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Editorial on the Research Topic

Prediabetes and endocrine function
Introduction

Type 2 diabetes mellitus (T2DM) is a condition characterized by chronic

hyperglycaemia caused by insulin resistance or insulin insufficiency (1). T2DM accounts

for approximately 90% of the cases worldwide and leads to a variety of microvascular and

macrovascular complications (2). By 2040, it was predicted by the International Diabetes

Federation (IDF) that around 642 million people worldwide are expected to be diagnosed

with T2DM (2). The onset of T2DM is often preceded by an asymptomatic condition

known as prediabetes where the blood glucose levels are above the normal range but below

the threshold for the diagnosis of T2DM (3). Pre-diabetes is asymptomatic and has been

shown to increasing in prevalence (3). The main risk factors that have been identified for

this condition include chronic consumption of high calorie diets, obesity and sedentary

lifestyles (4). Studies have shown that the intermediate hyperglycemia associated with

prediabetes may result in chronic sub-clinical inflammation and increased generation of

reactive oxygen species (ROS) which may in turn have consequences on metabolic

function. Indeed, studies have shown that the complications that occur in T2DM begin

in pre-diabetes (5–7). In this Research Topic, we compiled papers looking at the effects of

prediabetes on endocrine function as well as looked at possible new biomarkers and

surrogate markers for prediabetes.
Frequency and distribution of studies
on prediabetes

Prediabetes is defined as a condition of intermediate hyperglycaemia characterized by

the impaired fasting glucose, impaired glucose tolerance and elevated levels of glycated
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haemoglobin (3). Prediabetes is a growing public health concern

worldwide and this has prompted studies globally. This is evidenced

by the bibliometric analysis done by Zhao and Li, they looked at

worldwide trends of prediabetes from 1985 to 2022. The study

highlighted research hotspots as well as development patterns in the

field of prediabetes with a strong focus on global research outcomes.

The study highlighted the increasing frequency of publications in

this field over the last few decades. More significantly, the study

showed the wide distribution in the journals where the work was

published as well as the countries and universities where the work

was being done.
Effects on endocrine function

Several studies have previously shown that the complications

often associated with type 2 diabetes actually begin prediabetes (8,

9). In this Research Topic, Naidoo et al., showed that there are

derangements in calcium homeostasis due to compromised renal

function during the prediabetic state. The study further showed that

calcium-regulating organs compensate for renal calcium wastage

and are aimed at maintaining normocalcaemia. The effects

associated with prediabetes on calcium-regulating organs are

directed towards promoting increased renal calcium reabsorption,

increased renal vitamin D activation, increased intestinal calcium

absorption and decreased bone resorption followed by increased

bone formation. This was evidenced by increased expression of

renal calcium transport markers and intestinal calcium transport

markers in addition to increased osteocalcin and decreased

deoxypyridinoline levels. This was supported by another research

article in this topic by Liu et al.. This study analysed bone mineral

density in initially normoglycaemic participants in the Pathobiology

of Prediabetes in a Biracial Cohort (POP-ABC) study. This was in

relation to the incidence of prediabetes during 5 years of follow-up.

The main finding was that study participants who developed

incident prediabetes during 5 years of follow-up tended to have

higher baseline bone mineral density suggesting compensatory

mechanisms in calcium homeostasis during prediabetes. Another

study conducted by Krisnamurti et al. in a prediabetic rat model

further provided evidence of the involvement of vitamin D in the

development of prediabetes. Vitamin D deficiency has been

frequently linked to insulin resistance and diabetes. In this study,

the authors show that vitamin D supplementation reduces

insulin resistance in prediabetic rats and that the reduction might

be due to the effects of vitamin D on IRS, PPARg, and NF-kB

expression. These studies collectively show both the effects of

prediabetes on calcium homeostasis as well as how vitamin D

supplementation could be used to reduce insulin resistance in the

prediabetic state.
Frontiers in Endocrinology 025
Identification of biomarkers and
surrogate markers

Various studies have embarked on identifying novel biomarkers

and surrogate markers to assist with early identification and risk

markers of prediabetes. Jiang et al. showed that higher visceral

adiposity index values are positively associated with insulin

resistance while Wang et al. showed that monitoring AST/ALT

ratio could be beneficial as a predictor of insulin resistance in both

males and females. Han et al. on the other hand demonstrated a

positive non-linear relationship between the triglyceride glucose-

BMI value and the risk of developing T2DM in patients that already

have prediabetes. Yang et al. showed the use of a metabolite-based

biomarker for early patient diagnosis and treatment of prediabetes

while Al Akl et al. showed that the triglyceride-waist-height ratio

may be a good marker in detecting prediabetes.
Conclusion

Recent literature shows an upsurge in the study of prediabetes

and the effects that it has on endocrine function. While there is still

a lot more work to be done in this field, the latest studies have

suggested novel markers that may be used in the early detection

of prediabetes.
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Derangements to the functioning of calcium-regulating organs have been associated with
type 2 diabetes mellitus (T2DM), a condition preceded by pre-diabetes. Type 2 diabetes
has shown to promote renal calcium wastage, intestinal calcium malabsorption and
increased bone resorption. However, the changes to the functioning of calcium-regulating
organs in pre-diabetes are not known. Subsequently, the effects of diet-induced pre-
diabetes on the functioning of calcium-regulating organs in a rat model for pre-diabetes
was investigated in this study. Male Sprague Dawley rats were separated into two groups
(n=6, each group): non-pre-diabetic (NPD) group and a diet-induced pre-diabetic (DIPD)
group for 20 weeks. After the experimental period, postprandial glucose and HOMA-IR
were analysed in addition to plasma and urinary calcium concentrations. Gene
expressions of intestinal vitamin D (VDR), intestinal calbindin-D9k, renal 1-alpha
hydroxylase and renal transient receptor potential vanilloid 5 (TRPV5) expressions in
addition to plasma osteocalcin and urinary deoxypyridinoline concentrations were
analysed at week 20. The results demonstrated significantly increased concentrations
of postprandial glucose, HOMA-IR and urinary calcium in addition to unchanged plasma
calcium levels in the DIPD group by comparison to NPD. Renal TRPV5, renal 1-alpha
hydroxylase, intestinal VDR and intestinal calbindin-D9k expressions were increased in the
DIPD group by comparison to NPD. Furthermore, plasma osteocalcin levels were
increased and urine deoxypyridinoline levels were decreased in the DIPD group by
comparison to NPD. These observations may suggest that calcium-regulating organs
compensate for the changes to calcium homeostasis by inducing increased renal calcium
reabsorption, increased intestinal calcium absorption and decreased bone resorption
followed by increased bone formation.

Keywords: pre-diabetes, calcium-regulating organs, high-fat high carbohydrate diet, homeostasis,
normocalcaemia
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Naidoo et al. Calcium-Regulating Organs in Pre-Diabetes
INTRODUCTION

Urban lifestyle and the chronic consumption of diets which contain
high fat and carbohydrate content has shown to promote the
development of type 2 diabetes mellitus (T2DM), a condition
which is preceded by pre-diabetes (1). Pre-diabetes is an
intermediate state of hyperglycaemia with glycaemic parameters
above the homeostatic range yet below the threshold for diagnosis of
clinical diabetes (1). Pre-diabetes is associated with the simultaneous
presence of insulin resistance and b-cell dysfunction (2). In 2017,
the International Diabetes Federation (IDF) reported that 352
million people worldwide were diagnosed with pre-diabetes, while
it is further estimated that by 2045 the prevalence of pre-diabetes is
expected to increase by 8.3% (2). While T2DM is often associated
with macro- and microvascular complications, studies have shown
that T2DM impairs calcium homeostasis by disrupting the
functioning of calcium-regulating organs, namely the intestine,
kidney and bone (3, 4).

Fluxes of calcium between the small intestine, bone and kidney
are controlled by parathyroid hormone (PTH), calcitonin and
calcitriol (5). Calcium-regulating organs participate in supplying
calcium to the blood and removing it from blood when necessary
(4). The small intestine is the site where dietary calcium is absorbed,
the bone serves as a calcium reservoir and the kidneys regulate
urinary calcium excretion (6). Several studies have shown
physiological changes to calcium-regulating organs in T2DM
individuals (4, 7, 8). Type 2 diabetes mellitus promotes impaired
intestinal calcium absorption, renal calcium wasting and bone
deterioration (4). Furthermore, it also leads to dysregulation of
calciotropic hormones, thereby worsening the already impaired
functioning of calcium-regulating organs (6). The maintenance of
calcium homeostasis is important because calciummodulates many
important functions (4). Calcium is responsible for bone
mineralization, hormone communication, regulation of the
nervous system and muscle tone (5). By interrupting calcium
homeostasis, processes within the body that are dependent on
calcium would be impaired as well as conditions such as
hypocalcaemia and osteoporosis may develop (4).

Previous studies in our laboratory developed a high fat high
carbohydrate (HFHC) diet-induced pre-diabetic animal model
which mimics the human condition of pre-diabetes (9, 10).
Several studies using this model have revealed that various
complications seen in T2DM begin in the pre-diabetic state (9,
11). While the changes to the functioning of calcium-regulating
organs have been well documented in the diabetic state, these
changes have not yet been investigated during the pre-diabetic
state (12, 13). Hence, the aim of this study is to determine the
effects of diet-induced pre-diabetes on the functioning of
calcium-regulating organs in male Sprague Dawley rats.
MATERIALS AND METHODS

Animals
Sprague-Dawley male rats (150-180 g) were bred and housed at
the University of KwaZulu-Natal’s Biomedical Research Unit
Frontiers in Endocrinology | www.frontiersin.org 28
(BRU). The protocol for animal experimentation and conditions
were followed according to the Animal Research Ethics
Committee of the University of KwaZulu-Natal (ETHICS#:
AREC/00003627/2021). Procedures involving animals care
were conducted in conformity with the institutional guidelines
for animal care of the University of KwaZulu-Natal. The animals
were maintained under standard conditions of a constant room
temperature (22± 2°C), carbon dioxide content (<5000 p.m.),
relative humidity (55± 5°C) and illumination (12 h light/dark
cycle, with lights on at 7am). The noise levels in the room were
maintained below 65 decibels and the animals had access to rat
chow and water ad libitum. An experimental acclimatization
interval of one week was carried out, whereby the rats were fed
standard rat chow (Meadows Feeds, South Africa) and tap water,
prior to the induction of pre-diabetes (10).

Outcome and Outcome Measures
The primary outcome was evaluation of intestinal calcium
transport, renal calcium transport and bone turnover. The
secondary outcome was evaluation of body calcium status,
glucose tolerance and insulin resistance. Intestinal calcium
transport was measured by evaluating intestinal VDR and
intestinal calbindinD9k expression. Renal calcium transport
was measured by evaluating renal TRPV5 and renal 1-alpha
hydroxylase expression. Bone turnover was measured by
evaluating plasma osteocalcin and urine deoxypyridinoline
levels. Body calcium status was measured by evaluating plasma
calcium and urine calcium levels. Glucose tolerance and insulin
resistance was measured by evaluating OGTT, plasma insulin
and HOMA-IR.

Induction of Pre-Diabetes
The rats were randomly assigned following simple randomisation
procedures (computerised random numbers) to 1 of 2 two groups
(n=6, per group) and fed their respective diets for an experimental
period of 20 weeks. Six rats per group were the minimum amount of
animals needed to achieve statistical significance according to the
resource method equation (14). Experimental pre-diabetes was
induced in the animals using a previously described protocol by 10
(10). Basically, one group was fed a standard rat diet and tap water,
whereas the other group was fed a HFHC diet and 15% fructose
supplemented water (AVI Products (Pty) Ltd, Waterfall, South
Africa), for the purpose of inducing pre-diabetes. After 20 weeks,
the animals were tested to confirm pre-diabetes using the criteria
from the American Diabetes Association. Animals with a fasting
blood glucose (FBG) concentration of 5.6 to 7.1 mmol/L, oral glucose
tolerance test (OGTT) 2-h glucose concentration of 7.1–11.1 mmol/L
and plasma triglycerides concentration greater than 2 mmol/L were
regarded as pre-diabetic. The animals that were fed the standard diet
were also tested at week 20 to confirm normoglycaemia.

Experimental Design
This study comprised of two groups, namely a diet-induced pre-
diabetic (DIPD) group and non-pre-diabetic (NPD) group (n=6,
in each group). The animals that consumed the standard rat
chow for 20 weeks and did not have pre-diabetes were regarded
as the NPD group, whereas the animals that consumed the
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HFHC diet for the same number of weeks and diagnosed with
pre-diabetes, were regarded as the DIPD group. Baseline OGTT
and HOMA-IR could not be performed due to analysis being
limited to changes in glycaemic parameters at week 20 after
dietary intervention, in addition blood samples were not
obtained at baseline.

Oral Glucose Tolerance Response
At week 20, an OGTT was conducted following glucose loading,
to determine the glucose tolerance response of animals subjected
to the chronic ingestion of the HFHC diet. The OGT responses
were monitored in the animals according to a well-established
protocol (9, 10, 15). Briefly, after a 12 hour fast, glucose levels
were measured (time, 0 min) in all animals. Thereafter, the
animals were loaded with glucose (glucose; 0.86 g/kg, p.o)
through an oral gavage (18-gauge gavage needle, 38mm long
curved with 21/4 mm ball end). To measure glucose
concentration, blood was collected using the tail-prick method
(16). Glucose concentrations were measured by a OneTouch
select glucometer (Lifescan, Mosta, Malta, United Kingdom).
The glucose concentrations were measured at 15, 30, 60, and 120
minutes following glucose loading.
Urine Collection, Blood Collection and
Tissue Harvesting
At the end of the experimental period, all animals were housed
individually in Makrolon polycarbonate metabolic cages
(Techniplats, Labotec, South Africa) for a 24-hour urine
collection period. After the 24-hours, urine samples from all
animals were collected and stored in a Bio Ultra freezer
(Labotec, Umhlanga, South Africa) at -80°C, thereafter the
animals were anaesthetized with Isofor (100 mg/kg) (Safeline
Pharmaceuticals (Pty) Ltd, Roodeport, South Africa) for 3
minutes via a gas anaesthetic chamber (Biomedical Resource
Unit, UKZN, South Africa). While the rats are unconscious,
blood was collected by cardiac puncture and then injected into
individual pre-cooled heparinized containers. The blood was
centrifuged (Eppendorf centrifuge 5403, LGBW Germany) at
4°C, 503 g for 15 minutes. Plasma was separated from blood
and stored at -70°C in a Bio Ultra freezer (Labotec, Umhlanga,
South Africa) until biochemical analysis as previously described by
10. Following blood collection, the kidney and small intestine were
removed and placed in pre-cooled Eppendorf containers and
snap-frozen in liquid nitrogen before storage in a Bio Ultra
freezer (Snijers Scientific, Tilburg, Netherlands) at − 80°C. Of
note, plasma, urine, kidney and intestinal tissue were obtained
from a previous study which had ethical approval.

HOMA-IR Index
The homeostatic model assessment (HOMA) was used to
measure insulin resistance from fasting blood glucose and
insulin levels (17). The HOMA-IR index was calculated using
the HOMA2 Calculator v2.2.3 program (18.). Values < 1.0 =
insulin sensitive, >1.9 = early insulin resistance, > 2.9= significant
insulin resistance.
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Biochemical Analysis
Plasma calcium, urinary calcium and creatinine concentrations
were measured with an autoanalyzer (IDEXX VetLab station,
Hoofddorp, Netherlands). The plasma insulin, plasma
osteocalcin and urinary deoxypyridinoline concentrations were
measured using separate specific ELISA kits according to the
manufacturer’s instructions (Elabscience and Biotechnology,
Wuhan, China).
Quantitative Real-Time PCR
The harvested kidney and small intestine tissue was subjected to
RNA extraction using a ReliaPrep tissue Miniprep system
(Promega, USA). The purity and concentration of RNA was
determined by Nanodrop 2000 (Thermo Scientific, Roche, South
Africa). A purity ratio (A260/A280) of 1.7-2.1 was considered
acceptable for conversion to cDNA. Synthesis of cDNAs was
performed by reverse transcription reactions with 2 mg of total
RNA using GoTaq® 2-Step RT-qPCR System as a cDNA
synthesis kit (Promega, USA) as described by the manufacturer.

The ROCHE light cycler SYBR Green I master mix was used
for amplication according to the manufacturer’s instructions on
the ROCHE light cycler system. The primer sequences
(Metabion, Germany) used in this study can be found in
Table 1 below. The cycling conditions were: Pre-incubation
was carried out at 95°C for 60s, followed by a 3-step
amplication of 45 cycles at 95°C for 15s, 60°C for 30s, and 72°
C for 30s. Melting was effectuated at 95°C for 10s, 65°C for 60s
and 97°C for 1s. Furthermore, cooling was achieved at 37°C for
30s. Glyceraldehyde-phosphate dehydrogenase (GAPDH) was
used as the housekeeping gene. Gene expression values were
represented using the 2-DDCt relative quantication method.

Table 1 List of primers used in this study
Statistical Analysis
All data was expressed asmean ± S.E.M. Statistical comparisons were
performed with Graph Pad InStat Software (version 5.00, Graph Pad
Software, Inc., San Diego, California, USA) using the student t test. A
value of p < 0.05 was considered statistically significant.
TABLE 1 | List of primers used in this study.

Gene of interest Sequence

TRPV5 Forward: 5’-TGTGAGCCATTTGTAGGTCAG-
3’
Reverse: 5’-GAGGTTGTGGGAACTTCGA-3’

CYP27B1(1-alpha
hydroxylase)

Forward: 5’-CACCCATTTGCATCTCTTCC -3’
Reverse: 5’-GATGGATGCTCCTCTCAGGT -3’

VDR Forward: 5′-GTGACTTTGACCGGAACGTG-3′
Reverse: 5’- ATCATCTCCCTCTTACGCTG -3’

S100G(CalbindinD9k) Forward:
5’CCCGAAGAAATGAAGAGCATTTT-3’
Reverse: 5’-TTCTCCATCACCGTTCTTATCCA-
3’

GAPDH Forward: 5’-AGTGCCAGCCTCGTCTCATA-3’
Reverse: 5’-GATGGTGATGGGTTTCCCGT-3’
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RESULTS

Oral Glucose Tolerance Test
The OGTT and Area under curve (AUC) were analysed in the
non-pre-diabetic (NPD) group and diet-induced pre-diabetic
(DIPD) group after the experimental period (n=6, per group).
The results (Figure 1) showed that at time 0, the FBG
concentration significantly (p= 0.0020) increased in the DIPD
group by comparison to the NPD group. At 120 min post-load of
glucose, the glucose concentrations of the DIPD group was
significantly (p= 0.0386) increased by comparison to the NPD
group. Furthermore, the AUC (Figure 1) was significantly
(p=<0.0001) higher in the DIPD group by comparison to NPD.

Homeostatic Model Assessment for
Insulin Resistance
The HOMA-IR values were calculated from the fasting plasma
glucose and insulin concentrations after the experimental period
(n=6, per group). The results (Table 2) showed that the fasting
plasma glucose (p=< 0.0001) and insulin (p=< 0.0001)
concentrations were significantly higher in the DIPD group by
comparison to the NPD group. The HOMA-IR value for NPD
was within the insulin-sensitive range (< 1.0) while the DIPD
group had a significantly (p=< 0.0001) higher HOMA-IR value
compared to the NPD which was in the range of significant
insulin resistance (>2.9).

Table 2 Plasma glucose, plasma insulin concentrations and
HOMA-IR indices in the non-pre-diabetic (NPD) group and
diet-induced pre-diabetic group (DIPD) (n=6, per group).
Values are presented as mean ± SEM. ****= p<0.0001 in
comparison with NPD

Plasma Calcium and Urinary Calcium
From 24-Hour Urine Samples
Plasma and urinary calcium concentrations were analysed in the
non-pre-diabetic (NPD) group and diet-induced pre-diabetic
(DIPD) group after the experimental period (n=6, per group).
The results (Figure 2) showed that there was no significant
(p=<0.0001) change to plasma calcium concentration in the
DIPD group by comparison to NPD. The urinary calcium
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concentration (Figure 2) were significantly (p= <0.0001)
higher in the DIPD group by comparison to NPD.

Evaluation of Bone Turnover Through
Plasma Osteocalcin and Urine
Deoxypyridinoline Levels
Plasma osteocalcin and urine deoxypyridinoline concentrations
were analysed in the non-pre-diabetic (NPD) group and diet-
induced pre-diabetic (DIPD) group after the experimental period
(n=6, per group). The results (Figure 3) showed that plasma
osteocalcin concentration was significantly higher (p= 0.0002) in
the DIPD group by comparison to NPD. The urinary
deoxypyridinoline concentration (Figure 3) was significantly
(p=<0.0001) lower in the DIPD group by comparison to the
NPD group. A Pearson’s correlation analysis was performed in
both non-pre-diabetic (NPD) and diet-induced pre-diabetic
(DIPD) rats between plasma osteocalcin and HOMA-IR. The
results (Supplementary Table 1) showed that plasma osteocalcin
levels were positively correlated (r=0.87, p=0.02) with HOMA-IR
in the pre-diabetic state.

Evaluation of Renal Calcium Transport
Through Renal TRPV5 and 1-Alpha
Hydroxylase Expression
Renal Transient receptor potential cation channel subfamily V5
(TRPV5) gene expression was analysed in the non-pre-diabetic
(NPD) group and diet-induced pre-diabetic (DIPD) group after
the experimental period (n=6, per group). The results (Figure 4)
showed that the relative expression of renal TRPV5 was significantly
(p=<0.0001) increased by 3.89-fold in the DIPD group relative to the
NPD group. The relative expression of renal 1-alpha hydroxylase
(Figure 4) was significantly (p=<0.0001) increased by 10.96-fold in
the DIPD group relative to the NPD group.
Evaluation of Intestinal Calcium Transport
Through Intestinal VDR and CalbindinD9k
Expression
Intestinal vitamin D receptor (VDR) gene expression was
analysed in the non-pre-diabetic (NPD) group and diet-
FIGURE 1 | The OGT response and AUC values in the non-pre-diabetic (NPD) group and diet-induced pre-diabetic group (DIPD) (n=6, per group). Values are
presented as mean ± SEM. *=p < 0.05, **=p < 0.01, ****= p < 0.0001 by comparison with NPD.
July 2022 | Volume 13 | Article 914189

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Naidoo et al. Calcium-Regulating Organs in Pre-Diabetes
induced pre-diabetic (DIPD) group after the experimental period
(n=6, per group). The results (Figure 5) showed that the relative
expression of intestinal VDR was significantly (p=<0.0001)
increased by 5.55-fold in the DIPD group relative to the NPD
group. The relative expression of intestinal calbindinD9k
expression (Figure 5) was significantly (p=<0.0001) increased
by 9.13-fold in the DIPD group relative to the NPD group.
DISCUSSION

Several studies have shown that the functioning of calcium-
regulating organs are disturbed in T2DM (4, 19). However, no
studies have been conducted to assess the functioning of calcium-
regulating organs during the pre-diabetic state. Hence, this study
aimed to investigate the effects of diet-induced pre-diabetes on the
functioning of calcium-regulating organs, namely the kidney,
intestine and bone. The current study found a significant change
in the functioning of calcium-regulating organs induced by the pre-
diabetic state. In this study, there was increased concentrations of
postprandial glucose, plasma insulin and HOMA-IR index in the
DIPD group by comparison to NPD. Furthermore, we have found
that the pre-diabetic state induced by HFHC diet increases the
levels of urinary calcium as well as the expressions of renal TRPV5,
renal 1-alpha hydroxylase, intestinal VDR and intestinal
calbindinD9k. The pre-diabetic group have also presented
increased plasma osteocalcin, decreased urinary deoxypyridinoline
concentrations, but unchanged plasma calcium. The findings
highlight the physiological compensatory role of calcium-
regulating organ systems in the pathogenesis of pre-diabetes.

Pre-diabetes is characterised as a combination of impaired
glucose tolerance (IGT) and impaired fasting glucose (IFG)
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which can be attributed to moderate insulin resistance in
insulin-dependent tissues (16). Blood glucose levels must be
constantly maintained within a physiological range including a
fasting glucose level of less than 5.6 mmol/L and postprandial
glucose level of less than 7.8 mmol/L (20). In the postprandial
state of normal glucose tolerant (NGT) individuals, blood
glucose concentration increases and insulin is secreted to
enhance glycogenesis and inhibit glycogenolysis (1). As a
result, plasma glucose levels are maintained followed by
plasma insulin levels returning towards the homeostatic range
(21). However, in the pre-diabetic state endogenous glucose
production is excessive before eating and fails to appropriately
suppress after eating in pre-diabetic individuals (22). This is due
to impaired insulin-induced peripheral glucose uptake in
insulin-dependent tissue (10). This accounts for fasting plasma
glucose, insulin, postprandial glucose levels and HOMA-IR been
higher in pre-diabetic individuals by comparison to NGT
individuals (23). In this study, there was a significant increase
in the postprandial glucose concentration at 120 min, AUC and
HOMA-IR value in DIPD group by comparison to NPD. The
results corroborated with previous findings that have shown
significantly higher plasma glucose, insulin, 2-hour postprandial
glucose levels and HOMA-IR in pre-diabetic patients by
comparison to NPD (2, 24). In the DIPD group, the elevated
plasma insulin, impaired fasting glucose and HOMA-IR value in
the range of insulin resistance may suggest that there is some
insulin resistance from peripheral tissue against the uptake of
glucose. High dietary fat promotes an increase in circulating
triacylglyceride which breakdown to free fatty acids (FFA) (25).
The increase in FFAs around insulin-dependent tissue results in
insulin resistance which decreases glucose uptake resulting in
compensatory hyperinsulinemia, as seen in the DIPD group (10).
FIGURE 2 | Plasma and urinary calcium concentrations in the non-pre-diabetic (NPD) group and diet-induced pre-diabetic group (DIPD) (n=6, per group). Values are
presented as mean ± SEM. ****= p < 0.0001 by comparison with NPD.
TABLE 2 | Plasma glucose, plasma insulin concentrations and HOMA-IR indices in the non-pre-diabetic (NPD) group and diet-induced pre-diabetic group (DIPD)
(n=6, per group).

Groups(n=6) Plasma glucose (mmol/L) Plasma insulin(ng/mL) HOMA-IR values

NPD 4.40 ± 0.20 3.47 ± 0.12 0.68 ± 0.05
DIPD 6.72 ± 0.12**** 10.87 ± 0.06**** 3.24 ± 0.06****
July 2022 | Volume 1
Values are presented as mean ± SEM. ****= p < 0.0001 in comparison with NPD.
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Elevated plasma glucose concentrations and the onset of insulin
resistance in T2DM has shown to interfere with the functioning
of calcium-regulating organs in the diabetic state.

Calcium plays a crucial role in various physiological processes
and plasma calcium levels are kept within a narrow range
through the interplay of calcium-regulating organs (26).
Calcium-regulating organs maintain plasma calcium levels by
regulating renal calcium reabsorption, bone turnover and
intestinal calcium absorption (6). Previous studies have shown
decreased plasma calcium concentrations in type 2 diabetic
patients by comparison to normoglycaemic individuals (19,
27). These observations suggested that renal dysfunction and
abnormal vitamin D metabolism were responsible for inducing a
state of hypocalcaemia in the diabetic state (26). However, other
studies have shown normal plasma calcium levels in diabetic
individuals (28, 29). These studies have stated that calcium-
regulating organs compensate for the reduced plasma calcium
levels by inducing an increase in intestinal calcium absorption,
renal calcium reabsorption and bone resorption (30). In this
study, the DIPD group had no significant change to plasma
calcium levels by comparison to the NPD group. The findings in
this study coincided with prior literature that have shown no
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significant change to plasma calcium levels by comparison to
diabetic patients (31, 32). The possible reason for no significant
change to plasma calcium levels in the pre-diabetic state may
have been due to calcium-regulating organs compensating for
the changes to plasma calcium levels. Interestingly, it may be
speculated that during the pre-diabetic state there may be
counter-regulatory mechanisms remaining that are aimed at
the maintenance of calcium homeostasis. The early insulin
resistance and intermediate hyperglycaemia in pre-diabetes
may activate these counter-regulatory mechanisms, where
compensation may be the initial response to disturbances to
calcium homeostasis. However, it may be observed that serum
alterations of calcium seem to be observed only after renal injury
progression culminating in diabetes mellitus.

The kidneys contribute to calcium homeostasis by adjusting
the reabsorption and excretion of filtered calcium (6).
Disturbances in renal calcium reabsorption can lead to
excessive urinary calcium excretion and kidney stone
formation (8). TRPV5 is a calcium channel which mediates
calcium reabsorption in the kidney and plays an important
role in the regulation of urinary calcium (33). Studies have
reported elevated urinary calcium levels along with decreased
FIGURE 4 | Evaluation of renal calcium transport through renal TRPV5 and 1-alpha hydroxylase gene expression in the non-pre-diabetic (NPD) group and
diet-induced pre-diabetic (DIPD) group (n=6, per group).Values are presented as mean ± SEM. ****= p < 0.0001 by comparison to NPD.
FIGURE 3 | Evaluation of bone turnover through plasma osteocalcin and urine deoxypyridinoline concentrations in the non-pre-diabetic (NPD) group and diet-
induced pre-diabetic (DIPD) group (n=6, per group).Values are presented as mean ± SEM. ***=p < 0.001, ****=p < 0.0001 by comparison with NPD.
July 2022 | Volume 13 | Article 914189

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Naidoo et al. Calcium-Regulating Organs in Pre-Diabetes
renal TRPV5 expression in diabetes (34, 35). Studies have also
shown that decreased renal TRPV5 expression was associated
with reduced renal calcium reabsorption (36, 37). These
observations suggested that hyperglycaemia-induced renal
damage may have downregulated renal TRPV5 expression
(37). The downregulation in renal TRPV5 expression promotes
renal calcium wastage and hypocalcaemia in diabetics (38). In
addition, elevated urinary calcium levels have shown to result
from intestinal hyperabsorption of calcium and excessive bone
resorption in T2DM (39). In this study, the DIPD group had
significantly increased urinary calcium concentrations in the
range of hypercalciuria by comparison to NPD. This was
accompanied by a significant increase in the expression of
renal TRPV5 in the DIPD group by comparison to NPD. This
study’s results corroborated with previous studies that have
shown elevated urine calcium and an upregulation in renal
TRPV5 expression in T2DM patients (40, 41). The increased
urine calcium may have occurred as a result of kidney damage in
the pre-diabetic state, which may have decreased the ability of
the kidneys to reabsorb calcium. There may have been other
contributors to the increased urine calcium such as increased
intestinal calcium absorption and bone resorption (28).
Therefore, the kidneys may try to compensate for the increased
plasma calcium by excreting it into urine. However, the
simultaneous increase in urinary calcium excretion and renal
TRPV5 may suggest a compensatory mechanism against renal
calcium wastage. The increased renal TRPV5 expression in the
DIPD group may have promoted increased renal calcium
reabsorption from urinary filtrate. Interestingly, renal TRPV5
expression is regulated by vitamin D, which is known to be
catalyzed to its active form in the kidney (5).

Renal-1 alpha hydroxylase is mainly expressed in the
proximal convoluted tubules and is the key enzyme involved in
the synthesis of calcitriol (42). Disturbances in kidney function
and vitamin D metabolism can lead to excessive urinary calcium
excretion and hyperparathyroidism (26). Studies have shown
that a loss of kidney function in T2DM leads to a decline in
circulating plasma calcitriol concentrations (43, 44). Renal injury
and the accumulation of metabolites in the diabetic kidney
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contribute to 1-alpha hydroxylase inhibition and lower
circulating calcitriol levels (43). In this study, the DIPD group
had significantly increased renal-1 alpha hydroxylase expression
by comparison to the NPD group. The findings of this study
corroborated with previous studies that have shown an
upregulation in renal 1-alpha hydroxylase expression in
diabetic patients (42, 45). However, the findings of this study
contrasted other studies that have shown decreased renal-1 alpha
hydroxylase expression in the diabetic state (43, 44). The
upregulation in renal-1 alpha hydroxylase in the DIPD group
may suggest that there is an increased demand to synthesis
calcitriol in the pre-diabetic state. The kidneys may compensate
for the hypercalciuria by upregulating the expression of renal-1
alpha hydroxylase, in order to maintain normal plasma calcium
levels. In addition, the regulation of renal-1 alpha hydroxylase is
dependent on the calciotropic hormones (46). It is evident that
renal cells still appear be responsive to calciotropic hormones in
the pre-diabetic state, in attempt to conserve plasma
calcium levels.

Intestinal calcium absorption is a crucial physiological
process for maintaining calcium homeostasis (30). The small
intestine is the site where dietary calcium is absorbed and can
physiologically adapt according to the conditions of the body
(47, 48). Efficient absorption of calcium in the small intestine is
dependent on the expression of calcium-binding proteins and
vitamin D receptor (VDR) (47, 49). Vitamin D metabolites
regulate calcium absorption in the intestine through activation
of the vitamin D receptor (VDR) which results in increased
expression of calcium transport proteins including calbindinD9k
(47). Type 2 diabetes is associated with profound deterioration of
calcium metabolism, partly from impaired intestinal calcium
absorption (6, 50). Previous studies in diabetic rats reported that
the reduction in intestinal calcium absorption occurred
concurrently with decreases in VDR and calcium-binding
protein calbindin-D9k in the enterocytes (4, 51). It was noted
that intestinal VDR and calcium-binding proteins were
downregulated due to impaired production of calciotropic
hormones in T2DM (6). Subsequently, the ability of the
intestine to adapt to disturbances to low plasma calcium levels
FIGURE 5 | Evaluation of intestinal calcium transport through intestinal VDR and calbindinD9k gene expression in the non-pre-diabetic (NPD) group and diet-induced
pre-diabetic (DIPD) group (n=6, per group).Values are presented as mean ± SEM. ****= p < 0.0001 by comparison to NPD.
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is compromised during the diabetic state (6). However, other
studies have shown an upregulation in intestinal calcium
transporter expression in diabetic rats (47, 52). The increased
intestinal VDR number promoted increased VDR-calcitriol
complexes and increased intestinal calcium transport (6).
Hence, the present study investigated intestinal VDR and
calbindinD9k expression to evaluate intestinal calcium
transport. In this study, there was a significant increase in
intestinal VDR and calbindinD9k expression in the DIPD
group by comparison to the NPD group. The findings of this
study contrasted previous results that have shown a
downregulation in intestinal VDR and calbindinD9k
expression in the diabetic state. The elevated intestinal VDR
and calbindinD9k expression in the DIPD group may suggest
that there is an increase in intestinal calcium absorption. The
upregulation of calcium transport genes in the intestine of the
DIPD group may have been a compensatory response to renal
calcium wastage.

Bone regulates plasma calcium levels by releasing calcium
through a process known as bone resorption and storing
calcium through a process known as bone formation (53). Bone
formation is coupled to bone resorption, where increased bone
resorption is followed by increased bone formation (5). An
imbalance between bone resorption and bone formation may
result in bone diseases including osteoporosis (54, 55). Bone
resorption and formation can be determined indirectly by
measurement of plasma concentrations of bone markers (29).
These markers include bone matrix components released into
circulation during bone formation or resorption (56). Osteocalcin
is a marker of bone formation, whereas deoxypyridinoline is a
marker of bone resorption (56). Some studies have shown
increased bone turnover in type 2 diabetic patients, where
bone resorption exceeds formation (20, 57). This was evidenced
by decreased plasma osteocalcin levels and increased
deoxypyridinoline levels (4, 58). These observations suggested
that during the diabetic state there is an increased demand to
mobilize calcium from bone to compensate for hypocalcaemia;
however the normal bone coupling process becomes
compromised (4, 58). Hyperglycaemia has shown to decrease
bone formation by inhibiting osteoblast synthesis and
differentiation (28). However, other studies have reported
increased bone formation in type 2 diabetes (20, 59). It was
stated that hyperinsulinemia shifts the balance between bone
formation and resorption in favour of bone formation (56).
Hence, the present study focused on investigating the levels of
plasma osteocalcin and urine deoxypyridinoline in the pre-
diabetic state, to evaluate bone turnover. In this study, the DIPD
group had increased plasma osteocalcin concentration and
decreased urinary deoxypyridinoline concentration in the DIPD
group by comparison to NPD. The findings of this study
corroborated with previous results that have shown increased
plasma osteocalcin levels and decreased urinary deoxypyridinoline
levels (59, 60). These observations may suggest that there is
increased bone formation and decreased resorption in the pre-
diabetic state. The increased bone formation and decreased bone
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resorption may have been induced by calciotropic hormones to
compensate for hypercalcaemia. Interestingly, studies have shown
that increased intestinal calcium absorption by calciotropic
hormones in the diabetic state may overcompensate for renal
calcium wastage inducing a state of hypercalcaemia (61, 62). In
this study the intestine may have overcompensated for renal
calcium wastage inducing a state of hypercalcaemia. This leads
to the speculation that during the pre-diabetic state there may be
some resistance in the detection of plasma calcium levels.
Subsequently, bone may have suppressed bone resorption and
promoted bone formation to compensate for hypercalcaemia.
Insulin is an anabolic hormone which has shown to promote
bone formation and inhibit bone resorption (59). In the pre-
diabetic state, early insulin resistance leads to a compensatory
increase in insulin secretion (63). The elevated plasma insulin
levels in the DIPD group may have promoted increased bone
formation and suppressed bone resorption. Furthermore, previous
studies have shown a positive correlation between HOMA-IR and
plasma osteocalcin level in diabetic patients (64, 65). It has been
demonstrated that osteocalcin can stimulate insulin secretion,
acting directly on proliferation and secretion of pancreatic beta-
cells (20). Interestingly, there was a positive correlation between
plasma osteocalcin and HOMA-IR in the DIPD group. It may be
speculated that the elevated plasma osteocalcin concentration in
the DIPD group may have been a compensatory response to cope
with the early insulin resistance. This may be an early adaptation
mechanism for insulin resistance, which fails with the onset of
overt T2DM.

The findings elucidated in this study may have the potential
to provide an understanding into the physiological processes that
occur in calcium-regulating organs during pre-diabetes. From a
clinical perspective, pre-diabetes is asymptomatic and many
people progress towards the development of T2DM due to
being unaware. The findings of this study will not only add to
academic knowledge but may serve as a novel marker in the
identification of pre-diabetes. This study targets some of the
complications and disrupted processes involved in T2DM.
Furthermore, these findings may provide an early insight into
the pathogenesis involved in the associated complications of
T2DM. A future prospective would be to use these findings as
insights to understand the possible changes that may occur to
pre-diabetic humans.

It is evident that during the pre-diabetic state there are
changes to the functioning of calcium-regulating organs which
compensate for disturbances to plasma calcium levels. This was
made evident by increased urinary calcium levels along with
increased expressions of renal TRPV5, renal 1-alpha
hydroxylase, intestinal VDR and intestinal calbindinD9k. In
addition, there was increased plasma osteocalcin and decreased
urinary deoxypyridinoline concentrations along with unchanged
plasma calcium in the pre-diabetic state. The normocalcaemia
present in the pre-diabetic state may have been conserved due to
increased renal calcium reabsorption, increased renal vitamin D
activation, increased intestinal calcium absorption and increased
bone formation followed by decreased bone resorption.
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CONCLUSION

Taken together, calcium-regulating organs compensate for renal
calcium wastage and are aimed at maintaining normocalcaemia
in HFHC diet-induced pre-diabetes. The effects associated with
pre-diabetes on calcium-regulating organs are directed towards
promoting increased renal calcium reabsorption, increased renal
vitamin D activation, increased intestinal calcium absorption and
decreased bone resorption followed by increased bone formation.
This was evidenced by increased expression of renal calcium
transport markers and intestinal calcium transport markers
in addition to increased osteocalcin and decreased
deoxypyridinoline levels. Collectively, these observations may
suggest that calcium-regulating organs compensate for the
changes to calcium homeostasis in the pre-diabetic state.
LIMITATIONS

A limitation of the study was the lack of blinding during the diet
intervention stage and the lack of baseline measurement for
hepatic and muscle insulin resistance marker (OGTT and
HOMA-IR). A second limitation to this study is that it only
focuses on mRNA expression and not proteins.
FUTURE RECOMMENDATIONS

In future, a further insight into the mechanisms in which bone
turnover by-products participate in glucose homeostasis in the
pre-diabetic state should be investigated.
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Background: Visceral obesity index (VAI) is an empirical mathematical model used to
evaluate the distribution and function of fat. Some studies have shown that VAI may be
associated with the development of insulin resistance. In view of the differences in insulin
resistance among different ethnic groups, this study attempts to analyze the special
relationship between VAI and insulin resistance in American adults.

Methods: We conducted a cross-sectional study through NHANES database. A total of
27309 patients over the age of 18 from the United States took part in the survey. It was
divided into two groups: the IR-positive group and the IR-negative group. The association
of VAI with IR was evaluated by logistic regression analyses mainly, including univariate
analysis, multivariate regression analysis, curve fitting analysis and subgroup analysis.

Results: The results showed that in the full-adjusted model, there is a strong positive
association between VAI level and insulin resistance (OR: 1.28 (1.2~1.37), P<0.001) and
there is a threshold effect.

Conclusions: This study suggests that higher VAI levels are associated with insulin
resistance. VAI index may be used as a predictor of insulin resistance.

Keywords: cross-sectional study, american adult, VAI, IR, NHANES
BACKGROUND

Insulin resistance (IR) is a pathological condition caused by genetic and environmental factors, in
which insulin promotes the decrease of glucose uptake and utilization rate, as well as the body’s
decreased responsiveness and sensitivity to the physiological action of insulin (1, 2). It is the
pathological basis of type 2 diabetes (2–6). Recently, the prevalence of diabetes has risen rapidly in
all developing and developed countries (7), and type2 diabetes is the most common type of diabetes,
Abbreviations: VAI, visceral obesity index; WC, waist circumference; TG, triglyceride; HDL-C, density lipoprotein
cholesterol; ALT, alanine transaminase; GGT, g-glutamyl transpeptadase.
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accounting for approximately 90% of all people with diabetes (8,
9). It is estimated that by 2030, the number of people with type 2
diabetes will reach 439 million (10). Current studies have
demonstrated that understanding IR is important for developing
prevention measures and determining optimal treatment.
Unfortunately, the methods available to determine IR (such as
pancreatic suppression tests, high insulin-normal blood sugar tuse
and glucose digestion and the minimummodel of metabolism) are
complex and expensive, so they apply only to small-scale studies
(11–13). In view of these characteristics, it is necessary to find
alternative parameters that are low-cost and convenient. Visceral
obesity index (VAI) is a gender-specific mathematical index that
has been proposed to assess fat distribution and function. VAI is
estimated with the use of simple anthropometric [body mass index
(BMI) and waist circumference (WC) and biochemical
triglycerides (TG) and high-density lipoprotein cholesterol
(HDL-C)] parameters (14). VAI is generally considered a as a
marker of adipose tissue dysfunction. As a simple technique, the
index has been widely accepted for epidemiological or clinical
research. Some recent studies have indicated that visceral obesity
index was also correlated with IR (15–19). Homeostasis model
assessment of high insulin-normal glucose (HIEG) forcers and IR
(HOMA-IR), which is the gold standard and commonmethod for
IR assessment. Given the small sample size of previous studies, the
ethnic specificity of IR, and the unexplored relationship between
VAI and IR in these studies, it is necessary to conduct new, large-
sample studies to understand VAI and IR.

Visceral obesity index (VAI) is an empirical mathematical
model that has been proposed to assess fat distribution and
function. It is a sex-specific index based on simple
anthropometry (BMI and WC) and metabolic parameters (TG
and HDL-C). Interesting results have been produced by the
application of VAI in populations of patients with endocrine
diseases with varying degrees of cardiometabolic risk, such as
acromegaly, polycystic ovary syndrome, type 2 diabetes, and
prolactinoma (20–24). This has led to the hypothesis that VAI
can be regarded as a marker of adipose tissue dysfunction. Some
recent studies have indicated that the VAI can be successfully
used to detect the distribution and function of visceral fat, IR and
increased cardiometabolic risk (25, 26). In a study conducted by
Jablonowska-Lietz et al. (18) VAI index was also significantly
correlated with glucose, insulin, HOMA-IR, and visceral adipose
tissue predicted by bioimpedance analysis. Stepien et al. also
suggested a positive correlation between IR and VAI in obese
patients (15). In another study, Borruel et al. (19) reported that
VAI levels were more strongly correlated with serum insulin
levels and HOMA-IR than WC and BMI levels. Because of its
simple technique, the index has been widely accepted for
epidemiological or clinical research. Given the small sample
size of previous studies, the ethnic specificity of IR, and the
unexplored relationship between VAI and IR in these studies, it
is necessary to conduct new, large-sample studies to understand
VAI and IR.

