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D3K: The
Dissimilarity-Density-Dynamic Radius
K-means Clustering Algorithm for
scRNA-Seq Data
Guoyun Liu1, Manzhi Li 1,2*, Hongtao Wang1, Shijun Lin1, Junlin Xu3, Ruixi Li 4, Min Tang5 and
Chun Li1

1School of Mathematics and Statistics, Hainan Normal University, Haikou, China, 2Key Laboratory of Data Science and Smart
Education, Ministry of Education, Hainan Normal University, Haikou, China, 3College of Information Science and Engineering,
Hunan University, Changsha, China, 4Geneis Beijing Co., Ltd., Beijing, China, 5School of Life Sciences, Jiangsu University,
Zhenjiang, China

A single-cell sequencing data set has always been a challenge for clustering because of its
high dimension andmulti-noise points. The traditional K-means algorithm is not suitable for
this type of data. Therefore, this study proposes a Dissimilarity-Density-Dynamic Radius-
K-means clustering algorithm. The algorithm adds the dynamic radius parameter to the
calculation. It flexibly adjusts the active radius according to the data characteristics, which
can eliminate the influence of noise points and optimize the clustering results. At the same
time, the algorithm calculates the weight through the dissimilarity density of the data set,
the average contrast of candidate clusters, and the dissimilarity of candidate clusters. It
obtains a set of high-quality initial center points, which solves the randomness of the
K-means algorithm in selecting the center points. Finally, compared with similar algorithms,
this algorithm shows a better clustering effect on single-cell data. Each clustering index is
higher than other single-cell clustering algorithms, which overcomes the shortcomings of
the traditional K-means algorithm.

Keywords: Dissimilarity matrix, density, dynamic radius, ScRNA-seq, K-means

1 INTRODUCTION

Since the start of genome Project, genome sequencing has been carried out rapidly, and a large
amount of genome data has been mined. In order to obtain the information needed by people,
bioinformatics emerges as The Times require (Li and Wong, 2019; Liu et al., 2021). It is an
interdisciplinary subject composed of life science and computer science, which can dig out the
biological significance contained in the chaotic biological data (Sun et al., 2022). Transcriptome
is an important research field in bioinformatics, which can study gene function and gene
structure from an overall level, and reveal specific biological processes and molecular
mechanisms in the process of disease occurrence (Qi et al., 2021; Tang et al., 2020). In
order to study the transcriptome, it must be sequenced first, but traditional sequencing
techniques ignore the critical differences of individual cells, which will mask the
heterogeneous expression between cells and make it difficult to detect subtle potential
changes (Huang et al., 2017; Liu et al., 2020). To solve this problem, the single cell RNA
sequencing (scrNA-SEQ) technology was developed (Qiao et al., 2017).
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scRNA-seq is a powerful method for analyzing gene
expression patterns and quickly determining the correct gene
expression patterns of thousands of single cells (Potter, 2018). By
analyzing scRNA-seq data, we can identify rare cell populations,
find subgroup types with different functions, and reveal the
regulatory relationship between genes. scRNA-seq can not
only show the complexity of single-cell horizontal structure
but also improve biomedical research and solve various
problems in biology (Yang et al., 2019).

Although the research prospect of scRNA-seq is comprehensive,
it also brings new problems and challenges (Kiselev et al., 2019). The
scRNA-seq data are high-dimensional and noisy (Xu et al., 2020).
Therefore, many clustering methods have been proposed to deal
with high-dimensional data structures and noise distribution (Jiang
et al., 2018; Zhang et al., 2021; Zhuang et al., 2021). Most of the
existing scRNA-seq clustering methods can be divided into
unsupervised or semi-supervised clustering (Chen et al., 2016).
Zhang et al., (2018) et al. proposed an improved K-means
algorithm based on density canopy to find the appropriate center
point by calculating the density of the sample data set; Li et al.
proposed a new improved algorithm based on T-SNE and density
canopy algorithm, called density-canopy-K-means (Li et al., 2019).
Compared with similar methods, this clustering algorithm shows
stable and efficient clustering performance on single-cell data, thus
overcoming the shortcomings of traditional methods; Dong and
Zhu, (2020) et al. calculated the dissimilarity parameter between
each model by calculating the dissimilarity function between
samples and selected the maximum dissimilarity parameter value
as the initial clustering center point; Zhu (Zhuang et al., 2021) et al.
proposed a new sparse subspace clustering method, which can
describe the relationship between cells in a subspace; Ruiqing
(Zheng et al., 2019) et al. proposed a method for detecting
scRNA-seq cell types based on similarity learning. Wang et al.,
(2022) propose the scHFC, which is a hybrid fuzzy clustering
method optimized by natural computation based on Fuzzy C
Mean (FCM) and Gath-Geva (GG) algorithms. The FCM
algorithm is optimized by simulated annealing algorithm, and the
genetic algorithm is applied to cluster the data to output a
membership matrix. Gan et al., (2022). propose a new deep
structural clustering method for sc RNA-seq data, named scDSC,
which integrates the structural information into deep clustering of
single cells. The study byGan et al., (2022) not only explained the cell
typing method behaviors under different experimental settings but
also provided a general guideline for the choice of the method
according to the scientific goal and dataset properties. Li et al., (2019)
Surrogate-Assisted Evolutionary Deep Imputation Model (SEDIM)
is proposed to automatically design the architectures of deep neural
networks for imputing gene expression levels in scRNA-seq data
without any manual tuning. Yu et al., (2022)propose a single-cell
model-based deep graph embedding clustering (scTAG) method,
which simultaneously learns cell–cell topology representations and
identifies cell clusters based on a deep graph convolutional network.
Li et al., (2021) propose a multiobjective evolutionary clustering
based on adaptive non-negative matrix factorization (MCANMF)
for multiobjective single-cell RNA-seq data clustering. Peng et al.,
(2020) compared 12 single-cell clustering methods and found that
most of them improved based on the K-means algorithm.

The K-means algorithm (Macqueen, 1966; Lloyd, 1982) was
first proposed by Steinhaus in 1955, Lloyd in 1957, Ball and Hall
in 1965, and McQueen in 1967 in different scientific fields. Once
the algorithm is put forward, it is widely used in various areas
because of its simple principle and easy implementation. At the
same time, it is also commonly used in scRNA-seq clustering.
However, the K-means algorithm still has some problems.
Including that the value of K is difficult to determine, the
clustering result depends on the selection of the initial center
point, and it is easy to fall into the optimal local solution. In
addition, the K-means algorithm is sensitive to noise points and
outliers, and it is not practical for nonconvex data sets or data
with too significant differences in category size. These problems
will have a particular impact on the clustering results. To solve
this problem, many workers have carried out a lot of research.

Due to the high-dimensional characteristics of single cells, we
reduce the dimension of data sets and then cluster them, which can
not only improve the clustering effect but also visually analyze the
clustering results. This technology has been widely used in scRNA-
seq clustering. Common dimensionality reduction algorithms
include Principal Components Analysis (PCA), Locality
Preserving Projections (LPP), t-distributed Stochastic Neighbor
Embedding (t-SNE), Multidimensional Scaling (MDS), Isometric
feature mapping (Isomap), and Locally Linear Embedding (LLE).

Based on dimension reduction, we propose a scRNA-seq
clustering method: The dissimilarity-Density-Dynamic Radius-
K-means algorithm. The algorithm obtains a set of initial center
points by calculating the product of dissimilarity density ρ,
average dissimilarity of candidate clusters α, and disparity of
candidate clusters s. At the same time, the algorithm can optimize
the clustering results by adjusting the dynamic radius parameters.

FIGURE 1 | Dissimilarity density ρ.
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We apply this algorithm to single-cell data sets, and the obtained
indicators (NMI, FMeasure_node, Accuracy, and RandIndex) are
superior to those of other algorithms. They can be used as an
effective tool for scRNA-seq clustering.

The main significance of this study lies in the establishment of a
clustering model based on single-cell sequencing data, which can be
used to cluster cells with similar gene expression patterns into the
same cell type so as to infer cell functions and understand the
correlation between diseases and genomic characteristics. A more
precise and unbiased classification of cells would have a huge impact
in oncology, genetics, immunology, and other research fields.

2 MATERIALS AND METHODS

2.1 Theoretical Presentation
The K-means algorithm will randomly select K points as initial
center points when clustering, which will make the algorithm fall
into optimal local solution, and the obtained clustering
distribution is not optimal. It is possible to divide a smaller
group into one cluster and a large cluster into several small
groups. Therefore, the initial center point of the optimal group
should meet the following requirements: the difference between
the initial center point and other sample points in the group
should be as slight as possible; The difference to sample points
between the groups is as large as possible.

In thisarticle , the concept of dissimilarity is used when
selecting the center point. The so-called dissimilarity is the
dissimilarity between two objects, and its expression form is a
n × n matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d(a1, a1) d(a1, a2)
d(a2, a1) d(a2, a2)

/ d(a1, a2)
/ d(a2, an)

..

. ..
.

d(an, a1) d(an, a2)
1 ..

.

/ d(an, an)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where d(ai, aj) represents the degree of dissimilarity between objects
ai and aj, which is usually a non-negative value. Themore similar the
two things are, the closer the case is to 0; Otherwise, the closer the

matter is to 1. We find that if the dissimilarity density ρ of a point is
greater, the fact is more likely to become the initial center point.

The dissimilarity density ρ of sample points xi is the number of
samples whose dissimilarity with sample objects xi less than the
dynamic radius r. Because there are often some noise points in single-
cell data sets, if the average dissimilarity is taken as the radius, this
fixed-radius algorithmwill make the dissimilarity density ρ inaccurate
and affect the selection of the initial center point. At the same time, the
fixed radius will also cause the number of clusters to be unsatisfactory.
Therefore, the traditional fixed-radiusmethod is no longer suitable for
single-cell clustering. If it is set to the dynamic radius r, it can
effectively solve this problem and is more conducive to single-cell
data clustering. The dynamic radius here is the ratio of the average
dissimilarity between samples to the dynamic parameters T. The
degree of dissimilarity is a model which fully considers the
comprehensive distance and dynamic radius, constructed the
dissimilarity matrix, and converts the single-cell data into a phase
dissimilarity matrix. It can be used to better judge the differences
between cells, not just by the distance between them.

2.2 Basic Definitions
X � {x1, x2,/, xn}is set as the sample data set to be clustered,
where x � {xi1, xi2,/, xip}, i ∈ {1, 2,/, n}, and ρ is the number
of attributes.

DEFINITION 1. Dissimilarity dij between sample points xi

and xj:

dij � ∑p
s�1
d(s)
ij , (1)

among them

d(s)
ij �

∣∣∣∣xis−xjs∣∣∣∣
max {xrs}−min{xrs} (2)

represents the dissimilarity of the s th attribute between the
sample point and, xrs is all the values of the s th attribute.

DEFINITION 2. Constructing dissimilarity matrix d:

FIGURE 2 | Dissimilarity of candidate clusters si .
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FIGURE 3 | Algorithm block diagram.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9127114

Liu et al. Clustering Algorithm for scRNA-Seq Data

7

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


d �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 d12

d21 0
d13 / d1n

d23 / d2n

d31 d32

..

.

dn1

..

.

dn2

0 / d3n

..

.

dn3

0
/

..

.

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

where dij represents the dissimilarity between the sample points
xi and xj.

DEFINITION 3. Dynamic radius r of data set X:

r � Mean r(d)
T

, (4)
among them

Mean_r(d) � 1
n2

∑n
i�1
∑n
j�1
dij, (5)

T is the dynamic radius parameter, and the value is as follows:

T � −0.423 + 0.328K − 1.211mead(d) + 0.662max(d)
+ 1.631min(d), (6)

where K represents the number of data categories; meanmeans the
average of dissimilarity; max represents the maximum phase
dissimilarity; andmin represents theminimum phase dissimilarity.

DEFINITION 4. Sample dissimilarity density ρ:

ρ � ∑n
j�1
δ(dij−r), (7)

where δ(z) � { 1, z≤ 0
0, others

, ρi represents the dissimilarity

density of the sample object xi, which is the number of points
satisfied d1i < r.

The sample point dissimilarity density is the number of points
that satisfy d1i < r. As shown in Figure 1, the conditions are
d11, d12, d13, d14. so the dissimilarity density of sample point 1 is 4.
Similarly, the dissimilarity density of red dots is 6; the
dissimilarity density of yellow dots is 8; the dissimilarity
density of blue dots is 7. It is to be noted that the points in
the intersection of two great circles can be calculated repeatedly.

DEFINITION 5. According to Definition 4, ρ is the number of
samples whose dissimilarity with the sample object xi is less than
the dynamic radius r. Samples meeting the conditions form a
candidate cluster, where the average dissimilarity between the
samples of the candidate cluster is

α(i) � 1
n2

∑n
i�1
∑n
j�1
dij, (8)

DEFINITION 6. The dissimilarity si of candidate clusters
represents the dissimilarity between sample xi objects xj,
which satisfies the following formula

si�
⎧⎨⎩ min(dij), ∃p(j)> p(i)

max(dij), ∃p(j)≤ p(i) , (9)

As shown on the left of Figure 2, the dissimilarity density of
sample point 1 is 5, and there is a dissimilarity density larger than
it, so the smallest dissimilarity is selected as the candidate cluster

FIGURE 4 | Clustering at a fixed radius. (A): The radius is too small; (B): The radius is too large; (C): The radius is appropriate.
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dissimilarity of sample point 1; as shown in the right of Figure 2,
the dissimilarity density of sample point 1 is 11, and there is no
dissimilarity density larger than it. Therefore, the biggest
dissimilarity is selected as the candidate cluster dissimilarity of
sample point 1.

By analyzing Definitions 5, 6, when the candidate cluster is
formed with xi as the center point, if the average dissimilarity
value α(i) between samples of the candidate cluster is smaller, the
dissimilarity of the cluster is very small, and the similarity is very
high; similarly, the greater the value of si, the greater the
dissimilarity between samples. Therefore, the dissimilarity
density ρ, the average dissimilarity α(i), and the dissimilarity
value si of candidate clusters can be taken as the standard to
measure the initial center point, which is specifically defined as
follows:

DEFINITION 7. The dissimilarity weight formula for selecting
the cluster center point is as follows:

ωi � ρip
1
αi
p si, (10)

among them, the point with the most significant weight of
dissimilarity is the initial center point.

2.3 Algorithm Flow and Block Diagram
2.3.1 Algorithm Flow
The Dissimilarity-Density-Dynamic Radius-K-means
algorithm calculates the dissimilarity density ρ of sample
points, the average dissimilarity α of candidate clusters, and
the dissimilarity value s of candidate clusters to obtain the
dissimilarity weight ω of sample points and determine a group

TABLE 1 | Summary of six scRNA-seq data sets used in this study.

Data set The number of cells The number of genes The number of clusters

Kolod 704 10685 3
Pollen 249 14805 11
Ting 114 11405 5
Ioh 429 18087 8
Goolam 124 16384 5
Usoskin 622 17772 4
Xin 1600 39851 8
Zeisel 3005 4412 48
Macosko 6418 12822 39

TABLE 2 | Clustering indexes after dimensionality reduction.

Kolod Pollen Usoskin Ting loh Goolam Xin Zeisel Macosko

Original Data NMI 0.5202 0.8533 0.3139 0.7262 0.5512 0.6218 0.5338 0.5262 0.4772
FM 0.8207 0.7837 0.5923 0.534 0.6013 0.7605 0.5468 0.3260 0.3726
Accuracy 0.6960 0.7807 0.5907 0.7746 0.5734 0.8097 0.8744 0.4985 0.4399
RandIndex 0.7080 0.9323 0.7011 0.8370 0.7924 0.8140 0.6971 0.9230 0.9092

t-SNE NMI 0.8344 0.9169 0.7197 0.8402 0.8296 0.7298 0.6087 0.5741 0.6954
FM 0.9025 0.8682 0.8032 0.9494 0.8540 0.9363 0.5456 0.3564 0.5339
Accuracy 0.9071 0.9149 0.6521 0.9033 0.8748 0.8952 0.9306 0.5784 0.6790
RandIndex 0.9005 0.5335 0.8804 0.9197 0.9459 0.8937 0.7088 0.9297 0.9488

PCA NMI 0.5557 0.8190 0.3435 0.8318 0.6398 0.6674 0.5821 0.4031 0.3433
FM 0.7710 0.8013 0.5486 0.9077 0.6616 0.7779 0.5873 0.2254 0.2456
Accuracy 0.7685 0.8233 0.5723 0.8947 0.6727 0.8653 0.9175 0.4254 0.3398
RandIndex 0.7905 0.9475 0.6837 0.9127 0.8648 0.8679 0.7119 0.9188 0.9185

MDS NMI 0.5519 0.8123 0.3438 0.8228 0.6444 0.7202 0.5960 0.4033 0.3441
FM 0.7679 0.5588 0.5588 0.8429 0.6674 0.7927 0.6046 0.2255 0.2420
Accuracy 0.7648 0.5723 0.5723 0.8596 0.6681 0.8871 0.9219 0.4252 0.3363
RandIndex 0.7883 0.6845 0.6845 0.9067 0.8647 0.9078 0.7288 0.9189 0.9163

Isomap NMI 0.4574 0.7350 0.3686 0.9173 0.7812 0.6535 0.6002 0.5338 0.5063
FM 0.7797 0.6632 0.6709 0.8064 0.8292 0.7295 0.5852 0.3307 0.4182
Accuracy 0.7741 0.6908 0.6672 0.8684 0.8436 0.8734 0.9207 0.5196 0.4634
RandIndex 0.7590 0.9070 0.7372 0.9104 0.9355 0.8173 0.7240 0.9251 0.9133

LLE NMI 0.5358 0.8941 0.4951 0.8172 0.7867 0.7205 0.5831 0.5719 0.6020
FM 0.8006 0.8931 0.7353 0.8458 0.7843 0.3620 0.6042 0.3620 0.5398
Accuracy 0.7955 0.9076 0.7267 0.8772 0.8462 0.5237 0.8882 0.5237 0.5734
RandIndex 0.7897 0.9695 0.7841 0.8763 0.9225 0.8978 0.7240 0.8978 0.9405

LPP NMI 0.7105 0.8875 0.6887 0.7869 0.7709 0.7056 0.5543 0.4819 0.4517
FM 0.7977 0.8460 0.8559 0.8351 0.7449 0.7991 0.5506 0.2664 0.3275
Accuracy 0.7979 0.8594 0.8376 0.8509 0.8089 0.8790 0.9006 0.4516 0.4020
RandIndex 0.7925 0.9620 0.8680 0.8572 0.8693 0.8996 0.7036 0.9197 0.9232
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of initial center points. Then, the obtained center point is used
as the initial center point of K-means for clustering. The flow of
the Dissimilarity-Density-Dynamic Radius-K-means
algorithm is as follows:

1) Giving a data set X � {x1, x2,/, xn};
2) Calculating the dissimilarity density of all points in x is in

accordance with the definition and form a set ρ;
3) Finding that point corresponding to the maximum value

from the dissimilarity set ρ; if the number of the value is 1, the
point is taken as the first initial clustering center point; if the
number of the maximum value is not 1, the calculated
sum(i) � ∑n

j�1dij, wherein dij ≤ r, j � 1, 2,/, n, and form
the set S, that satisfying sum(i) � min(S) point is taken as
the first initial center point;

4) Obtaining a first initial clustering center point at this time,
recording C1, and putting it in the set C at that time
C � {C1}. Then, points satisfying d1i < r are then removed
from the data set X;

5) Calculating the weight value ωi of the dissimilarity of the
remaining point according to the definition, wherein the
second initial center point is the point with the maxumun
weight value of the distinction and is recorded C2 and put in
setC at that timeC � {C1, C2}. Then, deleting the points that
meet the criteria;

6) Repeating step 5 until that data set is
empty, C � {C1, C2,/, Ck};

7) At this time, a group of initial center points C and the
number K of clustering have been obtained, and the
parameters are brought into the k-means algorithm for
clustering;

8) Calculating the distance between each point in the sample
and the initial center point, classifying the space into the
cluster where the center point with the smallest distance
between each other is located, and calculating the new center
points of each group;

9) Repeating the step 8 until the division condition of all sample
points remain unchanged or the central point does not
change;

10) Output that clustering result.

2.3.2 Algorithm Block Diagram
The algorithm block diagram is shown in Figure 3.

2.4 The Necessity of Setting the Dynamic
Radius Parameter T
When introducing the D3K algorithm, we put forward the
definition of dynamic radius R; the so-called dynamic radius is
the ratio of average dissimilarity and dynamic radius parameter T.
The distribution of the data set is not uniform. If the distribution of
the data set is too scattered or too close, the average dissimilarity
will be too large or too small. If the average dissimilarity is taken as
the radius, the clustering result will be inaccurate, which will affect

FIGURE 5 | Clustering index values of different dimension clustering.
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the selection of the initial center point and result in an inaccurate
clustering result. If the dynamic radius parameter is added, the
radius can be adjusted flexibly according to the data characteristics
so as to optimize the clustering result. As shown in Figure 4 below:

As shown in Figure 4C, for clustering results under ideal
conditions, appropriate radii are set and clusters are divided
reasonably. However, if the average dissimilarity is taken as
the radius, the average dissimilarity will be too small for some
overly tight data sets, which will make the radius smaller, and
the original cluster will be divided into two or more clusters,
as shown in Figure 4A. For some data sets that are too
scattered or have noise points, the average dissimilarity will
be very large. In this case, taking the average dissimilarity as
the radius will make the radius very large so that originally
different clusters can be divided into one cluster, as shown in
Figure 4B. Therefore, adding the dynamic radius parameter T
into the model can reasonably adjust the radius size according
to the data characteristics and optimize the result of cluster
division.

The dynamic radius parameter T is considered from multiple
perspectives, including the maximum, minimum, average, and
the number of clusters K. Considering many aspects, we get the
optimal solution through the greedy algorithm and then fit the
equation of the dynamic radius parameter T through a large
amount of data. Among them, the dissimilarity between each
point and itself is 0, so the dissimilarity between each point and

itself should be removed when selecting the minimum value of
phase dissimilarity, that is, the value with the smallest foreign
phase dissimilarity except 0. By observing the equation of
dynamic radius parameter T, it is found that the coefficient of
K value of the number of clusters is only 0.328, indicating that
although the dynamic radius parameter T is related to the number
of clusters, it does not account for the main factor, and the
optimal solution of T is in an interval, so the equation can be
satisfied without a particularly accurate K value.

3 RESULT

To verify the algorithm, we selected nine groups of single-cell data
sets for experiments, namely, Kolod, Pollen, Ting, Ioh, Goolam,
Usoskin, Xin, Zeisel, and Macosko data sets. Table 1 shows the
details of the data set.

Clustering the data in Table 1 after dimension reduction can
improve the clustering effect and visually analyze the clustering
results. We compare the effects of six dimensionality reduction
methods on single-cell data and visually examine the clustering
results and find out an algorithm suitable for dimensionality
reduction of single-cell data. At the same time, to verify the
quality of the algorithm, we compare it with other single-cell
clustering algorithms and finally confirm the selection of
parameter T in this study.

FIGURE 6 | Index of the D3K algorithm in single-cell data aggregation class.
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3.1 Dimension Reduction
To find a dimension reduction algorithm suitable for single-
cell data sets, we preprocess single-cell data with different
dimension reduction algorithms and then cluster the reduced
data to obtain clustering results. Here, we compare six
dimensionality reduction algorithms: T-SNE, PCA, MDS,
LPP, and LLE Isomap. By reducing dimensions in
clustering, we obtain the data in Table 2:

By analyzing the data in Table 2, it can be found that after
dimensionality reduction is used, the values of each index of
clustering have been significantly improved, indicating that
dimensionality reduction is very important for clustering,
which can not only greatly increase the accuracy of clustering
but also reduce the calculation time. At the same time, it can be
found that in most of the data, the t-SNE algorithm has the best
improvement effect. Therefore, the T-SNE algorithm can be used
as an effective tool for single-cell clustering.

In the previous experiments, we have concluded that the
t-SNE algorithm is more suitable for single-cell data
dimension reduction, but how many dimensions to reduce the
dimension is more suitable for clustering is still a problem to be
discussed. To this end, we set up the following experiments: The
t-SNE algorithm with the best dimensional reduction effect for
single-cell data was selected, and six groups of single-cell data
were reduced to 3, 10, 20, 50, and 100 dimensions for K-means
clustering, and the clustering index results in different
dimensions were analyzed. In order to compare the differences

between different dimensions more clearly, the results are
presented in a broken line graph. As shown in Figure 5:

Through the analysis of Figure 5, it is found that each data set
has an inflection point in three dimensions, that is to say, the data
will be reduced to three-dimension clusterings, and the clustering
result will be significantly improved. Although some data still
improve after three-dimension clustering, the increase is very
small and can be almost ignored. Therefore, we can conclude that
the t-SNE algorithm has the best clustering effect when the data
are reduced to three dimensional ones. Therefore, in the following
experiments, we uniformly used the t-SNE algorithm to reduce
single-cell data to three dimensional ones for clustering.

3.2 Comparison With Other Clustering
Algorithms
To verify the effectiveness of the D3K algorithm, we selected
seven single-cell clustering algorithms to compare with it,
namely, DCK (Zhang et al., 2018), S3C2 (Zhuang et al., 2021),
sinNLRR (Zheng et al., 2019), Corr (Dong et al., 2018), Max-Min
(Sen et al., 2018), K-means, and DBSCAN algorithm.

The nine groups of single-cell data in Table 1 were clustered
by the single-cell clustering algorithm described above, and each
index (NMI, FMeasure_node, Accuracy, RandIndex) of the
clustering result was obtained to obtain Figure 6 as follows:

Compared with other clustering algorithms, the D3K
algorithm is obviously higher than different algorithms in

FIGURE 7 | D3K algorithm visualization analysis.
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various indexes, and the results of multiple indexes are basically
above 0.8, among which the effects of multiple indexes of the
Pollen data set can reach above 0.95, especially Ting data set, and
the results all are 1. It can be seen that the D3K algorithm can
achieve ideal clustering results for both small and large data sets
and can be used as a clustering model for single-cell data.

Visual analysis of clustering results can not only clearly display
complex data in the form of images but also intuitively observe
the differences between clusters and the size of differences within
clusters. For single-cell data, this study first constructs its
dissimilarity degree matrix and then obtains the cluster label
of single-cell data through clustering. According to the cluster
label, visual analysis of the dissimilarity matrix can not only show
the clustering results of single cells after clustering but also make
the distance within the same cluster smaller and the distance
between different clusters larger. The following Figure 7 is a
visual analysis of the clustering results of six groups of single-cell
data, and the clustering results of the D3K algorithm are
displayed in the form of images.

As shown in Figure 7, the visualization results of the D3K
algorithm after clustering 10 groups of single-cell data are shown.
It can be seen that the D3K algorithm can perfectly divide these
data into different cell types according to the labels after
clustering and make the differences within clusters after
clustering very small, but the differences between clusters are
very large.

3.3 Validation of Parameter T
When introducing the D3K algorithm, we propose the definition of
dynamic radius r, and the so-called dynamic radius is the ratio of
the average degree of difference to the dynamic radius parameter.
The distribution of the dataset is not uniform, and if the dataset

FIGURE 8 | Clustering results when T and not T are set.

FIGURE 9 | Deng data set gene marker results.
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distribution is too scattered or too tight, it will cause the average
difference to be too large or too small. If the radius is based on the
average degree of difference, it will affect the selection of the initial
center point, resulting in inaccurate clustering results. By adding
the dynamic radius parameter, you can find the right radius for
each set of data to optimize clustering results.

In order to explain the necessity of the dynamic radius
parameter T more rigorously, we set up the following
experiment and ninesets of single-cell data were taken and
clustered using D3K. The dynamic radius parameter T is not
added to the first cluster, and the dynamic radius parameter T is
added to the second cluster to compare the difference between the
results. The result is shown in Figure 8:

As shown in Figure 8, the comparison of clustering results of
the D3K algorithm when T is set and not set is shown. The
abscissa of each of these plots represents the dataset, and the
ordinate coordinate represents the values of each metric. The
black polyline represents the clustering result when T is set, and
the green polyline represents the clustering result when T is not
set. The analysis found that the clustering results when setting T
were better than the clustering results when T was not set. It is to
be noted that setting the T value can optimize the clustering
results and make the clustering results more accurate.

3.4 Genetic Markers
The task of single-cell scrNA-SEQ sequencing is not only to
cluster single-cell sequencing data but also to cluster cells with
similar gene expression patterns into the same cell type.
Extraction of gene markers from the single-cell level of single-
cell RNA-SEQ and cell identification is also an important part
because it can assist in subsequent analysis of gene interactions.
As shown in Figure 9, after annotation of the Deng data cluster
class, its marker genes can be determined. The Deng marker
genes include Early-2cell, mid-2cell, late-2cell, 4cell, 8cell, 16cell,
and Zygoto. By clustering single-cell data, gene markers can be
realized more effectively, which is convenient for further research
on a single cell.

4 DISCUSSION

scRNA-seq can quickly determine the precise gene expression
patterns of thousands of single cells and reveal the complexity of
the horizontal structure of single cells, thus improving biomedical
research and solving various problems in biology. However, due
to the high dimension and multi-noise characteristics of single-
cell sequencing data sets, it brings significant challenges to the
traditional clustering algorithm. In this study, we propose a
Dissimilarity-Density-Dynamic Radius-K-means clustering

algorithm. By selecting the dynamic radius, the algorithm
effectively calculates the dissimilarity density ρ of the data set,
the average dissimilarity α of candidate clusters, and the
dissimilarity s of candidate clusters, finds a group of high-
quality initial center points, and achieves the purpose of
improving the K-means algorithm.

We use the Dissimilarity-Density-Dynamic Radius-K-means
clustering algorithm to cluster some single-cell data sets and
evaluate the clustering results. Experiments show that the
Dissimilarity-Density-Dynamic Radius-K-means clustering
algorithm has good performance for single-cell data clusters.
At the same time, we also compared with other single-cell
clustering algorithms. Experiments show that the
Dissimilarity-Density-Dynamic Radius-K-means clustering
algorithm is superior to other single-cell clustering algorithms.
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Transcriptome Analysis Reveals Hub
Genes Regulating Autophagy in
Patients With Severe COVID-19
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1Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health,
Southern Medical University, Guangzhou, China, 2Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen
University, Jiangmen, China, 3Department of Radiation Oncology Ⅱ, Zhongshan People’s Hospital, Zhongshan, China,
4Department of Biochemistry and Molecular Biology, School of Basic Medicine, Southern Medical University, Guangzhou, China

Background: The COVID-19 pandemic has currently developed into a worldwide threat
to humankind. Importantly, patients with severe COVID-19 are believed to have a higher
mortality risk than those with mild conditions. However, despite the urgent need to develop
novel therapeutic strategies, the biological features and pathogenic mechanisms of severe
COVID-19 are poorly understood.

Methods: Here, peripheral blood mononuclear cells (PBMCs) from four patients with
severe COVID-19, four patients with mild COVID-19, and four healthy controls were
examined by RNA sequencing (RNA-Seq). We conducted gene expression analysis and
Venn diagrams to detect specific differentially expressed genes (DEGs) in patients with
severe disease comparedwith those withmild conditions. Gene Ontology (GO) enrichment
analysis was performed to identify the significant biological processes, and protein–protein
interaction networks were constructed to extract hub genes. These hub genes were then
subjected to regulatory signatures and protein–chemical interaction analysis for certain
regulatory checkpoints and identification of potent chemical agents. Finally, to
demonstrate the cell type-specific expression of these genes, we performed single-cell
RNA-Seq analyses using an online platform.

Results: A total of 144 DEGs were specifically expressed in severe COVID-19, and GO
enrichment analysis revealed a significant association of these specific DEGs with
autophagy. Hub genes such as MVB12A, CHMP6, STAM, and VPS37B were then
found to be most significantly involved in the biological processes of autophagy at the
transcriptome level. In addition, six transcription factors, including SRF, YY1, CREB1,
PPARG, NFIC, and GATA2, as well as miRNAs, namely, hsa-mir-1-3p, and potent
chemical agents such as copper sulfate and cobalt chloride, may cooperate in
regulating the autophagy hub genes. Furthermore, classical monocytes may play a
central role in severe COVID-19.

Conclusion: We suggest that autophagy plays a crucial role in severe COVID-19. This
study might facilitate a more profound knowledge of the biological characteristics and
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progression of COVID-19 and the development of novel therapeutic approaches to
achieve a breakthrough in the current COVID-19 pandemic.

Keywords: severe COVID-19, differentially expressed genes, protein ubiquitination, RNA sequencing, peripheral
blood mononuclear cells

INTRODUCTION

The current COVID-19 pandemic, caused by novel severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to
urgent healthcare issues worldwide. According to the World
Health Organization, 223 countries or regions had reported
456,797,217 confirmed cases of COVID-19 by 14 March 2022,
including 6,043,094 deaths. The manifestations of COVID-19
vary, and most infected individuals have only mild symptoms
similar to typical pneumonia or even no symptoms (Wu and
McGoogan, 2020). Furthermore, mortality is mainly observed in
patients with severe COVID-19 with severe respiratory failure
associated with interstitial lung pneumonia and acute respiratory
distress syndrome (Berlin et al., 2020). In countries that did not
implement active control measures, the case fatality rate of
COVID-19 was as high as ~10% (Iype and Gulati, 2020).
However, treatment options are limited to symptomatic
treatment to reduce the severity of symptoms, and no curative
treatment is available. Moreover, in COVID-19, especially in the
severe forms, the characteristics and effects of biological reactions
are still poorly understood, which prompts researchers to search
for better predictors of clinical outcomes and tools to provide
information for developing new therapeutic targets and
appropriate therapeutic measures. Transcriptome profiling by
RNA sequencing offers sufficient gene expression analysis for
characterizing COVID-19 and explains biological pathways and
key genes that are not yet targeted by current therapies. In this
way, Mahmud et al. (2021) identified transcription factor–gene
interactions, protein–drug interactions, and DEG-miRNA
coregulatory networks with differentially expressed genes
(DEGs) for effective treatment of COVID-19. Auwul et al.
(2021) identified that common gene signatures and pathways
between COVID-19 and chronic kidney disease (CKD) could be
therapeutic targets in COVID-19 patients with CKD as a
comorbidity using the RNA sequencing (RNA-Seq)
transcriptomic dataset of peripheral blood mononuclear cells
(PBMCs) infected with SARS-CoV-2.

Autophagy refers to the process of sealing a part of the
cytoplasm in the double-membrane autophagosome and
delivering it to the lysosome for degradation; it is an essential
cellular mechanism to cope with various stress conditions (such
as starvation, energy deprivation, and pathogen invasion) and
maintain a steady-state balance (Feng et al., 2014). As a
monitoring mechanism, autophagy is also involved in resisting
the foreign invasion of viruses. In response to viral infection, the
autophagic activity is activated by host cells through virus-
encoded activators, cellular stresses provoked by infection, and
sensing of viral constituents mediated by Toll-like receptors
(TLRs) (Viret et al., 2018). As a defense mechanism during
viral infection, the autophagic activity could deliver the virus

or viral protein to the lysosome for degradation, transport viral
nucleic acids and antigens to endolysosomal compartments for
innate and adaptive immune responses, and regulate virus-
induced cell death (Levine et al., 2011). SARS-CoV-2 is an
enveloped, approximately 30 kb single-stranded RNA β-
coronavirus (Wu et al., 2020). Several studies have
demonstrated that infection with SARS-CoV-2 may be
associated with autophagy. Miao et al. (2020) demonstrated
that SARS-CoV-2 virus infection would block autophagy,
resulting in the accumulation of autophagosomes and causing
late endosomal sequestration of the homotypic fusion and protein
sorting (HOPS) component VPS39. In contrast, Hui et al. (2021)
provided evidence that SARS-CoV-2 promotes autophagy to
suppress type I interferon response.

Here, to explore the biological characteristics and progression
in patients with severe COVID-19 as opposed to those with mild
COVID-19, we first pre-processed raw data on GSE167930 and
screened specific DEGs for severe COVID-19. Gene Ontology
analysis of these DEGs was performed to gain knowledge
regarding their biological processes. Subsequently, we
examined the most significant term and performed
protein–protein interaction (PPI) network analysis to extract
the hub genes regulating autophagy. Furthermore, we
identified transcription factors (TFs) and microRNAs
(miRNAs) at regulatory checkpoints using these hub genes.
We then analyzed the protein–chemical interaction network,
to determine potent chemical agents. Finally, to determine the
cell type-specific expression of these genes, we performed single-
cell RNA-Seq analysis using an online dataset. The sequential
workflow of the processes in this study is shown in Figure 1.

MATERIALS AND METHODS

Sample Collection, Data Processing, and
Differential Expression Analysis
The study cohort comprised peripheral blood mononuclear cells
from four mild COVID-19 patients, four severe COVID-19
patients, and four healthy controls. All samples were subjected
to RNA-Seq analysis, and the results could be obtained from the
GEO database of the National Center for Biotechnology
Information (NCBI). The GEO accession ID of the dataset was
GSE167930, which was already deposited for early published
article by our team (Zhou et al., 2021). The limma R package was
used for RNA-Seq to identify significant DEGs (the cut-off value
of fold change >2 and fold change <0.5; p-value < 0.05). To screen
specific DEGs for severe COVID-19, we set two gene clusters. In
cluster 1, DEGs were significantly expressed in severe COVID-19
patients compared with healthy controls. In cluster 2, DEGs were
significantly expressed in mild COVID-19 patients compared
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with severe COVID-19 patients. The Venn diagram of cluster
1 and cluster 2 was used to specifically distinguish DEGs
associated with severe COVID-19 patients. This differential
expression analysis was performed and figures were obtained
using the SangerBox tools, a free online platform for data analysis
(http://vip.sangerbox.com/).

Gene Ontology Enrichment Analysis
Gene Ontology (http://geneontology.org/) stores a database of
gene annotations that participate in biological processes; it
calculates the probability of obtaining at least as many genes
with the observed annotations. DAVID (https://david.ncifcrf.
gov) was used as a data source for Gene Ontology enrichment
analysis of the 144 DEGs specifically expressed in severe COVID-
19, and the significant enrichments were filtered based on
p-value < 0.05 and FDR (q-value) < 0.05. The enrichment
analysis was performed, and figures mentioned earlier were
obtained using the SangerBox tools (http://vip.sangerbox.com/).

Protein–Protein Interaction Network
Analysis and Hub Gene Cluster
Identification
The genes involved in the crucial biological process of severeCOVID-
19 were included in the STRING database (https://string-db.org/)
(version 11.0) to construct a PPI network. Cytoscape v.3.7.1 was then
used for the visual presentation of the results from STRING. Hub
gene cluster analysis was conducted using the Molecular Complex
Detection (MCODE) plugin.

