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There is a growing appreciation that many 
psychiatric (and neurological) conditions 
can be understood as functional disconnec-
tion syndromes – as reflected in aberrant 
functional integration and synaptic connec-
tivity. This Research Topic considers recent 
advances in understanding psychopathology 
in terms of aberrant effective connectivity – 
as measured noninvasively using functional 
magnetic resonance imaging (fMRI). 

Recently, there has been increasing interest in 
inferring directed connectivity (effective con-
nectivity) from fMRI data. Effective connec-
tivity refers to the influence that one neural 
system exerts over another and quantifies the 

directed coupling among brain regions – and how they change with pathophysiology. Compared 
to functional connectivity, effective connectivity allows one to understand how brain regions 
interact with each other in terms of context sensitive changes and directed coupling – and there-
fore may provide mechanistic insights into the neural basis of psychopathology. 

Established models of effective connectivity include psychophysiological interaction (PPI), 
structural equation modeling (SEM) and dynamic causal modelling (DCM). DCM is unique 
because it explicitly models the interaction among brain regions in terms of latent neuronal 
activity. Moreover, recent advances in DCM such as stochastic and spectral DCM, make it pos-
sible to characterize the interaction between different brain regions both at rest and during a 
cognitive task. 
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Editorial on the Research Topic

Mapping Psychopathology with fMRI and Effective Connectivity Analysis

Distributed networks of interacting brain systems—rather than a single area—are usually involved
in the execution of a specific cognitive task. Recent advances in neuroimaging techniques now
allow us to see how these interacting brain regions are integrated and cooperate with each other
to prosecute cognitive operations (Razi and Friston, 2016). Brain connectivity analyses based
on electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic
resonance imaging (fMRI) signals characterize neuronal responses in terms of how brain activity is
induced by external stimuli and propagates among distributed brain regions, and thus may help
answer key questions about functional brain architectures. The insights that brain connectivity
analyses offer is also crucial for us to elucidate the neurobiological correlates underlying many
neuropsychiatric disorders.

Functional connectivity and effective connectivity are generally used to measure functional
integration in neuroimaging. The former examines (undirected) statistical dependencies (e.g.,
temporal correlations) between brain regions and has been extensively studied to characterize brain
networks at rest. However, understanding the precise mechanisms mediating cognitive processes
depend on directed information flow within brain networks. Thus, the current research topic
focuses on mapping psychopathology with (directed) effective connectivity analysis, which models
causal interactions among brain regions. We attempt to further improve current understanding
of the neural mechanisms of major neuropsychiatric disorders by exploring how signals are
transmitted differently from one region to another in healthy controls and patients. This
comparisonmay help explain the pathophysiology and psychopathology seen in these disorders—at
a network and possibly synaptic level.

In this research topic, we invited world-renowned experts to present their recent work that have
utilized various models of directed connectivity; including psychophysiological interactions (PPI),
Granger causality (GC), and dynamic causal modeling (DCM) to investigate directed connectivity
in healthy subjects and patients with neuropsychiatric disorders. The papers in this research topic
further our knowledge of the neurobiological mechanisms underlying neurological and psychiatric
disorders. We will see that young people with OCD exhibit increased dorsal anterior cingulate
cortex (dACC) modulatory effects during the performance of working memory tasks (Diwadkar
et al.). There is also new evidence suggesting that neurodegenerative disorders like Parkinson’s
disease (Yan et al.) and Huntington’s disease (Minkova et al.) are characterized by impaired causal

5
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interactions of the motor control system (Dowlati et al.) speaking
to the interesting notion that age-dependent neural mechanisms
may be important for understanding aberrant belief states
associated with psychopathology. Interestingly, abnormalities in
brain effective connectivity are also seen clearly in resting state
in subjects with schizophrenia (Cui et al.), smoking addiction
(Tang et al.), idiopathic generalized epilepsy (Wei et al.) and
cocaine users (Ray et al.). In addition, it is exciting to see that
effective connectivity analysis may furnish a new framework to
understand fatigue and depression (Stephan et al.). We believe
these findings have the potential to invigorate and advance
our understanding of the neurobiological mechanisms of major
neuropsychiatric disorders, thus improving the prevention,
diagnosis and treatment of these disorders.

Looking into the future, we anticipate a shift toward new
methods that can measure effective connectivity among specific
cell types (e.g., lamina-specific connectivity). For example,
methods that use detailed biophysical modeling based on
canonical microcircuits and neural mass models for functional
MRI data (Friston et al., in press) or that combine other
modalities—like optogenetics—with fMRI (Bernal-Casas et al.,
2017). These new methods will be very useful within the context
of detecting early and selective abnormalities in specific cell types
in various forms of dementia. For example, frontotemporal lobar
degeneration (FTLD) has been previously shown to selectively
target Von Economo neurons in fronto-insular regions (Seeley
et al., 2006) and that pathogenic huntingtin protein selectively
targets striatal spiny projection neurons (Ehrlich, 2012). More
detailed and informed models of effective connectivity may also
be very useful for furthering recent (and exciting) developments
in understanding compensatory mechanisms in presymptomatic
neurodegeneration that could potentially translate to the

discovery of reliable neuronal biomarkers of disease progression
(Klöppel et al., 2015). We envisage that computational modeling
of dementia will usher a new era of functional integration
research, by increasing our understanding of mechanisms by
which molecular lesions engender specific meso and macro scale
neural network damage that maps onto specific phenotypes
(Gilson et al., 2016).

A complete understanding of complex (many-to-many)
protein-network-phenotype mappings will be crucial for
the early diagnosis and development of interventional
therapies for slowing and preventing dementia. In psychiatry,
computational modeling has already given a birth to the
new field of computational psychiatry that constitutes a new
paradigm for translational research and clinical decision
making (Montague et al., 2012; Friston et al., 2014). The
potential for developing new treatments for psychiatric
illnesses that go beyond addressing symptoms is promising and
any computational modeling that can precisely characterize
aberrant connectivity may play a central role in predicting
an individual’s clinical trajectory (Stephan and Mathys, 2014;
Friston, 2016).
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Suchismita Ray1*, Xin Di2 and Bharat B. Biswal2
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Objective: Although effective connectivity between brain regions has been examined
in cocaine users during tasks, no effective connectivity study has been conducted
on cocaine users during resting-state. In the present functional magnetic resonance
imaging study, we examined effective connectivity in resting-brain, between the brain
regions within the mesocorticolimbic dopamine system, implicated in reward and
motivated behavior, while the chronic cocaine users and controls took part in a resting-
state scan by using a spectral Dynamic causal modeling (spDCM) approach.

Method: As part of a study testing cocaine cue reactivity in cocaine users (Ray et al.,
2015b), 20 non-treatment seeking cocaine-smoking (abstinent for at least 3 days) and
17 control participants completed a resting state scan and an anatomical scan. A mean
voxel-based time series data extracted from four key brain areas (ventral tegmental
area, VTA; nucleus accumbens, NAc; hippocampus, medial frontal cortex) within the
mesocorticolimbic dopamine system during resting-state from the cocaine and control
participants were used as input to the spDCM program to generate spDCM analysis
outputs.

Results: Compared to the control group, the cocaine group had higher effective
connectivity from the VTA to NAc, hippocampus and medial frontal cortex. In contrast,
the control group showed a higher effective connectivity from the medial frontal cortex
to VTA, from the NAc to medial frontal cortex, and on the hippocampus self-loop.

Conclusions: The present study is the first to show that during resting-state in
abstaining cocaine users compared to controls, the VTA initiates an enhanced
effective connectivity to NAc, hippocampus and medial frontal cortex areas within
the mesocorticolimbic dopamine system, the brain’s reward system. Future studies of
effective connectivity analysis during resting-state may eventually be used to monitor
treatment outcome.

Keywords: connectivity, cocaine, fMRI, mesocorticolimbic system, resting state connectivity

INTRODUCTION

The mesocorticolimbic system has been associated with reward, motivation, and goal-directed
behavior. Drugs of abuse enhance extracellular dopamine concentration in components of the
mesocorticolimbic system, including the ventral striatum (nucleus accumbens, NAc), extended
amygdala, hippocampus, anterior cingulate, prefrontal cortex, and insula, which are triggered by
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dopaminergic projections essentially from the ventral tegmental
area (VTA; Jasinska et al., 2014). Based on earlier studies
(Jay, 2003; Kelley, 2004; Nestler, 2005), although the
mesocorticolimbic system responds to natural rewards such
as food, water, and sex, drugs of abuse induce a larger response
in this system than physiological stimuli. Past research suggests
that the drugs of abuse “hijack” the neurobiological mechanisms
by which the brain reacts to reward, creates reward-related
memories, and summarizes action repertoires leading to the
reward (Everitt and Robbins, 2005; Kalivas and O’Brien, 2008).
According to Volkow et al. (2006, 2008), through repeated drug
use, drug related cues become conditioned stimuli and evoke
dopamine release and craving; and over time, the incentive
salience of these cues is heightened (Robinson and Berridge,
1993). This phenomenon of heightened salience of the drug
cues has been demonstrated in human neuroimaging studies by
increased blood oxygenation level dependent (BOLD) activation
in areas including the prefrontal cortex [medial prefrontal cortex
(mPFC), orbital frontal cortex, dorsolateral prefrontal cortex],
VTA, anterior cingulate cortex, insula, NAc, amygdala, and
hippocampus in response to drug cues relative to neutral cues in
chronic drug users (see Jasinska et al., 2014 for review).

A major focus of the recent neuroimaging studies has been to
understand not just which individual brain locations are activated
by drug cues, but how individual brain regions are integrated,
i.e., functional connectivity. Functional connectivity has been
examined in cocaine users in resting-state (Gu et al., 2010; Wilcox
et al., 2011; Cisler et al., 2013; Ray et al., 2015a) and also when
they performed tasks (a finger-tapping and an attention task;
Tomasi et al., 2010; Hanlon et al., 2011). According to Fox and
Raichle (2007), resting state functional connectivity, typically
assessed by the correlation of spontaneous fluctuations of BOLD
signals in different regions of the ‘resting’ brain, is believed to
provide a measure of the brain’s functional organization. Resting
state functional connectivity between the regions within the
mesocorticolimbic system in cocaine users has been examined
by Gu et al. (2010). Results showed that cocaine users compared
to controls had a reduced functional connectivity within this
system. However, functional connectivity studies are limited in
that although they provide information about the interaction of
brain regions of interest (ROIs), these studies do not assess how
one region influences another.

Effective connectivity on the other hand refers to the causal
influence that one brain region employs over another, and thus
add an important information on the consequences of chronic
drug use on the mesocorticolimbic system. To the best of our
knowledge, only three functional magnetic resonance imaging
(fMRI) effective connectivity studies have been done with cocaine
users. As part of the study described here, we have reported
effective connectivity among brain regions within the drug
cue processing network using IMaGES (Ramsey et al., 2010), a
Bayesian search algorithm, while chronic cocaine users viewed
cocaine-related picture cues (Ray et al., 2015b). During cocaine
cue exposure, cocaine users demonstrated a unique feed-forward
effective connectivity pattern between the ROIs of the drug-
cue processing network (amygdala→hippocampus→dorsal
striatum→insula→medial frontal cortex, dorsolateral prefrontal

cortex, anterior cingulate cortex) that was absent when the
controls viewed the cocaine cues. Using a stochastic dynamic
causal modeling (DCM) approach, Ma et al. (2014) showed
that cocaine subjects differed from controls in that effective
connectivity from inferior frontal cortex to striatum was less
affected by an immediate working memory task in the cocaine
compared to the control group, and the effective connectivity
from middle frontal gyrus to the striatum was less affected by
the delayed working memory task in the cocaine compared to
the control group. And Ma et al. (2015) utilized an fMRI-based
stochastic DCM to study the effective neuronal connectivity
associated with response inhibition in cocaine dependent
subjects, elicited under performance of a Go/NoGo task with two
levels of NoGo difficulty (Easy and Hard). The DCM analysis
revealed that prefrontal-striatal connectivity was influenced
during the NoGo conditions for both groups. In cocaine
dependent subjects, the effective connectivity from left anterior
cingulate cortex to left caudate was more negative during the
Hard NoGo conditions.

The goal of this study was to expand Gu et al.’s (2010) study
by examining effective connectivity among regions within the
mesocorticolimbic dopamine system (Figure 1) in cocaine users
during resting-state, when there are no demands being placed,
such as cognitive tasks or viewing drug cues. This provided
a measure of baseline effective connectivity, utilizing baseline
BOLD signal, within the mesocorticolimbic system in cocaine
users (Liu et al., 2011). Since there is no demand on task, resting-
state data unburden subject compliance, and training demands,
and thus makes it interesting for studies of development and
clinical populations. An analysis of baseline connectivity might
shed light on the interpretation of prior research that has found
an increased connectivity in cocaine users (vs. controls) in
response to, for example, a cognitive task. Conceivably, such a
finding might be due to a characteristically higher resting state
level of connectivity for cocaine users; if true, then a conclusion
that higher connectivity is due to a cognitive task would be called
into question. In the present fMRI study, we examined effective
connectivity in resting-brain, more specifically, between the brain
regions within the mesocorticolimbic dopamine system while
the chronic cocaine users took part in a resting-state scan. We
collected resting-state fMRI data from cocaine smokers who were
non-treatment seekers and were abstinent from cocaine use for
72 h and age-matched healthy controls with no experience with
cocaine.

Although originally developed for task based fMRI (Friston
et al., 2003), several methodological developments have made
it possible to use DCM to model effective connectivity during
resting-state (Daunizeau et al., 2012; Di and Biswal, 2014; Friston
et al., 2014). One of the recent developments is to inverse DCM
models at the frequency spectrum domain (Friston et al., 2014).
In the current study, we applied this spectral DCM (spDCM)
approach on resting-state fMRI data collected from chronic
cocaine users and controls to examine effective connectivity
among four key regions within the mesocorticolimbic dopamine
system: VTA, NAc, hippocampus, and medial frontal cortex. We
first set fully connected models for the two groups. We then
adopted a Bayesian model reduction approach to identify optimal
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FIGURE 1 | This figure depicts the mesocorticolimbic system. The blue
arrows represent dopaminergic pathways: the red arrows represent
glutamatergic pathways; black arrows represent GABAergic pathways. Brain
areas anterior cingulate, insula, orbital frontal cortex and dorsolateral
prefrontal cortex are not shown in the figure.

models for the two groups (Friston and Penny, 2011). More
specifically, based on research conducted by Gu et al. (2010), we
hypothesized that the cocaine group compared to the control
group would show a decreased effective connectivity pattern
between the four regions within the mesocorticolimbic dopamine
system as a result of chronic cocaine use during resting-state.

MATERIALS AND METHODS

Participants
Twenty (15M; 5F) non-treatment seeking chronic cocaine
smokers abstaining from cocaine use for 72 h, and 17 (13M;
4F) age-, education-, and ethnic-background matched healthy
control participants took part in the study (Table 1). The two
groups did not significantly differ with regard to their age,
education, alcohol use quantity, nicotine use frequency and
quantity, and caffeine use frequency and quantity.

The main inclusion criteria for the study participants included
English as their first language, no report of childhood learning
disability or special education, right handedness, and near
20/20 vision (or corrected). The main exclusion criteria for
the study participants included serious medical conditions, a
history of psychiatric or neurological disorder or treatment,
lifetime diagnosis of any substance use disorder of the
prospective participant’s biological mother (to rule out prenatal
exposure effects), MRI contraindications, alcohol abuse and
dependence including past dependence on alcohol, and for
women, pregnancy. Participants were excluded if they reported
any history of anxiety or depression in their recent past.

TABLE 1 | Demographic and substance use information for cocaine users
and controls.

Cocaine (n=20)
Control (n=17)

Mean, Range
(SD)

Mean, Range
(SD)

t-
stats

p

Age (years) 46 (6.4) 46 (7) 0.10 0.92

Education (years) 13.4 (2.4) 13.5 (2.1) −0.17 0.86

Race/Ethnicity

Caucasian 7 5

African American 11 11

Hispanic 2 1

Female (n) 5 4

Cocaine Use by All Users

Frequency (days/week) 3, 2–6 (1.2) NA

Duration of use (years) 16, 3–34 (8) NA

Money spent ($/week) $220, $70–550
(131)

NA

Cocaine Use by Non-cocaine dependent/abusers

Frequency (days/week) 3, 2–6 (1.5)

Duration of use (years) 9, 3–19 (6)

Money spent ($/week) $172, $80–350
(93)

Alcohol Use

Frequency (days/month) 1.9, 1–2.5 (0.55) 4.0, 2.5–6.5
(1.4)

−4.89 0.00∗

Quantity
(drinks/occasion)

2.1, 1–3.5 (0.92) 1.7, 1–2 (0.42) 0.92 0.37

Drinkers (#) 13 6

Nicotine Use

Frequency (days/week) 5.1, 1–7 (2.3) 5.7, 3–7 (2.3) −0.40 0.70

Quantity (cigarettes/day) 6.3, 1.5–13 (3.0) 2.8, 2.5–3
(0.29)

2.00 0.07

Smokers (#) 13 6

Caffeine Use

Frequency (days/week) 4.4, 1–7 (2.5) 3.6, 1–7 (2.4) 0.78 0.44

Quantity (cups/day) 1.3, 1–2 (0.43) 1.3, 1–4 (0.90) 0.26 0.80

Caffeine users (#) 13 11

Clinical Characteristics

DSM-IV-R cocaine
dependence

10 NA

DSM-IV-R cocaine
abuse

3 NA

Cocaine
non-dependent/abusers

7

∗Denotes significant group difference.

Participants were included in the cocaine group if they
currently spent a minimum of $70 per week on cocaine and had a
history of smoking cocaine for at least two times per week for
the past 6 months (assessed by self-report). Participants in the
cocaine group were instructed to abstain from cocaine for at least
72 h before their study appointment. The primary current drug
of choice for the cocaine group was cocaine and they did not
meet a DSM-IV-TR diagnosis of abuse or dependence for any
other drugs, as confirmed by SCID (First et al., 1997). Half of
the cocaine users did not meet DSM-IV-TR criteria for cocaine
dependence, and seven did meet criteria for abuse or dependence.
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Ten out of 20 cocaine users never tried any other drugs in their
lifetime and nine others experimented with marijuana once or
two times in their lifetime ranging from 15 to 30 years back. Only
one used marijuana one time in his/her lifetime 3 weeks before
the study. Participants were included in the control group if they
did not have any current or past drug use history and had no
alcohol abuse history in their first degree family members. Ten
out of 17 controls never tried any drugs in their lifetime and
seven others experimented with marijuana once or two times in
their lifetime ranging from 30 to 43 years back. Family history of
alcohol abuse was assessed by using a semi-structured diagnostic
instrument called Family History Assessment Module (Cloninger
and Reich, 1991). None of the participants in the cocaine or in
the control group reported any history of anxiety or depression
during the past 2 weeks on the day of the telephone screening
interview which took place within 7 days of the study.

On the day of the study, all participants gave written informed
consent and took a urine screen to rule out pregnancy in
women, and to ensure negative urine toxicology for cocaine,
methamphetamine, THC, opiate and benzodiazepines (One
Step Multi-Drug Screen Test Panel). Abstinence from alcohol
was confirmed with a breathalyzer. At the end of the study,
participants were compensated with a gift certificate worth $100
for their participation and were paid for their transportation
expenses (Ray et al., 2015b). This research was approved by the
Rutgers University Institutional Review Board.

Procedure
Each participant completed a resting-state scan and a high
resolution anatomical MPRAGE (magnetization-prepared rapid
acquisition with gradient echo) scan. During resting-state scan,
participants were instructed to lie quietly without any movements
while they visually fixated on a cross for 6 min. All participants
completed resting-state scan first and then took part in the cue
exposure task. All participants were administered a cocaine-
craving questionnaire (CCQ-Brief; Sussner et al., 2006) before
the resting-state scan started. They had to rate their craving
for cocaine on a seven-point scale (1 = Strongly Disagree,
7= Strongly Agree).

Image Acquisition
Imaging data were collected using a 3T Siemens Trio head-
only fMRI scanner equipped with a standard Siemens head
coil. While participants visually fixated on the cross, T2∗-
weighted echo planar images were acquired (35 axial slices, voxel
size 3 mm × 3 mm × 3 mm, interslice gap 1 mm, matrix
size 64 mm × 64 mm, FOV = 192 mm, TR = 2000 ms,
TE = 25 ms, flip angle = 90◦) covering the entire brain.
A sagittal T1-weighed structural scan (TR = 1900 ms,
TE = 2.52 ms, matrix = 256 × 256, FOV = 256 mm, voxel size
1 mm × 1 mm × 1 mm, 176 1-mm slices with 0.5 mm gap) was
acquired in order to co-register it with the fMRI data (Ray et al.,
2015b).

ROIs Selection
Based on prior publications in the field of addiction (see section
3.3.1. of Jasinska et al., 2014) we selected four ROIs within the

mesocorticolimbic dopamine system as key nodes for effective
connectivity analysis during resting-state. These four ROIs
included VTA, NAc, hippocampus and medial frontal cortex.
We selected these four regions: (1) VTA because regions within
the mesocorticolimbic system are innervated by dopaminergic
projections predominantly from the VTA, (2) VTA directly sends
its projection to NAc (ventral striatum) implicated in reward and
motivation, (3) hippocampus is responsible for memory related
to past drug use, and (4) medial frontal cortex is implicated
in continuation of drug seeking behavior (Jasinska et al., 2014).
These four regions well represent mesocorticolimbic system
(Figure 2).

Data Preprocessing
For each participant, in the first step, first five time-points were
removed from that participant’s BOLD fMRI data to account
for T1-relaxation effects. In the next step, the participant’s
BOLD fMRI data were motion corrected with respect to the
mean image of that participant. Following motion correction,
each participant’s BOLD fMRI data were co-registered to the
anatomical images for that participant. Following co-registration,
each participant’s anatomical images were segmented into gray
matter, white matter, cerebrospinal fluid (CSF) images and the
deformation fields were derived to transform each participant’s
BOLD fMRI data into the MNI standard space. Lastly, 24 head
motion parameters (Friston et al., 1996), the first five principle
components of signals from white matter, and first five principle
components of signals from CSF were regressed out for every
voxel using linear regression.

In order to study effective connectivity patterns of the
mesocorticolimbic dopamine system, we defined a total of four
brain regions based on Jasinska et al. (2014). For each cocaine
participant, a mean voxel based time series was extracted from
each of these four ROIs (bilateral) using the AFNI program
‘3dmaskave’, and used as input to the spDCM analysis in
modeling the causal interactions between the ROIs during
resting-state. For these four ROIs, the mean voxel based time
series for the right brain area (i.e., right hippocampus) and the
left brain area (i.e., left hippocampus) were averaged to create the

FIGURE 2 | Four regions of interest (ROIs) within the
mesocorticolimbic system that were used for spDCM analysis.
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mean voxel based time series for that brain area (hippocampus).
A mean voxel-based time series data extracted from the same
ROIs during resting-state from the control participants were
used as input to the spDCM program to generate an additional
spDCM analysis output.

Dynamic Causal Modeling
SPM 12 (with updates 6685) was used to perform spDCM
analysis. For each subject, we first built a DCM with all
endogenous connectivity specified (full model). All other types
of connectivity, i.e., B, C, and D parameters, were set as zero.
We used spectrum DCM framework to inverse the model for
each subject (Friston et al., 2014). We next employed a network
discovery procedure to optimize the DCMs for each group,
separately (Friston and Penny, 2011). This procedure tests all
the models nested in the full model, and chose the model
with highest posterior probability. We then adopted Bayesian
parameter averaging (BPA) approach to obtain model parameters
for each group, separately (Razi et al., 2015). To compare
connectivity parameters between the two groups, we compared
model parameters from the full models between the two groups
by using the BPA approach. Group differences in connectivity
were identified using false discovery rate (FDR) at p < 0.05
correcting for the total 16 (4× 4) connectivity parameters.

RESULTS

Motion Comparison
All participants met the motion threshold (0.5 mm) as set
for the study. That is, for all participants, the mean frame-
wise displacement was less than 5 mm. A group level unpaired
t-test revealed that groups did not differ in mean frame-
wise displacement (p = 0.8120). The average mean frame-wise
displacement was 0.177 mm in the cocaine group and 0.185 mm
in the control group.

Craving Results
For each participant, craving scores were obtained (Sussner et al.,
2006) before the resting state scan. Results showed that cocaine
users did not show significantly higher craving rating compared
to controls [t(35) = 1.02, p = 0.31; 1.23 (SD = 1.03) vs. 1
(SD= 0)].

Dynamic Causal Modeling
Model optimization procedure gave slightly different model
structures for the two groups. For the cocaine group, the
effective connectivity from the VTA to medial frontal cortex
and effective connectivity from the medial frontal cortex to
hippocampus were removed. While for the control group, the
effective connectivity from the NAc to medial frontal cortex
and effective connectivity from medial frontal cortex to VTA
were removed. The effective connectivity structures along with
averaged connectivity parameters for the two groups are shown
in Figure 3.

Group differences in effective connectivity parameters of the
full model between the two groups are shown in Figure 4.

FIGURE 3 | Optimized dynamic causal models (DCMs) for the cocaine
group (A) and the control group (B). Red color indicates positive effective
connectivity, while blue color indicates negative effective connectivity.
Numbers represent averaged effective connectivity strengths using Bayesian
parameter averaging. Hipp, hippocampus; MFC, medial frontal cortex; VTA,
ventral tegmental area; NAc, nucleus accumbens.

Compared to the control group, the cocaine group had higher
effective connectivity for seven connections (red arrows), and
reduced effective connectivity for three connections (blue
arrows). The cocaine group showed higher effective connectivity
from the VTA to NAc, hippocampus and medial frontal cortex.
In addition, the effective connectivity from the hippocampus
to NAc, the reciprocal effective connectivity between the
hippocampus and medial frontal cortex, and the self-effective
connectivity of the NAc also showed a greater effective
connectivity in the cocaine group compared to the control
group. In contrast, the control group showed a higher effective
connectivity from the medial frontal cortex to VTA, from the NAc
to medial frontal cortex, and on the hippocampus self-loop.

DISCUSSION

The objective of this fMRI study was to compare effective
connectivity among four key brain regions within the
mesocorticolimbic dopamine system in chronic cocaine
users to healthy controls during resting-state, when there are
no demands being placed, such as cognitive tasks or viewing
drug cues. This provided us a measure of baseline effective
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FIGURE 4 | Group differences in effective connectivity parameters
between the cocaine and control groups. Red indicates a greater effective
connectivity in the cocaine group compared to the control group, and blue
indicates a reduced effective connectivity in the cocaine group compared to
the control group. Significant group differences were identified after false
discovery rate (FDR) correction at p < 0.05. Hipp, hippocampus; MFC, medial
frontal cortex; VTA, ventral tegmental area; NAc, nucleus accumbens.

connectivity within the mesocorticolimbic dopamine system in
chronic users of cocaine which is not available by measuring
effective connectivity while the cocaine users perform a task. To
examine effective connectivity, we employed one of the recently
developed DCM models which utilizes the frequency spectrum
domain (spDCM; Friston et al., 2014).

According to Jasinska et al. (2014), drugs of abuse enhance
extracellular dopamine concentration in components of
the mesocorticolimbic system, including the NAc, extended
amygdala, hippocampus, anterior cingulate, prefrontal cortex,
and insula, which are triggered by dopaminergic projections
essentially from the VTA (Jasinska et al., 2014). Since VTA
sends projections to multiple areas within the mesocorticolimbic
system, we decided that these connections would provide
a good way to compare cocaine users with controls during
resting-state. Our results provided a mixed support of our
hypothesis. More specifically, group differences in effective
connectivity pattern revealed that the control group compared
to the cocaine group showed a higher effective connectivity from
the medial frontal cortex to VTA, from the NAc to medial frontal
cortex, and on the hippocampus self-loop, consistent with our
hypothesis. However, contrary to our hypothesis, the cocaine
group compared to the control group showed a greater effective
connectivity from the VTA to all three other areas within the
mesocorticolimbic dopamine system, that is, NAc, hippocampus
and medial frontal cortex (Figure 4). Perhaps neuroplasticity
within the mesocorticolimbic dopamine reward system as a
result of chronic cocaine use may account for these differences
in effective connectivity patterns between cocaine users and
controls. We speculate that the higher effective connectivity
from the medial frontal cortex to VTA and from the NAc to
medial frontal cortex represent better cortical and subcortical
communications in controls compared to cocaine users. More
specifically, higher effective connectivity from the medial frontal

cortex to VTA demonstrates control participants’ higher cortical
cognitive control on subcortical region (VTA; Ridderinkhof
et al., 2004) that may have implications for reducing drug seeking
behavior.

We further speculate that may be the effective connectivity
alterations throughout the mesocorticolimbic reward system
revealed during resting-state in chronic users of cocaine play a
role in maintaining problematic drug use. An enhanced causal
influence of VTA on NAc, hippocampus and medial frontal
cortex in cocaine users compared to control is consistent with
Jasinska et al. (2014), who suggested that drugs of abuse increase
dopaminergic projections predominantly from the VTA to other
areas within the mesocorticolimbic system.

The present study extends upon the previous research
including research by Gu et al. (2010) by establishing for
the first time that during resting-state in abstaining cocaine
users, the VTA created an enhanced effective connectivity to
NAc, hippocampus and medial frontal cortex in cocaine users
compared to controls within the brain’s reward system. The
present findings are, however, contrary to Gu et al. (2010)
who showed a reduced functional connectivity between regions
within the mesocorticolimbic system, including between VTA
and ventral striatum, between amygdala and mPFC, and between
hippocampus and dorsal mPFC during resting-state in cocaine
users compared to controls. Yet the majority of participants in
Gu et al.’s (2010) study did not abstain from cocaine during
the resting-state scan, so their findings may reflect, in part, the
acute effects of cocaine, which change resting-state functional
connectivity.

Resting-state functional connectivity has been linked to
self-monitoring and introspective processes (Eryilmaz et al.,
2011). We speculate that, during the resting-state scan, a
greater effective connectivity from the VTA to hippocampus
within the mesocorticolimbic dopamine system in cocaine users
compared to controls may reflect persistent thoughts of the
cocaine users’ long-term memory of drug use (Tiffany, 1990;
Spaniol et al., 2009; Jasinska et al., 2014), consistent with
the activation of hippocampus by VTA. We also speculate
that an enhanced effective connectivity from the VTA to
medial frontal cortex in cocaine users compared to controls
may reflect activation of decision making and motivated
behavior related to continued drug use (Balleine et al., 2007;
Jasinska et al., 2014). In future studies, participants might
be interviewed post-scan to understand the content of their
thoughts while they were inside the scanner. As potential system-
level biomarkers of chronic cocaine use, the alterations within
the mesocorticolimbic dopamine system may be usefully applied
in treatment development and monitoring treatment outcome.
It would be particularly useful to examine whether therapeutic
interventions change the enhanced effective connectivities that
were found in cocaine users within this system which may imply
a positive treatment outcome.

Next, we would like to mention a couple of limitations of
this study. First, although we matched the cocaine smoking and
control groups based on their age, educational and ethnic/racial
background, controls drank significantly more alcohol than the
cocaine-using group (Table 1). However, importantly, alcohol
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use was still very low for both groups (<1 drink/day), therefore,
was unlikely to affect our findings. This does, however, restrict
our conclusions to a ‘pure’ cocaine-using group and may not be
generalizable to cocaine users who abuse alcohol as well. Second,
we acknowledge that we had a small sample size. There were
only five female cocaine smokers in our study, thus, we could
not investigate any potential sex differences in our resting-state
study outcome. Third, due to limitation of the BPA approach
that does not allow us to put alcohol and nicotine usage as
covariates in group level analysis, we could not use alcohol
use frequency and nicotine use quantity as covariates. However,
alcohol usage frequency was actually significantly lower in the
cocaine group than the control group, and conversely nicotine
use quantity was higher in the cocaine group than the control
group (non-significant). Despite these limitations, the results
of the present study provide a model of effective connectivity
among four regions within the mesocorticolimbic dopamine
system during resting-state in individuals who are chronic users
of cocaine. An important issue in interpreting results of a cross-
sectional study, such as ours, is whether differences between
groups are a consequence of chronic drug use or alternatively,
reflect pre-existing differences that predispose some individuals
to addiction. This can be investigated in future studies that will
utilize a longitudinal design.

To conclude, the present study is the first to show that
during resting-state in abstaining cocaine users compared to

controls, the VTA initiates an enhanced effective connectivity to
NAc, hippocampus and medial frontal cortex areas within the
mesocorticolimbic dopamine system, the brain’s reward system.
Future studies of effective connectivity analysis during resting-
state may eventually be used to monitor treatment outcome.
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This paper outlines a hierarchical Bayesian framework for interoception,

homeostatic/allostatic control, and meta-cognition that connects fatigue and depression

to the experience of chronic dyshomeostasis. Specifically, viewing interoception as the

inversion of a generative model of viscerosensory inputs allows for a formal definition of

dyshomeostasis (as chronically enhanced surprise about bodily signals, or, equivalently,

low evidence for the brain’s model of bodily states) and allostasis (as a change in prior

beliefs or predictions which define setpoints for homeostatic reflex arcs). Critically,

we propose that the performance of interoceptive-allostatic circuitry is monitored by

a metacognitive layer that updates beliefs about the brain’s capacity to successfully

regulate bodily states (allostatic self-efficacy). In this framework, fatigue and depression

can be understood as sequential responses to the interoceptive experience of

dyshomeostasis and the ensuing metacognitive diagnosis of low allostatic self-efficacy.

While fatigue might represent an early response with adaptive value (cf. sickness

behavior), the experience of chronic dyshomeostasis may trigger a generalized belief of

low self-efficacy and lack of control (cf. learned helplessness), resulting in depression.

This perspective implies alternative pathophysiological mechanisms that are reflected

by differential abnormalities in the effective connectivity of circuits for interoception

and allostasis. We discuss suitably extended models of effective connectivity that

could distinguish these connectivity patterns in individual patients and may help inform

differential diagnosis of fatigue and depression in the future.

Keywords: computational psychiatry, effective connectivity, dynamic causal modeling, homeostasis, allostasis,

predictive coding, active inference, multiple sclerosis
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INTRODUCTION

Fatigue is a prominent symptom of major clinical significance,
not only in chronic fatigue syndrome (CFS) per se, but across
a wide range of immunological and endocrine disorders, cancer
and neuropsychiatric diseases (for overviews, see Wessely, 2001;
Chaudhuri and Behan, 2004; Dantzer et al., 2014). For example,
it is the most frequent (Stuke et al., 2009) symptom in Multiple
Sclerosis (MS), with major impact on quality of life. It is
strongly associated with depression (Wessely et al., 1996; Bakshi
et al., 2000; Kroencke et al., 2000; Pittion-Vouyovitch et al.,
2006), and longitudinal studies have demonstrated that fatigue
represents a risk factor for depression (and vice versa; Skapinakis
et al., 2004). Additionally, fatigue represents a core criterion
for the diagnosis of major depression in standard psychiatric
classification schemes (ICD-10 and DSM-5).

The clinical concept of fatigue is a heterogeneous construct,
comprising at least two dimensions (Kluger et al., 2013):
fatiguability of cognitive and motor processes, and subjective
perception of fatigue. While the former can be measured
objectively, the latter requires self-report via questionnaires.
Given its clinical importance, it has been remarkably difficult
to develop a theory of fatigue that is comprehensive, specific
and allows for developing objective clinical tests (Wessely,
2001). Research on its pathophysiology has largely focused on
molecular processes, particularly in the context of inflammation
(Dantzer et al., 2014; Patejdl et al., 2016), but efforts to link
these molecular processes to the physiology and computation
(information processing) of cerebral circuits are rare. This paper

attempts to address this challenge and outlines the foundations
of a theory of fatigue that is grounded in interoception
(Craig, 2002) and homeostatic/allostatic control (Sterling,
2012), offering a formal (hierarchical Bayesian) perspective
on (some of) the computations involved. In particular, we
propose a metacognitive mechanism that explains the sequential
occurrence of fatigue and depression, given a state of prolonged
dyshomeostasis.

This paper has the following structure. First, we discuss why
disease theories of fatigue confined to the molecular/cellular
level are not sufficient for a comprehensive understanding
of fatigue, but need to be complemented by a computational
perspective. Second, as a basis for developing this perspective,
we review long-standing notions from systems theory and
control theory and their implications for interoception as
well as homeostatic and allostatic control. Third, we apply a
hierarchical Bayesian view to fatigue and cast it as a meta-
cognitive phenomenon: a belief of failure at one’s most
fundamental task—homeostatic/allostatic regulation—which
arises from experiencing enhanced interoceptive surprise.
We suggest that fatigue is a (possibly adaptive) initial
allostatic response to a state of interoceptive surprise; if
dyshomeostasis continues, the belief of low allostatic self-
efficacy and lack of control may pervade all domains of
cognition and manifests as a generalized sense of helplessness,
with depression as a consequence. Fourth, we derive specific
predictions against which this theory can be tested and outline
the necessary methodological extensions of contemporary

models of effective connectivity, such as DCM. Finally,
we consider how such extended generative models might
become useful for differential diagnosis of fatigue in the
future.

THE NEED FOR A COMPUTATIONAL
THEORY OF FATIGUE

Existing pathophysiological theories of fatigue mainly refer
to inflammatory and metabolic processes at the molecular
level. For example, a longstanding observation is that
pro-inflammatory cytokines, resulting from peripheral
(extra-cerebral) immunological processes, induce “sickness
behavior” (Dantzer and Kelley, 2007) with fatigue as a
key symptom. This may result from a range of different
mechanisms, including reduced synthesis of monoaminergic
transmitters or inflammation-induced shifts in the production of
metabolites such as kynurenines, which impact on transmission
at glutamatergic synapses (for a comprehensive recent review,
see Dantzer et al., 2014).

While these hypotheses have been very influential and useful
in suggesting potential future treatment avenues, they do not,
on their own, allow for constructing a comprehensive theory of
fatigue. First, as for any neuropsychiatric symptom, we eventually
need a theory that unifies and links disease processes across
molecular, cellular and circuit (systems) levels of description.
This is important because a theory of fatigue that is confined
to the molecular level does not explain how clinical symptoms
arise; by contrast, a circuit-level description is the closest we can
presently get to behavior and subjective experience. Moreover,
neuropsychiatric disease processes can not only originate from
the molecular level and spread “bottom-up,” causing cellular
and circuit-level disturbances; in addition, the reverse (top-
down) direction and the ubiquitous existence of reciprocal
brain-body interactions are well-established (Sapolsky, 2015).
For example, seemingly maladaptive behavior can materialize as
the (optimal) consequence of beliefs that form under exposure
to specific environmental input statistics (Schwartenbeck et al.,
2015b). That is, in the absence of any primary molecular or
synaptic pathology, exposure to unusual environmental events
can induce distorted beliefs about the causal structure of the
world, e.g., that it is inherently unpredictable or uncontrollable
(cf. learned helplessness; Abramson et al., 1978). Such beliefs
engender misdirected coping behavior and have profound
physiological consequences, including a dysregulation of cerebral
control over endocrine and autonomic nervous system processes
(e.g., aberrant activation of the hypothalamic-pituitary axis;
HPA; Tsigos and Chrousos, 2002). Importantly, the ensuing
immunological and metabolic disturbances in the body exert
strong feedback effects on cerebral circuits. For example, stress-
related increases in levels of cortisol and pro-inflammatory
cytokines affect NMDA receptor (NMDAR) function (Nair
and Bonneau, 2006; Gruol, 2015; Vezzani and Viviani, 2015).
Importantly, NMDAR dependent signaling is thought to be
essential for updating and encoding representations of beliefs
(Corlett et al., 2010; Vinckier et al., 2016). This suggests
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that peripheral inflammatory or endocrine disturbances could
impede the adjustment of aberrant beliefs by which they
were caused in the first place (i.e., a positive feedback loop).
In brief, the existence of closed-loop interactions between
cognitive and bodily processes implies that we require a wider
theory of fatigue than one focusing on molecular events
alone.

There is a second, more practical, reason why a purely
molecular/cellular theory of fatigue cannot provide a clinically
sufficient account of fatigue: molecular disease processes in brain
tissue are not easily accessible for non-invasive diagnostics in
humans. The relative separation of the brain from the body by the
blood-brain barrier means that we only have indirect access to
brain tissue, such as biochemical analyses of cerebrospinal fluid
(CSF), and there are very few diagnostic questions (e.g., in neuro-
oncology or epilepsy) where the risks of brain tissue biopsies
or invasive recordings are justified by diagnostic benefits.
However, provided we have a concrete model that specifies
how a disease process at the molecular/cellular level leads to
measurable changes in the activity of specific brain circuits, one
can, in principle, infer the expression of this process from non-
invasive neuroimaging and electrophysiological measurements,
such as functional magnetic resonance imaging (fMRI) or
magneto-/electroencephalography (M/EEG). Technically, this
involves a so-called “generative model” m which specifies how
the hidden (unobservable) state x of a neuronal circuit translates
probabilistically into a measurement obtained y with fMRI or
M/EEG, and which can be used to infer hidden states from
measurements (Figure 1). Using a generative model of brain
activity or behavioral measurements to address diagnostic
questions amounts to a “computational assay” (Stephan and
Mathys, 2014; Stephan et al., 2015). The application of generative
models to clinical questions is presently beginning to take place
across the whole range of neuropsychiatry, including applications
to schizophrenia (Schlagenhauf et al., 2014), depression
(Hyett et al., 2015), bipolar disorder (Breakspear et al., 2015),
Parkinson’s disease (Herz et al., 2014), channelopathies (Gilbert
et al., 2016), or epilepsy (Cooray et al., 2015). One particular
approach we return to below is the generative modeling of
neurophysiological circuits. For example, dynamic causal models
(DCMs; for reviews see Daunizeau et al., 2011; Friston et al.,
2013) allow one to infer directed synaptic connections (effective
connectivity) from neuroimaging or electrophysiological
data.

Generative modeling is an attractive approach for establishing
differential diagnostic procedures. However, given the
myriad of possible disease processes, guidance by clinical
theories is crucial for the development of computational
assays. The framework outlined in this paper is meant
to inform the development generative models that infer
mechanisms of fatigue and depression from fMRI and
MEG/EEG data. The predictions by this framework suggest
that differential diagnosis could be decisively facilitated by
model-based estimates of directed synaptic connectivity
(effective connectivity) within interoceptive circuits and
their interactions with regions potentially involved in
meta-cognition.

TELEOLOGICAL BRAIN THEORIES AS
FUNDAMENT FOR UNDERSTANDING
FATIGUE

The diverse behavioral, cognitive and emotional facets of
fatigue, its occurrence in numerous syndromatically defined
diseases, and the multitude of findings from immunology,
neurophysiology and psychology offer a large number of degrees
of freedom for “bottom-up” explanations of this complex
symptom (Dantzer et al., 2014; Patejdl et al., 2016). Given this
complexity, investigating fatigue requires guidance by formal
theories which provide top-down constraints on organizing and
interpreting the diversity of experimental findings. These top-
down constraints could be derived, for example, from theories
about the purpose, structure and biophysical implementation
of the brain’s computations1. This strategy is at the heart of
an emerging discipline, “Computational Psychiatry” (Montague
et al., 2012; Stephan andMathys, 2014; Friston et al., 2014b; Huys
et al., 2016), and has shown promise in tackling other complex
neuropsychiatric symptoms, such as delusions (Corlett et al.,
2010).

Although its historical roots have rarely been discussed so far,
Computational Psychiatry builds on seminal teleological theories
of biological (and other) systems that provide fundamental
constraints for any attempt of understanding brain function.
These include, for example, general systems theory (Von
Bertalanffy, 1969), cybernetics and control theory (Wiener, 1948;
Ashby, 1954, 1956; Conant and Ashby, 1970; Powers, 1973;
Carver and Scheier, 1982; von Foerster, 2003; Seth, 2015a,b,c)
and constructivism (Richards and von Glasersfeld, 1979). Some
core ideas from these general theories of inference and control in
biological systems have laid the foundation for recent concepts
of perception and action in computational neuroscience (e.g.,
Mumford, 1992; Dayan et al., 1995; Rao and Ballard, 1999;
Friston, 2005, 2010; Friston et al., 2006; Doya et al., 2011). For
example, the central notion of radical constructivism that the
brain actively “constructs” a subjective reality from noisy and
ambiguous sensory inputs (Richards and von Glasersfeld, 1979;
von Foerster, 2003)—as opposed to the brain representing an
objective outer reality that is reflected by sensory inputs—are
expressed formally, using the language of probability theory,
in hierarchical Bayesian models we encounter below. Other
central ideas—such as the notion that cognitive systems are self-
referential and monitor themselves (von Foerster, 2003) are yet
to be exploited fully, e.g., for models of metacognition.

This paper represents a first attempt to use some of these
principles for articulating a novel theory of fatigue and how
it may transition to depression. In brief, our account views
fatigue and depression as metacognitive phenomena: a set of
beliefs held by the brain about its own functional capacity—
specifically, a perceived lack of control over bodily states. This

1In the well-known framework by Marr (1982), these levels are referred to as

the “computational,” “algorithmic,” and “implementational” levels of analysis,

respectively. Considering the original definition of “computation” in theoretical

computer science, these designations are partially confusing, and in the following

we will therefore refer to the first level as the “teleological” (purpose) level of

description.
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FIGURE 1 | (A) Bayes theorem provides the foundation for a generative model m. This combines the likelihood function p(y|x,m) (a probabilistic mapping from hidden

states of the world, x, to sensory inputs y) with the prior p(x|m) (an a priori probability distribution of the world’s states). Model inversion corresponds to computing the

posterior p(x|y,m), i.e., the probability of the hidden states, given the observed data y. The posterior is a “compromise” between likelihood and prior, weighted by their

relative precisions. The model evidence p(y|m) in the denominator of Bayes’ theorem is a normalization constant that forms the basis for Bayesian model

comparison—see main text. (B) Suitably specified and validated generative models with mechanistic (e.g., physiological or algorithmic) interpretability could be used

as a computational assay for diagnostic purposes. The left graphics is reproduced, with permission, from Garrido et al. (2008). (C) Contemporary models of

perception (the “Bayesian brain hypothesis”) assume that the brain instantiates a generative model of its sensory inputs. Perception corresponds to inverting this

model, yielding posterior beliefs about the causes of sensory inputs. The globe picture is freely available from http://www.vectortemplates.com/raster-globes.php.

belief arises when attempts of homeostatic regulation fail to
reduce the experience of chronic dyshomeostasis: enduring
deviations between expected and sensed bodily states. These
persistent deviations or prediction errors signal interoceptive
surprise or, equivalently, low evidence of the brain’s model of
bodily processes. Before we can turn to this notion in more
detail, we review some ideas on the role of perception (inference)
and prediction (action selection) for homeostasis which originate
from the longstanding literature mentioned above and have
resurfaced in more recent work in computational neuroscience.

The Brain As an Organ for Homeostatic
Control
The brain is literally “embodied”: its structural and functional
integrity depends on mechanical support, energy supply, and

the provision of a suitable biochemical milieu provided by
the body. As a corollary, the selectionist pressures which act
upon the brain during evolution cannot be uncoupled from
those acting upon the body’s milieu intérieur (Claude Bernard);
i.e., control of bodily homeostasis must constitute a primary
purpose of brain function (Cannon, 1929). This control has long
been known to involve reflex-like actions (comprising motor,
endocrine, immunological, and autonomic processes) that are
driven by feedback and the resulting “prediction error”—the
discrepancy between an expected bodily state (a homeostatic
setpoint2) and its actual level as signaled by sensory inputs
from the body (Modell et al., 2015); see Figure 4. Feedback- or

2Below, we will define homeostatic setpoints as the expectations (means) of prior

beliefs about the states the body should inhabit, and homeostatic range as the

variance of these prior beliefs.
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error-based reactive control has been studied for many vitally
important variables (such as blood acidity, body temperature,
blood levels of glucose and calcium, plasma osmolality) (Woods
and Wilson, 2013), and the anatomy and physiology of neuronal
circuits involved have been mapped out in detail by physiologists
over many decades.

While this reactive type of control dominates the classical
literature on homeostasis, it likely only represents the lowest
layer in a hierarchy of temporally extended control mechanisms,
with most immediate consequences. By contrast, assuming that
the brain maintains a model of bodily states and the external
environment, higher levels enable prospective control, with two
essential components: inference (on current bodily state) and
prediction (of its future evolution, on its own and in response
to chosen actions) (Sterling, 2012; Penny and Stephan, 2014;
Pezzulo et al., 2015; Seth, 2015a). There are several reasons why
homeostatic regulation requires a model that enables inference
(perception) and prediction (action selection). First, control is
“blind” without perceptual inference: the brain does not have
direct access to either bodily or environmental states, but has to
infer them from sensory inputs which are inherently noisy and
ambiguous. Disentangling the many external states that could
underlie any given sensory input is an ill-posed inverse problem
that requires constraints or regularization (e.g., by the priors of a
generative model; Lee and Mumford, 2003; Kersten et al., 2004).
Second, numerous experimental observations indicate that the
brain engages in regulatory responses prior to a homeostatic
perturbation, provided it can be anticipated (Sterling, 2012).
In other words, a predicted deviation from a homeostatic
setpoint is avoided by choosing suitable actions in advance.
Importantly, setpoints are hierarchically structured, and changes
in hierarchically lower setpoints may be necessary to prevent
departure of bodily state from higher setpoints (Powers, 1973).
For example, a temporary change in (lower) setpoints for blood
pressure and catecholamine levels may be elicited to engage in
fight-flight behavior that is necessary to ensure bodily integrity
(higher setpoint). As we will see below, this longstanding notion
of hierarchically structured homeostatic setpoints fits nicely to
hierarchical Bayesian architectures, where the prior belief at one
level is constrained by the prior belief at the next higher level.

This anticipatory control or allostasis (“stability through
change”; Sterling, 2014) necessarily requires a model capable
of generating predictions. The notion of model-based allostatic
regulation is a special case of the more general and long-standing
view that the brain requires a model of the external world in
order to implement optimal control. Specifically, seminal work
by Conant and Ashby (1970) has resulted in an influential
theorem “[...] which shows, under very broad conditions, that
any regulator that is maximally both successful and simple must
be isomorphic with the system being regulated. [...] The theorem
has the interesting corollary that the living brain, so far as it is
to be successful and efficient as a regulator for survival, must
proceed, in learning, by the formation of a model (or models)
of its environment.”

This notion of anticipatory homeostatic control (allostatic
control) has important ramifications. Significant perturbations
of bodily states arise from the physical and social environments

through which the brain navigates the body. For example,
basic properties of the physical environment (e.g., ambient
temperature, weather, physical activity required by geographical
conditions, availability of food andwater) have delayed but severe
effects on key homeostatic variables (such as body temperature,
blood glucose levels, plasma osmolality); these must be predicted
in advance and incorporated into the selection of actions in order
to avoid fatal effects (for some simple simulations, see Penny and
Stephan, 2014). Similarly, in the social domain, learning about the
(potentially hostile) intentions of other agents in a reactive way,
by trial and error, is risky. Instead, a model or “theory of mind”
of other agents’ mental states (Frith and Frith, 2012), perhaps
grounded in the prolonged interaction with early-life caregivers,
is required to predict and avoid interactions with potentially
deleterious consequences for social status, access to resources,
and ultimately bodily integrity. This means that anticipatory
control of bodily states would be drastically incomplete if the
brain did not possess a model which enabled inference on current
states of the physical and social environment and predicted their
trajectories into the future. In brief, principles of anticipatory
homeostatic control and the necessity of model-based prediction
must generalize beyond the body and apply to physical and
social domains of the external world. In the following, the term
“external world” is used to refer to both the body and the physical
and social world outside the body; this is for notational brevity
only and not meant to disregard differences in how bodily, social
and physical states can influence brain activity in general and the
emergence of fatigue in particular; a topic we return to below.

Generative Models
The notion that the brain maintains and continuously updates
a model of its external world for perceptual inference and
anticipatory control has been around for a considerable period
(Conant and Ashby, 1970). What could such a model look like?
Across various proposals, two main design features re-occur and
are supported by strong theoretical and empirical arguments.
That is, (i) the brain’s model is likely to follow principles of
probability theory and hence represent a “generative” model;
and (ii) structurally, it is plausible to assume that this has a
hierarchical structure.

A so-called “generative model” directly follows from the
basic laws of probability theory and essentially implements
Bayes’ theorem—a simple but fundamental statement about how
uncertain sources of information (represented by conditional
probabilities) can be combined (Figure 1). In the context
of perception, a generative model m combines a “likelihood
function” p ( y | x, m) (a probabilistic mapping from hidden states
of the world, x, to sensory inputs y), with a “prior” p (x |m) (an
a priori probability distribution of the world’s states) (Figure 1).
The likelihood describes how any given state of the world causes
a sensory input with a certain probability; the prior expresses the
range of values environmental states inhabit a priori and thus
encodes learned environmental statistics. One way to understand
why this model is called “generative” is to note that it can be
used to generate or simulate sensory inputs (data): this simply
requires that one samples a value from the prior distribution and
plugs it into the likelihood function. This process can be turned
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around: that is, given some observed data (experienced sensory
inputs), Bayes’ theorem allows one to compute the probability of
the hidden states (the “posterior” p

(

x | y, m
)

)—this is inference:

p
(

x | y, m
)

=
p

(

y | x, m
)

p ( x |m )

p
(

y |m
) (1)

As inference corresponds to inverting the process of data
generation (from hidden states to sensory inputs), it is also
referred to as “inversion” of the generative model, or solving
the “inverse problem.” Finally, an important component of
a generative model is the model evidence p

(

y |m
)

(the
denominator from Bayes’ theorem). The evidence represents a
principled measure of the goodness of a generative model which
trades-off accuracy and complexity (Stephan et al., 2009; Penny,
2012); notably, its logarithm relates to the information-theoretic
concept of (Shannon) surprise, S (sometimes also referred to as
surprisal or self-information to distinguish it from psychological
notions of surprise). Specifically, the log evidence is identical to
negative surprise about seeing the data under modelm:

log p
(

y |m
)

= −S (y |m) (2)

In other words, a good model is one that minimizes the surprise
about encountering the data. Conversely, persistent surprise is
the hallmark of a bad model.

Generative models can be expressed in a hierarchical form,
where each level provides a prediction (prior) for the state of the
level below; this prediction can be compared against the actual

state (likelihood), resulting in a prediction error which can be
signaled upwards for updating the prior (Figures 2, 3). This is
an extremely general concept which not only underlies common
models in statistics (Kass and Steffey, 1989), but provides a key
metaphor for models of brain function (e.g., Rao and Ballard,
1999; Lee and Mumford, 2003; Friston, 2005, 2008; Petzschner
et al., 2015), such as predictive coding described below.

The “Bayesian Brain”
The hierarchical form of generative models fits remarkably
well to structural principles of cortical organization, where
the sensory processing streams consist of hierarchically related
cortical areas. This hierarchy is defined anatomically in terms
of different cytoarchitectonic properties and types of synaptic
connections (bottom-up/ascending/forward connections vs. top-
down/descending/backward connections) (Felleman and Van
Essen, 1991; Hilgetag et al., 2000). These connections are thought
to have different functional properties which are compatible
with hierarchical Bayesian inference. For example, in the
visual system, anatomical and physiological studies suggest that
descending connections convey predictions about activity in
lower areas (e.g., Alink et al., 2010; Nassi et al., 2013; Vetter
et al., 2015) and have largely inhibitory effects (e.g., Angelucci and
Bressloff, 2006; Andolina et al., 2013), as required for “explaining
away” in predictive coding (see the discussion in Nassi et al.,
2013). Furthermore, pharmacological and computational studies
of the auditory mismatch negativity (MMN) system have
provided evidence for NMDA receptor dependent signaling of

FIGURE 2 | (A) A graphical summary of predictive coding. See main text for details. Figure reproduced, with permission, from Rao and Ballard (1999). (B) A possible

neuronal implementation of predictive coding. See main text for details. Figure reproduced, with permission, from Friston (2008).
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FIGURE 3 | A graphical summary of computational and physiological

key components of hierarchical Bayesian inference. Computationally,

prediction errors are conveyed by ascending or forward connections, while

predictions are signaled via backward or descending connections. Critically,

both experience a weighting by precision. Physiologically, the currently

available evidence suggests that, in cortex, prediction errors are signaled via

ionotropic glutamatergic receptors (AMPA and NMDA receptors), predictions

via NMDA receptors, while precision-weighting is either implemented through

neuromodulatory inputs (e.g., dopamine or acetylcholine) or by local

GABAergic mechanisms. The figure is adapted, with permission, from Stephan

et al. (2016b).

prediction errors via ascending connections (Wacongne et al.,
2012; Schmidt et al., 2013). In summary, while definitive
proof is outstanding, there is general consensus that ascending
connections serve to signal prediction errors up the hierarchy,
while predictions are communicated from higher to lower areas
via descending connections (for reviews, see Friston, 2005;
Corlett et al., 2009; Figure 3 provides an overview).

In the past two decades, theories of perception have
converged on the idea that perception corresponds to inverting
a hierarchical generative model of sensory inputs (Dayan et al.,
1995; Rao and Ballard, 1999; Friston, 2005). In some sense,
this idea is not new: more than a century ago, the physiologist
Helmholtz already suggested that the brain would have to
invert the process of how a visual image was generated in
order to infer the underlying physical cause (perception as
“unconscious inference”; Helmholtz, 1860/1962). The more
recent formalization of this notion under principles of probability
theory is commonly referred to as the “Bayesian brain”
hypothesis (Friston, 2010; Doya et al., 2011). In addition
to the reasons given above, the general idea of perception
as inversion of a hierarchical generative model derives from
numerous empirical observations and theoretical arguments.
Here, we briefly summarize a few central points and point the
interested reader to more detailed literature. First, the sensory

inputs the brain receives are noisy and often show a non-linear
dependence on states in the world; this introduces the need for
regularization by prior expectations or knowledge (Friston, 2003;
Lee and Mumford, 2003; Kersten et al., 2004). Second, it can be
shown that the integration of uncertain sources of information
according to principles of probability theory (Bayesian inference)
is optimal; this implies that the brain should have evolved to
implement perceptual inference in the way such that Bayesian
inference is approximated (Geisler and Diehl, 2002). Third, a
large body of psychophysical experiments indicate that basic
perceptual judgements and multi-sensory integration show clear
evidence for the operation of Bayesian inference (for overviews,
Knill and Richards, 1996; Geisler and Kersten, 2002; Petzschner
et al., 2015). Finally, a generative model not only supports
inference, but also allows for predictions. This can be achieved
in several ways, for example, predictions about future sensory
inputs can be derived from the model’s posterior predictive
density, and predictions about future states of the world under
a chosen action or goal can be derived from the model’s posterior
dynamics (for example, see Penny and Stephan, 2014).