Therefore, we explored the relationship between VAI index
and IR in a larger and more representative sample of various
ethnic groups in the United States.
Frontiers in Endocrinology | www.frontiersin.org 219
METHODS

Data Sources
It was a large cross-sectional study using data from the National
Institutes of Health National Health and Nutrition Examination
Survey (NHANES) database for 11 cycles (1999-2020). The
NHANES program is a multiagency collaboration aimed at
improving the health of Americans, with a focus on diet,
detailed elsewhere (27). NHANES used a multi-stage stratified
probability design in a sample population to obtain a nationally
representative sample of non-institutionalized civilians in the
United States. Data from these samples consisted of
demographic informatics data, dietary data, body measurement
data, laboratory data and questionnaire data. In this study, data
from 11 cycles were standardized and combined with fasting
weights as recommended by the National Center for Health
Statistics (NCHS).

Study Design and Participants
This study was designed to be cross-sectional. The target
independent variable was the participant’s VAI at the time of
testing, and the target dependent variable was whether the
participant was diagnosed with IR at the time of testing.
Simultaneously, the occurrence of IR was divided into two
groups, including 11936 patients in the positive group of IR
and 15373 patients in the negative group of IR.

A total of 116,876 participants were included in NHANES 1999-
2020, and 27,309 were included in the final analysis. Other
participants were excluded for the following reasons: 1.
Participants younger than 18 years old (n= 47979); 2. Participants
who did not undergo insulin test (n= 39465); 3. Participants
who were taking insulin drugs or insulin related drugs affecting
metabolism (n=855); 4. Participants lack VAI data detection (n=
1268) (Figure 1).

Data Collection
All data were collected and recorded by uniformly trained
investigators. The data used in this study included demographics
(age, sex, race, education level, etc.), anthropometry (WC, BMI,
etc.), health-related behaviors (smoking, drinking, etc.), and
biochemical indicators (TG, VAI, etc.). Basic information was
immediately collated by investigators, and biochemical samples
were stored and managed scientifically before being sent to the
University of Minnesota laboratory and the University of
Missouri-Columbia for testing and analysis.

Measurement of VAI
VAI is a simple clinical index that integrates anthropometric data
and metabolic parameters, and can better assess visceral fat. It was
calculated as follows: Man = [WC(cm)/39.68 + (1.88 ×BMI)]×(TG
(mmol/L)/1.03)×(1.31/HDL(mmol/L)); Women = [WC (cm)/
36.58 + 1.89 × (BMI)] × (TG (mmol/L)/0.81) × (1.52/HDL
(mmol/L)). BMI is calculated based on height and weight.
Height was measured using electronic Sports Measurements
(Seca Ltd, Medical Scales and Measurement Systems,
Birmingham, UK) with an accuracy of millimetres. Weight was
July 2022 | Volume 13 | Article 921067
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measured by researchers using a digital Scale (Toledo Scale;
Mettler-toledo, LLC, Columbus,OH, USA) and convert pounds
to kilograms when the measurement is complete. The formula is
BMI =weight (kg)/height (m2).WC wasmeasured using electronic
Sports Measurements (Seca Ltd, Medical Scales and Measurement
Systems, Birmingham, UK) with an accuracy of millimetres.
HDL was measured by the Magnesium sulfate/glucan method
and TGwas measured based on theWahlefeld method. Both HDL
and TG were measured in the University of Minnesota laboratory.
Please refer to the official NHANES website for more
detailed information.

Measurement of Insulin Resistance
HOMA-IR is recognized by many experts as a good indicator of IR.
The formula was fasting blood glucose (FPG, mmol/L) × fasting
insulin (FINS, mU/mL)/22.5 (Figure 2). We followed previous
studies that defined homA-IR index ≥ 2.73 as positive insulin
resistance, and < 2.73 as negative insulin resistance. Fasting blood
glucose was measured by hexokinase (HK) method, and fasting
insulin was measured by insulin radioimmunoassay. Both blood
sugar and insulin measurements were tested at the University of
Missouri-Columbia. Enter the official NHANES website for more
detailed information.

Definitions of Other Variables
Age: Adults 18 and older in the United States.

Sex: man, woman.
Race: Includes Mexican Americans, non-Hispanic whites,

non-Hispanic Blacks, other Hispanics, and other races.
Education: not graduated from high school, high school,

graduate and above.
Smoking: current smokers, former smokers and never

smokers. Participants were considered current smokers if they
had smoked 100 or more cigarettes in the past and reported
smoking several days or daily at the time of the interview.
Participants who had smoked fewer than 100 cigarettes in the
past but did not currently smoke were considered former
smokers. Participants who had fewer than 100 cigarettes in
their past were considered nonsmokers. Alcohol consumption:
Includes both drinkers and non-drinkers.

Alcohol consumption (minus 1 point for alcoholics) is
defined as more than one drink per day for women and more
than two drinks per day for men, according to the US
Department of Health and Human Services/US Department of
Agriculture Dietary Guidelines for Americans 2015-2020.

Hypertension: Including those with hypertension and normal
blood pressure, the diagnostic criteria are SBP higher than
140mmHg and/or DBP higher than 90mmHg.

Diabetes: Including diabetic patients and people with normal
blood glucose.Diabetes is diagnosed if one of the following
conditions is met: (1) fasting blood glucose ≥ 7.0mmol/L, (2)
OGTT ≥ 11.1mmol/L, (3) doctor’s diagnosis, (4) self-report
diabetes or taking diabetes drugs.

Laboratory Quality Control
NHANES Quality Control and Quality Assurance Protocols
(QA/QC) meet the requirements of the Clinical Laboratory
Frontiers in Endocrinology | www.frontiersin.org 320
Improvement Act 1988. Detailed QA/QC instructions are
discussed in the NHANES LPM.

Statistical Methods
All data were analyzed using version R 4.1.2, with continuous
variables represented by a detailed sample description, an
average confidence interval of 95%, and categorical variables
represented by counting and weighted percentages. The normal
distribution is described by median and standard deviation, and
the skewness distribution is based on median and quartiles.
Continuous variables were compared between groups using
mann-Whitney U test or Student T test based on distribution
normality. P < 0.05 (bilateral) was considered statistically
significant. The choice of the covariate was based on the
previous literature, international standards and related clinical
experience of synthetically considering may influence factors of
IR and visceral fat index, including sex, age, race, smoking,
drinking, education degree, diabetes, hypertension. In order to
maximize statistical efficiency and minimize bias, multiple
imputation was used to fill in covariates within the range of
missing and extreme values. In addition, sensitivity analysis was
performed to observe if the new complete data were significantly
varied from the original data. However, these studies revealed
that there was no significant difference between the data after
multiple interpolation and the original data (P > 0.05). Therefore,
all the results of our multivariate analysis are based on the data
set after multiple interpolation according to Rubin’s criterion. In
this study, four multivariable logistics regression models were
established to analyze the relationship between VAI and IR in
U.S. adults. In order to verify whether the results are inapplicable
to the current population, we divided the results into groups
according to sex, age, race, smoking, alcohol consumption, BMI,
education level, diabetes, hypertension, etc., to observe whether
the results are stable in each subgroup. Additionally, trend test
was carried out to transform the VAI from continuous variable
to categorical variable, and a smooth fitting curve and threshold
effect model were constructed to ensure the stability of results.
RESULTS

Description of Basic Information About
Participants
A total of 27309 participants were included in this study,
including 11936 insulin resistance positive and 15373 insulin
resistance negatives. The mean age and standard deviation of
insulin resistance positive participants (49.0 ± 18.4) were higher
than those of insulin resistance negative participants (45.9 ±
19.1), and the difference was significant (p < 0.001). There were
6,012 men (50.4%) slightly higher than 5,924 women (49.6%). In
the racial distribution of the United States, non-Hispanic whites
taken up the highest proportion of 4,555 cases (38.2%), while
non-Hispanic blacks accounted for the lowest proportion of
1,145 cases (9.6%). BMI (32.2 vs 25.9), WC (106.9cm vs
90.7cm), TG (1.5mmol/L vs 1.0mmol/L), alanine transaminase
(ALT) (23.0mmol/L vs 18.0mmol/L), g-glutamyl transpeptadase
July 2022 | Volume 13 | Article 921067
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(GGT) (24.0mmol/L vs 17.0mmol/L), blood urea nitrogen
(BUN) (4.6mmol/L vs 4.3mmol/L), VAI (2.0 vs 1.1) were
higher than those in the insulin resistance negative group.
Compared to insulin resistance negative group, insulin
resistance positive group have higher BMI (32.2 vs 25.9), WC
(106.9cm vs 90.7cm), TG (1.5mmol/L vs 1.0mmol/L), alanine
transaminase (ALT) (23.0mmol/L vs 18.0mmol/L), g-glutamyl
transpeptidase (GGT) (24.0mmol/L vs 17.0mmol/L), blood urea
nitrogen (BUN) (4.6mmol/L vs 4.3mmol/L), VAI (2.0 vs 1.1).
The difference was significant (P < 0.001). In contrast, HDL
(1.4mmol/L vs 1.2mmol/L) and totalbilirubin (TBIL)
(12.0mmol/L vs 10.3mmol/L) in the insulin resistance negative
group were higher than those in the insulin resistance positive
group, and the difference was significantly (P < 0.001). In
addition, there were differences in education level, smoking,
alcohol consumption, hypertension and diabetes between the
two groups (all P < 0.001) (Table 1).
Frontiers in Endocrinology | www.frontiersin.org 421
Univariate Analysis
We analyzed correlations between age, sex, race, education, BMI,
WC, smoking, alcohol consumption, and several biochemical
markers and IR in the U.S. population. We found that age was
positively correlated with IR, and the effect value OR and 95%
confidence interval were 1.01 (1.01, 1.02), respectively.
Compared with men, women had a lower risk of IR, with an
effect value and 95%CI of 0.76 (0.65, 0.90), respectively. Among
ethnic groups, non-Hispanic whites had a lower incidence of IR,
with an effect value of 0.57 (95%CI, 0.42, 0.76). The incidence of
IR was lower in those with higher education than in those with
lower education and secondary education, and the effect value
and 95%CI were 0.68 (0.54, 0.85), respectively. Compared with
non-smokers, former smokers had a higher risk of IR, with an
effect value and 95%CI of 1.24 (1.02, 1.51), respectively. Current
smokers had a low incidence of IR, with an effect value and 95%
CI of 0.81 (0.65, 1.00), respectively. Compared with non-
TABLE 1 | Basic crowd information description.

Variables Total (n = 27309) IR-negative (n = 15373) IR-positive (n = 11936) P-value

Age, Mean ± SD 47.2 ± 18.9 45.9 ± 19.1 49.0 ± 18.4 < 0.001
Gender, n (%) < 0.001
male 13299 (48.7) 7287 (47.4) 6012 (50.4)
female 14010 (51.3) 8086 (52.6) 5924 (49.6)
Race, n (%) < 0.001
Mexican American 4937 (18.1) 2350 (15.3) 2587 (21.7)
Other Hispanic 5677 (20.8) 3107 (20.2) 2570 (21.5)
Non-Hispanic white 11562 (42.3) 7007 (45.6) 4555 (38.2)
Non-Hispanic black 2333 (8.5) 1188 (7.7) 1145 (9.6)
Other races 2800 (10.3) 1721 (11.2) 1079 (9)
Education, n (%) < 0.001
poorly educated 6503 (23.8) 3290 (21.4) 3213 (26.9)
Moderately educated 5877 (21.5) 3212 (20.9) 2665 (22.3)
highly educated 13053 (47.8) 7717 (50.2) 5336 (44.7)
NA 1876 (6.9) 1154 (7.5) 722 (6)
BMI, Mean ± SD 28.6 ± 6.7 25.9 ± 4.9 32.2 ± 6.9 < 0.001
Waist, Mean ± SD 97.8 ± 16.2 90.7 ± 13.0 106.9 ± 15.5 < 0.001
Smoke, n (%) < 0.001
never smoking 14303 (52.4) 8034 (52.3) 6269 (52.5)
former smokers 6337 (23.2) 3256 (21.2) 3081 (25.8)
Current smoker 5300 (19.4) 3238 (21.1) 2062 (17.3)
NA 1369 (5.0) 845 (5.5) 524 (4.4)
Alcohol use, n (%) < 0.001
no 16185 (59.3) 8775 (57.1) 7410 (62.1)
yes 11124 (40.7) 6598 (42.9) 4526 (37.9)
Hypertension, n (%) < 0.001
no 17302 (63.4) 10953 (71.3) 6349 (53.2)
yes 10003 (36.6) 4418 (28.7) 5585 (46.8)
DM, n (%) < 0.001
no 4343 (15.9) 1053 (6.8) 3290 (27.6)
yes 22966 (84.1) 14320 (93.2) 8646 (72.4)
HDL, Median (IQR) 1.3 (1.1, 1.6) 1.4 (1.2, 1.7) 1.2 (1.0, 1.4) < 0.001
TG, Median (IQR) 1.2 (0.8, 1.7) 1.0 (0.7, 1.4) 1.5 (1.0, 2.1) < 0.001
ALT, Median (IQR) 20.0 (15.0, 28.0) 18.0 (14.0, 24.0) 23.0 (17.0, 32.0) < 0.001
AST, Median (IQR) 22.0 (18.0, 27.0) 22.0 (18.0, 26.0) 22.0 (19.0, 28.0) < 0.001
GGT, Median (IQR) 20.0 (14.0, 30.0) 17.0 (13.0, 25.0) 24.0 (17.0, 36.0) < 0.001
TBIL, Median (IQR) 10.3 (8.6, 13.7) 12.0 (8.6, 15.4) 10.3 (6.8, 13.7) < 0.001
BUN, Median (IQR) 4.6 (3.6, 5.7) 4.3 (3.6, 5.4) 4.6 (3.6, 5.7) < 0.001
VAI, Median (IQR) 1.4 (0.9, 2.4) 1.1 (0.7, 1.8) 2.0 (1.3, 3.3) < 0.001
July 2022 | Volume 13 | Article
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drinkers, drinkers had a lower risk of IR, with an effect value and
95%CI of 0.75 (0.63, 0.89), respectively. Meanwhile, we found
that BMI, WC and some biochemical indicators were positively
correlated with the occurrence of IR, including TG, ALT, GGT
and VAI (Table 2).

Multi-Factor Analysis
We established four logistic regression models to analyze the
relationship between VAI and IR, the effect value of the model
can be interpreted as with the increase of VAI, the probability of
IR increases correspondingly. For example, in model 1
(Unadjusted model), the incidence of IR increased by 60%
with each increase of variance of VAI, and the effect value OR
and 95%CI were 1.60 (1.50, 1.71), respectively. Model 2 was
adjusted according to population characteristics (age, gender and
race), and its effect value OR and 95%CI were 1.62 (1.51, 1.73),
respectively. The effect value OR and 95%CI of model 3 were 1.29
(1.20, 1.38), respectively. The effect value OR and 95%CI of
model 4 were 1.28 (1.20, 1.37), respectively. The results of model
3 and model 4 were similar, indicating that the adjustment
strategy of model 4 was sufficient. Collectively, VAI is
independently positively correlated with the occurrence of IR,
which can be used as a predictor of IR. Further, in order to ensure
Frontiers in Endocrinology | www.frontiersin.org 522
the stability of the results, the trend test was carried out in this
study. The VAI was transformed from continuous variable to
categorical variable and grouped into four levels according to the
quartiles of VAI. Q1 was taken as the reference, the incidence of
VAI and IR represented a monotonically increasing trend in all
models (All P for trend < 0.001). This suggests that VAI is
positively correlated with the occurrence of IR and the results are
stable (Table 3).

Subgroup Analysis
We did a subgroup analysis by age, education, BMI, and so on to
observe if the results were not applicable to the current
population. As shown in Figure 3, the relationship between
VAI and insulin resistance remained stable across all subgroups,
including age, education, BMI, diabetes, race, and sex.

Curve Fitting and Threshold Effect
Analysis
Here, a smooth curve fitting diagram was drawn to visually
describe the relationship between VAI and IR, and the linear
relationship was tested. As shown in Figure 3, the correlation
between VAI and insulin resistance is sloping, and P for non-
linearity < 0.001, which indicates that the correlation between
VAI and IR cannot be assessed by a single logistics regression
equation. Therefore, the threshold effect is analyzed. As shown in
Table 4, there was a threshold effect between VAI and insulin
resistance, with an inflection point of 1.92. After adjustment
according to model 4, the effect value OR and 95%CI on the left
side of inflection point were 2.647 (2.406, 2.913), respectively.
The OR and 95%CI on the right side of inflection point were
1.327 (1.245, 1.414), respectively. Moreover, the effect values on
the left and right sides of the inflection point are different, and P
for Likelihood Ratio test is less than 0.001.
DISCUSSION

This is a large cross-sectional study using 11 cycles of data from
the NHANES database to investigate the association between
VAI index and IR in America adults. The results revealed that
VAI was independently positively correlated with the incidence
of IR among all ethnic groups in the United States. and could be
used as one of the predictors of IR.

In current clinical practice, heterogeneity in insulin
measurement between laboratories in various countries is
ubiquitous, which clearly raise the cost and accuracy of
determining IR. Therefore, a simple and convenient IR
determination system is extremely vital for clinical purposes.
VAI determined by WC, BMI, fasting TG, and HDL-C has been
established and is considered a more comprehensive IR
indicator. VAI exhibit simple, accessible, cheap and at the
forefront of glucose and insulin, unlike gold standard HIEG
forceps and other IR replacement markers which are complex,
time-consuming and costly and dependent on glucose and
insulin. The study confirmed a significant association between
VAI and HIEG clamps and insulin resistance (16, 17), indicating
TABLE 2 | Univariate analysis for IR. (weight).

Variable OR (95%CI) P-value

Age 1.01 (1.01~1.02) <0.001
Gender
male 1
female 0.76 (0.65~0.9) 0.001
Race
Mexican American 1
Other Hispanic 0.75 (0.52~1.07) 0.116
Non-Hispanic white 0.57 (0.42~0.76) <0.001
Non-Hispanic black 0.82 (0.53~1.25) 0.359
Other races 0.61 (0.4~0.92) 0.017
Education
poorly educated 1
Moderately educated 0.86 (0.66~1.1) 0.23
highly educated 0.68 (0.54~0.85) 0.001
BMI 1.25 (1.22~1.27) <0.001
Waist 1.1 (1.09~1.11) <0.001
Smoke
never smoking 1
former smokers 1.24 (1.02~1.51) 0.029
Current smoker 0.81 (0.65~1) 0.052
Alcohol1 use
no 1
yes 0.75 (0.63~0.89) 0.001
HDL 0.13 (0.1~0.17) <0.001
TG 2.11 (1.89~2.36) <0.001
ALT 1.03 (1.02~1.04) <0.001
AST 1.01 (1~1.01) 0.02
GGT 1.01 (1.01~1.02) <0.001
TBIL 0.96 (0.94~0.98) <0.001
BUN 1.08 (1.03~1.13) 0.001
VAI 1.6 (1.5~1.71) <0.001
BMI, Body Mass Index; DM, diabetes mellitus; HDL, high-density lipoprotein; TG,
triglyceride; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; GGT, g-
glutamyl transpeptadase; TBIL, total bilirubin; BUN, blood urea nitrogen.
July 2022 | Volume 13 | Article 921067
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the great potential of VAI as a useful indicator of accurate
IR levels.

In a previous study on the relationship between VAI and IR,
Randria Arisoa et al. (28)reported that VAI was positively
correlated with HOMA-IR in non-diabetic Germans (b = 0.42,
P < 0.0001). A prospective cohort study conducted by Ji et al. (29)
also found that very high VAI was the main risk factor for the
FIGURE 1 | Flowchart of patient selection.
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rise of HOMA-IR in Chinese adults. Similarly, Stepien et al. (15)
also revealed a positive correlation between IR and VAI levels in
obese patients. In another study, Borruel et al. (19) suggested that
VAI levels were more strongly correlated with serum insulin
levels and HOMA-IR than WC and BMI levels. In the
Framingham Heart Study, Preis et al. (30) reported that
visceral adipose tissue and abdominal subcutaneous adipose
TABLE 3 | The association between VAI and IR in a multiple logistics regression model.

Variable n(%) Model 1 Model 2 Model 3 Model 4

OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value

VAI 27309 1.6 (1.5~1.71) <0.001 1.62 (1.51~1.73) <0.001 1.29 (1.2~1.38) <0.001 1.28 (1.2~1.37) <0.001
VAI group
Q1 6827 1(Ref) 1(Ref) 1(Ref) 1(Ref)
Q2 6827 2.55 (1.91~3.4) <0.001 2.69 (2.01~3.61) <0.001 1.87 (1.34~2.61) <0.001 1.79 (1.28~2.5) 0.001
Q3 6827 5.52 (4.18~7.29) <0.001 6.01 (4.51~8.03) <0.001 3.06 (2.2~4.27) <0.001 2.79 (2~3.91) <0.001
Q4 6828 12.27 (9.25~16.28) <0.001 13.73 (10.22~18.45) <0.001 5.73 (4.07~8.06) <0.001 5.03 (3.56~7.12) <0.001
P for trend 27309 2.27 (2.09~2.47) <0.001 2.35 (2.15~2.57) <0.001 1.77 (1.6~1.97) <0.001 1.69 (1.52~1.88) <0.001
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FIGURE 2 | Curve fitting analysis of VIA and IR.
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tissue were positively correlated with IR, and that visceral
adipose tissue was more strongly correlated with IR than
abdominal subcutaneous adipose tissue.

The possible mechanism of the relationship between VAI and
insulin resistance is as follows:Visceral adipocytes secrete
adipose-specific cytokines, such as leptin and adiponectin, as
well as inflammatory cytokines (tumor necrosis factor-a and
interleukin 6), which increase IR (31, 32). Macrophages
accumulate in visceral adipose tissue and release these
inflammatory cytokines, including tumor necrosis factor-a and
interleukin-6, which impair insulin sensitivity (33). Excess
adipose tissue can promote inflammation by increasing the
level of resistin or tumor necrosis factor-a, thus increasing IR
(34, 35). Reduced adiponectin levels associated with excess
adipose tissue can exacerbate metabolic disorders and IR (36).

Several limitations of this study should be mentioned. (1) The
time span is long, and there are differences in the methods used
to determine IR. However, more samples are allowed to be
included according to our current approach, and the detection
method is very clear. Considering that all samples are tested by
professional testing institutions, this effect can be ignored. (2)
Frontiers in Endocrinology | www.frontiersin.org 724
Certain deviations are inevitable in cross-sectional studies. We
will conduct cohort studies in the future when conditions permit.
(3) This study assessed IR using HOMA-IR index. The “gold
standard” method (e.g., hyperinsulin-normal glucose clamp and
hyperglycemic clamp tests) is more accurate than the HOMA
index in measuring IR. Although HOMA indices are not “gold
standard” methods, they may be more suitable in large
epidemiological studies (37). Because of the limited sample
size, we can’t analyze special populations and other ethnic
groups. Therefore, whether this result is applicable to special
populations and populations in other countries needs further
research. We will collect these samples for analysis in future
studies to cover the deficiencies of this study.

Despite these limitations, there are some significant
advantages. (1) The data used is large and generalized. (2)
NHANES is an internationally recognized high-quality
database exhibit comprehensive and reliable, which greatly
enriches research data. (3) Our study used curve fitting and
threshold effect analysis to further analyze the relationship
between VAI and IR. (4) A more advanced multiple
interpolation method was adopted to deal with missing data,
July 2022 | Volume 13 | Article 921067
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and the sensitivity of interpolation data was analyzed. The results
indicated that the interpolated data not much differed from the
original data, which makes our results more convincing.
CONCLUSION

This study explored the relationship between VAI and IR in
depth. The association between VAI and IR was a threshold
effect after adjustment for potential confounders. At the right of
FIGURE 3 | Subgroup analyses of the association between VIA and IR.
TABLE 4 | Threshold effect analysis.

Outcome OR (95%) P-vale

Break Point 1.92 (1.883,1.956) NA
slope1 2.647 (2.406~2.913) <0.001
slope2 1.327 (1.245~1.414) <0.001
Likelihood Ratio test – <0.001
Non-linear Test*1 – <0.001
Non-linear Test*2 – <0.001
Covariates are adjusted using variables in Model 4.
July 2022 | Volume 13 | Article 921067
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the inflection point, the association between VAI and IR was
weakened, which has great significance for the further
development of predictive models of IR in the U.S. population.
However, the causal relationship between VAI and IR cannot be
determined owing to the cross-sectional nature of this study, and
a large number of prospective studies are still needed
to investigate.
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Background: Accumulating evidence has revealed that the aspartate

aminotransferase to alanine aminotransferase (AST/ALT) ratio is a promising

novel biomarker for insulin resistance (IR) and metabolic diseases. However,

research on the association between the AST/ALT ratio and the incidence

of diabetes progressing from prediabetes remains lacking. Herein, this study

aimed to evaluate the relationship between the baseline AST/ALT ratio and

risks of diabetes in patients with prediabetes.

Methods: This was a retrospective cohort study involving a total of 82,683

participants across 32 regions and 11 cities in China from 2010 to 2016.

Data was obtained based on the DATADRYAD database from the health check

screening program. Participants were stratified according to the interquartile

range of the AST/ALT ratio (groups Q1 to Q4). The Cox proportional hazard

model and smooth curve fitting were used to explore the relationship between

the baseline AST/ALT ratio and the risk of diabetes in prediabetic patients.

In addition, subgroup analysis was used to further validate the stability of

the results.

Results: The mean age of the selected participants was 49.9 ± 14.0 years,

with 66.8% of them being male. During the follow-up period 1,273 participants

(11.3%) developed diabetes progressing from prediabetes during the follow-up

period. Participants who developed diabetes were older and were more likely

to bemale. The fully-adjusted Cox proportional hazardmodel revealed that the

AST/ALT ratio was negatively associated with the risk of diabetes in prediabetic

patients (HR = 0.40, 95% CI: 0.33 to 0.48, P < 0.001). Higher AST/ALT ratio

groups (Q4) also presented with a lower risk of progressing into diabetes (HR

= 0.35, 95% CI: 0.29 to 0.43, P < 0.001, respectively) compared with the lowest

quintile group (Q1). Through subgroup analysis and interaction tests, it was

found that the association stably existed in all subgroup variables, and there
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were a stronger interactive e�ects in people with age <45 years, and TG ≤ 1.7

mmol/L in the association between AST/ALT ratio and diabetes incidences in

patients with prediabetes (P for interaction <0.05).

Conclusion: According to our study, a higher AST/ALT ratio is associated with

a lower risk of progressing into diabetes from prediabetes. Regular monitoring

of AST/ALT ratio dynamics and corresponding interventions can help prevent

or slow prediabetes progression for diabetes.

KEYWORDS

aspartate aminotransferase, alanine aminotransferase, prediabetes, association,

Kaplan-Meier curve, subgroup analysis

Introduction

Diabetes is emerging as one of the most important public

health challenges of the 21st century. The World Health

Organization (WHO) documents that diabetes caused an

estimated 1.6 million deaths in 2016 and was the seventh

leading cause of death globally (1). By the end of 2015,

the global number of people with diabetes had reached

415 million. And this number is predicted to increase to

642 million by 2040 (2, 3). The prevalence of diabetes

among adults in China has been reported to be as high as

12.8%, with the total number of patients in mainland China

estimated at 129.8 million, which ranks first in the world.

By 2,035, the number of diabetes cases in China is expected

to reach 143 million (4, 5). Diabetes is usually accompanied

by severe complications, including retinopathy and blindness,

renal failure, heart failure, coronary artery disease, stroke,

as well as peripheral neuropathy (6, 7). In 2015, the total

cost for treating diabetes and its associated complications

was USD 673 billion, which is anticipated to increase to

USD 802 billion by the year 2040 (8). Diabetes and its

complications have a detrimental impact on patients, families,

and society, and impose a significant economic burden. Thus,

early diagnosis and intervention are important, especially for

prediabetes, to reduce the serious harm caused by diabetes and

its complications.

Prediabetes is defined as blood glucose concentrations above

normal but below the threshold for diabetes. It includes impaired

fasting glucose (IFG) and impaired glucose tolerance (IGT).

Recent studies indicate that more than one-third of individuals

have prediabetes in China. It is estimated that up to 70%

of people with pre-diabetes will develop diabetes over many

years (9, 10). Most people with prediabetes do not have any

obvious clinical symptom, which is usually ignored by people.

In fact, prediabetes is a high-risk metabolic state that predicts

an increased probability of developing diabetes and may itself

be associated with health risks and complications (9). Recent

studies have shown that prediabetes is associated with an

increased risk of all-cause mortality and cardiovascular disease,

such as atherosclerotic cardiovascular disease, heart failure, etc

(11–13). However, currently, there are no specific and feasible

methods for diabetes or prediabetes prediction. Therefore, there

is an urgent global need for simple, sensitive, and cost-effective

screening strategies to enhance the early identification and

prevention of diabetes or prediabetes.

The liver is a key organ of systemic metabolism and

contributes significantly to the development of insulin resistance

and type 2 diabetes mellitus (T2DM) (14–16). Non-alcoholic

fatty liver disease (NAFLD) has a bidirectional association with

T2DM. Patients with NAFLD usually have IR. Meanwhile,

many T2DM patients develop NAFLD with the inflammatory

complication, nonalcoholic steatohepatitis (NASH) (16). The

major serum liver enzymes (AST and ALT) are the most

sensitive indicators for the clinical evaluation of liver cell damage

and death (17). A well-characterized multiethnic cohort trial

named the Insulin Resistance Atherosclerosis Study (IRAS)

found that liver injury markers, including AST and ALT,

were closely associated with T2DM risk (18). The serum

AST/ALT ratio concept was first proposed by De Ritis and

is known as the De Ritis Ratio. The De Ritis ratio is used

to diagnose various chronic liver diseases, including alcoholic

and non-alcoholic fatty liver diseases (NAFLD), hepatitis, and

autoimmune liver diseases (19–22). Besides, this ratio is also

associated with other non-liver diseases, such as metabolic

syndromes (MS), T2DM, cardiovascular diseases, acute stroke,

and several malignant tumors (23–28). Several studies have

investigated the relationship between the indicators of liver

function (AST, ALT, and AST/ALT) and the risk of T2DM (29–

33). However, studies of the relationship between the AST/ALT

ratio and the risk of diabetes in pre-diabetic patients are

very limited currently. Therefore, the purpose of this study

was to clarify the association between the AST/ALT ratio

and the risk of progression to diabetes from prediabetes in

Chinese adults.
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Methods

Data sources

We obtained the using data from the Dryad Digital

Repository (www.Datadryad.org). The Dryad Digital Repository

is a Data Platform aiming to make published scientific

articles shareable, freely available for secondary use, and

citable. We downloaded the raw data free of charge. In

the present study, we cited the Dryad data package (Data

from: Association of body mass index and age with incident

diabetes in Chinese adults: a population-based cohort study.

Dryad Digital Repository. https://doi.org/10.1136/bmjopen-

2018-021768) (34). Since Chen et.al have authorized the

ownership of the original data to the datadryad website.

According to Dryad’s Terms of Service, we can use this data

to perform secondary data analysis on a different hypothesis

without infringing on the authors, rights. The initial study

conducted by Chen et.al was approved by the Rich Healthcare

Group review committee. As this study was retrospective, no

ethical approval was required for this secondary analysis. This

study followed the principles of the Declaration of Helsinki.

All methods were carried out in accordance with the relevant

guidelines and regulations, including the statements in the

declarations section. All reporting followed the Strengthening

the Reporting of Observational Studies in Epidemiology

(STROBE) guidelines (35).

Study participants

In the present study, we retrospectively analyzed data of

6,85,277 adult Chinese participants aged 20 years and over,

who underwent a healthy screening at least two visits between

2010 and 2016 across 32 sites and 11 cities in China (Beijing,

Shanghai, Guangzhou, Shenzhen, Nanjing, Wuhan, Hefei,

Chengdu, Suzhou, Changzhou, Nantong). These clinical records

were extracted from a computerized database established by the

Rich Healthcare Group in China. This study was approved by

the Rich Healthcare Group Review Board before data collection.

After initial screening 6,74,031 participants were excluded due

to different reasons presented in Figure 1. Consequently 11,246

participants were finally included to assess the relationship

between the AST/ALT ratio and incidence of diabetes in the

prediabetic population.

Study design and measurement of
covariant

As mentioned in the previous research, participants were

asked to finish a questionnaire concerning general demographic

(age, gender), living habits (smoking status, drinking status),

personal health and medication history, and family history of

chronic disease (family history of diabetes) in as much detail as

possible at each healthy examination. Height, weight, and blood

pressure were measured by trained staff. BMI was obtained by

dividing weight (kg) by the square of height (m). Blood pressure

was measured with a standard mercury sphygmomanometer.

Drinking status is divided into current drinker, ever drinker,

and never drinker. Smoking status is divided into current

smoker, ever smoker, and never smoker. For all participants,

fasting venous blood samples were collected after at least 10 h

of fasting for each examination. Serum triglyceride (TG), total

cholesterol (TC), low-density lipoprotein cholesterol (LDL-

C), high-density lipoprotein cholesterol (HDL-C), AST, and

ALT were measured using autoanalyzer (Beckman 5800).

Determination of serum glucose levels using the glucose oxidase

method on an automated analyser (Beckman 5800). The target

independent variable is AST/ALT ratio obtained at baseline

and recorded as a continuous variable. The dependent variable

is the incidence of diabetes progressing from prediabetes

(dichotomous variable).

Definitions

The AST/ALT ratio was defined as AST divided by ALT.

The diagnostic criteria of diabetes were described as follows:

fasting plasma glucose > 7.00 mmol/L and/or self-reported

diabetes during the follow-up period (34). According to the

American Diabetes Association 2022 criteria, prediabetes is

defined as participants who had an FPG level between 5.6 and

6.9 mmol/L (36).

Statistical analysis

In order to investigate whether the AST/ALT ratio of

the selected participants in the prediabetic stage is related to

the incidence of diabetes, the procedure of statistical analysis

includes 6 main steps. First, for missing values, we used multiple

imputations to replace based on 5 replications. Second, the

baseline characteristics of participants were described according

to the quartile of AST/ALT ratio and with/ without diabetes.

Continuous variables were presented using the mean and the

standard deviation (SD) when normally distributed or otherwise

the median and interquartile range (IQR). Categorical variables

were presented as proportions and percentages of the total.

Comparisons between groups were assessed using the X2 test

or Fisher’s exact test (for categorical variables) and Student t-

test (for continuous variables) or Mann-Whitney U-test (for

continuous variables). Third, univariate and multivariate cox

proportional hazards models were built to evaluate HR with

a 95% confidence interval (CI) of diabetes for AST/ALT ratio.

Fourth, we used the cox proportional hazards model to calculate
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FIGURE 1

Flow chart of the study population.

the association between AST/ALT ratio and the incident diabetes

with baseline AST/ALT ratio fitted as continuous (per SD

increment) or categorical (tertiles) variables. Model I did not

adjust any confounders. Model II adjusted for age and gender.

Model III additionally adjusted for age, gender, BMI, SBP, DBP,

TG, TC, HDL-C, LDL-C, BUN, Scr, smoking status, drinking

status, and family history of diabetes. Fifth, the restricted

cubic spline model was used for the dose-response analysis.

Sixth, based on stratified cox proportional hazard models,

we assessed the consistency of the association between the

AST/ALT ratio and the incidence of diabetes by subgroup

analyses. We transformed continuous variables into categorical

variables regarding clinical cut points or using quartile, and then

tested for interaction. Finally, the Kaplan–Meier probabilities

of diabetes-free survival were compared using the log-rank test

among the quartile of AST/ALT ratio. All the analyses were

performed with R statistics software and FreeStatistics software.

A two-tailed test was performed and P < 0.05 was considered

statistically significant.

Results

Baseline characteristics of selected
participants

A total of 11,246 participants were selected for the final data

analysis (Figure 1). The mean age of the selected participants

was 49.9 ± 14.0 years, of which approximately 66.8% were

male. The average follow-up year was 3.0 ± 0.9 years, and

1,273 participants (11.3%) developed diabetes progressing from

prediabetes during the follow-up period. The mean value of

the AST/ALT ratio was 1.2 ± 0.5, and the mean value of

BMI was 24.8 ± 3.3 kg/m2. The baseline characteristics of

participants based on quartiles of AST/ALT ratio and the

proportion of diabetes occurring were presented in Tables 1,

2, respectively. Among quartiles of the AST/ALT ratio, there

were great differences in all baseline characteristics. Participants

with the highest quartiles of the AST/ALT ratio had the lowest

BMI, SBP, DBP, TC, TG, LDL-C, BUN, and Scr (P < 0.05;
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TABLE 1 Baseline characteristics of participants stratified by quartiles of AST/ALT ratio.

Variables AST/ALT ratio quartile P-value

Q1 (<0.8155) Q2 (0.8155–1.0830) Q3 (1.0830–1.4149) Q4 (>1.4149)

Participants 2,809 2,800 2,825 2,812

Age (years) 44.3± 11.2 49.8± 12.9 52.3± 14.2 53.4± 15.6 < 0.001

Gender, n (%) < 0.001

Male 2,431 (86.5) 2,075 (74.1) 1,719 (60.8) 1,291 (45.9)

Female 378 (13.5) 725 (25.9) 1,106 (39.2) 1,521 (54.1)

BMI (Kg/m2) 26.5± 3.2 25.3± 3.1 24.3± 3.1 23.2± 3.1 < 0.001

SBP (mmHg) 128.4± 16.0 127.6± 17.3 127.8± 18.5 126.6± 18.9 0.002

DBP (mmHg) 80.4± 10.7 78.9± 10.9 78.1± 11.3 76.4± 11.4 < 0.001

TG (mmol/L) 1.8 (1.2, 2.7) 1.6 (1.1, 2.3) 1.3 (0.9, 1.9) 1.1 (0.8, 1.5) < 0.001

TC (mmol/L) 5.1± 1.0 5.0± 0.9 5.0± 0.9 4.9± 0.9 < 0.001

HDL-C (mmol/L) 1.3± 0.3 1.3± 0.4 1.4± 0.3 1.4± 0.3 < 0.001

LDL (mmol/L) 3.0± 0.7 2.9± 0.7 2.9± 0.7 2.8± 0.7 < 0.001

AST (mmol/L) 31.3± 14.8 25.6± 9.9 24.2± 8.6 24.2± 10.5 < 0.001

ALT (mmol/L) 51.0± 31.1 27.3± 11.2 19.7± 7.3 13.8± 5.9 < 0.001

AST/ALT 0.7± 0.1 0.9± 0.1 1.2± 0.1 1.8± 0.5 < 0.001

BUN (mmol/L) 5.1± 1.2 5.1± 1.2 5.0± 1.3 5.0± 1.3 0.013

Scr (mmol/L) 77.0± 14.0 75.3± 15.7 73.1± 16.2 70.7± 17.5 < 0.001

Smoking status, n (%) < 0.001

Current smoker 806 (28.7) 657 (23.5) 531 (18.8) 386 (13.7)

Ever smoker 176 (6.3) 131 (4.7) 108 (3.8) 74 (2.6)

Never smoker 1,827 (65) 2,012 (71.9) 2,186 (77.4) 2,352 (83.6)

Drinking status, n (%) < 0.001

Current drinker 116 (4.1) 117 (4.2) 129 (4.6) 137 (4.9)

Ever drinker 701 (25) 572 (20.4) 476 (16.8) 313 (11.1)

Never drinker 1,992 (70.9) 2,111 (75.4) 2,220 (78.6) 2,362 (84)

Family history of diabetes, n (%) 0.007

No 2,720 (96.8) 2,735 (97.7) 2,775 (98.2) 2,748 (97.7)

Yes 89 (3.2) 65 (2.3) 50 (1.8) 64 (2.3)

Follow-up (years) 3.0± 0.9 3.0± 0.9 3.0± 0.9 3.0± 0.9 < 0.001

Incident diabetes, n (%) < 0.001

No 2,366 (84.2) 2,434 (86.9) 2,537 (89.8) 2,636 (93.7)

Yes 443 (15.8) 366 (13.1) 288 (10.2) 176 (6.3)

Data are shown as mean± standard deviation or number (%).

AST, aspartate aminotransferase; ALT, alanine aminotransferase; FPG, fasting plasma glucose; DM, diabetes mellitus; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic

blood pressure; TG, triglyceride; Scr, serum creatinine; BUN, blood urea nitrogen; TC, total cholesterol; HDL-C, high-density lipid cholesterol; LDL-C, low-density lipid cholesterol.

Table 1). In addition, participants in the group with the lowest

AST/ALT ratio had the lowest age and HDL-C values (P < 0.05;

Table 1). When compared with participants without diabetes

during follow-up, participants who developed diabetes were

older, more likely to be male, had greater values of BMI, SBP,

DBP, TC, TG, had lower levels of HDL-C, AST/ALT ratio, had

a higher proportion of current smoker and drinker, and more

likely to have the family history of diabetes (P < 0.05; Table 2).
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TABLE 2 Baseline characteristics of study participants with/without diabetes.

Variables Total (n = 11246) Subgroups of patients P-value

Non-diabetes
(n = 9973)

diabetes
(n = 1273)

Age (years) 49.9± 14.0 49.2± 14.1 55.6± 12.3 < 0.001

Gender, n (%) < 0.001

Male 7,516 (66.8) 6,608 (66.3) 908 (71.3)

Female 3,730 (33.2) 3,365 (33.7) 365 (28.7)

BMI (Kg/m2) 24.8± 3.3 24.7± 3.3 26.2± 3.3 < 0.001

SBP (mmHg) 127.6± 17.7 126.9± 17.5 132.7± 18.6 < 0.001

DBP (mmHg) 78.4± 11.2 78.1± 11.1 81.0± 11.6 < 0.001

TG (mmol/L) 1.4 (1.0, 2.1) 1.4 (0.9, 2.1) 1.7 (1.2, 2.6) < 0.001

TC (mmol/L) 5.0± 0.9 5.0± 0.9 5.1± 1.0 < 0.001

HDL-C (mmol/L) 1.3± 0.3 1.3± 0.3 1.3± 0.4 0.037

LDL (mmol/L) 2.9± 0.7 2.9± 0.7 2.9± 0.7 0.632

ALT (mmol/L) 27.9± 22.3 27.0± 21.1 35.3± 28.6 < 0.001

AST/ALT (mmol/L) 1.2± 0.5 1.2± 0.5 1.0± 0.4 < 0.001

AST (mmol/L) 26.3± 11.6 26.0± 11.2 29.3± 14.0 < 0.001

BUN (mmol/L) 5.0± 1.3 5.0± 1.3 5.1± 1.3 0.328

Scr (umol/L) 74.0± 16.1 74.0± 16.0 74.1± 17.2 0.861

Smoking status, n (%) < 0.001

Current smoker 2,380 (21.2) 2,027 (20.3) 353 (27.7)

Ever smoker 489 (4.3) 402 (4) 87 (6.8)

Never smoker 8,377 (74.5) 7,544 (75.6) 833 (65.4)

Drinking status, n (%) < 0.001

Current drinker 499 (4.4) 412 (4.1) 87 (6.8)

Ever drinker 2,062 (18.3) 1,811 (18.2) 251 (19.7)

Never drinker 8,685 (77.2) 7,750 (77.7) 935 (73.4)

Family history of diabetes, n (%) 0.001

No 10,978 (97.6) 9,752 (97.8) 1,226 (96.3)

Yes 268 (2.4) 221 (2.2) 47 (3.7)

Follow-up (years) 3.0± 0.9 3.0± 0.9 3.3± 0.9 < 0.001

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, triglyceride; AST, aspartate aminotransferase; ALT, alanine aminotransferase; FPG, fasting plasma

glucose; TC, total cholesterol; HDL-C, high-density lipid cholesterol; Scr, serum creatinine; BUN, blood urea nitrogen; LDL-C, low-density lipid cholesterol.

Risk factors for diabetes in the
prediabetic population

As shown in Table 3. By univariate analysis, we found that

age, BMI, SBP, DBP, TG, HDL-C, AST/ALT, AST, ALT, family

history of diabetes, smoking, and drinking status were correlated

with the incidence of diabetes in prediabetic patients (all P <

0.05). Furthermore, after adjusting for potential confounding

factors according to univariate analysis, the multivariate analysis

revealed that age, BMI, DBP, TG, HDL-C, AST/ALT, AST, ALT,

and family history of diabetes have a significant association with

the incident of diabetes progressing from prediabetes.

Figure 2 shows the Kaplan–Meier curve of the cumulative

hazards of incident diabetes risk stratified by AST/ALT ratio

categories. The risk of incident diabetes was significantly

different between the three AST/ALT groups (Log-rank test, P

< 0.0001). With an increased AST/ALT ratio, the cumulative

risk of incident diabetes gradually decreased, rendering the
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TABLE 3 Results of univariate and multivariate analysis and risk factors of diabetes.