Transcriptional and Post-transcriptional
Network Analysis
The hub genes involved in the crucial biological processes of severe
COVID-19 were used to recognize its TF gene and gene-miRNA
network using the JASPAR database and TarBase database v8.0 on
the NetworkAnalyst platform, respectively. Subsequently, Cytoscape
v.3.7.1 was used to obtain a visual presentation of the TF gene and
gene-miRNA interaction network.

Gene–Chemical Interaction Network
Analysis
The Comparative Toxicogenomics Database in the
NetworkAnalyst tool was further used to recognize the
relationship of potential chemical agents and hub genes in the
crucial biological process of severe COVID-19. For a visual
presentation of the gene–chemical interaction network,
Cytoscape v.3.7.1 was used.

Single Cell RNA-Seq Analysis
To indicate the cell type-specific expression of hub genes involved
in autophagy in this study, we performed single-cell RNA-Seq
analysis on a free online database platform: COVID-19 Cell Atlas
Data Mining Site (http://www.covidcellatlas.com/) (Unterman
et al., 2022). We set the comparison as COVID-19 Stable
versus Progressive on the website, where “Stable” refers to
patients hospitalized in internal medicine wards who
eventually recovered and were discharged, that is, mild
patients in our study, and “Progressive” refers to severe
patients who required admission to the ICU and eventually
succumbed to the disease. To show the identified cell types
that express the gene, the UMAP Explorer was used for
plotting the gene expression. We then imported the five most
specifically expressed cell types into interactive connectome to
explore the intercellular ligand–receptor pair interactions. All the
figures were obtained from this online platform.

RESULTS

Identification of Differentially Expressed
Genes Specific for Severe COVID-19
Patients
To identify the DEGs specific for severe COVID-19, we first
compared genes expressed in severe COVID-19 to those
expressed in healthy controls and set these 262 DEGs in
cluster 1 (the cut-off value of fold change >2 and fold

FIGURE 1 | Schematic illustration of the overall general workflow of this study.
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change <0.5; p-value < 0.05). Following this, in cluster 2, a total of
1751 DEGs were significantly changed in mild COVID-19
patients compared with severe COVID-19 patients. As shown
in the Venn diagram of cluster 1 and cluster 2, there were
144 DEGs specifically expressed in severe COVID-19, and
these 144 DEGs were employed to accomplish further
determination of biological process enrichment analysis
(Figure 2).

Gene Ontology Enrichment Analysis
To gain insight into the regulation of genes and the transmission
of signals that occur during the progression of severe COVID-19,
we performed Gene Ontology enrichment analysis. In biological

process enrichment with DAVID at p-value < 0.05 and FDR
(q-value) < 0.05, we found a total of 11 GO terms enriched
significantly for the specific 144 DEGs in severe COVID-19
patients (Figure 3). Table 1 presents the 11 GO terms based
on the number of genes included. The biological process terms
“Autophagy” (GO:0006914, p-value 0.0001, FDR 0.0327) and
“Process utilizing autophagic mechanism” (GO:0006919,
p-value 0.0001, FDR 0.0327) were considered the crucial
biological process as they contained maximum 12 genes
including ATM, CHMP6, EP300, RIPK2, ATP6V0E1, VPS37B,
ATP6V1E2, PLEKHM1, ZC3H12A, STAM,MVB12A, and RALB.
In Figure 4A, the stacked bar chart visualized these gene
expressions in patients with severe COVID-19, mild COVID-
19, and healthy control. Also, a total of six genes (EP300, RIPK2,
STK4, TRAF2, RFNG, and RALB) were contained in “Positive
regulation of protein binding” (GO:0032092, p-value 0.0001, FDR
0.0294). The GO term “Virion assembly” (GO:0019068, p-value
0.0001, FDR 0.0133) contained TBC1D20, CHMP6, RPS27A,
VPS37B, and MVB12A. The biological process terms of
“Multi-organism transport” (GO:0044766, p-value 0.0001, FDR
0.0365) and “Multi-organism localization” (GO:0050706, p-value
0.0001, FDR 0.0365) contained five genes including THOC7,
RPS27A, VPS37B, XPO1, and MVB12A. A total of four genes
(RIPK2, PML, ZC3H12A, and PANX1) were contained in
“Regulation of interleukin-1 beta secretion” (GO:0050706,
p-value 0.0002, FDR 0.0474). Then, four genes including
UBE2J2, LEPROT, RHOU, and HSPA1L consist in “Regulation
of protein targeting to mitochondrion” (GO:1903214, p-value
0.0002, FDR 0.0474) and “Positive regulation of protein targeting
to mitochondrion” (GO:1903955, p-value 0.0001, FDR 0.0294).
Furthermore, four genes (CHMP6, VPS37B, STAM, and
MVB12A) were contained in terms of “Multivesicular body
assembly” (GO:0036258, p-value 0.0001, FDR 0.0294) and
“Multivesicular body organization” (GO:0036257, p-value
0.0001, FDR 0.0294).

FIGURE 2 | Venn diagram of significantly altered genes in cluster
1 [severe COVID-19 group compared with healthy control group (purple)] and
cluster 2 [mild COVID-19 group compared with the severe COVID-19 group
(yellow)]. A total of 144 genes were significantly altered specifically in
severe COVID-19 patients.

FIGURE 3 | (A) Gene Ontology biological process enrichment analysis of 144 specific DEGs in severe COVID-19. Overall, 11 terms are presented. The size of the
circle indicates the relative contribution of the genes to the activity of the term. Colors show the p-value. (B) Circles show genes contained in each term.
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Protein–Protein Interaction and
Identification of Hub Genes Involved in
Autophagy
To further acquire the core genes associated with autophagy in
severe COVID-19, we conducted a PPI network of the total
12 genes involved in GO terms “Autophagy” and “Process
utilizing autophagic mechanism” using STRING. In this
manner, 12 nodes and eight edges were obtained with a local
clustering coefficient of 0.667 and a PPI enrichment p-value of
0.00032 (Figure 4B). The data file was calculated by MCODE, a
novel Cytoscape plugin to identify significant gene clusters.
Subsequently, we obtained only one gene cluster, which
consisted of four nodes (MVB12A, CHMP6, STAM, and
VPS37B) and six edges. Therefore, MVB12A, CHMP6, STAM,

and VPS37B were regarded as hub genes regulating autophagy in
severe COVID-19.

Determination of Regulatory Signatures
The selected hub genes as mentioned earlier (MVB12A,
CHMP6, STAM, and VPS37B) were evaluated with TF gene
and gene-miRNA interaction network analysis to detect
transcriptional signatures and post-transcriptional
regulatory signatures. Figure 5 shows the TF gene
interaction network drawn by Cytoscape. The transcription
factors, namely, SRF, YY1, CREB1, PPARG, and NFIC, linked
with VPS37B and MVB12A and GATA2 connected with
MVB12A and STAM. The gene-miRNA interaction network
has 66 nodes and 72 edges (Figure 6). Among these miRNAs,

TABLE 1 | Gene Ontology biological process enrichment analysis of 144 specific DEGs in severe COVID-19 cases.

ID Term Size Official Gene Symbol p-value FDR

GO:
0006914

Autophagy 12 ATM, CHMP6, EP300, RIPK2, ATP6V0E1, VPS37B, ATP6V1E2, PLEKHM1,
ZC3H12A, STAM, MVB12A, RALB

0.0001 0.0327

GO:
0061919

Process utilizing the autophagic mechanism 12 ATM, CHMP6, EP300, RIPK2, ATP6V0E1, VPS37B, ATP6V1E2, PLEKHM1,
ZC3H12A, STAM, MVB12A, RALB

0.0001 0.0327

GO:
0032092

Positive regulation of protein binding 6 EP300, RIPK2, STK4, TRAF2, RFNG, RALB 0.0001 0.0294

GO:
0019068

Virion assembly 5 TBC1D20, CHMP6, RPS27A, VPS37B, MVB12A 0.0001 0.0133

GO:
0044766

Multi-organism transport 5 THOC7, RPS27A, VPS37B, XPO1, MVB12A 0.0001 0.0365

GO:
1902579

Multi-organism localization 5 THOC7, RPS27A, VPS37B, XPO1, MVB12A 0.0001 0.0365

GO:
0050706

Regulation of interleukin-1 beta secretion 4 RIPK2, PML, ZC3H12A, PANX1 0.0002 0.0474

GO:
1903214

Regulation of protein targeting the
mitochondrion

4 UBE2J2, LEPROT, RHOU, HSPA1L 0.0002 0.0474

GO:
1903955

Positive regulation of protein targeting the
mitochondrion

4 UBE2J2, LEPROT, RHOU, HSPA1L 0.0001 0.0294

GO:
0036258

Multivesicular body assembly 4 CHMP6, VPS37B, STAM, MVB12A 0.0001 0.0294

GO:
0036257

Multivesicular body organization 4 CHMP6, VPS37B, STAM, MVB12A 0.0001 0.0294

FIGURE 4 | (A) Stacked bar chart shows the expression value percentage of the 12 genes involved in the autophagy process in patients with severe COVID-19,
mild COVID-19, and healthy controls. (B) Protein–protein interaction network was created using STRING and visualized in Cytoscape. The core cluster analyzed by
MCODE is indicated with blue color.
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hsa-mir-26b-5p connected with CHMP6 and VPS37B, and
hsa-mir-103a-3p and hsa-mir-107 were associated with
CHMP6 and STAM. Subsequently, hsa-mir-124-3p and hsa-
mir-191-5p were commonly linked with VPS37B, CHMP6, and
STAM. Furthermore, we considered hsa-mir-1-3p to be
the most pivotal miRNA as it was the common post-
transcriptional factor for all the four hub genes.

Construction of the Gene–Chemical
Interaction Network and Identification of
Potent Chemical Agents
We used the four hub genes to analyze their interactions with
different chemical agents in addition to using them for identifying
potential antiviral agents associated with autophagy. Using the

FIGURE 5 | Regulatory interaction network of TF gene was identified using the NetworkAnalyst tool. Herein, the circle nodes are genes (blue); the square nodes are
TFs (green); TFs targeting more than two genes simultaneously are shown in orange.

FIGURE 6 | Regulatory interaction network of gene-miRNA was identified using the NetworkAnalyst tool. Genes are shown in blue; miRNAs are shown in pink;
miRNAs targeting two genes are shown in yellow; miRNAs targeting three genes are shown in orange; miRNAs targeting four genes are shown in green.
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Comparative Toxicogenomics Database in the NetworkAnalyst
tool, 40 chemical agents were predicted (Figure 7). Among these,
thimerosal and valproic acid were linked with VPS37B and
MVB12A, cyclosporine and phenobarbital were connected with
VPS37B and CHMP6, and sodium selenite was associated with
MVB12A and CHMP6. In addition, (+)-JQ1 compound was
connected with VPS37B, CHMP6, and MVB12A, and arsenic
was linked with STAM, CHMP6, and MVB12A. Most
importantly, copper sulfate and cobaltous chloride were
associated with all the four hub genes and could be considered
to be the most relevant potent chemical agents.

Single-Cell RNA-Seq Analysis
An online single-cell RNA-Seq platform was used to assess the
cell type-specific expressions of hub genes (MVB12A, CHMP6,
STAM, and VPS37B). MVB12A was highly expressed in classical
monocytes and effector T cells (Figure 8B). CHMP6 was highly
enriched in plates and effector T cells (Figure 8C). STAM was
highly expressed in Tregs and dying T & NK cells (Figure 8D).
VPS37B was highly expressed in dying T & NK cells and effector
T cells (Figure 8E). Subsequently, the interactive connectome
tool in this platform was used to explore the intercellular
ligand–receptor pair interactions between classical monocytes,

effector T cells, plates, Tregs, and dying T & NK cells. Figure 8F
shows that the ligands of effector T cells, plates, Tregs, and dying
T & NK cells among PBMCs of severe COVID-19 patients are
targeted to match the receptors of classical monocytes compared
with the ligands of those cells of mild COVID-19 patients, and
classical monocytes also secrete ligands to induce a cellular
response through cognate receptors.

DISCUSSION

The COVID-19 pandemic is a major threat to a safe and healthy
living environment of human beings and has resulted in more
than 4 million deaths worldwide. It is a type of pneumonia, an
infection with a virus named SARS-CoV-2 in the lungs. However,
the condition is more complex. Severe COVID-19 strains display
more aggressive symptoms, consequently resulting in a high
mortality rate, especially the delta variant initially discovered
in India in December 2020. Furthermore, the Omicron variant
was discovered in South Africa a few months ago. Mild COVID-
19 patients show moderate or even no symptoms. Therefore,
identifying the characteristics of severe COVID-19 by
comparison with mild COVID-19 would be more helpful for

FIGURE 7 | Gene–chemical interaction network. Genes are colored in red; chemical agents are colored in purple; chemical agents targeting two genes
simultaneously are shown in yellow; chemical agents targeting three genes simultaneously are shown in orange; chemical agents targeting all four genes simultaneously
are shown in green.
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developing potential biomarkers and even new therapeutic
targets. In this study, we first identified 144 specific DEGs in
severe COVID-19 cases and performed the GO biological process
enrichment analysis to acquire insight into the biological
characteristics. Following this, we suggested that autophagy
plays a key role in severe COVID-19, which corresponded to
provide evidence in several studies. SARS-CoV-2 virus could
block autophagy by infection or expression of ORF3a to
sequestrate the HOPS component VPS39 and impaired the
assembly of the STX17-SNAP29-VAMP8 SNARE complex
(Miao et al., 2020). Hui et al. (2021) reported that SARS-CoV-
2 M protein induced mitophagy to block the downstream innate
immunity signaling for inhibiting the type I IFN response. Thus,
autophagy may crucially contribute to the SARS-CoV-2 viral
lifecycle.

Assessment of the PPI network is considered a key pattern of
protein affiliation and interaction. A total of 12 genes in the
biological process of autophagy were involved in PPIs and the
determination of hub genes. Here, four hub genes including
MVB12A, CHMP6, STAM, and VPS37B were considered to be
involved in the core regulation of autophagy in severe COVID-19
cases. Among these, Multivesicular Body Subunit 12A (MVB12A)
is a component of the endosomal sorting required for transport I
(ESCRT-I) complex. Its depletion and overexpression inhibit
HIV-1 infectivity by inducing aberrant virion morphologies
and altering viral Gag protein processing (Morita et al., 2007).
The charged multivesicular body protein 6 (CHMP6) gene is the

core component of endosomal sorting required for the transport
III (ESCRT-III) complex, which is considered essential for viral-
like particles (VLPs) and virion release (Kumar et al., 2016). The
signal transducing adapter molecule (STAM) gene forms the
endosomal sorting complex required for transport-0 (ESCRT-
0), and vacuolar protein sorting-associated protein 37B (VPS37B)
is a component of the ESCRT-I complex. All the four genes are
components of the ESCRT complex, and several viruses take
advantage of the ESCRT system for proliferation, budding, and
transmission in infected cells (Ju et al., 2021; Meng et al., 2021).
Consequently, we supposed the infection of SARS-CoV-2 may be
allied to the ESCRT system.

Subsequently, the hub genes specialized for autophagy in
severe COVID-19 were selected to predict their potential
function at transcriptional and post-transcriptional levels. A
number of transcription factors were detected. The serum
response factor (SRF) has been demonstrated to modulate
asymmetrical cardiac myocyte hypertrophy by constituting an
epigenomic switch balancing the growth of adult ventricular
myocytes in width versus length (Li et al., 2020). The
transcription factor Yin-Yang 1 (YY1) played an essential role
in apoptosis and angiogenesis, and its cardioprotective effects
were associated with T helper 2 cytokine production and
M2 macrophage polarization (Huang et al., 2021). In addition,
cAMP responsive element binding protein 1 (CREB1) and its
target genes identified by the recombinant canarypox vector
ALVAC + Alum could augment immunogenicity and reduce

FIGURE 8 | Single-cell RNA-seq analysis of PBMCs from COVID-19 patients on an online database platform. (A) UMAP embedding of single-cell transcriptomes
from 153,554 cells color-coded for the indicated cell type. (B–E) UMAP plots showing the expressions of MVB12A, CHMP6, STAM, and VPS37B in PBMCs. (F)
Intercellular ligand–receptor pair interactions of PBMCs from COVID-19 progressive patients.
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the HIV-1 infection rate (Tomalka et al., 2021). Furthermore,
NFIC is related to digestive system carcinoma (Fang et al., 2021)
(Liang et al., 2021) and regulates renal inflammation and renal
fibrosis in patients with diabetic nephropathy (Zhang et al., 2021).
Eventually, hepatitis B virus x protein can interact with GATA
binding protein 2 (GATA2) to influence the activity of the
ST2 promoter. We detected several significant miRNAs as
latent post-transcriptional factors. We believed hsa-mir-1-3p
to be the most pivotal miRNA in the process of autophagy in
severe COVID-19 as it was targeted by four hub genes, and hsa-
mir-1-3p has been identified to have a relationship with COVID-
19 in several studies (Sardar et al., 2020; Sarma et al., 2020). It can
inhibit influenza A virus replication by targeting the supportive
host factor ATP6V1A (Peng et al., 2018). In addition, hsa-mir-1-
3p was related to tumors such as endometrial cancer, (Czerwiński
et al., 2021), metastatic prostate cancer (Mukherjee and
Sudandiradoss, 2021), and breast cancer (Yan et al., 2021). In
addition, hsa-mir-124-3p and hsa-mir-191-5p were commonly
linked with VPS37B, CHMP6, and STAM.

Hsa-miR-124-3p was considered a potential candidate for
treating COVID-19 (Prasad et al., 2021) and regulating
ACE2 networks (Wicik et al., 2020). Then, hsa-miR-191-5p
showed an inhibitory effect on HIV-1 replication (Zheng
et al., 2021); it is associated with cervical lesions and can
serve as a non-invasive biomarker (Ning et al., 2021). Next,
the chemical agents that may target the common hub genes
have been detected using the Comparative Toxicogenomics
Database. Among significant chemical agents, copper sulfate
has been proposed as a locally applied fungicide, bactericide,
and astringent in medical practice (https://go.drugbank.com/
drugs/DB06778). It may induce pulmonary fibrosis through
EMT activation induced by the TGF-β1/Smad pathway and
MAPK pathways (Guo et al., 2021). Moreover, copper sulfate
has also been identified as a potential chemical agent in
pathogenetic profiling of COVID-19 (Nain et al., 2021).
Furthermore, cobaltous chloride is a chemical agent that
has been found to have an application in certain
insecticides and fungicides (https://www.britannica.com/
science/cobaltous-chloride). As the evidence of potent
chemical agents in severe COVID-19 is indirective, their
roles need to be further studied to be confirmed. However,
although these critical factors lack experimental verification,
the correlations to autophagy suggest that they play a role in
the prognosis of severe COVID-19.

Eventually, for determining whether the localization of
these genes regulates autophagy, we assessed the cell type-
specific expressions ofMVB12A, CHMP6, STAM, and VPS37B
using an online single cell RNA-Seq database platform. The
results showed that classical monocytes, effector T cells,
plates, Tregs, and dying T & NK cells play roles in
autophagy. Furthermore, classical monocytes exhibit a
central role among the five cell types that constitute
cellular communication because all ligands match their
receptors. Monocytes are phagocytic innate immune cells
in blood circulation and depending on their respective
expressions of CD14 and CD16 are traditionally divided
into classical monocytes (CD14++CD16−), non-classical

monocytes (CD14+CD16++), and intermediate monocytes
(CD14++CD16+). In acute patients with severe COVID-19,
the number of non-classical and intermediate monocytes is
found to be significantly reduced, whereas circulating classical
monocytes display clear signs of activation (Knoll et al., 2021).
Vanderbeke et al. (2021)have demonstrated that classical pro-
inflammatory monocytes (based on the expressions of
S100A8, S100A9, and S100A12 markers) dominate COVID-
19 immunopathology in most critical cases. The results also
indicated that classical monocytes were the primary source of
major COVID-19-mediating cytokines, including the
monocyte chemoattractant CCL2 and its receptor CCR2,
the neutrophil chemoattractant CXCL8, and TNF-α
(Vanderbeke et al., 2021). In addition, the expression level
of the monocyte chemoattractant CCR2, which is a classical
monocyte, was higher than that of non-classical monocytes,
and anti-CCR2 treatment improved the course of the disease
in preclinical trials (Channappanavar et al., 2016). Thus, these
results demonstrate a correlation between classical monocytes
and COVID-19, which could contribute to the design of novel
therapeutics for this pandemic. However, because the samples
used in this experiment were already used before, our
conclusions may be limited by direct experimental
validation. There are also few studies reported on the
relationship between COVID-19 and autophagy. To the
best of our knowledge, this is the first study to propose
that MVB12A, CHMP6, STAM, and VPS37B are crucial
genes associated with autophagy of PBMCs in patients with
severe COVID-19 as opposed to those with a mild condition.
Classical monocytes may play a central role in this disease;
accordingly, subsequent studies should deeply explore the
insight into the relationship between autophagy and
classical monocytes in severe COVID-19.

CONCLUSION

The present study highlights the potential specific pathogenic
processes in severe COVID-19 relative to mild COVID-19 and
identifies hub genes, regulatory components, and chemical
agents that may help develop novel and efficacious clinical
therapeutic targets. We first identified 144 specific DEGs in
severe COVID-19 patients. Subsequently, using these DEGs,
we identified autophagy as a critical biological process. Next,
based on the PPI network, we identified the most significant
gene cluster involving the hub genes of MVB12A, CHMP6,
STAM, and VPS37B. Consequently, we determined that the
most pivotal miRNA hsa-miR-1-3p may play a role at the
regulatory level. Copper sulfate and cobaltous chloride were
considered relevant potent chemical agents. Eventually, we
reported that classical monocytes may play a central role in
genes regulating autophagy in severe COVID-19 cases
compared with mild ones. Overall, our findings will shed
light on the knowledge regarding biological characteristics
of severe COVID-19 cases, as well as help find novel
therapeutic strategies enabling us to achieve breakthroughs
in the current pandemic.
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Finding Lung-Cancer-Related
lncRNAs Based on Laplacian
Regularized Least Squares With
Unbalanced Bi-Random Walk
Zhifeng Guo, Yan Hui, Fanlong Kong and Xiaoxi Lin*

Department of Oncology, Chifeng Municipal Hospital, Chifeng, China

Lung cancer is one of the leading causes of cancer-related deaths. Thus, it is important to
find its biomarkers. Furthermore, there is an increasing number of studies reporting that
long noncoding RNAs (lncRNAs) demonstrate dense linkages with multiple human
complex diseases. Inferring new lncRNA-disease associations help to identify potential
biomarkers for lung cancer and further understand its pathogenesis, design new drugs,
and formulate individualized therapeutic options for lung cancer patients. This study
developed a computational method (LDA-RLSURW) by integrating Laplacian
regularized least squares and unbalanced bi-random walk to discover possible lncRNA
biomarkers for lung cancer. First, the lncRNA and disease similarities were computed.
Second, unbalanced bi-randomwalk was, respectively, applied to the lncRNA and disease
networks to score associations between diseases and lncRNAs. Third, Laplacian
regularized least squares were further used to compute the association probability
between each lncRNA-disease pair based on the computed random walk scores.
LDA-RLSURW was compared using 10 classical LDA prediction methods, and the
best AUC value of 0.9027 on the lncRNADisease database was obtained. We found
the top 30 lncRNAs associated with lung cancers and inferred that lncRNAs TUG1,
PTENP1, and UCA1 may be biomarkers of lung neoplasms, non-small–cell lung cancer,
and LUAD, respectively.

Keywords: lung cancer, lncRNA, biomarker, lncRNA-disease association, laplacian regularized least squares,
unbalanced bi-random walk

1 INTRODUCTION

Cancers are posing threat for the health of humans (Yang et al., 2013; Liu et al., 2021). Lung cancer is
the most common cancer worldwide and one of the leading causes of cancer-relevant deaths, and it
has been so for many years. Thus, in 2008, the global statistical analysis demonstrated that
approximately 1.6 million new lung cancer cases were diagnosed, and 1.4 million deaths were
confirmed globally. In 2012, there were 1.8 million of new lung cancer diagnoses and 1.6 million
deaths (de Groot et al., 2018; Howlader et al., 2020). In 2018, the number of new lung cancer cases
exceeded 2 million and the number of deaths exceeded 1.7 million (Yuan et al., 2019). In the
United States, approximately 234,000 cases of lung cancer were diagnosed the same year. This year,
lung cancer diagnosis account for 14 and 13% of new cases in men and women, respectively.
Estimation of mortality is 83,550 and 70,500 deaths in men and women, respectively. Lung
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carcinoma is one of cancers with the lowest survival rate. It is
usually not diagnosed until an advanced stage (de Groot et al.,
2018; Howlader et al., 2020).

Despite the fast development of lung cancer therapy, high
morbidity and mortality rates still pose a severe challenge for
cancer researchers. The majority of patients with advanced-stage
lung cancer have been ultimately poorly diagnosed. Thus,
designing efficient therapy strategies is extremely important
for lung cancer patients. However, existing techniques applied
to diagnosis and therapies of lung cancer remain suboptimal.
Thus, better strategies supplementing or replacing the existing
techniques are urgent. Genome-wide association studies have
found numerous genetic variants relevant to various cancers, one-
third of which are densely linked to noncoding regions. The
noncoding RNAs can be used as biomarkers of lung cancers.
Therefore, accurate biomarker identification is urgently required
to effectively diagnose lung cancer and boost the survival rate
while decreasing its mortality and morbidity (Huang et al., 2017;
Roointan et al., 2019; Yang et al., 2020).

Long noncoding RNAs (lncRNAs) are a type of noncoding
RNAs that has over 200 nucleotides and post-transcriptional
modifications including splicing, capping, and
polyadenylation. lncRNAs can be used as a guide for
protein-DNA interactions, protein-RNA interactions, and
protein–protein interactions (Peng et al., 2020a). With the
fast advancement of cancer genomics, many lncRNAs have
been demonstrated to be aberrantly expressed in diverse
cancers and play key action in the development of tumors
through modulation of cancer-related signaling pathways.
lncRNAs can regulate survival, metastasis, angiogenesis, and
proliferation of tumor cells. Therefore, lncRNAs can be used as
potential biomarkers and therapeutic targets in cancers by
interacting with proteins (Chandra Gupta and Nandan
Tripathi, 2017). For example, Peng et al. and her groups
(Peng et al., 2021a; Zhou L. Q. et al., 2021; Peng et al.,
2021b; Zhou L. et al., 2021; Tian et al., 2021; Peng et al.,
2022) designed a series of state-of-the-art lncRNA-protein
interaction prediction methods and significantly improved
biomarker identification for various diseases. In addition,
lncRNA SNHG14, BCRT1, DSCAM-AS1, MaTAR24, and
HOTAIR have been validated to densely link to breast
cancer (Niknafs et al., 2016; Dong et al., 2018; Chang et al.,
2020; Liang et al., 2020; Yang et al., 2022; Xue et al., 2016).
HOTAIR has been reported to be highly expressed in non-
small–cell lung cancer (NSCLC) and affect NSCLC
tumorigenesis and metastasis. In addition, many biomarkers
(for example, CA125, NSE, CEA, VEGF, and EGFR
(Khanmohammadi et al., 2020) have been validated to
associate with lung cancer.

More importantly, many machine learning methods,
especially deep-learning methods, have been applied to
identify lncRNA biomarkers of various diseases through
lncRNA-disease association prediction. Thus, Fan et al. (2022)
designed an LDA prediction method (GCRFLDA) using the
graph convolutional matrix completion. Ma Y (Ma, 2022)
exploited a deep multi-network embedding-based LDA
inference framework. Wu et al. (2021) integrated graph auto-

encoder and random forest for LDA prediction. Sheng et al.
(2021) developed an attentional multi-level representation
encoding method to find new LDAs combining convolutional
and variance autoencoders. Zhao et al. (2022) proposed a
heterogeneous graph attention network-based LDA
identification model. These methods significantly improved the
LDA prediction.

With the development of single cell RNA sequencing
technologies (Peng et al., 2020b), we can obtain numerous
RNA data. These data can improve the analyses of RNA data,
for example, SARS-CoV-2 (Xu et al., 2020; Li et al., 2021). By
finding new lncRNA biomarkers, we can design corresponding
therapeutic strategies for lung cancer based on drug repositioning
(Peng et al., 2015; Liu et al., 2020; Meng et al., 2022; Shen et al.,
2022).

Although experimental methods found a few biomarkers for
lung cancer, they are time-consuming and waste of resources.
Therefore, computational techniques have been exploited to infer
potential biomarkers for lung cancer. However, the majority of
computational approaches need to improve the inference
performance. In this study, to analyze the diagnostic,
prognostic, and therapeutical potential of lncRNAs in lung
cancer patients, we exploit a computational model combining
Laplacian regularized least square and unbalanced bi-random
walk, LDA-RLSURW, to predict possible lncRNA biomarkers for
lung cancer.

2 DATASETS

First, the lncRNA-disease association dataset was collected. The
dataset can be obtained from the lncRNADisease database at
http://www.cuilab.cn/lncrnadisease (Chen et al., 2012). We
obtained 82 lncRNAs, 157 diseases, and 701 associations after
excluding lncRNAs without record in the lncRNADisease
database and diseases with inappropriate names or without
MeSH tree numbers.

3 METHODS

This study developed an lncRNA-disease association prediction
method LDA-RLSURW. First, LDA-RLSURW computed disease
semantic similarity and lncRNA functional similarity. Second,
LDA-RLSURW calculated the initial association probability of
each lncRNA-disease pair using unbalanced bi-random walk
based on disease similarity matrix and lncRNA similarity,
respectively. In conclusion, the computed initial lncRNA-
disease association probabilities were further updated
Laplacian regularized least squares. The flowchart of LDA-
RLSURW is presented in Figure 1.

3.1 Disease Semantic Similarity
Semantic similarity between diseases can be computed using the
directed acyclic graph (DAGs) based on their MeSH descriptors
(Fan et al., 2020). Given a diseaseA, let its DAG be represented as
DAGA � {TA, EA}, where TA denotes the ancestor node set of A
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includingA, and EA denotes all edge set. For a disease term t ∈ TA

inDAGA, its semantic contribution to A can be computed by Eq.
1 provided by LNCSIM1 (Chen et al., 2015):

SV1
A(t) �

1 t � A
max(α × SV1

A(t′)|t′ ∈ C(t) t ≠ A , (1)

where C(t) denotes the children of t and α denotes a sematic
contribution value of an edge linking t′ to t in EA.

In Eq. 1, we assume that terms at one identical layer from
DAGA have identical semantic contribution toA. However, when
terms t1 and t2 are in the identical layer ofDAGA, and t1 appears
less than t2 in DAGA, the results from t1 may be more specific
than t2. Thus, it could be more reasonable that SV1

A(t1) is larger
than SV1

A(t2).
Considering this situation, we compute another semantic

contribution value for disease A by Eq. 2 provided by
LNCSIM1 (Chen et al., 2015):

SV2
A(t) � −logDags(t)

D
, (2)

whereD denotes the number of all diseases in the MeSH database
andDags(t) denotes the number ofDAG s, including the disease
term t. In conclusion, the semantic contribution value of disease
A in DAGA can be computed by

SV3
A(t) �

1 t � A
max((α + β)SV3

A(t′)|t′ ∈ C(t) t ≠ A , (3)

where β denotes the information content contribution factor, and

β � max k∈K(Dags(k)) − dags(t)
D

, (4)

where K denotes the disease set from the MeSH database.
Thus, the contribution of all diseases in DAGA to A can be

represented as

FIGURE 1 | Flowchart of LDA-RLSURW.
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SV(A) � ∑
t∈TA

SV3
A(t). (5)

In summary, the semantic similarity between diseases A and B
can be computed by Eq. 6:

Sd(A, B) � ∑t∈TA∩TB
(SV3

A(t) + SV3
B(t))

SV(A) + SV(B) . (6)

3.2 lncRNA Functional Similarity
We calculate the lncRNA similarity using the approach provided
by Fan et al. (2020). Assuming thatDG(u)/DG(v) denotes diseases
associated with lncRNA u/ v based on the LDA matrix, the
lncRNA similarity between u and v was computed through
semantic similarity between diseases involved in DG(u) and
DG(v). First, we construct a disease semantic similarity sub-
matrix, where both rows and columns denote all diseases
involved in DG(u)∪DG(v), and the value of each element can
be measured using the semantic similarity between
corresponding diseases. Second, let du/ dv denote one disease
in DG(u)/DG(v); the similarity between du/ dv and DG(v)/DG(u)
can be computed by Eqs. 7 and 8:

S(du,DG(v)) � max
d∈DG(v)

(Sd(du, d)), (7)
S(dv, DG(u)) � max

d∈DG(u)
(Sd(dv, d)). (8)

Third, the similarity betweenDG(u) toDG(v) and one between
DG(v) to DG(u) can be calculated by Eqs. 9 and 10:

Su→v � ∑
d∈DG(u)

S(d,DG(v)) , (9)

Sv→u � ∑
d∈DG(v)

S(d,DG(u)). (10)

In conclusion, the similarity between two lncRNAs u and v can
be computed by Eq. 11:

Sl(u, v) � Su→v + Sv→u

|DG(u)| + |DG(v)|, (11)

where |DG(u)|/|DG(v)| indicates the number of diseases in
DG(u)/DG(v).

3.3 Unbalanced Bi-Random Walk
In this section, inspired by Shen et al. (2022), we consider
that the lncRNA similarity network and the disease network
and design an unbalance bi-random walk model to score
lncRNA-disease pairs. The two networks exhibit different
topological structures. Therefore, we use different optimal
walking step sizes when randomly walking on these two
networks. That is, we propose an unbalanced bi-random
walk algorithm. First, we compute lncRNA-disease
association scores by randomly walking with the maximal
iteration number of nl on the lncRNA network based on the
lncRNA similarity by Eq. 12:

Pt
l � γSl · P(t−1) + (1 − γ)Y for t � nl. (12)

In Eq. 12, at each step, the lncRNA similarity is fused with the
random walk step by multiplying Sl on the left of the lncRNA-
disease association probability matrix. γ ∈ (0, 1) is used to
decrease the importance of circular bigraphs where the paths
are longer during random walk and balance possible and
known LDAs.

Second, we compute lncRNA-disease association scores by
randomly walking with the maximal iteration number of nd
on the disease network based on the disease similarity by
Eq. 13:

Pt
d � γP(t−1) · Sd + (1 − γ)Y for t � nr. (13)

In Eq. 13, at each step, disease similarity is fused with the
random walk step by multiplying Sd on the right of the lncRNA-
disease association probability matrix.

3.4 Laplacian Regularized Least Squares
In the last section, we compute the association probability for
each lncRNA and disease using unbalanced bi-random walk
method. However, for the algorithm, the jump condition is
determined by known LDA data and the two similarity
matrices. For a node ni in an LDA network, if two other
nodes nj and nk exhibit the same similarity with ni, nj and nk
may equally contribute to the jump. However, the node that has
lower similarities with other nodes should have more
contribution. Thus, we introduce Laplacian regularized least
squares to solve the problem. First, the lncRNA Laplacian
matrix Ll and the disease Laplacian matrix Ld are normalized
to assess the jump probability for each node via Eqs 14, 15.

Ll � (Ml)−1/2(Ml − Sl)(Ml)−1/2, (14)
Ld � (Md)−1/2(Md − Sd)(Md)−1/2, (15)

where Ml/Md represent the diagonal matrices of lncRNAs/
diseases whose element Ml(i, i)/Md(j, j) denotes the
summation of the i-th/ j-th row of Sl/Sd .

Second, to optimize the above minimum problems, the loss
functions in the lncRNA and disease spaces are defined based on
Laplacian matrices Ll and Ld via Eqs. 11 and 12, respectively:

minFl[‖YT − Fl‖2F + ηl‖Fl · Ll · (Fl)T‖2F], (16)

minFd[‖Y − Fd‖2F + ηd‖Fd · Ld · (Fd)T‖2F] , (17)

where ‖ ·‖F denotes the Frobenius norm, (·)T indicates the
transpose, and ηv and ηd represent trade-off parameters.
Models (11) and (12) can be solved via Eqs. 13 and 14,
respectively:

Fp
l � Sl(Sl + ηl · Ll · Sl)−1YT, (18)

Fp
d � Sd(Sd + ηd · Ld · Sd)−1Y . (19)

To comprehensively detect the effect of unbalanced bi-random
walk on the inference performance, we replace Y using LDA
association probabilities computed by random walks. Assume
that Eqs. 20 and 21 can be defined as follows:
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Fl � Sl(Sl + ηl · Ll · Sl)−1, (20)
Fd � Sd(Sd + ηd · Ld · Sd)−1. (21)

At the t-th walking, Eqs. 22 and 23 can be defined as

Pt
l � Fd · Pt

l , (22)
Pt
d � Pt

d · Fl. (23)
In conclusion, the LDA-RLSURW calculates the association

score for each lncRNA-disease pair by combining association
scores from the lncRNA and disease networks using Eq. 24:

Pt � 1
2
(Pt

l + Pt
d). (24)

4 EXPERIMENTS

4.1 Experimental Settings and Evaluation
The semantic contributionweight α is set as 0.5, the jump probability
γ is set as 0.001, the maximal iteration number on the lncRNA
network nl is set as 31, the maximal iteration number on the disease
network nr is set as 1, and Laplacian regularized least square
parameters ηl and ηd are set as 0.01. When the parameters are

set as the above values, respectively, the LDA-RLSURW
computes the best AUC on the lncRNADisease dataset.
Therefore, we choose the parameters as the corresponding
values. For other parameters, we set them as defaults provided
by corresponding methods. The proposed LDA-RLSURW
method and other comparative methods are evaluated using
area under the receiver operating characteristic curve (AUC).
Larger AUC values denote better performance.

4.2 Performance Comparison With Other
Methods
To assess the performance of our proposed LDA-RLSURW
method, we compare it with other 10 classical LDA prediction
methods, that is, LNCSIM1, LNCSIM2, ILNCSIM, and
IDSSIM (Fan W. et al., 2020). LNCSIM1 and
LNCSIM2 measured the disease similarity separately using
DAGs and the information content and computed association
score for each lncRNA-disease pair by Laplacian regularized
least squares. IDSSIM designed novel lncRNA functional
similarity and disease semantic similarity computation
approaches and computed the lncRNA-disease association
scores using the computed similarity matrices and weighed
K nearest known neighbor method. Table 1 shows the AUC

TABLE 1 | AUC values of LDA prediction methods on the lncRNADisease dataset.

