12.5 0.64 6.3 0.00 6.3 0.00 18.7 0.64 6.2 0.64 18.8 0.69 0.0 0.64 0.0 0.00 25.0 0.56

Acidimicrobiaceae 2.9 0.00 22.8 0.74 2.9 0.00 0.0 0.00 20.0 0.41 20.0 1.04 11.4 0.41 14.3 1.61 5.7 0.69 0.0 0.00

unclassdified 12.5 3.05 4.3 2.51 11.8 3.14 8.9 2.65 10.9 2.91 21.0 1.85 3.6 2.54 9.6 3.15 5.9 2.29 11.5 3.26

aRelative abundance (%) of taxonomic group with respect to total OTUs observed for community.
bShannon diversity index.
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FIGURE 9 | The RDA ordination plot for the relationship between the

family patterns of Actinobacteria community Clusters and

environmental factors in the Yanshan mountains zone. Correlations

between pattern or environmentasl factors and RDA axes are represented by

the length and angle of arrows.

exposure to 120◦C for 1 h. With this method, we observed high
Actinobacterial diversity in a relatively small number of clone
libraries.

Yanshan Mountains is a famous mountain range in north
China, located at N 39◦40′ ∼ 42◦10′, E 115◦45′ ∼ 119◦50′ in
the Inner Mongolia platform anteclise and subsidence zone.
The eastern slope of the mountains has low mountains and
hills, and lush vegetation, including shrubs, weeds, and a vast
forest area. The western slope has low and medium mountains
and sparse vegetation, including shrubs and grass. The Yanshan
Mountains lie in an ecologically sensitive zone of north China
near the Hu Huanyong Line (Hu, 1985). It is an ecosystem
that has been adversely affected by forces of nature resulting
in the destabilization of the balance of the living and non-
living organisms in it and making it vulnerable to destruction.
The ecosystem is facing changes due to climate change and
destructive human activity, such as the mass cutting of trees.
Living organisms interact with one another in an ecosystem in
a cyclic manner; therefore, when one organism is destroyed, it
affects the remaining organisms (Montoya et al., 2006).

Using a 16S rRNA gene clone library as a culture-independent
method to survey the Actinobacterial community of Yanshan
Mountains, we found that the overall diversity observed at
the different stations was very high. The high number of
novel Actinobacteria detected in the environmental samples is
also significant. The Antibiotic Literature Database indicates
that 57.8% of the known bioactive microbial products are
produced by members of the class Actinobacteria. In this
study, based on a comparison of signature nucleotides with
higher taxa described by Zhi et al. (2009). we identified a
total of 23 unclassified Actinobacteria, representing 2 novel
orders, 10 novel suborders, and 39 novel families from Yanshan
Mountains. It is reasonable to conclude that these new lineages

may produce novel bioactive compounds, similar to other
Actinobacteria. Clearly, the diversity of Actinobacteria greatly
exceeds that predicted based on culture-based estimates, and this
highlights the great biotechnological value in continuing efforts
to isolate novel Actinobacteria genera. The genera Conexibacter,
Solirubrobacter, Microlunatus, Blastococcus, and Streptomyces
were common to all stations surveyed in this study. These groups
are conserved in the Yanshan Mountains. Despite changing
ecologies in the different stations, they were always present.
Although members of the order Solirubrobacterales have not
been extensively studied, recent studies have shown their ability
to adapt and colonize different ecosystems, including fungal
growing ant colonies (Ishak et al., 2011), spinach phyllosphere
(Lopez-Velasco et al., 2011), desert, and Antarctic soil (Chong
et al., 2012). Members of the genus Blastococcus were recovered
from different latitudes and climates in dry and/or extreme
conditions (Salazar et al., 2006), these microorganisms have the
potential to colonize and alter stone and monument surfaces.
Microlunatus spp. have been isolated from marine sediments
(Yuan et al., 2014), a soil sample collected from Alu, an ancient
cave (Cheng et al., 2013), and from conventional farming
(Li et al., 2012). Some Microlunatus spp. have phosphorus-
accumulating functions and phosphate uptake/release activities
(Akar et al., 2005) in the enhanced biological phosphate removal
(EBPR) process, and they are believed to play a pivotal role in
phosphorus removal. The EBPR process is attracting interest
for its potential use in phosphorus recycling (Hirota et al.,
2010). In this study, some groups seemed to be more adaptive,
based on their ability to survive in various environments. In
contrast, there were unique genera identified in specific site: YS1,
Longispora, Propionibacterium, and Xylanimonas; YS2,Nocardia;
YS3, Actinaurispora, Actinomadura, Actinomycetospora,
Cryptosporangium, Humicoccus, and Phytohabitans; YS4,
Actinocorallia, Actinospica, Hamadaea,Millisia, and Phycicoccus;
YS5, Actinokineospora; YS6, Jiangella; YS7, Cellulomonas and
Okibacterium; YS8, Rothia, Saccharothrix, and Terrabacter;
YS9, Amycolatopsis, Cryobacterium, Knoellia, Nakamurella, and
Rhodococcus. Endemic taxa of these different stations reflect the
Actinobacterial response to different environments.

The UniFrac analysis of the stations showed that the
Actinobacterial compositions of YS2, YS3, YS4, YS6, YS8,
YS9, and YS10 did not differ (P > 0.1). It is indeed
“everything is everywhere, but the environment selects,” with
no evident dispersal limitations on Actinobacteria, This theory
suggests that each ecologically equivalent study site will have
similar Actinobacterial communities due to near identical
environmental variables, which eliminate environmental filtering
as well as constant additions by the regional species pool.
Conversely, Bissett et al. (2010) described a hypothesis of
“wherever you go, that’s where you are” implying that beyond
strong environmental selection, other factors (i.e., dispersal
or colonization limitations and evolutionary events) play a
significant role in shaping microbial communities. Between
YS7 and most other sites, there were significant different in
Actinobacterial community composition, with YS4 and YS8
showing highly significant differences (P < 0.001). It has been
suggested that microbial biogeographical patterns are shaped by
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environmental factors (Fierer, 2008). For instance, pH (Fierer
and Jackson, 2006), temperature (Yergeau et al., 2007), and
precipitation (Clark et al., 2009) have been found to be the
best predictors of continent-scale patterns. It is also believed
to be globally distributed by prevailing winds and community
patterns are thought to result from barriers to dispersal,
physiological requirements, resource availability, competition,
or some combination thereof. However, Actinobacteria do not
display a cosmopolitan distribution: their communities remain
distinct not only over large geographical distances (Wawrik et al.,
2007; Eisenlord et al., 2012) and seasonal differences (Cho et al.,
2008), but also vary with local environmental factors54 and
within a single sampling location (Abdulla and El-Shatoury, 2007;
Van der Gucht et al., 2007). This work provides evidence that
soil Actinobacterial communities exhibit regional biogeographic
patterns, wherein community membership changes across the
north-south distribution of Hu Huanyong Line. Stations YS1,
YS3, YS4, and YS5 are located at the edge of the ecologically
sensitive zone, the southern Yanshan Mountains, in the rain
belt, and these sites are affected by the continental climate
significantly. The climatic characteristics of AAC, MP, and
MT and biogeochemical data of TP likely contributed to
Actinobacterial communities at these stations. The ecological
environments of other stations were not stable and fragile.
It was clear that biogeochemical factors contributed more to

Actinobacterial community structure than chemical factors. The
stability of Actinobacterial communities in different ecological
environments was largely correlated with biogeochemical factors
and less with climate factors, such as Streptomycelaceae and
pH, Solirubrobacteraceae and AP, Propionibacteriaceae and OM,
Geodermatophilaceae and TN.
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A highly potent secondary metabolite producing endophytic strain, Streptomyces sp.

HUST012 was isolated from the stems of the medicinal plant Dracaena cochinchinensis

Lour. Strain HUST012 showed antimicrobial and antitumor activities which were

significantly much higher than those of dragon’s blood extracted from D. cochinchinensis

Lour. On further analysis, the strain was found to produce two metabolites, SPE-B11.8

(elucidated to be a novel metabolite (Z)-tridec-7-ene-1,2,13-tricarboxylic acid) and

SPE-B5.4 (elucidated as Actinomycin-D). The Minimum Inhibitory Concentration

values of SPE-B11.8 against a set of test bacterial organisms (Methicillin-resistant

Staphylococcus epidermis ATCC 35984, Methicillin-resistant Staphylococcus aureus

ATCC 25923, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 13883)

ranged between 15.63 and 62.5µg/ml while that for SPE-B5.4 ranged between 0.04

and 2.24µg/ml. The compound SPE-B11.8 showed cytotoxic effect at 41.63 and

29.54µg/ml IC50-values against Hep G2 and MCF-7, respectively, while the compound

SPE-B5.4 exhibited stronger activities against them at 0.23 and 0.18µg/ml IC50-values.

Keywords: endophytic, Streptomyces sp. HUST012, Dracaena cochinchinensis Lour., antimicrobial and cytotoxic

activities, (Z)-tridec-7-ene-1,2,13-tricarboxylic acid, Actinomycin-D

Introduction

Streptomyces spp. have been shown to possess the ability to synthesize antibacterial, antifungal,
insecticidal, antitumor, anti-inflammatory, anti-parasitic, antiviral, anti-infective, antioxidant, and
herbicidal compounds (Qin et al., 2011; Kawahara et al., 2012). Nearly 70% of the natural antibiotics
used in clinical practices were produced by actinobacteria (Subramani and Aalbersberg, 2012) of
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which 75–80% have been derived from Streptomyces alone (Inbar
and Lapidot, 1988; Olano et al., 2004; Rehm et al., 2009; Crnovcic
et al., 2013).

The plant Dracaena cochinchinensis Lour. has been used as a
traditional medicine since ancient times in the form of Dragon’s
blood, a deep red resin. Dragon’s blood has been shown to
illustrate antimicrobial, antiviral, antitumor, cytotoxic, analgesic,
antioxidative, anti-inflammatory, haemostatic, antidiuretic, anti-
ulcer and wound healing activities (Gupta et al., 2008). It
also finds application as coloring materials and wood varnish
(Gupta et al., 2008). However, the slow growth in combination
with its low dragon’s blood yield results in the destruction
of large number of century old plant for harvesting a few
milligrams of dragon’s blood (Fan et al., 2008). This current
study was conducted to explore a sustainable way of utilizing
the medicinal plant by studying the endophytic actinomycetes
associated with the plant. This paper incorporated the results
of the characterization and the evaluation of cytotoxic and
antimicrobial effects of an endophytic Streptomyces sp. strain,
isolated from the medicinal plant D. cochinchinensis Lour. in
comparison with those of dragon’s blood extracted from the
host plant. The paper also reported the structure elucidation
of the bioactive metabolites extracted from the endophytic
actinobacteria.

Materials and Methods

Sample Collection and Isolation of Endophytic
Actinomycete
Healthy stems of D. cochinchinensis Lour. plant were collected
from Cuc Phuong National Park, Ninh Binh province, Vietnam
(20◦ 19′ 8′′N, 105◦ 37′ 20′′E; 338m). The samples were surface
sterilized and plated on Sodium propionate medium (Qin et al.,
2009). The medium was supplemented with nalidixic acid (25
mg/l), nystatin (50 mg/l), and K2Cr2O7 (50mg/l) to inhibit
the growth of Gram-negative bacteria and fungi and polyvinyl
pyrolidone (PVP) 2% and tannase 0.005% to improve the
growth of colonies. Actinomycetes colonies grown on this culture
media were selected and purified by repeated streaking onto
International Streptomyces Project (ISP) 2 medium. The purified
strain HUST012 was preserved as glycerol suspensions (20%, v/v)
and as lyophilized spore suspensions in skim milk at −80◦C
(Zhang et al., 2010).

Characterization of the Endophytic Isolate
HUST012
The endophytic isolate HUST012 was characterized on the basis
of the physiological and biochemical properties and the analysis
of 16S rRNA gene sequence. Morphological and growth patterns
were observed on different media (Shirling and Gottlieb, 1966).
Morphological characteristics were observed by light microscopy
(Olympus BH2) and scanning electronmicroscopy (JSM-6610LV,
JEOL Ltd.) (Anderson and Wellington, 2001). The ability of the
isolate to grow at different pH (4.0–10.0, at intervals of 1.0 pH
unit using the buffer system as described by Xu et al., 2005)
and concentration of NaCl (0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0,
10.0, 11.0, 12.0, 15.0%, w/v) was examined on ISP 2 medium.

Growth was tested at 4, 10, 20, 25, 28, 37, 45, and 55◦C using ISP2
medium. The hydrolysis of starch, casein and gelatin was carried
out according to the methods described by Tindall et al. (2007).
Nitrate reduction and H2S production were determined using
conventional procedures (Goodfellow, 1971; Athalye et al., 1985).
Utilization of the carbon source was performed as previously
described (Shirling and Gottlieb, 1966; Athalye et al., 1985;
Mechri et al., 2014) using the basal medium recommended by
Pridham and Gottlieb (1948).

The isolation of genomic DNA and PCR amplification for
16S rRNA gene was performed as previously described (Li
et al., 2009). The identification of phylogenetic neighbors and
calculation of pairwise 16S rRNA gene sequence similarities were
achieved using the EzTaxon server (http://www.eztaxon.org/)
(Kim et al., 2012) and BLAST analysis (http://blast.ncbi.nlm.
nihgov/Blast.cgi). Multiple sequence alignment was done using
CLUSTALW (Thompson et al., 1997). The phylogenetic tree was
constructed using the aligned sequences by the neighbor-joining
method (Saitou and Nei, 1987) using Kimura-2-parameter
distances (Kimura, 1983) in the MEGA 6 software (Tamura et al.,
2013). To determine the support of each clade, bootstrap analysis
was performed with 1000 replications (Felsenstein, 1985).

The GenBank accession number for the partial 16S rRNA gene
sequences of strain HUST012 is KP330557.

Evaluation of Antimicrobial Activities
The antibacterial activities was evaluated against Methicillin-
susceptible Staphylococcus aureus (MSSA) ATCC 29213,
Methicillin-resistant Staphylococcus epidermidis (MRSE) ATCC
35984, Methicillin-resistant Staphylococcus aureus (MRSA)
ATCC 25923, Klebsiella pneumoniae ATCC 13883, Aeromonas
hydrophilaATCC 7966, Escherichia coliATCC 25922, Escherichia
coli ATCC 11105, and Enterococcus faecalis ATCC 29212 using
the agar well diffusion method (Holder and Boyce, 1994). The
Minimum Inhibitory Concentration (MIC) was determined as
previously described (Andrews, 2001).

The animal fungal pathogens Fusarium graminearum,
Aspergillus carbonarius, and Aspergillus westerdijkiae which
were known to produce strong toxic deoxynivalenol (DON)
and ochratoxin A (Khamna et al., 2009; Huffman et al., 2010)
were kindly provided by UMR Qualisud, CIRAD, France.
These strains were maintained on Potato Dextrose Agar (PDA)
medium (Liu et al., 2002). For the determination of antifungal
activity, culture broth of HUST012 (100ml) was centrifuged
at 7000 g for 10min. The supernatant was collected and added
to the PDA medium (pH 5.5) at a concentration of 15% (v/v).
Sterilized water was used as control. The resulting PDA plates
were inoculated with the different fungal strains and incubated
for 5 days at 28◦C. The fungal radial growth was measured. Each
experiment was carried out in triplicates.

Determination of Cytotoxic Activity
The cytotoxicity against human hepatocellular carcinoma Hep
G2 and human breast adenocarcinoma MCF-7 cell lines was
tested by using sulforhodamine B (SRB) assay as previously
described (Thao et al., 2014). Ellipcitine was used as the positive
control. The test was done in triplicates to ensure accuracy.
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Fermentation
A small-scale liquid fermentation was performed with YIM 61
medium (Qin et al., 2009) as the antibiotic producing medium
(200 rpm, 28◦C, 5 days). The scale up fermentation (20 L)
was done using the New Brunswick BioFlo R©/CelliGen R© 115
Benchtop Fermentor & Bioreactor (28◦C, 5 days). In both cases,
seed culture for inoculation was prepared in ISP2 medium
(200 rpm, 28◦C, 4 days)

Extraction and Purification of the Active
Compounds
The fermentation broth was centrifuged at 7000 rpm for 10min.
The supernatant fraction was then extracted thrice with ethyl
acetate. The ethyl acetate layer was concentrated in vacuo to give
ethyl acetate extract (SPA-E). The aqueous phase was filtered
through a diaion HP20 column and eluted with water and
methanol subsequently. The water eluent fraction was evaporated
to give the extract designated as SPA-W1 while the methanol
eluent was concentrated in vacuo to obtain a brown solid
(SPA-W2).

Similarly, the mycelium cake obtained after centrifugation
of the fermentation broth was processed to obtain a ethyl-
acetate extract (SPB-E), a water eluent extract (EPB-W1) and
a methanol eluent extract (SPB-W1). All these fractions were
analyzed in Silica gel TLC sheet (Merck, Germany) using the
dichloromethane-methanol (30:1, v/v) solvent system. Based on
the similarity profiles in the TLC (Koup et al., 1978), SPA-E/SPB-
E, SPA-W1/SPB-W1, and SPA-W2/SPB-W2were pooled together
and were designated as SP-E, SP-W1, and SP-W2, respectively.
A schematic diagram representing the extraction protocol is
shown in Figure 1. Each of these fractions was evaluated for
antimicrobial and cytotoxic activities. The bioactive fractions
were further purified using different solvent systems to obtain
pure metabolite(s) as represented in Figure 1B.

Structure Elucidation of the Pure Active
Compounds
The structure of the bioactive compound(s) was analyzed using
mass spectrometry (MS) and nuclear magnetic resonance (NMR)
spectroscopy (Booth et al., 1976; Hamza et al., 2013). The results
were compared with the available reference compounds and
published literatures.

Determination of Antibacterial and Cytotoxic
Effects of the Dragon’s Blood Extracted from
Medicinal Plant D. cochinchinensis
Dragon’s blood in the xylem of the host plant was extracted
as described by Wang et al. (2011). The dry weight of the
extract was dissolved in 95% (v/v) alcohol and filtered through
sterile filter membrane (0.22µm). The solution was then used for
antibacterial and antitumor tests.

The MIC of Dragon’s blood against MSSA ATCC 29213,
MRSE ATCC 35984, K. pneumoniae ATCC 13883, and E. coli
ATCC 25922 was determined by broth dilution method on 96-
well plate as previously described (Andrews, 2001). The MIC
against F. graminearum was determined according to Gopal et al.
(2012). The SRB assay was used for determination the cytotoxic

effect of the Dragon’s blood on human breast adenocarcinoma
(MCF-7) and human hepatocellular carcinoma (Hep G2) cells
(Thao et al., 2014).

Results

Characterization of Strain HUST012
Cells of the strain HUST012 was Gram-positive and aerobic. The
strain formed extensively branched, non-fragmented substrate
and aerial mycelia. Strain HUST012 formed straight or
rectiflexibile spore chains with smooth surface. However, these
spore chains generally contained less than 50 spores (Figure
S1). The strain grew well on ISP 2, ISP 3, ISP 5, TSA, Czapek,
and Nutrient agar media, with a gray color aerial mycelium. It
produced green-yellow and yellow pigments on ISP2 and Czapek
agar media respectively. Strain HUST012 was found to grow over
a wide range of temperature (4–45◦C) and pH (4.0–9.0) with
optimal growth at 28◦C and pH 6.0–7.0, and in the presence of
upto 10% NaCl (w/v) with optimum at 1–3% NaCl.

HUST012 could utilize DL-alanine, L-arginine, L-asparagine,
Glycine, DL-leucine, L-lysine, DL-serine, L-glutamic acid,
DL-methionine, L-cystine, L-histidine as nitrogen resources;
D-fructose, D-galactose, D-glucose, D-mannose, D-trehalose,
D-sorbose, D-xylose, glycerol, and sodium acetate as carbon
sources. The strain was positive for amylase and catalase
activities, but was negative for nitrate reduction, H2S production
and gelatin reduction tests. Strain HUST012 showed highest
16S rRNA gene sequence similarities with Streptomyces parvulus
(99.26%). Phylogenetic tree (Figure 2) based on neighbor-joining
method also indicated its closest similarity to Streptomyces
parvulus. The phenotypic and genomic data indicated that the
strain HUST012 represented a strain of the genus Streptomyces
for which the strain was referred to as Streptomyces sp. strain
HUST012.

Antimicrobial and Cytotoxic Effects of Strain
HUST012
The culture filtrate of strain HUST012 exhibited antibacterial
activity against all tested Gram positive and Gram negative
bacterial strains. The maximum activity was found against MRSE
ATCC 35984 (inhibition zone of 35mm diameter), followed by
A. hydrophila ATCC 7966 (26mm) and MSSA ATCC 29213
(25.80mm). The detailed antimicrobial profiles are shown in
Table 1.

The antifungal activity of Streptomyces sp. strain HUST012
was examined against three mycotoxin producing fungal strains.
The fungal growth inhibition was observed in the order:
F. graminearum (9.7mm), A. carbonarius (7.7mm), and A.
westerdijkiae (1.8mm).

Fermentation, Antimicrobial and Cytotoxic
Effects of Bioactive Metabolites of Strain
HUST012
Among the crude metabolites extracts of strain HUST012, the
fraction SP-E showed the highest antibacterial and cytotoxic
activities. This fraction was further purified by column
chromatography with different gradient solvent systems as
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FIGURE 1 | Schematic representation of the process for

metabolite extraction from strain HUST012. (A) Extraction of

the fermentation medium into crude metabolite extracts; (B)

fractionation protocol for pure compounds SPE-B11.8 and

SPE-B5.4 from the crude ethyl acetate extract. Note: CC,

Column chromatography; Font in red color indicates supernatant,

blue mycelium and green pooled fractions; Color boxes indicate

pure compound.

depicted in Figure 1. Two bioactive metabolites, designated SPE-
B11.8 and SPE-B5.4, were purified.

The MIC values of the metabolite SPE-B11.8 against the test
bacterial organisms ranges between 15.63 and 62.5µg/ml while
those for SPE-B5.4 ranges between 0.04 and 2.24µg/ml (Table 2).

Human hepatocellular carcinoma Hep G2 and human breast
adenocarcinoma cell MCF-7 lines were used as model systems
to examine the cytotoxic effect of Streptomyces sp. HUST012.
The culture filtrate, crude metabolite extracts (SP-E, SP-W1, SP-
W2) and the pure metabolites (SPE-B11.8 and SPE-B5.4) were
examined for their cytotoxic effect on the two human cancer cell
lines Hep G2 and MCF-7. The cytotoxic assay results showed
that the culture filtrate of the strain HUST012 had significant
inhibition toward Hep G2 and MCF-7 cells with IC50-values of 4

and 3µg/ml, respectively. Among the crude metabolites extracts,
SP-E showed the strongest cytotoxic effect with IC50-values of
0.31 and 0.18µg/ml. The pure metabolites SPE-B11.8 showed
cytotoxic effect at 41.63 and 29.54µg/ml IC50-values against
Hep G2 and MCF-7, respectively, while the metabolite SPE-B5.4
exhibited the same at 0.23 and 0.18µg/ml IC50-values (Table 3).

Structure Elucidation of Bioactive Compounds
The structure of the compounds SPE-B11.8 and SPE-B5.4 were
analyzed through the techniques of MS and NMR spectroscopy.

The compound SPE-B11.8 was obtained as a colorless solid.
Its HRESIMS spectrum showed a peak atm/z 315.1814 [M+H]+,
corresponding to the molecular formula C16H27O6. The 1D and
2D-NMR spectra of SPE-B11.8 showed signals characteristic
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FIGURE 2 | Neighbor-joining tree showing the phylogenetic relationships based on 16S rRNA gene sequence of the strain HUST012 and closest

species. Bootstrap values (expressed as percentages of 1000 replications) greater than 50% was given at the node.

TABLE 1 | Antimicrobial activities of the strain Streptomyces sp. HUST012

against bacterial and fungal strains.

Test strains Inhibition zone

(mm diameter)

GRAM POSITIVE BACTERIA

Methicillin-resistant S. epidermidis ATCC 35984 35.00 ± 0.80

Methicillin-resistant S. aureus ATCC 25923 18.90 ± 1.67

Methicillin-susceptible S. aureus ATCC 29213 25.80 ± 1.47

Enterococcus faecalis ATCC 29212 20.00 ± 0.20

GRAM NEGATIVE BACTERIA

Escherichia coli ATCC 25922 18.90 ± 1.00

Escherichia coli ATCC 11105 12.40 ± 0.73

Klebsiella pneumoniae ATCC 13883 19.80 ± 2.20

Aeromonas hydrophila ATCC 7966 26.00 ± 0.47

FUNGAL STRAINS

Fusarium graminearum 9.70 ± 0.73

Aspergillus westerdijkiae 1.80 ± 0.47

Aspergillus carbonarius 7.70 ± 0.80

for a monounsaturated fatty acid with the double bond at δH
5.33/δC129.1–129.9, three carboxylic groups at δC 175.1, 178.1,
and 181.1, and a cluster of methylenic protons at δC in the
range of δC 24.6–35.1. The COSY and HMBC spectra led to the
identification of the fragments of SPE-B11.8 structure (see Figure
S2 for the complete NMR spectra). The position of the double

TABLE 2 | Antibacterial and cytotoxic effects of the compounds

HPE-B11.8 and SPE-B5.4 in comparison with Dragon’s blood extracted

from medicinal plant D. cochinchinensis Lour.

Test

organisms/cancer

cell line

SPE-B11.8 SPE-B5.4 Dragon’s

blood

extract

MIC/IC50 (µg/ml)

MRSE ATCC

35984

15.63 ± 1.18 0.04 ± 0.00 4.88 ± 0.05

MRSA ATCC

25923

62.5 ± 2.26 0.04 ± 0.00 4.88 ± 0.05

E. coli ATCC

25922

Inactive 2.24 ± 0.01 9.77 ± 0.23

K. pneumoniae

ATCC 13883

62.5 ± 2.26 0.04 ± 0.00 4.88 ± 0.05

F. graminearum Inactive 9.77 ± 0.23 19.53 ± 0.80

Hep G2 41.63 ± 0.61 0.23 ± 0.05 77.91 ± 0.22

MCF-7 29.54 ± 2.89 0.18 ± 0.05 70.00 ± 7.08

bond was also confirmed by theMS data with the fragment atm/z
128.08 and 187.08 corresponding to the breakdown at C-7 and C-
8 liason. The configuration of the double bond was determined
based the on the chemical shifts of vicinal carbon atoms. Both
C-6 and C-9 appeared at δC 26.5 and 26.3 ppm indicating the Z
configuration. Thus, compound SPE-B11.8 was newly elucidated
to be (Z)-tridec-7-ene-1,2,13-tricarboxylic acid (Figure 3).

Frontiers in Microbiology | www.frontiersin.org June 2015 | Volume 6 | Article 574 | 165

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Khieu et al. Antimicrobial and cytotoxic effects of Streptomyces sp. HUST012

TABLE 3 | Cytotoxicity of test sample (IC50 in µg/ml).

Samples Hep G2 MCF-7

Culture filtrate of HUST012 4.00 ± 0.10 3.00 ± 0.10

SP-E 0.31 ± 0.03 0.18 ± 0.02

SP-W1 >100 >100

SP-W2 >100 >100

SPE-B11.8 41.63 ± 0.61 29.54 ± 2.89

SPE-B 5.4 0.23 ± 0.05 0.18 ± 0.05

Ellipticine 0.51 ± 0.08 0.47 ± 0.05

FIGURE 3 | Structure of the compound SPE-B11.8 (elucidated as

(Z)-tridec-7-ene-1,2,13-tricarboxylic acid).

The compound SPE-B5.4 was obtained as a red powder,
soluble in methanol, ethyl acetate, ethanol, and DMSO, stable
in aqueous solutions at 5–10◦C. The HRESIMS spectrum
revealed a peak at m/z 1255.6435 [M+H]+, corresponding to
the formula C62H87N12O16 (Figure S3). The 1H-NMR, 13C-
NMR spectrum analysis data of the SPE-B5.4 compound is
presented in Table S1. The spectral data was compared with
the findings of Booth et al. (1976) and the compound SPEB-
5.4 was identified as Actinomycin-D with molecular formula
C62H86N12O16 (Figure 4).

Antibacterial and Cytotoxic Effects of the
Dragon’s Blood Extracted from Medicinal Plant
D. cochinchinensis
The Dragon’s blood extract was analyzed for its antibacterial and
cytotoxic effects against MRSA, MRSE, K. pneumoniae and E.
coli, and toward MCF-7 and Hep G2 cell lines. Table 2 showed
the MIC for the dragon’s blood extracts in comparison with those
of the crude metabolites extracts and the compounds SPE-B11.8
and SPE-B5.4.

Discussion

The antimicrobial resistance has been one of the most serious
health threats. Infections from resistant bacteria are now too
common, and some pathogens have even become resistant to
multiple classes of antibiotics. The decline of effective antibiotics
will undermine our ability to fight infectious diseases andmanage
the infectious complications common in vulnerable patients,

especially those undergoing chemotherapy for cancer, dialysis
for renal failure, and organ transplantation. When first- and
second-line antibiotic treatment options are limited by resistance
and/or unavailability, healthcare providers are forced to use toxic
antibiotics which are frequently more expensive but less effective.
Even when alternative treatments are available, research has
shown that patients with resistant infections are oftenmuchmore
likely to result in death, and that survivors require longer hospital
stays, delayed recuperation, and long-term disability. Hence,
there is an urgent need for search of novel drugs against such
pathogens. It has been envisaged that endophytic environment
is an extreme source to provide exciting new bioactive
compounds.

In the present study, an attempt was tried to identify
the bioactive potential of the endophytic actinobacterium
Streptomyces sp. HUST012. The strain was found to exhibit
antimicrobial activities against a set of pathogenic bacteria and
fungi (Table 1). The presence of antifungal activities is also an
indication of probable biocontrol mechanisms against mycotoxin
producing fungal strains. Similar findings have been reported in
similar studies of Streptomyces strains (Rahman et al., 2010; Usha
et al., 2010; Naine et al., 2015).