This link from inference to prediction is important because it
provides a basis for coupling perception to action; a fundamental
basis for homeostatic control, as described above. Generally,
the challenge of control is framed by asking, informed by an
estimate of the current state of the world (and possibly a
prediction how it evolves), what action optimizes a particular
criterion (a “utility function” or “cost function”). One framework
to address this challenge is Bayesian decision theory (Körding,
2007; Dayan and Daw, 2008; Daunizeau et al., 2010). In a
nutshell, this identifies an optimal action as one that maximizes
the “expected utility” (where “expected” refers to a weighted
average; i.e., the predicted outcomes are weighted by their
relative uncertainty). The definition of utility, however, is not
trivial. One common choice is to define utility in relation to
“rewards.” This, however, only shifts the problem and raises
the question what constitutes “reward” for the brain (compare
the discussion in Friston et al., 2012). From a homeostatic
perspective, the utility or reward afforded by a particular
action depends on four estimates based on inference and
prediction:

• an estimate of the current bodily state (interoception);
• an estimate of the current environmental state (exteroception);
• a prediction of how these states would evolve in time (provided

by a model of bodily and environmental dynamics);
• and a prediction to what degree the action considered will keep

bodily state close to a homeostatic setpoint over time (allostatic
control).

Current models of decision-making do not incorporate
all of these aspects, and first attempts of accounting for
homeostasis and allostasis in formal models of decision-
making have only surfaced relatively recently (e.g., Keramati
and Gutkin, 2014; Penny and Stephan, 2014; Pezzulo et al.,
2015).

Importantly, perception and action do not operate in
isolation, nor is there a unidirectional dependency of action on
perception. Any chosen action changes the world (and/or the way
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the brain samples it3) and hence the feedback the brain receives
in terms of new sensory inputs. This sensory feedback (likelihood
function) is combined with the current prior belief (prediction)
held by the agent, resulting in a belief update about the state of
the world (posterior probability) which, in turn, can inform new
actions. This closes the loop from perception to action.

In summary, this section discussed homeostatic and allostatic
control as fundamental objectives for the brain and reviewed
long-standing concepts that highlight the importance of closed
loops of perception and action. In particular, we have emphasized
the notion that homeostatic control is not simply reactive, but
proactive or anticipatory, and rests on a model of the external
world which includes both the body and the influences it may
receive from physical and social domains of the environment. Of
course, these ideas raise the question how predictive models of
this sort may actually be implemented by the brain. This question
has been addressed by several recent theories, usually with a focus
either on the body (Seth et al., 2011; Seth, 2013, 2015a; Feldman-
Barrett and Simmons, 2015) or its environment (Rao and Ballard,
1999; Friston, 2005). In the next section, we review two classes
of theories—predictive coding and active inference—which have
recently begun to find application to questions of interoception
and homeostasis.

Predictive Coding and Hierarchical
Filtering
Predictive coding is a long-standing idea about neural
computation that was initially formulated for information
processing in the retina (Srinivasan et al., 1982). In its current
form, predictive coding postulates that perception rests on the
inversion of a hierarchical generative model of sensory inputs
which reflects the hierarchical structure of the environment
and predicts how sensory inputs are generated from (physical)
causes in the world (Rao and Ballard, 1999; Friston, 2005). By
inverting this model, the brain can infer the most likely cause
(environmental state) underlying sensory input; this process
of inference corresponds to perception. At any given level of
the model, it is the (precision-weighted, see below) “prediction
error” that is of interest—the deviation of the actual input from
the expected input. Prediction errors signal that the model needs
to be updated and thus drive inference and learning.

Anatomically, models of predictive coding are inspired by
the remarkably hierarchical structure of sensory processing
streams in cortex, where the laminar patterns of cortical-cortical
connections define their function as ascending (forward or
bottom-up) or descending (backward or top-down) connections
and establish hierarchical relations between cortical areas
(Felleman and Van Essen, 1991; Hilgetag et al., 2000).
Computationally, the key idea of predictive coding is that cortical
areas communicate in loops: Each area sends predictions about
the activity in the next lower level of the hierarchy via backward
connections; conversely, the lower level computes the difference
or mismatch between this prediction and its actual activity and

3For example, eye movements do not influence the environment beyond the

body (social interactions perhaps excepted), but determine sampling of visual

information.

transmits the ensuing prediction error by forward connections
to the higher level, where this error signal is used to update
the prediction (Figures 2, 3). This recurrent message passing
takes place across all levels of the hierarchy until prediction
errors are minimized throughout the network. In the words
of Rao and Ballard (1999): “[...] neural networks learn the
statistical regularities of the natural world, signaling deviations
from such regularities to higher processing centers. This reduces
redundancy by removing the predictable, and hence redundant,
components of the input signal.” This is a computationally
attractive proposition because it satisfies information-theoretical
criteria for a sparse code (Rao and Ballard, 1999).

In this scheme, minimizing prediction errors under the
predictions encoded by the synaptic weights of backward
connections in the hierarchy corresponds to hierarchical
Bayesian inference and allows for computing the posterior
probability of the causes, given the sensory data. Notably,
plausible neuronal implementations exist which are compatible
with known neuroanatomy and neurophysiology (Friston, 2005,
2008; Bastos et al., 2012); for a beautiful tutorial introduction (see
Bogacz, in press).

A notion closely related to predictive coding is the idea that
layers of hierarchical generative models may not predict the state
of the next lower level, but its temporal evolution. This is known
as hierarchical filtering and emphasizes the importance of taking
into account the volatility of the environment, i.e., the temporal
instability of its statistical structure, such as the probabilities by
which one event causes another (Behrens et al., 2007; Mathys
et al., 2011). Here, a hierarchical generative model combines a
lower layer with value prediction errors about environmental
variables with upper layers where volatility prediction errors
drive inference and learning (Mathys et al., 2014). One
concrete implementation of this idea is the hierarchical Gaussian
filter (HGF; Mathys et al., 2011, 2014) which allows one to
estimate subject-specific parameters encoding an individual’s
approximation to Bayes-optimal hierarchical learning.

One property of hierarchical Bayesian models deserves
particular emphasis. This is the fact that under broad
assumptions (i.e., for all distributions from the exponential
family; Mathys, 2016), hierarchical Bayesian belief updates have
a generic form with remarkably simple interpretability: at any
given level i, belief updates1µi are proportional to the prediction
error (sent from the level below) but weighted by uncertainty or,
more specifically, a precision ratio (Figure 3). This ratio denotes
the relation between the estimated precision of the input from the
level below (e.g., signal-to-noise ratio of a sensory input) and the
precision of the prior belief. For example, in the case of the HGF,
this takes the following form:

1µi ∝
π̂i−1

πi
PEi−1 (3)

Here, the numerator of this precision ratio represents the
expected precision of the input from the level below (i.e., the
agent’s estimate of signal-to noise ratio of the input), whereas the
denominator encodes the precision of the current belief. That
is, the impact of prediction error on a belief update is smaller
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the more precise (less uncertain) the prior belief and larger the
more precise (higher signal-to-noise) the input from the level
below. Evidence from anatomical and physiological studies has
established bridges between the computational and physiological
components of this hierarchical precision-weighted message
passing: prediction error signaling via forward connections likely
rests on glutamatergic (AMPA and NMDA) receptors, prediction
signaling via backward connections probably exclusively on
NMDA receptors, while precision-weighting is assumed to draw
on mechanisms which modulate postsynaptic gain, such as
neuromodulatory (e.g., dopamine or acetylcholine) or local
GABAergic inputs (Friston, 2009; Corlett et al., 2010; Adams
et al., 2013b); for a summary, see Figure 3.

Perceptual Control Theory and Active
Inference
Predictive coding represents one particular instantiation of
the Bayesian brain hypothesis that represents an attractive
foundation for studying interoception (Seth, 2013). However,
predictive coding is limited to perception and does not
directly speak to action selection and control, which is of
fundamental importance for homeostasis. However, the link
between perception and action can be studied in the framework
of related theories which share the core ideas of predictive coding
but generalize it to action selection; these include perceptual
control theory (PCT; Powers, 1973, 1978; and active inference
Friston, 2009; Friston K. J. et al., 2010).

PCT originated from the control theoretic principles of
cybernetics (Wiener, 1948) and cognitive theories emphasizing
the self-referential structure of the brain, such as radical
constructivism (Richards and von Glasersfeld, 1979; von
Foerster, 2003). The central premise is that any adaptive system
tries to control certain quantities in the environment, q, that
are essential for the system’s existence and survival (Figure 4A).
Critically, as it can only infer the value of q through perception,
controlling q amounts to ensuring that the sensory inputs
reflecting q remain at the desired (expected) level. In other words,
the system will resist any external perturbations or disturbances
by eliciting appropriate actions that restore the expected sensory
input. This control can be exerted by the classical negative
feedback loop of cybernetics (Figure 4A), where an internal
reference (setpoint or goal signal) is compared to incoming
sensory input reflecting the state of q. The resulting mismatch
or prediction error serves to elicit actions which restore q to the
expected value. In Powers’ (1973) words: “The reference signal is
amodel [our emphasis] inside the behaving system against which
the sensor signal is compared: behavior is always such as to keep
the sensor signal close to the setting of this reference signal.”

Critically, PCT postulates that control systems are, in many
cases, structured hierarchically, where the “action” of higher
systems consists of providing the reference or goal signal for
lower systems. As a consequence, in order to reach a high-order
goal, the relevant systems level (say i) does not need to directly
access any actuators or specify a chain of commands; all it has
to do is to alter the reference signal for the next lower system
i−1. This will adjust the output from i−1 and thus the reference

FIGURE 4 | (A) Principles of classical feedback control. Figure is reproduced,

with permission, from Powers (1973). (B) A graphical summary of allostasis

and its dependence on predictions about future bodily states. Figure is

reproduced, with permission, from Sterling (2012).

signal for the next lower system i −2, and so forth, until a level
is reached whose output drives actuators and thus impacts on the
environment. Intriguingly, nowhere in this chain of downward
changes is the actual behavioral act specified; it is only the goals
(expected sensory inputs) that are re-specified at each level of
the hierarchy when the sensed environmental state does not
correspond to the goal state (reference signal) at any levels of
the hierarchy. In a nutshell, “... control systems control what they
sense, not what they do.” (Powers, 1973; his emphasis).

PCT was formulated at a time when neither the hierarchical
structure of the human brain was well understood, nor when
Bayesian ideas of perception had been well developed. These
concepts have informed a more general framework—active
inference (Friston, 2009; Friston K. J. et al., 2010)—which,
although not directly building on PCT, shares its fundamental
notion that control is hierarchically organized and directed
toward sensory input, not motor output. Active inference derives
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from the free energy principle (Friston et al., 2006; Friston,
2009, 2010) which postulates that biological agents strive to
minimize surprise about their sensory inputs. In the general case,
however, this requires integrating over all possible hidden states
of the world, a computationally intractable problem. A solution
is provided by a more easily computable quantity called “free
energy” which represents an upper bound on surprise. A free
energy minimizing system thus corresponds to a system which
experiences minimum surprise about its sensory inputs. This
notion is similar to the functional principle underlying PCT, but
is formulated in terms of probability theory and thus tied closely
to inference and generative models. The free energy principle has
found numerous applications to cognition, suggesting efficient
algorithms for how perceptual inference and learning can be
implemented by a hierarchical generative model that maps onto
the known neuroanatomy and neurophysiology of the cortex
(Friston et al., 2006; Friston, 2008, 2009; Bogacz, in press).

Notably, the brain could reduce free energy in two major ways
(Friston, 2009): (i) by updating its beliefs or expectations; this
corresponds to adjusting its generative model of sensory inputs,
as postulated by predictive coding; or (ii) by selecting those
actions which lead to sensory inputs that are in accordance with
the brain’s expectations; this is active inference. Simply speaking,
active inference suggests that predictions (prior expectations)
about sensory inputs define preferences or goals that engender
behavior (Friston et al., 2015). Similar to PCT, prior expectations
at a high-level in the hierarchy define a set point against which
current sensory input is evaluated and actions are automatically
elicited by lower levels initiated until any mismatch is eliminated.
That is, actions arise from a hierarchical cascade of changes in
expectations that eventually lead to reflex-like motor behavior
at the lowest level in order to yield the expected sensory input
(Adams et al., 2012, 2013a; Friston et al., 2015).

A HIERARCHICAL BAYESIAN VIEW ON
FATIGUE AND DEPRESSION AS
META-COGNITIVE PHENOMENA

Circuit Models of Interoception and
Homeostatic Control
Hierarchical Bayesian theories have begun to play an influential
role in the treatment of interoception and homeostatic
control. Although not specifying a particular computational
mechanism, a seminal paper by Paulus and Stein (2006)
highlighted the importance of predictive processes for
understanding interoception and its role in psychopathology,
specifically anxiety. More recently, several proposals have linked
interoception and homeostatic/allostatic control to predictive
coding and active inference (Seth et al., 2011; Gu et al., 2013;
Seth, 2013; Feldman-Barrett and Simmons, 2015).

While these proposals have remained unspecific about the
exact implementation of active inference for allostatic control,
they have incorporated anatomical and physiological knowledge
about the neuronal circuits for interoception and homeostatic
control (for reviews, see Saper, 2002; Craig, 2002, 2003;
Critchley andHarrison, 2013). Viscerosensory information about

a wide range of bodily states—including bodily integrity (pain,
inflammatory mediators), cardiovascular (e.g., blood pressure,
oxygenation), humoral (e.g., plasma osmolality), physical (e.g.,
body temperature), metabolic (e.g., levels of glucose and
hormones like insulin, ghrelin, leptin), immunological (e.g.,
cytokines), or mechanical (e.g., dilation of internal organs)
properties—reaches the brain via three main channels: visceral
afferents that enter the spino-thalamic tract via spinal cord
lamina 1, cranial nerves IX (glossopharyngeal) and X (vagus),
and humoral information which is sensed by circumventricular
organs and specialized hypothalamic neurons situated outside
the blood-brain barrier. These channels reach the thalamus
(ventroposterior and ventromedial nuclei)—either directly or
indirectly via brain stem nuclei including the nucleus of the
solitary tract, parabrachial nucleus, and periaqueductal gray—
and eventually target the viscerosensory cortex. The latter
essentially comprises posterior and mid-insular cortex which
represent a viscerotopic map of bodily state with respect to
numerous physiological variables (Cechetto and Saper, 1987;
Allen et al., 1991; Craig, 2002). Their efferent connections
convey information about bodily state to cortical visceromotor
areas—such as anterior insular cortex (AIC), anterior cingulate
cortex (ACC), subgenual cortex (SGC), and orbitofrontal cortex
(OFC)—which, in turn, send projections to hypothalamus,
brainstem and spinal cord nuclei (Mesulam and Mufson, 1982;
Hurley et al., 1991; Carmichael and Price, 1995; Freedman et al.,
2000; Chiba et al., 2001; Vogt, 2005; Hsu and Price, 2007) in order
to control autonomic, endocrine and immunological reflex arcs.

Based on this general anatomical layout, several
computationally inspired proposals have been put
forward, although so far without mathematically concrete
implementations. Seth et al. (2011) conceptualized interoception
as a predictive coding process combined with corollary
discharge. In their concept, the AIC was assigned a central
role as comparator (Gray et al., 2007) receiving corollary
discharges (efference copies) of autonomic control signals from
visceromotor regions like the ACC. Subsequent formulations
based on active inference no longer understood autonomic
control signals originating from visceromotor regions as
“commands,” but as predictions of bodily states which are fulfilled
by autonomic reflexes implemented by lower (hypothalamic and
brainstem) centers (Gu et al., 2013; Seth, 2013; Feldman-Barrett
and Simmons, 2015; Pezzulo et al., 2015).

In the following, we build on and extend the above models
to formulate a theory of fatigue that connects hierarchical
Bayesian inference tometacognition (cognition about cognition).
Specifically, we unpack and extend a mechanism proposed
recently as part of a list of priority problems for psychiatry: “With
respect to fatigue, can we identify distinct patient subgroups
in whom the brain’s model of interoceptive inputs signal
constant surprise because of persistent violation of fixed beliefs
(homoeostatic setpoints) regarding metabolic states or bodily
integrity and in whom this enduring dyshomoeostasis induces
high-order beliefs about lack of control and low self-efficacy?”
(Problem 8 in Stephan et al., 2016a). In the following, we describe
how homeostatic regulation can be regarded as a problem of
hierarchical Bayesian inference and control, not dissimilar to

Frontiers in Human Neuroscience | www.frontiersin.org November 2016 | Volume 10 | Article 550 | 24

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Stephan et al. Allostasis, Meta-Cognition, Fatigue, and Depression

previous accounts but with three novel aspects: (i) an explicit
discussion of how conventional homeostatic concepts can be
transformed into Bayesian counterparts, including an extremely
simple but concrete illustration of how active inference could
mediate homeostatic control; (ii) the extension of active inference
to a formal definition of allostatic control; and (iii) the addition
of a metacognitive layer to the interoceptive hierarchy.

Homeostatic Control through Active
Inference As “Bayesian Reflexes”
The conventional cybernetic view of homeostasis regards the
brain’s task as ensuring that its carrier (the body) inhabits a
limited number of states which are compatible with survival,
for example, being within a narrow range of body temperature
or blood oxygenation. From a control theory perspective, this
amounts to keeping sensory signals of bodily state close to
setpoints, which are defined by a reference signal that is provided
to a comparator unit (compare the traditional cybernetic circuit
implementing feedback control in Figure 4A).

We now formulate this circuit and its components in a way
that provides a basis for extending homeostatic to allostatic
control. Under a Bayesian perspective, homeostatic setpoints can
be defined as the expectations (means) of prior beliefs about the
states the body should inhabit. These prior beliefs are instantiated
biophysically by “hard-wired” local circuits in “effector regions”
that control homeostatic reflex arcs, such as the hypothalamus,
brain stem nuclei like the periaqueductal gray (PAG), and
autonomic cell columns in the spinal cord (Craig, 2003). The
“homeostatic range” (of values compatible with life) are reflected
by prior variance: priors of vitally important variables (such as
blood oxygenation) are extremely tight (low variance), whereas
other beliefs (e.g., about blood pressure) can afford being
considerably wider (high prior variance). Notably, all of these
beliefs are subject to evolutionary pressure: depending on how
well they support homeostasis under the conditions of a given
environment and thus maintain bodily integrity and survival,
they (the neuronal structures encoding them, respectively) will
be more or less likely selected out.

Given this notion of a homeostatic setpoint as a belief
about physiological states the body should inhabit, one can
now formulate a basic homeostatic reflex arc in Bayesian
terms (Figure 5), including its control by higher-order
centers (allostasis). Specifically, we consider how a particular
physiological state x can be controlled by actions elicited by a
neuronal homeostatic reflex arc, e.g., in the hypothalamus or a
brain stem nucleus, ensuring that x is kept within a homeostatic
range (prior belief about its value). A key property of this
formulation is that corrective action is more vigorous or rapid
the higher the deviation of bodily states from prior expectations
and the more precise these expectations (the tighter the
homeostatic range). For clarity and simplicity, we only consider
a very basic scenario here. While our approach is inspired by
more general and sophisticated treatments of active inference
formulated under the free-energy principle (Friston K. J. et al.,
2010), the following derivation presents, to our knowledge, a
first mathematically concrete proposal of an active inference

FIGURE 5 | A graphical summary of a homeostatic reflex arc and its

modulation by allostatic predictions. Blue lines: sensory inputs; red lines:

prediction errors; green lines: predictions.

mechanism for homeostatic reflexes under allostatic control. We
emphasize that the following model is by no means complete, but
should be seen as a mere starting point for developing generative
models of allostatic control and metacognitive evaluation.

Let us initially begin from the perspective of perceptual
inference as Bayesian belief updating, i.e., how one could
determine the most likely value of bodily state x, given noisy
sensory input which is sampled sequentially. Here, we examine
the simplest case where x is assumed not to evolve or experience
any perturbations over the period of observation. While, in this
context, x is thus a constant state of the body, the brain’s belief
about x is updated sequentially, based on noisy sensory inputs
(Because of this subtle difference, in the following few paragraphs
on perception, we write the bodily state x as a time-invariant
variable while mean and variance of the belief about x are time-
dependent. In subsequent paragraphs on action, the opposite is
the case). This belief can be described, for example, as a normal
distribution with mean µt and precision (inverse variance) πt at
time t:

p (x) = N
(

x;µt ,π
−1
t

)

(4)

At any time t, viscerosensory input y results from some form
of neuronal coding (transformation) g of x and is affected by
inherent noise of the sensory channel (with constant precision
πdata):

p
(

y | x
)

= N
(

y; g (x) ,π−1
data

)

(5)

or, equivalently:

yt = g (x) + et (6)

p (et) = N
(

et; 0,π
−1
data

)

In this context, the goal of perceptual inference would be to
infer on the value of x given repeated samples of the noisy
viscerosensory signal y. This corresponds to updating ones’
estimates of the sufficient statistics of x (µt and πt), where

Frontiers in Human Neuroscience | www.frontiersin.org November 2016 | Volume 10 | Article 550 | 25

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Stephan et al. Allostasis, Meta-Cognition, Fatigue, and Depression

the estimate at time t serves as the prior for the next belief
update (“today’s posterior is tomorrow’s prior”). That is, using
Bayes’ theorem, one can sequentially transform a prior belief
p
(

x;µt ,π
−1
t

)

into a posterior belief p
(

x;µt+ 1,π
−1
t+ 1

)

, based on
new sensory data yt . Specifically, this sequential belief update
would obey the following simple rule (see Mathys, 2016 for
details):

µt+ 1 = µt +
πdata

πt + πdata

(

yt − g (µt)
)

(7)

πt+ 1 = πt + πdata

Here, the posterior mean results from updating the current
estimate (prediction or prior mean) with the precision-weighted
prediction error—where the latter corresponds to the difference
between the actual sensory signal yt and its predicted value,
g (µt). The precision-weighting is critical because it renders the
correction or update sensitive to the properties of both the
sensory channel and the prior belief: the belief update is more
pronounced the higher the estimated precision of the sensory
input and the lower the precision of the prior.

We can now use the same type of precision-weighted
prediction error for influencing x, instead of inferring or sensing
it. In other words, we turn the perceptual update rule of Equation
7 into a control rule, based on two simple considerations. First,
to fix the setpoint for the homeostatic reflex, we clamp the prior
belief: ∀t : µt = µprior ,πt = πprior . This effectively corresponds
to delta function (hyper)priors on the sufficient statistics of the
prior belief (see Equation 8). Equation (7) shows that this can
be achieved by simply ignoring the sensory information (more
formally: setting the data precision to zero). Second, we define an
action or effector function whose driving force is the prediction
error under expected homeostasis; in other words, the difference
between the actual sensory input y and the sensory input that
would be expected at the homeostatic setpoint (µprior). This
prediction error can be derived from the log evidence of a
model mH which expects bodily state to be in homeostasis [and
therefore the viscerosensory input to equal g

(

µprior

)

]. This is the
case when the sufficient statistics of the marginal likelihood are
given by the homeostatic setpoint µprior and homeostatic range

π−1
prior (where c absorbs constant terms):

p
(

y|mH

)

=

∫

p
(

y|µt ,πt

)

p (µt) p (πt) dµt dπt

=

∫

N
(

y; g (µt) ,π
−1
t

)

δ
(

µt − µprior

)

δ
(

πt − πprior

)

dµt dπt

= N
(

y; g
(

µprior

)

,π−1
prior

)

L = ln p
(

y|mH

)

(8)

=
1

2

(

lnπprior − πprior

(

y− g
(

µprior

))2
)

+ c

=
1

2

(

lnπprior − πprior

(

PE
(

y
))2

)

+ c

Notably, this is the negative (Shannon) surprise S of seeing the
data under the expectation of homeostasis (compare Equation 2):

S
(

y |mH

)

= −L (9)

According to Equation (8), minimizing the precision-weighted
squared prediction error thus minimizes the interoceptive
surprise S about the sensory inputs. This requires actions that
make x maximally congruent with the homeostatic setpoint and
hence maximize log evidence L. This can be achieved by defining
action4 as the gradient of the log likelihood with regard to x
(under application of the chain rule and noting, from Equation

(6), that
∂y
∂x =

∂g
∂x ):

a (t) =
∂L

∂x

=
∂

[

− 1
2πprior

(

y (x, t) − g
(

µprior

))2
]

∂x

=
∂

[

− 1
2πpriorPE

(

y
)2

]

∂x

= −
πprior

2

∂

[

PE
(

y
)2

]

∂y

∂y

∂x
(10)

= −πpriorPE
(

y
) ∂g

∂x

and using it to smoothly adjust the value of the physiological
variable x:

dx

dt
= λ−1f (a (t)) (11)

Put differently, the chosen action a induces a gradient descent of
x on interoceptive surprise:

dx

dt
= −λ−1f

(

∂S

∂x

)

(12)

Here, λ is a time constant matched to the time scale at
which action can affect x (for example, a slow time constant
for hormonal regulation by the hypothalamus, or a very fast
time constant for cardiovascular regulation via the baroreceptor
reflex). Furthermore, for generality, Equation (11) includes a
mapping f from action to changes in x. This could be non-
linear and probabilistic to account for noise in motor processes
(compare the analogous sensory mapping g in Equation 6). The
advantage of a probabilistic formulation is that it allows for
considering “action precision,” i.e., the confidence with which
an action would have the desired effect on the physiological
variable; this will be examined in future work. In the present
simulation shown in Figure 6, we have kept f maximally simple
(a deterministic identity function).

Equations (8)–(12) specify how the effector emits actions that
move x toward its setpoint and minimize precision-weighted

4Here, we are pragmatically changing the notation of time (from index to

argument) as we find it more natural to express the action signal in continuous

time.
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FIGURE 6 | A simulated example of allostatic regulation of homeostatic control, based on Equations (8)–(12). The upper panel shows the temporal

evolution of a fictitious physiological state x (Equation 11) which is affected by environmental perturbations (¶,¸,»; all with a magnitude of 1.5). The middle and lower

panels display an approximation to interoceptive surprise—i.e., squared precision-weighted prediction error (pwPE2; compare last line of Equation 8)—and the

associated action signal (Equation 10), respectively. Following the timeline from left to right, the homeostatic setpoint or belief is initially specified with a prior mean and

prior precision of 1 each. Please note that even before the first perturbation (¶) occurs, sensory noise (zero mean, 0.25 standard deviation) leads to ongoing actions of

minute amplitude which lead to (very small) deviations of x from the setpoint. Following a first perturbation (¶), the homeostatic reflex arc emits corrective actions that

are proportional to precision-weighted viscerosensory prediction error (middle panel). As the actions are successful, x returns to setpoint and viscerosensory

prediction error decays. · indicates the beginning of allostatic control: here, the prediction of imminent future perturbations (by some generative model not specified

here) leads to an anticipatory rise in the homeostatic setpoint (a shift in the prior mean to 2). As a consequence, in the absence of any change in sensory input, actions

are elicited to change the value of x to the new setpoint. This ensures that the following perturbation ¸ does not bring x anywhere near the critical threshold. At ¹, a

safe period is predicted, and allostatic control resets the homeostatic setpoint (prior mean) to 1. At º, another perturbation in the near future is being predicted,

however, this time the direction of the perturbation is uncertain. Therefore, changing the mean or setpoint is not a viable option and allostatic control takes a different

form: instead of changing prior mean, the prior precision of the homeostatic belief is increased from 1 to 4. As a consequence, when a perturbation occurs at », this

yields a considerably larger precision-weighted prediction error and hence greater interoceptive surprise (see lower panel), leading to a significantly more rapid

corrective action (compare the slope of signal rise between ¶ and »), putting the agent at less risk, should another perturbation occur shortly after ». It is also

noteworthy that the increased prior precision enhances the effect of sensory noise (compare the roughness of the three signals just prior to ¶ and », respectively).

prediction error and thus interoceptive surprise (see middle
and lower panels in Figure 6). This makes the action signal
progressively diminish toward zero as x asymptotes its setpoint.
Notably, the vigor or speed of action depends on both the current
prediction error (discrepancy between the sensory feedback
signal and its desired/predicted level), and the precision of the
prior homeostatic belief. This means that for vitally important
physiological variables whose homeostatic ranges are very
tight, corrective actions are necessarily rapid. Conversely, when

physiological variables diverge from setpoints, the experience
of dyshomeostasis (i.e., the magnitude of prediction error) is
muchmore pronounced when prior homeostatic beliefs are tight.
Both properties are illustrated by the simple simulation shown in
Figure 6.

The above equations illustrate a key principle of active
inference: the choice between reducing prediction error through
changing predictions (updates of the generative model) or
through action depends on precision. For example, reducing the
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precision of sensory input (πdata in Equation 7) disables belief
updates while action (Equation 10) remains unaffected. Similarly,
increasing the precision of predictions or prior beliefs (πt in
Equation 7 orπprior in Equation 8) abolishes belief updating while
action is increased in proportion to the increase in precision. In
other words, a modulation of precision of top-down predictions
is sufficient to switch from learning to acting.

This section has outlined a Bayesian account of homeostatic
control. Equations (8)–(12) illustrate the role of prior beliefs for
implementing setpoints in homeostatic reflex arcs where actions
minimize prediction errors (and hence interoceptive surprise) in
order to fulfill a prior belief that physiological state x should be
within a particular range. This represents a simple but concrete
implementation of active inference in the context of homeostatic
control. Perhaps most importantly, dyshomeostasis can now be
defined formally as a persistent deviation from precise prior
expectations about bodily state that is indexed by chronically
elevated surprise about viscerosensory inputs; or equivalently, as
high entropy (average surprise) of viscerosensory channels.

One might note that entropy minimization by homeostatic
control might constitute a violation of the second law of
thermodynamics (that all systems monotonically increase their
entropy over time). However, the second law of thermodynamics
only applies to closed systems; by contrast, biological organisms
represent open systems which exchange energy and information
with their environment and are capable of decreasing entropy—
at least temporarily (Von Bertalanffy, 1969). This is the very
nature of homeostatic regulation: tomaintain the body in a highly
particular (low entropy and hence unlikely) condition.

An Active Inference Perspective on
Allostasis
A critical extension of the above scheme for homeostatic
control is to allow higher-order goals or predictions to alter
the homeostatic belief p (x). This amounts to allostasis: the
proactive deployment of behavior, guided by predictions from a
model, in order to avoid dyshomeostatic future states (Sterling,
2012; Figure 4B). For example, prolonged exposure to intense
sunlight will not only cause immediate (e.g., increase in body
temperature) but also delayed (e.g., dehydration) perturbations
of homeostasis. Provided the brain is equipped with a generative
model for predicting the evolution of environmental and bodily
states, based on previous experience, it can take proactive actions
and avoid dyshomeostatic states before they arise. Importantly,
these homeostatic goals often have a hierarchical structure, where
temporary deviations from homeostatic setpoints are tolerated or
even induced in order to ensure that higher-order homeostatic
goals can be reached in the future. For example, under a model
that predicts a possible encounter with a hostile agent in a
specific context, anticipatory deviations from hormonal and
cardiovascular setpoints are induced to prepare for future fight-
flight behavior.

From the perspective of theories like PCT or active inference,
an efficient way of accomplishing hierarchical control is to
temporarily alter the setpoint or prior belief of the relevant
homeostatic reflex arc (for example, changing the belief about

desirable plasma osmolality elicits drinking behavior before
dehydration reaches a critical level). This relies on higher
brain structures with three properties: (i) access to estimates of
bodily state (interoception), (ii) capable of generating predictions
over longer time scales, and (iii) with anatomical connections
that can modulate the homeostatic beliefs which reflex arcs in
regions like the hypothalamus or brain stem serve to fulfill.
Neuroanatomically, regions that are in a position to modulate
homeostatic reflex arcs through allostatic predictions are likely
situated at the top of the interoceptive hierarchy and include the
AIC, ACC and subgenual cortex; this is discussed in more detail
below.

The hierarchical (top-down) modulation of reflex arcs by
predictions means that (homeostatic) beliefs about desirable
bodily states in the present become dependent on (allostatic)
beliefs about bodily states in the future. This essentially turns
homeostatic beliefs into time-varying quantities under the
influence of higher allostatic predictions φi (t). This belief
transformation could affect either the mean and/or the precision
of the homeostatic belief across time:

p (x (t)) = N
(

x (t) ;µprior (φ1 (t)) ,πprior (φ2 (t))−1
)

(13)

Figure 6 shows a very simple simulation which illustrates both
types of allostatic control. Here, a physiological variable x is
driven away from its setpoint (the agent’s homeostatic belief)
three times, due to environmental perturbations. Each time a
“Bayesian reflex” restores homeostasis according to Equations
(8)–(12). Critically, following the first incident (¶ in Figure 6),
higher levels of the system (not modeled here) predict further
perturbations of a particular direction and allostatic control
is exerted by shifting the mean (setpoint) into the opposite
direction while leaving the precision of the homeostatic belief
unaffected (·). As a consequence, x rises to the new expected
level. Note that this occurs without specifying the action; instead,
the action follows automatically once a new belief or setpoint
has been adopted. At º, perturbations are predicted, but with
uncertainty about their direction; hence shifting the setpoint
or mean is not a viable option. Instead, the precision of the
homeostatic belief is increased, leading to a smaller range of
tolerated deviations in either direction. The subsequent response
to a perturbation (») leads to a far swifter restorative response
than after the first perturbation (¶).

Here, we only provide a general frame for implementing
allostasis from an active inference perspective; the specific form
for themodulation of homeostatic beliefs by allostatic predictions
is likely to vary across physiological variables, as these are
controlled on different time scales and may draw on predictions
from different generative models. Generally, however, we note
that the frame suggested by Equation (13) is consistent with
the PCT notion of control where hierarchically higher levels set
the reference points for lower levels (Powers, 1973). It is also
similar in structure to active inference accounts of motor control
where primary motor cortex is assumed to modulate spinal reflex
arcs through ascending connections to α and γ motor neurons,
“programming” motor trajectories via predictions about future
proprioceptive input (Adams et al., 2013b).
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In summary, under the hierarchical Bayesian view presented
above, homeostatic and allostatic control, respectively, can be
understood as active inference about bodily states on different
time scales: actions (of a motor, autonomic, endocrine, or
immunological sort) are selected which fulfill beliefs about
current and future bodily states and reduce the average surprise
(entropy) of viscerosensory channels over time (the time scale
of the respective allostatic goal). Notably, this entropy-reducing
principle may not only be in operation during the lifetime of an
organism, but has also been suggested as the driving force behind
the evolution of homeostatic mechanisms (Woods and Wilson,
2013).

A Neuroanatomical Circuit for
Interoception, Homeostasis, and Allostasis
The extension from homeostatic to allostatic control highlights
that interoception and homeostatic regulation are inevitably
linked and form a closed loop: tuning the setpoints of
homeostatic reflex arcs depends on accurate allostatic predictions
about future bodily states; these predictions, in, turn depend
on accurate inference about current bodily states. Figure 7

summarizes the neuroanatomy of a proposed circuit for
integrating the afferent (interoceptive) and efferent (control)
branches of homeostatic/allostatic regulation. This anatomical
layout is not dissimilar to a previous proposal by Feldman-Barrett
and Simmons (2015) but introduces several novel aspects (e.g.,
a metacognitive layer) and distinguishes interoception, allostatic
predictions and homeostatic reflex arcs more explicitly.

In our proposal, AIC, ACC, subgenual cortex (SGC), and
orbitofrontal cortex (OFC)—regions we refer to as “visceromotor
areas” (VMAs) as a set—are situated at the top of this circuit,
embodying a generative model of (potentially different types of)
viscerosensory inputs that enables a biological agent to infer on
current bodily states and predict future states, as a basis for
allostatic predictions. This assumption is supported by known
anatomical connections and their hierarchical relations based on
laminar patterns of origin and target: tract tracing studies in
the Macaque monkey (Mesulam and Mufson, 1982; Mufson and
Mesulam, 1982; Vogt and Pandya, 1987; Carmichael and Price,
1995) demonstrated that VMAs receive ascending projections
from viscerosensory cortex (posterior and mid-insula). As in
circuits supporting exteroception, these ascending connections
are thought to signal prediction errors (Seth et al., 2011; Gu et al.,
2013; Seth, 2013; Feldman-Barrett and Simmons, 2015). On the
other hand, according to tract tracing studies inmonkeys and rats
(Mesulam andMufson, 1982; Hurley et al., 1991; Carmichael and
Price, 1995; Freedman et al., 2000; Chiba et al., 2001; Vogt, 2005;
Hsu and Price, 2007), the visceromotor areas possess connections
targeting hypothalamus, brain stem nuclei and spinal cord
(partially relayed by amygdala, periaqueductal gray (PAG), and
basal ganglia). These connections are thought to convey allostatic
predictions whichmodulate the setpoints of homeostatic reflexes,
as described above. Importantly, descending projections from
visceromotor areas could send the same prediction to posterior
and mid-insula; this effectively serves as efference copy or
corollary discharge against which viscerosensory inputs can

be compared. The resulting prediction errors are returned
via ascending connections to visceromotor areas, allowing for
(presumably slow) adjustment of allostatic predictions.

Several sources of uncertainty need to be highlighted here.
First, the specific roles and division of labor amongst VMAs
are largely unclear; for the moment, we have grouped them
together without any differentiation. Second, non-trivial species
differences in the neuroanatomy of interoceptive circuitry exist.
For example, SGC targets different autonomic effector regions
in rodents and monkeys (Hurley et al., 1991; Freedman et al.,
2000), and it has been questioned whether AIC and ACC in
monkeys and humans are functionally equivalent (Critchley and
Harrison, 2013). Third, the present circuit model ignores the fact
that AIC, ACC, and OFC each consist of several anatomically
distinct subfields. For example, even within agranular insular
cortex of the Macaque monkey, subareas exhibit differential
connectivity and may possess a hierarchical relation amongst
themselves (Carmichael and Price, 1996). Finally, our present
model assumes that effector regions (hypothalamus, brain stem,
spinal cord), which receive allostatic predictions from VMAs,
do not return prediction errors via ascending connections. This
serves to ensure that allostatic predictions are fulfilled by actions,
instead of these predictions being revised by prediction errors.
This fits well to the agranular cytoarchitectonic nature of VMAs,
i.e., the absence of a well-formed layer IV which represents a key

FIGURE 7 | A proposed circuit for interoception and allostatic

regulation of homeostatic reflex arcs, together with a metacognitive

layer (MC). See main text for details. Blue lines: sensory inputs; red lines:

prediction errors; green lines: predictions.
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target lamina for ascending connections conveying prediction
errors in granular cortex (cf. Feldman-Barrett and Simmons,
2015). Alternatively, as suggested by analogous active inference
schemes for motor control, this type of prediction error signal
could temporarily “switched off” or attenuated during action
execution by reducing precision (Adams et al., 2012, 2013a). It is
questionable, however, whether this proposed mechanism could
also apply to allostatic control, given the continuous presence of
interoactions and the much longer time scales on they unfold
(e.g., hormonal or immunological regulation).

Our Bayesian account of homeostatic control (see Equations
8–12 above) led to a definition of dyshomeostasis as a state of
elevated interoceptive surprise, a deviation from precise prior
expectations about bodily state that is indexed by increased
precision-weighted prediction errors about viscerosensory
inputs. The closed perception-action loop of homeostatic
inference and control shown by Figure 7 indicates that, in
addition to peripheral causes residing in the body itself,
structural lesions (e.g., due to demyelinating processes in MS) or
functional impairments (e.g., due to inflammation in depression)
in either afferent or efferent branches of this circuit could lead to
chronic dyshomeostasis. We now turn to some implications of
this view for specific domains of cognition and emotion: fatigue
and depression.

Metacognition about Interoception and
Allostatic Self-efficacy
Interoceptive surprise plausibly has general and major
consequences for cognition and emotion—even in interoceptive
domains that may be operating outside immediate awareness
(e.g., levels of certain hormones, cytokines, or metabolites).
As noted above, surprise is equivalent to negative log model
evidence, and persistently high surprise is the hallmark of
a bad model. A chronic state of perceived dyshomeostasis
indicates that the brain’s generative model of viscerosensory
inputs has low evidence—either because it generates bad
predictions or because it cannot transform them (with sufficient
confidence) into homeostasis-restoring actions. In other words,
persistently high interoceptive surprise represents a fundamental
warning sign that the brain presently cannot adequately control
perturbations of potential relevance for survival. This leads us to
a key hypothesis of this paper—that “enduring dyshomoeostasis
induces high-order beliefs about lack of control and low
self-efficacy” (Stephan et al., 2016a).

Self-efficacy is a concept of self-evaluation and behavioral
change which holds that humans not only have expectations with
regard to the outcome of chosen actions, but also self-oriented
expectations concerning whether they can successfully execute
these actions (Bandura, 1977). Self-efficacy can be defined as
an individual’s expectation of personal mastery and control:
an individual with high self-efficacy believes that he/she can
successfully perform the cognitive andmotor operations required
to overcome negative situations (e.g., obstacles, adversaries,
threats, and aversive experiences). The construct of self-efficacy
is thus closely related to concepts of metacognition (for review,
see Clark and Dumas, 2015). Theoretical and empirical work

suggests that low levels of perceived self-efficacy prevent the
deployment of adequate coping behavior and may constitute
an important component in the pathogenesis of depression and
anxiety (Rosenbaum andHadari, 1985; Bandura et al., 1996, 1999;
Arnstein et al., 1999).

While the importance of self-efficacy for adaptive behavior
and general well-being has been examined in numerous cognitive
domains, particularly with regard to learning, memory and other
academically relevant cognitive skills, the possible link of self-
efficacy to dyshomeostasis has received relatively little attention.
One exception is the area of chronic pain research, where
several studies demonstrated that perceived self-efficacy not only
modulates pain perception (Bandura et al., 1987), but crucially
determines coping behavior and quality of life, independently of
and often more strongly than physical variables, such as pain
intensity or duration (Arnstein et al., 1999; Denison et al., 2004;
Burke et al., 2015).

Here, we suggest that the metacognitive evaluation
of homeostatic/allostatic control during experienced
dyshomoeostasis5 has a major impact on self-efficacy
beliefs and the ensuing choice of actions. Importantly, as
we highlighted at the outset of this paper, this may proceed in
two sequential stages. Initially, the metacognitive recognition
that available homeostatic/allostatic control strategies fail to
reduce interoceptive prediction error may materialize through
fatigue as a subjective feeling. This resonates with the concept
of “feeling states” in the interoception literature (i.e., re-
representations of an image of bodily state; Craig, 2002) but
highlights the evaluation of action outcomes and the experience
of mastery. Importantly, this can be defined formally under our
model above: if the gradient ∂S

∂x (Equations 8–12) indicates that
interoceptive surprise is not decreasing but maintains constant
or even increases as the action is performed, this indicates
that homeostatic control fails and the available action does not
control the dyshomeostasis-causing process. Fatigue may thus
be understood as the metacognitive detection of an ongoing
but fruitless effort of regulating bodily states that may manifest
neurophysiologically as a failure to reduce incoming prediction
errors to VMAs (Figure 7).

In this context, it is worth pointing out that, under our
model, fatigue can be formally distinguished from tiredness.
In case of tiredness, for example, from prolonged physical
activity, interoceptive surprise arises from the concentration of
metabolites such as lactic acid shifted away from their setpoints.
In this case, however, a simple action is available: physical rest.
This allows muscle metabolism to restore biochemical balance,
which turns the gradient ∂S

∂x negative (Equations 8–12) and
signals restoration of homeostasis by the chosen behavior. By
contrast, in fatigue, physical rest does not have the same positive
effect. From the view of our theory, where fatigue represents a
metacognitive belief that arises from chronic experience of lack
of mastery over bodily states, it is easy to explain why rest is
not beneficial: when interoceptive surprise fails to decrease in
the absence of actions, mastery cannot be experienced and the

5In principle, of any sort—although clearly some viscerosensory domains (e.g.,

about cardiac function) may exert greater impact on self-efficacy than others.
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associated metacognitive beliefs cannot be adjusted. This may be
a reason why, in some patients, graded exercise therapy can be
helpful (Larun et al., 2016), perhaps because it gradually allows
patients to experience mastery and restore self-efficacy.

Having said this, while rest is not directly effective against
fatigue, it may not be the worst behavioral option as it prevents
inefficient actions that do not target the origin of interoceptive
surprise and would only require energy (something that in
itself induces a positive gradient ∂S

∂x ). Put differently, fatigue
could initially be an adaptive and functionally meaningful feeling
state: if presently no homeostasis-restoring action strategies are
(perceived to be) available, or the means for implementing these
strategies are lacking, it may be a rational choice to reduce
activity and save energy. Three cases may be worth distinguishing
here, depending on whether the cause of dyshomeostasis
resides in the body, the physical environment, or the social
environment, respectively. First, in case of a bodily origin of
dyshomeostasis, fatigue-driven passivity allows for saving and
reallocating energy. An example of fatigue as an early and
meaningful response to dyshomeostasis is “sickness behavior”
during acute infections (Dantzer and Kelley, 2007), which is
characterized by fatigue, lethargy, and social withdrawal. Sickness
behavior is commonly interpreted as an adaptive response
which promotes the conservation and reallocation of energy to
immunological defense processes (for review, see Shattuck and
Muehlenbein, 2015). Second, given a perceived lack of mastery
over causes of dyshomeostasis in the physical environment,
it may be a better choice to let the environment evolve and
change by itself; with some probability, this may lead to more
favorable conditions under which existing action plans can be
implemented. Third, if the cause of dyshomeostasis resides in
the social environment but cannot be influenced by actions,
a passive “wait and watch” strategy may offer opportunities
for extending the brain’s generative model—and thus scope of
possible actions—by observational learning from other agents’
behavior.

However, if none of the three positive effects described
above materialize and the experience of dyshomeostasis becomes
chronic, this may initiate a second phase characterized by
a generalization of low self-efficacy beliefs—akin to learned
helplessness (Abramson et al., 1978)—and the onset of
depression. More specifically, an agent’s experience of enduring
dyshomeostasis signals a fundamental lack of mastery and
control (over bodily states and thus survival) which may
generalize, from the allostatic domain to other cognitive domains
that are crucial for self-evaluation, planning and action selection.
This draws on previous empirical findings that subjective beliefs
of low self-efficacy can generalize beyond the specific situation
(Bandura, 1977; Burke et al., 2015) and might result in a domain-
unspecific vulnerability: the self-fulfilling expectation that one
generally lacks control and cannot deploy adequate coping
behavior in response to adverse events. In other words, an agent’s
chronic experience of dyshomeostasis may induce a generalized
sense of hopelessness, which makes any actions appear futile and
which triggers the onset of depression.

To prevent misunderstandings, we would like to emphasize
three things. First, we neither postulate a deterministic relation

between chronic dyshomeostasis and depression nor do we
claim that its aetiological importance is restricted to depression.
Instead, we regard a dyshomeostasis-induced sense of low self-
efficacy as weakening resilience to stress in general and thus a
risk factor for many forms of psychopathology. While perceived
low self-efficacy likely represents an inevitable consequence
of persistent dyshomeostasis, various protective factors may
prevent its spread to other cognitive domains and block
the generalization to hopelessness. For example, intellectual
abilities or social support may maintain a sense of mastery
that shields against an all-encompassing feeling of loss of
control. Additionally, the experience of dyshomeostasis is usually
restricted to certain bodily states but not others, leaving the
possibility of experiencing preserved allostatic mastery in some
domains. Second, we do not claim that a dyshomeostasis-
induced sense of low self-efficacy represents a single cause
for the entire depression spectrum. Instead, we propose that
it may play a particularly important role in melancholia, a
subtype of depression with pronounced somatic symptoms and
endocrine disturbances (Parker and Paterson, 2014) that differs
physiologically from other forms of depression with respect to
functional connectivity of visceromotor areas, including SGC
and ACC (Guo et al., 2016). Indeed, model-based indices of
individual interoception and allostatic control may provide a
foundation for differential diagnosis and prognosis, a theme we
return to below. Third, in its present form, our theory is not
designed to explain the full spectrum of interactions between
fatigue and depression. Longitudinal studies have shown that the
causal relation between fatigue and depression is unlikely to be
unidirectional, but that both act as independent risk factors for
each other (Skapinakis et al., 2004). Focusing on patients with
bodily conditions that cause chronic dyshomeostasis, our theory
only considers one of these directions—from dyshomeostasis
to fatigue to depression. It suggests a possible mechanism (a
“learned helplessness”-like generalization of perceived low self-
efficacy) for the progression from fatigue to depression and, as
described below, points to neurophysiological markers (in terms
of effective connectivity) that may distinguish “pure fatigue”
from the combined presence of fatigue and depression. By
contrast, our theory is less specific in offering a mechanistic
explanation for the opposite direction, i.e., how fatigue may
result from depression. However, our framework would not
be incompatible with the possibility that external triggers of
depression might instantiate false beliefs about self-efficacy
that, once fulfilled and entrenched, lead to fatigue. In other
words, in this case, the generalization of low self-efficacy
believes would proceed in the opposite direction as discussed
above, from various cognitive domains to homeostatic/allostatic
control.

Viewing fatigue and depression as sequential consequences
of the subjective belief of low self-efficacy with regard to
homeostatic/allostatic control frames them as metacognitive
phenomena. This implies that the hierarchical circuit for
interoceptive inference and homeostatic/allostatic regulation
discussed above likely represents only the lower level of a more
complex system which includes a higher metacognitive layer for
monitoring the performance of homeostatic/allostatic control
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(Figure 7). What exactly, however, is being monitored, and what
could be the anatomical basis of this metacognitive layer?

Anatomical and Computational Aspects of
Metacognition
To our knowledge, there presently exist no specific
computational models of a metacognitive system for
interoception and homeostatis/allostasis. Here, we outline
two ideas of how such a model could look like, without going
into mathematical detail. One possibility, shown in Figure 7,
is that the metacognitive level simply represents another
layer on top of the hierarchical circuit for interoception and
homeostatic/allostatic control and follows the same hierarchical
Bayesian principles. Specifically, this metacognitive layer
(metacognitive cortex “MC” in Figure 7) would encode high-
order beliefs about allostatic mastery, for example, the belief that
one is capable of responding adaptively to any perturbation one
may possibly experience. These beliefs at the metacognitive level
would then serve as predictions for the visceromotor regions,
and the allostatic processes elicited by the latter would serve
to fulfill these higher beliefs of self-efficacy. Conversely, beliefs
about allostatic self-efficacy are updated by prediction errors
communicated from the visceromotor regions.

Notably, while this type of metacognitive mechanism remains
to be established for interoception and allostasis, it has
been shown for other domains of cognition, including low-
level processes such as visual discrimination performance
(Zacharopoulos et al., 2014), that a prior belief of mastery
enhances the actual performance (for reviews, see Bandura, 1977,
1989). Additionally, the proposed generalization of perceived low
allostatic self-efficacy as a condition for the development from
fatigue to depression requires that beliefs about allostatic mastery
be broadcast beyond the circuit in Figure 7—for example, to
areas involved in metacognition about other cognitive processes
or circuits involved in regulation of mood—a process that should
be detectable via differential effective connectivity of regions
involved in metacognition about interoception and allostasis.

An alternative is that the metacognitive system not only
receives prediction error signals from the visceromotor layer
but has access to all levels in the hierarchy and monitors the
performance of the interoceptive circuit as a whole, without
influencing it. Since this circuit represents a generative model
(of viscerosensory inputs), its performance or goodness would
be indicated by the log evidence for the entire circuit (i.e., the
cumulative negative surprise across all levels). A key question
here is over what time window (into the past) this assessment
takes place. Given a chosen time window, accumulated log
evidence could be approximated by the integral of free energy,
a quantity known as “free action” (Friston K. et al., 2010).

Turning to the neuroanatomy of metacognition, possible
anatomical substrates have been investigated for several cognitive
domains, in particular (extero)perceptual performance or
memory (Shimamura and Squire, 1986; Schnyer et al., 2004;
Fleming et al., 2010, 2012, 2014; McCurdy et al., 2013), but not,
to our knowledge, for interoception or homeostasis/allostasis.
Studies explicitly focused on metacognition of interoception are

largely restricted to behavior (Garfinkel et al., 2015), with few
neurophysiological investigations (but see Canales-Johnson et al.,
2015). For other domains of cognition, such as exteroception or
memory, the anterior prefrontal cortex (roughly corresponding
to Brodmann’s area 10) has been identified as a key area for
metacognition by several neuroimaging and lesion studies (for
review, see Fleming and Dolan, 2012). While the exact evaluative
or monitoring mechanisms this region may perform are not
well understood, the individual capacity for metacognition
(of perceptual decision-making and memory) is reflected by
functional connectivity (Baird et al., 2013).

By contrast, the involvement of anterior prefrontal cortex in
metacognition of interoception has, to our knowledge, received
little if any attention to date. Two empirical findings indicate that
anterior prefrontal cortex is not an entirely implausible candidate
region. First, it is known to exhibit functional connections with
all key viscerosensory and visceromotor cortical regions of the
circuit in Figure 7 (Baird et al., 2013). Second, tract tracing
studies in the monkey demonstrated the existence of many of
the structural connections implied by the first option described
above, including direct (and largely reciprocal) connections from
AIC, ACC and SGC to medial prefrontal pole (area 10m;
Carmichael and Price, 1996). Further evidence for anatomical
connections between anterior prefrontal cortex and ACC as well
as OFC was provided by human diffusion-weighted imaging (Liu
et al., 2013).

Alternatively, the metacognitive layer may be represented
within one of the visceromotor regions such as AIC or ACC;
more specifically, within the hierarchically highest of their
various subfields (cf. Carmichael and Price, 1996). For the ACC
in particular, this possibility draws support from neuroimaging
investigations that have provided evidence for a role of ACC in
metacognitive functions such as performance monitoring and
conflict detection (Carter et al., 1998; Botvinick et al., 1999).

Empirical Support for the Hypothesis and
Future Tests of Its Predictions
Above, we described our central clinical hypothesis with regard to
the pathogenesis of fatigue and depression. In brief, we outlined
how fatigue can be seen as an initial adaptive response to the
metacognitive diagnosis of low allostatic self-efficacy; and how
the chronic experience of dyshomeostasis may trigger a second
phase in which beliefs about low self-efficacy generalize, inducing
an abstract sense of lack of control and an all-encompassing sense
of hopelessness. While direct tests of key predictions from this
hypothesis remain to be performed, some empirical data support
the plausibility of our proposal.

First, various studies indicate that the expression of fatigue
and depression are associated with lesions or impairments
of areas from our circuit model. For multiple sclerosis,
(Hanken et al., 2014) reviewed neuroimaging studies relating
fatigue to structural and functional properties of insula, ACC,
and hypothalamus6. Additionally, neuropathological studies

6We would like to add the cautionary note that in MS research the literature on

MRI-based morphometric studies shows striking variability (see Popescu et al.,

2016).
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reported a high proportion of patients with inflammatory
and demyelinating lesions of the hypothalamus, with indices
of altered HPA activity (Huitinga et al., 2001, 2004). Most
convincingly, neuropathological work focusing on cortex showed
that in multiple sclerosis gray matter lesions are present
throughout the entire cortex, but particularly frequently in
cingulate and insular cortex (Haider et al., 2016). Concerning
depression, Avery et al. (2014) examined non-medicated patients
with fMRI and found that mid-insula activity during an
interoceptive attention task was negatively correlated with the
severity of depression and somatic symptoms; additionally
functional connectivity during unconstrained cognition (rest)
between mid-insula and SGC, OFC and amygdala was increased
in patients and correlated with depression severity. Beyond the
insula, neuroimaging has long identified SGC as a candidate site
of primary pathophysiological importance in depression (Drevets
et al., 1997; Mayberg et al., 1999). This region has a key role
for inhibiting the amygdala and the sympathetic nervous system
(Gold, 2015), which may be compromised by inflammatory
processes (Miller and Raison, 2016).

Evidence from interventional studies is particularly worth
noting. For example, in several elegant studies using MRI
and PET in conjunction with typhoid vaccination to induce a
peripheral immunological response and inflammation, Harrison
and colleagues provided compelling evidence for structural and
functional changes in posterior insula, anterior insula, and ACC
(Harrison et al., 2009a,b, 2015). Importantly, they showed that
inflammation-induced activity changes in posterior insula and
ACC were associated with subjectively perceived fatigue, while
activity changes in SGC predicted mood changes. Additionally,
an fMRI study of patients receiving interferon-α treatment for
hepatitis reported an abnormal increase in ACC activity during
visuo-spatial attention (Capuron et al., 2005).

Second, clinical studies have demonstrated a striking link
between fatigue and the occurrence of dyshomeostasis-inducing
autonomic nervous system disorders (e.g., Stewart, 2000).
Specifically, in MS patients, various measures of autonomic
dysfunction correlate strongly with individual fatigue levels
(Flachenecker et al., 2003; Cortez et al., 2015). However, to
our knowledge, none of these studies examined metacognition
about interoception or homeostasis/allostasis. Maher-Edwards
et al. (2011) showed that metacognitive factors (including need
for control of thoughts) predict individual levels of fatigue
symptoms in CFS; however, the metacognitive assessment did
not specifically consider interoception. Delgado-Pastor et al.
(2015) did focus on metacognition of interoception and showed
that increasing metacognitive abilities about interoception (by
mindfulness-based interoceptive training) reduced worry more
than increasing metacognition about other cognitive processes;
however, this study did not specifically examine fatigue.

Generally, research on metacognition of interoception and
homeostasis/allostasis has been relatively sparse so far (but see
Khalsa et al., 2008; Garfinkel et al., 2015), and our hypothesis
will require testing by specifically designed future studies.
These studies will need to span four domains: behavioral-
physiological studies that (i) confirm the proposed mediating
role of metacognition in the link between dyshomeostasis and
fatigue/depression; and computational neuroimaging studies that

(ii) verify the operation of hierarchical Bayesian principles
in interoceptive circuitry, (iii) demonstrate the plausibility of
a metacognitive layer on top of the established circuits for
homeostatic control, and (iv) demonstrate the existence of
subgroups of patients in which the expression of fatigue and
depression is predicted by a disturbance in either the afferent
(interoceptive), efferent (control) or metacognitive branches of
this system.