LNCSIM1/LNCSIM2 ILNCSIM IDSSIM RWRlncD IIRWR

5-fold CV 0.8892/0.8881 0.8866 0.8966 0.6976 0.7781
SIMCLDA LRLSLDA LLCPLDA LDA-LNSUBRW LDA-RLSURW
0.7986 0.8174 0.8678 0.8874 0.9027

The LNCSIM1, LNCSIM2, LRLSLDA, and LDA-RLSURW are Laplacian regularized least square-based LDA methods, and the LDA-RLSURW can compute a better AUC. The results
demonstrate that integrating unbalanced bi-random random walk can improve the performance. In addition, the IDSSIM and LDA-RLSURW computed the lncRNA similarity and disease
similarity using the same method. The IDSSIM used the weighed K nearest known neighbor method to compute the lncRNA-disease association scores. The LDA-RLSURW outperforms
IDSSIM, which show that the combination of Laplacian regularized least square and unbalanced bi-random walk can improve the LDA prediction performance compared to weighted K
nearest known neighbormethod. Both RWRlncD and IIRWR are randomwalk with restart-based LDA predictionmethods. The SIMCLDA is an inductive matrix completion-basedmethod.
The LLCPLDA is a locality-constraint linear coding-based method. The LDA-RLSURW computes a better AUC than RWRlncD, IIRWR, SIMCLDA, and LLCPLDA, which further validates
the powerful performance of LDA-RLSURW.

TABLE 2 | Inferred top 30 lncRNAs associated with LN.

Rank lncRNAs Evidence Rank lncRNAs Evidence

1 MALAT1 Known 16 MINA the MNDR database
2 HOTAIR Known 17 PVT1 the MNDR database
3 MEG3 Known 18 TUG1 Unconfirmed
4 H19 Known 19 PANDAR Unconfirmed
5 GAS5 Known 20 XIST the MNDR database
6 UCA1 Known 21 HULC Unconfirmed
7 CCAT2 Known 22 HNF1A-AS1 Unconfirmed
8 SPRY4-IT1 Known 23 PTENP1 Unconfirmed
9 CCAT1 Known 24 KCNQ1OT1 Unconfirmed
10 CDKN2B-AS1 Known 25 HIF1A-AS2 Unconfirmed
11 BANCR Known 26 DANCR Unconfirmed
12 BCYRN1 Known 27 NPTN-IT1 Unconfirmed
13 PCAT1 Known 28 CRNDE Unconfirmed
14 SOX2-OT Known 29 CBR3-AS1 Unconfirmed
15 CASC2 Known 30 MIR31HG Unconfirmed

The bold values denotes lncRNAs that were predicted to associate with LN and need to further validate in Table 2.
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values of LDA prediction methods on the lncRNADisease
dataset. From Table 1, we can see that LDA-RLSURW
computes the best AUC, which demonstrates the powerful
LDA prediction performance of LDA-RLSURW.

4.3 Case Study
In this section, we conduct case studies to find potential lncRNA
biomarkers for lung neoplasms, NSCLC, and adenocarcinoma of
lung after confirming the performance of the proposed LDA-
RLSURW method.

4.3.1 Finding Potential lncRNA Biomarkers for Lung
Neoplasms
Lung neoplasms are one of the leading causes of death associated
with malignant tumors in China (Khanmohammadi et al., 2020).
Thus, Wang et al. (2020) investigated 14,528 lung cancer patients
suffering from multiple primary malignant neoplasms (MPMN)
and found 364 MPMN cases. In this section, we inferred the top
30 lncRNA biomarkers associated with lung neoplasms. The results
are shown in Table 2 and Figure 2. From Table 2 and Figure 2, we
can find that 15 lncRNAs are known to be associated with lung
neoplasms in the lncRNADisease database, 3 lncRNAs (MINA,
PVT1, and XIST) are unknown to be associated with lung
neoplasms in the lncRNADisease database, which can be
validated by the MNDR database (Cui et al., 2018). In addition,
12 lncRNAs are predicted to link to lung neoplasms and may be
possible biomarkers of lung neoplasms.

More importantly, we predict that lncRNA taurine-upregulated
gene 1 (TUG1)may be associatedwith lung neoplasms. TUG1 is one
of lncRNAs that were first identified to associate with human disease.
It is linked to diverse physiological processes, for example, gene
regulation involved in translation, post-translation, transcription,
and post-transcription. In this section, we infer that TUG1 may be
the biomarker of lung neoplasms (Guo et al., 2020).

4.3.2 Finding Potential lncRNA Biomarkers for NSCLC
The NSCLC is a subtype of lung cancer. It is one of the leading
causes of cancer death in the United States and accounts for 85% of

lung cancers among all its subtypes. Although we have achieved
important advancements in the NSCLC treatment, our
understanding about the biology and mechanisms of NSCLC
progression and early detection is still superficial. In this
section, we aim to infer new lncRNA biomarkers for NSCLC
after confirming the performance of LDA-RLSURW. The
predicted top 30 lncRNAs associated with NSCLC are presented
in Table 3 and Figure 3. From Table 3 and Figure 3, we can find
that 18 lncRNAs associated with NSCLC are known in the
lncRNADisease database, 10 lncRNAs associated with NSCLC
have been validated in the MNDR database, and 2 lncRNAs
(MINA and PTENP1) associated with NSCLC are unknown
and require validation. The lncRNA PTENP1 has exerted the
tumor-suppressive function through modulating PTEN
expression in multiple malignancies. We predict that the

TABLE 3 | Inferred top 30 lncRNAs associated with NSCLC.

Rank lncRNAs Evidence Rank lncRNAs Evidence

1 MALAT1 Known 16 PANDAR Known
2 HOTAIR Known 17 HIF1A-AS1 Known
3 MEG3 Known 18 PCAT1 the MNDR database
4 GAS5 Known 19 CASC2 the MNDR database
5 H19 Known 20 SOX2-OT the MNDR database
6 UCA1 Known 21 HULC the MNDR database
7 CCAT2 Known 22 MINA Unconfirmed
8 SPRY4-IT1 Known 23 PTENP1 Unconfirmed
9 CDKN2B-AS1 Known 24 HIF1A-AS2 the MNDR database
10 PVT1 Known 25 HNF1A-AS1 Known
11 CCAT1 Known 26 KCNQ1OT1 the MNDR database
12 TUG1 Known 27 CRNDE the MNDR database
13 BANCR Known 28 DANCR the MNDR database
14 BCYRN1 Known 29 MIR31HG the MNDR database
15 XIST Known 30 NPTN-IT1 the MNDR database

The bold values denotes lncRNAs that were predicted to associate with NSCLC and need to further validate in Table 3.

FIGURE 2 | Associations between the inferred top 30 lncRNAs and lung
neoplasms (LN). Black solid lines represent known LDAs in the
lncRNADisease database. Blue-dot lines represent LDAs that can be
observed in the MNDR database. Red-dash lines represent LDAs
predicted to be potential lncRNA biomarkers of LN.
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PTENP1 may be a potential biomarker of NSCLC (Herbst et al.,
2018; Arbour and Riely, 2019; Fan et al., 2020; Leighl et al., 2019).

4.3.3 Finding Potential lncRNA Biomarkers for Lung
Adenocarcinoma
The NSCLC is divided into three main subtypes: lung squamous cell
carcinoma, large-cell lung cancer, and lung adenocarcinoma
(LUAD), among which lung squamous cell carcinoma and
LUAD are the most prevalent. In this section, we predict possible
lncRNAs associated with LUAD. The results are shown in Table 4
and Figure 4. From Table 4 and Figure 4, we can find that
6 lncRNAs are known to associate with LUAD, 2 lncRNAs are
not known to associate with LUAD in the lncRNADisease database,
although they are known in the MNDR database, and 22 lncRNAs
have not been confirmed to associate with LUAD.

Urothelial carcinoma associated 1 (UCA1) is an oncogenic
lncRNA. It is highly expressed in many cancers. UCA1 can bind
to tumor-suppressive microRNAs, activate a few pivotal signaling
pathways, and alter epigenetic and transcriptional regulation.
More importantly, its high expression is linked to poor
clinicopathological characteristics. In this section, we predict
that UCA1 may associate with LUAD and require validation
(Yao et al., 2019).

5 DISCUSSION

LNCSIM1 and LNCSIM2 obtained better performance
improvements based on cross-validation and case analyses.
However, LNCSIM1 cannot effectively distinguish the

TABLE 4 | Inferred top 30 lncRNAs associated with LUAD.

Rank lncRNAs Evidence Rank lncRNAs Evidence

1 MALAT1 Known 16 XIST Unconfirmed
2 HOTAIR Known 17 PANDAR Unconfirmed
3 MEG3 Known 18 BCYRN1 Unconfirmed
4 GAS5 Known 19 PCAT1 Unconfirmed
5 CCAT1 Known 20 HULC Unconfirmed
6 HNF1A-AS1 the MNDR database 21 CASC2 Unconfirmed
7 MIAT Known 22 SOX2-OT Unconfirmed
8 H19 the MNDR database 23 PTENP1 Unconfirmed
9 UCA1 Unconfirmed 24 MINA Unconfirmed
10 CDKN2B-AS1 Unconfirmed 25 CRNDE Unconfirmed
11 PVT1 Unconfirmed 26 DANCR Unconfirmed
12 TUG1 Unconfirmed 27 WT1-AS Unconfirmed
13 CCAT2 Unconfirmed 28 KCNQ1OT1 Unconfirmed
14 SPRY4-IT1 Unconfirmed 29 NPTN-IT1 Unconfirmed
15 BANCR Unconfirmed 30 CCDC26 Unconfirmed

The bold values denotes lncRNAs that were predicted to associate with LUAD and need to further validate in Table 4.

FIGURE 3 | Associations between the inferred top 30 lncRNAs and
NSCLC. Black solid lines represent known LDAs in the lncRNADisease
database. Blue-dot lines represent LDAs that can be observed in the MNDR
database. Red-dash lines represent LDAs predicted to be potential
lncRNA biomarkers of LN.

FIGURE 4 | Associations between the inferred top 30 lncRNAs and
LUAD. Black solid lines represent known LDAs in the lncRNADisease
database. Blue-dot lines represent LDAs that can be observed in the MNDR
database. Red-dash lines represent LDAs predicted to be potential
lncRNA biomarkers of adenocarcinoma of lung.
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semantic contributions of various disease terms from the identical
layer. LNCSIM2 computed the IC values only through integrating
DAG information. ILNCSIM is an edge-based prediction model.
It combined the concept of information content and the
hierarchical structure of DAGs to compute disease semantic
similarity.

The RWRlncD conducted random walk with restart on the
lncRNA similarity network. However, the RWRlncD cannot be
used to predict associated information for diseases without any
associated lncRNAs. The IRWRLDA improved random walk-
based method through setting an initial probability vector to
reduce the disadvantages of random walk with restart. The
SIMCLDA used an inductive matrix completion model to
complement missing LDA information. The LRLSLDA utilized
Laplacian regularized least square model to predict LDAs. The
LLCLPLDA first applied a locality-constraint linear coding model
to project the local-constraint characteristics of lncRNAs and
diseases, and then propagated LDAs by the initial LDA. The
LDA-LNSUBRW used linear neighborhood similarity
measurement and unbalanced bi-random walk algorithm to
find possible LDAs.

The LDA-RLSURW obtains better performance for lncRNA-
disease association prediction. It has three advantages: First, it
utilizes the biological features to compute the lncRNA and
disease similarity. Second, it uses unbalanced bi-random walk
to compute the lncRNA-disease association probability. In
conclusion, it further computes the lncRNA-disease

association probability combining Laplacian regularized least
squares.

6 CONCLUSION

Lung cancer is one of the most threatening cancer forms
worldwide. In this study, we designed a computational
method, LDA-RLSURW, to find possible lncRNA biomarkers
for lung cancer. LDA-RLSURW effectively combines unbalanced
bi-random walk and Laplacian regularized least square. We
predict that TUG1, PTENP1, and UCA1 may be the
biomarkers of lung neoplasms, NSCLC and LUAD, respectively.
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Background: Cancer is the second cause of death worldwide. Copperoptosis is

a new mode of regulated cell death and is strongly associated with metabolic

pathways. FDX1 is a key gene that promotes copperoptosis, and its impact on

tumor pathogenesis and tumor immune response is indistinct and needs further

exploration.

Methods: Data was mined from the Cancer Genome Atlas database, the Broad

Institute Cancer Cell Line Encyclopedia database, and the International Cancer

Genome Consortium. Survival analyses included the Kaplan–Meier method for

calculating the cumulative incidence of survival events and the log-rank

method for comparing survival curves between groups. Immune cell

infiltration levels were calculated using the Spearman correlation test and

correlated with FDX1 expression to assess significance. More correlation

analyses between FDX1 expression and mutational markers, such as tumor

mutational burden (TMB) andmicrosatellite instability (MSI), were also examined

via Spearman assay to explore the relation between FDX1 expression and the

sensitivity of common antitumor drugs.

Results: FDX1 expression was downregulated in most kinds of cancers, and this

high expression indicated better overall survival and death-specific survival. For

several cancer types, FDX1 expression had a positive correlation with immune

cell infiltration, and FDX1 also had a positive correlation with TMB and MSI in

some cancer types, linking its expression to the assessment of possible

treatment responses.

Conclusion: The correlations between FDX1 expression and cancer in

varioustissues, including clear links to cancer survival and prognosis, make

FDX1 aninteresting biomarker and potential therapeutic target for cancer

surveillance and futureresearch.
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Introduction

Cancer is the second cause of death worldwide. In 2020,

approximately 19.3 million new cancer cases were found

worldwide. Female breast cancer has become the commonest

cancer diagnosed with approximately 2.3 million new cases

(11.7%) exceeding lung cancer (11.4%), colorectal cancer (10.0%),

prostate cancer (7.3%), and gastric cancer (5.6%) (Liu et al., 2021;

Sung et al., 2021). Cancer is driven by genetic change, and the

occurrence and development of cancer can be divided into three

stages: transformation and growth of carcinogenic factors,

promotion, and development of carcinogenesis. This is a

multifactor, multistep complex process. Metabolism is significant

in carcinogenesis, and recently, metabolism-targeted therapy has

become an important part of tumor therapy. As tumorigenesis is

complex, the conduction of a pan-cancer expression analysis of any

gene of interest and the assessment of its correlation with clinical

prognosis and potential molecular mechanisms are important. The

publicly funded TCGA project contains functional genomics

datasets of different tumors so pan-cancer analyses can be

conducted (Tomczak et al., 2015; Blum et al., 2018; He et al.,

2020a; He et al., 2020b; Zhao et al., 2021; Yang et al., 2022).

FDX1, also called adrenodoxin or hepatoredoxin, is a subunit of

the augmin complex. The FDX1 gene is a small ferrithionein that

transfers electrons from NADPH to mitochondrial cytochrome

P450 via ferredoxin reductase, involved in the metabolism of

steroids, vitamin D, and bile acids (Sheftel et al., 2010;

Strushkevich et al., 2011). Diseases associated with FDX1 include

cerebrotendinous xanthomatosis and xanthomatosis. The latest

research shows that the FDX1 gene is a recently discovered

important gene associated with copperoptosis (Tsvetkov et al.,

2022). FDX1 positively regulates a specific metabolic pathway of

copperoptosis, and FDX1 and Protein lipoylation are key regulators

of copper ion carrier-induced cell death. FDX1 is associated with

protein thioctanoylation, and FDX1 knockout results in loss of

protein thioctanoylation. Protein thioctanoylation is a highly

conserved posttranslational modification of lysine that occurs

primarily on four enzymes that regulate the tricarboxylic acid

cycle. Copper ions promote cell death by directly binding to

thioctanoylated tricarboxylic acid cycle-related enzymes, and the

knockout of FDX1 can save cell copperoptosis.

Copperoptosis is a new mode of regulating cell death (Tang

et al., 2022). Copper ions are involved in cell death such as iron ions

(Wang et al., 2022). Inhibiting mitochondrial respiration through

drugs may be a strategy to fight diseases. In addition, some cancers

express a large amount of thioctanoylated mitochondrial proteins,

and with high respiration, the use of copper ion metal carriers to kill

cancer cells may become a new method of treating cancer.

FDX1 gene is a key gene that promotes copperoptosis, so the

study of FDX1 is significant for tumorigenesis, progression,

tumor prognosis, tumor treatment, and many other aspects in

practice (Zhang et al., 2021). Here, bioinformatics analyses were

conducted to evaluate different FDX1 expressions in tissues and

their possible link with cancer. Its expression level was evidently

associated with survival, immune cell function, and tumor mutation

status. FDX1 can be used as a new prognostic marker for various

malignancies and an indicator of cancer immunotherapy response.

Materials and methods

Data collection and processing

Pan-cancer sequencing data from the Cancer Genome Atlas

(TCGA) database and the Broad Institute Cancer Cell Line

Encyclopedia (CCLE) database (Illumina platform) and data

related to hepatocellular carcinoma (LIHC) from the

International Cancer Genome Consortium (ICGC)) databases

were drawn through their portal for analysis (Hudson et al., 2010;

Tomczak et al., 2015). The entire data set was screened, and

missing and duplicate results were removed and converted by

log2 (TPM + 1), using the rma function in the R package (R

studio version: 1.2.1335, R version: 3.6.1). Relating information

of clinic was also drawn through the portal, including the

patient’s age, gender, tumor stage, and clinical stage. In

addition, the information that can only be downloaded from

the TCGA database were tumor mutation load (TMB) and

microsatellite instability (MSI). The calculation of TMB

followed the total mutation incidence per million base pairs,

and the calculation of MSI was from the amount of insertion or

deletion events in a repeating genetic sequence. Data analysis was

conducted using the Sangerbox tools (http://sangerbox.com/).

Cox regression analysis and survival
analysis

In the ICGC and TCGA, Cox regression analysis was conducted

to find out if FDX1 expression correlated with overall survival (OS)

and disease-specific survival (DSS) for patients with different cancer

types. Using the Kaplan–Meier method, the patients were grouped

into high and low FDX1 expressions according to the optimal

separation method, and the survival curve of patients with various

cancer types was constructed. The analysis of specificity and time-

dependent sensitivity of survival was conducted by deploying survival

ROC and survival in R packages (rdocumentation.org/packages/

survival). The difference between curves was checked via a log-

rank test, and p values of less than 0.05 were regarded as important.

Immune cell infiltration and enrichment

Tumor Immune Estimation Resource (TIMER) (https://

cistrome.shinyapps.io/timer/) is a computational network tool

based on a database for immune cell infiltration that supplies

infiltration scores for six common immune cell types, including
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B cells, CD4 + T cells, CD8 + T cells, macrophages, neutrophils, and

dendritic cells (Li et al., 2016; Yang et al., 2017; Tavasolian et al.,

2020; Hwu et al., 2021). The calculation of immune cell infiltration

scores for pan-cancer data in the TCGA database was performed

using TIMER and archived online. Here, correlation with

FDX1 expression was tested with downloaded penetration data.

Correlation analysis of FDX1 expression in
tumor microenvironment

The immune tumor microenvironment (TME) is a tumor

cell–developing and –surviving microenvironment. It involves

different elements surrounding tumor cells, stromal cells, etc.

(Arneth, 2019; Liu et al., 2022a). The stromal and immune cell

quantity in the tumor microenvironment affects the development

and growth of cancer cells. The R package “ESTIMATE” is used to

calculate StromalScore, ImmuneScore, and ESTIMATEScore, which

is the sum of ImmuneScore and StromalScore (Yoshihara et al.,

2013; Lv et al., 2021). Then, Spearman correlation analysis in R was

used to analyze the association between FDX1 and stromal and

immune scores.

Correlation analysis between
FDX1 expression and immune infiltrating
cell expression

TIMER is a database providing a platform for tumor

immunoinfiltration analysis (Yang et al., 2017). In general

FIGURE 1
mRNA expression levels of FDX1 from different tissue sources and tumors. (A) normal mRNA expression levels of FDX1 in various tissues from
the GTEx database. (B) differences in FDX1 mRNA expression between tumor and peritumoral samples from the Cancer Genome Atlas database.
Abbreviations: BLCA, bladder urothelial carcinoma; CESC, cervical and cervical cancer; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma;
DLBC, lymphoid tumor diffuse large B-cell lymphoma; ESCA, esophageal cancer; HNSC, head and neck squamous cell carcinoma; KIRP, renal
papillary cell carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic cancer; PCPG, pheochromocytoma
and paraneurysm; PRAD, prostate adenocarcinoma; reading, rectal adenocarcinoma; SARC, sarcoma; STAD, gastric adenocarcinoma; STES, gastric
and esophageal cancer; TGCT, testicular germ cell tumor; THCA, thyroid cancer; THYM, thymoma; UCEC, endometrial cancer of the uterus; UCS,
uterine carcinosarcoma.
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calculate the infiltration scores of six types of immune

infiltrating cells: CD4 T cells, B cells, CD8 T cells,

neutrophils, dendritic cells, and macrophages. The “gene”

module in TIMER was used for the analysis of the

correlation between FDX1 expression in the TCGA

database and levels of immune infiltration across multiple

cancer types.

Drug susceptibility analysis

A total of 60 cancer cells listed by the National Cancer

Institute (NCI) Cancer Research Center are the basis of the

CellMiner database. The NCI-60 cell line is the most popular

cancer cell sample group for anticancer drug detection

recently. Here, NCI-60 drug sensitivity data and RNA-seq

gene expression data were downloaded, and the relation

between genes and the sensitivity of common antitumor

drugs was explored through correlation analysis.

Statistics

Correlations between FDX1 expression and target targets

were assessed using Spearman correlation tests, including

immune cell infiltration scores (as the description in the

previous section for the six immune cell types), TMB, MSI,

and mismatch repair (MMR) genes. According to whether the

samples were paired, FDX1 expression levels were compared

between groups or between tumors and normal tissue using

paired t-test or t-test. p values below 0.05 are regarded as

evident. All charts are generated from the R package of

ggplot2 and forestplot.

Results

Expression levels of FDX1 in various
normal and cancerous tissues

With the data of GTEx databases from different tissues in

healthy individuals, it was determined that mRNA expression

levels of FDX1 were similar in all tissues (Figure 1A), except

for the adrenal gland. As an actively differentiated tissue, the

higher expression levels of the adrenal gland were not

unexpected. Further comparison of relatively normal tissues

and respective tumors showed that FDX1 was lowly expressed

in most tumors, except for GBM and STAD, showing that the

opposite result was significant. Based on TCGA data, 13 of

33 cancer types (BRCA, CHOL, COAD, GBM, KICH, KIRC,

KIRP, LUAD, LUSC, PCPG, READ, STAD, and THCA)

showed significant differences in expression (Figure 1B).

FIGURE 2
Association of FDX1 mRNA expression levels with overall survival in multiple tumors from the Cancer Genome Atlas database. Cox regression
analysis, p < 0.05 was evident.
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Analysis of the relationship between
FDX1 expression level and prognosis

Using univariate Cox regression analysis, we used data

from the TCGA database to assess the correlation between the

respective expression levels of FDX1 and OS in various

cancers. The hazard ratios of FDX1 to ACC, HNSC, KIRC,

and LGG were significant, with FDX1 having the highest risk

in LGG, and being a tumor suppressor factor in KIRC

(Figure 2). The survival analysis below, using patient data

using the median expression value dichotomy for each cancer

type (Figure 3), showed that survival differences were

significant across OS-related cancer categories and that

patients with high FDX1 expression had a better prognosis

in some cancers.

However, OS may be influenced by noncancer-related

deaths during follow-up. Therefore, the data on the

correlation between DSS and FDX1 expression in various

cancers were reanalyzed (Figure 4). The Cox regression

analysis results were similar to those related to OS.

Differences included the determination of a significant risk

effect on THYM (except for the four cancers mentioned

earlier, HNSCs were excluded for p greater than 0.05) and

the calculation inability of the hazard ratio for FDX1 in LAML

due to deficient relevant data. Cancer types with high

FDX1 expression (KIRC, THYM) showed a favorable

FIGURE 3
Overall survival (OS) difference of high and low FDX1 mRNA expression groups in significantly prognostically relevant tumors from the Cancer
Genome Atlas database (by median expression dichotomy). (A) OS difference of ACC groups. (B) OS difference between HNSC groups. (C) OS
difference between KIRC groups. (D) OS difference of LGG groups. p < 0.05 was regarded significant, with a dashed line of 95% CI.
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prognosis compared with the low expression group as learned

from the later survival analysis (Figure 5).

Correlation analysis of FDX1 with tumor
microenvironment, immune infiltrating
cells and immune-related cells in some
immune pathways

The relation between FDX1 and immune and stromal scores

was measured. We then visualize the remarkable results

(Figure 6). As shown, immune scores in 11 of the 33 cancers

were significantly associated with FDX1 expression, and

ESTIMATEScore scores in 14 of the 33 cancers were

significantly associated with FDX1. BRCA (r = 0.169, p <
0.05), LGG (r = 0.423, p < 0.05), PCPG (R = 0.295, p < 0.05),

SARC (r = 0.215, p r = 0.223, p < 0.05) show a positively

correlated. The highest correlation coefficient is LGG. In ACC

(r = −0.496, p < 0.05), KIRC (r = −0.17, p < 0.05), THCA

(r = −0.395, p < 0.05), THYM (r = −0.232, p < 0.05), UCEC

(r = −0.133, p < 0.05) show a negative correlation. The highest

correlation coefficient is ACC (Stepien et al., 2017). The lower the

expression of FDX1, the higher the purity of tumor cells in some

kinds of cancers.

The correlation between FDX1 and immunoinfiltrating

cells in 33 kinds of cancers in the TIMER database was

investigated.

FDX1 may modulate the tumor immune
microenvironment by affecting immune
infiltration in various cancer types

FDX1 expression and levels of immune cell infiltration in

each cancer type were correlated to assess whether this pathway

affects the tumor’s immune microenvironment. Several tumors

were found by using six immune cell types (B cells, CD4 + T cells,

CD8 + T cells, neutrophils, macrophages, and dendritic cells)

available in the TIMER database, derived from TCGA. There is

indeed a significant correlation. We picked FDX1 with BRCA,

HNSC, KIRC, LGG, STAD, and UCEC. Their corresponding

linear regression plots showed that in most tumors, high

FDX1 expression was correlated with potentially increased

levels of immune cell infiltration. In particular, in STAD,

FDX1 expression corresponded negatively with immune cell

infiltration levels (Figure 7).

Correlation of FDX1 expression with
certain immune checkpoint genes
expression in some cancers

Several genes were now closely correlated to and considered

checkpoint components in the immune response. The mRNA

sequence database allowed assessing whether a link between

FDX1 expression and the expression of such checkpoint genes

FIGURE 4
Correlation between FDX1 mRNA expression levels and disease-specific survival in multiple tumors from the Cancer Genome Atlas database.
Cox regression analysis, p < 0.05 was evident.
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exists. Correlation analysis of FDX1 with checkpoint gene

expression found a high correlation (p < 0.05) with tumor

necrosis factor (TNF)–related immune genes (TNFRSF14, 15,

25) and CTLA4, PDCD1, CD274, NRP1, and VTCN1 in some

kinds of cancers.

Moreover, in LGG and TGCT, THCA and THYM,

important coexpressions of FDX1 with more immune

checkpoint genes, were examined. The results, especially

for LGG and TGCT, suggest that FDX1 modulates tumor

immune responses by modulating immune checkpoint

activity. In addition, in THCA and THYM,

FDX1 expression was inversely related with most immune

checkpoint molecules but not to a significant extent for some

of them (Figure 8).

FDX1 is related to tumor mutational
burden and microsatellite instability in
some cancers

TMB and MSI are potent prognostic biomarkers and

indicators of immunotherapy response in a variety of tumors.

Their respective relationships to FDX1 expression in various

cancers were examined to investigate the link between

FDX1 activity and mutations in specific cancer types. The

relation between FDX1 expression and TMB was significant

(p < 0.05), and data were available for 10 of 32 cancer types

(ESCA, HNSC, KIRC, LGG, LUAD, LUSC, STAD, THCA,

THYM, and UCEC), among which ESCA, LGG, and STAD

coefficients were the highest, whereas KIRC, LUAD, and

FIGURE 5
Disease-specific survival (DSS) difference between high and low FDX1 mRNA expression groups in significantly prognostically relevant tumors
from the Cancer Genome Atlas database (bymedian expression dichotomy). (A)DSS differences between adrenal cortical carcinoma groups. (B)DSS
differences between KIRC groups. (C) DSS differences between groups in LGG. (D) DSS differences between thymoma groups. p < 0.05 was
considered a significant, 95% CI dashed line.
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THCA coefficients were the lowest (Figure 9A). Coefficient

values showed that FDX1 expression was positively associated

with high mutation status in ESCA, LGG, and STAD but

positively correlated to low mutation status in KIRC, LUAD,

and THCA (especially THCA).

The relation between FDX1 expression and MSI was

examined in 32 cancer types, and the correlation was

statistically significant (p < 0.05) in nine cancer types

(DLBC, HNSC, KIRC, LUAD, LUSC, PAAD, SKCM,

STAD, and UCED) (Figure 9B). Among these cancer types,

SKCM, PAAD, LUSC, LUAD, FDX1 expression, and MSI had

a significant negative correlation, and the PAAD coefficient

was the highest; conversely, in DLBC, HNSC, KIRC, STAD,

and UCEC, FDX1 expression was positively correlated to MSI,

and the DLBC coefficient was the highest. In particular, the

STAD cohort had relatively high absolute coefficients

associated with either TMB or MSI compared with other

kinds of cancers; however, all the quantity of cancer

FIGURE 6
Correlation of FDX1 expression with ESTIMATEScore score in pan-cancer.
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categories showing evident associations with these mutational

indicators was lower.

Pan-cancer expression and drug
sensitivity

The CellMiner database was used to study the sensitivity of

the FDX1 gene to common antitumor drugs and further calculate

the correlation between gene expression and the drug IC50.

Studies have shown that high expression of the FDX1 gene is

associated with resistance to multiple antitumor drugs

(Figure 10). Among them, FDX1 was negatively correlated

with everolimus, JNJ-42756493, VE-821, AZD-8055, FDX1,

MK-2206, avagacestat, and ENMD-2076 precursor and

positively correlated with chelerythrine, ifosfamide, ribavirin,

PX-316, nelarabine, vorinostat, and amonafide.

Discussion

Previous studies have shown that FDX1 is necessary for the

synthesis of kinds of steroid hormones (Sheftel et al., 2010;

Strushkevich et al., 2011). Mitochondrial cytochrome P450 is

involved in reducing steroid production (Sheftel et al., 2010;

Strushkevich et al., 2011). Its associated pathways include

metabolic and inflammatory pathways. It has been reported

that FDX1 can enhance the copper-dependent cell death

induced by elesclomol and can offer new ideas to improve the

efficacy of several cancer-targeted drugs. In addition, FDX1 can

augment the copper-dependent cell death induced by elesclomol

and can offer a new idea to promote the effect of some cancer-

targeting agents (Tsvetkov et al., 2019). Current studies have

shown that FDX1 is a key gene that promotes copperoptosis.

Copperoptosis is a newly discovered mode of regulatory cell

death, varying from other regulatory cell death characteristics

such as pyroptosis, ferroptosis, and apoptosis. The relationship

between copperoptosis and tumors: It has been found that

patients with different cancers (such as breast cancer, thyroid

cancer, cervical cancer, ovarian cancer, lung cancer, pancreatic

cancer, prostate cancer, breast cancer, oral cancer, and bladder

cancer) have serum and tumor tissue copper content that is

significantly changed (Baltaci et al., 2017) (Stepien et al., 2017).

Copper also promotes angiogenesis, which is critical for tumor

progression and metastasis (Ruiz et al., 2021; Ge et al., 2022).

Overloaded copper can also lead to cell death. Since copper is

important for the occurrence and progression of cancer, it is of

great biological significance to study genes related to

copperoptosis (Shanbhag et al., 2021).

Our findings suggest that FDX1 is widely expressed in

different normal tissues and is relatively high in the adrenal

gland. When tumors were compared with corresponding

normal tissues, FDX1 expression was reduced in various

cancers, and this high expression was associated with better

OS and death-specific survival in some cancer types, such

as KIPC.

FIGURE 7
Correlation of six immune cell (B cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and dendritic cells) infiltration scores with
FDX1 mRNA expression in six kinds of cancer [(A): BRCA, (B): IGG, (C): HNSC, (D): STAD, (E): KIRC, and (F): UCEC]. Spearman correlation test, p <
0.05 was significant.
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Tumor cells can change the nature of the microenvironment,

which in turn can influence tumor growth and spread. Immune

cells and stromal cells in the tumor microenvironment can affect

cancer prognosis and patient survival outcomes (Ren et al., 2018).

TME is strongly associated with tumor occurrence and

metastasis (Spill et al., 2016; Liu et al., 2022b; Ye et al., 2022).

Previous studies have shown that cytokines in the tumor

microenvironment regulate immune function and ultimately

suppress immune responses, leading to tumor progression

(Hinshaw and Shevde, 2019). Tumor-infiltrating lymphocytes

(TILs) in TME have been shown to be independent predictors of

prognosis and immunotherapy efficacy in cancer patients

(Ohtani, 2007; Azimi et al., 2012). Both immune cells and

stromal cells are contained in the tumor environment, and

they can determine the role of TME to some extent. Besides,

it is reported that immune cells are evidently related to

tumorigenesis and development in many researches. Thus,

components analyzed in TME contribute to the development

of targeted drugs for tumor immunotherapy. We found that

FDX1 expression was apparently positively associated with

immune cell infiltration in most tumors, whereas in STAD,

FDX1 expression was negatively correlated with immune

infiltration. In particular, FDX1 expression is also associated

with the statistically significant presence of some specific

immune checkpoint genes in multiple tumors, such as

CTLA4, PDCD1, CD274, NRP1, and VTCN1. Upregulation of

this checkpoint gene is associated with escape mechanisms in the

immune microenvironment, which suggested that FDX1 plays a

role in different immunomodulatory effects in various cancer

types.

Our study also found that FDX1 was positively correlated to

TME immune, stromal, and ESTIMATE scores in most human

cancer types. In addition, the association of FDX1 with TMB and

MSI also proves that FDX1 is strongly associated with TME in

FIGURE 8
Relation between FDX1 mRNA expression levels andmRNA expression at recognized immune checkpoints in multiple tumors from the Cancer
Genome Atlas database. The lower triangle refers to the coefficients calculated by Pearson’s correlation test, and the upper triangle represents the
p-value converted by log10. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 9
Relationship between tumor mutational burden (TMB), microsatellite instability (MSI), and FDX1 mRNA expression levels in different tumors in
the Cancer Genome Atlas database. TMBwas calculated by the total mutation incidence permillion base pairs in each tumor, andMSI was calculated
by the total incidence of deletions or insertions per million base pairs of repeats. (A) correlation between TMB and FDX1 expression. (B) correlation
between MSI and FDX1 expression. Spearman correlation test, p < 0.05 was evident.

FIGURE 10
Correlation graph with drug IC50. The correlation graph of gene and drug IC50 and the slope of the straight line are the correlation coefficients
between gene and drug. [(A): chelerythrine, (B): ifosfamide, (C): everolimus, (D): ribavirin, (E): JNJ-42756493, (F): PX-316, (G): VE-821, (H): AZD-
8055, (I): nelarabine, (J): vorinostat, (K): AMONAFIDE, (L): MK-2206, (M): avagacestat, and (N): ENMD-2076 precursor].
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human cancer. Previous studies had demonstrated that TMB and

MSI were markers of drug response in patients, especially those

targeting immune checkpoint inhibitors, such as CTLA4 or PD-

1/PD-L1 inhibitors (Overman et al., 2017; Mariathasan et al.,

2018; Kwon et al., 2020; Shim et al., 2020). In gastric cancer, an

analysis of the MAGIC study showed that MSI-H patients might

have worse OS after perioperative treatment. Patients with MSI-

H/dMMR (deficiency of MMR, dMMR) had many tumor

mutations and a wide range of immunogenicity, so they

responded well to PD-1/PD-L1 inhibitors. Here, both TMB

and MSI of STAD were positively correlated to

FDX1 expression, which would support our claim that, of

course, FDX1 might be indicating potential drug response

(and MSI) well in STAD.

Using the CellMiner study, the result that high expression of the

FDX1 gene was associated with resistance to multiple antitumor

drugs was obtained. Among them, FDX1 was negatively correlated

with everolimus, JNJ-42756493, VE-821, AZD-8055, FDX1, MK-

2206, avagacestat, and ENMD-2076 precursor and positively

correlated with chelerythrine, ifosfamide, ribavirin, PX-316,

nelarabine, vorinostat, and amondafide. We found that

FDX12 could serve as a potential resistance target that could

predict tumor cell susceptibility to chemotherapy drugs.

Although our study provides useful indications that FDX1 is

involved in tumorigenesis and regulation of the immune

environment of tumor cells, it does have some limitations. First,

as a pure bioinformatics analysis, it relies entirely on information

available in open access databases and has not been confirmed

experimentally. Here, the assessment of FDX1 expression was based

solely on the mRNA levels reported in the aforementioned database,

although this cannot show functional protein levels. For instance,

protein activity in normal or cancer cells may be affected by

posttranscriptional modifications and/or regulatory proteolysis.

Future studies will focus on experimentally the data validation

and exploration of possible mechanisms of FDX1 in

tumorigenesis. Second, we have shown that in the link between

FDX1 expression and TMB, MSI lacks any mechanistic explanation

from supporting experimental data. More experimental evidence is

needed to prove this.

Conclusion

FDX1 is highly expressed in a variety of tumors, and this high

expression is associated with better survival and disease

progression, especially for KIRC. FDX1 expression is also

associated with immune cell infiltration of tumors, immune

checkpoint gene expression, and immunotherapy markers

(e.g., TMB and MSI). Taken together, the data suggest that

FDX1 provides a valuable new biomarker for several cancers

for assessing prognosis and immunotherapy response.
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A Prognostic Ferroptosis-Related
lncRNA Model Associated With
Immune Infiltration in Colon Cancer
Jianzhong Lu, Jinhua Tan and Xiaoqing Yu*

School of Science, Shanghai Institute of Technology, Shanghai, China

Colon cancer (CC) is a common malignant tumor worldwide, and ferroptosis plays a vital
role in the pathology and progression of CC. Effective prognostic tools are required to
guide clinical decision-making in CC. In our study, gene expression and clinical data of CC
were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) databases. We identified the differentially expressed ferroptosis-related lncRNAs
using the differential expression and gene co-expression analysis. Then, univariate and
multivariate Cox regression analyses were used to identify the effective ferroptosis-related
lncRNAs for constructing the prognostic model for CC. Gene set enrichment analysis
(GSEA) was conducted to explore the functional enrichment analysis. CIBERSORT and
single-sample GSEA were performed to investigate the association between our model
and the immune microenvironment. Finally, three ferroptosis-related lncRNAs (XXbac-
B476C20.9, TP73-AS1, and SNHG15) were identified to construct the prognostic model.
The results of the validation showed that our model was effective in predicting the
prognosis of CC patients, which also was an independent prognostic factor for CC.
The GSEA analysis showed that several ferroptosis-related pathways were significantly
enriched in the low-risk group. Immune infiltration analysis suggested that the level of
immune cell infiltration was significantly higher in the high-risk group than that in the low-
risk group. In summary, we established a prognostic model based on the ferroptosis-
related lncRNAs, which could provide clinical guidance for future laboratory and clinical
research on CC.

