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Editorial on the Research Topic
Machine learning and data science in heart failure and stroke
In this Topic on Machine Learning and Data Science in Heart Failure and Stroke, an

international collection of manuscripts is presented that aims to contribute to the

advancement of understanding of evidence-based approaches to the prevention, prognosis,

diagnosis, and treatment of cardiovascular disease. In conclusion, the high-quality clinical

case contributions presented in this Research Topic have significantly boosted knowledge,

diagnosis, and treatment of cardiovascular disease in complex cases.

Liu et al. presented a retrospective study that aimed to build a machine learning (ML)

model to predict the occurrence of AKI in patients with HF. The Medical Information

Mart for Intensive Care-IV (MIMIC-IV) database was used. the ML model was

established to predict AKI development using decision tree, random forest (RF), support

vector machine (SVM), K-Nearest Neighbor (KNN) and logistic regression (LR)

algorithms. Demographic, clinical, and treatment characteristics were used to establish the

model. A total of 2,678 patients with HF were analyzed, 919 developed AKI. Among the

5 ML algorithms, the RF algorithm exhibited the highest performance with an AUROC of

0.96 Liu et al.

The study by Tu and collaborators aimed to identify central HF-related genes and

regulatory networks using bioinformatics and validation assays. Using four sets of RNA-

seq data in the Gene Expression Omnibus (GEO) database, the authors screened for HF

differentially expressed genes (DEGs) using Removal of Undesired Variation from RNA-

seq Data (RUVSeq) and the Robust Classification Aggregation (RRA) method.: A total of

201 robust DEGs were identified in patients with HF and NFDs. In this study identified

ASPN, COL1A1 and FMOD as potential diagnostic biomarkers for HF Tu et al.

Dao and colleagues performed a systematic review of 19 studies that analyzed 5,614

participants. The objective was to compare the sensitivity and specificity of the diagnosis

between the third heart sound (S3) and the left ventricular ejection fraction (LVEF) in

heart failure (HF). In the result of this research, it was observed that S3 alone presented

lower sensitivity in the diagnosis of HF compared to LVEF, but it was useful in the early

pathological evaluation Dao et al.
01 frontiersin.org45
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Cheng et al. in their article portrayed the relationship between

blood pressure patterns and age, as well as the tendency towards

high prevalence of BP over time in different age groups. A total

of 71,468 participants aged over 18 years with complete

information on weight, height, age, gender, glucose, triglycerides,

total cholesterol, systolic (SBP) and diastolic (DBP) blood

pressure were included for analysis. The risk of high SBP showed

a continuous increase from 35 to 79 years of age and a

concomitant early increase in the risk of high DBP; after the age

of 50–65 years, the high risk of PAD decreased. High-risk SBP

progresses more rapidly in early life in Chinese women

compared to later life Cheng et al.

Sung and colleagues developed an electronic health record

based machine learning model to assess the risk of newly

detected atrial fibrillation (NDAF) at an early stage after stroke.

The study population consisted of a training set of 4,064 and a

temporal test set of 1,492 patients. At the median follow-up of

10.2 months, the incidence rate of NDAF was 87.0 per 1,000

person-years in the test set. On the test set, the model based on

both structured and unstructured data achieved a C-score of

0.840, which was significantly higher than the AS5F and

CHASE-LESS scores. More studies are needed to assess the

clinical utility of the prediction model Sung et al.

Huang et al. presented a retrospective study including 4,570

Chinese adults with the aim of identifying independent risk

factors for carotid atherosclerosis (CAS) and constructing and

validating a CAS risk prediction model based on the Chinese

population. Participants were randomly assigned to the training

and validation sets in a 7:3 ratio. C-index curves and receiver

operating characteristics, calibration plots, and decision curve

analysis (DCA) were used to assess discrimination, calibration,

and clinical applicability of the risk model. In the training,

internal validation, and external validation sets, the risk model

showed good discriminatory power with C-indices of 0.961

(0.953–0.969), 0.953 (0.939–0.967) and 0.930 (0.920–0.94 0),

respectively, and excellent calibration. The development of risk

models can contribute to the early identification and prevention

of CAS Huang et al.

Burton and colleagues studied 396 patients using

electromechanical (EM) waveforms to assess left ventricular end-

diastolic pressure elevation (LVEDP). This analysis identified

subgroups of patients with varying degrees of LVEDP elevation

based on waveform characteristics Burton et al.

Susic et al. used data recorded on 37 patients using two types of

electronic stethoscopes. This study demonstrated that, in patients

with chronic heart failure, machine learning algorithms can

outperform cardiologists in detecting episodes of decompensation

based on heart sounds alone Susic et al.
Frontiers in Cardiovascular Medicine 0256
In the research by Sabovčik and collaborators, data from 30,354

individuals from 6 cohorts were used. The predictive performance

of increased survival gradient (GBS), CoxNet, the PCP-HF risk

score, and a stacking method were evaluated. In the accuracy

recall (PR) analysis for predicting 10-year HF risk, the stacking

method, combining the SGB, CoxNet, Gaussian mixture, and

PCP-HF models, outperformed other models with PR/AUC

0.804, while PCP-HF achieved only 0.551. Flexible ML

algorithms can be used to capture these diverse distributions and

produce more accurate prediction models Sabovčik et al.

Gtif and colleagues used data from 116 patients with heart

failure with the pathogenesis of reduced ejection fraction

(HFrEF). A generalized linear model (GLM), random forest, and

extreme gradient augmentation models were developed to predict

the risk of post-discharge mortality using clinical and laboratory

data. The result obtained was a discriminatory power of 74.5%

for post-mortality by the area under the curve (AUC) Gtif et al.

In conclusion, this research topic presented several machine

learning models that can be used to improve diagnosis and

treatment in patients with stroke and heart failure. More studies

are needed to improve and validate these techniques nets patient type.
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Christian Hospital, Chiayi City, Taiwan, 2Department of Nursing, Min-Hwei Junior College of Health
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Christian Hospital, Chiayi City, Taiwan, 5Department of Information Management and Institute of
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Background: Timely detection of atrial fibrillation (AF) after stroke is highly

clinically relevant, aiding decisions on the optimal strategies for secondary

prevention of stroke. In the context of limited medical resources, it is crucial

to set the right priorities of extended heart rhythm monitoring by stratifying

patients into di�erent risk groups likely to have newly detected AF (NDAF).

This study aimed to develop an electronic health record (EHR)-based machine

learning model to assess the risk of NDAF in an early stage after stroke.

Methods: Linked data between a hospital stroke registry and a deidentified

research-based database including EHRs and administrative claims data was

used. Demographic features, physiological measurements, routine laboratory

results, and clinical free text were extracted from EHRs. The extreme gradient

boosting algorithm was used to build the prediction model. The prediction

performance was evaluated by the C-index and was compared to that of the

AS5F and CHASE-LESS scores.

Results: The study population consisted of a training set of 4,064 and a

temporal test set of 1,492 patients. During a median follow-up of 10.2 months,

the incidence rate of NDAF was 87.0 per 1,000 person-year in the test set.

On the test set, the model based on both structured and unstructured data

achieved a C-index of 0.840, which was significantly higher than those of the

AS5F (0.779, p = 0.023) and CHASE-LESS (0.768, p = 0.005) scores.

Conclusions: It is feasible to build a machine learning model to assess the

risk of NDAF based on EHR data available at the time of hospital admission.
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Inclusion of information derived fromclinical free text can significantly improve

the model performance and may outperform risk scores developed using

traditional statistical methods. Further studies are needed to assess the clinical

usefulness of the prediction model.

KEYWORDS

atrial fibrillation, electronic health records, ischemic stroke, natural language

processing, prediction

Introduction

Ischemic stroke is associated with a substantial risk of

recurrence with a one-year recurrence rate ranging from 6

to 18% (1–4). The risk of stroke recurrence depends on the

subtypes of ischemic stroke. As compared to other stroke

subtypes, the recurrence rate of cardioembolic stroke is relatively

high (5, 6). Moreover, cardioembolic strokes are often followed

by strokes of the same type (6, 7). Atrial fibrillation (AF)

is the most common cause of cardioembolic stroke, and

even embolic stroke of undetermined source (ESUS) may

originate from subclinical AF (8). As the population ages,

AF-related strokes have increased and may triple in the next

few decades (9, 10). Fortunately, the advancement of non-

vitamin K antagonist oral anticoagulant therapy has made great

progress in preventing patients with AF from cardioembolic

stroke (8). Nonetheless, since AF can be paroxysmal, it may go

undetected and therefore undiagnosed in patients undergoing

routine electrocardiography (ECG) examinations. In fact, for

ischemic stroke patients with undiagnosed AF, delayed use of

oral anticoagulants may double the risk of recurrent stroke or

transient ischemic attack (TIA) (11). Considering the impact of

anticoagulant therapy on the outcome, poststroke screening for

AF is thus critical for preventing recurrent stroke in patients

with acute ischemic stroke (AIS).

Approximately 30% of all ischemic strokes are without any

apparent cause (12). Among these cryptogenic strokes, nearly

two-thirds are considered to stem from embolism (12). A study

points out that through a series of heart rhythm monitoring, AF

can be detected in up to 24% of patients with AIS or TIA (13). In

addition to 24-h or even 72-h Holter monitoring (14), numerous

studies have established that extended ECG monitoring via

either implantable or external devices increases the yield of AF

detection in patients with AIS (15, 16). However, given the

limited medical resources, setting the right priorities of extended

ECGmonitoring by stratifying patients into different risk groups

likely to have newly detected AF (NDAF) is more crucial than

implementing population-level screening (17).

To date, more than twenty risk scores have been proposed

to assess the risk of poststroke NDAF (18, 19). These risk scores

vary in their complexity, target population, outcome definition,

predictor variables, and ease of implementation.Most risk scores

were derived or validated in patients with AIS while some of

them were derived from a specific population with cryptogenic

stroke or ESUS (20, 21). The simplest risk score consists of

only two predictor variables, that is, age and stroke severity as

assessed using the National Institutes of Health Stroke Scale

(NIHSS) (22). Nevertheless, many of the risk scores require

additional diagnostic work-up or interpretation of examination

results to obtain the necessary predictors, such as markers of

blood, ECG, echocardiography, as well as brain and vascular

imaging (18). Routine use of such risk scores may be impractical

in the context of the extra time and cost required.

On the other hand, with the ubiquitous use of electronic

health records (EHRs) and the advancement in computational

power, it has become feasible to use EHRs for the creation,

validation, and implementation of data-driven risk prediction

models (23, 24). For example, a previous study developed

and validated an EHR-based prediction tool for 5-year AF

risk in the general population (25), demonstrating a simple

and cost-conscious approach to AF screening. Furthermore, in

addition to structured numerical and categorical data, EHRs

accommodate a multitude of unstructured textual data such

as narrative clinical notes. Combining information extracted

from clinical free text through natural language processing with

structured data has shown promising results in improving the

performance of risk prediction models (26–28).

AF-related strokes tend to be more severe and may manifest

with different clinical features than other subtypes of ischemic

strokes (29, 30). A higher risk of NDAF has been observed in

patients with greater stroke severity (22, 31). Previous studies

have shown that information extracted from clinical text can be

used to represent patients’ stroke severity (28, 32). Furthermore,

stroke patients with AF have a higher prevalence of heart

diseases and experience more cardiac events than those without

AF (29–31). Symptoms, signs, or examinations related to heart

diseases are typically documented in clinical notes. However,

such information may not be captured or routinely collected as

structured data in the EHR system. We thereby hypothesized

that clinical text contains information that can discriminate

between strokes stemming from AF and those not stemming

from AF. In this study, we aimed to develop an EHR-based
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machine learning (ML)model to assess the risk of NDAF. To this

end, we investigated various ML models using structured data,

unstructured textual data, or a combination of both. In addition,

the prediction performance of the developed ML models was

compared to that of two traditional risk scores on a temporal

test set of patients hospitalized for AIS.

Materials and methods

Data sources

The study data was obtained from the stroke registry of

the Ditmanson Medical Foundation Chia-Yi Christian Hospital

and the Ditmanson Research Database (DRD), a deidentified

database comprising both EHR data and administrative claims

data for research purposes. The DRD currently holds clinical

information of over 1.4 million patients. The hospital stroke

registry has prospectively enrolled consecutive hospitalized

stroke patients since 2007 conforming to the design of the

nationwide Taiwan Stroke Registry (33). To create the dataset

for this study, we linked the stroke registry to the DRD using

a unique encrypted patient identifier. Information regarding

risk factors and stroke severity as assessed using the NIHSS

was obtained from the stroke registry. Billing information and

medical records from 2 years before to 1 year after the index

stroke were extracted from the DRD.

The study protocol was approved by the DitmansonMedical

Foundation Chia-Yi Christian Hospital Institutional Review

Board (IRB2020135). The requirement for informed consent was

waived because of the retrospective design. The study protocol

conforms to the ethical guidelines of the 1975 Declaration

of Helsinki.

Study population

The study population selection is shown in

Supplementary Figure 1. The stroke registry was queried

for all hospitalizations for AIS between Oct 2007 and Sep 2020.

Only the first hospitalization was included for each patient.

Patients who suffered an in-hospital stroke or whose records

could not be linked were excluded. The study population

was split into a training set (patients admitted before the end

of 2016) and a temporal test set (those admitted from 2017

onwards). All patients were traced in the DRD until AF was

detected, death, the last visit within 1 year after the index stroke,

or February 28, 2021, whichever came first.

Predictor and outcome variables

The class label (outcome) was AF, which was defined

according to an AF ascertainment algorithm detailed in

the Supplementary Methods in the Supplementary Material.

According to the time sequence between AF detection and the

index stroke (13), AF was further categorized as known AF

before the index stroke, AF detected on admission, AF detected

during the index stroke hospitalization, and AF detected after

discharge (Figure 1). During the training phase, we trained ML

models to predict which stroke is likely to stem from AF.

Therefore, patients with all kinds of AF were retained in the

training set. Because the study purpose was to build an ML

model to assess the risk of NDAF poststroke, i.e., AF detected

during the index stroke hospitalization and AF detected after

discharge (Figure 1), patients who had known AF before the

index stroke or AF detected on admission (34) were further

excluded from the test set.

A total of 20 structured predictor variables

(Supplementary Table 3), including age, sex, body mass

index (BMI), vital signs, and results of routine blood tests, were

chosen because they are readily available from EHRs upon

admission. Missing values were imputed as mean values for

continuous variables. Besides these structured variables, the free

text extracted from the History of Present Illness section of the

admission note was preprocessed through the following steps:

spell checking, abbreviation expansion, removal of non-word

symbols, removal of words suggestive of AF (“paroxysmal”,

“atrial”, “fibrillation”), lowercase conversion, lemmatization,

marking of negated words with the suffix “_NEG” using

the Natural Language Toolkit mark_negation function, and

stop-word removal.

The preprocessed text was then vectorized using the bag-

of-words (BOW) approach with three different types of feature

representation (Figure 2). We built a document-term matrix

in which each column represents each unique feature (word)

from the text corpus while the rows represent each document

(present illness for each patient). The cells represent the counts

of each word within each document (term frequency), the

absence or presence of each word within each document (binary

representation), or the term frequency with inverse document

frequency (TF-IDF) weighting (35). Because medical terms are

commonly comprised of two words or even more, we further

experimented with adding word bigram features (two-word

phrases) to the basic BOW model. To reduce noises such as

redundant and less informative features as well as to improve

training efficiency (36), we performed feature selection by

filtering out words that appeared in <5% of all documents in

the training set, followed by performing a penalized logistic

regression with 10-fold cross-validation to identify the most

predictive words (37).

Baseline models

For comparison with ML models, we only considered

traditional risk scores that are based on variables available from
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FIGURE 1

Definition of AF categories according to the time sequence between AF detection and the index stroke. AF, atrial fibrillation.

FIGURE 2

The process of machine learning model construction. BOW, bag-of-words; BR, binary representation; CV, cross validation; TF, term frequency;

TF-IDF, term frequency with inverse document frequency.
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EHRs upon admission. According to a validation study that

evaluated eight such risk scores, two risk scores performed

better than the others, demonstrating adequate discrimination

and calibration (19). These two risk scores were thus used as

the baseline models. The AS5F score, composed by age and

NIHSS, was developed and validated in cohorts of patients

who underwent extended Holter monitoring after AIS or TIA

(22). The CHASE-LESS score was constructed from patients

hospitalized for AIS in a claims database (31). It comprises seven

components, including age, NIHSS, as well as the presence of

coronary artery disease, congestive heart failure, hyperlipidemia,

diabetes, and prior stroke or TIA.

Machine learning models

ML models were constructed by using structured data,

vectorized textural data, or a combination of both (Figure 2).

Because class imbalance might influence the classification

performance, we experimented with resampling methods to

maintain the ratio of majority and minority classes as 1:1, 2:1,

or 3:1 (38). The extreme gradient boosting (XGB) algorithm

was used to build classifiers. The XGB classifier trains a series

of classification and regression trees where each successive tree

attempts to correct the errors of the preceding trees.

During the training process, we first evaluated a suite

of different combinations of text vectorization techniques

and resampling methods without hyperparameter tuning. We

repeated 10-fold cross-validation 10 times to obtain the

performance estimates. The area under the receiver operating

characteristic curve (AUC) was used as the evaluation metric

because both positive and negative classes are important. After

the optimal combination of text vectorization and resampling

methods was determined, ML models were trained from the full

training set through feature extraction, feature selection, class

balancing, followed by hyperparameter tuning. Hyperparameter

optimization for each model was performed by repeating 10-

fold cross-validation 10 times. Model error was minimized in

terms of AUC. We performed a grid search to find optimal

hyperparameters following steps proposed in a prior study

(39). After building the XGB classifiers, we used Shapley

additive explanations (40) to interpret the output of the XGB

classifiers. The experiments were carried out by using scikit-

learn, XGBoost, imbalanced-learn, and SHAP libraries within

Python 3.7 environment.

Statistical analysis

Categorical variables were reported with counts and

percentages. Continuous variables were presented as means

with standard deviations or medians and interquartile ranges.

Differences between groups were tested by Chi-square tests for

categorical variables and t tests or Mann-Whitney U tests for

continuous variables, as appropriate.

The incidence rate of NDAF was expressed as events per

1,000 person-years. To assess the prediction performance of each

prediction model, Cox proportional hazard regression analyses

were performed by entering each risk score or the predicted

probability output by each ML model as a continuous variable.

Harrell’s concordance index (C-index) was calculated to evaluate

and compare model performance. The C-index ranges from 0.5

to 1.0, with 0.5 indicating random guess and 1 indicating perfect

model discrimination. A model with a C-index value above 0.7

is considered acceptable for clinical use (41).

All statistical analyses were performed using Stata 15.1

(StataCorp, College Station, Texas) and R version 4.1.1 (R

Foundation for Statistical Computing, Vienna, Austria). Two-

tailed p values were considered statistically significant at <0.05.

Results

Characteristics of the study population

A total of 6,321 patients were eligible for this study

(Supplementary Figure 1). The training set consisted of 4,604

patients who were admitted before the end of 2016. Among

patients in the training set, 422 (9.2%) had known AF, 265

(5.6%) were diagnosed with AF on admission, and 232 (5.0%)

developed NDAF during follow-up. Among 1,717 patients who

were admitted from 2017 onwards, 122 and 103 were excluded

because of having known AF before the index stroke and being

diagnosed with AF on admission, respectively. Therefore, the

temporal test set consisted of 1,492 patients. During a median

follow-up of 10.2 months, 87 (5.8%) patients in the temporal

test set were identified as having NDAF. Each patient had an

average of 3.1 hospital visits per month during the follow-up

period. The incidence rate of NDAF was 87.0 per 1,000 person-

year. Table 1 lists the characteristics of the patients. Patients

in the training set were older, more likely to be female, less

likely to have diabetes mellitus, and tended to have hypertension,

coronary artery disease, congestive heart failure, as well as prior

stroke or TIA. They also had significantly higher NIHSS, AS5F,

and CHASE-LESS scores.

Performance of prediction models

According to the estimates of AUC obtained from the

10 times of 10-fold cross-validation (Figure 3), ML models

using a combination of both structured and unstructured

data achieved higher AUCs than those using structured or

unstructured data alone. Data resampling did not improve the

performance of models. Text vectorization using BOW with

TF-IDF weighting generally performed higher than the other
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TABLE 1 Characteristics of the study population.

Characteristic Training set

(N = 4,604)

Temporal test set

(N = 1,492)

P

Age, mean (SD) 69.2 (12.3) 68.0 (13.5) 0.002

Female 1,896 (41.2) 531 (35.6) <0.001

Hypertension 3,705 (80.5) 1,119 (75.0) <0.001

Diabetes mellitus 1,958 (42.5) 683 (45.8) 0.028

Hyperlipidemia 2,670 (58.0) 852 (57.1) 0.546

Coronary artery disease 560 (12.2) 103 (6.9) <0.001

Congestive heart failure 228 (5.0) 25 (1.7) <0.001

Prior stroke or TIA 1,143 (24.8) 274 (18.4) <0.001

NIHSS, median (IQR) 5 (3-10) 5 (2-8) <0.001

AS5F, median (IQR) 67.4 (59.2–76.5) 65.8 (56.9–74.2) <0.001

CHASE-LESS, median (IQR) 6 (5-8) 6 (4-7) <0.001

Data are numbers (percentage) unless specified otherwise.

IQR, interquartile range; NIHSS, National Institutes of Health Stroke Scale; SD, standard deviation; TIA, transient ischemic attack.

feature value representation methods. Therefore, we used the

full original training set to build three ML models, that is,

a model based on structured data (model A), a model based

on textual data vectorized using BOW with TF-IDF weighting

(model B), and a model based on both structured data and

unstructured textual data vectorized using BOW with TF-IDF

weighting (model C).

Table 2 lists the performance of prediction models. All the

prediction models significantly predicted the risk of NDAF.

Among the ML models, model C had the highest C-index

(0.840), which was significantly higher than those of model

A (0.791, p = 0.009) and model B (0.738, p <0.001). Model

C outperformed the AS5F (0.779, p = 0.023) and CHASE-

LESS (0.768, p = 0.005) scores. The C-index of model A was

comparable to those of AS5F (p = 0.715) and CHASE-LESS (p

= 0.487) scores. Although model B attained the lowest C-index,

its performance was also comparable to the AS5F (p = 0.163)

and CHASE-LESS (p= 0.282) scores.

Model interpretation

Figure 4A shows the top 20 most important features

in model C ordered by the mean absolute Shapley value,

which indicates the global importance of each feature on the

model output. Figure 4B presents the beeswarm plot depicting

the Shapley value for every patient across these features,

demonstrating each feature’s contribution to the model output.

According to the magnitude and direction of the Shapley value,

patients who were female and those with increased age, high

heart rate, elevated creatinine, elevated blood urea nitrogen,

and high BMI were more likely to have NDAF. Patients with

high triglyceride, platelet count, and pulse pressure were less

likely to have NDAF. Words associated with an increased risk

of NDAF included “unit”, “middle”, “cardiovascular”, “heart”,

“electrocardiogram”, and “family”, whereas those associated

with a decreased risk were “numbness”, “diabetes”, “day”, “visit”,

and “ago”.

The top 20 most important features in model A and model

B are shown in Supplementary Figures 2, 3, respectively. The

important structured and unstructured predictors identified

in model C were generally consistent with those identified

separately in model A (structured data) and model B

(unstructured textual data).

Discussion

We found that prediction of NDAF using routinely collected

variables from EHRs was feasible. ML models performed

better than or were comparable to existing risk scores. The

ML model based on both structured variables and text had

higher discriminability than those of AS5F and CHASE-LESS

scores. Furthermore, by using the Shapley value to reveal the

significance of features, we identified important predictors of

NDAF that may help gain insight into clinical practice for

stroke prevention.

Important predictors of newly detected
atrial fibrillation

Many studies have investigated prediction models for NDAF

in the general population (25, 42, 43) or in selected patient

groups such as those with stroke or TIA (18, 21, 22, 31, 44, 45).

Owing to the different characteristics of at-risk populations, it is

arguable whether the relationships between the predictors and
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FIGURE 3

Heat map showing AUC values across machine learning models with di�erent combinations of text vectorization techniques and resampling

methods. AUC, area under the receiver operating characteristic curve; BR, binary representation; TF, term frequency; TF-IDF, term frequency

with inverse document frequency.

TABLE 2 Performance of prediction models for predicting newly detected atrial fibrillation.

Risk score HR (95% CI) P Schoenfeld’s global test C-index (95% CI)

AS5F 1.10 (1.08–1.13) <0.001 0.062 0.779 (0.734–0.825)

CHASE-LESS 1.49 (1.38–1.60) <0.001 0.296 0.768 (0.721–0.816)

Model A (structured) 1.05 (1.04–1.06) <0.001 0.764 0.791 (0.745–0.836)

Model B (unstructured) 1.04 (1.03–1.05) <0.001 0.060 0.738 (0.688–0.788)

Model C (combined) 1.05 (1.04–1.06) <0.001 0.600 0.840 (0.803–0.876)

CI, confidence interval; HR, hazard ratio.

NDAF are similar across patient groups. Among the identified

structured predictor variables, some of them such as age and

BMI were common to the general population and patients with

stroke (18, 42), others are known predictors in the general

population but have seldom been used to predict poststroke

NDAF, while still others are controversial predictors that warrant

further study. For example, chronic kidney disease is a positive

predictor whereas hyperlipidemia is a negative predictor of

NDAF in the general population (25, 43). This study echoes

those findings by showing positive associations of NDAF with

elevated creatinine, elevated blood urea nitrogen, as well as

decreased triglyceride level (Figure 4B). On the other hand, the

evidence on the relationship between heart rate and NDAF is

conflicting (46).

The central hypothesis of this study is that clinical free

text contains information that may be used to predict NDAF.

We indeed identified several words that could help make

predictions. The reason why some of these words were

associated with the risk of NDAF may be obscure at first glance

but could be revealed by examining each word in its context.

For example, the word “unit” from the term “intensive care

unit” and the word “middle” from the term “middle cerebral

artery infarction” typically imply severe stroke, which is a

known predictor of NDAF (22, 31). These results demonstrate

that useful and informative predictors could be derived from

unstructured text in EHRs without intervening human curation.

Despite this, since clinicians may use different terms to describe

the same condition in clinical text, the relationship between

such terms might not be accurately represented. Concept-based

feature extraction using specialized medical ontologies can be

explored in future research (35).

Advantages of EHR-based machine
learning models

Traditional prediction models used in clinical practice are

generally built on limited predefined variables using logistic

regression. Although such models have reasonable prediction

performance, whether they are applicable in routine clinical

practice and relevant to a specific context is yet to be

determined (47). First, logistic regression models necessitate

the assumptions of linear and additive relationships among

predictors being fulfilled, while ML algorithms, especially

tree-based models, are more effective in capturing potential

nonlinear relationships and handling complex interactions

between the predictor and outcome variables (48). Second,
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FIGURE 4

The top 20 most important features identified by the model based on both structured data and unstructured textual data. The mean absolute

Shapley values that indicate the average impact on model output are shown in a bar chart (A). The individual Shapley values for these features

for each patient are depicted in a beeswarm plot (B), where a dot’s position on the x-axis denotes each feature’s contribution to the model

prediction for that patient. The color of the dot specifies the relative value of the corresponding feature.

considering the wide variety of data in EHRs, data-driven

prediction modeling may allow identifying novel predictors in

the context of insufficient prior knowledge of the real system

(49). In this respect, ML is suitable for building complex models

and analyzing noisy data such as that stored in EHRs (50). ML

techniques were also applied to predict cardioembolic vs. non-

cardioembolic stroke mechanism in patients with ESUS (51).

Recently, deep learning techniques have been introduced to

predict new-onset AF in the general population using structured

primary care data or unstructured 12-lead ECG traces (52, 53).

Clinical applications and significance

Poststroke AF screening is essential for choosing the

optimal strategy for secondary stroke prevention. However,

to be resource efficient, extended ECG monitoring should

be prioritized for patients at a high risk of NDAF. The

developed ML model will be suited for assessing the risk

of individual patients and assisting in personalized clinical

decisions. Moreover, locally constructed prediction models may

be more suitable for real-world clinical use than externally

developed risk models (25). Since the prediction model was

derived from EHRs, it is ideal to implement this model in the

EHR as a decision support tool. With this tool, the calculation

of risk estimates and the flagging of high-risk patients can be

automated within the EHR, streamlining the process of risk

stratification for poststroke AF screening.

Limitations

This study has several limitations. First, patients were traced

through EHRs. Because patients might be diagnosed with AF

outside the study hospital, some outcome misclassification was

inevitable. Nevertheless, the frequent visits to the study hospital

observed in this stroke population (>3 visits per month) might

have alleviated this problem. Second, the diagnosis of AF was

made in usual-care settings, where AF was detected almost

exclusively by 12-lead ECG or 24-h Holter ECG. Advanced ECG

monitoring via either implantable or external devices to detect

subclinical or low-burden AF was not used. Consequently,

the study findings are valid for relatively high-burden AF

(54). Third, although data-driven ML modeling has its own

advantages, the predictor-outcome relationships discovered

from data does not mean causality. In other words, prediction

accuracy should not be equated to causal validity (55). Fourth,

as this is a single-site study, the generalizability of the study

findings may be restricted. Variations in the terminology used

in clinical documentation are to be expected across healthcare

settings. However, the methods used here may allow other

healthcare systems to develop their own customized versions of

prediction models.
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Conclusions

It is feasible to build an ML model to predict NDAF

based on EHR data available at the time of hospital

admission. Inclusion of information derived from clinical

free text can significantly improve the model performance

and may outperform risk scores developed using traditional

statistical methods. These improvements may be due to

both the modeling approach to delineate nonlinear decision

boundaries and the use of textual features that help characterize

nuances of disease presentation across patients. Despite

these findings, further studies are required to confirm the

approach’s generalizability and the clinical usefulness of the

prediction model.
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Purpose: This study aimed to identify independent risk factors for carotid

atherosclerosis (CAS) and construct and validate a CAS risk prediction model

based on the Chinese population.

Methods: This retrospective study included 4,570 Chinese adults who

underwent health checkups (including carotid ultrasound) at the Zhenhai

Lianhua Hospital, Ningbo, China, in 2020. All the participants were randomly

assigned to the training and validation sets at a ratio of 7:3. Independent

risk factors associated with CAS were identified using multivariate logistic

regression analysis. The least absolute shrinkage and selection operator

combined with 10-fold cross-validation were screened for characteristic

variables, and nomograms were plotted to demonstrate the risk prediction

model. C-index and receiver operating characteristic curves, calibration plots,

and decision curve analysis (DCA) were used to evaluate the risk model’s

discrimination, calibration, and clinical applicability.

Results: Age, body mass index, diastolic blood pressure, white blood cell

count, mean platelet volume, alanine transaminase, aspartate transaminase,

and gamma-glutamyl transferase were identified as independent risk factors

for CAS. In the training, internal validation, and external validation sets,

the risk model showed good discriminatory power with C-indices of 0.961

(0.953–0.969), 0.953 (0.939–0.967), and 0.930 (0.920–0.940), respectively,

and excellent calibration. The results of DCA showed that the prediction

model could be beneficial when the risk threshold probabilities were 1–

100% in all sets. Finally, a network computer (dynamic nomogram) was

developed to facilitate the physicians’ clinical operations. The website is

https://nbuhgq.shinyapps.io/DynNomapp/.

Conclusion: The development of risk models contributes to the early

identification and prevention of CAS, which is important for preventing and

reducing adverse cardiovascular and cerebrovascular events.

KEYWORDS

carotid atherosclerosis, independent risk factors, prediction model, early diagnosis,
nomogram
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Introduction

Atherosclerosis is a systemic atherosclerotic disease
characterized by thickening, hardening, and loss of elasticity
of the arterial walls and has become the pathological basis
of many cardiovascular and cerebrovascular diseases,
such as coronary heart disease and stroke (1). As part
of systemic atherosclerosis, carotid atherosclerosis (CAS)
has become an important window for observing systemic
vascular health and the early risk of atherosclerosis due to
its superficial location and ease of ultrasound manipulation
(2, 3). In a global meta-analysis, approximately 28% of
individuals in the general population (30–79 years) had
carotid intimal thickening (4), potentially threatening
people’s health.

As the global aging process increases, the incidence
of stroke has become a leading cause of morbidity and
mortality (5). CAS is a major and potentially preventable
cause of ischemic stroke. Some studies have shown that
CAS is associated with 20–30% of strokes (6). Diagnostic
examination modalities for CAS include carotid ultrasound,
computed tomography, magnetic resonance imaging, and
invasive angiography. Carotid ultrasound is the primary
screening modality for CAS (6). Additionally, studies
have shown that serum biomarkers such as interleukin,
homocysteine, and adipokines contribute to the early
diagnosis of CAS (7). The basic clinical treatment options
for CAS are lifestyle modification, control of cardiovascular
risk factors, antiplatelet aggregation (requiring adequate
assessment of bleeding risk), and lipid-lowering (8, 9),
whereas surgical intervention is required for severe carotid
intimal thickening.

Reducing the risk factors associated with CAS
is crucial in reducing adverse cardiovascular events
occurrence. A meta-analysis by Ji et al. (10) showed
that hyperlipidemia, hyperhomocysteinemia, hypertension
(HTN), hyperuricemia, smoking history, metabolic syndrome,
hypertriglyceridemia, diabetes mellitus (DM), and low-density
lipoprotein (LDL) were significantly associated with CAS.
In addition, a global meta-analysis showed that gender
(male), smoking history, DM, HTN, and dyslipidemia
are strongly associated with CAS (4). Identifying risk
factors is a guide to targeting the prevention and control
of CAS.

Although numerous risk factors associated with CAS
are already known, few clinical risk prediction models
related to CAS have been reported in Chinese populations.
The nomogram is a common visual presentation tool
for disease risk prediction models that is user-friendly
and easy to understand. The current study aimed to
develop and validate an analytical predictive model for
CAS based on a Chinese population using statistical

algorithms. This study will play an important role in
the early identification and prevention of CAS in the
Chinese population.