The cytotoxic ability of this strain was significant as compared
to that reported in previous studies on S. parvulus strain VITJS11
(Naine et al., 2015). The compounds SPE-B11.8 and SPE-B5.4
had IC50-values of 41.63 and 0.23µg/ml on Hep G2 cells as
compared to 500µg/ml by S. parvulus strain VITJS11. Other
reports showed that migrastatin, a secondary metabolite from
Streptomyces inhibited the Hep G2 cells at the concentration of 6
and 10µM after 24 and 48 h of treatment (Rambabu et al., 2014).
The high bioactive effect of Streptomyces sp. HUST012 can be
explained by the fact that endophytic actinomycetes live in close
association with their host plants and that it could become a real
possibility for exchange of genes involved in natural products
biosynthesis between endophytic actinomycetes and host plants
via horizontal gene transfer, resulting in synthesis of plant-
derived compounds by a microbial endophyte (Chandra et al.,
2013).

An important finding of this current study was the isolation
of the new compound HPE-B11.8 which was elucidated as (Z)-
tridec-7-ene-1,2,13-tricarboxylic acid, thereby underlying the
importance of the source. The compound HPE-B11.8 possessed
moderate antibacterial and anticancer activities against the
test pathogenic microorganisms/cell lines. Another important
finding was the isolation of Actinomycin D (compound SPE-
B5.4). Actinomycin D was an antineoplastic antibiotic that
inhibits cell proliferation. It finds wide range of applications,
viz. as selective reagent in cell culture, studies in suppressing
HIV-replication and programmed cell death of PC12 cells, and
as an antibiotic in treatment of various malignant neoplasm
including Wilm’s tumor and the sarcomas. Actinomycin-D
decreases Mcl-1 expression and acts synergistically with ABT-
737 against small cell lung cancer cell lines (Aishan et al.,
2010). According to the Internet bibliographic database-
MEDLINE, actinomycins, especially Actinomycin-D, have
been the subject of about 3300 research publications (Koba
and Konopa, 2005). The isolation of Actinomycin-D is
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FIGURE 4 | Structure of the compound SPE-B3.4 (established as Actinomycin-D).

not a new discovery but our present study proved that the
medicinal plant D. cochinchinensis Lour. was a rich source
of endophytic actinomycetes producing the potent antibiotic
agents.

Dragon’s blood has been well documented for its
antimicrobial, antioxidant, anti-antitumor and cytotoxic
properties. However, the host plant D. cochinchinensis Lour.
has no secretory tissue to release this useful metabolite, and
therefore Dragon’s blood remains in xylem parenchyma cells
of the stem. The growth of the plant is extremely slow and has
low yield of dragon’s blood. To harvest a few pieces of resinous
wood, a tree with hundreds of years old is often destroyed. This
work aimed to evaluate the antimicrobial and cytotoxic effects
of the natural Dragon’s blood extracted from medicinal plant D.
cochinchinensis Lour. in comparison with that secreted by the
endophytic Streptomyces sp. HUST012 associated with the host
plant. Our results were significant in comparison to the findings
of other research groups (Al-Fatimi et al., 2005; Wang et al.,
2010, 2011). This could give us a suggestion for the promotion
of the application of secondary bioactive metabolites from
endophytic actinomycetes associated with the medicinal plant D.

cochinchinensis Lour. instead of destroying valuable endangered
trees.
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A novel Streptomyces, strain MUSC 149T was isolated from mangrove soil. A polyphasic
approach was used to study the taxonomy of MUSC 149T, which shows a range of
phylogenetic and chemotaxonomic properties consistent with those of the members
of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was
LL-diaminopimelic acid. The predominant menaquinones were identified as MK9(H8)
and MK9(H6). Phylogenetic analysis indicated that closely related strains include
Streptomyces rhizophilus NBRC 108885T (99.2% sequence similarity), S. gramineus
NBRC 107863T (98.7%) and S. graminisoli NBRC 108883T (98.5%). The DNA–DNA
relatedness values between MUSC 149T and closely related type strains ranged from
12.4 ± 3.3% to 27.3 ± 1.9%. The DNA G + C content was determined to be 72.7
mol%. The extract of MUSC 149T exhibited strong antioxidant activity and chemical
analysis reported identification of an antioxidant agent, Pyrrolo[1,2-a]pyrazine-1,4-dione,
hexahydro-. These data showed that metabolites of MUSC 149T shall be useful as
preventive agent against free-radical associated diseases. Based on the polyphasic
study of MUSC 149T, the strain merits assignment to a novel species, for which the
name S. mangrovisoli sp. nov. is proposed. The type strain is MUSC 149T (=MCCC
1K00699T DSM 100438T ).=
Keywords: Streptomyces mangrovisoli, novel taxa, antioxidant, DPPH, mangrove

Introduction

Oxidative stress has been implicated in physiological aging which may contribute to the
development of chronic diseases. The disequilibrium of oxidation status has been associated with
development of neurodegenerative diseases which includes Parkinson’s disease and Alzheimer’s
disease (Floyd and Hensley, 2002; Farooqui and Farooqui, 2009). In fact, oxidative stress is
recognized to play a critical role in carcinogenesis as well. It is plausible that the accumulation
of free radicals results in various modifications or damages to biological macromolecules such
as protein, lipid, and DNA (Reuter et al., 2010). These unwanted, harmful effects then expedite
DNAmutation and increase cancer risks. Therefore, the discovery of the antioxidants from natural
resources has always sparked great interest of researchers (Lee et al., 1998).
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The mangrove is an exclusive woody plant area of intertidal
coasts in tropical and subtropical coastal regions. This ecosystem
is among the world’s most prolific environments and produces
commercial forest products, protects coastlines and supports
coastal fisheries. Mangrove ecosystems are habitats of various
flora and fauna of marine, freshwater and terrestrial species
(Jennerjahn and Ittekkot, 2002). Recently, there has been
increasing interest in exploitation of mangrove microorganism
resources as the constant changes in factors such as salinity and
tidal gradient in the mangrove ecosystems are consideration to
be driving forces for metabolic pathway adaptations that could
direct to the production of valuable metabolites (Hong et al.,
2009; Lee et al., 2014a). Lately, numerous studies have discovered
novel actinobacteria from the different mangrove environments
globally, such as the isolation of Streptomyces avicenniae (Xiao
et al., 2009), S. xiamenensis (Xu et al., 2009), S. sanyensis (Sui et al.,
2011), S. qinglanensis (Hu et al., 2012), S. pluripotens (Lee et al.,
2014b), and S. gilvigriseus (Ser et al., 2015).

Waksman and Henrici (1943) had proposed the genus
Streptomyces; the genus Streptomyces is comprised of ca. 600
species with validly published names (http://www.bacterio.cict.
fr/) at the time of writing (May 2015). Many members of
this genus have made vital contributions to mankind due to
their capabilities to produce various natural products (Berdy,
2005). These Streptomyces-derived secondary metabolites have
attracted much attention from the community as they possess
diverse bioactivities such as antibacterial, antifungal, antitumor,
and antioxidant (Kaneko et al., 1989; Kim et al., 2008; Olano
et al., 2009a; Saurav and Kannabiran, 2012; Thenmozhi and
Kannabiran, 2012; Wang et al., 2013; Kumar et al., 2014;
Khieu et al., 2015). Notably, some of the bioactivities described
were associated with production of cyclic compounds such as
cyclomarins and pyrrolizidines (Renner et al., 1999; Karanja et al.,
2010; Fu and MacMillan, 2015).

In this study, this particular strain of Streptomyces was
isolated from a mangrove soil located from the Tanjung
Lumpur mangrove forest located in east coast of Peninsular
Malaysia. With the polyphasic approach, it is revealed that
MUSC 149T represents a novel species of the Streptomyces
genus, for which the name S. mangrovisoli sp. nov. is proposed.
In our very initial attempt to explore the potential biological
activity possessed by MUSC149T, antioxidant activity was
examined. The result indicated that MUSC149T extract exhibited
a significant antioxidant property. To the best of our knowledge,
the antioxidant activity of MUSC149T has hitherto not been
reported. The chemical analysis was then conducted to identify
the chemical constituents present in the extract of MUSC149T.
The outcomes derived from this research have provided a strong
foundation for further in depth biological studies to be performed
particularly focusing on free-radical associated diseases.

Materials and Methods

Isolation and Maintenance of Isolate
Strain MUSC 149T was isolated from a soil sample collected at
site MUSC-TLS1 (3◦ 48′ 3.2′′ N 103◦ 20′ 11.0′′ E), located in

the mangrove forest of Tanjung Lumpur in the state of Pahang,
Peninsular Malaysia, in December 2012. Topsoil samples of the
upper 20-cm layer (after removing the top 2–3 cm) were collected
and sampled into sterile plastic bags using an asepticmetal trowel,
and stored at –20◦C. Air-dried soil samples were ground with
a mortar and pestle. Selective pretreatment of soil samples was
performed using wet heat in sterilized water (15 min at 50◦C;
Takahashi et al., 1996). Five grams of the pretreated air-dried soil
was mixed with 45 ml sterilized water and mill ground, spread
onto the isolation medium ISP 2 (Shirling and Gottlieb, 1966)
supplemented with cycloheximide (25 μg ml−1) and nystatin
(10 μg ml−1), and incubated at 28◦C for 14 days. Pure cultures
of strain MUSC 149T were isolated and maintained on slants of
ISP 2 agar at 28◦C and as glycerol suspensions (20%, v/v) at –20◦C
for long term preservation.

Genomic and Phylogenetic Analyses
The extraction of genomic DNA for PCR was performed as
described by Hong et al. (2009). In short, approximately 0.5 g of
each culture was suspended in TE buffer (0.5 ml) and ribolised
for 30 s at a speed of 5.5 m/s following the addition of sterile
glass beads (0.5 g, 100 mesh). The resultant preparations were
extracted with an equal volume of chloroform: iso-amyl alcohol
(24:1, v/v) and centrifuged at 15,000 g for 5min at 4◦C. The upper
aqueous layers, which contained the DNA, were transferred to
fresh tubes and used as template DNA. The amplification of 16S
rRNA gene was performed according to Lee et al. (2014b). Briefly
the PCR reactions were performed in a final volume of 50 μl
according to protocol of SolGentTM 2X Taq PLUS PCR Smart
mix using the Kyratex PCR Supercycler (Kyratec, Australia) with
the following cycling conditions: (i) 95◦C for 5 min, (ii) 35
cycles of 94◦C for 50 s, 55◦C for 1 min and 72◦C for 1 min
30 s; and (iii) 72◦C for 8 min. The 16S rRNA gene sequence of
strain MUSC 149T was aligned with representative sequences of
related type strains of the genus Streptomyces retrieved from the
GenBank/EMBL/DDBJ databases using CLUSTAL-X software
(Thompson et al., 1997). The alignment was verified manually
and then used to generate phylogenetic tree. Phylogenetic trees
were constructed with the maximum-likelihood (Felsenstein,
1981) (Figure 1) and neighbor-joining (Saitou and Nei, 1987)
(Supplementary Figure S1) algorithms using MEGA version 5.2
(Tamura et al., 2011). Evolutionary distances for the neighbor-
joining algorithm were computed using Kimura’s two-parameter
model (Kimura, 1980). The EzTaxon-e server (http://eztaxon-e.
ezbiocloud.net/; Kim et al., 2012) was used for calculations of
sequence similarity. The stability of the resultant trees topologies
were evaluated by using the bootstrap based on 1000 resampling
method of Felsenstein (1985).

BOX-PCR fingerprint analysis was used to characterize
strain MUSC 149T and the closely related strains using the
primer BOX-A1R (5′-CTACGGCAAGGCGACGCTGACG-3′)
(Versalovic et al., 1991; Lee et al., 2014c). The BOX-PCR cycling
parameters were 5 min at 94◦C for pre-denaturation, 35 cycles
each of 30 s at 94◦C for denaturation, 30 s at 53◦C for annealing,
7 min at 65◦C for extension and a final extension at 65◦C for
8 min (Lee et al., 2014d). The PCR products were visualized by
2% agarose gel electrophoresis.
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FIGURE 1 | Maximum-likelihood phylogenetic tree based on 1487
nucleotides of 16S rRNA gene sequence showing the
relationship between strain MUSC 149T and representatives
of related taxa. Numbers at nodes indicate percentages of

1000 bootstrap re-samplings, only values above 50% are shown.
Bar, 0.005 substitutions per site. Asterisks indicate that the
corresponding nodes were also recovered using the neighbor-joining
tree-making algorithm.

The protocol of Cashion et al. (1977) was used for the
extraction of genomic DNA for DNA-DNA hybridization of
strain MUSC 149T, S. graminisoli NBRC 108883T, S. gramineus
NBRC 107863T and S. rhizophilus NBRC 108885T. DNA–DNA
hybridization was carried out by the Identification Service of
the DSMZ, Braunschweig, Germany following the protocol of
De Ley et al. (1970) under consideration of the modifications
described by Huss et al. (1983). The G + C content of strain
MUSC 149T was determined by HPLC (Mesbah et al., 1989).

Phenotypic Characteristics
The cultural characteristics of strain MUSC 149T were
determined following growth on ISP 2, ISP 3, ISP 4, ISP 5,
ISP 6, ISP 7 (Shirling and Gottlieb, 1966), actinomycetes isolation
agar (AIA; Atlas, 1993), Streptomyces agar (SA; Atlas, 1993),
starch casein agar (SCA; Küster and Williams, 1964), and
nutrient agar (Macfaddin, 2000) for 14 days at 28◦C. Light
microscopy (80i, Nikon) and scanning electron microscopy
(JEOL-JSM 6400) were used to observe the morphology of the
strain after incubation on ISP 2 agar at 28◦C for 7–14 days
(Figure 2). The designation of colony color was determined
by using the ISCC-NBS color charts (Kelly, 1964). Gram
staining was performed by standard Gram reaction and

FIGURE 2 | Scanning electron microscope of Streptomyces
mangrovisoli MUSC 149T.

confirmed by using KOH lysis (Cerny, 1978). The growth
temperature range was tested at 4-40 ◦C at intervals of 4
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◦C on ISP 2 agar. The pH range for growth was tested in
tryptic soy broth (TSB) between pH 2.0 and 10.0 at intervals
of 1 pH unit. The NaCl tolerance was tested in TSB and salt
concentrations ranging from 0 to 10% (w/v) at intervals of 2%.
The responses to temperature, pH and NaCl were observed
for 14 days. Catalase activity and production of melanoid
pigments were determined following protocols described by
Lee et al. (2014e). The production of melanoid pigments
was examined using ISP 7 medium. Hemolytic activity was
assessed on blood agar medium containing 5% (w/v) peptone,
3% (w/v) yeast extract, 5% (w/v) NaCl, and 5% (v/v) horse
blood (Carrillo et al., 1996). The plates were examined for
hemolysis after incubation at 28◦C for 7–14 days. Amylolytic,
cellulase, chitinase, lipase, protease, and xylanase activities
were determined by growing cells on ISP 2 agar and following
protocols as described by Meena et al. (2013). The presence
of clear zones around the colonies was taken to indicate the
potential of isolates for surfactant production. Antibiotic
susceptibility tests were performed by the disk diffusion
method as described by Shieh et al. (2003). Antimicrobials
used and their concentrations per disk (Oxoid, Basingstoke,
UK) were as follows: ampicillin (10 μg), ampicillin sulbactam
(30 μg), cefotaxime (30 μg), cefuroxime (30 μg), cephalosporin
(30 μg), chloramphenicol (30 μg), ciprofloxacin (10 μg),
erythromycin (15 μg), gentamicin (20 μg), nalidixic acid
(30 μg), Penicillin G (10 μg), streptomycin (10 μg), tetracycline
(30 μg), and vancomycin (30 μg). Carbon-source utilization and
chemical sensitivity assays were determined using Biolog GenIII
MicroPlates (Biolog, USA) according to the manufacturer’s
instructions. All of the phenotypic assays mentioned were
performed concurrently for strain MUSC 149T, S. graminisoli
NBRC 108883T, S. gramineus NBRC 107863T, and S. rhizophilus
NBRC 108885T.

Chemotaxonomic Characteristics
The analyses of peptidoglycan amino acid composition and
sugars of strainMUSC 149T were carried out by the Identification
Service of the DSMZ using protocols of Schumann (2011). Major
diagnostic cell wall sugars of strain MUSC 149T were obtained
as described by Whiton et al. (1985) and analyzed by TLC
on cellulose plates (Staneck and Roberts, 1974). Analysis of
respiratory quinones, polar lipids (Kates, 1986) and fatty acids
(Sasser, 1990) were carried out by the Identification Service of the
DSMZ.

Extract preparation of MUSC 149T

MUSC 149T was grown in TSB for 14 days prior to fermentation
process. The fermentation medium used was FM3 (Hong et al.,
2009; Lee et al., 2012a). The medium was autoclaved at 121◦C
for 15 min prior to experiment. Fermentation was carried out
in test tubes (30 mm × 200mm) containing 20 mL of FM3,
at an angle of 45◦ for 7–10 days at 28◦C. The resulting FM3
medium was recovered by centrifugation at 12000 g for 15 min.
The supernatant was filtered and subjected to freeze dry process.
Upon freeze-drying, the sample was extracted with methanol
for 72 h and the methanol-containing extract was filtered and
collected. The residue was re-extracted under the same condition

twice at 24 h interval. Subsequently, the methanol-containing
extract was evaporated using rotary vacuum evaporator at
40◦C. The extract of MUSC 149T was collected and suspended
in dimethyl sulphoxide (DMSO) as vehicle reagent prior to
assay.

Determination of Antioxidant Activity of
MUSC 149T Extract using 2,2-diphenyl-1-
picrylhydrazyl (DPPH) Radical Scavenging
Method
The stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH; Sigma–
Aldrich) was used to examine antioxidant activity by measuring
its hydrogen donating or radical scavenging ability. Scavenging
activity on DPPH free radicals by MUSC 149T extract was
accessed following previous method with minor modification
(Ling et al., 2009). The decrease in radical is measured as
decrease in the absorbance of 515 nm. Volume of 195 μL
of 0.016% DPPH ethanolic solution was added to 5 μL of
extract solution to make up final volume of 200 μL. Gallic acid
was included as positive control. Reactions were carried out at
room temperature in dark for 20 min before measurement with
spectrophotometer at 515 nm. DPPH scavenging activity was
calculated as follows:

DPPH scavenging activity =
Absorbance of control−Absorbance of sample

Absorbance of control
×100%

Gas Chromatography–Mass Spectrometry
(GC–MS) Analysis
Gas chromatography–mass spectrometry (GC–MS) analysis was
performed in accordance with our previous developed method
with slight modification (Supriady et al., 2015). Themachine used
was Agilent Technologies 6980N (GC) equipped with 5979 Mass
Selective Detector (MS), HP-5MS (5% phenyl methyl siloxane)
capillary column of dimensions 30.0 m× 250μm× 0.25μm and
used helium as carrier gas at 1 mL/min. The column temperature
was programmed initially at 40◦C for 10 min, followed by an
increase of 3◦C/min to 250◦C and was kept isothermally for
5 min. The MS was operating at 70 eV. The constituents were
identified by comparison of their mass spectral data with those
from NIST 05 Spectral Library.

Results and Discussion

Phenotypic, Phylogenetic, and Genomic
Analyses
Strain MUSC 149T was observed to grow well on ISP 2, ISP
3, ISP 5, ISP 6, ISP 7 agar, actinomycetes isolation agar, starch
casein agar, and nutrient agar after 7–14 days at 28◦C, and to
grow poorly on Streptomyces agar, and did not grow on ISP 4
medium. The colors of the aerial and substrate mycelium were
media-dependent (Supplementary Table S1). The morphological
observation of a 15-day-old culture grown on ISP 2 agar revealed
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TABLE 1 | Differentiation characteristics of strain MUSC 149T and type strains of phylogenetically closely related species of the genus Streptomyces.

Characteristics 1 2 3 4

Morphology (on ISP 2)

Color of aerial mycelium Pale yellow Grayish yellow Yellowish white Light greenish yellow

Color of substrate mycelium Grayish yellow Grayish yellow Pale orange yellow Grayish yellow

Growth at

24◦C (+) + + (+)

36◦C (+) (+) (+) +
pH 5 (+) (+) (+)γ (+)

pH 8 (+) + (+)γ (+)

4% NaCl (+) + (+)γ (+)

Catalase + + + −
Hemolytic − − − −
Hydrolysis of

Casein (protease) − − + −
Tributyrin (lipase) − − + +
Starch (amylolytic) − + +γ +
Carboxymethylcellulose (cellulase) + + − +
Xylan (xylanase) − − − +
Carbon source utilization

D-trehalose + − + −
D-cellobiose + − + +
α-D-lactose + − + −
β-methyl-D-glucoside + − − +
N-acetyl-β-D-mannosamine + − − −
N-acetyl-D-galactosamine + − − −
N-acetyl-neuraminic acid + − − −
D-mannose − + + +
3-methyl glucose − + − −
Inosine + − + −
D-mannitol + − + +
D-serine − + − −
Glycyl-L-proline − + + +
L-alanine + − + +
L-arginine − + + +
L-pyroglutamic acid − + + +
D-gluconic acid − + + +
Mucic acid + − + −
Quinic acid − − + +
D-saccharic acid − + + −
D-lactic acid methyl ester − + + +
D-malic acid + − + +
Chemical sensitivity assays

Troleandomycin + + − −
Lithium chloride + + − −

Strains: 1, S. mangrovisoli sp. nov. MUSC 149T; 2, S. rhizophilus NBRC 108885T ; 3, S. gramineus NBRC 107863T ; 4, S. graminisoli NBRC 108883T . All data were
obtained concurrently in this study. +, Positive; –, negative; (+), weak. All strains are positive for utilization of Dextrin, D-maltose, gentiobiose, D-melibiose, α-D-glucose,
D-fructose, D-galactose, L-fucose, L-rhamnose, gelatine, L-serine, pectin, p-hydroxy-phenylacetic acid, methyl pyruvate, L-malic acid, bromo-succinic acid, tween 40,
γ-amino-butyric acid, α- hydroxy-butyric acid, β-hydroxy-D,L-butyric acid and α-keto-butyric acid. S. graminisoli NBRC 108883T .
γResults in accordance with that published for S. gramineus NBRC 107863T by Lee et al. (2012b).

a smooth spore surface and abundant growth of both aerial
and vegetative hyphae, which were well developed and not
fragmented. These morphological features are consistent with
grouping of the strain to the genus Streptomyces (Williams
et al., 1989). Growth occurred at pH 5.0–8.0 (optimum pH

6.0–7.0), with 0–4% NaCl tolerance (optimum 0–2%) and at
24–36◦C (optimum 28–32◦C). Cells were found to be positive
for catalase but negative for both melanoid pigment production
and hemolytic activity. Hydrolysis of carboxymethylcellulose was
found to be positive, but negative for hydrolysis of casein, chitin,
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soluble starch, tributyrin (lipase), and xylan. Strain MUSC 149T
can be differentiated from closely related members of the genus
Streptomyces using a range of phenotypic properties (Table 1).
In chemical sensitivity assays, cells are resistant to aztreonam,
D-serine, fusidic acid, guanine HCl, lincomycin, lithium chloride,
minocycline, nalidixic acid, niaproof 4, potassium tellurite,
rifamycin RV, sodium bromate, sodium butyrate, 1% sodium
lactate, tetrazolium blue, tetrazolium violet, troleandomycin, and
vancomycin.

The nearly complete 16S rRNA gene sequence was obtained
for strain MUSC 149T (1487 bp; GenBank/EMBL/DDBJ
accession number KJ632664) and phylogenetic trees were
reconstructed to determine the phylogenetic position of this
strain (Figure 1; Supplementary Figure S1). Phylogenetic
analysis exhibited that strain MUSC 149T is closely related to
S. rhizophilus JR-41T, as they formed a distinct clade (Figure 1;
Supplementary Figure S1). The type strain S. rhizophilus
JR-41T was isolated from a bamboo (Sasa borealis) rhizosphere
soil (Lee and Whang, 2014). The 16S rRNA gene sequence
analysis of strain MUSC 149T showed the highest similarity
to that of S. rhizophilus NBRC 108885T (99.2% sequence
similarity), followed by S. gramineusNBRC 107863T (98.7%) and

S. graminisoli NBRC 108883T (98.5%); sequences similarities of
less than 98.3% were obtained with the type strains of other
species of the genus Streptomyces. The DNA–DNA hybridization
values between strain MUSC 149T and S. rhizophilus NBRC
108885T (12.4 ± 3.3%), followed by S. gramineus NBRC 107863T
(13.7 ± 0.5%) and S. graminisoli NBRC 108883T (27.3 ± 1.9%)
were significantly below 70%, the threshold value for the
delineation of bacterial species (Wayne et al., 1987). The BOX-
PCR results indicated that strain MUSC 149T yielded a unique
BOX-PCR fingerprint compared with the closely related type
strains (Supplementary Figure S2). These results are in agreement
with results of DNA–DNA hybridizations, which indicate that
strain MUSC 149T represents a novel species.

Chemotaxonomic Analyses
Chemotaxonomic analyses showed that the cell wall of strain
MUSC 149T is of cell-wall type I (Lechevalier and Lechevalier,
1970) as it contains LL-diaminopimelic. The presence of LL-
diaminopimelic has been observed in many other species of the
genus Streptomyces (Lee et al., 2005, 2014b; Xu et al., 2009; Hu
et al., 2012; Ser et al., 2015). The predominant menaquinones
of strain MUSC 149T were identified as MK-9(H8) (59%) and

FIGURE 3 | Two dimensional total lipid profile of strain MUSC 149T, S. rhizophilus NBRC 108885T and S. gramineus NBRC 107863T . AL, Aminolipid;
DPG, Diphosphatidylglycerol; PL, Phospholipid; PI, Phosphatidylinositol; PE, Phosphatidylethanolamine; PG, Phosphatidylglycerol; PGL, Phosphoglycolipid.
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MK-9(H6) (15%). This is in agreement with Kim et al. (2003)
that the predominant menaquinones of members of the genus
Streptomyces are MK-9(H6) and MK-9(H8). The cell wall sugars
detected were glucose, mannose and ribose. Strain MUSC149T
shared the same sugar profile with S. gilvigriseus (Ser et al., 2015).
Furthermore the sugars glucose and ribose were detected in other
members of the genus Streptomyces such as S. rhizophilus JR-
41T, S. graminisoli JR-19T (Lee and Whang, 2014), S. gramineus
JR-43T (Lee et al., 2012b), S. shenzhenensis 172115T (Hu et al.,
2011), and S. pluripotens (Lee et al., 2014b). The G + C content
of strain MUSC 149T was determined to be 72.7 mol%; this is
within the range of 67.0–78.0 mol% described for species of the
genus Streptomyces (Kim et al., 2003).

The polar lipid analysis showed the presence of
aminolipid, diphosphatidylglycerol, phosphatidylethanolamine,
phosphatidylinositol, phosphoglycolipid, and phospholipid
(Figure 3). Differences in polar lipid profiles indicated that
MUSC 149T is different from related type strains (Figure 3); for
example, strain MUSC 149T was found to contain aminolipid,
lipid that was not detected in S. rhizophilus NBRC 108885T
(Figure 3). The fatty acids profiles of strain MUSC 149T and
closely related type strains are given shown in Table 2.

The major cellular fatty acids inMUSC 149T were identified as
anteiso-C15 : 0 (26.2%), iso-C15:0 (17.7%), iso-C16:0 (16.0%) and
anteiso-C17:0 (11.3%). The fatty acids profile of MUSC 149T is
consistent with those of closely related phylogenetic neighbors
such as S. rhizophilus NBRC 108885T, S. gramineus NBRC
107863T, and S. graminisoli NBRC 108883T, which contain
anteiso-C15:0 (26.5–17.5%), iso-C16:0 (25.1–15.4%), and iso-C15:0
(18.3–12.5%) as their major fatty acids (Table 2). However, the
fatty acid profile of MUSC 149T was quantitatively different from
those of these type strains; for example, although anteiso-C15:0
(26.2%) was found to be predominant in strain MUSC 149T,
the amount of anteiso-C15:0 was significantly lesser (17.5%) in
S. graminisoliNBRC 108883T (Table 2).

Based on the results of DNA-DNAhybridization, phylogenetic
analysis, chemotaxonomic, phenotypic and DNA fingerprinting,
strain MUSC 149T merits assignment to a novel species in the
genus Streptomyces, for which the name S. mangrovisoli sp. nov.
is proposed.

Antioxidant Activity of MUSC 149T Extract
The antioxidant evaluation assay DPPH is based upon the
reduction of DPPH free radical. It is widely used to determine
free radical scavenging capacity of the tested samples (Blois, 1958;
Molyneux, 2004). As a free radical, DPPH is observed as purple
solution when dissolved in appropriate solvent. It is known to
exhibit a high absorption at 515 nm when measured with visible
spectroscopy. In the presence of free radical-scavenging agent(s)
or hydrogen donor(s), the odd electron of DPPH will be paired
off, it will subsequently result in discoloration of solution to
become either yellowish or colorless. The strength of the radical
scavenging or anti-oxidant activity can then be quantified by
the difference of absorbance obtained with the samples when is
comparing to control.

The DPPH scavenging assay was employed to examine the
antioxidant activity of MUSC 149T extract. The extract was

tested for a dose-response study with five different concentrations
(0.125, 0.25, 0.5, 1.0, and 2.0 mg/mL). Based on the results
obtained, the extract of MUSC 149T displayed a dose-dependent
manner of antioxidant activity. It was inferred by a gradual
increase in scavenging activity of MUSC 149T extract with a
low concentration of extract at 0.125 mg/mL to the highest
concentration at 2.0 mg/mL. The scavenging activity of lowest
concentration at 0.125 mg/mL and the highest concentration
at 2.0 mg/mL was recorded at 1.1 ± 1.4% and 36.5 ± 3.0%,
respectively (Figure 4). The ability of MUSC 149T extract to
scavenge DPPH free radicals indicates the possible presence of
antioxidant agent(s) in the tested MUSC 149T extract.