Keywords: colon cancer, ferroptosis, long non-coding RNA, prognostic model, immune microenvironment

INTRODUCTION

Colon cancer (CC) has the third most incidences among malignancies, and it is the second most
common cause of cancer death in men and women combined (Siegel et al., 2022). The malignant
transformation of CC is a multistep process that takes approximately ten years from small
clumps to CC (Jemal et al., 2011). Therefore, early diagnosis is essential for improving the
prognosis of CC patients. However, the survival of CC patients is poor because of the complexity
of the disease, late disease detection, and lack of reliable risk-assessment biomarkers (Lin et al.,
2020; Yang C. et al., 2021). Even after treatment, the risk of recurrence and metastasis in CC
patients is still high (Chang et al., 2020; Jin et al., 2020). In recent years, more studies have
suggested that it is promising to solve the problem by integrating computational techniques with
big biomedical data involving multiple types of biomarkers including epigenetic, genetic, and
gene expression profiles (Yang Y. et al., 2021; Liu et al., 2021). Therefore, identifying effective
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biomarkers to establish a prognostic model for survival
prediction is gaining increasing attention.

lncRNAs are non-protein coding transcripts over
200 nucleotides in length (Mercer et al., 2009). There are
more than 50,000 lncRNA genes annotated in the human
genome (Borkiewicz et al., 2021). Studies have shown that
lncRNAs are often dysregulated during tumorigenesis, which
might cause tumor development (Prensner and Chinnaiyan,
2011; Schmitt and Chang, 2016). Therefore, they are used as
molecular biomarkers to diagnose and treat many diseases,
including CC. For example, Zhou et al. (2019) revealed that
lncRNA XIRP2-AS1 has a favorable impact on the overall
survival of patients with colon cancer. Tsai et al. (2018) found

that lncRNA Linc00659 expression knockdown could
accelerate cell apoptosis in CC cells treated with
chemotherapy drugs.

Ferroptosis is a newly discovered form of programmed cell
death characterized by iron-dependent accumulation of lethal
lipid peroxidation (Tang et al., 2018; Mou et al., 2019). Cancer
cells are vulnerable to ferroptosis because of their high iron
uptake to support fast proliferation (Hassannia et al., 2019).
Recently, studies have demonstrated that ferroptosis plays a
crucial role in tumorigenesis and cancer therapeutics. Wang
et al. (2021) constructed a ferroptosis-related prognostic
signature for LUAD and suggested that ferroptosis is a
functional and therapeutic target in LUAD. He et al. (2021)

FIGURE 1 | Flowchart of this study.
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have constructed a prognostic risk model based on 10 genes
related to ferroptosis and identified potential novel therapeutic
targets which improve the individualized treatment of patients
with HNSCC. Moreover, considering the critical role of
ferroptosis in cancer, many studies proposed ferroptosis-
based strategies to identify potential lncRNA biomarkers
associated with various cancers. For example, Guo et al.
(2021) revealed that ferroptosis-related lncRNAs have the
potential to inform immunological research and treatment.
Wei et al. (2021) identified that ferroptosis-related lncRNAs
have an important prognostic value in gastric cancer. Feng
et al. (2022) suggested that ferroptosis and iron
metabolism–related lncRNAs can independently predict the
overall survival and therapeutic effect in patients with ovarian
cancer. Currently, many prognostic models have been
proposed based on the ferroptosis-related lncRNAs for
colon cancer (Cai et al., 2021; Zhang et al., 2021). However,
the functional mechanisms of the ferroptosis-related lncRNAs
and the relationship between the prognostic model and the
tumor immune microenvironment require further
investigation for CC patients.

In this study, three ferroptosis-related lncRNAs were
identified as the prognostic biomarkers for CC. The prognostic
model based on the ferroptosis-related lncRNAs was constructed
for predicting the overall survival of CC patients, which would
provide prognostic insights into anticancer therapies and a novel
source for immune therapies. The workflow of this study is shown
in Figure 1.

MATERIALS AND METHODS

Data Collection
In this study, we selected four independent datasets from two
different high-throughput platforms, including 458 colon
adenocarcinoma (COAD) samples and 41 normal samples
from TCGA (https://portal.gdc.cancer.gov/); 111 CC samples,
34 normal samples (GSE20916), 124 colorectal cancer samples
(GSE72970), and 177 CC samples (GSE17536) from the GEO
(https://www.ncbi.nlm.nih.gov/geo/). The gene expression
profiling of the three datasets (GSE20916, GSE72970, and
GSE17536) was based on the GPL570 platform. Patients with
a survival time of more than 30 days were used for the survival
analysis. The detailed clinical characteristics of the patients are
shown in Table 1. We downloaded 259 ferroptosis-related genes
from the FerrDb database (Zhou and Bao, 2020), including
108 driver genes, 69 suppressor genes, and 111 marker genes
(Supplementary Table S1).

Identification of Differentially Expressed
Ferroptosis-Related lncRNAs
In this study, we identified mRNAs and lncRNAs using the
Ensembl database (http://ensemblgenomes.org). The expression
profile of mRNAs and lncRNAs was extracted from RNA-seq
count data, which was normalized using the edgeR package
(version 3.32.1). Differentially expressed mRNAs and lncRNAs
shared by TCGA-COAD and GSE20916 were identified using the

TABLE 1 | Characteristics of CC patients in our study.

Characteristic Training
set (n = 185)

Test set (n = 185) GSE72970 (n = 124) GSE17536 (n = 177)

Age (years)
<70 96 107 90 104
≥70 89 78 34 73

Gender
Female 85 86 50 81
Male 100 99 74 96

T stage
T1 5 4 1 —

T2 32 33 7 —

T3 134 121 50 —

T4 14 27 37 —

TX — — 29 —

N stage (pN)
N0 118 101 14 —

N1 36 51 28 —

N2 31 33 53 —

NX — — 29 —

M stage
M0 160 150 22 —

M1 25 35 102 —

TNM stage
I 33 32 0 24
II 82 63 6 57
III 45 55 15 57
IV 25 35 102 39
X — — 1 —

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 9341963

Lu et al. Ferroptosis-Related lncRNAs for CC Prognosis

51

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://ensemblgenomes.org/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


edgeR and limma R packages [|log2(FoldChange)|> 1 and
p< 0.05]. The intersection between the differentially expressed
mRNAs (DEmRNAs) and the 259 ferroptosis-related genes was
defined as differentially expressed ferroptosis-related mRNAs
(DEFR-mRNAs). We constructed the co-expression network
with the DEFR-mRNAs and the differentially expressed
lncRNAs (DElncRNAs) based on the Pearson correlation
analysis to identify the differentially expressed ferroptosis-
related lncRNAs (DEFR-lncRNAs). In the co-expression
network, the DElncRNAs with |R2|> 0.4 and p< 0.001
remained as the DEFR-lncRNAs.

Construction of a DEFR-lncRNA Prognostic
Model
Univariate Cox regression analysis was first performed by
integrating the gene expression matrix of the DEFR-
lncRNAs and the survival data in TCGA-COAD to identify
the DEFR-lncRNAs with prognostic relevance for the overall
survival (OS). Statistically significant value was set at p< 0.05.
Moreover, the least absolute shrinkage and selection operator
(LASSO) regression analysis was used to avoid overfitting and
build a reliable and robust model. Next, the screened DEFR-
lncRNAs were validated using the multivariate Cox regression
analysis, and the DEFR-lncRNAs associated with the prognosis
of CC were obtained. Finally, the prognostic risk score (RS)
model was constructed for each patient, which was calculated as
follows:

RS � ∑n

i�1 [expr(lncRNAi) × coef(lncRNAi)],
where expr(lncRNAi) is the gene expression value of lncRNAi,
and coef(lncRNAi) is the corresponding estimated regression
coefficient in the multivariate Cox regression analysis.

Enrichment Analysis
Gene set enrichment analysis (GSEA) (http://www.broad.mit.
edu/gsea/) is a computational method used to identify whether
a pre-defined set of genes shows significant differences between
two biological states (Subramanian et al., 2005). GSEA was
performed by GSEA software (version 4.2.3). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway and
Hallmark pathways were used to explore the potential
pathways and gene sets associated with the model. They were
visualized using the ggplot2 R package.

Immunity Analysis
CIBERSORT (https://cibersort.stanford.edu/) is an established
computational resource to estimate the abundance of member
cell types in a mixed cell population (Newman et al., 2015). In our
study, we applied the CIBERSORT algorithm to assess the tumor
infiltration levels of 22 immune cell types from the CC patients in
TCGA-COAD. It was run using the LM22 signature with
1,000 permutations to estimate the relative fractions of the
22 immune cell types. Moreover, the single-sample gene set
enrichment analysis (ssGSEA) was also performed, and
28 immune cell types that are over-represented in the tumor

microenvironment were analyzed to understand the association
between the prognostic model and immune infiltration
(Charoentong et al., 2017).

Statistical Analysis
All statistical analyses were conducted by R software (Version
4.0.2). Univariate Cox regression analysis, LASSO regression
analysis, and multivariate Cox regression analysis were
performed to identify the DEFR-lncRNAs associated with the
prognosis of CC patients. The Kaplan–Meier survival analysis
and log-rank test were used to conduct survival analysis. The
timeROC R package was used to draw receiver operating
characteristic (ROC) curves and quantify the area under the
curve (AUC) values. The GSVA R package was used for the
ssGSEA.

RESULTS

Identification of Differentially Expressed
Ferroptosis-Related lncRNAs
In our study, using the gene type data reported for the genome
GRCh38.p13, 19,674 mRNAs and 14,826 lncRNAs were
downloaded from TCGA-COAD, and 12,001 mRNAs and
370 lncRNAs were downloaded from GSE20916. The
differential expression analysis showed that 4,876 mRNAs and
1,671 lncRNAs were differentially expressed in TCGA-COAD,
and 1,370 mRNAs and 44 lncRNAs were differentially expressed
in GSE20916. The volcano plots of DEmRNAs and DElncRNAs
of TCGA-COAD and GSE20916 are shown in Figures 2A,B,
respectively. Moreover, 1,157 DEmRNAs and 34 DElncRNAs
shared by the two databases were obtained (Figure 2C). Then,
30 DEFR-mRNAs were obtained after intersecting
1,157 DEmRNAs and 259 ferroptosis-related genes
(Figure 2D). Finally, 29 DEFR-lncRNAs were identified using
the co-expression analysis, which was shown in the co-expression
network (Figure 2E).

Construction of a Prognostic Model Based
on DEFR-lncRNAs
Based on the 29 DEFR-lncRNAs, we identified five DEFR-
lncRNAs (SNHG17, XXbac-B476C20.9, TP73-AS1, SNHG15,
and PVT1) that were statistically related to the OS of CC
patients using the univariate Cox regression analysis (p< 0.05,
Figure 3A). Then, the five DEFR-lncRNAs were subjected to the
LASSO regression analysis. As the values of λ increased, the
LASSO coefficients of these five lncRNAs decreased to zero
(Figure 3B). Moreover, the partial likelihood deviances of
different numbers of lncRNAs were revealed by the LASSO
regression model, which showed that the model had an
optimal performance with the least parameters when log(λ) �
−4.035622 (Figure 3C). Subsequently, the multivariate Cox
regression analysis was performed, and three DEFR-lncRNAs
(XXbac-B476C20.9, TP73-AS1, and SNHG15) were selected as
the prognostic DEFR-lncRNAs for constructing the prognostic
model (p< 0.05, Figure 3D).
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A B

C D
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FIGURE 2 | Identification of DEFR-lncRNAs. (A) Volcano plot of DEmRNAs and DElncRNAs in TCGA-COAD. (B) Volcano plot of DEmRNAs and DElncRNAs in
GSE20916. (C) Venn diagram of DEmRNAs and DElncRNAs in TCGA-COAD and GSE20916. (D) Venn diagram of the shared DEmRNAs and ferroptosis-related genes.
Red represents the shared DEmRNAs between TCGA-COAD and GSE20916, and blue represents the ferroptosis-related genes. (E) Co-expression network between
DEFR-mRNAs and DElncRNAs.
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After filtering patients with incomplete gene expression data
and clinical information, 370 patients in TCGA-COAD remained
in our study, who were divided randomly into the training set and
the test set in a 1:1 ratio. The prognostic model was constructed
based on the three prognostic DEFR-lncRNAs in the training set.
The RS was calculated for each patient using the following
equation: RS � −2.1053 × expr(XXbac − B476C20.9)+
0.6008 × expr(TP73 − AS1) + 0.0873 × expr(SNHG15). Patients
were classified into high-risk and low-risk groups in the training, test,
and whole sets. The cutoff values for the three datasets were the
median RS in the training set (RS � −0.291257). We observed that
the proportion of patients with CC in the high-risk group was

significantly higher than that of the low-risk group in the training,
test, and whole sets, respectively (Figures 4A–C). We also
investigated the expression of the three prognostic DEFR-lncRNAs
in the high-risk and low-risk groups (Figures 4D,E). In the whole set,
we can find that the lncRNAXXbac-B476C20.9 was higher expressed
in the low-risk group, while the lncRNAs TP73-AS1 and
SNHG15 were higher expressed in the high-risk group (Figure 4F).

Kaplan–Meier survival curves were plotted to compare the
difference in the OS between the high-risk and low-risk groups,
which indicated that the patients in the low-risk group had better OS
than those in the high-risk group in the training, test, and whole sets
(Figures 5A–C). Moreover, time-dependent ROC curves were

A B

C D

FIGURE 3 | Identification of the prognostic DEFR-lncRNAs. (A) Forest map of five DEFR-lncRNAs identified by univariate Cox regression analysis. (B) LASSO
coefficient profile of the five DEFR-lncRNAs. (C) Plots of the cross-validation error rates. (D) Forest map of three DEFR-lncRNAs identified by the multivariate Cox
regression analysis.
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plotted to assess the sensitivity and specificity of the 1-, 3-, and 5-year
survival predictions of CC patients using the timeROCR package. In
the training set, the AUCs used for 1-, 3-, and 5-year OS predictions
were 0.72, 0.69, and 0.73, respectively (Figure 5D). In the test set, the
AUCs used for 1-, 3-, and 5-year OS predictions were 0.63, 0.6, and

0.66, respectively (Figure 5E). In the whole set, the AUCs used for 1-,
3-, and 5-year OS predictions were 0.64, 0.63, and 0.66, respectively
(Figure 5F).

Furthermore, the univariate and multivariate Cox regression
analyses were performed to validate the independent predictive

A

B

C

D

E

F

FIGURE 4 |Risk score analysis of the prognostic model in TCGA-COAD. Risk score distribution and survival status of the patients in the training set (A), test set (B),
and whole set (C). Expression heatmap of three DEFR-lncRNAs in the training set (D), test set (E), and whole set (F).
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A B C

D E F

FIGURE 5 | Kaplan–Meier curve and ROC curve of the model in TCGA-COAD. Kaplan–Meier curves of the OS of patients between high-risk and low-risk groups in
the training set (A), test set (B), and whole set (C). Time-dependent ROC curve analysis of the RS in the training set (D), test set (E), and whole set (F).

A B

FIGURE 6 | Validation of the independent predictive power of the model. (A) Univariate Cox regression analysis of the prognostic variables in the whole set. (B)
Multivariate Cox regression analysis of the prognostic variables (age, T stage, N stage, M stage, AJCC stage, and RS) in the whole set.
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power of the prognostic RS model for CC patients in the training,
test, and whole sets, and the variables (age, gender, T stage, N
stage, M stage, AJCC stage, and RS) were used as the possible risk
factors. These results revealed that the prognostic model
proposed in our study can be used as an independent
prognostic factor for CC patients (Supplementary Table S2).
In the whole set, we found that age, M stage, AJCC stage, and RS
were the independent risk factors for CC patients (p< 0.05,
Figures 6A,B).

Verification of the Prognostic Model in the
Validation Set
We merged GSE72970 and GSE17536 to form the validation
set, which contained 301 tumor samples. We calculated the RS

of each patient in the validation set based on the formula of the
prognostic RS model. The patients in the validation set were
classified into high-risk (n = 136) and low-risk groups (n =
165) according to the optimal cut-off value (RS � −2.150814).
The distribution of the RS for each patient and their survival
status in the validation set are shown in Figure 7A. The death
status of the patients increased with the increasing risk score.
The expression pattern of the three prognostic DEFR-lncRNAs
between the high-risk and low-risk groups is shown as a
heatmap in Figure 7B. The Kaplan–Meier survival analysis
demonstrated that the patients in the high-risk group had a
significantly shorter OS than those in the low-risk group
(p< 0.0001, Figure 7C). The AUC values for the 1-, 3-, and
5-year OS in the validation set were 0.56, 0.61, and 0.65,
respectively (Figure 7D).

FIGURE 7 | Survival and time-dependent ROC curve analysis of the prognostic model in the validation set. (A) Risk score distribution and survival status of the
patients. (B) Heatmap of three DEFR-lncRNAs. (C) Kaplan–Meier curve analysis of the OS between high-risk and low-risk groups. (D) Time-dependent ROC curve
analysis of the RS.
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Functional Enrichment Analysis
The GSEA was performed to investigate the potential pathways
and functions connected with high-risk and low-risk groups, and
the terms p< 0.05 and FDR< 0.25 were considered statistically
significant. The KEGG pathway analysis showed that peroxisome,
glycosylphosphatidylinositol (GPI) anchor biosynthesis, and fatty
acid metabolism were enriched in the low-risk group, whereas the
extracellular matrix (ECM) receptor interaction, dilated
cardiomyopathy, focal adhesion, complement and coagulation
cascades, hypertrophic cardiomyopathy (HCM),
glycosaminoglycan biosynthesis chondroitin sulfate, and basal
cell carcinoma were enriched in the high-risk group (Figure 8A).
Moreover, the Hallmark pathway analysis also revealed that the
high-risk group was mainly enriched for epithelial-mesenchymal
transition, apical junction, angiogenesis, hedgehog signaling,
myogenesis, and mitotic spindle, whereas the low-risk group
was mainly enriched for peroxisome, bile acid metabolism,
fatty acid metabolism, and oxidative phosphorylation
(Figure 8B). Of note, peroxisomes, fatty acid metabolism, and
oxidative phosphorylation enriched in the low-risk group were
associated with ferroptosis, which have been reported to be
closely linked to ferroptosis (Stockwell et al., 2017; Tang and
Kroemer, 2020; Ma et al., 2021).

Immune Infiltration Analysis
After the filtration of samples with p< 0.05 via CIBERSORT, we
obtained fractions of 22 immune cell types in 156 CC patients,
including 74 patients in the high-risk group and 82 patients in the
low-risk group. The relative fractions of 22 immune cell types are
shown in Figure 9A. From Figure 9A, we can find that the
highest proportion of patients in the high-risk group was
macrophages M0 (24.3%), followed by macrophages M2
(12.9%) and mast cells activated (12.5%). Meanwhile, the
highest proportion of patients in the low-risk group was
macrophages M0 (17.2%), followed by mast cells activated
(12.7%) and macrophages M2 (12.4%). As shown in
Figure 9B, the distribution of six immune cell types had a

significant difference between the high-risk and low-risk
groups, which also exhibited higher infiltration of
macrophages M0 and T cells regulatory, and lower infiltration
of dendritic cells activated, NK cells activated, plasma cells, T cells
CD4 memory activated, and T cells CD4 memory resting in the
high-risk group. In addition, we also used the ssGSEA method to
estimate the infiltration level of the 28 kinds of immune cells that
were over-represented in the tumor microenvironment for the
156 CC patients. The results indicated that 12 kinds of immune
cells had significant differences between the high-risk and low-
risk groups (Figure 10). We also found that in addition to type
17 T helper cells, the other 11 kinds of immune cells (central
memory CD4 T cells, central memory CD8 T cells, effector
memory CD4 T cells, effector memory CD8 T cells, immature
dendritic cells, macrophages, MDSC, natural killer cells, natural
killer T cells, regulatory T cells, and T follicular helper cells) had a
higher infiltration level in the high-risk group than in the low-risk
group.

DISCUSSION

With the rapid development of next-generation sequencing
technologies, computational tools are used to identify
biomarkers and study cancer disease, which is an emergent
field in cancer systems biology (Yang J. et al., 2020; Xu et al.,
2020). CC is a high-incidence malignant tumor with a poor
prognosis. Although targeted drugs can improve the prognosis
of patients with CC, the mortality rate among patients remains
high (Zhou and Ma, 2019). Therefore, reliable biomarkers must
be identified for constructing a prognostic model to assess the
prognosis and survival of CC patients.

Ferroptosis is morphologically, biochemically, and genetically
distinct from other forms of cell death (Dixon et al., 2012).
Previous studies have demonstrated that ferroptosis is involved
in tumor immunization and cancer immunotherapy (Wang W.
et al., 2019; Xu et al., 2021). Ferroptosis and iron metabolism play

A B

FIGURE 8 | Functional enrichment analysis. (A) KEGG pathways with the top 10 NES. (B) Hallmark pathways with the top 10 NES.
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A

B

FIGURE 9 | Immunity analysis viaCIBERSORT. (A)Bar graph showing the proportion of 22 immune cell types in CC patients of TCGA-COAD. Column names of the
plot are the sample ID. (B)Difference in the proportions of 22 immune cell types between patients in the high-risk and low-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001;
and ****p < 0.0001; ns, not significant.
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important roles in the pathogenesis of cancer. Moreover,
ferroptosis-related lncRNA has also attracted attention (Mao
et al., 2018; Wang M. et al., 2019; Yang Y. et al., 2020).

In this study, we constructed a prognostic model of three
ferroptosis-related lncRNAs (XXbac-B476C20.9, TP73-AS1, and
SNHG15) and showed that it had a good predictive ability for
the overall survival of CC patients. Interestingly, literature mining
revealed that three lncRNAs (XXbac-B476C20.9, TP73-AS1, and
SNHG15) had been confirmed to be significantly associated with
cancer. For example, the lncRNA XXbac-B476C20.9 was identified
as a potential biomarker closely related to the prognosis of CC
patients (Huang et al., 2019), which was consistent with our results.
The overexpression of lncRNA TP73-AS1 was not only associated
with metastasis and advanced clinical stages in colorectal cancer
patients (Cai et al., 2018) but also promoted colorectal cancer cell
migration and invasion (Li et al., 2019). Patients with high
expression of lncRNA SNHG15 displayed a significantly shorter
overall survival in COAD (Jiang et al., 2018). Moreover, the
deregulation of the lncRNA SNHG15 strongly affected the
proliferation, invasion, and tumor formation abilities of colorectal
cancer cells (Saeinasab et al., 2019). The aforementioned previous
studies further corroborated the results of our study.

We also investigated the underlying molecular mechanism by
which the prognostic model is involved in the occurrence and
development of CC through the GSEA analysis. Previous studies
have also shown that GPI anchor biosynthesis, complement and

coagulation cascades, and focal adhesion could play an important role
in the progression of colorectal cancer (Cubiella et al., 2018; Gu et al.,
2018; Xing et al., 2020). ECM receptor interaction, focal adhesion,
and glycosaminoglycan biosynthesis chondroitin sulfate enriched in
the high-risk groupwere related to cell motility, cell proliferation, and
cell differentiation, which play a crucial role in the invasion of cancer
cells (Han et al., 2021). Moreover, the Hallmark pathway analysis
showed that epithelial-mesenchymal transition, apical junction,
angiogenesis, and hedgehog signaling were enriched in the high-
risk group, which was consistent with a previous study on CC (Yang
et al., 2022). It was revealed that the mitotic spindle might lead to
tumor formation in multiple tissues including colon cancer (Pussila
et al., 2018). Bile acid metabolism was found to impact the microbial
composition in colon cancer (Kennedy and Chang, 2020). Therefore,
it is plausible that the prognostic model based on the three
ferroptosis-related lncRNAs is highly correlated with CC.

Notably, our study found that the infiltration levels of
macrophages M0, macrophages M2, and mast cells activated
were significantly higher in the high-risk group. It has been
shown that macrophages M0 were associated with the survival
risk of CC, and the relative fraction of macrophages M0 was
significantly increased in CC tissues compared with healthy bowel
tissues (Wu et al., 2020). In addition, macrophages M2 induce the
epithelial-mesenchymal transition phenotype in CC cells (Lee
et al., 2020). The mast cells activated were C3-associated immune
cells, where the C3 gene can predict the prognosis of colorectal

FIGURE 10 |Normalized enrichment scores of 28 kinds of immune cells in the high-risk and low-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001;
ns, not significant.
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adenocarcinoma (Liu and Wang, 2021). After analyzing the
28 kinds of immune cells that are over-represented in the
tumor microenvironment, we also found that 12 kinds of
immune infiltration cells are significantly different between the
high-risk and low-risk groups, especially natural killer cells and
natural killer T cells. El-Deeb et al. (2022) have found that the
natural killer cells activated by the alginate/κ-carrageenan oral
microcapsules lead to apoptosis in the colon cancer Caco-2 cells.
Yoshioka et al. (2012) showed that the number of colon tumors
and natural killer T cells significantly decreased in the mice in the
treated group. In summary, the results indicated that the
prognostic model was associated with immune infiltration of
CC and might provide a reference for the immunotherapy of CC.

CONCLUSION

In conclusion, we analyzed the lncRNA expression and clinical
profiles in TCGA-COAD and GEO databases. Three
differentially expressed ferroptosis-related lncRNAs (XXbac-
B476C20.9, TP73-AS1, and SNHG15) were identified as
biomarkers to establish a prognostic model for CC patients.
The limitation to our study is that the prognostic model was
constructed and validated on the database publicly available
online. Future prospective clinical trials are required to further
consolidate the effectiveness of the prognostic model.
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NanoCoV19: An analytical
pipeline for rapid detection of
severe acute respiratory
syndrome coronavirus 2

Jidong Lang*

Department of Bioinformatics, Qitan Technology (Beijing) Co., Ltd., Beijing, China

Nanopore sequencing technology (NST) has become a rapid and cost-effective

method for the diagnosis and epidemiological surveillance of severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) during the coronavirus

disease 2019 (COVID-19) pandemic. Compared with short-read sequencing

platforms (e.g., Illumina’s), nanopore long-read sequencing platforms

effectively shorten the time required to complete the detection process.

However, due to the principles and data characteristics of NST, the accuracy

of sequencing data has been reduced, thereby limiting monitoring and lineage

analysis of SARS-CoV-2. In this study, we developed an analytical pipeline for

SARS-CoV-2 rapid detection and lineage identification that integrates

phylogenetic-tree and hotspot mutation analysis, which we have named

NanoCoV19. This method not only can distinguish and trace the lineages

contained in the alpha, beta, delta, gamma, lambda, and omicron variants of

SARS-CoV-2 but is also rapid and efficient, completing overall analysis within

1 h. We hope that NanoCoV19 can be used as an auxiliary tool for rapid

subtyping and lineage analysis of SARS-CoV-2 and, more importantly, that it

can promote further applications of NST in public-health and -safety plans

similar to those formulated to address the COVID-19 outbreak.

KEYWORDS

nanopore sequencing technology, SARS-CoV-2, hotspot mutation, phylogenetic tree,
coronavirus disease 2019 (COVID-19)

1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of

coronavirus disease 2019 (COVID-19), was identified in late 2019 (Zhu et al., 2020).

Shortly thereafter, SARS-CoV-2 spread around the world, causing significant social

problems, medical-system stress, and economic stagnation in all countries. It is a

positive-sense single-stranded RNA virus with a 29,903 bp genome size, which was

published in full in January 2020 (Lu et al., 2020a; Wu et al., 2020). Such publication led to

the development of assays for SARS-CoV-2 detection based on real-time polymerase

chain reaction (RT-PCR), which has been commonly used as a gold standard for

monitoring the COVID-19 pandemic (van Kasteren et al., 2020). Sequencing the
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genomes of SARS-CoV-2 at different times and locations and in

different populations yields information related to the viral-

mutation rate, transmission dynamics, and origin of the

disease (Boni et al., 2020). It is also a key technique for

understanding the viral lineages that circulate in individual

countries and understanding how frequently new variant

sources from other geographic regions are introduced.

Genome sequencing of SARS-CoV-2 therefore serves to

indicate the success of control measures, allow an

understanding of how the virus evolves in response to

interventions, and inform public response by defining the

phylogenetic structure of the disease’s outbreaks (Rambaut

et al., 2020). Integration of the complete viral genomes and

detailed epidemiological data provides a valuable reference for

epidemiological investigations into transmission networks and

inferences of where cases of unknown origin might have arisen

(Lu et al., 2020b; Fauver et al., 2020; Gonzalez-Reiche et al., 2020;

Gudbjartsson et al., 2020; Rockett et al., 2020). In addition,

several studies have shown that different lineages of SARS-

CoV-2 can infect the same person (Fonseca et al., 2021; Tillett

et al., 2021; To et al., 2021). Sequencing and analysis of the SARS-

CoV-2 genome are essential to confirm reinfections and to rule

out disease recurrence. Rapid and reliable sample sequencing in

environments such as hospitals is essential to such

epidemiological surveillance. Furthermore, large-scale

longitudinal monitoring of SARS-CoV-2 genomes also

provides important information on the virus’s evolution, with

important implications for COVID-19 vaccine development

(Korber et al., 2020; Li et al., 2020; Uddin et al., 2020; Young

et al., 2020).

Excitingly, nanopore sequencing technology (NST) has

demonstrated its feasibility and effectiveness in

epidemiological surveillance during outbreaks of viral diseases

such as Ebola and Zika (Quick et al., 2015; Quick et al., 2016;

Quick et al., 2017). Some studies have developed several methods

of rapidly sequencing SARS-CoV-2 genomes based on nanopore

sequencing platform of companies represented by Oxford

Nanopore Technologies (ONT), which is critical for rapid

diagnosis and monitoring of the spread of the new

coronavirus (Bull et al., 2020; Wang et al., 2021a; Jia et al.,

2021). However, the principles and data characteristics of NST,

such as non-random systemic errors and many unexpected

indels, have a certain effect on analytical results (Magi et al.,

2017; Bull et al., 2020). In addition, due to the timeliness

requirements of the turnaround time, the sequencing

platforms used for SARS-CoV-2 are still primarily based on

next-generation sequencing (NGS), with analytical methods

mainly focused on the presence of targeted gene regions on

the genome. Therefore, we developed an analytical pipeline for

rapid detection and lineage identification of SARS-CoV-2,

named NanoCoV19, based on NST combined with

phylogenetic-tree and hotspot mutation analysis, to

distinguish the new coronaviral lineages. We hope that

NanoCov19 can further the application of NST in monitoring

the direction of COVID-19 outbreaks.

2 Materials and methods

2.1 NanoCoV19 analytical principle

NanoCoV19 consists of two parts: the construction of a

reference database, and the data analysis pipeline.

2.1.1 Construction of reference genome
sequence and mutation hotspot database for
analysis

We downloaded the lineage information of the alpha, beta,

gamma, delta, lambda, and omicron variants from RCoV19

(version 4.0) and the corresponding complete genome

sequence of SARS-CoV-2 from the National Center for

Biotechnology Information (NCBI; Bethesda, MD,

United States) virus database (The date of data release used

for this paper was 1 June 2022). One genome sequence was

randomly selected from the lineage of each variant as a

representative reference sequence database (Supplementary

Table S1) for phylogenetic-tree analysis. We used MAFFT

(v7.487) (Katoh et al., 2002) to perform multiple-sequence

alignment on these sequences, and iqtree2 (v2.1.4-beta)

(Nguyen et al., 2015) to perform phylogenetic-tree analysis.

FigTree (v1.4.4) (https://github.com/rambaut/figtree) was used

for visualization to determine whether the selected reference

sequences discriminated between viral lineages (Figure 1A).

We also randomly selected 10 complete genome sequences

from each lineage. For lineages with < 10 complete genome

sequences, all sequences were included in the group. Then, we

used NanoSim-H (v1.1.0.4) (Yang et al., 2017) to simulate the

error-free nanopore sequencing data of n × 1000 sequencing

reads, where n represents the number of complete genomes

contained in each variant (Supplementary Table S2). The

reference genome (MN908947.3) of SARS-CoV-2 was

downloaded from the NCBI database. We used Minimap2

(v2.21-r1071) (Li, 2018) to do the read alignment, and

followed by Sambamba (v0.8.0) (Tarasov et al., 2015) for

alignment file processing. Longshot (v0.4.1) (Edge and Bansal,

2019) was used to detect mutations. Finally, we used mutation

results that were unique to each variant and also present in the

lineages.csv information published on RCoV19 as a database of

hotspot mutations for distinguishing lineages (Figure 1A;

Supplementary Table S3).

2.1.2 Data analysis pipeline
As shown in Figure 1B, raw nanopore sequencing data was

pre-processed using Porechop (v0.2.4; https://github.com/

rrwick/Porechop). Next, we performed statistical analysis

on the preprocessed clean data using NanoPlot (v1.38.0)

Frontiers in Genetics frontiersin.org02

Lang 10.3389/fgene.2022.1008792

65

https://github.com/rambaut/ftree
https://github.com/rrwick/Porechop
https://github.com/rrwick/Porechop
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1008792


(De Coster et al., 2018), after which we employed FlyE (v2.8.3-

b1695) (Kolmogorov et al., 2019), Raven (v1.8.1) (Vaser and

Šikić, 2021), Canu (Koren et al., 2017), Wtdbg2 [v0.0

(19830203)] (Ruan and Li, 2020), and Trycycler (v0.5.3)

(Wick et al., 2021) for data assembly and generation of

consensus sequences. Racon (v1.4.20) (Vaser et al., 2017)

was used for correction and self-correction after each

assembly. In the presence of NGS sequencing data, we

polished each error-corrected assembly sequence using

Pilon (v1.24) (Walker et al., 2014). We used Samtools (v1.

12) (Li et al., 2009) to process the alignment files, and soap.

coverage (v2.7.7; https://github.com/gigascience/bgi-soap2/

tree/master/tools/soap.coverage) was used for statistical

analysis of sequencing depth and genome coverage. The

software and parameters used for establishing phylogenetic-

tree and hotspot mutation detection were consistent with

those described in part (Zhu et al., 2020).

2.2 Testing data set

Ten complete genome sequences that differed from the

constructed reference database were randomly selected from

the complete genomes of the alpha, beta, gamma, delta,

lambda, and omicron variants as data for testing the analytical

pipeline. We used NanoSim-H (v1.1.0.4) to simulated nanopore

sequencing reads with and without errors. The number of

simulated reads was 1000 (Supplementary Table S4). We used

nucmer (v3.1; −mum) (Marcais et al., 2018) to compare and

analyze the assembled draft genome and the corresponding

complete genome.

To evaluate the real-world performance of NanoCoV19, the

nanopore sequencing data published by Afrad et al. (2021) were

also downloaded.

3 Results

3.1 NanoCoV19 performed well on the
testing data set

We directly analyzed the phylogenetic tree and detected

hotspot mutations of 10 randomly selected complete genomes

of the six SARS-CoV-2 variants. The results of phylogenetic-

tree (Figure 2A) and hotspot mutation (Figure 2B) analysis

were consistent with our expectations: i.e., the concordance

FIGURE 1
Schematic diagram showing the analytical principle of NanoCoV19. (A)Construction of a reference sequences and hotspotmutations database.
(B) Pipeline for lineage analysis of SARS-CoV-2 based on nanopore sequencing data.
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rate was 100%. Further analysis of the 15 SARS-CoV-2 sub-

lineage B.1.617.2 strains published by Afrad et al. (2021)

showed that the predicted hotspot mutations were all

delta variants (Supplementary Table S5), which was

consistent with the classification of pangolin lineage

B.1.617.2. However, because the read lengths of the

sequencing data were all < 1,000 bp, which was the

minimum overlap required, FlyE did not generate effective

assembly results, making it impossible to carry out more-

detailed lineage analysis.

3.2 The accuracy and integrity of assembly
affected the phylogenetic-tree analysis

We used only FlyE assembly results to analyze simulated

read data with and without errors. Our results showed that our

hotspot mutation analysis results were accurately and

effectively for lineage subtyping (Supplementary Tables S6,

S7). However, 28 (Figure 3A) and 21 (Figure 3B) simulated

samples with and without errors, respectively, were not

effectively distinguished after assembly but formed a unique

branch and were defined as outlier samples. The remaining

assembly results were accurately and effectively performed

lineage subtyping. By comparing the assembly results of the

outlier samples with their corresponding complete genomes,

we found that the outlier results might have been due to

the structural problems of the assembled genomes

(Figure 3E), indicating that the requirements for

completeness and accuracy of the assembly results would be

very high when performing cluster analysis on phylogenetic

trees. Maybe too many indels or sequence structure problems

would lead to serious errors and even failure of lineage

analysis, which also reflecting the necessity of

comprehensive analysis combined with hotspot mutation

analysis.

For the simulated data with errors, we used the assembly

results of Raven, FlyE, andWtdbg2 to combine 10 high-quality

assembly results (i.e., the complete genome sequences

published by the corresponding lineages). Trycycler was

also used to generate consensus sequences. This

significantly improved the results: the number of outlier

samples dropped to 18 (Figure 3C). Subsequently, after we

added 23 high-quality assembly results (the maximum number

of sequences that could be input into Trycycler is 26), the

number of outlier samples was only 8 (Figure 3D). The lineage

analysis results of the remaining simulated data were basically

correct.

FIGURE 2
Analytical results of simulated sequence data for 60 lineages. (A) The result of phylogenetic tree analysis (the red text represents simulated data).
(B) The heatmap analysis of hotspot mutations.
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FIGURE 3
Assembly accuracy affects phylogenetic tree analysis. (A) The assembly results of FlyE to analyze simulated data with errors. (B) The assembly
results of FlyE to analyze simulated data without errors. (C) The assemblies and consensus results of Trycycler to analyze simulated data with errors,
which combination with 10 high-quality assembly results. (D) The assemblies and consensus results of Trycycler to analyze simulated data with
errors, which combination with 23 high-quality assembly results. (E) The structural problems of the assembled draft genomes resulted in the
outlier samples, which could not effectively distinguish the lineage.