Covariables Univariate analysis Multivariate analysis

HR (95%CI) P-value HR (95%CI) P-value

Age (years) 1.03 (1.02,1.03) < 0.001 1.02 (1.01–1.02) < 0.001

Gender

Male Ref

Female 0.89 (0.79,1.01) 0.063

BMI (Kg/m2) 1.11 (1.09,1.12) < 0.001 1.07 (1.05–1.09) <0.001

SBP (mmHg) 1.02 (1.01,1.02) < 0.001 1.00 (1.00–1.01) 0.097

DBP (mmHg) 1.02 (1.01,1.02) < 0.001 1.01 (1.00–1.01) 0.027

TC (mmol/L) 1.04 (0.98,1.10) 0.215

TG (mmol/L) 1.12 (1.09,1.15) < 0.001 1.09 (1.06–1.12) <0.001

HDL-C (mmol/L) 1.55 (1.39,1.73) < 0.001 1.64 (1.5–1.79) <0.001

LDL (mmol/L) 1.00 (0.93,1.08) 0.933

ALT (mmol/L) 1.01 (1.01,1.01) < 0.001 1.01 (1.00–1.01) <0.001

AST/ALT 0.49 (0.42,0.56) < 0.001 0.42 (0.35–0.5) <0.001

AST (mmol/L) 1.01 (1.01,1.01) < 0.001 1.01 (1.00–1.01) <0.001

BUN (mmol/L) 1.04 (0.99,1.08) 0.106

Scr (mmol/L) 1.00 (1.00,1.00) 0.294

Smoking status

Current smoker Ref Ref

Ever smoker 1.34 (1.06,1.70) 0.014 1.66 (1.31–2.1) <0.001

Never smoker 0.81 (0.71,0.92) < 0.001 0.94 (0.83–1.07) 0.327

Drinking status

Current drinker Ref Ref

Ever drinker 0.65 (0.51,0.82) < 0.001 0.82 (0.64–1.05) 0.111

Never drinker 0.67 (0.54,0.84) < 0.001 0.83 (0.66–1.03) 0.092

Family history of diabetes

No Ref Ref

Yes 1.59 (1.19,2.12) 0.002 1.76 (1.31–2.36) <0.001

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, triglyceride; AST, aspartate aminotransferase; ALT, alanine aminotransferase; FPG, fasting plasma

glucose; TC, total cholesterol; HDL-C, high-density lipid cholesterol; Scr, serum creatinine; BUN, blood urea nitrogen; LDL-C, low-density lipid cholesterol.

minimum AST/ALT ratio group with the maximum risk of

incident diabetes in prediabetic patients.

E�ect of AST/ALT ratio on the incident of
diabetes progressing from prediabetes

In this study, we constructed three models to analyze the

independent effects of the AST/ALT ratio on the incidence of

diabetes (univariate and multivariate Cox proportional hazard

model). The effect sizes [Hazard ratio (HR)] and 95% confidence

intervals (CI) were listed in Table 4. When AST/ALT ratio

was a continuous variable, AST/ALT ratio showed a negative

correlation with the incidence of diabetes progressing from

prediabetes in the unadjusted model (model I), for every 1 unit

increase in the AST/ALT ratio, the risk of incident of diabetes in

the prediabetic patients decreased by 51% (HR = 0.49, 95% CI:

0.42 to 0.56, P< 0.001). In theminimum-adjustedmodel (model

II) adjusted for age and gender, the trend did not have obvious

changes, the risk of incident diabetes decreased by 69% as the

AST/ALT ratio increased (HR = 0.31, 95% CI: 0.26 to 0.37, P <

0.001). In the fully-adjusted model (model III) adjusted for age,

gender, BMI, SBP, TG, TC, HDL-C, LDL-C, BUN, Scr, smoking
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FIGURE 2

Dose-response relationship between AST/ALT ratio and the

incidence of diabetes in prediabetic patients.

status, drinking status, family history of diabetes age, for every

1 unit increase in the AST/ALT ratio, the risk of incident of

diabetes decreased by 60% (HR= 0.40, 95% CI: 0.33 to 0.48, P <

0.001). For the purpose of sensitivity analysis, we converted the

AST/ALT ratio from the continuous variable to the categorical

variable (quartiles of AST/ALT ratio). When comparing with

the lowest quartile of AST/ALT ratio, the multivariate HRs

for the incident of diabetes were 0.71 (0.62–0.82) for Q2, 0.50

(0.42–0.59) for Q3, 0.35 (0.29–0.43) for Q4, The P for trend of

AST/ALT ratio with categorical variables in the fully-adjusted

model was consistent with the result when AST/ALT ratio was

a continuous variable.

We divided the total population into two groups, one with

normal values of liver function indicators (AST≤40 U/L and

ALT≤40 U/L) and the other with abnormal liver function

indicators (AST>40 U/L or ALT>40 U/L). Then we constructed

three models to analyze the independent effects of the AST/ALT

ratio on the incidence of diabetes (univariate and multivariate

Cox proportional hazard model). The effect sizes (HR and 95%

CI) were listed in Supplementary Table S1.

As is well known, the normal range of AST/ALT ratio is

0.8–1.5. According to this, we divided the total population into

three groups. Then we constructed three models to analyze the

independent effects of the AST/ALT ratio on the incidence of

diabetes (univariate and multivariate Cox proportional hazard

model). The effect sizes (HR and 95% CI) were listed in

Supplementary Table S2.

In addition, the Kaplan–Meier curve of the cumulative

hazards of incident diabetes risk stratified by AST/ALT ratio

categories were presented in Supplementary Figure S1.

Figure 3 shows the dose-response relationship between

the AST/ALT ratio and the risk of diabetes in prediabetic

patients. We found a decreasing trend of incidence of diabetes

progressing from prediabetes with a higher AST/ALT ratio.

Subgroup analysis

We further performed subgroup analyses to stratify the

association between AST/ALT ratio and incident of diabetes

by age, BMI, TG, HDL-C, and family history of diabetes as

provided in Table 5. We observed that the negative relationship

between the AST/ALT ratio and the risk of diabetes in the

prediabetic population remained consistent across all subgroup

variables. Meanwhile, we observed that only a small number of

interactions including age and TG in the association between

the AST/ALT ratio and the risk of diabetes in the prediabetic

population (all P-values for interaction < 0.05). In this study,

a stronger association was detected in the population with age

<45 years, and TG ≤ 1.7 mmol/L.

Discussion

In this retrospective cohort study, we established a negative

association between the AST/ALT ratio and the risk of

diabetes progressing from prediabetes. These results remained

stable after adjustment for all potential confounding factors.

Furthermore, the negative association between the AST/ALT

ratio and the risk of diabetes in prediabetic patients was

more evident in participants with age <45 years, and TG ≤

1.7 mmol/L.

Several previous studies reported the relationship between

the AST/ALT ratio and diabetes risk (29, 37, 38). A recent

study investigated the relationship between AST/ALT ratio

and incident T2DM in populations with or without obesity

and demonstrated that non-obese individuals with AST/ALT

≤0.875 have a higher risk of developing T2DM than obese

individuals with AST/ALT≥ 0.875 (38). Chen et al. performed a

retrospective cohort study involving 15,291 Japanese individuals

from 2004 to 2015 and demonstrated that the AST/ALT ratio

was negatively correlated with T2DM (HR = 0.617, 95% CI:

0.405–0.938) (29). However, inconsistent with our findings,

their relationship was non-linear and had a saturation effect,

and the inflection point was 0.882. We postulated that these

differences were due to: i. Key differences between populations

in both studies in terms of age range and ethnicity/race; ii.

Variations in covariates were included as potential confounders

in the studies. Similarly, a cross-sectional study of the fifth

Korean National Health and Nutrition Examination Survey

(KNHANES V), 2011–2016, found that the AST/ALT ratio was

inversely associated with T2DM risk (39). This study found

that prediabetic patients with age <45 years old and TG≤1.70
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TABLE 4 Relationship between AST/ALT ratio and the risk of diabetes in prediabetic patients in di�erent models.

Exposure Model I
(HR, 95%CI)

P-value Model II
(HR, 95%CI)

P-value Model III
(HR, 95%CI)

P-value

AST/ALT ratio 0.49 (0.42–0.56) <0.001 0.31 (0.26–0.37) <0.001 0.40 (0.33–0.48) <0.001

AST/ALT ratio quartile

Q1 Reference Reference Reference

Q2 0.80 (0.69–0.92) 0.001 0.63 (0.54–0.72) <0.001 0.71 (0.62–0.82) <0.001

Q3 0.59 (0.51–0.68) <0.001 0.41 (0.35–0.49) <0.001 0.50 (0.42–0.59) <0.001

Q4 0.43 (0.36–0.51) <0.001 0.27 (0.22–0.33) <0.001 0.35 (0.29–0.43) <0.001

P for Trend <0.001 <0.001 <0.001

Results are shown as hazard ratios (HRs) with 95% confidence intervals (CIs). AST, aspartate aminotransferase; ALT, alanine aminotransferase.

Model I adjust for none.

Model II adjust for age and gender.

Model III adjust for age, gender, BMI, SBP, DBP, TG, TC, HDL-C, LDL-C, BUN, Scr, smoking status, drinking status, family history of diabetes.

mmol/L had a lower risk of progressing into diabetes than

others. Currently, we do not have an obvious explanation for this

discrepancy. Possible explanations are as follows. Age growth

has been shown to be an important risk factor for diabetes.

Based on this, youth itself was previously considered a relative

protective factor in the development of diabetes. Meanwhile,

it is well known that people who tend to maintain better

health are at lower risk of diabetes (40, 41). Furthermore,

Abnormal lipid metabolism is associated with the pathogenesis

of diabetes, which may be associated with impaired insulin

reactivity and abnormal blood glucose control (42). Cui et.al

found that elevated TG is an independent risk factor for T2DM

incidence in the general Chinese population (43). A cross-

sectional survey of 15,928 diabetic patients found that high

TG patients accounted for 49.7% of the total participants (44).

However, since its exact mechanism is unclear, the results of

the subgroup and the interaction analysis should be interpreted

with caution. And additional large trials are needed for

definitive conclusions.

Biological mechanisms involved in the association between

AST/ALT ratio and diabetes have not been elucidated, however,

there are some potential explanations. As is well known,

there have been several studies on the relationship between

AST/ALT ratio and non-alcoholic fatty liver disease (NAFLD).

The liver plays a crucial role in the control of gluconeogenesis,

glycogenolysis, glycolysis, and gluconeogenesis, which are

key steps in maintaining glucose homeostasis (45). Any

damage to the liver may lead to changes in cell membrane

permeability, resulting in leakage of hepatic AST and ALT

into the circulatory system (46, 47). The AST/ALT ratio

reflects the severity of hepatic steatosis and inflammation.

Excess accumulation of fat and inflammation in the liver

without heavy alcohol intake leads to NAFLD (48, 49). A

recent longitudinal cohort study involving 12,127 Chinese

non-obese participants reported that a lower AST/ALT ratio

was independently associated with new-onset NAFLD during

FIGURE 3

Kaplan–Meier event-free survival curve based on AST/ALT ratio

quartiles and the incidence of diabetes in prediabetic patients

(log-rank, P < 0.0001). Each color of lines indicates a quintile

group. The color range indicates the 95% confidence interval

(CI) range of cumulative incidence of diabetes at a di�erent

follow-up time.

a 5-year follow-up (50). Moreover, ectopic deposition of

lipids in hepatocytes during NAFLD (steatosis) directly or

indirectly inhibits key parts of the insulin signaling pathway

and significantly increases the risk of T2DM. Accumulating

evidence has revealed that NAFLD is closely associated with

IR and the AST/ALT ratio is indicative of insulin resistance

(IR) (51–53). In a cross-sectional study involving 2,747

adults from the National Health and Nutrition Examination

Survey (NHANES) 2011–2016, Visaria et al. discovered that

a low AST/ALT ratio is associated with increased IR among
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TABLE 5 Subgroup analysis between AST/ALT ratio and diabetes in participants with prediabetes.

Characteristic No of
participants

Event (%) HR (95%CI) P-value P for
interaction

Age (years)

<45 4,359 255 (5.8) 0.37 (0.25–0.56) <0.001 0.004

45–65 5,032 741 (14.7) 0.43 (0.34–0.54) <0.001

>65 1,855 277 (14.9) 0.56 (0.41–0.77) <0.001

BMI (Kg/m2)

≤25 5,982 463 (7.7) 0.31 (0.24–0.41) <0.001 0.588

>25 5,264 810 (15.4) 0.44 (0.35–0.55) <0.001

TG (mmol/L)

≤1.70 6,973 608 (8.7) 0.30 (0.23–0.38) <0.001 0.002

>1.70 4,273 665 (15.6) 0.60 (0.47–0.77) <0.001

HDL-C (mmol/L)

≤1.04 1,531 201 (13.1) 0.32 (0.19–0.54) <0.001 0.181

>1.04 9,715 1,072 (11) 0.42 (0.35–0.50) <0.001

Family history of diabetes

No 10,978 1,226 (11.2) 0.40 (0.34–0.48) <0.001 0.865

Yes 268 47 (17.5) 0.54 (0.21–1.43) 0.215

Results are shown as hazard ratios (HRs) with 95% confidence intervals (CIs).

BMI, body mass index; TG, triglyceride; HDL-C, high-density lipid cholesterol.

Models are adjusted for age, gender, BMI, SBP, DBP, TG, TC, HDL-C, LDL-C, BUN, Scr, smoking status, drinking status, and family history of diabetes except for the subgroup variable itself.

those without liver dysfunctions (54). Comparable findings

were found in the Chinese population (55). Therefore, the

mechanisms involved in the correlation between AST/ALT ratio

and diabetes have not been conclusively determined, which

warrants further investigation.

This study has substantial strengths. First, our sample

size is relatively large and is more representative of the

Chinese population. Second, the follow-up duration in this

cohort study was up to 6 years, which made the results more

convincing. Third, we adjusted for potential confounders to

minimize residual confounders in the multivariate analysis,

which made the results more reliable. Fourth, sensitivity

analysis was performed by handling the AST/ALT ratio as

both continuous variables and categorical variables, which

reduced contingency in data analysis and enhanced the stability

of results. Furthermore, a subgroup analysis was conducted

to ensure the robustness of the presented results. Finally,

our findings have potential significant clinical implications.

AST/ALT ratio is a simple, inexpensive, and routine clinical

measurement, which predates traditional predictors of T2DM.

It is well known that a high AST/ALT ratio may be a sign of

abnormal liver function. However, a low AST/ALT ratio may

not necessarily be advantageous. Our study found that a low

AST/ALT ratio may increase the risk of developing diabetes.

The normal range for AST/ALT ratio is 0.8–1.5. When the

AST/ALT ratio is below the normal value, screening for diabetes

is suggested. The findings of this study will help to identify

patients at high risk of diabetes at an early stage and to make

timely lifestyle modifications and interventions related to early

diabetes, which may reduce the incidence of diabetes in the

long term.

However, this study is associated with a few limitations. First,

we only studied Chinese adults. Therefore, our conclusions may

not be generalizable to other age- and ethnic groups. Second, due

to the nature of the secondary analysis of published data, some

important variables were not included, such as physical activities

and pre-existing cardiovascular diseases. Studies should assess

the relationship between AST/ALT ratio and T2DM. Third,

in this study, diabetes was defined by fasting glucose levels

≥7.00 mmol/L and/or self-reported diabetes during follow-up,

rather than the test of oral glucose tolerance or measurement

of glycosylated hemoglobin, which may underestimate T2DM

incidences. However, practically, it is not feasible to perform

oral glucose tolerance tests on all participants. Fourth, this

study did not classify diabetes as type 1 diabetes and T2DM.

However, because T2DM accounts for about 95% of all

diabetes cases, our findings are likely more representative of

T2DM. Finally. the AST/ALT ratio is dynamic and changes

over time. However, we only measured AST/ALT ratio

at baseline.
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Conclusion

In summary, this present study suggests that a lower

AST/ALT ratio is independently associated with a higher

risk of diabetes onset in Chinese adults with prediabetes.

Regular monitoring of AST/ALT ratio dynamics can help

avoid progression to diabetes from prediabetics. The AST/ALT

ratio might thus be a useful tool for detecting prediabetic

individuals at a high risk of developing diabetes. However,

further prospective studies are needed to validate our

study findings.
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Introduction: Type 2 diabetes mellitus (T2DM) is associated with alterations in

bone mineral density (BMD), but association between prediabetes and BMD is

unclear.

Methods: We analyzed BMD among the initially normoglycemic participants in

the Pathobiology of Prediabetes in a Biracial Cohort (POP-ABC) study in

relation to incident prediabetes during 5 years of follow-up.

Results and Discussion: A total of 343 participants (193 Black, 150 White)

underwent DEXA during Year 1 of POP-ABC and were followed quarterly for 5

years. The mean age was 44.2 ± 10.6 years; BMI was 30.2 ± 7.23 kg/m2. At

baseline, the mean BMD was 1.176 ± 0.135 g/cm2 (1.230 ± 0.124 g/cm2 in men

vs. 1.154 ± 0.134 g/cm2 in women, P<0.0001; 1.203 ± 0.114 g/cm2 in Black vs.

1.146 ± 0.150 g/cm2 in White participants, P=0.0003). During 5 years of follow-

up, 101 participants developed prediabetes and 10 subjects developed T2DM

(progressors); 232 were nonprogressors. Progressors to prediabetes had

numerically higher baseline BMD and experienced lower 1-year decline in

BMD (P<0.0001) compared with nonprogressors. From Kaplan-Meier analysis,

the time to 50% prediabetes survival was 2.15 y among participants in the

lowest quartile of baseline BMD, longer than those in higher quartiles (1.31 –

1.41 y). Values for BMD correlated inversely with age and adiponectin levels, and

positively with BMI. In logistic regression analysis, BMD z score significantly

predicted incident prediabetes: more negative BMD z scores were associated

with decreased incident prediabetes (odds ratio 0.598 [95% confidence interval

0.407 - 0.877], P=0.0085), after controlling for age, BMI, change in BMI,

ethnicity, blood glucose and adiponectin.
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Conclusions: Among initially normoglycemic individuals, higher baseline

BMD was associated with higher risk of incident prediabetes during 5 years

of follow-up.
KEYWORDS

bone mineral density, impaired fasting glucose, impaired glucose tolerance,
prospective study, race/ethnicity
1 Introduction

Diabetes mellitus appears to exhibit a complex relationship

with bone health. Cross-sectional studies have reported lower

bone mineral density (BMD) in people with type 1 diabetes

mellitus (T1DM) (1–3) but similar or higher BMD in those with

type 2 diabetes (T2DM) (4–6) compared with healthy control

subjects. In one study, the mean BMD in patients with T2DM

was ~10% higher than that of age-matched individuals without

diabetes (4). In a meta-analysis of 15 observational studies with a

pooled population of 3,437 T2DM patients and 19,139 controls,

BMD was significantly higher by 0.04 g/cm2 at the femoral neck,

0.06 g/cm2 at the hip and 0.06 g/cm2 at the spine in T2DM

patients versus controls (5). The mechanisms for the higher

BMD in people with T2DM are not known precisely but may be

related to adiposity, hyperglycemia, or hyperinsulinemia (6, 7).

The Rotterdam study found that patients with inadequately

controlled T2DM had higher BMD compared with healthy

subjects or patients with adequately controlled T2DM (6).

Paradoxically, the normal or higher BMD observed in people

with T2DM is not associated with the expected decrease in the

risk of fracture. In fact, increased fracture risk may be higher in

people with diabetes versus healthy control (4, 6–8). In the

prospective Japanese Nurses’ Health Study, among women 34-

59 years old the incidence of hip fractures was six-fold higher in

patients with T1DM and two-fold higher in those with T2DM

compared with healthy subjects, after adjustments for body mass

index (BMI), smoking, physical activity, menopausal status,

postmenopausal hormone use, and daily intake of calcium,
us glucose; BMC,

Body mass index;

, Fasting plasma

P, high sensitivity

Impaired glucose

glucose tolerance
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vitamin D and protein (8). Multiple factors than can

contribute to increased fracture risk in people with diabetes

include alterations in bone microstructure, increased cortical

porosity, and reduced cortical density (8–13). Furthermore,

insulin deficiency and low levels of IGF-1 in patients with type

1 diabetes impair osteoblast function, leading to low peak bone

mass at a young age (10). Additional diabetes-related deleterious

factors include formation of advanced glycation end products,

inflammatory cytokines, osteocyte production of sclerostin, and

bone microvascular disease (8–13). Finally, certain medications

used for treating diabetes have been associated with alterations

in bone metabolism and fracture risk (14).

We explored the ontogeny of the association between

diabetes and increased BMD by studying normoglycemic

individuals who developed prediabetes during prospective

follow-up. We reasoned that a true biological association

between increased bone mass and T2DM might be discernible

at the more proximal stage of prediabetes. Among persons at

genetic risk for T2DM, the transition from normoglycemia to

diabetes often follows a predictable course through an

intermediate stage of prediabetes, defined as impaired fasting

glucose (IFG) and/or impaired glucose tolerance (IGT) (15–17).

The Centers for Disease Control and Prevention estimates that

approximately 96 million Americans aged 18 years and older

have prediabetes (18). Unlike in patients with established

diabetes, the relation between BMD and prediabetes has not

been well studied. In one report, based on data from the U.S.

National Health and Nutrition Examination Surveys (NHANES)

from 2005 to 2014, adults 40 years of age or older with

prediabetes had higher BMD but greater hip fracture risk

compared with adults with normal glucose tolerance (19). In

another cross-sectional study (based on NHANES 2005-2018

data), there was an increasing trend of BMD at the hip, femoral

neck, and lumbar spine across the glycemic spectrum from

normoglycemia, prediabetes, to diabetes in adults aged 40

years or older (20). However, these cross-sectional

observations do not reveal the direction of the association

between BMD and diabetes or prediabetes, nor do they permit

causal inferences. Prospective studies are needed to demonstrate

directionality and enable the identification of possible causal
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mechanisms of the association between bone mass and disorders

of glucose metabolism.

The Pathobiology of Prediabetes in a Biracial Cohort (POP-

ABC) study enrolled self-reported African American and

European American adults with parental T2DM and assessed

progression from normoglycemia to T2DM during for 5 years of

follow-up (21–26). The primary results of the POP-ABC study,

which showed no ethnic disparity in the incidence of prediabetes

among people with similar parental history of T2DM, identified

baseline weight, insulin sensitivity, insulin secretion and

inflammatory markers as significant associations of prediabetes

risk (26). In the present post-hoc analysis, we examined the

association between BMD at enrollment and incident

prediabetes risk in the POP-ABC study. We further assessed the

relationship between BMD and several demographic, biochemical,

and glucoregulatory variables, to explore potential mechanisms

for any association between BMD and prediabetes. The

prospective design of the POP-ABC study enabled us to track

initially normoglycemic individuals until the occurrence of IFG or

IGT and determine whether baseline BMD is associated with such

an outcome. Furthermore, by studying a normoglycemic

population, we avoided the confounding effects of anti-diabetes

medications on bone metabolism that plagued cross-sectional

studies of people with established diabetes.
2 Materials and methods

2.1 Study subjects

The study subjects were participants in the POP-ABC study

(21–23). Eligible for enrolment in the POP-ABC study were

healthy, normoglycemic adults aged 18–65 years who self-

reported as being of non-Hispanic white (European American)

or non-Hispanic black (African American) ancestry and had one

or both biological parents with T2DM. The standard 75-gram

oral glucose tolerance test (OGTT) was used to screen

prospective participants and those with normal fasting plasma

glucose (FPG, <100 mg/dL [5.6 mmol/L]) and normal glucose

tolerance (NGT, 2-hour plasma glucose [2hPG] <140 mg/dL [7.8

mmol/L]), based on American Diabetes Association criteria,

were enrolled (15, 24). Excluded from participation were

individuals with a history of diabetes, those taking

glucocorticoids or medications known to alter body weight,

blood glucose or bone metabolism, or persons enrolled in

behavioral weight loss programs or having a history of

bariatric surgery. Individuals self-reported their race/ethnicity,

based on the 1990 US Census questionnaire (25). The University

of Tennessee Institutional Review Board approved the study
Frontiers in Endocrinology 03
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protocol. All participants gave written informed consent before

initiation of the study, which was conducted at the University of

Tennessee General Clinical Research Center (GCRC).
2.2 Assessments

Participants made outpatient visits to the GCRC after an

overnight fasting at baseline and every 3 months during 5 years

of follow-up. Assessments at baseline included anthropometric

measurements (weight, height, BMI, waist circumference), body

composition (total fat mass, trunk fat mass) and bone

densitometry by dual-energy x-ray absorptiometry (DEXA)

(Hologic Discovery A80044A, Hologic Inc., Bedford, MA),

OGTT, and biochemistries (21–23). Assessments during year

one included insulin sensitivity (ISI) measured with

hyperinsulinemic euglycemic clamp and insulin secretion

using intravenous glucose tolerance test (IVGTT), as

previously described (21–23). Other follow-up assessments

included quarterly FPG, and annual OGTT, IVGTT and DEXA.
2.3 Definition of outcome measures

The primary outcome was the occurrence of prediabetes

(IFG and/or IGT) or diabetes, defined by the 2003 revised

American Diabetes Association criteria (15, 24, 26). For

participants reaching any of those endpoints, a confirmatory

test using 75-g OGTT was performed within six weeks of initial

endpoint occurrence, as previously described (26). All endpoints

were independently adjudicated by the Institutional Data and

Safety Officer (Murray Heimberg, MD, PhD).
2.4 Statistical analysis

This is a post hoc analysis of baseline data from the POP-

ABC study. Data were reported as means ± standard deviations.

Differences in continuous or categorical variables between

defined groups were analyzed using unpaired t test or chi

square test, as appropriate. Linear regression models were used

to analyze the relationship between BMD and demographic,

anthropometric, glycemic, and glucoregulatory variables, and

predictors of incident prediabetes were modeled using logistic

regression. The annual change in BMD was analyzed using

paired t test. The incidence of prediabetes across quartiles of

baseline BMD was analyzed using Kaplan-Meier plots.

Significance level was set as P< 0.05 (two-tailed). All analyses

were performed using StatView statistical software (SAS

Institute Inc., Cary, NC).
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3 Results

3.1 Baseline cohort characteristics

A total of 343 participants (193 Black, 150 White; 71%

women) underwent DEXA during Year 1 of the POP-ABC

study. The mean age was 44.2 ± 10.6 years; BMI was 30.2 ±

7.23 kg/m2. The mean FPG was 91.8 ± 6.77 mg/dl, 2hPG 124 ±

25.8 mg/dl, and HbA1c was 5.54 ± 0.44% at enrollment. The

mean baseline BMD was 1.176 ± 0.135 g/cm2 for the entire

cohort, higher in men than women (1.230 ± 0.124 g/cm2 vs.

1.154 ± 0.134 g/cm2, P<0.0001). Table 1 shows the baseline

characteristics of study subjects by ethnicity. The BMD was

higher in Black vs. White participants (1.203 ± 0.114 g/cm2 vs.

1.146 ± 0.150 g/cm2, P=0.0003). Compared with White

participants, African American participants had a lower mean

age and higher BMI, but similar values for total and trunk fat

mass (Table 1). Trunk fat mass and body fat mass were not

significantly different by race/ethnicity. Baseline BMD was

correlated inversely with age (r2= -0.063, P<0.0001) and

directly with BMI (r2 = 0.073, P<0.0001) among the Black and

White POP-ABC study participants (Figure 1).
3.2 BMD and prediabetes risk

During 5 years of follow-up, 101 participants developed

prediabetes and 10 subjects developed T2DM (progressors) and

232 maintained normoglycemia (nonprogressors). Participants
Frontiers in Endocrinology 04
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who developed T2DM were not included in the present report.

Table 2 shows the demographic, clinical and biochemical

characteristics of progressors to prediabetes versus

nonprogressors. Compared with nonprogressors, participants

who progressed to prediabetes were older, more likely to be

male, and had significantly higher FPG, HbA1c, baseline BMI,

and 1-year increase in BMI. Progressors also had higher insulin

sensitivity and trunk fat mass but lower adiponectin levels at

baseline, compared with nonprogressors (Table 2). Progressors to

prediabetes had numerically but insignificantly higher BMD

(1.177± 0.114 g/cm2 vs. 1.175 ± 0.146 g/cm2, P=0.88) and bone

mineral content (BMC) (2.60 kg ± 0.46 vs. 2.49 kg ± 0.50, P=0.07)

at baseline compared with nonprogressors. Furthermore,

progressors to prediabetes experienced a significantly slower 1-

year decrease in BMD compared with nonprogressors (-0.019 ±

0.46 027 vs. -0.038 ± 0.14, P<0.0001) (Figure 2A).

In logistic regression models, BMC and BMD z score

significantly predicted incident prediabetes, after adjusting for

age, BMI, change in BMI, ethnicity, FPG, 2hPG, total fat mass

and trunk fat mass, and adiponectin at enrollment. More

negative BMD z scores (indicating lower bone mass referenced

to age- and sex-matched control) were associated with decreased

risk of incident prediabetes (adjusted odds ratio 0.598 [95%

confidence interval 0.407 - 0.877], P=0.0085). In contrast, higher

BMC at baseline predicted increased risk of incident prediabetes

(adjusted odds ratio 1.001[95% confidence interval 1.000 –

1.002], P=0.0052).

We stratified participants by quartiles of baseline BMD

(Figure 2B) and analyzed the development of prediabetes
TABLE 1 Baseline characteristics of POP-ABC study subjects by race/ethnicity.

African American European American P-Value

Number 193 150

Age (yr) 42.5 ± 10.3 46.5 ± 10.5 0.0003

Weight (kg) 87.8 ± 21.1 81.8 ± 20.9 0.004

BMI (kg/m2) 31.2 ± 7.40 28.8 ± 6.78 0.0015

FPG (mg/dl) 90.8 ± 6.81 93.1 ± 6.50 0.001

2hPG (mg/dl) 123 ± 27.4 125 ± 23.3 0.45

HbA1c (%) 5.63 ± 0.47 5.44 ± 0.32 <0.0001

BMD, (g/cm2)
Female
Male

1.203 ± 0.114
1.184 ± 0.103
1.256 ± 0.127

1.146 ± 0.150
1.118 ± 0.156
1.206 ± 0.116

0.0003

Trunk fat mass(kg) 15.3 ± 7.50 14.8 ± 6.96 0.48

Total body fat mass (kg) 31.8 ± 13.76 29.4 ± 13.21 0.11

Insulin sensitivity (µmol/kg FFM.min-1/pM) 0.12 ± 0.07 0.14 ± 0.06 0.0352

Insulin Secretion (AIR) (µU/ml) 105 ± 88.8 61.3 ± 39.0 <0.0001

AIR, acute insulin response to i.v. glucose; BMD, bone mineral density; BMI, body mass index; AIR, acute insulin response to i.v. glucose; FPG, fasting plasma glucose; 2hPG, two-hour
plasma glucose; To convert FPG and 2hPG to mmol/l, multiply by 0.56.
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across BMD strata (Figure 2C). From Kaplan-Meier analysis, the

time to 50% prediabetes survival was 2.15 years among

participants with the lowest BMD at baseline (Quartile 1)

versus 1.31 – 1.41 years among subjects in higher BMD quartiles.
3.3 Potential underlying mechanisms

To explore possible mechanisms for the association of BMD

with incident prediabetes, we examined the relationship between

BMD and several baseline variables. Univariate linear regression

showed significant correlations between BMD and body weight (r2

= 0.10, P<0.0001), BMI (r2 = 0.029, P=0.0028), total body fat mass

(r2 = 0.044, p=0.0003), trunk fat mass (r2 = 0.033, P= 0.0021),

2hPG (r2= -0.017, p=0.027), and adiponectin levels (r2= -0.036,

P=0.0008) but not FPG, HbA1c, insulin sensitivity, insulin

secretion, or C-reactive protein (Figure 3). A multivariate

regression model was run, with BMD as dependent variable and
Frontiers in Endocrinology 05
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BMI along with 2hPG, adiponectin levels, C-reactive protein,

insulin sensitivity and insulin secretion as independent variables.

The significant predictors of BMDwere BMI (beta coefficient 0.18,

P=0.05), 2hPG (beta coefficient -0.16, P=0.028), and adiponectin

(beta coefficient -0.20, P=0.0098).
4 Discussion

In our prospective study of healthy offspring of parents with

T2DM, bone density at enrollment had the expected

relationships with age, sex, and ethnicity. Study participants

who developed incident prediabetes during 5 years of follow-up

tended to have higher baseline BMD and BMC and showed a

significantly slower 1-year decline in BMD compared with

nonprogressors. After controlling for baseline variables

(including age, BMI, and blood glucose), higher bone mass

predicted increased 5-year risk of progression from
A

B

FIGURE 1

Correlation of bone mineral density with age (A) and body mass index (B) in African American (red symbols) and European American (blue
symbols) participants at enrollment in the Pathobiology of Prediabetes in a Biracial Cohort study.
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normoglycemia to prediabetes. These findings suggest an inverse

relationship between baseline bone mass and incident

prediabetes risk.

Previous cross-sectional studies had reported higher BMD in

people with T2DM compared with individuals without diabetes

(4–6). The findings from our prospective POP-ABC study

demonstrate a similar association between BMD and

prediabetes, consistent with previous findings from cross-

sectional surveys (19, 20). Exploring possible mechanisms, we

observed significant correlations between baseline BMD and

measures of adiposity and glucose tolerance (2hPG) among our

study participants. However, our findings associating higher

bone mass with incident prediabetes risk persisted after

adjusting for adiposity and glycemia. No significant

associations were observed between BMD and insulin

sensitivity, insulin secretion, or hsCRP levels in our POP-ABC

participants, all of whom were normoglycemic at baseline.
Frontiers in Endocrinology 06
46
The link between higher BMD and increased prediabetes

risk requires further mechanistic insights. The higher BMD

reported in people with T2DM could be explained at least in

part by obesity. The association of BMD with adiposity measures

in our present study also supports a role for obesity as a

contributing factor for the higher BMD in progressors versus

nonprogressors to prediabetes. Besides obesity, hyperglycemia,

insulin resistance, or hyperinsulinemia might be possible

mediators of increased bone density in people with T2DM and

prediabetes (5–7, 27). As a corollary, the lower BMD reported in

people with T1DM would be consistent with the underlying

beta-cell failure and insulin deficiency (10). Insulin stimulates

osteoblast formation and promotes proliferation, differentiation,

and survival of osteoblasts, with an overall balance in favor of

bone formation (10). Thus, the relative hyperinsulinemia

observed in insulin-resistant individuals with obesity, T2DM,

and prediabetes would favor accrual of bone mass, although the
TABLE 2 Demographic, clinical and biochemical characteristics in progressors to prediabetes versus nonprogressors.

Progressor Nonprogressor P value

Number 111 232

Black/White 58/53 135/97 0.30

Women/Men 65/46 180/52 0.0003

Premenopausal/
postmenopausal

35/30 115/65 0.15

Age (yr) 47.3 ± 8.94 43.8 ± 10.8 0.0031

Weight (kg) 90.0 ± 20.1 83.1 ± 21.9 0.0051

Baseline BMI (kg/m2) 31.4 ± 6.88 29.6 ± 7.40 0.034

Delta BMI (1-yr) (kg/m2) 0.50 ± 1.48 0.16 ± 1.63 0.088

Delta BMI (2-yr) (kg/m2) 0.61 ± 1.85 0.30 ± 1.98 0.24

FPG (mg/dl) 94.0 ± 6.75 91.0 ± 6.49 <0.0001

HbA1c (%) 5.66 ± 0.47 5.52 ± 0.43 0.0059

BMD (g/cm2) 1.177± 0.114 1.175 ± 0.146 0.88

BMC (kg) 2.60 ± 0.46 2.49 ± 0.50 0.07

Delta BMD (1-yr) (g/cm2) -0.02 ± 0.46 -0.04 ± 0.14 <0.0001

Trunk fat mass (kg) 16.6 ± 6.85 14.3 ± 7.34 0.0079

Total fat mass (kg) 32.0 ± 1.26 29.9 ± 1.40 0.19

Insulin sensitivity (µmol/kg FFM.min-1/pM) 0.12 ± 0.07 0.15 ± 0.06 0.0014

Insulin secretion (AIR) (µu/ml) 81.3 ± 73.7 88.2 ± 74.2 0.44

hsCRP (mg/L) 4.35 ± 6.67 3.55 ± 5.38 0.24

Adiponectin (µg/ml) 8.53 ± 4.35 9.87 ± 5.69 0.031

AIR, acute insulin response to i.v. glucose; BMD, bone mineral density; BMI, body mass index; FFM, fat-free mass; FPG, fasting plasma glucose; hsCRP, high sensitivity C-reactive
protein; 2hPG, two-hour plasma glucose; To convert FPG and 2hPG to mmol/l, multiply by 0.56.
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A

B

C

FIGURE 2

One-year change in bone mineral density (BMD) in progressors to prediabetes vs. nonprogressors (A); stratification of participants by quartiles
(Q) of baseline BMD (B); and Kaplan-Meier plot of prediabetes survival by baseline BMD quartile (C) in the Pathobiology of Prediabetes in a
Biracial Cohort study. BMD quartiles: 1 red, 2 purple, 3 blue, 4 black. * P<0.0001.
A

B

FIGURE 3

Correlation of bone mineral density with 2hPG (A) and adiponectin levels (B) in African American (red symbols) and European American (blue
symbols) participants at enrollment in the Pathobiology of Prediabetes in a Biracial Cohort study.
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effect may be modified by the severity of insulin resistance and

ambient adipocytokines (4–7, 27, 28).

Plasma adiponectin levels were lower in progressors to

prediabetes compared with nonprogressors, and inversely

correlated with BMD in our study cohort. Adiponectin, the

most abundant secreted product of adipocytes, is a beneficial

marker of cardiometabolic health that has been associated with

decreased risks of development of diabetes and progression from

prediabetes T2DM (29, 30). In a previous report from the POP-

ABC study, lower baseline adiponectin levels predicted higher

risk of progression from normoglycemia to prediabetes (31).

Taken together, our findings of lower baseline adiponectin levels

in progressors to prediabetes versus nonprogressors, an inverse

correlation between adiponectin and BMD, and a positive

association between BMD and incident prediabetes, implicate

adiponectin as a possible mediator of the link between BMD and

prediabetes risk. Previous reports have also shown a negative

correlation between adiponectin and BMD (32, 33). The

mechanisms underlying the negative association between

adiponectin and BMD are unclear, but increased bone marrow

adipogenesis with associated increase in adiponectin production

has been proposed to mediate decreased BMD (34, 35).

In addition to the mechanisms involving insulinemia and

adiponectin on BMD, there might be a possible mechanism

linking bone metabolism to dysglycemia via osteocyte

production of sclerostin, an inhibitor of wnt signaling

pathway. The possible metabolic effects of inhibiting wnt

signaling pathway include downstream consequences on

adipogenesis, TCF7L2 gene expression, incretin processing and

glucose dysregulation (36–39). Another putative mechanism

might involve osteocalcin. In a recent study of 240 women

with prior gestational diabetes mellitus, participants with

prediabetes or diabetes tended to have higher BMD and

significantly lower serum osteocalcin levels compared with

normoglycemic control (40). Osteocalcin levels declined

serially as glycemic status shifted from normoglycemia to

prediabetes to diabetes, and showed significant associations

with BMD, plasma glucose, insulin sensitivity and insulin

secretion in the study population (40).

The strengths of study include the prospective design,

enrolment of a diverse study cohort, and the use of robust

methodologies for assessment of prediabetes endpoints, insulin

sensitivity and insulin secretion. Despite these strengths, our

study has some limitations. First, the associations between BMD

and prediabetes risk, and the related mechanisms that we

observed, do not indicate causality. Second, we studied a

special population (offspring of T2DM parents), which may

limit the extrapolation of our findings to the general population

of individuals without a family history of T2DM. Third, we used
Frontiers in Endocrinology 08
48
fasting plasma glucose and 2-hour OGTT plasma glucose values

for definition of prediabetes and did not include HbA1c as one of

the criteria. Thus, we may have underdiagnosed individuals with

normal fasting and 2-hour plasma glucose values but

prediabetes-range HbA1c levels. Fourth, we did not assess

vitamin D level, bone micro-architecture, or bone turnover

markers.in our participants. Vitamin D deficiency has been

associated with increased risks of T2DM and prediabetes (41,

42). However, vitamin D deficiency leads to osteomalacia and

decreased bone density (43). Thus, our present finding of an

association between higher bone density and increased risk of

prediabetes is not likely explained by mechanisms involving

vitamin D status (44). Furthermore, our conclusions based on

baseline assessments do not account for possible temporal

changes in those parameters that might have occurred during

the follow-up period. In conclusion, our prospective study

demonstrates that the previously reported association between

higher bone density and T2DM is discernible in people with

prediabetes risk. Thus, putative mechanisms linking bone

metabolism with dysglycemia could be operational long before

the occurrence of clinical diabetes. Thus, our findings suggest

that BMD might be a biomarker for incident glycemic

deterioration among normoglycemic individuals.
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Introduction: Dyslipidemia is a hallmark of T2DM, and as such, analyses of lipid

metabolic profiles in affected patients have the potential to permit the

development of an integrated lipid metabolite-based biomarker model that can

facilitate early patient diagnosis and treatment.

Methods: Untargeted and targeted lipidomics approaches were used to analyze

serum samples from newly diagnosed 93 Chinese participants in discovery cohort

and 440 in validation cohort via UHPLC-MS and UHPLC-MS/MS first. The acid

sphingomyelinase protein expression was analyzed by Western blot.

Results and Discussion: Through these analyses, we developed a novel integrated

biomarker signature composed of LPC 22:6, PC(16:0/20:4), PE(22:6/16:0), Cer

(d18:1/24:0)/SM(d18:1/19:0), Cer(d18:1/24:0)/SM(d18:0/16:0), TG(18:1/18:2/18:2),

TG(16:0/16:0/20:3), and TG(18:0/16:0/18:2). The area under the curve (AUC)

values for this integrated biomarker signature for prediabetes and T2DM patients

were 0.841 (cutoff: 0.565) and 0.894 (cutoff: 0.633), respectively. Furthermore,

theresults of western blot analysis of frozen adipose tissue from 3 week

(prediabetes) and 12 week (T2DM) Goto–Kakizaki (GK) rats also confirmed that

acid sphingomyelinase is responsible for significant disruptions in ceramide and

sphingomyelin homeostasis. Network analyses of the biomarkers associated with

this biosignature suggested that the most profoundly affected lipid metabolism

pathways in the context of diabetes include de novo ceramide synthesis,

sphingomyelin metabolism, and additional pathways associated with

phosphatidylcholine synthesis. Together, these results offer new biological

insights regarding the role of serum lipids in the context of insidious T2DM

development, and may offer new avenues for future diagnostic and/or

therapeutic research.
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1 Introduction

T2DM makes up over 90% of human diabetes cases (1), and is

among the most rapidly growing threats to human health throughout

the globe (2). T2DM develops over several years in prediabetic

individuals (3, 4), early diagnosis and treatment can effectively

prevent the development of diabetes. Therefore, the detection of

reliable biomarkers associated with prediabetes and T2DM is an

area of active research, and multiple biomarkers including fasting

blood glucose (FBG) and glycated hemoglobin A1c(HbA1c) (5–8)

have been proposed as tools to assess the risk of diabetes (3–8). While

valuable, however, these biomarkers fail to fully capture the

complexity of T2DM development, and may also fail to detect at-

risk individuals prior to disease onset (4, 9–11).

Dyslipidemia, and lipoprotein metabolism abnormalities are

commonly detected in those with diabetes (12–14). Detecting these

shifts in lipid profiles thus represents a promising approach to

identifying high-risk patients at earlier time points. Lipidomic

analyses of overall lipid profiles can also offer additional insight

into the pathophysiology of diseases (15–17), including diabetes

(15, 18–22). Several lipidomics studies have provided evidence that

comprehensive lipid profiles have the potential to improve diabetes

risk assessment relative to the use of conventional clinic indices alone

Certain subclasses of lipids including ceramides, sphingolipids,

phospholipids, triglycerides (TGs) having been linked to human

prediabetes and T2DM (23–34)s T2DM is highly prevalent in

European nations (35–37), and the human serum lipidome is

highly complex (38, 39), a majority of recent studies have employed

lipidomics approaches to analyze the serum lipid profiles of European

individuals with prediabetes and T2DM (40–42). However, diabetes

rates are rising rapidly in China such that it is now home to the

highest global diabetes incidence (43), with prediabetes affecting a

remarkable 35.7% of the population (44). Chinese dietary

composition and obesity rates are very distinct from those in

Western nations, and relative to European T2DM patients, those

from China are often diagnosed at younger ages and with lower body

mass index (BMI) values (45). As such, more in-depth analyses of the

roles of endogenous lipids in the pathophysiology of prediabetes and

T2DM in Chinese patients is essential to guide the development of

novel preventative measures or treatment strategies. Furthermore, in

recent years, an increasing number of studies have shown that

synthesis of ceramide by sphingomyel inase hydrolysis

sphingomyelin is considered to be one of the major causes for

insulin resistance (29).

Sphingomyelinase-regulated balance of ceramides and

sphingolipids plays an important role in many diseases (30, 46, 47).

Sphingomyelinase especially acid sphingomyelinase has a central

function for the re-organization of molecules within the cell upon

stimulation and thereby for the response of cells to stress and the

induction of cell death but also proliferation and differentiation (31).