Materials and methods

Patients

A total of 4,738 adults (19–93 years) who underwent
health checkups (including carotid ultrasound) at Zhenhai
Lianhua Hospital, Ningbo, China, in 2020 were initially included
in this study. Relevant information about the participants
was obtained through the hospital’s electronic medical record
system. Those with serious missing information (exceeding
20% of the total) were excluded, and those with less missing
information (less than 20% of the total) were filled by
multiple interpolations. Ultimately, 4,570 participants were
included in this study. CAS was defined as an increase
in carotid intima-media thickness of ≥1 mm or plaque
formation (11). CAS diagnosis was based on carotid ultrasound
results, recorded independently by 2 ultrasound physicians.
The external validation dataset (2,791) was obtained from
the 2015 health checkups (different from 2020). This study
was approved by the ethics committee of the Affiliated
Hospital of Medical School, Ningbo University, Ningbo, China
(KY20191114). A flowchart of the participants is shown in
Figure 1.

Clinical baseline data

The methods and procedures for testing the clinical
baseline data were based on previous studies (12–14). Gender,
age, body mass index (BMI), systolic blood pressure (SBP),
diastolic blood pressure (DBP), heart rate (HR), DM, HTN,
Drinking and Smoking history, white blood cell count
(WBC), neutrophil count, eosinophil count, basophil count,
lymphocyte count, red blood cell count (RBC), hemoglobin,
red blood cell distribution width, mean red blood cell volume,
platelet count, platelet distribution width (PDW), mean
platelet volume (MPV), alanine aminotransferase (ALT),
aspartate aminotransferase (AST), total bilirubin, direct
bilirubin, indirect bilirubin, total protein, albumin, globulin,
gamma-glutamyl transpeptidase (GGT), total bile acids, blood
urea nitrogen, serum creatinine, uric acid, fasting blood
glucose, total cholesterol (TC), triglycerides, high-density
lipoprotein, LDL, apolipoprotein A, apolipoprotein B (Apo-
B), thyroid stimulating hormone, total triiodothyronine,
total tetraiodothyronine, free triiodothyronine, and free
tetraiodothyronine were obtained from the hospital electronic
medical record system.
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FIGURE 1

Flowchart of the participants.

Statistical analysis

This study enrolled 4,750 adults, and the measurement
data were expressed as mean ± standard deviation; the
count data were expressed as counts (%). Statistical analysis
was performed with R software (version 4.1.2).1 All tests
were two-tailed, and a P-value <0.05 was considered
statistically significant.

Participants were randomly assigned to the training
and internal validation sets at a certain ratio (7:3) (15).
Independent risk factors were identified using multivariate
logistic regression analysis. The least absolute shrinkage and
selection operator (LASSO) combined with 10-fold cross-
validation was used to screen for characteristic variables

1 https://www.R-project.org

associated with CAS. The visual presentation of the risk
prediction model was displayed using a nomogram. Risk
prediction models were evaluated in terms of discrimination
(C-index and receiver operating characteristic (ROC) curves),
calibration ability (Hosmer–Lemeshow test and calibration
curves), and clinical applicability [decision curve analysis
(DCA)] in the training, internal validation, and external
validation sets, respectively.

Results

Characteristics of the study population

This study enrolled 4,570 participants (3,010 males and
1,560 females). The detection rate of CAS by carotid ultrasound
in 2020 was 83.4% (3,813) compared with 73.1% (2,039) in
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TABLE 1 Characteristics of participants in different cohorts.

Training set Internal validation set External validation set

N 3202 1368 2791

Sex (male) 2116 (66.08) 894 (65.35) 1903 (68.18)

Age, years 60.30 (14.33) 60.46 (14.21) 59.90 (13.36)

BMI, kg/m2 23.57 (3.05) 23.52 (2.97) 23.12 (2.83)

SBP, mmHg 136.06 (18.28) 136.62 (18.84) 131.40 (18.61)

DBP, mmHg 79.37 (11.16) 79.64 (11.56) 76.76 (11.32)

HR, times/min 78.53 (12.60) 78.87 (12.51) 78.88 (12.30)

DM 34 (1.06) 18 (1.32) 124 (4.44)

HTN 99 (3.09) 39 (2.95) 450 (16.12)

Drinking history 192 (6.00) 94 (6.87) 849 (30.42)

Smoking history 175 (5.47) 83 (6.07) 679 (24.33)

WBC, 10ˆ9/L 5.93 (1.52) 5.97 (1.51) 5.98 (1.52)

NEC, 10ˆ9/L 3.43 (1.14) 3.48 (1.15) 3.42 (1.14)

EOC, 10ˆ9/L 0.15 (0.15) 0.14 (0.13) 0.15 (0.14)

BAC, 10ˆ9/L 0.02 (0.01) 0.02 (0.01) 0.01 (0.01)

LYC, 10ˆ9/L 1.96 (0.61) 1.96 (0.60) 2.05 (0.61)

RBC, 10ˆ12/L 4.79 (0.50) 4.82 (0.50) 4.61 (0.45)

HGB, g/L 145.59 (14.83) 146.10 (15.04) 140.14 (14.16)

RDW, % 12.75 (0.92) 12.78 (1.00) 12.83 (0.87)

MCV, fl 92.89 (5.30) 92.55 (5.65) 92.94 (4.98)

PLT, 10ˆ9/L 221.85 (58.54) 221.56 (55.23) 205.81 (52.34)

PDW, % 13.58 (2.33) 13.53 (2.30) 12.43 (1.99)

MPV, fl 11.00 (0.99) 10.97 (0.98) 10.40 (0.93)

ALT, U/L 24.18 (17.38) 24.52 (17.93) 19.01 (12.69)

AST, U/L 25.79 (12.66) 26.42 (14.49) 22.77 (10.01)

T-BIL, µmol/L 14.71 (6.12) 14.58 (6.06) 14.77 (6.34)

D-BIL, µmol/L 3.55 (1.77) 3.54 (1.81) 4.56 (1.60)

I-BIL, µmol/L 11.16 (4.84) 11.04 (4.73) 10.20 (4.94)

TP, g/L 74.21 (4.03) 74.24 (4.08) 72.52 (4.32)

ALB, g/L 44.79 (2.22) 44.76 (2.22) 44.99 (2.62)

GLOB, g/L 29.42 (3.74) 29.48 (3.56) 27.53 (4.18)

GGT, U/L 35.99 (46.92) 36.55 (44.48) 31.12 (35.03)

TBA, µmol/L 4.01 (3.93) 4.16 (5.17) 2.70 (2.90)

BUN, mmol/L 5.36 (1.54) 5.31 (1.55) 5.17 (1.52)

Scr, µmol/L 73.26 (36.99) 72.45 (36.39) 61.58 (18.63)

UA, µmol/L 356.77 (86.33) 357.98 (86.30) 326.81 (80.18)

FBG, mmol/L 5.90 (1.38) 5.90 (1.40) 5.37 (1.15)

TC, mmol/L 5.22 (1.12) 5.23 (1.09) 4.86 (0.98)

TG, mmol/L 1.57 (1.10) 1.56 (1.13) 1.35 (0.91)

HDL, mmol/L 1.28 (0.39) 1.31 (0.39) 1.52 (0.28)

LDL, mmol/L 2.99 (0.89) 2.97 (0.87) 2.70 (0.73)

Apo-A, g/L 1.45 (0.27) 1.47 (0.27) 1.54 (0.34)

Apo-B, g/L 0.99 (0.28) 0.98 (0.28) 0.70 (0.18)

TSH, mIU/L 2.11 (2.09) 2.14 (2.25) 2.09 (1.84)

TT3, nmol/L 1.59 (0.32) 1.60 (0.34) 1.64 (0.25)

TT4, nmol/L 116.70 (20.01) 117.75 (22.91) 113.37 (19.08)

FT3, pmol/L 5.15 (0.64) 5.17 (0.66) 4.56 (0.49)

FT4, pmol/L 11.19 (1.68) 11.24 (1.68) 11.10 (1.54)

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; DM, diabetes mellitus; HTN, hypertension; WBC, white blood cell count; NET,
neutrophil count; EOC, eosinophil count; BAC, basophil count; LYC, lymphocyte count; RBC, red blood cell count; HGB, hemoglobin; RDW, red blood cell distribution width; MCV,
mean red blood cell volume; PLT, platelet count; PDW, platelet distribution width; MPV, mean platelet volume; ALT, alanine aminotransferase; AST, aspartate aminotransferase; T-BIL,
total bilirubin; D-BIL, direct bilirubin; I-BIL, indirect bilirubin; TP, total protein; ALB, albumin; GLOB, globulin; GGT, gamma-glutamyl transpeptidase; TBA, total bile acids; BUN, blood
urea nitrogen; Scr, serum creatinine; UA, uric acid; FBG, fasting blood glucose; TC, total cholesterol; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein;
Apo-A, apolipoprotein -A; Apo-B, apolipoprotein-B; TSH, thyroid stimulating hormone; TT3, total triiodothyronine; TT4, total tetraiodothyronine; FT3, free triiodothyronine; FT4, free
tetraiodothyronine.
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TABLE 2 Univariate analysis of carotid atherosclerosis.

Overall HC CAS P-value

N 4570 757 3813

Sex (male) 3010 (65.86) 459 (60.63) 2551 (66.90) 0.001

Age, years 60.35 (14.29) 40.08 (10.91) 64.37 (11.11) <0.001

BMI, kg/m2 23.55 (3.03) 21.84 (2.54) 23.89 (3.00) <0.001

SBP, mmHg 136.22 (18.45) 120.52 (13.91) 139.34 (17.63) <0.001

DBP, mmHg 79.45 (11.28) 73.82 (9.99) 80.57 (11.19) <0.001

HR, times/min 78.63 (12.57) 79.50 (12.48) 78.46 (12.58) 0.036

DM 52 (1.13) 0 (0.0) 52 (1.36) <0.001

HTN 138 (3.01) 3 (0.40) 135 (3.54) <0.001

Drinking history 286 (6.26) 83 (10.96) 203 (5.32) <0.001

Smoking history 258 (5.64) 69 (9.11) 189 (4.96) <0.001

WBC, 10ˆ9/L 5.94 (1.52) 5.69 (1.40) 5.99 (1.54) <0.001

NEC, 10ˆ9/L 3.45 (1.15) 3.24 (1.07) 3.49 (1.16) <0.001

EOC, 10ˆ9/L 0.15 (0.14) 0.14 (0.11) 0.15 (0.14) 0.023

BAC, 10ˆ9/L 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.545

LYC, 10ˆ9/L 1.96 (0.61) 1.95 (0.55) 1.96 (0.62) 0.536

RBC, 10ˆ12/L 4.80 (0.50) 4.88 (0.49) 4.79 (0.50) <0.001

HGB, g/L 145.75 (14.90) 145.41 (15.45) 145.81 (14.78) 0.496

RDW, % 12.76 (0.95) 12.65 (1.09) 12.78 (0.91) <0.001

MCV, fl 92.79 (5.41) 91.08 (5.49) 93.13 (5.33) <0.001

PLT, 10ˆ9/L 221.76 (57.56) 235.50 (54.53) 219.03 (57.76) <0.001

PDW, % 13.56 (2.32) 13.80 (2.46) 13.51 (2.29) 0.002

MPV, fl 10.99 (0.99) 11.11 (1.02) 10.97 (0.98) <0.001

ALT, U/L 24.28 (17.55) 19.60 (13.17) 25.21 (18.15) <0.001

AST, U/L 25.98 (13.24) 22.08 (7.91) 26.75 (13.93) <0.001

T-BIL, µmol/L 14.67 (6.11) 14.36 (6.16) 14.73 (6.09) 0.122

D-BIL, µmol/L 3.54 (1.78) 3.51 (1.74) 3.55 (1.79) 0.581

I-BIL, µmol/L 11.13 (4.80) 10.85 (4.77) 11.18 (4.81) 0.078

TP, g/L 74.22 (4.04) 74.16 (3.68) 74.23 (4.11) 0.68

ALB, g/L 44.78 (2.22) 45.76 (2.10) 44.59 (2.19) <0.001

GLOB, g/L 29.44 (3.69) 28.41 (3.20) 29.64 (3.74) <0.001

GGT, U/L 36.16 (46.20) 24.43 (22.53) 38.48 (49.24) <0.001

TBA, µmol/L 4.06 (4.34) 3.34 (2.82) 4.20 (4.57) <0.001

BUN, mmol/L 5.34 (1.54) 4.87 (1.16) 5.44 (1.59) <0.001

Scr, µmol/L 73.01 (36.81) 68.14 (12.39) 73.98 (39.85) <0.001

UA, µmol/L 357.13 (86.31) 332.13 (82.22) 362.10 (86.25) <0.001

FBG, mmol/L 5.90 (1.39) 5.21 (0.76) 6.04 (1.44) <0.001

TC, mmol/L 5.22 (1.11) 5.01 (0.98) 5.26 (1.13) <0.001

TG, mmol/L 1.56 (1.11) 1.23 (1.03) 1.63 (1.11) <0.001

HDL, mmol/L 1.29 (0.39) 1.38 (0.38) 1.28 (0.39) <0.001

LDL, mmol/L 2.98 (0.89) 2.83 (0.77) 3.01 (0.91) <0.001

Apo-A, g/L 1.46 (0.27) 1.46 (0.25) 1.46 (0.27) 0.794

Apo-B, g/L 0.98 (0.28) 0.89 (0.24) 1.00 (0.28) <0.001

TSH, mIU/L 2.12 (2.14) 1.88 (1.03) 2.16 (2.30) 0.001

TT3, nmol/L 1.59 (0.32) 1.63 (0.34) 1.58 (0.32) <0.001

TT4, nmol/L 117.01 (20.92) 111.20 (18.72) 118.17 (21.15) <0.001

FT3, pmol/L 5.16 (0.65) 5.35 (0.69) 5.12 (0.63) <0.001

FT4, pmol/L 11.21 (1.68) 11.28 (1.51) 11.19 (1.71) 0.218

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; DM, diabetes mellitus; HTN, hypertension; WBC, white blood cell count; NET,
neutrophil count; EOC, eosinophil count; BAC, basophil count; LYC, lymphocyte count; RBC, red blood cell count; HGB, hemoglobin; RDW, red blood cell distribution width; MCV,
mean red blood cell volume; PLT, platelet count; PDW, platelet distribution width; MPV, mean platelet volume; ALT, alanine aminotransferase; AST, aspartate aminotransferase; T-BIL,
total bilirubin; D-BIL, direct bilirubin; I-BIL, indirect bilirubin; TP, total protein; ALB, albumin; GLOB, globulin; GGT, gamma-glutamyl transpeptidase; TBA, total bile acids; BUN, blood
urea nitrogen; Scr, serum creatinine; UA, uric acid; FBG, fasting blood glucose; TC, total cholesterol; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein;
Apo-A, apolipoprotein -A; Apo-B, apolipoprotein-B; TSH, thyroid stimulating hormone; TT3, total triiodothyronine; TT4, total tetraiodothyronine; FT3, free triiodothyronine; FT4, free
tetraiodothyronine.

Frontiers in Cardiovascular Medicine 05 frontiersin.org

2122

https://doi.org/10.3389/fcvm.2022.946063
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-946063 July 29, 2022 Time: 13:11 # 6

Huang et al. 10.3389/fcvm.2022.946063

TABLE 3 Multivariate logistic regression analysis.

Variable Coefficients Odds ratio (95% CI) P-value

Age 0.222 1.249 (1.225–1.274) <0.001

BMI 0.200 1.221 (1.156–1.291) <0.001

HR −0.007 0.993 (0.982–1.004) 0.22786

SBP 0.007 1.007 (0.994–1.021) 0.31200

DBP 0.027 1.029 (1.008–1.048) <0.01

Drinking history −0.412 0.662 (0.393–1.117) 0.12159

Smoking history 0.305 1.357 (0.782–2.390) 0.28334

WBC 0.114 1.121 (1.018–1.236) <0.05

RBC −0.009 0.991 (0.684–1.435) 0.96104

MCV 0.006 1.006 (0.978–1.035) 0.67506

MPV −0.170 0.844 (0.738–0.966) <0.05

ALT 0.036 1.036 (1.020–1.053) <0.001

AST −0.037 0.964 (0.947–0.984) <0.001

I-BIL −0.002 0.998 (0.970–1.028) 0.908005

GLOB 0.024 1.024 (0.982–1.069) 0.26725

GGT 0.007 1.007 (1.003–1.013) <0.05

FBG 0.098 1.112 (0.979–1.289) 0.12646

LDL −0.200 0.765 (0.503–1.325) 0.41725

Apo-B 1.531 4.623 (0.922–23.683) 0.06452

TT3 0.198 1.219 (0.782–1.915) 0.38678

BMI, body mass index; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell count; RBC, red blood cell count; MCV, mean red blood cell
volume; MPV, mean platelet volume; ALT, alanine aminotransferase; AST, aspartate aminotransferase; I-BIL, indirect bilirubin; GLOB, globulin; GGT, gamma-glutamyl transpeptidase;
FBG, fasting blood glucose; LDL, low-density lipoprotein; Apo-B, apolipoprotein-B; TT3, total triiodothyronine.

FIGURE 2

Screening of characteristic variables using the LASSO regression analysis. (A) The selection of the best parameter (lambda) in the LASSO model
uses 10-fold cross-validation with the lowest standard. The relationship curve between partial likelihood deviation (binomial deviation) and log
(lambda) was plotted. Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 1 SE of the minimum criteria
(the 1 SE criteria). (B) LASSO coefficient profiles of the 28 characteristic variables. A coefficient profile plot was produced against the log
(lambda) sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.
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2015 (external validation set) at Zhenhai Lianhua Hospital,
Ningbo, China. The total study population was divided into
training (3,202) and internal validation (1,358) sets according
to a 7:3 ratio, while an external validation set (2,791) was
introduced to ensure the stability of the model (Table 1).
Univariate analysis showed a higher proportion of males in the
CAS group than in the healthy control (HC) group (66.90%
vs. 60.63%, P < 0.001). The mean age of the HC and CAS
groups was 40.08 and 64.37 years, respectively. The CAS
group had higher proportions of DM, HTN, smoking history,
and drinking history than the HC group. In addition, there
were differences between the 2 groups in terms of routine
blood tests, liver function, lipids, glucose, and thyroid function.
The baseline information of the study cohort is shown in
Table 2.

Independent risk factors

Based on univariate analysis (Table 1), we selected
candidate variables with P < 0.1 to screen independent
risk factors. Covariance analysis among candidate variables
showed variance inflation factors (VIF) > 10 for PDW,
MPV, TC, LDL, and Apo-B. When the Akaike information
criterion was −12180.32, the stepwise backward logistic
regression analysis found the optimal model to include
20 variables such as age, BMI, HR, SBP, and DBP
(VIF < 10). Furthermore, we constructed logistic regression
equations.

log

 ̂P
(
Carotid_atherosclerosis = 1

)
1− ̂P

(
Carotid_atherosclerosis = 1

)
 (1)

−19.05+0.22
(
Age

)
+0.2 (BMI)−

0.01 (HR)+0.01 (SBP)+0.03 (DBP)−

0.41
(
Drinking_historyYes

)
+

0.31
(
Smoking_historyYes

)
+0.11 (WBC)−

0.01 (RBC)+0.01 (MRBCV)−0.17 (MPV)+

0.04 (ALT)−0.04 (AST)+0 (I_BIL)+

0.02 (GLOB)+0.01 (GGT)+0.11 (FBG)−

0.2 (LDL)+1.53
(
Apo_B

)
+0.2 (TT3)

Where BMI, body mass index; HR, heart rate; SBP,
systolic blood pressure; DBP, diastolic blood pressure; WBC,
white blood cell count; RBC, red blood cell count; MRBCV,
mean red blood cell velocities; MPV, mean platelet volume;
ALT, alanine transaminase; AST, aspartate transaminase;
I_BIL, indirect bilirubin; GLOB, globulin; GGT, gamma-
glutamyl transpeptidase; FBG, fasting blood glucose; LDL,
low-density lipoprotein; Apo_B, apolipoprotein B; TT3, total
triiodothyronine.

TABLE 4 Coefficients and lambda.min value of the LASSO regression.

Variables Coefficients Lambda.min

Age 0.2196 0.0014

BMI 0.1777

SBP 0.0097

DBP 0.0293

HR −0.0040

DM 1.8408

Drinking history −0.1880

WBC 0.1084

NEC 0.0220

EOC −0.4282

BAC −6.5259

PLT 0.0014

MPV −0.0999

ALT 0.0241

AST −0.0176

I-BIL 0.0032

ALB −0.0096

GLOB 0.0248

GGT 0.0051

Scr 0.0013

UA 0.0020

FBG 0.0118

TG 0.0242

Apo-A −0.6405

Apo-B 0.8163

TT3 0.0375

TT4 0.0082

FT4 −0.0283

BMI, body mass index; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic
blood pressure; DM, diabetes mellitus; WBC, white blood cell count; NET, neutrophil
count; EOC, eosinophil count; BAC, basophil count; PLT, platelet count; MPV,
mean platelet volume; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
I-BIL, indirect bilirubin; ALB, albumin; GLOB, globulin; GGT, gamma-glutamyl
transpeptidase; Scr, serum creatinine; FBG, fasting blood glucose; TG, triglycerides; LDL,
low-density lipoprotein; Apo-A, apolipoprotein -A; Apo-B, apolipoprotein-B; TT3, total
triiodothyronine; TT4, total tetraiodothyronine; FT4, free tetraiodothyronine.

Independent risk factors associated with CAS were also
identified, including age, BMI, WBC count, MPV, ALT, AST, and
GGT (Table 3).

Construction of predictive models

In the training set, 28 non-zero characteristic variables
were screened using LASSO regression analysis (Figure 2 and
Table 4). Low-weight variables (points < 20) were removed
from the risk prediction model. Finally, we selected age,
BMI, DBP, DM, ALT, AST, and GGT for model construction
(Figure 3). In addition, we developed a web version of the
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FIGURE 3

A nomogram for predicting the probability of the development of CAS. The nomogram is used by scoring each variable on its corresponding
score scale. The scores for all variables are then summed up to obtain the total score, and a vertical line is drawn from the total point row to
indicate the estimated probability of the development of CAS. carotid atherosclerosis, CAS; body mass index, BMI; systolic blood pressure, SBP;
diastolic blood pressure, DBP; diabetes mellitus, DM; alanine aminotransferase, ALT; aspartate aminotransferase, AST; gamma-glutamyl
transpeptidase, GGT.

dynamic nomogram (Figure 4) for ease of daily use. The URL
is https://nbuhgq.shinyapps.io/DynNomapp/.

Validation of predictive models

The C-index and area under the ROC curve (AUC) were
used to assess the discriminatory ability of the risk model. The
C-index was 0.961 (0.953–0.969), 0.953 (0.939–0.967), and 0.930
(0.920–0.940) in the training, internal validation, and external
validation sets, respectively (Table 5), whereas the AUC was
0.961, 0.953, and 0.930, respectively (Figure 5).

From the calibration curves, we observed that the predicted
values were very close to the theoretical values in the training,

internal validation, and external validation sets, showing a very
good fit (Figure 6), which was further confirmed by the Hosmer-
Lemeshow test (P > 0.05) (Table 6).

Decision curve analysis is often used to assess the clinical
applicability of risk-prediction models. Figure 7 shows that the
risk threshold probabilities for the training, internal validation,
and external validation sets were 1–100%, suggesting that the
risk prediction model is beneficial in this range.

Discussion

With the popularity of ultrasound in health checkups, CAS
detection rate is gradually increasing. The carotid ultrasound
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FIGURE 4

The web version of the dynamic nomogram.

TABLE 5 C-index in the study cohort.

C-index (95%CI) Dxy aDxy SD Z P-value

Training set 0.961 (0.953–0.969) 0.921 0.921 0.008 112.93 0

Internal validation set 0.953 (0.939–0.967) 0.905 0.905 0.028 23.15 0

External validation set 0.930 (0.920–0.940) 0.860 0.860 0.010 84.51 0

CAS detection rate in 2020 was 83.4% (3,813) compared to
73.1% (2,039) in 2015 (external validation set) at Zhenhai
Lianhua Hospital in Ningbo, China. Age (odds ratio [OR]:

1.249 [1.225–1.274], P < 0.001), BMI (OR: 1.221 [1.156–1.291],
P < 0.001), DBP (OR: 1.029 [1.008–1.048], P < 0.01), WBC (OR:
1.121 [1.018–1.236], P < 0.05), MPV (OR: 0.844 [0.738–0.966],
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FIGURE 5

Receiver operating characteristic (ROC) curves. (A) Training set; (B) internal validation set; (C) external validation set; (D) all sets.

P < 0.05), ALT (OR: 1.036 [1.020–1.053], P < 0.001), AST
(OR: 0.964 [0.947–0.984], P < 0.001), GGT (OR: 1.007 [1.003–
1.013], P < 0.05) were identified as independent risk factors
for CAS. After removing the low-weight variables, age, BMI,
DBP, DM, ALT, AST, and GGT were filtered out to design
risk prediction models. The prediction model showed excellent
clinical differentiation with C-indexes of 0.961 (0.953–0.969),
0.953 (0.939–0.967), and 0.930 (0.920–0.940) and degrees of
fit in the training, internal validation, and external validation
sets, respectively. In addition, DCA showed that the prediction

model could benefit people with a risk threshold of 1%–
100%.

Our study showed that age and DBP were risk factors
for CAS, consistent with previous studies (4, 16). Previous
studies have shown that BMI and abnormal lipid metabolism
are closely related (17, 18) and are an important cause
of CAS. This study found BMI to be an independent
risk factor for CAS, consistent with a national cross-
sectional study in China (11). However, a study in Iceland
showed a negative association between BMI and CAS, which
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FIGURE 6

Calibration curves. The x-axis represents the predicted CAS risk. The y-axis represents the actual diagnosed CAS. The diagonal dotted line
represents a perfect prediction by an ideal model. The solid line represents the performance of the nomogram, of which a closer fit to the
diagonal dotted line represents a better prediction. (A) Training set; (B) internal validation set; (C) external validation set.

may be related to geographic location, ethnicity, diet, and
lifestyle (19). Consistent with previous studies (20), we also
found WBC count to be an independent risk factor for
CAS in our study. CAS is gradually gaining acceptance
as an inflammation-associated disease, and studies have
shown that inflammatory markers such as interleukin 6
and C-reactive protein are serum markers of CAS (21). In
addition, a randomized controlled trial has shown that anti-
inflammatory therapy helps reduce the incidence of major
cardiovascular adverse events (22). As the pathological basis
of atherosclerosis, platelets promote the development and
progression of atherosclerosis (23), which was also observed
in our study. AST, ALT, and GGT levels are commonly
used as indicators of liver dysfunction in clinical practice.
In recent years, there has been an increasing number of
studies on liver enzymes and cardiovascular risk, and a
prospective meta-analysis revealed ALT and GGT levels in
relation to cardiovascular disease risk (24). A study by Abdou
et al. (25) based on a small sample of abdominally obese
people (50) showed that AST was negatively associated with
CAS; however, in our study, it was the opposite. A study
in rural northeastern China showed that higher levels of
education and income were associated with a lower risk
of CAS (P < 0.05), although this relationship was absent
after correction for confounders (26). The role of exercise
in CAS remains controversial. A 6-year clinical trial showed
that aerobic physical activity did not slow the progression
of CAS (27) and might contribute to carotid endothelial
injury (28). However, some studies have shown that lack
of exercise is a risk factor for CAS (11, 26), and aerobic
exercise could help combat carotid intima-media thickening
in obese patients (29). In addition, a study in China
showed that geographic location (rural areas) is associated
with CAS (11).

TABLE 6 Hosmer–Lemeshow test.

Training
set

Internal
validation set

External
validation set

χ2 12.9146 13.1931 16.7528

P-value 0.1665 0.1541 0.0527

Early identification and prevention of CAS are essential
in reducing adverse cerebrovascular disease occurrence.
The diagnosis of CAS in clinical practice relies mainly on
carotid ultrasonography. However, there are still difficulties
in the large-scale availability of ultrasound in health checkups
owing to limited medical resources. The development of
risk prediction models provides an alternative method
for CAS detection that could benefit populations in less
medically developed regions or countries. In addition, risk
models could help physicians selectively perform further
tests, which is beneficial in terms of saving health care
resources. Xing et al. (30) constructed a risk prediction
model for atherosclerosis in a systemic lupus erythematosus
population based on RNA sequencing, and the model exhibited
excellent clinical predictive value (AUC:0.922). However,
this model has some limitations. First, the study’s sample
size was limited (67); furthermore, it was not validated
with internal and external samples, and the cost of RNA
sequencing in atherosclerosis diagnosis was too high. In
addition, an atherosclerosis prediction was constructed
based on operational research (31), but it is too obscure and
clinically inoperative.

Data mining in big clinical data provides technical support
for establishing risk-prediction models (32). Nomograms
can generate individual probabilities of clinical events by
integrating different outcome and predictor variables and
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FIGURE 7

Decision curve analysis. The black straight line represents the net benefit when none of the participants are considered to develop CAS, while
the light gray curve represents the net benefit when all participants are considered to develop CAS. The area between the color (red, blue, and
purple) curve and the light gray curve in the model curve indicates the clinical utility of the model. (A) Training set; (B) internal validation set;
(C) external validation set.

merging biological information with clinical prediction
models (33–35). In recent years, it has been widely used
as a prediction method in clinical settings (36, 37), and
it plays a role in promoting personalized medicine (38,
39) and facilitates physicians in predicting disease risk
(40). There have been many studies on CAS prevalence
and risk factors (4, 41), but few studies on CAS risk-
prediction models have been reported. LASSO is a widely
used algorithm in machine learning to filter characteristics and
interpretable predictors from a large number of potentially
co-linear variables by constructing a penalty function (42,
43). LASSO combined with 10-fold cross-validation was
used to screen for the characteristic variables associated
with CAS. After several modeling attempts, we removed
weakly weighted variables in the model (points < 20).
Ultimately, 7 clinically common indicators, including age,
BMI, DBP, DM, ALT, AST, and GGT, were screened as
predictors to construct a risk prediction model. A network
computer (dynamic nomogram) was developed to increase
the tractability of the model. Our risk prediction model
showed a high predictive value and clinical applicability, which
might be useful for CAS screening in developing countries,
including China.

This study has some inevitable limitations. First, the
inclusion of the study population was regional, which may
have affected the extrapolation of the prediction model.
Second, the collection of clinical baseline data was not
sufficiently comprehensive, and potential clinical predictors
may have been overlooked. Third, the prediction models
were constructed based on cross-sectional studies, and the
stability of the models must be tested in clinical practice.
In future studies, we will cooperate with multiple centers
to continuously test and revise the prediction model during
clinical practice and further improve its extrapolation of the
prediction model.

Conclusion

This study identified eight CAS-associated independent
risk factors, including age, BMI, DBP, WBC, MPV, ALT, AST,
and GGT, based on the Chinese population. Meanwhile, we
developed risk models for identifying individuals at high risk of
CAS, which is important for preventing and reducing adverse
prognostic events.
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Background: Heart failure (HF) is a life-threatening complication of

cardiovascular disease. HF patients are more likely to progress to acute kidney

injury (AKI) with a poor prognosis. However, it is difficult for doctors to

distinguish which patients will develop AKI accurately. This study aimed to

construct a machine learning (ML) model to predict AKI occurrence in HF

patients.

Materials and methods: The data of HF patients from the Medical Information

Mart for Intensive Care-IV (MIMIC-IV) database was retrospectively analyzed.

A ML model was established to predict AKI development using decision tree,

random forest (RF), support vector machine (SVM), K-nearest neighbor (KNN),

and logistic regression (LR) algorithms. Thirty-nine demographic, clinical, and

treatment features were used for model establishment. Accuracy, sensitivity,

specificity, and the area under the receiver operating characteristic curve

(AUROC) were used to evaluate the performance of the ML algorithms.

Results: A total of 2,678 HF patients were engaged in this study, of whom 919

developed AKI. Among 5 ML algorithms, the RF algorithm exhibited the highest

performance with the AUROC of 0.96. In addition, the Gini index showed that

the sequential organ function assessment (SOFA) score, partial pressure of

oxygen (PaO2), and estimated glomerular filtration rate (eGFR) were highly

relevant to AKI development. Finally, to facilitate clinical application, a simple
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model was constructed using the 10 features screened by the Gini index. The

RF algorithm also exhibited the highest performance with the AUROC of 0.95.

Conclusion: Using the ML model could accurately predict the development

of AKI in HF patients.

KEYWORDS

heart failure, acute kidney injury, machine learning, prediction model, artificial
intelligence

Introduction

Heart failure (HF) is the end stage of cardiovascular disease
with a prevalence of around 1–2% in adults (1). HF patients are
more likely to progress to acute kidney injury (AKI) with a poor
prognosis (2). Studies have shown that more than 20% of HF
inpatients would progress to AKI with a fatality rate of 4.1% (3,
4). Even mildly reversible AKI is associated with severe clinical
outcomes, such as an increased risk of death (5, 6). Furthermore,
HF has imposed a heavy financial burden on patients, with an
annual cost ranging from $2,496 to $84,434 per patient (7).

Currently, it’s difficult for doctors to distinguish which
patients will develop AKI. The diagnosis of AKI mainly depends
on serum creatinine (Scr) and urine output. However, the
elevation of Scr is usually delayed relative to the kidney injury,
and Scr can be affected by muscle mass and metabolism
(8). In addition, urine output is easily affected by drugs
such as diuretics, and thus cannot reflect the kidney injury
accurately. Therefore, some researchers have analyzed the
risk factors of AKI, hoping to identify patients at high risk
of AKI in advance. Fan et al. (9) employed a multivariate
logistic regression method to reveal that age, diabetes,
New York Heart Association (NYHA) classification, estimated
glomerular filtration rate (eGFR), highly sensitive C-reactive
protein (hs-CRP), and urinary angiotensinogen (uAGT) were
independently associated with AKI development in HF patients.
A meta-analysis also revealed that baseline chronic kidney

Abbreviations: HF, heart failure; AKI, acute kidney injury; ML, machine
learning; MIMIC-IV, Medical Information Mart for Intensive Care-IV; RF,
random forest; SVM, support vector machine; KNN, K-nearest neighbor;
LR, logistic regression; AUROC, area under the receiver operating
characteristic curve; SOFA, sequential organ function assessment; PaO2,
partial pressure of oxygen; eGFR, estimated glomerular filtration rate;
Scr, serum creatinine; NYHA, New York Heart Association; hs-CRP,
highly sensitive C-reactive protein; uAGT, urinary angiotensinogen; CKD,
chronic kidney disease; TIMP-2, tissue inhibitor of metalloprotease-
2; IGFBP7, insulin-like growth factor-binding protein 7; AI, artificial
intelligence; ICU, intensive care unit; CKD-EPI, Chronic Kidney Disease
Epidemiology Collaboration; CHD, coronary heart disease; COPD,
chronic obstructive pulmonary disease; WBC, white blood cell; PT,
prothrombin time; INR, international normalized ratio; PaCO2, partial
pressure of carbon dioxide; RAS, renin-angiotensin system.

disease (CKD), history of hypertension and diabetes, age, and
diuretic use were significant predictors for AKI occurrence
(3). In recent years, some researchers have adopted new
biomarkers to predict the occurrence of AKI. Schanz et al.
(10) examined urinary tissue inhibitors of metalloprotease-
2 (TIMP-2) and insulin-like growth factor-binding protein 7
(IGFBP7) in 400 patients with HF. They found that urinary
[TIMP-2] × [IGFBP7] was a promising marker for AKI risk
assessment with high sensitivity and specificity. Although the
above studies analyzed the risk factors of AKI, these studies
adopted traditional strategies of developing prediction models
and were not supported by big data. Therefore, more studies
are needed to be carried out to verify the correctness of the
above viewpoints.