TABLE 2 | Cellular fatty acid composition of strain MUSC 149T and its
closely related Streptomyces species.

Fatty acid 1 2 3 4

iso-C12:0 0.1 – – 0.1

C12:0 0.1 – – 0.1

iso-C13:0 0.4 0.6 0.2 0.4

anteiso-C13:0 0.5 0.3 0.2 0.3

iso-C14:0 2.9 3.5 4.3 5.7

C14:0 0.6 0.5 0.2 1.1

iso-C15:0 17.7 18.3 19.1 12.5

anteiso-C15:0 26.2 26.5 21.4 17.5

C15:0w6c – – – 0.3

C15:0 1.8 1.5 – 2.1

iso-C16:1 H 1.9 – 1.3 1.7

iso-C16:0 16.0 15.4 19.2 25.1

C16:1Cis9 2.8 – – –

C16:0 4.0 9.4 4.3 7.9

iso-C17:1w9c – 1.3 5.0 3.1

anteiso-C17:1w9c 2.4 0.6 1.9 1.9

iso-C17:0 6.1 10.3 10.4 5.0

anteiso-C17:0 11.3 10.7 9.6 9.2

C17:1w8c – – 0.4 0.4

C17:0 CYCLO 0.4 – 0.5 0.6

C17:0 0.3 0.7 0.7 0.5

Strains: 1, S. mangrovisoli sp. nov. MUSC 149T ; 2, S. rhizophilus NBRC 108885T ;
3, S. gramineus NBRC 107863T ; 4, S. graminisoli NBRC 108883T . –, <0.1% or
not detected. All data are obtained concurrently from this study.

FIGURE 4 | Antioxidant activity of MUSC 149T methanolic extract.
Antioxidant activity of MUSC 149T was evaluated at different concentration
and values are SEM of four replicates.
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TABLE 3 | Compounds identified from MUSC 149T extract through Gas chromatography–mass spectrometry (GC–MS).

No. Retention time Compound Formula Molecular weight Similarity (%)

1 5.913 Hexadecane, 1,1-bis(dodecyloxy) C40H82O2 595 64

2 9.753 Butanoic acid, 2-methyl- C5H10O2 102 74

3 33.499 Benzoic acid, 3-methyl- C8H8O2 136 90

4 51.535 (3R,8aS)-3-methyl-1,2,3,4,6,7,8,8a-octahydropyrrolo [1,2-a]pyrazine-1,4-dione C8H12N2O2 168 90

5 52.994 Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro- C7H10N2O2 154 90

FIGURE 5 | Chemical structures of the identified compounds from
MUSC 149T. (1) Hexadecane, 1,1-bis(dodecyloxy); (2) Butanoic acid,
2-methyl-; (3) Benzoic acid, 3-methyl-; (4) (3R,8aS)-3-methyl-
1,2,3,4,6,7,8,8a-octahydropyrrolo[1,2-a]pyrazine-1,4-dione; (5)
Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-.

GC–MS Analysis of MUSC 149T Methanolic
Extract
Growing evidence implies that the accumulation of free radicals
may contribute to pathogenesis of chronic diseases including
Parkinson’s disease and various types of cancers (Floyd and
Hensley, 2002; Farooqui and Farooqui, 2009; Goldkorn et al.,
2014; Mahalingaiah and Singh, 2014). Synthetic antioxidants
may be able to scavenge these notorious free radicals, however,
currently available antioxidants display low solubility and may
promote negative health impacts (Barlow, 1990; Panicker et al.,
2014). With this in mind, the search of the antioxidants from
natural resources has always been one of the major focuses for
many researchers (Lee et al., 1998; Harvey et al., 2015). In order
to explore this premise, we examined the antioxidant activity of
the extract of MUSC 149T. The results obtained demonstrated

that MUSC 149T extract was posing significant antioxidant
activity. This has prompted the necessities to further examine
the chemical constituents which present in the extract of MUSC
149T.

As Streptomyces are known to produce various secondary
metabolites with diverse biological activity, numerous studies
have incorporated powerful analytical techniques such as
GC–MS to assist with the chemical analysis (Pollak and Berger,
1996; Karanja et al., 2010; Sudha and Masilamani, 2012; Ara
et al., 2014; Jog et al., 2014). This robust technique produces
reliable results as it combines separation power of GC and
detection power of MS by generating characteristic mass
spectral fragmentation patterns for each compounds present
in mixture (Hites, 1997). For instance, recent study by Kim
et al. (2008) has described detection of the bioactive compound
(protocatechualdehyde) present in the extract of S. lincolnensis
M-20 by using the GC–MS. With this intention, GC–MS
analysis was performed in this study to explore the chemical
constituents present in the extract of MUSC 149T. Using this
analytical technique, we have identified chemical constituents
of the extract of MUSC 149T (Table 3) and the chemical
structures (Figure 5) as Hexadecane, 1,1-bis(dodecyloxy)
(1), Butanoic acid, 2-methyl- (2), Benzoic acid, 3-methyl-
(3) (3R,8aS)-3-methyl-1,2,3,4,6,7,8,8a-octahydropyrrolo[1,2-
a]pyrazine-1,4-dione (4), and Pyrrolo[1,2-a]pyrazine-1,4-dione,
hexahydro- (5).

The detection of heterocyclic organic compound in extract
is deemed as one of the most important findings in current
study. Pyrrolizidines are widely present or synthesized in several
marine Streptomyces species (Olano et al., 2009b; Robertson
and Stevens, 2014). Furthermore, pyrrolizidines are known to
exhibit a wide range of bioactivities which including antitumor,
anti-angiogenesis, and antioxidant activities. For instance, the
detection of the compound known as pyrrolo[1,2-a]pyrazine-1,4-
dione, hexahydro- (Table 3; Figure 5) in the extract has suggested
the antioxidant activity could be contributed by this compound.
Furthermore, other recent findings conducted on this compound
suggested strong antioxidant activities as well (Gopi et al., 2014;
Balakrishnan et al., 2015). These findings have demonstrated
that pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- was able to
scavenge or reduce amount of free radicals as evaluated by using
reducing power assay. In short, an antioxidant is likely to play
important roles in prevention and treatment of chronic diseases
(Morales-González, 2013). The strong free radical scavenging
effect possessed by the extract of MUSC 149T warrants the future
investigations into different type of biological activities.
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Description of S. mangrovisoli sp. nov.
Streptomyces mangrovisoli sp. nov. (man.gro.vi.so′li. N.L. n.
mangrovum, mangrove; L. gen. n. soli, of soil; N.L. gen. n.
mangrovisoli, of mangrove soil, referring to the source of the
inoculum).

Cells stain Gram-positive and form pale yellow aerial and
grayish yellow substrate mycelium on ISP 2 agar. The colors
of the aerial and substrate mycelium are media-dependent
(Supplementary Table S1). Grows well on ISP 2, ISP 3, ISP
5, ISP 6, ISP 7 agar, actinomycetes isolation agar, starch
casein agar, and nutrient agar after 1–2 weeks at 28◦C; and
to grow poorly on Streptomyces agar, whereas no growth on
ISP 4 medium. Grows occur at pH 5.0–8.0 (optimum pH
6.0–7.0), with 0–4% NaCl tolerance (optimum 0–2%) and at
24–36◦C (optimum 28–32◦C). Cells are positive for catalase
but negative for both melanoid pigment production and
hemolytic activity. Carboxymethylcellulose is hydrolysed but
negative for hydrolysis of casein, chitin, soluble starch, tributyrin
(lipase), and xylan. The following compounds are utilized as
sole carbon sources: acetic acid, acetoacetic acid, α-D-glucose,
α-D-lactose, α-hydroxy-butyric acid, α-keto-butyric acid,
α-keto-glutaric acid, β-hydroxyl-D,L-butyric acid, β-methyl-D-
glucoside, bromo-succinic acid, citric acid, D-cellobiose, Dextrin,
D-fructose, D-fructose-6-phosphate, D-fucose, D-galactose, D-
galacturonic acid, D-gluconic acid, D-glucose-6-phosphate,
D-glucuronic acid, D-lactic acid methyl ester, D-malic acid,
D-maltose, D-mannitol, D-melibiose, D-raffinose, D-saccharic
acid, D-sorbitol, D-trehalose, D-turanose, formic acid, gelatin,
gentiobiose, glucuronamide, inosine, L-fucose, L-galactonic
acid lactone, L-lactic acid, L-malic acid, L-rhamnose, methyl
pyruvate, mucic acid, N-acetyl-β-D-mannosamine, N-acetyl-
D-galactosamine, N-acetyl-D-glucosamine, N-acetyl-neuraminic
acid, pectin, p-hydroxyl-phenylacetic acid, propionic acid, quinic

acid, stachyose, sucrose, Tween 40, and γ-amino-butyric acid.
The following compounds are not utilized as sole carbon sources:
D-salicin, D-mannose, D-arabitol, myo-inositol, glycerol, D-
aspartic acid, D-serine, glycyl-L-proline, and 3-methyl glucose.
L-alanine, L-histidine, and L-serine are utilized as sole nitrogen
sources. L-arginine, L-aspartic acid, L-glutamic acid, and L-
pyroglutamic acid are not utilized as sole nitrogen sources.
Extract of the type strain exhibits strong antioxidant activity in
a dose-dependent manner. The G + C content of the genomic
DNA of the type strain is 72.7 mol%.

The type strain is MUSC 149T (=MCCC 1K00699T=DSM
100438T), isolated from mangrove soil collected from the
Tanjung Lumpur mangrove forest located in the state of Pahang,
Peninsular Malaysia. The 16S rRNA gene sequence of strain
MUSC 149T has been deposited in GenBank/EMBL/DDBJ under
the accession number KJ632664.
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A Streptomyces strain, MUM256 was isolated from Tanjung Lumpur mangrove soil in

Malaysia. Characterization of the strain showed that it has properties consistent with

those of the members of the genus Streptomyces. In order to explore the potential

bioactivities, extract of the fermented broth culture of MUM256 was prepared with

organic solvent extraction method. DPPH and SOD activity were utilized to examine

the antioxidant capacity and the results have revealed the potency of MUM256 in

superoxide anion scavenging activity in dose-dependent manner. The cytotoxicity of

MUM256 extract was determined using cell viability assay against 8 different panels

of human cancer cell lines. Among all the tested cancer cells, HCT116 was the most

sensitive toward the extract treatment. At the highest concentration of tested extract, the

result showed 2.3-, 2.0-, and 1.8-folds higher inhibitory effect against HCT116, HT29,

and Caco-2 respectively when compared to normal cell line. This result has demonstrated

that MUM256 extract was selectively cytotoxic toward colon cancer cell lines. In order to

determine the constituents responsible for its bioactivities, the extract was then subjected

to chemical analysis using GC-MS. The analysis resulted in the identification of chemical

constituents including phenolic and pyrrolopyrazine compounds which may responsible

for antioxidant and anticancer activities observed. Based on the findings of this study,

the presence of bioactive constituents in MUM256 extract could be a potential source

for the development of antioxidative and chemopreventive agents.

Keywords: Streptomyces sp., antioxidant, anticancer, Malaysia, mangrove

INTRODUCTION

Cancer is a common cause of mortality in the world population. Recently, American Cancer Society
has reported that cancer as the second leading cause of death is expected to surpass cardiovascular
disease in a few year times (Siegel et al., 2015). Furthermore, the incidence of the development
of resistance to chemotherapy has become a major health problem (Riganti et al., 2015). This
issue is more serious in economically less developed countries due to the lack of accessibility
to standard diagnostic facilities and high cost of treatment (Jemal et al., 2010). Thus, there is
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an urgent need to search for alternative anticancer agents which
may overcome the failure of chemotherapy. Free radicals are
known to be the major etiology of a number of diseases such
as coronary heart disease, degenerative diseases and cancer
(Devasagayam et al., 2004). Although oxidation is an important
biological process for energy generation in living organisms, the
excessive free radical production and low antioxidant defense
lead to oxidative stress which is detrimental to cells and also
strongly associated with cancer development involving oxidative
DNA damage. Due to the destructive role of free oxygen radicals,
there are several cellular mechanisms involve in the eradication
of the free radicals including the enzymatic conversion of
reactive oxygen species (ROS, H2O2, O

−
2 •, and •OH−) into less

reactive species, chelation by transition metal catalysts as well
as detoxification of ROS by antioxidants (Valko et al., 2006).
Many synthetic antioxidant such as butylated hydroxycanisole,
butylated hydroxytoluene and propyl gallate have been developed
in order to retard oxidation process and prevent the progression
of diseases caused by ROS (Maxwell, 1995). However, these
synthetic antioxidative compounds which exhibited strong
radical scavenging activity have been reported to cause severe
side effects (Baardseth, 1989; Tepe et al., 2005). Thus, alternative
antioxidants from natural sources are more preferable and many
recent studies have shown that besides plants as rich source of
antioxidants (Wong et al., 2012; Tan et al., 2015), microorganisms
can be used for the production of natural antioxidants. Recently,
many studies reported that mangrove Streptomyces produced
antioxidative agents (Rao and Rao, 2013; Ser et al., 2015a).

The intertidal coasts in the tropical and subtropical coastal
regions consist of an exclusive woody plant area known as the
mangrove area. The mangrove ecosystem is among the world’s
most prolific environments and produces commercial forest
products, supports coastal fisheries and protects the coastlines.
These ecosystems are favorable habitats of a variety of flora and
fauna of marine, freshwater and terrestrial species (Jennerjahn
and Ittekkot, 2002). Factors such as salinity and tidal gradient
in the mangrove systems are considered as some of the driving
forces for metabolic pathway adaptations that could direct to
the production of valuable metabolites (Hong et al., 2009; Lee
et al., 2014d). Therefore, in recent years, there has been increasing
interest in exploitation of mangrove microorganism resources.
Furthermore, many researchers have successfully discovered
novel actinobacteria strains frommangrove environments across
the earth, such as the isolation of Streptomyces avicenniae
(Xiao et al., 2009), Streptomyces xiamenensis (Xu et al.,
2009), Streptomyces sanyensis (Sui et al., 2011), Streptomyces
qinglanensis (Hu et al., 2012), Streptomyces pluripotens (Lee
et al., 2014c), Streptomyces mangrovisoli (Ser et al., 2015a), and
Streptomyces gilvigriseus (Ser et al., 2015b).

The genus Streptomyces was proposed by Waksman and
Henrici (1943) and this genus is comprised of ca. 600 species with
validly published names (http://www.bacterio.cict.fr/) at the time
of writing (August 2015). Many members of Streptomyces have
made imperative contributions to human with their capabilities
to produce various important natural products (Bérdy, 2005). To
date, numerous bioactive compounds with profound impact on
society have been reported from the genus Streptomyces whereby

over 7000 bioactive compounds with diverse bioactivities
including antimicrobial, antioxidant, anticancer and antifungals
properties are identified from Streptomyces. Beyond the well-
known antibiotics from Streptomyces, such as streptomycin
(Schatz et al., 1944) and erythromycin (Weber et al., 1985), many
other medically useful agents include anticancer drugs such as
doxorubicin (Grimm et al., 1994) and bleomycin (Du et al.,
2000), the antifungal nystatin (Brautaset et al., 2000) are derived
from Streptomyces as well. The unique and highly dynamic
mangrove ecosystem is believed to exert significant influence on
bacterial speciation for metabolic and physiological adaptations,
consequently leading to the production of unique secondary
metabolites with interesting bioactivities (Duncan et al., 2014; Lee
et al., 2014d). Several previous studies on secondary metabolites
from mangrove Streptomyces have documented a number of
unique bioactive compounds. For instance, seven azlomycin F
analogs, macrocyclic lactones, with anticancer and antibacterial
properties were discovered recently from Streptomyces sp. 211726
isolated from mangrove rhizosphere soil (Yuan et al., 2013).
Furthermore, benzonaphthyridine alkaloid was isolated from
a mangrove-derived S. albogriseolus (Li et al., 2010). Fu and
colleagues also revealed two indolocarbazoles, streptocarbazoles
A and B with antitumor properties from Streptomyces sp. isolated
from mangrove soil in Sanya, China (Fu et al., 2012).

In this study, Streptomyces sp. MUM256, isolated from soil
at the Tanjung Lumpur mangrove forest, Peninsular Malaysia,
was studied in the search of antioxidant and anticancer biological
activities. The chemical constituents present in the extract of
MUM256 were further characterized. The outcomes derived
from this research constitute important starting points for
performing further in depth biological studies focusing on free-
radical associated diseases such as cancer.

MATERIALS AND METHODS

Isolation and Maintenance of Isolate
Strain MUM256 was isolated from a soil sample collected at
site MUM-KS1 (3◦ 21′ 45.8′′ N 101◦ 18′ 4.5′′ E), located in
the mangrove forest of Kuala Selangor in the state of Selangor,
Peninsular Malaysia, in Jan 2015. Topsoil samples of the upper
20-cm layer (after removing the top 2–3 cm) were collected and
sampled into sterile plastic bags using an aseptic metal trowel,
and stored at −20◦C. Air-dried soil samples were ground with
a mortar and pestle. Selective pretreatment of soil samples was
performed using wet heat in sterilized water (15min at 50◦C)
(Takahashi et al., 1996). Five grams of the pretreated air-dried soil
was mixed with 45ml sterilized water and mill ground, spread
onto the isolation medium ISP 2 (Shirling and Gottlieb, 1966)
supplemented with cycloheximide (25µg ml−1) and nystatin
(10µg ml−1), and incubated at 28◦C for 14 days. Pure cultures
of strain MUM256 were isolated and maintained on slants of ISP
2 agar at 28◦C and as glycerol suspensions (20%, v/v) at −20◦C
for long term preservation.

Genomic and Phylogenetic Analyses
The extraction of genomic DNA for PCR was performed as
described by Hong et al. (2009). The amplification of 16S rRNA
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gene was performed according to Lee et al. (2014c). Briefly
the PCR reactions were performed in a final volume of 50µl
according to protocol of SolGent™ 2X Taq PLUS PCR Smart
mix using the Kyratex PCR Supercycler (Kyratec, Australia)
with the following cycling conditions: (i) 95◦C for 5min, (ii)
35 cycles of 94◦C for 50 s, 55◦C for 1min and 72◦C for 1min
30 s; and (iii) 72◦C for 8min. The 16S rRNA gene sequence of
strain MUM256 was aligned with representative sequences of
related type strains of the genus Streptomyces retrieved from the
GenBank/EMBL/DDBJ databases using CLUSTAL-X software
(Thompson et al., 1997). Phylogenetic trees were constructed
with the neighbor-joining (Saitou and Nei, 1987; Figure 1)
and maximum-likelihood (Felsenstein, 1981) and (Figure S1)
algorithms using MEGA version 6.0 (Tamura et al., 2013).
Evolutionary distances for the neighbor-joining algorithm were
computed using Kimura’s two-parameter model (Kimura, 1980).
The EzTaxon-e server (http://eztaxon-e.ezbiocloud.net/; Kim
et al., 2012) was used for calculations of sequence similarity. The
stability of the resultant trees topologies were evaluated by using
the bootstrap based on 1000 resampling method of Felsenstein
(1985).

Phenotypic Characteristics
The cultural characteristics of strain MUM256 were determined
following growth on ISP 2, ISP 3, ISP 4, ISP 5, ISP 6, ISP 7
(Shirling and Gottlieb, 1966), actinomycetes isolation agar (AIA)
(Atlas, 2010), starch casein agar (SCA) (Küster and Williams,
1964), and nutrient agar (Mac Faddin, 1976) for 14 days at
28◦C. The light microscopy (80i, Nikon) was used to observe
the morphology of the strain after incubation on ISP 2 agar
at 28◦C for 7–14 days. The Gram staining was performed by
standard Gram reaction and confirmed by using KOH lysis
(Cerny, 1978). The determination of colony color was done
by using the ISCC-NBS color charts (Kelly, 1964). The growth
temperature range was tested at 4–40◦C at intervals of 4◦C
on ISP 2 agar. The NaCl tolerance was tested in tryptic soy
broth (TSB) and salt concentrations ranging from 0 to 10%
(w/v) at intervals of 2%. The pH range for growth was tested
in TSB between pH 2.0 and 10.0 at intervals of 1 pH unit. The
responses to temperature, pH and NaCl were observed for 14
days. The production of melanoid pigments and catalase activity
were determined following protocols described by Lee et al.
(2014b). The production of melanoid pigments was examined
using ISP 7 medium. Hemolytic activity was assessed on blood
agar medium containing 5% (w/v) peptone, 3% (w/v) yeast
extract, 5% (w/v) NaCl, and 5% (v/v) horse blood (Carrillo et al.,
1996). The plates were examined for hemolysis after incubation
at 28◦C for 7–14 days. Amylolytic, cellulase, chitinase, lipase,
protease, and xylanase activities were determined by growing
cells on ISP 2 agar and following protocols as described byMeena
et al. (2013). The presence of clear zones around the colonies
was taken to indicate the potential of isolates for surfactant
production. Antibiotic susceptibility tests were performed by
the disc diffusion method as described by Shieh et al. (2003).
Antimicrobials used and their concentrations per disc (Oxoid,
Basingstoke, UK) were as follows: ampicillin (10µg), ampicillin
sulbactam (30µg), cefotaxime (30µg), cefuroxime (30µg),
cephalosporin (30µg), chloramphenicol (30µg), ciprofloxacin

(10µg), erythromycin (15µg), gentamicin (20µg), nalidixic acid
(30µg), Penicillin G (10µg), streptomycin (10µg), tetracycline
(30µg), and vancomycin (30µg).

Extract Preparation of MUM256
MUM256 was grown in TSB for 14 days prior to fermentation
process. The fermentation medium used was FM3 (Hong et al.,
2009; Lee et al., 2012). The medium was autoclaved at 121◦C
for 15min prior to experiment. Fermentation was carried out
in test tubes (30 × 200mm) containing 20mL of FM3, at an
angle of 45◦ for 7–10 days at 28◦C. The resulting FM3 medium
was recovered by centrifugation at 12,000 g for 15min. The
supernatant was filtered and subjected to freeze dry process.
Upon freeze-drying, the sample was extracted with methanol
for 72 h and the methanol-containing extract was filtered and
collected. The residue was re-extracted under the same condition
twice at 24 h interval. Subsequently, the methanol-containing
extract was evaporated using rotary vacuum evaporator at 40◦C.
The extract ofMUM256 was collected and suspended in dimethyl
sulphoxide (DMSO) as vehicle reagent prior to assay.

Antioxidant Activity
Free Radical Scavenging Activity Determination
DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay
was performed to determine the antioxidant activity by
measuring the hydrogen donating or radical scavenging ability.
The DPPH radical scavenging activity of extract of MUM256
was measured according to the previously described method
with minor modifications (Ser et al., 2015a). A volume of
5µL of sample at different concentrations was mixed with
195µL of freshly prepared 0.016% DPPH in 95% ethanol. The
mixture was kept at room temperature in the dark for 20min
before measuring the reduction of DPPH radical at 515 nm with
microplate reader. Gallic acid was used as a positive control. The
percentage inhibition of DPPH radical or scavenging activity was
calculated according to the formula expressed below:

% DPPH scavenging activity =

Absorbance of control− Absorbance of sample

Absorbance of control
×100%

Superoxide Anion Scavenging Activity Determination
Superoxide anion scavenging activity/superoxide dismutase
(SOD) activity was determined using a commercially
available colorimetric microtiter plate method (19160
SOD Assay Kit-WST, Sigma Aldrich) according to the
manufacturer’s protocol. The SOD activity of MUM256
extract was assayed colorimetrically at 450 nm as the
reduction of the Dojindo’s highly water-soluble tetrazolium
salt, WST-1 (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-
disulfophenyl)-2H-tetrazolium,monosodium salt) by superoxide
anion, O−

2 . Twenty microliter of MUM256 extract at different
concentrations were loaded into respective well of the 96-
wellplate. The plate was incubated at 37◦C for 20min after the
addition of respective reaction solution as the described protocol
and prior to measurement of absorbance at 450 nm using a
microplate reader. The SOD activity (percentage of inhibition
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FIGURE 1 | Neighbor-joining phylogenetic tree based on 1487 nucleotides of 16S rRNA gene sequence showing the relationship between strain MUSC

149T and representatives of related taxa. Numbers at nodes indicate percentages of 1000 bootstrap re-samplings, only values above 50% are shown. Bar, 0.001

substitutions per site. Asterisks indicate that the corresponding nodes were also recovered using the maximum-likelihood tree-making algorithm.

of WST-1 reduction) was determined according to the formula
expressed below:

% SOD activity =
(

Abs control blank− Abs buffer blank
)

− (Abs sample− Abs sample blank)

Abs control blank− Abs buffer blank
×100%

Abs= absorbance measured at 450 nm

Anti-cancer Activity
Cell Lines Maintenance and Growth Condition
All the human cancer and normal cell lines involved in this study
was maintained in RPMI (Roswell Park Memorial Institute)-
1640 (Gibco) supplemented with 10% fetal bovine serum and
1x antibiotic-antimycotic (Gibco) at 37◦C humidified incubator
containing 5% CO2and 95% air. The cancer cell lines involved
were HCT116, HT29, SW480, Caco-2, A549, DU145, CaSki, and
MCF-7 while BEAS-2B was used as the normal cell lines in this

study (Wong et al., 2012; Goh et al., 2014). The cultures were
viewed using an inverted microscope to assess the degree of
confluency and to confirm the absence of bacterial and fungal
contamination.

Anticancer Activity Determination Using MTT Assay
The effect of Streptomyces sp. MUM256 on cell viability of human
cancer cell lines was determined using 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay according to
the establishedmethod withminormodifications (Supriady et al.,
2015). Cells were seeded into a sterile flat bottom 96-well plate at
a density of 5 × 103 cells/well and allowed to adhere overnight.
Twenty microliter of the MUM256 extract was added into each
well with the final concentration ranging from 25 to 400µg/mL.
The concentration of DMSO used as the solvent was maintained
at 0.05% (v/v) and also incorporated as negative control in all
the experiments. Cells were further incubated with the extract
for 72 h before performing MTT assay. Twenty microliter of 5
mg/mL of MTT (Sigma) was then added to each well and the
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plates were incubated at 37◦C in a humid atmosphere with 5%
CO2, 95% air for 4 h. The medium was then gently aspirated,
and 100µL of (DMSO) was added to dissolve the formazan
crystals. The absorbance of dissolved formazan product was
determined spectrophotometrically at 570 nm (with 650 nm as
reference wavelength) using a microplate reader. The percentage
of cell viability was calculated as follows:

Percentage of cell viability =

Absorbance of treated cells

Absorbance of untreated cells (0.05% DMSO only)
× 100%

Gas Chromatography-mass Spectrometry
(GC-MS) Analysis
GC-MS analysis was performed in accordance with our previous
developed method with minor modification (Supriady et al.,
2015). The machine used was Agilent Technologies 6980N (GC)
equipped with 5979 Mass Selective Detector (MS), HP-5MS
(5% phenyl methyl siloxane) capillary column of dimensions
30.0m × 250µm × 0.25µm and used helium as carrier gas at
1mL/ min. The column temperature was programmed initially at
40◦C for 10min, followed by an increase of 3C/min to 250◦C and
was kept isothermally for 5min. The column temperature was
programmed initially at 40◦C for 10min, followed by an increase
of 3◦C/min to 250◦C and was kept isothermally for 5min. The
MS was operating at 70 eV. The constituents were identified
by comparison of their mass spectral data with those standard
compounds from NIST 05 Spectral Library (Figure S2).

Statistical Analysis
All the experiments on the antioxidant and cytotoxic properties
were performed in quadruplicates. The results were expressed
as mean ± standard deviation (SD) and analyzed using
SPSS statistical analysis software. One-way analysis of variance
(ANOVA) and Tukey’s post-hoc analysis were performed to
determine the significance of difference between the treated
and control groups. An independent t-test analysis was also
conducted to compare between the effect of the extract against
cancer and normal cell line. A difference was considered
statistically significant when p ≤ 0.05.

RESULTS AND DISCUSSION

Phenotypic Analyses of Strain
Streptomyces sp. MUM256
Strain MUM256 was Gram-positive and aerobic. The strain
grew well on ISP 2, ISP 3, ISP 5, ISP 6, ISP 7 agar, AIA, nutrient
agar, and starch casein agar after 1 to 2 weeks at 28◦C, whereas
it grew poorly on ISP 4 agar. The morphological observation
of the 15-day-old culture grown on ISP2 medium revealed an
abundance growth of both aerial and vegetative hyphae which
was well developed and not fragmented. These morphological
characteristics were consistent with its assignment to the genus
Streptomyces (Williams et al., 1989). The colors of the aerial and
substrate mycelium were light yellow and pale yellow on ISP 2
agar. Growth occurred at pH 6.0–10.0 (optimum pH 7.0), with

0–6% NaCl tolerance (optimum 4%) and at 20–40◦C (optimum
32◦C). Cells were positive for catalase and hemolytic activitiy
but negative for melanoid pigment production. Hydrolysis
of soluble starch was positive; but negative for hydrolysis
of carboxymethylcellulose, tributyrin (lipase), casein, chitin,
and xylan. Cells are sensitive to cefuroxime, cephalosporin,
chloramphenicol, ciprofloxacin, erythromycin, gentamicin,
streptomycin, tetracycline, and vancomycin. Cells are resistant to
ampicilin, ampicillin sulbactam, cefotaxime, nalidixic acid, and
Penicillin G.

Phylogenetic and Genomic Analyses
The almost-complete 16S rRNA gene sequences were determined
for strain MUM256 (1343 bp). The 16S rRNA gene sequences
of strain MUM256 was aligned with the corresponding
partial 16S rRNA gene sequences of the type strains of
representative members of the genus Streptomyces retrieved
from GenBank/EMBL/DDBJ databases. Phylogenetic tree was
constructed based on the 16S rRNA gene sequences showed
that strain MUM256 (Figure 1) formed a distinct clade with
type strains Streptomyces albidoflavusDSM 40455T, Streptomyces
hydrogenans NBRC 13475T, Streptomyces somaliensis NBRC
12916T, Streptomyces koyangensis VK-A60T, and Streptomyces
daghestanicus NRRL B-5418T at bootstrap value of 72%,
indicating the high confidence level of the association (Figure 1).
Strain MUM256 exhibited highest 16S rRNA gene sequence
similarity to Streptomyces albidoflavus DSM 40455T (99.7%),
Streptomyces hydrogenans NBRC 13475T (99.7%), Streptomyces
somaliensis NBRC 12916T (99.7%), followed by Streptomyces
koyangensis VK-A60T (99.5%) and Streptomyces daghestanicus
NRRL B-5418T (99.5%).