TABLE 1 Running time during each step of the five tests.

Testing sample Alpha Beta Gamma Lambda Omicron

Compute resource AMD EPYC 7542 32-core processor, 2T memory, 128 processor (16 processor/task)

Data size Read number 1,000 1,000 1,000 1,000 1,000

Base number 7,759,122 7,869,879 7,784,216 7,485,683 7,638,683

Read length N50 9,496 9,553 9,469 9,168 9,134

Data analysis Data preprocessing 0:05:40 0:06:20 0:05:01 0:07:12 0:05:07

Assembly-FlyE 0:01:57 0:02:01 0:02:01 0:01:57 0:01:56

Assembly-Canu 0:02:08 0:02:07 0:02:06 0:01:58 0:02:01

Assembly-Wtdbg2 0:00:06 0:00:13 0:00:07 0:00:05 0:00:11

Assembly-raven 0:00:03 0:00:02 0:00:03 0:00:02 0:00:03

Racon 0:00:15 0:00:21 0:00:21 0:00:18 0:00:18

Pilon 0:11:16 0:10:44 0:10:28 0:09:52 0:09:08

Trycycler 0:00:38 0:00:38 0:00:43 0:00:41 0:00:40

Phylogenetic tree 0:33:58 0:35:27 0:23:48 0:22:28 0:23:02

Variation calling 0:00:07 0:00:06 0:00:11 0:00:06 0:00:07

Total time 0:56:08 0:57:59 0:44:49 0:44:39 0:42:33
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3.3 Overall analysis time could be
controlled within 1 h

Analysis of the 1000-read data from five testing samples

showed that on an AMD EPYC 7542 32-core processor with

2 T of memory and 128 processors, when we used 16 processors

for each task, the overall analysis time of NanoCoV19 analytical

pipeline was controlled within 1 h (Table 1).

4 Discussion

The development of NST has been very rapid (Magi et al., 2018;

Wang et al., 2021b), and exciting results have been achieved inmany

fields, especially metagenomics for pathogen detection

(Charalampous et al., 2019; Gu et al., 2021) and animal and/or

plant genome assembly (Loman et al., 2015; Vaser et al., 2017; Lang

et al., 2022a). Importantly, the advantages of NST in real-time

sequencing analysis are self-evident (Payne et al., 2021; Goenka et al.,

2022). NST has played a critical role in the tracing and rapid

detection of outbreaks of infectious diseases such as COVID-19

(Quick et al., 2016; Quick et al., 2017). Theoretically, with the

advantage of long-read lengths in nanopore sequencing, excessive

sequencing reads for bacterial- or viral-haplotype assembly might

not be required. Our results also showed that the analysis time of

NanoCoV19 was controlled within 1 h from input of the

1,000 sequencing reads to end of analysis. Some studies showed

that the whole processing time based on nanopore sequencing

platforms such as ONT or Qitan Technology (QT) to detect

SARS-CoV-2 and other respiratory viruses simultaneously within

6–10 h (Wang et al., 2021a). And themain time consumptionwas in

the wet experimental and libraries sequencing steps. Thereby, we are

trying and foresee that the combination of real-time analysis in NST

with more-advanced computing resources could control overall

analysis time from sample collection to analysis report issuance

to within 30 min or even less, yielding significant social and

economic benefits. Although ONT’s sequencing solutions for

SARS-CoV-2 have been established and applied in public-health

scenarios (Meredith et al., 2020; Paden et al., 2020), the adoption of

this technology has been somewhat limited due to concerns over

sequencing accuracy. Given the technical principles and data

characteristics of NST (Magi et al., 2017), such as non-random

systematic errors and many unexpected indels, the accuracy of

SARS-CoV-2 analysis results might be seriously affected. For

example, we know that viruses are characterized by low mutation

rates (Rambaut, 2020), so sequencing errors might lead to false-

positive or false-negative assay results. Therefore, multi-dimensional

or multi-aspect consideration, combination, and optimizing

iteration may be required for analysis, especially for the

infectious virus like SARS-CoV-2.

Although NanoCoV19 benefits in effectiveness from the

combination of phylogenetic-tree and hotspot mutation analysis,

it still has some shortcomings: 1) The accuracy and sufficiency of the

constructed reference sequences and hotspot mutations database in

viral-lineage discrimination still need further validation. 2)

Continued optimization of the assembly method is still necessary

due to the varying performances of different assembly algorithms for

assembly results with the same data. For example, we also tried to

conduct an assembly analysis on the simulated data using Raven and

obtained results that were basically similar to those of FlyE, while the

compositions of the outlier samples were different. This confirmed

the necessity and high requirements for the quality and integrity of

the assembly results before phylogenetic-tree analysis. Therefore, we

used Trycycler to integrate multiple assemblies and generate

consensus sequence, which is also a more important and worthy

of attention in the NanoCoV19 analytical pipeline. However, the

intermediate steps required manual selection of the better assembly

results so that automation was insufficient. For example, the length

of the assembly draft genome and/or the number of scaffolds were

very different, so it was necessary to select or even delete some

assemblies. Therefore, a method similar to MAECI (Lang, 2022)

might also be required to balance accuracy and automation in the

assembly results. 3) More tools and/or algorithms are needed for

hotspot mutation detection [e.g., PEPPER-Margin-DeepVariant

(Shafin et al., 2021) and Nano2NGS-Muta (Lang et al., 2022b)].

4) NanoCoV19 should be further optimized for analysis time. Some

steps could be run in parallel to shorten overall analysis time,

although excessive memory consumption might happen, which

would require a trade-off between resource consumption and

analysis time. 5) As we known, SARS-CoV-2 virus strains are

constantly evolving, resulting in the possible generation of many

new strain genomes, so the relevant database will be continuously

updated. However, NanoCoV19 only analyzes viral lineages with

constructed reference database. Knowledge of determination criteria

and processing methods for novel (unclassified) lineages is

lacking. Therefore, a timely update of the reference database for

the complete genome sequences is also required. 6)More actual data

validation of NanoCoV19 performance is needed because the

published raw sequencing data of SARS-CoV-2 genomes based

on nanopore sequencing data are limited.

In summary, we hope that NanoCoV19 can be used as an

auxiliary tool for rapid detection and lineage analysis of SARS-

CoV-2, and that nanopore sequencers’ outstanding advantages of

long-read length and real-time sequencing can provide faster and

more-accurate solutions for genomic epidemiological

surveillance. This would promote the application of NST in

the fields of public-health planning and safety, and even

offline applications in the international space stations (Castro-

Wallace et al., 2017; Carr et al., 2020; Stahl-Rommel et al., 2021).

5 Conclusion

NanoCoV19 is a potential auxiliary tool for rapid

detection and lineage analysis of SARS-CoV-2 based on

nanopore sequencing technology. It completes all analysis
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within 1 h. We hope that it not only can assist in current-day

lineage analysis and monitoring of SARS-CoV-2 but also

promote the application of NST in related scientific

research and clinical settings.
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Prioritizing potential circRNA
biomarkers for bladder cancer
and bladder urothelial cancer
based on an ensemble model

Qiongli Su, Qiuhong Tan, Xin Liu and Ling Wu*

Department of Pharmacy, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou,
Hunan, China

Bladder cancer is the most common cancer of the urinary system. Bladder

urothelial cancer accounts for 90% of bladder cancer. These two cancers have

high morbidity and mortality rates worldwide. The identification of biomarkers

for bladder cancer and bladder urothelial cancer helps in their diagnosis and

treatment. circRNAs are considered oncogenes or tumor suppressors in

cancers, and they play important roles in the occurrence and development

of cancers. In this manuscript, we developed an Ensemble model, CDA-

EnRWLRLS, to predict circRNA-Disease Associations (CDA) combining

Random Walk with restart and Laplacian Regularized Least Squares, and

further screen potential biomarkers for bladder cancer and bladder urothelial

cancer. First, we compute disease similarity by combining the semantic

similarity and association profile similarity of diseases and circRNA similarity

by combining the functional similarity and association profile similarity of

circRNAs. Second, we score each circRNA-disease pair by random walk with

restart and Laplacian regularized least squares, respectively. Third, circRNA-

disease association scores from these models are integrated to obtain the final

CDAs by the soft voting approach. Finally, we use CDA-EnRWLRLS to screen

potential circRNA biomarkers for bladder cancer and bladder urothelial cancer.

CDA-EnRWLRLS is compared to three classical CDA prediction methods (CD-

LNLP, DWNN-RLS, and KATZHCDA) and two individual models (CDA-RWR and

CDA-LRLS), and obtains better AUC of 0.8654. We predict that circHIPK3 has

the highest association with bladder cancer and may be its potential biomarker.

In addition, circSMARCA5 has the highest association with bladder urothelial

cancer and may be its possible biomarker.

KEYWORDS

bladder cancer, bladder urothelial cancer, circRNA, biomarker, circRNA-disease
association, ensemble learning
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1 Introduction

Bladder cancer is considered to be the most common cancer

in the urinary system (Kamat et al., 2016). It is the fourth most

common malignant tumor in men and the eighth most common

in women in theWestern world. In the United States and Europe,

it accounts for 5%–10% among all malignancies in men. The risk

with the bladder cancer infection at less than 75 years is 2%–4%

in men and 0.5%–1% for women (Kirkali et al., 2005). The

incidence of bladder cancer has been increasing (Kamat et al.,

2016). The majority of patients with bladder cancer suffer from

the less aggressive non-muscle-invasive disease, while 30% of

patients suffer frommuscle-invasive disease (Lopez-Beltran et al.,

2021; Tran et al., 2021; Yang et al., 2021).

Bladder cancer has a metastatic potential, and thus presents a

worse prognosis. It is usually grouped into three pathological

categories: bladder urothelial carcinoma, bladder squamous cell

carcinoma, and bladder adenocarcinoma (Black and Black, 2020;

Lopez-Beltran et al., 2021). Bladder urothelial carcinoma accounts

for over 90% among all cases of bladder cancer. Furthermore,

bladder urothelial carcinoma can be categorized into muscle-

invasive bladder cancer, which accounts for about 75% of all

cases, and non-muscle-invasive bladder cancer (Kirkali et al.,

2005). The all-stage five-year survival rate of bladder urothelial

cancer remains approximately 80% (Lopez-Beltran et al., 2021).

Recently, the treatment of bladder cancer has obtained great

progresses worldwide. Besides traditional surgical resection,

radiotherapy, and chemotherapy, immunotherapy is also a

promising avenue for bladder cancer treatment (Gao et al.,

2021; Mancini et al., 2021). However, postoperative recurrence

and distant metastasis cause five-year survival rates to still be very

low for advanced bladder cancer (Fabiano et al., 2021; Roviello

et al., 2021). Advanced disease or relapse of radical cystectomy is

closely associated with the poor outcomes (Nouhaud et al., 2021).

The first-line therapy of metastatic bladder urothelial cancer

usually adopts cisplatin-based combinations, and has been

unaltered over the last decades (Powles et al., 2021; Renner

et al., 2021; Walia et al., 2021). Unfortunately, almost all

patients with bladder urothelial cancer will finally progress

and die from bladder cancer, despite their initial response to

cisplatin-based combinations (Bin Riaz et al., 2021; Lopez-

Beltran et al., 2021). Consequently, inferring potential

biomarkers for bladder cancer is a good way to diagnose and

treat it (Peng et al., 2017; Peng et al., 2018).

With the advance of sequencing technology, there are now

massive amounts of RNA data (Ozsolak and Milos, 2011; Peng

et al., 2020; Yang et al., 2020; Peng et al., 2022a), which help the

prognosis and treatment of various diseases (Xu et al., 2020; Li

et al., 2021). Circular RNAs (circRNAs) are a class of single-

stranded noncoding RNA molecules that are lack of terminal 5′
caps and 3′ poly(A) tails (He et al., 2017). circRNAs are widely

distributed in various organisms. They have circular features, and

thus demonstrate more resistance to degradation by exonucleases

and stronger stability than linear RNAs (Xia et al., 2018; Li G.

et al., 2020). The estimated total number of circRNAs is

approximately 1% of one of poly (A) molecules. In addition,

the expression levels of the majority of circRNAs are estimated to

be 5%–10% of the corresponding linear RNAs (Jeck and

Sharpless, 2014; Zhang J. et al., 2021).

Although circRNAs were found in 1976, they were originally

considered to be functionless by-products from aberrant RNA

splicing and thus did not obtain enough attention over the past

3 decades. However, with the rapid advance of high-throughput

sequencing technologies, massive differentially expressed

circRNAs have been increasing discovered in human normal

and malignant cells (Zhang et al., 2018; Li G. et al., 2020; Yang

et al., 2021). circRNAs exist widely in various tissues, serum, and

urine. The expression profiles of circRNAs demonstrate strong

specificity in cell types, tissues, and developmental stages (Yang

et al., 2021). Furthermore, circRNAs can regulate transcription or

splicing, translate proteins, interact with RNA-binding proteins,

and act as miRNA sponges (Sheng et al., 2018). A large body of

evidence shows that circRNAs have dense associations with

various diseases, including neurological dysfunction,

cardiovascular diseases, and cancer. Here, circRNAs, as

miRNA sponges, can inhibit the regulation from downstream

cancer target genes. For instance, circCDR1as and circMTO1 can

control gene regulation and further indirectly stimulate or inhibit

tumors by binding to miR-7 and miR-9 (Vromman et al., 2021).

circRNAs have abundant associations with cancers and thus can

be used as candidate cancer biomarkers (Zhang et al., 2018). An

increasing amount of evidence has reported that circRNAs present

in human biofluids and exosomes, and are a class of potential

biomarkers of noninvasive liquid biopsies. For instance, circ-

ZEB1.33 is overexpressed in hepatocellular cancer and has close

links with the survival of hepatocellular cancer patients (Gong et al.,

2018). In particular, substantial studies have demonstrated that

circRNAs play key roles in the carcinogenesis and progression of

bladder cancer. For example, circRNAs Cdr1as performs anti-

oncogenic functions in bladder cancer through microRNA 135a

(Li et al., 2018), BCRC-3 suppresses bladder cancer proliferation via

sponging miR-182-5p/p27 (Xie et al., 2018), MYLK and

circPDSS1 promote bladder cancer progression separately by

modulating VEGFA/VEGFR2 signaling pathway and down-

regulating miR-16 (Zhong et al., 2017; Yu et al., 2020),

PRMT5 supports metastasis of bladder urothelial cancer through

Sponging miR-30c (Chen et al., 2018), circSLC8A1 suppresses

bladder cancer progression through regulating PTEN (Lu et al.,

2019), and circMTO1 inhibits bladder cancer metastasis through

sponging miR-221 (Li G. et al., 2019).

Many computational methods have been proposed to

identify possible CDAs and further discovered possible

circRNA biomarkers for various complex diseases including

cancers by case studies (Wang CC. et al., 2021). For example,

Lei et al. (Lei et al., 2018) designed a path weighted-based CDA

prediction approach (PWCDA). Li et al. (Li Y. et al., 2019; Li
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J. et al., 2020) explored two CDA identification models

(NCPCDA and DWNCPCDA) based on network consistency

projection. Zhang et al. (Zhang et al., 2019) developed a linear

neighborhood label propagation algorithm for CDA

identification. Deepthi et al. (Deepthi and Jereesh (2020) used

autoencoder and deep neural network and explored an ensemble

model to predict CDAs. Lu et al. (Lu et al. (2021) improved CDA

prediction using convolutional and recurrent neural networks.

Wang et al. (Wang et al., 2020; Wang et al. 2021b; Wang et al.,

2021c) proposed three CDA identification methods (GCNCDA,

MGRCDA, and SGANRDA) based on graph convolutional

network, metagraph recommendation, and semi-supervised

generative adversarial network, respectively. These methods

efficiently predicted possible CDAs.

In this study, inspired by computational CDA prediction

methods, we develop an ensemble model, CDA-RWLRLS, to

find potential circRNA biomarkers for bladder cancer and

bladder urothelial cancer based on known CDAs. CDA-

EnRWLRLS first computes circRNA similarity by

integrating their functional similarity and association

profile similarity, and it computes disease similarity by

integrating their semantic similarity and association profile

similarity. Second, CDA-EnRWLRLS computes the

association probability for each circRNA-disease pair based

on random walk with restart and Laplacian regularized least

squares. Third, the prediction results obtained by these two

models are integrated by the soft voting method. We finally

use the proposed CDA-EnRWLRLS model to identify possible

FIGURE 1
Flowchart of the proposed CDA-EnRWLRLS model.
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circRNAs associated with bladder cancer and bladder

urothelial cancer.

2 Materials and methods

2.1 Materials

2.1.1 Human circRNA-disease associations
circRNA-disease association data can be downloaded from

the circR2Disease database (Fan et al., 2018a). This database

provides 739 experimentally confirmed CDAs from

661 circRNAs and 100 diseases. We remove redundant

elements related to mice and rats and achieve a human

circRNA-disease association dataset containing

650 associations between 585 circRNAs and 88 diseases. In

particular, suppose that C � {c1, c2, . . . , cm} and D �
{d1, d2, . . . , dn} separately denote the sets of m circRNAs and

n diseases, then we construct a binary matrix YϵRm×n to depict

circRNA-disease associations by Eq. 1:

Yij � { 1 If circRNA ci associates with dj

0 otherwise
(1)

2.1.2 Disease semantic similarity
Many studies have computed disease semantic similarity to

screen credible noncoding RNAs for a query disease. Inspired by

these methods, we investigate disease similarity to improve the

prediction performance. Disease semantic similarity can be

computed based on corresponding disease ontology. The disease

ontology is often represented using a directed acyclic graph and can

be downloaded from http://disease-ontology.org/. For two query

diseases and corresponding ontology term sets from the two diseases

di and dj, their semantic similarity can be scored by the “doSim”

function in the DOSE software package, which can be downloaded

from http://www.bioconductor.org/packages/release/bioc/html/

DOSE.html (Yu et al., 2015). Finally, we compute the semantic

similarity matrix Ssemd among n diseases.

2.1.3 circRNA functional similarity
To measure the functional similarity between two circRNAs,

we utilize the semantic similarity of two diseases linking to the

two circRNAs. In particular, suppose that Di and Dj denote the

disease groups linking to circRNAs ci and cj, the functional

similarity between ci and cj can be computed by Eq. 2:

Sfunc � ∑1≤p≤ |Di | S(dp,Dj) +∑1≤p≤ |Dj| S(dq, Di)
|Di| +

∣∣∣∣Dj

∣∣∣∣ (2)

and

S(dp, Dj) � max1≤ t≤ |Dj|(Ssemd (dp, dt)) (3)

where S(dp, Dj) denotes the similarity between disease dp
linking to circRNA ci and disease set Dj linking to circRNA cj.

2.2 Methods

In this manuscript, we develop circRNA-Disease Association

prioritization method (CDA-EnRWLRLS) by an Ensemble of

Random Walk with restart and Laplacian Regularization Least

Squares. First, CDA-EnRWLRLS measures circRNA functional

similarity and disease semantic similarity. Second, it computes

association profile similarity of circRNAs and diseases,

respectively. Third, functional similarity and association profile

similarity of circRNAs are combined to obtain the final circRNA

similarity. Similarly, disease similarity is fused. Fourth, randomwalk

with restart and Laplacian regularization least squares are used to

score each circRNA-disease pair. Fifth, the final association score

matrix is obtained by integrating the results from randomwalk with

restart and Laplacian regularization least squares based on the soft

voting strategy. Finally, CDA-EnRWLRLS is applied to find possible

circRNA biomarkers for bladder cancer and bladder urothelial

cancer. The flowchart of CDA-EnRWLRLS is shown in Figure 1.

2.2.1 Association profile similarity of circRNAs
and diseases

For two diseases with known ontology terms, we can

compute their semantic similarity based on their ontology

terms. However, semantic similarity computation may fail for

two diseases without ontology terms. Thus, we introduce

association profile similarity to further complement similarity

measurement of circRNAs and diseases.

Suppose that the association profile Y(i, : ) of a circRNA ci is

represented as the ith row of a CDA matrix Y . Y(i, : ) describes
information from all diseases associated with ci. Association

profile similarity between two circRNAs (i.e., (ci, cj)) can be

computed by Eq. 4:

Sapc (ci, cj) � exp(−γc����Y(i, : ) − Y(j, : )����2)
γc � γ′c/⎛⎝ 1

m
∑m
k�1

‖Y(k, : )‖2⎞⎠ (4)

where γ′c is bandwidth parameter and set as the default value of 1.

Similarly, association profile similarity between two diseases

(i.e., (di, dj)) can be computed by Eq. 5:

Sapd (di, dj) � exp(−γd����Y(: , i) − Y(: , j)����2)
γd � γ′d/⎛⎝1

n
∑n
k�1

‖Y(: , k)‖2⎞⎠ (5)

where γ′d indicates bandwidth parameter and set as the default

value of 1.
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2.2.2 Similarity fusion
circRNA functional similarity Sfunc , disease semantic

similarity Ssemd , and association profile similarity of

circRNAs and diseases (Sapc and Sapd ) are fused to obtain the

final circRNA similarity matrix SC and disease similarity SD by

Eqs 6, 7:

SC � αcS
fun
c + (1 − αc)Sapc (6)

SD � αdS
sem
d + (1 − αd)Sapd (7)

The parameter αc is used to balance the importance between

functional similarity and association profile similarity of

circRNAs in Eq. 6 and αd is used to balance the important

between semantic similarity and association profile similarity of

diseases in Eq. 7.

2.2.3 Random walk with restart for CDA
prediction

Random walk algorithm has been widely used and obtained

better performance in various association prediction fields (Peng

et al., 2021a). In this study, we utilize RandomWalk with Restart

for CDA prediction on the heterogeneous circRNA-disease

network (CDA-RWR). We first train the random walk with

restart model on the CDA dataset and screen possible CDAs

with the highest association probability from unknown circRNA-

disease pairs on the dataset.

First, circRNA similarity network Nc, disease similarity

network Nd, and CDA network Na are used to build a

heterogeneous circRNA-disease network.Sc, Sd, and Y

correspond to adjacency matrices of the three networks,

respectively. Consequently, the heterogeneous circRNA-disease

network can be represented as:W � [ SC Y
YT SD

], where YT is the

transpose of Y .
Second, we compute the transition probability of random

walk on the heterogeneous circRNA-disease network. Suppose

thatW � [Wcc Wcd

Wdc Wdd
] denote the transition matrix, whereWcc

and Wdd separately indicate the walk within the circRNA

network and the disease network, Wcd and Wdc separately

represent the jump from the circRNA network to the disease

network and the disease network to the circRNA network. For a

known jumping probability μ from the circRNA network to the

disease network or from the disease network to the circRNA

network, the transition probability from circRNAs ci to cj can be

calculated by Eq. 8:

Wcc(i, j) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SC(i, j)∑m
k�1SC(i, k)

if ∑n

k�1Y(i, k) � 0

(1 − μ)SC(i, j)∑m
k�1SC(i, k)

otherwise

, (8)

The transition probability from circRNA ci to disease dj can

be calculated by Eq. 9:

Wcd(i, j) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μY(i, j)∑n
k�1Y(i, k)

if ∑n

k�1Y(i, k) ≠ 0

0 otherwise

, (9)

The transition probability from diseases di to dj can be

calculated by Eq. 10:

Wdd(i, j) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sd(i, j)∑n
k�1Sd(i, k)

if ∑m

k�1Y(k, i) � 0

(1 − μ)Sd(i, j)∑n
k�1Sd(i, k)

otherwise

, (10)

The transition probability from disease di to circRNA cj can

be calculated by Eq. 11:

Wdv(i, j) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μY(j, i)∑n
k�1Y(k, i)

if ∑n

k�1Y(k, i) ≠ 0

0 otherwise

, (11)

For a query circRNA/disease, it can either stay in the current

network with a restart probability β ∈ (0, 1) or jump to another

network graph. Consequently, we can compute association

probability for each circRNA-disease pair at the (t + 1)-th
step by Eq. 12:

pt+1 � βWpt + (1 − β)p0, (12)

where pt denotes the association probability matrix at the t-th

step, p0 denotes the initial probability and p0 � [ λu0
(1 − λ)v0 ],

where u0 and v0 indicate the initial probability on the circRNA

and disease network, respectively. When we want to discover

possible circRNAs associated with a query disease di, it is

regarded as a seed in the disease network. Consequently, di is

assigned as 1 and other disease nodes are 0, thereby building the

initial probability matrix of the disease network v0. All nodes in

the circRNA network u0 are assigned as an equal probability

whose sum is 1. The parameter β is used to balance the

importance of the circRNA network and the disease network.

2.3 Laplacian regularized least squares for
CDA prediction

We can calculate association probability for each circRNA-

disease pair based on random walk with restart. However, for

random walk with restart, the jump probability is measured by

known CDAs and the circRNA and disease similarity matrices.
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For a circRNA ci in a CDA network, if two other circRNAs cj and

ck have the equal similarity with ci, cj and ck will contribute to the

jump between nodes at an equal probability. However, the

circRNA that exhibits lower similarities with other circRNAs

should have more contribution to the jump. Thus, we further use

Laplacian regularized least squares (Shen et al., 2022) to compute

association probability for each circRNA-disease pair.

First, we compute the circRNA Laplacian matrix Lc and the

disease Laplacian matrix Ld by Eqs 13, 14:

Lc � (Ac)−1/2(Ac − Ac)(Ac)−1/2 (13)

Ld� (Ad)−1/2(Ad − Ad)(Ad)−1/2 (14)

where Ac/Ad indicates the diagonal matrix of circRNA/disease

similarity matrix and Ac(i, i)/Ad(j, j) is the summation of the

i-th/j-th row of SC/SD.
Second, we define the loss functions of Laplacian

regularization least squares in the circRNA and disease spaces

based on the Laplacian matrices Lc and Ld by Eqs 15, 16,

respectively:

min
Fc

[����YT − Fc

����2F + γc
����Fc · Lc · (Fc)T

����2F] (15)

FIGURE 2
The AUC values of CDA-EnRWLRLS and other three method.

FIGURE 3
The AUC values of CDA-EnRWLRLS and CDA-RWR and CDA-LRLS.
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min
Fd

[‖Y − Fd‖2F + γd
����Fd · Ld · (Fd)T

����2F] (16)

where YT, (Fc)T, and (Fd)T separately indicate the transposes of

Y , Fc, and Fd, ‖·‖F indicates the Frobenius norm, and γc and γd
indicate trade-off parameters. The Laplacian regularized least

square models (15) and (16) can be solved by Eqs 17, 18:

Fc � SC(SC + γc · Lc · Sc)−1YT (17)
Fd � Sd(Sd + γd · Ld · Sd)−1Y (18)

Finally, the association probability for each circRNA-disease pair

by Laplacian regularized least squares can be computed by Eq. 19:

F � 1
2
(Fc + Fd) (19)

2.4 Ensemble learning for CDA prediction

Ensemble learning integrates multiple results from individual

models and demonstrates better performance compared to

individual models (Zhou et al., 2021a; Peng et al., 2022b).

Therefore, in this study, we develop an ensemble learning

model by combining random walk with restart and Laplacian

regularized least squares to improve the CDA’s prediction

performance by Eq. 20:

Ypre � P + θF (20)

where Ypre denotes the predicted final CDA score matrix, P and

F denote the computed CDA probability matrices based on

random walk with restart and Laplacian regularized least

squares, respectively. θ is used to weigh the importance of

results computed by the above two models.

3 Experiments

3.1 Experimental settings

For similarity computation, the weights between

biological feature similarity and association profile

similarity αc and αd are set as 0.5. For random walk with

restart, the restart probability β is set as 0.2, and λ and μ are set

as 0.1 and 0.6, respectively. For Laplacian regularized least

squares, both γc and γd are set as 0.95 and 0.2, respectively. For

ensemble learning model, θ is set as 0.3. The parameters in

other three comparative methods are set as defaults provided

by the corresponding methods. We conduct 5-fold cross

validation for 10 times. The final prediction performance is

from the average value of the 10 experiments. AUC (area

under the receiver operating characteristic curve) has been

widely used to evaluate the performance of CDA prediction

methods. Larger AUC denotes better performance. Thus, we

use AUC to measure the performance of our proposed

method.

3.2 Performance comparison with five
CDA prediction methods

Several comparative experiments are conducted to measure

the performance of our proposed CDA-EnRWLRLS model. CD-

LNLP (Zhang et al., 2019), DWNN-RLS (Yan et al., 2018),

KATZHCDA (Fan et al., 2018b), and CDA-EnRWLRLS are

conducted on the preprocessed CDA dataset. CD-LNLP

(Zhang et al., 2019) is a linear neighborhood label

propagation-based algorithm for CDA prediction. DWNN-

RLS (Yan et al., 2018) used regularized least squares to predict

FIGURE 4
The effect of θ on the prediction performance for CDA-EnRWLRLS.
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possible CDAs. KATZHCDA (Fan et al., 2018b) discovered CDA

candidates based on the KATZ measurement (Zhou et al., 2020).

Figure 2 shows the AUC values computed by these four CDA

prediction methods.

From Figure 2, we can find that CDA-EnRWLRLS is

significantly better than CD-LNLP (Zhang et al., 2019),

DWNN-RLS (Yan et al., 2018), and KATZHCDA (Fan

et al., 2018b) based on the AUC value. Compared to the

three models, CDA-EnRWLRLS obtains the highest AUC of

0.8654, outperforming 7.60%, 24.86%, and 0.25%,

respectively. In particular, DWNN-RLS used regularized

least squares with Kronecker product kernel for CDA

prediction. Disease similarity was computed by their

semantic similarity and Gaussian association profile

similarity. Meanwhile, circRNA similarity was computed by

their Gaussian association profiles. CDA-EnRWLRLS uses an

ensemble model to identify possible CDAs. Similar to

DWNN-RLS, CDA-EnRWLRLS computes disease similarity.

However, CDA-EnRWLRLS computes circRNA similarity by

their functional similarity and Gaussian association profile

similarity. Furthermore, CDA-EnRWLRLS still computes

association score between each circRNA-disease pair using

random walk with restart except Laplacian regularized least

squares and integrates the results from the two models by the

soft voting technique. Therefore, CDA-EnRWLRLS

outperforms DWNN-RLS, which demonstrates its powerful

CDA prediction ability.

3.3 Performance evaluation of ensemble
learning model with individual models

Our proposed CDA-EnRWLRLS model is an ensemble of

two state-of-the-art models (i.e., random walk with restart

and Laplacian regularized least squares). To evaluate the

performance of ensemble learning model and individual

models, we conducted 5-fold cross validation experiment

for CDA-EnRWLRLS and random walk with restart

(CDA-RWR) and Laplacian regularized least squares

(CDA-LRLS) on the CDA dataset. Figure 3 shows the

AUC values computed by CDA-EnRWLRLS, CDA-RWR,

and CDA-LRLS. From Figure 3, we can find that CDA-

EnRWLRLS obtains better AUC than two individual

models, CDA-RWR and CDA-LRLS, which shows that the

proposed ensemble learning-based model can outperforms

individual models.

3.4 Evaluation of parameter sensitivity

In this study, we ensemble two individual models, random

walk with restart and Laplacian regularized least squares.

However, the two models may have different effects on the

CDA prediction performance. To evaluate their effect on the

performance, we consider θ in the range of [0.1, 0.9] with stride of

0.1. The results are shown in Figure 4.

TABLE 1 The inferred top 30 circRNAs associated with bladder cancer.

Rank circRNAs Evidence

1 hsa_circ_0000172 circRNADisease

2 hsa_circ_0002495 circRNADisease

3 Chr22: 28943661 circRNADisease

4 Chr5: 158368701 circRNADisease

5 Chr9: 74522734 circRNADisease

6 circRNA BCRC4/hsa_circ_001598/hsa_circ_0001577 circRNADisease

7 hsa_circ_0003221/circPTK2 circRNADisease

8 hsa_circ_0091017 circRNADisease

9 hsa_circ_0002024 circRNADisease

10 circMylk/circRNA-MYLK/hsa_circ_0002768 circRNADisease

11 circTCF25/hsa_circ_0041103 circRNADisease

12 circFAM169A/hsa_circ_0007158 circRNADisease

13 circTRIM24/hsa_circ_0082582 circRNADisease

14 circBC048201/hsa_circ_0061265 circRNADisease

15 hsa_circRNA_100782/circHIPK3/hsa_circ_0000284 Unconfirmed

16 circZFR/hsa_circRNA_103809/hsa_circ_0072088 Unconfirmed

17 Cir-ITCH/hsa_circ_0001141/hsa_circ_001763 Unconfirmed

18 circSMARCA5/hsa_circ_0001445 PMID: 35712125, 35116915, 34482767

19 hsa_circ_0001649 PMID: 35200157

20 CDR1as/ciRS-7/hsa_circ_0001946 PMID: 29694981, 31131537, 33335899
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From Figure 4, we can find that AUC computed by CDA-

EnRWLRLS gradually increases when the parameter θ is from

0.1 to 0.3. Its computed AUCs gradually decrease when the

parameter θ is from 0.3 to 0.9. In other words, CDA-EnRWLRLS

obtains the best AUC when the parameter θ is 0.3. Thus, the

parameter θ is finally set as 0.3.

3.5 Case study

We consequently compute the association score for each

circRNA-disease pair. In particular, we compute association

abilities between all circRNAs and bladder cancer and bladder

urothelial cancer to analyze any possible associations between

these circRNAs and the two cancers, and to further screen for

potential circRNA biomarkers for them.

3.5.1 circRNA biomarker analysis for bladder
cancer

Bladder cancer is a heterogeneous disease with high

morbidity and mortality rates (Kamat et al., 2016). It has

been estimated that about 73,510 new cases of bladder cancer

were diagnosed in the United States in 2012. During the same

period, about 14,880 patients died from bladder cancer

(Clark et al., 2013). To analyze circRNA biomarkers for

bladder cancer, we compute association between all

circRNAs and bladder cancer after training CDA-

EnRWLRLS. Table 1 gives the top 20 circRNAs that are

predicted to have the highest association scores with

bladder cancer.

In the CDA dataset, 15 circRNAs are known to associate

with bladder cancer among 585 circRNAs. From Table 1, we

can find that the 15 circRNAs are predicted to have the

highest association scores with bladder cancer and are

ranked as the top 15. Furthermore, we predict that

circHIPK3 may associate with bladder cancer with the

ranking of 16. Furthermore, circHIPK3 is a promising

cancer-related circRNA (Zhang et al., 2020). It can

regulate cell growth through sponging multiple miRNAs

(Zheng et al., 2016). For instance, circHIPK3 can regulate

cell proliferation and migration in hepatocellular cancer by

sponging miR-124 (Chen X. et al., 2018), modulate

FIGURE 5
Associations between the top 20 circRNAs with bladder cancer. Black lines represent associations that have validated in the CDA dataset. Sky
blue lines represent associations that are unknown in the CDA dataset but can be validated by related literatures. Yellow lines represent association
that are unknown in the CDA dataset and need validation.
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TABLE 2 The inferred top 30 circRNAs associated with bladder urothelial cancer.

Rank circRNAs Evidence

1 hsa_circRNA_100782/circHIPK3/hsa_circ_0000284 circRNADisease

2 circSMARCA5/hsa_circ_0001445 Unconfirmed

3 hsa_circ_0001649 Unconfirmed

4 Cir-ITCH/hsa_circ_0001141/hsa_circ_001763 Unconfirmed

5 CDR1as/ciRS-7/hsa_circ_0001946 PMID: 32658427

6 circZFR/hsa_circRNA_103809/hsa_circ_0072088 Unconfirmed

7 CircDOCK1/hsa_circ_100721 Unconfirmed

8 circRNA_100290/hsa_circ_0013339/hsa_circ_100290 Unconfirmed

9 circPVT1/hsa_circ_0001821 PMID: 34902986

10 hsa_circ_0001313/circCCDC66 Unconfirmed

11 circGFRA1/hsa_circ_005239 Unconfirmed

12 circZNF609/hsa_circ_0000615 Unconfirmed

13 circWDR77/hsa_circ_0013509 Unconfirmed

14 hsa_circ_0000096/circHIAT1/hsa_circ_001013 Unconfirmed

15 circRNA_000167/hsa_circRNA_000167/hsa_circ_0000518 Unconfirmed

16 hsa_circ_0007534 Unconfirmed

17 circPRKCI/hsa_circ_0067934 Unconfirmed

18 hsa_circRNA_103110/hsa_circ_103110/hsa_circ_0004771 Unconfirmed

19 circ-Foxo3/hsa_circ_0006404 PMID: 31903146

20 circFUT8/hsa_circRNA_101368/hsa_circ_0003028 Unconfirmed

FIGURE 6
Associations between the top 20 circRNAs with bladder urothelial cancer. Black lines represent associations that have validated in the CDA
dataset. Sky blue lines represent associations that are unknown in the CDA dataset but can be validated by related literatures. Blue lines represent
association that are unknown in the CDA dataset and need validation.
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autophagy in STK11 mutant lung cancer (Chen et al., 2020),

and promote glioma progression as a prognostic marker (Jin

et al., 2018). The overexpression of circHIPK3 can accelerate

the proliferation and invasion of prostate cancer cells (Cai

et al., 2019). Its inhibition can block angiotensin II-induced

cardiac fibrosis (Ni et al., 2019). In this study, we infer that

circHIPK3 may be a biomarker of bladder cancer and need

experimental validation. Figure 5 shows the association

information between the top 20 circRNAs with bladder

cancer.

3.5.2 circRNA biomarker analysis for bladder
urothelial cancer

Over 90% bladder cancer is bladder urothelial cancer.

Bladder urothelial cancer is a common malignancy with high

morbidity and mortality worldwide (Cancer Genome Atlas

Research Network, 2014). In the United Sates, bladder

urothelial cancer is one of the main histologic subtypes (Clark

et al., 2013). However, no molecularly targeted agent has been

applied to the treatment, until now. To infer potential circRNA

biomarkers for bladder urothelial cancer, we compute association

scores between all circRNAs and bladder urothelial cancer using

CDA-EnRWLRLS. Table 2 gives the top 20 circRNAs that are

predicted to have the highest association scores with bladder

urothelial cancer.