The role and mechanism of ASM research in many diseases has made

great progress, which fully confirmed the important role of ASM/

ceramides pathway in T2DM, However, there are few studies on

prediabetes. It is important to further study the exact regulation
Frontiers in Endocrinology 0252
mechanism of ASM pathway in pathophysiology of prediabetes.

Previous studies have suggested that patients with long-standing

T2DM and had worse metabolic profiles when compared with the

newly diagnosed (48), and multiple complications such as chronic

kidney disease (CKD) and diabetic kidney disease (DKD) remain

common in diabetics in the decade after diagnosis (49). In addition,

long-term use of hypoglycemic drugs such as metformin and acarbose

also could alter the lipid profile of human (50, 51), revealing metabolic

changes of diseases. Thus, it is very key for study of lipid metabolic

profiles of participants with prediabetes and T2DM with the newly

diagnosed. Untargeted lipidomics analyses are limited by their narrow

linear range, poor reproducibility, and low sensitivity (52, 53),

whereas targeted approaches exhibit reduced metabolomics

coverage such that they have the potential to miss metabolites of

interest. As such, combining targeted and untargeted lipidomics

strategies can overcome potential misannotation owing to the

structural diversity and complexity of lipid molecules, thereby

enabling the better confirmation of results to offer insight into lipid

metabolism in the pathophysiology of metabolic diseases.

Herein, we employed untargeted and targeted UHPLC-MS and

UHPLC-MS/MS approaches to analyze the serum lipid profiles of

Chinese individuals with newly diagnosed patients or without

prediabetes or T2DM. Subsequently, western blot analysis of ASM

in different ages of GK rats was performed in order to explore and

confirm whether ASM is responsible for significant disruptions in

ceramide and sphingomyelin homeostasis and the important role of

ASM/ceramides pathway in prediabetes and T2DM patients. The

resultant data were analyzed with both commercial and in-house

software applications. The overall goals of this study were to

systematically screen for potential lipid biomarkers associated with

prediabetes and T2DM incidence in Chinese patients in order to both

better understand lipid pathway dysregulation and to develop a new

integrated biosignature that may aid in diagnosing these conditions.

2 Materials and methods

2.1 Participant recruitment and grouping

All study participants were recruited from Beijing Shijitan

hospital at the Capital Medical University (Beijing, China), Beijing

Jiao Tong University Community Health Center (Beijing, China), The

First Affiliated Hospital of Zhengzhou University (Henan, China),

The First Affiliated Hospital of Henan University of Chinese Medicine

(Henan, China), and Kaifeng Hospital of Traditional Chinese

Medicine (Henan, China). All subjects underwent a physical

examination during which their height, weight, and BMI were

recorded. They then completed a face-to-face interview during

which they detailed their demographics, medical history, family

medical history, and other lifestyle factors. Blood samples were

additionally collected to measure participant plasma total

cholesterol (TC), High density lipoprotein (HDL), Low density

lipoprotein (LDL), triglyceride (TG), FBG, alanine transaminase

(ALT), and aspartate transaminase (AST) levels. Individuals were

eligible for final study enrollment if they met the following criteria: (1)
frontiersin.org

https://doi.org/10.3389/fendo.2022.1065665
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2022.1065665
patients exhibited an FBG > 7.0 mmol/L (54) or met the diagnostic

criteria for prediabetes (FBG: 5.6-6.9 mmol/L) (55, 56); (2) patients

were 20-70 years of age. Patients were excluded if they: (1) exhibited a

history of cardiovascular or cerebrovascular events; (2) had impaired

liver/kidney function; (3) had a fasting triglyceride level ≥ 10mmol/L;

(4) suffered from other endocrine, autoimmune, renal, cancerous, or

otherwise serious diseases; (5) were undergoing treatment with

antibiotics, glucocorticoids, or traditional Chinese herbal medicines;

(6) were pregnant or expecting to become pregnant; (7) were

currently breastfeeding; (8) suffered from mental health conditions;

(9) declined or were unable to comply with study dietary guidelines;

or (10) suffered from severe infectious diseases. Based upon this

criteria, participants were grouped into control (n=35), prediabetes

(n=31), and T2DM (n=27) discovery cohorts as well as control

(n=150), prediabetes (n=170), and T2DM (n=120) validation

cohorts. The Ethics Committee of Scientific Research, Beijing

Shijitan Hospital, Capital Medical University approved this study,

and all participants provided written informed consent to participate.
2.2 Chemicals and materials

Liquid chromatography/mass spectrometry (LC/MS)-grade

methanol, acetonitrile, 2-propanol, ammonium formate, and

HPLC-grade methyl tert-butyl ether (MTBE) were obtained from

Fisher Scientific (PA, USA). LC/MS-grade ammonium formate was

from Sigma-Aldrich (MO, USA). A Milli-Q system (MA, USA) was

used to prepare ultra-pure water (18.2 MW).

Lysophosphatidylcholine (LPC 19:0), Phosphatidylethanolamine

(PE 12:0/13:0), Ceramide (Cer d18:1/17:0), Sphingomyelin (SM

(d18:1/12:0), TG (15:0/15:0/15:0), and Phosphatidylcholine (PC

12:0/13:0) were purchased for use as internal standard (IS)

compounds from Avanti Polar Lipids (AL, USA). Antibodies used

in this study were rabbit anti-acid sphingomyelinase polyclonal

antibody (Absin, Shanghai, China).
2.3 Sample preparation

For untargeted lipidomics analyses, serum (10 mL) and cold

methanol containing IS compounds (125 mL) were mixed for 30 s,

followed by the addition of MTBE (500 µL). Lipids were then

extracted by constantly agitating these samples for 20 min at room

temperature, followed by the addition of water (125 µL), shaking for

30 s, and centrifugation at 16,826×g for 10 min at 4°C. For untargeted

analyses, 200 µL of the resultant supernatant was dried with a

concentrator prior to resuspension in a 100 µL volume of water:

isopropanol: acetonitrile (5:30:65 (v/v/v). These samples were then

agitated for an additional 30 s, followed by centrifugation at 16,826×g

for 5 min at 4°C. The isolated supernatants were then evaluated via

ultra-performance liquid chromatography/time of flight-mass

spectrometry (UHPLC/TOF-MS) as soon as they had been

collected. For targeted lipidomic analyses, a 100 µL volume of the

supernatant prepared above was dried, resuspended in a 200 µL
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volume, and analyzed via UHPLC/MS-MS. A quality control (QC)

serum sample was also generated for further analyses by mixing

together 5 mL of each serum sample. These QC samples were

processed for analysis in the sample manner as individual samples

throughout the duration of our analyses. The QC samples were

injected every 10 injections, and analyzed 10 times (discovery

cohort) and 44 times (validation cohort) between samples to verify

the stability of the LC-MS system respectively.
2.4 Untargeted and targeted UHPLC-MS
lipidomics analyses

An Acquity UPLC BEH C8 column (2.1 × 100 mm, 1.7 mm) was

used for lipid separation using a mobile phase composed of 5 mM

ammonium formate with acetonitrile/water (A, 6:4; v/v) and 5 mM

ammonium formate with isopropanol/acetonitrile (B, 9:1; v/v). Linear

elution gradient settings for separation were: 0–1.0 min, 100% A; 1.0–

2.0 min, 100–70% A; 2.0–12.0 min, 70–30% A; 12.0–12.5 min, 30–5%

A; 12.5–13.0 min, 5–0% A; 13.0–14.0 min, 0% A; 14.0–14.1 min, 0–

100% A; and 14.1–16.0 min, 100% A. The column was maintained at

55°C. An ACQUITY UPLC connected to a XEVO-G2XS quadrupole

time-of-flight (QTOF) mass spectrometer (Waters, Manchester, NH,

USA) in ESI+ mode was used for untargeted lipidomics analyses with

the following settings: desolvation gas at 800 L/h and 400°C; cone gas

at 50 L/h; source temperature at 100°C; capillary and sampling

voltages of 2,000 V and 40 V, respectively. Mass data were acquired

in MSE mode at a ramping collision energy of 10–60 V. Data accuracy

was ensured using a LockSpray™ source, with the (M+H)+ ions of

leucine-enkephalin being set at m/z 556.2771 for the lock mass in ESI

+ mode. Sample profiling data were acquired from 50 - 1,200 Da. A

UHPLC system (Waters Acquity) with a Xevo TQ-S mass

spectrometer and an ESI ionization source was used for targeted

lipidomics analyses conducted using multiple reaction monitoring

(MRM) in positive ion modes.
2.5 Experimental animals and adipose
tissue collection

Goto–Kakizaki (GK) rat is one of the best characterized animal

models of spontaneous T2DM. This model was established by

selectively breeding of normal Wistar rats with signs of impaired

glucose tolerance (57). It displays hyperglycemia, impaired glucose

tolerance, insulin resistance and also defects in insulin secretion. In

most of the GK studies, Wistar rats of outbreed origin are used as

control animals (58). In additition, GK pups become overtly

hyperglycemic for the first time after 3–4weeks of age only (i.e.,

during the weaning period). The occurrence of basal hyperglycemia

and diabetes in the GK rat is therefore preceded by a period of

prediabetes (22-28 days) (59). This study involved 10 T2DMGKmale

rats (12 week); 10 prediabetic GK male rats (3 week) and 10 control

Wistar male rats obtained from Nanjing Junke Biotechnology Co.,

Ltd. (Jiangsu, China). A GLU Assay Kit (KOFA, China) and an
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automatic biochemistry analyzer (Hitachi 7020, Tokyo, Japan) were

used to measure glucose concentration of GK rats. Rats were

anesthetized using pentobarbital sodium (3%, 0.2 ml/100 g) and

sacrificed by abdominal aortic exsanguination. After the adipose

tissues of the rats was collected, snap-frozen in liquid nitrogen, and

transferred to a -80 freezer until analysis. The experiments were

approved by the China Pharmaceutical University Animal Care and

Use Committee.
2.6 Western blotting

The ASM protein expression was analyzed by Western blot. The

adipose tissue were washed twice by phosphate-Buffered Saline (PBS)

and lysed in radio immunoprecipitation assay (RIPA) lysis buffer. The

protein concentrations were determined by the bicinchoninic acid

(BCA) protein assay kit. 30ul proteins were separated by 10% sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and

transferred to polyvinylidene fluoride (PVDF) membranes, and

blocked by immersing the membrane completely in 5% bovine

serum albumin-tris buffered saline tween (BSA-TBST) and

incubating on a horizontal shaker for 1 h. The membranes were

probed with the primary antibodies of ASM (1:1000), overnight at 4°C

followed by incubation with the secondary antibody goat anti rabbit

IgG (H+L) at room temperature for 1 h. glyceraldehyde-3-phosphate

dehydrogenase (GADPH) were used as control protein. The resulting

complexes were visualized using chemoluminescence Western

blotting detection reagents enhanced chemiluminescence (ECL). The

blot was detected by chemiluminescent detection systems with

LumiGlo and Peroxide (1:1, BU). Densitometric analysis of the

images was performed with Image Pro Plus software (v.6.0) (Media

Cybernetics, Inc, MD, USA).
2.7 Statistical analyses

The Waters MarkerLynx software (Waters; Micromass MS

Technologies, Manchester, UK) was utilized to analyze data from

untargeted lipidomics analyses in an effort to identify serum

biomarkers specifically associated with prediabetes and T2DM

patients. Waters Progenesis QI Applications Manager (v2.3) was

utilized for peak finding, filtering, and alignment with the following

data collection parameters: retention time = 0.5-15.5 min; mass = 50-

1,200 Da. SIMCA-P (v13.0) (Umetrics, Umea, Sweden) was used to

conduct multivariate statistical analyses of the resultant data. Partial

least squares discriminant analysis (PLS-DA) was conducted in order

to visualize the global metabolic difference of individuals between the

control, prediabetes and T2DM groups. To validate the PLS-DA

model, permutation tests were performed (n = 200). The Skyline

software (v21.1) (MacCoss Lab; WA, USA) was used for data

acquisition and peak processing for targeted lipidomics analyses.

MetaboAnalyst 5.0 Web service (www.MetaboAnalyst.ca) was used

to normalize raw data for next statistical analyses. Data have a normal

distributed by Kolmogorov-Smirnov test and Quantile-Quantile plots
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(Q-Q plots). Independent samples t-tests and ROC curve analyses

were performed using SPSS (v26.0) (IBM, NY, USA) P-value < 0.05

corrected by FDR was used as the cutoff for significance of differential

metabolites. Column diagrams and forest plots were drawn by

GraphPad Prism 9.0 (GraphPad Software Inc., USA). Python was

used to generate heat maps highlighting correlations between putative

biomarkers and specific clinical parameters calculated based upon

Pearson correlation coefficients.
3 Results

3.1 Patient characteristics

In total, 533 participants ultimately met the criteria for

enrollment of this study, of whom 93 were included in a discovery

cohort (control = 35, prediabetes = 31, and T2DM = 27) and 440 were

included in a validation cohort (control = 150, prediabetes = 170, and

T2DM = 120). Patient clinical characteristics are summarized in

Table 1. As expected, patients in the prediabetes and T2DM groups

in both cohorts exhibited higher FBG and TG concentrations relative

to controls. T2DM patients also exhibited a significant reduction in

HDL content relative to control participants (P = 0.01), with a similar

downward trend being observed for prediabetes patients in the

validation cohort (P < 0.001) together with an increase in their TC

levels (P < 0.001). There were no differences among groups with

respect to age, gender, BMI, ALT, or AST, nor were there any

differences in TC or LDL levels among the discovery cohorts.
3.2 Reproducibility of the lipidomic analysis

Base peak chromatograms generated in positive ion mode in an

untargeted lipidomics analysis are shown in Figures 1A–C. To

validate the method being used herein for biomarker detection,

system stability and result reproducibility were assessed by

analyzing pooled QC samples and determining relative standard

deviation (RSD%) values corresponding to the peak area for IS

compounds (Table S1). RSD% values corresponding to the peak

area for IS compounds are 6.86%-27.61%. This approach confirmed

the high reproducibility and stability of these analyses.
3.3 Exploration of distinct lipidomic profiles
associated with prediabetes and T2DM

Next, we sought to explore differences in the serum lipidomic

profiles of control, prediabetes, and T2DM study subjects by using a

PLS-DA model to evaluate the global lipid profiles of these groups as

detected through the untargeted lipidomics approach validated above.

The resultant 2D and 3D score plots achieved satisfactory

classification, revealing that the lipid metabolic state in the serum

of prediabetes and T2DM patients was distinct from that in healthy

control serum (Figures 1D, E). These results suggested that T2DM is
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associated with the disruption of endogenous metabolic processes

such that patients exhibit a distinct metabolic fingerprint. Notably, we

also observed substantial separation between prediabetes and T2DM

patient samples in these PLS-DA plots, suggesting that prediabetic

and diabetic individuals also exhibit distinct lipid metabolic profiled.
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R2 Y represents the goodness of fit of the PLS-DA model on the Y-

axis, while Q2 estimates predictive capability (60). The R2 Yand Q2 of

the established PLS-D model were 0.925 and 0.609. A permutation

test (n=200) was additionally used to validate this model, confirming

the goodness of fit and predictive reliability (Figure S1).
DA

B

E

C

FIGURE 1

The BPI chromatograms of samples via the untargeted lipidomics approach in the Control group (A); prediabetes group (B); T2DM group (C). 2D PLS-DA
model score plots for individual serum samples in the control (green), prediabetes (red), and T2DM (blue) groups analyzed via an untargeted lipidomics
approach 3D PCS-DA model score plots (E).
TABLE 1 Baseline patient characteristics in the discovery and validation cohorts.

Discovery Validation

Control
n=35

prediabetes
n=31

T2DM
n=27

P1
value

P2
value

P3
value

Control
n=150

prediabetes
n=170

T2DM
n=120

P1
value

P2
value

P3
value

Females (%) 25.71 35.48 25.92 0.985 0.793 0.490 43.33% 35.88% 30.83% 0.1938 0.0505 0.6206

Age (years)
49.26 ±
12.21

46.29 ±
13.38

47.71 ±
12.74

0.829 0.874 0.576
45.96 ±
9.79

47.91 ± 10.96
49.98 ±
9.95

0.1195 0.2071 0.2044

FBG (mmol/L)
5.31 ±
0.45

6.37 ± 0.19
8.20 ±
2.27

0.00001 0.00001 0.001
5.05 ±
0.51

6.43 ± 0.24
9.54 ±
2.57

0.00001 0.00001 0.00001

BMI (kg/m2)
24.42 ±
2.42

24.65 ± 2.40
25.60 ±
3.30

0.226 0.877 0.478
24.80 ±
2.84

25.44 ± 3.36
25.67 ±
4.32

0.0980 0.0619 0.7773

Total cholesterol
(mmol/L)

4.53 ±
0.28

4.62 ± 0.34
4.85 ±
0.87

0.103 0.943 0.383
4.70 ±
0.46

4.98 ± 0.73
4.77 ±
0.96

0.0003 0.4920 0.1267

Triglyceride
(mmol/L)

1.16 ±
0.25

1.14 ± 0.27
1.59 ±
0.77

0.013 0.821 0.017
1.10 ±
0.28

2.04 ± 1.17
2.07 ±
1.31

0.00001 0.00001 0.9590

HDL-C (mmol/L)
1.45 ±
0.24

1.47 ± 0.25
1.20 ±
0.48

0.045 0.859 0.043
1.43 ±
0.27

1.37 ± 0.27
1.12 ±
0.26

0.0902 0.00001 0.00001

LDL-C (mmol/L)
2.54 ±
0.26

2.66 ± 0.31
2.78 ±
0.72

0.093 0.480 0.434
2.86 ±
0.40

3.01 ± 0.65
3.16 ±
0.78

0.0400 0.0001 0.1867

ALT (U/L)
18.89 ±
5.07

20.00 ± 6.11
24.71 ±
18.86

0.193 0.702 0.493
20.68 ±
6.97

22.87 ± 11.16
23.84 ±
16.56

0.0780 0.0589 0.7886

AST (U/L)
19.54 ±
3.09

18.90 ± 3.87
20.86 ±
11.63

0.637 0.655 0.466
20.54 ±
3.63

20.4 ± 5.40
20.34 ±
9.45

0.7883 0.8071 0.9409
front
Values are given as mean ± SD or number of individuals (%), unless otherwise indicated. P-value; independent t-test and adjusted by FDR, “P1” Control VS Prediabetes, “P2” Control VS T2DM, “P3”
Prediabetes VS T2DM. BMI, body mass index; FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C,low-density lipoprotein cholesterol; ALT, alanine transaminase; AST,
aspartate transaminase; NGT, normal glucose tolerance; IFG, impaired fasting glucose; T2DM, type 2 diabetes mellitus.
Bold values mean P value.
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3.4 Identification of putative prediabetes-
and T2DM- related biomarkers via
untargeted and targeted lipidomics analyses

For untargeted lipidomics analyses, the Progenesis QI software

was used to detect tens of thousands of features in the LC-MS data.

Based on ion fragmentation patterns, accurate compound masses,

published data, and chemical standards, 166 lipids were identified in

these serum samples (Table S2). To screen for metabolites that were

differentially abundant in the serum of prediabetes and T2DM

patients, we next conducted independent sample t-tests with P-

value < 0.05 corrected by FDR. 49 candidate lipids show similar

significant trends in prediabetes and T2DM relative to controls in

untargrted lipidomics analyse (discovery cohort). These differences

were additionally emphasized through heatmaps and clustering

analyses (Figure 2). Based on these results from the discovery

cohort, subsequently, a high selectivity, reproducibility and

sensitivity targeted lipidomics approach including more than 200

lipids of interest was used to assess the serum lipid profiles of patients

in the validation cohort (Table S3). In this analysis, 37 lipids including

LPCs, LPEs, PCs, PEs, SMs, Cers, and TGs were significantly

differentially abundant in samples from the control group and the

prediabetes/T2DM groups (Figure 3). Levels of all of these lipids were

significantly elevated in those with prediabetes/T2DM, suggesting the

dysregulation of the ceramide synthesis, SM metabolism, PC

biosynthesis pathways (Figure 3). By venn diagram (Figure S2), 9

potential biomarkers including LPC 22:6, PC(16:0/20:4), PE(22:6/

16:0), Cer(d18:1/24:0), Cer(d18:1/23:0), Cer(d18:1/22:0), TG(18:1/

18:2/18:2), TG(16:0/16:0/20:3), and TG(18:0/16:0/18:2) (FDR < 0.05

and P < 0.05) were overlapping between 49 candidate lipids

metabolites screened from non-targeted lipidomic data (discovery

cohort) and 37 differential lipids from targeted lipidomic data

(validation cohort), and they show similar significant trends in

prediabetes and T2DM relative to controls (Table 2 and Figure 4).

A one standard deviation change in the levels of these 9 putative

biomarkers was associated with prediabetes and T2DM effect sizes

ranging from odds ratios (ORs) of 1.235 - 8.306 and 1.189 - 11.479,

respectively (Figure 4).
Frontiers in Endocrinology 0656
3.5 Integrated biomarker development
and validation

While no significant differences in SMs levels were observed

among groups in the discovery cohort, levels of SM (d18:2/24:1),

SM (d18:1/24:1), SM (d18:2/23:0), SM (d18:1/19:1), SM (d18:1/19:0),

SM (d16:0/19:0) and SM (d18:0/16:0) trended downwards in

prediabetes and T2DM samples from the validation cohort

(Figure 4). Ceramides and SMs are closely linked through the

sphingomyelinase pathway, and several ceramide levels trended

upward in the prediabetes and T2DM groups in both cohorts.

Sphingomyelinase-regulated Cer/SM balance plays a variety of roles

in cancer, coronary heart disease and neurodegenerative disorders

progression and prevention (16, 61, 62), To investigate whether Cer/

SM can predict prediabetes and T2DM, we have carried out binary

logistic regression and ROC curve analyses for Cer(d18:1/24:0), Cer

(d18:1/23:0), Cer(d18:1/22:0) first. The results show that Cer(d18:1/

24:0) have higher predictive power in prediabetes and T2DM

compared with Cer(d18:1/23:0) and Cer(d18:1/22:0) (Figures S3A,

B). Then we performed binary logistic regression and ROC

curve analyses for the ratio of Cer(d18:1/24:0) to 7 different SM

such as Cer(d18:1/24:0)/SM(d18:2/24:1), Cer(d18:1/24:0)/SM(d18:1/

24:1), Cer(d18:1/24:0)/SM(d18:2/23:0), Cer(d18:1/24:0)/SM(d18:1/

19:1), Cer(d18:1/24:0)/SM(d18:1/19:0), Cer(d18:1/24:0)/SM(d16:0/

19:0) and Cer(d18:1/24:0)/SM(d18:0/16:0). The results show that

Cer(d18:1/24:0)/SM(d18:1/19:0) and Cer(d18:1/24:0)/SM(d18:0/

16:0) have higher predictive power in prediabetes and T2DM

compared with others candidate features (Figures S3C, D). As such,

we selected Cer(d18:1/24:0)/SM(d18:1/19:0) and Cer(d18:1/24:0)/SM

(d18:0/16:0) as candidate features for the development of an

integrated diagnostic biosignature for prediabetes and T2DM. The

resultant integrated potential biomarker model consisted of LPC 22:6,

PC(16:0/20:4), PE(22:6/16:0), Cer(d18:1/24:0)/SM(d18:1/19:0), Cer

(d18:1/24:0)/SM(d18:0/16:0), TG(18:1/18:2/18:2), TG(16:0/16:0/

20:3), and TG(18:0/16:0/18:2), and was assessed through binary

logistic regression and ROC curve analyses. As shown in

Figures 5A, B, the AUC values for this integrated biomarker in

prediabetes and T2DM patients were 0.841 (cutoff: 0.565) and 0.894
FIGURE 2

Metabolites that were significantly differentially abundant among groups in the discovery cohort were arranged in a heatmap, with increased and
decreased metabolites being shown in red and blue, respectively.
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(cutoff: 0.633), respectively. As all of these values were > 0.5, this

indicated that this model is reliable and able to effectively diagnose

prediabetes and T2DM. Pearson correlation analyses were then

performed to assess relationships between these biomarkers and

clinical parameters, revealing the levels of all of these biomarkers to

be positively correlated with patient FBG (Figure 5C). We

additionally found that Cer(d18:1/24:0)/SM(d18:1/19:0) and Cer

(d18:1/24:0)/SM(d18:0/16:0) were significantly negatively correlated

with sex (Figure 5C). PE(22:6/16:0) and TG (18:0/16:0/18:2) levels

were positively correlated with TG. In addition, TG (18:0/16:0/18:2)

level was significantly negatively correlated with LDL level, and PE

(22:6/16:0) level were significantly negatively correlated with HDL.
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3.6 Increased ASM protein expression in
prediabetes and T2DM rats

As shown in Figure 5D, Wistar rats and prediabetic rats had

comparable non-fasting blood glucose, and the non-fasting blood

glucose values of T2DM rats were about >2 times higher compared to

wistar rats. The intensity of individual ASM bands were obtained by

western blot analysis of GK rat adipose tissue. Compared with wistar

rats, the levels of ASM in prediabetic rats (3-week GK rat) and T2DM

rats (12-week GK rat) were significantly increased (p < 0.05)

(Figures 5E, F), which demonstrated the process of diabetes could

affect the changes of ASM content in the patient.
FIGURE 3

Potential prediabetes and T2DM-related serum biomarker networks. Arrows ("↑↓") indicated metabolites that were significantly up- and down-regulated
in prediabetes (pink) and T2DM (blue) patients relative to healthy controls. Metabolites that were significantly altered in the prediabetes group relative to
the T2DM group are also shown in yellow. PLD, phospholipase; PAP, phosphatidic acid phosphatase; phospholipase AZ, PLA2; PEMT,
phosphatidylethanolamine N-methyltransferase.
TABLE 2 Potential serum biomarkers.

Discovery Validation

FDR-adjusted P-value and trend FDR-adjusted P-value

Lipid Control VS
Prediabetes Control VS T2DM Prediabetes VS

T2DM
Control VS
Prediabetes Control VS T2DM Prediabetes VS

T2DM

LPC 22:6 0.0078 (↑) 0.0004 (↑) 0.4031 (-) 0.0007 (↑) 0.00001 (↑) 0.7424 (-)

PC(16:0/20:4) 0.0081 (↑) 0.0181 (↑) 0.8881 (-) 0.0058 (↑) 0.0076 (↑) 0.9945 (-)

PE(22:6/16:0) 0.0069 (↑) 0.0367 (↑) 0.7589 (-) 0.0008 (↑) 0.00001 (↑) 0.2894 (-)

Cer(d18:1/24:0) 0.0130 (↑) 0.0005 (↑) 0.0033 (↑) 0.0004 (↑) 0.00001 (↑) 0.2065 (-)

Cer(d18:1/23:0) 0.0059 (↑) 0.0012 (↑) 0.000001 (↑) 0.0007 (↑) 0.00001 (↑) 0.0422 (↑)

Cer(d18:1/22:0) 0.0296 (↑) 0.0030 (↑) 0.000001 (↑) 0.0006 (↑) 0.00001 (↑) 0.0453 (↑)

TG(18:1/18:2/
18:2)

0.0140 (↑) 0.0314 (↑) 0.6526 (-) 0.00001 (↑) 0.0001 (↑) 0.8134 (-)

TG(16:0/16:0/
20:3)

0.0042 (↑) 0.0087 (↑) 0.6971 (-) 0.00001 (↑) 0.0003 (↑) 0.9209 (-)

TG(18:0/16:0/
18:2)

0.0122 (↑) 0.0054 (↑) 0.5711 (-) 0.00001 (↑) 0.0003 (↑) 0.1559 (-)
P-value corrected by FDR; “↑” means a higher level of metabolites; “↓” means a lower level of metabolites; “–” represents no statistically significant difference Control represents control group;
prediabetes represents prediabetes group; T2DM represents T2DM group.
Bold values mean P value.
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4 Discussion

In this study, we employed targeted and untargeted approaches to

identify serum lipid profiles in control, prediabetes, and T2DM

patients via UHPLC-MS and UHPLC-MS/MS. This approach led to

the identification of LPC, PC, PE, Cer, SM, and TG lipids that were

differentially abundant in those with prediabetes/T2DM relative to

control individuals.

Ceramides are the simplest sphingolipid family molecules and are

central to sphingolipid metabolism such that they can impact

important T2DM-related processes such as insulin resistance,

oxidative stress, inflammation, and apoptosis (63, 64). There are

three primary ceramide synthesis pathways (65, 66). The first of

these involved de novo ceramide synthesis within the endoplasmic

reticulum (ER) from L-serine and palmitoyl-CoA via a multi-stage

process (Figure 3) (67, 68). Enhanced de novo ceramide synthesis can

promote protein phosphatase 2A (PPA2) activation, thereby

inhibiting insulin sensitivity and b-cell function through the

inactivation of protein kinase B (Akt) in the insulin-signaling

pathway (69–71). Sphingosine can be used to generate ceramide by

many enzymes through a recycling pathway, such as lysosomal
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ceramidase and ceramide synthetase in the ER (72, 73). Ceramides

can also be synthesized through the hydrolysis of SM and

glycosphingolipids by sphingomyelinase (SMase) within the Golgi.

Through the activity of sphingomyelin synthase (SMS) and

phospholipase (PLD), the phosphocholine portion of PC can be

transferred to the primary hydroxyl group of ceramide to yield

diacylglycerol (DG) and SM, the latter of which is an important

bioactive lipid associated with cellular proliferation, migration, and

survival (74, 75). We did not detect significant differences in SM levels

among groups for serum samples in the discovery cohort. Whereas in

the validation cohort, compared with controls, we observed

significantly lower levels of SM (d18:2/24:1), SM (d18:1/24:1), SM

(d18:2/23:0), SM (d18:1/19:1), SM (d18:1/19:0), SM (d16:0/19:0) and

SM (d18:0/16:0) in prediabetes and T2DM patient serum samples.

This may suggest that the limited number of samples in the discovery

cohort may have yielded false-negative results. We also found that

ceramides including Cer(d18:1/24:0), Cer(d18:1/23:0), and Cer

(d18:1/22:0) were significantly more abundant in prediabetes and

T2DM patients relative to controls in both cohorts. Multiple prior

analyses (76, 77), including the European Prospective Investigation

into Cancer and Nutrition (EPIC)-Potsdam study (78), have found
DA B

E F
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FIGURE 4

Plot of ORS per one SD increment and 95% Cls of lipids that emerged significant (FDR < 0.05 and P < 0.05) in the discovery and validation cohorts
(A–D); potential serum biomarkers in discovery cohort (E) and validation cohort (F). *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001.
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SM levels to be negatively correlated with T2DM incidence. Similarly,

one large cohort analysis of prediabetic and diabetic individuals found

that odd-chain SMs were negatively correlated with T2DM risk (27),

in line with our findings. We detected significant disruptions in

ceramide and SM homeostasis in prediabetes and T2DM patients.

This may be the result of the increased expression of enzymes

responsible for regulating the conversion between Cer and SM,

such as Smases like acid sphingomyelinase (79),. The results of

western blot analysis of frozen adipose tissue from 3- and 12-week

GK rats also confirmed that ASM is responsible for significant

disruptions in ceramide and sphingomyelin homeostasis in

prediabetes and T2DM patients. Mice in which SM synthase has

been knocked out exhibited reduced SM levels, ceramide

accumulation, and impaired mitochondrial activity resulting in

impaired ATP production, increased reactive oxygen species (ROS)

levels, and decreased glucose-induced insulin secretion, consistent

with our hypothesis (80). This ceramide/SM homeostasis has been

suggested to be a promising target for therapeutic intervention in

multiple pathological contents (81), though whether glucose

supplementation can effectively modulate sphingolipid metabolism

within b cells by enhancing ceramide to SM conversion remains to be

confirmed (82). We ultimately selected Cer(d18:1/24:0)/SM(d18:1/

19:0) [(OR: 2.980; 95% CI:1.874-4.737 in prediabetes) and [(OR:

5.507; 95% CI: 3.233-9.379 in T2DM)] and Cer(d18:1/24:0)/SM

(d18:0/16:0) [(OR: 2.883; 95% CI:1.801-4.614 in prediabetes) and

(OR: 8.308; 95% CI: 4.778-14.445 in T2DM)] as one of components of

an integrated biomarker model capable of predicting prediabetes and

T2DM risk.
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PE synthesis is important in the metabolic processing of lipids in

the muscle tissue, and muscle PE levels may be linked to insulin

resistance (83). Plasma PE levels have been shown to rise in

individuals affected by insulin resistance in population studies (84).

In line with such findings, we observed significant increases in PE

(22:6/16:0) levels in the serum of prediabetes and T2DM patients in

the discovery and verification cohorts. PC is the most common

phospholipid in the body, wherein it is produced both by the

Kennedy pathway and by additional synthetic pathways in the liver

catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT)

(85). Samad et al. (86) reported that individuals with diabetes exhibit

plasma PC levels distinct from those in healthy individuals.

Consistently, we found that PC (16:0/20:4) levels were significantly

altered in prediabetes and T2DM patients in both cohorts.

Phospholipase A2 (PLA2) can catalyze the formation of LPC from

PC (87). LPC is a lipid that serves as an important signaling molecule

in the context of cellular proliferation and invasion, and increase

levels of LPC 22:6 have previously been reported in obese individuals

and those with prediabetes or diabetes (88, 89). The proinflammatory

properties of LPC have also been previously documented, as it can

both drive inflammatory molecule upregulation (90) and increase

vascular endothelial permeability (91). Following PC synthesis

through the additional pathway in the liver, PC and ceramide can

processed by PLD to yield DG and SM. DG in turn gives rise to TG

under the action of acyl-CoA: diacylglycerol acyltransferase (DGAT).

Aberrant PC metabolism may increase levels of TG through the

activation of SREBP-1 and the induction of de novo lipogenesis (92–

94). Levels of TG, in turn, are well-studied as a risk factor linked to
DA B

E

F

C

FIGURE 5

ROC curves of the integrated biomarker in prediabetes group (A), T2DM group (B). Heat map of the Pearson correlation coefficients between potential
biomarkers and clinical parameters (C). Basal plasma glucose in GK and control Wistar rats (D). Representative Western blot gel documents and
summarized data showed the expression of ASM in adipose tissue (E, F). *P < 0.05, **P < 0.01.
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dysregulated glucose metabolism in the general population. Our

Pearson correlation analyses revealed a positive correlation between

plasma TG levels and FBG, with plasma TG (18:1/18:2/18:2), TG

(16:0/16:0/20:3), and TG (18:0/16:0/18:2) levels being significantly

elevated in prediabetes and T2DM patients relative to controls.

T2DM patients inevitably exhibit hyperlipidemia, while individuals

with prediabetes frequently present with higher circulating TG and

free fatty acid (FFA) levels (95), in part owing to impaired lipid

processing within adipose tissue (96). Diabetes-related dyslipidemia is

also linked with a marked increase in cardiovascular risk (97).
5 Conclusions

In this study, we first herein conducted an untargeted lipidomics

analysis of newly diagnosed Chinese prediabetic and T2DM patients

in a discovery cohort, leading to the identification of changing

phospholipid and sphingolipid profiles associated with prediabetes

and T2DM that were confirmed for the first time in a separate

validation cohort via targeted lipidomics analyses. Furthermore,

potential biomarkers were confirmed for the first time in separate

validation cohort via targeted lipidomics analyses. Moreover, the

results confirmed ASM is responsible for significant disruptions in

ceramide and sphingomyelin homeostasis in prediabetic and T2DM.

Finally, this study developing a new integrated biomarker signature

that may better aid in the diagnosis of Chinese prediabetes and

T2DM, and provides a better biological understanding of the

insidious progression to diabetes from a lipid perspective.
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Objective: Evidence regarding the relationship between the triglyceride glucose-body
mass index (TyG-BMI) and the risk of progression from prediabetes to diabetes remains
limited. Our study aimed to investigate the relationship between them in patients
with prediabetes.

Methods: In this retrospective cohort study, data were collected from 25,279 patients
with prediabetes who received health checks between 2010 and 2016. We used a Cox
proportional-hazards regression model to examine the relationship between TyG-BMI
and diabetes risk. We used Cox proportional hazards regression with cubic spline
functions and smooth curve fitting to identify the nonlinear relationship between
them. In addition, A series of sensitivity and subgroup analyses were also conducted.

Results: The mean age of the included participants was 49.29 ± 13.82 years old, and
1,6734 (66.2%) were male. The mean TyG-BMI was 219.47. The median follow-up
time was 2.89 years, and 2,687 (10.63%) individuals had a final diagnosis of diabetes.
After adjusting for covariates, TyG-BMI was positively linked with incident diabetes
in patients with prediabetes (HR = 1.011, 95%CI 1.010–1.012). TyG-BMI had a non-
linear connection with diabetes risk, and its inflection point was 231.66. Right and
left e�ects sizes (HR) at the inflection point were 1.017 (95%CI:1.014–1.019) and
1.007 (95%CI:1.005–1.009), respectively.The sensitivity analysis demonstrated the
robustness of these results.

Conclusion: This study demonstrated a positive, non-linear relationship between the
TyG-BMI and diabetes risk in Chinese patients with prediabetes. When the TyG-BMI
was <231.66, there was a significant positive association between TyG-BMI and the
risk of progression from prediabetes to diabetes. This study serves as a reference to
promote clinical consultation and optimize diabetes prevention decisions for patients
with prediabetes.

KEYWORDS

triglyceride-glucose index, prediabetes, diabetes, smooth curve fitting, non-linear
relationship

Introduction

Diabetes mellitus (DM) is a very common complex of endocrine and metabolic disorders that
afflicts hundreds of millions of people worldwide (1). According to the International Diabetes
Federation Diabetes Atlas, diabetes affects 425 million people worldwide in 2017. It is estimated
that the number of people with diabetes will increase to 629 million by 2045 (2). It is well
known that diabetes can have long-term complications affecting the kidneys, nerves, eyes, and
cardiovascular system (3–5). Besides, diabetes is a leading cause of disability and mortality
(6). Therefore, diabetes is a serious health concern that imposes a heavy economic burden on
societies worldwide.
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Prediabetes is an intermediate stage between normoglycemia and
diabetes, characterized by impaired glucose metabolism. It generally
reflects the presence of either or both impaired glucose tolerance and
fasting glucose. According to the International Diabetes Federation
(IDF), around 374 million adults in the world had prediabetes in
2017, with a global prevalence of 7.7%. In 2045, there will be 548
million adults with prediabetes, equivalent to 8.4% of the world’s
population (2). In the US alone, 86 million adults aged ≥18 had
prediabetes (7). The prevalence of prediabetes among adults has
reached 35.7% in a nationwide cross-sectional survey in China (8).
Seventy percent of those with prediabetes will eventually develop
diabetes, according to an American Diabetes Association (ADA)
expert panel (7). Thus, prediabetes is often viewed as a warning sign.
However, most patients with prediabetes often ignore this metabolic
abnormality and neglect its significance. Therefore, knowing the risk
factors for progression from prediabetes to diabetes is particularly
important in preventing or delaying diabetes and its complications.

It has been recognized that insulin resistance (IR) plays an
essential role in many metabolic disorders, such as metabolic
syndrome, non-alcoholic fatty liver disease (NAFLD), diabetes, and
obesity (9–12). IR is one of the major factors in the development of
diabetes, so identifying individuals with IR before diabetes develops
is crucial. The hyperinsulinemic euglycemia clamp remains the gold
standard for IR measurement, but it is not widely applicable in clinical
practice by its labor intensity, cost, and ethical issues (13). Thus, a
simple, reproducible, and reliable index for detecting IR is urgently
needed. Researchers have demonstrated that the triglyceride-glucose
index (TyG) index consists of the product of fasting plasma glucose
(FPG) levels and triglyceride (TG) and is highly sensitive and specific
for recognizing IR compared to the euglycemic hyperinsulinemic
clamp test (14, 15). The triglyceride glucose-body mass index (TyG-
BMI) has been developed as an obesity-related parameter in recent
years. It is the product of the body mass index (BMI) and the TyG
index. According to a recent study, TyG-BMI can simultaneously
capture several clinical variables, such as BMI, blood glucose, and
lipid profile, and more closely reflect IR than index alone (16). Since
IR plays an important role in diabetes pathogenesis, we hypothesized
that TyG-BMI might be a useful predictor of diabetes. Unfortunately,
the current research on the relationship between diabetes and TyG-
BMI is limited, with only two studies addressing the topic (17, 18). In
addition, previous studies investigating the association between TyG-
BMI and diabetes were for the general population. The relationship
between them has not been reported in patients with prediabetes,
a population at high risk of developing diabetes. Therefore, in
order to determine the relationship between TyG-BMI and the
risk of progression from prediabetes to diabetes, we conducted a
retrospective cohort study using published data.

Abbreviations: BMI, body mass index; TyG, the triglyceride-glucose index;

TyG-BMI, triglyceride glucose-body mass index; TC, total cholesterol; TG,

triglyceride; BUN, blood urea nitrogen; HDL-c, high-density lipoprotein

cholesterol; AST, aspartate aminotransferase; LDL-c, low-density lipoprotein

cholesterol; ALT, alanine aminotransferase; Scr, serum creatinine; FPG, fasting

plasma glucose; SBP, systolic blood pressure; T2DM, type 2 diabetes mellitus;

DBP, diastolic blood pressure; NAFLD, Non-alcoholic fatty liver disease; IDF,

International Diabetes Federation; GAM, generalized additive model; HR, hazard

ratio; Ref, reference; CI, confidence interval.

Methods

Study design

A retrospective cohort study design was used in this study,
and data were collected from a Chinese computerized database
by Chinese researchers (Chen et al. 19). TyG-BMI was the target-
independent variable. Diabetes (DM) (dichotomous: 0 = non-DM,
1= DM) was the outcome variable.

Data source

The raw data were obtained free of charge from
DATADRYAD (www.datadryad.org), which was provided
by Chen et al. (19). Dataset was derived from a published
article -association of body mass index and age with incident
diabetes in Chinese adults: a population-based cohort study
(https://doi.org/10.5061/dryad.ft8750v). This is an open-access
article given in accordance with the Creative Commons Attribution
Non Commercial (CC BY-NC 4.0) license, which enables people to
share, remix, modify, and create a derivative work from this work
for non-commercial purposes as long as the author and source are
credited (19).

Study population

The original researchers extracted data from a computerized
database created by the Rich Healthcare Group in China, which
contains all medical records for participants who received health
checks in 32 regions and 11 cities between 2010 and 2016
(19). The original study was initially approved by the Rich
Healthcare Group Review Board, and the data was retrieved
retroactively. The institutional ethics committee did not require
informed consent or approval for the retrospective study (19).
Therefore, ethical approval was not required for the current
secondary analysis. Furthermore, the original study was carried
out in compliance with the Helsinki Declaration. So did this
secondary analysis.

685,277 participants who were at least 20 years old and had
passed at least two health examinations were initially enrolled
in the original study. 473,744 participants were excluded after
that. Finally, the original study included 211,833 individuals in
its analysis (19). Following are the exclusion criteria for the
original study: (i) participants diagnosed with diabetes at enrolment;
(ii) no information about FPG value, sex, height, and weight
at baseline; (iii) extreme BMI values (<15 or >55 kg/m2); (iv)
Participants with <2 years between visits; (v) participants with
unknown diabetes status at follow-up (19). We first included
26,018 participants with baseline FPG of 5.6–6.9 mmol/l in the
current study. Prediabetes is defined as an FPG level of 5.6–
6.9mmol/L according to the American Diabetes Association 2021
criteria (20). After that, we excluded participants who lacked
TG data (n = 618) and those who had abnormal or extreme
TyG-BMI (greater or <3 standard deviations from the mean)
(n = 317). Ultimately, 25,279 participants were included in
the current secondary analysis. Figure 1 shows how participants
were selected.
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FIGURE 1

Flowchart of study participants.

Variables

Independent variable

The detailed procedure for defining TyG-BMI was as follows:
TyG-BMI= BMI× TyG index, where TyG index= ln [FPG (mg/dL)
× TG (mg/dL)/2] and BMI= weight / height2 (16). It was important
to note that relevant information for TG, BMI, and FPG was obtained
at baseline.

Outcome measures

The outcome variable of interest in our investigation was incident
diabetes (dichotomous variable: 1=DM and 0= non-DM). FPG≥7.0
mmol/L or self-report at follow-up evaluation was used to define
incident diabetes (19).

Covariates

The covariates in our study were selected according to
the previous literature and our medical experience. Covariates
included the following: (i) continuous variables: weight, height,
age, aspartate aminotransferase (AST), blood urea nitrogen (BUN),

alanine aminotransferase (ALT), serum creatinine (Scr), BMI, systolic
blood pressure (SBP), diastolic blood pressure (DBP), high-density
lipoprotein cholesterol (HDL-c), total cholesterol (TC), low-density
lipid cholesterol (LDL-c); (ii) categorical variables: drinking status,
family history of diabetes, sex, and smoking status.