Using machine learning (ML) algorithms is another strategy
for establishing prediction models. ML is a subset of artificial
intelligence (AI) in computer science. It is a discipline that
focuses on how computers simulate human behaviors to acquire
new knowledge (11). ML algorithms include decision tree,
random forest (RF), support vector machine (SVM), logistic
regression (LR), and K-nearest neighbor (KNN) (12). Compared
with classical statistical methods, ML algorithms can explore
the relationship between data and solve classification problems
better (13, 14). Currently, the connection between ML and
medicine is getting closer and ML has been adopted in
the scope of diagnosis, risk stratification, and treatment (11,
15). Kimura et al. (16) utilized ML algorithms to analyze
peripheral blood smears and developed an automated diagnostic
model for myelodysplastic syndrome and aplastic anemia.
In a multicenter study, Tomašev et al. (17) successfully
developed a ML model to predict the occurrence of AKI, and
stratified the risk of AKI to provide the possibility for the
prevention of AKI. In addition, due to the support of ML
algorithm in the treatment of anemia in hemodialysis patients,
it not only reduced the use of erythropoietic-stimulating agent
but also optimized anemia management (18). Overall, ML
algorithms have made great contributions to improving the
quality of healthcare.

Clinical studies often need the support of a large amount
of data, and public databases can provide the required data.
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By analyzing the data in the database, researchers may
draw valuable conclusions and help doctors make clinical
decisions (19, 20). Medical Information Mart for Intensive
Care-IV (MIMIC-IV) database contains clinical data on over
60,000 Intensive Care Unit (ICU) stays at the Beth Israel
Deaconess Medical Center. Individuals who completed the
test in PhysioNet have access to the database (certification
number = 33449415) (21).

Machine learning algorithms have many advantages in the
field of data processing. However, they are rarely used in
AKI prediction in HF patients. Therefore, this study examined
whether a ML-derived model for predicting AKI development
would achieve high accuracy and guide AKI prevention.

Materials and methods

Study design and population

The data of HF patients hospitalized in the Cardiac
Vascular Intensive Care Unit and Coronary Care Unit (CCU)
in the MIMIC-IV database were retrospectively analyzed. With
PostgreSQL 13, we installed the database on the computer.
Next, demographics, clinical features, etc., of HF patients
were extracted according to the corresponding codes. The
inclusion criteria were as follows: 1) patients were older than
18 years old; 2) patients were diagnosed with HF according
to the ICD code; 3) patients should have at least two Scr
tests within the first 48 h of ICU admission; 4) For patients
who were admitted to the hospital multiple times, the clinical
data of the first hospitalization were selected. The exclusion
criteria were as follows: 1) eGFR < 15 ml/min/1.73 m2

at the time of ICU admission; 2) patients received renal
replacement therapy, including hemodialysis and peritoneal
dialysis; 3) Patients whose Scr had risen ≥ 0.3 mg/dl before
ICU admission during the hospitalization; 4) patients were
diagnosed with heart transplantation, kidney transplantation,
malignant tumor, and pregnancy; 5) patients who stayed in
the ICU for less than 48 h. The primary endpoint was AKI,
defined as the increase in Scr by ≥ 0.3 mg/dl within the
first 48 h of ICU admittance (22). Because of inadequate
data and probable changes in the urine output caused by
medical therapy, urine output criterion was not employed
to diagnose AKI.

After selecting patients, the demographic, clinical, and
treatment data were extracted. A total of thirty-nine features
were considered as AKI predictors. The eGFR was calculated
by the CKD-EPI (Chronic Kidney Disease Epidemiology
Collaboration) formula (23). In the analysis, missing data were
replaced by mean or median according to data distribution.
In addition, features with more than 30% missing data
were not included.

Establishment of the prediction model

Five ML algorithms: decision tree, RF, KNN, SVM, and LR
were utilized to establish the model to predict the development
of AKI. All the above features were incorporated into the ML
model. A total of 70% of the dataset was randomly selected
as the training set and the remaining 30% as the test set. The
data in the training set was used to train the model, and the
test set was used to examine the performance of the optimal
model. The AKI status was classified as “Yes” or “No” (Figure 1).
Accuracy, sensitivity, specificity, and the area under the receiver
operating characteristic curve (AUROC) were used to evaluate
the predictive performance of the model. The Gini index in
the RF algorithm was calculated to rank the predictive value
of features. To make the prediction model more concise and
easier to use in clinical practice, a simple model with ten features
selected by the Gini index was established. Python 3.7 was used
to establish the model.

Statistical analysis

For continuous variables, a t-test was used to compare the
differences between two groups if they conformed to the normal
distribution, otherwise rank-sum test was used. For categorical
variables, the chi-square test was used for comparison. All tests
of significance were 2-tailed, and the P < 0.05 was considered

FIGURE 1

Process of establishing the prediction model. AKI, acute kidney
injury.
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statistically significant. StataMP software (Version 14) was used
for statistical analysis.

Results

Comparisons between acute kidney
injury and non-acute kidney injury
groups

A total of 2,678 HF patients were engaged in the study
(Figure 2). In our cohort, 919 HF patients progressed to AKI
within the first 48 h of ICU admission. Males comprised
59.7 and 59.1% of AKI and non-AKI groups. Patients in the
AKI group were significantly older than those in non-AKI
group. Sequential organ function assessment (SOFA) score,
Scr, and urea nitrogen were also higher in the AKI group.
All comorbidities, including hypertension and diabetes, were
highly related to AKI development. In addition, all treatments
demonstrated significance between the two groups (Table 1).

Performance of the machine learning
model

Five ML algorithms were applied to predict the AKI status.
Table 2 shows that the RF algorithm achieved the highest
accuracy with 88.36%. In addition, the algorithms with the
highest sensitivity and specificity were RF (96.04%) and LR
(77.02%) (Table 2). The RF algorithm performed the best for the

ML model with the AUROC of 0.96, which was better than 0.92
of SVM, 0.83 of KNN, 0.82 of the decision tree, and 0.92 of LR
(Figure 3).

Predictors of acute kidney injury status

By calculating the Gini index in the RF algorithm, the
predictive value of features was ranked. The top ten predictors
were: SOFA score, partial pressure of oxygen (PaO2), eGFR,
serum bicarbonate, hemoglobin, platelet count, blood lactic
acid, Scr, serum magnesium, and blood glucose (Figure 4).

Establishment of a simple model

According to the ten features selected by the Gini index,
a simple model was established. Same as the prediction model
using all 39 features, in the simple model, the RF algorithm
achieved the highest accuracy with 87.07% (Table 3). In
addition, the RF algorithm also achieved the highest sensitivity
(92.52%), specificity (79.68%), and AUROC (0.95). Interestingly,
the algorithms of KNN and decision tree outperformed the
initial model with an improved AUROC (Figure 5).

Discussion

Different from previous studies, the strength of our study
was the implementation of ML algorithms to predict AKI
development (24, 25). Traditional approaches to constructing

FIGURE 2

Consort flow chart. A total of 2,678 patients were selected from the database with 20,915 patients. ICU, intensive care unit; HF, heart failure; Scr,
serum creatinine; eGFR, estimated glomerular filtration rate; AKI, acute kidney injury.
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TABLE 1 Clinical characteristics of HF patients.

Features AKI (n = 919) Non-AKI
(n = 1759)

P-value

Demographic/clinical characteristics

Age (year) 73 (63,81) 70 (59,80) < 0.001

Male (%) 549 (59.7%) 1040 (59.1%) 0.759

Height (cm) 169 (163,175) 169 (165,178) 0.002

Weight (kg) 80 (67.8,95) 80.8 (67.9,96.3) 0.587

Respiratory rate
(bpm)

16 (14,20) 18 (15,23) < 0.001

Body temperature
(◦C)

36.6 (36.3,36.8) 36.6 (36.4,36.9) < 0.001

Heart rate (bpm) 81 (74,91) 85 (74,97) 0.001

Systolic blood
pressure (mmHg)

115 (99,132) 116 (102,131) 0.389

Diastolic blood
pressure (mmHg)

59 (51,70) 63 (54,75) < 0.001

SOFA score 8 (5,10) 5 (3,7) < 0.001

Ventilation (%) 536 (58.3%) 678 (38.5%) < 0.001

Diabetes (%) 435 (47.3%) 652 (37.1%) < 0.001

CHD (%) 431 (46.9%) 748 (42.5%) 0.030

Hypertension (%) 246 (26.8%) 648 (36.8%) < 0.001

Atrial flutter or atrial
fibrillation (%)

535 (58.2%) 898 (51.1%) < 0.001

COPD (%) 54 (5.9%) 162 (9.2%) 0.003

Laboratory data

Scr (mg/dL) 1.2 (0.9,1.7) 1.1 (0.8,1.4) < 0.001

eGFR
(mL/min/1.73 m2)

54.9 (37.3,74.8) 65.3 (43.3,86.4) < 0.001

Urea nitrogen
(mg/dL)

25 (17,37) 22 (16,33) < 0.001

WBC (K/µL) 12.3 (8.8,16.5) 11.2 (8.1,15) < 0.001

Hemoglobin (g/dL) 9.4 (8,11.4) 10.7 (9,12.5) < 0.001

Platelet (K/µL) 164 (120,227) 194 (145,250) < 0.001

PT (s) 15.6 (13.9,18.5) 15 (13.1,17.5) < 0.001

INR 1.4 (1.2,1.7) 1.4 (1.2,1.6) < 0.001

PH 7.38 (7.33,7.44) 7.38 (7.36,7.43) 0.509

PaO2 (mmHg) 232 (116,347) 190 (86,272) < 0.001

PaCO2 (mmHg) 41 (36,44) 42 (38,45) < 0.001

Blood lactic acid
(mmol/L)

1.9 (1.5,3) 1.9 (1.4,2.2) < 0.001

Serum bicarbonate
(mEq/L)

22 (20,24) 24 (22,27) < 0.001

Serum potassium
(mEq/L)

4.3 (3.9,4.8) 4.2 (3.8,4.6) < 0.001

Serum sodium
(mEq/L)

139 (136,141) 138 (136,141) 0.027

Serum calcium
(mg/dL)

8.4 (8,8.8) 8.5 (8.1,8.9) 0.003

Serum magnesium
(mg/dL)

2.2 (1.9,2.7) 2.1 (1.9,2.3) < 0.001

Serum phosphate
(mg/dL)

3.9 (3.3,4.8) 3.6 (3.1,4.2) < 0.001

Blood glucose
(mg/dL)

135 (108,178) 129 (108,168) 0.054

(Continued)

TABLE 1 (Continued)

Features AKI (n = 919) Non-AKI
(n = 1759)

P-value

Treatments

RAS inhibitor (%) 117 (12.7%) 442 (25.1%) < 0.001

Diuretics (%) 806 (87.7%) 1329 (75.6%) < 0.001

Digoxin (%) 30 (3.3%) 102 (5.8%) 0.004

β-receptor blocker
(%)

459 (49.9%) 997 (56.7%) 0.001

Values are shown as median (interquartile range), absolute values, and percentages.
SOFA, sequential organ function assessment; CHD, coronary heart disease; COPD,
chronic obstructive pulmonary disease; Scr, serum creatinine; eGFR, estimated
glomerular filtration rate; WBC, white blood cell; PT, prothrombin time; INR,
international normalized ratio; PaO2 , partial pressure of oxygen; PaCO2 , partial pressure
of carbon dioxide; RAS, renin-angiotensin system.

TABLE 2 Performance of the prediction model.

Algorithm Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

RF 88.36 96.04 73.91

SVM 86.85 92.41 76.40

Decision tree 79.53 86.14 67.08

KNN 80.39 93.73 55.28

LR 86.42 91.42 77.02

RF, random forest; SVM, support vector machine; KNN, K-nearest neighbor; LR,
logistic regression.

prediction models have made great contributions to assisting
doctors in medical decision-making (26, 27). However, they
have inherent drawbacks that may result in the omission
of crucial predictors and correlations. Compared with
traditional approaches, ML algorithms have great advantages
in constructing prediction models, such as high accuracy in
predicting heart disease (28, 29). According to our findings, the
RF algorithm exhibited the highest performance among the five
algorithms in predicting AKI. This is not surprising since the
RF algorithm has advantages in processing high-dimensional
data (30). In addition, the Gini index in the RF algorithm
can reflect the predictive value of features, which facilitates
the application of the prediction model in clinical practice.
Therefore, from our point of view, RF algorithm should be
preferentially adopted in clinical research, especially when
analyzing high-dimensional data.

At present, HF patients are more likely to progress to AKI.
Therefore, it is of great significance to analyze the risk factors
of AKI and take corresponding treatment. The reported risk
factors of AKI include age, baseline eGFR, NYHA classification,
Kidney injury molecular-1, neutrophil gelatinase-associated
lipocalin, urinary C-C motif chemokine ligand 14, etc. (9, 31,
32). However, some of these features are not routinely examined
in clinical practice, which is not conducive to promotion. In this
study, the features used in the prediction model are common
and easy to obtain, which is also a major strength.
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FIGURE 3

Receiver operating characteristic (ROC) curves of the prediction model. RF, random forest; SVM, support vector machine; KNN, K-nearest
neighbor; LR, logistic regression.

FIGURE 4

Contribution of features of AKI in HF patients (Top 10 displayed). SOFA, sequential organ function assessment score; PaO2, partial pressure of
oxygen; eGFR, estimated glomerular filtration rate; Scr, serum creatinine.

A total of 39 features were used to predict AKI in this
study. Therefore, it is important to screen out the features
related to the occurrence of AKI. Through the Gini index, we
found that SOFA score, PaO2, and eGFR exhibited the highest
predictive value. SOFA score can reflect the function of the
nervous system, respiratory system, circulatory system, etc., and

is used to monitor organ dysfunction. Currently, the SOFA
score has been considered an excellent score to predict short-
term mortality in life-threatening conditions (33). In critically
ill patients, the SOFA score was thought to be an important
predictor of AKI with the AUROC of 0.957 (34). In our study,
patients with higher SOFA score were apt to progress to AKI,
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TABLE 3 Performance of the simple model.

Algorithm Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

RF 87.07 92.52 79.68

SVM 80.73 86.61 72.73

Decision tree 83.45 90.16 74.33

KNN 84.13 92.13 73.26

LR 81.63 88.19 72.73

RF, random forest; SVM, support vector machine; KNN, K-nearest neighbor; LR,
logistic regression.

showing that the degree of organ dysfunction was associated
with AKI. These findings suggest that SOFA scores should be
routinely calculated in HF patients. Patients with high SOFA
scores should be monitored and treated more aggressively.

In our study, patients who progressed to AKI had higher
PaO2. This may be related to the high proportion of mechanical
ventilation treatment in the AKI group. High PaO2 is related
to oxidative stress, which is thought to be a pathogenesis
of AKI (35, 36). Furthermore, Chen et al. (37) found that
LPS-induced AKI in mice could be alleviated by inhibiting
oxidative stress. Therefore, PaO2 may be a predictor of AKI.
Currently, the relationship between hyperoxia and AKI is still
inconclusive. Shen et al. (38) found that AKI was more common
in patients with persistent hyperoxia than those with transient
hyperoxia. In addition, according to an observational study
by Bae, intraoperative hyperoxia was found to be strongly

linked with the risk of AKI following cardiac surgery (39).
Therefore, in clinical practice, we need to pay attention to the
relationship between PaO2 and AKI, and further investigate the
mechanism behind it.

Currently, eGFR is used to assess glomerular filtration
function. In our study, we found that the eGFR of the AKI
group was lower than that of the non-AKI group. It suggested
that patients with kidney injury were more likely to progress
to AKI. This finding was consistent with Tuukka’s study: lower
baseline eGFR is an independent predictor of AKI (40). In
a multicenter study, Patel et al. (41) performed a statistical
analysis of more than 360,000 HF patients and found that
64% of them had eGFR < 60 mL/min/1.73 m2. In addition,
they found that lower admission eGFR was associated with in-
hospital mortality. Therefore, we recommend that eGFR should
be calculated in each HF patient.

Finally, a simple model with ten selected features was
established for the convenience of doctors. Compared with
the prediction model using 39 features, the simple model was
more usable and could also accurately predict AKI development.
Interestingly, although there is less data in the simple model, the
AUROC of KNN and decision tree algorithms were even higher.
This phenomenon may be related to the removal of confounding
factors. Therefore, screening predictors is also a key step when
establishing the prediction model.

Our study had several limitations. First, in the MIMIC
database, acute HF and chronic HF were not well distinguished.
However, the severity of the two diseases was different, and the

FIGURE 5

Receiver operating characteristic (ROC) curves of the prediction model using ten selected features. RF, random forest; SVM, support vector
machine; KNN, K-nearest neighbor; LR, logistic regression.
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mechanisms that led to AKI were also different. We did not
distinguish between the two diseases affected the correctness
of the results to some extent. Second, this study was a single-
center retrospective study without validation from other centers.
Hence, high-quality randomized controlled trials are needed to
confirm our findings.

Conclusion

We successfully established a ML model to predict the
development of AKI in HF patients. Among five ML algorithms,
the RF algorithm exhibited the highest predictive performance.
Our results provided the possibility for ML algorithms to guide
AKI prevention in HF patients. Further studies are needed to
verify whether our model can be applied to populations in
other countries.
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Background and aims: Understanding the age-related trend of risk in high

blood pressure (BP) is important for preventing heart failure and cardiovascular

diseases. But such a trend is still underexplored. This study aims to (a) depict

the relationship of BP patterns with age, and (b) understand the trend of high

BP prevalence over time in different age groups.

Materials and methods: Health check-up data with an observational period

of 8 years (January 1, 2011, to December 31, 2018) was used as the

data source. A total of 71,468 participants aged over 18 years old with

complete information on weight, height, age, gender, glucose, triglyceride,

total cholesterol, systolic (SBP), and diastolic blood pressure (DBP) were

included for analysis. Generalized additive models were adopted to explore

the relationship between the risk of high BP and age. Variance analysis was

conducted by testing the trend of high BP prevalence in age groups over time.

Results: Risk of high SBP showed a continuous rise from age 35 to 79 years

and a concurrent early increase in the risk of high DBP; after age 50–

65 years, high DBP risk declined. The risk of SBP rises linearly with age for

men, whereas increases non-linearly for women. In addition, a significant

increasing trend of high SBP risk among middle-aged people was found

during the past decade, men experienced a later but longer period of increase

in high SBP than women.

Conclusion: The high SBP risk progresses more rapidly in the early lifetime

in women, compared to the lifetime thereafter. Thresholds of increasing

trend of SBP suggest a possible need for hypertension screening in China

after the age of 40.

KEYWORDS

age-related trend, high blood pressure, generalized additive models, South China,
heart failure
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Background

High blood pressure (BP), including high systolic blood
pressure (SBP) and high diastolic blood pressure (DBP), has
been recognized as triggers of the leading cause of mortality
in the 21st century (1). It is estimated that an annual death of
7.7–10.4 million were associated with elevated blood pressure
world-wide (2). High BP is also associated with the strongest
evidence for causation of cardiovascular diseases (CVD) (3).
The most important one was based on experience in 61 cohort
studies that provided 12.7 million person-years of observation.
The risk of CVD increased steadily with progressively higher
levels of baseline SBP and DBP (4). For example, at ages 40–
69 years, each difference of 20 mm Hg usual SBP is associated
with more than a twofold difference in the stroke death rate (4).

Blood pressure is highly age-dependent. Existing literature
has documented the age-related trend of absolute BP, which
shows a linear rise of SBP with age after 30–40 years old (5–
8) and reaching a plateau in late life (9). For DBP, an inverse
U-shaped age-related trend was identified, with its peak at 40–
60 years old (5–8). However, literature on this line manually
split continuous age into discrete age groups, bringing in
artificial influence. Moreover, age-BP trend is formulated by
counting the number of subjects that fall into handcrafted
age intervals. Therefore, there is a lack of adjustment for
confounding factors. We found only one recent study (10)
that enables an arbitrary complex age-BP relationship when
investigating the life course BP trajectory, by using restricted
cubic splines-based regression models. The authors focused
on exploring sex differences in blood pressure trajectories
over a lifetime, but the investigation of the protective or
risk effect of aging and other covariates on high BP risk is
lacking.

Previous literature also reported mixed findings about
the high BP trend in developing countries (11–13): Studies
conducted in Mexico and China reported that hypertension is
shifting toward younger ages over time (11), whereas researchers
from Iran found that younger generations are at lower risk of
developing hypertension (13).

Against this backdrop, we present an analysis of 8 years’
routine health check-up data with the aim of (a) articulating
the relationship of BP patterns with age using advanced
modeling techniques, and (b) understanding the trend of
blood pressure over time in different age groups. For task
(a), we employed generalized additive models (GAM) with
interaction items (GA2M). Compared to linear models and
mixed linear models which put strict constraints on the
potentially complex relationships between a dependent variable
and independent variables, GA2M permits arbitrary complex
relationships between the two. Thus, it is potentially capable
of sophisticatedly depicting the age-related BP elevation risk.
For task (b), the large-scale dataset used in this study creates
a unique opportunity to further the current understanding
of the trend of high BP prevalence over time in the general

FIGURE 1

Sample selection process.

population in south China. The findings of this article could
provide insights that can aid high BP prevention.

Participants and methods

Data source

This study followed a cross-sectional design. Health check-
up data with an 8-year (January 1, 2011, to December 31,
2018) observational period from Guangdong Second Provincial
General Hospital, Guangdong, China was used in this study.
Records from January 1, 2015, to December 31, 2018 are
used in the main analysis. Records in the earlier period
(January 1, 2011, to December 31, 2014) were used for model
validation. A health check-up was conducted in the physical
examination department in Guangdong Second Provincial
General Hospital. Check-up records would be eligible for
analysis if the participants were aged 18 years or older, and
had complete information on the participants’ weight, height,
age, gender, glucose (GLU), triglyceride (TG), total cholesterol
(TC), and systolic blood pressure and diastolic blood pressure.
Figure 1 demonstrates the sample selection process.

Variables and measurements

Outcome variable
The outcome was defined as a binary variable (i.e.,

whether the participants have high SBP/DBP) according to
their BP measurements. Participants were told not to drink a
caffeinated beverage or smoke during the 30 min before the BP
examination. They were also required to sit quietly for 5 min

Frontiers in Cardiovascular Medicine 02 frontiersin.org

4142

https://doi.org/10.3389/fcvm.2022.939103
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-939103 September 15, 2022 Time: 14:13 # 3

Cheng et al. 10.3389/fcvm.2022.939103

TABLE 1 Characteristics of research samples.

High blood pressure (n = 9032) Normal blood pressure (n = 62436) Significance test

Mean (SD)/n (%) Mean (SD)/n (%)

Age 54.1 (16.5) 37.5 (12.8) Statistic = 4.4× 108 , p = 0.000

BMI (kg/m2) 25.3 (3.59) 22.9 (3.34) Statistic = 3.8× 108 , p = 0.000

GLU (mmol/L) 5.60 (1.76) 4.95 (0.96) Statistic = 3.7× 108 , p = 0.000

TG (mmol/L) 1.95 (1.60) 1.44 (1.13) Statistic = 3.7× 108 , p = 0.000

Men 6494 (71.9%) 37524 (60.1%) χ2
= 5.7, p = 0.001

before the test begins. To measure BP, participants shall sit in
a chair with feet on the floor and right arm supported such
that the elbow is at about heart level. A second measurement
would be taken if the first reading is above the normal limit (i.e.,
>90 mmHg for DBP or >140 mmHg for SBP). An automatic
electronic blood pressure monitor was applied to BP test. Only
one reading for SBP/DBP measurement was recorded for each
person, the second reading would be put down if the blood
pressure was measured twice. Participants with high SBP/DBP
were annotated as positive cases, with a dependent variable
(y 1), those with SBP/DBP below the normal limit are classified
as negative counterparts (y 0).

Independent variable
The age of the participants being recorded while taking the

physical examination was regarded as the main independent
variable. Other independent covariates included body mass

TABLE 2 Prevalence of high SBP/DBP in different age
groups among men.

Age groups No. of
records

No. of high SBP
(%)

No. of high
DBP (%)

18–39 26934 1766 (6.56%) 1182 (4.39%)

40–49 7026 944 (13.44%) 971 (13.82%)

50–59 4858 1129 (23.24%) 922 (18.98%)

60–69 3083 1139 (36.94%) 584 (18.94%)

70–79 1430 754 (52.73%) 199 (13.92%)

>=80 679 388 (57.14%) 51 (7.51%)

TABLE 3 Prevalence of high SBP/DBP in different age
groups among women.

Age groups No. of
records

No. of high SBP
(%)

No. of high
DBP (%)

18–39 16505 150 (0.91%) 201 (1.22%)

40–49 4508 282 (6.26%) 194 (4.30%)

50–59 2997 548 (18.28%) 281 (9.38%)

60–69 2159 792 (36.68%) 195 (9.03%)

70–79 1068 593 (55.52%) 61 (5.71%)

>=80 221 130 (58.82%) 8 (3.62%)

index (i.e., person’s weight in kilograms divided by the square
of height in meters), glucose (GLU), triglyceride (TG), and total
cholesterol (TC). All the independent variables were used as
continuous variables.

Analysis

Empirical analysis
We conducted the empirical analysis by calculating the high

SBP/DPB prevalence (without any adjustment for confounding
influences), which is simply dividing the number of high
SBP/DBP individuals by the total research samples for each age
group. We also summarized the characteristics of the research
samples. Age, BMI, GLU, and TG are continuous variables,
for which we reported the mean and standard deviation (SD).
Gender is a binary feature, so we calculated and reported the
number and percentage of men. Mann–Whitney U test and
χ2 test with Yates’ correction were performed to explore the
statistical significance of the continuous variables and the binary
variable, respectively.

Main analysis
We formulated the first task of this study, which aims to

explore the relationship between BP elevation risk and age, as
a binary classification problem. The relationship was adjusted
for covariates including Body Mass Index (BMI), glucose (GLU),
triglyceride (TG), and total cholesterol (TC), to control the
confounders. A generalized additive model (GAM) was adopted
to explore the relationship between dependent and independent
variables. A standard GAM has the form:

g
(
y
)
= β0 +

∑
fi(xi)

Where g(·) is the link function and fi(·) is the boosted
trees-based shape function for term i. Compared to the
standard logistic regression model, which has a form
of g

(
y
)

1/1+ e−wixi , GAM permits arbitrary complex
relationships between individual features and the target to be
captured while avoiding overfitting. Therefore, it is a powerful
tool to help us understand the age-related BP elevation risk.
Pairwise interactions can be added to standard GAMs, leading to
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FIGURE 2

The change in the risk of high SBP related to age (A for men and B for women), BMI (C for men and F for women), GLU (D for men and G for
women), and TG (E for men and H for women). (I,J) Demonstrate that the interaction effect is marginal. Red lines represent the spline-based
GAM curves. Green lines represent the confidence intervals. Black lines in A and B are drawn to guide the eyes.

FIGURE 3

The change in the risk of high DBP related to age (A for men and B for women), BMI (C for men and F for women), GLU (D for men and G for
women), and TG (E for men and H for women). (I,J) Demonstrate that the interaction effect is marginal. Red lines represent the spline-based
GAM curves. Green lines represent the confidence intervals.

a model called GA2M. We also performed the standard logistic
regression analysis using the same samples and covariables
of the GA2M analysis. We adopted the Receiver Operating

Characteristic of the Area Under the Curve (ROCAUC, also
known as c-statistic) to evaluate the performances of GA2M
and the logistic regression model.
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TABLE 4 Transition points for age, BMI, GLU, and TG in terms of the
risk of high SBP.

Men Women

Age group 40–50 40–50

BMI interval 20–25 20–25

GLU interval (mmol/L) 4–6 4–6

TG (mmol/L) 1.4 1

TABLE 5 Transition points for age, BMI, GLU, and TG in terms of the
risk of high DBP.

Men Women

Age group 40–50; 80–85 40–50; 80–85

BMI interval 20–25 20–25

GLU interval (mmol/L) 4–6 4–6

TG (mmol/L) 1.3 0.9

To cope with the second task that focuses on understanding
the overall trend of high BP prevalence over the 8-year
observational period within the different age groups, variance
analysis was conducted by testing in five age groups if the
variance of BP over time is statistically significant. A p value of

<0.05 was considered statistically significant. Python (version
3.2.5) was used for analysis, visualization, and statistical tests.
Mann–Whitney U test and χ2 test were conducted using
scipy.stats package, Mann–Kendall test was conducted using
PyMannKendall.

Model sensitivity analysis
For task 1, we conducted model sensitivity analyses using an

earlier dataset (January 1, 2011, to December 31, 2014) to see if
our findings are robust.

Ethical approval

This study was approved by the Ethical Review Board of
Guangdong Second Provincial General Hospital.

Results

From January 1, 2015, to December 31, 2018, we observed
71,468 eligible health check-up records. Of those, 12.05%
(8615/71468) were with high SBP and 6.78% (4849/71468) were
with high DBP. Characteristics of the study samples are shown
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Variance of the number of high SBP men with time.
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Varience of the number of high DBP male participants with time in Guangdong, China (N = 44010).

in Table 1. All variables demonstrate significant differences
between the high blood pressure group and the normal group.
The prevalence of high SBP/DPB in different age groups for men
and women is shown in Tables 2, 3.

Figures 2A,B demonstrates the relationship between age
and the risk of high SBP for men and women, respectively.
In general, the risk of high SBP increases with age, reaching a
plateau in late life. For high DBP risk, an inverse U-shaped age-
related risk trend was identified. Women compared with men
exhibited a first-steeper-then-slower increase pattern in BP that
began at age 42 years. The ROCAUC was calculated as 0.837
for the main GA2M model and 0.803 for the standard logistic
regression model. Results of the model validation analysis can
be found in Supplementary Figures 1, 2. They exhibit very
similar patterns to the main results, indicating that the patterns
discovered in this study are robust and generalizable.

The resulting curves (Figures 2, 3) also enable us to explore
the transition points of the role of Age, BMI, GLU, and TG, by
identifying the curve where the risk score (y-axis) rises above 0.
Results of the transition point are reported in Tables 4, 5.

Results of the high BP prevalence for each age group during
the study period (2008–2018) were reported in Figures 4–7. For
men, an increasing trend of high SBP risk was observed among
those aged 40–49 years (p 0.002) and 50–59 years (p 0.002),
and high DBP risk decreased among those aged 30–39 years

(p 0.004). For women, an increasing trend of high SBP risk was
witnessed among those aged 30–39 years (p 0.008), and high
DBP risk decreased (p 0.005) among those aged 40–49 years.
No significant trend in other age groups was observed.

Discussion

Our study depicted the age-related trend of risk in high
SBP/DBP and identified the specific age group which showed
significant changes in risk in high SBP/DBP prevalence over
time among male and female adults. The subjects in this study
showed a rise in SBP from age 35 to 79 years and a concurrent
early increase in DBP; after age 50–65 years, DBP declined.
GA2M analysis of high SBP/DBP risk as a function of age,
adjusting for BMI, GLU, and TG, showed that slope patterns
of age-risk curves differed for men and women, whereas it was
curvature that differed for SBP and DBP. A general picture
of the BP trend in south China was also reported. For men
aged 40–59 years and women aged 30–39 years, an increasing
trend of high SBP was observed. For men aged 30–39 years
and women aged 40–49 years, the trend of high DBP was
deflated.

The present study indicated that the risk of SBP rises
linearly with age for men, whereas it was a non-linear
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Variance of the number of high DBP women with time.
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relationship between age and SBP risk for women. More
concretely, SBP risk progresses more rapidly in the age
period 35–55 (first phase) than lifetime thereafter (55–80,
second phase). This finding differs from previous literature
where a linear rise for both genders was reported (5, 7).
From a methodological perspective, such discrepancy appears
probably because (a) literature of this line manually splits
continuous age into discrete age groups, bringing in human
influence, and (b) through counting the number of subjects
that fall into handcrafted age intervals, there lacks adjustment
for confounding factors. This study took a step forward by
leveraging the strength of GA2M that permits arbitrary complex
relationships between dependent and independent variables.
The resulting c-statistics of GA2M and a standard logistic
regression model echoes our hypothesis that GA2M enables a
more precise way of depicting the feature–target relationship.
Plausible explanations from the physiological perspective would
be that (a) menopause might be attributable to the disparity
between the two phases; (b) taking men as a reference,
previous literature reports that women’s blood pressure starts
lower than men’s, catches up around age 45, and frequently
becomes slightly higher thereafter (5, 10). Therefore, SBP
risk elevates more rapidly in the first phase to catch up to
BP levels in men.

GA2M analysis also enables us to quantify the transition
point of the role of covariates. Such information can signal
us when we should pay special attention to the measurement.
For example, the transition point of the role of BMI in SBP
is located in 20–25, indicating a protective role of BMI ≤ 20
in preventing SBP, and a harmful role of BMI ≥ 25 in
inducing SBP. This happened to echo the stratification of BMI
index alone. It is noteworthy that the transition point (80–
85) in DBP seen in the elderly is probably the result rather
than the cause of the disease process. Age-related stiffening
of the aorta is associated with a decreased capacity of the
elastic reservoir and hence a greater peripheral runoff of stroke
volume during systole. Thus, with less blood remaining in the
aorta at the beginning of diastole, and with diminished elastic
recoil, diastolic pressure decreases with increased steepness
of diastolic decay (5). The exaggerated fall in DBP risk seen
in the elderly suggests a process of transmural pressure-
induced arterial wall damage resulting in large artery stiffness,
enforcing age ≥85 to be a phantom “protective role.” Apart
from this observation, there is a marginal difference for SBD
and DBP, and for men and women with respect to the role
of covariates in high BP risk. Generalized additive models
have recently been used to explore the association between
physical activity and mental health burden (14), to investigate
the association of depression with dietary inflammatory index
(15), and to predict postoperative acute kidney injury and acute
respiratory failure (16). This study adds the age–blood pressure
relationship to a growing list of fields of research that are actively
capitalizing on GAM.