In the CDA dataset, only one circRNA, circHIPK3,

associates with bladder urothelial cancer among all

potential 585 circRNAs. We predict that SMARCA5 may

associate with bladder urothelial cancer with the ranking of

2. SMARCA5 is a member of the ISWI family that is involved

in chromatin remodeling. It can regulate chromosome

remodeling through diverse mechanisms, hinder cell

proliferation, and assist apoptosis by sponging miRNAs. Its

expression may boost the susceptibility of cells to

chemotherapy, boost the sensitivity of cancer detection,

promote early diagnosis, and help the treatment of

chemotherapy-resistant cancers (Qin and Wan, 2022). Its

expression level has a certain association with clinical

features of many cancers. For instance, SMARCA5 can

promote cell proliferation in bladder cancer and prostate

cancer (Tan et al., 2019), suppress colorectal cancer

progression (Miao et al., 2020), inhibit tumor metastasis in

cervical cancer (Zhang X. et al., 2021) and inhibit cell

proliferation, migration, and invasion in non-small cell

lung cancer (Wang et al., 2019), and boost cell migration

and invasion as well as inhibit cell apoptosis in bladder cancer

(Kong et al., 2017; Tan et al., 2019). Many studies have

reported that circSMARCA5 plays a key role in the

occurrence and development of cancer. Moreover, it also

serves as a reliable indicator of tumor screening or cancer

prognosis evaluation (Qin and Wan, 2022). Therefore,

SMARCA5 is a diagnostic and prognostic biomarker of

cancer and has obtained wide attention. In this study, we

predict that SMARCA5 may be potential biomarker of bladder

urothelial cancer; however, this needs validation. Figure 6

shows the association information between the top

20 circRNAs with bladder urothelial cancer.

4 Discussion and conclusion

Bladder cancer, including bladder urothelial cancer, is a

common and complex disease. These cancers have caused

high morbidity and mortality. The identification of

biomarkers for bladder cancer and bladder urothelial

cancer can help in their prognosis and treatment. In this

manuscript, we developed an ensemble learning model,

CDA-EnRWLRLS, to discover potential circRNA

biomarkers for the two cancers based on CDA association

prediction.

CDA-EnRWLRLS first computes circRNA similarity and

disease similarity by fusing semantic similarity and association

profile similarity of diseases and functional similarity and

association profile similarity of circRNAs. Second, it scores

each circRNA-disease pair by random walk with restart and

Laplacian regularized least squares, respectively. Third, the

results computed by random walk with restart and Laplacian

regularized least squares are integrated by the soft voting

approach based on ensemble learning. Finally, it is applied to

discover potential circRNA biomarkers for bladder cancer and

bladder urothelial cancer.

CDA-EnRWLRLS is compared to three classical CDA

prediction methods (CD-LNLP, DWNN-RLS, and

KATZHCDA) and two individual models (CDA-RWR and

CDA-LRLS). The results show that CDA-EnRWLRLS

computes relatively better AUC, which demonstrates its

relatively powerful CDA prediction ability. We predict that

circHIPK3 and SMARCA5 may be potential biomarkers of

bladder cancer and bladder urothelial cancer, respectively.

CDA-EnRWLRLS has two advantages: on the one hand, it

better fuses biological features and association features of diseases

and circRNAs; while on the other hand, it combines two

individual classical association prediction models to obtain the

powerful association prediction performance from different

bioinformatics tools. Although CDA-EnRWLRLS computed

better CDA inference ability, the circRNA functional

similarity was calculated indirectly by disease semantic

similarity. Moreover, its prediction performance needs further

improvement. In the future, we will consider biological features

of circRNAs and develop more efficient machine learning,
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especially ensemble learning models (Zhou et al., 2021a; Peng

et al., 2022a) and deep learning models (Peng et al., 2021b; Zhou

et al., 2021b; Sun et al., 2022; Yang et al., 2022) to discover

potential biomarkers for bladder cancer and bladder urothelial

cancer.
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Colon cancer and colorectal cancer are two common cancer-related deaths

worldwide. Identification of potential biomarkers for the two cancers can help

us to evaluate their initiation, progression and therapeutic response. In this

study, we propose a new microRNA-disease association identification method,

BNNRMDA, to discover potential microRNA biomarkers for the two cancers.

BNNRMDA better combines disease semantic similarity and Gaussian

Association Profile Kernel (GAPK) similarity, microRNA function similarity and

GAPK similarity, and the bound nuclear norm regularization model. Compared

to other five classical microRNA-disease association identification methods

(MIDPE, MIDP, RLSMDA, GRNMF, AND LPLNS), BNNRMDA obtains the highest

AUC of 0.9071, demonstrating its strong microRNA-disease association

identification performance. BNNRMDA is applied to discover possible

microRNA biomarkers for colon cancer and colorectal cancer. The results

show that all 73 known microRNAs associated with colon cancer in the

HMDD database have the highest association scores with colon cancer and

are ranked as top 73. Among 137 known microRNAs associated with colorectal

cancer in the HMDD database, 129 microRNAs have the highest association

scores with colorectal cancer and are ranked as top 129. In addition, we predict

that hsa-miR-103a could be a potential biomarker of colon cancer and hsa-

mir-193b and hsa-mir-7days could be potential biomarkers of colorectal

cancer.
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colon cancer, colorectal cancer,microRNA, biomarker,microRNA-disease association,
bound nuclear norm regularization
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1 Introduction

Cancers are seriously threatening and endangering humanhealth

(Yang et al., 2013; Liu et al., 2021; Yang et al., 2022). Colon cancer and

colorectal cancer are two of leading causes of cancer-related deaths

worldwide (Lee et al., 2018; Piawah andVenook, 2019). Patients with

colon cancer only have a survival rate of 10% when diagnosed at late

stage. More importantly, colon cancer shows a higher incidence rate

in elder populations. The survival rate of patients with colon cancer is

densely associated with the size, location, and stage of the tumor.

Metastasis may be the leading cause of deaths for patients suffered

from late-stage colon cancer. Thus, understanding the mechanisms

of colon cancer could contribute to designing more strong

therapeutic options (Ma et al., 2021).

Nowadays, patients with colorectal cancer show a younger

trend. In the last decade, incidence rates and death rates of

colorectal cancers separately increased by 22 and 13% among

adults under 50 years in the United State. However, their precise

aetiologic factors still remain unknown. Many evidence

demonstrate that early screening of colorectal cancer can

reduce their incidence and mortality. Thus, the identification

of diagnosis or prognosis biomarkers can contribute to

assessment of tumour initiation, progression and therapeutic

response for colorectal cancer (Sampath et al., 2021).

Many researches show that numerous RNA data play

important roles in the development and metastasis of various

diseases including cancers and COVID-19 (Huang et al., 2017;

Peng L. et al., 2020; Xu et al., 2020; Yang et al., 2020; Zhang et al.,

2021; Peng L. et al., 2022; Shen et al., 2022; Tian et al., 2022). In

particular, noncoding RNAs could be biomarkers to boost drug

design (Liu et al., 2020; Meng et al., 2022). For example, lncRNAs

and circRNAs have been used as biomarkers of cancers (Peng

et al., 2021a; Peng et al., 2021b; Chen et al., 2021; Li et al., 2021;

Verduci et al., 2021; Wang et al., 2021; Peng L. H. et al., 2022).

MicroRNAs (miRNAs) are a class of small non-coding RNAs

with 22–24 nucleotides in length (Li et al., 2018; Chen et al.,

2020). MicroRNAs can bind to mRNAs of target genes to inhibit

expression of these genes. In addition, a few microRNAs may

suppress tumors while other microRNAs may affect the

progression and metastasis of tumors.

The dysfunction of microRNAs is densely linked to the

inflammation of colon cancer. For example, Ma et al. (Ma

et al., 2021) found that M2 macrophage-derived exosomal

miR-155-5p may have an association with the immune escape

of cells in colon cancer. Pagotto et al. (Pagotto et al., 2022)

observed that the miR-483 gene could have a responsive to

glucose availability for colon cancer. Miao et al. (Miao et al.,

2021) identified that miR-4284 could be a therapeutic target in

colon cancer. Dougherty et al. (Dougherty et al., 2021) inferred

that the upregulations of microRNA-143 and microRNA-145

have close linkages with colonocytes suppresses colitis and

inflammation-related colon cancer. Zhang et al. (Zhang et al.,

2021) suggested that microRNA-24-3p could heighten the

resistance of colon cancer cell to MTX. Yue et al. (Yue et al.,

2021) reported that NEDD4 could trigger colon cancer

progression through microRNA-340-5p suppression. In

summary, the identification of microRNAs in the blood,

tissues, and faecal matter will help us use these microRNA as

biomarkers in early detection of colon cancer and thus design

strong targeted therapeutic strategies for inflammation-mediated

colon cancer (Peng et al., 2018; Sampath et al., 2021).

More importantly, microRNAs densely link to the carcinogenic

process of colorectal cancer. For example, microRNA-143-3p can

limit colorectal cancer metastases (Guo et al., 2019), microRNA-

375-3p can boost chemosensitivity to 5-fluorouracil through

targeting thymidylate synthase in colorectal cancer (Xu et al.,

2020), microRNA-451a influences colorectal cancer proliferation

(Ruhl et al., 2018), and microRNA-146a can inhibit tumorigenic

inflammation of colorectal cancer (Garo et al., 2021). Biomarkers are

an important strategy in early screening, prognostication, survival,

and treatment response prediction for cancers. Therefore,

microRNAs have been explored as biomarkers in colorectal

cancer (Peng LH. et al., 2020; Ogunwobi et al., 2020).

Recently, many researchers have been devoted to microRNA

biomarker identification for cancer including colon cancer and

colorectal cancer by computational microRNA-disease

association prediction (Peng et al., 2017; Li et al., 2021).

Huang et al. (Huang et al., 2021) innovatively represented

microRNA-disease-type triples as a tensor and further

designed a tensor decomposition model to detect new

microRNA-disease associations. Li et al. (Li et al., 2021)

considered that the abnormal expression of microRNAs is

densely associated with the evolution and progression of

human diseases and inferred disease-related microRNAs as

new biomarkers through a graph auto-encoder model. Chen

et al. (Chen et al., 2021) designed a deep learning model for

microRNA-disease association identification based on deep belief

network. Wang et al. (2022)) pretrained a stacked autoencoder to

predict potential microRNA-disease associations in an

unsupervised manner. These methods effectively improved

microRNA biomarker identification of human complex diseases.

In this study, we design a MicroRNA-Disease Association

prediction algorithm (BNNRMDA) to find potential microRNA

biomarkers for colon cancer and colorectal cancer based on

disease semantic similarity, microRNA functional similarity,

Gaussian association profile kernel (GAPK) similarity, and the

Bound Nuclear Norm Regularization model.

2 Materials and methods

2.1 Data

2.1.1 Dataset
Experimentally confirmed microRNA-disease association data

can be downloaded from the HMDD database provided by Li et al.
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(Li et al., 2014). The hierarchical structures between diseases can be

downloaded from the MeSH database (https://www.nlm.nih.gov/

mesh/). Experimentally supported microRNA-gene interactions can

be downloaded from TarBase (Vergoulis et al., 2012), miRTarBase

(Hsu et al., 2014), and miRecords (Xiao et al., 2009). We acquired

microRNA-disease associations between 495 microRNAs and

378 diseases, hierarchical structures for 4,663 diseases, and

38,089 microRNA-gene interactions between 477 microRNAs

and 12,422 genes. Finally, we obtained 4,791 associations

between 353 microRNAs and 327 diseases after removing

microRNAs without target genes and diseases without

hierarchical structures.

2.1.2 Disease semantic similarity
For a known disease d, it can be described as a directed acyclic

graph (DAG) based on the MeSH descriptor: DAGd � (d,Td, Ed)
where Td denotes the set of nodes that contains d and all its

ancestors, and Ed represents corresponding direct edges. Given a

disease t ∈ Td, its semantic contribution to d can be defined as Eq. 1:

Dd(t) � { 1 if t ≠ d
max{ΔpDd(t′)|t′∈ children of t} if t ≠ d

(1)
whereΔ denotes the semantic contribution decay factor (Δ � 0.5)

(Wang et al., 2010). In general, two diseases di and dj are more

similar when they share more common ancestors. Thus, pairwise

semantic similarity between di and dj can be defined as Eq. 2:

Sd(di, dj) � ∑t∈Tdi
∩Tdj

(Ddi(t) +Ddj(t))
∑t∈Tdi

Ddi(t) +∑t∈Tdj
Ddj(t)

(2)

2.1.3 MicroRNA functional similarity
MicroRNA similarity can be computed based on microRNA-

gene associations and gene functional network. First, the

associated log-likelihood scores LLS(gi, gj) between two genes

gi and gj can be calculated using HumanNet (Lee et al., 2011).

Second, LLS(gi, gj) is normalized by Eq. 3:

LLSN(gi, gj) � LLS(gi, gj) − LLSmin

LLSmax − LLSmin
(3)

where LLSmin and LLSmax represent the minimum and

maximum associated log-likelihood scores computed by

HumanNet, respectively.

Third, similarity between gi and gj can be calculated by Eq. 4:

Sg(gi, gj) �
⎧⎪⎪⎨⎪⎪⎩

1 gi � gj

0 e(gi, gj) ∉ HumanNet

LLSN(gi, gj) e(gi, gj) ∈ HumanNet

(4)
where e(gi, gj) indicates interaction between gi and gj.

Finally, the functional similarity between two microRNAsmi

andmj can be computed by Eq. 5 based on their associated genes:

Sm(mi,mj) � ∑g∈Gi
S(g, Gj) + ∑g∈Gj

S(g, Gi)
|Gi| +

∣∣∣∣Gj

∣∣∣∣ (5)

where Gi andGj denotes the gene sets associated withmi andmj,

respectively, |Gi| and |Gj| denote corresponding cardinalities,

respectively, and S(g, G) � maxgi∈G{Sg(g, gi)}.

2.1.4 GAPK similarity
For a known disease di in a microRNA-disease association

matrixXa×b, let the i th row ofX denotes its Gaussian association

profile GAP(di) to represent its association features with all

diseases. GAPK similarity between diseases di and dj can be

measured by Eq. 6.

GD(di, dj) � exp( − γd
�����GAP(di) − GAP(dj)����2)

γd � γ′d/⎛⎝1
a
∑a
k�1

‖GAP(dk)‖2⎞⎠ (6)

where γd indicates normalized kernel bandwidth according to

parameter γ′d, and a indicates the number of diseases.

Similarly, for a knownmicroRNAmi, let the i th column ofX

denotes its Gaussian association profile GAP(mi) to describe its

association features with all microRNAs. GAPK similarity

between microRNAs mi and mj can be measured by Eq. 7:

GM(mi,mj) � exp( − γm‖GAP(mi) − GAP(mj)����2)
γm � γ′m/⎛⎝1

b
∑b
k�1

‖GAP(mk)‖2⎞⎠ (7)

where γm indicates normalized kernel bandwidth according to

parameter γ′m, and b indicates the number of microRNAs.

2.1.5 Similarity fusion
Disease semantic similarity Sd and GAPK similarity Gd are

fused to calculate the final disease similarity matrix SD by Eq. 8:

SD � wGD + (1 − w)Sd (8)
where the parameter w is applied to measure the weight between

disease semantic similarity and GAPK similarity.

MicroRNA functional similarity Sm and GAPK similarity Gm

are fused to calculate the final microRNA similarity matrix by Eq. 9:

SM � wGM + (1 − w)Sm (9)
where the parameter w is applied to measure the weight between

microRNA functional similarity and GAPK similarity.

2.2 Heterogeneous microRNA-disease
network construction

A heterogeneous microRNA-disease network is created by

fusing microRNA similarity network, disease similarity network,
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and microRNA-disease association network. Each edge in

similarity network is weighted based on the computed

similarity. The heterogeneous microRNA-disease network can

be described using a bipartite graph G(M,D, E), whereM andD

separately represent microRNA set and disease set, E(G) �
{eij} ⊆ M × D represents the microRNA-disease edge set. The

adjacency matrix of G(M,D, E) is described as Eq. 10.

W � [Wmm Wmd

WT
md Wdd

] (10)

where Wmd denotes known microRNA-disease association matrix,

Wmm and Wdd denotes the adjacency matrices about microRNA

similarity network and disease similarity network, respectively.

Hence, the adjacency matrix can be rewritten as Eq. 11.

W � [ SM Xmd

XT
md SD

] (11)

2.3 BNNRMDA model

In known microRNA-disease association dataset, majority of

microRNA-disease pairs are unknown-associated. Inspired by

the bound nuclear norm regularization model provided by Yang

et al. (Yang et al., 2019), in this study, we design the bounded

nuclear norm regularization-based MDA prediction method to

score each unknown microRNA-disease pair. We describe

microRNA-disease association inference as a matrix

completion problem and construct model (12) to predict new

microRNA-disease associations in microRNA-disease

association matrix:

min
Y

rank(Y)
subject to ΡΩ(Y) � ΡΩ(W) (12)

where Y denotes a matrix need to complete, rank(Y) denotes the
rank of Y, W ∈ R(m+n)×(m+n) denotes a known microRNA-disease

association matrix, Ω denotes a set containing all index pairs (i, j)
that correspond to known microRNA-disease associations in W,

and ΡΩ represents a projection operator on Ω by Eq. 13:

(ΡΩ(Y))ij � { Yij, (i, j) ∈ Ω
0, (i, j) ∉ Ω (13)

Model (12) is a non-convex model and difficult to solve.

Thus, we transform it to a nuclear norm model through the

nuclear norm optimization method proposed by Candes et al.

(2013) by Eq. 14:

min
A

‖Y‖p
subject to ΡΩ(Y) � ΡΩ(W) (14)

where Yp represents the nuclear norm of Y.

Because the value of each element in microRNA and disease

similarity matrices Sm and Sd is in the range of [0,1] and the value of

each element inmicroRNA-disease associationmatrixXmd is 1 or 0,

the computed microRNA-disease association scores are restricted to

[0,1]. Higher score indicates bigger association probability for one

microRNA-disease pair. But the elements in Y are in the range of

(−∞,+∞). Therefore, we add a bounded constraint to Eq. 14 to

make the computed scores in [0, 1]. Considering the affect of data

noise on the prediction performance, in addition, we develop a rank

minimization-based matrix completion model by Eq. 15:

min
A

‖Y‖p
subject to ‖PΩ(Y) − ΡΩ(W)‖F ≤ ϵ

(15)

where ‖.‖F indicates Frobenius norm and ϵ represents the noise
level.

We introduce a soft regularization term to tolerate data noise

considering the difficulty in selecting an appropriate parameter in

Eq. 15. Consequently, a bound nuclear norm regularizationmodel is

built to infer potential microRNA-disease associations by Eq. 16:

min
Y

‖Y‖p + α

2
‖ΡΩ(Y) − ΡΩ(W)‖2F

subject to 0≤Y≤ 1
(16)

where the parameter α is applied to weigh the importance

between the nuclear norm and the error term.

Consequently, we introduce an auxiliary matrix Z and define

model 17) to optimize model (16):

min
Y

‖Y‖p + α

2
‖ΡΩ(Z) − ΡΩ(W)‖2F

subject to Y � Z

0≤W≤ 1

(17)

where Y1 � ΡΩ(W).
Thus, the corresponding augmented Lagrange function is

written as Eq. 18:

L(Z, Y, L, α, β) � ‖Y‖p + α

2
‖ΡΩ(Z) − ΡΩ(W)‖2F

+ Tr(LT(Y − Z)) + β

2
‖Y − Z‖2F (18)

where L and β represent the Lagrange multiplier and penalty

parameter, respectively.

At the t -th iteration, we alternatively compute one of Yk+1,
Zk+1 and Lk+1 by fixing other two values according to the solution
from Yang et al. (Yang et al., 2019). Finally, microRNA-disease

association matrix Zp
md is updated through completing the

unlabeled elements in Zmd.

3 Experiments

3.1 Experimental settings and evaluation

In this study, we perform five-fold cross validation for

10 times to investigate the microRNA-disease association
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inference ability of BNNRMDA. During five-fold cross

validation, 80% of elements in microRNA-disease association

matrix X are randomly chosen as the training set and the

remaining are taken as the test set. Parameters α, β, w , and

γ′ are set by grid search. We find that BNNRMDA obtain the best

AUC when the four parameters are set as α � 1, β � 10, w � 0.3 ,

and γ′ � 0.5, respectively. Therefore, we set the four parameters

as corresponding values. In addition, AUC is widely used to

measure the performance of association prediction methods, and

thus we use it to measure the performance of BNNRMDA.

3.2 Performance measurement

To measure the microRNA-disease association prediction

performance of BNNRMDA, we compare it with MIDPE

(Xuan et al., 2015), MIDP (Xuan et al., 2015), RLSMDA

(Chen and Yan, 2014), GRNMF (Xiao et al., 2018), and

LPLNS (Li et al., 2018). MIDP (Xuan et al., 2015) and

MIDPE (Xuan et al., 2015) are two random walk-based

microRNA-disease association prediction methods. MIDP is

used to detect association information for microRNAs related

to diseases. MIDPE is used to detect association information

through the bilayer network. RLSMDA (Chen and Yan, 2014)

is a semi-supervised learning-based microRNA-disease

association inference framework. GRNMF (Xiao et al.,

2018) is a graph regularized non-negative matrix

factorization-based microRNA-disease association

prediction model. In addition, GRNMF built an association

probability profile for each disease or miRNA based on a

weighted nearest K neighbor profiles. LPLNS (Li et al., 2018)

combined label propagation and linear neighborhood

similarity for microRNA-disease association prediction.

MIDP, MIDPE, RLSMDA, GRNMF, and LPLNS obtained

better AUCs for microRNA-disease association prediction.

Table 1 shows the AUC values of six microRNA-disease

association prediction methods under cross validation.

From Table 1, we can find that BNNRMDA obtains

better AUC of 0.9071 than MIDPE, MIDP, RLSMDA,

GRNMF, and LPLNS. Compared to MIDPE,

MIDP, RLSMDA, GRNMF, and LPLNS, BNNRMDA

increases the performance of 13.79, 8.98, 5.69, 1.19,

and 0.41% based on the AUC value, respectively. The

results show that our proposed BNNRMDA

TABLE 1 AUCs of microRNA-disease association prediction methods under cross validation.

Method MIDPE MIDP RLSMDA GRNMF LPLNS BNNRMDA

AUC 0.7820 0.8256 0.8555 0.8963 0.9034 0.9071

TABLE 2 The inferred top 30 microRNAs associated with colon cancer except for 73 known microRNAs.

Rank MicroRNA Evidence Rank MicroRNA Evidence

1 hsa-mir-200a 25371200 16 hsa-mir-99a Unconfirmed

2 hsa-mir-375 29930763 17 hsa-mir-195 26064276

3 hsa-mir-222 27855613 18 hsa-mir-96 Unconfirmed

4 hsa-mir-30d 28651493 19 hsa-mir-148a Unconfirmed

5 hsa-mir-103a Unconfirmed 20 hsa-mir-98 28025745

6 hsa-mir-100 28032929 21 hsa-mir-34c https://doi.org/10.1166/jbt. 2018.1859

7 hsa-mir-181a 25977338 22 hsa-mir-182 Unconfirmed

8 hsa-mir-133a 29930763 23 hsa-mir-20b 33044899

9 hsa-mir-429 Unconfirmed 24 hsa-mir-124 30980700

10 hsa-mir-224 Unconfirmed 25 hsa-mir-7 26648422

11 hsa-mir-93 22180714 26 hsa-mir-193b 31007734

12 hsa-mir-25 23435373 27 hsa-mir-210 27611932

13 hsa-mir-181b 18172508 28 hsa-mir-10a Unconfirmed

14 hsa-mir-183 Unconfirmed 29 hsa-mir-138 Unconfirmed

15 hsa-mir-153 Unconfirmed 30 hsa-mir-196a Unconfirmed
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method can effectively predict new microRNA-disease

associations.

3.3 Case study

In the above section, we have computed the performance of

BNNRMDA. The results show that BNNRMDA obtains better

AUC and outperforms other five microRNA-disease association

prediction methods. We continue to implement case analyses to

identify possible microRNA biomarkers for colon cancer and

colorectal cancer.

3.3.1 Inferring possible microRNA biomarkers for
colon cancer

Colon cancer is a common malignant tumor and has a

very high incidence rate in adult with age of 40–50 (Zhu et al.,

2020; Liu et al., 2021). More importantly, it has no any

symptoms in the early stage. Therefore, it is important to

infer possible biomarkers to boost the diagnosis and

treatment for colon cancer (Liu et al., 2021). Among the

HMDD dataset, there are 73 known microRNAs associated

with colon cancer among 353 microRNAs. Based on the

proposed BNNRMDA method, we compute the association

score for each microRNA-disease pair. The results show that

all 73 known microRNAs associated with colon cancer in the

HMDD database have the highest association scores with

colon cancer and are ranked as top 73. We continue to

investigate the following 30 miRNAs that have higher

association scores with colon cancer and are ranked as

74–103. The results are shown in Table 2 and Figure 1.

From Table 2 and Figure 1, we can find that

18 microRNAs are confirmed to associate with colon

cancer by literature retrieval. In addition, 12 microRNAs

are inferred to associate with colon cancer and are

potential biomarkers of colon cancer.

In addition, we infer that microRNA hsa-mir-103a may

associate with colon cancer. Wnt signaling pathway is hyper-

activated in many human cancers. Therefore, Wnt pathway

demonstrates promising diagnostic and therapeutic effect in

cancer medicine. Fasihi et al. (2018) found that hsa-miR-103a

may be a possible regulator of Wnt signaling pathway by

detecting its effect on Wnt pathway components in colorectal

cancer-originated cell lines and its expression in colorectal

cancer tissues. They also found that hsa-miR-103a has an

upregulation function in colorectal cancer tissues through RT-

qPCR and its overexpression could cause elevated Wnt

activity. Therefore, we infer that hsa-miR-103a

could be a potential biomarker of colon cancer (Fasihi

et al., 2017).

FIGURE 1
Associations between the predicted top 30 microRNAs and
colon cancer except for known 73 microRNA-colon cancer
associations in the HMDD database that are predicted to have the
highest association scores with colon cancer. Black dot lines
denote associations between microRNAs and colon cancer and
these associations have been reported by publications. Blue dot
lines denote associations between microRNAs and colon cancer
and these associations are unknown and need to experimental
validation.

FIGURE 2
Associations between the predicted top 30 microRNAs and
colorectal cancer except for known 129 microRNA-colorectal
cancer associations in the HMDD database. Black dot lines denote
associations between microRNAs and colorectal cancer and
these associations have been reported by publications. Orange
solid lines denote associations betweenmicroRNAs and colorectal
cancer and these associations are unknown and need to
experimental validation.
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3.3.2 Inferring possiblemicroRNA biomarkers for
colorectal cancer

Colorectal cancer is the third leading cause of cancer-

related deaths in the United States. In the United State, there

are about 1.85 million cases and 850 thousand deaths

annually. In 2020, there are 53,200 colorectal cancer deaths

in the United State. Among new colorectal cancer diagnoses,

approximately 20% of patients suffered from metastatic

disease and approximately 25% of patients suffered from

localized disease that may later develop metastases. Of

patients who are diagnosed as metastatic colorectal cancer,

about 70–75% of patients survive more than 1 year, about

30–35% patients survive more than 3 years, and less than 20%

patients survive more than 5 years (Xie et al., 2020; Biller and

Schrag, 2021).

Among the HMDD dataset, there are 137 known microRNAs

associated with colorectal cancer among 353 microRNAs. Based on

the proposed BNNRMDA method, we compute the association

score for each microRNA-colorectal cancer pair. The results show

that 129 knownmicroRNAs associated with colorectal cancer in the

HMDD database have the highest association scores with colorectal

cancer and are ranked as top 129. We continue to investigate the

following 30 miRNAs that have higher association scores with

colorectal cancer and are ranked as 130–159. The results are shown

in Table 3 and Figure 2. From Table 3 and Figure 2, we can find that

8 microRNAs are known to associate with colorectal cancer in the

HMDD database. In addition, the remaining 22 microRNAs are

inferred to associate with colorectal cancer and are reported by

publications. The results confirm the strong microRNA

identification performance of BNNRMDA for colorectal cancer.

In addition, we predict that hsa-mir-193b and hsa-mir-7 days may

associate with colorectal cancer and need validation.

4 Conclusion

Colon cancer and colorectal cancer are two of leading causes

of cancer-related deaths worldwide and are seriously threatening

human health. Inference of diagnosis or prognosis biomarkers

for colon cancer and colorectal cancer can help to evaluate their

initiation, progression and therapeutic response. In this study, we

developed a new microRNA-disease association prediction

method, BNNRMDA, to find possible microRNA biomarkers

for colon cancer and colorectal cancer. BNNRMDA effectively

integrated disease semantic similarity and GAPK similarity,

microRNA function similarity and GAPK similarity, and

bound nuclear norm regularization.

Compared to other five classical microRNA-disease

association prediction methods, BNNRMDA obtains the best

AUC of 0.9071, demonstrating its powerful microRNA-disease

association prediction performance. We continue to use the

proposed BNNRMDA method for finding possible microRNA

biomarkers for colon cancer and colorectal cancer. The results

show that hsa-miR-103a could be a potential biomarker of colon

cancer and hsa-mir-193b and hsa-mir-7 days could be potential

biomarkers of colorectal cancer.

Our proposed BNNRMDA method fully considers the affect of

Gaussian association profile similarity on the prediction

performance. In addition, the bound nuclear norm regularization

approach can effectively learn the intrinsic distribution of data.

Therefore, BNNRMDA significantly outperform other MDA

prediction methods. Although BNNRMDA obtains better AUC,

its performance including AUC, precision, recall, and accuracy need

to further improve. In the future, we will improve the bound nuclear

norm regularizationmodel to discover possible biomarkers for colon

cancer and colorectal cancer.

TABLE 3 The inferred top 30 microRNAs associated with colorectal cancer except for 129 known microRNAs.

Rank MicroRNA Evidence Rank MicroRNA Evidence

1 hsa-mir-191 18079988 16 hsa-mir-223 27759076

2 hsa-mir-760 the HMDD database 17 hsa-mir-100 25973296

3 hsa-mir-337 the HMDD database 18 hsa-mir-204 25209181

4 hsa-mir-1915 the HMDD database 19 hsa-let-7g 18172508

5 hsa-mir-24 30375302 20 hsa-mir-106b 34070923

6 hsa-mir-520a the HMDD database 21 hsa-mir-296 28209128

7 hsa-mir-101 30797148 22 hsa-let-7f 29805607

8 hsa-mir-138 27248318 23 hsa-mir-29c 29262657

9 hsa-mir-608 the HMDD database 24 hsa-mir-30c 25799050

10 hsa-mir-1303 the HMDD database 25 hsa-mir-30b 32112903

11 hsa-mir-629 30042169 26 hsa-mir-302a 31754405

12 hsa-mir-2110 the HMDD database 27 hsa-mir-326 25760058

13 hsa-mir-147b the HMDD database 28 hsa-mir-98 34370878

14 hsa-mir-205 29488611 29 hsa-mir-128 30257253

15 hsa-mir-197 30106114 30 hsa-mir-30d 28651493
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Colorectal cancer (CRC), a commonmalignant tumor, is one of themain causes

of death in cancer patients in the world. Therefore, it is critical to understand the

molecular mechanism of CRC and identify its diagnostic and prognostic

biomarkers. The purpose of this study is to reveal the genes involved in the

development of CRC and to predict drug candidates that may help treat CRC

through bioinformatics analyses. Two independent CRC gene expression

datasets including The Cancer Genome Atlas (TCGA) database and

GSE104836 were used in this study. Differentially expressed genes (DEGs)

were analyzed separately on the two datasets, and intersected for further

analyses. 249 drug candidates for CRC were identified according to the

intersected DEGs and the Crowd Extracted Expression of Differential

Signatures (CREEDS) database. In addition, hub genes were analyzed using

Cytoscape according to the DEGs, and survival analysis results showed that one

of the hub genes, TIMP1was related to the prognosis of CRC patients. Thus, we

further focused on drugs that could reverse the expression level of TIMP1. Eight

potential drugs with documentary evidence and two new drugs that could

reverse the expression of TIMP1 were found among the 249 drugs. In

conclusion, we successfully identified potential biomarkers for CRC and

achieved drug repurposing using bioinformatics methods. Further

exploration is needed to understand the molecular mechanisms of these

identified genes and drugs/small molecules in the occurrence, development

and treatment of CRC.

KEYWORDS

colorectal cancer, differential expressed gene, hub gene, survival analysis, TIMP1, drug
repurposing

Introduction

Colorectal cancer (CRC) is the most common subtype in gastrointestinal cancers, and

its early symptoms are unobvious, which results in a high mortality rate. The continuous

rise of new cases and deaths of CRC will lead to a significant increase in the economic

burden globally (Rogler, 2014; Arnold et al., 2017; Hong et al., 2021; Liu et al., 2021). As
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the second leading cause of cancer death worldwide (Zhao et al.,

2020; Sung et al., 2021), CRC has become a major global public

health concern. Studies have shown that the clinical tumor stage

at diagnosis affects the prognosis of patients. The 5-years relative

survival rate of patients with stage I was 90%, while that of

patients with stage IV was only 10% (Siegel et al., 2012; O’Connell

et al., 2004; Yang et al., 2022). Currently, various diagnostic

strategies for CRC include both invasive and non-invasive

methods. Invasive methods rely on endoscopy and imaging.

Imaging tests such as nuclear magnetic resonance (NMR) and

computed tomography (CT) can be used to diagnose severe focal

lesions, but both tests are expensive (Grassetto et al., 2012;

Swiderska et al., 2014). Hence, there is an urgent need for

alternative, cheap and easy-to-measure screening methods.

Despite recent advances in treatment and multidisciplinary

care, CRC patients continue to suffer from serious adverse

reactions, which can impair prognosis and reduce survival

(McQuade et al., 2017; Kong et al., 2020). The developing

drugs with low toxicity, especially drug repositioning (Liu

et al., 2020; Meng et al., 2022) is of great significance for

improving the clinical treatment and reducing adverse reactions.

The improvement of molecular biology technology

provides opportunities to develop more curative effect and

enhance the outcomes of CRC. With the progress of high-

throughput sequencing technology, gene expression profiling

methods, such as RNA sequencing (RNA-seq), have been

applied to scientific research and become a hot field of gene

expression research (Saito et al., 2018; Deshiere et al., 2019;

Zhang et al., 2021). The molecular mechanism of CRC holds

the key to the prognosis and treatment response of patients,

and is of great potential for the clinical practice (De Sousa

et al., 2013; Sadanandam et al., 2013; Nguyen and Duong,

2018; Cheng et al., 2020; Cheng et al., 2021; Liu et al., 2022).

Therefore, understanding of the molecular mechanism in the

occurrence and development of CRC will help to develop novel

therapies to optimize the treatment response throughout the

disease course. In recent years, a large number of relevant CRC

sequencing data have been generated, archived, and stored in

public databases (Guo et al., 2017). Researches combining

high-throughput sequencing data and bioinformatics analysis

has gradually become a hot spot (Alves Martins et al., 2019;

Zhao et al., 2019). Here, bioinformatics analysis of RNA-seq

data of CRC patients may provide insights for drug

repositioning for the treatment of CRC.

In this study, bioinformatics analysis was used to identify

biomarkers of CRC and potential drugs that can improve the

outcomes of CRC patients. Specifically, based on the TCGA data

set and GSE104836 data set, we compared the transcriptome data

of tumor samples and normal samples to identify differentially

expressed genes (DEGs) on the two independent datasets. The

DEGs were intersected for further analysis. Then these DEGs

were further explored to detect the enriched GO terms and

KEGG pathways. From those DEGs, latent drugs that can

improve the prognosis of patients from the Crowd Extracted

Expression of Differential Signatures (CREEDS) were also

predicted. In addition, the hub genes in the protein-protein

interaction (PPI) network were discovered according to the

DEGs and survival analysis was carried out on these hub

genes. Finally, drug candidates could reverse hub genes were

also predicted by CREEDS and validated by literatures.

Materials and methods

Data collection

RNA-seq data of CRC patients were downloaded from the

Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.

gov/) and the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104836).

Meanwhile, the associated clinical information of 478 tumor

samples and 41 normal samples from TCGA, and 10 patients

and 10 healthy controls from the GSE104836 dataset was obtained.

Differentially expressed gene analysis

DESeq2 is a R package that can identify DEGs from raw

count data. It uses the contraction estimation of discrete and the

fold change of the gene expression to improve the stability and

interpretability of the estimation, which makes the more

quantitative analysis focus on intensity (Love et al., 2014).

DEGs in CRC tumor samples and normal samples were

detected using DESeq2 package with the criteria of p-value <
0.001 and log2 |fold change| S 2.

Functional and pathway enrichment
analysis of DEGs

After DEG analysis of the TCGA dataset and

GSE104836 dataset, overlapping DEGs were screened, and

then enrichment analysis of KEGG pathway and GO (The

Gene Ontology, 2019) including biological process (BP),

cellular component (CC), and molecular function (MF) were

carried out to reveal the altered biological characteristics of CRC.

The R packages “clusterProfiler” and “ggplot” were used to

visualize the results of the enrichment analysis.

PPI network and hub genes analysis

The online database STRING (http://string-db.org) was used

to develop a PPI network of DEGs, and the minimum required

interaction score was 0.7. The Cytoscape software was used to

visualize the PPI network and to analyze the structural properties
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of the constructed network. The cytoHubba plug-in was used to

identify hub genes in the PPI network.

Potential drug identification

The CREEDS database consists of gene expression

characteristics induced by single drug perturbation, which

can be used to identify the relationship between genes,

diseases, and drugs. To identify potential drugs for the

treatment of CRC, we used the CREEDS database to find

drugs that can reverse the DEGs. Specifically, for each drug

in the CREEDS database, we calculated the p-value of the

overlapping genes between downregulated genes of the drug

and upregulated DEGs in CRC by hypergeometric test, and

similarly, calculate the p-value of the overlapping genes between

upregulated genes of the drug and downregulated DEGs in

CRC. The drugs with any of the two p-value lower than

0.05 could be taken as candidates that could reverse the

DEGs and might treat the CRC.

Survival analysis

We obtained the OS time of all patients in TCGA database, and

estimated the survival probability of CRC patients using Kaplan-

Meier method. Kaplan-Meier survival curve was used to estimate

the 50th percentile (median) of survival time and compare the

survival distribution of two or more groups. Log-rank test was also

used to compare the survival differences between groups.

p-value <0.05 was considered to have significant differences

between groups. The data were analyzed by R software.

Results

A framework of CRC related drugs
repurposing

To find drugs that can be used to treat CRC, we proposed

a bioinformatics pipeline of drug repurposing based on

transcriptome data. The workflow was shown in Figure 1. After

downloading the RNA-seq data from TCGA and GEO databases,

we performed DEG analysis and pathway enrichment analysis.