Data collection

In the initial study, qualified researchers used standardized
questionnaires to gather baseline data on lifestyle (drinking and
smoking status), demographics (age and sex), and family history of
diabetes. Standard mercury sphygmomanometers measured blood
pressure. During each visit, fasting venous blood samples were taken
at least 10 h after a fast. A Beckman 5,800 autoanalyzer was used to
measure plasma glucose, TC, TG, HDL-c, and LDL-c (19).

Missing data processing

In this second analysis, the number of participants whose data are
missing of SBP, DBP, ALT, Scr, BUN, LDL-c, HDL-c, AST, drinking
status, and smoking status was 7 (0.03%), 7 (0.03%), 211 (0.84%),
1,119 (4.43%), 2,439 (9.65%), 9,291 (36.75%), 9,921 (39.25%), 14,118
(55.85%), 16,727 (66.17%), and 16,727 (66.17%), respectively. This
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study used multiple imputations for missing data to reduce the
variation brought on by missing variables (21). The imputation model
(type was Linear regression, iterations were 10) included sex, age,
DBP, HDL-c, TC, AST, BUN, Scr, SBP, ALT, LDL-c, drinking status,
family history of diabetes, and smoking status. Missing-at-random
(MAR) assumptions are used in missing data analysis procedures
(21, 22).

Statistical analysis

We stratified the participants by quartiles of TyG-BMI. The
means and standard deviations were presented for continuous
variables with Gaussian distributions, medians were reported
for skewed distributions, and percentages and frequencies were
presented for categorical variables. We used the Kruskal-Wallis
H-test (skewed distribution), the One-Way ANOVA test (normal
distribution), or χ2 (categorical variables) to test for differences
among different TyG-BMI groups.

We examined the link between TyG-BMI and diabetes risk in
patients with prediabetes using univariate and multivariate Cox
proportional-hazards regression models after collinearity screening.
These included a non-adjusted model (no covariates adjusted), a
minimally adjusted model (Model I: adjusted age and sex), and a
fully adjusted model were used (Model II: adjusted age, sex, BUN,
DBP, SBP, AST, ALT, HDL-c, LDL-c, drinking status, smoking status
and family history of diabetes). HR and 95% confidence intervals
(CI) were recorded in this study. The collinearity screening also
excluded TC from the final multivariate Cox proportional hazards
regression equation since it was collinear with other variables
(Supplementary Table S1).

Besides, we used Cox proportional hazards regression with cubic
spline functions and smooth curve fitting to explore the non-linear
relationship between the TyG-BMI and diabetes risk in participants
with prediabetes. Recursive algorithms were used to calculate the
inflection point if non-linearity was found. Then a two-piecewise
linear regression model was fitted to calculate the threshold effect of
the TyG-BMI on incident diabetes according to the smoothed graph.

A stratified Cox proportional hazard regression model was used
to conduct subgroup analysis across several subgroups (age, sex,
SBP, smoking status, and drinking status). Firstly, the interaction
test between these variables and TyG-BMI was performed before
the subgroup analysis. Secondly, continuous variables, including SBP,
and age, were converted into categorical variables based on clinical
cut-off points (age: <30, ≥30 to <40, ≥40 to <50, ≥50 to <60, ≥60
to <70, ≥70 years old; SBP: <140, ≥140 mmHg) (23). Thirdly, we
adjusted each stratification for all other factors (sex, age, AST, SBP,
ALT, DBP, HDL-c, BUN, LDL-c, smoking status, family history of
diabetes, and drinking status) besides the stratification factor itself.
Ultimately, the likelihood ratio test was used to determine whether
interaction terms existed in models with and without interaction
terms. The likelihood ratio test compares models with and without
the multiplicative interaction term(s); the log-likelihood of models
with main effects was compared with the log-likelihood of models
that contained main effects and the interaction terms to determine
the statistical significance of interactions (24).

To test the robustness of the results, we performed a series of
sensitivity analyses. We converted the TyG-BMI into a categorical

variable according to the quartile and calculated the P-value for the
trend to test the results of the TyG-BMI as a continuous variable
and to explore the possibility of non-linearity. Previous studies have
suggested that drinking status, family history of diabetes, and BMI
are significantly related to diabetes (25–27). Therefore, we performed
sensitivity analyses after excluding alcohol drinkers and smokers and
participants with a family history of diabetes. Additionally, we further
explored the association between the TyG-BMI and diabetes risk in
participants with BMI<25 kg/m2. Further, to further confirm our
findings’ reliability, we used a generalized additive model (GAM),
which included the continuity covariate as a curve in the equation.

Finally, we construct a receiver operating characteristic (ROC)
curve to estimate the ability of TyG-BMI, BMI, TyG, TG, and
TG/HDL-c ratio to predict the risk of diabetes in patients
with prediabetes.

All results were written according to the STROBE statement
(28). Both Empower Stats (X&Y Solutions, Inc. Boston, MA,
http://www.empowerstats.com) and the R statistical software
packages (http://www.r-project.org, The R Foundation) were used to
conduct all analyses. Statistical significance was defined as P-values
under 0.05 (two-sided).

Results

Characteristics of participants

The study participants’ demographic and clinical characteristics
are presented in Table 1. The mean age was 49.29 ± 13.82 years old,
and 16,734 (66.2%) were male. The mean TyG-BMI was 219.47. Over
a median follow-up period of 2.89 years, 2,687 (10.63%) participants
developed diabetes. We divided adults into subgroups based on TyG-
BMI quartiles (Q1: <193.08, Q2: 193.08–218.21, Q3: 218.21–244.04,
Q4: ≥244.04). The highest quartile (Q4: ≥244.04) showed significant
increases in age, height, weight, BMI, DBP, SBP, TG, LDL-c, TC,
AST, ALT, TyG-BMI, TyG, Scr, and BUN in comparison with the
lowest quartile (Q1:<193.08); however, HDL-c showed the opposite
trend. Moreover, the highest quartile had a higher proportion of
men, current drinkers, and current smokers. The TyG-BMI presents
a normal distribution, ranging from 116. 94 to 334.08, with a mean
of 219.47 (Figure 2). The presence or absence of diabetes at the last
follow-up visit was used to split the participants into two groups.
Supplementary Figure S1 shows the distribution of TyG-BMI for the
two groups. The TyG-BMI distribution level was lower in the non-
diabetes group. In contrast, the group with diabetes had a higher
distribution level of the TyG-BMI.

The incidence rate of diabetes in patients
with prediabetes

Among participants with prediabetes, 2,687 (10.63%) individuals
developed diabetes. Specifically, the incidence rate of diabetes among
participants with prediabetes in the TyG-BMI quartiles was 13.16,
27.09, 41.11, and 55.22 per 1,000 person-years, respectively. During
a median follow-up period of 2.89 years, the overall cumulative
incidence of diabetes was 11.46%, and the cumulative incidences of
diabetes in each TyG-BMI quartile were Q1: 3.83%, Q2: 7.97%, Q3:
12.23%, and Q4: 16.47% (Figure 3). There was a higher incidence of
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TABLE 1 The baseline characteristics of participants.

TyG-BMI quartile Q1 (<193.08) Q2
(193.08–218.21)

Q3
(218.21–244.04)

Q4 (≥244.04) P-value

Participants 6,319 6,320 6,320 6,320

Age (years) 45.25± 14.30 50.29± 13.79 51.63± 13.34 50.00± 12.96 <0.001

Height (cm) 165.18± 8.29 166.32± 8.40 167.17± 8.25 168.06± 8.16 <0.001

Weight (kg) 57.30± 7.40 65.93± 7.50 71.97± 7.97 81.05± 9.93 <0.001

BMI (kg/m2) 20.94± 1.66 23.77± 1.28 25.69± 1.39 28.63± 2.21 <0.001

SBP (mmHg) 120.70± 16.57 126.39± 17.05 129.17± 17.32 132.41± 17.26 <0.001

DBP (mmHg) 73.91± 10.09 77.40± 10.60 79.76± 10.86 82.44± 11.17 <0.001

TG (mmol/L) 0.84 (0.63–1.11) 1.24 (0.96–1.65) 1.67 (1.25–2.24) 2.33 (1.70–3.34) <0.001

TYG 8.28± 0.43 8.69± 0.43 8.99± 0.46 9.38± 0.55 <0.001

TyG-BMI 173.25± 14.59 206.08± 7.26 230.53± 7.42 267.99± 19.45 <0.001

TC (mmol/L) 4.65± 0.88 4.93± 0.93 5.07± 0.92 5.25± 0.99 <0.001

FPG (mmol/L) 5.86± 0.27 5.92± 0.30 5.97± 0.33 6.03± 0.34 <0.001

HDL-c (mmol/L) 1.42± 0.31 1.34± 0.31 1.29± 0.28 1.27± 0.30 <0.001

LDL-c (mmol/L) 2.68± 0.68 2.90± 0.71 2.96± 0.71 3.00± 0.75 <0.001

ALT (U/L) 15.50 (12.00–21.30) 20.00 (15.00–28.00) 24.50 (18.00–35.60) 32.00 (22.30–48.30) <0.001

AST (U/L) 22.47± 8.95 24.65± 11.10 27.02± 10.51 31.18± 14.62 <0.001

BUN (mmol/L) 4.82± 1.25 5.00± 1.23 5.07± 1.26 5.06± 1.25 <0.001

Scr (µmol/L) 68.32± 15.32 72.37± 15.49 74.45± 16.42 75.80± 15.69 <0.001

Sex <0.001

Male 3,092 (48.93%) 4,067 (64.35%) 4,586 (72.56%) 4,989 (78.94%)

Female 3,227 (51.07%) 2,253 (35.65%) 1,734 (27.44%) 1,331 (21.06%)

Smoking status <0.001

Current smoker 880 (13.93%) 1,324 (20.95%) 1,600 (25.32%) 1,911 (30.24%)

Ever smoker 208 (3.29%) 252 (3.99%) 271 (4.29%) 303 (4.79%)

Never smoker 5,231 (82.78%) 4,744 (75.06%) 4,449 (70.40%) 4,106 (64.97%)

Drinking status <0.001

Current drinker 145 (2.29%) 195 (3.09%) 222 (3.51%) 362 (5.73%)

Ever drinker 714 (11.30%) 968 (15.32%) 1,028 (16.27%) 1,161 (18.37%)

Never drinker 5,460 (86.41%) 5,157 (81.60%) 5,070 (80.22%) 4,797 (75.90%)

Family history of diabetes 0.220

No 6,177 (97.75%) 6,148 (97.28%) 6,175 (97.71%) 6,154 (97.37%)

Yes 142 (2.25%) 172 (2.72%) 145 (2.29%) 166 (2.63%)

Continuous variables were summarized as mean (SD) or medians (quartile interval); categorical variables were displayed as percentage (%).
FPG, fasting plasma glucose; DBP, diastolic blood pressure; BMI, body mass index; TC, total cholesterol; TG, triglyceride; SBP, systolic blood pressure; TyG, the triglyceride-glucose index; TyG-BMI,
triglyceride glucose-body mass index; AST, aspartate aminotransferase; ALT, alanine aminotransferase; LDL-C, low-density lipid cholesterol; BUN, blood urea nitrogen; Scr, serum creatinine. HDL-c,
high-density lipoprotein cholesterol.

diabetes among those with the highest TyG-BMI (Q4) compared to
those with the lowest TyG-BMI (Q1) (p < 0.001 for trend) (Table 2,
Figure 3).

Regardless of their age groups, men with prediabetes
were more likely to develop diabetes than women in the age
stratification by ten intervals (Figure 4). In addition, both
males and females showed an increase in diabetes incidence
with age.

Factors influencing the risk of diabetes in
patients with prediabetes analyzed by
univariate Cox proportional hazards
regression

Based on univariate analyses, the risk of progression to diabetes
from prediabetes was not related to Scr (P > 0.05), but was positively
correlated with age, DBP, BMI, SBP, AST, TG, ALT, TyG-BMI, TC,
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FIGURE 2

Distribution of TyG-BMI. It presented a normal distribution, ranging
from 116.94 to 334.08, with a mean of 219.47.

FIGURE 3

The incidence rate for diabetes according to the quartiles of TyG-BMI.
Participants with the highest TyG-BMI(Q4) had higher diabetes
incidence rates than those with the lowest TyG-BMI(Q1) (p < 0.001 for
trend).

FPG, LDL-c, BUN, family history of diabetes, and current drinking
(all P < 0.05; Table 3).

Using the TyG-BMI quartile as stratification, Figure 5 presented
Kaplan-Meier survival curves for diabetes-free survival probability.
Among the quartiles of TyG-BMI, there were statistically significant
differences in the probability of diabetes-free survival (log-rank test,
p < 0.001). Prediabetic patients with the greatest TyG-BMI had the
highest risk of progression to diabetes.

The results of multivariable analyses using
Cox proportional-hazards regression models

Three models were constructed using the Cox proportional-
hazards regression model to investigate the association between
the TyG-BMI and incident diabetes in patients with prediabetes
(Table 4). An increase of 1 unit of TyG-BMI was associated with
a 1.2% increase in diabetes risk in the crude model (HR = 1.012,
95%CI:1.011–1.013, p < 0.001). For participants with prediabetes,
each additional unit of TyG-BMI increased their diabetes risk by 1.2%

TABLE 2 Incidence rate of diabetes in participants with prediabetes (% or
Per 1,000 person-year).

TyG-
BMI

Participants
(n)

Diabetes
events

(n)

Incidence
rate (95%

CI) (%)

Per 1,000
person-

year

Total 25,279 2,560 10.13(9.76–
10.50)

34.27

Q1(<193.08) 6,319 242 3.83(3.36–
4.30)

13.16

Q2
(193.08–
218.21)

6,320 504 7.97(7.70–
8.34)

27.09

Q3
(218.21–
244.04)

6,320 773 12.23(11.42–
13.04)

41.11

Q4
(≥244.04)

6,320 1,041 16.47(15.56–
17.39)

55.22

P for trend <0.001

TyG-BMI, triglyceride glucose-body mass index; CI, confidence interval.

FIGURE 4

The incidence of diabetes in prediabetic patients of age stratification
by 10 intervals. It shows that the incidence of diabetes in participants
with prediabetes was higher in men than in women, regardless of age
group. It was also found that the incidence of diabetes increased with
age in both men and women.

(HR = 1.012, 95% CI: 1.011–1.013) in the minimally adjusted model
(Model I). As a result of the fully adjusted model (Model II), every 1
unit increase in TyG-BMI was associated with an increase in diabetes
risk of 1.1% in participants with prediabetes (HR = 1.011, 95% CI
1.010–1.012). As evidenced by the confidence interval distribution,
the model indicated a reliable relationship between TyG-BMI and
diabetes risk in subjects with prediabetes.

Sensitivity analysis

A series of sensitivity analyses were carried out to confirm the
robustness of our conclusions. The TyG-BMI was first converted
into quartile-based categorical variables, and the categorically
modified TyG-BMI was then added back to the regression equation.
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TABLE 3 Factors influencing the risk of diabetes in patients with
prediabetes analyzed by univariate Cox proportional hazards regression.

Exposure Characteristics HR (95%CI) P-value

Age (years) 49.292± 13.819 1.031 (1.028, 1.034) <0.001

Sex

Male 16,734 (66.197%) Ref

Female 8,545 (33.803%) 0.835 (0.766, 0.910) <0.001

BMI (kg/m2) 24.758± 3.265 1.119 (1.106, 1.132) <0.001

SBP (mmHg) 127.169± 17.586 1.015 (1.013, 1.017) <0.001

DBP (mmHg) 78.377± 11.135 1.017 (1.014, 1.020) <0.001

FPG (mmol/L) 5.945± 0.317 9.796 (8.889, 10.795) <0.001

TG (mmol/L) 1.410 (0.960–2.110) 1.116 (1.096, 1.137) <0.001

TyG 8.835± 0.619 1.800 (1.700, 1.907) <0.001

TyG-BMI 219.465± 37.051 1.012 (1.011, 1.013) <0.001

TC (mmol/L) 4.975± 0.957 1.082 (1.040, 1.125) <0.001

HDL-c(mmol/L) 1.330± 0.303 1.246 (1.097, 1.416) <0.001

LDL-c (mmol/L) 2.886± 0.724 1.064 (1.010, 1.122) 0.021

ALT (U/L) 22.000 (15.400–33.000) 1.005 (1.004, 1.006) <0.001

AST (U/L) 26.328± 11.927 1.011 (1.009, 1.012) <0.001

BUN (mmol/L) 4.991± 1.251 1.051 (1.019, 1.083) 0.002

Scr (µmol/L) 72.735± 15.988 1.001 (0.999, 1.004) 0.392

Smoking status

Current smoker 5,715 (22.608%) Ref

Ever smoker 1,034 (4.090%) 1.059 (0.878, 1.276) 0.550

Never smoker 18,530 (73.302%) 0.823 (0.754, 0.899) <0.001

Drinking status

Current drinker 924 (3.655%) Ref

Ever drinker 3,871 (15.313%) 0.797 (0.650, 0.977) 0.029

Never drinker 20,484 (81.032%) 0.793 (0.659, 0.953) 0.013

Family history of diabetes

No 24,654 (97.528%) Ref

Yes 625 (2.472%) 1.446 (1.191, 1.754) <0.001

Continuous variables were summarized as mean (SD) or medians (quartile interval); categorical
variables were displayed as percentage (%).
FPG, fasting plasma glucose; BMI, body mass index; DBP, diastolic blood pressure; TC, total
cholesterol, SBP, systolic blood pressure; TG triglyceride; ALT, alanine aminotransferase; TyG,
the triglyceride-glucose index; TyG-BMI, triglyceride glucose-body mass index; BUN, blood
urea nitrogen; LDL-c, low-density lipid cholesterol; Scr, serum creatinine, HDL-c, high-density
lipoprotein cholesterol; AST aspartate aminotransferase.

The findings revealed that the effect sizes between groups were
equidistant, and the trend of effect sizes was consistent with the result
when the TyG-BMI was a continuous variable (Table 4).

Additionally, we introduced the continuity covariate as a curve
into the equation using a GAM. As shown in Table 4, the outcome
of Model III was reasonably consistent with the fully adjusted model
(HR= 1.010, 95%CI: 1.009–1.011, p < 0.001).

Furthermore, we conducted a sensitivity analysis on participants
who had never consumed alcohol (n = 20,484). After adjusting for
confounding variables, the findings indicated that the TyG-BMI was

FIGURE 5

Kaplan–Meier event-free survival curve. Kaplan–Meier event-free
survival curve. The probability of diabetes-free survival di�ered
significantly between the TyG-BMI quartiles (log-rank test, p < 0.001).
The probability of diabetes-free survival gradually decreased with
increasing TyG-BMI, suggesting that the group with the highest
TyG-BMI had the highest risk of diabetes.

also positively associated with the risk of diabetes (HR = 1.011,
95% CI:1.010–1.012, p < 0.001). We also excluded patients with a
family history of diabetes for the sensitivity analyses. After adjusting
for confounding variables, the results suggested that the TyG-BMI
was still positively associated with diabetes risk in individuals with
prediabetes (HR = 1.011, 95% CI:1.010–1.012, p < 0.001). In
addition, restricting the analysis to participants with BMI<25 kg/m2,
the results suggested that the HR between the TyG-BMI and diabetes
risk was 1.015 (95% CI:1.011–1.018, P < 0.001) (Table 5). Based on
all the sensitivity analyses, it is evident that our findings were robust.

Cox proportional hazards regression model
with cubic spline functions to address
non-linearity

We observed that the relationship between TyG-BMI and
diabetes risk in prediabetic patients was non-linear using the Cox
proportional hazards regression model with cubic spline functions
(Figure 6). The P-value for the log-likelihood ratio test was <0.001.
We first determined that the inflection point of the TyG-BMI was
231.66 by the recursive algorithm and then used a two-piecewise
Cox proportional hazards regression model to calculate the HR and
CI for each side of the inflection point. Right before the inflection
point, the HR was 1.007 (95% CI:1.005–1.009), while left after it was
1.017(95%CI:1.014–1.019) (Table 6).
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TABLE 4 Relationship between TyG-BMI and the risk of diabetes in prediabetic patients in di�erent models.

Exposure Crude model (HR,
95%CI)

Model I (HR,
95%CI) P

Model II (HR,
95%CI) P

Model III (HR, 95%
CI) P

TyG-BMI 1.012 (1.011, 1.013) <0.001 1.012 (1.011, 1.013) <0.001 1.011 (1.010, 1.012) <0.001 1.010 (1.009, 1.011) <0.001

TyG-BMI quartile

Q1 Ref Ref Ref Ref

Q2 1.994 (1.710, 2.324) <0.001 1.743 (1.494, 2.034) <0.001 1.756 (1.502, 2.052) <0.001 1.645 (1.405, 1.927) <0.001

Q3 2.950 (2.553, 3.408) <0.001 2.496 (2.156, 2.889) <0.001 2.525 (2.174, 2.933) <0.001 2.268 (1.943, 2.647) <0.001

Q4 3.966 (3.449, 4.562) <0.001 3.502 (3.038, 4.038) <0.001 3.371 (2.906, 3.910) <0.001 2.920 (2.497, 3.414) <0.001

P for trend 1.514 (1.458, 1.572) <0.001 1.477 (1.420, 1.536) <0.001 1.451 (1.393, 1.511) <0.001 1.387 (1.328, 1.449) <0.001

Crude model: we did not adjust other covariates.
Model I: we adjusted age, sex.
Model II: we adjusted age, sex, SBP, DBP ALT, AST, BUN, LDL-C, HDL-c, family history of diabetes, drinking status, and smoking status.
Model III: we adjusted age (smooth), sex, SBP (smooth), DBP (smooth), ALT (smooth), AST (smooth), LDL-c (smooth), HDL-c (smooth), smoking status, drinking status, family history of diabetes.
HR, Hazard ratios; CI: confidence, Ref: reference.

TABLE 5 Relationship between TyG-BMI and the risk of diabetes in
participants with prediabetes in di�erent sensitivity analyses.

Exposure Model I (HR,
95%CI) P

Model II
(HR, 95%CI)

P

Model III
(HR, 95%CI)

P

TyG-BMI 1.011 (1.010,
1.012) <0.001

1.011 (1.010,
1.012) <0.001

1.015 (1.011,
1.018) <0.001

TyG-BMI quartile

Q1 Ref Ref Ref

Q2 1.738 (1.466,
2.061) <0.001

1.775 (1.513,
2.084) <0.001

1.687 (1.431,
1.989) <0.001

Q3 2.541 (2.158,
2.992) <0.001

2.570 (2.204,
2.996) <0.001

2.510 (2.076,
3.035) <0.001

Q4 3.272 (2.776,
3.856) <0.001

3.458 (2.970,
4.026) <0.001

1.869 (1.187,
2.944) 0.007

P-for trend <0.001 <0.001 <0.001

Model I was a sensitivity analysis performed on participants who had never consumed alcohol
(N = 20,484). We adjusted age, sex, SBP, DBP ALT, AST, BUN, LDL-C, HDL-c, family history of
diabetes, and smoking status.
Model II was a sensitivity analysis performed on participants without a family history of diabetes
(N = 24,654). We adjusted age, sex, SBP, DBP ALT, AST, BUN, LDL-C, HDL-c, drinking status,
and smoking status.
Model III was a sensitivity analysis performed after excluding participants with BMI≥25 kg/m2

(N = 13,571). We adjusted age, sex, SBP, DBP ALT, AST, BUN, LDL-C, HDL-c, drinking status,
smoking status, and family history of diabetes.
HR, Hazard ratios; CI, confidence; Ref, reference.

The results of subgroup analyses

Interaction tests performed before subgroup analyses showed
that age and SBP interacted with TyG-BMI (P < 0.001). In contrast,
sex, smoking, and alcohol consumption did not interact with
TyG-BMI (P > 0.05) (Supplementary Table S2). Therefore, further
subgroup analyses with prespecified or exploratory age and SBP were
performed (Table 7). However, there was no significant interaction
of SBP as a categorical variable with TyG-BMI (P for interaction
>0.05). The results showed that in the age subgroup, the interaction
between TyG-BMI and age was significant (P for interaction <0.001).
Specifically, a stronger relationship between TyG-BMI and diabetes
risk was observed in participants aged <50 years. Among participants
aged <30 years, 30–40 years, and 40–50 years, the HRs for the

FIGURE 6

The non-linear relationship between TyG-BMI and the risk of diabetes
in prediabetic patients. We used a Cox proportional hazards regression
model with cubic spline functions to evaluate the relationship between
the TyG-BMI and diabetes risk. The result showed that the relationship
between the TyG-BMI and diabetes risk in prediabetic patients was
non-linear, with the inflection point of the TyG-BMI ratio being 231.66.

association between TyG-BMI and the risk of diabetes in prediabetic
patients were 1.020, 1.019, and 1.016, respectively (all P < 0.001).
In contrast, a weaker relationship between TyG-BMI and diabetes
risk was observed in prediabetic participants aged >50 years. Among
participants aged 50–60, 60–70, and≥70, the HRs for the relationship
between TyG-BMI and the risk of diabetes was 1.009, 1.006, and
1.008, respectively (all P < 0.001).

The results of the ROC curve analysis

In addition, we drew a ROC curve to measure the ability of TyG-
BMI, BMI, TyG, TG, and TG/HDL-c ratio to predict the risk of
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TABLE 6 The result of two-piecewise linear regression model.

Incident diabetes: HR, 95%CI P

Fitting model by standard Cox regression 1.011 (1.010, 1.012) <0.001

Fitting model by two-piecewise Cox regression

Inflection points of TyG-BMI 231.66

<231.66 1.017 (1.014, 1.019) <0.001

≥231.66 1.007 (1.005, 1.009) <0.001

P-for log-likelihood ratio test <0.001

We adjusted age, sex, SBP, DBP ALT, AST, BUN, LDL-C, HDL-c, family history of diabetes,
drinking status, and smoking status.

TABLE 7 Stratified associations between TyG-BMI and diabetes in
participants with prediabetes by age and SBP.

Characteristic No of
participants

HR
(95%CI)

P-
value

P-for
interaction

Age (years) <0.001

<30 1,464 1.020
(1.011,
1.029)

<0.001

30 to <40 6,055 1.019
(1.017,
1.022)

<0.001

40 to <50 5,514 1.016
(1.014,
1.019)

<0.001

50 to <60 5,907 1.009
(1.007,
1.011)

<0.001

60 to <70 4,278 1.006
(1.003,
1.008)

<0.001

≥70 2,061 1.008
(1.005,
1.011)

<0.001

SBP (mmHg) 0.2484

<140 19,902 1.012
(1.010,
1.013)

<0.001

≥140 5,377 1.010
(1.008,
1.012)

<0.001

Above model adjusted for age, sex, SBP, DBP ALT, AST, BUN, LDL-c, HDL-c, family history of
diabetes, drinking status, and smoking status.
In each case, the model is not adjusted for the stratification variable.
HR, Hazard ratios; CI, confidence; Ref, reference.

diabetes (Figure 7). The areas under the curve of each variable were
as follows: TG: 0.615 < TG/HDL-c ratio:0.621<BMI: 0.628 < TyG:
0.640 <TyG-BMI:0.656. The highest Youden index of TG, TG/HDL-
c ratio, BMI, TyG, and TyG-BMI was 0.1670, 0.1700,0.1954, 0.2030,
0.2513, and the corresponding optimal cut-off value was 1.595,
1.1463, 24.760, 8.808, 220.238, respectively. The Youden index and
AUC of TyG-BMI were the biggest, so the predictive ability of TyG-
BMI to incident diabetes was better than that of other variables
(Supplementary Table S3).

FIGURE 7

The results of ROC curve analysis for measuring the ability of TyG-BMI,
BMI, TG, TyG, and TG/HDL-c ratio to predict the risk of diabetes.

Discussion

In this retrospective cohort study, we examined the link between
the TyG-BMI and diabetes risk in patients with prediabetes. We
found that a higher TyG-BMI was linked to a significantly higher
risk of diabetes among patients with prediabetes. Additionally, an
inflection point was identified, and different relationships between
the TyG-BMI and diabetes risk were detected on both sides.

A Japanese study found an 8.5% progression rate from
prediabetes to diabetes within five years (29). Americans with
prediabetes aged 70–79 have a 10.6% chance of progressing to
diabetes over the next seven years (30). Participants with prediabetes
in the present study had a cumulative incidence of diabetes of 10.63%
over a median follow-up of 2.89 years. Participants’ age, follow-
up time, and ethnicity may be responsible for these differences in
diabetes incidence among these patients. It is worth noting that all
studies have shown that patients with prediabetes are at high risk for
developing diabetes. Therefore, it is crucial to actively identify various
other risk factors for progressing to diabetes from prediabetes.

The TyG index is a combined marker containing FPG and
TG and is considered an alternative marker of IR (14, 31). In
recent years, TyG-BMI, a metric that combines BMI with TyG, has
emerged as a new obesity-related parameter. Studies have shown
that TyG-BMI is a better predictor of IR than traditional lipids,
BMI, and TyG index (16). Furthermore, several recent studies
have found that TyG-BMI is strongly associated with non-alcoholic
fatty liver, stroke, prehypertension, and diabetes (32–34). However,
the connection between the TyG-BMI index and the prevalence
of diabetes has received little attention with only two research
covering the subject. 116,661 participants in a cohort study had their
physicals examined. Multivariate Cox regression analysis revealed
an independent relationship between the TyG-BMI index and new-
onset diabetes in the general population (HR 1.50/standard deviation
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increase, 95% CI: 1.40 to 1.60, P < 0.0001) (18). Another cross-
sectional study conducted in Spain supported this conclusion.
According to results from multivariate-adjusted models, participants
in the fourth quartile of the TyG-BMI index had a 3.63-fold higher
risk of getting diabetes than those in the first quartile (17). Our
study complemented the existing literature, which supported the
hypothesis that an elevated TyG-BMI index is positively associated
with the risk of new-onset diabetes. In contrast to earlier studies, the
independent variables in our study used both the TyG-BMI index
as a categorical variable and a continuous variable to explore their
relationship with diabetes risk, thus reducing information loss and
quantifying the relationship between them. Second, to the best of our
knowledge, this is the first study to examine the association between
the TyG-BMI and diabetes risk in individuals with prediabetes, a
population with a high propensity to develop diabetes. Identifying
TyG-BMI as a risk factor for progression from prediabetes to diabetes
and clarifying the association between them would be beneficial for
diabetes prevention in patients with prediabetes.

In addition, based on the population with prediabetes, our
previous study identified an important lipid index, TG/HDL-c
ratio, as an important risk predictor for diabetes (35). Therefore,
we constructed ROC curves to estimate the ability of TyG-BMI,
BMI, TyG, TG, and TG/HDL-c ratio to predict the risk of
progression to diabetes in patients with prediabetes. We found
that the AUC and highest Youden index of the TyG-BMI index
fared better than any other component of the TyG-BMI and
TG/HDL-c ratio. This finding shows that TyG-BMI may be a
valuable marker for predicting the onset of diabetes in patients with
prediabetes. These indicators provide significant risk predictors for
future risk prediction models for the progression of prediabetes
to diabetes. Furthermore, sensitivity analyses found that their
association persisted in prediabetic patients with a BMI<25 kg/m2,
no family history of diabetes, and no alcohol consumption. This
study encourages clinical consultation and provides a reference for
enhancing diabetes prevention in individuals with prediabetes.

The underlying mechanisms relating TyG-BMI to diabetes risk
remain unclear, but it may be associated with IR. Research has
confirmed that IR plays a crucial role in diabetes occurrence and
progression (36). TyG-BMI represents a combination of FPG, TG,
and BMI. FPG levels are a reflection of insulin sensitivity in the liver
and insulin secretion by the pancreas (37). A higher level of FPG
is associated with an increased risk of diabetes among people with
normal FPG levels (38). In addition, the role of BMI and TG in
identifying IR has been well established in previous studies (39–41).
Therefore, the underlying mechanism of the relationship between
TyG-BMI and the risk of developing diabetes may be related to the
association of three factors, FPG, TG, and BMI, with IR.

Furthermore, our study observed a non-linear relationship
between the TyG-BMI and diabetes risk in individuals with
prediabetes for the first time. After controlling for confounders,
the TyG-BMI inflection point was 231.66. When the TyG-BMI was
<231.66, each unit increase was associated with a 1.7% increase in
the risk of diabetes. A 1-unit increase in TyG-BMI was associated
with a 0.7% increase in the risk of diabetes when the TyG-BMI
was >231.66. It could be found that compared to participants
with a TyG-BMI>231.66, those with TyG-BMI ≤231.66 generally
are younger and have lower DBP, LDL-c, AST, SBP, and ALT. In
addition, those with a TyG-BMI≤231.66 had a lower proportion of

currently drinking and smoking (Supplementary Table S4). However,
these indicators are strongly linked to incident diabetes (42–46).
Because of the presence of these risk factors, when the TyG-BMI
was >231.66, the TyG-BMI had a relatively weak effect on diabetes.
On the contrary, among those with a TyG-BMI of <231.66, these
diabetes risk factors were lower, the impact on diabetes was lower, and
the effect of TyG-BMI was relatively enhanced. Furthermore, non-
linear relationships are those in which the change in one variable does
not correspond to the same constant change in the other variable.
In other words, it could imply that the relationship between two
variables is either non-existent or unpredictable. Non-linear entities,
on the other hand, can be related to each other in predictable but
more complex ways than linear ones. Because of the complexities of
the relationship between TyG-BMI and diabetes risk, the non-linear
relationship may be closer to the true relationship. The discovery of a
curvilinear relationship between the TyG-BMI and incident diabetes
in prediabetic patients has significant clinical implications. It serves
as a resource for promoting clinical consultation and optimizing
diabetes prevention decision-making in patients with prediabetes.

Subgroup analysis revealed some interesting findings in this
study. Young adults have a higher risk of diabetes associated with
their TyG-BMI than other age groups. After further analysis of the
baseline information of the study population grouped according
to age, young-aged people (<50 years old) were found had lower
ALT, DBP, LDL-c, SBP, and a lower proportion of currently drinking
(Supplementary Table S5). Therefore, the level of these risk factors
for diabetes was lower in young adults, the impact on diabetes was
reduced, and the effect of the TyG-BMI was relatively enhanced.

Several strengths are worthy of attention in this investigation.
(i)This is the first time Chinese individuals with prediabetes have
been employed as a research population to explore the association
between TyG-BMI and diabetes risk. (ii) We elucidated the non-
linear association between TyG-BMI and diabetes risk and identified
the inflection point. This is a great improvement compared to other
previous studies. (iii) Multiple imputations were used to account
for missing data. This strategy maximizes statistical power while
minimizing the bias caused by missing covariate data. (iv) To ensure
the robustness of the conclusions, a series of sensitivity analyses
were conducted, including converting TyG-BMI into a categorical
variable, using a GAM to insert the continuity covariate into the
equation as a curve, and reanalyzing the association between TyG-
BMI and incident diabetes after excluding alcohol and cigarette
consumers as well as participants with a family history of diabetes.

Nonetheless, the following restrictions should be noted: (i)
Because all of the participants were Chinese, additional studies
are needed to assess the association between this new risk
marker TyG-BMI and the risk of progression from prediabetes
to diabetes. In the future, we will collaborate with investigators
outside of China to validate their association in other populations of
different genetic backgrounds. (ii) Diabetes was defined as a fasting
plasma glucose (FPG) level of 7.00 mmol/L and/or self-reported
diabetes during the follow-up period, but not a measurement
of glycosylated hemoglobin or a 2-h oral glucose tolerance test.
Consequently, the incidence of diabetes may be understated. (iii)
Certain indications related to diabetes and IR were absent from
the raw data, including waist-to-hip ratio, waist circumference,
and insulin concentration. In addition, the present investigation
only evaluated TG, FPG, BMI, and other parameters at baseline;
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TyG-BMI variations over time were not included. In the future,
we may seek to construct our studies or partner with other
researchers to collect as many factors as feasible, including TyG-BMI
change information over time. (iv) The type of diabetes cannot be
determined. Type 2 diabetes mellitus (T2DM) is the most prevalent
form of diabetes in China, accounting for more than 90% of all
diabetes cases (47). Consequently, our results are representative
of T2DM. Finally, this retrospective observational study did not
demonstrate a causal relationship between the TyG-BMI and the
risk of diabetes in patients with prediabetes; rather, it established
an association.

Conclusion

This study demonstrates a positive and non-linear relationship
between the TyG-BMI and the risk of incident diabetes in Chinese
adults with prediabetes. When the TyG-BMI was <231.66, there was
a significant positive association with the risk of progression from
prediabetes to diabetes. The present study offers more references to
promote clinical consultation and to optimize diabetes prevention
decisions for patients with prediabetes.
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Guang’anmen Hospital of China Academy of Chinese Medical Sciences, Institute of Metabolic Diseases,

Beijing, China

Background: Prediabetes is a widespread condition that represents the state between

normal serum glucose and diabetes. Older individuals and individuals with obesity

experience a higher rate of prediabetes. Prediabetes is not only a risk factor for

type 2 diabetes mellitus (t2dm) but is also closely related to microvascular and

macrovascular complications. Despite its importance, a bibliometric analysis of

prediabetes is missing. The purpose of this study is to provide a comprehensive and

visually appealing overview of prediabetes research.

Methods: First, theWeb of Science (WOS) databasewas searched to collect all articles

related to prediabetes that were published from 1985 to 2022. Second, R language

was used to analyze the year of publication, author, country/region, institution,

keywords, and citations. Finally, network analysis was conducted using the R package

bibliometrix to evaluate the hotspots and development trends of prediabetes.

Results: A total of 9,714 research articles published from 1985 to 2022 were

retrieved from WOS. The number of articles showed sustained growth. Rathmann

W was the most prolific author with 71 articles. Diabetes Care was the journal that

published the highest number of articles on prediabetes (234 articles), and Harvard

University (290 articles) was the most active institution in this field. The United States

contributed the most articles (2,962 articles), followed by China (893 articles). The top

five clusters of the keyword co-appearance network were “prediabetes”, “diabetes

mellitus”, “glucose”, “insulin exercise”, and “oxidative stress”. The top three clusters of

the reference co-citation network were “Knowler. WC 2002”, “Tabak AG 2012”, and

“Matthews DR1985”.

Conclusions: The combined use of WOS and the R package bibliometrix enabled a

robust bibliometric analysis of prediabetes papers, including evaluation of emerging

trends, hotspots, and collaboration. This study also allowed us to validate our

methodology, which can be used to better understand the field of prediabetes and

promote international collaboration.

KEYWORDS

prediabetes, diabetes, bibliometrics, R language, bibliometrix

1. Introduction

Prediabetes is amajor worldwide public health issue. Individuals with prediabetes have a high

risk of progression to diabetes and elevated risks of kidney disease, cardiovascular disease, and

death (1). The concept of prediabetes emerged in the late 1970s to better understand the process

of diabetes (2, 3). However, it is unclear whether prediabetes should be classified as a unique

pathogenic state because it is a status that lies between healthy glucose homeostasis and the

pathological condition of diabetes (4). Prediabetes is a degree of impairment between euglycemia
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and the hyperglycemia of type 2 diabetes (5). Professional societies

such as the American Diabetes Association (ADA), theWorld Health

Organization (WHO), and the International Expert Committee (IEC)

have issued definitions of prediabetes. These definitions are based on

a variety of hyperglycemia-related parameters such as FBG, 2hBG,

and HbA1C (6, 7).

Nevertheless, there is still no consistent definition of prediabetes,

and different definitions correspond to different groups of individuals

in epidemiologic studies (8). For example, large surveys of Chinese

adults using all three glycemic tests (HbA1C, FBG, or 2hBG) revealed

the prevalence of prediabetes, ranging from 36% in one study to as

high as 50.1% in another (9). Previous literature also suggested that,

for individuals over 40 years of age or with a higher risk of diabetes,

FBG and/or HbA1C were more effective (10). For individuals with

prediabetes, pharmacological and lifestyle changes could reduce

cardiovascular risk and cost-effectively prevent diabetes (11), and

restoring normoglycemia can produce long-lasting remission (10).

Hence, the National Institute for Health and Care Excellence (NICE)

suggested that individuals with prediabetes should initially undergo

lifestyle intervention in the form of intensive group education

programs (12). However, the effectiveness of these interventions

relies on a consistent and accurate definition of prediabetes.

Insulin resistance, B-cell dysfunction, increased lipolysis,

inflammation, poor incretin response, and hepatic glucose

overproduction are all pathophysiologic abnormalities that underlie

prediabetes (13). Obesity-related metabolic abnormalities increase

the risk of macrovascular and microvascular problems by impairing

endothelial vasodilators and fibrinolytic activity. Additionally,

prediabetes has been linked to an increased risk of cancer and

dementia (14, 15).

Bibliometric analysis has evolved into the most effective tool for

investigating detailed research trends in a research field over time.

It objectively presents research contributions related to particular

scientific fields from different countries, institutions, journals, and

authors through statistical analysis and forecasts future directions

or hotspots (16). It is important to note that hotspots flag emerging

problems in a specific field that have not been resolved and are of

great concern to global academics, and future research directions

forecast research that must be undertaken urgently and that will have

a significant impact in the future. Furthermore, bibliometric analysis

has played a significant role in the development of policy and clinical

guidelines for a variety of diseases. However, to date, no bibliometric

analysis of prediabetes has been conducted, and even less attention

has been given to the prediction of research hotspots.

In this research, we retrieved prediabetes-related articles from the

Web of Science (WOS) database and used bibliometric analysis tools

to examine the literature characteristics and research hotspots. The

Web of Science (WOS) is the most comprehensive and authoritative

citation database in which peer review is a requirement in the journal

evaluation process for inclusion. Therefore, we chose WOS in this

study. The goal of this study is to provide a comprehensive and

visually appealing overview of prediabetes studies and to lay a robust

foundation for future research.

2. Methods

The Core Collection of WOS was searched to obtain relevant

literature. The search strategy was as follows: TS = Prediabet∗

AND PY = (1985–2022). The search was performed on 17 August

2022. Only articles and reviews were included in the analysis. Two

researchers independently retrieved and downloaded the literature.

After data confirmation and standardization, the online literature was

exported to plain text format, including full documents and cited

references. The data were then imported into R for analysis.

We used the R package bibliometrix to clean, analyze, and

visualize the literature data. Bibliometrix was created by Massimo

Aria and Corrado Cuccurullo and built in R, a programming

language for statistical computing and graphics (17). It contains

all the necessary instruments to pursue a complete bibliometric

analysis, following the Science Mapping Workflow. It is a powerful

tool because it makes bibliometric analysis more sophisticated

and replicable.

3. Results

We used the R package bibliometrix to analyze the quantity

of prediabetes literature, and publications of different journals,

authors, countries, and institutions. We used keyword analysis,

themes, and theme evolution to understand the main research areas

of prediabetes articles. We also used citation analysis to explore

the logical relationships between the literature and a collaboration

network to show the collaboration between countries, institutions,

and authors in this field.

3.1. Annual literature quantity and growth
forecast

A total of 9,714 papers were collected from the WOS (see

the workflow in Figure 1). We excluded 161 non-English papers

and other 1,917 papers, including early access publications, book

chapters, retracted publications, proceedings papers, and editorial

materials. Thereafter, 7,636 publications remained for analysis. The

first article in the field of prediabetes was written by A R Dian and

published in the journal “Diabetologia” (18). As shown in Figure 2,

the number of articles each year has exhibited a sustained growth

trend since 2005 and reached 876 in 2021. Furthermore, we ran a

polynomial regression model to predict how many articles will be

published in 2022. The predicted number of articles in 2022 was 906

with a 95% confidence interval of 876 to 935.

The above pattern suggests that prediabetes is an emerging

field. As shown in Figure 3, the number of articles by country

also demonstrated an increasing growth trend. The United States

published the most articles, followed by China, Germany, Canada,

and South Korea. However, while studies on prediabetes have

increased significantly over the past few decades, it is still a relatively

new and promising area of research. China, India, Pakistan, and the

United States (US) are the countries with the largest numbers of

patients with diabetes aged 20–79 years in 2021. The US and China

have the highest interest in the area of prediabetes because of the high

prevalence of diabetes and the high economic level in these countries.

India and Pakistan ranked only 10th and 44th in the prediabetes field

in terms of the number of publications, which may be related to the

investment in research and the emphasis on diabetes prevention.
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FIGURE 1

Bibliometric analysis of prediabetes presented in the workflow.

FIGURE 2

Growth trend and prediction of prediabetes.

3.2. Distribution of literature

We then analyzed the distribution of authors, journals, and

institutions of the literature. More than 34,914 authors contributed

to the 7,636 prediabetes-related studies published in the WOS.

Among the 20 most-productive authors, Rathmann W had the most

publications (71 articles), followed by Peters A (58 articles). Haring

HU and Meisinger C were tied for third place (47 articles each)

(Supplementary material 1).

The articles on prediabetes were published in more than 1,549

journals. Diabetes Care published 234 articles, which accounted for

3.02% of all articles, followed by “PLoS ONE” (193 articles), “Diabetes

Research and Clinical Practice” (187 articles), “Diabetologia” (186

articles), and “Diabetes” (167 articles) (Supplementary material 2).