Antioxidant Activity
During metabolism process, organism produces reactive
oxygen species as by-products (Cruz De Carvalho, 2008). The
accumulation of excess free radicals can result in oxidative stress.
It has been associated with many detrimental effects including
food deterioration, aging in organisms and cancer promotion
(Ames et al., 1993). With the knowledge about the critical role of
free oxygen radicals as the etiology of various multifactor diseases
such as cancer, neurodegenerative and cardiovascular diseases
has prompted investigations on novel and potent antioxidant
discovery. Literatures show that plants rich in antioxidants have
been extensively studied and reviewed for their protection effects
against oxidative stress related disease such as cancer (Wang
et al., 2012).

Extensive studies revealed that many potent antioxidative
chemical constituents can be derived from microbial origin.
The investigation also has evidenced that the microbes derived
from extreme environment possess high antioxidant capacity. It
was believed that these microbes may have acquired the ability
to synthesize specific antioxidative agent or develop specific
defense mechanisms after long-term evolutionary processes for
survival against oxidative stress (Hong et al., 2009). Likewise,
the antioxidant activity of MUM256 extract was investigated by
assessing its radical scavenging abilities on both DPPH radicals
and superoxide anions. The results are presented in Table 1.
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TABLE 1 | The antioxidant activities demonstrated by MUM256 extract in

both DPPH assay and SOD activity assay.

Concentration of

extract Streptomyces

sp. MUM256 (µg/mL)

Antioxidant activities

DPPH radical scavenging Superoxide dismutase

activity (%) activity (%)

125 ND 16.33 ± 2.89

250 ND 21.35 ± 2.41

500 ND 31.56 ± 4.25

1000 ND 46.45 ± 5.72

2000 6.69 ± 0.83 67.25 ± 8.82

4000 12.08 ± 1.05 NT

ND, not detected; NT, not tested.

There are many reports available on the use of DPPH
assay in determining the antioxidant activity of Streptomyces sp.
(Karthik et al., 2013; Lee et al., 2014a), showing that DPPH
is widely accepted and well established method for antioxidant
activity assessment. DPPH is a discoloration assay using a
stable free DPPH radical to assess the free radical scavenging
ability of the hydrogen donating antioxidant, which can transfer
hydrogen atoms or electron to DPPH radicals. In this study,
the color change observed from the purple DPPH radical
solution into yellow-colored diphenylpicrylhydrazine suggested
thatMUM256 extract exhibited hydrogen donating ability at high
concentration. The extract MUM265 demonstrated significant
(P < 0.05) 6.69± 0.83% and 12.08± 1.05% inhibitions of DPPH
activity at both 2 and 4 mg/mL respectively. This result also
indicated that the presence of potential antioxidative compounds
in the MUM256 extract that can terminate the chain reaction of
free radicals.

Furthermore, the dose-dependent manner of superoxide
dismutase like activity demonstrated in SOD activity assay
further confirming the antioxidant potential of MUM256 extract.
It is also important to investigate the ability of the extract to
scavenge in vitro oxygen-derived species such as superoxide

anion (O−
2 ) because O−

2 is a powerful oxidants capable to
generate more notorious reactive oxygen species, including
singlet oxygen, peroxynitrite and hydroxyl radicals (Stadtman
and Berlett, 1997) which can result in more serious disease
induced by oxidative stress. In this study, the superoxide radical
was produced from the hypoxanthine-xanthine oxidase reaction
coupled with WST. The MUM256 extract exhibited a potent
superoxide anion scavenging activity with significantly strong
inhibitory activity (P < 0.05) on the formation of yellow
water-soluble WST formazan upon reduction with superoxide
anion, measured IC50 at 1.26 ± 0.17 mg/mL. Strong correlation
was reported in previous study between the SOD activity and
total phenolic content (Reddy et al., 2012), suggesting that the
presence of phenolic compounds in the MUM256 extract.

Anti-cancer of MUM256 Extract
In order to examine the growth inhibitory activity of the
MUM256 extract in several human cancer cell lines, MTT
assay was employed in this study to measure the cell viability
after being treated with the extracts at different concentrations.
Furthermore, it has been widely known that genetic background
of cell lines could influence the efficacy and sensitivity of
anticancer agent. Thus, four human colon cancer cell lines
with different molecular characteristics (HCT116, HT-29, Caco-
2, and SW480), one human breast cancer cell line (MCF7),
one androgen-independent prostatic cancer cell (DU145), one
human lung cancer cell line (A549), a human cervical cancer cell
line (CaSki) were used as the panel for the anticancer activity
screening of the extract. Besides that, the human bronchial
epithelium cell line (BEAS-2B) was used to determine the
toxicity of the extract against non-cancerous cells in which could
reflect the specificity and selectivity of the extract against cancer
cells.

MTT assay is used to measure the mitochondrial activity in
viable cells based on the activity of mitochondrial dehydrogenase
enzyme that reduces the yellow tetrazolium MTT into purple
formazan crystal. The amount of the purple formazan formed

FIGURE 2 | Anticancer activity of MUM256 extract against human cancer cell lines. The anticancer activity of streptomyces sp. Mum256 extract against all

the cancer cell lines measured using mtt assay. Each bar represents the mean of the cell viability of the cell lines after treatment with extract at respective

concentrations tested (n = 5). The vertical lines associated with the bars represent the standard deviation of the mean. Symbol (*) indicates p < 0.05 significant

difference compared to control.
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FIGURE 3 | Comparison of the percentage of inhibition exerted by the extract at respective concentrations between normal cell line (BEAS-2B) and

colon cancer cell lines [HCT116 (A), HT29 (B), and Caco-2 (C)]. Selective cytotoxicity index determined for the extract against the colon cancer cells (D). Each

bar represents the mean of inhibition (%) of the extract at respective concentrations tested (n = 5) against respective cell lines. The vertical lines associated with the

bars represent the standard deviation of the mean. Symbol (*) indicates p < 0.05 significant difference between the normal cell line and the colon cancer cell line.

indicates the number of metabolically active viable cells
(Twentyman and Luscombe, 1987). The results of the inhibitory
effect of MUM256 extract were illustrated in (Figure 2), showing
the cell viability of each cell line after 72 h treatment with different
concentration of the extracts. Furthermore, the results were also
expressed in term of the selective toxicity of the extract toward
HCT116, HT29, and Caco-2 cancer cell lines with the reference
to the normal cell BEAS-2B (Figure 3).

Collectively, theMUM256 extract exhibited significant growth
inhibitory activity (P < 0.05) against all the cell lines tested at
the highest concentration (400µg/mL) when compared to the
control. It can be observed that the MUM256 extract exhibited
varying levels of inhibitory effect against HCT116, HT29. SW480,
Caco-2, A549, DU145, CaSki, and MCF-7 cancer cell lines.
Despite that, the extract showed minimal toxic effect on BEAS-

2B normal lung cell line with 23.87 ± 2.11% inhibition at
400µg/mL concentration. In fact, the toxic effect reached a
plateau at 100µg/mL with no significant difference (P > 0.05)
observed when increased dose to 200 and 400µg/mL (Figure 3).
This result also suggested that the MUM256 extract exhibited a
preferential or specific cytoxicity against colon cancer cell line in

which HCT116, HT29, and Caco-2 were significantly (P < 0.05)
inhibited by increased concentration of the extract.

Among the tested panel of cancer cells, HCT116 was the
most sensitive cell toward the extract treatment with the IC50

measured at 292.33 ± 31.98µg/mL. With the comparison to the
toxic level of the extract determined on BEAS-2B, approximately
2.3-fold significantly stronger cytotoxic effect (P < 0.05) against
HCT116 was observed at 400µg/mL (Figure 3). It was then
followed by 2.0 and 1.8-fold significant stronger cytotoxic effect
(P < 0.05) against HT29 and Caco-2 respectively with the
reference to BEAS-2B at 400µg/mL. However, SW480 colon
cancer cell appeared less sensitive toward this extract with low
cytotoxic effect observed. This could be due to the difference in
genetic makeup between those colon cancer cells. The previous
investigation demonstrated that SW480 which is a mismatch

repair (MMR)-wild type cell line was shown to be more resistant
to cytotoxic methylating agent than other colon cancer cells
with MMR-deficient cell line such as HCT116 (Liu et al., 1999).
Another study also revealed that KRASG12Vmutation conferred
resistance in SW480 to chemotherapy with both cetuximab and
panitumumab (Kumar et al., 2014). Thus, it was speculated
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FIGURE 4 | Morphology of HCT116 after treatment with MUM256 extract at different concentrations. Comparison of the morphological features of HCT116

after the 72 h with MUM256 extract at respective concentrations [control (A), 100µg/mL (B), 200µg/mL (C), 400µg/mL (D)] observed under an inverted microscope

with objective lens x40. Arrow indicates the abnormal morphological features resulted from the anticancer effect of MUM256 extract.

that the cytotoxic effect of the extract may be mediated by
MMR-deficiency and wild-type KRAS of colon cancer cell
lines.

Although significant results were demonstrated in this study
indicating that the MUM256 extract exhibited certain extent
of cytotoxic effect on colon cancer cell line, it should be
noted that using MTT assay is not possible to differentiate
between cell growth inhibition and an increase in cell death.
In Figure 4, most of the HCT116 appeared as normal angular
and spindle shapes in control (a), but most of the cells lost
these features after treated with increasing concentrations of the
extract (b, c, and d). For instance, cell shrinkage with lesser
cytoplasm mass and even apoptotic bodies can be observed
(indicated by arrows) in Figures 4B–D. These morphological
changes of the cells observed after treated with the extract has
provided some insight on the effect of the extract against the
HCT116. However, data from studies focusing on elucidation
of the molecular basis is essential in order to determine the
putative anticancer activity of the extract against colon cancer
cells.

GC-MS Analysis of MUM256 Extract
In the present investigation, the MUM256 extract has shown
significantly antioxidant capacities in SOD activity and DPPH
assays and anticancer properties against human colon cell
lines. In this regards, it has prompted the necessities to
perform chemical constituents profiling of the MUM256 extract.
Hence, GC/MS analysis was employed to identify the chemical
constituents present in the extract. The analysis revealed that

the presence of phenolic, pyrrolopyrazine, β-carboline and
dicarboxylic acid ester compounds in the MUM256 extract. The
detailed information about the identified chemical constituents
were listed in Table 2 and the chemical structures were illustrated
in Figure 5. Furthermore, the mass spectrum of the constituents
identified by GC/MS in MUM256 extract is also provided in
Figure S2.

Phenolic compounds have been widely known as potent
antioxidant agents or free radical terminators which they possess
hydrogen-donating ability to reduce free radicals (Sulaiman et al.,
2011; Yogeswari et al., 2012). Phenol,2,4-bis(1,1-dimethylethyl)-
(1), phenol,2,2′-methylenebis[6-(1,1-dimethylethyl)-4-methyl-
(6) were the two phenolic compounds identified from the extract.
Similarly, a recent study showed the detection phenol,2,4-
bis(1,1-dimethylethyl)- (1) with GC/MS in Streptomyces
cavouresis KUV39 isolated from vermicompost samples in
India and demonstrated that this compound exhibited potent
antioxidant properties and cytotoxicity against Hela cells
(Narendhran et al., 2014). Thus, Streptomyces sp. MUM256
could be also a potential source of phenolic compounds
to be used as preventive agent for oxidative-stress related
diseases.

In the present study, the detected three pyrrolopyrazine
compounds include, pyrrolo[1,2a]pyrazine-1,4-dione,
hexahydro- (2), pyrrolo[1,2a]pyrazine-1,4-dione, hexahydro-
3-(2-methylpropyl)- (3), and pyrrolo[1,2-a]pyrazine-1,4-
dione,hexahydro-3-(phenylmethyl)- (5) were also present
in previously isolated Streptomyces sp. (Narasaiah et al.,
2014; Manimaran et al., 2015; Ser et al., 2015a). Both of the

Frontiers in Microbiology | www.frontiersin.org November 2015 | Volume 6 | Article 1316 | 188

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Tan et al. Streptomyces sp. MUM256

TABLE 2 | Chemical constituents identified in of Streptomyces sp. MUM256 extract.

No. Constituents Class Retention Molecular Molecular Similarity (%) References

time (min) formula Weight

1 Phenol,2,4-bis(1,1-

dimethylethyl)-

Phenolic compound 44.445 C14H22O 206 96 Narendhran et al., 2014

2 Pyrrolo[1,2a]pyrazine-1,4-

dione,hexahydro-

Pyrrolopyrazine 53.297 C7H10N2O2 154 98 Narasaiah et al., 2014; Ser et al.,

2015a

3 Pyrrolo[1,2a]pyrazine-1,4-

dione,hexahydro-3-(2-

methylpropyl)-

Pyrrolopyrazine 58.510 C11H18N2O2 210 64 Narasaiah et al., 2014; Abdullah

et al., 2015; Manimaran et al.,

2015; Ser et al., 2015a

4 9H-Pyrido[3,4-b]indole β-carboline alkaloid 60.381 C11H8N2 168 96 Zheng et al., 2006

5 Pyrrolo[1,2-a]pyrazine-1,4-

dione,hexahydro-3-

(phenylmethyl)-

Pyrrolopyrazine 72.071 C14H16N2O2 244 97 Narasaiah et al., 2014

6 Phenol,2,2′-methylenebis[6-

(1,1-dimethylethyl)-4-methyl-

Phenolic compound 73.507 C23H32O2 340 96 Narendhran et al., 2014

7 1,2-Benzenedicarboxylic acid,

mono(2-ethylhexyl) ester

Dicarboxylic acid

ester

76.883 C16H22O4 278 91 Krishnan et al., 2014

FIGURE 5 | Chemical structures of constituents detected in MUM256 extract.

pyrrolopyrazine compounds identified had been suggested
to possess potent antioxidant activity (Ser et al., 2015a).
Besides the detection of pyrrolopyrazine in Streptomyces,
Gopi et al. (2014) also reported that the structure of
pyrrolo[1,2a]pyrazine-1,4-dione, hexahydro- (2) isolated
from sponge associated Bacillus sp. has the ability to reduce
oxidative damages by radicals. Furthermore, another study
revealed that the extract of Micrococcus lutues containing
hexahydro- (2) and pyrrolo[1,2a]pyrazine-1,4-dione, hexahydro-
3-(2-methylpropyl)- (3) exhibited promising cytotoxic effect on
HCT15 with (Abdullah et al., 2015). Thus, it was suggested that
both of the identified pyrrolopyrazine could have contributed
the antioxidant and anticancer activities observed in MUM256
extract.

Furthermore, a tricyclic indole β-carboline alkaloid, 9H-
pyrido[3,4-b]indole (4) was detected in MUM256 extract.
Previous study by Zheng et al. (2006) demonstrated that this

compound which is also known as norharman extracted from
a marine bacterium, Pseudoalteromonas piscicida, exhibited
cytotoxicity toward both HeLa cervical cancer and stomach
cancer cells with an IC50 of 5µg/mL. It was shown that
norharman caused HeLa cells death via apoptotic process,
specifically through the perturbation of cell cycle at G2M phase
of the cancer cell (Zheng et al., 2006).

Lastly, 1,2-benzene dicarboxylic acid, mono 2-ethylhexyl ester
(7) has been detected in various sources ranging from plant
extracts (Akpuaka et al., 2012; Sivasubramanian and Brindha,
2013), endophytic fungal (Verma et al., 2014), and also microbial
origin including Streptomyces sp. (Krishnan et al., 2014). In
previous study, the cytotoxicity of 1,2-benzene dicarboxylic acid,
mono 2-ethylhexyl ester (7) extracted from Streptomyces sp. was
evaluated against liver cancer cell line HepG2 and also breast
cancer cell lineMCF7 with IC50 at 42 and 100µg/mL respectively
(Krishnan et al., 2014).

Frontiers in Microbiology | www.frontiersin.org November 2015 | Volume 6 | Article 1316 | 189

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Tan et al. Streptomyces sp. MUM256

According to the GC/MS analysis, the identified chemical
constituents are well recognized for their antioxidant
and anticancer activity and we postulate that these
constituents could be the major contributing factor for
both antioxidant capacity and anticancer activities of MUM256
extract.

CONCLUSION

In summary, the findings demonstrates that MUM256 extract
exhibits antioxidant and anticancer activities. The extract is able
to scavenge superoxide anion radicals in dose dependent manner
and show a selective cytotoxic effect toward colon cancer cells.
The phenolic compounds, pyrrolopyrazine, β-carboline and
dicarboxylic acid ester present in the extract could be responsible
for the antioxidant and anticancer activities observed. Those
findings suggest that Streptomyces sp. MUM256 could be
potential source for antioxidative agents and hence merit further

studies concerning the development of chemopreventive drugs
against cancer.
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The important biological macromolecules, such as lipopeptide and glycolipid
biosurfactant producing marine actinobacteria were analyzed and their potential linkage
between type II polyketide synthase (PKS) genes was explored. A unique feature of
type II PKS genes is their high amino acid (AA) sequence homology and conserved
gene organization. These enzymes mediate the biosynthesis of polyketide natural
products with enormous structural complexity and chemical nature by combinatorial
use of various domains. Therefore, deciphering the order of AA sequence encoded
by PKS domains tailored the chemical structure of polyketide analogs still remains a
great challenge. The present work deals with an in vitro and in silico analysis of PKS
type II genes from five actinobacterial species to correlate KS domain architecture and
structural features. Our present analysis reveals the unique protein domain organization
of iterative type II PKS and KS domain of marine actinobacteria. The findings of this
study would have implications in metabolic pathway reconstruction and design of
semi-synthetic genomes to achieve rational design of novel natural products.

Keywords: glycolipid, lipopeptide, biosurfactant, polyketide synthases, actinobacteria, three-dimensional
structure

INTRODUCTION

Natural products of microorganisms are potential source of bioactives that have been extensively
exploited to develop next generation anti-infective drugs proposed by pharmaceutical companies
(De Carvalho and Fernandes, 2010). But in recent years, the exploration of marine microorganisms
received greater attention due to their complex biosynthetic pathways and potential implications
on the development of anti-cancer agents and anti-infectives to combat multi-resistant strains
(De Carvalho and Fernandes, 2010). Past few decades the bioprospecting of natural resources
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and microbial isolates were tremendously increased, however, the
leads transformed to drugs are very few (Watve et al., 2001).
Perhaps this trend might have led to the exploration of pristine
and unexplored bioresources including hydrothermal vents and
extreme niches. Marine sponges are sedentary animals harboring
more than 40% of microorganisms by volume. Among the marine
fauna and flora, marine sponges are potential source of bioactive
natural products (Faulkner and Ghiselin, 1983, 1994; Matsunaga
and Fusetani, 2003). However, recent deliberations envisage that
the sponge derived secondary metabolites are biosynthesized by
the associated microorganisms. However, this hypothesis is being
remained unproven as sponge-specific bacteria are uncultivable
with conventional approaches. Exploration of sponge associated
microbial diversity and symbiont-assisted complex biosynthetic
pathway of bioactive leads have increased the scope of natural
product discovery from marine sponges (Faulkner and Ghiselin,
1983, 1994; Hentschel et al., 2002). Recent developments in
genome mining and metagenomics have widely used in the
exploitation of such complex biosynthetic pathways of marine
natural products. By and large the biosynthetic pathways of
polyketides, non-ribosomal peptides, and their derivatives are
useful to integrate sponges and their symbiotic biosynthetic
machineries. Marine sponges are richest source of polyketide
and peptide bioactive molecules. Unlike terrestrial counterparts,
sponge-derived bioactive molecules are unique and having
specific targeted activities expected for drug leads (Li et al., 2002;
Matsunaga and Fusetani, 2003; Montalvo et al., 2005; Montalvo
and Hill, 2011). The sponge-derived bioactive peptides are non-
ribosomal origin and are modified with unusual amino acids
(AAs; Matsunaga et al., 1985).

Polyketide synthases (PKSs) are modular proteins involved
in the biosynthesis of complex bioactive molecules through
sequential catalytic activities. These enzymes mediate
biosynthesis of bioactive molecules with diverse structural
complexities by combinatorial use of a specific sequential order
of catalytic domains. The tailoring of catalytic domains and AA
sequence of these domains are drastically changes with natural
bioresources and therefore, the nature and chemical structure of
end product is varied between/within the species (Yadav et al.,
2009). The mechanism of sequential order and/or selection
of catalytic domains remains a major challenge in chemical
ecology of secondary metabolite synthesis. The fully dissociable
complex of small, discrete mono-functional proteins that catalyze
combinatorial synthesis of aromatic polyketides, which is in
general termed as type II PKS. In the iterative PKSs, the active site
of each catalytic module for tailoring of type II PKS is encoded
by a single gene. There is only one set of a hetero-dimeric
ketosynthase (KSα–KSβ) and an acyl carrier protein (ACP) that
tailored the synthesis of polyketide molecule in a specific order
and defined number of cycles to build a polyketide chain (He
and Hertweck, 2003). The chain length is maintained through
sequential iterative process including cyclisation, reduction, and
aromatization steps which are catalyzed by cyclase (CYC), KR,
and aromatase (ARO), respectively. In certain group of type
II PKSs, the malonyl-CoA ACP acyl transferase (MAT), which
catalyzes condensation of acyl transfer between malonyl-CoA
and the ACP (Revill et al., 1995). The type II PKSs in general

catalyze the biosynthesis of diverse range of multi-functional
aromatic polyketides and are mostly restricted among bacteria
(Shen et al., 2000). The type II PKSs, such as those responsible for
the biosynthesis of the aromatic polyketides actinorhodin (ACT;
Fernández-Moreno et al., 1992) and tetracenomycin (TCM),
(Bibb et al., 1989; Summers et al., 1992) are composed of three
to seven separate mono- or bi-functional proteins, the active
sites of which are used iteratively for the assembly and early
modification of the polyketide chain.

The KS domain of PKS gene was retrieved from marine
actinobacteria producing biosurfactants and antimicrobial
compounds. Therefore, this study was aimed to integrate PKS
gene in biosurfactant production. Based on the literature,
PKS gene can be expected from actinobacteria producing
antimicrobial compounds, but PKS gene was not linked
with biosurfactant production. A PKS gene possibly encodes
biosynthesis of some biosurfactants, being considered as smart
biomolecules having the ability to reduce surface and interfacial
tension, wider bioactivities and possibly involved in bacterial
quorum sensing (Kiran et al., 2015). Biosurfactant production
has been reported by our research group in several actinobacteria
(Selvin et al., 2009b; Kiran et al., 2010) and they were linked
with non-ribosomal peptide synthases (NRPS), PKS (Kiran
et al., 2010), and large multifunctional proteins with a modular
organization. Biosynthetic pathway of biosurfactants in Bacillus
and Pseudomonas was well-established. However, biosynthetic
pathway of biosurfactants produced by marine actinobacteria,
in general remains undisclosed. The biosurfactants invariably
showed antibiofilm activity without inhibiting the biomass of
pathogens tested. Based on in vitro experiments, it was found
that the biosurfactants produced by marine actinobacteria is
having antimicrobial and antibiofilm activity. The PCR amplified
KS domain from these actinobacteria envisages the biosynthetic
pathway of biosurfactants might have mediated through PKS
biosynthetic gene clusters. Therefore, in this study, the in vitro
findings are integrated with in silico analysis to substantiate
the hypothesis that the biosynthesis of biosurfactants produced
by marine actinobacteria might have mediated by PKS gene.
To date, there are few reports about the interaction between
PKS type II gene clusters and biosurfactant production (Kiran
et al., 2010). There is no report on marine actinobacteria
and their PKS structural diversity related with biosurfactant
production. Hence we decided to focus on this aspect with three
biosurfactants (MSA10, MSA13, and MSA21; Gandhimathi
et al., 2009; Kiran et al., 2010, 2014) and two antagonistic
compounds producing (MAD01 and MSI051; Selvin et al.,
2009a,b) actinobacterial strains and they were isolated from
marine sponges, Fasciospongia cavernosa and Dendrilla nigra,
respectively. In silico analysis of PKS gene clusters and modular
structure of iterative type II PKS are important tool for designing
various experimental approaches toward the combinatorial
synthesis of diverse aromatic polyketides. Therefore, present
study was aimed to analyze and evaluate the KS domains of
iterative PKS gene type II and ketosynthase genes retrieved
from marine sponge-associated actinobacteria and their
biosurfactant producing ability related to iterative type II PKS
gene.
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MATERIALS AND METHODS

Microorganisms and PKS Type II Gene
Amplification
The actinobacterial strains used in this study were already
been isolated from marine sponges, such as F. cavernosa
(MSA10) and D. nigra (MSA13, MSA21, MAD01, and MSI051)
collected from southwest cost of India. The 16S rRNA
GenBank accession numbers as follows Nocardiopsis alba
MSA10: EU563352 (Gandhimathi et al., 2009), Brevibacterium
aureum MSA13: GQ153943 (Kiran et al., 2010), Brachybacterium
paraconglomeratum MSA21: GQ153945 (Kiran et al., 2014),
Streptomyces sp. MAD01: GQ246755 (Selvin et al., 2009b),
and Streptomyces dendra MS1051: EF417875 (Selvin, 2009),
respectively. The PKS type II gene was amplified from five
actinobacterial strains (MSA10, MSA13, MSA21, MAD01, and
MSI051) according to Selvin (2009). The genes encoding PKS
were amplified using degenerate primers (Table 1). The PCR
temperature profile used was 95◦C for 3 min, and then followed
by 30 cycles at 95◦C for 30 s, 56◦C for 30 s, and 72◦C for 60 s
and finally an extension step at 72◦C for 10 min. The resultant
amplified PCR products were purified and cloned using the
TOPO TA cloning kit (Invitrogen) for sequencing.

Evaluation of Antibiofilm Effect
The culture supernatant obtained from actinobacterial strains
were evaluated for biofilm inhibitory effect against Vibrio harveyi.
The biofilm was allowed to develop on cover slips and treated
with the actinobacterial extracts and incubated for 48 h at 37◦C.
After incubation the planktonic and spent media were discarded.
The cells were washed twice with deionized water air dried and
stained with 0.1% acridine orange and examined under confocal
laser scanning microscopy (CLSM).

Determination of Bacterial Cell Viability
in Biofilm
Cell viability of the bacteria in the biofilm was assessed using
MTT assay as described by Traba and Liang (2011) with necessary
modifications. Biofilm of V. harveyi was allowed to develop on
96-well plate and treated with 50 µl culture filtrates of the five
actinobacterial strains and incubated for 24 h at 37◦C. Untreated
wells were set as control. After 24 h the bacterial suspension was
collected and then treated with 100 µl of phosphate buffered
saline and 50 µl of MTT at concentration of 0.3% were added and
then incubated for 2 h at 37◦C. The MTT solutions were removed

and formazan crystals formed were dissolved in 150 µl of DMSO
and 25 µl of 0.1 M glycine buffer of pH 10.2. The absorbance was
recorded in a microplate reader at 550 nm.

KS Domain Protein Data Set, Phylogeny
Construction, and Domain Structural
Analysis
Type II KS domain sequences and ketosynthase gene sequences
were translated using sequence manipulation suite1 and these
deduced AA sequences of type PKS II and ketosynthase were
deposited to NCBI-GenBank with the accession numbers of
ACS45380–ACS45382 (type II PKS), and ketosynthase bearing
following accession numbers ACV31767 and ABP57802. KS
domain of type II PKS gene sequences and ketosynthase (Cds)
sequences of sponge-associated actinobacteria were retrieved
from National center for Biotechnology Information2. GenBank
accession numbers of these KS domains and ketosynthase
sequences were given as GQ153947 (N. alba MSA10),
GQ153948 (B. aureum MSA13), GQ153949 (Brachybacterium sp.
MSA21), and GQ246762 (Streptomyces sp. MAD01), EF520724
(Streptomyces dendra MS1051), respectively. The predicted KS
domains of all retrieved actinobacterial gene sequences and the
PKS type II protein sequences from reference actinobacteria
were aligned by CLUSTAL W23 and translated deduced AA
sequences were verified using the NCBI-BLAST4 search with
expected value set to the default value of 10 was performed using
the protein sequences of N. alba, B. aureum, Brachybacterium
sp. MSA21, Streptomyces MAD01 and S. dendra, respectively,
and the various sequences against 138 complete eubacterial and
20 complete archaebacterial genomes. Phylogenetic tree of the
deduced AA sequences of PKS II segments and ketosynthase
genes were generated using neighbor-joining method through
MEGA programs (Kumar et al., 2004). KS domain phylogeny
was based in the prediction of putative enzymes of identical
or nearly identical biochemical function. The type of KS was
identified based on the top BLAST match in the reference
data set. NCBI CDD search, SEARCPKS and Motif scan were
performed to derive the existence of significant domains and
their organization. Comparative analyses of KS domains of
five subject organisms were performed with known polyketide
producers and with the structure of polyketides using NCBI

1http://www.bioinformatics.org/sms2/
2www.ncbi.nlm.nih.gov/GenBank
3http://www.ebi.ac.uk/Tools/msa/clustalw2
4www.ncbi.nlm.nih.gov/BLAST

TABLE 1 | PKS type II gene retrieved from marine sponge-associated actinobacteria.