Then, the hub genes of DEGs were identified and survival

analysis was done on the hub genes. According to the DEGs and

CREEDS, drugs that could reverse the DEGs were identified, and

10 drugs can reverse the survival-related hub gene were further

investigated. Finally, according to some previous studies, the

effectiveness of the newly discovered drugs was verified.

Patient characteristics

The RNA-seq data involved 478 tumor samples and

41 normal samples. There were 247 women and 272 men.

85 cases were at clinical stage I, 209 cases were at stage II,

140 cases were at stage III and 73 cases were at stage IV.

Their average age was ~67 years old. The clinical

features of patients from the TCGA dataset were shown in

Table 1.

FIGURE 1
A brief workflow for drug repurposing.

TABLE 1 General clinical information of CRC patients included in this
study.

Characteristics No

Type

Tumor 478

Normal 41

Average age 67.04

Gender Female 247

Male 272

Tumor stage Ⅰ 85

Ⅱ 209

Ⅲ 140

Ⅳ 73

Unknown 12
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DEGs identification

In total, 2664 DEGs (1537 upregulated genes and

1127 downregulated genes) and 959 DEGs (563 upregulated

genes and 396 downregulated genes) were extracted from

TCGA (Figure 2A) and GSE104836 (Figure 2B) datasets

respectively using p-value < 0.001 and llog2 |fold change| S

2 as the cut-off criteria. A total of 540 DEGs (276 upregulated

genes and 264 downregulated genes) were identified in both

datasets (Figure 2C).

Enrichment Analysis

To understand the possible biological mechanisms that cause

the identified changes in the transcriptome data, we conducted

FIGURE 2
Identification of DEGs between tumor tissues and normal tissues in CRC patients. (A–B). Differential expression volcanic map of (A)TCGA and
(B) GEO dataset. Red dots indicate significant up-regulation, blue dots indicate significant down-regulation, and gray dots indicate genes with no
significant changes. (C). Venn plot for DEGs detected in two datasets.

FIGURE 3
KEGG enrichment analysis of DEGs. (A). Upregulated DEGs. (B) Downregulated DEGs.
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the enrichment analysis on the overlapped DEGs using KEGG

and GO databases. KEGG pathway enrichment results showed

that upregulated DEGs were enriched in “Rheumatoid arthritis”,

“IL−17 signaling pathway”, “Cytokine−cytokine receptor

interaction”, “Wnt signaling pathway”, “Neuroactive

ligand−receptor interaction”, and “TNF signaling pathway”

(Figure 3A), while downregulated DEGs were enriched in

“Bile secretion”, “Neuroactive ligand−receptor interaction”,

“Drug metabolism − cytochrome P450”, “Mineral absorption”,

“Ascorbate and aldarate metabolism”, “Retinol metabolism”,

“Chemical carcinogenesis − DNA adducts”, and “Pentose and

glucuronate interconversions” (Figure 3B).

GO terms cover biological process (BP), cellular

component (CC), and molecular function (MF). For

upregulated DEGs, the enriched BP terms included

“epidermis development”, “extracellular matrix

organization”, “extracellular structure organization”, “skin

development”, “connective tissue development”, “cartilage

development”, “collagen metabolic process”, “cornification”,

“collagen catabolic process” (Figure 4A). In the CC group,

upregulated DEGs were primarily enriched in “extracellular

matrix”, “collagen−containing extracellular matrix”,

“endoplasmic reticulum lumen”, “apical part of cell”,

“cell−cell junction”, “apical plasma membrane”, “basement

membrane”, “extracellular matrix component” and “complex

of collagen trimers” (Figure 4B). And enriched MF-related

terms of upregulated DEGs were “receptor regulator activity”,

“receptor ligand activity”, “endopeptidase activity”,

“serine−type endopeptidase activity”, “serine−type peptidase

activity”, “serine hydrolase activity”, “growth factor activity”,

“cytokine activity” and “extracellular matrix structural

constituent” (Figure 4C). For downregulated DEGs, the

enriched BP terms were “cellular metal ion homeostasis”,

“monovalent inorganic cation transport”, “organic anion

transport”, “muscle system process”, “cellular calcium ion

homeostasis”, “regulation of cytosolic calcium ion

FIGURE 4
GO enrichment analysis of DEGs. (A–C) Upregulated DEGs. (A). Biological process. (B) Cellular component. (C) Molecular function. (D–F).
Downregulated DEGs. (D). Biological process. (E) Cellular component. (F) Molecular function.
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concentration”, “sodium ion transport”, “bicarbonate

transport”, “flavonoid metabolic process” and “cellular

glucuronidation” (Figure 4D). In the CC group, the

downregulated DEGs were enriched in “apical part of cell”,

“apical plasma membrane”, “membrane raft”, “membrane

microdomain”, “sarcolemma”, “contractile fiber part”,

“intrinsic component of synaptic membrane”, “plasma

membrane raft”, “perikaryon” and “costamere” (Figure 4E).

The enriched MF-related terms of the downregulated DEGs

were “inorganic cation transmembrane transporter activity”,

“cation transmembrane transporter activity”, “metal ion

transmembrane transporter activity”, “monovalent

inorganic cation transmembrane transporter activity”,

“active transmembrane transporter activity”,

“monocarboxylic acid binding”, “sodium ion

transmembrane transporter activity”, “solute:sodium

symporter activity”, “glucuronosyltransferase activity” and

“retinoic acid binding” (Figure 4F).

Hub genes in the PPI network of DEGs

Based on the STRING online database (http://string-db.

org) and Cytoscape software, a PPI network of 164 DEGs

and 241 edges was constructed. The minimum required

interaction score of each edge were bigger than 0.7

(Figure 5A) which excludes 376 DEGs. The top 10 hub

genes according to the node degree were MMP1, MMP3,

TIMP1, OSM, IL1A, CXCL1, CXCL2, CSF2, GRIN2A, and

GRIN2B (Figure 5B).

Correlation between hub genes
expression and overall survival

To examine the potential relationship between DEGs

and overall survival (OS), a weighted Kaplan Meier

survival curves were generated from TCGA data. The

survival curves of the top four hub genes were shown in

Figure 6, which shown that only TIMP1 is associated with

OS (p-value<0.05), and its high expression led to poor

prognosis (Figure 6A). Other hub genes are not

significantly associated with OS (Figures 6B–D) and

Supplementary Figure S1.

Identification of potential drugs

249 potential drugs were predicted according to the DEGs.

For example, we plotted five drugs for upregulated DEGs and

FIGURE 5
PPI network of DEGs and hub genes in the network. (A). PPI network of DEGs with the interaction score>0.7. The pink nodes indicate
significantly upregulated genes and the blue nodes indicate significantly downregulated genes. The edge thickness is proportional to the combined
score of the connected genes. The size of the node is proportional to the value of log2|FC|. (B) Top 10 hub geneswith a higher degree of connectivity.
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five drugs for downregulated DEGs in Figure 7. Figure 7

indicated that formaldehyde, glucocorticoid|dexamethasone,

paclitaxel|eribulin, messenger RNA|inhibitor, and eribulin|

paclitaxel could reverse upregulated DEGs. fluoxetine|

sucrose|antidepressant|imipramine, nevirapine, sucrose|

antidepressant|imipramine|L-proline residue|, imipramine|

sucrose|antidepressant|, and histone|N-methyl-D-aspartic

acid could reverse the downregulated DEGs.

Since TIMP1 is significantly related to the OS of CRC

patients, and the high expression of TIMP1 is correlated to a

poor prognosis, we next looked for drugs/small molecules that

can reverse the expression of TIMP1, which might improve the

prognosis of CRC patients. We provided details of the top

10 drugs that can reverse the hub gene TIMP1 in Table 2,

including formaldehyde, paclitaxel|eribulin, erlotinib|dimethyl

sulfoxide, glucocorticoid|dexamethasone, antagonist,

trichostatin A, rosiglitazone, inhibitor, retinoic acid, and

cisplatin. Among them, eight drugs/small molecules were

confirmed to be related to TIMP1 or CRC. It is reported that

exposure to formaldehyde can reduce TIMP1 expression (Kang

et al., 2022).

Discussion

In recent decades, CRC, including colon and rectal cancer,

has become one of the main causes of cancer-related death

around the world (Fuccio et al., 2018; Røed Skårderud et al.,

2018; He et al., 2020a; He et al., 2020b). Therefore, it is urgent to

find more effective prevention and treatment to reverse this

problem (Teer et al., 2017). With the recent progress in the

field of medicine and biotechnology, many preclinical and

clinical studies have been carried out to reveal the potential

mechanism of CRC liver metastasis. Identifying cancer-related

marker genes through gene-targeted therapy is a new and

effective potentially powerful treatment for CRC (Okugawa

FIGURE 6
Kaplan-Meier survival curves of CRC patients for the top four hub genes including (A) TIMP1, (B) MMP1, (C) MMP3, and (D) OSM. According to
the median value, gene expression was divided into two groups (red: high; blue: low), and the p-value<0.05 was considered statistically significant.
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et al., 2015; Guo et al., 2017). High throughput sequencing

technology provides a new perspective on the genome,

transcriptome, and epigenome characteristics of cancer. In this

study, we aim to reveal the hub gene of CRC through

bioinformatics methods and identify potential drugs or small

molecules, to improve the predictive power of CRC and provide a

valuable theoretical basis for the clinical treatment of CRC

patients.

FIGURE 7
The predicted top five drugs and their gene networks. The color and thickness of the edges are inversely proportional to the p-value of drugs
and DEGs. (A) Five drugs (green triangles) and 50 upregulated DEGs (orange circles). (B) Five drugs (purple triangles) and 59 downregulated DEGs
(blue circles).

TABLE 2 Top 10 drugs for TIMP1 that were significantly associated with survival rate of CRC patients.

Gene
name

Drug/Small
molecule

p-value Possible effect Evidence

TIMP1 formaldehyde 1.04403630163397E-06 Formaldehyde is a colorless, irritant, highly active and toxic environmental
pollutant, which is used in various industries and products. Inhaled
formaldehyde is a human and animal carcinogen that can cause genotoxicity,
such as the formation of reactive oxygen species and DNA damage

PMID:35379891

paclitaxel|eribulin 8.64715E-06 A well-known anticancer agent with a unique mechanism of action. It is
considered to be one of the most successful natural anticancer drugs

Unconfirmed

erlotinib|dimethyl
sulfoxide

1.74273E-05 It can interfere with a variety of cellular processes, such as cell proliferation,
differentiation, apoptosis and cycle

PMID: 32911099

glucocorticoid|
dexamethasone

3.5055E-05 It has pharmacological effects of anti-inflammatory, anti-endotoxin,
inhibiting immunity, anti-shock and enhancing stress response

PMID: 21789017

antagonist 3.66683E-05 It can bind to receptors and has strong affinity without intrinsic activity
(α = 0) drugs

Unconfirmed

trichostatin A 0.0000703775443677834 trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor PMID: 21520296

rosiglitazone 0.000141022683961323 Rosiglitazone is a thiazolidinedione insulin sensitizer. Its mechanism of
action is similar to that of specific peroxisome proliferator activator γ Type a
receptor

PMID: 29743857

Inhibitor 0.000282045 Inhibitors of proteinases or antibodies against certain proteolytic enzymes
can prevent tumor invasion and metastasis in experimental conditions

PMID: 23202950

retinoic acid 0.000564894 Retinoic acid (RA) signal transduction is an important and conservative way
to regulate cell proliferation and differentiation. In addition, disturbed RA
signaling is associated with the occurrence and progression of cancer

PMID: 34877501

cisplatin 0.000758387 Cisplatin is an inorganic platinum complex, which can be inhibited by the
formation of DNA adducts in tumor cells

PMID: 32329836; PMID:
20607860
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First, RNA-seq data and clinical information of 478 CRC tumor

samples and 41 healthy control samples were downloaded from

TCGA. In addition, RNA-seq data of 10 tumor samples and

10 normal samples were obtained from the GSE104836 dataset.

Using DESeq2 to detect the DEGs from TCGA and GEO

respectively, 2664 DEGs were identified from TCGA, 959 DEGs

were identified from the GSE104836 data set, and 540 DEGs

appeared in both datasets, including 276 upregulated genes and

264 downregulated genes. KEGG pathway enrichment results

showed that upregulated DEGs are enriched in “Rheumatoid

arthritis”, “IL−17 signaling pathway”, “Cytokine−cytokine

receptor interaction”, “Wnt signaling pathway”, “Neuroactive

ligand−receptor interaction”, and “TNF signaling pathway”

(Figure 3A). It has been reported that IL − 17 is able to regulate

colorectal tumor cells and inhibits their production of cxcl9/

10 chemokines, thus prevents the infiltration of CD8 + CTLs

and Tregs into CRC tumor, thereby promoting the development

of CRC (Chen et al., 2019). Wnt signaling pathway is the key

medium of tissue homeostasis and repair. Almost all CRC tumors

show overactivation of Wnt pathway (Schatoff et al., 2017; Bian

et al., 2020). GO enrichment analysis shows that epidermis

development, extracellular matrix, and receptor regulator activity

are the most significantly abundant upregulated DEGs in biological

processes, cellular components, and molecular function categories.

Downregulated DEGs are enriched in “Bile secretion”, “Neuroactive

ligand−receptor interaction”, “Drug metabolism−cytochrome

P450”, “Mineral absorption”, “Ascorbate and aldarate

metabolism”, “Retinol metabolism”, “Chemical

carcinogenesis−DNA adducts”, and “Pentose and glucuronate

interconversions” (Figure 3B). Previous studies have shown that

a high-fat diet promotes the secretion of bile acids, thereby inducing

the formation of precancerous lesions and/or aggravating the

occurrence of colon tumors (Ocvirk and O’Keefe, 2021).

Neuroactive ligand-receptor interactions were associated with

other gastrointestinal cancers (Yu et al., 2021). The lack and

deficiency of minerals may be related to cancer and increase the

risk of cancer; For example, effective absorption of vitamin D can

prevent colorectal cancer (Takada and Makishima, 2017).

To identify the key regulating genes in CRC development, a

PPI network was constructed based on overlapping DEGs. In this

network, edges with association scores <0.7 were filtered out. The
PPI network obtained based STRING online database has

164 nodes, and the top 10 hub genes, including MMP1,

MMP3, TIMP1, OSM, IL1A, CXCL1, CXCL2, CSF2, GRIN2A,

and GRIN2B, were identified using Cytoscape. Among them,

TIMP1 is a soluble protein that can be released from endometrial

cells, fibroblasts, and cancer cells, which are correlated with the

prognosis of various cancers (Peng et al., 2011;Wang et al., 2013).

The Kaplan–Meier survival analysis of Zheng et al. showed that

TIMP1 expression was upregulated in CRC tissues and was also

connected with poor prognosis in GEPIA datasets (p-value =

0.02) (Zheng et al., 2020). Song et al. (2016) reported that TIMP1

depletion can inhibit the proliferation, migration, and invasion of

colon cancer cells, and inhibit the tumorigenesis and metastasis

of CRC. Consistent with these studies, our results show that

TIMP1 was up-regulated in CRC samples compared with

matched normal tissue samples, and its high expression was

associated with poor OS in CRC patients.

Based on DEGs and CREEDS, we made drug predictions for

all DEGs (Yang et al., 2020). Previous studies have shown the

anti-migration and anti-invasion effects of imipramine, an FDA-

approved antidepressant oral drug, on CRC cells (Liu et al., 2016;

Alburquerque-González et al., 2020). Fluoxetine has been shown

to induce antitumor activity. It was found that fluoxetine could

selectively induce concentration-dependent apoptosis in human

CRC cells by changing mitochondrial membrane potential and

inducing phosphatidylserine translocation to the outer

membrane (Marcinkute et al., 2019). In addition, 10 potential

drugs were identified to reverse the expression of TIMP1. It has

been shown that after glucocorticoid treatment, the expression

level of TIMP1 in patients with idiopathic pulmonary fibrosis

(IPF) were significantly lower than those before glucocorticoid

treatment (p < 0.05) (Zhang et al., 2015). Dexamethasone is a

synthetic steroid with anti-inflammatory, anti-allergic, and

immunosuppressive properties (Sinner, 2019). Trichostatin A

is a histone deacetylase (HDAC) inhibitor, which inhibits the

growth of CRC cells and induces G1 cell cycle arrest and

apoptosis by regulating the downstream target of the JAK2/

STAT3 signal (Xiong et al., 2012). A study on the effect of

cisplatin on the invasion of ovarian cancer cells showed that the

use of cisplatin could reduce the expression of TIMP1 by

5.0 times (p < 0.05) (Karam et al., 2010). It is worth noting

that there is no relevant evidence that paclitaxel|eribulin, and

Antiagonist are related to the expression of TIMP1 or the

outcome of CRC. Further experiments are needed to verify

their effectiveness of action, which may provide a basis for

guiding the treatment of CRC patients.

Overall, this study revealed the altered gene expressions and

enriched pathways in CRC based on bioinformatics analyses and

provides insights for further screening of effective biomolecules

for CRC treatment intervention, which is of clinical significance.

However, the current research has some limitations. First,

because the candidate prognosis-related central DEGs were

detected using the data from two independent databases, more

datasets were needed to confirm our discoveries. Secondly,

experimental methods such as PCR were also needed to verify

the DEGs. Third, clinical trials were needed to identify effects of

the predicted drugs.

Conclusion

Our study effectively identified several candidate drug targets

through differentially gene expression analysis, hub gene analysis

and survival analysis for CRC treatment. We revealed

compounds that have the potential to reverse the expressions
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of the identified DEGs. These findings provide new directions for

the diagnosis and treatment of CRC.
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The incidence and mortality of gastric cancer ranks as a fouth leading cause of

cancer deathworldwide, especially in East Asia. Due to the lack of specific early-

stage symptoms, the majority of patients in most developing nations are

diagnosed at an advanced stage. Therefore, it is urgent to find more

sensitive and reliable biomarkers for gastric cancer screening and diagnosis.

Circular RNAs (circRNAs), a novel type of RNAs with covalently closed loops, are

becoming a latest hot spot in the field of. In recent years, a great deal of research

has demonstrated that abnormal expression of circRNAs was associated with

the development of gastric cancer, and suggested that circRNAmight serve as a

potential biomarker for gastric cancer diagnosis. In this review, we summarize

the structural characteristics, formation mechanism and biological function of

circRNAs, and elucidate research progress and existing problems in early

screening of gastric cancer.
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1 Introduction

Gastric cancer (GC) is one of the most prevalent forms of

cancer. It ranks fifth and fourth in morbidity and mortality

respectively among all tumors. There are geographical and

populational distribution differences in different regions,

among which East Asia, South America, Central America and

Eastern Europe have higher incidence rates than those of other

regions (2020). Particularly in Japan, South Korea, and China,

gastric cancer is one of the most commonly diagnosed cancers

(Bray et al., 2018). Early-stage gastric cancer lacks specific

symptoms, making it difficult to detect. Approximately two-

thirds of gastric cancer patients in China are diagnosed at an

advanced stage, which lacks effective treatments (Shen et al.,

2013). Even given the neoadjuvant therapy combined with

surgery, the 5-year progression-free rate in patients with

advanced gastric cancer is only 20%–30% (Sitarz et al., 2018).

At present, endoscopic biopsy and histopathological examination

are the gold standards for gastric cancer diagnosis. However, due

to the discomfort caused during gastroscopy, general acceptance

of endoscopy by the population as a screening approach remains

low. In particular, endoscopy is restrictive in elderly patients and

patients with cardiopulmonary insufficiency (Yao 2013). In

addition, traditional laboratory tumor markers such as CEA,

CA19-9, CA12-5, and CA72-4 have poor sensitivity and

specificity in the detection of gastric cancer in the early stage

(Sekiguchi and Matsuda 2020). At present, there is an urgent

clinical demand for more reliable biomarkers to strengthen the

detection of gastric cancer especially in the early stage.

Circular RNAs (circRNAs) are a type of closed-loop non-

coding RNA without the 3’end poly-A structure and the 5’end

cap structure (Kristensen et al., 2019). In recent years, the rapid

development of genome microarray and whole-genome

sequencing technology promotes the discovery of novel

circRNAs. Research has demonstrated that abnormal

expressions of circRNAs are associated with cancer

development, and have proposed them as potential

biomarkers for cancer diagnosis, including gastric cancer. In

this review, we summarize and discuss findings in this field thus

far, providing a comprehensive update on the application of

circRNAs in the screening and diagnosis of gastric cancer.

2 Overview of circular RNAs

2.1 The biogenesis and classification of
circular RNAs

CircRNAs are molecules of single-stranded RNA that have

been covalently closed into a circular structure. Unlike linear

RNA, circRNAs lack 5′ to 3′ polarity and polyadenylation

[poly(A)] tail. Alternative exon splicing generates linear RNA,

whereas circRNAs are typically generated by back splicing the 3′

end of the exon to the upstream exon or the 5′ end of itself.

CircRNAs usually contains one to five exons. Therefore,

circRNAs are resistant to ribonuclease (RNase) and

exonuclease degradation, with a half-life of up to 48 h

(Kristensen et al., 2019). The long half-life and tissue-specific

expression pattern of circRNAs make them more appealing as

diagnostic markers compared to other forms of RNAs.

CircRNAs can be divided into exonic circRNAs (ecircRNAs)

formed only by exon sequences, intronic circRNAs (ciRNAs)

formed by intron sequences, and exon-intron circular RNAs

(EIciRNAs) composed of both exon and intron sequences,

depending on their source (Zhu et al., 2019). The

circularization process of circRNAs has been intensely studied,

and several models have been investigated and validated. 1)

Lasso-driven circularization model: the splice donor and splice

acceptor form a lasso containing exons connected through

covalent bonding, thereby forming ecircRNAs. 2) Intron pair-

driven circularization model: complementary bases flanking

introns bind together and bring two adjacent exons together.

Introns are then removed by the spliceosome. Subsequently the

splicing sites are joined to form EIciRNAs or ecircRNAs. 3)

Intron circularization model: The remaining lasso introns in the

pre-mRNA are circularized by the GU-rich sequence near the 5′
splice site and the C-rich sequence near the branch point. The

circularized introns are further cut to form stable ciRNA. This

ciRNA, which forms a lasso structure by connecting its two ends,

can resist exonuclease degradation and has high stability. These

structural characteristics are of great significance in the screening

of cancers (Kristensen et al., 2019; Su et al., 2019).

The dynamics of the circularization of circRNAs are

influenced by numerous factors, Zhang et al. (2014) showed

that exon circularization depended on the complementary

sequences of flanking introns, and the efficiency of

circularization is controlled by the rivalry between RNA

pairing across flanking introns and within individual introns.

In addition, it was reported that proteins such as MBL

(Muscleblind protein) were involved in the formation of

circRNAs. MBL has binding sites on the flanking introns of

its pre-mRNA that can promote the circularization of circRNAs

(Ashwal-Fluss et al., 2014).

2.2 The biological functions of circular
RNAs

In recent years, extensive research has been conducted on the

biological functions of circRNAs, and several major functions

have been elucidated. Firstly, circRNAs can act as competitive

inhibitors of miRNA by binding to miRNAs, also known as

“miRNA sponges,” or as target mimics to inhibit the activity of a

specific miRNA (Hansen et al., 2013). For example, ciRS-7

indirectly up-regulates the expressions of miR-7 target genes

by binding tomiR-7 and therefore participating in processes such
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as insulin secretion, myocardial infarction and gastric cancer

(GC) progression (Zheng et al., 2017; Pan et al., 2018a). Secondly,

circRNAs interact with RNA binding proteins (RBPs) and thus

indirectly affect the signaling pathways downstream of RBPs (Du

et al., 2017). Thirdly, circRNAs work with U1 snRNP to stimulate

the transcription of their parental genes (Li et al., 2015b). A few

circRNAs can also function as templates for protein translation

(Pan et al., 2018b).

3 CircRNAs in gastric cancer

3.1 Abnormal expression of circular RNAs
in gastric cancer

A comprehensive review was conducted by searching

PubMed for articles with the keywords (“circular RNA” and

“gastric cancer”) published over the past 10 years (January

2012–August 2022). Multiple studies have explored that the

discovery and characterization of circRNAs in GC has

increased annually, while protein-coding gene (mRNA)

discovery research has remained stable (Figures 1A–C). These

results show a rising fascination with circRNAs and their

involvement in GC. Overall, related studies have validated

115 circRNAs (67 upregulated and 48 downregulated) in the

past 3 years (Figure 1D).

Thousands of circRNAs have been identified by circRNA-

specific microarrays and RNA-seq in GC tissues, cells, blood, and

exosomes from patients with GC (Figure 2). Most of the gastric

cancer-associated circRNAs are expressed in cancer tissues, with

only a few circRNAs in body fluids. CircRNAs in plasma is easier

to use for disease prediction and therapeutic efficacy judgment

due to differences in ease of access in tissues.

3.1.1 Dysregulated circular RNAs in gastric
cancer cells

Using high-throughput RNA-seq, Guo et al. (2022a)

analyzed circRNA expression profiles in PBS-treated and

Helicobacter pylori-infected AGS cells. As compared to the

control, among 18,308 different circRNA candidates, the

experiment yielded 101 significantly differentially expressed

circRNAs, including 84 upregulated and 17 downregulated

circRNAs. In addition, numerous studies have reported that

circRNAs in gastric cell lines are dysregulated. CircAKT3 was

FIGURE 1
Research on and discovery of circRNAs in GC. The amount of research, as quantified by the annual number of peer-reviewed publications, has
been relatively stable formRNAs (orange line) but not for circRNAs (blue bars) in the following categories: (A) an overall, for any subject or disease; (B)
cancers; (C) GC. (D) Increasing numbers of novel circRNAs were identified from 2020 to July 2022.
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identified as being overexpressed in MKN-7 and HGC-27 cells

compared to GES-1 cells (Huang et al., 2019). Consistent with

these findings, Yang et al. (2021a) determined that the expression

level of circHIPK3 was elevated in gastric cancer cell lines

compared with normal gastric cell lines. In addition, the

expression of circLMO7 was significantly higher in gastric

cancer cells than in GES-1 cells (Cao et al., 2021). These

studies suggest that circRNA promotes the progression of

gastric cancer.

3.1.2 Dysregulated circular RNAs in gastric
cancer tissues

To identify the circRNAs involved inGC tumorigenesis, a recent

study detected differential circRNA expression between GC tissues

and adjacent noncancerous tissues. In a study by Shao et al. (2017),

among the 308 significantly differentially expressed circRNAs, there

were 107 (34.74%) upregulated ones. However, the majority

(65.26%) of circRNAs were found to be down-regulated in

cancer tissues. In addition, Zhang et al. (2017b) detected

3,071 expressed circRNA indicators in the six pairs of tumors

and adjacent normal mucosal specimens, among these circRNAs,

46 indicators revealed different expression levels. Another study

performed large-scale gene screening in three pairs of GC tissues

using high-throughput sequencing, 25,303 circRNAs were detected

in the screening. Of these circRNAs, 2,007 DECs were identified

based on the filter criteria of |FC| ≥ 2, p < 0.05 (Kong et al., 2019).

Based on RNA-seq, Jie et al. (2020) found most of these circRNAs

originated from exons, And thirteen candidate circRNAs were

significantly downregulated and 9 were upregulated which were

analyzed by ggplot2 between 30 pairs of gastric cancer and adjacent

normal cancer tissues. Wang et al. (2021b) applied ribosomal RNA

(rRNA)-depleted RNA-seq analysis of five-paired GC and normal

tissues to systematically characterize the genome-wide landscape of

circRNAs in GC. The result displayed 4485 circRNAs in GC and

5008 circRNAs in normal tissue. Among the dysregulated circRNAs,

245 candidates were significantly dysregulated (152 downregulated

and 93 upregulated) in GC.

These sequencing and bioinformatics analysis illustrate the

dysregulation of circRNA profiles in GC, However, the precise

role and internal mechanisms of circRNAs in GC remain elusive.

3.1.3 Dysregulated circular RNAs in blood from
patients with gastric cancer

Liquid biopsy is a noninvasive technique that utilizes body

fluids such as blood, urine, and gastric juice to determine the

disease state (Reimers et al., 2019). Identifying circulating tumor

FIGURE 2
CircRNAs are associated with the hallmarks of GC. CircRNAs are differentially expressed in GC tissues, cells, exosomes, and blood from patients
with GC compared with normal controls. Red for upregulation, green for downregulation.
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markers in blood and other bodily fluids has been one of the

research focuses in this area (Batth et al., 2017). Recently, circular

RNAs (circRNAs) have attracted considerable attention in tumor

biopsies as detection and quantitative biomarker (de Fraipont

et al., 2019). Although research on circRNAs is in its infancy,

numerous studies have indicated their potential as useful

biomarkers for the diagnosis and prognosis of cancer (Arnaiz

et al., 2019).

For instance, increased expression of serum circSHKBP1

(hsa_circ_0000936) level was significantly associated with

poor survival and advanced TNM stage (Xie et al., 2020).

CircPSMC3 was downregulated in plasmas in GC patients.

Lower circPSMC3 expression was associated with a higher

TNM stage and shorter overall survival in GC patients (Rong

et al., 2019). It was discovered that hsa_circ_0000520 was

significantly down-regulated in gastric cancer plasm

compared to normal control. The hsa_circ_0000520 plasma

concentration was linked to CEA expression based on

clinicopathological characteristics. (Sun et al., 2018). Also,

hsa_circ_0000745 was downregulated in GC plasma samples

compared with healthy controls (p < 0.001). The plasma

hsa_circ_0000745 levels were correlated with the stage of

tumor-node metastasis. And the AUC of plasma

hsa_circ_0000745 was elevated in conjunction with the

level of carcinoembryonic antigen (CEA), which suggests

plasma hsa_circ_0000745 is a good diagnostic biomarker

(Huang et al., 2017). Furthermore, the group reported that

hsa_circ_0000181 levels in plasma from GC patients were

significantly lower than those in adjacent non-tumorous

tissues and in healthy individuals (p < 0.001). In addition,

the sensitivity of plasma hsa_circ_0000181 were 85.2% and

99.0% respectively (Zhao et al., 2018). A previous study

demonstrated that hsa_circ_0000211, hsa_circ_0000284 and

hsa_circ_0004771 exhibited identical expression profiles

when analyzed by distinct techniques (RNA-Seq and RT-

qPCR) and distinct sample types (tissue and blood) (Reis-

das-Mercês et al., 2022).

At present, traditional circulating tumor markers in the

setting of clinical laboratories such as CEA and CA19-9 have

low specificity and sensitivity (Sekiguchi and Matsuda 2020),

which limited their clinical application. On the other hand,

studies have confirmed that circRNAs exist not only in tissues

but also in human serum, plasma and other bodily fluids,

especially enriched in microvesicles and exosomes (Li et al.,

2015a). Therefore, circRNAs have the potential to be

candidates as non-invasive tumor markers.

3.1.4 Dysregulated circRNAs in gastric cancer
exosomes

Exosomes are nano-sized vesicles secreted by various cells

that express exosome markers such as TSG101, HSP70, CD9,

and CD63 but not albumin or calnexin (Feng et al., 2019; Hon

et al., 2019). Transmission electron microscopy (TEM) images

of exosomes typically depict translucent cup-shaped or

spherical structures with diameters ranging from 30 to

150 nm (Xu et al., 2018; Mathieu et al., 2019). In recent

years, it has been discovered that exosomes transport

miRNAs, lncRNAs, proteins, and even circRNAs for

intercellular signal transduction (Xu et al., 2018; Mathieu

et al., 2019).

Systematic administration of circDIDO1 through

exosome-mediated gene suppressed the tumorigenicity and

aggressiveness of GC in vitro and in vivo, indicating that RGD-

Exo-circDIDO1 could be employed as a nanomedicine for the

treatment of GC (Guo et al., 2022b). In addition, GC cells’

exosomal hsa_circ_0017252 inhibited GC progression by

inhibiting macrophage M2-like polarization. These findings

enhance our fundamental comprehension of GC and suggest a

novel strategy for developing more effective GC treatments

(Song et al., 2022). The expression level of exosomal

hsa_circ_0015286 decreased significantly in GC patients

following surgery. Patients with low

hsa_circ_0015286 expression had a longer overall survival

than those with high expression. Exosomal

hsa_circ_0015286 may be a promising noninvasive

biomarker for the diagnosis and prognostic evaluation of

GC (Zheng et al., 2022). CircRELL1 is transmissible via

exosomal communication, and exosomal

circRELL1 inhibited the malignant behavior of GC in vivo

and in vitro. This work reveals a promising novel circulating

diagnostic biomarker and treatment target for GC (Sang et al.,

2022). These circRNAs may play regulatory functions in the

start of GC and may serve as biomarkers for the diagnosis of

GC in liquid biopsies.

3.2 Molecular mechanisms of circular
RNAs in gastric cancer

In an authoritative review, Kristensen et al. (2019)

summarized that circRNAs perform regulatory roles may

exert their biological functions by acting as miRNA

sponges or decoys, protein sponges or decoys, enhancers of

protein function, protein scaffolding, protein recruitment and

templates for translation. The majority of circRNAs serve as

microRNA (miRNA) sponges or decoys, shielding target

mRNAs from miRNA-dependent destruction, thus

inhibiting the activities of the corresponding miRNAs. The

circRNAs that show different biological functions in GC are

summarized in Table 1.

CircNHSL1 acts as a sponge for miR-1306-3p to alleviate

its suppression of SIX1 target. Enhanced expression of

circNHSL1 promotes invasion and metastasis of gastric

cancer (Zhu et al., 2019). Functionally, circPVT1 serves as

a sponge for miR-125 family members to stimulate cell

proliferation (Chen J et al., 2017). Overexpression of

Frontiers in Genetics frontiersin.org05

Xu et al. 10.3389/fgene.2022.1037120

110

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1037120


TABLE 1 CircRNAs associated with human gastric cancer.

CircRNAs Deregulation Mechanism (target genes) Functions References

circPVT1 Increased miR-125 Cell growth Chen et al. (2017)

circLMTK2 Increased miR-150-5p Cell growth and metastasis Wang et al. (2019a)

circAGO2 Increased miR-224-5p, miR-143-3p Cell growth, invasion, and metastasis Chen et al. (2019b)

circ-DONSON Increased SOX4 Cell growth and invasion Ding et al. (2019)

circFNDC3B Increased E-cadherin, CD44 Cell migration and invasion Hong et al. (2019)

circAKT3 Increased miR-198, PIK3R1 Cell growth and apoptosis Huang et al. (2019)

circRBMS3 Increased miR-153, SNAI1 Cell growth and invasion Li et al. (2019)

circPDSS1 Increased miR-186-5p, NEK2 Cell cycle and apoptosis Ouyang et al. (2019)

circNF1 Increased miR-16 Cell growth Wang et al. (2019c)

ciRS-133 Increased miR-133 White adipose tissue browning, cancer-associated cachexia Zhang et al. (2019a)

circDLST Increased miR-502-3p, NRAS/MEK1/ERK1/2 Cell viability, invasion, and metastasis Zhang et al. (2019b)

circCACTIN Increased miR-331-3p, TGFBR1 Cell growth and metastasis Zhang et al. (2019c)

circNRIP1 Increased miR-149-5p Cell growth and metastasis Zhang et al. (2019d)

circNHSL1 Increased miR-1306-3p Cancer invasion and metastasis Zhu et al. (2019)

circSERPINE2 Increased miR-375, YWHAZ Cell growth Liu et al. (2019)

circHIPK3 Increased miR-637, AKT1 Cell growth Yang et al. (2021a)

circPRMT5 Increased miR-145, miR-1304 Cell growth and metastasis Du et al. (2019)

circSFMBT2 Increased miR-182-5p Cell growth Li et al. (2020)

hsa_circ_0078607 Increased miR-188-3p Cell growth Bian et al. (2021)

circSMAD4 Increased miR-1276, CTNNB1 Cell growth Wang et al. (2021a)

circLMO7 Increased miR-30a-3p, WNT2/β-Catenin Cell growth and metastasis Cao et al. (2021)

circDUSP16 Increased miR-145-5p Cell growth and invasion Zhang et al. (2020)

circOSBPL10 Increased miR-136-5p, WNT2 Cell growth and metastasis Wang et al. (2019b)

circSHKBP1 Increased miR-582-3p, HUR/VEGF Cell growth and metastasis Xie et al. (2020)

circHECTD1 Increased miR-137, PBX3 Cell growth Lu et al. (2021)

hsa_circ_0081143 Increased miR-646, CDK6 Cell growth and invasion Lu et al. (2021)

circHAS2 Increased miR-944, PPM1E Cell growth and invasion Ma et al. (2021a)

hsa_circ_0000993 Decreased miR-214-5p Cell growth and metastasis Zhong et al. (2018)

circHuR Decreased HuR Cell growth and invasion Yang et al. (2019)

circHIAT1 Decreased miR-21 Cell growth and migration Quan et al. (2020)

circLARP4 Decreased miR-424, LATS1 Cell growth and invasion Zhang et al. (2017a)

circCUL2 Decreased mir-142-3p, VAMP3 Cell growth and metastasis Peng et al. (2020)

circPSMC3 Decreased miR-296-5p Cell growth and migration Rong et al. (2019)

circRNA_100,269 Decreased miR-630 Cell growth Zhang et al. (2017c)

circYAP1 Decreased miR-367-5p Cell growth and invasion Liu et al. (2018)

circFAT1(e2) Decreased miR-548g, RUNX1 Cell growth and metastasis Fang et al. (2019)

circMCTP2 Decreased miR-99a-5p, MTMR3 Cell proliferation and apoptosis Sun et al. (2020)

circREPS2 Decreased miR-558, RUNX3/β-catenin Cell growth and migration Guo et al. (2020)

circCCT3 Decreased miR-613, VEGFA/VEGFR2 Cell migration and invasion Hou et al. (2021)

circCCDC9 Decreased miR-6792-3p, CAV1 Cell growth Luo et al. (2020)

circSPECC1 Decreased miR-526b, KDM4A/YAP1 Cell growth and invasion Chen et al. (2019a)

circMRPS35 Decreased KAT7/FOXO1/3a Cell growth and invasion Jie et al. (2020)

circRPPH1 Decreased miR-512-5p, STAT1 Cell growth Huang et al. (2021)

circRHOBTB3 Decreased miR-654-3p, p21 Cell growth Deng et al. (2020)

circMAPK1 Decreased MAPK1 Cell growth and invasion Jiang et al. (2021)
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circLMTK2 enhances gastric cell proliferation, migration

and invasion in vitro and in vivo. CircLMTK2 absorbs

miR-150-5p and then indirectly regulates the expression

of c-Myc to promote gastric cancer carcinogenesis (Wang

et al., 2019a). In vitro and in vivo studies indicate that

circAGO2 enhances the development, invasion, and

dissemination of gastric cancer cells. Mechanistic studies

demonstrate that circAGO2 physically interacts with the

human antigen R (HuR) protein to assist the HuR-

repressed actions of AGO2-miRNA complexes that

promote cancer progression (Chen et al., 2019b). The

silencing of circDONSON substantially inhibited GC cell

proliferation, migration, and invasion, while promoting

apoptosis. Functionally, circDONSON recruits the NURF

complex to the promoter of SOX4 and initiates its

transcription to facilitate gastric cancer growth and

metastasis (Ding et al., 2019). CircPDSS1 enhanced GC

cell cycle and reduced apoptosis by preventing miR-186-

5p from targeting NEK2 to promote apoptosis. Therefore,

circPDSS1 may serve as a biomarker and therapeutic target

for the treatment of GC (Ouyang et al., 2019).