The impact factor (IF) is a widely used indicator measuring the

academic impact of a journal and the quality of its publications.

Among the top five journals, Diabetes Care had the highest IF,

reaching 17.152 in 2022; the IF of the other four journals, i.e.,

Diabetologia, Diabetes, Diabetes Research, Clinical Practice, and PLoS

ONE were 10.12, 9.46, 5.60, and 3.75, respectively. A majority of the

prediabetes-related articles published in these journals were of high

quality and worth further analysis.

According to the retrieval results of the WOS database,

the authors were affiliated with 139 countries/regions. The

United States was the country with the highest number of

publications (2,962 articles), followed by China (893 articles),

Germany (471 articles), England (446 articles), and Canada (398

articles) (Supplementary material 3). Notably, the literature

on prediabetes in China has shown rapid growth in the

last decade.
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FIGURE 3

Number of publications in di�erent countries and their growth trends.

In terms of affiliations, there were 7,834 institutes involved in the

field of prediabetes. Harvard University ranked first with 290 articles

on prediabetes, followed by the University of California (269 articles),

the U.S. Department of Veterans Affairs (194 articles), Veterans

Health Administration (192 articles), and the University of Texas

system (191 articles). Eight of the top 10 institutions were located

in the US (Supplementary material 4). There is no doubt that the US

has maintained its lead in the field of prediabetes. Shanghai Jiao Tong

University was the top Chinese institution in terms of the number of

articles on prediabetes and ranked 22nd overall.

3.3. Keywords analysis

Keywords are brief phrases used in indexing or classifying to

describe the topic of an article accurately and concisely. Through

keyword analysis, we can gain a general understanding of the themes

and features of publications (19). Co-occurrence analysis assumes

that keywords in the same documents are strongly related to the

conceptual space of the research area. Clustering the keyword co-

occurrence network provides a method to identify the subfields of a

research area (20).We used author keywords in the following analysis

and built a network with 8,960 nodes and 51,101 links.

Research frontiers can be identified by examining the frequency

and centrality of keywords (21). The top 20 most common

keywords are shown in Table 1. “Prediabetes” was the most

commonly used keyword in the literature, followed by “diabetes”,

“type 2 diabetes”, “diabetes mellitus”, “insulin resistance”, “obesity”,

“metabolic syndrome”, “HBA1C”, “IGT”, “IFG”, and “Insulin”.

The top 100 keywords can be classified into five groups:

prediabetes-related diseases, diagnostic criteria, risk factors,

intervention modalities, and pathological mechanisms

(Supplementary material 5). Diseases frequently addressed in

the literature on prediabetes are “obesity”, “metabolic syndrome”,

and “cardiovascular disease”. Among them, “type 2 diabetes”

appeared more frequently as a keyword than “type 1 diabetes”.

TABLE 1 Top 20 keywords of prediabetes.

Ranking Counts Centrality Keywords

1 2,284 0.387 Prediabetes

2 1,497 0.247 Diabetes

3 903 0.118 Type 2 diabetes

4 526 0.048 Insulin resistance

5 478 0.043 Obesity

6 256 0.013 Metabolic syndrome

7 246 0.011 HBA1C

8 226 0.012 IGT

9 179 0.007 IFG

10 151 0.015 Insulin

11 150 0.018 Type 1 diabetes

12 143 0.008 Inflammation

13 137 0.005 Cardiovascular disease

14 135 0.007 Prevention

15 134 0.004 Risk factors

16 127 0.005 Hyperglycemia

17 106 0.004 Hypertension

18 106 0.005 Secretion of insulin

19 106 0.007 Metformin

20 104 0.005 Epidemiology

“Insulin resistance”, “inflammation”, and “sensitivity to insulin” were

popular pathological mechanisms in prediabetes. The discussions

of the diagnostic criteria in order of frequency were “HBA1C”,

“OGTT”, and “FPG”. Physiological indicators such as “BMI”, “blood

pressure”, and “waist circumference” caused relatively high concern;

“metformin”, “exercise”, and “physical activity” were the most

frequently studied interventions in the field of prediabetes.
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3.4. Cluster analysis of keywords:
Cooccurrence

In Figure 4, we demonstrate the co-occurrence network of the top

400 most frequent keywords. They are clustered into five categories:

“prediabetes”, “type 2 diabetes”, “insulin resistance”, “exercise”,

and “insulin”.

Keywords in the same cluster were presented by the same

color, and they were clustered together because they often appeared

together in the same article. The purple cluster contained four

major keywords: type 1 diabetes, nod, glucose, and insulin. “Nod”

is commonly used for modeling “type 1 diabetes”, and loss of

“insulin” secretion is a key mechanism for the progression of

prediabetes to “type 1 diabetes”. The red cluster gathered the most

articles. It represented some basic questions about prediabetes such

as prevalence, risk factors, and screening. The green cluster was

related to the study of prediabetes mechanisms, such as insulin

resistance, inflammation, and oxidative stress, and the clustering

of prediabetes-related diseases, such as hypertension, metabolic

syndrome, and atherosclerosis. The brown cluster contained some

common measures of prediabetes, such as IFG, IGT, OGTT, insulin

secretion, and insulin sensitivity. The blue cluster contained common

types of prediabetes, such as IFG and IGT, and combined the

most directly related diseases together, such as type 2 diabetes and

cardiovascular disease. The orange cluster mainly reflected lifestyle

interventions for prediabetes such as diet, exercise, and weight loss.

When taking the time dimension into the analysis, Figures 5, 6

show that prediabetes, diabetes, and type 2 diabetes were the top three

keywords in almost all periods, demonstrating the dominance of

these three keywords. Between 2005 and 2007, obesity ranked in the

top three one time, and then, it was surpassed by other keywords.

Another interesting pattern is that the use of insulin resistance as a

keyword increased very quickly since 2010 and ranked fourth in 2020,

which may suggest that it is an emerging research direction.

3.5. Themes and thematic evolution

The themes included the title, abstract and keywords, and features

by conceptualization and normalization. To investigate the dynamic

pattern of the research theme over time, we mapped all clusters into

a strategic diagram using two metrics: centrality and density; the

degree of interaction between clusters is referred to as centrality, and

the degree of internal cohesion is referred to as density (22). The

strategic diagram has four quadrants (Figure 7) and the themes can

be categorized into four groups: (a) motor themes in the upper-right

quadrant which are well-developed and relevant for the research field;

(b) basic and transversal themes in the lower-right quadrant which

are considered relevant for the research field, but not fully developed;

(c) emerging or declining themes in the lower left quadrant which

are poorly or marginally developed, and (d) highly developed and

isolated themes in the upper-left quadrant which are well-developed

but not relevant for the research area. The size of a given cluster

is dependent on the number of keywords it contains, and the label

cluster conforms to the cluster’s most frequently used word. The

Walktrap algorithm was used to cluster the data in this study (23).

As shown in Figure 7, the total period was split into four sub-

periods: 1990–2005, 2006–2013, 2014–2018, and 2019–2022. The

reason for keeping the last period so short, at only 4 years, was to

gain a better understanding of current trends.

In the first period (1990–2005), the fully developed themes

were related to “type 1 diabetes”, “prediabetes”, “hyperglycemia”,

and “nitric oxide”. At that time, scientists believed that the early

prediabetic process may be a suitable target for immunomodulation

aimed at delaying or preventing progression to type 1 diabetes.

The niche themes included Chinese hamster and glucose tolerance,

which were not developed into moto themes in the following period.

Diabetes was among the basic themes.

In the second period (2006–2013), “type 1 diabetes” remained

a fully developed theme. Taken together, the period from 1990 to

2013 had much research focused on type 1 diabetes. However, after

2014, research on “type 2 diabetes” emerged and finally became

the motor theme in the last 4 years (2019-2022). Notably, “obesity”

and “diabetes” were the other two developed themes in the second

period. “Prediabetes” was still a basic theme, despite its larger density.

There were also several new niche themes, such as gene expression,

palatability, and tissue Doppler imaging.

From 2014 to 2018, the theme of “type 1 diabetes” decreased

while the density and centrality of “type 2 diabetes” increased.

“Prediabetes” became a new motor theme, together with “insulin

resistance”. Moreover, “meta-analysis” emerged as a new theme with

moderate centrality and density. After a period of development,

scholars reviewed and examined the existing findings of prediabetes.

In the most recent period from 2019 to 2022, “prediabetes”

remained a motor theme, and “type 2 diabetes” finally joined

the motor quadrant. The research on “insulin” merged into a

single cluster in this period. The basic theme quadrant included

two new clusters: “metformin” and “hyperglycemia”. Moreover,

“hyperglycemia” was a motor theme during the first period.

In summary, the most solid theme identified in the thematic

evolution was “prediabetes”, which is also the most frequent

keyword over time. We also found that the research interest

shifted from “type 1 diabetes” to “type 2 diabetes”. “Obesity”

and “insulin” topics were also relatively solid. However, the

identified niche themes were basically different for different periods.

This may suggest that the research interests changed rapidly

over time.

3.6. References analysis

Table 2 presents the top 20 most highly cited references. Eleven

of these articles were written in the United States, followed by China

(three articles). The epidemiology of prediabetes was the subject

of one-fourth of the 20 most frequently cited articles. The most

frequently cited article “Prevalence of diabetes among men and

women in China” (24), was published by Yang WY in the New

England Journal of Medicine in 2010.

The literature type was assessed by reading the title and

abstract of the top 100 articles. Table 3 shows the literature types

of the 100 most frequently cited articles in the last 3 years.

Cardio-cerebrovascular complications and gut microbiota-related

studies are the two research directions that have been highly

cited in the past 3 years, accounting for 20% of the 100 most

frequently cited articles. Clinical trials and randomized controlled

trials are the most common types of literature in the field
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FIGURE 4

Co-occurrence network of the top 400 keywords.

FIGURE 5

Growth trend of the top 10 keywords.

of prediabetes, accounting for 20% of the 100 most frequently

cited articles.

3.7. Cluster analysis of references:
Co-citations

To better understand the relationship among the references, we

clustered them based on the co-citation network using bibliometrix.

As shown in Figure 8, three groups were obtained: “Knowler. Wc

2002”, “Tabak ag 2012”, and “Matthews Dr1985-1”. The most highly

cited article in the red cluster, “Reduction in the Incidence of Type

2 Diabetes with Lifestyle Intervention or Metformin” (25), was

published in 2002 in the New England Journal of Medicine. The

most highly cited article in the green cluster, “Prediabetes: a high-

risk state for diabetes development” (26), was published in 2012 in

Lancet. The most highly cited article in the blue cluster, “Homeostasis

model assessment: insulin resistance and beta-cell function from
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FIGURE 6

Production of the top 20 keywords over time.

FIGURE 7

Strategic diagram for four periods.
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TABLE 2 Top 20 most highly cited articles of prediabetes.

Rank Citations Citations/year Centrality Year First author Journal

1 2,315 178.1 5.01E-03 2010 Yang WY New England Journal of Medicine

2 2,042 204.2 3.18E-03 2013 Xu Y JAMA

3 1,653 71.9 8.06E-04 2000 Salomon B Immunity

4 1,329 120.8 5.10E-02 2012 Tabak AG Lancet

5 1,288 92 1.14E-04 2009 Scheer FAJL Proceedings of the National Academy of Sciences of United States

of America

6 1,276 116 1.01E-02 2012 Chen L Nature Reviews Endocrinology

7 1,151 143.9 4.38E-03 2015 Menke A JAMA

8 1,127 140.9 3.02E-04 2015 Zeevi D Cell

9 1,097 99.7 3.74E-06 2012 Booth FW Comprehensive Physiology

10 1,037 207.4 2.72E-04 2018 Saklayen MG Current Hypertension Reports

11 981 163.5 3.08E-03 2017 Wang LM JAMA

12 947 30.5 2.01E-03 1992 Martin BC Lancet

13 944 37.8 3.11E-04 1998 Shimabukuro M Proceedings of the National Academy of Sciences of United States

of America

14 917 34 1.48E-05 1996 Yamagata K Nature

15 868 31 8.33E-04 1995 Unger RH Diabetes

16 863 107.9 6.79E-04 2015 Pi-Sunyer X New England Journal of Medicine

17 856 25.9 2.14E-03 1990 Haffner SM JAMA

18 854 47.4 5.46E-06 2005 Krentz AJ Drugs

19 689 28.7 2.86E-05 1999 Perseghin G Diabetes

20 687 49.1 4.75E-04 2009 Eizirik DL Nature Reviews Endocrinology

fasting plasma glucose and insulin concentrations in man” (27), was

published in 1985 in Diabetologia.

Citations featured in the red cluster had the highest number of

total citations, and their prediabetes related articles were especially

significant in the first period. Most of them were published in high-

impact journals such as the Lancet and the New England Journal

of Medicine. The majority of the studies were long-term follow-up

studies to investigate the prevalence of diabetes and related diseases

and the impact of lifestyle interventions. Citations featured in the blue

cluster were also less consistent in terms of their topics. They covered

the longest time span (1972–2009).Most of the cited literature focuses

on the detection, evaluation, and treatment of blood glucose, blood

pressure, and blood lipids. Most were published in Diabetes Care.

The green cluster cited many important prediabetes guidelines and

expert consensus. These studies were relatively new, concentrated in

the third period, and were mostly published in Diabetes Care.

3.8. Collaboration network

We clustered the countries and authors based on their

collaboration network using bibliometrix. The nodes in the

collaboration network were authors or countries, and the links

represented co-authorship.

The collaboration network between countries can be seen in

Figure 9. The US was the country with the most international

collaboration in the field, followed by the United Kingdom, Germany,

Denmark, and Australia. It is worth noting that, while China

was the second most active country in terms of the number of

articles, it ranked sixth in international collaboration. In terms of

the frequency of collaboration, the top five country pairs were

all between the United States, China, the UK, Italy, Canada,

and Germany.

The authors’ collaboration network (Figure 10) was mapped

into four clusters. Each color in this network represents a single

cluster or a group of collaborating authors. Figure 10 shows that

the collaborators were mostly from the same country or region.

Most of the collaborative studies were large clinical trials, cohort

studies, or randomized controlled studies of diabetes, prediabetes,

and related diseases. These studies require collaboration between

research institutions. Authors clustered in the red and orange groups

were from Germany. However, the authors of the orange cluster were

all from the University of Tübingen. The authors clustered in the blue

and purple clusters were from China; the authors of the blue cluster

were all from Shanghai Jiao Tong University.

There were four clusters in the institution collaboration network

(Figure 11). In the purple cluster, all but Imperial College London

were Finnish universities. In the green cluster, all institutions were

Chinese universities and hospitals, except for Tulane University

and Johns Hopkins University. The US and Canadian universities

comprised the red cluster. Mahidol University in Thailand also

belonged to the red cluster. Finally, two institutions from Spain

formed the blue cluster.
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4. Discussion

The general term “prediabetes” refers to the stage between

normal glucose tolerance and T2DM. It is generally recognized

that individuals with prediabetes are at a high risk of developing

T2DM (28). The bibliometric analysis is a useful tool for mining

TABLE 3 The research types of the 100 most highly cited articles

(2020–2022).

Type of research Number Percentage

Cardio-cerebrovascular complications 13 13%

Clinical Trial 12 12%

Randomized controlled trial 11 11%

Epidemiology 10 10%

Review 10 10%

Experimental Research 8 8%

Gut Microbiota-related studies 7 7%

Meta-analysis 6 6%

Pathophysiology 5 5%

Diagnostic techniques 4 4%

Cohort study 4 4%

Medical care 4 4%

Guidelines 3 3%

Lifestyle intervention 2 2%

information about a research field. Through a bibliometric analysis,

researchers can quickly capture the characteristics and hot spots of

the literature in a specific field (19). Therefore, a comprehensive

understanding of prediabetes could be obtained by using the

bibliometric analysis method, which contributes to subsequent

research and clinical treatment.

However, there are differing viewpoints regarding the necessity

of and criteria for the diagnosis and intervention of prediabetes.

Institutions such as the WHO, the National Institute for Health and

Care Excellence (NICE), the European Association of the Study of

Diabetes (EASD), and the International Diabetes Federation (IDF) do

not use or emphasize the term prediabetes, and they normally advise

treatment only when blood sugar levels approach those of diabetes.

The ADA and the Centers for Disease Control and Prevention

(CDC) fund much of the nation’s research and programs on diabetes

prevention. The ADA criteria and theWHO criteria are currently the

two most commonly used criteria for prediabetes. Different from the

WHO standard, in the ADA standard, the lower FPG cutoff point

value of IFG was reduced to 5.6 mmol/L and included glycosylated

hemoglobin (HbA1C) from 5.7 to 6.4% as one of the diagnostic

criteria for prediabetes. The lower cutoff value defined by the ADA

guidelines led to much higher prevalence rates compared with those

defined by theWHO guidelines. In a cohort of 1,547 American adults

without diabetes, changing the lower IFG threshold from 110 to 100

mg/dL resulted in an increase in prediabetes prevalence from 19.8 to

34.6% (29).

Currently, the frequency and rate of prediabetes progression to

diabetes are unclear. Whether prediabetes itself causes harm is not

clear, particularly when a person’s average glucose levels are at the low

FIGURE 8

Co-citation network.
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FIGURE 9

Country collaboration network.

end of the test result spectrum. The CDC data show a progression

from prediabetes to diabetes at a rate of <2% per year or <10% in

5 years. The Cochrane Library in London showed that up to 59%

of prediabetes patients returned to normal glycemic values over 1–

11 years with no treatment whatsoever. Therefore, the diagnosis and

treatment of prediabetes is not only a medical problem but also

a social and economic problem. More research is still needed to

determine a suitable definition and other tipping points in identifying

the risk of progression to diabetes and other complications1

This study examined the progression of prediabetes-related

research during the last 37 years. Since 2005, the number of articles

1 https://www.science.org/content/article/war-prediabetes-could-be-

boon-pharma-it-good-medicine

on prediabetes has been increasing steadily.With the improvement of

living standards and unhealthy behaviors such as physical inactivity,

the incidence of prediabetes has increased significantly (30). The

booming literature on prediabetes reflects the growing awareness

of the importance of detecting and treating prediabetes. Over 98%

of the articles were written in English. The majority of the articles

were published by corresponding authors from the United States,

China, Germany, Canada, and South Korea. These countries face a

high incidence of diabetes and emphasize disease prevention (31).

The majority of prediabetes relationships are similarly based in the

United States, which is consistent with the country’s substantial

contribution to this academic subject, indicating that collaborations

with other countries/territories should be strengthened. As a country

with the second-highest number of prediabetes articles, China only
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FIGURE 10

Author collaboration network.

FIGURE 11

Institution collaboration network.

ranks sixth in international collaboration. Therefore, as the country

with the highest incidence of diabetes, China should strengthen

international collaboration in the future to improve the ability to

diagnose, prevent, and treat prediabetes.

In terms of authorship, the 20 most prolific authors have written

786 articles, accounting for 10.3% of all papers. They have made

significant contributions to the development and progression of

prediabetes research. Rathmann W was the most prolific author
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(71 articles) followed by Peters A (58 articles). The journal Diabetes

Care published most of the literature relevant to prediabetes among

the top 20 medical journals. It also had the highest IF, which

reached 17.152 in 2021, demonstrating its superiority in quantity and

quality. Furthermore, eight of the top 20 journals were American

journals, reflecting the US’s considerable interest and leadership in

this field. Eight of the top 10 institutions were from the US, and

Harvard University ranked first. The collaborators tended to come

from the same country or region. China and Germany were the two

countries with the highest concentration of collaboration networks,

especially Shanghai Jiao Tong University in China and the University

of Tubingen in Germany.

According to the 2021 worldwide diabetes atlas issued by the

International Diabetes Federation (IDF), China, India, and Pakistan

had the highest number of people with diabetes among the 20- to 79-

year-old population in 2021(31). The highest diabetes-related health

expenditure was observed in the United States (USD $379.5 billion),

followed by China and Brazil (USD $165.3 billion and USD $42.9

billion, respectively). Both China and the United States attach great

importance to diabetes prevention. The idea of “preventive treatment

of disease” has existed in China since ancient times and a series of

guidelines, such as the “Guideline for the prevention and treatment of

type 2 diabetes mellitus in China (2020 edition)”(32), which has been

published. The Diabetes Prevention Program (MDPP) had already

been launched in 25 centers in the United States (33). As shown

in this study, the United States and China have published the most

articles in the prediabetes field. Low- and middle-income countries

have higher numbers of people with diabetes and higher growth

rates of diabetes prevalence. However, we found that their attention

to prediabetes is low. In terms of economic development, although

large-scale screening and education for prediabetes also require high

financial investment, it may reduce the incidence of diabetes and

the economic burden of diabetes and diabetes complications in the

long run. India and Pakistan rank third and fourth in the number

of patients with diabetes, respectively, but rank 10th and 44th in the

area of prediabetes publications. India’s research and development

(R&D) intensity was only 0.66% in 2018 (34), much lower than that of

2.14% in China2. The disparity is a result of less research investment,

lower diabetes-related health expenditures, and insufficient attention

to diabetes prevention (35). On the one hand, the national annual

cost associated with the diagnosis of diabetes is USD $327.2 billion

and that for prediabetes is $43.4 billion. The economic burden of

diagnosed diabetes may be reduced by intervening in prediabetes

(36). On the other hand, screening and education for prediabetes

may also pose a financial burden. The ADA, CDC, and other

organizations have already spent billions on research, education,

and health improvement programs. To date, no studies have been

undertaken to calculate whether the investment in diagnosing and

treating prediabetes can reduce the cost of diabetes treatment due to

failure to intervene early.

A detailed reading of the literature in the field of prediabetes

over the past 3 years revealed that 13% of the articles were related

to cardiovascular risk (37). “Insulin resistance”, “inflammation”, and

“sensitivity to insulin” are common mechanisms in the field of

prediabetes (38–40). Research related to gut microbes is an emerging

2 https://www.indexmundi.com/facts/china/research-and-development-

expenditure

hot topic in the field of prediabetes over the past 3 years (41).

Epidemiological studies accounted for 10% of prediabetes studies.

Much attention has been given to the prevalence of prediabetes.

However, there is no consensus on the definition of prediabetes. The

complexity of defining prediabetes makes it challenging to obtain

profiles of relative prediabetes prevalence from the literature (42).

At least five different definitions have been endorsed by different

clinical organizations and guidelines. Comparisons of incidence rates

between countries will be meaningful only if diagnostic criteria

are standardized.

The classification of prediabetes is mainly based on plasma

glucose, which is divided into impaired fasting glucose (IFG) with

elevated FPG and normal OGTT and into impaired glucose tolerance

(IGT) with elevated OGTT and normal FPG. In addition, there are

classification of IFG + IGT as well as classification with elevated

glycated hemoglobin (HbA1C) (43). In the ranking of keywords in

articles related to prediabetes, IGT appeared as a keyword in 205

prediabetes articles and ranked 9th. IFG appeared as a keyword in

165 articles and ranked 11th. HBA1c appeared as a keyword in 135

articles and ranked 14th. It can be seen that the type of prediabetes

has received much attention in the field of prediabetes. We are not

sure about the effectiveness of different types of prediabetes for the

assessment and prevention of diabetes conversion. Further research

is needed to explore blood glucose (FPG, OGTT) and HbA1C in

identifying the risk of progression to diabetes and whether there

are other tipping points. Further research is needed to determine

which of the current definitions of prediabetes has the highest ability

to discriminate between individuals who transition to diabetes and

those that do not and to see how their performance varies with age,

sex, and geographic location.

Clinical trials and randomized controlled trials accounted for

23% of the prediabetes literature in the last 3 years. This shows

the strong need to develop an appropriate prediabetes intervention.

To date, no drugs have been approved specifically for prediabetes,

meaning that doctors are limited to prescribing diabetes drugs or

other medications “off label” to treat the condition. Metformin is the

most commonly used drug (44). However, metformin is not always

prescribed for prediabetes, even if a patient meets the prediabetes

criteria. Only people who are at a higher risk for developing type 2

diabetes or who have more risk factors may benefit from metformin

therapy. Risk factors include having a higher body mass index (BMI)

and prior gestational diabetes (45). Exercise, physical activity, and

diet are common lifestyle interventions (46–48). With early detection

and simple lifestyle changes (such as diet and exercise), prediabetes

is often reversible (49–51). However, 38% of the lifestyle treatment

group failed to maintain the strict regimen after only 6 months. More

studies are needed to determine the best method and timing for

intervention in prediabetes.

This study explores research trends and hotspots of prediabetes,

which is useful to many researchers. On the one hand, researchers

can use the research trend to prevent certain obsolete research on

specific themes, reduce the repetitive effort in research initiatives,

and reduce project funding waste. On the other hand, depending

on research hotspots, researchers can optimize and improve their

study design, making prediabetes research more novel and realistic.

This study also presents a timeline of the changes in prediabetes

research. It lays the groundwork for precise prediabetes prevention

and treatment and provides a necessary reference value for the

formulation of prediabetes guidelines and the adjustment of medical
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insurance policies. Ultimately, more individuals will benefit from

lessening the medical load as well as the economic costs associated

with prediabetes prevention and treatment around the world.

However, the limitations of this study must be mentioned. First,

this study only examined publications in English, which might have

led to bias in the study outcomes. Second, we only retrieved data

from the WOS database and did not search additional databases or

preprint articles for information, resulting in inadequate literature

collection. Finally, while bibliometric analysis is a strong tool for

revealing precise study trends, it provides little information about

research content, such as methods or results. More review studies

are needed to go deeper into the research content to enhance

prediabetes research.

5. Conclusion

The current study examined the research hotspots, frontiers, and

development patterns in the field of prediabetes, with a focus on

global research outcomes. The number of articles on prediabetes has

increased over the last few decades, indicating that this new topic

is gaining traction. Our findings provide an overview of the current

status of diabetes research and have significant implications for future

research directions.
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The triglyceride 
glucose-waist-to-height ratio 
outperforms obesity and other 
triglyceride-related parameters in 
detecting prediabetes in 
normal-weight Qatari adults: A 
cross-sectional study
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Introduction: The triglyceride-glucose (TyG)-driven indices, incorporating 
obesity indices, have been proposed as reliable markers of insulin resistance and 
related comorbidities such as diabetes. This study evaluated the effectiveness of 
these indices in detecting prediabetes in normal-weight individuals from a Middle 
Eastern population.

Methods: Using the data of 5,996 adult Qatari participants from the Qatar Biobank 
cohort, we employed adjusted logistic regression to assess the ability of various 
obesity and triglyceride-related indices to detect prediabetes in normal-weight 
(18.5 ≤ BMI <25 kg/m2) adults (≥18 years).

Results: Of the normal-weight adults, 13.62% had prediabetes. TyG-waist-to-
height ratio (TyG-WHTR) was significantly associated with prediabetes among 
normal-weight men [OR per 1-SD 2.68; 95% CI (1.67–4.32)] and women [OR per 
1-SD 2.82; 95% CI (1.61–4.94)]. Compared with other indices, TyG-WHTR had 
the highest area under the curve (AUC) value for prediabetes in men [AUC: 0.76, 
95% CI (0.70–0.81)] and women [AUC: 0.73, 95% CI (0.66–0.80)], and performed 
significantly higher than other indices (p < 0.05) in detecting prediabetes in men. 
Tyg-WHTR shared similar diagnostic values as fasting plasma glucose (FPG).

Discussion: Our findings suggest that the TyG-WHTR index could be  a better 
indicator of prediabetes for general clinical usage in normal weight Qatari adult 
men than other obesity and TyG-related indices. TyG-WHTR can help identify a 
person’s risk for developing prediabetes in both men and women when combined 
with FPG results.

KEYWORDS

prediabetes, diabetes, triglyceride-glucose-related waist-to-height ratio, obesity, 
normal-weight, Qatar
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Introduction

Although most normal-weight adults with BMI between 18.5 and 
25 kg/m2 are seemingly healthy, a significant number of them may 
be  affected by undiagnosed metabolic disorders such as insulin 
resistance, prediabetes, type 2 diabetes (T2D), and nonalcoholic fatty 
liver disease (NAFLD) (1). These individuals are classified as Normal-
Weight Obese (NWO) because they usually have a high body fat mass 
but a normal BMI (2). Because of their increased risk of 
cardiometabolic morbidity and mortality, there is a growing interest 
in this group of subjects (2–4). The global prevalence of NWO ranges 
from 4.5 to 22% due to the wide variation in body fat percent cut-offs 
used to diagnose excess body fat in different populations (5). The exact 
etiology of NWO is unclear, but genetics, diet, and physical activity 
have all been associated with the condition. Compared to normal-
weight lean (NWL) subjects with a normal BMI and body fat amount, 
the NOW subjects present changes in body composition, 
inflammation, and oxidative stress (2).

Screening for prediabetes and diabetes is recommended in 
overweight or obese adults (6). However, given the prevalence of 
NWO, these disorders may go undiagnosed in individuals with a 
seemingly normal weight. Prediabetes is a subclinical high-risk state 
that could lead to diabetes and conventional diabetes complications 
(7). Prediabetes is associated with the concomitant presence of insulin 
resistance and β-cell dysfunction, instigated before detectable glucose 
modifications (8). Prediabetes is defined as having a Hb1Ac level 
between 5.7 and 6.4% (39 and 47 mmol/mol), a fasting glucose 
concentration between 100 and 125 mg/dL (5.6 and 6.9 mmol/L), or a 
2 h oral glucose tolerance test between 140 and 200 mg/dL (7.8–
11.0 mmol/L) (6). Prediabetes affected 7.5% of the global population 
in 2019, and this figure is expected to rise to 8.6% by 2045 if no prompt 
actions are taken (Saeedi, 2019 #5).

According to previous prospective studies, the annualized 
conversion rate from prediabetes to diabetes is between 5 and 10%  
(8, 9). Additionally, persons with prediabetes have a 6-year risk of T2D 
at a rate of 33–65%, compared to 5% of those with normoglycemia (10).

Reports from the Middle East region show that, like T2D, 
prediabetes is highly prevalent in the region’s nations, with rates 
ranging from 20 to 40% (11, 12). Fortunately, many people with 
prediabetes can revert to normoglycemia and prevent the progression 
to T2D in response to sustained lifestyle changes and/or medication 
(13–16). Hence, identifying convenient clinical markers that can 
efficiently diagnose prediabetes would benefit from closer monitoring 
and early intervention to prevent T2D onset.

To date, the gold standard test for prediabetes diagnosis is the 
oral glucose tolerance test (OGTT), fasting plasma glucose (FPG), 
and HbA1c levels (11, 12). However, several studies have shown 
discordance between HbA1c and glycemia (17–21). This 
discordance could have a significant impact on clinical practice. 
Consequently, there is a need for improved and more reliable 
diagnostic tools for prediabetes and diabetes. Numerous obesity 
indices (22)such as waist circumference (WC) (23), waist-to-
height ratio (WHR) (24), Visceral Adiposity Index (VAI) (12) and 
lipid accumulation product (LAP) (12, 22) have had their potential 
in predicting diabetes. However, many promising surrogate indices 
are being studied for predicting diabetes and performed better 
than the traditional markers identified hereinabove. These markers 
include the triglyceride glucose (TyG)-related parameters (TyG), 

TyG–Body mass index (TyG-BMI), TyG-WC, and TyG-WHTR 
(25–30). Some epidemiological studies also targeted a few 
surrogate indices in predicting prediabetes. Wen et al. found that 
TyG performed better as an indicator for prediabetes than the 
conventional markers in the Chinese Elderly (31). TyG also scored 
higher as a predictive index for prediabetes among 
reproductive-age women (32). Furthermore, the TyG index was 
useful as a surrogate tool to estimate dysglycemia in obese 
adolescents (33, 34).

To the best of our knowledge, no previous study has investigated 
the association of triglyceride glucose (TyG)-related indices with 
prediabetes in a population from the Middle East. Consequently, this 
cross-sectional study sought to investigate the association of 
TyG-glucose-related parameters with prediabetes, especially in 
normal-weight individuals, and evaluate their superiority over 
conventional dysglycemia risk factors.

Methods

Study population

We obtained cross-sectional clinical, anthropometric, and 
demographic data of 5,996 Qatari individuals aged between 18 and 
86 years and collected between 2012 and 2020 by the Qatar Biobank 
(QBB), a national institute running a well-phenotyped cohort of 
individuals from the general population (35). Based on the American 
Diabetes Association guidelines, 1996 (33.2%) of the 5,996 subjects 
had prediabetes, defined as having HbA1c levels between 39 mmol/
mol (5.7%) and 47 mmol/mol (6.4%).

Anthropometric and clinical measures

Plasma samples of patients fasting for at least 6 h were handled 
according to a standard protocol within 2 h of blood collection. FPG, 
HbA1c, triglyceride (TG), total cholesterol (TC), low-density lipid 
cholesterol (LDL-C), and high-density lipid cholesterol (HDL-C) were 
analyzed with an automated biochemical analyzer at the central 
laboratories at the Hamad Medical Corporation in Doha. Bodyweight 
(kg) and height (cm) were measured in a standing position. BMI (kg/
m2) was calculated as weight (kg) divided by the square of height (m). 
We used Caucasian BMI cut-off values to categorize BMI into two 
groups: normal-weight (BMI 18.5–24.9 kg/m2) and overweight/obese 
(BMI ≥25 kg/m2). Prediabetes cases were defined as those individuals 
with HbA1c between 39 mmol/mol (5.7%) and 47 mmol/mol (6.4%), 
whereas controls were those with HbA1c < 39 mmol/mol (5.7%). An 
informed written consent to use collected data for research was 
obtained by the QBB for all the participants. The present project was 
approved by the IRB of the Qatar biobank (protocol 
Ex-2018-Res-ACC-0123-0067).

Definitions of obesity and triglyceride 
indices

We used the formulas in the table below to define the obesity or 
TyG-related indices.
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Statistical analysis

The subjects were divided into groups for statistical analysis 
based on gender, prediabetes presence or absence, BMI, and age 
as needed.

Data analyses were performed using Stata/IC 16.1 software.1 
Descriptive statistics were used to compare the baseline 
characteristics of the participants. Variables with outliers were 
winsorized using winsor2 command in Stata. Continuous 
variables were expressed as means ± standard deviation (SD) and 
compared using the independent sample T-test between the two 
groups. Categorical variables were expressed as percentages, and 
the Chi-squared test was employed to compare two groups. The 
odds of prediabetes were determined by binary logistic regression, 
using the continuous variables for both obesity and triglyceride 
indices as independent variables. Odd ratios (ORs) were 
standardized by using transformed observations [(observation − 
mean)/SD] in the models. Results are presented as Odds Ratios 
(OR) with associated 95% confidence intervals (CI) for 1-SD 
increase of the independent variables. The predictive value for 
prediabetes of each index was determined by the area under the 
curve (AUC) in the Receiver operating characteristic curve (ROC) 
analyses. The cut-off point was selected according to the Youden 
index (sensitivity + specificity −1). Statistical significance was set 
at p < 0.05.

1 http://www.stata.com

Results

Demographic and clinical characteristics of 
participants

Table 1 displays the baseline characteristics of the participants. Of 
the 5,996 individuals, 1996 had prediabetes (HbA1c between 5.7 and 
6.5%). The mean age of normoglycemic subjects and those with 
prediabetes was 36.37 and 48.17 years old, respectively (p < 0.001). 
Women represented 53.9% of the normoglycemic subjects and 53.3% 
of the subjects with prediabetes. Subjects with prediabetes showed 
significantly higher obesity and TyG-related indices than those with 
normoglycemia (p < 0.05).

Associations of indicators with prediabetes 
risk

Gender-specific multivariate logistic regression models were fitted 
for each indicator variable to calculate the age-adjusted OR (aOR) per 
1-SD with 95% CI for prediabetes. The aORs per 1-SD for the obesity 
and TyG indices were significant in both men and women (Table 2). 
Among the tested indices, TyG-WHTR and TyG-WC showed the 
strongest association with prediabetes [TyG-WHTR: aOR 2.19; 95%CI 
(1.96–2.46) in men and aOR 2.76; 95%CI (2.30–2.86) in women; 
TyG-WC: aOR 2.08; 95% (1.87–2.32) in men and aOR 2.68; 95% 
(2.38–3.02) in women].

Further stratification of subjects by BMI resulted in higher aORs 
per 1-SD for prediabetes in the normal-weight (NW) individuals 
compared to overweight/obese (Ow/Ob) for most indices, mainly 
Tyg-BMI, TyG-WC, and TyG-WHTR (Figure 1). In NW men and 
women, TyG-BMI had the highest aOR for prediabetes [aOR 3.37; 
95%CI (1.71–6.65) and aOR 4.19; 95%CI (1.82–9.61) in NW men and 

TABLE 1 Obesity and TyG-related indices.

Obesity indices

Index name Abbreviation Formula References

Waist-to-height ratio WHTR WHTR = Waist (cm)/Height (cm) (36)

Visceral Adiposity Index VAI (Men) VAI(men) = [(WC (in cm)/39.68) + (1.88 × BMI (in 

Kg/m2))] × [(TG (in mmol/L)/1.03)  

× (1.31/HDL-C (in mmol/L))]

(37)

Visceral Adiposity Index VAI (Women) VAI(women) = [(WC (in cm) /36.58) + (1.89 × BMI 

(in Kg/m2))] × [(TG (in mmol/L)/0.81) × (1.52/HDL-C 

(in mmol/L))]

(37)

Lipid accumulation product LAP (Men) LAP (men) = [WC (in cm)-65] × TG (in mmol/L) (38)

Lipid accumulation product LAP (Women) LAP (women) = [WC (in cm)-58] × TG (in mmol/L) (38)

TyG related parameters

Triglyceride-glucose TyG TyG = Ln [(TG (in mg/dL) × FBG (in mg/dL)/2)] (39)

Triglyceride-glucose-BMI TyG-BMI TyG-BMI = TyG × BMI (27)

Triglyceride-glucose-waist 

circumference

TyG-WC TyG-WC = TyG × WC (27)

Triglyceride-glucose-waist-to-height 

ratio

TyG-WHTR TyG-WHTR = TyG × WHTR (27)
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NW women, respectively]. TyG-WHTR and TyG-WC indices were 
also strongly associated with prediabetes [TyG-WHTR: aOR, 2.68; 
95% CI (1.67–4.32) in NW men and aOR, 2.82; 95%CI (1.61–4.94) in 
NW women; TyG-WC: aOR, 2.33; 95% CI (1.49–3.66) in NW men 
and aOR, 2.97; 95% (1.63–5.38) in NW women]. In Ow/Ob 
individuals, TyG-WC and TyG-WHTR had the highest aORs in men 
and women compared to all other indices [TyG-WC: aOR 2.16; 95% 
CI (1.90–2.47) in Ow/Ob men and aOR, 2.76; 95%CI (2.41–3.16) in 
Ow/Ob women; TyG-WHTR: aOR, 2.30; 95%CI (2.00–2.64) in Ow/
Ob men and aOR, 2.65; 95% CI (2.34–3.00) in Ow/Ob women].

The predictive value of each index for 
prediabetes in normal-weight individuals

We performed ROC analysis to assess the predictive value of each 
index for prediabetes in NW individuals. The results of the ROC curve 

analysis for each index are shown in Table 3 and Figure 2. The largest 
AUC observed in NW men corresponded to TyG-WHTR index 
[AUC: 0.76, 95% CI (0.70–0.81)] followed by TyG-WC [AUC: 0.74, 
95% CI (0.69–0.79)]. The indices with the highest predictive value for 
prediabetes in NW women were TyG-WHTR [AUC: 0.73, 95% CI 
(0.66–0.80)] and TyG-WC [AUC: 0.73, 95% CI (0.66–0.79)]. TyG BMI 
and TyG showed approximately similar predictive ability when 
predicting prediabetes in normal-weight men and women [AUC 
ranging between (0.69 and 0.70)]. When predicting prediabetes, 
TyG-WC and TyG-WHTR had the highest sensitivity (76% for 
TyG-WC and 74% for TyG-WHTR) and Youden index (0.421 for 
TyG-WC and 0.432 for TyG-WHTR) in NW men. In NW women, 
LAP and TyG-WHTR had the highest sensitivity (75% for LAP and 
76% for TyG-WHTR), and the WHTR and TyG-WHTR had the 
highest Youden index (0.413 for WHTR and 0.427 for TyG-WHTR).

Tyg-WHTR index had the highest ability to 
predict prediabetes

The index with the highest AUC value was contrasted with the 
other indices in the ROC analysis to determine the superior indicator 
for prediabetes (Table  4). The AUC of the TyG-WHTR index for 
prediabetes was significantly higher than all other indices in NW men 
(p < 0.05). In women, the predictive value of TyG-WHTR was 
significantly higher than the AUC of WC (p < 0.004), WHTR 
(p < 0.049), VAI (p < 0.008). However, TyG-WHTR was not 
significantly different from the other TyG-related indices and LAP 
(p > 0.05).

Since FPG levels are one of the determinants for prediabetes 
diagnosis, subgroup analyses were conducted to assess whether 
Tyg-WHTR and FPG indices might differentially predict prediabetes. 
The OR and the AUC of TyG -WHTR for prediabetes were compared 
to that of FPG in different subgroups, as shown in Table  5. TyG 
WHTR performed similarly to FPG in NW men [TyG-WHTR: AUC 
0.76, 95% CI (0.70–0.81) versus FPG: AUC 0.76, 95% CI (0.72–0.81), 
p = 0.76] and women [TyG-WHTR AUC 0.73, 95% CI (0.66–0.80) 
versus FPG AUC 0.68, 95% CI (0.61–0.76), p = 0.13]. Similarly, no 
significant difference was found in Ow/Ob men [TyG-WHTR: AUC 
0.71, 95% CI (0.69–0.74) versus FPG: AUC 0.74, 95% (0.72–0.76), 
p = 0.4]. In contrast, the predictive value of the TyG-WHTR index was 
significantly higher than FPG in obese women [TyG-WHTR: AUC 
0.77, 95% CI (0.75–0.78) versus FPG: AUC 0.75, 95% CI (0.73–0.77) 
p = 0.0034].

We then estimated the prediabetes risk probabilities of 
TyG-WHTR based on four age subgroups: less than 30 years old (Q1), 
between 30 and less than 45 years old (Q2), between 45 and less than 
60 years old (Q3), and > 60 years (Q4) (Figure 3). The results indicate 
that the probability of having prediabetes increases gradually and 
significantly with age in NW men and OW/Ob men and women but 
not in NW women.

Discussion

The current study aimed to compare how well obesity and 
TyG-related indices might detect prediabetes in Qatari people who 
were normal-weight (NW). In NW men, TyG-WHTR had the highest 

TABLE 2 Baseline demographic and clinical characteristics of the 
participants.

NG (n = 4,000) Prediabetes 
(n = 1996)

p-value

Men/Women 1842/2158 928/1068

Age 36.37 ± 10.42 48.17 ± 11.39 <0.0001

BMI (Kg/m2) 28.45 ± 5.58 32.02 ± 5.58 <0.0001

NW/(Ow + Ob) 1090/2910 172/1824 <0.0001

SBP (mm Hg) 111.11 ± 12.93 121.67 ± 15.00 <0.0001

DBP (mm Hg) 66.94 ± 9.89 72.22 ± 10.55 <0.0001

TC (mmol/L) 4.94 ± 0.89 5.15 ± 0.94 <0.0001

TG (mmol/L) 1.17 ± 0.64 1.49 ± 0.72 <0.0001

HDL-C 

(mmol/L)

1.41 ± 0.37 1.31 ± 0.34 <0.0001

LDL-C 

(mmol/L)

2.99 ± 0.82 3.16 ± 0.88 <0.0001

FPG (mmol/L) 4.88 ± 0.56 5.60 ± 0.89 <0.0001

HbA1c (%) 5.17 ± 0.3 5.9 ± 0.21 <0.0001

TyG-related parameters

TyG 8.29 ± 0.51 8.68 ± 0.49 <0.0001

TyG-BMI 236.7 ± 51.79 278.35 ± 51.26 <0.0001

TyG- WC 714.85 ± 131.48 834.09 ± 122.77 <0.0001

TyG-WHTR 4.33 ± 0.75 5.11 ± 0.72 <0.0001

Obesity indices

WC (cm) 85.86 ± 12.92 95 ± 12.11 <0.0001

WHTR 0.52 ± 0.07 0.58 ± 0.07 <0.0001

VAI 1.38 ± 1.08 1.94 ± 1.30 <0.0001

LAP 31.17 ± 26.88 52.46 ± 32.22 <0.0001

Values are presented as range, mean ± SD, or frequencies (%). NW, normal-weight; Ow + Ob, 
overweight + obese; NG, Normoglycemic; BMI, body mass index; FPG, fasting plasma 
glucose; HDL-C, high-density lipoproteins; LDL-C, low-density lipoproteins; TC, total 
cholesterol; TG, total triglycerides; SBP, Systolic blood pressure; DBP, Diastolic blood 
pressure; WC, Waist Circumference; WHTR Waist Height-Ratio; VAI, Visceral Adiposity 
Index; LAP Lipid Accumulation Product; TyG, Triglyceride Glucose; TyG-BMI, TyG related 
to BMI; TyG-WC TyG related to WC; TyG-WHTR, TyG related to WHTR. Statistical 
significance is considered at p < 0.05.
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predictive value compared to all other and most obesity indices in 
women. Furthermore, TyG-WHTR performed similarly to the 
conventionally adapted FPG index in normal-weight men and 
women, as well as in obese men, but was superior to FPG in obese 
women. These results suggest using the TyG-WHTR index as a 
potential predictor of prediabetes for general clinical usage in normal-
weight men. When coupled with FPG results, TyG-WHTR can further 
determine prediabetes predisposition in both men and women. In 
addition, our results enabled us to determine optimal cut-off points of 
WC and WHTR for identifying prediabetes in normal-weight Qatari 
adults; WC ≥ 79.5 cm and WHTR ≥ 0.47 for men, and WC ≥ 71.5 cm 
and WHTR ≥ 0.45 for women.