With respect to the second goal of this article, we observed
an increasing trend of high SBP risk among middle-aged people
during the very recent decade. This finding echoes previous
evidence that the incidence of hypertension has been shifting
toward younger generations (11, 12). Results also indicate that
there exists gender discrepancy in terms of those experiencing
an increasing high SBP risk: Age groups of men are older and
wider compared to women (40–59 vs. 30–39). Plausible factors
leading to such discrepancy would be sex hormones, lifestyles
(e.g., alcohol intake) (17–19), social pressures (12), etc.

This study has implications for hypertension management
and prevention from both disease and population perspectives.
From the disease perspective, our results support the evidence
that aging is an important risk factor for hypertension, for
constant increase of risk in high SBP with age. According
to the trends of risk in high SBP and high DBP, diagnosis
of hypertension could become more dependent on SBP
measurement among the elderly. From the population
perspective, our study supports the threshold for significant
changes in blood pressure at 40–45 years of age. The current
national guideline for hypertension management in China
(2019) defined people aged over 45 years as a high-risk groups
for hypertensions. However, no recommendations for regular
blood pressure measurement and hypertension screening have
been provided for Chinese adults. Another implication informs
the importance of controlling elevated blood pressure among
middle-aged Chinese adults (30–59 years old) who might
be the main contributors of trends of people suffering from
hypertension at a younger age. About 30% of middle-aged
people in China were estimated to suffer from hypertension
(20), while 87% of them with ISH remain untreated (21). Future
research on improving awareness, prevention, and treatment
of hypertension among middle-aged adults in China could be
taken.

Although analyses of this study were based on a well-
constructed model and a large volume dataset, several inherent
deficits of routine health check-up data should be noted when
interpreting the results. First, a check-up BP record relies on
a one-off BP test, but tests conducted more than one time
on different days are recommended to acquire more solid BP
results. Secondly, this study reports findings from a single
center, whether it is generalizable to populations elsewhere
needs further investigation.

Conclusion

In contrast with the notion that systolic blood pressure
linearly increases with age in individuals, our results suggested
that SBP risk progresses more rapidly in early lifetime in women,
compared to lifetime thereafter. Thresholds of the increasing
trend of SBP suggest a possible need for hypertension screening
in China after the age of 40. The changing risk of high BP in
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different age groups in the past decade (from 2008 to 2018)
suggested the necessity of controlling elevated blood pressure
of middle-aged Chinese adults to avoid the rejuvenation of
hypertension among younger adults.
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Introduction: Elevated left ventricular end diastolic pressure (LVEDP) is a

consequence of compromised left ventricular compliance and an important

measure of myocardial dysfunction. An algorithm was developed to predict

elevated LVEDP utilizing electro-mechanical (EM) waveform features. We

examined the hierarchical clustering of selected features developed from these

EMwaveforms in order to identify important patient subgroups and assess their

possible prognostic significance.

Materials and methods: Patients presenting with cardiovascular symptoms

(N = 396) underwent EM data collection and direct LVEDP measurement by

left heart catheterization. LVEDP was classified as non-elevated (≤12 mmHg)

or elevated (≥25 mmHg). The 30 most contributive features to the algorithm

output were extracted from EM data and input to an unsupervised hierarchical

clustering algorithm. The resultant dendrogram was divided into five clusters,

and patient metadata overlaid.

Results: The clusterwith highest LVEDP (cluster 1) wasmost dissimilar from the

lowest LVEDP cluster (cluster 5) in both clustering and with respect to clinical

characteristics. In contrast to the cluster demonstrating the highest percentage

of elevated LVEDP patients, the lowest was predominantly non-elevated

LVEDP, younger, lower BMI, and males with a higher rate of significant

coronary artery disease (CAD). The next adjacent cluster (cluster 2) to that of
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the highest LVEDP (cluster 1) had the second lowest LVEDP of all clusters.

Cluster 2 di�ered from Cluster 1 primarily based on features extracted from

the electrical data, and those that quantified predictability and variability of the

signal. There was a low predictability and high variability in the highest LVEDP

cluster 1, and the opposite in adjacent cluster 2.

Conclusion: This analysis identified subgroups of patients with varying

degrees of LVEDP elevation based on waveform features. An approach to

stratify movement between clusters and possible progression of myocardial

dysfunction may include changes in features that di�erentiate clusters;

specifically, reductions in electrical signal predictability and increases in

variability. Identification of phenotypes of myocardial dysfunction evidenced

by elevated LVEDP and knowledge of factors promoting transition to clusters

with higher levels of left ventricular filling pressures could permit early risk

stratification and improve patient selection for novel therapeutic interventions.

KEYWORDS

machine learning, risk stratification, left ventricular filling pressures, artificial

intelligence, digital health

Introduction

An elevated left ventricular end diastolic pressure (LVEDP),

indicative of increased left-sided filling pressures of the heart,

represents a critical and sensitive measurement used to aid

in the identification of impending as well as decompensated

heart failure (HF) (1–3). Cardiac performance, with regard

to ventricular contractility, is one critical determinant of

elevated LVEDP; however, ejection fraction (EF) alone rarely

elucidates the accurate clinical status of a heart failure patient

(4). Patients with diminished ventricular function are the

cohort most frequently encountered with elevated LVEDP,

but an increased filling pressure may be the manifestation of

multiple myocardial disease states including cardiomyopathies

of ischemic, constrictive, restrictive, or valvular origin (5). Thus,

higher filling pressures typically precede clinical deterioration

in heart failure with reduced ejection fraction (HFrEF) as well

as heart failure with preserved ejection fractions (HFpEF) (6).

An elevated LVEDP does not indicate a specific diagnosis but

provides important information that serves as a guide regarding

the need for further evaluations or testing and affords data

necessary for the development of an appropriate patient care

plan. In addition, elevated LVEDP is predictive of morbidity and

mortality (7–11).

Awareness of possible impending or new onset heart failure

(HF) as indicated by an elevation in LVEDPmay aid in diagnosis

and risk stratification of the patient and help inform optimal

clinical care pathways. The available therapeutic modalities for

HF have doubled in the last decade and new pharmacologic

agents for the treatment of hypertrophic cardiomyopathy

(HCM) and infiltrative diseases, such as amyloid, conditions

associated with elevated LVEDP, are rapidly emerging (12, 13).

However, there exists limited information regarding the risks

of transition from early asymptomatic or mildly symptomatic

stages (Stages A to B) to later overtly symptomatic stages (Stages

C-D), thus complicating initiation of drug interventions at the

times when such therapies might prove most beneficial (14).

Risk stratification in heart failure remains a significant

challenge despite the development of multiple scoring models,

many of which are designed to predict survival with a few

attempting to predict future morbidity (15–19). These scoring

models were primarily derived from highly selected cohorts

of patients, with an established diagnosis of heart failure,

recruited for randomized clinical trials occurring over the

last several decades (20). Most have required input data that

includes echocardiographic determination of EF, multiple blood

analyses (recently biomarkers), and a significant number of

clinical parameters (15–21). Predicting outcomes in those with

known moderate to severe disease allows modification and

testing of current therapies but provides little information that

might permit interventions at early stages of heart failure to

prevent progression. Machine learning affords the opportunity

with a single rapid test to detected features of similarities

between groups with early stage LVEDP elevation and those

not yet manifesting hemodynamic changes (22). ML clustering

techniques that identify such features facilitate the development

and future validation of new risk models.

The clinical diagnosis of HF encompasses a broad

and heterogeneous population of patients with complex

pathophysiology, various etiologic mechanisms, and diverse

genetic triggers. Unsupervised clustering analysis has permitted

phenotyping in cardiomyopathies identifying subgroups which
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may have similar mechanisms and outcomes (23, 24). Clustering

is a useful approach to detect patterns in variables that aid in

decrypting the heterogeneity present in datasets (24, 25). To

date, the evaluation of cardiomyopathies based on clustering

has focused on patient with diagnosed HF and those recently

or in the past hospitalized for the HF, clearly in later stages

of the disease (23, 24). In this trial, we recruited a cohort

with new onset symptoms and no previously known HF. The

goal was to detect changes in the features that differentiate

between clusters, which might indicate the risk of transition

from one cluster to an adjacent cluster with a higher prevalence

of elevated LVEDP. Identification of distinct subtypes of

myocardial dysfunction evidenced by elevated LVEDP and

knowledge of factors that promote transition to clusters with

higher levels of left ventricular filling pressures could permit

early risk stratification and improve patient selection for novel

therapeutic interventions, thus facilitating precision medicine.

Methods

Features for clustering

An algorithm was previously developed to predict LVEDP

elevation status based on manually engineered features

calculated from CorVista Capture signals (22). The signal

acquisition modality was previously described (26), but

briefly, is the simultaneous acquisition of orthogonal voltage

gradient (OVG) data via electrodes placed on the torso,

and photoplethysmogram using transmission of red and

infrared light via a clip placed on the finger. The acquisition

configuration is shown in Figure 1. The OVG signal is related

to the electrocardiogram (ECG) signal in that both measure

the voltage changes within the myocardium that occur

during the cardiac cycle, but OVG differs from ECG in its

three-dimensional perspective of the heart, as well as its high

frequency bandwidth (Figure 2).

The contribution of these features to the LVEDP algorithm

were assessed using a permutation analysis, enabling the

ranking of the features from most to least contributive. The

permutation analysis was a generalization of the methodology

first proposed by Breiman for use in Random Forests (27). The

top 30 most contributive features were selected for use in this

clustering exploration.

Population

The clinical population analyzed in the present work were

subjects with symptoms suggestive of cardiovascular disease

who were referred to cardiac catheterization for the assessment

of coronary artery disease using angiography. Specifically, the

cohort was patients in whom the treating physician chose

FIGURE 1

Signal acquisition using the CorVista Capture, with the

electrodes placed on the torso (electrode on the back not

visible), and the PPG clip placed on the finger.

to measure the LVEDP during the catheterization. LVEDP

measurement was performed using standard catheterization

laboratory procedures. Subjects with mid-range LVEDPs were

removed, preserving subjects with definitive LVEDP non-

elevation of ≤12 mmHg and subjects with definitive LVEDP

elevation of ≥25 mmHg. The subjects were enrolled within

the CADLAD and IDENTIFY (Group 2) studies, the records

for which are available on clinicaltrials.gov (NCT02784197

and NCT03864081, respectively). Both studies have identical

inclusion and exclusion criteria and are multi-center in nature.

CADLAD is closed, and IDENTIFY enrollment is ongoing.

Finally, subjects without a signal passing a series of automated

signal quality assessment tests (11%) were excluded. Signal

quality assessment was previously described (26), but included

quantification of powerline interference and excessive high-

frequency content in the OVG signal, and the presence of jumps,

dropouts, and railing in the PPG signal.

Clustering

The features were pre-processed prior to clustering

by applying the box-cox transformation to each feature

individually, which is a monotonic power transform intended to

approximate a normal distribution across the data (28). While

deviations from normality occur frequently in realistic data,

many statistical approaches rely on an assumption of normality,

and therefore benefit from distribution transformations such

as box-cox. For instance, nearest neighbor classification has
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FIGURE 2

(A) Example OVG data in phase space, with coordinates from each bipolar channel (ORTH1, ORTH2, ORTH3) represented as a

three-dimensional coordinate in that space, and (B) example PPG data in the time domain, containing both red and infrared time series.

been shown to improve considerably when the features are

pre-processed using box-cox, as compared to classification using

the raw feature values (29). While the intent of the present work

is not nearest neighbor classification (or classification by any

methodology), clustering similarly necessitates pairwise distance

measurements across the dataset, and can therefore realize a

similar benefit from box-cox. After box-cox transformation, the

features were normalized using the z-score transformation to

set the mean and standard deviation of each feature to zero and

one, respectively.

Next, hierarchical clustering was applied to the processed

data. While there exist a variety of clustering algorithms,

hierarchical clustering was chosen to facilitate visual discovery

of the appropriate numbers of clusters from the clustering

result, rather than requiring pre-specification of the number

of clusters, or quantitative evaluation of the optimal number

of clusters. Hierarchical cluster is agglomerative, meaning that

initially each subject is initially its own cluster, then clusters

are merged in an agglomerative manner, until the end state

is reached where all the subjects belong to the same cluster.

Therefore, a cluster merger strategy, also known as linkage,

must be selected. Possibilities include “single” (smallest pairwise

distance between the subjects in one cluster and the subjects

in another), “complete” (the largest pairwise difference between

the subjects in one cluster and the subjects in another), and

“average” (the average pairwise difference between the subjects

in one cluster and the subjects in another). Note that the linkages

are equivalent when considering clusters containing only one

subject. Given that average considers all subjects in both clusters,

it was chosen for the present work. However, as described for

all linkage methods, average linkage requires the definition of a

distance metric between subjects, which are represented herein

by the values of 30 features. A distance metric increases in

magnitude as subjects become more dissimilar, and must meet

specific mathematical criteria to quality as a proper metric (30).

Correlation distance (more precisely, 1-Pearson correlation) was

shown to generally perform well across a variety of datasets and

clustering algorithms, and so was chosen herein (31).

The output of hierarchical clustering is a dendrogram, which

is a visual representation of subjects beginning in their own

clusters, and iterative merging of clusters until all the subjects

belong to a single cluster. The dendrogram was inspected, and

an appropriate number of clusters chosen based on both the

structure of the dendrogram and the appropriate amount of data

in each cluster.

Results

A total of 396 subjects were included in the clustering,

composed of 92 (23%) subjects with LVEDP≥25 mmHg and 304

(77%) subjects with LVEDP≤12 mmHg. Of the top 30 features

from the LVEDP algorithm included in the clustering, 22 were

derived from the OVG signal and had an average rank in the

contribution of 17, and eight were derived from the PPG signal

with an average rank of 10.

Figure 3 shows the dendrogram, with five clusters (labeled

1–5) chosen to segment the dataset, which for simplicity and

recognition are colored (Purple=cluster 1, Green=cluster 2,

Red=cluster 3, Yellow=cluster 4, Blue=cluster 5). In Figure 3A,

the dendrogram is associated to a heatmap visualizing the

magnitude of the feature values for each subject, with vertical

lines delineating the boundary between adjacent clusters, and

subjects aligning between the dendrogram and the heatmap.
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FIGURE 3

(A) Dendrogram colored to identify each cluster, associated to a heatmap visualizing the magnitude of the feature values for each subject, and

(B) colored dendrogram associated with the pairwise distance matrix across the dataset, with bold boxes defining each cluster, and dotted lines

delineating between adjacent clusters.

TABLE 1 Clusters demographics and measured parameters.

Property Purple Green Red Yellow Blue

N 69 86 110 56 75

LVEDP>25 36.2% 22.1% 22.7% 26.8% 10.7%

LVEDP (mmHg) 17.8± 10.8 13.5± 8.5 13.9± 8.4 15.0± 9.9 14.2± 9.0

Age(years) 65.3± 9.6 62.9± 10.4 63.4± 9.2 63.7± 10.4 61.6± 11.6

BMI(kg/m2) 34.5± 7.6 31.0± 6.4 30.8± 7.2 32.0± 7.5 30.0± 6.0

Female 49.3% 40.7% 40.0% 42.9% 25.3%

Significant CAD* 40.6% 33.7% 38.9% 35.7% 44.0%

Diabetes 36.2% 32.6% 39.3% 34.9% 21.3%

Hypertension 78.3% 69.8% 76.8% 70.6% 68.0%

Hyperlipidemia 78.3% 75.6% 73.2% 72.5% 62.7%

*Significant CAD was defined as the presence of a >70% lesion or an FFR < 0.80, assessed during the same left heart catheterization procedure in which the LVEDP measurement

was acquired.

Banding in the heatmap that differs between clusters is a visual

manifestation of the feature values differing across clusters. In

Figure 3B, the dendrogram is associated to the pairwise distance

matrix across the dataset, with the bold boxes along the diagonal

defining each cluster, and the dotted lines delineating between

adjacent clusters. Similar to Figure 3A, the subjects are aligned
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between the dendrogram and the distance matrix. As expected,

the pairwise distances within clusters (i.e., within bolded boxes,

occurring along the diagonal of the distance matrix) are low,

showing that the distance between subjects within the same

cluster is generally low. Therefore, subjects are cohesive within

the clusters. The off-diagonal boxes defined by dashed lines in

the distance matrix represent the distances between subjects

not belonging to the same cluster, and as expected, exhibit

larger distances on average than subjects belonging to the same

cluster. Further, the distance between the cluster 1 (Purple)

and cluster 2 (Green) is relatively low, as is supported by the

dendrogram, which indicates that the next level of linkage would

join these two clusters. Similarly, large distances in the heatmap

are concentrated in the region comparing cluster 2 (Green) to

cluster 3 (Red), which would not be joined together until the top

linkage level, where all subjects are joined in a single cluster.

After the clustering was complete, clinical metadata was

overlaid on the resultant clusters, as shown in Table 1. The

overlaid clinical metadata can then be considered in conjunction

with the observations from the feature clustering, as shown in

Figure 3.

Cluster 1, with the highest LVEDP of all clusters, is the

most dissimilar from the cluster 5 in both the clustering and

with respect to the clinical properties of the subjects in each

cluster. In contrast to cluster 1, cluster 5 is predominantly non-

elevated LVEDP, younger, lower BMI, male and has a higher

rate of significant coronary artery disease. The most substantial

feature differences between cluster 1 and cluster 5 are those

calculated from the PPG signal. Given the gender and age

differences between these clusters, a plausible explanation of the

PPG differentiation may be the vasculature changes that occur

in post-menopausal women.

Cluster 1 is closest in the clustering to cluster 2 (i.e., the

next cluster that would be joined to cluster 1 in the dendrogram

is cluster 2), with the second lowest LVEDP of all clusters.

To explore the mechanism underlying the difference between

these clusters, the feature values were normalized across the

full dataset using z-score (i.e., mean set to zero, and standard

deviation set to one), and the normalized values mapped on

to the clusters. The feature values were averaged within cluster

1 and cluster 2, then the averages differenced across these two

clusters. The largest differences between cluster 1 and cluster 2

were found in features extracted from the electrical data, and

specifically those that quantify predictability and variability of

the signal. There is low ability to predict the signal (occurring as

high feature values) and high signal variability (occurring as high

feature values) in the cluster 1, and the opposite in the cluster 2

(occurring with low feature values). The predictability functions

by fitting a model to a portion of the OVG data and evaluating

the performance of that model on the remaining data. Should

the ability of the model to predict on the withheld data be poor,

then the resultant error between the signal and the model will

be high, resulting in a high feature value. The variability feature

FIGURE 4

The variability and lack of predictability feature values for cluster

2 (Green) and cluster 1 (Purple), with the mean of each feature

for each cluster marked with dashed lines.

derives a representative cardiac cycle for the subject based on

the acquired data and compares that representative cardiac cycle

to each acquired cycle to calculate the disparity – should it be

high, then the representative cycle cannot sufficiently capture

the variability in the signal, which is then represented as a high

feature value.

The relationship between these features and clusters is

shown in Figure 4, which visualizes the feature values for clusters

1 and 2, with the mean of each feature for each cluster marked

with dashed lines. The mean predictability feature was −0.74

and 0.80, for cluster 2 and cluster 1, respectively. The mean

variability feature was −0.58 and 0.64, for cluster 2 and cluster

1 respectively.

Discussion

Machine-learned algorithms now permeate many facets of

medical practice and the magnitude of these techniques’ utility

and their diverse applications are rapidly being adapted to

challenges in cardiology (32, 33). Cluster analysis of datasets

identifies patterns and trends by using the relationships between

variables to uncover hidden structure (34). In the past, the

heterogeneous nature of HF populations and the complexity

of the pathophysiologic mechanisms operative in specific HF

disease states have made identification of similar phenotypes

difficult. The utilization of clustering analysis allows detection

of small unique phenogroups by examining the similarities

and differences among quantitative variables (34). This type

of unsupervised ML has be applied to populations of HF

including HFpEF (23, 35), HFrEF (36), and acute HF (37). These

studies have elucidated phenotype clusters and demonstrated

subsequent clinical outcomes of patients previously diagnosed

with HF as well as those acutely admitted with that diagnosis.
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This approach is useful for risk stratification and prognostic

prediction in later stages of the disease but does little for

targeting early transition into pathophysiologic states at risk

for progression to significant disease or to facilitate precision

interventions at times when remodeling might be prevented.

In our trial, we identify novel phenotypes with varying

prevalences of elevated LVEDP within a population presenting

with new onset cardiovascular symptoms. Elevated LVEDP has

served as a direct measurement of myocardial dysfunction

as well as a marker indicative of pathophysiologic changes

ultimately resulting in the remodeling observed in later stages

of HF (38). The goal of this investigation was to analyze the

phenotypes and determine if features within the clusters varied

in a fashion that could be followed to predict transition to

adjacent clusters with increased risk of LVEDP elevation.

This trial demonstrates five clusters resulting from the

analysis of 396 subjects (Figure 3), composed of 92 (23%)

subjects with LVEDP≥25 mmHg and 304 (77%) subjects with

LVEDP≤12 mmHg. The heatmap of the magnitude of feature

values (Figure 3A) illustrates the similarity of cluster 1 and

cluster 2 (purple and green) phenogroups with regard to each

of the 30 features. The degree of similarity can be appreciated

visually, with the density of yellow and brown being closest

between cluster 1 and 2 (purple and green). When moving

from cluster 1 (shown in column 1) to cluster 5 (column 5),

the coloration representing feature values becomes progressively

more discrepant to cluster 1.

Correspondingly, the pairwise distance matrix (Figure 3B)

showing the distance between pairs of subjects yields a diagonal

line that elucidates the basis behind the formation of each

cluster. Each solid box on the diagonal line starting with

cluster 1 (top left, column 1) and progressing down the

diagonal to bottom right to arrive at cluster 5, indicates

very similar distancing between points in each cluster (high

intensity of blue coloring). The dotted rectangle boxes permit

comparison between the clusters with reference to the distance

between subjects. In addition, this provides confirmation of the

appropriateness and accuracy of the resultant clusters.

Cluster 1 and the adjacent cluster 2 demonstrate the closest

feature values, but interestingly, have the widest divergence of

prevalence of elevated LVEDP. Their proximity suggests that

modest changes in feature values could result in transition of a

subject in cluster 2 to cluster 1, and consequently may result in

increased risk of elevation in LVEDP.

Of the top 30 features from the LVEDP algorithm included

in the clustering, 22 were derived from the OVG signal, and

eight were derived from the PPG signal. We found that features

quantifying predictability and variability exhibited the most

substantial differences between the cluster with the highest

rate of LVEDP elevation (cluster 1) and the adjacent cluster

2, which presented with the second lowest rate of LVEDP

elevation across the clusters. This feature difference suggests

that it may be possible to follow subjects initially belonging

to the cluster 2 phenotype to determine whether the signal

properties shift over time to increased variability and decreased

predictability, indicating that they may be transitioning to the

adjacent cluster 1, with the associated higher prevalence, and

therefore risk of, LVEDP elevation. Validation of the described

phenotypes can be achieved through clinical follow-up to detect

outcomes. In addition, opportunities exist to further characterize

the phenotypes by inclusion of supplementary clinical data,

including biomarkers such as BNP.

Conclusion

An approach to stratify the likelihood of movement

between clusters and the possible progression of myocardial

dysfunction for an individual patient could include changes

in the features that differentiate these clusters; specifically,

reductions in electrical signal predictability and increases in

variability. Identification of distinct subtypes of myocardial

dysfunction evidenced by elevated LVEDP and knowledge of

factors that promote transition to clusters with higher levels

of left ventricular filling pressures may permit early risk

stratification and improve patient selection for novel therapeutic

interventions thereby facilitating precision medicine.
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Objective: This study aimed to compare the sensitivity and specificity of

diagnosis between the third heart sound (S3) and left ventricular ejection

fraction (LVEF) in heart failure (HF).

Methods: Relevant studies were searched in PubMed, SinoMed, China

National Knowledge Infrastructure, and the Cochrane Trial Register until

February 20, 2022. The sensitivity, specificity, likelihood ratio (LR), and

diagnostic odds ratio (DOR) were pooled. The symmetric receiver operator

characteristic curve (SROC) and Fagan’s nomogram were drawn. The source

of heterogeneity was explored by meta-regression and subgroup analysis.

Results: A total of 19 studies, involving 5,614 participants, were included. The

combined sensitivity of S3 was 0.23 [95% confidence interval (CI) (0.15–0.33),

specificity was 0.94 [95% CI (0.82–0.98)], area under the SROC curve was

0.49, and the DOR was 4.55; while the sensitivity of LVEF was 0.70 [95% CI

(0.53–0.83)], specificity was 0.79 [95% CI (0.75–0.82)], area under the SROC

curve was 0.79, and the DOR was 8.64. No publication bias was detected in

Deeks’ funnel plot. The prospective design, partial verification bias, and blind

contributed to the heterogeneity in specificity, while adequate description of

study participants contributed to the heterogeneity in sensitivity. In Fagan’s

nomogram, the post-test probability was 48% when the pre-test probability
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was set as 20%, while in LVEF, the post-test probability was 45% when the

pre-test probability was set as 20%.

Conclusion: The use of S3 alone presented lower sensitivity in diagnosing HF

compared with LVEF, whereas it was useful in early pathological assessment.

KEYWORDS

acute heart failure, LVEF, meta-analysis, third heart sound, heart failure

Introduction

Heart failure (HF) is a pathological process during the
pumping of blood in the heart. The cardiac output becomes
insufficient to fully meet the needs of body metabolism (1–3).
Currently, the 5 year mortality rate for HF has remained
around 50% (4). The traditional diagnosis of HF relies
mainly on the history and physical examination; the clinical
diagnostic methods for HF include bio-standard object
examination, electrocardiogram, echocardiogram, cardiac
magnetic resonance imaging, and invasive hemodynamic
monitoring (5). The ratio of stroke volume to ventricular
end-diastolic volume is called the ejection fraction. The ejection
fraction accurately reflects the pumping function of the heart,
which is important for the early detection of cardiac pumping
dysfunction. Left ventricular ejection fraction (LVEF) is an
important diagnostic index of HF and an important basis for its
classification (5).

The non-invasive detection method has been used for the
effective diagnosis of early HF without organic heart disease or
clinical symptoms (6). As routine cardiac physical examination,
heart sound auscultation helps in cardiac function evaluation
and initial screening of cardiac structure abnormalities, and
has important value for the early diagnosis of cardiovascular
diseases (7). Heart sound signals, especially the third heart
sound (S3) signals, are associated with increased left ventricular
end-diastolic pressure, and considered ideal confirmatory
markers (8). Recently, the application of heart sound analysis
in the diagnosis and classification of HF has emerged gradually.
However, the value of diagnosis using heart sounds in
HF remains controversial. Therefore, this study aimed to
compare the sensitivity and specificity of diagnosis between
S3 and LVEF in HF.

Methods

Search strategy

Two reviewers (DL and LXJ) searched the PubMed, Embase,
Cochrane Library, China National Knowledge Infrastructure,
and Wan Fang databases up to February 2022 independently.
The search terms were as follows: #1 TS = (“HF, Diastolic”

OR “HF, Systolic” OR “Ventricular Dysfunction, Right” OR
“Ventricular Dysfunction, Left”); #2 TS = (the S3 OR Heart
Auscultation OR Heart Sounds OR Sounds, Heart OR Cardiac
Sounds OR Cardiac Sound OR Sound, and Cardiac OR Sounds,
Cardiac); #3 DT = (Clinical Trial OR Article); #4 DOP = (1971-
01-01/2022-2-22); #5 #1 AND #2 AND #3 AND #4.

Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) randomized
controlled experiments using patients with HF as the
experimental group and healthy people or patients with
benign disease as the control group; (2) well-defined patients
with HF included as study participants; (3) diagnostic tests
including S3 or/and LVEF; (4) number of true-positive (TP)
cases, false-negative (FN) cases, false-positive (FP) cases,
and true-negative (TN) cases obtained directly or calculated
through the literature; (5) age, sex, and race not considered;
and (6) studies published in any language. The exclusion
criteria were as follows: (1) animal studies; (2) non-case-control
trials; (3) studies with incomplete or no experimental data,
duplicate published literature, reviews, and abstracts; (4) poor
equilibrium between groups and different baselines, and the two
groups not compared with the literature; and (5) no described
diagnostic tests.

Data extraction

Two authors (LD and XL) independently extracted the
demographic data and treatment information; the third author
(MH) was consulted when disagreement occurred. The baseline
information extracted from 23 studies contained the first
author’s name, year of publication, title, design type, study
participants (number, age, and male/female ratio), disease
degree, and length of the disease. The primary outcomes
included FN, TN, TP, and FP with S3 and LVEF.

Statistical analysis

A meta-analysis was performed with Stata 15.0 software
(Stata Corp., College Station, TX, USA). The combined
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FIGURE 1

Literature screening process of the meta-analysis.

sensitivity, specificity, positive/negative likelihood ratio
(PLR/NLR), and diagnostic odds ratio (DOR) were calculated
using the bivariate model. The total diagnostic accuracy
was estimated by drawing the symmetric receiver operator
characteristic curve (SROC). Post-test probability was
used to determine whether the probability of diagnosis
increased or reduced compared with pre-test probability,
which was estimated from routine data, practice data,
or clinical judgment. Heterogeneity was assessed using
Cochrane’s Q statistics (chi-square) or inverse variance
(I2). I2 < 50% and P > 0.1 indicated that these studies
could be considered homogeneous using a fixed-effects
model. If I2

≥ 50% and P < 0.10, the random-effects model
was used for meta-analysis. A P-value < 0.05 indicated a
significant difference.

Results

Flow chart and study quality

A total of 28,179 studies (including documents, reviews,
animal experiments, case reports, and repeated studies) were
retrieved from each database. After removing 27,074 duplicate
records, 279 relevant studies were included. Among these
studies, 2,115 were excluded for being reviews, meta-analyses,
or case reports, while 19,209 studies did not have related titles
and abstracts. The full text of the remaining 279 studies was
read and 3,093 studies were removed after reading the full
text due to incomplete data. The remaining 19 studies were
extracted from the corresponding data according to the data
extraction requirements. Twelve studies used S3, and seven used
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LVEF. The literature screening process is shown in Figure 1.
The basic characteristics and inclusion and exclusion criteria of
each study included are shown in Table 1 and Supplementary
Table 1.

Third heart sound against heart failure

The combined sensitivity of S3 in HF was 0.23 [95% CI
(0.15–0.33)], specificity was 0.94 [95% CI (0.82–0.98)], PLR
was 3.74 95% CI (1.33–10.50)], NLR was 0.82 [95% CI (0.74–
0.92)], and DOR was 4.55, indicating that S3 had a medium
value in the screening of HF. The random-effects model was
used when the heterogeneity was I2 > 50%. The details of
the combined sensitivity and specificity forest are shown in
Figure 2A; the combined likelihood ratio (LR) forest is shown
in Figure 2B; and the combined diagnosis ratio forest is shown
in Figure 2C.

Publication bias and heterogeneity

The Deeks’ funnel plots were used to assess potential
publication bias in detecting HF with S3. As shown in Figure 3,
no publication bias existed, with a P-value of 0.35. The bivariate
boxplot showed that three studies were out of the circles,
indicating heterogeneity between included studies, as shown in
Figure 4.

Threshold effect

The symmetric receiver operator characteristic curve curve
plane test was used for the threshold effect. No typical “shoulder
arm” was found, indicating no threshold effect. A moderate
predictive value could be concluded by the value of the area
under the SROC curve (AUC), which was 0.49 [95% CI (0.45–
0.54)], as shown in Figure 5.

TABLE 1 Basic characteristics of enrolled studies.

References Study Region N Age (mean ± SD) Sex (male%)

Dao et al. (9) Retrospective America 250 CHF (n = 250): 63 ± 0.86; CHF: male/female = 94:6

Knudsen et al. (10) Retrospective America 880 HF (n = 447): 64 ± 16; No-HF (n = 433):
64 ± 16

HF: 482 (55)

Knudsen et al. (11) Retrospective Norway 155 CHF (n = 155): men (n = 69): 74 (66–79);
women (n = 86): 78 (71–84)

Men: 69 (44.5)

Zhang (12) Prospective China 78 CHF (n = 42): 63 ± 12; non-CHF (n = 36):
54 ± 12

CHF: 29 (69.0); non-CHF: 21 (58.3)

Collins et al. (13) Prospective America 343 Primary HF (n = 133): 69 (30–97); secondary
HF (n = 60): 68 (39–93); non-HF (n = 150): 55

(20–95)

Primary HF: 70 (52.6); secondary HF: 26
(43.3); non-HF: 63 (42.0)

Collins et al. (14) Prospective America 1,076 ADHF (n = 413): 68 (40–95); no-ADHF
(n = 506): 59.5 (40–95)

ADHF: 246 (59.6) No-ADHF: 255 (50.4)

Wang et al. (15) Retrospective China 292 HBP (n = 94): 54 ± 10; HFREF (n = 89):
73 ± 13; HFNEF (n = 109): 77 ± 10

HBP: 46 (49); HFREF: 66 (74); HFNEF: 46 (42)

Dieplinger et al. (16) Prospective Austria 251 CHF (n = 137): 76 (69–82); non-CHF
(n = 114): 69 (58–78)

CHF: 128 (93); non-CHF: 106 (93)

Miller et al. (17) Prospective USA 89 AHF (n = 35): 72 ± 10; non-AHF (n = 54):
65 ± 10

AHF: 24 (69); non-AHF; 28 (52)

Wang et al. (18) Retrospective China 127 HF: 72 ± 13 (36–97) HF: 91 (71.7)

Logeart et al. (19) Prospective America 163 CHF (n = 115): 68.3 ± 14.7; non-CHF
(n = 48): 65.1 ± 15.1

Male/female CHF (n = 115): 80/35; non-CHF
(n = 48): 29/19

Steg et al. (20) Prospective America 709 CHF (n = 492): 68.5 ± 14.1; non-CHF
(n = 217): 61.6 ± 14.8

Male/female CHF (n = 492): 217/275
non-CHF (n = 217): 90/127

Nazerian et al. (21) Prospective Italy 145 aLVHF (n = 64): 8 ± 8; Others (n = 81):
75 ± 12

aLVHF (female): 33 (54); others (female): 41
(51)

Anderson et al. (22) Prospective America 101 ADHF (n = 44): 63 (53–91); non-ADHF
(n = 57): 62 (52–88)

ADHF: 25 (56); non-ADHF: 27 (47)

Kajimoto et al. (23) Prospective Japan 90 AHFS group (n = 53): 77.7 ± 10.3; pulmonary
group (n = 37):78.6 ± 9.2

AHFS group (female): 29 (54.7); pulmonary
group (female): 16 (43.2)

Hu (24) Prospective China 100 CHF (n = 50): 63.55 ± 2.4; non-CHF (n = 50):
63.5 ± 2.35

CHF: 33 (66); Non-CHF: 35 (70)

Jiang (25) Prospective China 60 CHF (n = 48): 59.14 ± 6.82; non-CHF
(n = 12): 59.14 ± 6.82

CHF: 37 (61.7) non-CHF: NA

Logeart et al. (19) Prospective America 163 CHF (n = 115): 68.3 ± 14.7; non-CHF
(n = 48): 65.1 ± 15.1

CHF: 80 (52.7); non-CHF: 29 (17.8)

Steg et al. (20) Prospective America 709 CHF (n = 492): 68.5 ± 14.1; No CHF
(n = 217): 61.6 ± 14.8

CHF: 217 (44.1); No CHF: 90 (41.5)

NA, not available from original study paper or supplementary or registration information; ED, emergency department.
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(Continued)
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FIGURE 2

(A) Forest plot of sensitivity and specificity of third heart sound (S3) in the diagnosis of heart failure (HF). (B) Forest plot of DLR positives and
negatives of HF. (C) Forest plot of the diagnostic odds ratio (DOR) of S3 in the diagnosis of HF.