Importantly, testing the last three implications of our
hypothesis requires mathematical models that can infer,
from individual neurophysiological data, trial-wise precision-
weighted predictions and prediction errors about viscerosensory
inputs and how they dynamically alter connection strengths
in interoceptive circuits—while respecting the layer-specific
patterns of ascending (prediction errors) and descending
(predictions) connections in cortical hierarchies (cf. Friston,
2008; Feldman-Barrett and Simmons, 2015). This brings
us to analyses of functional and effective connectivity and
methodological extensions of existing methods that are required
to test our hypotheses.

EXTENDING MODELS OF EFFECTIVE
CONNECTIVITY

Functional connectivity refers to statistical dependencies between
neurophysiological timeseries. It can be indexed by numerous
statistical approaches, e.g., correlation analysis, autoregressive
models, principal or independent component analysis (PCA,
ICA) (Friston, 2011). Although advanced measures of functional
connectivity can unearth directed influences (Friston et al.,
2013; Seth et al., 2013), by itself functional connectivity does not
disclose the mechanisms by which the measured signals were
caused and may be vulnerable to confounds at the measurement
level.

By contrast, other approaches are based on a forward model
from hidden brain states to experimental measurements. These
models do not strive for statistical characterizations of the data,
but try to disambiguate alternative explanations of the data. Here,
the focus is on effective connectivity, i.e., the “experiment- and
time-dependent, simplest possible circuit diagram that would
replicate the observed timing relationships between recorded
neurons” (Aertsen and Preißl, 1999).

One approach to effective connectivity is provided by
biophysical network models (BNMs; Honey et al., 2007; Jirsa
et al., 2010; Woolrich and Stephan, 2013). BNMs consist of
numerous (typically 102–103) neuronal network nodes, each of
which is represented by a neural mass or mean field model
of local neuronal populations. These nodes are connected
by anatomical long-range connections (often informed by
diffusion-weighted imaging data), and the resulting network
activity is translated into node-specific measurements through
an observation model. While their biological level of detail
is attractive, a major limitation of BNMs is that their high
degree of complexity renders the estimation of connection-
specific parameters challenging (for review, see Stephan et al.,
2015). Present BNMs only allow for a very limited number of
parameters to be estimated, e.g., a single global scaling factor of
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connection strength (Deco et al., 2013). By contrast, testing our
hypotheses requires models that provide fine-grained inference
on different connections in hierarchical circuits for interoception
and allostatic control (e.g., signaling of prediction errors along
ascending connections originating in supragranular layers). In
the future, this may be overcome by ongoing efforts to turn
BNMs into fully generative models, with priors for different
types of parameters, and importing advanced methods for model
inversion from other approaches (for a discussion of this trend,
Deco and Kringelbach, 2014; Stephan et al., 2015).

Fortunately, fully generative models are already available
which fulfill many (albeit not all) of the requirements for testing
the implications of our hypothesis, for example, dynamic causal
modeling (DCM). Introduced in 2003 for fMRI data (Friston
et al., 2003), DCM rests on a state space formulation and
partitions the likelihood function (forward model) into two
hierarchically related layers: while bilinear differential equations
describe the dynamics of hidden (unobservable) interacting
neuronal populations, a static observation equation transforms
the ensuing mass activity of each population separately into a
measurable signal. Inverting this model allows for inference on
the effective connectivity among regions of interest, and how it is
modulated by experimentally controlled conditions. Subsequent
extensions have considered non-linear (Stephan et al., 2008)
and stochastic differential equations (Li et al., 2011), which
enable DCM to account for dynamic gain effects at synapses
and intrinsic fluctuations, respectively. Similarly, extensions to
the frequency domain allow for inference on connectivity from
measurements during unconstrained cognition (also known as
“resting state”) (Friston et al., 2014a).

The bilinear terms in DCM for fMRI allow for representing
trial-wise modulation of connection strengths; this makes it
well-suited for studying how connection strengths vary as a
function of trial-by-trial prediction errors, where the latter are
typically derived from a separate model applied to behavior or
stimuli (e.g., den Ouden et al., 2010). However, extending this
to interoceptive prediction errors and their role in hierarchically
structured circuits faces several non-trivial challenges. First, while
it is easy to induce prediction errors in exteroceptive paradigms,
this is less trivial in the interoceptive domain, particularly in a
way that is non-invasive and patient-friendly. With the exception
of manipulations of inspiratory breathing load (Paulus et al.,
2012), we presently lack non-invasive methods to do so, and new
paradigms will need to be developed. An alternative option is to
extract prediction errors from naturally occurring irregularities
in bodily rhythms (e.g., variations in heartbeat intervals); this
will be presented in future work. Second, existing formulations
of DCM only consider a coarse representation of neuronal
populations and do not, for example, differentiate between
different layers and layer-specific connections. Thus, they lack the
anatomical specificity required to fully test the above predictions.
With the advent of high-fieldMRI, it is now possible, in principle,
to obtain sufficiently high resolution that separate cortical layers
can be imaged in humans (e.g., Koopmans et al., 2010; Olman
et al., 2012). For example, consistent with predictive coding, a
recent study was able to decode contextual information from
superficial laminae of parts of primary visual cortex that did not
receive direct “bottom up” input but which plausibly received

top-down predictions from hierarchically higher regions (Muckli
et al., 2015).

However, signals in upper cortical layers are contaminated
by blood draining effects from lower layers. This confounds
the identification of layer-specific activity and connections and
requires adapting generative models of fMRI data. While a first
model was recently developed to account for these layer-specific
hemodynamic effects (Heinzle et al., 2016), this is so far restricted
to the level of a single region, and further work is required to
extend this to a network-level DCM.

DCM has also been formulated for M/EEG data, serving
to explain a variety of data features such as event-related
potentials (David et al., 2006), induced responses (Chen
et al., 2008), or steady-state responses (Moran et al., 2009).
The rich temporal information in M/EEG data allows for
modeling far more detailed circuit architectures than DCM
for fMRI. Specifically, DCM for M/EEG considers columnar
cortical units which consist of different types of neurons
(pyramidal cells, excitatory and inhibitory interneurons) and
communicate through synaptic connections with laminar
specificity. This allows for differentiating between the different
type of connections (ascending and descending) in cortical
hierarchies, as required to test for specific effects of predictions
and prediction errors. However, existing formulations of DCM
for M/EEG are fitted to averaged data (e.g., event-related
potentials) and only consider modulatory effects across different
experimental conditions. To test our hypotheses, extensions are
needed which account for trial-wise prediction error effects
on connections. The poor signal-to-noise ratio of single-trial
recordings poses a serious challenge for modeling (Brodersen
et al., 2011) and may require adapting hierarchical (empirical
Bayesian) estimation schemes (Friston et al., 2016; Raman et al.,
2016) to single-trial scenaria as well as sampling schemes for
model inversion in DCM; the computational costs of the latter
may require moving to GPU-based numerical schemes (Aponte
et al., 2016).

A third extension of generative models could move beyond
the current formulations of DCM altogether and considermodels
that are less directly connected to physiology, but are capable of
modeling perceptual inference within trials and learning (belief
updates) across trials. This could encompass generative models
of trial-wise M/EEG responses where, for example, trial by trial
amplitudes are predicted as a linear mixture of prediction errors
(Lieder et al., 2013). Alternatively, hierarchically structured
predictive coding circuits (Friston, 2005; Bogacz, in press) could
be used to analyse trial-wise electrophysiological data, allowing
for a closer connection to physiology.

In summary, while existing generative models of
neuroimaging data provide a crucial platform for testing
our hypothesis, no existing model fully meets the requirements
and several extensions will be required.

DIFFERENTIAL DIAGNOSIS OF FATIGUE
AND DEPRESSION

If the key predictions from our hypothesis are found to be correct
and if a generativemodel of neuroimaging or electrophysiological
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measurements of the interoceptive-allostatic circuit in Figure 7

could be established, this might have important implications for
the clinical management of fatigue and depression, in particular
differential diagnosis. Specifically, comparing alternative models
of effective connectivity could help disambiguate different
origins of circuit dysfunction leading to fatigue and depression,
respectively.

The circuit model displayed by Figure 7 highlights
that fatigue could result from functional disturbances or
structural lesions—such as local inflammatory or demyelinating
processes—in very different locations. According to our circuit
model, the experience of chronic dyshomeostasis may be due to
an initial pathology at the level of:

(i) “sensors” (viscerosensory areas)—corresponding to the
“illusion” of dyshomeostasis,

(ii) “allostatic predictors” (visceromotor regions)—equivalent
to flawed predictions of bodily states,

(iii) “effector” regions (hypothalamus, brainstem, spinal cord)—
that is, at the level of homeostatic reflex arcs,

(iv) in the body itself—for example, a disease process that evades
attempts of homeostatic regulation by (at least initially)
intact cerebral circuits (e.g., autoimmunological processes
or cancer),

(v) at the metacognitive level—in this case, insufficient
regulation of bodily states would be the consequence, not
the cause, of beliefs about low allostatic self-efficacy.

This suggests that patients with fatigue and depression,
respectively, could be classified into several subgroups that
differ in terms of the location as well as the type of disease
mechanism. While a disturbance at any of the above locations
will lead to compensatory changes throughout the entire
circuit, the resulting patterns of effective connectivity might
be distinguishable, particularly in the context of homeostatic
perturbations. Notably, in internal medicine, differential
diagnosis with regard to compensatory changes in feedback
circuits is commonplace, such as distinguishing metabolic and
respiratory origins of acidosis, or identifying hypothalamic,
pituitary or peripheral causes for endocrine dysfunction. In
our approach, such differential diagnosis could be implemented
formally by model selection, i.e., evaluating the evidence
of different models that assume a disturbance at different
branches and are fitted to electrophysiological or fMRI
data from an individual patient (cf. Stephan et al., 2016a).
We will examine this possibility in future work, simulating
circuit activity under different types of lesions and different
perturbations7.

The first of the cases described above deserves special
consideration: when there is initially no real state of
dyshomeostasis, but dyshomeostasis is only subjectively

7A separate potential subgroup is worthmentioning that also relates to a concept of

homeostasis but is distinct from our hypothesis. In some patients, fatigue and/or

depression may not result from a metacognitive reaction to a (perceived or real)

chronic state of dyshomeostasis, as our hypothesis states, but represent the result

of fulfilling a high-order belief (and thus represent a state of homeostasis)—for

example, that one deserves a socially inferior position along with exhaustion and

sadness.

perceived due to damage to viscerosensory pathways. For
example, in MS, lesions frequently affect insular cortex
(Haider et al., 2016); this “broken sensor” would create PE
signals (interoceptive surprise) that would be interpreted
by visceromotor regions as bodily dyshomeostasis. As the
emitted control actions cannot reduce interoceptive surprise, a
metacognitive interpretation ensues that leads to the subjective
feeling of fatigue, as discussed above. This case of an “illusion” of
dyshomeostasis illustrates that fatigue is always an interpretation
of perceived (not necessarily real) dyshomeostasis. This may
apply beyond interoception in that fatigue could also result
from other forms of surprise that are not reduced by adequate
actions. For example, brain damage outside interoceptive
pathways can invoke general changes in performance levels,
for example, slowing of cognitive and motor acts due to
demyelination and hence reduced conduction speed in MS.
The metacognitive detection of such a general slowing of
cognition and action, and the experience that adequate actions
(in this case, rest) do not reduce surprise about performance
levels (metacognitive surprise), may lead to a similar sensation
of fatigue as when caused by bodily dyshomeostasis. This
suggests that when primary brain diseases do not impair
interoception or allostatic control (e.g., cases of stroke or MS
outside viscerosensory/visceromotor regions) may also induce
a subjective sensation of fatigue by means of a metacognitive
mechanism.

An additional possible reason for dysfunction of the
interoceptive-allostatic circuit must be highlighted: aberrant
neuromodulatory input. Monoaminergic brain stem nuclei are
in receipt of viscerosensory inputs and project to many, if
not all, components of the interoceptive-allostatic circuit in
Figure 7 (Craig, 2003; Critchley and Harrison, 2013). There
is now considerable evidence that one possible cause of
fatigue is an impairment of these monoaminergic brainstem
projections with reduced availability of dopamine, serotonin
and noradrenaline at their (sub)cortical target sites (for review,
see Dantzer et al., 2014). This can be caused by inflammatory
processes—not only of intra-cerebral origin, but also due to
chronic peripheral inflammatory processes which, through well
understood biochemical cascades, lead to reduced synthesis of
dopamine, serotonin and noradrenaline in brainstem neurons
(Dantzer et al., 2014). In the context of the theory proposed in this
paper, a reduced dopaminergic supply in particular may impact
on the precision ratio which governs the weighting of prediction
errors (compare Equations 3, 6). This is because various
neurophysiological studies in humans and animals indicate that
one of the computational quantities encoded by variations in
dopamine release is uncertainty (inverse precision) (Fiorillo
et al., 2003; de Lafuente and Romo, 2011; Hart et al., 2015;
Schwartenbeck et al., 2015a; Tomassini et al., 2016). Notably,
many if not all regions of the interoceptive circuit in Figure 7,
are characterized by a high density of dopaminergic receptors
and terminals across all cortical layers; this is particularly well-
established for visceromotor regions like AIC, ACC, or OFC
(Gaspar et al., 1989; Hurd et al., 2001; Lewis et al., 2001). The
role of dopamine for viscerosensory (posterior insula) regions is
less well established but in situ hybridisation studies point to the
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existence of dopamine receptormRNA in human posterior insula
as well (Hurd et al., 2001).

An interesting corollary of our hypothesis is that, in
principle, the chronic disturbance of any homeostatically critical
physiological variable in any direction has the potential of
inducing fatigue and depression. This is consistent with the
fact that chronic diseases of very different nature that do not
directly affect the brain are frequently accompanied by fatigue
and depression (e.g., hepatitis, cancer, diabetes, fibromyalgia)—
and may explain the counterintuitive observation that this
includes endocrine and metabolic disorders which enhance
(rather than decrease) the metabolic availability of energy
und the activation/excitability levels of numerous tissues, e.g.,
hyperthyrodism, Cushing’s syndrome, or hypercalcemia (Kaltsas
et al., 2010).

Finally, while the present work has focused exclusively on
interoception and bodily homeostasis/allostasis, it may be seen as
a prelude to a wider concept of what one might call “generalized
allostasis”: the active inference notion that humans have setpoints
(hold beliefs) with regard to many aspects of the physical, social
and cognitive world; that they try to reach these setpoints (fulfill
these beliefs) by adequate actions; and that they can, in principle,
prospectively adjust these setpoints in order to elicit actions.
Here, one key issue is that reaching one specific setpoint may
compromise one’s ability to reach another. For example, holding
negative beliefs about states of the world (cf. “depressive realism”;
Alloy and Abramson, 1988) could be seen as an allostatic change
of setpoint that renders bad outcomes expected and should
therefore lead to future homeostasis. However, this may come at
the cost of violating higher setpoints, such as a belief that one
expects to have a certain capacity for control, or that protective
forces should exist in the world (e.g., caring other agents).
Similarly, ensuring one’s own bodily homeostasis can conflict
with beliefs about other aspects of the world, and there are ample
empirical demonstrations of humans’ willingness to forego bodily
homeostasis and sacrifice themselves in order to fulfill beliefs that
transcend their own existence—for example, beliefs that loved
ones should be protected or that certain religious principles must
be upheld. This raises the interesting question what, ultimately,
the highest setpoint or belief is that dictates the behavior of
individual humans.

CONCLUSIONS

This paper contains three main contributions. First, we
revisited how traditional homeostatic concepts can be merged

with Bayesian perspectives on interoception, leading to
formal definitions for dyshomeostasis (chronically enhanced
interoceptive surprise, or, equivalently, low evidence for
the brain’s generative model of viscerosensory inputs) and
allostasis (the change in prior beliefs which define setpoints
of homeostatic reflex arcs). Second, these definitions allowed
for a bridge to metacognition and the postulate that the
performance of the interoceptive circuit is being monitored
by a higher metacognitive layer, possibly located in anterior
prefrontal cortex, which encodes and updates beliefs about the

brain’s capacity to successfully regulate bodily states (allostatic
self-efficacy). Third, we suggested a two-stage process where
fatigue might represent an initial adaptive response to the
metacognitive diagnosis of low allostatic self-efficacy, while
the enduring experience of dyshomeostasis may initiate a
second phase in which low self-efficacy beliefs generalize,
leading to an all-encompassing sense of lack of control and
hopelessness.

The perspective offered by this paper may be useful to
further our understanding of the pathogenesis of fatigue,
and how it may be understood as a high-level interpretation
of the brain in monitoring its own efforts to control a
vital part of its environment, the body. We hope that this
theoretical framework and the methodological extensions of
models of effective connectivity it suggests will eventually
lead to applications of diagnostic utility, in particular, for
stratifying patients from spectrum diseases in whom fatigue and
hopelessness are leading symptoms, such as multiple sclerosis or
depression.
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Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies
using neuroimaging have demonstrated structural and functional alterations in relatives
of SZ patients, with significant results found in diverse brain regions involving the
anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and
hippocampus. This study investigated whether unaffected relatives of first episode SZ
differ from healthy controls (HCs) in effective connectivity measures among these regions.
Forty-six unaffected first-degree relatives of first episode SZ patients—according to the
DSM-IV—were studied. Fifty HCs were included for comparison. All subjects underwent
resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic
causal modeling (sDCM) to estimate the directed connections between the left ACC, right
ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus.
We used Bayesian parameter averaging (BPA) to characterize the differences. The
BPA results showed hyperconnectivity from the left ACC to right hippocampus and
hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared
to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives
may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ.

Keywords: schizophrenia, first-degree relatives, functional magnetic resonance imaging, effective connectivity,
stochastic dynamic causal modeling

INTRODUCTION

It is well established that familial risk plays a significant role in the etiology of schizophrenia (SZ)
through family, adoption, twin, and sibling studies. SZ as a hereditary component affects 0.3%
to 0.7% of the general population globally according to American Psychiatric Association (APA,
2013), whereas first-degree relatives have a higher risk of developing SZ, with an actual prevalence of
approximate 10% (Lim and Sim, 1992). In genetic epidemiology studies, a 31% to 58% concordance
rate of SZ exists in monozygotic twins (Tsuang, 2000). It has been demonstrated that genetic
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liability to SZ was 81% (95% confidence interval (CI): 73%,
90%) based on results from 12 twin studies of SZ (Sullivan
et al., 2003). The individual’s heritability in liability just partly
mediates family history of SZ (Agerbo et al., 2015). Furthermore,
brain structural deficits in twins discordant for SZ were more
pronounced in monozygotic than in dizygotic twins (Baare et al.,
2001; Hulshoff Pol et al., 2004, 2006), suggesting association
of cerebral abnormalities with genetic factors for SZ. In our
previous studies, we have detected altered brain structure and
function in first episode drug-naïve SZ patients (Chang et al.,
2015; Cui et al., 2015, 2016; Huang et al., 2015). Thus the question
is whether their first-degree relatives present specific alterations
of the brain.

During the past 5 years, many structural magnetic resonance
imaging (MRI) studies have revealed that gray matter volume,
cortical morphological features, and white matter integrity in
individuals at high risk of SZ differ from controls, but usually
to a lesser extent than in SZ patients, indicating that structural
aberrancies may form markers of susceptibility and transition
to this disease (Bois et al., 2015b), despite not absolutely
consistent findings. For the cerebral morphology, an interrupted
cingulate sulcus pattern and paracingulate morphology are
associated with increased genetic risk of SZ (Meredith et al.,
2012). In the Edinburgh High Risk Study by Lawrie et al.
cortical thinning pronounced in the left middle temporal gyrus
(Sprooten et al., 2013), as well as longitudinal reductions
for volume of the whole brain and bilateral prefrontal and
temporal lobes (McIntosh et al., 2011) and cortical surface
area prominently in the frontal, cingulate, and occipital lobes
(Bois et al., 2015a) were detected in individuals at familial
high risk of SZ compared with controls. Also, young relatives
of SZ patients showed reduced bilateral hippocampal volume
(Thermenos et al., 2013). As reported in a meta-analysis
by Cooper et al. (2014), the gray matter volume increased
in the left middle frontal gyrus, and decreased in the left
thalamus/putamen, insula, and right superior frontal gyrus in
high-risk individuals.

With the exception of diverse structural abnormalities,
overall, a series of studies have demonstrated functional
alterations in relatives of SZ patients at resting state (McIntosh
et al., 2006; Hao et al., 2009; Jang et al., 2011; Liao et al., 2012; Su
et al., 2013; Zhou et al., 2015) or task state (Whitfield-Gabrieli
et al., 2009; Woodward et al., 2009; Rasetti et al., 2011; Stolz
et al., 2012), with significant results found in several specific brain
regions involving the dorsolateral prefrontal cortex (DLPFC),
anterior cingulate cortex (ACC), caudate, and hippocampus.

Notably, the left DLPFC is a featured brain area in SZ
relatives. It has been found that familial liability to SZ
was associated with decreased gray matter volume of the
left DLPFC (McIntosh et al., 2006). Furthermore, healthy
siblings of SZ patients showed reduced white matter fractional
anisotropy (FA) in the left DLPFC, without significant difference
between SZ patients and their siblings (Hao et al., 2009).
DLPFC dysfunction has been implicated in the familial
susceptibility for SZ (Li and Funahashi, 2015). Aberrant
regional function of the left DLPFC was detected by a resting
state MRI study on the first-degree relatives of SZ patients

(Liao et al., 2012). When identifying familial vulnerability
markers by examining default mode network (DMN)
connectivity, posterior cingulate cortex (PCC) seed region
connectivity analysis showed reduced functional connectivity in
the bilateral DLPFC of relatives (Jang et al., 2011). Unaffected
relatives also had impaired connectivity from the left DLPFC
to its coordinated regions, distributed in the bilateral caudate,
left middle frontal gyrus, and right cerebellum (Su et al., 2013).
However, few studies examined connectivity between some of
these brain regions in unaffected relatives of SZ patients (Meda
et al., 2012; Su et al., 2013), to date, leaving the open question
of brain connectivity among these areas in familial high risk
individuals.

Although previous studies have identified brain structural
and functional abnormalities in frontal and temporal regions,
it is still unclear how these regions interacts with each other
differently in relatives of SZ patients compared with healthy
controls (HCs). In the current study, we used stochastic
dynamic causal modeling (sDCM) to investigate directed
brain connectivity within a brain network encompasses ACC,
caudate, DLPFC and hippocampus. DCM is a technique to
investigate brain effective connectivity which refers to the
causal influence of one brain region exerts over another
or itself (Friston et al., 2003). Compared with functional
connectivity analysis which simply measures the correlations
between the blood-oxygen-level-dependent (BOLD) signals
of different brain regions, effective connectivity analysis is
able to further provide us information on how the signals
are propagated within a brain network. Understanding the
information flow within a brain network is crucial for
understanding the neural mechanism of familial susceptibility
for SZ. DCM was first invented to model the interactions
between brain regions during task performance (Friston et al.,
2003). Dauvermann et al. (2013) found decreased thalamo-
cortical connectivity in first- or second-degree relatives of
SZ patients using nonlinear deterministic DCM during verbal
fluency processing. Recently, traditional deterministic DCM has
been extended to stochastic DCM (Daunizeau et al., 2009;
Li et al., 2011, 2014) which is also able to model brain
effective connectivity at rest (Li et al., 2012). Here we used
sDCM to identify changes in brain effective connectivity in
unaffected first-degree relatives of SZ patients using resting-
state fMRI (rsfMRI) data. On the basis of existing evidence
that familial risk for SZ appears along with aberrant brain
structural and functional alterations involving DLPFC, ACC,
caudate, and hippocampus, we hypothesized that effective
connectivity among them would also be disrupted in relatives,
and provide more accurate parameter estimates (Li et al.,
2011) compared with conventional deterministic DCM.

MATERIALS AND METHODS

Subjects
We assessed 53 HCs and 48 unaffected first-degree relatives of
patients with first episode SZ (age- and gender-matched to HCs).
The Diagnostic and Statistic Manual of Mental Disorders, 4th
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FIGURE 1 | Steps for data analysis.

edition (DSM-IV), revised criteria (Mittal and Walker, 2011)
consensus diagnoses were established by two trained senior
clinical psychiatrists with all clinical data and Structured
Clinical Interviews for DSM Diagnoses interviews: inter-
rater reliability was higher than 90% among raters. Relatives
of probands were free of Axis 1 psychopathology and not
taking psychoactive medications. Participants were recruited
via word of mouth and advertisements at the Fourth
Military Medical University; all provided written informed
consent approved by the institutional review board of Xijing
Hospital.

Data Acquisition and Preprocessing
The resting state fMRI images were collected on the 3.0-T
Siemens Magnetom Trio Tim scanner. High-resolution
T1-weighted 3D anatomical data were acquired using the
3D magnetization-prepared rapid gradient echo (3D MPRAGE)
sequence (repetition time (TR): 2530 ms; echo time (TE):
3.5 ms; flip angle: 7◦; field of view (FOV): 256 × 256 mm2;
matrix: 256 × 256; slice thickness: 1 mm; section gap:

0 mm; number of slices: 192). The image resolution was
1 mm × 1 mm × 1 mm. The echo planar imaging (EPI)
sequence (TR: 2000 ms; TE: 30 ms; flip angle: 90◦; FOV:
220 × 220 mm2; matrix: 64 × 64; slice thickness: 4 mm;
section gap: 0.6 mm) effectively covered the entire brain. Head
motion was restricted with a custom-built head-coil foam
cushion. During scanning, participants were asked to remain
alert with eyes closed and head still. These instructions aided
reducing head motion and prevented subjects from falling
asleep. All participants were judged as awake and alert at
the start and conclusion of the fMRI session. Figure 1 is the
flowchart for each step. Images were reconstructed offline,
and realigned with statistical parametric mapping (SPM81).
The translation/rotation corrections of each participant were
examined to exclude excessive headmotion (>2.5mm translation
and/or >2.5◦ rotation), resulting in that eventual 46 first-degree
relatives of SZ patients and 50 HCs were included. A mean
functional image volume was constructed for each session from
the realigned image volumes to determine parameters for spatial

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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FIGURE 2 | Locations of the masks. Yellow indicates the left dorsolateral
prefrontal cortex (DLPFC); semitransparent red indicates the left anterior
cingulate cortex (ACC), and blue indicates the right ACC; green indicates the
left caudate, and violet indicates the right caudate; cyan indicates the left
hippocampus, and red indicates the right hippocampus.

normalization into Montreal Neurological Institute standardized
space2. Normalization parameters determined for the mean
functional volume were applied to the corresponding functional
image volumes of each participant, which were smoothed
with an 8 mm full width half maximum (FWHM) Gaussian
kernel.

General Linear Model
In the first-level (within subject) analyses, participant-specific
responses were modeled using a general linear model (GLM).
The six motion parameters were included to model the
movement correlated effects. One constant regressor was used
to model the baseline, and cosine basis functions were included
in the GLM. The resulting contrast images were then used to
constrain the region of interest (ROI) extraction step in the
sDCM.

Stochastic Dynamic Causal Modeling
Regions of Interest
For each subject, we studied the effective connectivity
among seven ROIs including the left DLPFC (consists of
Frontal_Sup_L and Frontal_Sup_Medial_L), and the bilateral

2http://www.mni.mcgill.ca/

ACC (Cingulum_Ant_L and Cingulum_Ant_R), caudate nuclei
(Caudate_L and Caudate_R), and hippocampi (Hippocampus_L
and Hippocampus_R). The left rather than the right DLPFC
showed alterations in most studies of SZ relatives during rest
condition (McIntosh et al., 2006; Hao et al., 2009; Liao et al.,
2012; Su et al., 2013) thereby being chosen as the ROI. For each
region, a ROI mask of that region was created by the WFU
PickAtlas Tool (Version 3.0.43) and the automated anatomical
labeling (AAL) atlas template (Figure 2; Tzourio-Mazoyer et al.,
2002; Maldjian et al., 2003, 2004). Subject-specific time series
were then extracted based on the ROI mask and the contrast
image generated by first-level (within subject) analyses. We
then extracted time series from the voxels within the ROI that
also showed activation in the contrast image. The first principle
component of these time series was finally used to summarize
the BOLD response to the ROI.

Model Specification and Parameter Estimation
In the current study, we aimed to search over all possible
models generated from the connections among the seven
ROIs. In this case, we did not limit our analysis to simply
compare a few competing hypothesis (models). In contrast,
we used a data-driven approach to search over all possible
models. Specifically, a fully connected model (full model) with
bidirectional connections between any pair of regions was
constructed for each subject (Figure 3). Parameter estimates and
model evidence of the full model was obtained using generalized
filtering which is a recently developed scheme for sDCM model
inversion and parameter estimation (Friston et al., 2010). After
the full model was inverted, we employed a network discovery
procedure (Friston et al., 2011) to search for the best reduced
model which has the highest model evidence. A reduced model
has the same group of ROIs as the full model, but only a subgroup
of the connections in the full model (i.e., some of the connections
are absent in the reduced model). The network discovery scheme
provides approximation of the model evidences of all the possible
reduced models without inverting every reduced model. The
reduced models and the full model are then scored according
to their model evidence. Model which has the highest model
evidence was chosen as the winning model. Parameter estimates
of the winning model were also obtained using the network
discovery scheme and used for group analysis and making
inferences on effective connectivity between brain regions.

Group Analysis
On the basis of sDCM analysis, the strength of connection
described the coupling strength according to the rate at which
neuronal responses were triggered in the target area (connection
strengths are effectively rate constants in 1/s, Hz; Friston et al.,
2003). To see whether these differences could be estimated and
detected reliably, we characterized the differences using Bayesian
parameter averaging (BPA; Friston et al., 2014; Razi et al., 2015).
We used BPA for each group separately after network discovery
procedure. We can then go on to discuss the results based on
largest two or three connection differences, thereby being as a

3http://www.nitrc.org/projects/wfu_pickatlas/
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FIGURE 3 | Fully connected model constructed. The lines with arrowheads between distinct region of interests (ROIs) refer to the connections in the left panel for
relatives of schizophrenia (SZ) patients and right panel for healthy controls (HCs). The color of each node is in line with that of Figure 2. ACC, anterior cingulate
cortex; DLPFC, dorsolateral prefrontal cortex.

TABLE 1 | Demographical data of the participants.

Variables First-degree HCs Statistics P value
relatives of
SZ patients

Age (years) 28 ± 5 27 ± 4 t = −0.35 0.73
Gender (M/F) 22/24 31/19 χ2

= 1.95 0.22
Ethnicity Han (Chinese) Han (Chinese) — —
Handedness (R/L) 46/0 50/0 — —
Education (years) 15 ± 1 15 ± 2 t = 0.23 0.82
Smoking status (S/N) 11/35 18/32 χ2

= 1.66 0.27

M, male; F, female; R, right; L, left; S, smoker; N, nonsmoker.

guiding principle to set the threshold (strength of connections
measured in Hz).

RESULTS

Demographical Characteristics
No significant differences were present between SZ patients’ first-
degree relatives andHCs on any demographic variables (Table 1).

Network Discovery-Based Model Selection
Results
The evidence of all reduced models was compared by the
network discovery procedure for each group (Figure 4). The left
panel is for first-degree relatives of SZ patients and right panel
refers to HCs. The procedure selected the fully connected model
as the best model with a posterior probability of almost 1. The
fully connected model had 49 parameters describing the extrinsic
connections between nodes and the intrinsic (self-connections)
within nodes. In Figure 4, the profiles of model evidences are
shown with the posterior probability for each model. In both

groups, the full model had a log-probability of almost 0 and
probability of 1. Therefore, they shared the identical winning
model.

Effectivity Connectivity
BPA results of the effective connectivity can be seen in Figure 5.
When using BPA, in the context of uncovering the group
differences, as a guiding principle it would be best to choose
top two or three connections and then we set the threshold to
0.06 Hz. SZ patients’ relatives exerted increased connection from
the left ACC to right hippocampus, but decreased connection
from the right ACC to right hippocampus as compared to HCs.

DISCUSSION

Our study presents sDCM-based effective connectivity outcomes
contrasted between first-degree relatives of first episode SZ
patients and HCs. As compared with HCs, first-degree relatives
who did not show any psychiatric symptoms revealed abnormal
connectivity primarily localized to the connections from the
bilateral ACC to right hippocampus.

Cognitive deficits are a core characteristic of SZ (Elvevag
and Goldberg, 2000), which has been previously observed in
biological relatives of SZ patients (Snitz et al., 2006; Bove, 2008;
Keshavan et al., 2010; Liao et al., 2012). As well, impaired neural
circuitry within the emotion processing has been reported in
unaffected siblings of SZ patients (van Buuren et al., 2011;
Hanssen et al., 2015). The neural basis of impaired cognition,
including emotion processing, in SZ patients and their relatives
remains uncertain, thus leaving an open question of whether
presence of cognitive and emotional deficits in unaffected first-
degree relatives at high risk for developing SZ suggests genetic
basis of SZ symptoms. Determining the neural correlates of
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FIGURE 4 | Results of the post hoc optimization. The corresponding conditional parameter estimates were shown over the 49 (extrinsic and intrinsic)
connections in relatives of SZ patients (A) and HCs (B). This figure suggested that the fully connected model was the best explanation for the data.

FIGURE 5 | Significant effective connectivity (between the group level) among ROIs in the first-degree relatives of SZ patients and HCs. Bayesian
parameter averaging (BPA) of the differences for stochastic dynamic causal modeling (sDCM) shows only those edges on the graph that survive the threshold of
0.06 Hz, i.e., the increased (left ACC-right hippocampus) and decreased (right ACC-right hippocampus) connections in relatives compared to HCs (A). Schematic
illustration showing connectivity patterns in first-degree relatives of SZ patients (B). ∗ Indicates self-connection of the left caudate. The slice location (coordinate) is
marked in the upper-left.

familial risk for SZ is essential to elucidate the neurobiology for
SZ that may aid in the development of novel targeted treatment.

For one thing, relatives of SZ patients exhibited bilateral
anterior cingulate cortical dysconnectivity in our present

study. Previous studies have demonstrated the important
role of the dorsal ACC in cognitive control (Carter and
van Veen, 2007) consistently. For these regions, these are
association of aberrant activation patterns with deficient
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behavioral performance in SZ (Minzenberg et al., 2009). Most
recently, we found altered effective connectivity related to
ACC in SZ patients using spectral DCM, indicating anterior
cingulate cortico-prefrontal-hippocampal hyperconnectivity
(Cui et al., 2015). The effective connectivity and white
matter connectivity analysis provides some evidence that
weaker connectivity involved in ACC may be the neural
basis of specific cognitive impairments in SZ (Wagner
et al., 2015). Furthermore, using a regional homogeneity
approach, Liao et al. (2012) reported decreased local neural
activity in ACC in first-degree relatives of SZ patients along
cognitive deficits. When taken with these previous results,
our findings in unaffected relatives point to the possibility of
altered functional interplay between ACC and hippocampus
as the unit responsible for cognition and initial sign for
developing SZ.

For another, we detect abnormal connection from ACC to the
right hippocampus in relatives of SZ patients. Reduced bilateral
hippocampal volume has been observed in young relatives of
SZ patients (Keshavan et al., 2002; Thermenos et al., 2013). It
has been found smaller hippocampi in relatives of SZ patients
(Seidman et al., 2002, 2014; Francis et al., 2013). Furthermore,
patients with SZ and their healthy siblings shared disrupted
white matter integrity in the hippocampus that may be related to
higher risk of healthy siblings to develop SZ (Hao et al., 2009).
The hippocampus is part of the hippocampal formation that
is comprised of subfields namely the dentate gyrus, subiculum,
and pre-subiculum. By means of Van Leemput et al. (2009)
method enabling quantification of elusive subfields, reduction
in volume of the left and right subicula was observed in
familial high risk persons with first-degree relatives suffering
from SZ or schizoaffective disorder (Francis et al., 2013). The
subibulum could mediate hippocampal-cortical interaction, and
is purportedly involved in spatial information processing and
memory (O’Mara et al., 2009). In the aforementioned study,
verbal memory was impaired and significantly correlated with
the subicular volume within the relatives of SZ patients (Francis
et al., 2013). Dysconnectivity between DLPFC and hippocampal
formation has also been reported in SZ patients (Liu et al.,
2014). Accordingly, compromised anterior cingulate cortico-
hippocampal connection links with the risk of developing SZ in
individuals at familial high risk.

Moreover, aberrant DLPFC connectivity and familial risk
for SZ are closely related in SZ pathophysiology (Hao et al.,
2009; Whitfield-Gabrieli et al., 2009; Woodward et al., 2009;
Jang et al., 2011; Rasetti et al., 2011; Su et al., 2013). The
prefrontal cortex (PFC) is a compartment of the human brain
involved in highly diverse processes, ranging from cognition,
motivation, emotion, working memory and complex motor
activity to social interactions (Ku et al., 2015; Zhou et al., 2015).
These aforementioned results in SZ patients and their relatives
suggest that neuro-integrative deficits from the DLPFC to other
brain regions are likely to be involved in cognitive function and
the familial risk for SZ. However, we did not detect significantly
different DLPFC-related connectivity in the sample of relatives
of SZ patients in our current study. Last but not least, altered
caudate nucleus-related connections were not observed in SZ

relatives compared to HCs, either. Unaffected relatives from
mixed families (with at least one relative with SZ and one
with bipolar disorder) showed reductions in bilateral caudate
gray matter density (McIntosh et al., 2004). Paradoxically, our
results did not show aberrant connections involving caudate
nucleus in relatives of SZ patients. This divergence in findings
(i.e., the failure to observe anomalies of connections involved
in DLPFC and caudate) could be due to differences in subject
selection. In our present study, individuals at high risk for SZ
were unaffected first-degree relatives of first episode drug-naïve
patients with this illness, rather than mixed first- and second-
degree relatives of treated patients commonly used previously. A
possible interpretation is the heritable characteristics of SZ and
featured effects of facing patients with diverse symptoms before
receiving therapy on these subjects in the current study.

We acknowledge that there were several limitations. First,
we enrolled a not so large sample size of subjects in this study.
Larger sample is desirable to confirm our present findings.
Second, the present study did not involve any behavioral data,
i.e., we did not measure the severity of cognitive impairment
in the relatives. Currently, we are collecting the behavioral data
to clarify the relationship between neuroimaging findings and
altered cognition. Third, although a recent study demonstrated
both noisy and neural effect of head motion on functional
connectivity analysis (Zeng et al., 2014), the current study did
not examine the difference of head motion between these two
groups. This factor should be taken into account in future
research.

Our findings show the pattern of effective connectivity among
DLPFC, ACC, hippocampus, and caudate in the familial high risk
population of SZ patients, which may be tied to a familial risk
of SZ. Specifically, we found that increased effective connectivity
from the left ACC to right hippocampus and decreased effective
connectivity from the right ACC to right hippocampus in
unaffected first-degree relatives of first episode SZ patients.
The anterior cingulate cortico-hippocampal dysconnectivity may
therefore serve as a potential sign of a general vulnerability to
develop SZ.
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Aging is accompanied by stereotyped changes in functional brain activations, for
example a cortical shift in activity patterns from posterior to anterior regions is one
hallmark revealed by functional magnetic resonance imaging (fMRI) of aging cognition.
Whether these neuronal effects of aging could potentially contribute to an amelioration
of or resistance to the cognitive symptoms associated with psychopathology remains to
be explored. We used a visual illusion paradigm to address whether aging affects the
cortical control of perceptual beliefs and biases. Our aim was to understand the effective
connectivity associated with volitional control of ambiguous visual stimuli and to test
whether greater top-down control of early visual networks emerged with advancing age.
Using a bias training paradigm for ambiguous images we found that older participants
(n = 16) resisted experimenter-induced visual bias compared to a younger cohort
(n = 14) and that this resistance was associated with greater activity in prefrontal
and temporal cortices. By applying Dynamic Causal Models for fMRI we uncovered
a selective recruitment of top-down connections from the middle temporal to Lingual
gyrus (LIN) by the older cohort during the perceptual switch decision following bias
training. In contrast, our younger cohort did not exhibit any consistent connectivity effects
but instead showed a loss of driving inputs to orbitofrontal sources following training.
These findings suggest that perceptual beliefs are more readily controlled by top-down
strategies in older adults and introduce age-dependent neural mechanisms that may be
important for understanding aberrant belief states associated with psychopathology.

Keywords: visual illusion, visual processing, aging, dynamic causal modeling, fMRI

INTRODUCTION

Several studies have demonstrated that later patient age-at-onset is a predictor of greater
remission rates and better outcome prognosis in psychopathologies including schizophrenia
(Häfner et al., 1998; Ho et al., 2000; Jeste et al., 2003), first-episode psychosis (Malla et al.,
2006) and bipolar disorder (Carlson et al., 2002; Carter et al., 2003), independent of other
contributing factors such as illness duration. Age also influences the relative symptom
spectrum in these psychopathologies (Gur et al., 1996; Topor et al., 2013). In schizophrenia,
for example the trajectories of positive, negative and thought-disorder symptom dimensions
have been shown to display differential age effects, with advancing age associated with
decreases in positive symptoms including hallucinations, delusions and bizarre behavior

Frontiers in Human Neuroscience | www.frontiersin.org March 2016 | Volume 10 | Article 141 | 51

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2016.00141
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2016.00141&domain=pdf&date_stamp=2016-03-31
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00141/abstract
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00141/abstract
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00141/abstract
http://loop.frontiersin.org/people/317092/overview
http://loop.frontiersin.org/people/309010/overview
http://loop.frontiersin.org/people/336854/overview 
http://loop.frontiersin.org/people/13473/overview
https://creativecommons.org/licenses/by/4.0/
mailto:rosalynj@vtc.vt.edu
http://dx.doi.org/10.3389/fnhum.2016.00141
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Dowlati et al. Age and Control of Visual Beliefs

(Schultz et al., 1997). However, the putative neural mechanisms
underlying adaptive effects of aging have been relatively
unexplored in the neuroimaging and neuropsychiatric
literature.

For this special issue on psychopathology, we aimed to
address the basic mechanisms of brain networks that underlie
age-dependent changes in constructive perception. A method
of examining conscious perception is to take advantage of the
visual system by instigating bistable perception. This allows us
to study the underlying neural networks related to perception
formation rather than stimulus-driven visual processing. Illusory
visual paradigms have proved useful in probing the neural
mechanisms associated with impaired perceptual inference and
aberrant beliefs in psychosis and schizophrenia (Foxe et al., 2005;
Dima et al., 2009, 2010; Notredame et al., 2014). Ambiguous
visual stimuli such as the Necker’s cube, Rubin’s face-vase,
or Boring’s Old-Young lady, where images have two distinct
interpretations (Leopold and Logothetis, 1999), in particular lend
themselves to the study of volitional inference and subjective
perception (Sundareswara and Schrater, 2008; Wang et al.,
2013). Moreover, these paradigms are often designed to illicit
activations across distributed cortical networks or hierarchies.
Earlier theories of switching perceptions focused on neuronal
adaptation as a key mediator (Blake, 1989) however these have
been superseded by connectivity analyses which demonstrate
that bottom-up and top-down connections to early visual cortices
(Cardin et al., 2011; Wang et al., 2013) and endogenous
neuronal oscillations (Kloosterman et al., 2015) also contribute
to the bistability of a percept. Bayesian decision theory, used
to construct models of perception (Kersten and Schrater, 2002)
support the role of networked cortical communication. In these
accounts, reverses in perception between competing alternatives
are posed as an active process that involves multiple regions
of the brain seeking to understand the stimulus, where one
particular perception emerges as the result of bottom-up and
top-down interplay that suppresses one interpretation in favor
of the other (Dayan, 1998). Modeling accounts have also
demonstrated a potential impact from noisy neuronal firing as
a possible bottom-up influence in perceptual switches (Shapiro
et al., 2009). These computational accounts appeal to priors on
what might be perceived—on our visual beliefs (Cardin et al.,
2011).

In terms of the prior beliefs that encourage perceptual
switching and image stability, opposing behaviors have been
observed which support both bottom-up and top-down neuronal
mediators. Some studies reveal that the most prevalent percept in
the recent past is the one that is most likely favored when the
ambiguous image is shown (Leopold et al., 2002), suggesting that
implicit perceptual memory may affect perception of ambiguous
figures (de Jong et al., 2014). Other studies have shown that
prolonged viewing of an ambiguous stimuli leads to preference
of the novel perception vs. past perceptual experience (de Jong
et al., 2012). Importantly, these images can also be manipulated
to induce stability of a particular percept, for example moving
bistable stimuli can be stabilized by motion of background
elements (Kramer and Yantis, 1997) and the Necker cube,
which elicits viewpoint ambiguity, can be manipulated with

color enhancement of particular sides so that one viewpoint
is predominantly perceived (Wang et al., 2013). This enables
the investigation of perceptual priors and their volitional
control.

We have previously shown that alterations in perceptual
priors by short-term changes in environmental statistics are
linked to adjusted ratios of bottom-up to top-down signal
propagation in neural hierarchies that exhibit a pronounced age
effect, with older adults less likely to adjust their beliefs (Moran
et al., 2014). In the current study, we build upon these findings
to test whether advanced age is associated with greater control of
what is perceived.

The aim of the study was to establish a perceptual
preference based on external stimulus manipulations and to use
dynamic causal modeling (DCM) to assess changes in effective
connectivity that arise from bias training. Our training consisted
of a modified Rubin vase as a non-ambiguous image used to
induce bias within subjects. We intended to elicit this effect to
observe a change in percept duration in the younger individuals
behaviorally. For older adults, we hypothesized that they would
resist biasing by the training stimulus (Moran et al., 2014) and
more actively control perceptual states when viewing bistable
images. We were interested specifically in whether there was an
age-dependence in post-training constructive perception.

MATERIALS AND METHODS

Participants
A total of 30 participants (16 females) partook in our fMRI
experiment. The average age of the participants was 44.9, ranging
from 18–76. Participants were divided into two groups: a young
cohort with an average age of 23.9 (n = 14, 18–29 years,
7 females) and an older cohort with an average age of 63.7
(n = 16, 54–76 years, 9 females). All were screened for MRI
contraindication and psychiatric or neurological disorders, had
normal or corrected-to-normal visual acuity, and were fluent in
English. Study protocols were approved by the Virginia Tech
Institutional Review Board and written informed consent was
obtained from each participant. Participants were compensated
for their time.

Experimental Protocol
Each participant received task instructions and completed an
instruction quiz prior to the scanning session. The fMRI task
consisted of three blocks: ambiguous Block 1, ‘‘Biasing’’ Non-
ambiguous Block 2, and ambiguous Block 3 (Figure 1A). In
ambiguous Block 1, the Rubin vase was presented for 60 s,
followed by a fixation cross displayed for 6 s (Rubin, 1921).
Participants were instructed to indicate via button press whether
they perceived two faces or a vase initially as well as every time
their perception switched over the 60-s trial. This experimental
design was similar to that employed in Sterzer et al. (2009) in
that participants were not given instructions to focus on one
perception over the other. All button presses were recorded and
this was repeated for a total of six trials. Participants were then
shown amodified, non-ambiguous stimulus during the ‘‘Biasing’’
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FIGURE 1 | Experimental design and age effects on trained stimulus. (A) Block 1: the ambiguous Rubin vase was shown for 60 s, where participants
indicated their perception, faces or vase, with a button press. This was repeated 6 times and each trial was separated by a 6 s fixation cross. Block 2: a
non-ambiguous, modified Rubin vase was shown for 16 s, where participants indicated when the fixation-cross appeared on either the left or right of the image. This
was repeated 16 times and each trial was separated by a 4 s fixation cross. Block 3 was identical in design to Block 1. (B) Left: the average duration in viewing faces
(the biased percept) in Block 3 compared to Block 1 for the young cohort (light red) and older cohort (dark red). Right: the ratio of these durations—i.e., the
perceptual biasing effect, was significantly different between the younger and older groups ∗p < 0.05.

Non-ambiguous Block 2. This non-ambiguous stimulus was
intended to explicitly portray two faces by modifying it in
a way that the two faces was the most likely perception
gained from looking at the stimulus. By presenting such an
image, we intended to ‘‘train’’ or ‘‘bias’’ participants toward
the perception of the faces vs. a vase when they viewed the
ambiguous figure. The non-ambiguous stimulus was presented
for a total of 16 s, followed by a fixation cross displayed
for 4 s. This was repeated for a total of 16 trials. When the
non-ambiguous stimuli were presented, a fixation cross would
appear at random to either the left or right of the screen and
participants were instructed to indicate via button press when
the fixation cross appeared. In Ambiguous Block 3, participants
were again presented the ambiguous Rubin vase image for 60 s,
followed by a fixation cross displayed for 6 s and instructed
to indicate via button press their initial perception and their
subsequent perceptual switches. This repeated for a total of

six trials. To summarize: in two blocks (Blocks 1 and 3), we
showed participants a non-modified ambiguous Rubin vase
figure. The non-ambiguous block (block 2) was the ‘‘training’’
block in which the participant was shown a modified version
of the Rubin vase diagram eliciting a stable perception showing
two faces, where the top and bottom borders were removed.
This was a similar modification to the image as presented
in Wang et al. (2013). The non-ambiguous image was also
chosen as a result of pilot data (not reported) which suggested
the Rubin image modified to elicit a face-bias was a stronger
non-ambiguous image than the Rubin image modified to elicit
a vase-bias.

Button presses indicating percept switches, their times, and
perceptual durations were recorded for behavioral data analysis.
Total percept duration throughout the trials and average percept
duration for each perception, i.e., face or vase, was analyzed
across age and block (pre- vs. post-training).
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fMRI Data Acquisition
Anatomical and functional images were acquired using a
3-T Siemens MAGNETOM Trio scanner. High-resolution
T1-weighted structural images were collected using MPRAGE
sequence with a repetition time (TR) = 1200 ms, echo time
(TE) = 2.66 ms, field of view (FOV) = 245 mm, 1.0 mm slice
thickness. Echo planar image data were acquired with a TR
of 2000 ms, TE = 25 ms, field of view (FOV) = 220 mm,
with 37 slices acquired at a slice thickness of 4.0 mm. Slices
were oriented 30◦ superior-caudal to the plane through the
anterior and posterior commissures to reduce signal drop-out.
Headphones were used to reduce scanner noise. Participants
used a mirror to view the stimuli projected behind them
in the scanner. Participants were provided with additional
items such as blankets and noise-cancelling ear plugs upon
request.

fMRI Data Analysis
Preprocessing and data analysis were performed using statistical
parametric mapping software implemented in Matlab (SPM12b
beta; Wellcome Trust Centre for Neuroimaging, London, UK).
The first five functional images of the acquisition were discarded
to allow for equilibrium magnetization. The mean scan was
used as the reference for EPI blood-oxygen-level dependent
(BOLD) images which were realigned with a six parameter spatial
transformation. The structural image was co-registered to the
mean resliced image. The unified segmentation routine was
then used to perform segmentation bias correction and spatial
normalization. Images were normalized to MNI space using the
ICBM template. Then, the data was smoothed using a kernel with
8 mm full-width at half maximum (FWHM).

Individual participant BOLD responses were analyzed using
a General Linear Model (GLM). There were nine total
regressors: (1) ambiguous stimuli presentation Ambiguous
Block 1; (2) ambiguous stimuli presentation Ambiguous Block 3;
(3) non-ambiguous image presentation Non-ambiguous Block 2;
(4) button press responses for Block 1; (5) pre-switch event, a
2000 ms time period immediately prior to button press, during
Block 1; (6) button press responses for Block 3; (7) pre-switch
event, a 2000 ms time period immediately prior to button press,
during Block 3; (8) button press responses in Block 2; and
(9) pre-press, 2000 ms prior to button press, during the Block 2.
All regressors were convolved with a canonical hemodynamic
response function. In the first level GLM, estimated motion
parameters were used as nuisance regressors. Once all regressors
for all individual GLMs had been created, contrasts were
created at the first-level to identify activation differences between
ambiguous and non-ambiguous stimuli and between the pre- and
post-training ambiguous stimuli. We assigned 2000 ms prior to
the button press as the ‘‘pre-switch’’ event. This was motivated
by previous research suggesting that subjective decisions can be
observed in fMRI activity up to 10 s prior to a motor report (Soon
et al., 2008).

We then used a summary statistic approach to assess group-
level whole-brain peak activations to identify regions of interest.
An F-contrast was used to identify positive or negative responses
to the ambiguous stimuli compared to non-ambiguous stimuli

(Table 1). An F-contrast was also applied to identify training
effects—examining positive or negative response differences to
ambiguous stimuli before (Block 1) and after biasing (Block 3;
Table 1). A 2 × 2 analysis of variance (ANOVA) was preformed
to test interactions between age and training effects as well.

Dynamic Causal Modeling
DCM for fMRI provides a model-based investigation of
effective connectivity (Friston et al., 2003), where effective
connectivity represents directional and modulatory interactions
between multiple brain regions using separate neuronal and
hemodynamic parameterizations. At the neuronal level the
DCMs comprise a set of differential equations with parameters
that control the drive of external inputs and of inter-regional
neuronal influences. Given our interests in endogenous drivers
of perceptual switches, we applied stochastic DCM for fMRIs
which explicitly parameterizes non-stimulus linked fluctuations
in neuronal activity (Li et al., 2011). We chose this over the
alternative counterpart, deterministic DCM, due to its ability
to parameterize and formally incorporate random neuronal
fluctuations (Friston et al., 2014). Bayesian Model Selection was
applied to find the best—most probable—model to explain the
observed hemodynamics (Stephan et al., 2007). Our aim was
to identify the neuronal connections associated with perceptual
changes—i.e., pre-switch events.

We used our second-level summary statistics to identify
regions of interest which responded differentially to ambiguous
and non-ambiguous stimuli. We further used two age covariates
to identify within these regions, specific nodes that exhibited
positive and negative correlations with age. The regions
of interest (ROIs) were identified around the group peak
coordinates of the Lingual gyrus (LIN) [−6 −68 −2] and
the Precuneus (PRE) [−12 −70 36]-these regions exhibited a
negative correlation with age. ROIs were identified around the
group peak coordinates of the Middle Temporal gyrus (MTG)
[50 30−6] and Inferior Orbitofrontal Cortex (IOF) [62−22−6]-
with a positive correlation with age (group peaks are summarized
in Table 1).

Given these coordinates, we extracted BOLD time series
from each participant’s fMRI data individually. Time series were
extracted using an F-contrast mask that tested for differences
between ambiguous and non-ambiguous stimuli with a p-value
threshold of p < 0.05, uncorrected with a sphere radius of
8 mm (note: p-values here are used to define the voxel cluster
from which the principal eigenvariate will be extracted, they
are not involved in the final DCM statistics). The principal
eigenvariate within a sphere of 8 mm was extracted for
the model-based analysis. To correct for confounding motion
and button-press contributions to our ROI time series, these
extractions were corrected for ‘‘effects of interest’’ using an
F contrast to partition data variance in order to incorporate
effects from just four regressors including: (1) ‘‘Ambiguous
Block 1’’, (2) ‘‘Ambiguous Block 3’’, (5) ‘‘Pre-Switch Block 1’’
and (7) ‘‘Pre-Switch Block 3’’. By using this F contrast, we
are partitioning out any effects that could be due to all
the other regressors, which include head motion and button
presses.
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TABLE 1 | fMRI second level group statistics: effects of ambiguity and age correlations.

Peak activation region (MNI) X Y Z F statistic Puncorrected PFWE−corrected

(A) Significant voxels with positive or negative response to onset of ambiguous
vs. non-ambiguous images, unmasked, extended threshold 10 voxels
R Lingual 6 −68 −4 6.26 0 0
R Sup occipital 14 −96 18 5.99 0 0
L Cerebelum −25 −58 −25 5.92 0 0
L Mid temporal −52 −48 14 5.81 0 0
L Angular −42 −64 36 5.47 0 0.001

(B) Significant voxels with positive or negative response to onset of ambiguous
images Block 1 vs. Block 3, unmasked, extended threshold 10 voxels
L Lingual −6 −68 −2 5.88 0 0
R Lingual 6 −64 −2 5.85 0 0
R Cuneus 14 −96 16 5.83 0 0
L Precentral −60 2 28 5.83 0 0
L Mid temporal −50 −60 −2 5.78 0 0

(C) Significant voxels with positive or negative response to onset of ambiguous
vs. non-ambiguous images, masked inclusively with a negative correlation
contrast of age, extended threshold 10 voxels: Lingual gyrus and Precuneus
Lingual −6 −68 −2 5.90 0 0
L Precuneus −12 −70 36 5.17 0 0.004

Significant voxels with positive or negative response to onset of ambiguous
vs. non-ambiguous images, masked inclusively with a positive correlation
contrast of age, extended threshold 10 voxels: Mid Temporal gyrus and Inferior
Orbitofrontal cortex
R Mid temp 50 30 −6 4.94 0 0.011
R Inf orb 62 −22 −6 4.85 0 0.016

(A) The peak activations were identified as positive or negative response to the onset of ambiguous compared to non-ambiguous images and image onsets of ambiguous

images before and after biasing. Both comparisons were unmasked and extended thresholds were at 20 voxels. (B) The effects of perceptual biases—comparing post

and pre-training responses to ambiguous stimuli. (C) The peak activations with positive or negative response to onset of ambiguous compared to non-ambiguous images

were used to mask age covariation. Lingual and precuneus activations were found when testing for decreasing with age. Right middle temporal gyrus and right inferior

orbitofrontal cortex activations were found with a covariate of increasing age.

To test the effective connections across the network we
constructed fourmodels of potential interactions among our four
regions of interest. There were intrinsic connections within all
regions and between all regions (DCM’s A matrix), except for
the IOF and MTG. Inputs from ambiguous stimuli onsets drove
all regions (DCM’s C matrix). Modulatory connections (DCM’s
B matrix) were used to test network connections associated
with pre-switch events. In model 1 we placed these modulations
only on bottom-up connections for block 1 (LIN to MTG, LIN
to IOF, PRE to MTG, and PRE to IOF) and only on top-
down connections for post-training block 3 (MTG to LIN, MTG
to PRE, IOF to LIN, IOF to PRE). For model 2 we allowed
modulation of pre-switch events for pre and post training
blocks on both sets of bottom-up and top-down connections.
For model 3 we allowed modulation of pre-switch events only
on bottom-up connections. Finally, for model 4 we allowed
modulation of pre-switch events only on top-down connections.