Protein GenBank accession number Primers PKS-II amplicon size Source organism

ACS45380 GCIATGGAYCCICARCARMGIVTGTICCIGTICCRTGISCYTCIAC 579bp Nocardiopsis alba MSA10

ACS45381 GCIATGGAYCCICARCARMGIVTGTICCIGTICCRTGISCYTCIAC 639bp Brevibacterium aureum MSA13

ACS45382 GCIATGGAYCCICARCARMGIVTGTICCIGTICCRTGISCYTCIAC 662bp Brachybacterium
paraconglomeratum MSA21

ACV31767 GGIAAYGGITAYGCIMGIGGGTICCIGTICCRTAIGCYTC 519bp Streptomyces sp. MAD01

ABP57802 GGIAAYGGITAYGCIMGIGGGTICCIGTICCRTAIGCYTC 504bp Streptomyces dendra MSI051
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CDD and SEARCHPKS, respectively. The AA composition was
also predicted to substantiate the function of type II PKS and
ketosynthase of our interest.

Profile Hidden Morkov Model (HMM) analysis was carried
out by HMMER package. The available three (Nocardiopsis,
Brevibacterium, Brachybacterium) actinobacterial KS dataset was
analyzed, whether these domains are modular or iterative KS
domains. All these three iterative KS domains of PKS type II
gene clusters of actinomycetes were modeled using comparative
modeling approach. Threading analysis was carried out using
a local version of threader package5 to identify the structural
templates for modeling of actinobacterial KS domains. The
remaining two KS domains (from Streptomyces MAD01 and
S. dendra MSI051) have been modeled using fatty acid KAS
structure as template (Escherichia coli KAS I), which show only
about 40% sequence identity with polyketide KS domains. Even
the sequence identity was lesser between the target and template,
the two KS proteins structures can be reliable and they adopt
similar structure. The secondary structures of type II PKS and
ketosynthase domains of 3D models were created using a (PS)2

is an automated homology modeling server (Chen et al., 2006).
The (PS)2 combines PSI-BLAST, IMPALA, and T-Coffee in both
template selection and target-template alignment. The final three
dimensional structures were built using the modeling package
MODELLER.

RESULTS AND DISCUSSION

The Nature of KS Domains of Type II PKS
and Ketosynthase
The actinobacterial isolates from marine sponges were screened
for biosurfactant activity using emulsification index (E24)
as per Kiran et al. (2010). Among the five actinobacteria
MSA10, MSA13, and MSA21 were potential producer of
biosurfactants (Figure 1). The active moieties were identified
from GCMS data. The active moieties of MSA10, MSA13,

5http://bioinf.cs.ucl.ac.uk/psipred/

FIGURE 1 | Emulsification index of biosurfactants produced by marine
actinobacteria.

and MSA21 were evidenced as biosurfactant molecules, but
the moieties of MAD01 and MSI051 were not related with
biosurfactants (Table 2). The antimicrobial moiety of MAD801
was identified as cyclohexane carboxylic acid hexyl ester. It
was reported that cyclohexane carboxylic acid is a moiety
of the antifungal polyketide ansatrienin A (Patton et al.,
2000).

Sponge-associated actinobacteria: i.e., N. alba, B.
aureum, and Brachybacterium paraconglomeratum beared
the type II PKS (GQ153947, GQ153948, and GQ153949,
Table 1). The KS domain of these gene segments were
translated into AAs counts, viz; 191, 212 and 220,
respectively. All these KS domains encodes the condensation
enzymes (cds), which catalyzes (decarboxylation or non-
decarboxylation) Claisen-like condensation reaction, and
the KS domains sharing the strong structural similarities
are involved in the synthesis and degradation of fatty
acids.

KS domain of PKS gene is the most conserved catalytic
domain and is involved in the tailoring PKS molecule by
catalyzing the chain condensation step. We have performed
in silico analysis to identify KS domain counterparts from
modular and iterative PKSs and other PKS families. The analyzed
domains are separated into distinct clusters in a phylogenetic
tree (Figure 2). Based on HMM by the HMMEP package,
three actinobacterial KS domain of type II PKS genes were
analyzed and the results show that these three isolates contains
iterative PKS gene and this outcome provides potential in genome
sequencing efforts for the identification of novel PKS genes.
Iterative condensation steps play a vital role in biosynthesis
by PKS proteins and phylogenetic analysis of iterative KS
domains inferred that the clustering of iterative PKS gene
sequence is highly correlated with the number of iterations
they perform. From this study, we suggest that marine sponge
associated actinobacterial community predominantly possesses
the iterative KS domain of type II PKS rather than modular
type I PKS or NRPS-PKS hybrids. The type II PKS from
three different genera is characterized to study and understand
their function and diversity. The isolation and identification of
PKS with different enzymatic activity in marine actinobacteria
has been reported, as well as the occurrence of PKS gene
families in a community (Kim and Fuerst, 2006). This is the
first report on the in silico analysis of iterative type II PKS
of sponge-associated actinobacteria. Recent literature (Kiran
et al., 2010, 2015) evidenced that these actinobacteria are potent
biosurfactant producers with antimicrobial activity (lipopeptide
and glycolipid derivatives). The present in silico analysis revealed
that these isolates possessing iterative domains (Figure 2) type
II PKS genes and it can be hypothesized that the antimicrobial
biosurfactants synthesis might be mediated by iterative type
II PKS genes. Another group of actinobacterial antibiotics
producers from the marine sponge D. nigra such as S. dendra
MSI051 (Selvin, 2009) and Streptomyces sp. MAD01 (Selvin et al.,
2009b) were included in the analysis. Their partial ketosynthase
genes were retrieved from GenBank (GQ246762 and EF520724)
with 519 and 504 bp encoding 173 and 168 aa, respectively
(Table 1).
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TABLE 2 | 3D structures of active moieties identified from GC-MS data.

Strain name Compound 3D structures of active moieties detected from GS-MS data

MSA10 Lipopeptide

MSA13 Lipopeptide Gly–Gly–Leu–Pro–

MSA21 Glycolipid

MAD01 Cyclohexanecarboxylic acid

MSI051 2,5-Piperazinedione,
3,6-Bis Phenylmethyl

Antibiofilm Effect Against Vibrio
Antibiofilm effect of the culture supernatant was well noticed by
CLSM. The culture supernatant inhibits the biofilm formation
of V. harveyi. Among the extract used the lipopeptide producer
MSA10 and MSA 13 inhibit the biofilm formation by 80%
compared to the other actinobacterial extracts (Figure 3). The
antibiofilm effect may be due to the biosurfactant production
mediated by PKS gene.

Cell Viability in Biofilm
The viability of the cells were reduced by adding the
biosurfactants as shown in Figure 4. When compared to the
control the extracts from MSA 10 and MSA 13 inhibits the
viability of Vibrio cells by more than 80%, followed by MSA 21
by 70%.

Domain Architecture and Homology
Modeling of Iterative Type II PKS
In silico analysis of Type II PKS and ketosynthase unveiled
an unprecedented organization of various domains encoding
discrete ketoacyl synthase (KAS) and thiolase, PKC, CK2, and
ACP some are lacking an ACP. Certain polyketides undergoes

non-iterative biosynthesis which involves a novel type II
PKS that acts directly on acyl CoA substrates. These results
demonstrate the capability of nature’s in designing complex
bioactive compounds and suggest new methods for PKS design
and engineering through synthetic biology approaches to expand
the scope and diversity of polyketide library. The structural
diversity of PKS would ultimately help in searching for PKS with
novel chemistry for combinatorial biosynthesis (Shen and Kwon,
2002). All the proteins studied here are found to have potential
KS domains which catalyze the polyketide chain elongation step.
In the beginning of chain elongation, an enzyme intermediate
is formed between the growing polyketide chain and the thiol
of its active site Cys. Then condensation reaction occurs with
the methylmalonyl-ACP or malonyl-ACP co-substrate (Shen,
2003).

Analysis evidenced that the PKS sequence retrieved from
N. alba and B. aureum are having ACP domain, i.e., beta-
ketoacyl-ACP synthase and beta-KAS (Figure 5). KASs are
involved in the elongation steps in the pathway of fatty acid
biosynthesis. KAS III is involved in the catalysis of the initial
condensation and KAS I and II are responsible for elongation
steps by Claisen condensation of malonyl-ACP with acyl-ACP.
Remaining three protein sequences lack ACP, some non iterative

Frontiers in Microbiology | www.frontiersin.org February 2016 | Volume 7 | Article 63 | 197

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00063 February 10, 2016 Time: 21:8 # 6

Selvin et al. Analysis of Polyketide Synthase Genes

FIGURE 2 | Phylogenetic analysis (MEGA 5.0) of ketosynthase regions with respect to the diverse range of ketosynthase domains, including iterative
types II, modular PKS, and KS domain. The phylogenetic trees were constructed using bootstrapping and the neighbor-joining rules.
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FIGURE 3 | Antibiofilm activity of cell free supernatants from marine
actinobacteria. The pre-formed biofilm on glass slides was treated for 24 h
with 150 µg each of freeze-dried cell free supernatant (CFS). Untreated biofilm
(control) and remaining biofilm of V. harveyi treated after CFS on glass slides
were stained with 0.1% acridine orange and observed in CLSM (LSM 710,
Carl Zeiss).

type II PKSs lack ACP, utilize acyl CoAs as substrates for
macrotetrolide biosynthesis. It was reported that the PKSs are
using ACP to activate the acyl CoA substrate and channel the
polyketide intermediates (Shen, 2003).

Outside of the module, the beta-KAS domains are dimeric.
However, the number of domains within the module is dimeric
still remains to be established (Tsai et al., 2001, 2002; Broadhurst
et al., 2003). Perhaps every enzyme within the module made
contacts across the ser and cys, ACP suppose to diffuse
farther than the peptide linkers on each side would permit
(Keatinge-Clay and Stroud, 2006). The deduced quaternary
structure of the proteins indicates a surprising configuration
which is homologous to many PKS genes that are capable of
synthesizing active polyketides. Even alignment of KS domains
of our sequence of interest shows 53–62% of similarity with
structures like amphotericin, ACT, epothilone, meagalomycin,
myxalomycin, and rifamycin.

Most of the KS are dimeric with active site at the interface
of dimer and type II PKS probably functions by making contact
across the twofold axis and the active sites of KS are accessible to

ACP (Keatinge-Clay and Stroud, 2006). In the present findings,
we observed the PKC domain is common in all the protein
sequences and lack AT domain. The analysis showed the chances
of inactive enzymes within the modules may perform some
important functions. The ACP module is bound by peptide
linkers on both ends, and this module can pass between each
enzyme in the module as well as the next KS or thiolase C
and N terminal (Perham, 2000). The linkers helps to prevent a
polyketide from interacting with enzymes and contribute little
translational freedom to the polyketide compared to the peptide
linkers on both ends of ACP. Thus helps in the biosynthesis of
polyketides (Keatinge-Clay and Stroud, 2006). The interaction of
ACP with the KS domain facilitate to docks in a deep groove
which is formed by the interaction of the KS, PKC, and the other
linker, thereby implicating both the PKC and the thioesterase
linker in functional KS-ACP recognition (Liu et al., 2002). The
KS domain of type II PKS (N. alba) ACS45380.1 was closely
related to those of ACT PKS. Type II PKS (N. alba) consists
of seven structural domains includes Asn Glycosylation, CK2
Phospho site, PKC, Tyr Phosphosite, ACP and KAS (49–161
AA residues) which shares 59% similarity with ACT polyketide
putative beta-KAS 2 which contains eight chains, out of which
two chains are homologous to our PKS protein which are chain A:
beta-KAS/acyl transferase and chain B: ACT polyketide putative
beta-KAS 2. The synthesis of aromatic polyketides are mostly
begins with the formation of a polyketide chain (Keatinge-Clay
and Stroud, 2006). The polymeric chains of type II PKS are
tailored by the heterodimeric ketosynthase-chain length factor
(KS-CLF). KS-CLF is the homolog of KS domain of type II
PKS of N. alba which regulates chain length by catalyzing both
chain initiation and elongation. Exploration of the mechanistic
details of this central PKS polymerase may support designing
and reconstruction of pathways being invented on synthetic
biology platforms. This protein was structurally elucidated with
four alpha helix and seven beta sheets. And it is slightly acidic
composed of 39.79% of aliphatic (G,A,V,L,I), 18.32% of Acidic
(B,D,E,N,Q,Z), 15.18% of basic (K,R,H), 3.66% of sulfur (C,M),
3.66% of aromatic (F,W,Y), and 12.04% of aliphatic hydroxyl
(S,T).

Type II PKS of (B. aureum) ACS45381.1 is sequentially
identical to type I ketosynthase (Streptomyces sp. T12-208)
ACR61389.1. Structurally it is similar to the human fatty acid
synthase (FAS), a modular enzyme involved in the metabolism
of fatty acids and a drug target of antineoplastic and anti-obesity
agents. Detailed structural study on human FAS has been limited
due to its size and flexibility. Large part of human FAS that
encompasses the tandem domain of beta-KAS is closely related to
the KS domain of B. aureum. The KS domains are appear as the
canonical dimer, and its substrate-binding site differs from that
of bacterial homologs but is similar to type II PKS of B. aureum.

According to domain analysis, the PKS is a multi-domain
protein consists of 14 domains includes ASN glycosylation, PKC,
CK2, beta KAS, ACP synthase III, thiolase C and N terminal,
and KAS C terminal domains. The position of KAS domain is
1–151 and 159–212 AA residues. The AA composition of the
protein is predicted with 48.58% of aliphatic (G,A,V,L,I), 5.19% of
aromatic (F,W,Y), 2.83% of sulfur (C,M), 9.43% of basic (K,R,H),
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FIGURE 4 | Cell viability of V. harveyi treated with CFS of marine actinobacterial cultures.

16.51% of acidic (B,D,E,N,Q,Z), and 14.15% of aliphatic hydroxyl
(S,T). Type II PKS (Brachybacterium sp. MSA21) ACS45382.1
is identical to type I PKS of Streptomyces sp. and structurally
proposed to contain five domains as follows KAS C and KAS
N, myristyl site, PKC, and thiolase. The tertiary structure of the
protein depicts six alpha helix and six beta sheets and composed
of 50.45% of aliphatic (G,A,V,L,I), 5% of aromatic (F,W,Y),
2.73% of sulfur (C,M), 11.36% of basic (K,R,H), 13.18% of acidic
(B,D,E,N,Q,Z), and 13.18% of aliphatic hydroxyl (S,T) AAs.

The position of the KS domain is 1–159 and 167–220 AA
residues. In PSI- BLAST, PKS is predicted to have a structure
similar to chain A, the ACT ketosynthase chain length factor
since 73% identity, the E-value: 6.61e – 67, bit-score: 256,
aligned-length: 173, this protein is structurally related to ACT
ketosynthase and proposed to be rich in acidic and aliphatic
AA residues, since the ligands may be acetyl group/magnesium
ion/sodium ion. Six alpha helix and five beta sheets., and the
composition is 41.04% of aliphatic (G,A,V,L,I), 6.94% of aromatic
(F,W,Y), 3.47% of sulfur (C,M), 13.87% of basic (K,R,H), 19.08%
of acidic (B,D,E,N,Q,Z), and 10.40% of aliphatic hydroxyl (S,T).
The ketosynthase (Streptomyces dendra) ABP57802.1 found
to have seven domains includes CKII phosphorylation site,
PKC, KS C terminal and N terminal, phage tail fiber repeat
and the AA composition is 42.26% of aliphatic (G,A,V,L,I),
4.76% of aromatic (F,W,Y), 4.17% of (sulfur C,M), 13.69% of
basic (K,R,H), 18.45% of acidic (B,D,E,N,Q,Z) and 11.90% of
aliphatic hydroxyl (S,T). The structural configuration presents
six alpha helix and four beta sheets and mimics the structure
of chain A. The ACT ketosynthase CLF with the values as
follows, E-value: 1.00e – 72, bit-score: 258, aligned-length: 191,
and identity to query: 67%. The PSI-BLAST shares 99% of
similarity with doxorubicin PKS (E-value 4e – 75), 3-oxoacyl-
ACP synthase I (Streptomyces avermitilis MA-4680), putative
ketosynthase of Streptomyces antibioticus with (E-value 4e – 60),
and granaticin polyketide putative beta-KAS 1 of Streptomyces

hygroscopicus ATCC 53653 (E-value 3e – 60). KS domain analysis
of type II PKS and ketosynthase was performed using PSI
BLAST and MEGA (CLUSTAL W2) to highlight the unique
conservative motif of each protein. The strain B. aureum
shares specific motif with BAH67362.1 (PKS Streptomyces
minoensis) denoted as “VDTACSSSLVALHLAAQALRSG.”
Comparative analysis of KS domain of Brachybacterium sp.
MSA21 exhibit the presence of unique motif PQQR(H)L in
all the reference sequences which are capable of synthesizing
cirramycin (BAH67190), minomycin (BAH67362), maridomycin
(BAH67036), an anticancer compound (BAH67464), and
platiomycin (BAH67144). This is the first report on the possible
structural diversity mediated by type II PKS in Brachybacterium
sp. MSA21.

KS Domain Phylogeny
Ketosynthase domain phylogeny was used to infer the phylogeny
of type II PKS and ketosynthase. Phylogenetic analysis showed
that the sponge associated actinobacterial sequences of PKS II
genes and KS fragments were matched to conserved regions of
previously characterized functional domains of other PKS I, II,
and ketosynthase proteins. The KS domain of Brachybacterium
and Brevibacterium showed a unique clustering, found KS
domain of Brevibacterium clustering between two Streptomyces
group and each group having two isolates and they possess high
similarities among them like 100 and 98, respectively, but having
less homology with B. aureum (Figure 2). The Brachybacterium
was closely clustering with S. albus J1074 with 100% similarity.
N. alba was not clustered with any actinobacterial KS domain
since it was having the unique identity with KS domain of
Streptomyces MAD01 and S. dendra. KS domain of Streptomyces
MAD01 showing 97% of similarities with S. purpeofuces NBRC
14457 and S. dendra was clustering between Streptomyces sp. JS-
14 and S. macrosporeus with 98 and 97% similarity, respectively.
From the cluster analysis, we observed that two different marine
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FIGURE 5 | Predicted secondary structure of KS domain using (PS)2: Protein Structure Prediction Server.

sponge-associated actinobacteria possessing the identical KS
domains of iterative PKS.

The major aim of this study was to find out the gene
diversity of the PKS II and ketosynthase in two marine sponge
associated actinobacterial polulation. The KS gene diversity could
be useful to understand the evolution pattern of actinobacteria
in the marine sponges, mode of interaction between sponge
and associated microbes (Selvin, 2009) and chemical diversity
of PKS II in marine sponge. Phylogenetic analysis of iterative
PKS sequences is highly correlated with the number of iterations
they performs. The PKS gene analysis provide a new insights
that the poorly studied genera, such as Brevibacterium and
Brachybacterium represent the KS genes which proves the
unexplored resource for natural-product discovery. Conversely,
the nearly ubiquitous detection of PKS genes in Streptomyces

and Nocardiopsis envisages the possibility similar kind of natural
products, but in reality the compounds are expected to be highly
complex with diverse bioactivities (Selvin, 2009; Selvin et al.,
2009b). To overcome these challenges, KS domain of PKS genes
retrieved and analyzed in this study. KS domains tend to cluster
phylogenetically based on the secondary metabolites of the
actinobacterium from which the gene was retrieved. The active
KS domains predictions could be based simply on the analysis
of around 500 bp regions of KS domain from single PKS gene.
The level of KS sequence domain in the iterative biosynthesis
of natural products needs to be determined. The level of KS
domain in strains may differ as it depends on the rate of sequence
evolution, niche selectivity, host evolution pattern, and the
time of pathways have been isolated in the respective genomes.
It is also of interest that the three KS sequences associated
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with iterative type II PKS pathways were widely distributed
among diverse taxonomic groups. The fact that all these KS
domain sequences display relatively low levels of identity to the
ketosynthase domain of Streptomyces MAD01 and S. dendra
suggests that they are not associated with the production of
iterative type of PKS domains. The mixed clustering of different
sponge associated KS domains already been documented here
for the first time we are reporting the evolutionary relatedness
of KS domains of type II PKS and ketosynthase from D. nigra
and F. cavernosa isolates. According to recent literatures, the PKS
genes and their products exhibit novel insights in antimicrobial
drug discovery (Selvin, 2009; Sasso et al., 2014; Wang et al., 2014).
KS domain of type II PKS phylogeny is also highly need to know
their relationship and structural diversity.

Potential Linkage Between Iterative Type
II PKS Gene and Lipopeptide and
Glycolipid Biosurfactant Production in
Marine Sponge-Associated
Actinobacteria
The marine sponge-associated bacteria have been recognized as
rich source of biological macromolecules that are of potential
interest to various industrial sectors (Kiran et al., 2015). Study
reports evidenced that marine actinobacteria are unexplored
resource for biosurfactant production. In this study, three
actinobacterial strains (MSA10, MSA13, and MSA21) isolated
from marine sponge were able to produce lipopeptide and
glycolipid biosurfactants, respectively and showed positive for
type II PKS gene. Two actinobacterial strains (MAD01 and
MSI051) from D. nigra failed to produce biosurfactants but
has the capability to synthesis polyketide based antagonistic
compounds. There is an existing evidence for the synthesis
of lipopeptide biosurfactant in Bacillus subtilis by NRPSs or
hybrid PKS/NRPSs (Ongena and Jacques, 2008). These modular
proteins in marine sponge associated microbes are responsible
for the biosynthesis of several bioactive metabolites. They are
mega-enzymes structured by iterative functional units called
modules catalyzes various condensation, reduction, transferase
reactions leading to polyketide and peptide transformation
for the synthesis of biosurfactant. The positive strains display
biosurfactant activity and, significantly, iterative type II PKS
domain gene fragments, indicating the existence of a PKS gene
cluster associated with biosurfactive compound biosynthesis. The
present study reveals that the actinobacteria are a rich source of
bioactive compounds and biosurfactant, and also represent the
unrecognized group of organisms having type II PKS systems for
polyketide biosynthesis. In this study, the bacterial motility was
also checked for the surfactive compound production (data not
shown). Bacterial motility mechanisms, comprising swimming,
swarming, and twitching, are known to have significant
roles in biofilm formation, colonization, and the subsequent
expansion into complete organized surface populations. All the
actinobacterial strains showed positive in swimming, swarming,
and twitching motility assays which indicate that these strains
possess biofilm forming ability. The strains with increased
swimming motility also possess good swarming ability. Current

research evidenced that the strain Streptomyces sp. MAD01
possess good biofilm forming capacity as well as antimicrobial
activity against test organisms. It also proves that a ketosynthase
type II PKS system is responsible for the biosynthesis of the
antagonistic compounds in marine actinobacteria. Based on
the present findings, the production of biosurfactants might be
linked with type II iterative PKS gene cluster and the synthesis
of biosurfactant by the sponge-associated actinobacteria might
have significant role in the chemical ecology of host sponge
(Kiran et al., 2015). However, the hypothesis has not been tested
in controlled in vitro and in vivo experiments. Based on the
functions of biosurfactants including antibacterial/antibiofilm
activity, the biosurfactants may play a role in host defense fouling
processes (Gandhimathi et al., 2009; Kiran et al., 2014). Therefore,
explorations of marine sponge-associated actinobacteria for the
lipopeptide and glycolipid biosurfactant production will have
wider applications in industrial processes, bioremediation, and
enhanced oil recovery.

CONCLUSION

In the current study, the iterative nature of actinobacterial type
II PKS was proved by HMM profile. The domain architecture
of N. alba and B. aureum have the potential of constructing
“minimal PKS” and the later species share the specific motif
“VDTACSSS” with S. minoensis. Both strains displayed PKS
domains structurally similar with encoding ACT. S. dendra is
found to have a unique repeat called phage tail fiber repeat
which is responsible for altering the host specificity of secondary
metabolites through protein–protein interaction. The other three
actinobacterial strains Brachybacterium sp., Streptomyces sp., and
S. dendra lack ACP results in inactive minimal PKS or may
act non-iteratively. This study also provides a new insight on
the KS genes of Brevibacterium and Brachybacterium proving
that marine resources are still largely unexplored for natural-
product discovery. In these regards, in silico gene mining is quite
useful for prospecting novel metabolites produced by marine
sponge endosymbionts. Further in vitro studies are needed to
design novel natural products using a biosynthetic engineering
approach.
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Quorum sensing is known to play a major role in the regulation of secondary metabolite
production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria.
Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been
reported to use quorum sensing. Of these, only nine have accompanying experimental
evidence; the rest are only known through bioinformatic analysis of gene/genome
sequences. It is evident that this important communication mechanism is not extensively
explored in Actinobacteria. In this review, we summarize the different quorum sensing
systems while identifying the limitations of the existing screening strategies and
addressing the improvements that have taken place in this field in recent years. The
γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In
addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules
are also reported in Actinobacteria. The lack of existing screening systems in detecting
minute quantities and of a wider range of signaling molecules was a major reason
behind the limited information available on quorum sensing in this phylum. However,
recent improvements in screening strategies hold a promising future and are likely to
increase the discovery of new signaling molecules. Further, the quorum quenching ability
in many Actinobacteria has a great potential in controlling the spread of plant and animal
pathogens. A systematic and coordinated effort is required to screen and exploit the
enormous potential that quorum sensing in the phylum Actinobacteria has to offer for
human benefit.

Keywords: Actinobacteria, Streptomyces, Mycobacterium, quorum sensing, GBL, MMFs, c-di-GMP,
quorum quenching

INTRODUCTION

Cell-to-cell communication in bacteria via quorum sensing is a density-dependent regulation
of gene expression. The system relies on two major components, a signaling molecule
and a transcriptional activator protein. In many Gram-negative bacteria, a member of the
N-acylhomoserine lactone (AHL) family acts as a diffusible signal molecule, the synthesis of which
is controlled by the members of the LuxI family of synthases (Figure 1). Above a threshold
concentration, this signal molecule activates target genes in conjunction with a member of the
LuxR family of transcriptional activators (Fuqua et al., 1996). The AHL-based quorum sensing
system plays major role in regulating multiple functions such as bioluminescence (Nealson and
Hastings, 1979), synthesis of antibiotics (Bainton et al., 1992), the production of virulence

Frontiers in Microbiology | www.frontiersin.org February 2016 | Volume 7 | Article 131 | 205

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2016.00131
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fmicb.2016.00131
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2016.00131&domain=pdf&date_stamp=2016-02-10
http://journal.frontiersin.org/article/10.3389/fmicb.2016.00131/abstract
http://loop.frontiersin.org/people/277185/overview
http://loop.frontiersin.org/people/277119/overview
http://loop.frontiersin.org/people/277120/overview
http://loop.frontiersin.org/people/189044/overview
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00131 February 9, 2016 Time: 16:44 # 2

Polkade et al. Quorum Sensing in Actinobacteria

FIGURE 1 | Schematics of quorum sensing systems in bacteria. (A) Gram-negative bacteria: at threshold concentrations the diffusible autoinducer signaling
molecule, typically a homoserine lactone, binds to its cognate receptor inside the cell forming the autoinducer-receptor complex which then regulates the expression
of target genes through its binding to the target promoter; and (B) Gram-positive bacteria: at threshold concentrations the autoinducer peptide molecule which is
actively transported activates the sensor kinase protein inside the cell which phosphorylates the response regulator protein, which then regulates the expression of
target genes through its binding to the target promoter. Adapted from Koh et al. (2013).

factors (Barber et al., 1997), exopolysaccharide biosynthesis (Beck
von Bodman and Farrand, 1995), bacterial swarming (Eberl
et al., 1996), and plasmid conjugal transfer (Fuqua and Winans,
1994). In contrast, most Gram-positive bacteria use processed
oligo-peptides for signaling and communication (Kleerebezem
et al., 1997; Sturme et al., 2002). These signals, referred to as
autoinducing polypeptides (AIPs) are produced in the cytoplasm
as precursor peptides and are subsequently cleaved, modified, and
exported. The AIP-based quorum-sensing systems are known
to regulate the expression of many factors such as genetic
competence (Solomon et al., 1995), sporulation (Magnuson et al.,
1994), and virulence factor expression (Qin et al., 2000). While
it may seem that the differentiation in the type of signaling
compound is a consequence of the structural differences in the
cell wall between the two bacterial types; however, this is not
the case. For instance, certain Actinobacteria (Gram-positive)
are known to use γ-butyrolactones for signaling, whereas most
Gram-negative bacteria are known to possess signaling peptides
as part of their genome (Lyon and Novick, 2004). Regardless of
the cell type, quorum sensing is a near universal mode of cell-
to-cell communication amongst pathogenic bacteria. Hence, it is
now considered an important target for controlling their spread,
especially antibiotic resistant bacteria.

Despite the diversity and importance of the phenotypes that
are regulated by the quorum sensing network, the information
on their environmental distribution is very limited. Further,
those that are available, only focus on the AHL-mediated gene
expression systems. A survey by Manefield and Turner (2002)
showed that merely 2.2% (21 bacterial genera) of the total number
of bacterial genera listed in the Bergey’s Manual of Systematic
Bacteriology (Garrity et al., 2001) are known to harbor the AHL
producing species, and all of which belong to the alpha, beta and
gamma proteobacteria only. At the species level, the percentage
of AHL producers drops to a fraction of a percent. Although
the estimate is more than a decade old, it still reflects on the
state of the information available on quorum sensing in bacteria.

Motivated by this lack of information, our screening for luxRI
homologs and AHL production in the genus Aeromonas not only
revealed that the homologs are universally present in this genus,
but also reported that a wide diversity of AHLs are secreted by
the species in the genus (Jangid et al., 2007, 2012). This study
only points to the fact that quorum sensing is indeed a widespread
phenomenon among bacteria, however, a systematic evidence is
lacking. Thus, there is a need to survey the existence and study the
taxonomic distribution of the quorum sensing systems amongst
bacterial taxa.

The phylum Actinobacteria is one of the largest phyla within
domain Bacteria and consists of six classes, 23 orders including
one Incerta sedis and 53 families (Ludwig et al., 2012). As of
December 2015, there were 342 genera in this phylum with
standing in nomenclature as determined from the LPSN database
(Parte, 2015). Actinobacteria are typically Gram-positive but at
times stain-variable and have a rigid cell wall that contains
muramic acid with some containing wall teichoic acids. The
phylum comprises of a plethora of phenotypically diverse
organisms, with widespread distribution in nature and exhibiting
varied oxygen, nutritional, temperature, and pH requirements for
growth, making it an important phylum.