FIGURE 3

Deeks’ funnel plot.
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FIGURE 4

Bivariate boxplot.

FIGURE 5

Summary receiver operating characteristic of third heart sound
(S3).

Pre-test probability, likelihood ratio,
and post-test probability

The Fagan graph was plotted to show the relationship
among the prior probability, the LR, and the posterior
probability. The pre-test probability was 20% and the post-test
probability of HF was 48%. In addition, the positive likelihood
ratio (LRP) was <10 (LRP = 4) and the negative likelihood ratio
(LRN) was >0.1 (LRN = 0.82), indicating that the diagnosis
could neither be confirmed nor excluded. The predictive value
of S3 in HF was limited, as shown in Figure 6.

Meta-regression and subgroup analysis

Among the S3 studies, the factors that might affect the
heterogeneity, including prospective design (prodesign), partial
verification bias (fulverif), an adequate description of study
participants (subjdescr), report, a broad spectrum of diseases
(brdspect), and whether the test results were evaluated by a

FIGURE 6

Fagan diagram of third heart sound (S3) in the diagnosis of heart
failure (HF).

blind method, were evaluated. The meta-regression analysis
of the aforementioned factors revealed that the sources of
heterogeneity of sensitivity were statistically related to subjdescr
and the sources of heterogeneity of specificity were related to
prodesign, as shown in Figure 7.

Left ventricular ejection fraction
against heart failure

The combined sensitivity was 0.70 (95% CI, 0.53–0.83),
specificity was 0.79 (95% CI, 0.75–0.82), PLR was 3.31 (95%
CI, 2.46–4.44), NLR was 0.38 (95% CI, 0.23–0.64), and DOR
was 8.64, indicating that the LVEF had a medium value in the
screening of HF. The heterogeneity was I2 > 50%; therefore, the
random model was used, as shown in Figure 8.

Publication bias and heterogeneity

The P-value of Deeks’ funnel plots asymmetry test was 0.90
(P > 0.05). As shown in Figure 9, no evidence of publication
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FIGURE 7

Multiple univariate meta-regression and subgroup analysis.
Prospective design: prodesign; fulverif: partial verification bias;
subjdescr: adequate description of study participants; brdspect:
broad spectrum of disease.

bias was found. It demonstrated that three sets of data were out
of the circles, indicating heterogeneity between included studies.
The details are shown in Figure 10.

Threshold effect

The threshold effect was assessed using the SROC curve
plane test. As no typical “shoulder arm” was found, no threshold
effect was observed. A moderate predictive value could be
concluded using the value of the AUC, which was 0.79 (95% CI,
0.75–0.83). The details are shown in Figure 11.

Pre-test probability, likelihood ratio,
and post-test probability

The pre-test probability was 20%, and the probability of HF
was 45%. In addition, the LRP was <10 (LRP = 3) and the LRN
was >0.1 (LRN = 0.38), indicating that the diagnosis could be
neither confirmed nor excluded. Their predictive value of LVEF
in HF was also limited. The details are also shown in Figure 12.

Meta-regression and subgroup analysis

Among the LVEF studies, the factors that might affect the
heterogeneity, including prospective design (prodesign), partial

verification bias (fulverif), an adequate description of study
participants (subjdescr), report, a broad spectrum of disease
(brdspect), and whether the test results were evaluated by a
blind method, were evaluated. The meta-regression analysis of
the aforementioned factors revealed that although the sources
of heterogeneity of specificity were statistically related to the
prodesign, fuverif, and blind, the sources of heterogeneity
of sensitivity were not related to these factors, as shown in
Figure 13.

Comparison of third heart sound and
left ventricular ejection fraction

Third heart sound and LVEF were compared using SROC,
sensitivity, and specificity analysis. Among them, the predictive
value of LVEF was better. The details are shown in Table 2.

Discussion

Heart failure is a global public health issue of epidemic
proportions and represents a tremendous burden to the overall
healthcare costs (26). Meanwhile, it affects the quality of life of
patients and their families seriously. Therefore, early recognition
and accurate diagnosis are essential, and meaningful for a
positive outcome.

This systematic review and meta-analysis was novel in
comparing the ability to diagnose HF between S3 and LVEF.
In this meta-analysis, 19 studies, including 5,614 participants,
were analyzed. The combined sensitivity and DOR of S3 was less
than that of LVEF. On the contrary, S3 had a higher specificity
than LVEF, and the AUC of S3 was less than that of LVEF.
Moreover, after using the S3 or LVEF, the post-test probability
was equally improved. This suggested that LVEF had the highest
diagnostic value compared with S3 and S3 alone was not of high
diagnostic value for HF.

The 2021 ESC guidelines (5) pointed out that the
identification of the etiology of the underlying cardiac
dysfunction was imperative in the diagnosis of HF, making
it convenient for subsequent treatment decision-making. In
general, HF is due to systolic, diastolic, or both dysfunction.
However, the pathology of the valves, pericardium, or
endocardium and the abnormalities of heart rhythm, and
conduction can contribute to HF (27). Heart sound intensity
and frequency and their relationship or the occurrence of heart
murmur are closely related to the condition of a cardiac valve,
myocardial contraction, and blood flow in the heart (28). The
aforementioned arguments laid the solid foundation for the
diagnosis of HF via heart sound detection and analysis.

Kosmicki et al. (29) found that the diagnostic efficacy of the
discriminative model constructed based on the characteristics
of heart sound-electrocardiogram fusion, which included the
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FIGURE 8

(Continued)
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FIGURE 8

(A) Forest plot of sensitivity and specificity of left ventricular ejection fraction (LVEF) in diagnosing heart failure (HF). (B) Forest plot of DLR
positives and negatives of HF. (C) Forest plot of the diagnostic odds ratio (DOR) of LVEF in diagnosing HF.

FIGURE 9

Deeks’ funnel plot.
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FIGURE 10

Bivariate boxplot.

FIGURE 11

Summary receiver operating characteristic of left ventricular ejection fraction (LVEF).

S3 strength, left ventricular systolic time, electromechanical
activation time, QR interval, and QRS interval, was significantly
better than that of B-type natriuretic peptide (BNP). Moreover,
the identification ability of patients with CHF in the “gray zone”
of BNP significantly improved. Moreover, Maisel et al. (30)
found that the strength of the S3 provided rapid results that
assisted with the identification of acute HF (AHF) in selected
populations. This evidence disclosed that S3 had high diagnostic
value as an auxiliary diagnostic indicator. However, S3 was used
as the single diagnostic indicator, reducing the sensitivity and
specificity of diagnosis.

Meanwhile, the deficit in auscultation technology and the
techniques of sound deciphering pulled down the sensitivity and
specificity of diagnosis in HF via heart sound. The detection
method for heart sound has been continuously improving, with
new feature extraction algorithm and computer-aided diagnosis
system based on machine learning or deep learning (31, 32),
which further improves its diagnostic value. Liu et al. (31).
reported that using extreme learning machine and heart sound
characteristics to assist in diagnosing HF with preserved ejection
fraction (HFpEF) showed an accuracy of 96.32%, a sensitivity
of 95.48%, and a specificity of 97.10, which demonstrated
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FIGURE 12

Fagan diagram of left ventricular ejection fraction (LVEF) in the
diagnosis of heart sound.

FIGURE 13

Multiple univariate meta-regression and subgroup analysis.
Prospective design: prodesign; fulverif: partial verification bias;
subjdescr: adequate description of study participants; brdspect:
broad spectrum of disease.

the effectiveness of HS for HFpEF diagnosis.Alkhodari et al.
(33) showed that the potential of implementing deep learning-
based models clinically to ensure faster, yet accurate, automatic
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prediction of HF based on the ASE/EACVI LVEF guidelines
with only clinical profiles, and corresponding information as
input to the models. In addition, Alkhodari et al. (34) also
found that applied support vector regression (SVR) models to
estimate LVEF from ECG derived heart rate variability (HRV)
data which ensure the best possible estimations of LVEF levels.
Although the diagnostic value of S3 as a single indicator for
HF is not high, heart sound shows promise as a diagnostic and
prognostic tool in HF with the update of heart sound feature
extraction methods.

Conclusion

The use of S3 alone presented lower sensitivity in the
diagnosis of HF compared with LVEF, whereas it was useful
in early pathological assessment. Future prospective studies are
needed to explore the diagnostic value of heart sound analysis
based on new feature extraction algorithm and computer-aided
diagnosis system based on machine learning or deep learning, so
as to improve the early recognition rate of HF.

Study limitations

First, less and reduplicative studies made the original data
incomplete. Second, moderate heterogeneity existed across
studies, and meta-regression and subgroup analyses failed
output due to limited S3 data. Third, few included studies did
not explicitly exclude participants. These shortcomings should
be further investigated and addressed in future studies.
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Improving predictive
performance in incident heart
failure using machine learning
and multi-center data
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Objective: To mitigate the burden associated with heart failure (HF), primary

prevention is of the utmost importance. To improve early risk stratification,

advanced computational methods such as machine learning (ML) capturing

complex individual patterns in large data might be necessary. Therefore, we

compared the predictive performance of incident HF risk models in terms of

(a) flexible ML models and linear models and (b) models trained on a single

cohort (single-center) and on multiple heterogeneous cohorts (multi-center).

Design and methods: In our analysis, we used the meta-data consisting of

30,354 individuals from 6 cohorts. During a median follow-up of 5.40 years,

1,068 individuals experienced a non-fatal HF event.We evaluated the predictive

performance of survival gradient boosting (SGB), CoxNet, the PCP-HF risk

score, and a stacking method. Predictions were obtained iteratively, in each

iteration one cohort serving as an external test set and either one or all

remaining cohorts as a training set (single- or multi-center, respectively).

Results: Overall, multi-center models systematically outperformed single-

center models. Further, c-index in the pooled population was higher in

SGB (0.735) than in CoxNet (0.694). In the precision-recall (PR) analysis for

predicting 10-year HF risk, the stacking method, combining the SGB, CoxNet,

Gaussian mixture and PCP-HF models, outperformed other models with

PR/AUC 0.804, while PCP-HF achieved only 0.551.

Conclusion: With a greater number and variety of training cohorts, the model

learns a wider range of specific individual health characteristics. Flexible ML

algorithms can be used to capture these diverse distributions and produce

more precise prediction models.
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heart failure, incidence, machine learning, prediction model, multi-center data
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Introduction

Amajor burden of modern society is progressive increase in

age-associated disorders such as cardiovascular (CV) diseases.

Due to population aging and unhealthy lifestyle, the prevalence

of heart failure (HF) in low- to middle-income countries will

rise by 50% in the next 5–10 years (1). According to the

World Health Organization, proper early risk stratification

and management could help reduce the burden of this

chronic disorder.

There are currently a number of clinical risk scores indented

for specific populations and risk groups (2–6). For example,

the Pooled Cohort Equations to Prevent HF (PCP-HF) score

is recommended to use for 10-year incident HF prediction in

a general population (7). Most of the recommended scores

are, however, based on a linear model and might therefore

lack the specificity and sensitivity in certain subgroups. The

wide variety of scores may also cause slow adoption in

clinical practice.

The use of advanced analytic techniques such as machine

learning (ML) might improve the predictive performance of

models by employing a higher number of interrelated and non-

linear features. In addition, training ML models on a wide

range of patient groups might create tools generally applicable in

different settings. Recently, the number of publications applying

ML for both prognosis and diagnosis of CV disease sharply

increased, with 85% of these decided in favor of ML as opposed

to traditional linear methods (8). The most popular choices

include tree-based boosting and bagging methods, such as

survival gradient boosting (SGB) and random survival forests

(RSF) (9). However, a substantial obstacle in the adoption of

ML in CV risk prediction, including HF, is the lack of adequate

external validation in a large number of individuals with varied

characteristics, as well as the ability to exploit flexible models

when trained in various populations using a large number of

relevant features (8).

Therefore, we proposed to test predictive model

performance in a spectrum of train and test populations

systematically instead of selecting a single derivation and

validation cohort. Similarly, choosing an appropriate evaluation

strategy (internal, external, etc.) is crucial (10). Thus, we

additionally evaluated the influence of obtaining more diverse

training data (multi-center) on the predictive performance of

incident HF prediction models.

Objectives

The main objective of our analysis was to evaluate the

predictive performance of the incident HF risk prediction

models in the general population. Specifically, we compared

the predictive performance of a linear model (CoxNet), non-

linear model (SGB), currently used HF risk score (PCP-

HF), and a stacking method (combining prediction of tested

models). We also evaluated the predictive performance of

models when trained on multiple heterogeneous cohorts

(multi-center) rather than on single cohort. In addition,

we reported features selected by the models and assessed

their achieved predictive performance for the given number

of features.

Methods and materials

Study design is outlined in Figure 1.

Cohorts

In our analysis, we included 6 cohorts from the Heart

“Omics” in Aging (HOMAGE) meta-data—the Anglo-

Scandinavian Cardiac Outcomes Trial (ASCOT), the

Flemish Study on Environment, Genes, and Health Outcomes

(FLEMENGHO), the Health Aging and Body Composition

(Health ABC), HVC database, Valutazione della PREvalenza di

DIsfunzione Cardiaca asinTOmatica e di scompenso cardiaco

(PREDICTOR), and the Prospective Study of Pravastatin in

the Elderly at Risk (PROSPER). The final dataset included

33 features consisting of clinical (e.g., medical history, HR,

SBP), biochemical (e.g., blood glucose, creatinine), and ECG

(e.g., duration QRS) variables. For a complete list of included

features, see Supplemental Table 1. The unfiltered input data of

the individuals consisted of 43,817 individuals. We removed

participants younger than 30 and older than 80 years old

(n = 4,709), with HF diagnosis at baseline (n = 3,462), with

missing outcome (n = 5,058), with missing blood pressure

measurements (n = 107), and with invalid follow-up time (n =

127). The final study population included 6 cohorts consisting

of 30,354 subjects.

By sending anonymized data, the contributing partners

confirmed that their study complies with good clinical

practice (Helsinki Declaration), that all participants provided

written informed consent, and that at the time of its

conduct the study conformed to national regulations on

clinical research in humans and on the protection of

privacy. The HOMAGE database was described in depth

elsewhere (11, 12).

Outcome of interest

The primary outcome of interest in this study is incident

non-fatal HF, defined as HF hospitalization. The specificities of
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FIGURE 1

Study design.

non-fatal HF in each of the cohorts were described elsewhere

(11, 12).

ML algorithms

We evaluated the predictive performance of the following

two models: a flexible survival ML model (Survival Gradient

Boosting, SGB) and a linear Cox proportional hazard model-

CoxNet. SGB is a non-linear machine learning method based on

training regression trees with the objective of optimizing Cox

partial likelihood. CoxNet is a standard linear Cox proportional

hazard model, regularized by both L1 and L2 norms. As an

alternative, we also employed the stacking method, consisting of

the above-mentioned CoxNet and SGB, together with PCP-HF

score and unsupervised Gaussian mixture model. The stacking

method works in two layers, the output of the first layer of

base learners is the input of the second “meta” layer, consisting

of another model. For CoxNet, the features were standardized.

We used the Optuna library with the tree-structured parzen

estimator to optimize the model hyperparameters on an internal

validation set. For ML pipelines, we used the scikit-learn and

scikit-survival Python libraries. The code of the analysis is

available online1.

Model evaluation and statistical analysis

The discrimination of the models was evaluated using the

c-index. Predictive performance was evaluated iteratively, with

each cohort serving as a test set (external cohort validation).

In each iteration, the multi-center models were trained on the

remaining 5 cohorts (1 cohort test), while the single-center

models were trained on a single cohort. The final predictive

performance was obtained by evaluating the merged predictions

and, in the case of single-center models, averaged. The goal

was to compare the predictive performance of models trained

1 https://github.com/hcve/incidence-hf
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FIGURE 2

Predictive performance increased with multi-rather than single-cohort training data both in CoxNet (A) and survival gradient boosting (SGB) (B).

On the pooled dataset, SBG achieved a greater overall c-index than CoxNet (C). In terms of number required features to achieve maximum

predictive performance, SBG required 11 features and CoxNet 6 features (D).

FIGURE 3

Comparison of the most important features in CoxNet (A) and survival gradient boosting (B).
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FIGURE 4

Precision-recall curves for 10-year prediction showing stacking,

Survival Gradient Boosting (SGB), CoxNet, and PCP-HF. Stacking

exhibits the best discrimination.

in limited data (single-center) and those trained in a more

comprehensive sample (multi-center) (Figure 1).

All optimization/training pipelines were run 10 times, each

time with a different random seed, producing 10 slightly

different models. To provide a more stable prediction, each

prediction was a mean of predictions of these 10 models.

To obtain a more balanced estimate, samples were weighted

inversely to the proportions of sizes of their corresponding

cohorts. Therefore, in effect, each cohort had the same influence

on predictive performance. We performed the two-sample

Kolmogorov-Smirnov test to evaluate the statistical significance

of the difference in c-index of the models. We also performed

a feature importance analysis to illustrate which features were

important for specific models and, therefore, might carry

clinically useful information.

In addition, we used the 10-year binary endpoint to evaluate

the models in clinically relevant precision-recall (PR) analysis

(Figure 1). PR analysis is more sensitive to differences in false

positives and thus better captures the practical aspect of clinical

decision making. In the process of binarizing the outcome,

subjects censored before the endpoint were removed. The

predictions in the calibration plot were divided into bins on

the x axis according to the predicted probability of an event,

and this probability was put into comparison with empirical

event incidence in the given bin on the y axis. 95% confidence

intervals were calculated from 100 bootstrapped test scores,

thus quantifying uncertainty on the unseen data (assuming the

training data were given).

Results

Study population

The dataset consisted of 30,354 individuals (mean age

66 ± 9 years, 66.57% male), free of HF at the baseline.

For detailed cohort characteristics and missing values, see

Supplemental Tables 1, 2, respectively. During a median follow-

up of 5.40 years (IQR 4.28–6.52), 1,068 individuals experienced

at least one non-fatal HF event (6.46 events per 1,000 person-

years). For a detailed overview of the outcome statistics, see

Supplemental Table 3. In this study, we also evaluated the HF

prediction at the endpoint of 10 years. After removing censored

subjects, we obtained 2,883 subjects (891 events) for the 10-year

prediction (Figure 1).

Comparing predictive performance of
single-/multi-center and
linear/non-linear models

As illustrated in Figures 2A,B, multi-center models

systematically outperformed single-center models. For example,

when testing on the FLEMENGHO cohort, multi-center

SGB achieved c-index of 0.812, while only 0.714 in a single-

center setting. Overall, the c-index in the pooled population

(Figure 2C) was significantly higher (P < 0.0001) in non-linear

SGB (0.735; 95% CI: 0.728–0.742) than in linear CoxNet (0.694;

95% CI: 0.686–0.704). These c-index values corresponded to risk

discrimination between all individuals, and, therefore, represent

the situation of a heterogeneous population. The calibration

plot in Supplemental Figure 1 showed good calibration of both

methods, but SGB showed a certain overestimation of risk in

some individuals with lower risk.

Important features for incident HF
prediction

In this analysis, SGB achieved maximal predictive

performance with about 11 features, whereas CoxNet exploited

fewer features and achieved its maximal predictive performance

with only 6 features (Figure 2D). Figure 3 showed the

importance of the permutation obtained from changes in

predictive performance when supplied with shuffled input

features. The CoxNet predictive model relied heavily on age,

with a smaller influence of several other predictors, including

SBP, QRS duration, and body weight. On the contrary, SGB

employed a wider range of features beyond age, including serum

creatinine, blood pressure, blood glucose, BMI, ECG features,

antihypertensive treatment, and CV disease history.

Precision-recall of 10-year HF prediction
using novel and traditional scores

For predicting the 10-year risk of incident HF, the stacking

method, combining the SGB, CoxNet, Gaussian mixture, and
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PCP-HF models, achieved the best discrimination in the PR

analysis (Figure 4), with PR/AUC 0.804 (95% CI: 0.782–0.823).

SGB and PCP-HF performed similarly with PR/AUC of 0.541

(0.498–0.566) and 0.551 (0.528–0.589), respectively. CoxNet

achieved PR/AUC of 0.473 (0.442–0.503).

Discussion

Predictive performance of ML and linear
methods in incident HF prediction

In the line with previous studies focusing on the comparison

of ML methods with linear-based scores (9, 13–15), our study

supported the findings that the ML model (SGB) detected

more subtle patterns for incidence HF prediction than the

linear CoxNet. Simultaneously, the predictive performance

of ML algorithms varies dependent on a given task. Given

the heterogeneity of predictive performance, stacking is a

suitable tool capable of increasing predictive performance by

combining the output of several estimators (models) using

another ML meta-model. In our study, the stacking model,

consisting of SGB, CoxNet, Gaussian Mixture, and the PCP-

HF score, outperformed all tested models for 10-year incident

HF prediction.

The full capacity of ML in the deep characterization of

clinical phenotypes and therefore the delivery of personalized

medicine is still unknown. The potential of using ML in

HF prediction (and CV more broadly) depends strongly on

the depth and volume of representative data points available.

For example, Balabaeva et al. reported that temporal features

increased the predictivity of ML in assessment of symptomatic

HF prognosis (16). Therefore, integration of the temporal

domain into prediction models might be the next logical step

in the application of ML in CV/HF risk stratification. Using two

or more data points could help extrapolate the rate of change in

one’s health status more precisely.

Multi-center data increased predictive
performance in HF prediction

The collection of representative data is crucial for success

in the development of reliable risk stratification tools. Our

analysis showed that models trained on a combination of

cohorts outperformed models trained on a single cohort

(Figures 2A,B). These results advocated for use of large

and representative training data for developing robust

prediction tools. Indeed, flexible ML models, such as

gradient boosting, require a large training sample to cover

the full feature space. However, clinical data use must be in

accordance with data privacy and might struggle with pitfalls in

data sharing.

Dataset shift and multi-center data

One of the main reasons for maximizing the volume

of training data is to overcome the so-called “dataset shift”

problem. This problem relates to a shift in the distribution

of derivation and validation (test, real-world) cohorts (17). It

occurs for various reasons, such as differences in population

characteristics, hospital procedures, selection bias, etc. The

dataset shift manifests itself as a decrease in predictive

performance when the model is tested on an unseen population,

and therefore the external validation is crucial in estimating the

generalization of the model. One straightforward and effective

approach to combating the dataset shift is to train flexible

ML models on a large volume of representative data (17).

An example of difficulties originating from the lack of robust

predictive models trained on such diverse data is the need

to recalibrate current HF and/or CV risk scores for each

tested population (5). With a greater number and variety of

training samples, ML models can learn a wider range of health

profiles. Flexible ML algorithms, such as gradient boosting,

can thus be used to capture these diverse distributions and

produce more precise, personalized models for the prediction

of adverse events. For instance, the ML model that captures

personalized characteristics (e.g., ethnic differences) achieves

better predictive performance compared to the traditional

one (9).

Data sharing issues and regulation

As outlined above, to effectively evaluate the benefit

of ML in HF risk prediction, models need to be trained

and evaluated on diverse populations with extensive deep

phenotypes. On the other hand, there are some problems related

to data sharing and the aggregation of sensitive healthcare

information, as the protection of personal information is of

the utmost importance. This problematic is materialized in

General Data Protection Regulation (GDPR), which through

various means, including data minimization, strives to limit

sharing and storage of sensitive information. However, without

employing the full potential of high-quality data collected

globally, we will end up with numerous ML models struggling

to generalize and therefore deliver clinical value. To overcome

this issue, the use of federated learning (FL) could be an

alternative (18).

Federated learning

The objective of FL is to train ML models without

the requirement to collect data in a central place. FL

algorithms extract only the generally applicable clinical,

behavioral, and physiological characteristics, without the
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requirement for sensitive personal information. However,

there is a need for user-friendly FL tools to perform such

analyses in a practical way. Such tools could allow not

only federated learning (privacy-preserving collaborative

model training) but also federated analysis which could

supercharge the scientific progress in the CV field (and

others). Similarly, the integration of deep phenotypes

and the temporal domain will require specific tools for

clinical practice.

AI-based HF risk stratification tool in
clinical practice

To effectively deploy a validated and robust predictive

model in clinical practice, integration into the clinical workflow

must be as seamless as possible. This could require integrating

information from the electronic health records (EHR). However,

it might be notoriously difficult, e.g., in the European settings,

as there is currently a limited interoperable infrastructure. The

use of EHR should be human-centric with individuals having

full control over the use of their data. FL is compatible with

this approach by protecting personal data. One approach to

overcoming the heterogeneity of the healthcare systems is to

connect systems through a system-specific bridge (adapter).

Another approach is to use deep learning, which learns feature

representations directly from the EHR data. This system can

then transform the unstructured data from different systems

into a structure that can be pipelined into another ML

algorithm. These systems should be however open to ensure

trust and fairness and to facilitate integration into other

systems. Additionally, these systems might raise questions

regarding reliability and fairness. With many current scores,

there are online calculators allowing easy-to-use estimation of

individual risk. However, use in the clinical setting should

be cautious, as data privacy policy is not always clear and

could be a possible target of 3rd-party malware attacks (the

browser is more vulnerable). Therefore, an AI-based app

would serve as a more secure way to handle personal data

and would be more robust (e.g., working under internet

connectivity disruptions). Independently on the data input

method, the user experience (UX) needs to be user-friendly

and informative to aid in doctor-patient communication and

to provide the benefit of improved accuracy of ML-based

predictive models.

Conclusion

With a greater number and variety of training cohorts,

the model learns a wider range of specific individual health

characteristics. Flexible ML algorithms as well as the stacking

methods can be used to capture these diverse distributions and

produce more precise, personalized models for the prediction of

adverse events.
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Background: Heart failure (HF) is the end stage of various cardiovascular

diseases with a high mortality rate. Novel diagnostic and therapeutic

biomarkers for HF are urgently required. Our research aims to identify HF-

related hub genes and regulatory networks using bioinformatics and validation

assays.

Methods: Using four RNA-seq datasets in the Gene Expression Omnibus

(GEO) database, we screened differentially expressed genes (DEGs) of HF

using Removal of Unwanted Variation from RNA-seq data (RUVSeq) and the

robust rank aggregation (RRA) method. Then, hub genes were recognized

using the STRING database and Cytoscape software with cytoHubba plug-

in. Furthermore, reliable hub genes were validated by the GEO microarray

datasets and quantitative reverse transcription polymerase chain reaction

(qRT-PCR) using heart tissues from patients with HF and non-failing donors

(NFDs). In addition, R packages “clusterProfiler” and “GSVA” were utilized for

enrichment analysis. Moreover, the transcription factor (TF)–DEG regulatory

network was constructed by Cytoscape and verified in a microarray dataset.

Results: A total of 201 robust DEGs were identified in patients with HF

and NFDs. STRING and Cytoscape analysis recognized six hub genes,

among which ASPN, COL1A1, and FMOD were confirmed as reliable hub

genes through microarray datasets and qRT-PCR validation. Functional

analysis showed that the DEGs and hub genes were enriched in T-cell-

mediated immune response and myocardial glucose metabolism, which

were closely associated with myocardial fibrosis. In addition, the TF–DEG

regulatory network was constructed, and 13 significant TF–DEG pairs were

finally identified.
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Conclusion: Our study integrated different RNA-seq datasets using RUVSeq

and the RRA method and identified ASPN, COL1A1, and FMOD as potential

diagnostic biomarkers for HF. The results provide new insights into the

underlying mechanisms and effective treatments of HF.

KEYWORDS

heart failure, RNA-seq dataset, RUVSeq, robust rank aggregation, hub gene,
biomarker, functional enrichment analysis, transcription factor

Introduction

Heart failure (HF) is a complex clinical syndrome that
results from dysfunction of ventricular filling or ejection,
characterized by a variety of worsening symptoms and signs,
including dyspnea, fatigue, and fluid retention (1). The
occurrence of HF is predominantly caused by underlying
myocardial diseases, while cardiac lesions from valves,
vasculature, pericardium, heart rate/rhythm, or a combination
of cardiac abnormalities may also result in cardiac malfunction
(2). Despite the development of drug therapy and surgical
interventional therapy, the morbidity and mortality of HF
are increasing annually worldwide, which seriously threatens
human health and quality of life (3, 4). Therefore, to improve
the curative efficacy, it remains urgent to investigate the in-
depth underlying molecular mechanisms of HF to facilitate its
accurate diagnosis, early intervention, and precision therapy.

In recent years, the rapid progress of transcriptome
sequencing technology provides new directions for the
exploration of epigenetic changes and molecular mechanisms
in different diseases, including neoplastic and non-neoplastic
diseases (5, 6). Accordingly, an increasing volume of RNA
sequencing (RNA-seq) and microarray datasets of HF has
been uploaded in the Gene Expression Omnibus (GEO)
database, providing opportunities for bioinformatics data
mining of marker genes associated with HF (7). However, in
comparison to cancer-related surgery, the number of heart
transplantation surgeries is relatively small, which results
in the small sample size and large batch effects of RNA
sequencing or microarray datasets of HF. Therefore, to date, the
bioinformatics data mining of HF still faces great challenges,
especially regarding the integration and analysis of the RNA-seq
data (RUVSeq) related to HF.

The robust rank aggregation (RRA) method, first proposed
in 2012 by Kolde et al., is a rigorous approach using probabilistic
models to analyze the significant probability of all elements
in different sequencing or microarray datasets (8). Recently,
the RRA algorithm has been extensively used to integrate data
in different microarray platforms to screen the differentially
expressed genes (DEGs) in multiple diseases, including thyroid
carcinoma (9), prostate cancer (PCa) (10), and DCM (11). For
example, Song et al. utilized the RRA method to integrate 10
eligible PCa microarray datasets from the GEO and identify

four candidate biomarkers for prognosis of PCa (10). Ma
et al. integrated four eligible dilated cardiomyopathy (DCM)
microarray datasets from the GEO database and developed a 7-
gene signature predictive of DCM by utilizing the RRA method
(11). However, due to the greater difficulty in integrating
sequencing data, the application of the previous RRA algorithm
was limited to microarray data, and the RRA analysis of RUVSeq
was still rarely reported. Removal of Unwanted Variation from
RUVSeq, a Bioconductor package that generalizes a linear
model to regress variance estimated from the expression of
housekeeping genes, has been reported to be used to reduce
batch effects due to different sequencing conditions (12), which
provides a huge possibility for the combination of RUVSeq
and the RRA method in integrating different RUVSeq sets and
identifying HF-associated DEGs.

In the present study, RUVSeq and RRA analysis were
performed for the first time based on four RNA-seq datasets
in the GEO database to identify robust DEGs in HF samples
and non-failing donor (NFD) samples, followed by Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis for the DEGs. Moreover, three
reliable HF-related hub genes with differential expression and
excellent diagnostic efficiency, ASPN, COL1A1, and FMOD,
were selected and validated using microarray datasets and
human heart tissue assays. Gene set enrichment analysis (GSEA)
and gene set variation analysis (GSVA) were further utilized to
investigate potential functions of the hub genes. In addition,
the transcription factor (TF)–DEG regulatory network was
constructed based on the HF datasets and websites.

Materials and methods

Datasets search and inclusion criteria

The GEO database1 was searched to obtain the sequencing
datasets based on the search terms of “heart failure” or/and
“HF.” The search results and relevant datasets were filtered
according to the following inclusion criteria: (i) the organism
was filtered by “homo sapiens”; (ii) the study type was

1 www.ncbi.nlm.nih.gov/geo/
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set as “expression profiling by high throughput sequencing”;
(iii) RUVSeq for both HF samples and NFDs should be
included in the dataset; (iv) the total number of samples
should not be < 5; and (v) the raw data of the RNA-seq
should be provided for reanalysis. Datasets that did not meet
the aforementioned criteria were excluded. The selected HF
sequencing datasets from the NCBI Sequence Read Archive
(SRA)2 were downloaded as SRA files and converted to FASTQ
files via the SRA toolkit.

Compilation of gene expression
matrices

To obtain high-quality reads, raw data from the GEO dataset
were pre-processed using the fastp tool (13), and sample quality
was assessed by FastQC and MultiQC (14). The sequences
were then aligned against the human reference genome hg38
using STAR (15). Furthermore, the expression values (count
matrices) for either gene bodies or called peaks were generated
by featureCounts (16).