RESULTS

Behavioral Effects of Biasing
Behavioral data were analyzed to test for perceptual biasing
effects. For this we compared the average duration of perception
of trained stimulus (i.e., two faces, see Figure 1A) between

pre- and post-training blocks. All percepts throughout the six
60-s trials were examined, regardless of number of switches
made within the trial and of the initial percept. Furthermore,
we ensured that all participants had at least three or more
switches within a single trial of 60 s. From these data we
established a simple bias ratio—the ratio of average time
durations for perceptions where the stimulus was viewed
as two faces for post-training (block 3) relative to pre-
training (block 1; Figure 1). Although we were not interested
in the initial percept at each trial during the ambiguous
blocks, it is important to note that there was no significant
difference on the effect of training or age in the initial
percept.

Overall, our hypothesized effects of age on biasing were
evidenced. Average percept duration of the trained stimuli
was similar between the young and older group (Figure 1B),
however, during the post-training block, the average duration
of the ‘‘faces’’ percept significantly differed between the young
and older cohort (young (n = 14): 7064 ms; older (n = 16):
4209 ms) showing a positive bias for the trained stimulus for
the young relative to older cohort (p < 0.05, Figure 1B).
There was a medium effect size in this comparison (Cohen’s
d = 0.6). In addition, analysis of total percept duration for
vases compared to faces post-training showed preference in older
individuals towards the novel, non-trained percept significantly
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(p < 0.001). These data demonstrate a preference toward the
novel or untrained percept in block 3 for the older cohort relative
to a trained or biased prior in the younger cohort.

SPM Analysis
First, we identified brain regions that exhibited significant effects
of ambiguity; that is, we tested ambiguous relative to non-
ambiguous blocks over the whole brain using an F-contrast.
Comparing the responses to these stimuli we observed significant
activation across a distributed brain network, with large
activations in visual and parietal cortices—voxel peak in the
LIN [6 −68 −4; x, y, z MNI coordinates] (p < 0.05,

Family Wise Error (FWE) corrected, Table 1, Figure 2A).
We then used this contrast as a mask to test for age
dependencies within the regions that exhibited ambiguity
effects and found negative correlations with ambiguity-related
activations in visual and parietal cortices, with a peak in
the LIN at [−6, −68, −2], (p < 0.05 FWE, Figure 2C).
In contrast, positive correlations with age were found in
frontal and temporal cortices with a peak in the anterior
middle temporal gyrus [50, 30, −6] (p < 0.05, FWE, Table 1,
Figure 2C).

We assessed group level interactions between training and
age using a 2 × 2 ANOVA. An interaction of age and

FIGURE 2 | Brain activations associated with the perception of ambiguous stimulus. (A) When comparing Ambiguous and non-Ambiguous stimuli the
overall effect was seen with a group peak activation in the R Lingual [6 −68 −4] (p < 0.05, family wise error (FWE) corrected). (B) Comparison of ambiguous stimuli
before (Block 1) and after training (Block 3). When comparing the two ambiguous blocks (1 and 3) to measure the effect of the “biasing” block. Here, similar regions
in parietal and visual cortices predominated with significant effects also observed in the right anterior temporal cortex (p < 0.05 FWE corrected, Table 1). (C) Using
the regions differentially active to ambiguous vs. non-ambiguous stimuli as a mask (A) we then found activations that positively correlated with age in anterior regions
(Right orbitofrontal and anterior temporal lobe, top image, p < 0.001, uncorrected, Table 1). In contrast regions negatively correlated with age were observed
posteriorly (cluster peaks in lingual gyrus and precuneus, bottom image, p < 0.001, uncorrected, Table 1). For extracting our ROIs, application of F-contrasts as
inclusive masks and these regions were present at p < 0.05, FWE corrected (image not shown).
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training was seen in posterior regions with peak activation
in the right LIN [4 −64 6] (p < 0.05, FWE). To unpack
this result we performed a ‘‘simple main effects’’ analysis
specifically for training in Figure 2B. Here, we tested only for
the effects of the non-ambiguous training block we compared
ambiguous responses pre and post training. This contrast
showed that similar regions exhibited the biasing effects as
previous seen for ambiguous processing generally (ambiguous
pre-trained vs. ambiguous post-training), including LIN, PRE
and middle temporal cortices (p < 0.05, FWE, Table 1).
Furthermore, we tested for other covariates that may be
implicated in the context of psychopathology, including gender
and education. These covariates did not show any significant
effects in activation between male or female participants or
in terms of education level categorized by some high school,
high school graduate, some college, college graduate (data not
shown).

DCM of Ambiguous Visual Processing and
Age-Related Connectivity Effects
We used those activations associated with ambiguous compared
to non-ambiguous stimuli to study perceptual belief networks
using DCM (see ‘‘Materials and Methods’’ Section, Figure 3A).
We were particularly interested in the mechanisms subtending
switches in subjective perceptual beliefs and the effects bias
training had on the network. To analyze switch responses we
defined ‘‘pre-switch events’’, a 2000 ms period immediately
prior to a button press indicating the percept had switched.
We chose this timing due to the possibility of active
networks present before the action of a button press, without
overlapping button press responses. This was motivated by
previous research suggesting that subjective decisions can be
observed in fMRI activity up to 10 s prior to a motor report
(Soon et al., 2008). Our network comprised four regions
including LIN, PRE, mid-temporal gyrus (MTG) and IOF,
with intrinsic connections arranged reciprocally among these
regions (with the exception of IOF to MTG). The percent
variances explained by our fMRI data in the four extracted
principal eigenvariates over an 8 mm-radius sphere were
determined and averages across all subjects were calculated
(Table 2).

TABLE 2 | Average percent variation explained in regions of interest
(ROIs).

Average percent variance ± SEM

LIN 79.00% ± 1.91
PRE 79.18% ± 1.89
MTG 74.75% ± 2.06
IOF 77.58% ± 2.32

For our DCMs, we extracted the principal eigenvariate for an 8 mm-radius

sphere around a group peak at the four regions of interest (LIN: [−6, −68, −2];

PRE: [−12, −70, 36]; MTG: [50, 30, −6]; IOF: [62, −22, −6]) at p < 0.05,

uncorrected. This principal eigenvariates explain the above percent variances on

average over each region for all subjects. The table shows average ± standard

error mean of these regions across all 30 subjects.

We constructed four models to test for training-related
differences in top-down vs. bottom-up perceptual control.
In model 1, pre-switch modulations during the pre-training
block were confined to bottom-up connections and pre-switch
modulations during the post-training block were confined
to top-down connections. In model 2, we allowed for both
bottom-up and top-down pre-switch modulations in both
pre- and post-training blocks (Figure 3B). In model 3, only
bottom-up pre-switch modulations were present in both pre-
and post-training blocks. In contrast, in model 4, only top-
down pre-switch modulations were present in both pre- and
post-training blocks. We show the equations representing
the models (Figure 3C). Using a random-effects Bayesian
model comparison across participants and within each cohort
separately we found that both the young and older cohorts
preferred model 1 (with a model exceedance probability (MEP)
of 0.9993 for all subjects, Figure 3D, MEP = 0.9882 in the
young cohort, and MEP = 0.9494 in the older cohort). The
effect across individuals was consistent with 11 participants in
the younger cohort preferring model 1, and the other three
preferring model 3. Nine participants in the older cohort
preferred model 1, five preferred model 4, and two preferred
model 3.

Equipped with this winning model we tested for training
or biasing effects within each cohort. To test for effect size,
the average coefficients of determination for the model fit
were determined in each cohort. There is a medium effect
size for the lingual region in the young cohort, a medium
effect size for the middle temporal regions in both cohorts,
and a small effect size for PRE and inferior orbitofrontal
regions (Table 3). Interestingly, we observed that the young
cohort exhibited no significant modulations in connections
related to training. Rather, we found that the arrangement
of driving inputs differed between pre- and post-training.
Specifically, the initial pre-training block was associated
with a negative driving input to both lingual (student’s
t test; p = 0.0016) and PRE sources (p = 0.014), while
in the post-training block these negative driving inputs
were confined to the lingual source only (p = 0.0017).
These negative driving inputs will suppress endogenous
noise in each region under the stochastic DCM. In the
older cohort however significant effects of training were
observed—with the emergence of a significant top-down
connection from the middle temporal gyrus to LIN on
the post-training block (p < 0.05; Figure 4A). This cohort
also exhibited negative input drive into lingual and frontal
sources post training (p < 0.05). Within both cohorts, the
DCMs adequately recapitulated the measured data features
(Figure 4B).

Hemodynamic changes with age may alter BOLD activity
and contribute to second-level group statistics (Tsvetanov et al.,
2015). With DCM we were able to separate the hemodynamic
parameters and test whether they exhibited age-dependent
effects. However no effects of age on hemodynamic parameters
were observed where we tested decay and transit time differences
between the two age groups for all four regions (p > 0.1
uncorrected for eight tests).

Frontiers in Human Neuroscience | www.frontiersin.org March 2016 | Volume 10 | Article 141 | 57

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Dowlati et al. Age and Control of Visual Beliefs

FIGURE 3 | Dynamic causal model and Bayesian model selection. (A) Sources for the Dynamic Causal Modelings (DCMs) were obtained from the second level
analysis, displayed here. Regions of interest were identified around the group peak coordinates for Lingual [−6 −68 −2], Precuneus [−12 −70 36], Mid Temporal [50
30 −6], and Inf Orbitofrontal [62 −22 −6]. (B) The four regions of interest (ROIs) were used to create a stochastic DCM. There were intrinsic connections within all
regions and between all regions, except for the inferior orbitofrontal cortex (IOF) and middle temporal gyrus (MTG). (B) Inputs from ambiguous image onsets entered
all regions. The modulations in connections associated with pre-switch events were tested using Bayesian model comparison. In model 1 pre-switch connections in
the pre-training block were confined to bottom-up connections (light gray), i.e., from Lingual and PRE to Inferior Orbitofrontal and Mid Temporal Lobe. While in
model 1 post-training switches were modeled via top-down connection modulations only (dark gray), i.e., from Inferior Orbitofrontal and Mid Temporal Lobe to
Lingual and PRE. Model 2 comprised pre-switch, pre- and post-training modulations in both directions. Model 3 consisted of bottom-up pre-switch modulations for
both pre- and post-training modulations. Finally, model 4 involved of top-down pre-switch modulations for both pre- and post-training modulations. (C) We also
display the equations used to define each of these models. A is the intrinsic connection parameters matrix. B is the input-dependent or modulatory connection
parameter matrix. z denotes the regions. C is the extrinsic influences or input connection parameter matrix. u Represents the inputs. (D) Bayesian model comparison
revealed that both younger and older cohorts preferred model 1 (see “Results” Section) and these fixed effects were consistent across most subjects. Here, we
illustrate the exceedance probabilities for a comparison including all models from both age groups.

TABLE 3 | Average coefficient of determination for DCM fits in ROIs.

Average coefficient of determination (R2) ± SEM

LIN PRE MTG IOF

Young (n = 14) 0.30 ± 0.03 0.12 ± 0.02 0.29 ± 0.04 0.076 ± 0.02
Older (n = 16) 0.20 ± 0.02 0.11 ± 0.03 0.28 ± 0.03 0.073 ± 0.02
Overall 0.24 ± 0.02 0.12 ± 0.02 0.29 ± 0.02 0.074 ± 0.01

Coefficients of determination for DCM fits were calculated for all 30 subjects for the

winning model. We present these as effect size for our DCM data extraction and

model fit. We compared predicted response with observed response. Coefficients

of determination show a medium effect size for the LIN region in the young cohort,

a medium effect size for the MTG region in both cohorts, and a small effect size for

PRE and IOF regions.

DISCUSSION

Despite theoretical and imaging-driven advances in
understanding bistable perception, its interaction with an
aging neurobiology has received little attention. Motivated
by the ubiquitous role age plays in psychopathological status
(Häfner et al., 1998; Ho et al., 2000; Jeste et al., 2003; Topor
et al., 2013; Lin et al., 2006), the present study addresses
the age-dependency of neuronal connectivity underlying
volitional control of perceptual beliefs. In our study, we
investigated the brain regions associated with fluctuating
perceptual content, whether these brain regions interact
during perceptual rivalry, and how stimulus-driven biasing can
affect subsequent subjective perceptual beliefs and neuronal
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FIGURE 4 | Age-effects on connectivity mediating volitional perception. (A) Only in the older cohort did we see pre-switch modulations of effective
connectivity. Specifically we observed an emergence of a top-down control connection (MTG→ LIN) following the bias or training block. (B) DCM fits here from one
subject and displayed for two regions accurately recapitulate the extracted time-series.

connectivity. In our study, we used the Rubin vase diagram
and manipulated the image in order to bias perception and
tested the underlying processing networks using fMRI and
DCM. In summary our findings reveal that consistent with
our hypothesized training effect, older cohorts exhibited a
resistance to perceptual biasing compared to the younger cohort
and these effects were found to be mediated by an increase in
top-down connections from temporal to visual cortical sources
post training.

Our study was motivated by predictive coding theories of
cortico-cortical interactions which has been explored recently
in the context of visual illusory processing (Brown and Friston,
2012; Chopin and Mamassian, 2012). Our aim was to determine
whether prior beliefs could resist external manipulation in
an age-dependent manner. Our paradigm was suited to this
connectivity hypothesis given recent work by Kok et al. (2016)
who show that top-down connections selectively activate early
visual regions during the perception of illusory figures such as

the Kanizsa stimulus. In our study, we used the non-ambiguous
block for training to test whether inference networks within
the brain became more robust to environmental perturbations
as we age. This fits within larger theoretical frameworks
such as the Free-energy principle (Brown and Friston, 2012),
which appeals to the Bayesian brain hypothesis and laminar
specific connectivity which optimizes to better predict future
sensory inputs (Moran et al., 2014). With this in mind, we
suggest that perceptual switches in the aging population can be
described as changes in connectivity between regions, generated
by an internal predictive model. In the context of visual
processing and perceptual competition, binocular rivalry is
another phenomenon explained in the framework of a brain
that is engaged in Bayesian inference (Hohwy et al., 2008).
Furthermore our motivation for this framework relates to
psychopathology where studies such as Shergill et al. (2005) have
implicated predictive coding abnormalities in diseases such as
schizophrenia.
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Whole-brain analysis from the fMRI study identified a
network of cortical regions involved in viewing the ambiguous
figures that included the LIN and precuneus, regions typically
associated with perceptual changes in ambiguous figures (Sterzer
and Kleinschmidt, 2007; Wang et al., 2013). Within these
activated regions we found a striking correlation with aging, as
age increases the ambiguity-associated activations predominated
in anterior regions, while younger age was associated with
greater posterior activity. This is consistent with general aging
effects observed in fMRI-neurocognitive experiments which
demonstrate a posterior to anterior shift in activation (PASA)
patterns (Cabeza, 2001; Davis et al., 2008). With regards to
PASA, there is reduced neural specialization in the visual cortex
with age as well as an increase in distributed processing in
frontal areas (Cabeza, 2001), with these anterior shifts noted
in visual processing tasks (Ansado et al., 2012). However, such
a paradigm has not been considered in bistable perception
visual processing, making our study unique in that matter.
In our study, we show that this shift to anterior regions
of the brain can be associated with visual processing and
perceptual control and not attributed to any specific default
network, which has been shown to undergo reallocation
with aging as a compensatory mechanism (Davis et al.,
2008). We are unable to provide evidence for or against a
compensatory mechanism in our study since we do not have
a metric of ‘‘good’’ or ‘‘poor’’ performance. Instead, we are
interested in Bayesian predictive coding leading to differences
in connectivity. Exploring our activations using DCM we
found that younger participants did recruit frontal regions
during ambiguous stimulus processing but that this dropped
offline following a biasing session. In contrast, our older
cohorts resisted biasing and furthermore recruited top-down
connections to control their perceptual beliefs following training.
In the context of psychopathology it may be useful to control
perceptual beliefs internally and to resist model updating based
on spurious environmental stimuli. An inaccurate assignment
of one’s environmental experiences may contribute to the
underlying pathology in diseases such as schizophrenia (Kapur,
2003).

Previous behavioral studies using binocular rivalry have
shown that perceptual stability increases with increasing age
(Ukai et al., 2003; Beers et al., 2013). However, binocular
rivalry, compared to bistable perception with ambiguous
figures, involves a more automatic and stimulus driven form
of visual competition occurring at the lower levels of the
visual pathway (Tong et al., 2006). We do not assume that
our findings extend to studies of binocular rivalry. Bistable
perception with ambiguous figures occurs at a higher level
in the visual pathway (Tong and Engel, 2001). This provides
a method of intentional control, making it more suitable for
the larger goal of our analysis, which is the study of the
active process of perception. Using multisensory sound flash-
illusions, studies have also demonstrated that aging presents
with stronger illusory percepts compared to younger adults
(DeLoss et al., 2013), but that training to avoid the temporal
overlap illusion can be accomplished by older cohorts (Setti
et al., 2014). Few studies however have sought to establish

the neural correlates of these effects. In our study we used
stochastic DCM for fMRI (Daunizeau et al., 2011; Li et al.,
2011) in order to account for the internally-generated dynamics
that cause endogenous percept fluctuations as well as task-
dependent changes (deterministic effects; Friston et al., 2014).
This is in contradistinction to other spectral DCMs which
may present a more accurate and parsimonious account of
connectivity in studies examining complete resting or stationary
states (Razi et al., 2015). The optimized parameter sets of
our stochastic models revealed interesting dynamics particularly
in the driving inputs (Friston et al., 2003). We found that
negative driving inputs were observed in posterior and frontal
sources for the older subjects post-training whereas for the
younger subjects these patterns were seen pre-training with a
dropout of frontal inhibitory drive post-training. The polarity
of these driving inputs are reasonable in the setting of
stochastic DCMs since they would dampen endogenous noisy
fluctuations in their respective regions and in the case of
the older cohort enable top-down control via long-range
connections.

Our results complement previous studies involving bistable
perception, which have shown a decline in attentional selection of
low-salient stimuli (Tsvetanov et al., 2013). Additionally, Aydin
et al. (2013) examined perceptual switching of the Rubin vase
showing that older individuals are less likely to attend to visual
stimuli after holding a specific percept. In fact, the older group
prefers the novel percept. However, we do not use distractors or
perceptual holding in our experiment but rather assess control in
the context of biasing effects.

Overall, our analysis provides a holistic account of bistable
perceptual processing in aging given the combination of fMRI
and stochastic DCMs. Our observed network involving the
frontal and temporal regions was derived from our whole
brain analysis. Our regions in these models are supported
by previous research suggesting significant modulation of
inferior frontal cortex to medial temporal regions during the
perceptual transitions of the ambiguous rotating Lissajous figure
(Weilnhammer et al., 2013). All of our four ROIs have been
shown to respond to bistable percepts in previous studies
(Wang et al., 2013). An electroencephalogram (EEG) study on
bistable perception using ambiguous images showed activity
in the posterior visual regions in addition to higher-order
fronto-parietal and temporal regions of the brain (Britz et al.,
2009). In terms of psychopathology, frontal and temporal
cortices, specifically the inferior frontal gyrus and superior
temporal gyrus, is implicated in schizophrenia showing altered
connectivity in resting state fMRI study (Zaytseva et al.,
2015). Orbitofrontal cortices and middle temporal gyrus are
furthermore areas of disruption in perspective-taking tasks in
schizophrenia (Eack et al., 2013). Brain networks such as the
default network or salience network may play a role in bistable
perception and show differences in age. Future work can use task-
based independent component analysis (ICA; Hyett et al., 2015;
Tsvetanov et al., 2015) to characterize the network topology in
control to better understand perceptual changes.

Limitations of the study include other covariates that
are affected with normal aging. For example, potential time

Frontiers in Human Neuroscience | www.frontiersin.org March 2016 | Volume 10 | Article 141 | 60

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Dowlati et al. Age and Control of Visual Beliefs

differences may exist in the pre-switch event with age. In
our study, we allotted the same pre-switch period duration
for both the younger and older group. Given that our
analysis relies on subjective recording of perceptual switches,
this is an inherent limitation in the study of bistable
perception since the only objective marker to assume a
change in perception is the button press. Other limitations
of the study include putative effects on bistability not
accounted for in our design including eye position (Einhäuser
et al., 2004) or attention (van Ee et al., 2005). Future
studies could address these and more fine-grained features
of aging control dynamics, using electrophysiological DCMs
(Legon et al., 2015). For example, GABA levels in the
visual cortex have been linked to bistable perception, with
higher concentrations resulting in slower perceptual dynamics
(van Loon et al., 2013)-an effect used to simulate aging

differences in computational modeling studies of multistable
perception (Hoshino, 2013). These simple visual paradigms
may uncover further neurobiological correlates of perceptual
control, and provide important clues for developmental and
aging dependencies in psychopathology.

AUTHOR CONTRIBUTIONS

ED and RJM designed the experiment, performed analysis. ED,
SEA andABS collected the data. ED, SEA, ABS and RJMprepared
the manuscript.

FUNDING

This work was supported by a start-up grant from VTCRI to
RJM.

REFERENCES

Ansado, J., Monchi, O., Ennabil, N., Faure, S., and Joanette, Y. (2012). Load-
dependent posterior-anterior shift in aging in complex visual selective attention
situations. Brain Res. 1454, 14–22. doi: 10.1016/j.brainres.2012.02.061

Aydin, S., Strang, N. C., and Manahilov, V. (2013). Age-related deficits in
attentional control of perceptual rivalry. Vision Res. 77, 32–40. doi: 10.1016/j.
visres.2012.11.010

Beers, A. M., Bennett, P. J., and Sekuler, A. B. (2013). Age-related effects of size
and contrast on binocular rivalry. J. Vis. 13, 546–546. doi: 10.1167/13.9.546

Blake, R. (1989). A neural theory of binocular rivalry. Psychol. Rev. 96, 145–167.
doi: 10.1037/0033-295x.96.1.145

Britz, J., Landis, T., andMichel, C. M. (2009). Right parietal brain activity precedes
perceptual alternation of bistable stimuli. Cereb. Cortex 19, 55–65. doi: 10.
1093/cercor/bhn056

Brown, H., and Friston, K. J. (2012). Free-energy and illusions: the cornsweet
effect. Front. Psychol. 3:43. doi: 10.3389/fpsyg.2012.00043

Cabeza, R. (2001). Cognitive neuroscience of aging: contributions of functional
neuroimaging. Scand. J. Psychol. 42, 277–286. doi: 10.1111/1467-9450.00237

Cardin, V., Friston, K. J., and Zeki, S. (2011). Top-down modulations in the
visual form pathway revealed with dynamic causal modeling. Cereb. Cortex 21,
550–562. doi: 10.1093/cercor/bhq122

Carlson, G. A., Bromet, E. J., Driessens, C., Mojtabai, R., and Schwartz, J. E. (2002).
Age at onset, childhood psychopathology and 2-year outcome in psychotic
bipolar disorder. Am. J. Psychiatry 159, 307–309. doi: 10.1176/appi.ajp.
159.2.307

Carter, T. D. C., Mundo, E., Parikh, S. V., and Kennedy, J. L. (2003). Early age at
onset as a risk factor for poor outcome of bipolar disorder. J. Psychiatr. Res. 37,
297–303. doi: 10.1016/s0022-3956(03)00052-9

Chopin, A., and Mamassian, P. (2012). Predictive properties of visual adaptation.
Curr. Biol. 22, 622–626. doi: 10.1016/j.cub.2012.02.021

Daunizeau, J., David, O., and Stephan, K. E. (2011). Dynamic causal modelling:
a critical review of the biophysical and statistical foundations. Neuroimage 58,
312–322. doi: 10.1016/j.neuroimage.2009.11.062

Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., and Cabeza, R. (2008).
Qué PASA? the posterior-anterior shift in aging. Cereb. Cortex 18, 1201–1209.
doi: 10.1093/cercor/bhm155

Dayan, P. (1998). A hierarchical model of binocular rivalry. Neural Comput. 10,
1119–1135. doi: 10.1162/089976698300017377

de Jong, M. C., Brascamp, J. W., Kemner, C., van Ee, R., and Verstraten,
F. A. (2014). Implicit perceptual memory modulates early visual processing of
ambiguous images. J. Neurosci. 34, 9970–9981. doi: 10.1523/JNEUROSCI.2413-
13.2014

de Jong, M. C., Knapen, T., and van Ee, R. (2012). Opposite influence of perceptual
memory on initial and prolonged perception of sensory ambiguity. PLoS One
7:e30595. doi: 10.1371/journal.pone.0030595

DeLoss, D. J., Pierce, R. S., and Andersen, G. J. (2013). Multisensory integration,
aging and the sound-induced flash illusion. Psychol. Aging 28, 802–812. doi: 10.
1037/a0033289

Dima, D., Roiser, J. P., Dietrich, D. E., Bonnemann, C., Lanfermann, H.,
Emrich, H. M., et al. (2009). Understanding why patients with schizophrenia
do not perceive the hollow-mask illusion using dynamic causal
modelling. Neuroimage 46, 1180–1186. doi: 10.1016/j.neuroimage.2009.
03.033

Dima, D., Dietrich, D. E., Dillo,W., and Emrich, H.M. (2010). Impaired top-down
processes in schizophrenia: a DCM study of ERPs. Neuroimage 52, 824–832.
doi: 10.1016/j.neuroimage.2009.12.086

Eack, S. M., Wojtalik, J. A., Newhill, C. E., Keshavan, M. S., and Phillips,
M. L. (2013). Prefrontal cortical dysfunction during visual perspective-taking
in schizophrenia. Schizophr. Res. 150, 491–497. doi: 10.1016/j.schres.2013.
08.022

Einhäuser, W., Martin, K. A., and König, P. (2004). Are switches in perception of
the Necker cube related to eye position? Eur. J. Neurosci. 20, 2811–2818. doi: 10.
1111/j.1460-9568.2004.03722.x

Foxe, J. J., Murray, M. M., and Javitt, D. C. (2005). Filling-in in schizophrenia:
a high-density electrical mapping and source-analysis investigation of illusory
contour processing. Cereb. Cortex 15, 1914–1927. doi: 10.1093/cercor/bhi069

Friston, K. J., Harrison, L., and Penny, W. (2003). Dynamic causal modelling.
Neuroimage 19, 1273–1302. doi: 10.1016/s1053-8119(03)00202-7

Friston, K. J., Kahan, J., Biswal, B., and Razi, A. (2014). A DCM for resting state
fMRI. Neuroimage 94, 396–407. doi: 10.1016/j.neuroimage.2013.12.009

Gur, R. E., Petty, R. G., Turetsky, B. I., and Gur, R. C. (1996). Schizophrenia
throughout life: sex differences in severity and profile of symptoms. Schizophr.
Res. 21, 1–12. doi: 10.1016/0920-9964(96)00023-0

Häfner, H., Hambrecht, M., Löffler, W., Munk-Jørgensen, P., and Riecher-
Rössler, A. (1998). Is schizophrenia a disorder of all ages? A comparison of
first episodes and early course across the life-cycle. Psychol. Med. 28, 351–365.
doi: 10.1017/s0033291797006399

Ho, B. C., Andreasen, N. C., Flaum, M., Nopoulos, P., and Miller, D. (2000).
Untreated initial psychosis: its relation to quality of life and symptom remission
in first-episode schizophrenia. Am. J. Psychiatry 157, 808–815. doi: 10.
1176/appi.ajp.157.5.808

Hohwy, J., Roepstorff, A., and Friston, K. (2008). Predictive coding explains
binocular rivalry: an epistemological review. Cognition 108, 687–701. doi: 10.
1016/j.cognition.2008.05.010

Hoshino, O. (2013). Ambient GABA responsible for age-related changes
in multistable perception. Neural Comput. 25, 1164–1190. doi: 10.
1162/NECO_a_00431

Hyett, M. P., Breakspear, M. J., Friston, K. J., Guo, C. C., and Parker, G. B. (2015).
Disrupted effective connectivity of cortical systems supporting attention
and interoception in melancholia. JAMA Psychiatry 72, 350–358. doi: 10.
1001/jamapsychiatry.2014.2490

Frontiers in Human Neuroscience | www.frontiersin.org March 2016 | Volume 10 | Article 141 | 61

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Dowlati et al. Age and Control of Visual Beliefs

Jeste, D. V., Twamley, E. W., Eyler Zorrilla, L. T., Golshan, S., Patterson, T. L.,
and Palmer, B. W. (2003). Aging and outcome in schizophrenia.
Acta Psychiatr. Scand. 107, 336–343. doi: 10.1034/j.1600-0447.2003.
01434.x

Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking
biology, phenomenology and pharmacology in schizophrenia.Am. J. Psychiatry
160, 13–23. doi: 10.1176/appi.ajp.160.1.13

Kersten, D., and Schrater, P. R. (2002). ‘‘Pattern inference theory: a probabilistic
approach to vision,’’ in Perception and the Physical World, eds R. Mausfeld and
D. Heyer (Chichester: John Wiley & Sons), 191–228.

Kloosterman, N. A., Meindertsma, T., Hillebrand, A., van Dijk, B. W.,
Lamme, V. A., and Donner, T. H. (2015). Top-down modulation in human
visual cortex predicts the stability of a perceptual illusion. J. Neurophysiol. 113,
1063–1076. doi: 10.1152/jn.00338.2014

Kok, P., Bains, L. J., van Mourik, T., Norris, D. G., and de Lange, F. P.
(2016). Selective activation of the deep layers of the human primary visual
cortex by top-down feedback. Curr. Biol. 26, 371–376. doi: 10.1016/j.cub.2015.
12.038

Kramer, P., and Yantis, S. (1997). Perceptual grouping in space and time:
evidence from the ternus display. Percept. Psychophys. 59, 87–99. doi: 10.
3758/bf03206851

Legon, W., Punzell, S., Dowlati, E., Adams, S. E., Stiles, A. B., and Moran,
R. J. (2015). Altered prefrontal excitation/inhibition balance and prefrontal
output: markers of aging in human memory networks. Cereb. Cortex. doi: 10.
1093/cercor/bhv200 [Epub ahead of print].

Leopold, D. A., and Logothetis, N. K. (1999). Multistable phenomena: changing
views in perception. Trends Cogn. Sci. 3, 254–264. doi: 10.1016/s1364-
6613(99)01332-7

Leopold, D. A., Wilke, M., Maier, A., and Logothetis, N. K. (2002). Stable
perception of visually ambiguous patterns. Nat. Neurosci. 5, 605–609. doi: 10.
1038/nn851

Li, B., Daunizeau, J., Stephan, K. E., Penny, W., Hu, D., and Friston, K. (2011).
Generalised filtering and stochastic DCM for fMRI. Neuroimage 58, 442–457.
doi: 10.1016/j.neuroimage.2011.01.085

Lin, P. I., McInnis, M. G., Potash, J. B., Willour, V., MacKinnon, D. F.,
DePaulo, J. R., et al. (2006). Clinical correlates and familial aggregation of age
at onset in bipolar disorder. Am. J. Psychiatry 163, 240–246. doi: 10.1176/appi.
ajp.163.2.240

Malla, A., Norman, R., Schmitz, N., Manchanda, R., BÉChard-Evans, L., Takhar, J.,
et al. (2006). Predictors of rate and time to remission in first-episode
psychosis: a two-year outcome study. Psychol. Med. 36, 649–658. doi: 10.
1017/s0033291706007379

Moran, R. J., Symmonds, M., Dolan, R. J., and Friston, K. J. (2014). The brain
ages optimally to model its environment: evidence from sensory learning over
the adult lifespan. PLoS Comput. Biol. 10:e1003422. doi: 10.1371/journal.pcbi.
1003422

Notredame, C. E., Pins, D., Deneve, S., and Jardri, R. (2014). What visual illusions
teach us about schizophrenia. Front. Integr. Neurosci. 8:63. doi: 10.3389/fnint.
2014.00063

Razi, A., Kahan, J., Rees, G., and Friston, K. J. (2015). Construct validation of a
DCM for resting state fMRI.Neuroimage 106, 1–14. doi: 10.1016/j.neuroimage.
2014.11.027

Rubin, E. (1921). Visuell Wahrgenommene Figuren: Studien in Psychologischer
Analyse. Copenhagen: Gyldendalske boghandel.

Schultz, S. K., Miller, D. D., Oliver, S. E., Arndt, S., Flaum, M., and
Andreasen, N. C. (1997). The life course of schizophrenia: age and
symptom dimensions. Schizophr. Res. 23, 15–23. doi: 10.1016/s0920-9964(96)
00087-4

Setti, A., Stapleton, J., Leahy, D., Walsh, C., Kenny, R. A., and Newell, F. N.
(2014). Improving the efficiency of multisensory integration in older adults:
audio-visual temporal discrimination training reduces susceptibility to the
sound-induced flash illusion. Neuropsychologia 61, 259–268. doi: 10.1016/j.
neuropsychologia.2014.06.027

Shapiro, A., Moreno-Bote, R., Rubin, N., and Rinzel, J. (2009). Balance
between noise and adaptation in competition models of perceptual bistability.
J. Comput. Neurosci. 27, 37–54. doi: 10.1007/s10827-008-0125-3

Shergill, S. S., Samson, G., Bays, P. M., Frith, C. D., and Wolpert, D. M. (2005).
Evidence for sensory prediction deficits in schizophrenia.Am. J. Psychiatry 162,
2384–2386. doi: 10.1176/appi.ajp.162.12.2384

Soon, C. S., Brass, M., Heinze, H. J., and Haynes, J. D. (2008). Unconscious
determinants of free decisions in the human brain. Nat. Neurosci. 11, 543–545.
doi: 10.1038/nn.2112

Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A., and Friston, K. J.
(2007). Comparing hemodynamic models with DCM. Neuroimage 38,
387–401. doi: 10.1016/j.neuroimage.2007.07.040

Sterzer, P., and Kleinschmidt, A. (2007). A neural basis for inference in perceptual
ambiguity. Proc. Natl. Acad. Sci. U S A 104, 323–328. doi: 10.1073/pnas.
0609006104

Sterzer, P., Kleinschmidt, A., and Rees, G. (2009). The neural bases of multistable
perception. Trends Cogn. Sci. 13, 310–318. doi: 10.1016/j.tics.2009.04.006

Sundareswara, R., and Schrater, P. R. (2008). Perceptual multistability predicted
by search model for Bayesian decisions. J. Vis. 8, 12.1–12.19. doi: 10.
1167/8.5.12

Tong, F., and Engel, S. A. (2001). Interocular rivalry revealed in the human cortical
blind-spot representation. Nature 411, 195–199. doi: 10.1038/35075583

Tong, F., Meng, M., and Blake, R. (2006). Neural bases of binocular rivalry. Trends
Cogn. Sci. 10, 502–511. doi: 10.1016/j.tics.2006.09.003

Topor, D. R., Swenson, L., Hunt, J. I., Birmaher, B., Strober, M., Yen, S., et al.
(2013). Manic symptoms in youth with bipolar disorder: factor analysis by age
of symptom onset and current age. J. Affect. Disord. 145, 409–412. doi: 10.
1016/j.jad.2012.06.024

Tsvetanov, K. A., Henson, R. N. A., Tyler, L. K., Davis, S. W., Shafto, M. A.,
Taylor, J. R., et al. (2015). The effect of ageing on fMRI: correction for the
confounding effects of vascular reactivity evaluated by joint fMRI and MEG
in 335 adults. Hum. Brain Mapp. 36, 2248–2269. doi: 10.1002/hbm.22768

Tsvetanov, K. A., Mevorach, C., Allen, H., and Humphreys, G. W. (2013). Age-
related differences in selection by visual saliency. Atten. Percept. Psychophys 75,
1382–1394. doi: 10.3758/s13414-013-0499-9

Ukai, K., Ando, H., and Kuze, J. (2003). Binocular rivalry alternation rate declines
with age. Percept. Mot. Skills 97, 393–397. doi: 10.2466/pms.97.5.393-397

van Ee, R., van Dam, L. C. J., and Brouwer, G. J. (2005). Voluntary control and the
dynamics of perceptual bi-stability. Vision Res. 45, 41–55. doi: 10.1016/j.visres.
2004.07.030

van Loon, A. M., Knapen, T., Scholte, H. S., St. John-Saaltink, E. , Donner, T. H.,
and Lamme, V. A. (2013). GABA shapes the dynamics of bistable perception.
Curr. Biol. 23, 823–827. doi: 10.1016/j.cub.2013.03.067

Wang,M., Arteaga, D., andHe, B. (2013). Brainmechanisms for simple perception
and bistable perception. Proc. Natl. Acad. Sci. U S A 10, E3350–E3359. doi: 10.
1073/pnas.1221945110

Weilnhammer, V. A., Ludwig, K., Hesselmann, G., and Sterzer, P. (2013).
Frontoparietal cortex mediates perceptual transitions in bistable perception. J.
Neurosci. 33, 16009–16015. doi: 10.1523/JNEUROSCI.1418-13.2013

Zaytseva, Y., Chan, R. C., Pöppel, E., and Heinz, A. (2015). Luria revisited:
cognitive research in schizophrenia, past implications and future challenges.
Philos. Ethics Humanit. Med. 10:4. doi: 10.1186/s13010-015-0026-9

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Dowlati, Adams, Stiles and Moran. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution and reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org March 2016 | Volume 10 | Article 141 | 62

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH
published: 04 May 2016

doi: 10.3389/fnhum.2016.00195

Mapping Smoking Addiction Using
Effective Connectivity Analysis
Rongxiang Tang 1, Adeel Razi 2,3, Karl J. Friston 2 and Yi-Yuan Tang 4*

1 Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA, 2 The Wellcome Trust Centre
for Neuroimaging, University College London, London, UK, 3 Department of Electronic Engineering, NED University
of Engineering and Technology, Karachi, Pakistan, 4 Department of Psychological Sciences, Texas Tech University,
Lubbock, TX, USA

Edited by:
Yong He,

Beijing Normal University, China

Reviewed by:
Xia Liang,

National Institute on Drug Abuse,
USA

Lirong Yan,
Wuhan General Hospital, China

*Correspondence:
Yi-Yuan Tang

yiyuan.tang@ttu.edu

Received: 25 August 2015
Accepted: 18 April 2016
Published: 04 May 2016

Citation:
Tang R, Razi A, Friston KJ and

Tang Y-Y (2016) Mapping Smoking
Addiction Using Effective

Connectivity Analysis.
Front. Hum. Neurosci. 10:195.

doi: 10.3389/fnhum.2016.00195

Prefrontal and parietal cortex, including the default mode network (DMN; medial
prefrontal cortex (mPFC), and posterior cingulate cortex, PCC), have been implicated
in addiction. Nonetheless, it remains unclear which brain regions play a crucial
role in smoking addiction and the relationship among these regions. Since
functional connectivity only measures correlations, addiction-related changes in effective
connectivity (directed information flow) among these distributed brain regions remain
largely unknown. Here we applied spectral dynamic causal modeling (spDCM) to
resting state fMRI to characterize changes in effective connectivity among core regions
in smoking addiction. Compared to nonsmokers, smokers had reduced effective
connectivity from PCC to mPFC and from RIPL to mPFC, a higher self-inhibition within
PCC and a reduction in the amplitude of endogenous neuronal fluctuations driving the
mPFC. These results indicate that spDCM can differentiate the functional architectures
between the two groups, and may provide insight into the brain mechanisms underlying
smoking addiction. Our results also suggest that future brain-based prevention and
intervention in addiction should consider the amelioration of mPFC-PCC-IPL circuits.

Keywords: dynamic causal modeling (DCM), smoking addiction, medial prefrontal cortex (mPFC), posterior
cingulate cortex (PCC), effective connectivity analysis

INTRODUCTION

Tobacco use is a leading preventable cause of death. However, over 90% of smokers try repeatedly
to quit but often fail (Centers for Disease Control and Prevention, 2006; Hajek et al., 2009).
Nicotine, a component of tobacco, is the primary reason that tobacco is addictive. From the
perspective of public health, there is an urgent need to address these serious issues in smoking
addiction. Prefrontal and parietal cortex, including the default mode network (DMN); medial
prefrontal cortex (mPFC), and posterior cingulate cortex (PCC), anterior cingulate cortex and
limbic areas have been shown to involve in addiction (Baler and Volkow, 2006; Hong et al., 2009;
Jarraya et al., 2010; Goldstein and Volkow, 2011; Tang et al., 2013, 2015a; Leech and Sharp, 2014;
Liang et al., 2015; Weiland et al., 2015). Nonetheless, it remains unclear which brain regions play a
crucial role in smoking addiction and the relationship among these regions.

Functional connectivity has been used to examine the intrinsic brain networks related to
smoking addiction (Hu et al., 2015; Weiland et al., 2015). However, functional connectivity
does not support inferences about causal or directed connectivity. Therefore, any changes in
information flow among the brain areas implicated in smoking remain unclear. This limitation
calls for a new solution that can characterize causal interactions. Dynamic causal modeling (DCM)
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has the capacity to identify the causal (directed) connections
among distributed brain areas—known as effective connectivity.
Spectral DCM (Friston et al., 2014a,b) is especially suited
for resting state Functional magnetic resonance imaging or
functional MRI (fMRI) that can be summarized with cross
spectra. In other words, spectral dynamic causal modeling
(spDCM) estimates the effective connectivity among coupled
brain regions, which subtends the observed functional
connectivity in the frequency domain. Crucially, spectral
DCM not only furnishes an efficient estimation of DCM
parameters but also enables the detection of group differences
in effective connectivity, the amplitude of endogenous neuronal
fluctuations or both. It has been shown that spDCM is not only
more accurate but also more sensitive to group differences, when
compared to stochastic DCM (Razi et al., 2015).

In the current study, we focused on the differences of effective
connectivity using spectral DCM at rest between the groups of
smokers and non-smokers. We recruited 30 adults (15 smokers
and 15 nonsmokers) and applied spectral DCM to resting
state fMRI data to quantify the effective connectivity among
core regions implicated in smoking addiction. We hypothesized
that—in comparison with nonsmokers—smokers would show
a disrupted equilibrium between intrinsic (within region)
excitatory and inhibitory connectivity—and abnormalities in
extrinsic (between region) connectivity, associated with mPFC-
PCC-IPL circuits.

The default mode and its connectivity has provided a
useful focus for many studies of dysconnectivity in normal
subjects and psychopathology. In this work, we characterized
coupling within the nodes of the default mode to establish its
predictive validity in relation to addictive traits. Our motivation
for examining the DMN was two-fold. First, many of the
constituent nodes in the DMNhave been implicated in addiction.
Second, the resting state paradigm is simple and reproducible.
In other words, establishing the predictive validity of resting
state effective connectivity—as a biomarker in addiction
research—may have useful implications for neurogenetic and
clinical studies. However, the shortcomings of resting state
fMRI studies should be acknowledged. This follows from the
fact that endogenous fluctuations in the resting state do not
necessarily engage those areas implicated in the functional
anatomy of interest. In other words, by restricting our focus
to an intrinsic brain network, we cannot guarantee that key
connections responsible for executive control and decision
making are estimated efficiently. Put simply, studying resting
state functional connectivity is a little like ‘‘looking for keys
under the lamppost’’. With this qualification in mind, we now
turn to the evidence that many of DMN nodes have a direct
relevance for impulsive behavior, attentional deployment and
addiction.

Here we have focused on cardinal regions that constitute
key nodes of DMN, where these regions have been previously
implicated in addiction. The default mode has been implicated
in introspective cognition and perspective taking (Amft et al.,
2015; Konishi et al., 2015). Crucially, the integration between
the salience system and default mode may play a key role
in addiction and the moderation of impulsive behavior—as

has been demonstrated in the context of cocaine addiction
(Liang et al., 2015). This integration between internal and
externally directed processing is further substantiated by recently
reported reductions in executive and default network functional
connectivity in smokers (Weiland et al., 2015). Furthermore,
the addictive behavior may be related to a suspension of—or
aberrant—reality testing, recent evidence points to the key
role of the default mode (in particular, the medial prefrontal
cortex) in reality monitoring, relative to source monitoring
(Metzak et al., 2015). Clearly, this subset of regions does
not provide an exhaustive characterization of the distributed
networks implicated in addiction and behavioral control. A
pragmatic reason we focused on nodes within the default mode
is that these are the regions that were engaged during our
resting state study. This is an important aspect of effective
connectivity in the following sense: effective connectivity is
inherently context sensitive. In other words, it can change with
experimental condition, cognitive set and many other factors.
This means that the effective connectivity assessed in the current
report is specific to the resting state—and is only meaningfully
evaluated among regions that show (endogenous) fluctuations in
coupled neuronal activity. This is whywe focused on components
of the default mode that are implicated in addiction. The
alternative approach would be to selectively engage regions
known to be involved in addiction (and smoking) using a
task-based paradigm that selectively activates key regions and
implicitly engages effective connectivity among these regions.
We will pursue this approach in subsequent work. Comparing
the results of effective connectivity analyses between resting state
and tasks based studies will be an interesting endeavor and will,
hopefully, establish the construct validity of one in terms of the
other.

MATERIALS AND METHODS

Subjects
Healthy college students, including smokers and nonsmokers,
were recruited through campus advertisements. Among those
who responded, we randomly assigned 15 cigarette smokers to
one group and 15 nonsmokers to another group (mean ages,
21.30 ± 2.43 years, 20 men), there is no significant difference
in age, gender and education between two randomized groups
(all p > 0.05). We used the widely used Fagerström Test
for Nicotine Dependence and carbon monoxide monitor to
measure smoking addiction and severity (Heatherton et al., 1991;
Deveci et al., 2004). The smokers used tobacco without other
drugs, with an average of 10 cigarettes per day. The experiment
was approved by the local institutional review board at Texas
Tech University, and informed consent was obtained from each
participant.

Neuroimaging
All data were collected using a 3-Telsa Siemens Skyra MRI
scanner at the Texas Tech University. A 3D T1-weighted
anatomical images were acquired using the MPRAGE sequence
(Repetition time (TR) = 1, 780 ms; Echo time (TE) = 2.36 ms;
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slice thickness = 1.0 mm). A 6-min resting-state functional scan
(T2*-weighted images) was obtained for each participant using
a gradient echo planar sequence (TR = 2000 ms; TE = 27 ms;
flip angle = 80◦; field of view (FOV) = 256 mm × 256 mm;
matrix size = 64 × 64; slice thickness = 4 mm; Axial direction,
36 slices). Participants looked at a crosshair shown on a screen
and were instructed not think of anything in particular. Head
movement was minimized with individually custom-made foam
padding (Fox and Raichle, 2007). We obtained 28 usable imaging
time-series with 14 smokers and 14 nonsmokers for DCM
analysis.

Functional data were processed using the Data processing
assistant for resting-state fMRI1, which is based on SPM2 and
resting-state fMRI data analysis toolkit (Song et al., 2011).
For each participant, the subsequent standard procedures
included slice timing, motion correction, regression of
WM/CSF signals, and spatial normalization of images into
the Montreal Neurological Institute template with a resampling
voxel size of 3 × 3 × 3 mm. Finally, a Gaussian filter of
5 mm full-width at half-maximum (FWHM) was applied
to the dataset for spatial smoothing (Tang et al., 2013).
Our main analysis used spectral DCM as implemented in
SPM12.

ROI Selection
Based on previous literature in addiction fields (Goldstein
and Volkow, 2011; Volkow et al., 2012; Tang et al., 2015a),
we identified four ROIs including the mPFC, PCC, left
and right inferior parietal lobule (L-IPL and R-IPL) as key
nodes for effective connectivity analysis. These analyses assess
the causal interactions across these regions, as well as the
amplitude of endogenous neuronal fluctuations within each
region (Di and Biswal, 2014; Razi et al., 2015). To identify
nodes of the DMN, the resting state was modeled using a
GLM containing a discrete cosine basis set with frequencies
ranging from 0.0078 to 0.1 Hz (Fransson, 2005; Kahan et al.,
2014), in addition to the nuisance regressors that include
the six head motion parameters, CSF and WM regressors.
Six head motion parameters were also added into the model
to remove potential confounding variances caused by head
motion. Data were high-pass filtered to remove any slow
frequency drifts (< 0.0078 Hz) in the normal manner. An
F-contrast was specified across the discrete cosine transforms
(DCT), producing an SPM that identified regions exhibiting
blood oxygen level-dependent (BOLD) fluctuations within
the frequency band. Our DMN graph comprised of four
nodes; the PCC, the LIPL and RIPL), and the mPFC. The
PCC node was identified using this GLM: the principal
eigenvariate of a (8 mm radius) sphere was computed
(adjusted for aforementioned confounds: six head motion
parameters and CSF/WM regressors), centered on the peak
voxel of the aforementioned F-contrast. The ensuing region of
interest was masked by a (8 mm radius) sphere centered on
previously reported MNI coordinates for the PCC [0, −52, 26;

1www.restfmri.net
2www.fil.ion.ucl.ac.uk/spm

Di and Biswal, 2014; Razi et al., 2015]. The remaining DMN
nodes were identified using a standard seed-based functional
connectivity analysis, using the PCC as the reference time
series in an independent GLM containing the same confounds.
A t-contrast on the PCC time series was specified, and the
resulting SPM was masked by spheres centered on previously
reported coordinates for the RIPC [48, −69, 35], LIPC [−50,
−63, 32], and mPFC [3, 54, −2; Di and Biswal, 2014; Razi
et al., 2015]. The principal eigenvariate from a (8 mm radius)
sphere centered on the peak t-value from each region was
computed for each region and corrected for confounds. Figure 1
(left panel) shows the 4 nodes of the connectivity model or
subgraph. The time series extracted from each of the four
regions—for typical subject—are shown in Figure 1 (right
panel).

Dynamic Causal Modeling
We used spectral DCM to analyze the resting state fMRI data.
A standard DCM analysis involves a specification of plausible
models, which are then allows the model parameters (and
subsequent group differences) to be estimated following Bayesian
model selection (Friston et al., 2014a; Razi et al., 2015). The first
step is to specify a model space. Because there is no previous
literature on information transfer within DMN in addiction,
we adopted and exploratory approach, starting with a fully
connected model. This means that all four ROIs were connected
to each other hence there were 16 connectivity parameters
(including the recurrent self-connections). It is important to
note that the spectral DCM also furnishes parameters that
characterize the form of endogenous neuronal fluctuations.
These additional parameters model the amplitude and exponent
of the neural fluctuations—modeled as power law—for each
ROI in the model. Hence, there were 16 connectivity and
eight neuronal parameters in our model. Having specified the
model, the next step is to estimate or invert the DCM. Model
inversion is based on standard variational Bayes procedures
(variational Laplace). This approximate Bayesian inference
method uses Free Energy as a proxy for (log) model evidence,
while optimizing the posterior probabilities (under Laplace
approximation) over the model parameters (Friston et al.,
2014b).

Bayesian Model Reduction
In the absence of a particular hypothesis or model space
we used the fully connected model for an exploratory
analysis of all possible reduced models, without one or more
connections: after the full DCM for each participant was
inverted, we employed a network discovery procedure using
Bayesian model reduction (BMR) (Friston and Penny, 2011)
to find the best model that explains the data. This procedure
tests every possible model nested within the fully connected
model. The model with the highest posterior probability is
chosen as the winning model during this procedure. This
BMR procedure is an efficient way to score a large model
space without having to invert every reduced model. This
procedure is based on an approximation, using Savage Dickey
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FIGURE 1 | Four nodes of dynamic causal modeling (DCM) model. The left panel shows the medial frontal cortex (MFC), the posterior cingulate cortex (PCC),
the left inferior parietal lobule (LIPL), and the right inferior parietal lobule (RIPL). The time series (right-hand panels) from four regions are the principal eigenvariates of
regions identified using seed connectivity analyses for a typical subject. These time series we used to invert the spectral DCM with the (fully-connected) architecture.

density ratio, which allows the computation of the log-
evidence of any reduced model, nested within the full model,
from the conditional density over the parameters of the full
model.

Inference
Once the winning models for each population are established
we can use the parameter estimates from these models
to make inference about any group differences. In this
work we used Bayesian parameter averaging (BPA; Razi
et al., 2015) to quantify group differences in effective
connectivity—for each parameter separately: i.e., ignoring
posterior correlations (these correlations were subsequently
accommodated in a classical multivariate analysis—please see
below). This average was calculated for smokers and non-
smokers separately. Finally, to test for group differences
we used a classical multivariate test—canonical variate
analysis (CVA)—to identify significant differences in
(mixtures of) model parameters. This multivariate test is
inclusive in a sense that it considers all the connections
collectively alleviating any need for corrections for multiple
corrections.

RESULTS

Bayesian Model Reduction
BMR compared the evidence of all reduced models for each
group. The results are shown in Figure 2 where left column
A is for non-smokers and right column B is for smokers.
In both groups, the procedure selected the fully connected
model as the best model with a posterior probability of
almost 1. The fully connected model had 24 parameters
describing the extrinsic connections between nodes, the
intrinsic (self-connections) within nodes and neuronal
parameters describing the neuronal fluctuations within
each node (note that BMR only optimses the connectivity
parameter and not neuronal fluctuation parameters). In
Figure 2, the profiles of model evidences are shown with
the posterior probability for each model. In both groups,
the full model had a probability of almost 1 and a log-
probability of almost 0. The lower panel of column A (resp.
B) shows the Bayesian parametric average for the non-
smokers (resp. smokers) of the optimized (full) model. On
the horizontal scale, we have the 16 connectivity parameters
(which were optimized) and eight neuronal parameters
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FIGURE 2 | Bayesian model reduction (BMR). This figure shows the results of applying BMR procedure. Here column (A) is for non-smokers while column (B) is
for smokers. The upper two panels of column (A) (resp. column B) show the log-posterior and posterior probability for every model nested within the full model for
non-smokers (resp. smokers). The lower panel of column (A) (resp. column B) shows the Bayesian parametric average (BPA) for the non-smokers (resp. smokers).
The horizontal axis show the source region for the 16 connectivity parameters whereas the colors refer to the target regions. We also plotted the eight neuronal
parameters showing the amplitude and exponents of the neural fluctuations.

reflecting the amplitude and power law exponent of the
neuronal oscillations. The horizontal axis indicates the source
regions for the 16 connectivity parameters, while the color
indicates the target region. Extrinsic connections have units
of hertz (c.f., rate constants), while intrinsic connections
and the neuronal estimates are log scaling parameters; in
other words, a value of 0.1 corresponds roughly to a 10%
increase.

Bayesian Parametric Averaging
We used BPA to summarize the group differences between the
smokers and non-smokers. Please note that we used BPA to
quantify group differences in effective connectivity– for each
parameter separately: i.e., ignoring posterior correlations (these
correlations were accommodated in BPA shown in Figure 2
and were also subsequently accommodated in the classical
multivariate test). This average was calculated for smokers and
non-smokers separately. In Figure 3, we show the difference
by subtracting the BPA of non-smokers from the smokers.

This means that the positive values on this plot reflects that
the connectivity in smokers is greater than non-smokers and
vice versa. It is in the same format as the lower panels on
Figure 3.

In terms of the four self-connections, we see that inhibitory
self-connection of PCC showed the largest difference. Since
the self-connections in DCM are always inhibitory, this means
the responses of the PCC in smokers are disinhibited when
compared to non-smokers (by about 30%). We further identified
two extrinsic connections—both involving mPFC—that show
large differences in connectivity. One is from PCC to mPFC
and the other is from RIPL to mPFC. The connection from
PCC to mPFC is excitatory for both smokers and non-
smokers (see Figure 2) and suggests that smokers have
reduced connectivity for these connections as compared to non-
smokers. The connection from RIPL to mPFC is inhibitory
for smokers and excitatory for non-smokers (see Figure 2)
and again shows reduction in connectivity for smokers as
compared to controls. The overall profile of extrinsic and
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FIGURE 3 | Bayesian parametric averaging. This figure shows the Bayesian parametric average (BPA) differences of the two groups. The left panel shows the
difference by subtracting the BPA of non-smokers from the smokers. This panel is in the same format as the lower panels of Figure 2. The right panel shows the
overall profile of extrinsic and intrinsic differences schematically in the smokers.

intrinsic differences is shown schematically in the right panel
of Figure 3. This suggests a functional disconnection of the
medial prefrontal cortex from a parietal nodes, which themselves
become disinhibited.

In terms of the neuronal parameters, Figure 3 shows that
mPFC has the largest (negative) difference. It should to be
noted that smokers had negative and non-smokers had positive
amplitude scaling for the driving neuronal fluctuations (not
shown in Figure 3 as we only show the difference). This means
that smokers have reduced neuronal fluctuations in mPFC,
as compared to non-smokers. We further note that mPFC also
has the largest difference in terms of the power law exponent of
the neural fluctuations, suggesting that mPFC may have faster
oscillations in smokers as compared to the non-smokers. In
other words, the endogenous fluctuations became more slowly
as frequency increases. A preponderance of higher frequencies
usually indicates more excitable intrinsic neuronal dynamics,
which is consistent with a loss of extrinsic entrainment by
extrinsic inputs from parietal regions.

Multivariate Analysis
The profile of connectivity changes, using BPA, above is purely
quantitative. To establish that these differences are significant,
in relation to intersubject variability, we used classical tests
based on subject specific parameter estimates. Figure 4 shows
the results of a classical multivariate test—CVA. We used
this analysis to test for any differences over all connections
between the groups. The results of CVA include canonical
vectors and variates—and their significance. These are plotted
on the left and the right panels respectively. First, we see

that this test is significant with a p-value of 0.032 and a
strong canonical correlation (r) of 0.702. Note that because
there is only one multivariate test, there is no need to correct
for multiple comparisons. The canonical variate (shown on
the left panel) expresses the degree to which a pattern of
differences—encoded by the canonical vector (shown on the
right panel)—is expressed in each subject. The left panel
shows that, with the exception of couple of subjects in
each group, the corresponding canonical variate can reliably
discriminate between the two groups. The right panel shows
the pattern of weights assigned by CVA to each parameter.
It is pleasing to note a very similar pattern here to the
one shown in Figure 3. We see that PCC self-connection is
the largest difference, which is agreement with BPA results.
Also, the connection from PCC to mPFC is given the largest
(negative) weight. As for the amplitude and exponent of the
neural fluctuations, we again see very similar pattern: the
mPFC has the largest differences in smokers (compared to
controls), which is consistent with the BPA differences in
Figure 3.

