Introduction: Ulcerative colitis (UC), a chronic non-specific colorectal inflammatory disease with unclear etiology, has long plagued human health. Gut microbiota dysbiosis destroy homeostasis of the colon, which is closely related to ulcerative colitis progress. Apigenin, a flavonoid widely present in celery, has been found to improve ulcerative colitis. However, the potential molecular mechanism of apigenin ameliorating ulcerative colitis through protecting intestinal barrier and regulating gut microbiota remains undefined.
Methods: Dextran sodium sulfate (DSS)-induced colitis mouse model was conducted to evaluate the effect of apigenin on UC. Disease activity index score of mice, colon tissue pathological, cytokines analysis, intestinal tight junction proteins expression, and colonic content short-chain fatty acids (SCFAs) and 16S rRNA gene sequencing were conducted to reflect the protection of apigenin on UC.
Results: The results indicated that apigenin significantly relieved the intestinal pathological injury, increased goblet cells quantity and mucin secretion, promoted anti-inflammatory cytokines IL-10 expression, and inhibited the expression of proinflammatory cytokines, TNF-α, IL-1β, IL-6 and MPO activity of colon tissue. Apigenin increased ZO-1, claudin-1 and occludin expressions to restore the integrity of the intestinal barrier. Moreover, apigenin remodeled the disordered gut microbiota by regulating the abundance of Akkermansia, Turicibacter, Klebsiella, Romboutsia, etc., and its metabolites (SCFAs), attenuating DSS-induced colon injury. We also investigated the effect of apigenin supplementation on potential metabolic pathways of gut microbiota.
Conclusion: Apigenin effectively ameliorated DSS-induced UC via balancing gut microbiome to inhibit inflammation and protect gut barrier. With low toxicity and high efficiency, apigenin might serve as a potential therapeutic strategy for the treatment of UC via regulating the interaction and mechanism between host and microorganism.
To our knowledge, no feasible, valid and reliable instrument exists to examine tactical skills over the course of multiple training and game situations in tennis yet. Therefore, the aim of this study was to develop and evaluate the psychometric properties of the Tactical Skills Questionnaire in Tennis (TSQT). The TSQT is a new instrument with closed-ended questions designed to examine tactical skills in tennis players. Participants were 233 competitive tennis players (age: 17.06 ± 4.74 years) competing on national or regional levels. With a principal component analysis (PCA) we identified four theoretically meaningful subscales for the 31-item TSQT: “Anticipation and positioning,” “Game intelligence and adaptability,” “Decision-making,” and “Recognizing game situations” and confirmed them with a confirmatory factor analysis (CFA) (χ2 = 527.02, df = 426, p < 0.001, CFI = 0.93, RMSEA = 0.045, SRMR = 0.079). Internal consistency was good, with Cronbach's alpha of 0.89 for the entire scale and McDonald's omega ranging from 0.69 to 0.78 for the separate subscales. A subsample of 57 players completed the TSQT twice to assess test-retest reliability. Absolute test-retest reliability of the subscales was good with no significant differences in mean scores between test and retest (p > 0.05). Relative test-retest reliability was moderate with ICC values ranging from 0.65 to 0.71. National players outperformed regional players on the subscales “Game intelligence and adaptability,” “Decision-making,” and “Recognizing game situations” (p < 0.05), and there was a trend toward significance for “Anticipation and positioning” (p = 0.07). This study supported the psychometric properties of the TSQT. Evaluating tactical skills with the TSQT provides players, coaches and other professionals with insight in players' self-assessed tactical skills over the course of multiple training and game situations. It creates the opportunity for players to reflect on their skills and detect personal development areas with their coach. We advise to use this information as input for tailor-made training programs.