According to the World Health Organization, the WC cut-off 
point for various metabolic disorders varies by ethnicity (40). 
Although, the present data facilitated the identification of the WC and 
WHTR cut-off points needed for predicting prediabetes risk in a 
Middle Eastern population, a person’s height can affect the predictive 
ability of WC (36). As a result, adopting the WHTR marker 
outweighed BMI and WC in predicting certain metabolic diseases, 
including diabetes (26, 41, 42). In line with these findings, our results 
revealed that the association of WHTR with prediabetes was stronger 
than WC among the normal-weight adult population.

Furthermore, WHTR had higher specificity in normal-weight 
men and women than WC and higher sensitivity in women. This 
result suggests that WHTR may have a better predictive ability than 
WC and may be  used to screen for prediabetes. Although these 
anthropometric parameters performed poorly than the TyG-WHTR 

index, as indicated by the ROC curve analyses, their predictive value 
was equivalent to LAP, VAI, and the other TyG-related indices. These 
findings point to the inclusion of these predictors collectively to 
improve the accuracy of prediabetes diagnosis over anthropometric 
indices alone.

Obesity increases the risk of numerous chronic disease, such as 
T2D, metabolic syndrome, hypertension, dyslipidemia, 
hyperinsulinemia, coronary artery disease, cardiovascular disease, 
osteoarthritis, chronic kidney disease, and numerous cancers. It is also 
linked to non-alcoholic steatohepatitis, sleep apnea, depression and 
other psychiatric disorders. Studies have also shown that obesity may 
have an impact on cognitive function and that a higher BMI may 
increase the chance of dementia or other cognitive impairments in 
later life (43).

Obesity and being overweight are known diabetes and prediabetes 
risk factors. However, these disorders can affect people with lower 
BMIs as well. The fasting triglyceride and glucose parameters have 
been proposed as alternative surrogate markers for identifying insulin 
resistance and diabetes (22, 27–30). Our study supports this finding, 
and all TyG-related parameters predict individuals with prediabetes 
(AUC > 0.5). On a large scale, when the AUC is equal to 1, it indicates 
faultless predictive power, and an AUC ≤ 0.55 means that the 
predictive power of a parameter is not better than chance (44). 
TyG-BMI showed the highest OR for prediabetes occurrence in 
normal-weight men. However, as determined by the AUC, its 
predictive value was not the highest compared to the other indices. 
The TyG-WHTR had the highest AUC value in men and women and 

NW men NW women

Ow/Ob men Ow/Ob women

A B

C D

FIGURE 1

Strength of association of obesity and triglyceride indices with prediabetes in normal-weight and overweight/obese individuals. Age-adjusted Odds 
Ratios and 95%CI for prediabetes in each index by per 1-SD in NW men (A), NW women (B), Ow/Ob men (C), Ow/Ob women (D). ***p < 0.001. 
Statistical significance is considered at p < 0.05. *** indicates p < 0.001.
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was selected as the primary index for predicting prediabetes. The 
cut-off points indicated sensitivity and specificity values between 66 
and 76% for both sexes, thus reducing false-positive and false-negative 
cases. TyG-WHTR proved significantly different from all obesity-
related parameters in men and was significantly higher than the 
remaining TyG-related indices. It also had the highest AUC and was 
significantly different from all other indices in the obese population 
(Supplementary Tables S1, S2). Therefore, TyG-WHTR could 
potentially be adopted for identifying prediabetes in normal-weight 
and Ow/Ob men. Many TyG-related parameters were assessed for the 
predictive value of prediabetes and diabetes. However, no evidence has 
been published regarding the relationship between TyG-WHTR and 

prediabetes in normal-weight individuals. However, in recently 
published studies, TyG-WHTR exceeded the commonly used 
anthropometric markers in predicting diabetes (45, 46).

The TyG-WHTR index’s capacity to detect prediabetes was 
contrasted with FPG’s to determine whether it could be  a useful 
screening tool. The results demonstrated that the predictive abilities 
were all significantly improved. These results indicate that the 
TyG-WHTR index can act similarly to FPG. Hence, TyG-WHTR can, 
alongside FPG, function in screening individuals for prediabetes. 
Knowing that advanced age poses an additional risk for prediabetes 
(11), further age stratification of the participants demonstrated that 
TyG-WHTR proved higher predictive probability with advanced age 
in normal-weight men and obese men and women, highlighting the 
efficiency of TyG-WHTR in predicting prediabetes.

TyG-WC was previously reported as the best predictor of 
prediabetes or diabetes (47). TyG-BMI was also suggested as the best 
index for detecting prediabetes in adults of either sex (25). Further, 
TyG was suggested as a good index for predicting insulin resistance 
and prediabetes (29, 31). We have found the TyG-WHTR to be the 
most effective index for prediabetes prediction. These disparities could 
be  attributed to the ethnic diversity of the populations studied. 
Nonetheless, the overall conclusion from our findings and previously 

TABLE 3 ROC curve analyses for each index in predicting prediabetes in 
NW participants stratified by gender.

AUC 
(95%CI)

p-
value

Cut-
off

Sens 
(%)

Spec 
(%)

Youden 
index

Men (620)

WC 0.69 (0.64–

0.75)

<0.0001 ≥79.5 72% 59% 0.310

WHTR 0.71 (0.65–

0.76)

<0.0001 ≥0.47 58% 75% 0.329

VAI 0.66 (0.61–

0.72)

<0.0001 ≥1.15 60% 64% 0.275

LAP 0.71 (0.66–

0.77)

<0.0001 ≥18.8 68% 73% 0.411

TyG 0.70 (0.65–

0.76)

<0.0001 ≥ 8.49 61% 73% 0.349

TyG-

BMI

0.69 (0.64–

0.75)

<0.0001 ≥194 67% 67% 0.343

TyG-

WC

0.74 (0.69–

0.79)

<0.0001 ≥669 76% 66% 0.421

TyG-

WHTR

0.76 (0.70–

0.81)

<0.0001 ≥3.92 74% 69% 0.432

Women (642)

WC 0.69 (0.63–

0.76)

<0.0001 ≥71.5 67% 65% 0.316

WHTR 0.70 (0.63–

0.77)

<0.0001 ≥0.45 70% 72% 0.413

VAI 0.65 (0.58–

0.73)

<0.0001 ≥0.87 65% 61% 0.259

LAP 0.71 (0.64–

0.78)

<0.0001 ≥10.57 75% 63% 0.378

TyG 0.69 (0.61–

0.76)

<0.0001 ≥8.19 60% 72% 0.322

TyG-

BMI

0.70 (0.63–

0.77)

<0.0001 ≥191 57% 74% 0.309

TyG-

WC

0.73 (0.66–

0.79)

<0.0001 ≥593 65% 75% 0.404

TyG-

WHTR

0.73 (0.66–

0.80)

<0.0001 ≥3.62 76% 66% 0.427

WC, waist circumference; WHTR, waist height-ratio; VAI, Visceral Adiposity Index; LAP, 
lipid accumulation product; TyG, triglyceride glucose; TyG-BMI, TyG related to BMI; TyG-
WC, TyG related to WC; TyG-WHTR, TyG related to WHTR. Statistical significance is 
considered at p < 0.05.

A

B

FIGURE 2

ROC curves for each index as predictors of prediabetes in normal-
weight men (A) and women (B). WC, Waist Circumference; WHTR, 
Waist Height-Ratio; VAI, Visceral Adiposity Index; LAP, lipid 
accumulation product; TyG, Triglyceride Glucose; TyG-BMI, TyG 
related to BMI; TyG-WC, TyG related to WC; TyG-WHTR, TyG related 
to WHTR.
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published data is that triglyceride-glucose (TyG)-related parameters 
outperform obesity parameters alone. The clinical significance of 
TyG-WHTR rests in its ability to identify persons at risk of developing 
prediabetes before symptoms appear. By recognizing these patients 
early, healthcare providers can take steps to prevent or delay illness 
onset through lifestyle changes like diet and exercise, or medication 
interventions if necessary. Furthermore, TyG-WHTR can be used to 
assess the efficacy of programs targeted at lowering the risk of 
prediabetes in people of normal weight. A patient, for example, may 
begin an exercise and diet regimen in order to reduce their waist 
circumference and improve their glucose and lipid levels. Their 

TyG-WHTR score can be  tracked over time to evaluate the 
intervention’s effectiveness and make any necessary modifications.

In some cases, the TyG-WHTR may be considered superior to 
fasting glucose or HbA1c because: (1) fasting glucose and HbA1c may 
only show abnormalities after significant metabolic damage has 
occurred, whereas TyG-WHTR can detect early metabolic changes 
when interventions are more likely to be effective. (2) TyG-WHTR ca 
be a better predictor of prediabetes than fasting glucose or HbA1c. 
This is due to the fact that TyG-WHTR considers both triglyceride 
and glucose levels, which are both independent risk factors for 
dysglycemia. (3) TyG-WHTR may be more responsive to metabolic 
state changes than fasting glucose or HbA1c. For example, if a patient 
improves their diet and exercise habits, their TyG-WHTR score may 
improve even if their fasting glucose or HbA1c levels stay unchanged. 
(4) TyG-WHTR is a straightforward computation that involves only 
basic laboratory tests and measures found in most healthcare facilities. 
HbA1c testing, on the other hand, might be more expensive, and not 
all healthcare settings have the necessary equipment or competence. 
One of the strengths of our study is the large sample size. Indeed, 
according to the Qatar Planning and Statistics Authority, the 
population of Qatar at the end of April 2022 was 2,773,598 people 
(accessed on 22nd of May, 2022),2 with Qataris accounting for 
approximately 12% of the total (i.e., 333,000 individuals). Moreover, 
in 2015, individuals under 19 made up 47% of all Qatari nationals,3 
and if this percentage did not change in 2022, approximately 176,500 
individuals would be adults and would be eligible for our study. As a 
result, our study (6,000/176,500 = 0.03) has statistically significant 
power. Additionally, the data we  used was obtained from a well-
phenotyped cohort from the general population. Furthermore, our 
study is the first to compare the ability of obesity indices and 
TyG-related parameters to identify prediabetes in normal-weight 
individuals in a Middle Eastern population. It is worth noting that 
T2D is a major public health burden in the Middle East, and early 
detection of prediabetes in obese and normal-weight individuals is 
thus critical for implementing strategies to prevent its 
progression to T2D.

2 https://www.psa.gov.qa/en/Pages/default.aspx

3 https://gulfmigration.org/qatar-population-nationality-qatari-non-qatari-five-year-age-group- 

2015/

TABLE 4 Pairwise comparison of AUC of TyG-WHTR in NW participants.

Men (620) Women (642)

Differences 
between AUC

95% CI p-value Differences 
between AUCs

95% CI p-value

WC 0.08 (0.04–0.11) <0.0001 0.06 (0.01–0.10) 0.004

WHTR 0.04 (0.015–0.07) 0.0029 0.02 (0.0007–0.058) 0.049

VAI 0.09 (0.05–0.13) <0.0001 0.07 0.02–0.13 0.008

LAP 0.04 (0.02–0.06) <0.0001 0.02 (−0.004–0.04) 0.1

TyG 0.05 (0.01–0.09) 0.0031 0.04 (−0.005–0.09) 0.78

TyG-BMI 0.06 (0.03–0.09) <0.0001 0.03 (−0.012–0.07) 0.15

TyG-WC 0.016 (0.0003–0.32) 0.045 0.003 (−0.016–0.024) 0.72

NW, normal-weight; AUC, area under the curve; WC, waist circumference; WHTR, waist height-ratio; VAI, Visceral Adiposity Index; LAP, lipid accumulation product; TyG, triglyceride 
glucose; TyG-BMI, TyG related to BMI; TyG-WC, TyG related to WC; TyG-WHTR, TyG related to WHTR. Statistical significance is considered at p < 0.05.

TABLE 5 Performance of the TyG-WHTR index versus FPG using adjusted 
logistic regression and ROC analysis in predicting prediabetes in 
subgroups with the different characteristics.

OR (95%) AUC 
(95%CI)

Cut-off 
point

p-value

NW men (n = 620)

Tyg-WHTR 2.68 (1.67–

4.32)***

0.76 (0.70–0.81) 3.92 Ref

FPG 2.32 (1.73–

3.10)***

0.76 (0.72–0.81) 5.11 0.76

NW women (n = 642)

Tyg-WHTR 2.82 (1.61–

4.94)***

0.73 (0.66–0.80) 3.62 Ref

FPG 1.90 (1.32–

2.72)***

0.68 (0.61–0.76) 4.89 0.13

Ow/Ob men (n = 2,150)

Tyg-WHTR 2.30 (2.00–

2.64)***

0.71 (0.69–0.74) 4.94 Ref

FPG 2.35 (2.08–

2.66)***

0.74 (0.72–0.76) 5.33 0.4

Ow/Ob women (n = 2,584)

Tyg-WHTR 2.65 (2.34–

3.00)***

0.77 (0.75–0.78) 4.73 Ref

FPG 2.61 (2.31–

2.95)***

0.75 (0.73–0.77) 5.29 0.0034

NW, normal-weight; Ow/Ob, overweight/obese; OR, odds ratio; AUC, area under the curve; 
TyG-WHTR, TyG related to waist height-ratio; FPG, fasting plasma glucose. Statistical 
significance is considered at p < 0.05. ***p < 0.001.
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Given the shared environmental factors and lifestyle habits, as well 
as genetic background and ethnicity among many Middle Eastern 
countries, particularly the Gulf Cooperation Council nations (Qatar, 
Bahrain, Saudi Arabia, United Arab Emirates, Kuwait, and Oman), 
our findings may perform similarly in many of these countries.

The main limitation of our study is the cross-sectional design, 
which does not allow the use of the findings to predict future 
prediabetes. However, the QBB has recently started to call back the 
participants for a 5-year follow-up, which will open new avenues for 
assessing the predictive ability of the different indices longitudinally. 
We  also did not adjust for parameters such as smoking status, 
medication, or physical activity. Finally, the findings of the present 
study may not be generalizable to all populations due to the ethnic and 
geographic characteristics of the study population.

Conclusion

Based on our results, factoring in waist-to-height ratio with 
simple biochemical measurements of triglyceride and glucose proved 
to be the best indicator of prediabetes in normal-weight, overweight 
and obese men, in addition to outperforming most obesity indices in 
women and having similar predictive effects to FPG in both 

normal-weight and overweight/obese men and women. We suggest 
that TyG-WHTR be  used in clinical practice as part of routine 
check-ups as an asserting indicator to FPG for predicting prediabetes 
in men. Further studies are warranted to confirm the predictive value 
of these parameters across varying ethnicities.
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FIGURE 3

TyG-WHTR predicted probabilities for having prediabetes across age quartiles in NW and Ow/Ob participants. Predicted probabilities for Prediabetes in 
NW men (A), NW women (B) Ow/Ob men (C), Ow/Ob women (D). Statistical significance is considered at p < 0.05. *p < 0.05, **p < 0.01 ***p<0.001.
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Association between body mass
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normoglycemia from impaired
fasting glucose among Chinese
adults: a 5-year cohort study
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1Department of Emergency, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China,
2Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
Objective: Evidence regarding the relationship between body mass index (BMI)

and reversion to normoglycemia from prediabetes is still limited. The purpose of

our study is to survey the link of BMI on reversion to normoglycemia among

patients with impaired fasting glucose (IFG).

Methods: This study, a retrospective cohort, covered 32 regions and 11 cities in

China and collected 258,74 IFG patients who underwent a health check from

2010 to 2016. We investigated the association between baseline BMI and

reversion to normoglycemia in patients with IFG using the Cox proportional-

hazards regression model. The nonlinear relationship between BMI and reversion

to normoglycemia was determined using a Cox proportional hazards regression

with cubic spline functions and smooth curve fitting. In addition, we also

performed a series of sensitivity analyses and subgroup analyses. A competing

risk multivariate Cox regression was performed using progression to diabetes as

a competing risk for reversal of normoglycemic events.

Results: After adjusting covariates, the results showed that BMI was negatively

related to the probability of reversion to normoglycemia (HR=0.977, 95%

CI:0.971-0.984). Compared with participants with normal BMI(<24kg/m2),

overweight (BMI:24-28kg/m2) participants with IFG had a 9.9% lower

probability of returning to normoglycemia (HR=0.901,95%CI:0.863-0.939),

while obese patients (BMI ≥ 28kg/m2) had a 16.9% decreased probability of

reverting from IFG to normoglycemia (HR=0.831,95%CI:0.780-0.886). There

was also a nonlinear relationship between them, and the inflection point of

BMI was 21.7kg/m2. The effect sizes (HR) on the left sides of the inflection point

were 0.972(95%CI:0.964-0.980). The competing risks multivariate Cox’s

regression and sensitivity analysis demonstrated the robustness of our results.

Conclusion: This study demonstrates a negative and nonlinear relationship

between BMI and reversion to normoglycemia in Chinese patients with IFG.

Minimizing BMI to 21.7 kg/m2 in patients with IFG through aggressive intervention

may significantly increase the probability of returning to normoglycemia.

KEYWORDS

pre-diabetes, regression to normoglycemia, nonlinear, competitive risk model, smooth
curve fitting
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Introduction

Diabetes is a major public health concern because of its high

prevalence, mortality, and rising costs (1). Prediabetes is an

intermediate stage between normal glucose levels and type 2 diabetes

mellitus (T2DM). It generally reflects the presence of either or both

impaired fasting glucose (IFG) and glucose tolerance (IGT). In 2017,

the International Diabetes Federation (IDF) estimated that 374 million

adults worldwide had prediabetes, and the number of adults with

prediabetes will reach 548 million by 2045, equaling 8.4% of the adult

population (2). Approximately 86million US adults (37%) have

prediabetes (3). Among adults in China, the prevalence of

prediabetes was about 35.7% (4). Adolescent boys and girls in India

have a 12.3% prediabetes prevalence rate (5). Moreover, there is

evidence that the prevalence of prediabetes in Korea is as high as

38.3% (6). People with prediabetes have an increased risk of T2DM,

with approximately 5-10% of people developing T2DM each year, and

up to 70% of them will eventually develop T2DM according to the

American Diabetes Association (ADA) expert panel (3, 7).

Nevertheless, it is worth noting that some patients with prediabetes

do not progress to diabetes but remain in the prediabetic stage, and

20%-50% of individuals with prediabetes may even regress to

normoglycemia (8–10). In addition, prediabetes increases the risk of

not only T2DM but also cardiovascular disease and microvascular

complications (11–13). Previous research has suggested that reversion

to normoglycemia, even briefly, is related to a significantly decreased

risk of development of T2DM in patients with prediabetes (14). Thus,

the clinical benefits of reversion from prediabetes to normoglycemia

cannot be overemphasized. The goal of prediabetes screening and

treatment should be to revert normoglycemia.

Given that most of the attention on the clinical side seems to be

focused on disease progression, finding contributing factors for

prediabetes regression to normoglycemia is equally or more

important to indicate pathways for prevention and actionable

targets for sustaining public health efforts. Unfortunately, few

studies have been conducted to determine the rate of reversion to

normoglycemia in people with prediabetes and which contributing

factors are associated with this. Preliminary evidence from previous

epidemiological studies suggests that regression to normoglycemia is

associated with factors such as age, baseline fasting glucose, insulin

secretion, obesity, beta-cell function, fasting triglycerides, etc (3, 15–

18). Studies have shown that an increase in body mass index (BMI) is

positively associated with the risk of progression from prediabetes to

diabetes (19, 20). However, there is limited research into the

relationship between BMI and regression to normoglycemia from

prediabetes. A cohort study revealed that an increase in delta-BMI

(baseline BMI minus BMI at follow-up) was negatively associated
Abbreviations: IFG, impaired fasting glucose; IGT, impaired glucose tolerance;

BMI, body mass index; TC, total cholesterol; TG, triglyceride; BUN, blood urea

nitrogen; HDL-c, high-density lipoprotein cholesterol; AST, aspartate

aminotransferase; LDL-c, low-density lipoprotein cholesterol; ALT, alanine

aminotransferase; Scr, serum creatinine; FPG, fasting plasma glucose; SBP,

systolic blood pressure; T2DM, type 2 diabetes mellitus; DBP, diastolic blood

pressure; IDF, International Diabetes Federation; GAM, generalized additive

model; HR, hazard ratio; Ref, reference; CI, confidence interval.
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with the likelihood of returning to normoglycemia in participants

with prediabetes (21). Another study from Korea showed that in

older adults, even modest weight loss helped to return from

prediabetes to normoglycemia (22).

Regrettably, neither study performed subgroup analyses nor

explored the non-linear relationship between BMI and regression to

normoglycemia from prediabetes. Besides, the current study is

limited by the small sample size. The link between BMI and

reversion to normoglycemia has not yet been widely explored

among Chinese adults. Furthermore, given that patients with

diabetes at follow-up are no longer likely to regress from

prediabetes to euglycemia, observation of the possibility of

reversal of prediabetes to euglycemic events or the occurrence of

altered events may be hampered. However, no research has

attempted to investigate the relationship between them using the

competing risk model. Therefore, based on the fact that obesity is a

high-risk factor for diabetes, we propose the hypothesis that there

may be a negative association between BMI and the likelihood of

reversal of prediabetes to normoglycemia in the Chinese

population, and that a non-linear relationship between them

cannot be excluded. We conducted a retrospective cohort study

using published Chinese population-based data to test

this hypothesis.
Methods

Study design

This study used a retrospective cohort study design, and the

data were obtained from a retrospective cohort study previously

undertaken by Chinese researchers (Chen et al.) from a

computerized database in China (23). The target-independent

variable was BMI at baseline. The outcome variable was reversion

to normoglycemia from prediabetes at follow-up.
Data source

The raw data were obtained free of charge from DATADRYAD

(www.datadryad.org) and provided by Ying Chen et al. With

reference to the terms of service of the Dryad database, the

dataset can be used by researchers to be able to share, remix,

modify and create derivative works for non-commercial purposes,

as long as the author and source are credited. Data information was

obtained from an open access article published in 2018 –

“Association of body mass index and age with diabetes onset in

Chinese adults: a population-based cohort study” (http://dx.doi.org/

10.1136/bmjopen-2018-021768). The data can be downloaded at:

https://doi.org/10.5061/dryad.ft8750v (23).
Study population

The initial researchers took information from a computerized

database created by the Rich Healthcare Group in China. This
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database contains all medical records of participants who

underwent a health check from 2010 to 2016, spanning 32

regions and 11 cities in China. The Rich Healthcare Group

Review Board initially approved the original study, and the

information was retrieved retrospectively. For the retrospective

study, no informed consent or approval was required by the

institutional ethics committee (23). Therefore, the current

secondary analysis did not require ethical approval. Additionally,

the initial study was conducted in accordance with the Helsinki

Declaration (23). So did this secondary analysis.

The original study enrolled 685,277 participants older than 20

who passed at least two health examinations. 473,444 participants

meeting the exclusion criteria were excluded. The following were

the original study’s exclusion criteria: The original study’s exclusion

criteria were as follows: (i) participants with a visit interval of less

than two years; (ii) participants with extreme BMI values (15 kg/m2

or > 55 kg/m2); (iii) participants with no information about weight,

height, sex, and fasting plasma glucose(FPG) value at baseline; (iv)

participants with diabetes at enrollment; and (v) participants whose

diabetes status at follow-up was unknown. Finally, the analysis of

the initial study comprised a total of 211,833 people (23). In the

current study, we first further included 26,018 participants with

baseline FPG of 5.6-6. 9 mmol/L. We then excluded participants

with missing FPG information at follow-up (n = 12) as well as those

with abnormal and extreme BMI (three standard deviations greater

or less than three standard deviations from the mean) (n = 132).

Finally, the current study included 25,874 people in total. The

procedure for choosing participants is shown in Figure 1. It is

important to highlight that according to the American Diabetes

Association 2022 criteria, prediabetes is defined as the presence of

IFG (FPG level of 5.6–6.9 mmol) and/or IGT and/or hemoglobin

A1c(HA1c) (24). Our definition of prediabetes is therefore based on

FPG. To make the study more accurate, our study population is

reported as patients with IFG.
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Variables

Body mass index
BMI was recorded as a continuous variable. The detailed

procedure for defining BMI was as follows: BMI = weight/height2

(kg/m2). It was important to note that relevant information for

height and weight was obtained at baseline. The categories of

obesity (BMI≥ 28 kg/m2), overweight (24≤ BMI < 28 kg/m2), and

normal weight (BMI< 24 kg/m2) were established according to the

definition put forth by the Working Group on Obesity in

China (25).
Outcome measures
The occurrences of reversion to normoglycemia were our

intriguing outcome variable. Reversion to normoglycemia was

based on FPG<5.6mmol/l at follow-up evaluation and the absence

of self-reported incident diabetes (26, 27).

Covariates
The covariates in our study were selected based on the original

study, previous studies having a correlation to diabetes or

prediabetes, and our clinical expertise (18, 22, 23, 28, 29).

Covariates included the following variables: (i)categorical

variables: sex, smoking status, family history of diabetes, and

drinking status. (ii) continuous variables: weight, height, age,

serum creatinine (Scr), systolic blood pressure (SBP), aspartate

aminotransferase (AST), triglyceride (TG), high-density

lipoprotein cholesterol (HDL-c), diastolic blood pressure (DBP),

alanine aminotransferase (ALT), total cholesterol (TC), blood urea

nitrogen (BUN), low-density lipid cholesterol (LDL-c).

Data collection
In the original study, professional researchers used standard

questionnaires to gather baseline data on drinking, smoking, and

family history of diabetes. Standard mercury sphygmomanometers

measured blood pressure. During each visit, fasting venous blood

samples were taken at least 10 hours after a fast. A Beckman 5800

autoanalyzer was used to measure plasma glucose, HDL-c, TC,

LDL-c, BUN, TG, AST, ALT, and Scr. The time to regression to

normoglycemia or progression to diabetes was based on when

participants returned for one or more physical examinations.

Missing data processing
In current study, the number of participants whose data are

missing of DBP, SBP, TC, ALT, TG, BUN, Scr, LDL-c, HDL-c, AST,

drinking status, and smoking status was 7(0.03%), 7(0.03%), 605

(2.34%),232(0.90%), 607(2.35%),2840(10.98%), 1334(5.16%), 9897

(38.25%), 10527(40.69%), 14629(56.54%), 17139(66.24%), and

17139(66.24%), respectively. This study used multiple imputations

for missing data to reduce the volatility brought on by missing

variables. SBP, age, ALT, sex, LDL-c, DBP, AST, TG, Scr, HDL-c,

BUN, TC, drinking status, family history of diabetes, and smoking

status were all included in the imputation model (iterations were 10;

the type of regression was linear). Missing-at-random (MAR)

assumptions are used in missing data analysis processes (30, 31).
FIGURE 1

Flowchart of study participants.
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Statistical analysis

We divided the individuals into three categories based on the

World Health Organization’s BMI values for Chinese patients:

“normal”, “overweight”, and “obesity”. The means and standard

deviations were presented for continuous variables with Gaussian

distributions, medians were reported for skewed distributions, and

frequencies and percentages were presented for categorical variables.

We used the Kruskal-Wallis H test (skewed distribution), the One-Way

ANOVA test (normal distribution), or c2 (categorical variables) to test
for differences among different BMI groups.

Following collinearity screening, we used univariate and

multivariate Cox proportional-hazards regression models to examine

the relationship between BMI and the reversion rate to normoglycemia

in individuals with IFG, including a crude model with no covariates

adjusted, a model with just minimal covariates adjusted (Model I with

adjusted sex and age), and a model with full covariate adjustments

(Model II: adjusted DBP, age, sex, SBP, AST, BUN, ALT, LDL-c, Scr,

TG, HDL-c, family history of diabetes, drinking status, and smoking

status). Effect sizes (HR) with 95% confidence intervals (CI) were

recorded. We adjusted for confounding factors based on clinical

experience, literature reports, and the results of univariate analysis.

Additionally, the final multivariate Cox proportional hazards

regression equation did not include TC since it was collinear with

other variables (Supplementary Table S1).

Besides, the Cox proportional hazards regression model with

cubic spline functions and smooth curve fitting were performed to

account for the nonlinear relationship between BMI and reversion

to normoglycemia in participants with IFG. Furthermore, a two-

piecewise Cox proportional hazards regression model was used to

clarify the nonlinear association between BMI and reversion from

IFG to normoglycemia. Finally, a log-likelihood ratio test was

performed to choose the best model to explain the association

between them in patients with IFG. Considering that patients who

experience diabetes at follow-up are no longer likely to recover from

IFG to normoglycemia, this may hinder the observation of

prediabetes reversal to normoglycemia events or alter the

likelihood of events occurring (32, 33). Therefore, competing risks

multivariate Cox proportional-hazards regression was performed,

as described by Fine and Gray, with progression to diabetes as the

competing risk for the reversal to normoglycemia events (33, 34).

Using a stratified Cox proportional hazard regression model,

subgroup analyses were performed across various groupings (age,

sex, SBP, DBP, smoking status, and drinking status). First, based on

clinical cut-off points, continuous data, such as SBP and age, were

transformed into categorical variables (age: 30, 30 to 40, 40 to 50, 50 to

60, 60 to 70, 70 years old; SBP: 140, 140 mmHg) (35). In addition to the

stratification factor itself, we adjusted each stratification for DBP, age,

SBP, sex, Scr, ALT, HDL-c, AST, BUN, TG, LDL-c, drinking status,

family history of diabetes, and smoking status. Ultimately, in models

with and without interaction terms, the likelihood ratio test was

employed to identify whether there were interaction terms or not.

To check the reliability of the findings, we ran a series of

sensitivity analyses. Previous studies have suggested that drinking

status, TG, and family history of diabetes are significantly related to

glucose metabolism (36–38). We also conducted further sensitivity
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analyses to examine the connection between BMI and reversion to

normoglycemia in prediabetic patients. Firstly, we performed a

sensitivity analysis on participants who had never consumed

alcohol (n=21,010). We also performed a sensitivity analysis after

excluding patients with a family history of diabetes (n=25,244). In

addition, we further explored the relationship between BMI and

reversion to normoglycemia in participants with TG<1.7mmol/L

(N= 15,858). The continuity covariate was also incorporated into

the equation as a curve using a generalized additive model (GAM)

to confirm the reliability of the findings. We also calculated E-values

to examine the possibility of unmeasured confounding between

BMI and reversion from IFG to normoglycemia (39).

All results were written in accordance with the STROBE

statement (40). Empower Stats (X&Y Solutions, Inc., Boston, MA,

http://www.empowerstats.com) and R statistical software packages

(http://www.r-project.org, The R Foundation) were used for all

analyses. Statistical significance was set at P values lower than 0.05

(two-sided). Supplementary Figure S1 showed the analytical

framework for this study.
Results

Characteristics of participants

The study participants’ demographic and clinical characteristics

are presented in Table 1. The mean age was 49.07 ± 13.82 years old,

and 17,168 (66.35%) were male. The median follow-up time was

3.05 years, and 11,856 (45.82%) participants had a final reversion to

normoglycemia. BMI presents a normal distribution, ranging from

15.2 to 34.9kg/m2, with a mean of 24.74kg/m2 (Figure 2). We

assigned adults into subgroups based on Chinese criteria for BMI

categories (normal: < 24, overweight: 24-28, obesity: ≥28kg/m2).

Compared with the normal group, age, height, weight, DBP, SBP,

TG, LDL-c, TC, AST, ALT, Scr, and BUN increased significantly in

the obesity group, whereas the opposite results were found in the

HDL-c covariates. In addition, the proportion of men, current

smokers, and current drinkers was higher in the obesity group.

Baseline characteristics according to regression and progression

status of patients with IFG are shown in Supplementary Table S2.

Participants who progressed to diabetes had significantly higher

levels of age, height, weight, BMI, DBP, SBP, TG, LDL-c, TC, AST,

ALT, Scr, and BUN than participants with persistent IFG but

significantly lower levels of HDL-c. Besides, compared with

participants with persistent IFG, age, height, weight, BMI, DBP,

SBP, TG, LDL-c, TC, AST, ALT, Scr, and BUN decreased

significantly in participants who reverted to normoglycemia,

whereas the opposite results were found in the HDL-c covariates.
The reversal rate to normoglycemia
from IFG

In participantswith IFG, 11,856 individuals developeddiabetes. The

overall rate of reversion to normoglycemia was 155.33 per 1000 person-

years. In particular, the reversal rate to normoglycemia among
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participants with IFG of BMI groups was normal group:186.84,

overweight group:139.14, and obesity group:119.25 per 1000 person-

years, respectively. The overall cumulative reversal rate of IFG to

normoglycemia was 45.82% over a median follow-up period of 3.05

years. The cumulative reversal rate in each BMI group was normal

group:54.55%, overweight group: 41.38%, and obesity group: 35.19%

(Figure3).ParticipantswithhigherBMIhadasignificantly lowerreversal

rate than thosewith a lower BMI (p<0.001 for trend) (Table 2, Figure 3).

In the age stratification by ten intervals, the rate of reversion to

normoglycemia among participants with IFG was higher in women
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than in men, regardless of their age group (Figure 4). It was also found

that the reversal rate decreased with age in both men and women.
Factors influencing reversion to
normoglycemia among participants with
IFG analyzed by univariate Cox
proportional hazards regression

Univariate analyses showed that reversion to normoglycemia in

patients with IFG was negatively correlated with age, BMI, DBP,
TABLE 1 The baseline characteristics of participants.

BMI groups (kg/m2) normal (<24) overweight (24-28) obesity (≥28) P-value

participants 10688 11014 4172

Sex <0.001

Male 5892 (55.13%) 8107 (73.61%) 3169 (75.96%)

Female 4796 (44.87%) 2907 (26.39%) 1003 (24.04%)

SBP (mmHg) 123.15 ± 17.18 128.62 ± 17.05 133.33 ± 17.34 <0.001

DBP (mmHg) 75.42 ± 10.47 79.58 ± 10.87 82.75 ± 11.40 <0.001

Age(years) 47.40 ± 14.37 50.68 ± 13.19 49.12 ± 13.50 <0.001

Height(cm) 165.73 ± 8.39 167.22 ± 8.17 167.80 ± 8.36 <0.001

Weight(kg) 59.79 ± 7.84 72.24 ± 7.78 84.26 ± 9.60 <0.001

BMI (kg/m2) 21.69 ± 1.67 25.77 ± 1.12 29.84 ± 1.59 <0.001

AST(U/L) 23.78 ± 9.56 27.14 ± 11.72 31.25 ± 15.72 <0.001

HDL-c(mmol/L) 1.40 ± 0.31 1.30 ± 0.28 1.24 ± 0.29 <0.001

TC (mmol/L) 4.85 ± 0.95 5.04 ± 0.95 5.12 ± 0.97 <0.001

TG (mmol/L) 1.39 ± 1.11 1.98 ± 1.58 2.28 ± 1.60 <0.001

LDL-c(mmol/L) 2.81 ± 0.72 2.92 ± 0.71 2.97 ± 0.74 <0.001

ALT(U/L) 17.20 (13.00-24.30) 24.40 (17.70-35.90 32.00 (22.00-50.00) <0.001

Scr (mmol/L) 70.05 ± 16.13 74.56 ± 15.67 75.10 ± 15.75 <0.001

BUN (mmol/L) 4.86 ± 1.24 5.08 ± 1.24 5.07 ± 1.25 <0.001

Drinking status <0.001

Current drinker 257 (2.40%) 490 (4.45%) 218 (5.23%)

Ever drinker 1200 (11.23%) 1879 (17.06%) 820 (19.65%)

Never 9231 (86.37%) 8645 (78.49%) 3134 (75.12%)

Smoking status <0.001

Current smoker 1796 (16.80%) 2896 (26.29%) 1210 (29.00%)

Ever smoker 379 (3.55%) 537 (4.88%) 214 (5.13%)

Never 8513 (79.65%) 7581 (68.83%) 2748 (65.87%)

Family history of diabetes 0.342

No 10419 (97.48%) 10763 (97.72%) 4062 (97.36%)

Yes 269 (2.52%) 251 (2.28%) 110 (2.64%)

Follow up-times(years) 2.90 (2.09-3.77) 2.78 (2.10-3.15) 3.03 (2.26-3.98) <0.001
fron
Continuous variables were summarized as mean (SD) or medians (quartile interval); categorical variables were displayed as a percentage (%).
DBP, diastolic blood pressure; BMI, body mass index; TC, total cholesterol, SBP, systolic blood pressure; TG triglyceride, BMI, body mass index; AST aspartate aminotransferase; LDL-c, low-
density lipid cholesterol; ALT, alanine aminotransferase; BUN, blood urea nitrogen; HDL-c, high-density lipoprotein cholesterol; Scr, serum creatinine.
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SBP, ALT, AST, TG, TC, LDL-c, BUN, and family history of

diabetes but was positively related to HDL-c, never smoking and

never drinking (all P<0.05; Table 3).

Figure 5 showed the Kaplan-Meier curves for the probability of

reversion to normoglycemia from IFG stratified by BMI category.

The probability of reversal to normoglycemia from IFG varied

significantly between BMI groups (log-rank test, p<0.001). The

probability of reversion to normoglycemia decreased progressively

with rising BMI, meaning that patients with the highest BMI had

the lowest probability of reverting from IFG to normoglycemia.

Supplementary Figure S2 presented Kaplan-Meier survival curves

for diabetes-free survival probability. Among BMI groups, there

were statistically significant differences in the probability of

diabetes-free survival (log-rank test, p<0.001). IFG patients with

the greatest BMI had the highest risk of progression to diabetes.
Frontiers in Endocrinology 06104
The relationship between BMI and
reversion to normoglycemia from IFG
analyzed by multivariate Cox proportional-
hazards regression model

We constructed three models using the Cox proportional-

hazards regression model to investigate the association between

BMI and reversion to normoglycemia in patients with IFG. In the

crude model, a 1kg/m2 increase in BMI was associated with a 6.5%

decrease in the probability of reversion to normoglycemia

(HR=0.935,95%CI 0.930-0.940, p<0.001). In the minimally-

adjusted model, when we adjusted for population variables only,

each 1kg/m2 increase in BMI was associated with a 4.6% lower

probability of reversion to normoglycemia (HR=0.954, 95%CI

0.949-0.960, p<0.001). The HR between BMI and reversion to

normoglycemia from IFG was 0.977 (95% CI: 0.971-0.984,

p<0.001) in the fully adjusted model. The distribution of

confidence intervals suggested that the link between BMI and

reversion to normoglycemia among patients with IFG obtained by

the model was reliable (Table 4).

Besides, we transformed BMI from a continuous variable to a

categorical variable and then reintroduced the categorically

transformed BMI into the model. The results of the multivariate-

adjusted model showed that with reference to participants with

normal BMI, the HR was 0.901(95%CI:0.863-0.939) for overweight

participants and 0.831(95%CI:0.780-0.886) for obese participants.

That is, compared with participants with normal BMI(<24kg/m2),

overweight participants (BMI:24-28kg/m2) with prediabetes had a

9.9% lower probability of returning to normoglycemia, while obese

patients (BMI ≥ 28kg/m2) had a 16.9% decreased probability of

reverting from IFG to normoglycemia (Table 4 Model II).
The results of competing risks multivariate
Cox proportional-hazards regression

When progression to incident diabetes from IFG was treated as

a competing event, the competing analysis results were shown in

Table 5. In the crude model, BMI was negatively related to the

probability of reversion to normoglycemia (SHR=0.93, 95%

CI:0.93-0.94). In the minimally adjusted model (model I: adjusted

age, sex), the result did not have a noticeable change (SHR:0.95, 95%

CI: 0.95-0.96, p<0.001). In the fully adjusted model (model II)

(adjusted age, sex, SBP, DBP ALT, AST, BUN, Scr, TG, LDL-c,

HDL-c, family history of diabetes, drinking status, and smoking

status), we could also detect a negative association between BMI and

reversion to normoglycemia (SHR=0.92, 95%CI: 0.89-0.96). In

addition, when BMI was used as a categorical variable,

multivariate-adjusted model (fully adjusted model) results showed

that overweight participants with IFG had a 10% lower probability

of returning to normoglycemia compared with participants with

normal BMI (SHR=0.90, 95%CI: 0.86-0.94), while obese patients

had a 17.0% decreased probability of reverting from IFG to

normoglycemia compared with patients with normal BMI

(SHR=0.83, 95%CI: 0.78-0.89).
FIGURE 3

The rate of reversion to normoglycemia in people with IFG stratified
by BMI. Participants with higher BMI had a significantly lower
reversal rate than those with a lower BMI (p<0.001 for trend).
FIGURE 2

Distribution of BMI. It presented a normal distribution, ranging from
15.2 to 34.9kg/m2, with a mean of 24.74kg/m2.
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Sensitivity analysis

A series of sensitivity analyses were performed to ensure that

our findings were robust. We first introduced the continuity

covariate as a curve into the equation using a GAM. As shown in

Table 4, the outcome of Model III was consistent with the fully

adjusted model. Referring to patients with IFG with normal BMI,

obese patients had a 14.5% lower probability of reverting to

normoglycemia (HR = 0.855, 95% CI: 0.802-0.912).

Furthermore, we conducted a sensitivity analysis on

participants who had never consumed alcohol (n = 21,010). After

adjusting for confounding variables (including DBP, age, SBP, sex,

TG, ALT, AST, LDL-c, BUN, Scr, HDL-c, family history of diabetes,

and smoking status), the findings indicated that BMI was also

negatively linked with reversion to normoglycemia from IFG

(HR=0.979, 95%CI:0.972-0.986, p<0.001). We also excluded

patients with a family history of diabetes for the sensitivity

analyses (n=25,244). After adjusting for confounding variables

(including BUN, sex, AST, SBP, age, DBP, HDL-c, ALT, Scr,

LDL-c, TG, drinking status, and smoking status), the results

suggested that BMI was still negatively associated with reversion
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to normoglycemia from IFG (HR=0.977, 95% CI:0.971-0.984,

p<0.001). Besides restricting the analysis to participants with

TG<1.7mmol/L (adjusted for age, sex, SBP, DBP, ALT, AST,

BUN, Scr, LDL-c, HDL-c, family history of diabetes, drinking

status, and smoking status), the results suggested that the HR

between BMI and probability of reverting to normoglycemia was

0.981 (95% CI:0.973-0.989, P<0.001). Similarly, when BMI was used

as a categorical variable, sensitivity analyses of multivariate-

adjusted models showed a significantly lower probability of

recovery from IFG to normoglycemia in overweight and obese

patients compared with participants with normal BMI (Table 6).

Based on all the sensitivity analyses, it is evident that our findings

were robust. We also calculated an E-value to evaluate the

sensitivity to unmeasured confounding. Unknown or unmeasured

variables likely had little impact on the association between BMI

and recovery from IFG to normoglycemia, as the E-value (1.53) was

greater than the relative risk of BMI and unmeasured

confounders (1.36).
Cox proportional hazards regression
model with cubic spline functions to
address nonlinearity

Using a Cox proportional hazards regression model with cubic

spline functions, we found that the correlation between BMI and the

probability of reversal to normoglycemia in patients with IFG was

nonlinear (Figure 6). Additionally, using a standard binary two-

piecewise Cox proportional-hazards regression model to fit the

data, we chose the model that best fit the data using the log-

likelihood ratio test (Table 7). Less than 0.05 was the P-value for the

log-likelihood ratio test. By using the recursive technique, we first

established the 21.7 kg/m2 as the BMI inflection point. Next, we

utilized a two-piecewise Cox proportional hazards regression model

to get the HR and CI for either side of the inflection point. Before

the inflection point, the HR was 1.000 (95% CI: 0.978, 1.022,

P=0.979), which was not statistically significant, and after the

inflection point, the HR was 0.972 (95% CI: 0.964-0.980).
Results of subgroup analysis

In all prespecified or exploratory subgroups assessed (Table 8),

sex, age, smoking status, SBP, and alcohol consumption did not
FIGURE 4

The rate of reversion to normoglycemia in IFG patients of age
stratification by 10 intervals. Figure showed that the rate of reversion
to normoglycemia among participants with IFG was higher in
women than in men, regardless of their age group. It was also found
that the reversal rate decreased with age in both men and women.
TABLE 2 The rate of reversion to normoglycemia in people with IFG (% or Per 1000 person-year).