Identification of robust differentially
expressed genes by the RNA-seq data
and robust rank aggregation method

For RNA-seq expression analysis, batch effects were adjusted
using the R package RUVSeq, which applies a generalized linear
model to regress out the variation estimated from the expression
of the housekeeping gene. First, the initial DEGs were detected
using the edgeR program package within a single RNA-seq
dataset. Second, the RUVg function in RUVSeq was utilized to
remove additional sources of unwanted variation (parameter
k = 1) (17). The remaining non-DEGs were considered as
negative control genes and used as housekeeping genes to
correct for relative gene expression levels between different
samples. Third, based on the corrected gene expression matrix,
the corrected DEGs were further obtained by the edgeR package.
Fourth, the RRA method-based R package “RobustRankAggreg”
was used to integrate the results of RUVSeq analysis of each
RNA-seq dataset to identify the final DEGs in patients with
HF compared with NFDs. The threshold of DEGs was set as
|logFC| > 1, and the significance criterion was set as an adjusted
p-value < 0.05.

Functional enrichment analysis

To further investigate the possible functions of DEGs
identified by the RUVSeq and the RRA method, GO enrichment

2 https://www.ncbi.nlm.nih.gov/sra/

and KEGG pathway analyses were performed in the upregulated
and downregulated DEGs separately, using the R package
“clusterProfiler” (18). The GO term or KEGG pathway with
adjusted p < 0.05 was considered with significant enrichment.
The results were visualized by dot plots using the “dotplot”
function of the R package.

Identification of hub genes

The robust DEG list was uploaded to the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) database3

(19), and the significant protein interaction was determined
at the criterion of confidence (combined score) > 0.4. Next,
we used Cytoscape software4 and cytoHubba (20) plug-in to
investigate node composition and pick out hub nodes with a
high degree of connectivity in the network.

Validation of the hub genes using
microarray datasets

RNA-seq datasets for HF samples are limited due to a
small volume of heart transplant surgeries and the difficulty in
obtaining human heart samples. Therefore, in our study, the
four eligible HF sequencing datasets (GSE46224, GSE116250,
GSE133054, and GSE135055), including 95 HF and NFD
samples, were all used for the identification of DEGs, hub
genes, and functional enrichment analysis. To further validate
the analysis results, HF microarray datasets were acquired from
the GEO database. The inclusion criterion was identical to
the RUVSeq sources, except that the study type was set as
“expression profiling by array.” For the study, four microarray
datasets were finally included for the validation: GSE16499
(21), GSE26887 (22), GSE57338 (23), and GSE79962 (24). The
gene expression profiling was annotated using the annotation
document of corresponding platforms, and the gene expression
matrices were column-normalized by the R package “limma”
(25) and log-transformed, if necessary. Next, the differential
expression of the identified hub genes between patients with
HF and NFDs in the microarray datasets was validated and
visualized by column graphs.

Validation of the hub genes using
quantitative reverse transcription
polymerase chain reaction

For further validation, total RNAs of the heart tissues
from patients with HF and NFDs were extracted for the

3 https://string-db.org/

4 www.Cytoscape.org/
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qRT-PCR validation assay. Heart tissues from six patients
with HF and eight NFDs were obtained from the Specimen
Bank of Cardiovascular Surgery Laboratory and Department
of Pathology of Changhai Hospital, Shanghai, China. Written
informed consents were obtained from all patients or their

family members, and the study was approved by the Institute
Ethics Committee of Changhai Hospital.

Total RNAs from the heart tissues were isolated using
TRIzol reagent (TRIzolTM Reagent, Invitrogen). RNAs were
then reverse-transcribed into cDNAs using a TOYOBO

FIGURE 1

Flowchart of data search, processing, analysis, and validation. HF, heart failure; RNA-seq, RNA sequencing; GEO, Gene Expression Omnibus;
PCA, principal component analysis; RRA, robust rank aggregation; DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis.
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ReverTra Ace R© qRT-PCR RT Kit (TOYOBO, Japan).
SYBR

R©

GREEN (TOYOBO, Japan) was used for qRT-
PCR, and the primer sequences used are listed as follows:
asporin (ASPN) forward, 5′-GGGTGACGGTGTTCCATATC-
3′ and reverse, 5′-TTGGCACTGTTGGACAGAAG-3′;
collagen type I alpha 1 chain (COL1A1) forward, 5′-TCG
TGGAAATGATGGTGCTA-3′ and reverse, 5′-ACCAGGTT
CACCGCTGTTAC-3′; collagen type IX alpha 2 chain (COL9A2)
forward, 5′-AAGAGCAACTGGCAGAGGTC-3′ and reverse,
5′-GACCCTCGATCTCCATCCTT-3′; collagen type X
alpha 1 chain (COL10A1) forward, 5′-TGGGACCCCTC
TTGTTAGTG-3′ and reverse, 5′-GCCACACCTGGTCA
TTTTCT-3′; cartilage oligomeric matrix protein
(COMP) forward, 5′-CAGGACGACTTTGATGCAGA-
3′ and reverse, 5′-AAGCTGGAGCTGTCCTGGTA-3′; and
fibromodulin (FMOD) forward, 5′-AGAGAGCTCCAT
CTCGACCA-3′ and reverse, 5′-GCAGCTGGTTGT
AGGAGAGG-3′. The expression levels of mRNAs relative
to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
detected using the 2−11Ct method.

Gene set enrichment analysis and gene
set variation analysis of the validated
hub genes

To further explore potential functions of the hub genes in
HF, we performed GSEA and GSVA in the microarray dataset
with the maximum HF sample size (GSE57338). The flow of
GSEA is as follows: First, correlation analyses were conducted
between hub genes and other genes in the gene expression
matrix of 54 patients with HF, and genes with the absolute
value of correlation coefficient > 0.5 and p-value < 0.05 were
defined as hub genes-related genes. Then, KEGG pathway
enrichment analysis was conducted on these hub genes-related
genes using the ClusterProfiler package. For GSVA, 54 patients
with HF in the GSE57338 dataset were divided into two
groups based on the median expression level of each hub
gene (high- and low-expression groups). Then, the “GSVA”
package was used to explore the pathways associated with the
hub genes. The annotated gene set “c2.cp.kegg.v7.4.entrez.gmt”
in the Molecular Signatures Database (MsigDB)5 was selected
as the reference.

Construction of the transcription
factor–differentially expressed gene
regulatory network

It has been reported that binding of TFs to the regulatory
regions of genes is a key transcriptional regulatory mechanism

5 http://www.gsea-msigdb.org/gsea/downloads.jsp

to control chromatin and transcription, forming a complex
system that guides expression of the genome (26). The TF–
DEG regulatory network is constructed by using the following
methods: First, the NetworkAnalyst database (27)6 and the
TF–gene interactions module from the JASPAR database (28)
were utilized to explore the possible TFs that could bind to
the RRA-identified DEGs. Second, a novel significant TF–DEG
regulatory pair was defined in our study according to the
following criteria: (i) both the TF and DEG were present in
the TF regulatory network constructed by the JASPAR database,
and there was predicted interaction between them; (ii) the
TF was differentially expressed in patients with HF and NFD
samples in the validation set GSE57338 (p < 0.05); and (iii)
there was a statistically significant relationship between the
expression level of TF and its target gene in the validation dataset
GSE57338 (the absolute value of correlation coefficient > 0.5
and p < 0.05). Third, the constructed TF–DEG regulatory
network was visualized using Cytoscape.

Statistical analysis

Independent two-sample t-tests were used to analyze
variables with homogeneous variance and normal distribution,
whereas Mann–Whitney non-parametric tests were used to
analyze variables without homogeneous variance and normal
distribution. P-values were adjusted for multiple testing by using
the Benjamini–Hochberg method. The DEG threshold was set as
|logFC| > 1, and the significance criterion was set as an adjusted
p-value < 0.05. The hypergeometric test was used to calculate
the statistical significance of enrichment analysis. An absolute
value of the correlation coefficient |r| > 0.3 (p < 0.05) indicates
a significant interaction relationship (29). All data analyses in
the present study were performed by using R (version 3.5.3)
and Rstudio (version 1.2.1335). Graphic representations were
generated by using GraphPad Prism 9.0 (GraphPad, San Diego,
CA, USA) and Cytoscape (Version 3.7.1).

Results

Characteristics of the screened heart
failure RNA-seq datasets

Figure 1 depicts the flow diagram of our study. After
screening and exclusion according to the aforementioned
criteria, six datasets from the GEO database were finally
included in this analysis: GSE46224 (30), GSE48166, GSE116250
(31), GSE120852 (32), GSE133054 (33), and GSE135055 (34).
The characteristics of these six datasets are summarized in

6 https://www.networkanalyst.ca/
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Supplementary Table 1, including the GSE accession number,
study country, number of patients with HF and NFDs, and
sequencing platform.

Pre-processing of RNA-seq data

After the quality-filtering using the fastp tool, the reads
with a base quality < 20 or the sequence length ≤ 36 nt were
discarded. Then, FastQC was used to assess the sequence quality
of the dataset. The final all-in-one quality control report of each
dataset was generated using MultiQC. The per base sequence
quality and per sequence GC content across all samples of 6
RNA-seq datasets are demonstrated in Figure 2.

Determination of the selected datasets

Reads were mapped to the human genome (UCSC, hg38)
using STAR, and the unique alignments were filtered and
presented in Supplementary Table 2. Samples from each dataset
were characterized by principal component analysis (PCA)
after normalization and adjustment for batch effects using
the RUVSeq package. 2D plots of PCA distribution showed
that complete separation between samples of patients with HF
and NFD samples was observed in five datasets (GSE46224,
GSE116250, GSE120852, GSE133054, and GSE135055), except
GSE48166 (Figure 3). Hence, dataset GSE48166 was excluded
from subsequent analysis. Next, the expression difference and
diagnostic efficacy of the four cardiac function markers, namely,
natriuretic peptide A (NPPA), natriuretic peptide B (NPPB),
myosin heavy chain 6 (MYH6), and myosin heavy chain 7
(MYH7), were examined between samples of patients with HF
and NFD samples in the five sequencing databases. As shown
in Figure 4, the markers showed no differential expression and
poor diagnostic performance between the two groups in dataset
GSE120852, which was also eliminated from further analysis.

Identification of robust differentially
expressed genes by RNA-seq data and
robust rank aggregation method

Using the RUVSeq package, DEGs (patients with HF vs.
NFDs) were screened for adjusted p < 0.05 and |logFC| > 1
in the four identified datasets, respectively, which were
visualized by volcano plots (Figures 5A–D). Furthermore,
an integrated analysis was performed using the R package
“RobustRankAggreg” to generate the differentially expressed
ranked gene list. A total of 201 highly ranked DEGs
were identified in patients with HF vs. NFD samples, and
Supplementary Table 3 exhibits the top 50 upregulated and the
top 50 downregulated DEGs. The top 20 upregulated and the

20 most downregulated genes consistently expressed across all
datasets were visualized by heatmap, as shown in Figure 5E.

Functional enrichment analysis of
differentially expressed genes

To explore the potential biological functions of these
DEGs, GO term enrichment and KEGG pathway analyses
were performed. The upregulated genes were significantly
enriched in extracellular structure organization, skeletal
system development, extracellular matrix organization, T-cell
activation, and connective tissue development in the biological
process (BP) term; the extracellular matrix, collagen-containing
extracellular matrix, endoplasmic reticulum lumen, basement
membrane, and collagen trimer in the cellular component
(CC) term; and extracellular matrix structural constituent,
glycosaminoglycan binding, heparin binding, growth factor
activity, and extracellular matrix structural constituent
conferring tensile strength in the molecular function (MF)
term (Figure 6A). For the downregulated genes, the enriched
GO functions included purine ribonucleotide metabolic
process, coenzyme metabolic process, energy derivation by
oxidation of organic compounds, cellular respiration, and
citrate metabolic process in the BP category; organelle inner
membrane, mitochondrial inner membrane, mitochondrial
matrix, mitochondrial protein complex, and mitochondrial
membrane part in the CC category; and cofactor binding,
coenzyme binding, and NAD binding in the MF category
(Figure 6B).

Regarding KEGG pathway analysis, the MAPK signaling
pathway, TGF-β signaling pathway, T-cell receptor signaling
pathway, Th17 cell differentiation, and ECM–receptor
interaction were mostly associated with the upregulated
genes (Figure 6C), while the downregulated genes were most
enriched in the calcium signaling pathway, carbon metabolism,
valine, leucine and isoleucine degradation, citrate cycle, and
propanoate metabolism (Figure 6D).

Hub gene determination

The PPI network of the 201 DEGs in patients with HF was
constructed by using the STRING database (Figure 7A). Next,
the PPI network was loaded into Cytoscape to screen hub genes
by degree using the cytoHubba plug-in. As shown in Figure 7B,
genes in the inner concentric circles have higher degrees, while
genes in the outer concentric circles have relatively lower
degrees. Therefore, hub genes were the six genes with the highest
degree of connectivity (degree≥ 10) in the innermost concentric
circle: COL1A1, COMP, ASPN, COL10A1, FMOD, and COL9A2.

Furthermore, the relative expression of the identified hub
genes in patients with HF and NFD samples was assessed in the
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FIGURE 2

Quality assessment and GC count evaluation of the data from six RNA sequencing datasets. (A–F) Per base sequence quality across all samples
of GSE46224 (A), GSE48166 (B), GSE116250 (C), GSE120852 (D), GSE133054 (E), and GSE135055 (F). (G–L) Per sequence GC content across all
samples of GSE46224 (G), GSE48166 (H), GSE116250 (I), GSE120852 (J), GSE133054 (K), and GSE135055 (L).
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FIGURE 3

PCA plots of the six RNA-seq datasets in GEO database. PCA distribution plots showed that complete separation between patients with HF and
NFD samples was observed in five datasets after RUVSeq correction, except GSE48166 (C,D), namely, GSE46224 (A,B), GSE116250 (E,F),
GSE120852 (G,H), GSE133054 (I,J), and GSE135055 (K,L). PCA, principal component analysis; GEO, Gene Expression Omnibus; HF, heart failure;
NFD, non-failing donor.

four RNA-seq datasets. The results showed that COL1A1, ASPN,
and FMOD were consistently upregulated in the HF samples of
the four datasets (Figures 7C–F). In addition, univariate ROC
analysis was performed to determine the diagnostic accuracy
of independent hub genes, suggesting that COL1A1, ASPN, and
FMOD had a good diagnostic value in HF (Figures 7G–J).

Hub gene validation

After normalization, four microarray datasets (GSE16499,
GSE26887, GSE57338, and GSE79962) containing human left
ventricular samples of HF and NFDs were used to validate the
expression of these hub genes (Supplementary Table 4 and
Supplementary Figure 1). As shown in Figures 8A–D, the
expression of ASPN or FMOD in HF samples was significantly
higher than that in the NFD samples in all four datasets, and
COL1A1 or COMP showed the similar upregulation in three
datasets. However, the expression of COL9A2 or COL10A1
was not statistically different in the HF and NFD samples in
these datasets. Consistently, the diagnostic values of the hub
genes suggested by the ROC curves revealed the same trend
(Figures 8E–H).

In addition to the microarray datasets, the expression of
hub genes was further validated by qRT-PCR experiments

using 14 heart tissues from patients with HF or NFDs. As
described in Figure 9, ASPN, COL1A1, and FMOD were
significantly upregulated in the six heart tissues of patients
with HF compared with NFDs. Taken together, these validation
results confirmed the differential expression and diagnostic
value of ASPN, COL1A1, and FMOD as reliable hub genes in HF
development.

Gene set enrichment analysis and gene
set variation analysis reveal a close
relationship between hub genes and
glucose metabolism-related pathways

To reveal the underlying mechanism of the three reliable
hub genes (ASPN, COL1A1, and FMOD) involved in HF,
GSEA was conducted to explore significantly enriched pathways
associated with the hub genes in the validation dataset
GSE57338. As shown in Figures 10A–C, the top three
signaling pathways enriched by the DEGs between subgroups
were identified, among which citrate cycle (TCA cycle) and
propanoate metabolism pathways were significantly enriched
in the subgroups of all the three hub genes. In addition, the
enrichment in glucose metabolism-related pathways was further
confirmed by GSVA (Figures 10D–F).
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FIGURE 4

Expression level and diagnostic value of NPPA, NPPB, MYH6, and MYH7 in the five HF-related RNA-seq datasets. The expression level of NPPA,
NPPB, MYH6, and MYH7 in GSE46224 (A), GSE116250 (B), GSE120852 (C), GSE133054 (D), and GSE135055 (E), respectively. ns, not significant
vs. the NFD group; *p < 0.05 vs. the NFD group; **p < 0.01 vs. the NFD group; ****p < 0.0001 vs. the NFD group. The diagnostic values of
NPPA, NPPB, MYH6, and MYH7 in GSE46224 (F), GSE116250 (G), GSE120852 (H), GSE133054 (I), and GSE135055 (J), respectively, as determined
by ROC curves. NPPA, natriuretic peptide A; NPPB, natriuretic peptide B; MYH6, myosin heavy chain 6; MYH7, myosin heavy chain 7; HF, heart
failure; NFD, non-failing donor; ROC, receiver operating characteristic.

Identification of signatures of
transcription factor–differentially
expressed gene regulatory network

To determine the potential roles of TFs in regulating
the transcriptional expression of DEGs, the specific TF–gene

regulatory network was established based on the top 20
upregulated and the 20 most downregulated integrated DEGs
(Figure 11A). As demonstrated in Figures 11B,C, several TFs,
including CEBPB, MEF2A, PPARG, BRCA1, TEAD1, TFAP2A,
TP63, SREBF1, and PDX1, showed significant correlation with
multiple DEGs and were differentially expressed in patients
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FIGURE 5

Identification of DEGs by RUVSeq and the RRA method. (A–D) Using RUVSeq package, DEGs (patients with HF vs. NFDs) were screened in the
four selected RNA-seq datasets GSE46224 (A), GSE116250 (B), GSE133054 (C), and GSE135055 (D), as visualized by volcano plots. Adjusted
p < 0.05 and |logFC| > 1. (E) Heatmap of the top 20 upregulated and the 20 most downregulated DEGs screened from the four selected
RNA-seq datasets using RRA analysis. DEGs, differentially expressed genes; RRA, robust rank aggregation; HF, heart failure; NFD, non-failing
donor; FC, fold change.
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FIGURE 6

Functional enrichment analysis of the robust HF-related DEGs. (A) Top five enriched GO functions of the upregulated genes regarding BP, CC,
and MF terms, as visualized by bubble plots. (B) Top five enriched GO functions of the downregulated genes regarding BP, CC, and MF terms, as
visualized by bubble plots. (C) Top eight enriched KEGG pathways of the upregulated genes, as visualized by bubble plots. (D) Top eight
enriched KEGG pathways of the downregulated genes, as visualized by bubble plots. HF, heart failure; DEGs, differentially expressed genes; GO,
gene ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

with HF and NFDs in GSE57338 (p < 0.05). According to the
defining criteria of the significant TF–DEG regulation pair, we
identified TP63-SERTM1/SYTL5/UNC80, PPARG-XG, BRCA1-
NRG1, MEF2A-LSAMP, SREBF1-NPPA/HOOK1/CENPA,
TEAD1-CA14/MYH6/PENK, and PDX1-SEC14L5 as significant
TF–DEG pairs (Figure 11D).

Discussion

In the present study, four HF RNA-seq GEO datasets
(GSE46224, GSE116250, GSE133054, and GSE135055) were
finally included, involving a total of 100 patients with HF and
38 NFDs. In total, 201 robust HF-related DEGs were obtained
utilizing RUVSeq and RRA method, and ASPN, COL1A1,
COL9A2, COL10A1, COMP, and FMOD were identified as
hub genes with the highest degree of connectivity using
STRING database and cytoHubba plug-in. Among them, ASPN,
COL1A1, and FMOD exhibited differential expressions and
excellent diagnostic efficiency in all four RNA-seq datasets,
which were further validated using data from the four screened

HF microarray datasets (GSE16499, GSE26887, GSE57338, and
GSE79962). Moreover, the significant upregulation of ASPN,
COL1A1, and FMOD was experimentally confirmed by qRT-
PCR using the heart tissues of patients with HF and NFD
samples. In addition, functional enrichment analysis showed
that myocardial fibrosis-related pathways resulted from T-cell-
mediated immune response and myocardial glucose metabolism
were closely associated with the onset and progression of
HF. In addition to this, the TF–DEG regulatory network was
established, and 13 significant TF–DEG pairs were identified.

Despite the great advancement in HF medical treatment,
it remains the major and growing public health problem that
leads to considerable morbidity and mortality (35). Robust
biomarkers for early diagnosis of HF are the key for novel
targeted pharmacological approaches and for improving the
prognosis of patients (36). Consistently, serum type B natriuretic
peptide (BNP) has been recognized as a well-established
biomarker for the diagnosis of HF. However, a recent study
reported that a subset (4.9%) of hospitalized patients with
confirmed HF had unexpectedly low BNP levels (<50 pg/ml),
and a small proportion (0.1–1.1%) had BNP levels even below
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FIGURE 7

Identification of HF-related hub genes from the four selected RNA-seq datasets. (A) PPI network of the 201 DEGs in patients with HF was
constructed by using the STRING database. The nodes represent proteins, and the edges represent the interactions. (B) Robust hub genes were
screened by degree using the cytoHubba plug-in in Cytoscape. The inner the concentric circles, the larger the degree values of the genes.
(C–F) Relative expression of the six identified hub genes in GSE46224 (C), GSE116250 (D), GSE133054 (E), and GSE135055 (F), respectively. ns,
not significant vs. the NFD group; *p < 0.05 vs. the NFD group; **p < 0.01 vs. the NFD group; ***p < 0.001 vs. the NFD group; ****p < 0.0001
vs. the NFD group. (G–J) Diagnostic values of the six identified hub genes in GSE46224 (G), GSE116250 (H), GSE133054 (I), and GSE135055 (J),
respectively, as determined by ROC curves. HF, heart failure; RNA-seq, RNA sequencing; PPI, protein–protein interaction; DEGs, differentially
expressed genes; STRING, search tool for the retrieval of interacting genes; NFD, non-failing donor; ROC, receiver operating characteristic.

detection limits (37). Therefore, it remains urgent to explore
novel molecules with potentially new mechanisms for the
development of HF.

Recently, gene mining using microarrays or RNA-seq
datasets has been widely used to generate the transcriptomic
profiles of HF development. Zhang et al. identified six hub
genes (BCL3, HCK, PPIF, S100A9, SERPINA1, and TBC1D9B)
as potential biomarkers of HF by using the weighted gene co-
expression network analysis (WGCNA) method through three
HF datasets, namely, GSE59867, GSE1869, and GSE42955 (38).
Tian et al. constructed a random forest algorithm and artificial
neural network and detected six hub genes by mining of two
HF datasets (GSE57345 and GSE141910) (39). However, the

aforementioned studies were based on the integration of DEGs,
rather than raw data from different datasets. To date, the
inconsistency between different platforms and datasets remains
the major hurdle blocking the bioinformatics mining of HF-
related genes, especially for RNA-seq datasets.

The RRA method, a recently emerging analysis method, has
been widely used to integrate different datasets and produce a
ranked list of the DEGs (40). For example, Ma et al. utilized the
RRA method to integrate four eligible DCM microarray datasets
from the GEO and developed a 7-gene signature predictive
model of DCM (11). While in the present study, using RUVSeq
to substantially decrease batch effects, we integrated, for the first
time, the different RNA-seq datasets of the GEO database to
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FIGURE 8

Validation of the six hub genes using four normalized HF-related microarray datasets from the GEO database. (A–D) Relative expression of the
six hub genes in GSE16499 (A), GSE26887 (B), GSE57338 (C), and GSE79962 (D), respectively. ns, not significant vs. the NFD group; *p < 0.05 vs.
the NFD group; **p < 0.01 vs. the NFD group; ***p < 0.001 vs. the NFD group; ****p < 0.0001 vs. the NFD group. (E–H) Diagnostic values of
the six identified hub genes in GSE16499 (E), GSE26887 (F), GSE57338 (G), and GSE79962 (H), respectively, as determined by ROC curves. HF,
heart failure; GEO, Gene Expression Omnibus; NFD, non-failing donor; ROC, receiver operating characteristic.
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FIGURE 9

Validation of the six hub genes by qRT-PCR using human heart tissues from patients with HF and NFDs. The expression level of ASPN (A),
COL1A1 (B), FMOD (C), COMP (D), COL9A2 (E), and COL10A1 (F) in heart tissues from HF patients and NFDs, as determined by qRT-PCR. Data
are presented with mean ± SD. ****p < 0.0001 vs. the NFD group. QRT-PCR, quantitative real-time reverse transcription PCR; HF, heart failure;
NFD, non-failing donor; SD, standard deviation.

explore DEGs and hub genes associated with HF by using the
RRA method. Through internal RNA-seq dataset and external
microarray dataset validation, ASPN, COL1A1, and FMOD were
finally identified as real hub genes of HF, which were further
confirmed by qRT-PCR using the heart tissues from patients
with HF and NFDs.

Interestingly, the identified hub genes ASPN (41), COL1A1
(42), and FMOD (43), all belong to the type I collagen members
in the extracellular matrix (ECM) composition and have been
reported to play important roles in the development and
progression of various diseases, especially malignant tumors.
For example, ASPN was reported to enhance tumor invasion
and cancer-associated fibroblasts via activation of the CD44-
Rac1 pathway in gastric cancer (41). Ma et al. highlighted
the role of COL1A1 as a potential diagnostic biomarker
and therapeutic target in early development and metastasis
of hepatocellular carcinoma (42). Ao et al. revealed that
FMOD could promote tumor angiogenesis by upregulating the
expression of angiogenic factors in human small-cell lung cancer

(43). Regarding the function of hub genes in HF development,
a multi-level transcriptomic study conducted by Hua et al.
suggested that COL1A1 might be a plasma biomarker of HF
and associated with HF progression, especially to predict the
1-year survival from HF onset to transplantation. A COL1A1
content ≥ 256.5ng/ml in plasma was found to be associated
with poor survival within 1 year of heart transplantation from
HF (34). In the study conducted by Andenæs et al., FMOD
was found 3–10-fold upregulated in hearts of patients with
HF and mice, and FMOD-KO mice showed a relatively mild
hypertrophic phenotype (44). However, to the best of our
knowledge, there are no experimental studies focusing on the
role of ASPN in HF. Therefore, our multi-dataset RRA analysis,
followed by microarray dataset and experimental validation,
provides more robust and comprehensive evidence for the value
of the three ECM-related genes, namely, COL1A1, FMOD, and
ASPN, in HF development.

Recent advances have highlighted the crucial role of immune
activation in the development and progression of HF. A study
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FIGURE 10

GSEA and GSVA of ASPN, COL1A1, and FMOD in the selected microarray dataset GSE57338. (A–C) GSEA-enriched pathways of DEGs related to
ASPN (A), COL1A1 (B), or FMOD (C) expression in the GSE57338 dataset. (D–F) GSVA-derived clustering heatmaps showing the enriched
pathways of DEGs related to ASPN (D), COL1A1 (E), or FMOD (F) expression in GSE57338 dataset. GSEA, gene set enrichment analysis; GSVA,
gene set variation analysis.

by Aghajanian et al. demonstrated that adoptive transfer of T
cells that express a chimeric antigen receptor against fibroblast
activation protein can inhibit myocardial fibrosis and improve
cardiac function in mice (45). Consistently, according to the
GO term analysis in our study, the upregulated HF-related
DEGs were enriched in T-cell activation of the “BP” term, the
extracellular matrix of “CC” terms, and the extracellular matrix
structural constituent of “MF” terms. Moreover, regarding
the KEGG pathway analysis, the T-cell receptor signaling
pathway and ECM–receptor interaction were identified as

the significantly enriched pathways of the upregulated DEGs.
Considering that all the three hub genes—ASPN, COL1A1,
and FMOD—are closely associated with the ECM, we thus
speculate a potentially key pathway in the development of HF,
that is, T-cell-mediated immune responses lead to the imbalance
in ECM anabolism and catabolism, ultimately resulting in
myocardial fibrosis and HF.

To further explore the potential mechanism of ASPN,
COL1A1, and FMOD in HF, we performed GSEA and GSVA
on the validation dataset of GSE57338. Results showed that
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FIGURE 11

Construction of the TF–DEGs regulatory network in HF. (A) TF–DEG regulatory network was established based on the top 20 upregulated and
the 20 most downregulated DEGs. (B) Correlation matrix between the identified TFs and DEGs. An absolute value of correlation coefficient
|r| > 0.3 and p < 0.05 indicates a statistically significant relationship. (C) Relative expression of the identified TFs in the validation microarray
dataset GSE57338. ns, not significant vs. the NFD group; *p < 0.05 vs. the NFD group; **p < 0.01 vs. the NFD group; ****p < 0.0001 vs. the NFD
group. (D) Identified significant TF–DEG regulation pairs according to the criteria. TFs, transcription factors; DEGs, differentially expressed
genes; HF, heart failure; NFD, non-failing donor.

ASPN-, COL1A1-, or FMOD-related DEGs were enriched
in the “citric acid cycle (TCA cycle)” and “propionic acid
metabolism” pathways, both of which are closely associated
with glucose metabolism (46, 47). Notably, targeting cardiac

glucose metabolism has been recognized as a promising
therapeutic strategy for HF treatment. Liu et al. reported
that dichloroacetate, a pyruvate dehydrogenase kinase
inhibitor, could alter glucose metabolism in cardiomyocytes by
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stimulating the activity of pyruvate dehydrogenase complex,
thereby improving cardiac efficiency (48). In addition, inhibitors
of fatty acid oxidation such as trimetazidine (49), perhexiline
(50), and etomoxir (51) can improve cardiac function in patients
with HF by increasing glucose oxidation.

Aberrant regulation of TFs is strongly associated with the
onset and progression of HF (52). Therefore, in our research,
we further investigated the TF–gene interactions to detect
the transcriptional regulators of the robust DEGs. Among
the seven identified significant TFs, MEF2A (53) and PPARG
(54) have been reported to play a role in cardiac remodeling
and water retention in HF, respectively. Liu et al. found that
suppressing expression of TEAD1, the Hippo signaling effector,
could activate the necroptotic pathway and induce massive
cardiomyocyte necroptosis, ultimately leading to impaired
cardiac function (55). Moreover, loss of BRCA1 in mouse
cardiomyocytes resulted in adverse cardiac remodeling and
poor ventricular function (56). Although the functions of
these TFs in HF have been partially reported, the regulatory
relationship of the TF–DEG pairs and the in-depth molecular
mechanisms remain to be further validated through HF-related
experimental studies.

Our study has several limitations. First, the sample size of
patients with HF is relatively small, although we have included
as many datasets that met the criteria as possible. Future
studies with larger sample sizes are needed to confirm these
findings. Second, this study is mainly based on bioinformatics
analysis and qRT-PCR validation of hub gene expression.
Further experimental research is needed to clarify the in-
depth mechanism of the hub gene-related HF regulation.
Third, information about disease grades, treatment methods,
and prognosis of patients with HF is not available in the
database, leading to the failure to analyze correlation between
hub genes and clinical characteristics or prognosis of HF.
Fourth, the etiology of HF is complex, involving multiple
environmental factors in addition to genetic factors (57), such
as behavioral factors, socioeconomic and psychosocial factors,
air quality, and meteorological factors (58–60). Horton et al.
reported that the influence of modifiable lifestyle factors cannot
be ignored in the development of direct-to-consumer (DTC)
genetic tests (61). In recent years, emerging evidence has
shown that gene–environment interactions play an important
role in complex disease progression. Bentley et al. revealed
that the genetic associations with lipids could be modified by
smoking (62). Therefore, future research needs to further focus
on the role of environmental factors and gene–environment
interactions in HF.

Conclusion

In conclusion, the present study integrated, for the first
time, the different RNA-seq datasets of HF from the GEO

database and identified robust HF-related DEGs utilizing
RUVSeq and the RRA method. Furthermore, three reliable
hub genes—ASPN, COL1A1, and FMOD—were screened and
validated by bioinformatics and experimental assays. Functional
enrichment analysis showed that DEGs and hub genes were
associated with T-cell-mediated immune response and the
glucose metabolism signaling pathway. In addition, significant
TF–DEG regulatory network of HF was further established.
However, high-quality basic or clinical research is required to
deeply investigate the mechanisms by which these hub genes are
involved in HF and to confirm their values as biomarker for HF
diagnosis and treatment.
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Oxidative stress markers-driven
prognostic model to predict
post-discharge mortality in
heart failure with reduced
ejection fraction
Imen Gtif1*, Rania Abdelhedi1†, Wael Ouarda2†, Fériel Bouzid1,
Salma Charfeddine3, Fatma Zouari3, Leila Abid3,
Ahmed Rebai1 and Najla Kharrat1

1Laboratory of Screening Cellular and Molecular Process, Centre of Biotechnology of Sfax,
University of Sfax, Sfax, Tunisia, 2Digital Research Center of Sfax, University of Sfax, Sfax, Tunisia,
3Unit of Cardiology in Hospital of Hedi Chaker, Faculty of Medicine, University of Sfax, Sfax, Tunisia

Background: Current predictive models based on biomarkers reflective of

different pathways of heart failure with reduced ejection fraction (HFrEF)

pathogenesis constitute a useful tool for predicting death risk among HFrEF

patients. The purpose of the study was to develop a new predictive model for

post-discharge mortality risk among HFrEF patients, based on a combination

of clinical patients’ characteristics, N-terminal pro-B-type Natriuretic peptide

(NT-proBNP) and oxidative stress markers as a potentially valuable tool for

routine clinical practice.

Methods: 116 patients with stable HFrEF were recruited in a prospective

single-center study. Plasma levels of NT-proBNP and oxidative stress markers

[superoxide dismutase (SOD), glutathione peroxidase (GPX), uric acid (UA),

total bilirubin (TB), gamma-glutamyl transferase (GGT) and total antioxidant

capacity (TAC)] were measured in the stable predischarge condition.

Generalized linear model (GLM), random forest and extreme gradient boosting

models were developed to predict post-discharge mortality risk using clinical

and laboratory data. Through comprehensive evaluation, the most performant

model was selected.

Results: During a median follow-up of 525 days (7–930), 33 (28%) patients

died. Among the three created models, the GLM presented the best

performance for post-discharge death prediction in HFrEF. The predictors

included in the GLM model were age, female sex, beta blockers, NT-

proBNP, left ventricular ejection fraction (LVEF), TAC levels, admission systolic

blood pressure (SBP), angiotensin-converting enzyme inhibitors /angiotensin

receptor II blockers (ACEI/ARBs) and UA levels. Our model had a good

discriminatory power for post-discharge mortality [The area under the curve

(AUC) = 74.5%]. Based on the retained model, an online calculator was
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developed to allow the identification of patients with heightened post-

discharge death risk.