DISCUSSION

In this work, we focused on the implication of DMN on
addiction (Posner et al., 2007; Hong et al., 2009; Tang
et al., 2010, 2013, 2015b; Goldstein and Volkow, 2011;
Petersen and Posner, 2012; Liang et al., 2015; Weiland et al.,
2015), and modeled the effective connectivity underlying low
frequency BOLD fluctuations in the resting smoker’s brain
network. This analysis disclosed the causal and distributed
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FIGURE 4 | Canonical variate analysis (CVA). This figure shows the results of a canonical variates analysis (the multivariate classical inference) using the same
summary statistics used in Figure 3. The canonical variate shows reliable group discrimination on the left panel, while the canonical vector shows weights assigned
to each parameter by CVA on the right panel (the format of this panel is same as the Figures 2, 3). The effect of group difference was significant with a canonical
correlation of r = 0.7026; p = 0.0322.

effects of smoking addiction on four core brain regions
and their prefrontal-parietal connections. Our results suggest
differences in functional integration among brain DMNs
between nonsmokers and smokers.

Compared to nonsmokers, smokers showed a reduced
excitatory coupling from PCC to mPFC, a reduced coupling
from RIPL to mPFC, and disinhibition of both PCC and
RIPL. These results suggest smokers lose equilibrium
between excitatory and inhibitory connectivity, especially
in the mPFC-PCC-IPL circuits. Overall, the results suggest
that the medial prefrontal cortex becomes less sensitive to
extrinsic afferents from parietal nodes, which themselves
are disinhibited. Our findings are consistent with previous
neuroscientific research in smoking addiction; for example,
smokers often show reduced brain activity in the prefrontal-
parietal networks (Hong et al., 2009; Goldstein and Volkow,
2011; Tang et al., 2013, 2015a; Weiland et al., 2015), and
after intervention, the brain activity of these networks
increases (Tang et al., 2013, 2015a). mPFC and PCC are
key nodes of the human default network (Raichle, 2015) which
orchestrates the brain’s ongoing or endogenous activity in the
resting-state. Previous research has shown that endogenous
activity plays a major role in the human brain in health and
neurological and psychiatric disorders (Zhang and Raichle,
2010).

Our study reveals changes in the dynamic interplay among
mPFC and PCC—two key brain regions involved in smoking
addiction (Jarraya et al., 2010; Goldstein and Volkow, 2011), in

which smokers have reduced connectivity from PCC to mPFC as
compared to non-smokers. Given that PCC has been shown as
the brain connector hubs that link all major structural modules
and play an important role in functional integration (Hagmann
et al., 2008; Zuo et al., 2012), the dysregulation from PCC to
mPFC in smoking addiction may be a crucial biomarker. The
addicts such as nicotine, cocaine and methamphetamine users
show functional and structural abnormalities in the PFC and IPL
(Bustamante et al., 2011; Luijten et al., 2013; Hall et al., 2015). For
example, the RIPL is often less activated in cocaine-dependent
groups during conditions requiring attention and cognitive
control (Barrós-Loscertales et al., 2011; Bustamante et al., 2011).
However, these studies did not address the directed and dynamic
interactions among the brain regions involved. In the current
study, we applied spectral DCM to first show a reduced excitatory
coupling fromRIPL tomPFC, reflecting the directed connectivity
and abnormalities of information flow from one area to another,
consistent with previous empirical findings. These results may
shed light on the potential biomarkers of diagnosis and the
target of effective treatment in smoking addiction. Furthermore,
they suggest that future brain based prevention and intervention
could consider the amelioration of interactions in mPFC-PCC-
IPL circuits. Future work should also explore cortico-subcortical
interactions in smoking addiction.

In terms of the functional anatomy suggested by our
dynamic causal modeling, a key region appears to be the
mPFC. This region was unique in showing a reduction in
extrinsic afferents from other areas. This finding is particularly
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interesting given the role of the mPFC in evaluation, reality
monitoring, decision-making and choice behavior (Rushworth
et al., 2004; Metzak et al., 2015). For example, it has been
proposed that the function of the mPFC ‘‘is to learn associations
between context, locations, events, and corresponding adaptive
responses, particularly emotional responses’’ (Euston et al.,
2012). Furthermore, functional connectivity analyses have
suggested ‘‘that the value signal in VMPFC might integrate
inputs from networks, including the anterior insula and posterior
superior temporal cortex that are thought to be involved
in social cognition’’ (Hare et al., 2010). To the extent that
addictive behavior may be related to a suspension of—or
aberrant—reality testing, recent evidence points to the key
role of the default mode (in particular, the mPFC) in reality
monitoring, relative to source monitoring (Metzak et al., 2015).
The particular profile of effective connectivity changes that
characterize addicted smokers are also remarkably similar to the
decrease in effective connectivity between parietal and mPFC
regions in schizophrenia. In a recent stochastic DCM study of the
default mode in first episode schizophrenia, the authors found
reduced effective connectivity to the anterior frontal node of
the default mode—‘‘reflecting a reduced postsynaptic efficacy of
prefrontal afferents’’ (Bastos-Leite et al., 2015).

Does smoking severity correlate with connectivity? We
conducted an analysis but did not find the correlation
between smoking severity and effective connectivity, possibly
because of the small sample size in the current study.
Nonetheless, our data indicate the use of spectral DCM

on resting-state fMRI data can differentiate the directed
connections between two groups, and provide insight into
the brain mechanisms underlying smoking addiction; namely,
abnormalities of effective connectivity in the brain. Our findings
are in accord with our hypothesis that in—comparison with
nonsmokers—smokers show a disrupted equilibrium between
excitatory and inhibitory connectivity (mPFC-PCC-IPL circuits).
This disrupted functional integration can be summarized as a
functional disconnection of the medial prefrontal cortex from
posterior parietal nodes.

In summary, many psychiatric (and neurological) conditions
such as major depressive disorder and schizophrenia can be
understood as functional disconnection syndromes (Menon,
2011; Sylvester et al., 2012): effective connectivity can tell us
how brain regions interact with each other in terms of context
sensitive changes in directed coupling—and even address the
relationship between persistent changes in effective connectivity
and relapse.
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Deficits in motor functioning are one of the hallmarks of Huntington’s disease (HD),

a genetically caused neurodegenerative disorder. We applied functional magnetic

resonance imaging (fMRI) and dynamic causal modeling (DCM) to assess changes

that occur with disease progression in the neural circuitry of key areas associated

with executive and cognitive aspects of motor control. Seventy-seven healthy controls,

62 pre-symptomatic HD gene carriers (preHD), and 16 patients with manifest HD

symptoms (earlyHD) performed a motor finger-tapping fMRI task with systematically

varying speed and complexity. DCM was used to assess the causal interactions among

seven pre-defined regions of interest, comprising primary motor cortex, supplementary

motor area (SMA), dorsal premotor cortex, and superior parietal cortex. To capture

heterogeneity among HD gene carriers, DCM parameters were entered into a hierarchical

cluster analysis using Ward’s method and squared Euclidian distance as a measure of

similarity. After applying Bonferroni correction for the number of tests, DCM analysis

revealed a group difference that was not present in the conventional fMRI analysis. We

found an inhibitory effect of complexity on the connection from parietal to premotor areas

in preHD, which became excitatory in earlyHD and correlated with putamen atrophy.

While speed of finger movements did not modulate the connection from caudal to

pre-SMA in controls and preHD, this connection became strongly negative in earlyHD.

This second effect did not survive correction for multiple comparisons. Hierarchical

clustering separated the gene mutation carriers into three clusters that also differed

significantly between these two connections and thereby confirmed their relevance. DCM

proved useful in identifying group differences that would have remained undetected by

standard analyses and may aid in the investigation of between-subject heterogeneity.

Keywords: Huntington’s disease, motor network, sequential finger tapping, fMRI, DCM, cluster analysis
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INTRODUCTION

Huntington’s disease (HD) is a genetic neurodegenerative
disorder characterized by a devastating combination of motor,
cognitive, and psychiatric symptoms, with a typical clinical onset
around the age of 40. Advances in genetic testing have offered
the opportunity to reliably diagnose the fully penetrant genetic
mutation many years before the onset of first symptoms.

A substantial body of research, including large-scale
multimodal and multicenter studies, such as PADDINGTON
(Hobbs et al., 2013), PREDICT-HD (Biglan et al., 2013), and
TRACK-HD (Tabrizi et al., 2009), have revealed a complex
pattern of structural and functional abnormalities in diverse
subcortical and cortical regions in both pre-clinical (preHD)
and early manifest (earlyHD) gene mutation carriers. HD
disease-specific effects have been observed in fronto-striatal
and fronto-parietal networks (Klöppel et al., 2008, 2010;
Rosas et al., 2008; Wolf et al., 2008, 2011, 2012; Tabrizi et al.,
2009), affecting essential cognitive, motor and executive
domains. Specifically, deficits in motor functioning are a
clinical hallmark of HD, as indicated by previous functional
magnetic resonance imaging (fMRI) studies (Biglan et al.,
2009; Klöppel et al., 2009), and are possibly caused by
striatal atrophy as well as volume loss in prefrontal areas
(Lawrence, 1998; Rosas et al., 2003). Furthermore, diffusion
tensor imaging (DTI) studies have indicated disease-specific
changes in overall white matter diffusivity, correlated with
caudate and white matter volume loss (Novak et al., 2014),
as well as alterations in striatal projection pathways and
their associations with clinical motor data (Poudel et al.,
2014) in earlyHD and to varying extent in preHD. Moreover,
neuronal loss progressively affecting frontal, sensorimotor, and
parietal regions appears to be remarkably variable both within
and between HD gene carrier sub-populations (Nana et al.,
2014).

Despite structural changes, behavioral performance during
motor tasks remains relatively intact in individuals far
from clinical onset, possibly as the result of compensatory
mechanisms, but starts to deteriorate at early stages of manifest
HD and duringmore demandingmotor tasks (Farrow et al., 2006;

Feigin et al., 2006; Georgiou-Karistianis et al., 2014). Functional
MRI has proven to be a promising candidate for studying
functional decline as well as neural compensatory reorganization
in both preHD and earlyHD. Previous neuroimaging data,
including PET studies, have identified HD disease-specific
abnormalities in key brain areas involved in motor control, such
as the primary motor cortex, supplementary motor area (SMA),
premotor cortex, and parietal regions (Bartenstein et al., 1997;
Gavazzi et al., 2007; Klöppel et al., 2009). However, findings vary
across studies, suggesting that the nature of changes in brain
activations is still not well understood. Furthermore, studying
distinct, spatially segregated brain areas in isolation may not
necessarily provide insights into the inter-regional interactions
within functional networks and how connectivity becomes
abnormal in clinical conditions in general and specifically in HD.

Functional integration, as opposed to functional segregation,
allows us to focus on the dynamic causal interactions between

distinct brain regions (i.e., effective connectivity) and how they
depend on the task that the brain is performing. One of the
most widely used methods for assessing effective connectivity
is dynamic causal modeling (DCM) (Friston et al., 2003).
DCM is a hypothesis-driven Bayesian approach that has been
successfully used to study causal interactions between regions
sub-serving the same functional network, as well as the way
experimental manipulation influences connectivity in both
healthy individuals and clinical populations (for a review of
DCM studies in patients see Seghier et al., 2010). In a previous
DCM study in preHD (Scheller et al., 2013), we identified an
excitatory effect from bilateral dorsal premotor cortex (PMd)
to parietal regions as critical for compensation, an effect that
was restricted to conditions with high cognitive demand and
was most pronounced in individuals closer to clinical onset
of first motor symptoms. To our knowledge, this is the only
task-based DCM study in HD published in the literature,
so far.

Here, we collected motor task fMRI data from 155
participants from the large-scale, multi-centric TrackOn-
HD study (Klöppel et al., 2015; http://hdresearch.ucl.ac.uk/
completed-studies/trackon-hd/). We used DCM, based on
task fMRI, to assess abnormal effective connectivity of the
motor network in HD. The aim of the current study was
twofold: first, we sought to extend on our previous DCM
findings using a much larger and clinically heterogeneous
sample. Specifically, previous results (Scheller et al., 2013)
indicated the crucial role of the dorsal premotor cortex
for the maintenance of motor functioning in preHD.
Furthermore, research has shown that impairment in the
striatum and its frontal motor projection areas in manifest HD,
including the premotor cortex, may induce a compensatory
recruitment of parietal cortices (Bartenstein et al., 1997). A
differential involvement of the SMA has also been reported
(Klöppel et al., 2009), expressed by the over-recruitment of
caudal SMA during faster finger-tapping movements with
approaching clinical onset in preHD, possibly indicative of
its compensatory role, as well as a monotonic attenuation in
task-related activity in pre-SMA during complex finger-tapping
movements, most likely indicating disease-specific changes.
Thus, we here expected to provide further evidence for the
compensatory role of premotor and parietal areas, associated
with approaching clinical onset and increasing cognitive
demand.

Second, and more importantly, we aimed to demonstrate the
use of an exploratory cluster analysis based on DCM parameters
as a classification method in identifying sub-groups among
the HD gene mutation carriers that may benefit from targeted
interventions. Furthermore, we investigated to what extent the
DCM parameters differed among the identified sub-groups
and how differential neural coupling strengths were associated
with behavioral performance during the finger-tapping task and
clinical markers of disease progression. We hypothesized that
effective connectivity would not be homogeneously altered across
the group of HD gene carriers but may depend on the task
demand and the disease progression in some individuals more
than in others.

Frontiers in Human Neuroscience | www.frontiersin.org November 2015 | Volume 9 | Article 634 | 73

http://hdresearch.ucl.ac.uk/completed-studies/trackon-hd/
http://hdresearch.ucl.ac.uk/completed-studies/trackon-hd/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Minkova et al. Effective Connectivity in Huntington’s Disease

MATERIALS AND METHODS

Study Population
A total of 241 participants were recruited within the large-scale,
multimodal TrackOn-HD study at four different sites (Paris,
London, Vancouver, and Leiden). Out of them, only 155 right-
handers completed a sequential finger-tapping motor task. In
addition to left-handedness (n = 16), further exclusion criteria
included technical issues (n = 11), corrupt or missing fMRI
data (n = 9), poor task performance and missing activations
(n = 15), as well as failedDCMquality check (n = 35). A detailed
summary of excluded participants is provided in the Table S1.

For the current study, data were available for a total of
155 participants scanned between April and November 2013,
comprising the following three groups: 77 age- and gender-
matched controls (HC: 45 females, mean age± SD: 48.53± 9.56),
62 individuals without HD but carrying the mutant huntingtin
(HTT) gene (preHD: 30 females, mean age ± SD: 41.89 ± 8.58),
and 16 early manifest HD patients (earlyHD: 6 females, mean
age ± SD: 46.18 ± 8.59). PreHD required a disease burden of
pathology score greater than 250 and a total of total motor score
of 5 or less in the motor assessment of the Unified Huntington’s
Disease Rating Scale (UHDRS 99), indicating no substantial
motor signs. EarlyHD were required to have motor symptoms
consistent with HD, and a diagnostic confidence score of 4,
according to the UHDRS, as well as to be within the Shoulson
and Fahn stage I or II (Shoulson and Fahn, 1979) assessed
according to UHDRS total functional capacity (TFC≥ 7) (Tabrizi
et al., 2009). Demographic and clinical information is provided
in Table 1. Putamen volume (adjusted for total intracranial
volume), disease burden score (DBS; Penney et al., 1997), and
cumulative probability of clinical onset (CPO; Langbehn et al.,
2004) were used as markers of HD disease progression.

The study was approved by the Ethics Committees of the
Institute of Neurology, UCL (London), the University of British
Columbia (Vancouver), Pierre and Marie Curie University
(Paris), and the University of Leiden (Leiden). All participants
gave a written informed consent according to the Declaration of
Helsinki (World Medical Association, 2013).

fMRI Paradigm
The experimental design of the motor task fMRI was adopted
from a previous study (Klöppel et al., 2009) and consisted

of a sequential finger-tapping task probing for both executive
(movement speed) and cognitive (movement complexity) aspects
of motor control (Figure S1). The successful reproducibility
of the finger-tapping paradigm across scanning sites has been
shown elsewhere (Gountouna et al., 2010).

The task involvedmetronome-paced sequential finger tapping
with their right dominant hand, using the (1) index, (2) middle,
(3) ring, and (4) small fingers. Tapping sequences were either
simple (i.e., 1-2-3-4) or complex (i.e., 4-2-3-1). With respect to
speed, each sequence was paced by metronome clicks presented
to the participant via headphones at a rate of either 0.5 or 1.5Hz,
resulting in slow or fast sequences, respectively. In addition to the
task condition, a rest condition was used in which themetronome
clicks were presented to the participants but no movement was
required. Thus, the experimental paradigm consisted of six types
of different blocks, each lasting for 20 s (i.e., simple-slow, simple-
fast, complex-slow, complex-fast, rest-slow, and rest-fast). Each
block type was presented five times in a pseudo-randomized
order.

Button presses during the task were recorded using Current
Designs button boxes (http://www.curdes.com). Similarly to
our previous study (Klöppel et al., 2009), single omitted or
wrongly added button presses were counted as one mistake. In
sections with more complex errors, only sequences of three or
more buttons in the appropriate order were counted as correct.
Participants who scored low in performance (<50% accuracy
across all blocks) or performed a completely wrong condition
(e.g., simple instead of complex sequence or pressed during the
whole rest condition) were excluded from subsequent analyses. It
was furthermore examined whether exclusions were dictated by
group affiliation using Pearson’s chi-square test in SPSS.

Performance from the tapping conditions, measured by the
mean timing inaccuracies (i.e., cue-response intervals) and
their standard deviations (SD) were compared among the
three groups. The timing inaccuracies were calculated from the
intervals between each sound click (i.e., cue) and the actual
button click (i.e., response) for each participant. Statistical
analysis was conducted in SPSS using a 3 × 2 × 2 repeated
measures analysis of covariance (ANCOVA), with group (HC,
preHD, and earlyHD) as a between-subject factor and complexity
(simple and complex) as well as speed (slow and fast) as
within-subject factors, adjusting for age, gender, education,
and site. Additionally, we investigated the association between

TABLE 1 | Demographic and clinical information.

HC (n = 77) preHD (n = 62) earlyHD (n = 16)

Age (years) 48.53 ± 9.56 (27:67) 41.89 ± 8.58 (24:61) 46.18 ± 8.59 (34:67)

Gender (F/M) 45/32 30/32 6/10

CAG length – 43.19 ± 2.55 (39:50) 43.25 ± 1.73 (41:48)

CPO – 0.22 ± 0.15 (0.02:0.62) 0.41 ± 0.21 (0.03:0.83)

Disease burden score* – 304 ± 58 (182:457) 347 ± 48 (224:429)

Putamen (TIV-adjusted) 0.58 ± 0.07 (0.40:0.75) 0.50 ± 0.08 (0.29:0.75) 0.42 ± 0.12 (0.24:0.66)

*DBS = age × (CAG length-35.5) (Penney et al., 1997). Values are given in means ± SD (range), where applicable. HC, healthy controls; preHD, pre-symptomatic HD; earlyHD, early

manifest HD; F, female; M, male; CAG, trinucleotide; CPO, cumulative probability of clinical onset; TIV, total intracranial volume.
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performance and CPO among the gene carriers using Pearson’s
partial correlation, correcting for the covariates.

Mean timing inaccuracies and their SD were chosen as indices
for motor performance based on previous literature (Hinton
et al., 2007; Klöppel et al., 2009), which showed that motor
timing variability, but not accuracy, increased in preHD with
approaching clinical onset. Timing inaccuracies, rather than
reaction time, reflect the ability of patients to anticipate the
next click. However, for reasons of completeness, between-group
differences were also investigated for accuracies (percentage
of correct responses) for each condition using non-parametric
Kruskal-Wallis H test in SPSS.

MRI Data Acquisition and Preprocessing
Scanning was performed on a 3T Siemens MAGNETOM
TimTrio MR scanner at Paris and London and on a 3T Philips
Achieva MR scanner at Vancouver and Leiden, both using a
12-channel head coil. High-resolution three-dimensional T1-
weighted structural scans were acquired for all participants with
a magnetization-prepared rapid gradient echo (3D MPRAGE)
sequence for Siemens and a fast-field echo (FFE) sequence
for Philips, using standardized protocols with the following
parameters for the two scanner systems, respectively (Siemens /
Philips): TR = 2200/7.7ms, TE = 2.9/3.5ms, TI = 900/875ms,
FA = 10/8◦, FOV = 28/24 cm, matrix size of 256 × 256 ×

208/224 × 224 × 164, zero-filled in the 3rd dimension to give
an isotropic resolution of 1.1mm. Two T1-weighted scans were
acquired for each participant if time allowed and the one with
the best quality was used for the analysis. Image quality of
the anatomical scans was ensured after visual inspection. For
the fMRI motor task, 225 whole-brain volumes were acquired
using a T2∗-weighted single-shot gradient echo planar imaging
(GE-EPI) sequence with the following parameters: TR = 3 s,
TE = 30ms, FOV = 212mm, flip angle = 80◦, 48 slices in
ascending order (slice thickness: 2.8mm, gap: 1.5mm, in plane
resolution 3.3×3.3mm), matrix size of 64×64, and bandwidth of
1906Hz/Px. Rigorous inspection of the functional image quality
was conducted using the FBIRN QC protocol (Greve et al., 2011;
Glover et al., 2012). FBIRN’s standardized ratings were based on
two summary variables: (1) the number of volumes with mean
intensity more than 3 SD away from intensity of overall mean
image, and (2) number of volumes with mean volume difference
(volume minus overall mean image) of more than 1%. Datasets
with more than 20% outlier volumes in at least one variable were
excluded from subsequent analyses.

Data preprocessing was performed in SPM8 (Statistical
Parametric Mapping, r5638, Welcome Trust Centre for
Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm), using
MATLAB R2012a (Mathworks, Natick, MA, USA). Each
participant’s T1 scan was segmented into gray and white matter
using the VBM8 (r435) toolbox (http://dbm.neuro.uni-jena.
de/vbm/). Segmented images were used to create an improved
anatomical scan for co-registration of the functional scans. Using
the DARTEL extension (Ashburner, 2007) for high-dimensional
registration within the VBM8 toolbox, deformation parameters
were extracted for later normalization of contrast images prior to
second-level analysis.

The first four functional volumes were discarded prior to
data preprocessing to allow for the equilibration of T1 signal
effects. The remaining images were realigned to the mean image
using a rigid body transformation and co-registered to the
improved anatomical scan. Volumes with significant artifacts
were detected using the ArtRepair software (http://cibsr.stanford.
edu/tools/human-brain-project/artrepair-software.html). Those
scans with more than 1.3% variation in global intensity and
1.0mm/TR scan-to-scan motion were identified as outliers and
replaced by interpolation from the nearest unaffected volumes.
On average,<3% of all slices for all participants were corrected by
this procedure. Following a histogram-based approach for outlier
identification, participants with more than 13% of bad volumes
were excluded from the subsequent analysis. The co-registered
and repaired functional scans were then spatially smoothed with
an isotropic Gaussian kernel of 6mm FWHM.

GLM Analysis
Statistical analysis at the first (within-subject) level was carried
out using the General Linear Model (GLM) as implemented in
SPM8 (Friston et al., 1994). Task-related changes of BOLD signals
were estimated at each voxel by modeling each block separately
for each of the conditions (simple-slow, simple-fast, complex-
slow, complex-fast, rest-slow, and rest-fast) after convolving with
the canonical hemodynamic response function (HRF). High-pass
filter with a cut-off at 152 s was applied to the data to remove
low frequency artifacts. The instruction screen and the blocks
during which participants performed a wrong condition (i.e.,
accuracy was below 50%) were modeled as separate regressors
of no interest. Similarly, single button presses during the rest
conditions were modeled as separate regressors. Six additional
regressors containing the absolute values of the first derivative
of the respective realignment parameters (Power et al., 2012)
were included to regress out variance caused by translational and
rotational head movements in x-, y-, and z-direction.

Subject-specific contrasts of interest were created from the
beta estimates coding the effect of complexity (complex vs.
simple sequence), as well as the effect of speed (fast vs.
slow sequence). These contrasts were normalized to standard
Montreal Neurological Institute (MNI) space using the DARTEL
deformation parameters and taken forward to random-effects
group analyses, treating participants as a random variable. To
reduce inter-subject variability and allow for group analyses, the
contrasts were additionally smoothed, resulting in total spatial
smoothing of 8mm FWHM.

Main effects of experimental task were characterized in
SPM8 using one-sample t-tests, separately for complexity and
speed, including age, gender, education, and site as confounding
covariates. All participants were included in the one-sample t-
tests as one group to ensure that regions of interests (ROIs) for
the subsequent DCM analysis were commonly activated across
all groups. Task-specific activations were identified at p < 0.05
FWE-corrected. Additionally, between-group comparisons were
implemented in the GLM Flex tool (http://mrtools.mgh.harvard.
edu/index.php/GLM_Flex) using a 3 × 2 × 2 ANCOVA design,
including group (HC, preHD, and HD) as a between-group
factor, as well as complexity (complex and simple) and speed
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(fast and slow) as within-group factors, while correcting for age,
gender, site, and education. In contrast to classical SPM8 analysis,
which has a pooled error term across all within-subject factors,
GLM Flex uses partitioned error terms and can be used to run
full-factorial models with more factors than SPM8 allows.

DCM Analysis
Effective connectivity analysis was conducted using DCM
(Friston et al., 2003), a hypothesis-driven Bayesian approach that
describes the biophysical nature of directed interactions among
distinct brain regions by incorporating two forward models: one
at the neural and one at the hemodynamic level. At the neural
level, DCM is expressed by the following equation:

dz

dt
=

(

A+
∑

ujB
j
)

z + Cu

where vector z represents the time series of the neural behavior,
vector u contains the time course(s) (1, . . . ,j, . . . , n) of the external
perturbation (i.e., the experimental paradigm), as well as the task-
independent endogenous couplings denoted by A, modulatory
effects on these connections by stimulus uj given by B, and
experimental input to the system that drives regional activity,
modeled by C. The hemodynamic model, on the other hand, is
based on a biophysical forward model (Balloon model; Buxton
et al., 1998) and comprises parameters characterizing blood
flow and oxygenation change, measured by the actual BOLD
response. By combining a priori knowledge of a biologically
plausible neural model (input) with the measured BOLD
response (output), it is possible to infer on underlying hidden
states such as regional causal interactions. Further reading on the
DCM approach can be found elsewhere (e.g., Penny et al., 2004;
Friston, 2009; Stephan et al., 2010; Daunizeau et al., 2011; Kahan
and Foltynie, 2013).

Here, we used deterministic, bilinear, one-state DCM to assess
the effective connectivity among seven regions activated by the
motor task (see Table 2 for results) and in agreement with
previously published data (Klöppel et al., 2009; Scheller et al.,
2013). These regions comprised the left motor cortex (lM1),
SMA, divided in pre- (pSMA) and caudal (cSMA), as well as
bilateral dorsal premotor cortex (lPMd, rPMd), and bilateral
superior parietal cortex (lSPC, rSPC). For each participant, time
series from each of the seven ROIs were extracted using the
fixed coordinates from the second-level activations identified in
the one-sample t-test and adjusted for the effect of interest (F-
contrast). No statistical threshold was used within each ROI,
which allowed for the time series extraction of the same set of
voxels in all participants. The motivation for this approach is
based on previous literature (Parker Jones et al., 2013) and is
advantageous for the current study because it ensured that there
was no overlap of subject-specific spheres in neighboring brain
regions, which would have otherwise been problematic in the
case of pre- and caudal SMA. Furthermore, participants having
ROIs with weak activations do not have to be excluded but at
the expense of potentially including condition-independent noise
(Parker Jones et al., 2013). This is an issue particularly in small
sample sizes but potentially less so in our relatively large study.

TABLE 2 | Imaging results: task-specific regions of interest.

Regions Hemi- MNI coords T pFWE−corr

sphere (mm)

x y z

Pre-supplementary motor area

(pSMA)

L −8 11 45 12.10 <0.001

Caudal supplementary motor

area (cSMA)

L −5 −5 51 15.54 <0.001

Primary motor cortex (lM1) L −38 −12 53 16.46 <0.001

Dorsal premotor cortex (lPMd) L −24 −4 46 15.07 <0.001

Dorsal premotor cortex (rPMd) R 26 −3 47 13.76 <0.001

Superior parietal cortex (lSPC) L −16 −63 58 12.93 <0.001

Superior parietal cortex (rSPC) R 15 −66 58 16.65 <0.001

The extracted time series of all seven ROIs were included in
one DCM, based on our previous study (Scheller et al., 2013).
Intrinsic connections were modeled among all seven regions
(represented with white arrows in Figure 1A). SMA was divided
in pre-SMA and caudal SMA, the former involved in more
cognitively challenging conditions (thus more strongly activated
by the complex finger tapping condition) and interconnected
with the premotor and associative cortices, while the latter
strongly interconnected with M1 and activated by the speed
conditions (thus representing the motoric executive part of
SMA). No direct connection was modeled between pre-SMA
and M1, but an indirect influence was assumed via left PMd
and M1. Modulatory connections were specified in the B-matrix,
separately for the complex (Figure 1B) and the speed conditions
(Figure 1C). Based on the previously reported activations
(Klöppel et al., 2009), modulatory effects of speed were included
for cSMA, left M1, right PMd, and right SPC, while modulation
by complexity was specified for M1, pSMA, right PMd, and
bilateral SPC. Modulatory effects were expected only for the
right PMd because of its involvement during auditorially paced
finger-tapping sequences (Witt et al., 2008), as well as its higher
recruitment during more demanding tasks (Bartenstein et al.,
1997; Klöppel et al., 2009). All experimental inputs entered the
model via the associative sensory regions in the parietal cortex. A
more detailed discussion about the choice of connections can be
found elsewhere (Scheller et al., 2013).

The fully connected DCMs were then reduced using the post-
hoc optimization procedure for approximating model evidence,
proposed by Friston and Penny (2011). This approach optimizes
only the large model, while the evidence for any sub-model
is obtained using generalization of the Savage-Dickey density
ratio (Dickey, 1971; for more detailed discussion readers may
refer to Rosa et al., 2012, Friston and Penny, 2011, and Seghier
and Friston, 2013). Additionally, post-hoc diagnostics of each
participant’s DCM were conducted using in-house MATLAB
routines to ensure that model inversion has converged, requiring
at least 10% of variance explained.

DCM model specification, estimation and post-hoc
optimization were carried out with DCM12, as implemented
in SPM12b. Statistical inference on model parameters was
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FIGURE 1 | Dynamic causal model. (A) Task-independent, intrinsic connections, (B) Modulatory connections (complexity), and (C) Modulatory connections (speed).

conducted in SPSS, Version 20.0 (IBM Corp., 2011). Random-
effects inference at the connection level was assessed using
ANCOVA analysis after covariate adjustment. Between-group
differences were considered significant at a threshold of
p < 0.001 after accounting for the number of connections (i.e.,
30 intrinsic and 17 modulatory). Two-sample t-tests were used
for post-hoc analyses of significant between-group differences,
with applying Bonferroni correction for the three groups.

Cluster Analysis
To identify sub-groups differing in connectivity pattern, DCM
intrinsic and modulatory parameters across all HD gene
mutation carriers were entered into a hierarchical agglomerative
cluster analysis, as implemented in SPSS (Burns, 2009). Ward’s
clustering linkage method (Ward, 1963) was performed on all
parameters with squared Euclidean distance as a measure of
proximity. We used the agglomeration schedule (i.e., the change
in agglomeration coefficients as the number of clusters increase)
to determine the optimum number of clusters. Afterwards, each
HD mutation gene carrier was assigned to one of the identified
sub-groups by repeating the cluster analysis using the optimal
number of clusters. Finally, we used Pearson’s partial correlation
analysis, including age, gender, site, and education as covariates
of no interest, to examine how sub-group membership was
correlated with behavioral performance and putamen volume as
a marker of disease progression. Bonferroni correction was used
to account for the number of correlation tests.

RESULTS

Behavioral Data
Fifteen participants scored low in performance (<50% accuracy)
or performed a wrong condition and were thus excluded from
the subsequent analysis (Table S1). It was furthermore examined
whether this exclusion was dictated by group affiliation, which
was not the case [chi2(2, N = 200)= 1.28, p = 0.53].

Descriptive information of themotor performance is provided
in the Table S2. Between-group differences were assessed using
factorial ANCOVA analysis. Significant performance differences
were found among the groups only for the speed conditions
[F(2, 148) = 4.19, p = 0.017], as measured by the standard
deviation of timing inaccuracy (i.e., the time between a button
press and closest click). No between-group differences were
observed for complexity [F(2, 148) = 1.691, p = 0.181] or for
the interaction between complexity and speed [F(2, 148) = 1.734,
p = 0.180]. To further investigate the significant between-
group effects in speed, post-hoc t-tests (Bonferroni-corrected)
were conducted for each pair of groups separately. Between-
group differences in timing inaccuracy (SD) were observed for
the two slow speed conditions (simple slow and complex slow)
and only between HC and earlyHD (p < 0.05, Bonferroni-
corrected). No significant differences were found between HC vs.
preHD and between preHD vs. earlyHD. Groups did not differ
in accuracy (i.e., percentage of correct responses), neither for the
main effect of complexity, nor for the main effect of speed (both
with p > 0.1).

Similarly to our previous study (Klöppel et al., 2009), a positive
correlation was found in HD gene carriers between CPO and
performance in both complex conditions (complex slow: r =

0.242, n = 78, p = 0.047, and complex fast: r = 0.289, n = 78,
p = 0.017) as well as during simple slow (r = 0.252, n = 78,
p = 0.038), as measured by the absolute values of the timing
inaccuracies (SD). This suggests that HD gene carriers performed
worse (i.e., became less accurate during tapping) with disease
progression.

GLM Results
Main effects of experimental task resulted in activations of
left primary motor cortex (lM1), left pre-SMA (pSMA), left
caudal SMA (cSMA), bilateral dorsal premotor cortex (lPMd,
rPMd) and bilateral superior parietal cortex (lSPC, rSPC),
which is in agreement with previous findings (Klöppel et al.,
2009). Increased complexity of sequential movements resulted in
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stronger activations in the pSMA, bilateral PMd, and bilateral
SPC, while increased speed of sequential movements led to
stronger activation in cSMA and lM1 areas. Activation results are
shown in Figure 2 and the corresponding regions of interest and
their coordinates can be found in Table 2. No significant main
effects of group or interactions between group and the two task
conditions (i.e., complexity and speed) were found at p < 0.05
(FWE-corrected) using the GLM Flex tool.

DCM Results
The diagnostics of each participant’s DCM with regard to
variance explained by the model and parameter estimability led
to the exclusion of 35 participants (17 HC, 14 preHD, and 4
earlyHD). Post-hoc analysis revealed the same winning model
across the three groups with the highest probability of (almost)
1. In the winning model (Figure 3), only a small number of
modulatory connections were removed, such as the connections
from the rPMd cortex toward the other regions, as well as the
modulatory effects of complexity on the neural coupling from
pSMA toward both bilateral SPC and cSMA. In an exploratory
manner, the post-hoc optimization procedure was repeated for
controls and HD gene carriers separately to ensure that the
same winning model was identified for the patient group, which
was the case. The posterior probabilities resulting from the
post-hoc optimization across all subjects were further examined
in quantitative terms using frequentist inference. Descriptive
statistics of all intrinsic and modulatory parameters can be found
in the (Table S3).

Differences in effective connectivity between HC and HD
gene mutation carriers were found only for the task-dependent,
modulatory neural coupling from lSPC toward lPMd during
complex conditions [F(2, 148) = 4.43, p < 0.001; Figure 4A],
but not for the endogenous connectivity (i.e., coupling that

is constant across all experimental conditions). Specifically,
post-hoc Bonferroni tests showed that effects of complexity
from lSPC toward lPMd were inhibitory in preHD, which
is in line with previous findings (Scheller et al., 2013), but
became excitatory in earlyHD (p < 0.001, Bonferroni-
corrected). Interestingly, a negative correlation was also found
in all mutation carriers between lSPC-lPMd coupling and TIV-
adjusted putamen volume (r = −0.302, n = 78, p = 0.007),
suggesting that complex conditions led to increasingly excitatory
neural coupling associated with decreasing putamen volume
(Figure 4B). However, this effect was not correlated with any of
the behavioral data. Still, this could partly be explained by the fact
that our complex condition comprised a 4-item sequence (i.e., 4-
2-3-1, see Figure S1), which might have not been too cognitively
demanding.

Furthermore, modulatory effects during speed conditions
significantly differed among the groups for the connections from
rSPC to pSMA [F(2, 148) = 4.10, p = 0.001], as well as
from cSMA to pSMA [F(2, 148) = 2.58, p = 0.021]. Post-
hoc Bonferroni tests showed that these modulatory effects were
expressed by excitatory rSPC to pSMA coupling in earlyHD
as opposed to inhibitory in preHD and HC (p = 0.001),
which, however, was not correlated to either putamen volume or
behavioral performance. A trend of increased inhibitory coupling
from cSMA toward pSMA, modulated by speed, was observed
in earlyHD, relative to preHD and HC (p = 0.002), but this
effect did not survive Bonferroni correction after accounting
for the number of tests. Of note, the stronger inhibitory cSMA
to pSMA connections were associated with decreased putamen
volume (r = 0.632, n = 16, p = 0.032) and worse
behavioral performance during both fast conditions (simple fast:
r = −0.522, n = 16, p = 0.045, and complex fast: r = −0.724,
n = 16, p = 0.018) in earlyHD, but not in preHD (n = 62;

FIGURE 2 | GLM results. Main effects of task for (A) complexity and (B) speed across all participants (p < 0.05 FWE-corrected, minimum cluster size k = 100).
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FIGURE 3 | Winning DCM model after post-hoc Bayesian model selection. (A) Task-independent, intrinsic connections, (B) Modulatory connections

(complexity), and (C) Modulatory connections (speed).

putamen: r = −0.186, p = 0.163, simple fast: r = −0.021,
p = 0.873, and complex fast: r = −0.167, p = 0.211).

Cluster Analysis Results
Three potentially meaningful clusters were identified, which were
used to classify the HD mutation gene carriers accordingly
(a scree plot of the agglomeration schedule is provided in
the Figure S2). The group distribution was as follows: 23
participants were included in the first cluster, 46 in the second
one, and 9 participants in the third cluster. The corresponding
demographic, clinical, and motor performance information is
provided in the Table S4. Sub-groups differed neither in their
demographic (age, gender, and education) and clinical (DBS,
CPO, and putamen volume) data, nor in their performance
during scanning (i.e., means and SD of cue-response timing
inaccuracies during the four movement conditions; Table S4).

Between-group differences were identified only for
modulatory neural couplings (cSMA-pSMA modulated by
speed: F(2, 69) = 3.70, p = 0.003, and lSPC-lPMd modulated by
complexity: F(2, 69) = 8.99, p < 0.001), using ANCOVA analyses
after adjusting for effects of age, gender, site, and education.
Connectivity profiles for all modulatory connections are shown
in Figure 5. Bonferroni post-hoc analyses revealed that group
differences were present only between sub-group 3 (N = 9)
and the other two sub-groups (Figure 6A). Specifically, there
was a stronger excitatory coupling from cSMA toward pSMA
modulated by speed and stronger inhibitory coupling from
lSPC toward lPMd modulated by complexity in sub-group 3,
relative to the other two sub-groups (all effects significant at
p < 0.001). Interestingly, stronger excitatory coupling from
cSMA toward pSMA was associated with decreased putamen
volume (r = −0.633, n = 9, p = 0.007), as indicated by partial
correlation analysis, adjusting for age, gender, education, and
site (Figure 6B). With regard to the lSPC-lPMd connection,
higher excitatory coupling in sub-groups 1 (r = −0.496, n = 23,
p = 0.043) and 2 (r = −0.483, n = 46, p = 0.002), but not in

sub-group 3 (r = 0.283, n = 9, p = 0.645), was associated with
decreased putamen volume.

DISCUSSION

In this study, we sought to gain further insights into the neural
circuitry of the motor network in Huntington’s disease. For this
purpose, a sequential finger-tapping fMRI task and DCM were
used to assess the causal interactions among regions involved
in both executive (movement speed) and cognitive (movement
complexity) aspects of motor control. In the fMRI analysis, the
same task-specific motor network was found as identified in our
previous study (Klöppel et al., 2009). This included activations
in pSMA, bilateral PMd, and bilateral SPC during complex
tapping conditions, while the cSMA and lM1 were more strongly
activated during fast finger tapping. Furthermore, it was shown
here that, although preHD and earlyHD did not differ from each
other in their behavioral performance, lower accuracy during
tapping across all gene mutation carriers was associated with
disease progression (i.e., cumulative probability of clinical onset).
In the DCM analysis, on the other hand, the main focus was on
the characterization of abnormal connectivity in the identified
network of regions, which was common for both HD mutation
gene carriers and healthy controls.

Effective Connectivity in HD
Our first aim was to extend on previously published DCM data
in preclinical HD, which suggested the crucial role of premotor
(i.e., PMd) and parietal areas (i.e., SPC), as part of fronto-
parietal circuits, for the maintenance of motor functioning
(Scheller et al., 2013). Our findings did not provide any evidence
for the previously proposed compensatory role of premotor
areas in preHD, characterized by an increased neural coupling
from dorsal premotor cortex toward superior parietal cortex,
which was regarded as indicative of neural reserve mechanisms
that occurred during complex movements (i.e., high cognitive
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FIGURE 4 | DCM results: between-group differences. (A) Differential modulatory effects driven by complexity and speed. (B) Correlation analysis.

demand) in preHD individuals closer to clinical onset. However,
it should be emphasized that the cognitive aspect in our
experiment was less complex and might have been insufficiently
demanding (i.e., participants in our study had to learn a complex
sequence of 4 digits as compared to the 10-item sequence used
in the previous study). Of note, a stronger inhibitory modulatory
coupling was found from lSPC toward lPMd in preHD, relative
to HC, which is in line with our previous findings (Scheller
et al., 2013), but, interestingly, the reversed excitatory effect
was also present in earlyHD. Furthermore, stronger excitatory
effects from lSPC toward lPMd were associated with lower
putamen volume in all gene carriers, which is only partly
explained by groupmembership, as indicated by the substantially
overlapping values for putamen volume between preHD and
earlyHD (Figure 3B). Putamen volume was used as a disease
marker, since striatal atrophy is a well-attested clinical hallmark
of HD. Also, previous DTI data have confirmed that the putamen
is interconnected with our regions of interest, including (but not
limited to) the primary motor and premotor cortices and the
supplementary motor area (Leh et al., 2007).

The present analysis also revealed that task-induced changes
during speed conditions resulted in a stronger inhibitory
coupling from cSMA to pSMA in those earlyHD patients who
had lower putamen volume and performed worse at the fast
motor conditions. However, this effect should be considered

with caution because it reached only trend significance after
correction for multiple comparisons. Also, the earlyHD group
was overall slightly smaller in size than the healthy controls and
the preHD, which might have introduced an additional bias.
Nevertheless, we believe that the current study provides results
that are complementary to our previous findings and suggests
that the choice of experimental manipulation is critical for
assessing and understanding the complex functional connectivity
pattern between core regions maintaining motor function.
It also points to the heterogeneity inherent across the HD
gene mutation carriers and further supports the notion that
identifying sub-groups of patients that are not merely defined
according to clinical onset would be beneficial for future
interventions.

Cluster Analysis for HD Sub-Group
Classification
The second aim of our study was to explore the application of a
hierarchical cluster analysis based on the DCM intrinsic and task-
specific parameters in an attempt to identify clinically meaningful
sub-groups within the HD gene carrier group. Cluster analysis
approaches based on structural imaging data have already proven
useful for stratification of patient populations and predictions of
clinical outcomes in the context of aging and Alzheimer’s disease
(Nettiksimmons et al., 2010; Damian et al., 2013; Peter et al., 2014;
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FIGURE 5 | Cluster analysis: connectivity profiles. Modulatory effects of (A) complexity and (B) speed on neural coupling strengths in all cluster sub-groups.

Significant effects are marked with an asterisk (p < 0.05, Bonferroni-corrected).

FIGURE 6 | Cluster analysis: sub-group differences. (A) Differential modulatory effects driven by complexity and speed. (B) Correlation analysis.

Quaranta et al., 2014). However, to our knowledge, this is the first
study using task-basedDCMneural couplings for classification of
clinical sub-groups.

Hierarchical clustering is an unsupervised clustering
approach, which may render the selection of optimal number
of clusters arbitrary, as it is highly dependent on the similarity
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measures used. Here, the HD gene carriers were divided
into three different clusters after the visual inspection of the
dendrogram and considering the change in agglomeration
coefficients as the number of clusters increased. This is also
consistent with previous divisions of pre-symptomatic HD into
preHD-A (further from predicted diagnosis) and preHD-B
(nearer) and of manifest HD into stage 1 (HD1) and stage 2
(HD2), depending on their total functioning capacity scores
(Tabrizi et al., 2009). Of note, only early stage HD individuals
were included in the current analysis, who were initially recruited
as preHD but have converted during the course of the TrackOn-
HD study. After close inspection of the clusters, it is of note
that DCM-based cluster membership was not merely explained
by disease burden and did not overlap with the differentiation
between preHD and earlyHD.

The differences in DCM parameters among the three sub-
groups reflected the same variation in modulatory neural
coupling as observed in the DCM-based ANCOVA analysis,
using the initially defined membership (i.e., HC, preHD, and
earlyHD). It should be noted that the cluster consisting of 9
individuals (7 preHD-B and 2 preHD-A) differed significantly
from the other two clusters (N = 23 and N = 46),
but at the same time showed the opposite effects than those
observed in earlyHD. Specifically, neural coupling strengths
from left parietal regions toward premotor areas, modulated
by complex tapping movements, was excitatory in nature
in earlyHD and inhibitory in cluster sub-group 3. On the
other hand, fast tapping movements differentially modulated
the neural coupling from cSMA to pSMA in such a way
that it was inhibitory in earlyHD, relative to preHD and
HC, and excitatory in sub-group 3, relative to the other two
clusters.

Clearly, this provides further support for the heterogeneity in
neural circuits across the HD disease spectrum but, due to the
lack of clear correlations with behavioral measures of speed and
complexity, does not provide firm evidence for compensatory
mechanisms. Nevertheless, the excitatory neural coupling from
lSPC to lPMd, which increased with lower putamen volume,
together with the association of CPO with lower behavioral
performance, may possibly point to an attempted (as opposed to
successful) compensatorymechanism (for an in-depth discussion
of successful vs. attempted compensation please refer to Scheller
et al., 2014). Of note, some regions involved in motor control,
such as the cSMA and rSPC (Klöppel et al., 2009), as well as
the bilateral PMd (Scheller et al., 2013), seem to be essential
for maintaining motor functioning, and increased cortical
recruitment has also been observed in anterior cingulate-frontal-
motor-parietal cortex in HD during a working memory task
(Georgiou-Karistianis et al., 2007). In a resting-state fMRI study
in HD (Werner et al., 2014), however, increased functional
connectivity in motor and parietal cortices was associated with
motor impairments, pointing that cortical over-recruitment
may not necessarily reflect compensation but could also be
indicative of a dysfunction due to HD disease-related deficits.
Thus, compensation could also be characterized by down-
regulation or disengagement of brain regions (Cox et al., 2015).
Alternatively, increased cortical activations may be beneficial in

some individuals but become insufficient for retaining high level
of functioning in others, as disease progresses.

Limitations and Future Directions
Altogether, the present study showed that DCM could
successfully be applied to assess aberrant effective connectivity
in Huntington’s disease. Based on directed neural coupling
strengths and their change caused by experimental perturbations,
a potentially useful classification of HD mutation gene
carriers was identified. However, certain limitations need
to be mentioned in this regard. Clusters were defined in
an exploratory manner and while an interesting pattern of
DCM-based classification was observed, the clinical value
of our findings still needs to be evaluated. It is still to be
investigated whether cluster membership remains stable over
time and whether it is predictive of future clinical outcomes (e.g.,
conversion to HD, disease progression, and domain-specific
changes reflected by behavioral markers). Future studies focusing
on longitudinal data should address these issues and should
also aim at providing more mechanistic, biologically-relevant
insights into the neural circuitry in HD, differentiating between
maladaptive vs. compensatory mechanisms, which will be of
great importance for future targeted interventions.
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Understanding the neural basis of schizophrenia (SZ) is important for shedding light

on the neurobiological mechanisms underlying this mental disorder. Structural and

functional alterations in the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex

(DLPFC), hippocampus, and medial prefrontal cortex (MPFC) have been implicated

in the neurobiology of SZ. However, the effective connectivity among them in SZ

remains unclear. The current study investigated how neuronal pathways involving

these regions were affected in first-episode SZ using functional magnetic resonance

imaging (fMRI). Forty-nine patients with a first-episode of psychosis and diagnosis of

SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth

Edition, Text Revision—were studied. Fifty healthy controls (HCs) were included for

comparison. All subjects underwent resting state fMRI. We used spectral dynamic

causal modeling (DCM) to estimate directed connections among the bilateral ACC,

DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian

parameter averaging (BPA) in addition to classical inference (t-test). In addition to

common effective connectivity in these two groups, HCs displayed widespread

significant connections predominantly involved in ACC not detected in SZ patients,

but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior

cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and

hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary,

spectral DCM revealed the pattern of effective connectivity involving ACC in patients

with first-episode SZ. This study provides a potential link between SZ and dysfunction

of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant

connectivity among these cognition and emotion-related regions.

Keywords: schizophrenia, anterior cingulate cortex, functional magnetic resonance imaging, effective

connectivity, spectral dynamic causal modeling
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INTRODUCTION

Schizophrenia (SZ) affects approximately 1% of the population
and is one of the leading causes of health burden all over
the world (APA, 2013; Whiteford et al., 2013). It still remains
unclear, however, regarding the pathogenesis of SZ, which has
seriously hampered the efficacy of prevention and treatment
for SZ. Understanding the neural basis of SZ is pivotal for
shedding light on the neurobiological mechanisms behind this
mental disease. The disconnection hypothesis suggests that
the diverse symptoms of SZ are associated with abnormal
neuronal connectivity between distinct regions (Friston and
Frith, 1995; Friston, 1998; Stephan et al., 2009; Pettersson-Yeo
et al., 2011). SZ, as a debilitating neuropsychiatric illness, involves
both regional brain deficits and disruptions of communication
among distinct brain regions (Friston and Frith, 1995; Stephan
et al., 2009), including abnormal inter-hemispheric connectivity
(Whitford et al., 2010; Chang et al., 2015). In the most
recent years, increasing evidence has arisen supporting the
notion that the structural and functional dysconnectivity within
different brain regions is thought to account for the mechanism
underlying SZ and its significant clinical and neuropathological
heterogeneity on the basis of functional magnetic resonance
imaging (fMRI) studies (Kubota et al., 2013; Voineskos et al.,
2013; Liu et al., 2014a; Bastos-Leite et al., 2015; Genzel et al., 2015;
Guo et al., 2015).

Structurally, on the one hand, SZ patients showed significant
reduction of graymatter volume in the bilateral anterior cingulate
cortex (ACC) as the largest effect size among all the areas
investigated, as well as the bilateral posterior superior temporal
gyri, bilateral inferior frontal gyri, left posterior amygdala-
hippocampal complex (mostly hippocampus), and left insula
(Yamasue et al., 2004). Concerning structural connectivity,
major diffusion tensor imaging (DTI) findings highlighted a
decreased fractional anisotropy (FA) value in the cingulate
bundle, corpus callosum, and frontal and temporal white matter
in chronic SZ (White et al., 2008; Pomarol-Clotet et al.,
2010), whereas patients at the first-episode psychosis showed
a decreased FA value in the inferior longitudinal fasciculus
(Friedman et al., 2008) and a decreased mean diffusivity (MD)
value in the left parahippocampal gyrus, left insula, and right
ACC (Moriya et al., 2010). A previous meta-analysis of 15
DTI studies in SZ highlighted a significant FA reductions in
two regions: the left frontal and temporal deep white matter
(Ellison-Wright and Bullmore, 2009). Recently, Kubota et al.
found SZ patients exhibited thalamo-orbitofrontal disconnection
(Kubota et al., 2013). Specifically, reduced FA value in the
right thalamo-orbitofrontal pathway and significantly positive
correlation between FA value for this pathway and the right
frontal polar and lateral orbitofrontal cortices were observed
in this study. For patients with deficit SZ, they displayed
disruption of white matter tracts at the right inferior longitudinal
fasciculus, right arcuate fasciculus, and left uncinate fasciculus
as compared with patients with nondeficit SZ (Voineskos
et al., 2013). Furthermore, diffusion tensor tractography (DTT)
analysis revealed a significant difference of connectivity between
the bilateral medial prefrontal cortex (MPFC) and genu of

the corpus callosum in SZ patients (Pomarol-Clotet et al.,
2010).

Functionally, on the other hand, SZ is frequently characterized
as not only a disorder of a large-scale brain connectivity but also
a selective disruption of connectivity among central hub regions
of the brain, but identifying its imaging-based connectomics is
still challenging (Fornito et al., 2012; van den Heuvel et al., 2013).
Resting state fMRI studies indicate widespread disconnectivity
in the brain involved in the pathophysiology of SZ (Khadka
et al., 2013; Mamah et al., 2013; Argyelan et al., 2014). For first-
episode SZ patients, Bastos-Leite et al have reported reduced
effective connectivity within the default mode network (DMN)
using stochastic dynamic causal modeling (DCM), reflecting a
reduced postsynaptic efficacy of prefrontal afferents (Bastos-Leite
et al., 2015); Guo et al have demonstrated that patients revealed
abnormal prefrontal-thalamic-cerebellar circuit using Granger
causality analysis (GCA) (Guo et al., 2015). They found SZ may
be associated with increased connectivity from the left MPFC or
the right ACC to the sensorimotor regions and disrupted bilateral
connections among sensorimotor regions, partly reflecting the
effects of structural aberrancies in first-episode SZ on the
prefrontal-thalamic-cerebellar circuit (Guo et al., 2015). Besides
aberrant structural connectivity, the bilateral MPFC has been
shown a marked failure of deactivation in SZ patients (Pomarol-
Clotet et al., 2010). In addition, dorsolateral prefrontal cortex
(DLPFC) is one of the most important cortical regions involved
in the pathogenesis of SZ, and DLPFC-hippocampal formation
dysconnectivity has been reported in SZ patients and links with
the risk of developing SZ (Liu et al., 2014a). SZ patients also

showed deficit in overnight memory consolidation associated
with hippocampal-prefrontal connectivity (Genzel et al., 2015)
and exhibited overactivation of DLPFC during social judgment
(Mukherjee et al., 2014). In SZ, the connectivity between
PFC and limbic regions (amygdala) was reduced during the
resting state (Fan et al., 2013; Liu et al., 2014b), and absent
and reversed or decreased during the processing of emotional
stimuli (Das et al., 2007; Leitman et al., 2008). A reduced
PFC-amygdala coupling was also associated with psychosis
proneness in the general population (Modinos et al., 2010).
Taken together, interactions among ACC, PFC (DLPFC and
MPFC), and hippocampus have been crucially implicated in
the neurobiology of SZ, and may represent a particular form
of dysconnection in SZ. However, changes in connectivity
patterns among these brain areas are largely unknown in SZ
patients.

Effective connectivity is characterized by the causal (directed
and weighted) influence of one brain region over another
or itself. DCM, a technique used for measuring effective
connectivity among different brain regions, is based on
functional neuroimaging. Both functional and effective
connectivity analyses are common methods used in resting
state fMRI studies. However, DCM not only enables us to
quantify the strength of connectivity among brain regions, but
also allows the investigation of directed information flow from
one region to another. An animal study has begun using spectral
DCM to identify the pathophysiological theories of SZ recently
(Moran et al., 2015). Here we used spectral DCM (Friston et al.,
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2014; Razi et al., 2015) to identify abnormal effective connectivity
underlying SZ.

In the present study, we used spectral DCM to elucidate
the effective connectivity among previously reported regions
(bilateral ACC, DLPFC, hippocampi, and MPFC) associated
with SZ, thereby providing a better understanding of the
pathophysiological correlates of SZ. We hypothesized that
directed connectivity involving these brain regions may be
disturbed in SZ patients, predisposing to impairment of
perceptual and cognitive functions and emotional behavior.

METHODS

Subjects
The study sample consisted of 52 first-episode SZ patients
from early intervention services within the outpatient clinic and
inpatient department at Xijing Hospital, and 53 healthy controls
(HCs) recruited by advertisement from the local community.
Exclusion criteria comprised: pregnancy, major medical and
neurological disorders, history of significant head trauma; illicit
drug or alcohol abuse or dependence. Additional exclusion
criteria for HCs included a current or past history of psychiatric
illness and the presence of psychosis in first-degree relatives.
The absence of any psychotic syndromes in HCs was confirmed
using the Prodomal Questionnaire (Loewy et al., 2005). Two
senior clinical psychiatrists performed the clinical-psychometric
assessments—according to the Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-
TR)—with an interrater reliability >0.9. Patients were assessed
with the Positive And Negative Syndrome Scale (PANSS) (Kay
et al., 1987) on the day of scanning, as well as detailed
information regarding past symptomatology acquired through
patient interview and examination of patient’s medical records.
All participants gave written informed consent approved by
the local Research Ethics Committee (Xijing Hospital, Fourth
Military Medical University) after a complete description of this
study.

Magnetic Resonance Imaging Acquisition
The fMRI images were acquired on a 3.0-T Siemens Magnetom
Trio Tim scanner. During data acquisition, participants were
asked to stay still in the scanner, keeping their eyes closed but
not to fall asleep. The participants wore a custom-built MRI-
compatible head coil fitted with foam pads and earplugs to
minimize head motion and dampen scanner noise. Resting state
functional scans were acquired with an echo planar imaging
(EPI) sequence using the following parameters: repetition time=
2000ms, echo time = 30ms, filed of view = 220mm × 220mm,
matrix = 64 × 64, flip angle = 90◦, number of slices = 33, slice
thickness = 4mm, section gap = 0.6mm. The whole scanning
process lasted for 8min and 240 scans were acquired for each
subject.

Data Preprocessing
Images were preprocessed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/software/spm8/). For each subject, fMRI scans

were first realigned to correct for head motion. Interscan
motion was assessed with translation/rotation, and an exclusion
criterion (>2.5mm translation and/or >2.5◦ rotation in
each direction) was set. Three SZ patients and three HCs
met the criteria and were excluded from further analyses,
resulting in that eventual 49 SZ patients and 50 HCs were
included. Realigned images were then spatially normalized
to the Montreal Neurological Institute space and finally
smoothed using an 8mm full width at half-maximum Gaussian
kernel.