Their diverse physiological potential makes Actinobacteria
a dominant role player in the biotechnology industry. Their
applications are widespread and vary from agroindustry,
pharmaceuticals, bioremediation among numerous others. They
play a key role in natural geochemical cycles, especially through
their ability to decompose organic matter. Actinobacteria are
also abundant in the rhizosphere and produce a wide range
of biologically active metabolites, thereby influencing plant
development (Selvakumar et al., 2014). Many Actinobacteria
are also known pathogens of plants and animals. However,
amongst the most important potential of Actinobacteria, it is
the production of a significant number of secondary metabolites
like antibiotics and other compounds of biotechnological
interest that has been exploited most. For instance, among
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the polyene macrolides, a class of polyketides which are
antifungal compounds, are synthesized by more than 100
different species of actinomycetes (Recio et al., 2004). In addition,
members of the genus Streptomyces are known to produce more
than 70% of commercially available antibiotics (Weber et al.,
2003). The expression of virulence determinants, production of
secondary metabolites, and morphogenesis is associated with
high cell densities and typically controlled by diffusible low
molecular weight chemical substances, similar to the Gram-
negative autoinducer, suggesting a role of quorum sensing in
regulating these mechanisms (Takano, 2006; Santos et al., 2012).
Further exploration of novel phenotypes under quorum sensing
regulations is likely to contribute to the advancement in medical,
biotechnological and ecological fields. Hence, there is a need of
studying quorum sensing in Actinobacteria.

Most of what is known about quorum sensing in
Actinobacteria, comes from the study of antibiotic production in
this taxa. While it is indeed the most important phenomenon,
the aim of this review is not to present an overview on the
quorum sensing regulation of antibiotic production. The reader
is therefore directed to read Takano (2006), Liu et al. (2013)
and references within. Further, for clarity Actinobacteria means
all species within the phylum Actinobacteria, unless otherwise
stated as class Actinobacteria.

In this review, we present an overview of quorum sensing
systems described so far for the phylum Actinobacteria,
indicating the limitations of existing screening strategies and
addressing improvements in newer technologies for the discovery
of quorum sensing in more taxa. In addition, we summarize
the current status of known quorum quenching activity in this
phylum.

QUORUM SENSING IN THE PHYLUM
Actinobacteria

Although Actinobacteria is one of the largest groups of organisms
in the bacterial domain, very few reports were available for
known quorum sensing regulation in the phylum. An analysis
of literature for quorum sensing in Actinobacteria revealed
that only 25 actinobacterial genera have some sort of quorum
sensing regulation (Figure 2). This number represents a mere
7.3% of the 342 genera reported in the latest update of
LPSN (Parte, 2015). Of these, only nine genera (2.6%) have
known quorum sensing regulation, whereas remaining 16 genera
(4.7%) are known to only harbor the homologs of LuxR
based on the analysis of available gene/genome sequences. It is
noteworthy that 24 of the 25 genera belonged to the single class
Actinobacteria whereas only a single genus Rubrobacter belonged
to the class Rubrobacteria. No reports were available for the
other four actinobacterial classes: Acidimicrobiia, Coriobacteriia,
Nutriliruploria, and Thermoleophilia. This short list in fact
suggests that an enormous scope exists for screening more taxa
for further exploration of quorum sensing in Actinobacteria.

One quorum sensing system that seems to be limited to
Actinobacteria is the γ-butyrolactone (GBL) system. The GBL
system is quite similar to the AHL-based system in Gram

negative bacteria due to the structural similarity between GBL
and AHL, as well as that it is a one-component system where
the communication molecule sensing protein is also the response
regulator (Takano, 2006). Most reports on the GBL-system
come from the genus Streptomyces which produces numerous
important secondary metabolites and undergoes a sophisticated
morphological differentiation program (Horinouchi and Beppu,
1993; Takano et al., 2000) (Table 1). In most cases, these processes
are under the direct control of GBL autoregulator in tandem
with specific cognate GBL receptors (Healy et al., 2009). The
membrane-diffusible GBL autoregulator controls the expression
of structural genes encoding secondary metabolite pathway
enzymes. The GBL receptors are transcriptional regulators
belonging to the TetR superfamily of transcription factors
(Nishida et al., 2007). Given the large number of species in the
genus Streptomyces and the very few GBL regulatory systems
known, lot more work on the signaling cascade and receptor
proteins is required.

With the exception of the well characterized GBL-based
system of Streptomyces sp. (Takano, 2006), communication in
this phylum has been scarcely explored. Based mostly on indirect
evidence, Santos et al. (2012) made a significant contribution
toward increasing the number of genera known to harbor LuxR
homologs. A diversified and stereoscopic organization of LuxR
proteins among members of this phylum was reported through
an extensive in silico analysis of the phylogenomic distribution
and functional diversity of the LuxR proteins. The authors
identified a total of 991 protein sequences from 53 species
that contained at least one LuxR domain. The distribution of
these sequences was not even among species and ranged from
organisms with a single sequence (e.g., Mycobacterium leprae)
to others with over 50 (e.g., Streptomyces sp.). Using a domain-
based strategy, the LuxR family of proteins in Actinobacteria was
shown to include two major subfamilies: one that resembled the
classical LuxR transcriptional regulators and another in which
the LuxR domain is associated with N-terminal REC domain
(receiver). In a third and smaller group of sequences, LuxR
domain appears associated with a series of signal transduction-
related domains other than REC, forming multidomain proteins
(Santos et al., 2012). From the evolutionary perspective, it was
shown that the ancestor gene sequence codified for a protein
with a single LuxR domain. The original LuxR-encoding genes
then suffered a series of duplications presumably followed
by functional specification, but they also acquired different
domains, originating new subfamilies with implications in a
wide range of functionalities. The phylogenetic results described
suggested a conspicuous promiscuity of the LuxR domain among
Actinobacteria. For details on the distribution of the LuxR
proteins within the phylum, the reader is suggested to refer to
the original study (Santos et al., 2012).

Selective Actinobacteria with Known
Quorum Sensing Systems
Streptomyces
The genus Streptomyces with 778 species (Parte, 2015) is the
largest genus of Actinobacteria and is a natural inhabitant of
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FIGURE 2 | 16S rRNA gene sequence based family tree of the phylum Actinobacteria depicting the genera with known quorum sensing systems. The
evolutionary history was inferred using the Neighbor–Joining method (Saitou and Nei, 1987) using the bootstrap test of phylogeny (1000 replicates) (Felsenstein,
1985). The evolutionary distances were computed using the Kimura 2-parameter method (Kimura, 1980) Evolutionary analyses were conducted in MEGA6 (Tamura
et al., 2013). A total of 54 sequences were used for constructing the tree and belonged to the type species of the type genera of each family as described in Ludwig
et al. (2012) and are submitted as Supplementary Data in fasta format. Black color branch denotes family with no evidence of quorum sensing; red color denotes
family with experimental evidence of quorum sensing; green color denotes family for which only gene homologs are known; ‘∗’ indicates genus for which only gene
homologs are known; and ‘∗∗’ denotes genus for which putative AHL-like signal molecules are involved in quorum sensing.

soils and decaying vegetation. Streptomyces are characterized
by its complex morphological differentiation and their ability
to produce a variety of secondary metabolites, contributing to
two-thirds of naturally occurring antibiotics. The synchronized
behavior of these species in producing antibiotics and modulation
of gene expression is governed by quorum sensing through a
spectrum of small chemical signaling molecules, called GBLs
(Bhukya et al., 2014). GBLs diffuse freely through the cell
membrane and regulate these pathways when the intra and
extracellular concentrations of GBLs reaches a threshold. In this

sense, they behave very similar to the AHL-based quorum sensing
in Gram-negative bacteria.

Much of what is known in actinobacterial quorum sensing
could be attributed to the information gained from GBL-based
quorum sensing in Streptomyces. In fact, the first signaling
molecules, the GBLs, were already known from Streptomyces in
the 1960s (Khokhlov et al., 1967) much before the term ‘quorum
sensing’ was coined by Fuqua et al. (1994). Today, at least 60% of
Streptomyces species appear to produce GBLs regulating multiple
phenotypes even in nano Molar concentrations (Takano et al.,
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TABLE 1 | Status of quorum sensing systems in Actinobacteria.

S. No. Genus Signal type Proteins/Homologs
Involved/Domain Architecture

Phenotypes regulated Reference

Actinobacterial genera with experimental evidence of quorum sensing

1 Actinoplanes VB-type Medically important secondary
metabolite

Choi et al., 2003

2 Amycolatopsis IM2-type Medically important secondary
metabolite

Choi et al., 2003

3 Bifidobacterium Autoinducer AI-2 LuxS, LuxR_C_Like, REC Biofilm formation Santos et al., 2012; Sun
et al., 2014

4 Kitasatospora GBL KsbA Bafilomycin production Choi et al., 2004

5 Leifsonia Putative AHL signal LuxR_C_Like, REC Santos et al., 2012; This
study

6 Micromonospora IM2-type with long C2 chain Medically important secondary
metabolite

Choi et al., 2003

7 Mycobacterium∗ cAMP and cGMP, ppGpp,
c-di-GMP and c-di-AMP

AAA, CHD, HDc, LuxR_C_Like,
MAP0928, REC, WhiB3

Biofilm formation and
pathogenicity

Banaiee et al., 2006;
Takano, 2006; Chen and
Xie, 2011; Santos et al.,
2012; Sharma et al., 2014

8 Propionibacterium Autoinducer AI-2 LuxR_C_Like, REC Biofilm formation and
upregulation of virulence factors

Coenye et al., 2007;
Santos et al., 2012; Lwin
et al., 2014

9 Streptomyces∗ GBLs, MMFs, Factor-A,
Factor-I, IM-2, VB, PI factor

AAA, AlpZ, AplW, ArpA, Aur1R, AvrA,
BarA, BarB, Brp, CprA, FarA, JadR2,
LuxR_C_Like, MmfR, NcsR2, Orf74,
Orf79, Orf82, REC, SabR, SAV2268,
SAV2270, SAV3702, ScbA, ScaR,
ScbR, SCO6286, SCO6323, Sng,
SpbR, TarA, TPR, TylP, TylQ

Production of antibiotics (Act,
Clavulanic acid, Cephamycin,
D-cycloserine, Kas,
Methylenomycin, Natamycin,
Nikkomycin, Nucleoside,
Pristinamycin, Red,
Streptomycin, Tylosin,
Virginiamycin), morphogenesis
and sporulation

Recio et al., 2004; Takano,
2006; Gottelt et al., 2012;
Santos et al., 2012 (and
references within); Willey
and Gaskell, 2011

Actinobacterial genera with only bioinformatic evidence of quorum sensing

10 Acidothermus LuxR_C_Like, REC Santos et al., 2012

11 Arthrobacter∗ AAA, LuxR_C_Like, REC Santos et al., 2012

12 Brevibacterium Transcriptional regulator (GenBank:
ZP_00378009)

Takano, 2006

13 Clavibacter LuxR_C_Like, REC Santos et al., 2012

14 Corynebacterium LuxR_C_Like, REC Santos et al., 2012

15 Frankia AAA, LuxR_C_Like, REC Santos et al., 2012

16 Kineococcus AAA, LuxR_C_Like, REC Santos et al., 2012

17 Kocuria LuxR_C_Like, REC Santos et al., 2012

18 Nocardia FHA, LuxR_C_Like, REC,
Transcriptional regulator (GenBank:
BAD59728, BAD55455)

Takano, 2006; Santos
et al., 2012

19 Nocardioides∗ HDc, LuxR_C_Like, REC Santos et al., 2012

20 Renibacterium LuxR_C_Like, REC Santos et al., 2012

21 Rhodococcus∗ AfsA, ArpA, CSP_CDS, FHA, HDc,
LuxR_C_Like, PBD2.026, PKC, REC,
TPR, Similar to VB-R (Genbank:
AAR90230), Transcriptional regulator
(GenBank: AAR90151)

Plant pathogenesis, Biocontrol
agent

Takano, 2006; Wuster and
Babu, 2008; Santos et al.,
2012; Latour et al., 2013

22 Rubrobacter LuxR_C_Like, PAS, REC Santos et al., 2012

23 Saccharopolyspora LuxR_C_Like, REC, SeaR, TPR Takano, 2006; Santos
et al., 2012

24 Salinispora LuxR_C_Like, REC Takano, 2006; Santos
et al., 2012

25 Thermobifida LuxR_C_Like, REC, TPR Santos et al., 2012

Information used in the table was derived from the references cited here and some taxa may have been missed. ‘∗’ denotes genera with known quorum quenching ability
that also includes Microbacterium which is not shown in here as no known quorum sensing evidence exists for it.
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2000). Most GBLs are structurally similar but chemically distinct.
They are extractable in organic solvents and are heat, protease,
and acid resistant. Although they share structural similarity with
AHLs (except for the carbon side-chain, Figure 3), the GBL
receptors do not bind to AHL or vice-versa. At the genomic
level, a lineage-specific LuxR protein homolog with a very limited
diversity of associated domains is known to exist in Streptomyces
(Santos et al., 2012).

Their molecular mechanism reveals a diverse and complex
system (Choi et al., 2003). The most intensively studied GBL
is A-factor or the autoregulatory-factor (2-isocapryloyl-3R-
hydroxymethyl-g-butyrolactone), which is known to control
the expression of more than a dozen genes, amongst which
streptomycin production and sporulation in Streptomyces griseus
are the most extensively studied (Takano et al., 2000) (Figure 4).
It is known to exert its effects on both clonal hyphae in a
single mycelium as well as genetically distinct S. griseus hyphae.
A-factor likely diffuses between filaments and acts by biding with
the A-factor receptor, ArpA which is a transcriptional repressor
that targets adpA. Upon binding, the A-factor-ArpA complex
activates adpA expression (Willey and Gaskell, 2011). A suit
of genes are under the AdpA-dependent activation, such as
strR whose expression regulates the streptomycin biosynthetic
gene cluster, and genes that are involved in morphological
differentiation. All the characteristics of A-factor tell us that
A-factor is a microbial hormone comparable to eukaryotic
hormones such as the sex pheromones controlling differentiation
in fungi (Horinouchi and Beppu, 1993). However, it is neither
the most abundant nor the most stable GBL. The S. coelicolor
butanolide 1 (SCB1), reported previously to stimulate blue-
pigmented polyketide actinorhodin (Act) and the red-pigmented
tri-pyrolle undecylprodigiosin (Red) production in a growth
phase-dependent manner, is known to be most abundant and
more stable than A-factor (Takano, 2006). The genes involved
in the synthesis of SCB1 (scbA) and binding (scbR) have been
identified (Gottelt et al., 2012). ScbR regulates transcription
of both scbA and itself by binding to the divergent promoter
region controlling both genes, and the GBL SCB1 inhibits
this binding. S. coelicolor is known to produce multiple GBLs
with distinct biological activities. Similarly, S. virginiae produces
at least five virginiae butanolides (VB-A, B, C, D, and E)
that stimulate virginiamycin production, each with a different
minimum effective concentration. In contrast, both S. griseus
and S. lavendulae produce a single GBL, the A-factor and IM-2,
respectively. While A-factor regulates streptomycin production
in S. griseus, IM-2 regulates the production of nucleoside
antibiotics showdomycin and minimycin in S. lavendulae (Gottelt
et al., 2012). The presence of multiple GBLs in Streptomyces is an
indication of the complex communication mechanisms that exist
in this genus and have still not been explored in great details.

A new class of water soluble autoinducer different from the
GBLs was reported by Recio et al. (2004). This factor, called the
PI Factor was identified as 2,3-diamino-2,3-bis(hydroxymethyl)-
1,4-butanediol (Figure 3). It was isolated from S. natalensis
and regulates Pimaricin biosynthesis in the organism. By using
complementation assay, pimaricin production was restored in
the presence of the A-factor in a pimaricin-impaired mutant.

Similar to other GBLs, the PI factor is also active at nano
Molar concentrations. However, the restoration of pimaricin
production in the presence of both A-factor and PI factor
suggests that S. natalensis has an integration of multiple quorum
signals from actinomycetes. Interestingly, the PI factor has
not been reported in the microbial world and has an entirely
novel chemical structure that is only distantly related to the
homoserine lactone and furanosyl diester inducer families. These
unique properties of PI factor only point to the fact that this
taxa holds a great potential for further exploration of quorum
sensing.

In addition to GBLs, methylenomycin furans (MMFs)
have recently been shown to regulate antibiotic production
in S. coelicolor via quorum sensing (Willey and Gaskell,
2011). Different S. coelicolor mutants that were deficient in
methylenomycin production, would co-synthesize the antibiotic
when grown in close proximity of each other, suggesting
that a diffusible signal was involved in its biosynthesis.
Between the two, the mutant strain that rescued the non-
producer is called the ‘secretor’, whereas the one that regained
the capacity to produce the antibiotic when grown near
secretor is called the ‘convertor’. Studies have shown that the
secretor strains possess the ability to synthesize small signaling
molecules similar to GBLs, called MMFs, but themselves lack
the methylenomycin biosynthetic genes, while the opposite
is true of converters. While being very similar to GBLs in
chemical properties, the MMFs are structurally distinct with a
common 2-alkyl-4-hydroxymethylfuran-3-carboxylic acid core
but a different C2 alkyl group (Figure 3). The discovery
of MMFs only points to the fact that the exploration of
quorum sensing in Actinobacteria is very limited and the
possibility of discovering such novel homologs is not farfetched,
it just needs a systematic approach (Willey and Gaskell,
2011).

Mycobacterium
Mycobacteria hold an extreme medical importance worldwide.
Mycobacterium tuberculosis is a successful human pathogen, with
∼2 × 109 individuals; nearly one-third of the world’s population
infected globally (Banaiee et al., 2006). The distinguishing
feature of mycobacteria is the presence of thicker cell wall
which is rich in mycolic acids and a very slow growth rate.
With the emergence of drug-resistance, treating mycobacterial
infections is becoming increasingly difficult and hence, looking
for newer drug targets, especially those involving quorum
sensing is an essential component of mycobacterial research.
However, the Gram positive mycobacteria remain a mystery
with no clear evidence known about their quorum sensing
mechanism (Sharma et al., 2014). Bioinformatics analysis has
revealed the presence of LuxR homologs in M. tuberculosis, but
the experimental supports are lacking (Chen and Xie, 2011;
Santos et al., 2012). Some of these homologs are ubiquitous
across the multiple mycobacterial species and are involved
in mycobacterial biofilm formation or persistence, suggesting
a possible existence of similar quorum sensing mechanisms.
Given the fact that biofilm formation is mostly linked with
quorum sensing regulation and with many non-tuberculous
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FIGURE 3 | Structures of representative signaling molecules in Actinobacteria. The A-factor of Streptomyces griseus, the GBLs of S. coelicolor (SCB1,
SCB2, and SCB3), MMFs of S. coelicolor which are structurally distinct sharing a common 2-alkyl-4-hydroxymethylfuran-3-carboxylic acid core structure but differ in
the identity of the C2 alkyl group. The C4-homoserine lactone of Pseudomonas aeruginosa is shown for comparison. Adapted from Willey and Gaskell (2011).

FIGURE 4 | The S. griseus A-factor regulon. Similar to Gram-negative
bacteria, at threshold concentrations the diffusible A-factor (a γ-butyrolactone)
binds the intracellular receptor ArpA and activates expression of the
transcriptional activator AdpA which in-turn regulates multiple phenotypes
either indirectly via a multi-step cascade, such as the development of aerial
hyphae and sporulation, or directly, such as the production of secondary
metabolites like streptomycin.

mycobacteria known to form biofilms, such as M. smegmatis,
M. marinum, M. fortuitum, M. chelonae, M. ulcerans, M.
abscessus, M. avium, and M. bovis (Sharma et al., 2014),
the existence of quorum sensing in these organisms cannot
be ruled out. However, this hypothesis needs experimental
validation.

The evidence of quorum sensing in Mycobacteria is
mostly indirect. The M. tuberculosis whiB3 gene, a putative
transcriptional regulator that was recently implicated in causing
gross and microscopic lesions, is likely to be under quorum

sensing regulation (Banaiee et al., 2006). Although no evidence
was presented, the expression pattern of whiB3 was shown
to reflect changes in bacterial density thereby suggesting
a role for quorum sensing in its regulation. A survey of
22 M. tuberculosis genes showed that whiB3 was induced
maximally during the early phase of infection in the mouse
lung and cultured macrophages. The expression of whiB3
inversely correlated with bacterial density in the mouse lung,
BMMφ medium, and broth culture (Banaiee et al., 2006).
Since this pattern of expression is consistent with quorum
sensing, further studies are warranted to study this system in
M. tuberculosis.

Another indirect evidence of the involvement of quorum
sensing regulation in mycobacteria is known through the studies
on second messengers. Second messengers are those compounds
that are involved in the signal transduction phosphorelay cascade
enabling the ‘decoding’ of the ‘coded’ information received
in the form of quorum sensing molecules (autoinducers) to
sense and bring appropriate changes in their environment
by expression of target genes (Bharati and Chatterji, 2013).
Thus, inter- and intra-cellular signaling must be integrated.
A variety of small molecules, such as, mono (cAMP and
cGMP) and di-cyclic or modified nucleotide (ppGpp, c-di-
GMP, and c-di-AMP), are important intracellular signaling
molecules in mycobacteria and play a key role in relaying
the signals received from the receptor (on the surface) to
the target molecule in the cell (Sharma et al., 2014). These
nucleotide-based second messengers regulate different processes
in various bacterial systems. Of these, c-di-GMP is a ubiquitous
bacterial second messenger and in effective concentrations
it is known to facilitate phenotypes, such as virulence and
biofilm formation. The involvement of these second messengers
indirectly implies the existence of quorum sensing systems in
both the pathogenic and non-pathogenic mycobacteria (Sharma
et al., 2014).
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Propionibacterium
Propionibacterium acnes is an anaerobic Gram-positive rod
shaped bacterium which is a natural inhabitant of human skin.
It plays an important role in the pathogenesis of acne vulgaris,
a common disorder of the pilosebaceous follicles. However,
as the infection progresses the organisms shows resistance to
antibiotics. In fact, there has been a gradual decrease in the
efficacy of topically applied erythromycin, most likely due to
the development of resistance via biofilm formation. Indeed,
genomic analysis of P. acnes shows that the organism has
three separate gene clusters that code for enzymes involved in
extracellular polysaccharide biosynthesis, suggesting that it is
capable of forming the necessary extracellular biofilm matrix
(Coenye et al., 2007). Further experimentation revealed that
the organism is able to form biofilms as well as showed
increased production of the autoinducer AI-2 by sessile cells
of P. acnes and the upregulation of its virulent activity, such
as hydrolysis of sebum triglycerides by its bacterial lipases,
secreting free fatty acids (FFAs) such as oleic, palmitic, and
lauric acids. The increased concentration of such irritant fatty
acids is thought to contribute to the inflammation and thereby
plays an important role in the pathogenesis of acne. While the
discovery of AI-2 suggested the presence of quorum sensing in
this organism, the mechanisms under its regulation are still not
clear.

In an interesting hypothesis, Lwin et al. (2014) proposed that
quorum sensing indirectly plays a role in the pathogenesis of
acne. Based on the danger model of immunity by Matzinger
(1994) which states that responses to antigens are not dependent
solely upon the recognition of ‘non-self ’ by the immune system,
initiation of the optimal immune response requires a sense
of tissue damage or evidence of a pathogenic micro-organism
via so called ‘danger signals’. In case of acne, the FFAs act as
danger-associated molecular patterns. In its controlled growth as
a skin commensal, P. acnes sends no or only ‘safety’ signals, but
sends ‘danger’ signals via quorum sensing in the form of excess
FFA production during pathogenic state, thereby stimulating
inflammation. As of today, there is no in vivo evidence of quorum
sensing by P. acnes even though a known quorum sensing
signal, AI-2, is produced by the organism. However, experimental
validation of this hypothesis is likely to offer novel therapeutic
targets as well as open new possibilities of quorum sensing in this
organism.

Rhodococcus
Actinobacteria in the genus Rhodococcus are aerobic, Gram-
positive to variable and non-motile. They represent a group
with remarkable metabolic diversity making them an ideal
candidate for use in the bioremediation of contaminated sites,
and as biocatalysts during biotransformations. Hence, they
are of interest to the chemical, environmental, energy, and
pharmaceutical sectors (Jones and Goodfellow, 2012). With
a high economic value, further research into the exploration
of physiological potential of this actinobacterial group is of
increasing importance.

The presence of quorum sensing in Rhodococcus is only
known through bioinformatic evidence based on genomic

sequences of a few strains. Although GBL was detected in
Rhodococcus rhodochrous NCIMB 13064 culture medium, it was
shown that GBL accumulated due to chemical oxidation of
haloalkane in high cell density cultures (Curragh et al., 1994).
In silico analysis of the Rhodococcus erythropolis PR4 genome
revealed the presence of genes encoding a communication
molecule synthase, AfsA, and a communication molecule
response regulator, ArpA with 31 and 36% amino acid sequence
identity, respectively, suggesting the possible presence of a
functional GBL-based quorum sensing system in this strain
(Latour et al., 2013). A similar analysis of the genome of
Rhodococcus strain RHA1showed the presence of homologs for
protein domains of both the GBL synthase and the receptor
which suggests that GBL might play a role in this organism
too (Wuster and Babu, 2008). The fact that both the synthase
genes and the response regulator genes are in close proximity
of each other as in the case of AHL-based quorum sensing
systems, suggests that these homologs may act as a quorum
sensing system. This suggests that such a system is present in
Rhodococcus.

Bifidobacteria
With a substantial effort in categorizing the human microbiome,
new information has revealed that members of the genus
Bifidobacteria represent one of the dominant groups of
normal human gastrointestinal microbiota. They are also
among the first colonizers of the gastrointestinal tract after
birth. At the genomic level, all publically available genome
sequences of bifidobacteria harbor putative luxS genes, and their
corresponding amino acid sequences are well conserved in the
genus with >82% sequence similarity to the LuxS protein of
Vibrio harveyi (Sun et al., 2014). Using this information, Sun
et al. (2014) experimentally confirmed that Bifidobacteria sp.
exhibit LuxS-dependent AI-2 activity and biofilm formation.
In this context, AI-2- dependent biofilm formation, e.g., on
food particles or host-derived mucus, could be an important
mechanism for early colonization of the host by commensal
strains or persistence for prolonged periods by probiotic
strains (Sun et al., 2014). With major implications in human
health due to their use as probiotics, the advantages of
exploiting the biofilm formation capability in bifidobacteria are
enormous.

Other Actinobacteria
The evidence of quorum sensing in other actinobacterial
genera is very meager. At least three closely related non-
Streptomyces genera are known to produce GBL autoregulators
and their receptor proteins based on specific ligand-binding
assay (Choi et al., 2003). Using the binding assay with tritium-
labeled autoregulator analogs as ligands, the authors screened
crude cell-free lysates of five different non-Streptomyces
strains with intermittent samplings during cultivation
up to 96 h. The authors concluded that the teicoplanin-
producer Actinoplanes teichomyceticus IFO13999 produced
a VB type autoregulator, whereas both the rifamycin-
producer Amycolatopsis mediterranei IFO13415 and the
gentamicin-producer Micromonospora echinospora IFO13150
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produced IM-2-type autoregulators. However, the IM-2
autoregulator produced by M. echinospora was likely with
a longer C2 side chain as the biosensor strain S. lavendulae
FRI-5 only recognizes IM-2-type autoregulators having a
C2 side-chain length of 4–5 carbons (Choi et al., 2003).
Moreover, the production of the autoregulators roughly
corresponded to the late exponential growth phase and
reached a plateau between 48 and 60 h, at the early stationary
phase. The inability to detect autoregulator(s) in the other
two strains, Actinoplanes sp. ATCC 31044 and Amycolatopsis
orientalis IFO12806, does not exclude the possibility that,
under different conditions, these strains might produce
autoregulator(s). Hence, screening for autoregulators in different
conditions using multiple biosensors is the key to go ahead in
future.

Among other Actinobacteria, evidence exists for Frankia
and Nocardia from genome analysis that they possess homologs
of AfsA and ArpA, respectively (Wuster and Babu, 2008).
Similarly, a LuxR system including a putative two-component
system response regulator of the LuxR family of protein
together with 23 transcriptional regulators is reportedly
present in the Nocardia brasiliensis HUJEG-1 as determined
based on its complete genome sequence (Vera-Cabrera
et al., 2013). Further, members of the genera Acidothermus,
Arthrobacter, Brevibacterium, Clavibacter, Corynebacterium,
Kineococcus, Kocuria, Nocardoides, Renibacterium, Rubrobacter,
Saccharopolyspora, Salinispora, and Thermobifida are known
to harbor homologs of the LuxR regulators (Takano, 2006;
Santos et al., 2012). Although LuxR regulators may also be
involved in intracellular signaling, the presence of LuxR
proteins is intriguing since no AHLs are known to act on the
actinobacterial quorum sensing systems, where signaling is
generally assured by cyclic or modified peptides and GBLs.
However, this does not exclude the possibility that AHL-
mediated quorum sensing does not exist in Actinobacteria
because none of the screening strategies reported till date have
used the conventional AHL-responsive biosensors. While our
preliminary screening for AHL-mediated quorum sensing
in Actinobacteria using AHL-responsive biosensors yields
support for this hypothesis (personal observation), further
investigation would help in ascertaining whether certain
actinobacterial strains release AHLs or if there are other as-
yet unknown compounds to which these AHL-responsive
biosensors respond. In either case, AHL-production by
Actinobacteria or AHL-responsive biosensors responding
to the non-AHL signals produced by Actinobacteria is
interesting. In this context, Yang et al. (2009) noted that
N-hexanoyl-DL-homoserine lactone (C6-HSL) interacts
with the S. coelicolor GBL receptor (ScbR) activating the
expression of gfp suggesting that such cross-phylum interactions
are not impossible. However, in our case it is the contrary
observation that does not find support in existing literature.
It is an interesting and important observation for both the
biosensor strains as well as Actinobacteria, and therefore
needs further validation. In our opinion, we believe that such
cross-taxa screening strategies might lead to discovery of newer
molecules.