BMI Group Participants(n) Reversion events(n) Reversal rate (95% CI) (%) Per 1000 person-year

Total 25874 11856 45.82(45.21-46.23) 155.33

Normal 10688 5830 54.55(53.60-55.49) 186.84

Overweight 11041 4558 41.38(40.46-42.30) 139.14

Obesity 4172 1468 35.19(33.74-36.64) 119.25

P for trend <0.001
BMI, body mass index; CI, confidence interval,
frontiersin.org

https://doi.org/10.3389/fendo.2023.1111791
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Han et al. 10.3389/fendo.2023.1111791
modify the relationship between BMI and reversion to

normoglycemia from IFG. That is, there was no significant

interaction between these factors and BMI (P > 0.05

for interaction).
Discussion

This retrospective cohort study was designed to examine the

link between BMI and reversion to normoglycemia in patients with

IFG. We found that the increase in BMI was related to a

s ign ificant ly decreased probab i l i ty o f regress ion to

normoglycemia. A significantly lower probability of reversal from

IFG to normoglycemia in overweight and obese patients compared

with participants with normal BMI. In addition, a threshold effect
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curve was discovered, and on both sides of the inflection point,

different associations between BMI and reversion to normoglycemia

can be identified.

A prospective cohort study of 491 participants showed that

during a median follow-up of 2.5 years, 22.6% of participants with

prediabetes returned to normoglycemia (41). Results from another

study found that one year after the start of follow-up, 54% of

participants with prediabetes had returned to normoglycemia, and

6% had developed diabetes (17). Besides, in another cohort study

from China, including 14,231 Chinese adults, 44.9% of patients with

prediabetes reverted to normoglycemia within 2 years (42). Our

study showed that 45.82% of IFG patients returned to

normoglycaemia during the 5-year follow-up period. Variations

in the rate of reversion to normoglycemia from prediabetes between

studies may be attributable to changes in participant age, follow-up
TABLE 3 Factors influencing reversion to normoglycemia among participants with IFG analyzed by univariate Cox proportional hazards regression.

Variable Characteristics HR (95% CI) P-value

Age (years) 49.071 ± 13.818 0.976 (0.975, 0.978) <0.001

Sex

Male 17168 (66.352%) Ref

Female 8706 (33.648%) 1.267 (1.221, 1.315) <0.001

BMI (kg/m2) 24.742 ± 3.251 0.935 (0.930, 0.940) <0.001

SBP (mmHg) 127.120 ± 17.546 0.990 (0.988, 0.991) <0.001

DBP (mmHg) 78.371 ± 11.129 0.985 (0.983, 0.987) <0.001

TC (mmol/L) 4.972 ± 0.957 0.880 (0.863, 0.898) <0.001

TG (mmol/L) 1.787 ± 1.450 0.891 (0.877, 0.905) <0.001

HDL-c(mmol/L) 1.331 ± 0.304 1.612 (1.523, 1.706) <0.001

LDL-c(mmol/L) 2.882 ± 0.722 0.919 (0.896, 0.943) <0.001

ALT (U/L) 28.363 ± 23.334 0.993 (0.992, 0.994) <0.001

AST (U/L) 26.413 ± 11.954 0.987 (0.985, 0.989) <0.001

BUN (mmol/L) 4.986 ± 1.248 0.955 (0.941, 0.969) <0.001

Scr (mmol/L) 72.784 ± 16.039 0.997 (0.996, 0.998) <0.001

Smoking status

Current smoker 5902 (22.811%) Ref <0.001

Ever smoker 1130 (4.367%) 1.062 (0.963, 1.171) 0.227 <0.001

Never 18842 (72.822%) 1.255 (1.200, 1.313) <0.001

Drinking status

Current drinker 965 (3.730%) Ref <0.001

Ever drinker 3899 (15.069%) 1.260 (1.123, 1.413) <0.001

Never 21010 (81.201%) 1.394 (1.253, 1.551) <0.001

Family history of diabetes

No 25244 (97.565%) Ref

Yes 630 (2.435%) 0.753 (0.666, 0.852) < 0.001
fron
Continuous variables were summarized as mean (SD) or medians (quartile interval); categorical variables were displayed as percentage (%).
DBP, diastolic blood pressure; BMI, body mass index; TC, total cholesterol, SBP, systolic blood pressure; TG triglyceride, BMI, body mass index; AST aspartate aminotransferase; LDL-c, low-
density lipid cholesterol; ALT, alanine aminotransferase; BUN, blood urea nitrogen; HDL-c, high-density lipoprotein cholesterol; Scr, serum creatinine.
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length, and ethnicity. It is important to note that all studies have

confirmed that a sizable fraction of persons with prediabetes reverts

to normoglycemia. Therefore, finding the contributing factors for

the reversion to normoglycemia from prediabetes is particularly

important for the prevention of diabetes and its complications.

There have been many findings in the past suggesting that elevated

BMI is associated with a higher risk of developing diabetes (43–46). In

people with prediabetes, increased BMI was also positively associated

with the risk of developing diabetes (19). In addition, weight gain is also a

high-risk risk factor for prediabetes (21). Several studies have

demonstrated that BMI follows a positive dose-response relationship

with the risk of prediabetes (47–49). Therefore, we hypothesized that a

reduction in BMI may be associated with an increased probability of
Frontiers in Endocrinology 09107
regression to normoglycemia from prediabetes. Unfortunately, there are

few reports on the relationship between them. A study found that a 1 kg/

m2 increase in delta-BMI (BMI follow-up baseline) was related to a 28%

decrease in the odds ratio (OR) for regression to normoglycemia in

subjects with prediabetes. Results from another study suggested that Each

5.3 kg/m2 increase in BMI was associated with a 6% reduction in the

probability of returning to normoglycemia in patients with prediabetes

during a median follow-up of 2.5 years (HR=0.94, 95% CI: 0.91–0.98)

(41). Our study complemented the existing literature, which supported

the hypothesis that elevated BMI was associated with a reduced

probability of reversal to normoglycemia in patients with prediabetes.

Compared with other studies, the independent variables in our study

used both BMI as a categorical variable and a continuous variable of BMI

to explore its relationship with reversion to normoglycemia from

prediabetes, which reduced the loss of information and quantified their

relationship. In addition, the covariates adjusted for our study were

different from those of the previous studies. We adjusted more

parameters, including drinking status, smoking status, ALT, AST, and

LDL-c. Evidence showed that those parameters were associated with the

development of diabetes (50–53). Meanwhile, the sensitivity analysis

found that this relationship still exists among participants with TG < 1.7

mmol/l, no family history of diabetes, and never alcohol consumption.

Furthermore, we applied a competing risk multivariate Cox regression

analysis model, and the results were consistent with those of a

multivariate Cox proportional hazards regression model. The results

mentioned above have confirmed the relationship stability between BMI

and reversion to normoglycemia in patients with IFG. This finding

provides a reference for the clinical intervention of BMI levels to increase

the probability of reversal to normoglycemia in patients with IFG. It is

worth noting that this study addressing nonlinearity is a great

improvement compared to previous studies.

The mechanism underlying the inverse relationship between BMI

and reversion to normoglycemia in patients with IFG remains unclear,

but it may be associated with insulin resistance(IR). Research has

confirmed that IR plays a crucial role in the regression and progression

of prediabetes (27). In addition, evidence shows that BMI is

independently positively related to indices of IR and negatively

related to b-cell function adjusted for IR (54).
FIGURE 5

Kaplan-Meier curves for the probability of reversion to
normoglycemia from IFG. Figure showed the Kaplan-Meier curves
for the probability of reversion to normoglycemia from IFG stratified
by BMI category. The probability of reversion to normoglycemia
decreased progressively with rising BMI, meaning that Patients with
the highest BMI had the lowest probability of reverting from IFG to
normoglycemia.
TABLE 4 Relationship between BMI and reversion to normoglycemia in patients with IFG in different models.

Exposure Crude model (HR,95%CI) Model I(HR,95%CI) P Model II(HR,95%CI) P Model III(HR,95%CI) P

BMI (kg/m2) 0.935 (0.930, 0.940) <0.001 0.954 (0.949, 0.960) <0.001 0.977 (0.971, 0.984) <0.001 0.982 (0.976, 0.989) <0.001

BMI Group

Normal Ref Ref Ref Ref

Overweight 0.715 (0.688, 0.743) <0.001 0.809 (0.777, 0.842) <0.001 0.901 (0.863, 0.939) <0.001 0.928 (0.888, 0.969) <0.001

Obesity 0.618 (0.584, 0.654) <0.001 0.678 (0.640, 0.719) <0.001 0.831 (0.780, 0.886) <0.001 0.855 (0.802, 0.912) <0.001

P for trend <0.001 <0.001 <0.001 <0.001
Crude model: we did not adjust other covariates.
Model I: we adjusted age, sex.
Model II: we adjusted age, sex, SBP, DBP ALT, AST, BUN, Scr, TG, LDL-c, HDL-c, family history of diabetes, drinking status, and smoking status.
Model III: we adjusted age(smooth), sex, SBP (smooth), DBP (smooth), Scr(smooth), TG (smooth), ALT(smooth), AST(smooth), LDL-c(smooth), HDL-c(smooth), smoking status, drinking
status, family history of diabetes.
HR, Hazard ratios; CI, confidence, Ref, reference.
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Furthermore, this study utilized a model based on a two-piecewise

Cox proportional hazards regression to shed light on the nonlinear

connections. The findings demonstrated a nonlinear link and threshold

effect between BMI and reversion to normoglycemia from IFG. The

inflection point of BMI was 21.7kg/m2 after adjusting for confounders.

There was no significant association between elevated BMI and reversal

of normoglycemia in IFG patients when BMI was below 21.7 kg/m2.

However, when BMI was greater than 21.7kg/m2, the probability of

reversal to normoglycemia decreased by 2.8% for every 1kg/m2 increase

in BMI. That is to say, as the BMI of patients with IFG decreases, the

probability of reversal to normoglycemia will gradually increase, but

when it drops to about 21.7kg/m2, the probability of reversal to

normoglycemia will not continue to increase and remain stable. The

possible reason for the non-linear association between BMI and

reversion to normoglycemia in patients with prediabetes is that the

risk of IR decreases as BMI decreases, but the risk of IR does not

continue to decrease when BMI decreases to a certain extent (54). In

addition, studies have confirmed that skeletal muscle plays an

important role in glucose metabolism. It is one of the major

components of insulin-mediated glucose metabolism. Maintaining

and increasing skeletal muscle mass can improve IR (55). An

excessively low BMI is often accompanied by reduced skeletal muscle
Frontiers in Endocrinology 10108
mass, reduced insulin sensitivity and abnormalities in glucose and fatty

acid metabolism (56, 57). Therefore, the reason that the probability of

reversal to normoglycemia does not continue to increase with a

decrease in BMI to 21.7 kg/m2 may be that a decrease in skeletal

muscle mass offsets the benefits of a continued decrease in BMI.

Excellent clinical value can be derived from the finding that BMI and

reversion to normoglycemia in patients with prediabetes have a

curvilinear relationship. It promotes clinical consultation and offers a

reference for decision-making that is optimized for diabetes prevention.

The population with prediabetes is at much higher risk not only for

T2DM but also for cardiovascular disease and all-cause mortality (58,

59). Previous research has demonstrated that even a brief recovery to

normoglycemia is associated with a significantly decreased risk of

developing T2DM in patients with prediabetes (14). As a result,

prediabetes should be treated, and the goal should be regression to

normoglycemia rather than only preventing the potential impacts of

prediabetes and lowering the likelihood of advancement to T2DM.

Lifestyle interventions including diet and exercise have been

demonstrated to be useful in the prevention and treatment of

prediabetes and T2DM (60). Our study establishes a BMI threshold

for the reversion to normoglycemia in Chinese persons with IFG. That

is, controlling BMI around 21.7 kg/m2 through dietary interventions
TABLE 5 Relationship between BMI and reversion to normoglycemia in patients with IFG in different models with competing risk of progression to
diabetes.

Exposure Crude model (SHR,95%CI, P) Model I(SHR,95%CI, P) Model II (SHR,95%CI, P)

BMI (kg/m2) 0.93 (0.93, 0.94) <0.001 0.95 (0.95, 0.96) <0.001 0.98 (0.97, 0.98) <0.001

BMI Group

Normal Ref. Ref. Ref.

Overweight 0.77 (0.74, 0.81) <0.001 0.81 (0.78, 0.84) <0.001 0.90 (0.86, 0.94) <0.001

Obesity 0.66 (0.63, 0.69) <0.001 0.68 (0.64, 0.72) <0.001 0.83 (0.78, 0.89) <0.001

P for trend <0.001 <0.001 <0.001
Crude model: we did not adjust other covariates.
Model I: we adjust age, sex,
Model II: we adjust age, sex, SBP, DBP ALT, AST, BUN, Scr, TG, LDL-c, HDL-c, family history of diabetes, drinking status, and smoking status.
SHR, subdistribution hazard ratios; CI, confidence, Ref, reference
TABLE 6 Relationship between BMI and the probability of reverting from IFG to normoglycemia in different sensitivity analyses.

Exposure Model I(HR,95%CI) P Model II(HR,95%CI) P Model III(HR,95%CI) P

BMI (kg/m2) 0.981 (0.973, 0.989) <0.00001 0.977 (0.971, 0.984) <0.00001 0.979 (0.972, 0.986) <0.00001

BMI Group

Normal Ref Ref Ref

Overweight 0.900 (0.855, 0.947) 0.00005 0.901 (0.863, 0.940) <0.00001 0.911 (0.869, 0.954) 0.00008

Obesity 0.875 (0.803, 0.955) 0.00267 0.832 (0.780, 0.887) <0.00001 0.849 (0.791, 0.912) <0.00001

P for trend 0.921 (0.887, 0.957) 0.00002 0.909 (0.882, 0.937) <0.00001 0.918 (0.889, 0.949) <0.00001
Model I was a sensitivity analysis performed after excluding participants with TG≥1.7 mmol/L (N= 15858). We adjusted age, sex, SBP, DBP, ALT, AST, BUN, Scr, LDL-c, HDL-c, family history of
diabetes, drinking status, and smoking status.
Model II was a sensitivity analysis performed on participants without a family history of diabetes (N= 25244). We adjusted age, sex, SBP, DBP, ALT, AST, BUN, Scr, TG, LDL-c, HDL-c, drinking
status, and smoking status.
Model III was a sensitivity analysis performed on participants who had never consumed alcohol (N= 21010). We adjusted age, sex, SBP, DBP, ALT, AST, BUN, Scr, TG, LDL-c, HDL-c, family
history of diabetes, and smoking status.
HR, Hazard ratios; CI, confidence, Ref, reference.
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and lifestyle changes may significantly increase the probability of

reversion to normoglycemia.

This study has several strengths worth mentioning. (i) The non-

linear association between BMI and recovery from prediabetes to

normoglycemia, and the identification of inflection points, are

important findings of this study. (iii) To deal with the missing data,
FIGURE 6

The nonlinear relationship between BMI and reversion to
normoglycemia in patients with IFG. The result showed that the
relationship between BMI and reversion to normoglycemia from IFG
was nonlinear, with the inflection point of BMI being 21.7kg/m2.
TABLE 7 The result of two-piecewise linear regression model.

Outcome: reversion to
normoglycemia HR, 95%CI P-

value

Fitting model by standard Cox regression
0.977 (0.971,
0.984) <0.001

Fitting model by two-piecewise Cox regression

Inflection points of BMI(Kg/m2) 21.7

< 21.7 kg/m2 1.000 (0.978,
1.022) 0.979

≥21.7 kg/m2 0.972 (0.964,
0.980) <0.001

P for log-likelihood ratio test 0.035
fron
TABLE 8 Stratified associations between BMI and reversion to normoglycemia in patients with IFG by age, sex, SBP, DBP, smoking status, and drinking
status.

Characteristic No of participants HR (95%CI) P value P for interaction

Age(years) 0.2341

<30 1584 0.996 (0.980, 1.012) 0.6072

30 to <40 6246 0.993 (0.983, 1.003) 0.1636

40 to <50 5679 0.967 (0.954, 0.979) <0.0001

50 to <60 6015 0.967 (0.953, 0.982) <0.0001

60 to <70 4293 0.960 (0.943, 0.977) <0.0001

≥70 2057 0.972 (0.949, 0.996) 0.0234

Sex 0.3776

Male 17168 0.974 (0.966, 0.982) <0.0001

Female 8706 0.983 (0.973, 0.992) 0.0004

SBP (mmHg) 0.1509

<140 20404 0.976 (0.969, 0.983) <0.0001

≥140 5470 0.984 (0.970, 0.999) 0.0316

Drinking status 0.732

Current drinker 965 0.961 (0.927, 0.996) 0.0309

Ever drinker 3899 0.972 (0.957, 0.987) 0.0004

Never 21010 0.979 (0.972, 0.986) <0.0001

Smoking status 0.1727

Current smoker 5902 0.980 (0.967, 0.993) 0.0034

Ever smoker 1130 0.950 (0.923, 0.977) 0.0004

Never 18842 0.978 (0.971, 0.985) <0.0001
Above model adjusted for age, sex, SBP, DBP ALT, AST, BUN, Scr, TG, LDL-c, HDL-c, family history of diabetes, drinking status, and smoking status.
In each case, the model is not adjusted for the stratification variable.
HR, Hazard ratios; CI, confidence, Ref, reference.
tiersin.org

https://doi.org/10.3389/fendo.2023.1111791
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Han et al. 10.3389/fendo.2023.1111791
we used a multiple imputation approach. This approach allows for

maximum statistical power while minimizing bias due to missing

covariate information. (iv) A series of sensitivity analyses were

conducted to ensure the reliability of the findings. In addition, we

performed a multivariate Cox proportional hazards regression model

of competing risks, taking into account prediabetes development to

diabetes as the competing risk for reversion to normoglycemia event.

The following are some possible limitations of this study. First, as

the participants in the study were all Chinese, more investigation is

needed to determine the association between BMI and return to

normoglycemia in people with prediabetes with different genetic

backgrounds. Second, IFG does not fully define prediabetes, however,

measuring 2-hour oral glucose tolerance tests and HbA1C is difficult

for such a large study cohort. In the future we will conduct our study or

collaborate with others as we try to collect information on 2-hour oral

glucose tolerance tests and HbA1C levels. Third, this study is based on

a secondary analysis of published data; therefore, it is impossible to

adjust variables not included in the original dataset, such as insulin

concentration and waist circumference. However, we calculated the E-

value to quantify the potential impact of unmeasured confounders and

found that unmeasured confounders were unlikely to explain the

results. In addition, this post hoc observational investigation

established an association inference between BMI and regression of

normoglycemia in patients with IFG rather than a causal one. Finally,

the BMI and other parameters were only evaluated at baseline in the

current study, and their variations over time were not considered. In

the future, we can also think about structuring our studies or working

with other researchers to get as many data points as we can, such as

details on how BMI changes over the course of patient follow-up.
Conclusion

This study showed that BMI was independently associated with

regression to normoglycemia in Chinese adults with IFG and that

there was a specific non-linear relationship and threshold effect

between them. There was a significant negative correlation between

BMI and the likelihood of returning to normoglycemia from IFG

when BMI was greater than 21.7 kg/m2. Minimizing BMI to 21.7 kg/

m2 in patients with IFG may significantly increase the probability of

returning to normoglycemia.
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Vitamin D supplementation
alleviates insulin resistance in
prediabetic rats by
modifying IRS-1 and PPARg/
NF-kB expressions

Desak Gede Budi Krisnamurti1, Melva Louisa2*,
Erni H. Poerwaningsih1, Tri Juli Edi Tarigan3, Vivian Soetikno2,
Heri Wibowo4 and Christian Marco Hadi Nugroho5

1Department of Medical Pharmacy, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia,
2Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia,
Jakarta, Indonesia, 3Division of Endocrinology and Metabolism, Department of Internal Medicine,
Dr. Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia,
Jakarta, Indonesia, 4Department of Parasitology, Faculty of Medicine, Universitas Indonesia,
Jakarta, Indonesia, 5Research and Development Unit, Medika Satwa Laboratories, Bogor, Indonesia
Background: Prediabetes is a condition of intermediate hyperglycemia that may

progress to type 2 diabetes. Vitamin D deficiency has been frequently linked to

insulin resistance and diabetes. The study aimed to investigate the role of D

supplementation and its possible mechanism of action on insulin resistance in

prediabetic rats.

Method: The study was conducted on 24 male Wistar rats that were randomly

divided into 6 rats as healthy controls and 18 prediabetic rats. Prediabetic rats

were induced with a high-fat and high-glucose diet (HFD-G) combined with a

low dose of streptozotocin. Rats with the prediabetic condition were then

randomized into three groups of 12-week treatment: one group that received

no treatment, one that received vitamin D3 at 100 IU/kg BW, and one group that

received vitamin D3 at 1000 IU/kg BW. The high-fat and high-glucose diets were

continuously given throughout the twelve weeks of treatment. At the end of the

supplementation period, glucose control parameters, inflammatory markers, and

the expressions of IRS1, PPARg, NF-kB, and IRS1 were measured.

Results: Vitamin D3 dose-dependently improves glucose control parameters, as

shown by the reduction of fasting blood glucose (FBG), oral glucose tolerance test

(OGTT), glycated albumin, insulin levels, and markers of insulin resistance (HOMA-

IR). Upon histological analysis, vitamin D supplementation resulted in a reduction of

the islet of Langerhans degeneration. Vitamin D also enhanced the ratio of IL-6/IL-
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10, reduced IRS1 phosphorylation at Ser307, increased expression of PPAR gamma,

and reduced phosphorylation of NF-KB p65 at Ser536.

Conclusion: Vitamin D supplementation reduces insulin resistance in prediabetic

rats. The reduction might be due to the effects of vitamin D on IRS, PPARg, and
NF-kB expression.
KEYWORDS

diabetes mellitus, high-fat diet, 25-hydroxyergocalciferol, inflammation, insulin resistance
Introduction

Prediabetes is when an individual has above-average blood sugar

levels but does not yet match the diagnostic criteria for diabetes.

Prediabetes is not a disease in and of itself but rather an indicator of

future health problems, including diabetes and cardiovascular disease

(1). The World Health Organization instead called it “Intermediate

Hyperglycemia.” At the same time, the American Diabetes

Association referred to it as a “High-Risk State of Developing

Diabetes” (2). Prediabetes is characterized by hyperinsulinemia

which leads to insulin resistance. Eventually, chronic

hyperinsulinemia will lead to beta cell dysfunction and favor the

development of type 2 diabetes mellitus (2–4). Several strategies have

been suggested for preventing diabetes in the prediabetic population.

However, many few have been proven effective. No pharmacological

intervention has been used explicitly to treat insulin resistance (4–6).

Recently, studies have linked vitamin D deficiency to diabetes

pathogenesis (7–9). Several studies have shown that vitamin D

deficiency may have a role in insulin resistance, yet the findings are

still controversial. In some in-vivo and clinical studies, the lack of

vitamin D levels has been associated with increased insulin

resistance and impaired insulin production (7, 10–12). Vitamin D

is suggested to promote insulin sensitivity and optimizes the activity

of beta cells through several pathways. Vitamin D directly affects

pancreatic beta cells by activating beta-cell calcium-dependent

endopeptidases to release insulin (10, 12, 13).

In addition to vitamin D deficiency, a high-fat diet and sedentary

lifestyle may produce adipocyte hypertrophy and hyperplasia, which

aggravates hyperglycemia and hyperinsulinemia (14, 15). In a previous

study in a mouse model with a high-fat diet, inflammatory insulin

signaling markers were dysregulated. Chronic high fat intake will then

be attributed to the development of insulin resistance (16).

Multiple studies have consistently shown reduced serum 25OHD

concentrations in diabetic individuals. An analysis of the collective

findings coming from multiple studies conducted to investigate the

effectiveness of vitamin D supplementation in preventing type 2

diabetes revealed that compared to placebo, vitamin D

supplementation reduced the risk of developing type 2 diabetes in

people with prediabetes (17, 18). Despite the encouraging benefits of

vitamin D, vitamin D supplementation in prediabetic and diabetic

individuals has shown inconclusive outcomes in several studies (10,

19–21). Vitamin D supplementation’s mechanism of inhibiting insulin
02114
resistance in prediabetes has yet to be well understood. Thus, in the

present study, we aimed to investigate the effect and mechanism of

vitamin D supplementation in prediabetic rats on a high-fat, high-

glucose diet.
Methods

Animals and treatments

The Health Research Ethics Committee of the Faculty of Medicine

at Universitas Indonesia authorized this study (KET.701/UN2.F1/

ETIK/PPM.00.02/2020). The experiments were carried out on male

Wistar rats weighing 150–200 grams. The rats were acclimatized for 1

week in the Animal Research Facilities before the experiment. Six of

the 24 rats were fed a standard diet (TestDiet™ 5012, Richmond,

USA). 18 of the 24 rats were given a high-fat diet (TestDiet™ 58V8 rat

chow, Richmond, USA) along with 20% glucose (HFD-G) in their

drinking water to induce prediabetes. After three weeks, the rats in the

high-fat, high-glucose groups were injected with 30 mg/kg BW

streptozotocin. Seventy-two hours after streptozotocin injection, the

rats were tested for oral glucose tolerance test (OGTT), fasting blood

glucose (FBG), and 2-hour postprandial glucose (2H-PPG)

concentrations. To confirm prediabetes conditions, all the rats had

to meet 2 out of the 3 criteria: FBG of 100–125 mg/dL, OGTT of 140–

199 mg/dL, and 2H-PPG prior to treatment randomization. The

prediabetic rats were then randomly assigned to one of three groups

of six: HFD-G + vehicle; HFD-G+ vitamin D3 100 IU/kg BW/day; or

HFD-G+ vitamin D3 1000 IU/kg BW/day. The treatments were given

for 12 weeks. The rat group given a standard diet continued to receive

the same diet for an additional 12 weeks. At the end of the experiment,

rats were sacrificed, blood samples were taken for biochemical testing,

liver samples were used for western blot analysis, and pancreatic

tissues were removed and fixed in 10% formal saline for

histopathological analysis.
Serum biochemical analysis

The current study measured blood glucose using serum rather

than plasma. Even though serum produced lower values than plasma,

the difference was not physiologically significant (22). The blood
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glucose concentrations were tested shortly after the blood was drawn.

Blood glucose concentrations were quantified from serum samples on

a Randox Glucose GOD-PAP GL 364 (Randox, UK) colorimetric kit.

Blood glucose levels were calculated using the glucose oxidase

technique described by Randox Laboratories Ltd (Ardmore, UK).
Histological analysis

Pancreatic tissue samples were collected, dissected, and

immediately fixed in 10% formalin for 24 hours, dehydrated

using a graded alcohol series, cleaned in xylene, and finally

embedded in paraffin. Tissue sections were stained with

hematoxylin and eosin (H&E) for histopathological analysis (23).

All areas were viewed using an OLYMPUS CX43 light microscope

using a 400x magnification and shot with an OLYMPUS SC52

camera. The area of the Islet of Langerhans was counted using

ImageJ, and two blind histopathologists examined all histological

anomalies. The histological state of the pancreas was evaluated and

then compared across the various treatment groups for damage and

regeneration of pancreatic islet cells.
Enzyme-linked immunoassay

The levels of insulin, glycated albumin, TNF-a, 25-

hydroxycholecalciferol, IL-6, and IL-10 were quantified using

enzyme-linked immunoassay kits according to the manufacturer’s

instructions. Rat INS (Insulin) (Cat# ERINS), IL-6 (Cat# BMS625),

and IL-10 (Cat# BMS629) ELISA kits were purchased from Thermo

Scientific; rat glycated Albumin (Cat# No MBS1600353) and IRS1

(Cat No MBS9501484) ELISA kit from MyBioSource and 25-

hydroxycholecalciferol (Cat No CSB-EL006431HV) ELISA kit

from Cusabio.
Western blot analysis

Proteins were isolated from liver tissue homogenates using 1x

RIPA buffer. Moreover, the protein concentration was determined

using a Coomassie Plus (Bradford) assay kit on a microplate reader

spectrophotometer at 590 nm. The isolate was used for western blot

analysis of protein expressions of NF-kB p65, PPARg, and p-IRS1.

Primary antibodies used in the present study were obtained

from Cell Signaling Technology (Beverly, MA): GAPDH

(CST#2118), NF-kB p65 (CST#8242), phospho-NF-kB p65

(CST#3033), PPARg (CST#2430), phospho-PPARg (CST#2430),

IRS1 (CST#2382) , and p-IRS1 (Ser307) (CST#2381) .

Subsequently, 70 µg proteins were separated using 10% SDS-

PAGE and transferred to a PVDF membrane. The quantity of

protein used in the study corresponds with the study by Soetikno V.

et al. (24). Blocking the membrane was done for 1.5 hours with 5%

skimmed milk in phosphate buffer saline with Tween-20. After

blocking, the membrane was incubated overnight at 4°C with a

1:1,000 dilution for all primary antibodies. Afterward, the

membranes were washed in Tris-buffered saline with Tween-20
Frontiers in Endocrinology 03115
and incubated for 1 hour with secondary antibodies against Anti-

rabbit IgG, HRP-linked Antibody (CST#7074) at a 1:5,000 dilution

rate. Enhanced chemiluminescence (ECL) detection system

reagents, Clarity Western (BioRad), were used to examine the

targeted protein bands. ImageJ was used to evaluate the

densitometry data (version 1.53a; National Institutes of Health).

The bands presented were taken from the best acquisition and time

in the ChemiDoc Imaging instrument (Biorad™).
Statistical analysis

GraphPad Prism 9.4.1 software was used for the statistical

analysis (GraphPad Software, Inc). The data were presented in

the mean and standard error of the mean (SEM). Comparison

between groups was analyzed using one-way ANOVA followed by

Tukey’s post hoc test. A statistically significant difference was one

with a p-value of less than 0.05.
Results

The effects of vitamin D supplementation
in prediabetic rats

The baseline serum 25-hydroxyvitamin-D3 (25-OH-D3)

concentrations were measured before 12-week vitamin D3

supplementation. The results showed that the 25-OH-D3 average

baseline levels in all four groups were below 30 mg/L, which
indicates insufficient levels (Figure 1A). In prediabetic rats with

no treatment, the 25-OH-D3 concentrations tend to decrease after

twelve weeks. However, vitamin D3 supplementation may prevent

the decrease of serum 25-OH-D3 levels in prediabetic rats given 100

IU/kg BW. Moreover, in prediabetic rats given 1000 IU/kg BW,

there was a slight increase in serum 25-OH-D3 levels (Figure 1B).

Hyperglycemia and hyperinsulinemia were shown in prediabetic

rats compared to the control group. The status of insulin resistance was

shown in HOMA-IR, and there was a substantial increase in HOMA-

IR compared to the control group. Supplementation of vitamin D3 to

prediabetic rats resulted in a considerable reduction in glucose control

parameters and glycated albumin. As shown in HOMA-IR, insulin

resistance was significantly decreased compared to the prediabetic

group (Figure 2).

Histopathology examinations of healthy control rat pancreas

confirmed the islets of Langerhans’ regular shape. The prediabetic

rat group induced with a high-fat diet showed pathological changes

and cellular damage in the islets of Langerhans. Fat accumulation in

pancreatic acinar cells is associated with pancreatic fibrosis and

acinar cell damage. The pancreas of prediabetic rats also showed

shrinkage of the islets of Langerhans, necrosis, and degeneration of

the cells’ components (Figure 3A).

The supplementation of vitamin D3 at 100 IU/kg BW and 1000

IU/kg BWmay minimize the damage in Langerhans’s islet and fatty

pancreatic acinar cell atrophy. The pancreas of rats receiving

vitamin D treatment has a virtually regular shape. The size of the

islets of Langerhans is virtually restored to normal, while the
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number of fatty acinar cells is reduced (Figure 3A). As

demonstrated in Figure 3B, there was a lower area of Langerhans

islets in prediabetic rats compared to the control group. However,

vitamin D3 supplementation tended to increase the area of

Langerhans islets.
Reduction of IRS-1 phosphorylation
after vitamin D supplementation in
prediabetic rats

There was a significant reduction in IRS1 concentrations in

prediabetic groups compared to healthy control. However, vitamin
Frontiers in Endocrinology 04116
D3 supplementation in prediabetic rats did not change the IRS1

concentrations (Figure 4A). Nevertheless, we observed a slight

decrease in the phosphorylation of IRS1 after vitamin D3

supplementation at 100 IU/kg BW and 1000 IU/kg BW in the

prediabetic group (Figure 4B).
Modulation of serum inflammatory
markers after vitamin D supplementation
in prediabetic rats

The modulation of serum inflammatory markers in control,

prediabetic, and prediabetic groups treated with vitamin D3 100 IU/
B C

D E

A

FIGURE 2

Markers of glucose control and insulin resistance in healthy control or prediabetic rats after 12 weeks with no treatment of vitamin D 100 IU/kg BW/
day or vitamin D 1000 IU/kg/BW/day. (A) Fasting blood glucose; (B) 2-hour glucose level after oral glucose tolerance test (OGTT); (C) glycated
albumin; (D) insulin level; (E) HOMA-IR. *: p<0.05 vs control; #: p<0.05 vs PD group; $: p<0.05 vs vitamin D-100 IU/kg BW/day group.
BA

FIGURE 1

(A) Serum 25-hydroxy-vitamin D3 levels at the start of the treatment period; (B) changes in serum 25-hydroxy-vitamin D3 levels in healthy control or
prediabetic rats after 12 weeks with no treatment or vitamin D 100 IU/kg BW/day or vitamin D 1000 IU/kg/BW/day.
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kg BW or vitamin D3 1000 IU/kg BW was observed. There were no

differences in TNF-a, IL-6, or IL-10 after 12 weeks of treatment.

However, vitamin D3 supplementation tends to decrease the ratio

of IL-6/IL-10 compared with the prediabetes group (Figure 5).
Altered expressions of PPARg and
NF-kB phosphorylation after
vitamin D supplementation in
prediabetic rats

To illustrate the possible mechanism of vitamin D

supplementation in prediabetic rats, we investigated PPARg and

NF-kB signaling by analyzing the expression of PPARg and NF-kB
p65 phosphorylation at Serine 536. We observed that

supplementation of vitamin D3 at 100 IU/kg BW did little change
Frontiers in Endocrinology 05117
in PPARg expressions and NF-kB p65 phosphorylation. However,

compared to the prediabetic group, vitamin D3 supplementation at

1000 IU/kg BW tends to increase PPARg expression and NF-kB p65

phosphorylation (Figure 6).
Discussion

In the present study, we examined the modulating effects of

vitamin D supplementation on the molecular mechanism of insulin

resistance in prediabetic rats. Our study showed that vitamin D3

administration improved glucose control and ameliorated insulin

resistance in prediabetic rats. The modulation of the insulin signaling

pathway and improved balance between proinflammatory, and anti-

inflammatory cytokines contribute to reducing insulin resistance in

prediabetic rats.
BA

FIGURE 4

(A) Muscle IRS1 concentrations; (B) hepatic phospho-IRS1(Ser307)/IRS1 in healthy control or prediabetic rats after 12 weeks with no treatment or
vitamin D 100 IU/kg BW/day or vitamin D 1000 IU/kg/BW/day. *: p<0.05 vs control.
BA

FIGURE 3

(A) Histology of the islet of Langerhans in the rat pancreas; (B) islet of Langerhans area in control or prediabetic rats after 12 weeks with no
treatment or vitamin D 100 IU/kg BW/day or vitamin D 1000 IU/kg/BW/day. Magnification at 400x. The Islet of the Langerhans area was counted
using the ImageJ analyzer. *: p<0.05 vs control.
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The prediabetic conditions in our study were induced by the

chronic administration of a high-fat and high-glucose diet (HFD-G)

in combination with a small dose of streptozotocin (30 mg/kg BW).

The present model of prediabetes demonstrates impaired glucose

homeostasis, as indicated by variations in glucose tolerance such as

fasting blood glucose, OGTT, and insulin levels. No specific criteria
Frontiers in Endocrinology 06118
for prediabetic conditions are currently available for rodents.

However, the criteria used in the study paradigm are consistent

with other studies (25, 26). HFD-G is widely used in the animal

model of diabetes induction by inducing hyperglycemia and insulin

resistance. Studies have shown that prolonged administration of a

high-fat diet may inhibit the insulin receptor signaling pathway and
BA

FIGURE 6

(A) Hepatic PPARg/GAPDH expression; (B) Hepatic phospho-NF-kB p65(Ser536)/NF-kB in healthy control or prediabetic rats after 12 weeks with no
treatment or vitamin D 100 IU/kg BW/day or vitamin D 1000 IU/kg/BW/day.
B

C D

A

FIGURE 5

(A) Serum TNF-a concentration; (B) serum IL-6 concentration; (C) serum IL-10 concentration; (D) ratio of IL-6/IL-10 in healthy control or prediabetic
rats after 12 weeks with no treatment or vitamin D 100 IU/kg BW/day or vitamin D 1000 IU/kg/BW/day.
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trigger insulin resistance (27, 28). A high-fat diet will increase the

formation of diacylglycerol (DAG) in the liver and muscles over

time. Increased DAG in the liver activates protein kinase C (PKC),

which phosphorylates serine residues on IRS1, blocking the

phosphorylation of tyrosine residues. Insulin resistance develops

because of a reduction in insulin-PI3K-Akt signaling. Reduced

insulin-PI3K-Akt in muscle promotes reduced glucose absorption

and a decrease in GLUT-4, both of which contribute to insulin

resistance (28). In adipocytes, studies revealed a distinct connection

between decreased insulin receptor expression and impairment of

insulin signaling in adipocytes. One of the most critical roles is the

activation of a miRNA (miR-128) in adipocytes, which causes

mRNA instability of the insulin receptor (29, 30).

Studies showed impaired insulin signaling and secretion are

linked to reduced 25-hydroxy-vitamin D3 concentrations in the

blood in prediabetic individuals (7, 31). The current study showed

that vitamin D3 supplementation might prevent the decrease of 25-

hydroxy-vitamin D3 levels in the prediabetic group. Previous

studies showed that a high-fat diet might increase vitamin D3

storage in the liver and adipose tissue, contributing to low serum 25

(OH) D3 levels (32).

Based on findings linked to the role of vitamin D in insulin

generation and glucose homeostasis, studies have demonstrated a

causal relationship between vitamin D deficiency and diabetes

mellitus (8, 9, 20, 21, 33, 34). Compared to the prediabetes group,

vitamin D supplementation at 1000 IU/kg BW successfully lowered

fasting blood glucose, plasma insulin, and insulin resistance, as

shown by HOMA IR. In diabetic individuals, vitamin D levels were

negatively associated with insulin resistance (HOMA-IR). Vitamin

D deficiency is hypothesized to cause insulin resistance via several

pathways, including increased proinflammatory cytokines, reduced

insulin production by pancreatic beta cells, and decreased glucose

absorption in peripheral tissues (20). Another study of diabetic rats

given vitamin D supplementation (1000 IU and 2000 IU) for 45

days showed better glucose control and insulin resistance (35).

Vitamin D indirectly impacts insulin secretion and interacts via b-
cells to modulate extracellular calcium or calcium flow (21).

Vitamin D may also activate calcium-dependent endopeptidase,

which aids in the conversion of proinsulin to insulin (36).

Our findings were supported by histological examination using

hematoxylin and eosin staining, which revealed a decrease in

Langerhans islets as well as fatty pancreatic acinar cell atrophy

while increasing the number of fatty acinar cells. For the

histopathology analysis, we utilized the same strategy as earlier

research that effectively reported pancreatic histology (37). The

morphological differences between the negative and positive control

groups, as well as the treatment group, were clearly visible using

hematoxylin and eosin (H&E) staining. However, it will be

beneficial for future research to add scan and image-based

phenotypic analysis utilizing the cell painting approach.

Regarding to the vitamin D doses utilized in the study, were well

below the hazardous quantity. Vitamin D toxicity is highly

uncommon. The most common way to get vitamin D

intoxication is by continuing to take very high dosages of vitamin

D over an extended period. More than 150 µg/L may cause vitamin

D intoxication and hypercalcemia in humans (38). In rats, the
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toxicity of vitamin D3 has been documented at extremely high

dosages. Ali et al. reported vitamin D toxicity at a dose of 6,750 IU/

rat/day, or equivalent to 27,000 IU/kg BW/day, while Chavhan et al.

demonstrated toxicity at 2 mg/kg BW/day, or equal to 80,000 IU/kg

BW/day (39, 40). In our study, the highest dose used was 1,000 IU/

kg BW/daily, lower than those demonstrated in the studies of Ali

et al. (39) and Chavhan et al. (40). Additionally, the highest plasma

concentrations of vitamin D3 after treatment with vitamin D3 1,000

IU/kg BW were 31 µg/L.

In a rat model of type 2 diabetes mellitus with no vitamin D

deficiency, vitamin D therapy was shown to reduce blood glucose

levels by 40% (41). In addition to modulating calcium regulation in

pancreatic beta cells, vitamin D3 directly impacts pancreatic beta

cells via the binding to the vitamin D receptor (VDR) in the active

form 1.25-hydroxy-vitamin D3. After binding to 1.25-

hydroxyvitamin D3, VDR will interact with the vitamin D

response element (VDRE), consequently leading to the insulin

gene’s induced activation (11).

Our findings were consistent with those of Wahba et al., who

discovered that vitamin D might improve oral glucose tolerance in

prediabetic rats (42). The present study also showed that in both

dosages studied, and vitamin D reduced glycated albumin levels.

The link between vitamin D supplementation and glycated albumin

levels in prediabetics has received little attention. Glycated albumin

is a novel biomarker for monitoring short-term glycemic control

due to its shorter half-life (2 to 3 weeks) compared to HbA1c (43).

Improvement of insulin resistance by vitamin D supplementation

can be partially explained by reducing IRS1 phosphorylation at Serine

307. Insulin signaling is mediated by insulin receptor substrates 1 and 2

(IRS1 and IRS2), which regulate glucose homeostasis and energy

metabolism. To date, the increased phosphorylation of IRS1 at serine

307 was considered the best available mechanism to understand the

desensitization of insulin signaling (44). Phosphorylation of Ser307 in

IRS1 limits insulin action by blocking connections with the insulin

receptor (45). Our result was in line with a previous study in a diabetic

rat model, which demonstrated that vitamin D supplementation for

eight weeks and a high-fat diet reduced Ser307 phosphorylation of

IRS1. Increased degradation of IRS1 causes impaired GLUT4

mobilization and decreased glucose uptake in the diabetic rat (46).

Multiple inflammatory responses are closely connected and

play critical roles in developing insulin resistance and type 2

diabetes (47). Insulin resistance associated with obesity is

characterized by chronic low-grade inflammation. There were

increased proinflammatory cytokines and other bioactive

compounds such as TNF-a, IL-1b, IL-6, or monocyte attractant

protein-1 (MCP-1) (48). VDR, the receptor for 1.25-hydroxy-

vitamin D3, is present in more than 38 different tissues and is

known to regulate essential genes involved in bone metabolism,

oxidative damage, chronic illnesses, and inflammation.

Macrophages and dendritic cells express VDR constitutively,

indicating that vitamin D likely plays a significant role in

regulating the inflammatory response (49). Our study showed

that vitamin D3 supplementation did not alter individual

concentrations of proinflammatory cytokines (TNF-a, IL-6) and

anti-inflammatory cytokines IL-10. Vitamin D3 may restore the

balance between proinflammatory and anti-inflammatory
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cytokines, as shown by increasing the IL-10 levels and thus reducing

the ratio of IL-6/IL-10.

The interaction between PPARg and NF-kB is a signaling

pathway that connects insulin resistance, metabolic syndrome,

and inflammation (50, 51). PPARg is a ligand-activated

transcription factor that plays a crucial role in glucose

homeostasis and adipocyte formation (52, 53). Several

investigations have demonstrated that PPARg may decrease

inflammation by reducing NF-kB transcriptional activity by

competing with p65 (51). The transcription factor NF-kB is an

essential regulator of inflammation. It is necessary to produce

proinflammatory cytokines such as IL-1b and IL-6 (54, 55).

According to Ke et al., the inactivation of NF-kB p65 may

modulate hepatic insulin sensitivity by elevating cAMP through

PDE3B gene transcription suppression (55). Our data showed that

1000 IU/kg BW vitamin D3 supplementation enhanced PPARg
expression while decreasing NF-kB p65 phosphorylation at Ser536.

NF-kB p65 phosphorylation at Ser536 is essential in inhibiting NF-

kB transcription responses in toll-like receptor-activated

macrophages, contributing to inflammation resolution (56).
Conclusions

Our study indicated that vitamin D supplementation improves

insulin resistance in prediabetic rats. Additionally, the decreased

phosphorylation of IRS1 increased expression of PPARg and

reduced phosphorylation of NF-kB could be attributed to the

attenuation of insulin resistance of vitamin D3. Therefore,

vitamin D supplementation in a prediabetic state may prevent the

progression of insulin resistance to diabetes.
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