Conclusion: In conclusion, we created a new and simple tool that may allow

the identification of patients at heightened post-discharge mortality risk and

could assist the treatment decision-making.

KEYWORDS

heart failure, oxidative stress, mortality, prediction, models

Introduction

Heart failure (HF) is a complex clinical syndrome resulting
from any functional or structural heart disorder, leading to
a reduction of cardiac output or an increase in intracardiac
pressures (1). HF is a major clinical and public health concern
that affects around 63.4 million people worldwide, accounting
for an economic burden of 346.17 billion US $ worldwide in
2017 (2–4). For African countries, HF is still health challenging
and was associated with significant rates of hospitalizations and
mortality (5–8).

Based on the measurement of the left ventricular ejection
fraction (LVEF), HF with reduced ejection fraction (HFrEF)
and HF with preserved ejection fraction (HFpEF) are the
two major HF subtypes (9). HFrEF is a progressive and
multifactorial disease, mainly associated with left ventricular
systolic dysfunction and adverse cardiac remodeling (10).
It develops as the final and serious stage of various cardiac
diseases, including coronary artery disease, myocarditis,
valve disease, arterial hypertension and arrhythmias (11).
Although the significant advance in HF management,
HFrEF remains a serious public health problem with high
morbidity, hospitalizations and mortality rates (12–14). A study
combining the Cardiovascular Health Study and Framingham
Heart Study cohorts reported that 67% of HFrEF patients
died within 5 years after diagnosis (15). Thus, prediction
of mortality risk for HFrEF patients becomes essential to
guide therapy decision-making. Indeed, several demographic
characteristics, comorbidities, clinical variables and HF
medications have been identified as relevant predictors of
mortality among patients with HFrEF (16–18). The Natriuretic
peptides, including B-type Natriuretic peptide (BNP) and
N-terminal pro-B-type Natriuretic peptide (NT-proBNP),
are the gold standard biomarkers used in diagnosis, risk
stratification and prediction of future cardiac events in HFrEF
patients (19–21). Furthermore, the measurement of specific
biomarkers, associated with the different pathways of HFrEF
pathogenesis has emerged as the most appropriate approach
to facilitate the prediction of mortality risk in patients with
HFrEF (19, 22–26).

An ever-growing body of evidence supports that increased
oxidative stress, resulting from an imbalance between the
production of reactive oxygen species (ROS) and antioxidant
defense mechanisms, is involved in the pathogenesis of
HFrEF (27, 28). Indeed, increased production of ROS causes
cellular dysfunction, protein oxidation, lipid peroxidation, and
nucleic acid damage. These alterations contribute to myocyte
apoptosis, cardiomyocyte hypertrophy, collagen deposition
and matrix remodeling eventually leading to progressive left
ventricular remodeling and dysfunction driving HFrEF (29).
The components of the antioxidant defense systems, responsible
for the inactivation of ROS, consist of antioxidant enzymes such
as superoxide dismutase (SOD), catalase, glutathione peroxidase
(GPx), peroxiredoxins; non-enzymatic antioxidants, including
glutathione (GSH), vitamins, uric acid (UA), total bilirubin
(TB) and albumin (30). The assessment of markers relevant to
antioxidant defense systems had indicated an association with
the progression and severity of HFrEF (31–33). Furthermore,
there is growing evidence that antioxidant parameters may
provide valuable new insight into the prognosis of HFrEF.
Indeed, a large number of studies have been conducted to prove
the potential role of UA as a prognostic marker in HFrEF (34–
36). The gamma-glutamyl transférase (GGT), the first enzyme
of the gamma glutamyl cycle that regulates the antioxidant
GSH, has emerged as a promising biomarker for predicting
mortality among patients with HFrEF (37, 38). In 2019, Romuk
et al. demonstrated that SOD activity was associated with long-
term outcomes in HFrEF (39). Other studies showed that total
antioxidant capacity (TAC) and bilirubin levels were associated
with an increased risk of death in patients with HFrEF (36, 40).

Based on these findings, we hypothesized that oxidative
stress markers in combination with NT-proBNP and relevant
clinical factors may provide a good predictive potential for
mortality risk in HFrEF. Accordingly, the present study
aimed to develop a new predictive model for post-discharge
mortality risk among HFrEF patients, based on a combination
of clinical patient characteristics, NT-proBNP and oxidative
stress markers, as a potentially valuable tool for routine
clinical practice.
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Materials and methods

Patients and study design

This study is a prospective single-center study. A total
of 116 consecutive patients, admitted for newly diagnosed or
exacerbated HFrEF to the Cardiology Department of CHU
Hedi Chaker from November 2017 to December 2019, were
recruited. This study was approved by the local ethics committee
of CHU Hédi Chaker of Sfax (Tunisia), in accordance with the
principles expressed in the Declaration of Helsinki (CPP Sud
0276/2017). Written informed consent was obtained from all
enrolled patients.

The diagnosis of HFrEF was based on the Framingham
criteria and the presence of left ventricular systolic reduction
(LVEF < 50%) (41, 42). Only patients discharged alive were
evaluated in the present study. The exclusion criteria were:
Age < 20 years, HFpEF (LVEF ≥ 50%), acute myocardial
infarction, a severe valvular disease requiring surgery, renal
failure requiring dialysis, presence of inflammatory disease,
autoimmune diseases and malignant diseases.

Data collection

Patients’ demographic and clinical characteristics,
comorbidities and treatments are known to influence
the prognosis of HFrEF were documented from medical
records and through patient interviews. For each patient, the
following characteristics were collected: age sex, comorbidities
[hypertension, diabetes mellitus, hyperlipidemia, chronic
kidney disease (CKD), chronic obstructive pulmonary disease
(COPD) and anemia], HF characteristics [previous history of
HF, New York Heart Association (NYHA) class and ischemic
etiology], clinical measures [body mass index (BMI), systolic
blood pressure (SBP), LVEF, electrocardiogram indicators
(atrial fibrillation (AF), left Bundle Branch Block (LBBB) and
QRS duration) and creatinine clearance (CC)] and discharge
medications [beta blockers, angiotensin-converting enzyme
inhibitors /angiotensin receptor II blockers (ACEI/ARBs), loop
diuretics, aldosterone antagonist and statins]. The etiology of
HFrEF was classified as ischemic or non-ischemic, based on a
history of myocardial infarction and/or coronary angiography.
LVEF was determined by two-dimensional echocardiography,
using the biplane Simpson’s method (43). CC was estimated
using the Cockcroft-Gault Equation (44). The prognostic
outcome of the present study was post-discharge all-cause
mortality. Information regarding outcomes was obtained
through hospital records and telephone contact with patients or
their close family members. The follow-up time was calculated
from discharge to all-cause mortality (time to death) or
termination of the study.

Biochemical measurements

Fasting blood samples were collected under stable
conditions before discharge. Samples were centrifuged
upon permanent cooling at 3,500 rpm for 5 min. Obtained
plasma was stored immediately at −20◦C temperature until
assay. UA, TB, and GGT were measured using the Hitachi 912
analyzer (Roche).

SOD activity was measured by the method of Beyer and
Fridovich (45), based on the ability of SOD to inhibit the
oxidation of nitro blue tetrazolium (NBT) in the presence
of oxygen. The reduction of NBT was measured by a
spectrophotometer at 560 nm. SOD activity was calculated by
determining the percentage inhibition per min under standard
conditions. A 50% of inhibition corresponds to one unit
of SOD activity.

GPx activity was determined according to the method of
Flohé and Günzler (46), based on glutathione oxidation by GPx
in the presence of Ellman’s Reagent (DTNB). The absorbance
was measured at 412 nm. GPx activity was expressed as nmoles
of disappeared GSH/min/mg of proteins.

TAC was measured by colorimetric method using
the Colorimetric Assay Kit (Catalog #K274-100;
BioVisionIncorporated; CA 95,035 USA). According to
the manufacturer’s instructions, the antioxidant equivalent
concentrations were measured at 570 nm as a function of Trolox
concentration. TAC was expressed as mM Trolox equivalent.

NT-proBNP levels were assessed by the Human NT
Pro-BNP DuoSet ELISA kit (DY3604-05, R&D, Minneapolis,
MN, USA). According to the manufacturer’s protocol, the
double-antibody sandwich method was applied in this assay.
The measurement range of the NT-proBNP assay was 312–
10000 pg/ml.

Statistical analysis

For descriptive statistics, the Shapiro-Wilk test was used
to assess the normality of continuous variables. Continuous
variables were presented as mean and standard deviations (SD)
or median and interquartile range [(IQR): Q3–Q1] according
to their distribution. Categorical variables were expressed
as numbers and percentages. To examine the differences in
biomarker levels and clinical characteristics between survivors
and non-survivors, T-tests were used for parametric variables,
U Mann–Whitney tests for non-parametric variables and Chi-
square tests for categorical variables. The level of statistical
significance was set at a two-tailed p-values < 0.05.

The association between oxidative stress markers and post-
discharge mortality risk was evaluated by Kaplan-Meier (KM)
survival analysis, log-rank test and Cox proportional hazards
regression. Receiver operating characteristic (ROC) curves were
used to determine the relevant cut-off of biomarkers statistically
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associated with post-discharge mortality for the identification of
low-risk and high-risk subjects. KM survival curves were then
generated to illustrate survival of patients, according to cut-
off values of these biomarkers and Log rank tests were used
to compare between the curves. Univariate Cox proportional

hazards regression analysis was performed to determine the
predictive value of each biomarker and each baseline patient
characteristic. Variables with statistical significance in the
univariate Cox analysis (p-values < 0.05) were then adjusted
for age, sex and BMI in a multivariable model. Multivariate

TABLE 1 Baseline characteristics of study patients stratified according to prognosis outcome.

Post-discharge mortality during follow-up

Total (116) Yes (33) No (83) P-value

Demographics

Age, years 62.5± 11.6 65.7± 12.3 61.3± 11.1 0.067

Sex n (%)

Male 81 (72.4) 20 (60.6) 64 (77.1) 0.061

Female 32 (27.6) 13 (39.4) 19 (22.9)

Comorbidities

Hypertension (Yes) n (%) 44 (37.9) 13 (39.4) 31 (37.3) 0.5

Diabetes mellitus (Yes) n (%) 33 (28.4) 10 (30.3) 23 (27.3) 0.474

Hyperlipidemia (Yes) n (%) 30 (25.9) 10 (30.3) 20 (24.3) 0.321

CKD (Yes) n (%) 22 (18.9) 10 (30.3) 12 (14.5) 0.047

COPD (Yes) n (%) 8 (6.9) 4 (12.12) 4 (4.8) 0.159

Anemia (Yes) n (%) 53 (45.7) 18 (54.5) 35 (42.16) 0.158

Heart failure characteristics

Previous history of HF n (%) 55 (47.4) 21 (63.6) 34 (40.9) 0.023

NYHA class III/IV n (%) 83 (71.5) 29 (87.9) 54 (65.1) 0.010

LVEF (%) 30 (15–48) 25 (15–45) 30 (15–48) 0.034

Ischemic etiology n (%) 47 (40.5) 12 (36.4) 35 (42.2) 0.360

Clinical measures

BMI (Kg/m2) 25.5 (17.4–36.3) 24.2 (18.8–33.9) 25.9 (17.3–36.3) 0.664

Admission SBP (mm Hg) 120 (77–180) 110 (77–170) 120 (88–180) 0.003

QRS duration (ms) 118 (74–196) 108 (80–196) 100 (74–196) 0.044

AF n (%) 46 (39.6) 13 (39.4) 33 (39.7) 0.571

LBBB n (%) 49 (42.2) 18 (54.5) 31 (37.3) 0.069

CC (ml/min) 73.5 (33–174) 60 (33–141) 78 (33–174) 0.025

Discharge medications

Beta blockers (yes) n (%) 90 (77.6) 21 (63.6) 69 (83.1) 0.024

ACEI/ARBs (yes) n (%) 62 (53.4) 11 (33.3) 51 (61.4) 0.006

Loop diuretics (yes) n (%) 100 (86.2) 31 (93.9) 69 (83.1) 0.106

Aldosterone antagonist (yes) n (%) 56 (48.3) 14 (42.4) 42 (50.6) 0.278

Statins (yes) n (%) 58 (50) 17 (51.5) 41 (49.4) 0.5

Biochemical variables

UA (µmol/l) 429.5 (71–1000) 530 (71–970) 401 (224–1000) 0.005

TB (g/l) 15 (4–76) 17 (5–73) 15 (4–76) 0.210

GGT (UI/l) 37 (8.2–197) 36 (14–127) 37 (8.2–197) 0.788

SOD (UI/l) 117.4 (74–174) 120.2 (82.9–174.8) 109.7 (74–174.1) 0.650

GPx (nmol/min/mg protein) 2.6 (1–6.32) 2.5 (1.3–6.3) 2.6 (1–5.7) 0.753

TAC (mM Trolox equivalent) 10.9± 1.7 11.4± 1.5 10.6± 1.7 0.023

NT-proBNP (pg/ml) 3550 (354–7,000) 4393.33 (1,140–7,000) 3380 (354–6733.33) 0.001

ACEI/ARBs, angiotensin-converting enzyme inhibitors/angiotensin receptor II; AF, atrial fibrillation; BMI, body mass index; CC, creatinine clearance; COPD, chronic obstructive
pulmonary disease; CKD, chronic kidney disease; GPx, glutathione peroxidase; HF, heart failure; LBBB, left Bundle Branch Block; LVEF, left ventricular ejection fraction; NT-proBNP,
N-terminal pro-B-type Natriuretic peptide; NYHA, New York Heart Association; SBP, systolic blood pressure; SOD, superoxide dismutase; UA, uric acid; TAC, total antioxidant capacity;
TB, total bilirubin. Bold values indicate the p-values < 0.05.
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analyses were eventually conducted using the backward stepwise
selection process. Variables with p-values ≤ 0.1 were selected
in the multivariate proportional hazards regression analysis.
Results are presented as hazard ratios (HR) with a 95%
confidence interval (CI).

Development of post-discharge
mortality risk prediction models

We developed three predictive models, including the
generalized linear model (GLM), random forest (RF, based on
bootstrap model aggregation of classification trees) model and
extreme gradient boosting (XGBoost) model. Thirty baseline
variables were put into the prognostic models, including
demographics, comorbidities, clinical factors, medications and
biochemical variables (Table 1). A bi-directional stepwise
procedure (backward and forward), method that minimize
the akaike information criterion (AIC), was used for GLM
variable selection with a significance level at 0.10 as criteria
to retain significant variables in the model. The AIC was
used to avoid model overfitting. Results are reported as odds
ratios (OR) with 95% CI. Shapley additive explanation (SHAP)
values were used to evaluate the variables’ importance in
the RF and XGBoost models. Leave-One-Out Cross-Validation
(LOOCV), a special case of k-fold cross validation with k
equal to n (the number of observations in the data set)
(47), was applied in order to evaluate models’ performance.
The evaluation metrics used in this study were area under
the receiver operating characteristic curve (AUC), accuracy,
recall, precision, F1-score and Matthews correlation coefficient
(MCC). The best performing model was then selected to predict
post-discharge mortality risk in this study. Subsequently, we
calculated the probability of death using the predictors of the
selected model. Finally, patients were classified into high and
low risk groups according to this probability and the KM
curve was performed for survival analysis. Statistical analysis
was performed using SPSS (Statistical Package for the Social
Sciences) version 23 and R statistical software version 3.3.3 (R
Project for Statistical Computing). Machine learning algorithms
were performed using Python version 3.9 (Python Software
Foundation) (Supplementary material).

Results

Study population characteristics

Clinical patients’ characteristics
A total of 116 patients with HFrEF were followed for 525

days (7–930). Baseline patients’ characteristics and the difference
between died patients and those surviving during the follow-
up period are summarized in Table 1. Overall, the study

patients present a mean age of 62.5 ± 11.6 years and were
predominantly male (72%). Indeed, anemia and hypertension
were the most prevalent comorbidities among study patients.
A total of 55 (47.4%) patients had a previous history of HF
and the majorities (71.5%) were in NYHA class III/IV. More
than 50% of patients had a non-ischemic etiology for HF. The
median LVEF was 30% (15–48). Loop diuretics (86.2%), beta
blockers (77.6%) and angiotensin-converting enzyme inhibitors
/angiotensin receptor II blockers (ACEI/ARBs) (53.4%) were the
most common medications prescribed to patients at hospital
discharge (Table 1).

During follow-up period, 33 (28%) patients died. The most
frequent cause of death was HF in 60% of cases. Non-survivors
were more likely to have CKD (30.3 vs. 14.5%, p = 0.047),
previous history of HF (63.6 vs. 40.6%, p = 0.023) and NYHA
class III/IV symptoms (78.9 vs. 65.1%, p = 0.010). They also had
a lower SBP [110 mm Hg (77–170) vs. 120 mm Hg (88–180),
p = 0.003], lower LVEF [25% (15–45) vs. 30% (15–48), p = 0.034]
and lower CC rate [60 ml/min (33–141) vs. 78 ml/min (33–
174), p = 0.025] compared with survivors. The death group had
a higher QRS duration [108 ms (80–196) vs. 100 ms (74–196),
p = 0.044]. The dead patients were less likely to be treated with
ACEI/ARBs (33.3 vs. 61.4%, p = 0.006) and beta blockers (63.6
vs. 83.1%, p = 0.024).

Biochemical parameters
Among study patients, the median plasma concentrations

of UA and TB were 429.5 (71–1000) µmol/l and 15 (4–76)
g/l, respectively. Median plasma GGT, GPx and SOD activities
were 37 (8.2–197) UI/l, 2.6 (1–6.32) to nmol/min/mg protein
and 117.4 (74–174) UI/l, respectively. The mean plasma TAC
levels were 10.9 ± 1.7 mM Trolox equivalents. The median
plasma NT-proBNP levels were 3550 (354–7000) pg/ml. When
analyzing oxidative stress marker levels, non-survivors had
higher values of UA [530 µmol/l (71–970) vs. 401 µmol/l (224–
1000), p = 0.005] and TAC (11.4 ± 1.5 mM trolox equivalent
vs. 10.6 ± 1.7 mM trolox equivalent, p = 0.023). However,
GPx, SOD, and GGT activities and TB concentration were
not statistically different between the two groups. The death
group had also elevated levels of NT-proBNP [4393.33 pg/ml
(1140–7000) vs. 3380 pg/ml (354–6733.33), p = 0.001].

Association between oxidative stress
markers and the risk of all-cause
mortality

Kaplan-Meier survival analysis
We performed the KM analysis to estimate survival

probabilities for all-cause mortality, according to cut-off values
of UA, TAC, and NT-proBNP. The ROC curve analysis
showed that the best cut-off value for UA, TAC, and NT-
proBNP to predict all-cause mortality risk were 460 µmol/l
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FIGURE 1

Kaplan-Meier event-free survival curves for post-discharge
mortality relative to plasma levels of UA (A), TAC (B) and
NT-proBNP (C) above or below cut-off values.

(60% sensitivity, 65% specificity, 67% AUC), 11.5 mM trolox
equivalent (55%sensitivity, 70% specificity, 65% AUC) and 3843
pg/ml (60% sensitivity, 71% specificity, 70% AUC), respectively.
KM survival curves illustrate an increasing risk of mortality
rate among patients with UA levels above 460 µmol/l (log-
rank test p = 0.015). Furthermore, subjects with TAC levels
above 11.5 mM trolox equivalent were more likely to die during
follow-up period (log-rank test p = 0.018) (Figure 1). The
predictive utility of NT-proBNP levels for death risk among
HFrEF patients was also evaluated by KM survival curves. Log-
rank test showed that patients with NT-proBNP levels above
3843 pg/ml are more likely to experience death (log-rank test
p = 0.0028) (Figure 1).

TABLE 2 Univariate Cox proportional hazards regression analysis for
predictors of post-discharge mortality.

Variable HR 95% CI P-value

Age 1.028 0.997–1.016 0.076

Female sex 1.798 0.894–3.616 0.1

Hypertension 1.011 0.503–2.033 0.976

Diabetes mellitus 1.055 0.502–2.219 0.887

Hyperlipidemia 1.283 0.609–2.701 0.520

CKD 1.966 0.948–4.199 0.069

COPD 2.179 0.762–6.235 0.146

Anemia 1.547 0.779–3.072 0.212

Previous history of HF 2.198 1.080–4.471 0.030

NYHA class III-IV 3.316 1.165–9.438 0.025

LVEF 0.951 0.912–0.991 0.017

BMI 0.976 0.890–1.076 0.612

Admission SBP 0.972 0.954–0.990 0.003

QRS duration 1.016 1.003–1.029 0.021

AF 0.946 0.471–1.903 0.877

LBBB 1.843 0.928–3.658 0.080

CC 0.986 0.972–1.000 0.045

ACEI/ARBs 0.359 0.173–743 0.006

Beta blockers 0.426 0.209–0.867 0.019

Diuretics 2.609 0.624–10.91 0.189

Aldosterone antagonist 0.784 0.393–1.565 0.491

Statins 1.058 0.543–2.096 0.872

UA 1.002 1.000–1.004 0.042

TB 1.018 0.997–1.040 0.098

GGT 0.998 0.990–1.007 0.715

GPx 1.046 0.713–1.534 0.819

SOD 1.006 0.991–1.020 0.457

TAC 1.226 1.016–1.478 0.033

NT-proBNP 1.001 1.000–1.001 < 10−3

ACEI/ARBs, angiotensin-converting enzyme inhibitors/angiotensin receptor II; AF,
atrial fibrillation; BMI, body mass index; CC, creatinine clearance; COPD, chronic
obstructive pulmonary disease; CKD, chronic kidney disease; GPx, glutathione
peroxidase; HF, heart failure; LBBB, left Bundle Branch Block; LVEF, left ventricular
ejection fraction; NT-proBNP, N-terminal pro-B-type Natriuretic peptide; NYHA,
New York Heart Association; SBP, systolic blood pressure; SOD, superoxide dismutase;
UA, uric acid; TAC, total antioxidant capacity; TB, total bilirubin. Bold values indicate
the p-values < 0.05.

Uni and multivariate cox regression analysis
In univariate Cox-regression analysis, highest UA levels

(HR 1.002, 95% CI 1.000–1.004, p = 0.042) and elevated
TAC levels (HR 1.126, 95% CI 1.016–1.478, p = 0.033) were
significant predictors of post-discharge mortality. Additional
significant determinants of mortality risk were revealed in
univariate analysis, including: previous history of HF, NYHA
class III/IV, NT-proBNP levels, LVEF, admission SBP, QRS
duration, CC rate, beta blockers and ACEI/ARBs (Table 2).
In order to evaluate the independent association of UA and
TAC in the context of other common clinically available data,
a multivariate model was performed, including sex, age, BMI
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FIGURE 2

Multivariable Cox regression for post-discharge mortality prediction.

and all significant clinical predictors. Stepwise multivariate Cox-
regression analysis revealed that elevated UA levels (HR 1.001,
95% CI 1.000–1.003, p = 0.06) of high TAC levels (HR 1.272,
95% CI 1.040–1.560, p = 0.02) remained independent predictors
of death. In the multivariate Cox model, female sex, lower LVEF,
and high NT-proBNP levels were also independent predictors
for post-discharge mortality. Furthermore, multivariate analysis
showed that patients taking of beta blockers or ACEI/ARBs

TABLE 3 Predictive model for post-discharge mortality based on
stepwise generalized linear model.

Variable β-coefficient OR (95% CI) P-value

Age 0.054 1.055 (1.002–1.117) 0.048

Female sex 1.480 4.392 (1.304–16.411) 0.020

LVEF 0.778 0.925 (0.859–0.988) 0.027

Admission SBP –0.022 0.978 (0.947–1.006) 0.142

NT-proBNP 0.001 1.001 (1.0002–1.001) 0.009

UA 0.003 1.003 (1.0001–1.006) 0.044

TAC 0.347 1.414 (1.027–2.009) 0.039

ACEI/ARBs –1.180 0.307 (0.093–0.949) 0.044

Beta blockers –1.825 0.161 (0.038–0.596) 0.008

ACEI/ARBs, angiotensin-converting enzyme inhibitors/angiotensin receptor II; LVEF,
left ventricular ejection fraction; NT-proBNP, N-terminal pro-B-type Natriuretic peptide;
SBP, systolic blood pressure; UA, uric acid; TAC, total antioxidant capacity.

after hospital discharge faced a lower risk of death during the
follow-up period (Figure 2).

Risk prediction model for
post-discharge mortality

In order to predict the post-discharge mortality risk
among HFrEF patients, GLM, RF, and XGBoost models were
performed using clinical and laboratory data. Regarding GLM,
9 independent predictors of mortality were retained in the final
model. They included beta blocker, NT-proBNP levels, female
sex, LVEF, TAC levels, admission SBP, ACEI/ARBs, UA levels
and advanced age (Table 3). In the RF and XGBoost models,
SHAP values were used to explain how the selected features
affect the mortality prediction. In each variable importance row,
all patients’ attribution to post-discharge death risk were plotted
with dots of different colors where the blue dots represent the
lowest risk value and the red dots represent the highest risk
value (Figure 3). In RF model, the top 5 related variables in
mortality prediction were CC rate, UA levels, TAC levels, BMI
and ACEI/ARBs. In XGBoost model, UA levels were the most
important identified feature, followed by admission SBP, NT-
proBNP levels, beta blockers and QRS duration. Among the
three predictive models created, the GLM presented the best
performance. This model achieved the highest AUC (74.5%),
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FIGURE 3

SHAP plots for the ML models in predicting post-discharge mortality using (A) RF and (B) XGBoost. In each variable importance row, all patients’
attribution to mortality risk was plotted using different color dots. The red dots represent the highest risk of death.

accuracy (81.9%), recall (58%), precision (65%), F1-score (64%)
and MCC (53%) compared to the respective values in the RF
and XGboost models (Table 4). Therefore, the GLM model was
selected to predict the risk of post-discharge death in the present
study. The estimated β-coefficients of Glm-selected variables
were used to estimate the logit for a patient using the standard
GLM equation. The estimated individual probability (P) of
dying was then calculated using the following formula:

P =
eLogit

1+ eLogit

According to the estimated probability, study patients were
divided into high (P > 0.5) and low (P ≤ 0.5) risk groups and

KM curve survival analysis was applied. The result of the Log-
rank test showed a gradual decline in survival among high-risk
subjects during follow-up period, indicating that patients with

TABLE 4 Performance comparison between the three models.

AUC Accuracy Precision Recall F1-score MCC

GLM 74.5% 81.89% 73% 58% 64% 53.1%

RF 63% 75.86% 52% 36% 43% 33.3%

XGBoost 61.5% 72.4% 65% 33% 44% 26.1%

AUC, area under curve; GLM, generalized linear model; MCC, matthews correlation
coefficient; RF, random forest; XGBoost, extreme gradient boosting.
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FIGURE 4

Kaplan–Meier survival analysis between the high-and low-risk
groups.

higher mortality risk probability are more likely to die (log-rank
test p < 10−3) (Figure 4).

Based on the GLM model, an online post-discharge
mortality risk calculator was created.1 This tool calculated
the estimated individual probability of dying using clinical
characteristics and laboratory tests (Figure 5).

Discussion

In the present study, we developed a new predictive model
for post-discharge mortality among patients admitted for newly
diagnosed or exacerbated HFrEF. In addition to clinical patient
characteristics and NT-proBNP, 6 oxidative stress markers were
considered as candidate variables for risk prediction. Among
the three developed models, the GLM presented the best
performance for death prediction in HFrEF. Hence, this model
was selected to predict mortality risk among our study patients.
The predictors included in the GLM model were age, female sex,
beta blockers, NT-proBNP levels, LVEF, TAC levels, admission
SBP, ACEI/ARBs and UA levels.

To our knowledge, our study presents the first predictive
model for post-discharge mortality risk among HFrEF patients,
based on a combination of clinical patients’ characteristics, NT-
proBNP and oxidative stress markers. Previous mortality risk
prediction models among patients with HFrEF incorporated
clinical characteristics and NT-proBNP levels (24, 48, 49). The
integration of few readily obtainable variables is also a great
advantage of our model highlighting the potential use and

1 https://heartcheckapp.herokuapp.com/

implementation of this artificial intelligence tool in clinical
practice. A number of the predictors identified in our model
were also included in the PREDICT-HF models, including age,
beta blockers, NT-proBNP levels, LVEF, admission SBP and UA
levels; though the former has fewer variables (48).

On the statistical significance level, our model had a good
discriminative power of post-discharge death with an AUC of
74.5%, which is comparable to the Seattle HF Model, one of the
most extensively used models, achieving an AUC of 72.9% for 1-
year survival (16). Likewise, the AUCs from recently developed
mortality risk prediction models in HFrEF ranked from 67 to
78% (24, 48–50). Furthermore, our model was developed based
on the original statistical approach. The traditional statistical
method based on logistic regression, commonly applied in
previous predictive models for HFrEF, was explored (51). In
addition, two novel machine learning approaches (random
forest and extreme gradient boosting) were also applied to
predict post-discharge mortality in patients with HFrEF.

Regarding oxidative stress markers, UA and TAC were
retained as significant predictors of post-discharge mortality
risk in our model. Our analysis showed that high level of
plasma UA before discharge was significantly associated with
all increased post-discharge death risk among HFrEF patients
using univariate and multivariate analysis. Patients with UA
levels > 460 µmol/l were at high risk to die during follow
up periods. In addition, UA was one of the top five features
selected in RF and XGBoost models. Several clinical studies
showed that elevated level of UA was an important risk factor of
mortality in HFrEF (52, 53). Further, UA has been incorporated
in a clinically validated model to predict mortality in HFrEF,
displaying independent predictive ability in the Seattle Heart
Failure Model (16). UA, the final product of purine degradation,
is one of the major endogenous antioxidants in the human
plasma (54, 55). As a putative protective mechanism, increased
levels of plasma UA may be a compensatory mechanism to limit
the damage of inappropriate ROS production (56). Xanthine
oxidoreductase (XO) is the enzyme that catalyzes the conversion
of hypothanthine to UA in the final steps of purine catabolism
(57). Elevated UA levels reflect the amplified activity of XO, a key
enzyme in the production of ROS (58). Elevated UA levels reflect
the amplified activity of XO, a key enzyme in the production
of ROS (28). Accordingly, previous studies reported that an
increased level of UA was associated with disease severity and
correlated positively with left ventricular remodeling indices in
patients with HFrEF (31, 59).

TAC has also emerged as an important prognostic marker
of mortality in the GLM model. Our study elucidated that an
elevated level of plasma TAC was an independent predictor
for post-discharge mortality even after complete adjustment,
including sex, age, BMI, NT-proBNP and significant risk
factors. We also introduced the 11.5 mM trolox equivalent
cut-off of plasma TAC before discharge as a novel tool for
risk stratification. Previous studies reported an association
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FIGURE 5

Post-discharge mortality risk calculator.

between high levels of TAC and death risk in HFrEF (60)
and urgent heart transplantation among patients with non-
ischemic cardiomyopathy (36). Similar predictive significance of
the TAC level was also found in other cardiovascular diseases
such as coronary artery disease (61). Indeed, Tomandlova et al.
showed that TAC level was significantly higher in patients with
more severe coronary artery disease and worse prognosis. In
addition, previous studies showed an association between high
TAC level and mortality among patients with ischemic stroke
and severe septic (62, 63). TAC is an integrated parameter rather
than a simple sum of measurable antioxidants, representing
the cumulative action of all plasma antioxidants (64). A higher
level of TAC may reflect a greater antioxidant response due
to intensified production of ROS. It has also been suggested
that elevated TAC level in non-survivors patients represents
a compensating mechanism of an organism for depleted
antioxidative components (65). Overall, the association between
increased mortality risk and higher levels of UA and TAC,
observed in this study and earlier studies, suggested that these
easy and accessible markers of oxidative stress could be valuable
biomarkers and prognostic factors in patients with HFrEF.

Our multivariable model confirmed the strong predictive
value of NT-proBNP. Results obtained in this study showed
that an elevated level of plasma NT-proBNP was a strong
predictor of post-discharge mortality risk in both univariate and
multivariate analysis. Previous clinical studies have shown that
NT-proBNP level was significantly associated with increased

mortality risk in HFrEF (24, 66). Moreover, the American Heart
Association/American College of Cardiology HF guidelines
have recommended measuring Natriuretic peptide biomarkers
for prognostication among patients with HFrEF (20). Indeed,
the Natriuretic peptide tests are still underutilized in different
Tunisian centers as in many African countries which could
implement this test in routine clinical practice (5). In the present
study, we present the first prospective evaluation of NT-proBNP
levels among Tunisian patients with HFrEF. In this context, our
study confirms the predictive value of this test and encourages
its implementation in routine clinical practice in Africa.

In addition, the clinical variables identified in our model
include age, female sex, lower admission SBP and lower
LVEF. These variables were established as prognostic markers
in HFrEF (17, 18). Beta blockers and ACEI/ARBs were
also retained in the model. Indeed, our findings reported
a lower risk of post-discharge mortality in patients taking
these medications before discharge, which are similar to those
observed in several reports (67, 68). The protective role of these
drugs impacting mortality risk among HFrEF patients may be
partially due to their potent antioxidant properties (69, 70),
indicating the important prognostic role of oxidative stress in
patients with HFrEF.

Using the GLM model, we created a simple calculator
allowing the identification of patients with heightened post-
discharge death risk. Regarding its practical application, this
calculator is promising to be applied in future clinical
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practice. Indeed, this easy-to-use calculator can be easily
implemented in clinical practice. It is anticipated to aid
physicians to calculate the estimated mortality risk. Indeed, the
identification of patients at heightened post-discharge death
risk can be used to alter care, with closer follow-up and
potential earlier consideration of advanced therapies. Accurate
estimation of mortality risk in patients with HFrEF may
allow clinicians and patients to make important decisions
regarding the appropriateness and timing of disease-modifying
treatments and advanced therapies (48). In addition, identifying
factors common to patients at high risk of post-discharge
mortality may reveal potential targets for interventions
to improve prognosis. The implementation of these risk
prediction tools is relevant to healthcare, particularly in
the clinical decision-making (71). Shared decision making
can improve motivation for therapy adherence and lifestyle
change. Furthermore, the application of these prognosis tools
can guide the allocation of healthcare resources and reduce
costs (71).