SCREENING FOR QUORUM SENSING IN
ACTINOBACTERIA: LIMITATIONS AND
IMPROVEMENTS

The lack of good biosensor system(s) which can respond to a
very low quantity and a range of signaling molecules is a major
limitation. Quorum sensing can be conclusively demonstrated
only upon the isolation of the signaling molecule, followed by
its structural determination and its ability to regulate phenotypes
when added externally in the medium. However, Actinobacteria,
such as Streptomyces cultures generally produce very low quantity
of GBLs and its purification typically requires organic extraction
of large (e.g., >400 L) volumes of spent culture medium. The
existing sensor strains neither respond to such low quantity nor
the range of GBLs produced, especially with longer C2 side
chains. It is probably the main reason why the structure of only
a few GBLs are known. In fact for these technical and economic
reasons, Healy et al. (2009) did not determine the structure of
GBL from S. acidiscabies and instead used an alternative strategy
to indirectly prove the interaction of GBL with its cognate
receptor (see below). In stark contrast, the AHL-responsive
biosensor strains, such as Chromobacterium violaceum CV026
(McClean et al., 1997) and gfp-based recombinant Escherichia
coli biosensor strains containing plasmids pJBA89, pJBA130,
and pJBA132 (Andersen et al., 2001) respond to a wide range
of AHL compounds even in nano Molar quantities. Their
availability has significantly increased the detection of AHL-
mediated quorum sensing in Gram-negative bacteria. Given this,
there is an immediate requirement for efforts to create a similar
biosensor system that can detect a wide variety of GBLs. In order
to move forward, the priority should be to generate more data
from the known GBLs and the mechanisms they regulate. This
new information will significantly add toward developing such
wide-range GBL-responsive biosensors.

Not many Actinobacteria exhibit AI-2-mediated quorum
sensing which is typical of many other Gram-positive organisms.
However, this could be attributed to its sensitivity to high glucose
and acidic pH in the culture medium both of which have a
strong inhibitory effect. While screening for AI-2 activity in
bifidobacterial culture supernatants, Sun et al. (2014) could not
detect any activity in MRSc, i.e., the standard culture medium
for bifidobacteria. MRSc contains 20 g/L glucose and the end
products of the bifidobacterial metabolism on hexoses are mainly
acetic and lactic acid. By testing V. harveyi BB170, a known
AI-2 producer at different pH values, the authors concluded
that acidic pH negatively affected detection. AI-2 activity was
reduced to approximately 40% at pH 4, i.e., the pH observed
in bifidobacterial supernatants, and at 0.25 g/L of glucose (Sun
et al., 2014). In contrast, during assays for the signaling molecule
response regulator, ArpA, only those that are acidic (pH ∼5)
bind the autoregulator when tested; basic proteins did not (Willey
and Gaskell, 2011). Hence, information on the sensitivity of
existing signaling molecules is warranted. Once this information
is generated, it likely to improve the existing screening strategies.

A more feasible approach is to search for homologs of
the autoregulator receptor gene (Willey and Gaskell, 2011).
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As shown by Santos et al. (2012), these genes share a high
degree of similarity within a given taxon and designing of
degenerate primers to PCR amplify and sequence them is a
better strategy. Using a similar strategy, we were able to sequence
majority of quorum sensing gene homologs from the genus
Aeromonas and show that the system is ubiquitously present
across all the species in this genus (Jangid et al., 2007). With
the advancements in sequencing technology and reduced costs,
conducting metagenomic studies using a similar approach would
be very easy and is likely to generate an enormous depth of
information that is still hidden and untapped. However, such
novel strategies must be followed with caution and utmost
planning. Further, the mere presence of the gene is by no means
an evidence of a functional signaling system. Hence, cloning of
such structural genes in an expression system is the only way
to confirm its activity. However, it is imperative that for such
a strategy the intact functional protein much be obtained and
later-on use the purified proteins for further investigation.

Recently, some new receptor-based methodologies have been
described. To circumvent the issue of requiring large amounts
of cultures, Yang et al. (2005) reported an alternative detection
system using ScbR, the receptor protein from S. coelicolor and
electrospray tandem mass spectrometry (ESI-MS/MS). Using the
success of affinity capture technology in proteomics studies, the
authors developed recombinant receptors of butanolides, such as
such as ArpA from S. griseus, FarA from S. lavendulae, BarA from
S. virginiae, and SpbR from S. pristinaespiralis and used them
as affinity capture molecules to trap butanolides, followed by
MS analysis for identification. This method allows the isolation
of butanolides from as low as 100 ml of S. coelicolor culture
broth. In addition, it enables the detection of quorum sensing
system in cases where the interaction between the signaling
molecule and its cognate receptor is inhibited in acidic pH and
high glucose. For instance, Healy et al. (2009) detected fragment
ions bound by the purified GBL receptors from S. acidiscabies.
These ions showed masses that were consistent with molecules
possessing lactone functional groups such as those found in GBL
compounds. This strategy might therefore be useful for strains
with identified GBL receptors but where the interactions could
not be proven.

The availability of a diverse set of biosensor plasmids is likely
to increase the frequency of detection of Actinobacterial quorum
sensing systems. Recently, Yang et al. (2009) developed a gfp-
containing E. coli-based cell-free system for detecting GBL in
Streptomyces. In this ScbR quorum sensing system, the gfp is
fused downstream of the DNA binding site for the S. coelicolor
GBL receptor, ScbR. The presence of purified His-tagged ScbR
and cognate GBL results in fluorescence. This system allows
to circumvent the issues of cell wall penetration and can be
used for high-throughput screening as it allows assays to be
completed within 4 h. Further, the protein–ligand interaction
can easily be monitored without the use of radioisotopes and
acrylamide gels. Similarly, Hsiao et al. (2009) used ScbR and its
target DNA to control the expression of a kanamycin resistance
gene in the presence of its cognate GBL. This new sensitive
reporter system also allows detection of small quantities of GBLs
and those that are difficult to detect. The authors propose that

by altering the timing for extract preparation from cells, the
detection of other GBLs could be enhanced from different strains.
The kanamycin bioassay is likely to facilitate large-scale screening
of GBL producers due to its higher sensitivity toward wide range
of GBLs than the commonly used bioassay.

While these new approaches are likely to facilitate the
discovery of additional GBLs, one important limitation is
that most are targeted to detecting GBLs from Actinobacteria,
especially Streptomyces. Hence, detailed investigation of other
non-GBL mediated quorum sensing systems is required to gain
insight into the mechanisms involved and thereby develop
strategies for expanding the array of signaling molecule detection.

QUORUM QUENCHING ACTIVITY IN
ACTINOBACTERIA

With constant rise in the number of antibiotic-resistant bacteria,
there is a need to look for alternative strategies to control
their spread. Since most pathogens regulate their virulence
by quorum sensing, it has become the most sought-after
alternative target to control their spread. Chemical inactivation
of the Gram-negative AHLs via alkaline hydrolysis is known
for quite some time. However, the enzymatic degradation
of signaling molecules is now the most researched field in
quorum quenching to limit the growth of many animal and
plant pathogens. Quorum quenching enzymes act in either of
the two ways: (1) analogous to the chemical ring hydrolysis,
acyl-homoserine is generated by AHL lactonases; and (2) the
amide bond is degraded by AHL acylases. Screening for these
enzymes in different ecosystems have shown great potential.
For instance, AHL-degrading bacteria may make up 5–15%
of the total cultivable bacteria in the soil and rhizosphere
(Latour et al., 2013). Although small, it is a non-negligible and
an important resource for developing biocontrol formulations.
Screening for such enzymes has therefore become increasingly
important.

The ability of Actinobacteria to produce the innumerable
secondary metabolites, enzymes, and commercially important
biomolecules has attracted researchers to explore this phylum
for their role in quorum quenching activity. Endophytic
actinomycetes and their AHL-lactonase enzymes have shown
great potential in this regard (Chankhamhaengdecha et al.,
2013). The authors made a first attempt toward screening for
quorum quenching enzyme-producing actinomycetes from soil
and plant tissues. With 51.5% of the tested strains possessing the
quorum quenching activity, endophytic actinomycetes possessed
the activity at higher frequency than the soil isolates at
36.9% demonstrating a great diversity and abundance of AHL-
degrading actinomycetes. While one would think that quorum
quenching is most useful for organisms that produce the signals
enabling them to use them as a source of energy and nitrogen
source (Flagan et al., 2003), organisms that do not produce
the signals are also known to quench them, presumably to
gain an advantage over communicating bacterial species in the
same ecological niche (Wuster and Babu, 2008). For example,
Rhodococcus and Microbacterium can degrade AHL signals
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without having any known ability to produce them. In
fact, there is no evidence of quorum sensing for the
latter, not even bioinformatic. Hence, more of such
environmental screening studies that target Actinobacteria are
warranted.

Specific members of the phylum Actinobacteria have also
shown considerable potential in agro-environment due to
their quorum quenching activity. Several Actinobacteria have
the ability to colonize plant surfaces and thereby exclude
plant pathogens either by competition or through inhibition
by antibiotic production (Selvakumar et al., 2014). Over the
last decade, a total of six actinobacterial genera: Arthrobacter
(Flagan et al., 2003), Microbacterium (Wang et al., 2012),
Mycobacterium (Chen and Xie, 2011), Nocardioides (Yoon
et al., 2006), Rhodococcus (Park et al., 2006; Latour et al.,
2013), and Streptomyces (Chen and Xie, 2011; Ooka et al.,
2013) have been reported for their quorum quenching activity.
Members of these genera known to exist as plant symbionts
or as endophytes residing within plant hosts without causing
disease symptoms are reported to produce AHL-inactivating
enzymes. In fact, Rhodococcus has an unusually high number
of AHL-inactivating lactonases (Wuster and Babu, 2008),
that may play a role in the intracellular metabolism of
lactone compounds such as GBL (Uroz et al., 2005). Due
to its high AHL-degrading activity, R. erythropolis strain
R138 has been used as a biocontrol agent to prevent soft-
rot in plants. Genetic evidence suggests that the lactone
catabolic pathway in the strain may not be the only pathway
for AHL-inactivation. In addition, it possesses multiple
homologs of various catabolic enzymes, thus enhancing the
species’ metabolic versatility (Latour et al., 2013). Recently,
two more strains of R. erythropolis, PR4 and MM30 of
marine origin have been reported to enzymatically degrade
N-oxododecanoyl-L-homoserine lactone (Romero et al.,
2011). Similarly, the soil isolate Nocardioides kongjuensis
A2–4T is able to grow with N-hexanoyl-L-homoserine lactone
as the sole carbon source suggesting that its quenching
ability is worth exploration against plant pathogens (Yoon
et al., 2006). Further, the AHL-degrading lactonase enzyme
activity was also reported from the potato leaf-associated
Microbacterium testaceum StLB037 (Wang et al., 2012).
Recently, Arthrobacter species have been reported to inhibit
quorum sensing in a cross phylum interaction (Igarashi
et al., 2015). The strain PGVB1 produces arthroamide and
turnagainolide that showed potent inhibition of agr-signaling
pathway of quorum sensing in Staphylococcus aureus at 5–
10 µM without showing cell toxicity. Similarly, a major
metabolite piericidin A1 secreted by Streptomyces sp. TOHO-
Y209 and TOHO-O348 demonstrated quorum sensing inhibiting
activity against C. violaceum CV026 (Ooka et al., 2013).
The piericidin class of metabolites are known inhibitors
of NADH-ubiquinone oxidoreductase, with A1 specifically
inhibiting both mitochondrial and bacterial NDAH- ubiquinone
oxidoreductases. These studies suggest that Actinobacteria offer
a unique system which, if exploited well, is likely to play
a major role in controlling the spread of plant and human
pathogens.

CONCLUSION

The enormous metabolic and phylogenetic diversity that exists
in Actinobacteria offers a unique opportunity to explore its
multifactorial abilities for biotechnological applications. Quorum
sensing is one such property that is evidently under-explored in
this phylum. Based on the limited information that is known,
quorum sensing systems in Actinobacteria show considerable
diversity in terms of the types of signals and the mechanisms it
controls. However, there exists a taxa specific segregation within
the phylum. For instance, GBL-mediated regulation is not only
limited to Streptomyces but is also species specific. Interspecific
signaling is therefore likely to expand the list of compounds
and mechanisms involved in quorum sensing. The lack of good
detection systems is a major limitation for further exploration
of the communication system in Actinobacteria. Developing
newer systems which can respond to a wider range of signals
and that too at very low quantities are the need of the hour.
Further exploration using these systems within and between
multiple taxa is likely to reveal an even greater diversity of
signals. Similarly, the quorum quenching ability of Actinobacteria
exhibit a great potential, especially through their use as bio-
control agents for plant pathogens and in controlling the spread
of antibiotic-resistant organisms. However, systematic screening
of specific ecosystems is required to fully exploit the quorum
quenching potential. Using the knowledge gained from an in-
depth understanding of the existing quorum sensing systems,
Actinobacteria are likely to exhibit a wider array of properties
that are likely to have significant implications for plant, animal
and human health.
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The thermophilic species, Thermococcus kodakarensis KOD1, a model microorganism
for studying hyperthermophiles, has adapted to optimal growth under conditions of
high temperature and salinity. However, the environmental conditions for the strain
are not always stable, and this strain might face different stresses. In the present
study, we compared the proteome response of T. kodakarensis to heat, oxidative, and
salt stresses using two-dimensional electrophoresis, and protein spots were identified
through MALDI-TOF/MS. Fifty-nine, forty-two, and twenty-nine spots were induced
under heat, oxidative, and salt stresses, respectively. Among the up-regulated proteins,
four proteins (a hypothetical protein, pyridoxal biosynthesis lyase, peroxiredoxin, and
protein disulphide oxidoreductase) were associated with all three stresses. Gene
ontology analysis showed that these proteins were primarily involved metabolic and
cellular processes. The KEGG pathway analysis suggested that the main metabolic
pathways involving these enzymes were related to carbohydrate metabolism, secondary
metabolite synthesis, and amino acid biosynthesis. These data might enhance our
understanding of the functions and molecular mechanisms of thermophilic Archaea for
survival and adaptation in extreme environments.

Keywords: proteome, stress responses, Thermococcus, archaea, metabolic pathway

Introduction

Thermococcus kodakarensis KOD1 is a hyperthermophilic anaerobic archaeon, isolated from
a solfatara (102◦C, pH 5.8) on the shore of Kodakara Island, Kagoshima, Japan (Morikawa
et al., 1994). The environmental conditions are not always conducive to steady growth,
as fluctuations in temperature regime, fluid flux, and carbon substrate supply create a
spatial and temporal mosaic of microenvironments (Edgcomb et al., 2007). The different
environmental conditions over time have facilitated the evolution of Archaea for adaptation
to extreme environments, and indeed, these bacteria experience difficulties acclimating to
less extreme conditions (Reed et al., 2013). T. kodakarensis KOD1 senses the environment
and responds to changing environmental conditions (Izumi et al., 2001). Many proteins
have been reported to play important roles in cellular protection against different stresses.
For example, osmotically inducible protein C (OsmC) from T. kodakarensis plays a role in
cellular defense against oxidative stress induced through exposure to hyperoxides or elevated
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osmolarity (Park et al., 2008). T. kodakarensis also possesses
four prefoldin genes, encoding two alpha subunits (pfdA
and pfdC) and two beta subunits (pfdB and pfdD) of
prefoldins on the genome. The PfdA/PfdB complex functions
at all growth temperatures, while the PfdC/PfdD complex
contributes to survival in high-temperature environments
(Danno et al., 2008). Proteins involved in oxidative stress
were well studied in Pyrococcus, which belong to the same
order Thermococcales, along with T. kodakarensis KOD1.
In Pyrococcus horikoshii, a significant increase of a 25 kDa
alkyl hydroperoxide reductase (PH1217) was observed when
the microorganism was cultivated under aerobic conditions
(Kawakami et al., 2004). P. furiosus is surprisingly tolerant
to oxygen, growing well in the presence of 8% (vol/vol) O2.
Superoxide reductase (SOR) and putative flavodiiron protein
A play important roles in resisting O2 (Thorgersen et al.,
2012). Most cellular stress responses are highly conserved
cellular defense mechanisms for protection against sudden
environmental changes or frequent fluctuations in environmental
factors (Feder and Hofmann, 1999). The cellular stress response
has been associated with essential aspects of protein and
DNA processing and stability in all three superkingdoms
of life: Archaea, Bacteria, and Eukarya (Kültz, 2003). In
Archaea, T. kodakarensis has emerged as a premier model
system for studies of archaeal biochemistry, genetics, and
hyperthermophily (Hileman and Santangelo, 2012). However, the
current knowledge of the stress proteome of T. kodakarensis,
i.e., the proteins expressed in response to cellular stress, remains
fragmented.

Proteomics techniques are powerful tools for the identification
of the quantitative changes in protein expression in response
to stress exposure in cells, tissues or biological fluids. The first
proteomics studies of thermophilic Archaea, involving the
proteome of Sulfolobus solfataricus P2, were reported Chong
and Wright (2005). Since then, the proteomics analysis of
Thermococcus was conducted in 2009, which characterized
the abundant expression of Thermococcus onnurineus NA1
proteins in enriched medium (Kwon et al., 2009). Recent
developments in proteomics studies on extremophiles
have provided unique information on the physiological
characteristics required for adaptation to extreme conditions.
For example, formate is used in gluconeogenesis and carbon
monoxide is converted to carbon dioxide and assimilated
into organic carbon in T. onnurineus NA1 (Yun et al.,
2014).

In the present study, we simultaneously analyzed alterations in
protein expression during heat, oxidative, and salt stresses based
on two-dimensional (2-D) gel electrophoresis. We conducted
proteomics analyses using matrix-assisted laser desorption
ionization-time of flight/mass spectrometry (MALDI-TOF/MS)
to identify the major proteins. The completed genome of
T. kodakarensis KOD1 has facilitated the use of proteomics
analyses under different stress conditions. The aim of the present
study was to highlight the molecular adaptation mechanisms of
T. kodakarensis KOD1 and reveal both common and distinct
response pathways involved in the adaptation of this species to
heat, salt, and oxidative stress.

Materials and Methods

Organism and Cell Culture
The T. kodakarensis strain KOD1 was obtained from the Japan
Collection of Microorganisms (JCM). The cells were cultured in
JCMmedium 2801.

Heat, Oxidative, and Salt Stress Procedure
Culture of T. kodakarensis KOD1were carried out in triplicate
in 40 mL cultures in 50 mL serum bottles at 85◦C anaerobically
on a shaking incubator (150 rpm). For heat stress, the cells
in the mid-log phase were shocked by exposure to 95◦C and
incubating for 4 h. For oxidative stress, the cells in the mid-
log phase were cultured under aerobic conditions after adding
oxygen (5 L/min) for 30 min. Each culture was maintained
at 85◦C for 4 h. For osmotic stress, T. kodakarensis KOD1
was grown until the mid-log phase and the cells were salt
shocked after adding a final concentration of 1 M NaCl to the
medium and incubating for 4 h. The cells treatment for 1 h was
harvested through centrifugation at 12,000 rpm for 10 min at
4◦C for two-dimensional gel electrophoresis (2-DE). Survival of
the cells was estimated by the three-tube most probable number
method per 30 min period after exposure to stress. Samples were
diluted serially in growth medium, and cultures were incubated
at 85◦C.

2-DE
The cells were washed with 1X PBS (the salt stress cells including
control were washed four times and others were washed twice),
and the total proteins were solubilized in lysis buffer (8 M
urea, 4% CHAPS, 40 mM Tris, 100 mM DTT, and 0.5% carrier
ampholyte) for 20 min. The soluble proteins were separated
through centrifugation at 40,000 rpm for 1 h at 4◦C. The soluble
protein concentration was determined using a standard Bradford
method (Bradford, 1976).

Isoelectric focusing (IEF) was conducted using the
IPGphor/IsoDalt system (Bio-Rad, Hercules, CA, USA) at
20◦C. IPG gel strips system (Bio-Rad., Hercules, CA, USA)
were rehydrated in swelling solution (7 M urea, 2 M thiourea,
2% CHAPS, 100 mM DTT, 0.5% IPG buffer system (Bio-Rad,
Hercules, CA, USA) and bromophenol blue containing 100 mg
of protein for 12 h at 20◦C, and subsequently, IEF was performed
for 1 h at 200 V, 1 h at 500 V, 1 h at 1000 V, 1 h at 1000 V,
30 min at 8000 V, and 45000 Vh. The IPG strips were equilibrated
for 15 min in Solution I (50 mM Tris-HCl, pH 8.8, 6 M urea,
30% glycerol, 2% SDS, 10 mg/mL DTT, and bromophenol
blue), followed by 15 min in Solution II (50 mM Tris-HCl, pH
8.8, 6 M urea, 30% glycerol, 2% SDS, 2% iodoacetamide, and
bromophenol blue). For the second dimension, vertical slab gels
were used. The 12% SDS gels were prepared, and an equilibrated
IPG gel strip was laid on top of the gel filled with 0.5% agarose
solution. Electrophoresis was performed at 5 mA/cm for 1 h
at room temperature, followed by 10 mA/cm until the dye
front reached the bottom of the gel. The proteins were detected
through silver staining.

1http://www.jcm.riken.jp/cgi-bin/jcm/jcm_grmd?GRMD = 280&MD_NAME
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Protein Visualization and Image Analysis
The stained gels were scanned and digitized using a Duoscan
scanner (Agfa, Trenton, NJ, USA; Bio-Rad, Hercules, CA, USA).
After background subtraction, normalization, and matching,
the spot volumes in gels from each treated-cell sample were
compared with the matched spot volumes in gels from
control cells. Comparison of the test spot volumes with the
corresponding standard spot volumes yielded a standardized
abundance for each matched spot, and the values were averaged
across triplicates for each experimental condition. Statistical
analysis was performed to select the matching spots across all
images, including spots displaying a ≥ 1.5 average-fold increases
in abundance between conditions and spots with P < 0.05. Spots
differentially and markedly overexpressed were excised.

Protein Identification
The Voyager-DETM STR Biospectrometry Workstation (Applied
Biosystems, Foster City, CA, USA) was used for MALDI-
TOF/MS. The desired gel pieces were carefully excised, destained,
and in-gel digested using trypsin. Briefly, the excised-gel pieces
were washed with water for 2 × 15 min, followed by an
additional wash with water/acetonitrile (1:1) for 2 × 15 min.
After removing all liquid, acetonitrile was added to cover the
gel pieces. Acetonitrile was removed after the gel pieces were
shrunk. The gel pieces were rehydrated in 0.1 M ammonium
bicarbonate for 5 min, and subsequently incubated for 15 min
with an equal volume of acetonitrile. After removing all liquid,
the gel pieces were dried in a vacuum centrifuge for 20 min.
The gel pieces were swollen in 10 mM DTT/0.1 M ammonium
bicarbonate and incubated for 45 min at 56◦C, followed by
cooling at RT. After removing the excess liquid, the same volume
of freshly prepared 55 mM iodoacetamide in 0.1 M ammonium
bicarbonate was added, followed by incubation in the dark for
30 min at room temperature. The iodoacetamide solution was
removed, and the gel pieces were incubated in 30 mL of 0.1 M
ammonium bicarbonate for 5 min, and subsequently further
incubated for 15 min with an equal volume of acetonitrile. After
an additional incubation with ammonium carbonate/acetonitrile,
the gel pieces were dried in a vacuum centrifuge for 20 min,
rehydrated in digestion buffer and placed on ice for 45 min.
The buffer was replaced with 20 mL of digestion buffer with
trypsin (12, 500 μg mL−1). After overnight digestion at 37◦C, a
sufficient volume of 25 mM ammonium bicarbonate was added
to cover the gel pieces and incubated for 15 min. The same
volume of acetonitrile was added and incubated for 15 min,
followed by the addition of 5% formic acid/acetonitrile (1:1)
to the recovered supernatant and incubation for 30 min. After
repeating this step, all the extracts were dried in a vacuum
centrifuge for 1–2 h. The dried peptide was dissolved in 20 mL of
5% formic acid and sonicated for 5 min in a water bath sonicator.
The peptide sample (2 mL) with standard calibrant (1 mL) was
mixed with 2 mL of a 2:1:1 (v:v:v) matrix mixture containing
matrix solution (20 mg a-cyano-4-hydroxycinnamic acid/1 mL
acetone):nitrocellulose solution (20 mg nitrocellulose/1 mL
acetone): 2-propanol. Two microliters of sample was loaded onto
a MALDI plate, dried for 30 min at room temperature, rinsed
with 5 mL of 5% formic acid, and washed with 5 mL of water.

After drying at room temperature, the plate probe was inserted
into a MALDI mass spectrometer. For protein identification,
we performed searches in the NCBInr, Swiss-Prot/TrEMBL, and
MSDB sequence databases using MS-Fit2, Mascot3, and ExPASy4.
The complete experiment was repeated three times, including cell
growth, proteome purification, 2-DE, and protein identification.

Agar Plate Bioassay
Polymerase chain reaction (PCR) using T. kodakarensis KOD1
genomic DNA as a template was performed to isolate
TK0108, TK0217, TK0537, and TK1085 using the following
oligonucleotide primers listed in supplementary Table 1. The
PCR products and the pET28a vector were digested by the
restriction enzymes. The ligation products were transformed
into Escherichia coli BL21 (DE3) cells by electroporation and
confirmed by sequencing. E. coli cells containing the four
recombinant plasmids were named as pET28a-TK0108, pET28a-
TK0217, pET28a-TK0537, and pET28a-TK1085, respectively.
The E. coli cells were cultured in 10 mL of LB broth containing
30μgmL−1 kanamycin at 37◦C for 3 h.When the OD600 reached
0.7, isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a
final concentration of 1 mM to induce protein expression. After
4 h of culture with shaking, the OD600 were adjusted to 0.5
and the protein expression were checked by SDS-PAGE. Petri
plate-based dilution bioassays were performed after the cells were
treated at 50◦C for 20 min or the cells were spotted onto LB plates
with 5 mM H2O2 and 1 M NaCl, respectively. The images were
taken after incubation at 37◦C for 12 h. This assay was performed
in triplicate for three times and the representative images were
shown.

Data Analysis
Gene ontology (GO) enrichment was performed using
BLAST2GO (Conesa and Gotz, 2008). The Kyoto Encyclopedia
of Genes and Genomes (KEGG) was used to determine the
position of the identified proteins in respective pathways
(Kanehisa and Goto, 2000). Protein–protein interactions were
predicted using STRING set at high confidence (Franceschini
et al., 2013), and Cytoscape was used for network visualization
(Shannon et al., 2003). The protein function was predicted by
BLAST (Altschul et al., 1997), SMART (Roy et al., 2010), and
I-TASSER (Letunic et al., 2015).

Result

Cell Growth, Proteome Analysis, and Protein
Identification
Thermococcus kodakarensis KOD1 has been reported to strictly
anaerobic. Temperature range of growth is 60–100◦C, with an
optimum of approximately 85◦C. Range of NaCl concentration
allowing growth is between 0.17 and 0.86 M, with an optimum
of 0.52 M (Atomi et al., 2004). Further research showed that

2http://prospector.ucsf.edu
3http://www.matrixscience.com
4http://www.expasy.org
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TABLE 1 | List of up-regulated proteins under heat stress in Thermococcus kodakarensis KOD1.