General Linear Model and Region of
Interest
At the first (within subject) level, a general linear model
(GLM) was constructed for each participant. Fluctuations in
neuronal activity will models with cosine basis functions. In
addition, the six motion parameters from the realignment
procedure and, one constant regressor modeling the baseline,
and cosine basis functions were included in the GLM.
See the resulting constant images used for constraining the
ROI extraction step in the spectral DCM (Supplementary

Figure 1).
For each participant, symmetric eight regions of interest

(ROIs) including bilateral ACC, DLPFC, hippocampi, andMPFC
were selected. For each region, a mask was created using the
WFU PickAtlas Tool and the automated anatomical labeling
atlas template (Version 3.0.4, http://www.nitrc.org/projects/wfu_
pickatlas/) (Tzourio-Mazoyer et al., 2002; Maldjian et al., 2003,
2004). For each ROI, subject-specific time series were extracted
from a region defined by a thresholded SPM testing for the
baseline andmasked using the corresponding ROI from theWFU
PickAtlas Tool (Figure 1). We used masks from the atlas for
extraction of time series from the ROIs. All the voxels within the
masks were used and first principle component was used as the
extracted signal.

Spectral Dynamic Causal Modeling
Effective connectivity among the bilateral ACC, DLPFC,
hippocampi, and MPFC was investigated using spectral DCM
as described elsewhere (Friston et al., 2014). In the absence
of a particular hypothesis or model space we used the fully
connected model for an exploratory analysis of all possible
reduced models, without one or more connections: after the
full DCM for each participant was inverted, we employed a
network discovery procedure using Bayesian model reduction
(BMR) (Friston and Penny, 2011) to find the best model that
explains the data. This procedure tests every possible model
nested within the fully connected model. The model with the
highest posterior probability is chosen as the winning model
during this procedure. This BMR procedure is an efficient way
to score a large model space without having to invert every
reduced model. A fully connected model was constructed for
each subject. This model was then inverted using generalized
filtering (Friston et al., 2010). The model selection procedure
was used to identify the model best explaining how the data
are generated. Thus, we used a network discovery scheme in
order to identify the optimal model pooling over all subjects
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FIGURE 1 | Locations of the masks. Red indicates DLPFC; yellow indicates

ACC; dark purple indicates MPFC; violet indicates the hippocampus.

(Friston et al., 2011). Model evidence of a fully connected
model was used to approximate the model evidence of all
the possible models and search for the model with the largest
evidence. This network discovery-based model selection method
can find the best model in the whole model space only by
estimating parameters of a fully connected model (Li et al.,
2012).

On the basis of spectral DCM analysis, the connection
strength described the strength of a coupling according to the
rate at which neuronal responses were induced in the target
region (in other words connection strengths are effectively rate
constants in 1/s, Hz). The resulting (maximum a posteriori)
estimates of connectivity were then treated as summary statistics
for classical random effects inference at the second (between
subject) level using appropriate t-tests. We reported (Bonferroni
corrected) P-values for all other connections to demonstrate the
specificity of the differences. To see whether these differences
could be estimated and detected reliably, we characterized the
differences using Bayesian parameter averaging (BPA) in addition
to classical inference (t-test) (Friston et al., 2014; Razi et al.,
2015). Then, we used BPA for each group separately after
network discovery procedure. See the flowchart of our each step
(Supplementary Figure 2).

Correlation Analyses
To examine the correlations between effective connectivity and
patients’ symptomology scores, Pearson correlation coefficients
were tentatively computed to test the relationship between
connection strengths and PANSS positive, negative, general, and
total scores in SZ patients.

TABLE 1 | Demographic and clinical characteristics of first-episode SZ

patients (n = 49) and HCs (n = 50).

Characteristics SZ Patients HCs Statistics P

Age 26 ± 6 27 ± 4 t = 1.57 0.12

Sex (male/female) 29/20 31/19 χ
2 = 0.08 0.77

Ethnicity Han (Chinese) Han (Chinese)

Handedness (right/left) 49/0 50/0

Duration of illness (months) 10 ± 14 —

PANSS total score 162 ± 27 —

PANSS positive score 24 ± 8 —

PANSS negative score 24 ± 7 —

PANSS general psychopathology 49 ± 9 —

PANSS, Positive and Negative Syndrome Scale.

RESULTS

Clinical Data
The demographic and clinical data are shown in Table 1. No
significant difference was present between SZ patients and HCs
on any demographic variables.

Network Discovery-based Model Selection
Findings
Having inverted a fully connected model with full extrinsic
connectivity, the log model evidence for all reduced models
(models with one or more missing connections) was then
assessed. Figure 2 shows the network discovery procedure
compared the evidence of all reduced models for each group
and the results of post-hoc optimization. The left panel is for SZ
patients and right panel refers to HCs. The fully connected model
was the full model with the highest evidence. The procedure
selected the fully connected model as the best model with a
posterior probability of almost 1. The fully connected model
had 49 parameters describing the extrinsic connections between
nodes and the intrinsic (self-connections) within nodes. This
suggested that the fully connectedmodel was the best explanation
for these data, indicating eligible and rational ROI selection.

Effective Connectivity
Significant connections at the group level (one-sample t-test at P-
value of 0.05, Bonferroni corrected for multiple comparisons) are
shown in Figure 3 and Table 2 (in terms of simple main effects
within group). See the t- and P-values for strength of connections
at the group level (Supplementary Table 1). However, two-sample
t-test did not show significant difference between SZ patients and
HCs (P > 0.05, Bonferroni corrected for multiple comparisons,
i.e., 0.05/56).

The BPA results of the effective connectivity are shown in
Figure 4. We set the threshold to 0.6Hz. SZ patients exerted
increased connections from the left ACC to left DLPFC, and from
the left DLPFC to right ACC and left hippocampus, but decreased
connections from the right ACC to left ACC, left DLPFC, and
right hippocampus, from the left hippocampus to left DLPFC,
and from the left DLPFC to right MPFC.
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FIGURE 2 | Results of the post-hoc optimization or network findings. The corresponding conditional parameter estimates were shown over the 49 (intrinsic and

extrinsic) connections. The profiles of model evidences are shown with the posterior probability for each model. In both groups, the full model had a probability of

almost 1 and a log-probability of almost 0. As shown in the figure, the model with the highest evidence was the fully connected model based on the results of

post-hoc optimization or network findings.

FIGURE 3 | Significant effective connectivity (at the group level) among ROIs in the SZ patients and HCs. Arrowheads in the red circles refers to significant

connections detected in SZ patients but not in HCs, and green in HCs but not in SZ patients.

Correlation Analyses
Finally, we calculated the correlation between patients’
symptomology scores and the strength of all the connections in
SZ patients. But there was no significant correlation between
PANSS score and strength of connections with differences in
SZ patients relative to HCs (P > 0.05). On the basis of the
current findings, these results do not provide a symptom-based
validation of the quantitative effective connectivity estimates
involving ACC, PFC, and hippocampus; in that they do not
demonstrate the effective connectivity estimates among brain
regions investigated in our present study have predictive validity
in relation to clinical phenotype.

DISCUSSION

To our knowledge, this is the first study to demonstrate the
effective connectivity among ACC, PFC, and hippocampus in
patients with first-episode SZ using spectral DCM. In SZ patients,
excessive effective connectivity is seen from the left ACC to left
DLPFC, and from the left DLPFC to left hippocampus and right

ACC; deficit effective connectivity is detected from the right ACC
to left ACC, left DLPFC, and right hippocampus, as well as from
the left hippocampus to left DLPFC and from the left DLPFC to
right MPFC. Our results indicate abnormal effective connectivity
involving ACC in first-episode SZ patients.

In the past decade, many studies have ever focused
on structural and functional alterations of ACC, PFC, and
hippocampus in SZ, and abnormalities of these regions in
patients with SZ have been repeatedly reported. Compared
with HCs, SZ patients showed significant gray matter volume
reduction in ACC and hippocampus (Yamasue et al., 2004;
Benedetti et al., 2011). A study combining fMRI and DTI
demonstrated altered prefrontal structure-function relationships
in SZ (Schlösser et al., 2007). It highlights a potential relationship
between anatomical changes in a frontal-temporal anatomical
circuit and functional alterations in the PFC. Brain fMRI neural
responses to a face-matching paradigm and regional gray matter
volumes were studied in the amygdala, hippocampus, ACC, and
PFC (Benedetti et al., 2011). As compared withHCs, patients with
chronic undifferentiated SZ reported higher adverse childhood

Frontiers in Human Neuroscience | www.frontiersin.org November 2015 | Volume 9 | Article 589 | 89

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Cui et al. Cingulate-related connectivity in schizophrenia

TABLE 2 | Strength of connections in first-episode SZ patients and HCs.

Connections First-episode SZ patients HCs t# P#

Left ACC-right ACC 0.1145± 0.2783* 0.1005±0.2236* 0.28 0.78

Left ACC-left DLPFC −0.0162± 0.1936 −0.0179±0.2197 0.04 0.97

Left ACC-right DLPFC −0.0453± 0.2523 −0.0861±0.2426* 0.82 0.41

Left ACC-left MPFC −0.0261± 0.2156 0.0395±0.2169 −1.51 0.13

Left ACC-right MPFC −0.0346± 0.2004 −0.0494±0.2745 0.31 0.76

Left ACC-left hippocampus −0.0367± 0.2116 −0.0223±0.2075 −0.34 0.73

Left ACC-right hippocampus 0.0047± 0.3136 −0.0253±0.2053 0.56 0.57

Right ACC-left ACC 0.4739± 0.2108* 0.4824±0.1969* −0.21 0.84

Right ACC-left DLPFC 0.1541± 0.1620* 0.1581±0.1650* −1.12 0.90

Right ACC-right DLPFC 0.1977± 0.1815* 0.1597±0.1472* 1.15 0.25

Right ACC-left MPFC 0.1866± 0.1749* 0.1981±0.1754* −0.33 0.74

Right ACC-right MPFC 0.2116± 0.1485* 0.2222±0.1694* −0.33 0.74

Right ACC-left hippocampus 0.0862± 0.1655* 0.0494±0.1520* 1.15 0.25

Right ACC-right hippocampus 0.1189± 0.2312* 0.0509±0.1349* 1.79 0.08

Left DLPFC-left ACC 0.0929± 0.1856* 0.0577±0.2022 0.90 0.37

Left DLPFC-right ACC 0.0943± 0.2102* 0.0482±0.2590 0.97 0.33

Left DLPFC-right DLPFC 0.1042± 0.1694* 0.1560±0.1749* −1.50 0.14

Left DLPFC-left MPFC 0.2195± 0.1778* 0.2554±0.1708* −1.02 0.31

Left DLPFC-right MPFC 0.1365± 0.1693* 0.1572±0.1682* −0.61 0.54

Left DLPFC-left hippocampus 0.0759± 0.1713* 0.0028±0.1299 2.40 0.02

Left DLPFC-right hippocampus 0.0449± 0.1617 0.0206±0.1304 0.82 0.41

Right DLPFC-left ACC 0.0724± 0.2217* 0.1254±0.2171* −1.20 0.23

Right DLPFC-right ACC 0.0946± 0.2593* 0.1569±0.3082* −1.09 0.28

Right DLPFC-left DLPFC 0.1538± 0.2354* 0.1953±0.2196* −0.91 0.37

Right DLPFC-left MPFC 0.1323± 0.2054* 0.1564±0.2132* −0.57 0.57

Right DLPFC-right MPFC 0.2201± 0.2080* 0.2981±0.2186* −1.82 0.07

Right DLPFC-left hippocampus 0.0531± 0.1870 0.0545±0.1743* −0.04 0.97

Right DLPFC-right hippocampus 0.0535± 0.1575* 0.0332±0.1783 0.60 0.55

Left MPFC-left ACC 0.0455± 0.2294 −0.0221±0.2118 1.52 0.13

Left MPFC-right ACC 0.0257± 0.2497 −0.0511±0.2471 1.54 0.13

Left MPFC-left DLPFC 0.1033± 0.1810* 0.1012±0.1987* 0.05 0.96

Left MPFC-right DLPFC −0.0040± 0.1963 −0.0318±0.2056 0.69 0.49

Left MPFC-right MPFC 0.0687± 0.2102* 0.0385±0.2139 0.71 0.48

Left MPFC-left hippocampus 0.0611± 0.1920* −0.0598±0.1663* 3.35 0.00

Left MPFC-right hippocampus −0.0301± 0.2014 −0.0514±0.1499* 0.60 0.55

Right MPFC-left ACC 0.0130± 0.2290 0.0861±0.2633* −1.47 0.14

Right MPFC-right ACC 0.0613± 0.2475 0.1037±0.2857* −0.79 0.43

Right MPFC-left DLPFC 0.1146± 0.1663* 0.1136±0.1946* 0.03 0.98

Right MPFC-right DLPFC 0.1751± 0.1557* 0.1965±0.1744* −0.64 0.52

Right MPFC-left MPFC 0.1503± 0.1764* 0.1969±0.2051* −1.21 0.23

Right MPFC-left hippocampus 0.0425± 0.1591 −0.0099±0.1367 1.76 0.08

Right MPFC-right hippocampus 0.0217± 0.1825 −0.0071±0.1460 0.87 0.39

Left hippocampus-left ACC 0.0553± 0.2922 0.0695±0.2859 −0.24 0.81

Left hippocampus-right ACC 0.0986± 0.3714 0.1038±0.3491* −0.07 0.94

Left hippocampus-left DLPFC 0.0305± 0.2759 0.1099±0.3088* −1.35 0.18

Left hippocampus-right DLPFC 0.0393± 0.2713 0.1012±0.3161* −1.05 0.30

Left hippocampus-left MPFC 0.0620± 0.2660 0.0825±0.2795* −0.37 0.71

Left hippocampus-right MPFC 0.0300± 0.2834 0.0961±0.3044* −1.12 0.27

Left hippocampus-right hippocampus 0.1672± 0.3269* 0.2188±0.3074* −0.81 0.42

(Continued)
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TABLE 2 | Continued

Connections First-episode SZ patients HCs t# P#

Right hippocampus-left ACC 0.0934± 0.3193* 0.0823±0.2694* 0.19 0.85

Right hippocampus-right ACC 0.0923± 0.3510 0.1485±0.3468* −0.80 0.43

Right hippocampus-left DLPFC 0.0461± 0.3041 0.0844±0.3066 −0.62 0.53

Right hippocampus-right DLPFC 0.0693± 0.2612 0.1085±0.3097* −0.68 0.50

Right hippocampus-left MPFC 0.0735± 0.2661 0.0675±0.2667 0.11 0.91

Right hippocampus-right MPFC 0.0457± 0.2851 0.0951±0.2867* −0.86 0.39

Right hippocampus-left hippocampus 0.2198± 0.2791* 0.2513±0.2341* −0.61 0.54

*Significant effective connectivity at the group level (P < 0.05, Bonferroni corrected). #Between the group level. ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex;

MPFC, medial prefrontal cortex.

FIGURE 4 | Significant effective connectivity (between the group level) among ROIs in the SZ patients and HCs. The left panel shows the BPA of the

differences for spectral DCM. The right panel shows only those edges on the graph that survive the threshold of 0.6Hz in the left panel, i.e., the increased (red) and

decreased (green) connections in SZ patients relative to HCs.

experiences, proportionally leading to decreasing responses in
the amygdala and hippocampus, and increasing responses in PFC
and ACC. Lui et al found a decreased amplitude of low-frequency
fluctuation in ACC and reduced functional connectivity between
the left ACC and right middle temporal gyrus using resting state
fMRI (Lui et al., 2015). Altered functional connections associated
with ACC, MPFC, hippocampus, thalamus, and cerebellum were
also observed in SZ patients (Yu et al., 2013). Both at resting state
and during emotional stimuli, abnormalities can be observed in
PFC-amygdala connection (Das et al., 2007; Leitman et al., 2008;
Fan et al., 2013; Liu et al., 2014b). PFC can be subdivided into
MPFC and DLPFC. SZ patients revealed abnormal activation
in the bilateral MPFC (Pomarol-Clotet et al., 2010). With the
exception of MPFC, SZ patients also exhibited overactivation of
DLPFC during social judgment (Mukherjee et al., 2014). During
face-matching paradigms, aberrancies were detected in DLPFC-
amygdala connection using DCM (Diwadkar et al., 2012; Vai
et al., 2015). These findings indicate the importance of ACC,
PFC, and hippocampal abnormalities in the pathophysiology
of SZ.

From the perspective of neurochemical abnormalities of
neurotransmitters or their receptors, regions mentioned above
are in line with studies determining in vivo glutamate and
glutamine concentrations in SZ patients’ brains. Glutamatergic
dysfunction has been implicated in the pathophysiology of
SZ. Chun et al. identified that an SZ-associated microdeletion
disrupted glutamatergic synaptic transmission at thalamocortical
projections to the auditory cortex in SZ mouse models (Chun
et al., 2014). Likewise, a previous study reported increased
levels of glutamate in prefrontal and hippocampal areas in
patients with SZ using magnetic resonance spectroscopy (van
Elst et al., 2005). Magnetic resonance spectroscopy and tissue
protein concentrations sampling SZ patients in vivo and
postmortem brain tissue in vitro, respectively, together suggest
lower glutamate level in dentate gyrus, implicating the excitatory
system within hippocampus in the pathophysiology of SZ (Stan
et al., 2015). With the exception of altered concentration of
glutamate, in DLPFC, decoupling of the sum of glutamate and
glutamine and N-acetylaspartate was observed in SZ patients
(Coughlin et al., 2015). These findings provide strong evidence
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supporting the hypothesis of glutamatergic dysfunction within
PFC and hippocampus in SZ.

From functional aspect, SZ is a mental illness involved in
abnormality of emotional responses and difficulty with social
interactions. Both resting-state functional connectivity analysis
by Mamah et al. (2013) and effective connectivity analyses during
face-matching paradigms by Diwadkar et al. (2012) and Vai
et al. (2015) indicate dysfunction in the connections between
networks involved in cognitive and emotional processing in the
pathophysiology SZ. ACC might interact with other cortical
and subcortical structures as a part of the circuits involved
in the regulation of mental and emotional activity. Hoptman
et al. investigate the construct of urgency in association with
aggression in individuals with SZ or schizoaffective disorder
and its underlying neural circuitry. Their findings revealed that
greater urgency was related to lower cortical thickness and
functional connectivity within the medial/lateral orbitofrontal
and inferior frontal regions, and rostral ACC (Hoptman et al.,
2014). Clinically, patients with chronic SZ often show lack of
motivation and difficulty with decision-making. At the neural
level, the orbitofrontal cortex and ACC are thought to interact,
together, to form a network involved in emotional processing
and mediating emotion and social behavior (Ohtani et al.,
2014). Reductions in FA were observed in connections between
the left anterior medial orbitofrontal cortex and rostral ACC,
and between bilateral posterior medial orbitofrontal cortex
and rostral ACC in SZ patients relative to HCs. In addition,
reduced FAwas correlated withmore severe anhedonia-asociality
and avolition-apathy using the Scale for the Assessment of
Negative Symptoms, which suggests that ACC may be pivotal in
understanding aberrant emotional responses and social behavior
in SZ patients. Finally, cognitive deficits are a defining feature
of SZ, affecting quality of life and functional outcomes in
work, relationships, and independent living. While viewing
faces, SZ patients showed significantly weaker deactivation of
MPFC, including ACC, and decreased activation in the left
cerebellum, compared to controls (Mothersill et al., 2014).
Considering the role of ACC in processing negative emotion,
weaker deactivation of this region in SZ patients while viewing
faces may lead to an elevated perception of social threat. Future
studies examining the neurobiology of cognitive function in
SZ using fMRI may aid in establishing strategy of targeted
treatment.

Additionally, previous studies consistently demonstrated the
key role of the dorsal ACC and DLPFC in cognitive control
(Carter and van Veen, 2007). For these regions aberrant
activation patterns in association with deficient behavioral
performance were observed in SZ (Minzenberg et al., 2009).
Our effective connectivity study showed decreased bilateral
connectivity between ACC and DLPFC in first-episode SZ
patients. Through effective connectivity and white matter
connectivity analysis, combined utilization of DCM and
diffusion tensor imaging provides some support for that
weaker connectivity involved in ACC may be the neural
basis of specific cognitive impairments in SZ (Wagner et al.,
2015). Cognitive deficits are considered as a core feature
of SZ (Elvevåg and Goldberg, 2000). Converging evidence

from fMRI studies may shed light on that ACC and DLPFC
play a crucial role in cognitive function in SZ, albeit the
neural underpinnings of impaired cognition in SZ remain
uncertain.

In addition, as stated previously, spectal DCM has started to
be used in a recent animal studies to disclose the pathophysiology
of SZ. Administration of ketamine disrupted desynchronized
electrical activity between MPFC and hippocampus (Moran
et al., 2015). Our current study also demonstrated hippocampal-
prefrontal hypoconnectivity in vivo in first-episode SZ. Strictly
speaking, SZ patients showed decreased hippocampal-
dorsolateral prefrontal-medial prefrontal connectivity. To
some extent, connections associated with PFC and hippocampus
that we have found, show promise as an intermediate link in this
neural pathway for SZ.

In this study, we found no significant correlation between
these connections with differences and PANSS scores. The lack
of significant correlation may relate to our modest sample size of
SZ patients.

The strengthen of our study is that there may be no potential
confounds related to medications and state of illness due to
first-episode SZ patients. The inclusion criterion minimized
the influences of medication, cohort effects and illness-related
environmental factors. Nevertheless, we acknowledge that there
were several limitations. First, significance in one group and
not in the other group does not imply that there are differences
between these two groups. Group difference was not significant
in our study, which was the major limitation. Second, we enrolled
a large sample size of participants in our study, thus doubling
or tripling the numbers investigated in most previous fMRI
studies. But larger sample and multi-center studies, like some
recent investigations (Ivleva et al., 2013; Skudlarski et al., 2013;
Meda et al., 2014; Bois et al., 2015), are desirable to confirm our
present findings. We hope to extend this research to a larger
patient population, which will increase statistical efficiency and
sensitivity to more subtle changes. Third, effective connectivity
was only measured during the resting state without giving any
tasks. A comparison study at resting state and active state might
highlight the specificity of functional brain changes. Fourth, the
current findings were only based on the changes of BOLD signal
in SZ patients. In addition to BOLD-fMRI, a combination
of multimodalities, including diffusion tensor imaging,
magnetic resonance spectroscopy, electroencephalography,
and positron emission tomography, might further strengthen the
conclusion.

The present study characterized the abnormal ACC-
related connectivity in vivo in first-episode SZ by means of
spectral DCM, revealing anterior cingulate cortico-prefrontal-
hippocampal hyperconnectivity, as well as ACC-related
and hippocampal-dorsolateral prefrontal-medial prefrontal
hypoconnectivity. Spectral DCM revealed abnormal effective
connectivity involving ACC in patients with first-episode SZ.
This suggests the SZ subjects fail to recruit these neural pathways.
This study further provides a link between SZ and dysconnection
hypothesis, creating an ideal situation to associate mechanisms
behind SZ with aberrant connectivity among these cognition and
emotion-related regions.
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Parkinson’s disease (PD) is a neurodegenerative disorder affecting middle-aged and

elderly people. PD can be viewed as “circuit disorder,” indicating that large scale

cortico-subcortical pathways were involved in its pathophysiology. The brain network

in an experimental context is emerging as an important biomarker in disease diagnosis

and prognosis prediction. This context-dependent network for PD and the underling

functional mechanism remains unclear. In this paper, the brain network profiles in 11

PD patients without dementia were studied and compared with 12 healthy controls.

The functional magnetic resonance imaging (fMRI) data were acquired when the

subjects were performing a pseudorandomized unimanual or bimanual finger-to-thumb

movement task. The activation was detected and the network profiles were analyzed

by psychophysiological interaction (PPI) toolbox. For the controls and PD patients, the

motor areas including the primary motor and premotor areas, supplementary motor area,

the cerebellum and parts of the frontal, temporal and parietal gyrus were activated.

The right putamen exhibited significant control > PD activation and weaker activity

during the bimanual movement relative to the unimanual movement in the control

group. The decreased putamen modulation on some nucleus in basal ganglia, such as

putamen, thalamus and caudate, and some cortical areas, such as cingulate, parietal,

angular, frontal, temporal and occipital gyrus was detected in the bimanual movement

condition relative to the unimanual movement condition. Between-group PPI difference

was detected in cingulate gyrus, angular gyrus and precuneus (control > PD) and

inferior frontal gyrus (PD > control). The deficient putamen activation and its enhanced

connectivity with the frontal gyrus could be a correlate of impaired basal ganglia inhibition

and frontal gyrus compensation to maintain the task performance during the motor

programs of PD patients.

Keywords: Parkinson’s disease, putamen, movement, network, functional magnetic resonance imaging
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Introduction

Parkinson’s disease (PD) is a common neurodegenerative
disorder affecting middle-aged and elderly people. PD is related
with aging, heredity, cell dysfunction and environment (Lang and
Lozano, 1998a,b; Samii et al., 2004), but its pathology remains
unclear. The National Institute of Mental Health suggested
that, exploring the brain network profiles and dysfunction
may enhance the understanding of specific bio-behavioral
impairments which underpin the psychiatric disorders with
complex behavioral phenotypes (Insel et al., 2010). Network
dysfunction is emerging as a characteristic of the neural
substrates of multiple psychiatric conditions (Friston, 1998;
Schmidt et al., 2013). Studies over the past decades have
demonstrated that PD can be viewed as “circuit disorder”
or “network dysfunction,” indicating that multiple, large scale
networks were involved in its pathophysiology (Eckert et al.,
2007; Eidelberg, 2009; Göttlich et al., 2013; Zhang et al., 2015).
A combined magnetoencephalographic and subthalamic local
field potential recording research indicated two spatially and
spectrally separated networks, i.e., a temporoparietal-brainstem
network coherent with subthalamic nucleus (STN) in the
alpha (7–13Hz) band, and a predominantly frontal network
coherent in the beta (15–35Hz) band (Litvak et al., 2011).
Resting-state fMRI research indicated that, PD patients at off
state had significantly decreased functional connectivity in the
supplementary motor area, left dorsal lateral prefrontal cortex
and left putamen, and had increased functional connectivity in
the left cerebellum, left primary motor cortex and left parietal
cortex (Wu et al., 2009). It’s believed that the dysfunction
of cortico-striatal-thalamic-cortical loops leads to the motor
symptoms of PD including tremor, akinesia and rigor (Lang and
Lozano, 1998b; Jankovic, 2008) and the cognitive dysfunction
including mild cognitive impairment (MCI; Huang et al., 2007;
Lin et al., 2008; Kwak et al., 2010).

As the initial and most obvious symptoms are movement-
related in the PD course, the motor function and the underlying
cerebral mechanisms have become the focus of PD pathology
research. The changes of the structure and functional network
of basal ganglia, the abnormal oscillations of the neurons in the

basal ganglia and motor-related cerebral cortex (Timmermann
et al., 2003; de Solages et al., 2010), and the abnormal projection
from basal ganglia to cerebral cortex (Lang and Lozano, 1998b)
may relate with the motor dysfunction of PD patients. Besides
basal ganglia, many literatures demonstrated that there exists
abnormality in the large scale cerebral motor functional network
(including cerebellum, motor cortex, frontal gyrus, etc.) of
PD patients. Elevated putamen-external globus pallidus (GP)
and STN-internal GP inputs), internal GPi-thalamus, caudate-
putamen, and internal GPi-pedunculopontine nucleus (PPN)
inputs (Asanuma et al., 2006; Eidelberg, 2009; Mure et al.,
2011), and decreased metabolism in premotor cortex (PMC),
supplementary motor area (SMA), and posterior parietal cortex
(PPC; Asanuma et al., 2006; Ma, 2007; Eidelberg, 2009) were
reported.

In recent years much attention has been devoted to
characterizing the neural networks under multiple conditions

(Friston et al., 1997; Friston, 1998; Yan et al., 2008) and
psychophysiological interaction (PPI) analysis has become more
commonly used in identifying the task-dependent functional
connectivity changes (Deco et al., 2011; O’Reilly et al., 2012).
PPI analysis was originally proposed by Friston et al. (1997), and
promotes the understanding of the brain in terms of networks
and interactions between brain regions (Bullmore and Sporns,
2009; Friston, 2011). PPI aims to identify regions whose activity
is dependent on an interaction between psychological factors
(the task) and physiological factors (the activity of a region of
interest). Researchers have found interesting results using PPI
in cognition such as conflict adaptation (Wang et al., 2015) and
emotion recognition (Pulkkinen et al., 2015), and disease such
as small-fiber neuropathy (Hsieh et al., 2015) and Social Anxiety
Disorder (Cremers et al., 2015). PPI as the brain network in an
experimental context, is emerging as an important biomarker of
interest in disease diagnosis and prognosis prediction. For PD
patients, this context-dependent brain network and the underling
functional mechanism remains unclear.

We speculated that the dysfunctional motor network of
PD patients might exhibit different profiles under different
movement conditions. And considering the importance of
the nuclei in the basal ganglia in PD pathology, they might
play crucial roles in the context-dependent network. To test
these hypotheses, a randomized unimanual or bimanual finger-
to-thumb movement paradigm was designed to evaluate the
impact of movement conditions on the neural networks. The
motor network profiles in PD patients without dementia
were investigated and compared with healthy controls using
PPI analysis with the specific focus on the function of
the basal ganglia. We found reduced putamen-modulation
to the precuneus, cingulate gyrus, and the angular gyrus
in PD patients, which implies the dysfunctional interactions
and impaired basal ganglia inhibition in movements and
hyperactivation/connectivity of the frontal gyrus which might be
the compensation to maintain the task performance during the
motor programs.

Materials and Methods

Subjects
Fifteen PD patients were studied. Four patients were excluded
because they did not follow the instruction correctly during the
experiments. The remaining 11 patients ranged in age from 51 to
81 (61.5± 7.1) years, and included eight males and three females.
The diagnosis of Parkinson’s disease was based on medical
history, physical and neurological examinations, response to
levodopa or dopaminergic drugs, and laboratory tests and MRI
scans to exclude other diseases. Patients were assessed with the
Unified Parkinson’s Disease Rating Scale (UPDRS; Lang and
Fahn, 1989) and Mini-Mental State Examination (MMSE) while
off their medications. None patient had cognitive impairments
(MMSE score were ≥ 21 for the subjects with eighth grade
education, ≥ 23 for the subjects with high school education
and ≥ 24 for the subjects with college education). Twelve
health subjects (eight males and four females) with no history
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of neruological, psychiatric, or medical disorders, aged from
52 to 81 (65.5 ± 10.1) years served as the control group. All
the subjects were right-handed. The clinical and demographic
data are shown in Table 1. Both groups were matched regarding
age (t-test, t = 1.0889, P = 0.1443), gender (Fisher’s exact
test, P = 0.556) and MMSE score (t-test, t = 1.2194, P =

0.1181). All participants gave written informed consent and the
study protocol was approved by the Ethics Committee of Wuhan
General Hospital.

Experimental Design and Image Acquisition
The subjects participated in an auditory-cueing bimanual or
unimanual finger-to-thumb movement task. Three kinds of
movements were elicited by an auditory instruction (move left
hand, move right hand, move both hands) in a pseudo-random
and balanced sequence and stopped by “stop” instruction. Each
movement lasted for 8 s followed by 12 s of rest. The whole
experiment lasted for 360 s. During the experiments the subjects
were instructed to close their eyes and focus their attention as
much as possible. Patients were scanned after their medication
had been withdrawn for 4 h.

Data were acquired in a GE Signa System operating at 1.5 T
with a gradient echo EPI sequence (TR = 2000ms, TE = 40ms,
FOV = 24 cm, matrix = 64 × 64 × 24, slice thickness = 5mm,
gap = 1mm). The 3D structural images were also acquired for
each subject with the parameters TR = 12.1ms, TE = 4.2ms,
FOV = 24 cm, matrix = 256 × 256 × 172, slice thickness =

1.8mm and gap= 0mm.

Data Processing
The dataset was analyzed by SPM8 software package
(www.fil.ion.ucl.ac.uk/spm, Wellcome Department of Cognitive
Neurology). The processing steps for the activation and PPI
analysis were shown in Figure 1. The following steps were
included: (i) spatial preprocessing, to make the data adequate for
the analysis; (ii) activation detection, to find out the activated
areas during the finger-to-thumb movement task; (iii) region
of interest (ROI) definition and PPI variables extraction, to
determine the specific location of the ROI and create the
interaction and the main effects terms; (iv) PPI analysis, to
detect the interaction between the source ROI and experimental
context. In the following, the analysis procedure was elaborated.

Spatial transformation (realignment, normalization) was
performed on the functional images to correct for motion and
normalize to theMontreal Neurological Institute (MNI) template

TABLE 1 | Clinical details and demographics of patients with Parkinson’s

disease and the normal control subjects.

Measure Normal control Subjects with Parkinson’s

subjects (n = 12) disease (n = 11)

Age (years) 65.5 ± 10.1 61.5 ± 7.1

Gender, male:female 8:4 8:3

Duration of disease (years) N/A 4.9 ± 3.9

UPDRS III score (off medication) N/A 20.1 ± 6.3

MMSE score 27.5 ± 1.6 26.5 ± 2.3

brain. It is noted that the magnitude (minimum to maximum)
of the six realignment parameters (i.e., x, y, and z translations,
pitch, roll and yaw angles) of the normal control group were
(0.4216 ± 0.3240), (0.3777 ± 0.2182), (0.9240 ± 0.6210)mm,
(0.6875± 0.4125), (0.4354± 0.3839), (0.5844± 0.4469), degrees
respectively, and of the PD group were (0.3317 ± 0.2256),
(0.2971 ± 0.1174), (0.9141 ± 0.5368)mm, (0.6704 ± 0.4641),
(0.3380± 0.1547), (0.3782± 0.2464) degrees, respectively, which
were not significantly different between two groups (t = 0.7652,
1.0879, 0.0407, 0.0936, 0.7839, 1.3519, P = 0.2263, 0.1445,
0.4840, 0.4632, 0.2209, 0.0954, respectively). The 3D structural
images were utilized to determine the normalization parameters.

Three task-related regressors for left or/and right hand
movement conditions were modeled as the boxcar vectors
convolved with a canonical hemodynamic reference waveform.
Low frequency components were removed using a high-pass filter

fMRI dataset

Spatial preprocessing
Realignment SmoothNormalisation

Activation map for each subject

PPIs and PPI difference

between two groups

Random effects analysis

Region of interest (ROI) definition

Psychophysiological interaction (PPI) variable creation

PPI detection

PPI general linear

model specification
Statistical inferenceParameter estimation

PPI map for each subject

Random effects analysis and

group PPI detection

Activation detection

General linear model

specification
Statistical inferenceParameter estimation

Activation and activation

difference between two groups

 

FIGURE 1 | Flow diagrams showing the processing steps for activation

and PPI analysis.
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(128 s) and the data were smoothed spatially with a Gaussian filter
(full-width half-maximum (FWHM)= 8mm). An autoregressive
AR(1) model was included to account for serial correlation. The
activation corresponding to each condition of each subject was
detected and submitted to a second-level random effects analyses
using the model of analysis of variance (ANOVA). Ages and
sexes of the subjects were included as covariates. The activation
of each group under three conditions were detected, and the
activation difference between conditions (left+ right vs. both) or
groups (PD vs. control) was tested by applying appropriate linear
contrasts to the ANOVA parameter estimates (t-test, P < 0.05,
family-wise error (FWE) correction, extent threshold k > 10).

The regions with activation difference between unimanual
movement and bimanual finger-to-thumb movement were
defined as the ROIs. Time series from the effects of interest
contrast were extracted from the ROIs, which provides an
estimate of the continuous physiological response of the specific
ROI (one main effect in the PPI model). The extracted time
series was subsequently convolved with the contrasts of interest
reflecting effects of differential movement loads, specifically, left
handmovement + right handmovement> both handmovement
or vice versa (the other main effect in the PPI model). The
resultant interaction term was positively weighted to assess the
facilitating influence of the ROI on other areas. The first level PPI
maps from each subject were submitted to a second-level random
effects analyses (ANOVA). The group PPIs and the PPI difference

between groups were detected using t-test with a slightly more
liberal threshold of P < 0.001 (uncorrected, extent threshold k >

10). Individual voxel peaks in significant clusters are reported in
terms of MNI coordinates. The anatomical structures and the BA
number were obtained using MRIcron (Rorden et al., 2007).

Results

Activation of Two Groups under Three Conditions
The group and condition specific activations are shown in
Figure 2 and the details are listed in Table 2. For the controls,
in the left or right hand movement conditions, the contralateral
sensorimotor (BA 1, 2, 3), primary motor (M1, BA 4) and
premotor (BA 6) areas, SMA (BA 6), and the ipsilateral
cerebellum were activated. In addition, parts of the frontal (BA
44), temporal (BA 21, 22) and parietal gyrus and basal ganglia
(putamen) were activated. In the bimanual movement condition,
the bilateral motor cortical areas and cerebellum, the frontal,
temporal and parietal gyrus and putamen were activated.

For the PD patients, in the left or right hand movement
conditions, the contralateral primary motor (M1, BA 4) and
premotor (BA 6) areas, SMA, the ipsilateral cerebellum, parts of
the frontal, temporal, parietal and cingulate gyrus were activated.
In the bimanual movement condition, the left premotor area and
bilateral cerebellum, the frontal, temporal, parietal and occipital
gyrus were activated.

Left hand movement Right hand movement Bimanual movement

P
D

C
o
n
tr
o
l

FIGURE 2 | Activation of the control and PD groups in the unimanual or bimanual finger-to-thumb movement experiments (SPM8, t-test, P < 0.05,

FWE-corrected, extent threshold k > 10). The names of the movement trials are shown in the upside. The subject groups are shown in the left side. PD,

Parkinson’s disease.
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TABLE 2 | Anatomical structure, stereotaxic coordinates, and Z score of the activated areas in the control or patient groups.

Anatomical

structure

Left hand movement Right hand movement Both hand movement

Peak location Z score Cluster

size

(voxels)

Peak location Z score Cluster

size

(voxels)

Peak location Z score Cluster

size

(voxels)x y z x y z x y z

CONTROL

Premotor/SMA 8 4 62 6.18 470 −26 −16 62 6.39 – 40 −26 64 7.15 1914

Primary motor/

Sensorimotor

40 −26 64 7.83 5250 −38 −22 62 7.52 2517 −38 −22 62 7.08 2642

−62 −22 20 4.96 80 −58 −22 22 5.99 380 26 −30 70 5.68 –

– – – – – 66 −20 20 4.95 71 – – – – –

Cerebellum −18 −54 −26 6.83 1075 14 −50 −14 6.71 872 −20 −52 −30 6.80 2102

– – – – – −20 −62 −24 4.86 52 14 −48 −18 6.46 –

Frontal 56 16 10 5.58 339 6 4 62 6.12 551 38 8 32 5.54 125

46 −4 58 5.93 −2 −10 62 5.15 139 – – – – –

Temporal −46 −64 6 5.76 124 −46 −64 6 6.79 756 −64 −40 16 5.76 267

−48 −38 24 5.26 171 64 −30 0 5.68 728 60 −36 20 5.40 333

Parietal – – – – – −46 −36 26 5.75 328 −64 −24 18 5.19 116

Putamen 28 −10 8 6.65 1592 −24 4 8 6.54 721 −22 4 12 5.71 239

−22 2 14 5.69 315 30 8 10 6.19 1000 26 12 8 5.71 758

PD

Premotor/SMA 38 −26 66 5.78 717 −26 −16 60 6.11 1116 −26 −18 56 7.57 –

M1 32 −22 50 4.99 – −36 −28 60 5.83 – – – – – –

Cerebellum −14 −50 −26 5.84 422 −38 −70 −22 4.51 10 22 −54 −28 5.14 253

– – – – – 22 −60 −16 4.66 25 −18 −52 −30 5.96 –

Frontal 6 4 60 5.85 708 −6 −8 62 5.95 739 −30 38 18 6.49 1003

−30 38 18 5.44 121 30 50 24 4.65 43 46 6 38 6.01 435

Temporal −62 −36 8 4.68 26 −54 −56 12 5.45 179 −52 −58 8 5.97 628

−56 −60 18 5.45 196 −52 −30 18 4.87 74 60 −60 4 5.45 47

Parietal – – – – – −10 −58 66 5.14 367 −10 −58 66 5.13 316

– – – – – – – – – – −36 −52 56 4.84 44

Cingulate −8 2 50 5.20 – −8 0 50 5.36 180 −4 −42 12 6.07 2252

−4 −42 12 5.22 203 −4 −42 12 5.52 377 – – – – –

Occipital – – – – – – – – – – 48 −74 −14 5.71 109

– – – – – – – – – – 14 −92 −8 4.85 51

Thalamus 4 −16 10 5.08 169 – – – – – – – – – –

For each anatomical structure, the representative regions in the left and right hemispheres are listed. The height and extent thresholds were set at P < 0.05, FWE-corrected, k > 10.

The location is in MNI coordinates. PD, Parkinson’s disease; SMA, supplementary motor area; M1, primary motor area.

Activation Difference within and between Two
Groups
The within-group activation difference (left + right > both)
was found in putamen (with peak voxel at [26, 18, −4]
and [32, 8, 10]) in the control group (Figure 3) and was
not found in the PD group. Activation difference between
two groups under left or right handmovement conditions
are shown in Figure 4. The control > PD activation
mainly located in putamen in the basal ganglia. The PD >

control activation mainly located in the superior frontal
and temporal gyrus. There was no activation difference
between two groups under the bimanual movement
condition. The details of the activation difference are listed
in Table 3.

PPIs Corresponding to Putamen in the Two
Groups
From Figures 3, 4 and Table 3, it can be seen that putamenmight
play an important role in the movement coordination of the both
hands. The subject-specific PPIs corresponding to putamen (with
peak voxel at [26, 18,−4] and [32, 8, 10]) were detected and then
submitted to a second-level random effects analyses of variance
(P < 0.001, uncorrected). The group-specific PPIs are shown in
Figure 5 and the details are listed in Table 4. For the controls,
decreased modulation of putamen on cingulate, parietal, frontal,
occipital, angular and temporal gyrus, putamen and thalamus
were detected in the bimanual movement condition relative to
the unimanual movement condition. While for PD patients,
the decreased modulation of putamen were detected in frontal
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and occipital gyrus, extra-nuclear, thalamus, putamen and
caudate.

PPI Difference between Two Groups
Figure 6 and Table 5 depict the difference of PPIs corresponding
to putamen between control and PD groups (P < 0.001,
uncorrected), which included cingulate gyrus, angular gyrus,
superior occipital gyrus and precuneus (control > PD) and
inferior frontal gyrus (PD > control).

Discussion

General Characteristics of the Activation and
Network Profiles of Control and PD Groups
For the controls and PD patients, the motor areas including the
primary motor and premotor areas, SMA, and the cerebellum
were activated in the movement conditions. These motor areas
play the important roles in processing sensory information, and

-4 +10

PutPut

Left+right > both (Control)

FIGURE 3 | Activation difference in the control group (left + right >

both hand movement, SPM8, ANOVA, P < 0.05, FWE-corrected, extent

threshold k > 10) with the peak Z score at [26, 18, −4] and [32, 8, 10].

The images were superimposed on a standard statistical parametric mapping

anatomical template brain in neurological convention with z coordinate in MNI

space for each slice shown in the right side. Put, Putamen.

planning or executing hand movement (Moritz et al., 2000;
Umests et al., 2002). Besides these areas, parts of the frontal,
temporal and parietal gyrus were activated in both groups. As
for the activation difference between two groups, generally the
sizes of the activated areas, especially the motor cortex, were
larger in the control group than those in the PD group, which
was in accordance with the former results (Wu et al., 2010).
The putamen was strongly and bimanually activated in control
group, but not activated in the PD group in the movement
conditions (Figure 2, Table 2). The right putamen exhibited
significant control> PD activation difference (Figure 4,Table 3).
In addition, the right putamen seemed to have weaker activity
during the bimanual movement relative to the unimanual
movement in the control group (Figure 3, Table 3). All these
results implicated the importance of putamen, especially the right
putamen, in hand movement and the coordination of two hands
and its dysfunction in PD. The activation of the left frontal and
temporal gyrus was stronger apparently in PD group than that in
control group (Figure 4, Table 3).

The control of the hands involves a distributed network
in which interactive processes task place between many
neural assemblies to ensure efferent organization and sensory
integration (Wu et al., 2010). Hence exploration on the
interaction among brain regions may be more important than
simply detecting the activation areas in understanding the
coordination of the two hands. In consideration of the important
finding of putamen with significant within-group and between-
group activation difference and our hypothesis on the crucial
role of the basal ganglia in the context-dependent network, the
PPIs corresponding to putamen were explored. For the controls,
decreased modulation of putamen on cingulate, parietal, frontal,
occipital, angular and temporal gyrus, precuneus, putamen, and
thalamus were detected in the bimanual movement condition
relative to the unimanual movement condition. While for PD
patients, the decreased modulation of putamen were detected

+6 +8 +10 +10 +12

-10 -8 +20-16 +8 +20

+8

Left hand movement Right hand movement

Control

>

PD

PD

>

Control

Put Put Put

sFro

iFro

mTem

sFro

sTem

FIGURE 4 | Activation difference between control and PD groups in the left hand and/or right hand movement conditions (SPM8, ANOVA, P < 0.05,

FWE-corrected, extent threshold k > 10). The images were superimposed on a standard statistical parametric mapping anatomical template brain in neurological

convention with z coordinate in MNI space for each slice shown in the right side. PD, Parkinson’s disease; Put, putamen; mTem, medial temporal gyrus; iFro, inferior

frontal gyrus; sFro, superior frontal gyrus; mFro, medial frontal gyrus; sTem, superior temporal gyrus.
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TABLE 3 | Anatomical structure, stereotaxic coordinates, and Z score of the different peak areas between the activated area in the control or patient

groups.

Anatomical structure BA Peak location Z score Cluster size (voxels)

x y z

LEFT HAND MOVEMENT

Control > PD Putamen – 30 −12 10 3.77 81

Putamen – 30 12 6 3.67 116

PD > Control Superior frontal 10 −20 62 20 4.88 61

Inferior frontal 45 −52 30 8 4.60 48

Middle temporal gyrus 20 −58 −14 −16 3.70 31

RIGHT HAND MOVEMENT

Control > PD Putamen – 30 12 8 4.04 123

Putamen – −24 2 12 3.38 20

PD > Control Superior frontal 10 −20 62 20 4.34 39

Superior temporal gyrus 48 −46 2 −10 3.73 55

CONTROL

left +right > both hand movement Putamen – 26 18 −4 4.84 30

Putamen – 32 8 10 4.73 41

The height and extent thresholds were set at P < 0.05, FWE-corrected, k > 10. The location is in MNI coordinates. PD, Parkinson’s disease; BA, Brodmann’s area.

Control PD

FIGURE 5 | PPIs corresponding to putamen in control and PD groups (SPM8, ANOVA, P < 0.001, uncorrected, extent threshold k > 10). PD, Parkinson’s

disease.

in frontal and occipital gyrus, thalamus, putamen, and caudate
(Figure 5, Table 4). For both groups, the PPIs corresponding
to putamen included not only some nucleus in basal ganglia,
such as putamen, thalamus and caudate, but also some cortical
areas, such as frontal and occipital gyrus. Between group PPI
difference was detected in cingulate gyrus, angular gyrus, and
precuneus (control > PD) and inferior frontal gyrus (PD >

control). See Figure 6, Table 5. Generally the PPI scope in
the control group was much larger. Several studies reported
the relatively reduced functional connectivity in PD patients
(van Eimeren et al., 2009; Skidmore et al., 2011; Hacker et al.,
2012). Specifically in accordance with our results, the functional
connectivity corresponding to putamen seemed weaker in PD
patients (Hacker et al., 2012). Lower striatal correlations with
thalamus, midbrain, pons and cerebellum in PD patients (Hacker
et al., 2012), decreased activity in the putamen and increased

cortical activity in the frontal lobe (Disbrow et al., 2013) have
been reported. In our study, the PPI map of the control group
was generally symmetric except in the putamen and thalamus,
while the PPI map of the PD group was obviously asymmetric,
which was similar with former observation in the functional
connectivity of PD patients (Barnes et al., 2010; Hacker et al.,
2012).

Key Regions in the Activation and Network
Profiles of Control and PD Groups
In the activation and network profiles of the control and PD
groups, two regions, i.e., the putamen and frontal regions seemed
to play the specific roles. The putamen exhibited the control >

PD activation and left + right > both hand movement activation
within the control group. The frontal gyrus exhibited PD >

control activation and connectivity with the putamen. These two
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TABLE 4 | Anatomical structure, stereotaxic coordinates, and Z score of

the peak areas in the PPI profiles in the control or patient groups.

Anatomical structure BA Peak location Z score Cluster

size

(voxels)x y z

CONTROL

Cingulate 23 10 −32 34 4.55 1447

Precuneus 7 −4 −62 36 4.10 –

Superior parietal 19 −22 −84 48 4.04 84

Precentral 44 −40 2 28 3.77 52

Putamen − 22 14 2 3.67 42

Inferior frontal 45 −46 28 16 3.55 12

Superior occipital 19 28 −84 42 3.51 31

Angular 39 −36 −62 30 3.47 23

Angular 39 44 −64 30 3.40 179

Middle temporal 37 54 −60 16 3.32 –

Thalamus – −14 −14 4 3.29 11

PD

Putamen – 26 18 −4 4.45 21

Caudate – −12 14 4 3.97 73

Inferior frontal 47 −40 36 −8 3.80 98

Superior occipital 17 24 −98 10 3.79 63

Caudate – 18 10 8 3.75 148

Putamen – 28 2 6 3.71 33

Thalamus – −12 −18 8 3.30 10

The height and extent thresholds were set at P< 0.001, uncorrected, k> 10. The location

is in MNI coordinates. PD, Parkinson’s disease; BA, Brodmann’s area.

regions are specifically crucial in the cortico-subcortical network
and frontal network of the PD patients (Litvak et al., 2011).

The human brain network of motor function is composed
of basal ganglia, cerebral motor cortex and cerebellum, among
which the basal ganglia connect dorsal thalamus, ventromedial
nucleus, premotor area and prefrontal cortex, and play the
critical role in the complex cortical-subcortical circuits, i.e., the
basal ganglia-thalamus-cortex circuits (Alexander and Moeller,
1994). Many researchers have emphasized the pathophysiology
of PD as degeneration of dopaminergic nigrostriatal neurons
with consequent dysfunction of these circuits (Lang and Lozano,
1998b; Jankovic, 2008; Hacker et al., 2012). The basal ganglia
serve motor control functions such as scaling or focusing of
movements (Alexander and Crutcher, 1990), and sustain the
balance between facilitation and suppression of movements
(Mink, 1996). Previous finding on functional connectivity
indicated that the dorsal striatum (caudate and putamen)
preferentially receives inputs from motor, sensory and premotor
cortices, the ventral striatum (the nucleus accumbens and the
olfactory tubercle) receives afferent inputs from cingulate cortex
(Graybiel et al., 1994; Brooks, 1995). Specifically the putamen is
the projection site of the cortical inputs into the basal ganglia
and its activity is mainly movement related instead of cognition
related (Kraft et al., 2007). Histologically, afferent fibers from the
dorsal part of the putamen project somatotopically to the lateral
parts of the substantia nigra (SN), which relates to the motor
circuit system, and fibers from the caudate project to the rostral

nigra, which relates to cingulate and association cortical system
(Parent and Hazrati, 1994). In accordance with these results, we
observed the putamen modulation on the thalamus, cingulate
gyrus and the association area in control group (Table 4). The
putamen activity and its modulation to cingulate gyrus and the
association area seemed larger in control group than in PD group
(Tables 3, 5).

The functional role of the basal ganglia in bimanual
coordination isn’t quite clear till now. Putaminal activity was
the greatest during the period of motor task initiation and was
critical in the neural control of bimanual coordination (Kraft
et al., 2007). An animal experiment found that the majority of the
58 recorded neurons in the basal ganglia exhibited a significant
modulation of activity in unimanualtrials irrespective of the
movement hand and one-third of the neurons exhibited activity
reflecting a bimanual synergy, suggesting a possible role for
basal ganglia in bimanual co-ordination (Wannier et al., 2002).
In PD patients, the disturbed effective connectivity between
prefrontal cortex, premotor areas, and putamen were reported
(Ceballos-Baumann et al., 1994; Rowe et al., 2002; Wu et al.,
2010). As the important node in the direct and indirect efferent
pathways in the basal ganglia, the striatum can influence the basal
ganglia output and exert either excitatory or inhibitory effect
on the movement behavior including action selection as well as
execution (Disbrow et al., 2013; Freeze et al., 2013). In PD, the
abnormal interconnection among putamen, SN and GP causes
excessive inhibition of the thalamus, and results tremors and
difficulty in voluntary movements of the patients (DeLong and
Wichmann, 2007). Because the putamen had stronger activation
in the unimanual movement than bimanual movement in the
control group, we speculated that the putamen mainly had the
inhibitory effect and its function should be weakened to include
more areas in bimanual movement. The control > PD putamen
activation is reasonable considering that the weakened putamen
inhibition would result in more involuntary movement in PD
patients.

The activation of the left superior frontal gyrus and the
connectivity between the left inferior frontal gyrus and putamen
was stronger in PD group than that in the control group.
These results implied the abnormal function of the left frontal
gyrus in PD patients. The activity of the frontal area is related
with the shift of the attention and the executive control,
which are the crucial pre-movement processes (Wu et al.,
2010; Disbrow et al., 2013). There is evidence indicating the
hemodynamic responses in the mesiofrontal and sensorimotor
cortex, putamen/pallidum, thalamus, and cerebellum and the
participation of frontal area in the network for motor preparation
(Riecker et al., 2005), movement initiation (Toxopeus et al.,
2012), amplitude adjustment (Fabbri et al., 2012; Davare et al.,
2015), and speed adjustment (Michely et al., 2015). It is noted
that the executive functions of the PD patients may be affected
even at early stages of the disease which would result in impaired
motor planning, response preparation, and inhibition (Obeso
et al., 2011; Toxopeus et al., 2012; Michely et al., 2015). While
we noted that in our research, the patients reported no obvious
difficulty in performing the unimanual or bimanual finger-to-
thumb movements and the preserved movement performance
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+34 +36 +42

Control > PD

CG

PreAng
Pre

+48 -6

iFro

PD > Control

sOc

FIGURE 6 | PPI difference between control and PD groups (SPM8, ANOVA, P < 0.001, uncorrected, extent threshold k > 10). The images were

superimposed on a standard statistical parametric mapping anatomical template brain in neurological convention with z coordinate in MNI space for each slice shown

in the right side. PD, Parkinson’s disease; CG, Cingulate gyrus; Ang, Angular gyrus; Pre, Precuneus; sOc, superior occipital gyrus; iFro, inferior frontal gyrus.

TABLE 5 | Anatomical structure, stereotaxic coordinates, and Z score of the different peak areas between the PPI profiles in the control or patient groups.

Anatomical structure BA Peak location Z score Cluster size (voxels)

x y z

Control > PD Angular 39 52 −70 38 3.84 26

Superior occipital 7 −24 −84 48 3.82 10

Cingulate 23 10 −32 34 3.71 27

Precuneus 7 8 −50 42 3.50 20

Precuneus 7 0 −64 36 3.18 19

PD > Control Inferior frontal 47 −38 32 −6 3.45 22

The height and extent thresholds were set at P < 0.001, uncorrected, k > 10. The location is in MNI coordinates. PD, Parkinson’s disease; BA, Brodmann’s area.

was observed. The hyperactivation/connectivity of the prefrontal
cortex was suggested to constitute a compensatory mechanism
in the patients’ hypodopaminergic state to maintain the task
performance at normal levels (Rowe et al., 2002; Wu et al.,
2010; Michely et al., 2015). We spectulated that the stronger
activation and connectivity with putamen of the left frontal gyrus
may express the compensatory neuroplasticity during the motor
programs.

Limitations and Conclusion
The present study is limited principally by the relatively small
size of the subject samples. This limitation is partially because
of the rigorous quality assurance standards applied to the fMRI
data. However, our results need to be replicated in much larger
size of samples. Furthermore, because of the small sample size,
the patient group can’t be subdivided according to their motor
symptoms and phenotypes, which have been demonstrated to
functionally relate with the brain activities (Rajput et al., 2008;
Bunzeck et al., 2013). Further studies might help in establishing
which pathological features are common and different between
motor phenotypes.

In contrast to cortical and cerebellar activity, the activity
of the basal ganglia is more inconsistently reported in fMRI
motor studies (Lehéricy et al., 2006), which may be caused
by small signal change in the subareas (for example about
0.5% in the putamen; Lehéricy et al., 2006), the movement
paradigm (externally or internally generated), the imaging
resolution inefficiency to discriminate the substructures (GP vs.
putamen) of basal ganglia (Scholz et al., 2000). It’s possible that
SN degeneration is common to all the PD patients, but the

factors in other parts of the basal ganglia distinguish between
phenotypes (Rajput et al., 2008; Bunzeck et al., 2013). Several
studies have indicated that there existed different grades of
connectivity depending on the striatal subdivision, such as
posterior putamen > anterior putamen connectivity with the
brainstem (Hacker et al., 2012). In our research, the dysfunction
of the putamen was observed, but the further exploration within
this region was not performed. In addition, when detecting PPI
and PPI difference, we applied the uncorrected hypothesis test.
These limitations are subject to the current research condition
that only the 1.5T MRI scanner with the relatively low signal-
to-noise ratio (SNR) is available in our hospital, which has the
inefficient spatial resolution and can only generate the signal with
small changes in these substructures of the basal ganglia. MRI
scanner with higher magnetic field strength or the multi-modal
neuroimaging is promising to solve these issues.