Limitations

We present a single center study conducted in Hedi Chaker
Hospital of Sfax presenting a relatively small number of
patients and regional limitations. However, this sample size had
sufficient statistical power to detect mean differences. At the
clinical level, our study was restricted to HFrEF patients due to
its high prevalence in Tunisia (8). Then, this model may not
be generalizable to HFpEF patients and HFrEF patients with
major life-altering comorbidities including, acute myocardial
infarction, severe valvular disease requiring surgery and renal
failure requiring dialysis. We also precise that data regarding
the use of devices, such as implantable cardiac defibrillator and
cardiac resynchronization therapy, were not available. However,
the inclusion of such variables may add prognostic power to
our model. At statistical level, we consider that the absence
of external validation represents an acknowledged limitation,
which was circumvented by good discrimination in internal
validation of our model.

Future directions

Our pilot study should be expanded to different medical
centers in order to include patients from different parts of
Tunisia. We also encourage further validation of our risk
model in other populations of HFrEF patients. Larger future
prospective multicenter studies with larger numbers of patients
are needed to confirm the predictive value of oxidative
stress markers, assess for cost effectiveness and to define the
implications for earlier interventions to improve prognosis.

Conclusion

In conclusion, we developed a new predictive model for
post-discharge all-cause death in patients with HFrEF based on
a combination of clinical patient characteristics, NT-proBNP
and oxidative stress markers. This new model assisted by a
simple-to-use calculator may allow the identification of patients
at heightened post-discharge mortality risk and could assist the
treatment decision-making.
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Decompensation episodes in chronic heart failure patients frequently result

in unplanned outpatient or emergency room visits or even hospitalizations.

Early detection of these episodes in their pre-symptomatic phase would likely

enable the clinicians to manage this patient cohort with the appropriate

modification of medical therapy which would in turn prevent the development

of more severe heart failure decompensation thus avoiding the need for

heart failure-related hospitalizations. Currently, heart failure worsening is

recognized by the clinicians through characteristic changes of heart failure-

related symptoms and signs, including the changes in heart sounds. The latter

has proven to be largely unreliable as its interpretation is highly subjective

and dependent on the clinicians’ skills and preferences. Previous studies

have indicated that the algorithms of artificial intelligence are promising in

distinguishing the heart sounds of heart failure patients from those of healthy

individuals. In this manuscript, we focus on the analysis of heart sounds of

chronic heart failure patients in their decompensated and recompensated

phase. The data was recorded on 37 patients using two types of electronic

stethoscopes. Using a combination of machine learning approaches, we

obtained up to 72% classification accuracy between the two phases, which is

better than the accuracy of the interpretation by cardiologists, which reached

50%. Our results demonstrate that machine learning algorithms are promising

in improving early detection of heart failure decompensation episodes.

KEYWORDS

heart failiure, cardiac decompensation, heart sound, machine learing,
phonocardiogram (PCG), artificial intelligence-AI, decompensation detection,
classification
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Introduction

Chronic heart failure (CHF) is a complex chronic condition,
characterized by the inability of the heart muscle to provide
sufficient perfusion to meet the metabolic demands of the
body; alternatively the failing heart stabilizes the circulation by
operating at the higher filling pressures, which generate the
majority of the symptoms and signs, characteristic of CHF.
Globally, CHF has reached epidemic proportions, affecting
roughly 2% of the world’s overall population, with the incidence
increasing at 2% annually. The prevalence of CHF reaches
around 10% in the overall population aged over 65 years
and additionally carries a significant burden in terms of
healthcare costs and personnel expenditure. Importantly, the
prognosis of CHF patients remains dismal with 50% mortality at
5 years, which is largely related to heart failure decompensation
episodes that require in-hospital management (1). Available
literature suggests that identifying the CHF decompensation
episodes in their pre-symptomatic phase (when the patient
does not yet subjectively feel worse) may enable clinicians
to make appropriate and timely changes to patient’s medical
therapy thus preventing overt CHF decompensation to occur
or to occur in much milder forms that do not require
hospitalization (2). This may significantly improve patients’
outcomes (2). As microelectromechanical systems technology
is invasive, of limited availability and, at least for now,
prohibitively expensive, it has not yet exerted a wider impact
on the management of heart failure. Importantly, studies using
easily obtainable (but non-specific) clinical parameters (body
weight, blood pressure, heart rate, etc.) displayed only limited
success in accurately predicting CHF decompensation episodes.
There is thus a significant unmet need in the heart failure
community for effective, cost-efficient and robust protocols
for early detection of CHF decompensation episodes. First
automatic detections of CHF and other cardiovascular diseases
were performed with electrocardiogram data (3, 4), heart rate
variability data, photoplethysmogram, and clinical data such
as respiratory rate, weight, pulse rate, age, and blood pressure
(5). Recently, automated methods for analysing heart sounds
and detecting cardiovascular disease from heart sounds have
been increasingly developed as more and more datasets of
heart sound recordings have become publicly available (6–
8).

Heart sound classification algorithms found in the literature
include classical ML models, statistical models, and artificial
neural networks (NN) (9). There are a few papers that
specifically address CHF. In the work of Gjoreski et al. (10),
a stack of ML classifiers was used to classify normal sounds
and heart failure. In the preliminary study, Gjoreski et al. (11)
used a simple decision tree classifier to classify compensated and
decompensated stages of CHF, using only the portion of our
dataset recorded under the first experimental setup. Gao et al.
(12) compared the fully convolutional NN, gated recurrent unit,
long short-term memory, and support-vector machine (SVM)

models to classify normal heart and two subtypes of CHF. Liu
et al. (13) compared NN and SVM in classifying normal heart
and subtype of heart failure. In the work of Zheng et al. (14),
the SVM, NN, and a statistical hidden Markov model were
compared in classifying normal and CHF sounds. In our first
study, we tested ML algorithms for detecting decompensation
in CHF using general audio features generated with a dedicated
audio feature tool. Features were extracted from segments with
a fixed length of 2 s from a subset of our current data set (15).

As previous studies (10, 11, 16) have demonstrated
promising results in distinguishing between the heart sounds
of healthy people from those of CHF patients, we now focus
on a more specific task. In this manuscript, we explore how
ML algorithms can be employed to identify decompensation
episodes based on the heart sounds of CHF patients. The
study was performed on the recordings of 37 patients in both
decompensated and recompensated phases, using two types
of electronic stethoscopes. We discuss the performances of
several ML algorithms in view of feasibility of this approach
for telemedicine application. We compare the classification
accuracies of the ML models with that of cardiologists, who
are domain experts.

Materials and methods

Data

Our dataset consists of phonocardiograms (PCG) of 37 CHF
patients (average age of 51.3 ± 13.3 years). The dataset was
obtained by two different setups. The first part (21 subjects)
was obtained with a 3MTM Littmann Electronic Stethoscope
Model 3200 (17) digital stethoscope and consists of PCGs 30 s
in length. The second part (16 subjects) was obtained with the
Eko DUO ECG + Digital Stethoscope (18) and consists of PCGs
15 s in length. Both devices use built-in filters to reduce ambient
noise and record single channel audio signals at a sampling rate
of 4 kHz. According to the principal component analysis, the

TABLE 1 Pathophysiology of heart sounds (9).

Heart
sound

Frequency
range

Characteristics Duration/Location

S1 10–200 Hz Dull and prolonged 0.12–0.15 s

S2 20–250 Hz Sharp and short 0.08–0.12 s

S3 25–70 Hz Soft and thudding
quality

0.04 s, early diastole

S4 15–70 Hz Weak and rumbling Slightly before S1

Gallop 15–50 Hz Galloping rhythm 0.08–0.2 s, diastole

Murmurs Up to 600 Hz Whooshing, rumbling Systole, diastole

Opening
snaps

100–800 Hz Snapping sound Diastole

Rubs 100–800 Hz Scratching sound Systole, early/Late diastole

Clicks 100–800 Hz Short and loud Early systole
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FIGURE 1

Clear PCG segment (A), PCG segment with missing S2 sound (B), and a noisy PCG segment (C).

TABLE 2 List of features extracted from the phonocardiograms segments.

Feature type (N) Per segment state Domain Description

BPM (1) RR Time Inverse of segment duration in beats per minute

Dur_state (4) S1, Sys, S2, Dia Time Duration in milliseconds

Dur_Ratio_ratio (8) Time Duration ratios

MeanEnv_Ratio_ratio (8) Statistical Mean envelope ratios

RMS_state (4) S1, Sys, S2, Dia Statistical Root-mean-square of a signal

RMS_Ratio_ratio (8) Statistical Root-mean-square ratios

ZC_state (4) S1, Sys, S2, Dia Statistical Zero crossings

SE_state (4) S1, Sys, S2, Dia Statistical Sample entropy

Skewness_state (4) S1, Sys, S2, Dia Statistical Skewness

Kurtosis_state (4) S1, Sys, S2, Dia Statistical Kurtosis

PSD_region_band (24) Sys, Dia Frequency Power spectral density for different frequency bands

mfcc1-13_state (52) S1, Sys, S2, Dia Frequency 13 Mel-frequency cepstral coefficients

SpecCentroid_state (4) S1, Sys, S2, Dia Frequency Spectral centroid

SpecBandwidth_state (4) S1, Sys, S2, Dia Frequency 2nd order spectral bandwidth

SpecContrast2-5_state (16) S1, Sys, S2, Dia Frequency Spectral contrast for different frequency bands

SpecFlatness_state (4) S1, Sys, S2, Dia Frequency Spectral flatness

SpecRolloff_state (4) S1, Sys, S2, Dia Frequency Frequency below which 85% of the total spectral energy lies

PolyFeatures_state (4) S1, Sys, S2, Dia Frequency Coefficients of degree-1 polynomial fit to the spectrogram

dwt1-4_state (16) S1, Sys, S2, Dia Wavelet Level 4 discrete wavelet transform coefficients

difference between the recordings from the two devices after
preprocessing were small, thus it was reasonable to consider
both as the same, device-independent dataset. The subjects were
recorded in both the decompensated and the recompensated
phase. The decompensated episode was recorded when the
patient was admitted to the hospital for worsening heart failure
episode, while the recompensated one was recorded upon
discharge from the hospital when the patient was optimally
recompensated and was deemed optivolemic. The PCGs were
collected by medical professionals at University Medical Centre
Ljubljana from left parasternal 3rd intercostal space body
position. Overall, our dataset consists of 75 PCGs, 37 and 38
for compensated and decompensated phases, respectively, and
adds up to 29 min and 15 s in length. The study protocol was
reviewed and approved by the Republic of Slovenia National
Medical Ethics Committee (decision number 0120-276/2016-5).

A phonocardiogram consists of regular S1 and S2 sounds,
which are caused by the closing and opening of the heart valves,
and several additional sounds that may be present. These include
the S3 and S4 sounds, gallops, murmurs, opening snaps, rubs,
and clicks. While the S3 sound may also be present in normal
hearts of young children and athletes, other abnormal sounds
are never present in a normal heart. The pathophysiology of the
heart sounds can be found in Table 1.

Methods

The outcome of interest used to evaluate the ML models
was a binary variable indicating whether a PCG represents
a decompensated or a recompensated CHF phase. The
steps of the methodology pipeline included preprocessing of
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TABLE 3 Patient clinical characteristics.

Parameter Study population (N = 37)

Age, y 56.6± 12

Gender (male), % 88

Heart failure etiology (ischemic), % 27

Cause of decompensation

Volume overload, % 78

Infection, % 15

Arrhythmia, % 7

LVEF, % 26.7± 7.7

NT-proBNP, pg/ml 4,593 (953, 5,102)

Medical therapy

ARNI/ACEI/ARB, % 96

Beta blockers, % 100

MRA, % 96

SGLT2i, % 70

Diuretic, % 96

Ca-antagonist, % 9

Digoxin, % 15

LVEF, left ventricular ejection fraction; ARNI, angiotensin receptor antagonist neprylisin
inhibitor; ACEI, angiotensin convertase enzyme inhibitor; ARB, angiotensin receptor
blocker; MRA, mineralocorticoid receptor blocker; SGLT2i, sodium glucose transporter
2 inhibitor; Ca, calcium.

the PCGs, feature extraction, and training and evaluation
of the ML models.

Patient selection
We performed a prospective nonrandomized cohort study

that included 37 consecutive patients hospitalized for worsening
heart failure at the Advanced Heart Failure Center, Dept.
of Cardiology, UMC Ljubljana. Inclusion criteria were as
follows: chronic heart failure of ischemic or non-ischemic
etiology, hospitalization for worsening heart failure <24 h,
age >18 years; We did not consider patients with severe
valvular disease, artificial valves, patients with acute myocardial
infarction and/or de-novo acute heart failure, patients in
cardiogenic shock, on vasoactive and/or inotropic support, on
mechanical ventilation or on short- or long-term mechanical
circulatory support for this analysis or patients that were
hospitalized for worsening heart failure >24 h for this
analysis. Clinical, biochemical and medical therapy data were
collected for all the patients at the time of the initial
heart sound sampling.

All patients included in this analysis were recompensated
using levosimendan, followed by the intravenous diuretic
therapy. In all study participants, heart sounds were recorded
before the infusion of levosimendan (decompensated phase) and
upon reaching the optivolemic phase (recompensated phase).

Preprocessing
The first part of the preprocessing step was filtering.

Although heart sounds have frequencies of up to 800 Hz (see

Table 1), the most dominant frequencies are in the frequency
range of 20–400 Hz (19). The mean spectral roll-off frequency
(frequency below which 85% of the total spectral energy lies)
of our dataset is 49.9 ± 9.7 and 304.2 ± 99.4 Hz for the
PCGs recorded by the first and the second experimental setting,
respectively. To reduce the effects of different recording settings
and to reduce noise, the PCGs were filtered with a bandpass
Butterworth filter of order 4 and a frequency range from 25 to
400 Hz.

As the PCGs obtained by the two experimental settings were
also recorded at different amplitudes, the next preprocessing
step was heart sound signal normalization. We used the root
mean square (RMS) normalization with the target amplitude
of -20 dBFS. As opposed to the peak normalization, which
normalizes the signal based on the highest peak, the RMS
normalization normalizes the signal based on the average power
level by calculating the average value of all peaks.

The Springer’s modification (20) of Schmidt’s method (21)
was used to split the heart sound into separate cardiac cycles
and to find the four main states of each segment (RR): S1,
systole, S2, and diastole. This algorithm uses a hidden semi-
Markov model and Viterbi decoding and provides a state-
of-the-art method for segmenting heart sounds. Segmentation
allows us to extract the features of the possible abnormal
sounds from the corresponding heart sound states. In manually
reviewing the segmented PCGs, we found that seven (9%)
of the recordings either consisted of a significant number
of segments that were not correctly determined, or the
recording itself was so unclear that it was impossible to
tell whether the segments were correct or not. The two
most common reasons for the segmentation error were that
one of the main sounds (S1 or S2) was not detected by
the PCG recorder, resulting in a segment that was too

TABLE 4 Results of classification of a representative subset of our
dataset by the medical experts.

PCG Class Expert 1 Expert 2 Expert 3 Accuracy

1 1 0 1 0 0.33

2 0 1 1 1 0

3 1 1 0 0 0.33

4 1 1 1 1 1

5 0 0 0 0 1

6 0 0 0 1 0.67

7 0 1 1 1 0

8 1 1 0 0 0.33

9 1 0 1 0 0.33

10 0 0 0 1 0.67

11 0 0 0 0 1

12 1 0 1 0 0.33

Overall accuracy 0.58 0.67 0.25 0.5

Classes 0 and 1 are recompensated and decompensated CHF phases, respectively.
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TABLE 5 Results of the models’ performance.

Classifier Accuracy Precision Recall F1 ROC AUC

LR 0.72 (0.15; 0.61–0.83) 0.73 (0.17; 0.61–0.86) 0.73 (0.22; 0.56–0.90) 0.71 (0.16; 0.59–0.84) 0.74 (0.18; 0.61–0.88)

LGBM 0.70 (0.16; 0.58–0.82) 0.68 (0.29; 0.47–0.90) 0.63 (0.29; 0.41–0.85) 0.63 (0.27; 0.43–0.84) 0.71 (0.16; 0.59–0.83)

SVC 0.68 (0.16; 0.56–0.79) 0.75 (0.23; 0.58–0.92) 0.60 (0.31; 0.37–0.84) 0.62 (0.22; 0.45–0.78) 0.71 (0.15; 0.59–0.83)

RF 0.68 (0.18; 0.54–0.81) 0.63 (0.28; 0.42–0.84) 0.68 (0.35; 0.42–0.94) 0.63 (0.28; 0.41–0.84) 0.66 (0.23; 0.48–0.83)

DT 0.62 (0.15; 0.51–0.73) 0.60 (0.25; 0.41–0.79) 0.66 (0.29; 0.44–0.87) 0.60 (0.23; 0.42–0.78) 0.66 (0.16; 0.53–0.78)

GB 0.61 (0.16; 0.48–0.73) 0.61 (0.25; 0.42–0.80) 0.63 (0.27; 0.43–0.83) 0.59 (0.23; 0.42–0.77) 0.65 (0.17; 0.52–0.77)

XGB 0.61 (0.19; 0.46–0.75) 0.59 (0.27; 0.39–0.80) 0.60 (0.31; 0.37–0.84) 0.58 (0.26; 0.38–0.77) 0.67 (0.18; 0.53–0.81)

KN 0.58 (0.16; 0.47–0.70) 0.60 (0.19; 0.45–0.75) 0.58 (0.23; 0.40–0.75) 0.57 (0.18; 0.43–0.71) 0.61 (0.17; 0.48–0.74)

SGD 0.58 (0.07; 0.52–0.63) 0.45 (0.23; 0.28–0.62) 0.71 (0.41; 0.40–1.02) 0.54 (0.29; 0.32–0.76) 0.63 (0.13; 0.53–0.73)

GNB 0.54 (0.14; 0.44–0.65) 0.52 (0.21; 0.37–0.68) 0.55 (0.27; 0.35–0.75) 0.52 (0.21; 0.36–0.68) 0.57 (0.23; 0.39–0.74)

The scores are given as mean (SD; 95% CI).
The results are calculated from 10-fold cross-validation.
The highest version of the individual metric is marked as bold.

long (longer than one RR interval), or that the high-
amplitude noise was detected as one of the two main sounds,
resulting in a segment that was too short (shorter than
one RR interval).

As some of the features are calculated based on the
characteristics of the S1 and S2 sounds, the segments where
either of the sounds was not present (based on the signal
envelope) or the signal-to-noise ratio was too high were
excluded in the analysis. On average, 3.3 2.6% segments per
PCG recording were removed. Figure 1 shows an example of
a clear segment, an example of a segment that was removed
because S2 is missing, and an example of a segment that was
removed because it is too noisy.

The normalization was performed using Python 3.7
(Python Programming Language, RRID:SCR_008394)
and the library Pydub 0.25.1 (22), while the filtering and

FIGURE 2

Bar plot of the model accuracies. Black horizontal lines
represent 95% CI.

segmentation was performed using Matlab R2021a (MATLAB,
RRID:SCR_001622) (23).

Feature extraction
A total of 177 features were extracted from each segment.

These included features in the time domain, frequency domain,
statistical features, and features generated by a 4-level wavelet
decomposition. The complete list of features can be found in
Table 2.

Features were extracted from the entire PCG signal data
and from each of the four “_states.” In some cases, the features
were calculated as a ratio of the features of the states. The
“_ratio” features include S1/RR, Sys/RR, S2/RR, Dia/RR, S1/S2,
Sys/Dia, Sys/S1, and Dia/S2. To extract the frequency domain
features, the segments were transformed from the time domain
to the frequency domain using a fast Fourier transform with
a Hanning window of 64 milliseconds in length and a stride
of 16 milliseconds. For the power spectral density frequency
features, we selected frequency “_bands” of 25–40, 40–60, 60–80,
80–100, 100–120, 120–140, 140–160, 160–180, 180–200, 200–
250, 250–300, and 300–400 Hz. The selected frequency bands
are similar to those selected by the authors of Potes et al. (24).
Although Mel-frequency cepstrum coefficients (25) (MFCCs)
were developed to mimic human perception and are widely used
in speech recognition, they have been shown to work for heart
sound analysis as well (24, 26–28). We extracted the first 13
coefficients from each of the four states. The “2–5" bands of the
spectral contrast features include: 25–50, 50–100, 100–200, and
200–400 Hz. Daubechies 4 wavelet was used as a basis for the
discrete wavelet transform features.

To smooth out the outliers, we generated another set of
2 × 177 features representing the mean and standard deviation
of the features taken as a sliding window with window size
six across the segments of each PCG. To ensure that each
segment was equally represented, windowing was performed
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FIGURE 3

Confusion matrix of the LR model. Classes 0 and 1 are
recompensated and decompensated CHF phases, respectively.

FIGURE 4

Receiver operating characteristic curves of the most accurate
four models. The colored areas represent the 95% CI.

cyclically. The resulting 354 features were then used for the
models’ evaluation.

The features were extracted and calculated using Python
3.7 and libraries Librosa 0.9.1 (29), Scipy 1.5.2 (SciPy,
RRID:SCR_008058) (30) and Numpy 1.18.5 (NumPy,
RRID:SCR_008633) (31).

Experimental pipeline
We implemented 10 ML models. The decision tree classifier

(DT) is a model that uses a tree diagram for decision making,
where each branch is partitioned based on a threshold for
a feature. The gradient boosting classifier (GB), the extreme
gradient boosting classifier (XGB), the light gradient boosting
machine classifier (LGBM), and the random forest classifier (RF)
are ensemble methods that combine the predictions of multiple
DTs. The C-support vector classifier (SVC) finds a hyper-
plane in the feature space that spatially separates the classes.

TABLE 6 P-values of McNemar’s tests between the ML models.

LR LGBM SVC RF DT GB XGB KN SGD GNB

LR / 0.91 0.88 0.81 0.79 0.74 0.76 0.72 0.83 0.78

LGBM 0.91 / 0.85 0.9 0.91 0.9 0.9 0.78 0.84 0.75

SVC 0.88 0.85 / 0.88 0.86 0.88 0.88 0.86 0.82 0.78

RF 0.81 0.9 0.88 / 1 0.85 0.9 0.86 0.85 0.86

DT 0.79 0.91 0.86 1 / 1 1 0.95 0.92 0.91

GB 0.74 0.90 0.88 0.85 1 / 0.95 0.90 0.86 0.85

XGB 0.76 0.9 0.88 0.9 1 0.95 / 0.85 0.85 0.85

KN 0.72 0.78 0.86 0.86 0.95 0.9 0.85 / 0.85 0.89

SGD 0.83 0.84 0.82 0.85 0.92 0.86 0.85 0.85 / 0.91

GNB 0.78 0.75 0.78 0.86 0.91 0.85 0.85 0.89 0.91 /

The K-neighbors classifier (KN) looks for closest neighbors
in the features space to determine the class. The Gaussian
naive Bayes (GNB) utilizes Bayes’ theorem and makes the
assumption that the features are independent and described
by a Gaussian distribution. The logistic regression (LR) uses
logistic function to map a linear combination of the features to a
value between 0 and 1. The stochastic gradient descent classifier
(SGD) takes iterative steps to minimize the cost function. All of
the implemented models are probabilistic, meaning they assign
probabilities for each class. The selected decision threshold for
all models was 0.5. Each PCGs final decision was selected as
the majority vote of the segments’ predictions. The models
were implemented using Python 3.7 and Scikit 0.24.2 (scikit-
learn, RRID:SCR_002577) (32) and lightgbm 3.3.1 (LightGBM,
RRID:SCR_021697) (33) libraries.

Models were evaluated with a subject-wise 10-fold cross
validation using stratified folds with respect to the two different
setups for data acquisition. We found that the models, trained
only on the PCGs that were correctly segmented, perform
significantly better. Thus, for each training set, we removed
subjects that correspond to one of the seven PCGs we manually
determined are segmented incorrectly.

To keep the models explainable and as transparent as
possible and to avoid overfitting, we performed feature selection,
retaining only a subset of the features used as model input.
Although the selected features can depend on the model (e.g.,
decision tree based models can calculate the importance of the
features according to their ability to increase the pureness of the
levels), we selected our features independently of the models.
This means that all of the models used the same selected features.
Features were selected by calculating the mutual information
(34) between each feature and the outcome variable. The mutual
information between two variables is zero if the two variables
are independent, and higher values indicate greater dependence.
Each training fold was divided into five stratified subfolds,
and 40 features that had the highest mutual information with
the outcome variable on average across the five subfolds were
used for training.
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Results

Patient clinical characteristics are outlined in Table 3.
Our final dataset included 898 decompensated and 908
recompensated (1,806 in total) PCG segments with 354 features.
We used accuracy, precision, recall, F1-score, and area under
receiver operating curve (ROC AUC) as the evaluation metrics,
with accuracy as the main metric of performance evaluation.
Formulas for calculation of accuracy, precision, recall, and F1-
score are given in Equations (1–4). TP, FP, TN, and FN denote
true positive, false positive, true negative, and false negative,
respectively.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + TN
(3)

F1 = 2 ·
precision · recall
precision+ recall

(4)

Classification by the experts

The baseline of our method was determined by three
cardiologists experts who were each asked to independently
listen to a representative subset of 12 PCG recordings and
classify them as decompensated or recompensated. Importantly,
no other clinical data on the CHF patients were available
to the clinicians at that time. This subset included three
decompensated and three recompensated recordings from each
of the two data acquisition setups. The results are given in
Table 4.

The experts’ classification accuracies were 58, 67, and
25%, averaging at 50%, which coincides with the dataset
class distribution, meaning the cardiac auscultation alone
contributes little to the experts’ recognition of CHF
decompensation episode.

Evaluation the models’ performance

The results of the models’ performance evaluation are shown
in Table 5. The results are given along with standard deviation
(SD) and t-distribution 95% confidence interval (CI).

The bar plot of the models’ accuracies is shown in Figure 2.
All of the 10 implemented models outperform the baseline,
while six of them outperform the baseline with the 95% CI.
The best performing model is LR, which achieved accuracy
(SD; 95% CI) of 0.72 (0.15; 0.61–0.83). Additionally, the LR
model also achieved highest performance in recall with the

score of 0.73 (0.22; 0.56–0.90), F1-score of 0.71 (0.16; 0.59–
0.84), and ROC AUC with the score of 0.74 (0.18; 0.61–0.88).
The confusion matrix of the LR is shown in Figure 3. The best
performing model according to the precision metric was SVC,
which achieved a score of 0.75 (0.28; 0.58–0.92). The models
with accuracies comparable to that of the LR model are LGBM,
which achieved the score of 0.70 (0.16; 0.59–0.82), SVC, which
achieved the score of 0.68 (0.16; 0.56–0.79), and RF, which
achieved the score of 0.68 (0.18; 0.51–0.73). The ROC curves of
the four most accurate models are shown in Figure 4.

To test whether the difference in the models’ predictive
accuracy was statistically significant, we calculated the p-values
from McNemar’s test (35). This test is used on contingency tables
of the two models’ predictions. The results are given in Table 6.
We see that all of the models provided similar predictions, since
the p-values are all close to 1.

The list of the top 40 features is found in Table 7, with the
most important features being time domain features (10/40),
power spectral density features for different frequency bands
(17/40), and MFCCs (9/40). The most important heart sound
seems to be diastole, as 21/40 of the most important features
were extracted from diastole.

TABLE 7 Top 40 best predictor features according to their mutual
information with the outcome.

Rank Feature MI Rank Feature MI

1 m_BPM 0.16 21 m_Dur_Ratio_S1RR 0.1

2 m_Dur_Ratio_DiaRR 0.15 22 m_PSD_Dia_140_160Hz 0.1

3 m_Dur_Dia 0.14 23 sd_PSD_Sys_250_300Hz 0.1

4 sd_PSD_Dia_200_250Hz 0.14 24 sd_PSD_Sys_200_250Hz 0.1

5 sd_BPM 0.14 25 m_mfcc6_Dia 0.1

6 m_Dur_Ratio_SysS1 0.13 26 m_ZC_Dia 0.1

7 m_mfcc4_Dia 0.13 27 sd_PSD_Sys_140_160Hz 0.1

8 m_Dur_Ratio_SysDia 0.13 28 m_PSD_Dia_300_400Hz 0.1

9 sd_PSD_Dia_250_300Hz 0.13 29 m_PSD_Sys_300_400Hz 0.1

10 m_mfcc2_Sys 0.12 30 m_SpecContrast5_Dia 0.09

11 sd_PSD_Dia_180_200Hz 0.12 31 m_mfcc1_Sys 0.09

12 sd_PSD_Dia_160_180Hz 0.12 32 m_SpecCentroid_Dia 0.09

13 sd_PSD_Sys_120_140Hz 0.12 33 m_SpecBandwidth_Dia 0.09

14 m_mfcc2_Dia 0.12 34 m_mfcc6_S1 0.09

15 sd_Dur_Ratio_SysS1 0.11 35 sd_PSD_Sys_300_400Hz 0.09

16 m_mfcc1_Dia 0.11 36 m_PSD_Dia_250_300Hz 0.09

17 sd_PSD_Dia_140_160Hz 0.11 37 m_mfcc4_Sys 0.09

18 sd_PSD_Sys_180_200Hz 0.11 38 m_Dur_Ratio_SysRR 0.09

19 m_PSD_Dia_160_180Hz 0.11 39 m_Dur_Sys 0.09

20 m_mfcc6_Sys 0.11 40 sd_PSD_Dia_100_120Hz 0.08

The prefixes “m_” and “sd_” correspond to the mean and standard deviation of the
features taken as a sliding window with window size six across the segments of each PCG.
BPM, beats per minute; Dur, duration; PSD, power spectral density; mfcc, Mel-frequency
cepstral coefficients; ZC, zero crossings; SpecContrast, spectral contrast; SpecCentroid,
spectral centroid; SpecBandwidth, spectral bandwidth.
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PhysioNet dataset experiments

To test the robustness of our pipeline, we tested it against
dataset A of the PhysioNet (PhysioNet, RRID:SCR_007345)
(36) public database of heart sound recordings. The dataset
A contains PCGs from 117 normal and 292 abnormal hearts
recorded from children and adults. Both healthy subjects and
patients contributed between one and six PCGs. The recordings
lasted between 9 and 36 s. The models were compared in a 10-
fold cross validation with folds stratified with respect to the class.
The model with the best accuracy was SVC, which achieved a
score of 0.80 (0.06; 0.76–0.85), better than that of the majority,
which was 0.71. The other best performing models were LGBM,
GB, and XGB, with the accuracy scores of 0.80 (0.07; 0.74–0.85),
0.78 (0.08; 0.72–0.84), and 0.78 (0.06; 0.73–0.83), respectively.
The results obtained with this method are very similar to those
obtained with our previous approach in (11). It should be
noted that the results may be somewhat positively biased as the
subjects are not labeled and the recordings of the same subjects
may be included in both the training and test sets.

Discussion

In this study, we used 10 ML models to classify
decompensation episodes in CHF using a dataset of heart
sound recordings from 37 CHF patients. We used 40 domain
predictor features, extracted from the four states of heart
sounds. All models outperformed the classification performed
independently by three cardiology experts, which averaged at
50%. Logistic regression proved to be the best model in terms
of accuracy, reaching 72 (15; 61–83)%. Power spectral density
features, time domain features, and Mel-frequency cepstrum
coefficients were found to be the most important predictors.
Most of these features were extracted from diastole. From
the medical perspective, this is reasonable, since the sounds
produced in the diastole originate from the heart chambers
refilling by blood. The heart of a CHF patient is more rigid
than a healthy heart and will thus vibrate differently. Another
observation is that several of the important features are related
to heart rate (BMP). Again, this is relevant from the medical
point of view, as patients in the decompensated phase have a
faster pulse than those that are not decompensated. Our method
was additionally tested on a public dataset of normal/abnormal
heart sounds where it achieved exemplary results, although a
direct comparison is not possible because the public dataset was
heavily unbalanced.

In view of early detection of decompensation episodes of
CHF and thus preventing decompensation from occurring or
to occur in milder forms that would not lead to hospitalization,
the results are promising, as they demonstrate that the ML
algorithms can substantially outperform a human expert solely
based on the heart sounds. It is important to stress that
the algorithms were trained on data from the two extreme

phases of CHF, indicating that the results obtained likely
represent the upper limit on the accuracy such an approach
can achieve. Thus, using only heart sounds for detection of
decompensation is not sufficient, however, it can represent a
valuable component of a decision-support system that takes
into account additional patient data, with patients performing
daily/weekly self-recording and self-assessment.

Recently, various approaches to automatic detection
of heart disease have been successfully implemented for
numerous data set modalities such as clinical features, images,
and electrocardiograms (ECG) (37). Although the reported
accuracies are very decent, some data are very difficult and/or
expensive to obtain. Future plan for our system to support
patients with CHF is to incorporate data that are easy to obtain
and relatively inexpensive, such as clinical data, self-reported
data, ECG data, daily activity data, and possibly others. In
addition, our models could be integrated into a virtual coaching
system (38) that tracks the patient’s cardiac status and overall
well-being and promotes medication use and/or physical
activity to prevent deterioration of the condition.

Limitations

This study has the following limitations. First, the recorded
patients are at different stages of CHF so a decompensated
phase of a relatively healthy CHF patient can be similar to a
recompensated phase of a patient with a later stage of CHF.
In addition, there are different subtypes of CHF, which we did
not consider in model building. Models trained separately for
each stage/subtype would most likely provide better results.
Second, the PCG is recorded when an individual is admitted
to/discharged from the hospital, and not on a regular basis with
the intention of capturing the deterioration of the condition.
Deterioration is unpredictable, and therefore data collection
starting with a CHF patient in good condition and then waiting
until the situation deteriorates is not practical. Third, since we
are using a dataset collected by ourselves, we cannot directly
compare the accuracy of our method with related work, but
only by testing it against a public dataset. Fourth, although ML
models outperform the experts’ classification, the inputs to the
models are computer-extracted sound features most of which
are not intuitive to the experts. Therefore, the models do not
really provide the experts with additional knowledge to help
them make decisions while listening to the heart, but can only
be used as a component of stand-alone decision-making tools.

Conclusion

This study demonstrates that in chronic heart
failure patients machine learning algorithms may
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outperformcardiologists in detecting decompensation episodes
based on heart sounds alone. The key predictor features are
derived from diastole and come both from time and frequency
domains. Although the results are promising, showing that
machine learning algorithms perform better than cardiology
experts, the use of heart sound data alone is not sufficient
for early detection of decompensation. Therefore, additional
clinical data must be added to the protocol before considering
the integration of this method into a decision-support system.
The inclusion of additional predictor variables such as weight,
self-reported data, and electrocardiogram falls within the
scope of future work.
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