No Protein name Protein ID SC(100%)a Fold change pIb pIc Mwd Mwe

1 Thermosome alpha subunit TK0678 48 3.2 4.84 4.8 59.12 59.2
2 ATP-dependent glucokinase TK1110 19 2.1 5.52 5.6 50.70 50.0
3 Aspartyl – tRNA synthetase TK0492 17 1.6 5.35 5.4 50.88 51.5
4 Hypothetical protein TK0300 16 2.5 5.76 5.7 50.80 51.0
5 Ornithine carbamoyltransferase TK0871 28 2.2 5.76 5.7 35.02 35.0
6 Probable transcription regulator TK0471 43 2.9 6.01 6.5 30.81 31.0
7 RNA – binding protein TK2097 15 2.1 6.02 5.5 18.03 18.0
8 Hypothetical protein TK1561 26 2.6 5.32 5.4 21.77 23.0
9 6,7-dimethyl-8-ribityllumazine synthase TK0429 25 2.8 5.70 5.7 15.69 16.0
10 Hypothetical protein TK0108 61 1.6 4.99 5.0 22.39 23.0
11 Cobalamin adenosyltransferase TK1045 29 3.1 6.19 6.3 19.26 19.0
12 2-dehydropantoate 2-reductase TK1968 37 3.3 4.43 4.5 34.03 34.5
13 Hypothetical protein TK1937 17 2.5 4.82 5.0 16.36 17.5
14 N-acetyltransferase TK0232 41 3.2 5.76 5.8 31.78 32.0
15 Hypothetical protein MJ0668 TK0823 24 3.0 6.53 6.7 10.13 10.0
16 Predicted exonuclease TK0458 18 2.5 6.15 6.4 20.05 20.0
17 ABC-type maltodextrin-binding periplasmic component TK1771 15 3.2 4.56 4.5 49.44 51.5
18 Thermosome beta subunit TK2303 36 3.1 4.86 4.8 59.13 60.2
19 Sugar-phosphate nucleotidyltransferase TK0955 19 2.5 5.15 5.2 46.80 47.7
20 Acyl-CoA synthetase TK0944 8 3.3 5.51 5.7 51.83 50.9
21 Hypothetical protein TK0077 28 1.9 4.94 5.1 5.34 5.4
22 Zinc-dependent protease TK0689 31 3.8 5.20 5.2 48.52 49.0
23 ATPase, ParA/MinD family TK0701 42 3.7 4.81 4.9 31.93 30.9
24 Hypothetical protein TK1972 15 1.6 4.89 4.9 39.80 40.0
25 Glycine cleavage system protein P TK1379 38 2.3 5.51 5.5 55.96 56.2
26 Methionine synthase II TK1447 12 2.6 5.90 5.9 35.25 35.0
27 Deoxyribose-phosphate aldolase TK2104 27 2.3 5.18 5.2 24.49 26.0
28 Metallophosphoesterase TK0547 19 2.6 5.22 5.3 24.12 23.0
29 Protein disulphide oxidoreductase TK1085 39 3.8 4.72 4.8 25.28 25.6
30 Deblocking aminopeptidase TK0781 31 1.9 5.46 5.5 38.27 38.5
31 Hypothetical protein TK0163 46 1.8 5.60 5.6 28.74 29.7
32 Oxidoreductase TK0845 22 3.0 5.36 5.4 31.57 31.8
33 Eukaryotic-type DNA primase TK1790 17 2.8 6.24 6.2 40.27 40.0
34 Inorganic pyrophosphatase TK1700 47 1.7 4.84 4.8 20.78 22.0
35 Acetyltransferase TK1174 31 1.8 5.98 6.0 18.79 19.1
36 Hypothetical protein TK1584 36 1.9 5.71 5.7 10.92 11.9
37 2-oxoisovalerate:ferredoxin oxidoreductase, alpha

subunit
TK1980 26 2.1 4.97 5.0 44.37 44.5

38 Pyridoxine/pyridoxal 5-phosphate biosynthesis protein TK0217 25 2.6 5.57 5.5 36.64 37.7
39 Thermophile-specific fructose-1,6-bisphosphatase TK2164 60 2.7 5.36 5.3 41.63 41.8
40 Serine hydroxymethyltransferase TK0528 41 2.0 5.80 5.2 48.20 47.3
41 Glutamate dehydrogenase TK1431 34 1.8 5.88 5.5 47.03 47.9
42 Deblocking aminopeptidase TK1177 54 1.8 5.39 5.3 38.17 38.0
43 ATPase involved in chromosome partitioning TK2007 36 2.2 5.71 5.6 27.61 27.5
44 Hydrolase TK2232 21 2.5 5.42 5.4 24.24 24.5
45 Peroxiredoxin TK0537 48 3.5 5.02 4.9 24.63 24.0
46 Myo-inositol-1-phosphate synthase TK2278 23 2.5 5.31 5.0 42.39 43.0
47 2-amino-3-oxobutylrate Co A ligase TK2217 18 3.0 5.53 5.5 43.94 44.9
48 DNA polymerase sliding clamp TK0535 32 2.5 4.49 4.4 28.22 28.0
49 Anthranilate synthase TK0254 14 2.2 5.20 5.6 48.51 49.5
50 Cell division GTPase TK1421 29 2.3 4.80 4.4 40.03 40.0
51 Hydrolase TK0251 14 1.9 4.91 4.2 27.41 29.4
52 Chromosome partitioning protein ParB homologue TK0378 24 2.4 5.85 5.0 35.97 38.0
53 Glyceraldehyde-3-phosphate dehydrogenase TK0765 25 2.5 5.30 5.9 37.21 36.2
54 Distant homolog of phosphate transport system TK1967 26 1.6 4.58 4.0 23.99 22.0
55 ABC-type phosphate transport system TK1868 22 2.5 5.30 5.9 28.41 30.5
56 Serine-glyoxylate aminotransferase TK1548 17 2.2 5.93 6.5 42.88 44.0
57 Hypothetical protein TK1160 42 1.9 6.84 6.5 14.79 15.5
58 N-acetyltransferase TK1054 15 2.4 6.64 6.0 20.77 20.0
59 Transcription regulator TK0126 23 2.5 6.77 6.2 20.70 21.0

aSequence coverage, bTheoretical pI, cExperimental pI, dtheoretical mass (kDa), and eexperimental mass (kDa) of the identified proteins.
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T. kodakarensis KOD1 could grow after aerobic inoculation,
at which the cells were initially under oxygen saturation at
the cultivation temperature (Kobori et al., 2010). To study
the effect of stresses on T. kodakarensis KOD1, the cells were
exposed to 95◦C, 1 M NaCl, or saturated oxygen condition for
4 h. The effect of the stresses on cells viability was assayed
using the most probable number method. The results showed
that there were no significant differences in the frequency of
viable cells compared to control (Supplementary Figure S1).
To better understand the molecular mechanism underlying the
responses of T. kodakarensis KOD1 to heat, oxidative, and
salt stresses, we conducted comparative proteomics assays to
identify proteins differentially expressed in this strain based on
2-D gel electrophoresis using cells grown under the stresses
for 1 h. The cytosolic proteins were subjected to 2-DE,
and MALDI was used to identify the proteins involved in
heat, oxidative, and salt responses. Proteins extracted under
conditions without any stress were used as a control. The
gels (Supplementary Figures S2–S4) were silver stained and
subsequently analyzed using PDQuest 7.1. After optimization of
the 2-DE gels and image processing, the proteins showing at
least 1.5-fold (control reference gel) increased expression were
further subjected to mass spectrometry. The experiments were
repeated three times, and only the reproducible differences were
considered.

Based on the 2-DE gels, we identified 83, 33, and 56 up-
regulated proteins in response to heat, osmotic, and oxidative
stresses, respectively. Among these proteins, 59, 42, and 29 up-
regulated proteins were identified using MALDI-TOF/MS, and
these results are summarized in Tables 1–3 under heat, oxidative,
and salt stresses, respectively. The pIs of the protein spots
ranged from 4.0 to 6.5, and the molecular masses ranged from
5.4 to 92.6 kDa. A homology-based search using the available
protein databases revealed that proteins of T. kodakarensisKOD1
origin as the best results in all cases. The molecular masses
and pIs for each protein, estimated from the spot positions
on the gels, were compared with those of the homologous
proteins retrieved. In most cases, these values were comparable
(Tables 1–3).

Among the up-regulated proteins under the three stresses,
27 proteins were up regulated under both heat and oxidative
stresses, representing 46 and 53% of the total proteins under a
single stress, and seven proteins were up regulated under both
heat and salt stresses (Figure 1; Supplementary Table S2). Only
six proteins were present in the catalog of up-regulated proteins
in the presence of both oxidative and salt stresses. Moreover,
four proteins (TK0108, TK0217, TK0537, and TK1085) were
over-expressed under all three stresses. These results suggested
that T. kodakarensis KOD1 utilized similar defense mechanisms
to a certain extent against heat and oxidative stresses. On the
other hand, 29, 30, and 20 proteins were up regulated specifically
under heat, oxidative, and salt stress, respectively, (Figure 1;
Supplementary Table S2). These results suggested that there were
also distinct mechanisms for T. kodakarensis KOD1 to defense
against different stresses. For example, TK0189 (OsmC) was
overexpressed in response to osmotic stress, but not under heat
and oxidative stress (Park et al., 2008).

Functional Assay of the Co-Over-Expressed
Proteins under Stresses
To examine the function of the co-over-expressed proteins, the
effects of the overexpression of TK0108, TK0217, TK0537, and
TK1085 on the growth of E. coli under different environment
stresses were analyzed. After induction by IPTG, the expression
of the proteins was checked by SDS-PAGE (data not shown).
Cultures of E. coli cells either expressing the four proteins or
containing the pET28 vector were diluted and spread on different
plates. Figure 2A showed that recombinant and control cells have
similar growth on LB medium in overnight grown culture. The
growth of the strain containing the pET28 vector was inhibited
by high temperature treatment or by the addition of a high
concentration of H2O2 and NaCl to the medium. Whereas,
the E. coli expressing TK0108, TK0217, TK0537, and TK1085
displayed the higher tolerance to heat stress. In high oxidative
and salinity supplemented medium, the recombinant cells also
increased the number of colonies as compared to control cells.

As an additional way to examine the possible function of
identified proteins, we used the STRING tool to prepare an
interaction map (Figure 2B). As might be expected, TK0537 and
TK1085 have the high connectivity (score > 0.80) with proteins
involved in oxygen detoxifying. The molecular chaperones
displayed connectivity with TK0217. Interestingly, TK0108
showed high connectivity (score > 0.75) with proteins in DNA
repair and transcription. These results indicate that the four
proteins may contribute to the stress tolerance in different
pattern.

Functional Categorization Analysis
We conducted a GO analysis to characterize protein function.
The proteins up-regulated during the three stresses were
categorized according to molecular functions and biological
processes based on GO classification, using BLAST2GO. GO
categories were assigned to all proteins according to molecular
functions and biological processes.

The classification of heat stress proteins based on biological
processes generated ten different groups (Figure 3A). More
than 80% of the total proteins were classified into three
categories: metabolic processes (40%), cellular processes (26%),
and single-organism processes (20%). The classification of
oxidative stress proteins based on biological processes generated
eight different groups, and more than 80% of the total proteins
were classified into three categories: metabolic processes (38%),
cellular processes (26%), and single-organism processes (22%;
Figure 3A). For salt stress proteins, six different groups
were generated, and the ratios in metabolic processes, cellular
processes, and single-organism processes were 37, 27, and 19%,
respectively, (Figure 3A).

The classification according to molecular function showed
six different groups of proteins up-regulated in response to
heat (Figure 3B), and 94% of these proteins belonged to
either (1) catalytic activity (54%) or binding activity (40%).
Other categories included transporter activity, enzyme regulator
activity, electron carrier activity, and antioxidant activity.
Whereas the classification of proteins under oxidative stress
yielded five different groups, with 90% of the proteins belonging
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TABLE 2 | List of up-regulated proteins under oxidative stress in T. kodakarensis KOD1.

No Protein name Protein ID SC(100%)a Fold change pIb pIc Mwd Mwe

1 ABC-type dipeptide transport system TK1804 15 1.9 4.64 4.8 92.13 92.6

2 DNA/RNA repair helicase TK0928 12 2.1 4.33 4.5 53.15 54.0

3 Thermophile-specific fructose-1,6-bisphosphatase
fructose-1,6-bisphosphatase

TK2164 15 2.6 5.36 5.4 41.63 43.5

4 Archaeal ATPase TK1465 21 3.0 6.36 6.4 53.84 54.2

5 Zinc-dependent protease TK0699 10 2.9 5.49 5.9 53.56 54.8

6 Thioredoxin reductase TK2100 15 3.2 5.85 5.9 35.97 37.0

7 Ferredoxin oxidoreductase TK1980 18 2.7 4.97 5.0 44.40 45.4

8 Glutamate dehydrogenase TK1431 21 2.6 5.88 5.5 46.90 47.9

9 Glyceraldehyde-3-phosphate dehydrogenase TK0765 26 3.4 5.96 6.4 37.21 37.8

10 Peptide methionine sulphoxide reductase TK0819 21 2.2 5.04 5.6 39.09 38.3

11 Cell division ATPase TK1421 28 1.8 4.80 5.3 40.03 41.6

12 2-deoxyribose 5-phosphate aldolase TK2104 25 1.9 5.18 5.6 24.49 25.8

13 ATPase TK0701 10 2.0 4.81 4.9 31.93 31.0

14 Transcription regulator TK1962 21 2.4 5.67 5.9 22.02 23.0

15 Hypothetical protein TK0083 41 1.8 4.23 4.6 11.67 12.0

16 Hypothetical protein TK0361 14 2.1 4.82 4.9 16.40 16.7

17 Molydopterin converting factor TK2118 36 2.4 4.77 4.9 9.15 9.8

18 Thermosome alpha subunit TK0678 48 3.5 4.84 4.3 59.12 59.9

19 ABC-type maltodextrin transport system TK1771 15 2.5 4.56 4.4 49.44 48.5

20 Thermosome beta subunit TK2303 36 3.3 4.86 4.3 59.13 60.4

21 Sugar-phosphate nucleotidyltransferase TK0219 19 2.1 5.15 5.2 46.80 45.8

22 Acyl-CoA synthetase TK0944 8 2.1 5.51 5.0 51.83 50.6

23 Hypothetical protein TK1792 28 1.6 4.83 4.9 40.20 42.2

24 Zinc-dependent protease TK0689 31 2.3 5.20 5.3 48.52 49.7

25 Hypothetical protein TK0443 15 1.9 5.4 5.4 40.97 41.5

26 Glycine cleavage system protein TK1379 38 2.8 5.51 5.2 55.96 56.6

27 Methionine synthase II TK1447 12 2.1 5.90 5.5 35.25 36.2

28 Metallophosphoesterase TK0547 19 2.1 5.22 5.6 24.12 24.8

29 Protein disulphide oxidoreductase TK1085 39 4.1 4.72 4.6 25.28 25.7

30 Deblocking aminopeptidase TK0781 31 1.8 5.46 5.9 38.27 38.6

31 Hypothetical protein TK2125 46 1.9 5.82 5.9 28.73 29.2

32 Oxidoreductase TK0845 22 3.2 5.36 5.5 31.57 32.4

33 Eukaryotic-type DNA primase TK1791 17 2.4 6.24 6.5 40.27 40.9

34 Inorganic pyrophosphatase TK1700 47 2.1 4.84 4.2 20.78 21.3

35 Hypothetical protein TK0108 56 2.0 4.99 5.5 22.39 23.4

36 Acetyltransferase TK1174 31 2.8 5.98 6.4 18.79 18.0

37 Pyridoxine/pyridoxal 5-phosphate biosynthesis
protein protein, SOR/SNZ family biosynthesis

TK0217 25 3.1 5.57 5.5 36.64 37.6

38 Serine hydroxymethyltransferase TK0528 41 2.5 5.80 5.0 48.20 47.6

39 Ornithine carbamoyltransferase TK0871 28 2.4 5.76 5.0 35.02 36.0

40 ATPase involved in chromosome partitioning TK2007 36 2.7 5.71 5.1 27.61 26.6

41 Hydrolase TK2232 21 2.8 5.42 5.0 24.24 25.2

42 Peroxiredoxin TK0537 48 4.8 5.02 4.8 24.63 26.5

aSequence coverage, bTheoretical pI, cExperimental pI, dtheoretical mass (kDa), and eexperimental mass (kDa) of the identified proteins.

to either catalytic activity (53%) or binding activity (37%;
Figure 3B). The salt stress proteins were classified into seven
different groups, with 49% of the proteins belonging to catalytic
activity and 32% of the proteins belonging to binding activity
(Figure 3B). The different proteins with catalytic activity were
highly represented, suggesting that these proteins might function
in metabolic pathways that deserve further attention.

Metabolic Pathway Analysis
The results of the GO analysis showed that these stresses
influenced a variety of cellular processes, particularly metabolic
processes (Figure 4). The up-regulated proteins were further
analyzed using the KEGG to explore potential metabolic pathway
functions. Among these proteins, 30 proteins were associated
with specific KEGG pathways. These proteins were involved in
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TABLE 3 | List of up-regulated proteins under salt stress in T. kodakarensis KOD1.

No. Protein name Protein ID SC(100%)a Fold change pIb pIc Mwd Mwe

1 Thioredoxin reductase TK2100 24 3.1 5.85 6.0 39.44 38.4

2 Xaa-Pro aminopeptidase TK0967 27 2.1 5.07 5.5 39.20 39.2

3 Phosphoribosyl transferase TK0853 21 2.8 5.40 5.8 36.24 38.2

4 Deblocking aminopeptidase TK1177 23 2.2 5.39 5.8 38.17 39.2

5 2-dehydro-3-deoxyphosphoheptonate aldolase TK0268 25 2.8 5.28 5.5 33.43 35.4

6 Peptide methionine sulphoxide reductase TK0819 28 2.1 5.29 5.1 29.25 28.2

7 Archaeal glucosamine-6-phosphate deaminase TK1755 23 1.8 5.41 5.6 36.72 36.7

8 2-dehydropantoate 2-reductase TK1968 37 2.5 4.43 4.6 34.03 34.9

9 Pyridoxine/pyridoxal 5-phosphate protein TK0217 25 2.8 5.57 5.1 36.64 37.6

10 Hypothetical protein, conserve, DUF75 TK1919 27 1.6 5.58 5.1 26.19 28.2

11 DNA polymerase sliding clamp TK0535 32 2.2 4.49 4.9 28.22 29.2

12 Inositol-1-monophosphatase TK0787 27 2.9 5.27 5.9 27.97 26.0

13 Metal-dependent phosphohydrolase TK1944 25 2.4 5.76 5.0 30.00 30.8

14 Prephenate dehydrogenase TK0259 38 2.6 5.29 5.9 29.25 31.3

15 Ferredoxin: NADP oxidoreductase TK1685 28 3.0 5.76 5.0 32.50 33.5

16 Protein disulphide oxidoreductase TK1085 39 3.2 4.72 4.0 25.28 24.3

17 Hypothetical protein TK0108 20 1.7 4.99 5.0 22.39 24.4

18 Metal-dependent phosphohydrolase TK0014 45 1.9 5.15 5.9 21.24 20.2

19 Peroxiredoxin TK0537 48 4.5 5.02 5.8 24.63 22.6

20 Acid phosphatase TK1137 30 2.4 5.90 5.0 28.25 29.3

21 Hypothetical protein TK1561 52 2.0 5.32 4.8 21.77 23.8

22 Osmotically inducible protein C (OsmC) TK0189 34 3.8 5.85 5.1 15.34 13.3

23 Transcription regulator TK0834 28 2.5 6.67 6.0 22.22 23.2

24 Peptidyl-prolyl cis-trans isomerase TK1850 39 2.8 4.32 5.0 17.54 18.5

25 Hydrogenase maturation protease TK2004 30 2.1 4.73 4.0 17.03 18.0

26 Predicted nucleic acid-binding protein TK0066 43 2.3 4.80 4.4 16.88 15.9

27 Hypothetical protein TK1409 44 1.6 4.74 4.0 9.59 10.0

28 Hypothetical protein, conserve TK0783 41 2.1 4.87 5.3 11.84 12.8

29 LSU ribosomal protein L7AE TK1311 40 2.7 5.20 5.9 13.69 14.7

aSequence coverage, bTheoretical pI, cExperimental pI, dtheoretical mass (kDa), and eexperimental mass (kDa) of the identified proteins.

FIGURE 1 | Venn diagram representing the distribution of up-regulated
proteins during heat, oxidative, and salt stresses.

pentose phosphate pathway, glycolysis, amino acids metabolism,
the urea cycle, secondary metabolite synthesis, transporter,
and electron transfer chain. Two enzymes in gluconeogenic

pathway (TK2164 and TK0765) were up regulated under both
heat and oxidative stresses. TK1771 involved in carbohydrate
uptake was also increased under both heat and oxidative
stresses. TK0955 and TK1110 in mannose metabolism were
only up regulated under heat stress. TK0254, TK0259, TK0268,
TK1379, TK1431, TK1447, and TK2217 that were up-regulated
by different stresses may participate in amino acids synthesis.
Among them, TK1379, TK1431, and TK1447 were increased
under both heat and oxidative stresses. TK0254 and TK2217
were up regulated by only heat stress while TK0268 and TK0259
were increased under salt stress. TK0787 and TK0217 involved
in compatible solute synthesis were abundant under salt stress.
Interestingly, TK0217 were also up regulated by heat stress.
Further function of these enzymes were discussed in the following
section.

Discussion

All living organisms must adapt to changing environmental
conditions to survive. The success of Thermococcus largely
reflects an ability to survive under extreme conditions. However,
these strains are constantly exposed to different stresses. In
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FIGURE 2 | Functional analysis of the co-over-expressed proteins by
Agar plate bioassay and protein-protein interaction. (A) TK0108, TK0217,
TK0537, and TK1085 confer stress tolerance to Escherichia coli. (a) Growth
tolerance to heat stress. E. coli cells expressing the four proteins (OD600 = 0.5)
were preheated at 50◦C for 20 min and then incubated at 37◦C for 12 h.
Various dilutions (10−1 to 10−6) were spotted on LB plates. (b,c) Survival of
different strains in response to H2O2 and NaCl exposure. IPTG was added to
the cultures of E. coli cells to induce the expression of recombinant proteins.
The cultures were adjusted to OD600 = 0.5, 10 μL from 10−1 to 10−6 dilutions
were spotted onto LB plates with 5 mM H2O2 (b) and 1 M NaCl (c) and then
incubated at 37◦C for 12 h. (d) The same amount of E. coli cells either

expressing the four proteins or containing the pET28 vector grown at 37◦C for
12 h were used as a control. (B) Predicted protein-protein interaction network,
using STRING v9.1, to examine co-expressed proteins (a), the hypothetical
protein (TK0108); (b), pyridoxal biosynthesis lyase PdxS (TK0217); (c),
peroxiredoxin (TK0537); and (d), protein disulphide oxidoreductase (TK1085)) in
heat, oxidative, and salt-stressed Thermococcus kodakarensis KOD1 cells. The
graph was constructed in the STRING tools using standard parameters. The
proteins that may be involved in oxygen detoxifying are shown in violet and the
proteins that may regulate DNA repair and transcription are shown in green. The
chaperones are shown in blue. Protein functions were predicted using the
software listed in ‘Materials and Methods.’

the present study, we conducted a proteomics analysis on
T. kodakarensis KOD1 to globally identify differences in protein
expression under heat, oxidative, and salt stresses. Some proteins,
such as thermosome, OsmC, and peroxiredoxin, were over-
expressed under the examined stresses. The proteomics data
further revealed that many interesting proteins were up regulated
and some proteins were co-expressed under different stresses. GO
and KEGG pathway analyses indicated that sugar, amino acids,
and compatible solutes metabolic pathways were involved. The
proteins in transmembrane transport and electron transfer chain
were also increased.

Cellular stress is induced through the abrupt disruption of
the local cell environment. Cells primarily react to various
stresses through a number of specific and well conserved
adaptive intracellular signaling pathways to alleviate damage
and maintain or re-establish homeostasis, and this process
has been collectively referred to as the as cellular stress
response (Simmons et al., 2009; Jiang et al., 2011). When
different stresses are causally and functionally related, certain

degrees of overlap, defined as ‘crosstalk,’ between the respective
defense programs are expected (Logemann and Hahlbrock,
2002). Under the three stresses examined, we observed the
over-expression of four proteins, including a hypothetical
protein (TK0108), pyridoxal biosynthesis lyase PdxS (TK0217),
peroxiredoxin (TK0537), and protein disulphide oxidoreductase
(TK1085) in Thermococcus (Figure 2). The function of TK0108
remains unknown; however, this protein might bind manganese-
dependent transcription regulators (TK0107), HAD superfamily
hydrolases (TK0110), RNA-binding proteins (TK0111), and
elongation factors (TK0112) based on predictions of protein–
protein interactions. Based on the protein interaction prediction,
we assumes that TK0108 might regulate transcription activity
through binding these enzymes under stress conditions. For
the other three proteins, a recent study has shown that
peroxiredoxin (TK0537) belongs to a 1-Cys Prx6 subfamily.
This enzyme exhibits oligomeric forms with reduced peroxide
reductase activity as well as decameric and dodecameric
forms that can act as molecular chaperones by protecting
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FIGURE 3 | GO enrichment analysis of up-regulated proteins. The GO terms in two biological processes (A) and molecular functions (B) under heat stress (a),
oxidative stress (b), and salt stress (c) were analyzed.

both proteins and DNA from heat and oxidative stresses
(Lee et al., 2015). Furthermore, peroxiredoxin (TK0537) and
protein disulphide oxidoreductase (TK1085) are important
enzymes for the regulation of reactive oxygen species (ROS)
production and redox balance across human, yeast, and
bacterium. Based on predictions of protein–protein interactions,
TK0537 and TK1085 interact with one another and with
thioredoxin reductase, glutaredoxin-related protein, and ferritin-
like protein. TK0217, the pyridoxal biosynthesis lyase PdxS,
and TK0126 are essential for the biosynthesis of pyridoxal 5′-
phosphate, the active form of vitamin B6 (Matsuura et al.,

2012). Vitamin B6 has long been considered as an enzymatic
cofactor. However, it was recently shown that this vitamin is
also a potent antioxidant that effectively quenches ROS and
is highly important for cellular well-being (Mooney et al.,
2009). Increased ROS generation is a common response in
cells exposed to stresses; thus, it has been suggested that
redox regulation might represent a critical second messenger
system upstream of the cell stress signaling network (Kültz,
2005; Jiang et al., 2011), suggesting that these three enzymes
are critical factors for cellular stress responses to different
stresses.
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FIGURE 4 | Overview of the up-regulated proteins (bright blue line) involved in cell metabolism under heat stress (red cycle), oxidative stress (yellow
cycle), and salt stress (dark blue cycle). Pathways involving carbohydrate metabolism (blue), amino acid biosynthesis (orange), the urea cycle (purple), and
secondary metabolite biosynthesis (gray) were induced.

Six enzymes (TK0765, TK0955, TK1110, TK1771, TK2104,
and TK2164), involved in carbohydrate metabolism, were
abundant in T. kodakarensis KOD1 under the examined stresses
(Figure 4). In eukaryotes, it has been proposed that enhanced
saccharides uptake and glycolysis protect cells from oxidative
stress (Kondoh et al., 2007). TK1771, the maltodextrin-binding
periplasmic component of the ABC-type maltodextrin transport
system, is in the same operon with TK1774. Recently, we have
shown that this TK1774 can produce maltotriose (Guan et al.,
2013; Sun et al., 2015). This facts suggests that TK1771 might
mediates the uptake of maltotriose. Furthermore, the members
of Thermococcus are characterized by the presence of unique,
modified variants of classical glycolytic pathways, such as the
Embden–Meyerhof–Parnas (EMP) pathway (Brasen et al., 2014).
ADP-dependent glucokinase (TK1110), which catalyzes the first
step in the EMP pathway to phosphorylate glucose to glucose 6-
phosphate, was abundantly expressed under heat and oxidative

stress conditions. Increasing of glycolytic flux contributes to
NADH production, which can be converted to NADPH by
NADH kinase. Additionally, NADPH can be used by cells
to prevent against stress (Jia et al., 2010). Interestingly, two
gluconeogenic enzymes, fructose-1,6-bisphosphatase (TK2164)
and phosphorylating GAP dehydrogenase (TK0765), were also
abundantly expressed, potentially redirecting carbon flux away
from the EMP pathway. The observed increase in the levels
of the gluconeogenic enzymes could signify a boost in the
synthesis of glucose-6-phosphate and also favor flux through
the ribulose monophosphate pathway, the substitution for the
missing pentose phosphate pathway in T. kodakarensis KOD1 to
produce NADPH (Orita et al., 2006). Carbon flux could also be
redirected through deoxyribose-phosphate aldolase (TK2104) to
deoxyribose, the precursor of DNA, suggesting that even under
severe stress conditions, equilibrium is maintained with respect
to intracellular sugar levels and glycolysis intermediates.
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A few amino acid biosynthesis proteins, such as glutamate
dehydrogenase (TK1431), were significantly expressed during
heat and oxidative stresses (Figure 4). TK1431 plays a central
role in metabolism, as this enzyme is one of the most abundant
proteins in Thermococcales cells, exceeding 10% of the total
cytoplasmic protein in T. kodakarensis KOD1 (Altschul et al.,
1997). In addition to activity toward Glu, the activity of
TK1431 toward Gln, Ala, Val, and Cys has also been detected.
Furthermore, TK1431 is responsible for NADH generation
in T. kodakarensis KOD1 (Yokooji et al., 2013). Ornithine
carbamoyltransferase (TK0871), which was up-regulated under
heat and oxidative stresses, might catalyze the conversion
of ornithine and carbamoyl phosphate into citrulline in a
de novo pathway for arginine synthesis or the detoxifying urea
cycle (Legrain et al., 2001). Two additional enzymes (TK0259
and TK0268), involved in tyrosine biosynthesis, were up-
regulated under salt stress. While TK0254 catalyzing tryptophan
biosynthesis from chorismate and TK2217 catalyzing glycine
synthesis from glycerate-3P were abundant under heat stress
(Figure 4). The up-regulation of these enzymes ensures the
supply of amino acids for protein biosynthesis and protection
against stress. In addition, amino acids might also play an
important role in stress resistance through osmotic adjustment,
osmolytes accumulation and ROS detoxification.

In the previous study, responses of Thermococcus and
Pyrococcus to stresses have been reported. In both T. kodakarensis
and P. furiosus, di-myo-inositol phosphate will be accumulated
under heat and osmotic stresses (Borges et al., 2010; Esteves et al.,
2014). In our study, we found that Inositol-1-monophosphatase
(TK0787) and myo-inositol-1-phosphate synthase (TK2278)
playing pivotal roles in the biosynthesis of di-myo-inositol
phosphate are increased under heat and osmotic stresses,
respectively. In the case of oxidative stress, both Thermococcus
and Pyrococcus can tolerate high concentration of oxygen
(Marteinsson et al., 1997; Kobori et al., 2010; Thorgersen et al.,
2012). An NAD(P)H oxidase (TK1481) participates in the oxygen
sensitivity the expression of the enzyme is constitutive in
T. kodakarensis (Kobori et al., 2010). This result is consistent with

our research as we do not find the over-expression of the protein
in any stress. In Pyrococcus, the expression of SOR and related
enzymes which protect aerobes from the toxic effects of oxygen,
is also constitutive (Jenney et al., 1999). In the current proteomics
result, SOR is not in the list of over-expressed proteins of
T. kodakarensis. Interestingly, an alkyl hydroperoxide reductase
(PH1217) in P. horikoshii, whose transcription and translation
increased by the addition of exogenous oxygen, showed 91%
identity to TK0537. Together with molecular chaperone function
of the enzyme (Lee et al., 2015), all of the evidences indicates that
TK0537 plays several roles in response to stress.

In the present study, we used 2-D gel electrophoresis
and MALDI-TOF/MS in a proteomics approach to obtain
insight into the intricate mechanisms of T. kodakarensis KOD1
for survival under heat, oxidative, and salt stresses. Herein,
we identified 92 differentially expressed proteins belonging
to major processes, including carbohydrate and amino acid
biosynthesis, protein folding, and cell redox homeostasis. Most
of the proteomics studies under stress have been performed in
bacteria and eukaryotes. In the present study, we conducted a
proteomics analysis involving Archaea to improve our current
understanding of the unique mechanisms in Archaea and explore
the evolutionary relationships of stress responses amongArchaea,
Bacteria, and Eukarya.
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