There exists the formal possibility that the drug
discontinuance time (4 h) might be not long enough to eliminate
the medication effects. We didn’t request the subjects to
withdraw the drug for 1 day or to take their usual medication like
other research (Hacker et al., 2012) based on the consideration
to fulfill a tradeoff between the impact of head motion on
imaging and the impact of medication on data analysis. This
warrants the further research to include both the medicated and
unmedicated states. The fMRI studies of the unmedicated (drug-
naive) patients are challenging and some powerful regression
techniques might help to reduce the motion-related artifacts
(Helmich et al., 2010). Further studies might examine how
PPI differences change depending on medication status and
types.
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In this paper, the brain network profiles in 11 PD patients
without dementia were studied and compared with 12
healthy controls. The right putamen exhibited significant
control > PD activation difference and weaker activity
during the bimanual movement relative to the unimanual
movement in control groups. The PPIs corresponding to
the putamen (with peak voxel at [26, 18, −4] and [32,
8, 10]) were explored. Between group PPI difference was
detected in cingulate gyrus, angular gyrus and precuneus
(control > PD) and inferior frontal gyrus (PD > control).
PD patients exhibited reduced putamen activation as well

as modulation to the cingulate gyrus, angular gyrus, and
precuneus during the finger-to-thumb movement, which
implies the impaired basal ganglia inhibition in movements.
The hyperactivation/connectivity of the frontal gyrus is the
compensation to maintain the task performance during the
motor programs.
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Brain network dysfunction is emerging as a central biomarker of interest in psychiatry,
in large part, because psychiatric conditions are increasingly seen as disconnection syn-
dromes. Understanding dysfunctional brain network profiles in task-active states provides
important information on network engagement in an experimental context. This in turn
may be predictive of many of the cognitive and behavioral deficits associated with com-
plex behavioral phenotypes. Here we investigated brain network profiles in youth with
obsessive-compulsive disorder (OCD), contrasting them with a group of age-comparable
controls. Network interactions were assessed during simple working memory: in particu-
lar, we focused on the modulation by the dorsal anterior cingulate cortex (dACC) of cortical,
striatal, and thalamic regions. The focus on the dACC was motivated by its hypothesized
role in the pathophysiology of OCD. However, its task-active network signatures have not
been investigated before. Network interactions were modeled using psychophysiological
interaction, a simple directional model of seed to target brain interactions. Our results
indicate that OCD is characterized by significantly increased dACC modulation of cortical,
striatal, and thalamic targets during working memory, and that this aberrant increase in
OCD patients is maintained regardless of working memory demand.The results constitute
compelling evidence of dysfunctional brain network interactions in OCD and suggest that
these interactions may be related to a combination of network inefficiencies and dACC
hyper-activity that has been associated with the phenotype.

Keywords: dorsal anterior cingulate cortex, obsessive-compulsive disorder, network analysis, working
memory, fMRI

INTRODUCTION
Obsessive-compulsive disorder (OCD) is a commonly occurring
childhood and adolescent-onset neuropsychiatric disorder. It is
characterized by obsessions (recurrent and persistent thoughts
that typically induce marked distress) and compulsions (repeti-
tive behaviors aimed at alleviating distress). OCD represents the
upper extreme of an underlying continuous trait distribution
encompassing obsessive-compulsive behaviors common in the
general population that are heritable and cross traditional diag-
nostic boundaries. Thus, OCD represents a clinical “end-point”
for a commonly observed trait (~45% of adolescents report OCD
symptoms) (Berg et al., 1988; Apter et al., 1996). The 1-year inci-
dence of OCD and sub-clinical OCD in adolescents is ~0.7 and
8.4%, respectively (Valleni-Basile et al., 1996). These relatively high
rates of incidence and the association with a trait evident in the
general population emphasize the importance of characterizing
biological mechanisms underlying OCD. In this report, we aim

Abbreviations: dACC, dorsal anterior cingulate cortex; FSTC, frontal striatal
thalamic circuits; OCD, obsessive-compulsive disorder; PPI, psychophysiological
interaction.

to characterize these biological mechanisms by investigating brain
network interactions in OCD and their differences from typical
healthy controls.

Understanding brain network profiles and brain network dys-
function is a central theme of interest in clinical neuroscience. As
suggested by the National Institute of Mental Health (Insel et al.,
2010), such a focus may lead to an enhanced understanding of
specific bio-behavioral impairments that underpin the emergence
of complex behavioral phenotypes which are classified as psychi-
atric disorders. Indeed, understanding network dysfunction, in
particular, is emerging as a leading framework for characterizing
the neural substrates of multiple psychiatric conditions (Friston,
1998; Stephan et al., 2006; Almeida et al., 2009; Shaw et al., 2009;
Diwadkar, 2012; Schmidt et al., 2013).

Obsessive-compulsive disorder, like most neuropsychiatric
conditions, often has its origins in childhood and adolescence
when brain network function is still maturing (Paus et al.,
2008). Ensuing disordered neurodevelopmental trajectories (in
the absence of adaptive responses) may in turn mediate the
continued expression of symptoms through adolescence and into
early adulthood (Tottenham and Sheridan, 2009). Furthermore,
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the complex patterns of OCD symptoms are linked to the inability
to disengage behaviors from intrusive thoughts, implying aber-
rantly increased inhibitory control (Bari and Robbins, 2013).
These patterns are highly suggestive of dysfunctions in control
mechanisms within relevant brain networks (Piras et al., 2013). In
this context, the role of the dorsal anterior cingulate cortex (dACC)
assumes significance.

The dACC is positioned as a principal control region in the
brain (Paus, 2001) that by itself, or through its mediation of
cortical-striatal networks, exercises aspects of cognitive and motor
control (Bakshi et al., 2011). The region has been of particular
interest in OCD: glutamate dysregulation in the anterior cingu-
late and striatum has been implicated in pediatric OCD patients
(Rosenberg et al., 2000, 2004). Altered glutamate concentrations
may be linked to dysfunctional fMRI responses during tasks of
behavioral engagement and disengagement. For instance, during
conflict processing and action monitoring, OCD subjects evince
higher activation in regions including the anterior cingulate cortex
and the striatum (Fitzgerald et al., 2005; Maltby et al., 2005; Marsh
et al., 2014) that may provide functional expressions of dACC
dysfunction in the illness. A question of interest is whether these
hyper-activations in the dACC are associated with dysfunctional
network profiles.

Network models of fMRI have been applied in OCD. However,
a principle focus of network-analyses of in vivo imaging data has

been on the classification of resting state functional connectivity
within (and across) cortical, limbic, striatal, and cerebellar net-
works (Harrison et al., 2009; Peng et al., 2014). These analyses
have been notable as they have revealed categorical and develop-
mental distinctions in resting state functional connectivity (rsFC)
between OCD and typical controls in frontal, striatal and thala-
mic (FSTC) circuits (Fitzgerald et al., 2011). rsFC results are not
directly informative about dysfunctional dACC-related profiles in
a task-active state. For instance, the relationship between resting
state functional connectivity (rsFC) and task-dependent functional
interactions between regions remains uncertain (Stephan, 2004)
and experimental analyses of within subject data have been equiv-
ocal (Rehme et al., 2013). Thus rsFC and the low-frequency bold
signals it correlates between provide a complimentary snapshot
of pathology; task-active analyses of functional network interac-
tions are important for assessing a measure of network dynamics.
Moreover, a separate question of interest is whether dysfunctional
activation and brain network profiles in OCD are observed in
tasks not involving conflict monitoring. Such evidence will pro-
vide strong support for general network based dysfunction in
the disorder extending beyond highly circumscribed behavioral
domains.

We had two principal aims in this study (summarized in
Figure 1): (a) to investigate network profiles originating in
the dACC in the task-active state using psychophysiological

FIGURE 1 | A framework for assessing dysfunctional activation and
dACC-related network profiles of cortical, striatal, and thalamic networks
in OCD. (A) The two panels depictive activation-based and seed-based
approaches to identifying function and dysfunction. The equations represent
basic linear model formalisms for each class of models. Note the convolution
term (y 0 ×u) in the PPI based model that accounts for seed (y 0 =dACC)

modulation of targets in the task-oriented (u=working memory > rest)
context. The regions of interest are schematically depicted on the mid-sagittal
surface. The second figure schematically depicts the modulatory effects of
the dACC assessed using psychophysiological interaction. (B) The factorial
design space used for the study that assessed the effects of task-demand
(1Back vs. 2Back) crossed with group.
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Table 1 |The table depicts the demographics for healthy control (HC) and OCD participants.

M/F Mean age Range Height (inches) Weight (lbs) Handedness

(R/L/M)

CY-BOCS (T ) CY-BOCS (O) CY-BOCS (C )

Typical controls (n=27) 18/9 17.4 (3.14) 12–21 67.3 (4.8) 147.8 (52.9) 24/2/1

OCD (n=18) 11/7 17.2 (3.33) 11–21 65.6 (4.3) 146.3 (60) 17/1/0 31/16 (4.5/9.4) 15/8 (2.7/4.8) 16/8 (2.7/4.9)

Groups did not differ in terms of age (t=0.32, p=0.75), height (t= 1.22, p=0.23), or weight (t=0.08, p=0.94). Also comparable were gender (χ2
=0.15, p=0.70)

and handedness frequencies (χ2
=0.76, p= 0.68). Values in parenthesis represent SD. For lifetime CY-BOCS (lifetime/current): T=Total symptoms, O=Obsessive

Symptoms, C=Compulsive symptoms.

interaction (PPI) (Friston et al., 1997; O’Reilly et al., 2012), PPI is a
simple framework within the general linear model for investigating
contextual modulation of targets (e.g., regions within FSTC) by a
seed (e.g., dACC) in a task-active context; (b) to investigate these
profiles during parametrically manipulated verbal working mem-
ory, (Casey et al., 1995; Diwadkar et al., 2011, 2013), a domain that
provides a rich window for investigating normal and dysfunctional
activation and network profiles in the FSTC.

MATERIALS AND METHODS
PARTICIPANTS
Eighteen participants with a diagnosis of OCD and 27 controls
participated in the fMRI studies (see Table 1). All participants
and their parents were interviewed with the Schedule for Schizo-
phrenia and Affective Disorders for School-Aged Children-Present
and Lifetime Version and Schedule for Obsessive-Compulsive and
Other Behavioral Syndromes (Wolff and Wolff, 1991; Kaufman
et al., 1997). The lifetime (maximum) and current severity of
OCD were assessed in the patients with a modified version of
the Children’s Yale-Brown Obsessive Compulsive Disorder Scale
(Goodman et al., 1989; Scahill et al., 1997). Lifetime and current
axis I diagnoses were made independently by two clinicians (David
R. Rosenberg, Gregory L. Hanna) using all sources of informa-
tion according to DSM-IV criteria. All patients with OCD had a
total lifetime CY-BOCS score of at least 20. Exclusion criteria for
patients and controls included lifetime history of psychosis, bipo-
lar disorder, substance abuse or dependence, anorexia or bulimia
nervosa, epilepsy, head injury with sustained loss of consciousness,
Huntington’s disease, dyskinesia, chronically disabling medical ill-
ness, autism, mental retardation, or a score >15 on the lifetime
version of the Social Communication Questionnaire. Controls
were free of all psychiatric illness. Legal guardians provided written
informed consent prior and children gave written assent prior to
participating in the study. The Human Subjects Investigative com-
mittee at Wayne State University and the University of Michigan
approved the protocol and all methods therein.

fMRI
Gradient echo EPI fMRI data acquisition was conducted at Vaitke-
vicius Magnetic Resonance Centre on a 3T Siemens Verio sys-
tem using a 12-channel volume head coil (TR: 2.6 s, TE: 29 ms,
FOV: 256 mm× 256 mm, acquisition matrix: 128× 128, 36 axial
slices, voxel dimensions: 2 mm× 2 mm× 3 mm). In addition, a 3D
T1-weighted anatomical MRI image was acquired (TR: 2200 ms,
TI: 778 ms, TE: 3 ms, flip-angle= 13°, FOV: 256 mm× 256 mm,

FIGURE 2 | Within group changes in activation profiles as a function of
load are depicted on identical ascending mosaics of axial views. The
significant clusters (p < 0.05, cluster level) show significant increases in
activation with increases in working memory related load. As seen, these
increases are evident within both (A) healthy control and (B) OCD groups.
These activation profiles establish within group effects of memory load
across previously implicated load sensitive working memory related
regions. These include dorsolateral prefrontal cortex (dPFC), the dorsal
anterior cingulate (dACC), and the parietal cortex.
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256 axial slices of thickness= 1.0 mm, matrix= 256× 256). A
neuroradiologist reviewed all scans to rule out clinically significant
abnormalities.

During fMRI, subjects were positioned with adjustable padded
restraints employed for head stabilization. Stimuli were rear-
projected using an IFIS-SA presentation system (MRI Devices),
and subjects responded with a button box unit. During fMRI,
subjects participated in an established verbal n-back paradigm
(Casey et al., 1995). Parametric working memory load was varied
between maintaining 0, 1, or 2 items in memory (0-, 1-, or 2-Back;
see Figure 1 insets). Runs were blocked by condition. During each
block (30 s), letters were projected in sequence (presentation time:
500 ms; ISI: 2500 ms; 10 letters per block) on a screen; subjects
signaled with a two-choice optical response box if the presented
letter was a target or not. The paradigm cycled between rest (20 s),
0-, 1-, and 2-Back epochs (three blocks each). The experiment was
controlled using presentation (Neurobehavioral Systems Inc.).

fMRI PROCESSING
fMRI data were processed in SPM8 using typical methods. All
images were manually oriented to the AC-PC line, realigned
to correct for head movement, spatially normalized to the
MNI (Montreal Neurological Institute) template brain and
resliced (2 mm× 2 mm× 2 mm). Low frequency components
were removed using a low-pass filter (128 s) and images were
spatially smoothed using a Gaussian filter (8 mm full-width half
maximum; FWHM). An autoregressive AR(1) model was used to
account for serial correlation, and regressors modeled as a 30 s box-
car vectors (for each of the task-related conditions) were convolved
with a canonical hemodynamic reference waveform.

Subjects’ head motion was within accepted limits (<4 mm).
Furthermore, in all first level models, the effects of motion were
modeled by including the six motion parameters as covariates of
no interest. First-level contrasts (1Back > 0Back; 2Back > 0Back)
were used to assess the effects of memory load on activation.

PPI (implemented in SPM8) was employed to model dACC
modulation of FSTC targets during working memory (Friston
et al., 1997; Honey et al., 2005). For each subject, time series from

the effects of interest contrast (p < 0.05) were extracted from the
dACC peak (including Brodmann areas 32 and the supra-genual
aspects of BA24) (Palomero-Gallagher et al., 2008). The extracted
time series (the wave form of which provides an estimate of the
continuous physiological response of the dACC) was subsequently
convolved with the two contrasts of interest reflecting effects of dif-
ferential memorial load, specifically, 1-Back > 0-Back (low load)
and 2-Back > 0-Back (high load). The resultant interaction term
was positively weighted to assess the facilitating influence of the
dACC on FSTC targets (with the slope of the effect parametri-
cally encoded in the convolution term and reflecting the degree of
modulation).

For all activation or network analyses, first level maps (activa-
tion or PPI) from each subject were submitted to a second-level
random effects analyses of variance with group modeled as an
independent factor and memory load as non-independent factor.
The factorial design permitted assessment of intra-group load-
related effects, as well as between-group differences at varying
levels of memory load.

All second level analyses were spatially thresholded in the FSTC
regions of interest using deterministic anatomical masks defined
in stereotactic space (Maldjian et al., 2003). These maps consti-
tute anatomical representations in stereotactic space representing
each of the regions of interest and are widely employed to spa-
tially localize activations in neuroimaging research. Images were
corrected using cluster level correction (cluster extent thresholds,
pc < 0.05) derived from 104 Monte Carlo simulations from voxels
across the individual regions of interest (Ward, 2000). Individual
voxel peaks in significant clusters are reported in terms of Montreal
Neurological Institute coordinates.

RESULTS
Results are organized to sequentially present evidence of (1) dys-
functional activation profiles and (2) dysfunctional brain network
profiles in OCD and HC:

(1a) We first show load-related effects on activation profiles
within both HC and OCD. These results provide evidence

Table 2 |The table provides information on clusters of significance and peaks within where each of the groups showed increased activation to

variations in memory load (Figure 2).

Region Brodmann area MNI coordinates (x, y, z) Z score Cluster extent p (peak)

Table 2: activation

HC2Back > 1Back

Parietal lobe 40 −36 −51 49 5.23 734 0.000

Mid frontal gyrus 8 27 15 45 1.93 135 0.027

Dorsal prefrontal cortex 46 −42 20 27 4.45 74 0.000

Basal ganglia − 28 18 6 3.37 32 0.000

dACC 24 −18 −1 51 4.42 177 0.000

OCD2Back > 1Back

Parietal lobe 40 46 −40 51 4.08 739 0.000

Mid frontal gyrus 6 32 8 52 3.17 175 0.001

Dorsal prefrontal cortex 9 −39 12 39 3.08 103 0.001

Basal ganglia − 14 6 19 3.37 70 0.000

dACC 32 8 20 46 3.19 189 0.001
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of within-group effects of parametric increases in working
memory load on FSTC.

(1b) Next we present between-group results showing aberrantly
increased activation profiles in FSTC in OCD patients com-
pared to HC at both levels of memory load. These results
demonstrate that OCD participants more extensively activate
FSTC than HC at both levels of memory load.

(2) We show between group results assessing dysfunctional brain
network profiles in OCD compared to HC. These results indi-
cate aberrantly increased modulation of FSTC by the dACC
in OCD, especially at the lower level of memory load.

LOAD-RELATED EFFECTS ON ACTIVATION PROFILES
Figure 2 depicts clusters (pc < 0.05) in FSTC showing increased
within-group activation in response to increases in memory load
(cluster relevant information in Table 2). In both groups, increased
memory load results in increased recruitment of frontal and pari-
etal regions, and the dACC. These results are unsurprising for
the HC group. They are highly consistent with previous assess-
ments of activation profiles in this circuit in HC (Braver et al.,
1997; Cohen et al., 1997; Diwadkar et al., 2000), showing increased
recruitment in brain circuits committed to implementing working
memory related functions. The results in OCD are notable as they
demonstrate that the memory effect exerts within-group effects
consistent with HC. This is important evidence that FSTC in OCD
is sensitive to load-related variations in working memory and
that the overall implementation of the task generates load-related
effects on activation profiles. Notable is an absence of load-related
activation effects in the striatum or the thalamus, regions not typi-
cally implicated in core memory-related processing. The basal gan-
glia contribute to cortical-striatal processing loops that sub-serve
complex processing, by supplementing prefrontal function (Hazy
et al., 2006; Calzavara et al., 2007; Voytek and Knight, 2010). The
thalamus forms cortical-thalamic processing units that integrate
information from cortical and striatal loops to modulate com-
plex behavior, but has generally not been sensitive to load-related
variations in working memory (Haber and Calzavara, 2009).

BETWEEN-GROUP RESULTS SHOWING ABERRANTLY INCREASED
ACTIVATION PROFILES IN FSTC IN OCD PATIENTS
Figure 3 depicts clusters (pc < 0.05) in FSTC showing increased
activation in OCD (relative to HC) at each level of memory load
(cluster relevant information in Table 3). Several effects are evi-
dent. Dysfunctional activation profiles are observed in the frontal
and parietal cortices and in the dACC at both levels of load.
Absent is evidence of dysfunctional activation profiles in the stria-
tum or the thalamus. Moreover, dysfunction in activation profiles
scales as a function of memory load: Increased memory demand
leads to increased activation in cortical regions. These analyses
are consistent with previous studies in FSTC in OCD partici-
pants in other behavioral domains such as conflict monitoring
that are closely associated with behavioral phenotypes in the illness
(Huyser et al., 2011). As one of our study aims was to assess whether
hyper-activation in FSTC constitutes a domain-general prop-
erty of brain regions in OCD, these analyses extend the findings
beyond the domain of conflict processing and suggest that multiple
tasks engaging FSTC are sensitive for detecting activation-related
dysfunction.

FIGURE 3 | Dysfunctional activation profiles in OCD (relative to
controls) are depicted for both (A) the 1Back level of memory and
(B) the 2Back level of memory load. Increased activation in OCD
(p < 0.05, cluster level) is depicted on identical ascending mosaics of axial
views. These activation profiles indicate increased activation in dorsolateral
prefrontal cortex (dPFC), the dorsal anterior cingulate (dACC), and the
parietal cortex in OCD. Notably the degree of dysfunctional activation in
OCD scales as a function of memory load. We speculate that the
parametric demands as expressed in dysfunctional activation profiles load
disproportionately in OCD participants. As will be seen, brain network
profiles in OCD do not strictly follow activation patterns, evidence that
signatures of network interactions may complement psychopathology
revealed in activation models.

BETWEEN GROUP RESULTS ASSESSING DYSFUNCTIONAL BRAIN
NETWORK PROFILES IN OCD
Figure 4 depicts clusters (pc < 0.05) in FSTC showing increased
modulation by the dACC in OCD (relative to HC) at each level
of memory load (cluster relevant information in Table 4). We
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Table 3 |The table provides information regarding clusters of significant and significant peaks showing dysfunctional activation profiles in OCD

(compared to HC) at each level of memory load (Figure 3).

Region Brodmann area MNI coordinates (x, y, z) Z score Cluster extent p (peak)

Table 3: activation

OCD1Back > HC1Back

Parietal lobe 5 −18 −40 61 3.05 385 0.001

Mid frontal gyrus 8 27 27 42 2.45 83 0.007

Dorsal prefrontal cortex 9 24 38 36 2.8 58 0.003

dACC 24 −15 −1 49 2.87 117 0.002

OCD2Back > HC2Back

Parietal lobe 3 50 −22 56 3.18 392 0.001

Mid frontal gyrus 6 38 21 45 3.03 124 0.001

Dorsal prefrontal cortex 9 9 47 33 3.07 97 0.001

dACC 32 −3 42 18 2.78 197 0.003

highlight several notable effects. First, dysfunctional network pro-
files in OCD form a pattern that is distinct and complimentary
to that observed in activation profiles. OCD is characterized by
increased dACC related modulation at the 1Back level of load but
not the 2Back level, suggesting that the degree of dACC mod-
ulation (and the mechanisms that can be inferred from it) do
not scale with load. We speculate (see Discussion) that this effect
may be related to aberrantly increased dACC modulation at the
1Back level itself. The hyper-modulation may reflect inefficien-
cies in control-related network function or hyper-activity of the
dACC, or both. Second, dysfunctional modulation of the striatum
is evident, with significantly increased dACC modulation of the
caudate and putamen observed at the 1Back level (Figure 4A). This
effect also constitutes a complementary pattern of dysfunction
from activation in OCD where profiles in the striatum appeared
normal (Figure 3).

DISCUSSION
We conducted a simple investigation of brain activation and net-
work profiles in a group of OCD youth and age-comparable
controls. Participants were assessed with fMRI using a simple
working memory paradigm with variable demands (Figure 1).
Three principle results are highlighted across both classes of analy-
ses: Activation Profiles: (1a) Activation profiles were highly sensi-
tive to increases in memory load within each group (Figure 2).
(1b) Youth with OCD were characterized by aberrantly increased
recruitment of frontal and parietal regions (but not striatal or
thalamic regions) during both levels of working memory. The
degree of hyper-activation scaled as a function of working mem-
ory demand (Figure 3). Network Profiles: (2) Compared to HC,
youth with OCD were characterized by increased dACC modu-
lation of frontal, parietal, and striatal regions, particular at lower
levels of working memory load (Figure 4).

Taken together, these results establish that OCD is character-
ized by dysfunction in core FSTC regions, detectable using both
activation- and network-based analyses of fMRI signals. We sug-
gest that the network-based analyses are notable for being the first
to demonstrate dysfunctional network signatures of the dACC,
a region closely associated with OCD related pathophysiology.
Moreover, these profiles observed using a basic working memory

paradigm, suggest that FSTC deficits are a basic pathophysiologic
mechanism underlying OCD, are detectable with a multiplicity
of tasks, and affect frontal, striatal, and thalamic circuits. In the
remainder of the paper, we discuss the putative mechanisms that
may underpin these observations and the implications for OCD
related pathology and function.

CINGULATE, FRONTAL, STRIATAL, AND THALAMIC REGIONS: A
CRITICAL CIRCUIT SUB-SERVING COMPLEX FUNCTION
The regions targeted in this investigation collectively form core
sub-circuits that implement function in a multiplicity of higher-
order domains including working memory (Owen et al., 2005;
Diwadkar et al., 2011), sustained attention (Fan et al., 2005;
Langner and Eickhoff, 2013; Diwadkar et al., 2014), and cogni-
tive control (Carter et al., 1999; Anderson et al., 2008). These
functional sub-circuits are also underpinned by dense patterns
of anatomical connectivity. The dorsal-prefrontal cortex and the
basal ganglia share topographically mapped monosynaptic con-
nections (Calzavara et al., 2007) that may explain co-activation
patterns frequently observed in fMRI studies. Descending con-
nections from cortical regions including the prefrontal cortex and
sensory, motor, and frontal regions synapse on multiple thala-
mic nuclei including the ventral and posteromedial complexes
(Ray and Price, 1993; Klein et al., 2010; Li et al., 2013) leading
to the notion of “cortical-thalamic processing units” (Briggs and
Usrey, 2008). The dACC is uniquely positioned from an anatomi-
cal standpoint, with connections to frontal and motor regions, to
play a mediating influence in control related mechanisms (Paus,
2001). Each of these regions appears to be relatively specialized for
highly sophisticated functions.

The dorsal-prefrontal cortex sub-serves working memory in
multiple ways. Phasic activity in prefrontal neurons is strongly
correlated with the temporary maintenance of memoranda in
working memory (Vijayraghavan et al., 2007), suggestive of a
direct link between neuronal responses and overt behavior. More-
over, the prefrontal cortex sub-serves goal-directed behavior in
multiple domains (including working memory) through direct
“command” signals to multiple cortical and sub-cortical targets
(Crowe et al., 2013; Funahashi and Andreau, 2013). The anatom-
ical positions of the basal ganglia allow the structure to receive
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FIGURE 4 | Dysfunctional brain network profiles in OCD (relative to
controls) are depicted for both (A) the 1Back level of memory and (B)
the 2Back level of memory load. The clusters depict significantly
increased dACC-modulation of cortical and striatal targets in OCD
compared to typical controls (p < 0.05, cluster level) depicted on identical
ascending mosaics of axial views. These brain network profiles
complement dysfunctional activation profiles (Figure 3). Note the
implication of the caudate, not implicated in dysfunctional activation. The
increased modulation by the dACC may reflect increased control-related
inputs demanded in OCD to sub-serve network function associated with
this fundamental domain. The lack of a parametric effect may reflect the
fact that dACC related network engagement is already aberrantly increased
at the 1Back level. Indeed, OCD participants did not show an increase in
dACC modulation going from the 1Back to the 2Back level of demand
(whereas HC participants did).

inputs from multiple uni- and heteromodal regions (Ragsdale and
Graybiel, 1990). Thus the structure serves as a critical node in mul-
tiple network pathways, playing executive and supporting roles

in several behavioral domains. Along with the prefrontal cortex,
the basal ganglia appear to exert attention-related modulation of
working memory related function (Herrero et al., 2002; McNab
and Klingberg, 2008). The thalamus is considered a principle
gateway to the cortex (McAlonan et al., 2008), engaged in filter-
ing of massive sensory inputs, particularly in the visual domain,
and sending extensive outputs to cortical and sub-cortical regions
(Haber and Calzavara, 2009). The structure also plays essential
computational roles by integrating network activity essential for
modulating behaviors. Many of the psychological domains that are
underpinned by regional function are implicated in OCD. Thus
pediatric OCD patients in particular show deficits in sustained
attention (Lucke et al., 2014), executive function and working
memory (Melloni et al., 2012), and cognitive control and metacog-
nition (Koch and Exner, 2015). It is therefore not surprising
that frontal, striatal, and thalamic circuits have been identified
as central to potential interventions in OCD (Burguiere et al.,
2015).

HYPER-ACTIVATION IN OCD DURING WORKING MEMORY: POSSIBLE
MECHANISMS AND RELATIONSHIP WITH OTHER DISORDERS
Though working memory deficits are generally seen as secondary
to the core pathology of OCD (Harkin and Kessler, 2011), our
activation results provide good convergence with recent reports.
Memory load-related hyper-activation in frontal-parietal regions
has been proposed as an intermediate phenotype for OCD, where
the hyper-activation has been labeled as compensatory (Nakao
et al., 2009; Koch et al., 2012; de Vries et al., 2013). Effects on
dACC activation have, however, been equivocal; previous studies
have shown a reverse effect of complexity on dACC activation
in OCD, with disengagement of the structure following load
related effects. Nevertheless, our results provide good concep-
tual overlap with studies in pathology that have linked hyper-
activation under conditions of task compliance with regional
efficiency. This concept of inefficiency finds pronounced expres-
sion in the schizophrenia spectrum, where disease-related effects
(that have been associated with dopamine dysfunction) are pre-
sumed to affect the “duty cycle” of task-relevant brain regions
including the prefrontal cortex and the striatum (Callicott et al.,
2003; Manoach, 2003; Jansma et al., 2004; Meisenzahl et al.,
2007; Diwadkar et al., 2012). These inefficiencies might imply
that neuronal pools (that form one electrophysiological origin
of the fMRI signal) (Logothetis and Wandell, 2004) engage in
excess excitatory firing responses when demand is exerted on
FSTC. Moreover, inefficiencies provide a window into the “scal-
ability” of brain regions in response to demand. In other words,
the functioning limits of FSTC in OCD may be compromised
such that excessive cognitive demand may stretch FSTC ability
to sub-serve function. In this view, FSTC hyper-activation dur-
ing working memory far, from being a peripheral correlate of
OCD, is a central mechanism underlying the illness, and a pri-
mary intermediate phenotype as previously proposed (de Vries
et al., 2013).

A parallel explanation for hyper-activity is that it reflects
glutamate-related dysfunction that affects how relevant regions
are recruited for a task (Wu et al., 2012, 2013; Stewart et al., 2013;
Pauls et al., 2014). As a principle excitatory neurotransmitter,
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Table 4 |The table provides information regarding clusters of significant and significant peaks showing dysfunctional network profiles in OCD

(compared to HC) at each level of memory load (Figure 4).

Region Brodmann area MNI coordinates (x, y, z) Z score Cluster extent p (peak]

Table 4: PPI

OCD1Back > HC1Back

Parietal lobe 7 20 −57 60 3.36 529 0.000

Mid frontal gyrus 6 −32 −6 54 3.13 144 0.001

Basal ganglia – 20 9 15 3 61 0.001

OCD2Back > HC2Back

Parietal lobe 7 −18 −36 48 2.72 223 0.003

Dorsal prefrontal cortex 9 −12 36 22 2.76 89 0.003

glutamate exerts substantial effects on brain function, particu-
larly in the excitatory model. Glutamate dysfunction in OCD
can alter the neurochemical-electrophysiological relationship that
sub-serves BOLD-based activation. A more complete assessment
of the Glutamate-fMRI relationship will require assessment of
both classes of signals acquired within subjects. This is an ongoing
endeavor in our studies that involves multi-modal acquisition of
fMRI and MRS data within subjects.

HYPER-MODULATION OF FSTC BY THE dACC: NOVEL EVIDENCE OF
DYSFUNCTIONAL NETWORK PROFILES
Relatively few studies have assessed connectivity in the task-active
state in OCD. Psychophysiological interactions provide a straight-
forward model of directional effects of seed regions on their
targets in a task-related context, providing a window into network
interactions. This window is considered intermediate between
functional and effective connectivity (Friston, 2011). The inter-
pretations of PPI are constrained by the choice of seeds and the
hypothesized role(s) ascribed to the seed. Toward that end, our
choice of the dACC was motivated by its role in cognitive control
of brain networks (Carter et al., 1999; Paus, 2001; Bakshi et al.,
2011).

The dACC plays an integral role in tasks of explicit cogni-
tive control including response conflict and response monitoring
(Braver et al., 2001; van Veen et al., 2001), and choice selection
(Eshel et al., 2007). The dACC may serve to amplify task-relevant
signals to heteromodal association regions of the cortex (Egner
and Hirsch, 2005; Sohn et al., 2007). Thus, control processes from
the dACC may influence the activity of core working memory sys-
tems, and the degree of this modulation may reflect the efficiency
of interaction between control and working memory systems.
Increased control-related modulation in part reflects decreased
efficiency. This hyper-modulation by the dACC may strongly sug-
gest inefficient control-related network profiles in OCD. These
effects are again consistent with observed evidence in other disor-
ders, for example, in the schizophrenia spectrum where increased
dACC related modulation is strongly associated with the illness
and risk for the illness (Bakshi et al., 2011). The absence of a
parametric effect on dACC modulation appears related to highly
increased aberrant dACC modulation at the lower level of demand
in OCD: no intra-group increases in dACC modulation were
observed in OCD as memory load increases. As such, the network

effects constitute complementary signatures of FSTC dysfunction
in OCD.

LIMITATIONS AND CONCLUSION
Brain network profiles will constitute an important frontier in the
search for mechanisms and endophenotypes, and their evidence
is an important expression of the goals advocated by Research
Domain Criteria (RDoC: Insel et al., 2010). While our sample size
(though small) is comparable to several other published studies,
it nevertheless precludes us from assessing the role of co-morbid
diagnoses and medication effects within OCD youth. These are
important clinical questions, and an expansion of this sample
is ongoing, and may permit more detailed assessment of our
observed effects.

The specific neurochemical and molecular bases of these effects
are obscured by the interpretational limits of both the fMRI signal
(Logothetis, 2008) that cannot distinguish between a multiplicity
of neuronal contributions to the hemodynamic response, and by
the relatively limited class of inferences that can be drawn from the
application of PPI analyses (Stephan, 2004). Moreover, these tech-
nical challenges are compounded by the fundamental limitation
in understanding the correlates of brain structure and function:
the fact that functional characteristics of brain networks exist in
a regressive relationship with their structural substrates (Park and
Friston, 2013). Thus, the same underlying structural networks can
give rise to a multiplicity of functions and dysfunctions. Never-
theless, our results (and other studies we have cited) promise to
reveal mechanisms of disease-related dysfunction as expressed in
brain profiles. An understanding of putative mechanisms is a nec-
essary precursor of treatment and cure. Therefore we propose that
studies such as ours (and future extensions) will provide better
elucidation of disease mechanisms than currently exist.
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Idiopathic generalized epilepsy (IGE) patients with generalized tonic-clonic seizures

(GTCS) suffer long-term cognitive impairments, and present a higher incidence of

psychosocial and psychiatric disturbances than healthy people. It is possible that the

cognitive dysfunctions and higher psychopathological risk in IGE-GTCS derive from

disturbed causal relationship among core neurocognitive brain networks. To test this

hypothesis, we examined the effective connectivity across the salience network (SN),

default mode network (DMN), and central executive network (CEN) using resting-state

functional magnetic resonance imaging (fMRI) data collected from 27 IGE-GTCS patients

and 29 healthy controls. In the study, a combination framework of time domain and

frequency domain multivariate Granger causality analysis was firstly proposed, and

proved to be valid and accurate by simulation experiments. Using this method, we

then observed significant differences in the effective connectivity graphs between the

patient and control groups. Specifically, between-group statistical analysis revealed that

relative to the healthy controls, the patients established significantly enhanced Granger

causal influence from the dorsolateral prefrontal cortex to the dorsal anterior cingulate

cortex, which is coherent both in the time and frequency domains analyses. Meanwhile,

time domain analysis also revealed decreased Granger causal influence from the right

fronto-insular cortex to the posterior cingulate cortex in the patients. These findings may

provide new evidence for functional brain organization disruption underlying cognitive

dysfunctions and psychopathological risk in IGE-GTCS.

Keywords: idiopathic generalized epilepsy, resting-state fMRI, effective connectivity, multivariate Granger

causality, core neurocognitive networks

INTRODUCTION

Previous studies have revealed that patients with epilepsy suffer a higher incidence of
psychosocial and psychiatric disturbances than healthy people (Mignone et al., 1970; Baker
et al., 1996; Cutting et al., 2001; Gelisse et al., 2007). Idiopathic generalized epilepsy (IGE)
is the most common type of epilepsy, which can be characterized by electroencephalography
(EEG) recordings with generalized spike-and-waves or polyspike-waves (Engel, 2001; Hamandi
et al., 2006). As one of the IGE subtypes, IGE patients with generalized tonic-clonic seizures
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(IGE-GTCS) suffer various neuropsychological impairments
such as deficits in working memory, sustained attention,
language, as well as executive functions (Hommet et al.,
2006; Chowdhury et al., 2014). Prior studies have suggested
that disruptions to these higher-order control processes may
constitute a key aspect of psychopathology (Sridharan et al.,
2008; Menon and Uddin, 2010). Therefore, distinguishing
dysfunctional brain architecture may provide greater insight into
the psychopathology in IGE-GTCS.

In recent years, identifying disturbed dynamic interactions
of large-scale brain networks associated with cognitive and
affective dysfunctions has shed new lights on the study of
psychopathology. Of the many spatially distinct and functionally
specialized stable brain networks, three have tended to be
particularly crucial for understanding higher-order cognitive
and perceptive processes thus described as core neurocognitive
networks, they are: (1) the salience network (SN), involved
in conflict monitoring, attention, as well as interoceptive and
affective processes; (2) the default mode network (DMN),
related to self-referential and social cognitive processes; and (3)
the central executive network (CEN), associated with working
memory, cognitive control implementation, and decisionmaking
in goal-directed behavior (Menon, 2011). Moreover, each of
the three core neurocognitive networks are anchored in some
key nodes that show strong intrinsic functional coupling as
well as co-activation across different cognitively demanding
tasks (Sridharan et al., 2008; Menon and Uddin, 2010). These
key nodes are: (1) the right fronto-insular cortex (rFIC)
and the dorsal anterior cingulate cortex (dACC) of the SN;
(2) the ventromedial pre-frontal cortex (VMPFC) and the
posterior cingulate cortex (PCC) of the DMN; as well as (3)
the dorsolateral pre-frontal cortex (DLPFC) and the posterior
parietal cortex (PPC) of the CEN. Particularly, the two key
nodes of the SN have been highlighted in numerous researches,
suggesting that the rFIC is crucial for initiating network
switching between the CEN and the DMN (Sridharan et al.,
2008; Menon and Uddin, 2010; Uddin et al., 2011), and the
dACC most closely associated with conflict monitoring to
mediate higher-order cognitive processes (Botvinick et al., 2004;
Menon, 2011). Investigating disruptions to functional dynamics
among these key nodes is beginning to identify an important
aspect of dysfunctions in psychopathology, thus the three core
neurocognitive networks represented by the associated key nodes
have been concluded as a “triple network” model (Menon, 2011).
Aberrant interconnectivity and intrinsic organization of the triple
network is characteristic of various neurological and psychiatric
disorders, such as schizophrenia, depression, anxiety disorders
and autism (Paulus and Stein, 2006; Walter et al., 2009; White
et al., 2010; Uddin et al., 2015), and is likely to provide better
understanding of fundamental brain mechanisms underlying
cognitive dysfunctions and psychopathology in IGE-GTCS.

Measurement of causal influence that a system exerts over
one other is called effective connectivity (Friston et al., 1993).
Applying effective connectivity to brain network analysis can
obtain full understanding of the network interaction structure
including the strength and direction of information flow between
brain regions. Granger causality analysis, as an important

analytical technique of effective connectivity, has been widely
applied in cognitive neuroscience studies since it can measure
directional dependence between time courses without any prior
model specifications. In Granger causality definition, time course
X2 causes time course X1 if combined past value of both X1

and X2 can significantly improve the prediction accuracy of
current value of X1, rather than using the past value of X1

alone (Granger, 1969; Seth, 2010). Granger causality is often
estimated with multivariate autoregressive (MVAR) modeling
of the time courses, and has various time domain as well as
frequency domain formulations, including conditional Granger
causality (Geweke, 1984), partial Granger causality (Guo et al.,
2008), directed transfer function (DTF) (Kaminski et al., 2001),
and partial directed coherence (PDC) (Baccalá and Sameshima,
2001), etc. The mentioned time domain Granger causality
measures are the straightforward generalization of the notion
of Granger causality thus easy to comprehend, the introduced
frequency domain Granger causality measures could describe
the dynamics of causal relationships between time courses by
evaluating Granger causality over different frequency portions
(Sato et al., 2009). Based on these, the combined performance of
Granger causality analysis in two domains is expected to provide
more accurate and informative analysis results.

Little is known about the alteration of effective connectivity
among core neurocognitive networks underlying cognitive
impairments and psychopathology in IGE-GTCS. Additionally,
to our knowledge, no IGE study has conducted multivariate
Granger causality analysis in both time and frequency domains
and presented the combined analysis results. In the current study,
we examined IGE-related changes in effective connectivity across
core neurocognitive brain networks using resting-state functional
magnetic resonance imaging (fMRI), combining time domain
and frequency domain multivariate Granger causality analysis.
We hypothesized that the altered causal interactions likely occur
among the key nodes of the SN, DMN, and CEN in IGE-
GTCS, which may underline cognitive dysfunctions, improving
our understanding of the psychopathological mechanism of IGE-
GTCS.

MATERIALS AND METHODS

Subjects
Twenty-seven right-handed IGE-GTCS patients (age
24.93 ± 5.95 years; education 10.59 ± 2.58 years; eight female;
epilepsy duration 7.76 ± 5.62 years; age of onset 17.13 ± 6.11
years) were recruited in the study. The diagnosis was determined
by a comprehensive evaluation including detailed history,
video-EEG telemetry, and neuroimaging. All patients had
IGE with GTCS only according to the International League
against Epilepsy (ILAE) classification, and met the following
inclusion criteria: (i) presence of typical clinical symptoms of
GTCS, including myoclonus, loss of consciousness, and no
partial seizures; (ii) presence of generalized spike-and-wave
or polyspike-wave discharges in their scalp EEG; (iii) no focal
abnormality in routine structural MRI examinations; and (iv)
no obvious history of etiology. All patients were treated with
antiepileptic drugs (AEDs), but received no medication for
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at least 48 h prior to the MRI scanning. All patients had been
seizure-free for at least 1 month prior to the MRI scanning.

Twenty-nine right-handed healthy subjects (age 26.93 ±

7.54 years; education 11.45 ± 2.40 years; 12 female) were
recruited, with gender, age, and education level demographically
matched. All participants had no mass lesion (including
tumor, vascular malformation or malformations of cortical
development), traumatic brain injury or history of neurological
or psychiatric disorder. This study was approved by the Ethics
Committee of Guangdong 999 Brain hospital, and all participants
provided written informed consent.

MRI Data Acquisition and Pre-processing
For the resting-state fMRI scan acquired at a 1.5-T Philips
Intera MR scanner, all subjects were instructed to stay awake,
keep their eyes open, and minimize head movement; no
other task instruction was provided. For the patients, scans
were conducted during interictal without combined EEG
confirmation. All fMRI images were collected using a gradient-
echo echo-planar pulse sequence sensitive to blood-oxygenation-
level-dependent (BOLD) contrast with the following parameters:
TR/TE = 3000/30ms, thickness/gap = 4.5/0mm, field of view
(FOV) = 230 × 230mm, flip angle (FA) = 90◦, matrix =

128 × 128, and slices = 31. Each resting-state fMRI run lasted
8min, obtaining 160 volumes.

For each subject, the first five volumes of the scanned data
were discarded to allow for T1-equilibration effects, and then
the fMRI data were pre-processed with SPM8 package (Welcome
Department of Cognitive Neurology, Institute of Neurology,
London, UK, http://www.fil.ion.ucl.ac.uk/spm), included the
following steps (Zeng et al., 2012): (1) slice timing correction; (2)
rigid body correction for head motion; (3) atlas registration with
an EPI template in the Montreal Neurological Institute (MNI)
atlas space, resampling to 3-mm isotropic voxels; (4) spatially

smoothing using an 8-mm full-width half-maximum (FWHM)
Gaussian kernel; and (5) regressing out nine nuisance signals
including signals averaged fromwhite matter, cerebrospinal fluid,
and the whole brain, and six parameters obtained by head
motion correction. Temporal filtering was not conducted as with
some prior studies (Hamandi et al., 2006; Wu et al., 2013),
so that the whole effective frequency band of the fMRI data
could be included in the frequency domain Granger causality
analysis (see Section Effective connectivity: time and frequency
domains multivariate Granger causality measures below). After
calculation, no subjects were removed due to excessive motion
(translation > 2mm and rotation >2◦); there was no significant
difference in mean motion between the two groups (p = 0.32,
two-tailed two-sample t-test; Zeng et al., 2014), thus the effective
connectivity would be less probably affected by the head motion
(Van Dijk et al., 2012).

Region of Interest Definition and Time
Course Extraction
Six functional regions of interest (ROIs) were selected, including
the rFIC and the dACC of the SN, the VMPFC and the PCC
of the DMN, as well as the rDLPFC and the rPPC of the CEN.
The coordinates of the ROIs (Table 1) were set according to

TABLE 1 | Coordinates of ROIs.

Region BA Peak MNI

coordinates (mm)

SALIENCE NETWORK (SN)

Right fronto-insular cortex (rFIC) 47 39, 23, −4

Dorsal anterior cingulate cortex (dACC) 24 6, 24, 32

DEFAULT MODE NETWORK (DMN)

Ventromedial pre-frontal cortex (VMPFC) 11 −2, 38, −12

Posterior cingulate cortex (PCC) 23/30 −6, −44, 34

CENTRAL EXECUTIVE NETWORK (CEN)

Right dorsolateral pre-frontal cortex (rDLPFC) 9 46, 20, 44

Right posterior parietal cortex (rPPC) 40 52, −52, 50

a published study delimiting these regions in an independent
dataset (Uddin et al., 2011). In that study, MNI coordinates of
peak voxels (voxels with the highest z-scores) of the six regions
chosen from ICA maps were defined as the centers of the ROIs.
In our study, the final ROIs were defined as 8mm radius spheres
centered on the coordinates, and the mean time course in each
ROI was extracted by averaging the time courses of all voxels
within the ROI. At last, each mean time course of the ROIs
was detrended and its temporal mean was removed for further
analysis. All the time courses were covariance stationarity (i.e.,
unchangingmean and variance) after time course pre-processing.

Effective Connectivity: Time and
Frequency Domains Multivariate Granger
Causality Measures
On the basis of MVAR modeling, we intended to calculate
the effective connectivity strength in both time and frequency
domains, thus the well-chosen Granger causality measures in two
domains were introduced in the current study, they are: partial
Granger causality (Guo et al., 2008) in time domain analysis,
and PDC (Baccalá and Sameshima, 2001) in frequency domain
analysis. The formalism for these Granger causality measures is
given in Appendix.

To obtain the time domain and frequency domain Granger
causality measures between each pair of the six ROIs for each
subject, the following steps were conducted: (1) MVAR model
estimation: six time courses were fit to obtain the unrestricted
autoregressive model (see Appendix for details), the model order
was set to 1 determined by Bayesian information criterion (BIC),
and the regression coefficients were estimated using standard
least squares optimization. (2) Calculation of time domain
Granger causality measures: for each pair of the six time courses
in both directions, the partial Granger causality and the DOIwere
calculated (see Equations A11 and A12 in Appendix); thus, 30
(6×5) individual partial Granger causality values of time domain
Granger causal links and 30 DOI terms of time domain Granger
causal links were obtained for each subject. (3) Calculation of
frequency domain Granger causality measure: for each pair of
the six time courses in both directions, the PDC was calculated
(see Equation A13 in Appendix) every 0.001Hz of the interesting
frequency range [0, Fs/2], where Fs is the sampling rate of the
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fMRI data (i.e., 1/TR); thus 30 × 168 individual PDC values of
frequency domain Granger causal links were obtained for each
subject.

Constructing Within-Group Effective
Connectivity Graph
Having computed the Granger causality measures in both time
and frequency domains, we proceeded to construct effective
connectivity graph for each group, respectively. Since all the
Granger causality measures used in the study lack known
statistical distributions (Seth, 2010), the creation of empirical
null distributions that hypothesize no causality between ROIs
is of great importance. Meanwhile, we hypothesized that the
combined performance of time domain and frequency domain
analysis of multivariate Granger causality would present more
accurate and informative analysis results. Therefore, based on
the procedure conducted in Sato et al. (2009) and Havlicek et al.
(2010), we proposed a combination framework of time domain
and frequency domain multivariate Granger causality analysis to
evaluate the direct causal interactions between time courses. An
overview of this method (see Figure 1) is given below, and each
step is described in detail as follows:

Step 1 Fit MVAR model for the time courses of each subject
separately to obtain the model coefficients (including
regression coefficients and residuals, see Appendix
for details), then calculate the time and frequency
domains Granger causality measures for each subject (see
Equations A11–A13 in Appendix). Record the median
values of each Granger causality measure across subjects.

Step 2 For each subject, resample the residuals (bootstrap
resampling for N repetitions) and set the regression
coefficients Aij(l), l = 1, . . . , p to zero (see Appendix for
details) when assessing the Granger causality from time
courses j to i, the other coefficients remain as originally
estimated in step 1. Then simulate a multivariate time
courses based on the modified MVAR model coefficients
to generate time courses under the null hypothesis of “no
Granger causality” from time courses j to i. After that,
calculate the Granger causality measures of the simulated
time courses (see Equations A11–A13 in Appendix),
then record the median values of the Granger causality
measures across the simulated samples. Repeat this step
until the desired number of repetition (N times) is
achieved. When finished, the null distributions of the
median Granger causality measures are obtained. Note,
in general, the value of N = 200–5000 is sufficient (in the
current study, we set N = 1000) (Efron and Tibshirani,
1994).

Step 3 Estimate the critical value (defined as the (1 − α)
quantile, α = 0.05, FDR corrected; Seth, 2010) of
each null distribution, and take the critical value as
significance threshold. For time domain analysis, a
per-interaction significance threshold is obtained above
which the median values of the Granger causality
measures recorded in step 1 are assumed to be significant.

For frequency domain analysis, we get a per-interaction-
per-frequency significance threshold; the significant
effective connectivity is thus defined as the connection
which has non-null significant frequency interval. Finally,
the consistent results of time domain and frequency
domain analysis are determined as significant effective
connectivity given by the proposed method.

The validity and improvement in resulting accuracy of the
proposedmethod is proved by several toymodels in the following
subsection (see Section Simulations). For the IGE study, we
used the median partial Granger causality and median PDC
to determine the significant connectivity in time domain and
frequency domain analysis, respectively. Finally, the significant
effective connectivity was defined as the connection that was
significant in both time domain and frequency domain analysis,
and the within-group effective connectivity graph was thus
composed of the significant effective connections of each group.
In addition, the significant connections identified by DOI terms
in time domain analysis were also recorded as a subset of the final
results.

Evaluating between-Group Effective
Connectivity Difference
Among the connections that exhibited significant Granger
causality in at least one group (obtained in Section Constructing
within-group effective connectivity graph), we further assessed
the presence of significant group differences in both time domain
and frequency domain Granger causality definition. In time
domain analysis, Mann-Whitney U-tests (p < 0.05, FDR
corrected) were applied across the 30 time domain Granger
causal links to assess the presence of significant group differences
(Sridharan et al., 2008). In frequency domain analysis, for each
link, Mann-Whitney U-tests (p < 0.05, FDR corrected) were
applied across the 168 frequency slices to determine the group-
level significant frequency interval of that link. And finally the
links with non-null significant frequency intervals were taken as
the interesting results in frequency domain analysis.

RESULTS

Simulations
Two typical and widely used toymodels (Baccalá and Sameshima,
2001; Seth, 2010) were presented here to demonstrate the
validity and improvement in resulting accuracy of the proposed
combination framework described in Section Constructing
within-group effective connectivity graph. In the simulation
experiments, the same methods of time course pre-processing
(including detrend and removal of temporal mean), MVAR
model estimation (using standard least squares optimization to
calculate the regression coefficients and residuals, and setting
the model order as the real model order of each toy model),
time and frequency domains Granger causality calculation, and
significance testing (1000 times repetition to get the significance
thresholds) that described in Section Effective connectivity: time
and frequency domains multivariate Granger causality measures
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FIGURE 1 | Diagram representing the main steps of combination method of time and frequency domains multivariate Granger causality analyses.

MVAR, multivariate regressive; PGC, partial Granger causality; DOI, difference of influence; PDC, partial directed coherence.

and Constructing within-group effective connectivity graph were
conducted to the toy models.

Model 1. Suppose that four simultaneously observed time
courses were generated by the equations:

x1(n) = 0.95
√
2x1(n− 1)− 0.9025x1(n− 2)+ ω1(n)

x2(n) = 0.5x1(n− 2)+ ω2(n)
x3(n) = −0.4x4(n− 3)+ ω3(n)
x4(n) = 0.35x4(n− 2)+ ω4(n)

(1)

The model contains two direct Granger causal influences, i.e.,
connections from x1 to x2, and from x4 to x3. The model
order is three, ω1 ∼ ω4 are zero-mean uncorrelated white
processes with identical variances. The signal to noise ratio
(SNR) of the generated time courses is 0.01. Figure 2 illustrates
the simulation results. The Granger causal structure and the
raw time courses of each variable are shown in Figures 2A,B.
The time domain Granger causality analysis result is expressed
as a colormap in Figure 2C. As expected, the partial Granger
causality values of the connections from x1 to x2, and from x4
to x3 were significantly larger and exceeded the corresponding

thresholds. Figure 2D shows the PDC values (black solid
line) and significance thresholds (black dotted line) of each
connection. The significant frequency intervals were highlighted
in red. Using the PDC representation we could observe the
dynamics of causal relationships between time courses. It can be
seen that, except for two correct causal influences, the connection
from x1 to x3 was misjudged in frequency domain analysis.
Obviously, when we conducted the proposed combination
method, only the corrected causal interactions would be
identified.

Model 2. A more complicated system that contains indirect
causal influence was generated by the equations:

x1(n) = 0.95
√
2x1(n− 1)− 0.9025x1(n− 2)+ ω1(n) (2)

x2(n) = 0.5x1(n− 2)+ ω2(n)

x3(n) = −0.4x1(n− 3)+ ω3(n)

x4(n) = −0.5x1(n− 2)+ 0.25
√
2x4(n− 1)

+ 0.25
√
2x5(n− 1)+ ω4(n)

x5(n) = −0.25
√
2x4(n− 1)+ 0.25

√
2x5(n− 1)+ ω5(n)
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FIGURE 2 | Simulation results of toy model 1. (A) Granger causal structure of the variables. (B) Raw time courses of the variables. (C) The colormap of partial

Granger causality values in time domain analysis. (D) The spectrum of significance thresholds (black dotted line) and partial directed coherence (PDC) values (black

solid line, values greater than the thresholds are highlighted in red) in frequency domain analysis. Note: in (C,D) the direction of causality is from column to row.

In this three order system, x1 is a direct source to x2, x3, and x4,
bidirectional connectivity exists between x4 and x5. There is no
direct coupling from x1 to x5. The SNR of the generated time
courses is 0.01. The simulation results are shown in Figure 3.
Figures 3C,D illustrate the time domain and frequency domain
analysis results, respectively. In addition, the results given byDTF
(Kaminski et al., 2001) are presented in Figure 3B as a reference
(see Equation A14 in Appendix). It is obvious that both the time
domain partial Granger causality and frequency domain PDC
could correctly detect all the direct causal influences, while the
DTF mistakenly identified the indirect causal influence from x1
to x5. These results indicate that the Granger causality measures
we used in the study could avoid the influence of indirect causal
relationship.

Based on the above analysis, we can conclude that the
analytical methods and Granger causality measures adopted in
the study can efficiently detect the direct causal relationships
between time courses, and the combined approach takes the
consistent results of the two domains’ analyses, which can be

seen as a double verification process to present more accurate
and confident results. The simulation results were stable under
different noise condition. Therefore, using the proposed method
in Section Constructing within-group effective connectivity
graph is considered to present a convincing result for fMRI data
analysis.

Within-Group Effective Connectivity Graph
The causal connectivity graphs of healthy controls and IGE-
GTCS patients are presented in Figures 4A,B. The connecting
arrows are weighted according to the strengths of the time
domain causal influences (partial Granger causality values
normalized by the maximum partial Granger causality value).
Meanwhile, each significant connection is respectively marked
with the frequency interval where the PDC values are higher
than the significance thresholds. And finally a subset of the
significant connections that showed a dominant direction of
influence (significant DOI term) are highlighted in red in the
same figure. It was observed that comparing to the healthy
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FIGURE 3 | Simulation results of toy model 2. (A) Granger causal structure of the variables. (B) The spectrum of significance thresholds (black dotted line) and

directed transfer function (DTF) values (black solid line, values greater than the thresholds are highlighted in red). (C) The colormap of partial Granger causality values

in time domain analysis. (D) The spectrum of significance thresholds (black dotted line) and partial directed coherence (PDC) values (black solid line, values greater

than the thresholds are highlighted in red) in frequency domain analysis. Note: in (B–D) the direction of causality is from column to row.

controls (21 influences), the IGE-GTCS patients (16 influences)
established less causal connections among the six ROIs.

Between-Group Effective Connectivity
Differences
The group differences of effective connectivity are illustrated in
Figure 5. In time domain analysis, two connections exhibited
significance, i.e., the increased causal influence from the rDLPFC
to the dACC (p < 0.05, FDR corrected), and the decreased causal
influence from the rFIC to the PCC (p< 0.05, uncorrected) in the
IGE-GTCS patients relative to healthy controls. The connections’
means and standard errors of partial Granger causality values
across subjects within each group were illustrated in the blue box
in Figure 5. Meanwhile, frequency domain analysis also found
the enhanced causal influence from the rDLPFC to the dACC

(p < 0.05, FDR corrected) in patients than healthy controls. The
mean PDC values across subjects within each group, as well as the
p-value spectrum of this significant connection were shown in the
pink box. It can be seen that the group difference of this causal
influence was significant in a band of frequencies, [0 0.167]Hz,
and the minimum p-value (p = 0.028) was obtained at 0.034Hz.

DISCUSSION

Human high-level attention and cognitive control processes
rely on the well-balanced dynamic interactions between large-
scale brain networks, and three core neurocognitive networks
including the SN, DMN, and CEN have been highlighted in
the study of psychopathology. Our prior work used static as
well as dynamic measures of functional connectivity, however,
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FIGURE 4 | Within-group effective connectivity graphs. (A,B) Effective connectivity graphs of the healthy controls and IGE-GTCS patients, respectively. The

connecting lines are weighted according to the normalized partial Granger causality values. The numbers next to the arrowheads indicate the significant frequency

intervals of the corresponding connections. The significant connections showing a dominant direction of influence (significant DOI term) are highlighted in red.

did not evaluate effective connectivity among brain networks
for cognitive dysfunctions and psychopathological risk in IGE-
GTCS (Wei et al., 2015). In this study, we have proposed a
combination framework of time domain and frequency domain
multivariate Granger causality analysis, to reveal alterations in
direct causal relationship across key nodes of the SN, DMN, and
CEN in the IGE-GTCS patients relative to the healthy controls.
The key findings of the study include: (1) the establishment of less

causal interactions among the key nodes in the patients compared
with healthy controls; (2) two SN-involved effective connectivity
that exhibited significant group difference, they are: enhanced
causal influence from the rDLPFC to the dACC (p < 0.05, FDR
corrected) throughout the whole evaluated frequency range ([0
0.167]Hz) in patients than healthy controls revealed by both
the time and frequency domains analyses, and decreased causal
influence from the rFIC to the PCC (p < 0.05, uncorrected) in
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FIGURE 5 | Between-group effective connectivity differences. Two connections exhibit significant between-group difference revealed by Mann-Whitney U-tests

in time domain analysis, including the increased connection from the rDLPFC to the dACC (*p < 0.05, FDR corrected), and the decreased connection from the rFIC to

the PCC (p < 0.05, uncorrected) in patients than healthy controls. The connections’ means and standard errors of partial Granger causality values across subjects

within each group are illustrated in the blue box. Frequency domain analysis also reveals the enhanced connection from the rDLPFC to the dACC (p < 0.05, FDR

corrected) in patients. The mean partial directed coherence (PDC) values across subjects within each group, and the p-value spectrum are shown in the pink box.

patients than healthy controls given by the time domain analysis.
These findings provide new insights into the brain functional
architecture of IGE-GTCS.

Methodological Considerations
Several methodological considerations in the present study need
to be addressed aforehand. First, the basis of multivariate
Granger causality and well-chosen time and frequency domains
Granger causality measures ensure the indirect causality between
ROIs to be eliminated, and this could be certified by the
simulation results of the toy model 2 in Section Simulations.
Second, the MVAR model order was set to 1 for all subjects
according to the BIC criterion, thus we evaluated the Granger
causal relationship between ROIs with a maximum time delay
of 3 s (since TR is 3 s). The low model order is common
and recommended in several Granger causality studies using
resting-state fMRI data considering the low time resolution
of fMRI data itself (Sato et al., 2010; Hamilton et al., 2011).

Third, to our knowledge, no previous study has evaluated the
Granger causal connectivity in IGE-GTCS combined the time
domain and frequency domain analysis. In the current study,
we have revealed aberrant causal interactions among the core
neurocognitive networks in IGE-GTCS confirmed by analyses in
two domains. Besides, a combination framework of time domain
and frequency domain multivariate Granger causality analysis
was proposed, and the improvement of accuracy using this
method was verified by the simulation experiments. This general
combination framework can also be used in other multisubject
studies when effective connectivity measured by multivariate
Granger causality is needed.

The Causal Relationship between the rFIC
and the PCC
In the current study, the controls group established bidirectional
effective connectivity between the rFIC and the PCC (the
influence from the rFIC to the PCC also exhibited significant
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DOI value), while none of these two connections was significant
in the patients group (see Figure 4). Further, the between-
group analysis based on time domain partial Granger causality
revealed that the effective connectivity from the rFIC to the
PCC exhibited significance (p < 0.05, uncorrected, Mann-
Whitney U-test), with decreased connectivity strength in the
patients relative to the healthy controls (see Figure 5). It is well
known that the function of the SN is to identify internal and
extra-personal stimuli to guide flexible behavior (Corbetta and
Shulman, 2002; Seeley et al., 2007), and the DMN is associated
with spontaneous activities and internally oriented cognition
(Raichle et al., 2001). Previous task-based as well as resting-state
fMRI studies using Granger causality analysis have confirmed
that there exists effective connectivity between the SN and the
DMN (Sridharan et al., 2008; Uddin et al., 2011). Among these
researches, one commonly approved conclusion is that the rFIC
acts as a critical causal outflow hub in initiating control signals
to activate the CEN and deactivate the DMN, thus provides an
interpretation of the directionality of signaling from the rFIC
to the PCC. Moreover, a relevant neurodevelopmental study
reported that the Granger causal influence from the rFIC to
the PCC was significant in the adults group while vanished in
the children, suggesting the maturation of rFIC-related causal
connectivity is crucial for the sophisticated cognitive abilities
(Uddin et al., 2011). For the causal influence from the PCC to
the rFIC, Uddin et al. (2009) using Granger causality analysis
provided evidence that the PCC may negatively regulate activity
in the SN. Such an information inflow may be interpreted as
a feedback circuit establishment that suppresses the activity of
the DMN in a primed state to make better preparation for the
rFIC to release cognitive control processes when salient stimuli
occur.

For the frequency-domain interpretation of the causal
interactions between the rFIC and the PCC, the significant
frequency intervals of the two connections in the control group
showed that the PCC conducted causal influence on the rFIC
for the lower frequencies ([0 0.085]Hz). This is reasonable given
the fact that the PCC as a key node of the DMN, is responsible
for information integration in the spontaneous low-frequency
range (Leech and Sharp, 2014). Meanwhile, the drive from
the rFIC to the PCC was significant throughout the evaluated
frequency interval, [0 0.167]Hz, probably indicating that the
brain responses for cognitive control processes in switching
between exogenous and endogenous stimuli are needed for the
whole spectrum of signal changing frequencies (see Figure 4A).

Based on the above, we inferred that the bidirectional effective
connectivity between the rFIC and the PCC may be associated
with well-balanced performance in cognitive flexibility, with
which one can flexibly switch between mental processes to
appropriately react to salient events in the environment (Scott,
1962). Additionally, prior study has suggested that the active
dynamic interactions among brain networks are indispensable
for adaptive and flexible cognition and behavior (Cole et al.,
2013), while the IGE-GTCS patients (16 influences) established
less causal connections among the SN, DMN, and CEN relative
to the healthy controls (21 influences, see Figure 4). For all the
aforementioned proofs, we inferred that the hypoconnectivity of

the patients group, especially the decreased causal influence from
the rFIC to the PCC, may be associated with impaired cognitive
abilities as well as mental inflexibility in IGE-GTCS (Hommet
et al., 2006; Chowdhury et al., 2014).

The Causal Relationship between the
dACC and the rDLPFC
Both the time domain and frequency domain analysis in our
study consistently revealed the significantly enhanced effective
connectivity (p < 0.05, FDR corrected, Mann-Whitney U-test)
from the rDLPFC to the dACC in the patients relative to
the healthy controls (see Figure 5). Interestingly, the within-
group connectivity graphs indicated that the direction of the
Granger causality between the rDLPFC and the dACC is
opposite in the two groups, i.e., the dACC drives the rDLPFC
(also with significant DOI value) in the controls while the
rDLPFC drives the dACC (also with significant DOI value)
in the IGE patients (see Figure 4). Since both the ACC and
the DLPFC are co-activated in cognitive control processing
and tests of sustained attention (Adler et al., 2001; Miller
and Cohen, 2001), the dissociation and functional interactions
of the two areas have arouse the interests of the researchers
(Kondo et al., 2004; Dosenbach et al., 2007; Seeley et al.,
2007). In an event-related fMRI study, Macdonald et al. (2000)
conducted a task-switching vision of the Stroop task and
suggested that the DLPFC (Brodmann’s area (BA) 9) supports
implementation of control, while the ACC (BA 24 and BA 32)
is responsible for performance monitoring. Furthermore, based
on the conflict hypothesis of the ACC, Kerns et al. (2004)
explored whether ACC activity associated with conflict and error
trial predicted pre-frontal cortex activity under Stroop task, and
concluded that once the ACC detects conflicts, it modulates
the strength of the rDLPFC (BA 9 and BA 8) representations,
which then executes appropriate cognitive control and products
corresponding behavioral adjustments. Our study revealed the
effective connectivity from the dACC (BA 24) to the rDLPFC
(BA 9) in the healthy controls, which may underline the existence
of neural circuitry in terms of resting-state Granger causality
supporting the above cognitive control processes. By contrast,
the establishment of the significantly enhanced causal influence
from rDLPFC to dACC in the patients may thus indicate a
disruption to the well-organized cognitive control processes,
and probably associated with cognitive dysfunctions in IGE-
GTCS, such as deficits in working memory, sustained attention,
as well as executive dysfunction (Mirsky et al., 2002). This
altered causal influence as well as the aberrant connection
from the rFIC to the PCC demonstrate that the IGE-GTCS
patients exhibit inappropriate mapping with the SN. The findings
together with various prior studies highlight the critical role of
SN in connecting with DMN and CEN (Sridharan et al., 2008;
Menon, 2011; Uddin et al., 2011), which provide informative
evidence for the understanding of the cognitive dysfunctions and
psychopathological mechanism of IGE-GTCS.

In addition, prior study using Granger causality analysis on
EEG/fMRI data of IGE patients found the frontal lobe had
the maximum net causal strength, suggesting that frontal and
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parietal areas were the initiation of absence seizures (Szaflarski
et al., 2010). Similarly, our study using both time domain and
frequency domain multivariate Granger causal analysis revealed
the significantly enhanced causal influence directed from the
rDLPFC to the dACC throughout the whole evaluated frequency
range ([0 0.167]Hz) in the IGE-GTCS patients, whichmay as well
indicate that the pre-frontal cortex is probably the initiation of
GTCS.

Evaluating hemodynamic response function (HRF) effects
in the Granger causality analysis of BOLD-fMRI data is a
controversial topic (Barnett and Seth, 2014). Noticing that
BOLD-fMRI is an indirect transformation of underlying neural
activity and Granger causality is a purely data-driven method
without biological modeling, in the current study, we have
carefully considered the effects of HRF on Granger causality
analysis on BOLD-fMRI data. The use of DOI terms in the
within-group effective connectivity analysis, the main concern
of identifying different effective connectivity patterns between
the patients and controls rather than revealing canonical causal
structure, as well as the group-level strategy for multisubject
Granger causality analysis in the current study, have been
suggested by recent analyses that are theoretically useful to
relieve the HRF effects (Schippers et al., 2011; Barnett and
Seth, 2014). Furthermore, considering that the HRF has been
reported to be different in epilepsy subjects (David et al., 2008),
we adopted the blind-deconvolution technique proposed by Wu
et al. (2013) to deconvolve the mean time courses of the six
ROIs (obtained in Section Region of interest definition and time
course extraction) for each subject separately, and on the basis
of the deconvolved BOLD time courses, we repeated the Granger
causality analysis described in Section Evaluating between-group
effective connectivity difference. In this case, both the time
domain partial Granger causality and the frequency domain
PDC have revealed only one effective connectivity that showed
significant group difference (Mann-Whitney U-tests, p < 0.05,
FDR corrected), i.e., the increased causal influence from the
rDLPFC to the dACC in the IGE-GTCS patients than controls,
which is consistent with our prior result based on the BOLD time
courses without deconvolution. We thus infer that, the altered
effective connectivity from the rDLPFC to the dACC, which is
consistently revealed by the two domains’ multivariate Granger
causality analyses on both the BOLD and deconvolved BOLD
time courses, is probably a key factor associated with cognitive
dysfunctions in IGE-GTCS.

Limitations and Future Directions
Several limitations in this study should be mentioned. First,
due to the absence of neuropsychological tests for both
the patients and the controls, we cannot precisely relate
the significant Granger causal connectivity to the specific
cognitive functions and neuropsychological parameters, the
interpretations of the results are simply inferences derived from
earlier researches. Second, it is reported that AED toxicity is
related to psychopathology and abnormal neuronal function in
epilepsy (Schmitz, 1999). In the current study, all patients were
treated with AEDs, including 24 patients with monotherapy and

3 patients with polytherapy; the AEDs included sodium valproate
(VBA), phenytoin (PHT), carbamazepine (CBZ), lamotrigine
(LTG), phenobarbital (PB), and topiramate (TPM). However,
we have carefully considered the potential confounding effects
of AEDs on ICNs in the study. We ensured that all patients
received nomedication for at least 48 h prior to theMRI scanning
to avoid direct effects of AEDs on the effective connectivity
analysis. Nonetheless, the long-term effects of AEDs could not
be excluded. Third, a relatively small number of ROIs were
used in the current study to investigate the interconnectivity
between networks. An extension to a larger set of nodes across
different brain networks would be considered in the future. In
addition to the above mentioned aspects, future works could also
focus on EEG-fMRI multimodal integration for resting-state as
well as task-based time-frequency multivariate Granger causality
analysis, and evaluate causal relationship between ROIs using
dynamic causal modeling (Friston et al., 2003).

CONCLUSIONS

In this study, we conducted combined time and frequency
domains multivariate Granger causality analyses to investigate
effective connectivity among the key nodes of the three core
neurocognitive networks in IGE-GTCS patients and matched
healthy controls. The results revealed two SN-involved effective
connectivity that exhibited significant group difference. One is
the decreased Granger causal influence from the rFIC to the
PCC in the patients relative to the healthy controls given by
time domain analysis, which may underline impaired cognitive
abilities as well as mental inflexibility in IGE-GTCS. Another
is the significantly increased Granger causal influence from the
rDLPFC to the dACC in patients than controls revealed by
both the time and frequency domains analyses. This altered
effective connectivity may indicate a disruption to the well-
organized cognitive control processes thus probably leading
to disorders in working memory, sustained attention, as well
as executive dysfunction in IGE-GTCS. The current work
proposes a combination framework of time and frequency
domains multivariate Granger causality analyses that is suitable
for multisubject studies, and demonstrates for the first time
that patients with IGE-GTCS exhibited altered Granger causal
interactions across the SN, DMN, and CEN, shedding new lights
on the psychopathological mechanism of IGE-GTCS.

AUTHOR CONTRIBUTIONS

DH, SQ designed research; HW, JA, HS, and LZ performed
research; HW analyzed the data; and HW, JA, HS, and LZ wrote
the paper.

ACKNOWLEDGMENTS

We thank the editor and reviewers for their kindly help and
constructive suggestions to improve the work. This work is
supported by the National Natural Science Foundation of China
(61420106001, 61375111, 61503397, 81271389, and 81471251).

Frontiers in Human Neuroscience | www.frontiersin.org September 2016 | Volume 10 | Article 447 | 127

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Wei et al. Altered Effective Connectivity in IGE

REFERENCES

Adler, C. M., Sax, K. W., Holland, S. K., Schmithorst, V., Rosenberg, L., and

Strakowski, S. M. (2001). Changes in neuronal activation with increasing

attention demand in healthy volunteers: an fMRI study. Synapse 42, 266–272.

doi: 10.1002/syn.1112

Baccalá, L. A., and Sameshima, K. (2001). Partial directed coherence: a new concept

in neural structure determination. Biol. Cybern. 84, 463–474. doi: 10.1007/PL00

007990

Baker, G. A., Jacoby, A., and Chadwick, D. W. (1996). The associations of

psychopathology in epilepsy: a community study. Epilepsy Res. 25, 29–39. doi:

10.1016/0920-1211(96)00017-4

Barnett, L., and Seth, A. K. (2014). The MVGC multivariate Granger causality

toolbox: a new approach to Granger-causal inference. J. Neurosci. Methods 223,

50–68. doi: 10.1016/j.jneumeth.2013.10.018

Botvinick, M. M., Cohen, J. D., and Carter, C. S. (2004). Conflict monitoring

and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539–546. doi:

10.1016/j.tics.2004.10.003

Chowdhury, F. A., Elwes, R. D., Koutroumanidis, M., Morris, R. G., Nashef, L., and

Richardson,M. P. (2014). Impaired cognitive function in idiopathic generalized

epilepsy and unaffected family members: an epilepsy endophenotype. Epilepsia

55, 835–840. doi: 10.1111/epi.12604

Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., and Braver, T.

S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control.

Nat. Neurosci. 16, 1348–1355. doi: 10.1038/nn.3470

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus-

driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. doi: 10.1038/

nrn755

Cutting, S., Lauchheimer, A., Barr, W., and Devinsky, O. (2001). Adult-onset

idiopathic generalized epilepsy: clinical and behavioral features. Epilepsia 42,

1395–1398. doi: 10.1046/j.1528-1157.2001.14901.x

David, O., Guillemain, I., Saillet, S., Reyt, S., Deransart, C., Segebarth, C., et al.

(2008). Identifying neurl drivers with functional MRI: an electrophysiological

validation. PLoS Biol. 6, 2683–2697. doi: 10.1371/journal.pbio.0060315

Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K.,

Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and stable

task control in humans. Proc. Natl. Acad. Sci. U.S.A. 104, 11073–11078. doi:

10.1073/pnas.0704320104

Efron, B., and Tibshirani, R. (1994). An Introduction to the Bootstrap. New York,

NY: Chapman and Hall.

Engel, J. Jr. (2001). A proposed diagnostic scheme for people with epileptic

seizures and with epilepsy: report of the ILAE Task Force on Classification and

Terminology. Epilepsia 42, 796–803. doi: 10.1046/j.1528-1157.2001.10401.x

Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S. (1993). Functional

connectivity: the principal-component analysis of large (PET) data sets.

J. Cereb. Blood Flow Metab. 13, 5–14. doi: 10.1038/jcbfm.1993.4

Friston, K. J., Harrison, L., and Penny, W. (2003). Dynamic causal modelling.

Neuroimage 19, 1273–1302. doi: 10.1016/S1053-8119(03)00202-7

Gelisse, P., Thomas, P., Samuelian, J. C., and Gentin, P. (2007). Psychiatric

disorders in juvenile myoclonic epilepsy. Epilepsia 48, 1032–1033. doi: 10.1111/

j.1528-1167.2007.01009_4.x

Geweke, J. F. (1984). Measures of conditional linear dependence and feedback

between time series. J. Am. Stat. Assoc. 79, 907–915. doi: 10.1080/01621459.

1984.10477110

Granger, C. W. (1969). Investigating causal relations by econometric models and

cross-spectral methods. Econometrica 37, 424–438. doi: 10.2307/1912791

Guo, S., Seth, A. K., Kendrick, K. M., Zhou, C., and Feng, J. (2008). Partial Granger

causality–eliminating exogenous inputs and latent variables. J. Neurosci.

Methods 172, 79–93. doi: 10.1016/j.jneumeth.2008.04.011

Hamandi, K., Salek-Haddadi, A., Laufs, H., Liston, A., Friston, K., Fish, D. R.,

et al. (2006). EEG-fMRI of idiopathic and secondarily generalized epilepsies.

Neuroimage 31, 1700–1710. doi: 10.1016/j.neuroimage.2006.02.016

Hamilton, J. P., Chen, G., Thomason, M. E., Schwartz, M. E., and Gotlib,

I. H. (2011). Investigating neural primacy in Major Depressive Disorder:

multivariate Granger causality analysis of resting-state fMRI time-series data.

Mol. Psychiatry 16, 763–772. doi: 10.1038/mp.2010.46

Havlicek, M., Jan, J., Brazdil, M., and Calhoun, V. D. (2010). Dynamic Granger

causality based on Kalman filter for evaluation of functional network

connectivity in fMRI data. Neuroimage 53, 65–77. doi: 10.1016/j.neuroimage.

2010.05.063

Hommet, C., Sauerwein, H. C., De Toffol, B., and Lassonde, M. (2006). Idiopathic

epileptic syndromes and cognition. Neurosci. Biobehav. Rev. 30, 85–96. doi:

10.1016/j.neubiorev.2005.06.004

Kaminski, M., Ding, M., Truccolo, W. A., and Bressler, S. L. (2001). Evaluating

causal relations in neural systems: granger causality, directed transfer function

and statistical assessment of significance. Biol. Cybern. 85, 145–157. doi:

10.1007/s004220000235

Kerns, J. G., Cohen, J. D., Macdonald, A. W. III, Cho, R. Y., Stenger, V. A., and

Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in

control. Science 303, 1023–1026. doi: 10.1126/science.1089910

Kondo, H., Osaka, N., and Osaka, M. (2004). Cooperation of the anterior cingulate

cortex and dorsolateral prefrontal cortex for attention shifting. Neuroimage 23,

670–679. doi: 10.1016/j.neuroimage.2004.06.014

Leech, R., and Sharp, D. J. (2014). The role of the posterior cingulate cortex in

cognition and disease. Brain 137, 12–32. doi: 10.1093/brain/awt162

Macdonald, A. W. III, Cohen, J. D., Stenger, V. A., and Carter, C. S. (2000).

Dissociating the role of the dorsolateral prefrontal and anterior cingulate

cortex in cognitive control. Science 288, 1835–1838. doi: 10.1126/science.288.

5472.1835

Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying

triple network model. Trends Cogn. Sci. 15, 483–506. doi: 10.1016/j.tics.2011.

08.003

Menon, V., and Uddin, L. Q. (2010). Saliency, switching, attention and control:

a network model of insula function. Brain Struct. Funct. 214, 655–667. doi:

10.1007/s00429-010-0262-0

Mignone, R. J., Donnelly, E. F., and Sadowsky, D. (1970). Psychological and

neurological comparisons of psychomotor and non-psychomotor epileptic

patients. Epilepsia 11, 345–359. doi: 10.1111/j.1528-1157.1970.tb03902.x

Miller, E. K., and Cohen, J. D. (2001). An integrative theory of prefrontal

cortex function. Annu. Rev. Neurosci. 24, 167–202. doi: 10.1146/annurev.

neuro.24.1.167

Mirsky, A. F., Duncan, C. C., and Levav, M. (2002). “Neuropsychological studies in

idiopathic generalized epilepsy,” in Neuropsychology of Childhood Epilepsy, eds

I. Jambaqué, M. Lassonde and O. Dulac (Springer), 141–150. Available online

at: http://link.springer.com/chapter/10.1007/0-306-47612-6_15?no-access=

true; http://link.springer.com/book/10.1007/b111137?no-access=true

Paulus, M. P., and Stein, M. B. (2006). An insular view of anxiety. Biol. Psychiatry

60, 383–387. doi: 10.1016/j.biopsych.2006.03.042

Raichle, M. E., Macleod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and

Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci.

U.S.A. 98, 676–682. doi: 10.1073/pnas.98.2.676

Roebroeck, A., Formisano, E., and Goebel, R. (2005). Mapping directed influence

over the brain using Granger causality and fMRI.Neuroimage 25, 230–242. doi:

10.1016/j.neuroimage.2004.11.017

Sato, J. R., Fujita, A., Cardoso, E. F., Thomaz, C. E., Brammer, M. J., and Amaro, E.

Jr. (2010). Analyzing the connectivity between regions of interest: an approach

based on cluster Granger causality for fMRI data analysis. Neuroimage 52,

1444–1455. doi: 10.1016/j.neuroimage.2010.05.022

Sato, J. R., Takahashi, D. Y., Arcuri, S. M., Sameshima, K., Morettin, P. A.,

and Baccala, L. A. (2009). Frequency domain connectivity identification: an

application of partial directed coherence in fMRI. Hum. Brain Mapp. 30,

452–461. doi: 10.1002/hbm.20513

Schippers, M. B., Renken, R., and Keysers, C. (2011). The effect of intra- and

inter-subject variability of hemodynamic responses on group level Granger

causality analyses. Neuroimage 57, 22–36. doi: 10.1016/j.neuroimage.2011.

02.008

Schmitz, B. (1999). Psychiatric syndromes related to antiepileptic drugs. Epilepsia

40, s65–s70. doi: 10.1111/j.1528-1157.1999.tb00887.x

Scott, W. A. (1962). Cognitive complexity and cognitive flexibility. Sociometry 25,

405–414. doi: 10.2307/2785779

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H.,

et al. (2007). Dissociable intrinsic connectivity networks for salience processing

and executive control. J. Neurosci. 27, 2349–2356. doi: 10.1523/JNEUROSCI.

5587-06.2007

Seth, A. K. (2010). A MATLAB toolbox for Granger causal connectivity analysis.

J. Neurosci. Methods 186, 262–273. doi: 10.1016/j.jneumeth.2009.11.020

Frontiers in Human Neuroscience | www.frontiersin.org September 2016 | Volume 10 | Article 447 | 128

http://link.springer.com/chapter/10.1007/0-306-47612-6_15?no-access=true
http://link.springer.com/chapter/10.1007/0-306-47612-6_15?no-access=true
http://link.springer.com/book/10.1007/b111137?no-access=true
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Wei et al. Altered Effective Connectivity in IGE

Sridharan, D., Levitin, D. J., and Menon, V. (2008). A critical role for

the right fronto-insular cortex in switching between central-executive and

default-mode networks. Proc. Natl. Acad. Sci. U.S.A. 105, 12569–12574. doi:

10.1073/pnas.0800005105

Szaflarski, J. P., Difrancesco, M., Hirschauer, T., Banks, C., Privitera, M. D.,

Gotman, J., et al. (2010). Cortical and subcortical contributions to absence

seizure onset examined with EEG/fMRI. Epilepsy Behav. 18, 404–413. doi:

10.1016/j.yebeh.2010.05.009

Uddin, L. Q., Kelly, A. M., Biswal, B. B., Castellanos, F. X., and Milham, M.

P. (2009). Functional connectivity of default mode network components:

correlation, anticorrelation, and causality. Hum. Brain Mapp. 30, 625–637. doi:

10.1002/hbm.20531

Uddin, L. Q., Supekar, K., Lynch, C. J., Cheng, K. M., Odriozola, P., Barth, M. E.,

et al. (2015). Brain state differentiation and behavioral inflexibility in Autism.

Cereb. Cortex 25, 4740–4747. doi: 10.1093/cercor/bhu161

Uddin, L. Q., Supekar, K. S., Ryali, S., and Menon, V. (2011). Dynamic

reconfiguration of structural and functional connectivity across core

neurocognitive brain networks with development. J. Neurosci. 31,

18578–18589. doi: 10.1523/JNEUROSCI.4465-11.2011

Van Dijk, K. R., Sabuncu, M. R., and Buckner, R. L. (2012). The influence of head

motion on intrinsic functional connectivity MRI.Neuroimage 59, 431–438. doi:

10.1016/j.neuroimage.2011.07.044

Walter, M., Henning, A., Grimm, S., Schulte, R. F., Beck, J., Dydak, U., et al.

(2009). The relationship between aberrant neuronal activation in the pregenual

anterior cingulate, altered glutamatergic metabolism, and anhedonia in major

depression. Arch. Gen. Psychiatry 66, 478–486. doi: 10.1001/archgenpsychiatry.

2009.39

Wei, H. L., An, J., Zeng, L. L., Shen, H., Qiu, S. J., and Hu, D. W. (2015).

Altered functional connectivity among default, attention, and control networks

in idiopathic generalized epilepsy. Epilepsy Behav. 46, 118–125. doi: 10.1016/

j.yebeh.2015.03.031

White, T. P., Joseph, V., Francis, S. T., and Liddle, P. F. (2010). Aberrant salience

network (bilateral insula and anterior cingulate cortex) connectivity during

information processing in schizophrenia. Schizophr. Res. 123, 105–115. doi:

10.1016/j.schres.2010.07.020

Wu, G. R., Liao, W., Stramaglia, S., Ding, J. R., Chen, H., and Marinazzo, D.

(2013). A blind deconvolution approach to recover effective connectivity brain

networks from resting state fMRI data. Med. Image Anal. 17, 365–374. doi:

10.1016/j.media.2013.01.003

Zeng, L. L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., et al. (2012).

Identifying major depression using whole-brain functional connectivity: a

multivariate pattern analysis. Brain 135, 1498–1507. doi: 10.1093/brain/

aws059

Zeng, L. L., Wang, D., Fox, M. D., Sabuncu, M., Hu, D., Ge, M., et al. (2014).

Neurobiological basis of head motion in brain imaging. Proc. Natl. Acad. Sci.

U.S.A. 111, 6058–6062. doi: 10.1073/pnas.1317424111

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Wei, An, Shen, Zeng, Qiu and Hu. This is an open-access

article distributed under the terms of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Human Neuroscience | www.frontiersin.org September 2016 | Volume 10 | Article 447 | 129

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Wei et al. Altered Effective Connectivity in IGE

APPENDIX

COMPUTATION OF GRANGER CAUSALITY
MEASURES

For better understanding of the calculation process and the
definition of each Granger causality measures, we took a general
system of N (N ≥ 3) variables Xi(t), i = 1, 2, . . .N as an
example. The unrestricted MVAR model of the system can be
written as:











X1(t)
X2(t)
...

XN(t)











=

p
∑

j=1











A11(j) A12(j) ... A1N(j)
A21(j) A22(j) ... A2N(j)

...
...

. . .
...

AN1(j) AN2(j) . . . ANN(j)











·











X1(t − j)
X2(t − j)

...
XN(t − j)











+











E1(t)
E2(t)
...

EN(t)











(A3)

where p is the model order, Ei, i = 1, 2, . . .N are the
model residuals (prediction errors), the elements of A(j) are
called regression coefficients. The noise covariance matrix of the
unrestricted model can be represented as:

6 =











var(E1) cov(E1,E2) · · · cov(E1,EN)
cov(E2,E1) var(E2) · · · cov(E2,EN)

...
...

. . .
...

cov(EN,E1) cov(EN,E2) · · · var(EN)











(A4)

To measure the Granger causality from X2(t) to X1(t), we delete
the row 2 and column 2 of the noise covariance matrix of the
unrestricted model, then partition the matrix into blocks:

6 =















var(E1) cov(E1,E3) · · · cov(E1,EN)
-------------- -----------------------------------------
cov(E3,E1) var(E3) · · · cov(E3,EN)

...
...

. . .
...

cov(EN,E1) cov(EN,E3) · · · var(EN)















=
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11

∑

12

-----------------
∑

21

∑

22



 (A5)

and omit the time course X2(t) to obtain a restricted MVAR
model as:
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(A6)

and the noise covariance matrix of the restricted model is:

ρ=

















var(E
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1) cov(E
′
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(A7)

Next, we explore the frequency domain representation of MVAR
model. The Fourier transform of (A3) gives:











A11(f ) A12(f ) ... A1N(f )
A21(f ) A22(f ) ... A2N(f )

...
...

. . .
...

AN1(f ) AN2(f ) . . . ANN(f )





















X1(f )
X2(f )
...

XN(f )











=











E1(f )
E2(f )
...

EN(f )











(A8)

where the components of the A(f)matrix are:

Alm(f ) = δlm −

p
∑

j=1

Alm(j)e
−i2π fj (A9)

δlm =

{

1, l = m
0, l 6= m

and we rewrite the A(f ) to the following form:

A(f ) =











A11(f ) A12(f ) ... A1N(f )
A21(f ) A22(f ) ... A2N(f )

...
...

. . .
...

AN1(f ) AN2(f ) . . . ANN(f )











=
[

a1(f ) a2(f ) ... aN(f )
]

(A10)

then the Granger causality measures in two domains can be
formalized as follows:

TIME DOMAIN PARTIAL GRANGER
CAUSALITY

Referring to (A5) and (A7), the partial Granger causality from
X2(t) to X1(t), conditioned on all the remaining variables besides
X1(t) and X2(t), is given by:

FP2→1|others = ln

∣

∣ρ11 − ρ12ρ
−1
22 ρ21

∣

∣

∣

∣

∣

∑

11−
∑

12

∑−1
22

∑

21

∣

∣

∣

(A11)

which can avoid influence of exogenous inputs and latent
variables, and describe the direct causal relationships between
time courses (Guo et al., 2008). When there is no direct influence
from X2(t) to X1(t), the A12(j), j = 1 . . . p in (A3) are uniformly
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equal to zero, leading to FP
2→1|others

= 0. On the contrary,

when a direct influence from X2(t) to X1(t) exists, we will get
FP
2→1|others

> 0.

In addition, a difference of influence (DOI) term
is introduced to describe the dominant direction
of causal influence that measured as the difference
(Roebroeck et al., 2005):

DP
2→1|others = FP2→1|others − FP1→2|others (A12)

which can further limits potentially spurious links caused by
hemodynamic blurring (Seth, 2010).

FREQUENCY DOMAIN PARTIAL
DIRECTED COHERENCE

To measure the Granger causality from X2(t) to X1(t) in
frequency domain, the PDC is defined as (Baccalá and
Sameshima, 2001):

π12(f ) =
A12(f )

√

aH2 (f )a2(f )
(A13)

It can be seen that the evaluation of Granger causality from X2(t)
to X1(t) is discretized into a set of frequency slices. Therefore,
by selecting the interested frequency range, we can use PDC to
evaluate direct Granger causality between time courses at each
discrete frequency.

Additionally, the non-normalized DTF from X2(t) to X1(t) is
given by Kaminski et al. (2001):

θ212(f ) =
|M21|

2

∣

∣A(f)
∣

∣

2
(A14)

where |M21| is a minor ofA(f)with row 2 and column 1 removed.
The DTF in the multivariate condition could not avoid the
detection of indirect causal relationship between time courses
(Kaminski et al., 2001).
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The amygdala and the dorsolateral prefrontal cortex (DLPFC) play important roles

in “emotion dysregulation,” which has a profound impact on etiologic research of

generalized anxiety disorder (GAD). The present study analyzed both eyes-open and

eyes-closed resting state functional MRI (rs-fMRI) of 43 subjects (21 GAD patients with

medicine free and 22 matched healthy controls). The amygdala and the DLPFC were

defined as regions of interest (ROI) to analyze functional connectivity (FC) in GAD patients

compared with healthy controls. The main findings revealed GAD patients had increased

FC between the amygdala and the temporal pole compared to healthy controls, which

was found in both eyes-open and eyes-closed rs-fMRI. And altered FC between the ROIs

and brain regions that mainly belonged to the default mode network (DMN) were found.

These findings suggest that the abnormal FC between the amygdala and the temporal

pole may contribute to the pathophysiology of GAD, and provide insights into the current

understanding of the emotion dysregulation of anxiety disorders.

Keywords: amygdala, DLPFC, temporal pole, DMN, functional connectivity, generalized anxiety disorder

INTRODUCTION

Anxiety disorders are the most common of all mental disorders with 30% prevalence in the
population, and they significantly contribute to the economic burden of disease (Andlin-Sobocki
and Wittchen, 2005; Kessler et al., 2005; Bereza et al., 2009). Among anxiety disorders, generalized
anxiety disorder (GAD) is the most common type (Roy-Byrne and Wagner, 2004; Lieb et al.,
2005; Kroenke et al., 2007). GAD is characterized by excessive and continuous worry, anxiety, and
apprehension. It may also produce distress and/or functional impairments.
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Previous studies have argued that “emotional dysregulation,”
the inability to control or regulate emotional responses, may
be responsible for the development of GAD. This hypothesis
is grounded in the observation that individuals with GAD
concentrate their attention on threatening thoughts. This
cognitivemodel has beenwidely adopted for understandingGAD
(Mathews and MacLeod, 1985; Bar-Haim et al., 2007; Amir et al.,
2009; Behar et al., 2009).

The dorsolateral prefrontal cortex (DLPFC), an important
region for performing cognitive operations during the regulation
of emotional responses, has been shown to play a key role in the
pathophysiology of GAD (MacDonald et al., 2000; Miller and
Cohen, 2001; Blasi et al., 2007; Meyer et al., 2011; Moon et al.,
2015). Altered activation of the DLPFC in patients with GAD
has been associated with emotional dysregulation and attention
deficit. Functional MRI studies have reported increased activity
of the DLPFC under affective stroop and emotion reappraisal
tasks in patients with GAD (Ball et al., 2012; Blair et al., 2012).
Additionally, functional abnormalities of the amygdala, known
as the most prominent “fear-circuit” structure in the brain that
plays a central role in automatic affective processing, have been
found in most anxiety disorders (LeDoux, 2000; Anderson et al.,
2003; Ohman, 2005; Etkin and Wager, 2007; Adolphs, 2008;
Shin and Liberzon, 2010; Linares et al., 2012). The amygdala
has also demonstrated responsibility for facilitating perceptual
processing and bottom-up emotional control in individuals with
GAD (LeDoux, 2000; Davis and Whalen, 2001; Phelps, 2006).
Models of emotional regulation have therefore focused primarily
on the DLPFC and the amygdala. Accordingly, we assume that
individuals with GAD display aberrant FC seeded from the
amygdala and the DLPFC compared to healthy controls.

Studies have shed less light on the relationship between
the temporal cortex, especially the temporal pole, and GAD.
Although the function of the temporal pole is not well
understood, a damaged temporal pole can impair ability to
use experiential knowledge and therefore may cause affective
symptoms (Funnell, 2001). The temporal cortex binds complex,
highly processed perceptual inputs to visceral emotional
responses (Olson et al., 2007). The temporal pole is located at the
end of the ventral visual stream and is strongly interconnected
with the amygdala (Nakamura and Kubota, 1996; Stefanacci and
Amaral, 2002). It integrates conceptual knowledge and meaning
with semantic, visual and auditory information (Carlson et al.,
2014), and influences emotions via top-downmodulations (Pehrs
et al., 2015). Studies have reported altered functional connectivity
(FC) between the temporal pole and the amygdala in anxiety
disorders (Aghajani et al., 2014; Modi et al., 2015). This finding
has prompted us to explore the FC between the temporal pole and
the amygdala in GAD patients. Therefore, one of our hypotheses
is that altered FC between these two areas is attributed to the
etiology of GAD.

Accordingly, the amygdala and the DLPFC will be defined as
regions of interest (ROIs) to explore in GADpatients. Because the
number of volumes in the eyes-open resting state fMRI (rs-fMRI)
we collected was too small, we also analyzed the eyes-closed rs-
fMRI using the same protocol to improve the reliability of our
results.

MATERIALS AND METHODS

Participants
All participants received the Mini-International
Neuropsychiatric Interview (MINI), Chinese version (Si
et al., 2009). Twenty two GAD patients who met the criteria
for DSM-IV (Association, 2000) and who were not found to
have lifetime psychosis, substance dependence or severe somatic
diseases were recruited from the psychological outpatient clinic
at the Shanghai Mental Health Center. We excluded patients
who had comorbid moods or other anxiety disorders. Twenty
one healthy controls were recruited from local communities
and Shanghai Jiao Tong University. Controls were matched for
gender, age, education level, and did not meet DSM-IV criteria
for lifetime mood, anxiety, psychotic, or substance dependence
disorders. Forty three participants were enrolled in total for
this study and according to the Edinburgh Inventory (Oldfield,
1971), all of them are right-handed adults free of psychotropic
medications for at least 2 weeks before enrollment. The study
was conducted between August 2011 and November 2012.

This study was approved by the Research Ethics Committee
of Shanghai Mental Health Center, China (SMHC-IRB 201217).
Written informed consent was acquired from every participant.

All participants were informed of the safety and eligibility
criteria for fMRI scanning: no neurological conditions and
no implanted ferrous metal. The Hamilton Rating Scale for
Anxiety (HAMA) (Hamilton, 1959) and Hamilton Rating Scale
for Depression (HAMD) (Hamilton, 1967) were administered to
all participants on the day of scanning. Demographic and clinical
characteristics of the 43 participants are shown in Table 1.

Image Acquisition
Images were obtained using a Siemens Trio 3.0 Tesla MRI
scanner (Siemens, Erlangen, Germany) with a standard 12-
channel head coil. Restraining foam pads was used to reduce
head motion and earplugs were used to reduce scanner noise.
High-resolution T1-weighted anatomical images (repetition time
(TR)= 1900 ms, echo time (TE) = 2.46 ms, flip angle = 9
degrees, 32 transverse slices, field of view (FOV) = 240 × 240
mm, matrix= 256× 256, slice thickness= 1 mm) were acquired
using a magnetization prepared rapid gradient-echo sequence.
Resting-state functional MRI data were acquired using a single-
shot, gradient-recalled echo planar imaging sequence (TR= 2000

TABLE 1 | Demographic and clinical data.

Parameter GAD HC p-value

n = 21 n = 22

Age (years) 39.90 ± 12.24 38.05 ± 10.32 0.593

Gender (M/F) 13/7 14/8 0.927

Education (years) 11.19 ± 3.31 12.50 ± 2.59 0.142

HAMA 18.6 ± 9.01 0.76 ± 0.94 0.000

HAMD 9.23 ± 5.10 0.86 ± 1.20 0.000

HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale;

GAD, generalized anxiety disorder; HC: healthy control.
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ms, TE = 25 ms, flip angle = 90 degrees). 32 transverse slices
(FOV = 240 × 240 mm, matrix = 64 × 64, slice thickness
= 5 mm) resulting in a total of 80/157 volumes and a scan
time of 164/314 s, respectively, in eyes-open and eyes-closed
rs-fMRI. During the scan, participants were instructed to stay
aware. After the scan, the technicians would check the quality of
structural images. If any abnormalities were found in the images,
participants were re-scanned.

Data Processing and Analysis
Demographic and Clinical Data Analysis
Using Statistical Product and Service Solutions software 17.0
(SPSS, Inc., Chicago, Illinois), we conducted analysis of age,
gender, years of education, HAMA, and HAMD. Independent
sample t-tests for continuous variables and chi-square tests for
categorical variables were used.

Resting-State fMRI Analysis
The Data Processing Assistant for Resting-State fMRI 2.0
(DPARSFA2.0, http://restfmri.net/forum/) (Chao-Gan and Yu-
Feng, 2010), which works with the Statistical ParametricMapping
Software (SPM8, http://www.fil.ion.ucl.ac.uk/spm) (Friston et al.,
1994) was used to analyze the rs-fMRI data. Preprocessing was
completed in 7 steps: (1) Convert DICOM data to NIFTI format
and remove first 10 time points of the image; (2) Slice timing
correction and realignment of image; (3) Parallel movements
in any direction >2.5 mm, or rotary movements >2.5 degree
were excluded and subjects using a threshold of frame-wise
displacement >0.5 mm (Power et al., 2012) were also excluded;
(4) Spatial normalization to the standard Montreal Neurological
Institute (MNI) echo-planar imaging template and the resampled
voxel size was 3 × 3 × 3 mm; (5) Conduct Friston 24-parameter
correction (Yan et al., 2013) to minimize the effect of head
motion; (6) Smoothing with a Gaussian kernel of 8-mm full-
width at half-maximum (FWHM); (7) After linear detrending,
the functional data was band-pass filtered (pass frequence band:
0.01–0.1 Hz) to reduce the effects of low-frequency drift as well as
high-frequency respiratory and cardiac noise (Biswal et al., 1995).

According to previous studies (Cieslik et al., 2013; Comte
et al., 2014; Cui et al., 2016), the bilateral amygdala (MNI:
32,−2,−26;−28, 4,−22) and the bilateral DLPFC (MNI: 30, 43,
23;−51, 27, 30) were defined as ROIs. The peak voxel of each
ROI and a 6 mm-radius sphere were selected to proceed with the
FC analysis. The Pearson correlation coefficients were calculated
between the ROI and the other voxels of the whole brain.
Fisher’s r-to-z transformation was used to convert correlation
coefficients into z-scores so that the correlation coefficient would
improve the normality of the data (Hampson et al., 2002;
Chao-Gan and Yu-Feng, 2010; Song et al., 2011), and generate
FC maps. Voxel-wise two-sample t-tests were conducted to
compare group differences between GAD patients and controls.
Spearman correlation analysis was performed in GAD patients
to investigate the correlation between FC and disease severity
(HAMA score). Both t-tests and correlation analysis were
conducted under the BrainMask_61∗73∗61. As correction for
multiple comparisons, a corrected threshold of p < 0.05 (two-
tailed) was derived from a combined threshold of p < 0.005 for

individual voxel with a cluster size >53 voxels. These threshold
were determined using the 3dFWHM and 3dClustSim program
in AFNI software (https://afni.nimh.nih.gov/afni, parameters:
single voxel p < 0.005, 2000 Monte Carlo iterations, estimated
FWHM = 9.5 mm, the BrainMask_61∗73∗61 was used as mask
in estimation of smoothness and correction). Additionally, age,
years of education, HAMD score and intracranial volume (ICV)
were modeled as covariates. The analyses above were conducted
in both eyes-open and eyes-closed rs-fMRI.

In order to improve the reliability of these results, we
calculated mean frame-wise displacement for each group and
conducted t-tests between matched groups in SPSS.

RESULTS

Demographic and Clinical Characteristics
Compared with the healthy control group, the HAMA scores
and HAMD scores were significantly different in GAD patients
(P < 0.05). Except that, there is no significant difference between
GAD patients and healthy controls.

Resting-State fMRI Results
Functional Connectivity
Compared with healthy controls, GAD patients showed
increased FC between the left amygdala and the temporal pole
both in eyes-open and eyes-closed rs-fMRI (P < 0.005 to define
cluster, AlphaSim correction, cluster size >53 voxels, overall
p < 0.05).

In eyes-open rs-fMRI, there was increased connectivity
between the left amygdala and the inferior frontal gyrus in
the GAD group compared with the control group (P < 0.005
to define cluster, AlphaSim correction, cluster size >53 voxels,
overall p < 0.05). (Figure 1, Table 2) There was no significant
abnormal FC between GAD subjects and controls seeded from
the DLPFC.

In eyes-closed rs-fMRI, we found increased FC in the left
amygdala with the middle temporal gyrus (P < 0.005 to
define cluster, AlphaSim correction, cluster size >53 voxels,
overall p < 0.05). Decreased FC between the left DLPFC and
the precuneus, the lingual gyrus, the calcarine sulcus, and
the cerebellar vermis was detected in GAD subjects compared
with healthy controls (P < 0.005 to define cluster, AlphaSim
correction, cluster size >53 voxels, overall p < 0.05). There
was decreased connectivity between the right DLPFC and the
medial prefrontal cortex (mPFC), the dorsal anterior cingulate
cortex (dACC), the middle temporal gyrus, the angular gyrus,
the precuneus, the calcarine sulcus, and the cerebellar vermis
in GAD subjects compared with healthy controls (P < 0.005
to define cluster, AlphaSim correction, cluster size >53 voxels,
overall p < 0.05). (Figure 2, Table 2).

Correlation Analysis of FC and Illness Severity
In eyes-open rs-fMRI, the HAMA score had a significant
negative correlation with the FC between the left amygdala
and the superior frontal gyrus in GAD subjects (P < 0.005
to define cluster, AlphaSim correction, cluster size >53 voxels,
overall p < 0.05). The FC between the right amygdala and the
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FIGURE 1 | Altered functional connectivity seeded from the left amygdala in GAD, compared with HC (P < 0.005 to define cluster, AlphaSim

correction, cluster size >53 voxels, overall p < 0.05). Hot colors indicate increased functional connectivity in GAD compared with HC. (GAD, generalized anxiety

disorder; HC, healthy control; rs-fMRI, resting state fMRI; IFG, inferior frontal gyrus; TP, temporal gyrus; MTG, middle temporal gyrus; L, left; R, right).

TABLE 2 | Alterations in FC seeded from the amygdala and DLPFC

between GAD and HC.

Brain regions BA MNI Voxel Peak

coordinates t-value

X Y Z

EYES-OPEN rs-fMRI

ROI: AMYGDALA_L

Inferior frontal gyrus_R 47, 22, 38 57 36 −6 76 4.40

Temporal pole_R

Inferior frontal gyrus_L 22, 44, 47 −57 12 −3 58 3.93

Temporal pole_L

EYES-CLOSED rs-fMRI

ROI: AMYGDALA_L

Middle temporal

gyrus_R

21, 38 48 −6 −24 54 4.12

Temporal pole_R

ROI: DLPFC_R

Medial prefrontal

cortex_L/R

11, 32, 25 6 36 −9 867 −6.16

Dorsal anterior

cingulate cortex_L/R

Middle temporal

gyrus_R

21 60 3 −21 95 −4.84

Precuneus_L

Calcarine sulcus_L 30, 29, 23 6 −51 0 412 −4.93

Cerebellar vermis

Angular gyrus_R 39 42 −63 21 74 −4.37

ROI: DLPFC_L

Precuneus_L 29, 30 −21 −48 0 258 −4.14

Lingual gyrus_L

Calcarine sulcus_L

Cerebellar vermis

R, right; L, left; BA, Brodmann’s area; MNI, Montreal Neurological Institute; GAD,

generalized anxiety disorder; HC, healthy control; FC, functional connectivity; DLPFC,

dorsolateral prefrontal cortex; ROI, region of interest.

fusiform gyrus, the superior/middle occipital gyrus, and the
cerebellum was positively correlated to the HAMA score in GAD
subjects (P < 0.005 to define cluster, AlphaSim correction, cluster
size >53 voxels, overall p < 0.05). We found that the HAMA
score was positively correlated with the FC between the DLPFC
and the inferior frontal gyrus, the supplementary motor area
(SMA), and the cerebellum in GAD subjects (P < 0.005 to define
cluster, AlphaSim correction, cluster size >53 voxels, overall
p < 0.05). (Table 3, Supplement Figure 1)

In eyes-closed rs-fMRI, the HAMA score had a significant
positive correlation with the FC between the right DLPFC and the
lingual gyrus, the cuneus, the fusiform gyrus, the inferior/middle
occipital gyrus, and the cerebellum in GAD subjects (P < 0.005
to define cluster, AlphaSim correction, cluster size >53 voxels,
overall p < 0.05). (Table 3, Supplement Figure 1).

Additionally, both in eyes-open and eyes-closed rs-fMRI, we
did not find a significant difference in frame-wise displacement
between GAD patients and healthy controls [p = 0.926 (eyes-
open), 0.271 (eyes-closed)].

DISCUSSION

In this study, we conducted analysis to characterize alterations
in FC that may show the pathological basis of GAD using both
the eyes-open and the eyes-closed rs-fMRI. While exploring FC
seeded from the amygdala and the DLPFC, we found: (1) Patients
with GAD showed increased FC between the left amygdala
and the temporal pole compared with health controls. (2) In
both eyes-open and eyes-closed conditions, the brain regions
showed altered FC with amygdala/DLPFC were primarily from
the default mode network (DMN).

Increased FC between the amygdala and the temporal pole was
detected by both eyes-open and eyes-closed rs-fMRI. This finding
may illustrate that the altered FC may contribute to the etiology
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FIGURE 2 | Altered functional connectivity seeded from the bilateral DLPFC in GAD, compared with HC (P < 0.005 to define cluster, AlphaSim

correction, cluster size >53 voxels, overall p < 0.05). Hot and cold colors indicate increased and decreased FC in GAD compared with HC. (DLPFC, dorsolateral

prefrontal cortex; GAD, generalized anxiety disorder; HC, healthy control; rs-fMRI, resting state fMRI; mPFC, medial prefrontal cortex; dACC, dorsal anterior cingulate

cortex; MTG, middle temporal gyrus; PCU, precuneus; CAL, calcarine sulcus; CBV, cerebellar vermis; AG, angular gyrus; LgG, lingual gyrus; L, left; R, right).

of GAD. Previous findings indicate that the temporal pole plays
a role in both social and emotional processing, including specific
recognition, theory of mind (Wong and Gallate, 2012), memory
(Damasio et al., 1996), and encodes similarity relations among
different concepts (Patterson et al., 2007). It is also thought
to be involved in access to knowledge during “mentalizing,”
which refers to the attribution of intentions and other mental
states (Frith and Frith, 2003). The amygdala is one of the most
investigated structures of the brain, especially in the context
of emotional processing. The amygdala is marked as the most
prominent “fear-circuit” structure, and hyperactivation of the
amygdala is found in most anxiety disorders (Etkin and Wager,
2007; Shin and Liberzon, 2010; Linares et al., 2012). And it has
been studied extensively within the context of fear conditioning
and extinction as key processes for the pathophysiology of
anxiety disorders. The FC between the amygdala and the
temporal pole may reflect integration of emotional regulation
with knowledge during stimuli perception and mentalizing in
healthy subjects. This neural process is presumably disrupted
in GAD, which is consistent with observations of deficits in
socio-emotional behaviors (Aghajani et al., 2014). The increased
connectivity between the temporal pole and the amygdala in
GAD patients may be responsible for why stimuli more easily
evoke anxiety in GAD patients.

The default mode network (DMN) is defined as the set
of regions in the brain that are consistently more activated
during resting condition than other brain networks (Fox
and Raichle, 2007). It is often described as a unitary,
homogeneous system that is largely involved in the integration
of autobiographical memories and in self-monitoring, in the
retrieval and manipulation of past events in an effort to solve
problems and develop future plans, and in emotion regulation
(Greicius et al., 2003). When a task requires attention, however,
the activation of such network is suppressed. Deficits in DMN

suppression are reported in several mental illnesses, notably
anxiety disorders (Anticevic et al., 2012). Our results showed
altered FC between the amygdala and several regions of the
brain including the temporal pole, the middle temporal gyrus,
which belong to the DMN, in the GAD group compared with the
control group. Altered FC was also found between the DLPFC
and brain regions of the DMN, such as the mPFC, the angular
gyrus, and the precuneus in the GAD group.

The middle temporal gyrus is regarded as an important brain
structure in the integration of memory, audiovisual association,
object-recognition and visual perception (Li et al., 2013; Shao
et al., 2013). The middle temporal gyrus was found to have
increased FC between the amygdala. This finding may reflect
an increased predisposition for inaccurate interpretation of
stimuli (Pannekoek et al., 2013). However, the FC between the
DLPFC and the middle temporal gyrus, and the mPFC was
decreased in GAD patients compared with healthy controls.
The DLPFC is involved in the function of working memory,
executive functions, emotion regulation, subjective feelings, and
self-awareness (Craig, 2002; Critchley et al., 2004). The mPFC
is widely known to be crucial for emotion regulation, especially
for controlling negative emotional responses (Etkin et al., 2009).
The angular gyrus, which is also a part of the DMN, has
been implicated in affective regulation associated with empathic
response, anxiety, and mood (Leung et al., 2013). The precuneus
is implicated in episodic memory, visuospatial processing, self-
reflection and aspects of consciousness (Fox et al., 2015; Hannawi
et al., 2015; Kwok and Macaluso, 2015). The decreased FC
between the DLPFC and the brain regions in the DMN may
explain uncontrolled emotional regulation in GAD patients. This
finding was consistent with our previous study and the models
of “bottom-up” and “top-down” emotional processing (Phillips
et al., 2003, 2008; Ochsner and Gross, 2005; Phan et al., 2005;
Goldin et al., 2008; Cui et al., 2016).
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TABLE 3 | Correlation between altered functional connectivity and HAMA

scores for GAD patients.

Brain regions BA MNI coordinates Voxel Rho

X Y Z

EYES-OPEN rs-fMRI

ROI: AMYGDALA_R

Fusiform gyrus_L 37, 19 −24 −42 −18 66 0.77

Cerebellar vermis NA 6 −48 −9 100 0.82

Cerebellum_L

Superior occipital

gyrus_R

19 24 −78 36 71 0.81

Middle occipital gyrus_R

ROI: AMYGDALA_L

Superior frontal gyrus_L 9 −3 36 33 67 −0.79

ROI: DLPFC_R

Cerebellum_R NA 12 −48 −60 76 0.81

Supplementary motor

area_L

6 −15 3 75 72 0.85

ROI: DLPFC_L

Cerebellum_R NA 33 −48 −51 78 0.83

Inferior frontal gyrus_L 38, 47 −51 24 6 119 0.84

EYES-CLOSED rs-fMRI

ROI: DLPFC_R

Cerebellum_R 19 30 −51 −18 70 0.82

Fusiform gyrus_R

Fusiform gyrus_L 37, 19 −24 −51 −12 80 0.82

Lingual gyrus_L

Inferior occipital gyrus_L 19 −48 −72 −9 74 0.86

Middle occipital gyrus_R 19 42 −78 9 69 0.85

Cuneus_ R 19, 18 6 −81 39 125 0.81

R, right; L, left; BA, Brodmann’s area; MNI, Montreal Neurological Institute; GAD,

generalized anxiety disorder; HC, healthy control; DLPFC, dorsolateral prefrontal cortex;

HAMA, Hamilton Anxiety Scale; ROI, region of interest.

The lingual gyrus, the cuneus, and the fusiform gyrus all
belong to the visual network (VN). Functional abnormalities of
these regions reflect excessive vigilance as a hallmark of anxiety
disorders. The VN is associated with pathological memories
and planning a response to potentially threatening stimuli
(Bremner et al., 1999). The dACC, a part of the salience
network (SN), plays a central role in detecting emotional
salience and triggering cognitive control via FC with the
DLPFC (Sridharan et al., 2008; Bressler and Menon, 2010).
Both the DLPFC and the dorsal ACC are implicated in
emotional regulation circuits (Bush et al., 2000; Brühl et al.,
2014). Therefore, the decreased FC between the DLPFC and
the VN/SN may be related to the loss of emotional regulation
from the DLPFC in GAD patients. The cerebellum is linked
with the cerebrum, brainstem, and spinal cord through efferent
and afferent fibers, and the cerebellar vermis is connected to
the amygdala anatomically in animals (De Bellis et al., 2002).
Recently, more and more studies have reported the cerebellum
is functionally related to expressing fear and processing fear
memory (Supple et al., 1987; Sacchetti et al., 2005). Cerebellar
cognitive affective syndrome was observed in patients with

cerebellar damage (Stoodley, 2012). The DLPFC is involved in
executive control (Habas et al., 2009; O’Reilly et al., 2010; Yeo
et al., 2011), so the connectivity between the cerebellum and
the DLPFC may mediate anxiety (Caulfield et al., 2016). And it
supports our finding that the decreased FC between the DLPFC
and the cerebellum in GAD patients compared with healthy
controls.

Regarding the underlying mechanism, the temporal lobe,
especially the temporal pole, may be the emphasis for future
treatment of GAD. Although there some studies reported the
effect of transcranial direct current stimulation (tDSC) and
repetitive transcranial magnetic stimulation (rTMS) in curing
GAD, the outcomes are various. According to our findings,
we prefer the temporal pole as the stimulated target. By
decreasing the related abnormal FC may remit anxiety in GAD
patients.

CONCLUSION AND LIMITATIONS

In conclusion, our study found altered FC seeded from the
amygdala and the DLPFC in GAD patients using eyes-open and
eyes-closed rs-fMRI. We found that the increased FC between
the amygdala and the temporal pole may be underlying the
neural pathophysiology of GAD. We hope these findings will
shed light on the current understanding of GAD and on advanced
therapeutic interventions.

A limitation in this study is that we were only able to acquire
164 s in the eyes-open resting state fMRI data and the reliability
of FC analysis under this condition is limited (Shehzad et al.,
2009; Thomason et al., 2011; Braun et al., 2012; Li et al., 2012).
Nonetheless, the consistency between eyes-open and eyes-closed
conditions alleviates this concern and provides support for our
conclusion. Additionally, as fMRI data was acquired using the
parameters TR = 2s, slices = 30, band pass filtering in the range
0.01 < f < 0.1 Hz, cardiac and respiratory fluctuations may still
reduce the specificity of low frequency fluctuations to functional
connected regions (Lowe et al., 1998). Future research will focus
on MRI follow-up and will explore changes in neuroimaging of
GAD.
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