GSPT1-238aa, a novel protein encoded by circGSPT1, was

discovered as a selective translation driven by IRES. GSPT1-

238aa modulates autophagy can interact with vimentin/

Beclin1/14-3-3 complex via the PI3K/AKT/mTOR signaling

pathway in GC cells (Hu et al., 2022). What’s more, AXIN1-

295aa as a novel protein encoded by circAXIN1, it functions as

an oncogenic protein to promote GC tumorigenesis and

progression by activating the Wnt signaling pathway,

suggesting a potential therapeutic target for GC (Peng

et al., 2021).

Another study revealed that circST3GAL6 controlled

apoptosis and autophagy via FOXP2-mediated

transcriptional regulation of the MET axis via the miR-

300/FOXP2 axis, which may represent a viable GC

treatment target (Xu et al., 2022b). Ebv-circRPMS1 binds

to Sam68 to promote its physical contact with the

METTL3 promotor, resulting in transactivation of

METTL3 and development of cancer (Zhang et al., 2022b).

Ebv-circLMP2A interacted with KHSRP to increase the

KHSRP-mediated degradation of VHL mRNA, resulting in

an accumulation of HIF1 under hypoxia, which was crucial

in controlling tumor angiogenesis in EBVaGC and might be a

good therapeutic target for EBVaGC (Du et al., 2022). Circ-

TNPO3 can bind competitively with IGF2BP3 and reduce

IGF2BP3’s capacity to stabilize MYC mRNA, ultimately

inhibiting the proliferation and metastasis of GC (Yu

et al., 2021).

Most of the circRNAs were located in the cytoplasm,

However, circGSK3B was mainly identified in the nucleus.

CircGSK3B is able to interact directly with EZH2, inhibiting

the binding of EZH2 and H3K27me3 to the RORA promoter

(Ma et al., 2021b).

3.3 Biological functions of circular RNAs in
gastric cancer

3.3.1 The functions of circular RNAs in gastric
cancer: Based on in vivo evidence

Due to the large number of circRNAs studied, a large number

of circRNAs are reported every year for the role in gastric cancer.

Nevertheless, most of these studies are based on the data from

in vitro cell culture. In vivo investigation provides much more In-

depth perspectives for these circRNAs. In particular, we

summarize here relevant studies of circRNAs with relatively

well-established functional studies in vivo in gastric cancer to

help us understand which circRNAs functions have received

focused attention and a more comprehensive understanding.

Numerous factors contribute to the biological makeup of GC.

A recent study demonstrated that HOTAIR upregulation was

associated with shorter overall survival in patients with gastric

cancer, as well as advanced pathological stage, larger tumor size,

and extensive metastasis. In addition, HOTAIR overexpression

promoted the progression of gastric carcinoma in vitro and in

vivo via regulating HER2 expression as a ceRNA of miR-331-3p

(Liu et al., 2014). Furthermore, circAKT3 (hsa_circ_0000096)

was significantly downregulated in gastric cancer tissues relative

to nearby nontumorous tissues and normal gastric epithelial cells

(p < 0.001). CircAKT3 might stimulate PIK3R1 expression via

sponging miR-198, thereby increasing DNA damage repair and

preventing apoptosis in vivo and in vitro in GC cells (Huang et al.,

2019). The knockdown of hsa_circ_0000096 markedly decreased

cell proliferation and migration in vivo (Li et al., 2017a). In GC

tissues and cells, the amount of circCUL2, which is stable and

restricted to the cytoplasm, was drastically decreased.

Overexpression of circCUL2 decreased in vivo tumorigenicity

(Peng et al., 2020).

3.3.2 The role of circular RNAs in gastric cancer
in vitro

Silencing circRBMS3 decreased GC cell proliferation and

invasion through sponging miR-153 in vitro (Li et al., 2019).

Loss- and gain-of-function experiments indicate that

circNF1 greatly increases GC cell proliferation (Wang et al.,

2019c). Moreover, circCACTIN could function as a sponge of

miRNA-331-3p and modulate the mRNA expression of

TGFBR1. Knockdown of circCACTIN reduced the capability

of cells proliferation, migration and invasion in GC cells (Zhang

et al., 2019c).

4 The clinical values of circular RNAs
in gastric cancer

As alluded to earlier, many circRNAs do not have high

sensitivity on their own, however, the combination of these

circRNAs with other tumor markers or circRNAs can
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dramatically improve the sensitivity and specificity in early

gastric cancer screening. For example, the combined detection

of hsa_circ_0001017 and hsa_circ_0061276 in gastric cancer

tissues and patient plasma has a high diagnostic value, with

AUC as high as 0.966, and sensitivity and specificity of 95.5% and

95.7%, respectively (Li et al., 2018). The independent AUCs of

hsa_circ_0000096 and hsa_circ_002059, both downregulated in

gastric cancer tissue, were 0.82 and 0.73, but the AUC increased

to 0.91 when these two circRNAs were used in combination (Li

et al., 2017a). In addition, hsa_circ_0000745 was reduced in

gastric cancer patients’ plasma with an AUC of merely 0.683, but

when hsa_circ_0000745 was combined with CEA, the AUC rose

dramatically to 0.775 (Huang et al., 2017). These studies revealed

that combining multiple circRNAs or with traditional diagnostic

markers such as CEA, and CA19-9 can increase the sensitivity,

specificity and accuracy of circRNAs based on gastric cancer

diagnosis and prognosis. It provides new perspectives for

developing circRNAs as diagnostic markers for early gastric

cancer screening.

Although early-stage gastric cancer is highly curable through

surgery, the majority of patients are diagnosed at an advanced

stage, and therefore missed the window of opportunity for

surgery. The high incidence and high mortality of gastric

cancer urgently call for an early screening program. Detecting

biomarkers in bodily fluids is a patient-friendly approach as

bodily fluids are easy to obtain with likely higher patient

compliance than endoscopy. The aforementioned studies

demonstrated the potential of circRNAs as diagnostic markers

for gastric cancer. Firstly, circRNAs have advantages compared

with linear RNAs such as stable expression and a high degree of

conservation. Secondly, an array of circRNAs is closely associated

with gastric cancer development and risk factors, and their

abnormal expression can signal tumor development and thus

be used as screening biomarkers. Thirdly, in addition to their

presence in tissues, circRNAs can also be sampled non-invasively

in plasma and other bodily fluids. Lastly, with the development of

technology, the detection of circRNAs will become more

sensitive and cost-effective.

4.1 Diagnostic biomarkers

CA72-4 is currently the standard biomarker for early

diagnosis of GC; however, its sensitivity and specificity are

not optimal. CircRNAs exhibit distinct expression patterns in

the tumor tissues and blood of patients with GC versus those

of healthy controls. Thus, they are regarded as promising

biomarkers for tissue or liquid biopsies in the diagnosis of GC.

Xie et al. (2018) found that the expression of

hsa_circ_0074362 was downregulated in both gastritis and

gastric cancer tissues. Due to the association between

gastritis and a high risk of gastric cancer,

hsa_circ_0074362 was proposed to be an early indication

of gastric cancer. Albeit circ_0074362 was not able to

function as an independent diagnostic marker of gastric

cancer since it has a relatively low sensitivity (0.362), the

level of hsa_circ_0074362 was associated with the serum

tumor biomarker CA19-9 and lymph node metastasis.

Therefore, by combining with other clinical markers,

hsa_circ_0074362 may still hold the potential for gastric

cancer screening. Another circRNA with a potential

diagnostic value is hsa_circ_0001649, which is down-

regulated in GC tissues. The ROC curve showed a

sensitivity and specificity of 71.1% and 81.6% respectively,

and the AUC was 0.834. These findings suggested that

hsa_circ_0001649 could be used as a highly accurate,

specific, and sensitive biomarker for gastric cancer (Li

et al., 2017b).

Perhaps more interesting was the finding that the

expression level of exosomal hsa_circ_0015286 decreased

significantly in GC patients following surgery, suggesting

that exosomal hsa_circ_0015286 may be a promising

noninvasive biomarker for the diagnosis and prognostic

evaluation of GC (Zheng et al., 2022). Likewise, in another

study, a panel of 8 circRNAs as non-invasive, liquid-biopsy

biomarkers that could serve as possible diagnostic biomarkers

for the early diagnosis of GC were identified (Roy et al., 2022).

4.2 Prognostic biomarkers

Secondary prevention, including early identification,

early diagnosis, and early treatment, can improve GC

patients’ prognosis. CircRNAs have been increasingly

recognized as potential biomarkers for prognosis.

CircLARP4, for example, was mostly located in the

cytoplasm and regulated the biological behaviors of GC

cells by sponging miR-424. Meanwhile, the decreased

expression of circLARP4 in GC tissues was an

independent predictive factor for the overall survival of

GC patients (Zhang et al., 2017a) (Figure 3A). Further in

vivo investigations verified that the combination treatment

of circUBE2Q2 knockdown and STAT3 inhibitor had

synergistic effects on the inhibition of gastric cancer

growth, suggesting that targeting circUBE2Q2 may

increase the sensitivity of targeted therapies to gastric

cancer (Yang et al., 2021b) (Figure 3B). In addition, the

differential expression of serum hsa_circ_0007507 among

GC, post-operative GC, gastritis, intestinal metaplasia and

relapsed patients, suggests it would be useful as a new

diagnostic and dynamic monitoring biomarker for GC

(Zhang et al., 2021) (Figure 3C). More specifically, the

study of Li et al. (2017a) showed that

hsa_circ_0000096 was significantly downregulated in

gastric cancer tissues (p < 0.001) and the AUC was as

high as 0.82, indicating high diagnostic accuracy.
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4.3 Therapeutic targets

A bunch of researches have revealed the relevance of

circRNAs in GC and their link with GC carcinogenesis and

development, and indicated that circRNAs have the potential to

act as therapeutic targets in GC.

For instance, the overexpression of circAKT3 in GC patients

undergoing cisplatin (CDDP) therapy was substantially linked

with aggressive features and constituted an independent risk

factor for disease-free survival (DFS). circAKT3 was expressed at

a higher level in CDDP-resistant GC tissues and cells than in

CDDP-sensitive samples. Clinicopathological characteristics

demonstrated that the level of hsa_circ_0000520 in GC tissues

was adversely correlated with TNM stage and that the amount of

CEA expression in GC plasma was correlated with TNM stage

(Sun et al., 2018).

Another finding showed that circDIDO1 inhibited the

advancement of GC through regulating the miR-1307-3p/

SOSC2 axis (Figure 3D). Systemic injection of RGD-

modified, circDIDO1-loaded exosomes inhibited the

tumorigenicity and aggressiveness of GC in vitro and in vivo,

indicating that RGD-Exo-circDIDO1 could be employed as a

nanomedicine for the treatment of GC (Guo et al., 2022b).

Hu et al. (2022) confirmed that GSPT1-238aa, a new protein

encoded by circGSPT1, inhibits the development of GC tumors.

They also shed light on the function and molecular mechanisms

behind GSPT1-238aa in GC and suggest that this protein

constitutes a unique therapeutic target for GC. Moreover,

another circRNA, Circ-MTO1, correlates with less lymph

node metastasis, prolonged DFS, and improved chemotherapy

sensitivity in gastric cancer (Chang et al., 2022).

4.4 Drug resistance

Currently, circular RNAs in significant numbers are now

linked to the emergence of treatment resistance and the onset of

cancers. By regulating the miR-383-5p/FGF7 axis, knockdown of

circLRCH3 reduced GC OXA resistance, providing a prospective

therapeutic target for GC chemoresistance (Xiang et al., 2022). As

shown in a study by Xu et al. (2022a), circ0017274 was

upregulated in GC tissues and cells resistant to CDDP, while

FIGURE 3
Functional roles of circRNAs in GC. (A) CircRNAs promoting gastric tumorigenesis and progression (e.g., circLARP4). A few circRNAs also
regulated CDDP resistance (B), cisplatin resistance (C) or promoted gastric cancer progression and resistance to anti-PD-1-based therapy (D). (E)
Some circRNAs indicated a poor survival in GC (e.g., circORC5). (F) Serum hsa_circ_0007507 can be used as a new diagnostic biomarker. (G)Certain
circRNAs could enhance the sensitivity of targeted drugs to gastric cancer (e.g., circUBE2Q2). (H) circDIDO1 could repressed the
tumorigenicity.
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miR-637 was lower (Figure 3E). Reducing the abundance of

circ_0017274 not only alleviated CDDP resistance but also

induced cell cycle arrest in GC cells. The xenograft models

further demonstrated that circ0017274 downregulation

increased CDDP sensitivity and consequently inhibited in vivo

tumor growth. By acting on miR-637/CDX2 in CDDP-resistant

GC cells, circ0017274 downregulation improved CDDP

sensitivity.

It was reported that ICA decreased GC cell survival and

induced pyroptosis by modulating the hsa_circ_0003159/

miR-223-3p/NLRP3 axis both in vitro and in vivo. ICA

suppresses the proliferation of GC cells via modulating the

hsa_circ_0003159/miR-223-3p/NLRP3 signalling pathway

(Zhang et al., 2022a). Circ_AKT3 knockdown decreased

cisplatin resistance in cisplatin-resistant GC cells via the

miR-206/PTPN14 axis (Shi and Wang 2022) (Figure 3F).

Furthermore, the METTL14-mediated m6A alteration of

circORC5 inhibits the progression of gastric cancer by

modulating the miR-30c-2-3p/AKT1S1 axis (Fan et al.,

2022) (Figure 3G). In addition, through targeting

PRKAA2, circCPM plays a vital role in regulating GC

autophagy and 5-FU resistance. It could serve as a novel

theoretical foundation for evaluating the therapeutic efficacy

of GC and reversing 5-FU chemoresistance (Fang et al.,

2022). CircDLG1 was highly increased in distant

metastatic lesions and anti-PD-1-resistant gastric cancer

tissues, and was linked with an aggressive tumor

phenotype and poor prognosis in gastric cancer patients

treated with anti-PD-1 drugs (Chen et al., 2021) (Figure 3H).

On the basis of this mounting evidence, circRNAs play

increasingly crucial roles in the regulation of drug development.

5 Perspectives

5.1 Insights and limitations of current
research

The clinical application of circRNAs has broad prospects,

but it still faces many difficulties. First of all, the cost of

circRNA testing is still higher than that of existing

gastroscopy testing, which limits its application at the

population-scale for early gastric cancer screening.

Secondly, the research on circRNAs is still in its infancy,

and the diagnostic accuracy and consistency are less than

optimal. Current research shows that the sensitivity,

specificity and diagnostic accuracy of different circRNAs

are highly variable, and gastroscopic pathological biopsy is

still the “gold standard” for clinical diagnosis of gastric

cancer. Therefore, it still needs more research to screen

out the most efficient circRNA candidates and study their

values in combination with traditional tumor markers to

achieve the best diagnostic results. Furthermore, current

research on circRNAs focuses on tissue and blood samples

as the source, and the research on circRNAs in other types of

bodily fluids is scarce. Since circRNAs are abundant and

stably expressed in other types of bodily fluids (Pardini et al.,

2019), they should be explored further in the future. Overall,

there is still a long way to go until we can establish circRNAs

as non-invasive tumor markers in the clinical settings.

5.2 Innovative suggestions for future
research

In recent years, a growing number of studies have

uncovered fundamental aspects of circRNAs and produced

many surprising results indicating that circRNAs are

important in biology and pathobiology; consequently,

circRNA-related research is advancing at a constant and

rapid rate. Nonetheless, a global and exhaustive

understanding of circRNAs associated with GC early

detection is still lacking.

In the section that follows, we propose a number of

innovative and challenging directions in the field of

circRNAs in future. First, the majority of current

investigation is still carried out in cells and animals, how

to facilitate translation toward clinical application would be

a hot topic in the future. Second, circRNAs as a stable and

can be widely detected in many types of body fluids, it is

urged to confirm their potential as novel drugs, therapeutic

targets, or biomarkers. In addition, Whether or not a

circRNA with a low abundance can achieve measurable

effects remains debatable. Unlike most current studies that

explore the effect of a single circRNA on a specific

physiological process, the investigation in future should

focus on a group of circRNAs with similar functions that

affect the physiological processes.

6 Summary and outlook

As a newly discovered type of RNAmolecule, circRNAs have

important biological functions and the potential to become an

early biomarker for gastric cancer screening. The volume of

research on this topic has been steadily growing in the past

several years. Multiple studies have revealed the potential of

circRNAs as biomarkers for gastric cancer as they are highly

conservative and differentially expressed in gastric cancer

patients, while the current research is still limited in scope.

The interactions between circRNAs, miRNAs and RBPs and

the mechanisms underlying their functions in gastric cancer

are not yet fully understood. However, with these mechanistic

questions being studied and answered, circRNAs will likely to

become a novel marker in the early screening of gastric cancer to

improve the survival rate of patients.
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Screening potential lncRNA
biomarkers for breast cancer and
colorectal cancer combining
random walk and logistic matrix
factorization

Shijun Li*†, Miaomiao Chang†, Ling Tong, Yuehua Wang,
Meng Wang and Fang Wang

Department of Pathology, Chifeng Municipal Hospital, Chifeng, China

Breast cancer and colorectal cancer are two of the most common

malignant tumors worldwide. They cause the leading causes of cancer

mortality. Many researches have demonstrated that long noncoding

RNAs (lncRNAs) have close linkages with the occurrence and

development of the two cancers. Therefore, it is essential to design an

effective way to identify potential lncRNA biomarkers for them. In this

study, we developed a computational method (LDA-RWLMF) by

integrating random walk with restart and Logistic Matrix Factorization

to investigate the roles of lncRNA biomarkers in the prognosis and

diagnosis of the two cancers. We first fuse disease semantic and

Gaussian association profile similarities and lncRNA functional and

Gaussian association profile similarities. Second, we design a negative

selection algorithm to extract negative LncRNA-Disease Associations

(LDA) based on random walk. Third, we develop a logistic matrix

factorization model to predict possible LDAs. We compare our

proposed LDA-RWLMF method with four classical LDA prediction

methods, that is, LNCSIM1, LNCSIM2, ILNCSIM, and IDSSIM. The

results from 5-fold cross validation on the MNDR dataset show that

LDA-RWLMF computes the best AUC value of 0.9312, outperforming

the above four LDA prediction methods. Finally, we rank all lncRNA

biomarkers for the two cancers after determining the performance of

LDA-RWLMF, respectively. We find that 48 and 50 lncRNAs have the

highest association scores with breast cancer and colorectal cancer

among all lncRNAs known to associate with them on the MNDR

dataset, respectively. We predict that lncRNAs HULC and HAR1A could

be separately potential biomarkers for breast cancer and colorectal

cancer and need to biomedical experimental validation.

KEYWORDS

breast cancer, colorectal cancer, lncRNA, biomarker, lncRNA-disease association,
random walk, logistic matrix factorization
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1 Introduction

Breast cancer is the second leading cause of cancer-related death

in women worldwide and the most common malignant tumor

among US woman (Sun et al., 2017; DeSantis et al., 2019; Yang

et al., 2013; Waks andWiner, 2019). During the past 25 years, breast

cancer mortality rate showed a substantial increase in the world

(Garrido-Castro et al., 2019). This increasing rate is one threaten to

health forwomen in theworld, in particular women fromdeveloping

and low-income regions. More than 1.5 million women were

diagnosed to breast cancer every year, which accounts for 25%

among all women with cancers (Sun et al., 2017). In 2018, breast

cancer accounts for approximately 24% of new cancer cases and

approximately 15% of cancer deaths in women (Heer et al., 2020). In

2019, it is estimated that about 268,600 new patients suffer from

invasive breast cancer and 48,100 patients suffer from ductal

carcinoma in situ among US women. Moreover, 41,760 women

may die from breast cancer in the same year (DeSantis et al., 2019).

About 13% of women may suffer from invasive breast cancer in

lifetime (DeSantis et al., 2019). The incident rate of breast cancer will

increase by more than 46% by 2040 (Heer et al., 2020).

Consequently, breast cancer has been one essential problem to be

solved around the world.

However, the precise mechanisms of breast cancer remain

unclear (Barzaman et al., 2020). Systemic treatment of breast

cancer patients mainly consists of chemotherapy, endocrine

treatment, and targeted therapy (Campos-Parra et al., 2018). In

spite of rapid progress in different treatment strategies, accumulating

patients show recurrence of the disease and decreased survival

because of therapy resistance, which increases metastasis rates

(Sledge et al., 2014). Once the metastasis occurs, the 5-year

overall survival rate may be below 25% (Siegel et al., 2013).

Colorectal cancer is the third most frequent cancer and the

second most death-caused cancer. It is estimated that there are

about 1.9 million new cases and 0.9 million death cases

worldwide in 2020 (Xi and Xu, 2021). Of new diagnose cases,

20% of patients have metastases and another 25% with localized

disease may later developmetastases (Biller and Schrag, 2021). Its

incidence is high in developed countries and is increasing in low-

and middle-income countries, which poses a challenge to global

public health (Biller and Schrag, 2021; Xi and Xu, 2021).

In this situation, it is essential to discover novel molecular

biomarkers that can characterize therapy response for breast cancer

and colorectal cancer. We can extend the overall survival rates of

patients and delay or prevent the two cancers frommetastases based on

molecular biomarkers (Campos-Parra et al., 2018). Consequently,

screening reliable biomarker is a research hotspot on the diagnosis

and treatment of cancer including breast cancer and colorectal cancer

(Huang et al., 2019; Yang et al., 2020; Peng et al., 2022a).

A substantial number of evidence suggest that over 80% of

the human genome can be transcribed into non-coding RNAs,

such as microRNAs (Peng et al., 2017; Peng et al., 2018; Chen

et al., 2019; Huang et al., 2021), circle RNAs (Zhao et al., 2019;

Lan et al., 2022), and long non-coding RNAs (lncRNAs) (Zhang

et al., 2021a; Peng et al., 2021a; Peng et al., 2022b; Zhou et al.,

2021a; Zhou et al., 2021b). In particular, lncRNAs obtain

emerging interest as diagnostic biomarkers and therapeutic

targets (Chandra Gupta and Nandan Tripathi, 2017; Guo

et al., 2022). Differential expression of lncRNAs forms specific

patterns to various complex diseases including cancer

(Wahlestedt C, 2013). Once the regulation effects of lncRNAs

are detected, they are promising therapeutic targets.

LncRNAs are closely related to breast cancer and colorectal

cancer. For example, lncRNA BCRT1, MaTAR25, DSCAM-AS1,

and CDC6 can promote breast cancer progression (Niknafs et al.,

2016; Kong et al., 2019a; Chang et al., 2020; Liang et al., 2020),

BCRT4 can induce signaling transduction in breast cancer (Xing

et al., 2015), LINC00673 can promote cell proliferation of breast

cancer (Qiao et al., 2019), and BORG can cause breast cancer

metastasis and disease recurrence (Gooding et al., 2017).

SNHG11, FEZF1-AS1, RP11, and DLEU1 have been reported

to novel biomarkers of colorectal cancer (Bian et al., 2018; Liu

et al., 2018; Wu et al., 2019; Xu et al., 2020). Thus, many

computational models have been developed to discover

lncRNA biomarkers for cancers (Peng et al., 2020a; Shen

et al., 2022; Sun et al., 2022), for instance, rotation forest

(Guo et al., 2019), KATZ measure (Chen, 2015), collaborative

deep learning (Lan et al., 2020), matrix factorization (Fu et al.,

2018; Wang et al., 2021a), network consistency projection (Li

et al., 2019), and graph autoencoder (Shi et al., 2021).

In this manuscript, inspired by the association prediction

method provided by Peng et al. (2020b), we develop a

computational method, LDA-RWLMF, to predict LncRNA-

Disease Associations (LDAs). LDA-RWLMF integrates random

walk and Logistic Matrix Factorization to discover the roles of

lncRNA biomarkers in the prognosis and diagnosis for breast

cancer and colorectal cancer. First, we compute disease similarity

and lncRNA similarity. Second, we first use random walk to extract

negative LDAs. Third, we explored a logistic matrix factorization

model to predict possible LDAs. The results from 5-fold cross

validation show that LDA-RWLMF computes the best AUC

value of 0.9312 on the MNDR dataset. Finally, we rank all

lncRNA biomarkers for breast cancer and colorectal cancer after

determining the performance of LDA-RWLMF.

2 Datasets

2.1 LncRNA-disease associations

Human LDA dataset was collected from the MNDR database

(Cui et al., 2018; Fan et al., 2020) (http://www.rna-society.org/

mndr/index.html). There are 1,529 LDAs between 89 diseases

and 190 lncRNAs after preprocessing. For an LDA matrix

between n lncRNAs and m diseases, we use YϵRn×m to

describe the association information by Eq. 1:
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Y ij � { 1 If lncRNA li associates with dj

0 otherwise
(1)

2.2 Disease semantic similarity

We use the method provided by Fan et al. (2020) to compute

disease semantic similarity based on the MeSH descriptors.

Disease semantic similarity method provided by Fan et al.

(2020) was based on LNCSIM1 and LNCSIM2 provided by

Chen (2015). For a disease A, suppose that TA represents its

ancestor node set, EA denotes all edge set, its Directed Acyclic

Graph (DAG) is represented as DAGA � {TA, EA}. For a disease
term t ∈ TA in DAGA, its semantic contribution to A is

calculated by Eq. 2 (Chen, 2015):

SV1
A(t) �

1 t � A
max (Δ× SV1

A(t′)∣∣∣∣∣∣t′ ∈ C(t) t ≠ A{ (2)

where C(t) indicates the children of t, Δ indicates the sematic

contribution factor related to edges that link t′ to t, and Δ was

usually set as 0.5 (Wang et al., 2010).

The above equation demonstrates that terms at the same layer

from DAGA have the same semantic contribution to A. But if two

terms t1 and t2 are in the same layer ofDAGA and t1 appears in less in

DAGA than t2, the conclusion from t1 will be more specific than one

from t2, thus, SV1
A(t1) is higher than SV1

A(t2).
In this case, we compute the second semantic contribution of

term t ∈ TA to disease A by Eq. 3:

SV2
A(t) � −logDags(t)

D
(3)

whereD indicates the number of diseases inMeSH,Dags(t) indicates
the number ofDAGs that contain the disease term t. And the semantic

contribution of t in DAGA can be defined by Eq. 4:

SV3
A(t) �

1 t � A
max ((Δ + ∇)SV3

A(t′)∣∣∣∣∣∣t′ ∈ C(t) t ≠ A{ (4)

where ∇ indicates the contribution factor related to information

content, and is computed by Eq. 5:

∇ � maxk∈K(Dags(k)) − dags(t)
D

(5)

where K indicates the disease set in MeSH.

Furthermore, the contribution of all terms in DAGA to the

disease A is computed by Eq. 6:

SV(A) � ∑
t∈TA

SV3
A(t) (6)

Finally, the semantic similarity between two diseases (A and

B) can be computed by Eq. 7:

Ssd(A, B) �
∑t∈TA∩TB

(SV3
A(t) + SV3

B(t))
SV(A) + SV(B) (7)

2.3 LncRNA functional similarity

We use the method provided by Fan et al. (Fan et al., 2020)

to compute lncRNA functional similarity. Let that DG(u) [or

DG(v)] indicate diseases linking to lncRNA u (or v) on LDA

matrix, the similarity between two lncRNAs u and v is

obtained through disease semantic similarity in DG (u) and

DG (v). A disease semantic similarity sub-matrix is first

constructed. In the constructed matrix, rows and columns

are diseases in DG (u) ∪DG (v), and each element indicates the

semantic similarity between diseases. Suppose that du indicate

a disease in DG (u), the similarity between du and DG(v) is

computed by Eq. 8:

S(du,DG(v)) � max
d∈DG(v)

(Sd(du, d)) (8)

Similarly, the similarity between dv and DG (u) is computed by

Eq. 9:

S(dv, DG(u)) � max
d∈DG(u)

(Sd(dv, d)) (9)

And the similarity of DG(u) → DG(v) is computed by Eq. 10:

Su→v � ∑
d∈DG(u)

S(d,DG(v)) (10)

And similarity of DG(v) → DG(u) is computed by Eq. 11:

Sv→u � ∑
d∈DG(v)

S(d,DG(u)) (11)

The similarity between lncRNAs u and v is measured based

on the disease semantic similarity by Eq. 12:

Sfl (u, v) �
Su→v + Sv→u

|DG(u)| + |DG(v)| (12)

where |DG(u)| and |DG(v)| are the number of diseases in

DG(u) andDG(v).

3 Methods

We want to compute association probability for each

lncRNA-disease pair based on disease semantic similarity

and lncRNA functional similarity. The pipeline is shown in

Figure 1.

3.1 Gaussian association profile similarity
and similarity fusion

In this section, we use Gaussian Association Profile (GAP) to

compute the GAP similarity of diseases and lncRNAs. For a

lncRNA li, its GAP AP(li) is denoted using the i th row of Y. The
GAP similarity of lncRNAs li and lj is defined by Eq. 13:

Frontiers in Genetics frontiersin.org03

Li et al. 10.3389/fgene.2022.1023615

121

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1023615


Sgl (li, lj) � exp ( − γl





AP(li) − AP(lj)




2) (13)

where γl � γ′l/(1n ∑n
k�1 ‖ AP(li)‖2) is the normalized kernel

bandwidth with parameter γ′l . Thus, the lncRNA similarity

matrix Sl is computed by Eq. 14:

Sl � 1
2
(Sfl + Sgl ) (14)

Similarly, the disease GAP similarity Sd can be computed.

3.2 Screening negative LDAs

There are not negative LDAs in the MNDR dataset. Credible

negative LDAs help improve LDA prediction performance and

further more effectively find potential lncRNA biomarkers for

FIGURE 1
The pipeline of LDA-RWLMF.
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breast cancer and colorectal cancer. Peng et al. (2021b) developed

a random walk with restart-based virus-drug association

prediction method and obtained better performance. Inspired

by the method provided by Peng et al. (2021b), we first compute

association probability for each lncRNA-disease pair through

random walk with restart and then screen credible

negative LDAs.

We first constructed a heterogeneous network composed of

lncRNA similarity network, disease similarity network, and LDA

network. lncRNA similarity matrix Sl, disease similarity matrix

Sd, and LDA matrix Y are used as the adjacency matrices related

to the heterogeneous network. The adjacency matrix related to

the heterogeneous network is represented as Eq. 15:

H � [ Sl Y
YT Sd

] (15)

where YT denotes the transpose of Y .
We then compute transition probability on the

heterogeneous graph. Suppose that H � [ H ll H ld

Hdl Hdd
] indicate

transition probability matrix, where H ll and Hdd indicate the
walks within lncRNA similarity network and disease similarity
network, respectively, H ld and Hdl indicate the jumps between
networks. For an lncRNA/disease, when there is an association
between the lncRNA/disease and diseases/lncRNAs, the node
will either continue to walk in the current network based on a
transition probability λ ∈ [0, 1] or jump between the above four
networks.

The i -th lncRNA will walk to the j -th lncRNA through the

transition probability Hll(i, j) by Eq. 16:

H ll(i, j) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sl(i, j)∑n
k�1 Sl(i, k)

, if ∑m

k�1 Y(i, k) � 0

(1 − λ)Sl(i, j)∑n
k�1 Sl(i, k)

, otherwise

(16)

or jump to a disease dj through the transition probability

Hld(i, j) by Eq. 17:

H ld(i, j) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λY(i, j)∑m
k�1 Y(i, k)

, if ∑m

k�1 Y(i, k) ≠ 0

0, otherwise

(17)

Similarly, the i -th disease di will walk to the j -th disease dj
through the transition probability Hdd(i, j) by Eq. 18:

Hdd(i, j) �
Sd(i, j)∑m
k�1 Sd(i, k)

, if ∑n
k�1

Y(k, i) � 0

(1 − λ)Sd(i, j)∑m
k�1 Sd(i, k)

, otherwise

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(18)

or jump to an lncRNA lj through the transition probability

Hdl(i, j) by Eq. 19:

Hdl(i, j) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λY(i, j)∑n
k�1 Y(k, i)

, if ∑m

k�1 Y(k, i) ≠ 0

0, otherwise

(19)

At the t− th step, the association probability matrix between

all lncRNA-disease pairs on the heterogeneous network is

computed by Eq. 20:

P(t + 1) � (1 − θ)HT*P(t) + θP(0) (20)

where HT indicates the transpose of H, and θ is the restarting

probability. P(0) indicates the initial probability with

pi(0) � [ (1 − η)vi
ηsi

], where vi and sj indicate the initial

probability distributions on disease similarity network and

lncRNA similarity network, respectively. And η ∈ [0, 1] is

used to control the restarting probability in these two

similarity networks. If η< 0.5, the particle will more tend to

restart from one of the seed microbes than from one of the seed

diseases.

In the second step, we consider known LDAs as positive

sample set P, unknown lncRNA-disease pairs as unlabeled set U

and propose a PU learning approach to screen credible negative

LDA sample set RN. The method contains the following six

steps:

Step 1. Randomly screening positive sample subset D from P

Step 2. Adding D into U;

Step 3. Considering P −D as positive samples, U +D as negative

samples;

Step 4. Obtaining LDA score matrix SNeg using random walk

with restart;

Step 5. Ranking lncRNA-disease pairs in D based on SNeg
min and

obtaining the minimum score SNeg
min in D;

Step 6. For every lncRNA-disease pair x in U:

If SNeg(x)< SNeg
min then RN � RN ∪ x.

3.3 LDA prediction based on logisticmatrix
factorization

Logistic matrix factorization has been applied to multiple areas

(Liu et al., 2020; Tang et al., 2021; Tian et al., 2022). Inspired by the

approaches, we develop a logistic matrix factorization-based LDA

prediction method, LDA-RWLMF.

Assume that both lncRNAs and diseases are mapped to

r-dimensional shared latent spaces (r≪ n,m), thus an lncRNA

li or disease di can be represented as a latent vector

ai ∈ R1×t or bi ∈ R1×t. The association probability pij between

li and di is calculated by Eq. 12:
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pij �
exp(aibTj )

1 + exp (aibTj ) (21)

The latent vector matrix of all lncRNAs or diseases can be

represented as A ∈ Rn×rorB ∈ Rm×r where ai or bi indicates the i
th or j th row in A orB. In addition, known LDAs are more

credible than unknown lncRNA-disease pairs. Thus, we assign

higher confidence values to known LDAs than unknown

lncRNA-disease pairs. Similar to Peng et al. (2020b), we use a

constant c to assess the importance of known LDAs and

construct a prediction model by Eq. 22:

p(Y | A,B) � ⎛⎝ ∏
1≤ i≤ n,1≤ j≤m,yij�1

[pyij
ij (1 − pij)(1−yij)]

c⎞⎟⎠
× ⎛⎝ ∏

1≤ i≤ n,1≤ j≤m,yij�0
[pyij

ij (1 − pij)(1−yij)]⎞⎟⎠
� ∏n

i�1
∏m
j�1

p
cyij
ij (1 − pij)(1−yij)

(22)
Model (21) can be optimized based on the Bayesian

distribution by Eq. 23:

min
A,B

∑m
i�1

∑n
j�1
(1 + cyij − yij)log[1 + exp(aibTj )] − cyijaib

T
j +

λl
2

‖ A‖2F +
λd
2
‖ B‖2F (23)

where λl and λd are two parameters, ‖A‖F indicates the Frobenius
norm of A. (Zhang et al. 2019a; Zhang et al. 2019b) integrated

linear neighborhood information to model (22) to predict

various associations. Similarly, we fuse neighborhood

information to Eq. 23 by Eq. 24:

min
A,B

∑m
i�1

∑n
j�1
(1 + cyij − yij) ln[1 + exp(aibTj )] − cyijaib

T
j

+1
2
tr [AT(λlI + αLl)A + 1

2
tr [BT(λdI + αLd)B

(24)

where tr (·) indicates the trace of the matrix. Ll and Ld indicate
the corresponding Laplacian matrix of A and B. Ll �
(Dl + ~Dl) − (A + AT) where Dl and ~Dl are two diagonal

matrices and Dl(i, i) � ∑m
j�1aij and ~Dl (i, i) � ∑m

i�1aij.
Similarly, Ld can be computed.

We compute A and B by solving Eq. 24 through an

alternating gradient ascent approach.

TABLE 1 AUCs of LDA identification approaches on the MNDR dataset.

Dataset LNCSIM1 LNCSIM2 ILNCSIM IDSSIM LDA-RWLMF

the MNDR dataset 0.9251 0.9280 0.9267 0.9302 0.9312

FIGURE 2
The AUC of LDA-RWLMF from 10 time cross validation (t = 1, 2, 3, . . . , 10).
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TABLE 2 The rankings of the predicted top 48 lncRNAs according to association with breast cancer on the MNDR dataset.

Rank lncRNA Evidence Rank lncRNA Evidence

1 CASC2 Known 25 PVT1 Known

2 DLEU2 Known 26 RMST Known

3 MIR17HG Known 27 TRAF3IP2-AS1 Known

4 DSCAM-AS1 Known 28 HCP5 Known

5 SNHG4 Known 29 LINC00271 Known

6 TCL6 Known 30 GHET1 Known

7 XIST Known 31 SNHG3 Known

8 CBR3-AS1 Known 32 TDRG1 Known

9 MIAT Known 33 DAOA-AS1 Known

10 CCAT2 Known 34 BACE1-AS Known

11 SOX2-OT Known 35 NAMA Known

12 GAS5 Known 36 BDNF-AS Known

13 PCA3 Known 37 SNHG11 Known

14 MALAT1 Known 38 UCA1 Known

15 BANCR Known 39 SNHG16 Known

16 WT1-AS Known 40 MIR100HG Known

17 PANDAR Known 41 H19 Known

18 HNF1A-AS1 Known 42 TERC Known

19 HAR1B Known 43 MEG3 Known

20 CCDC26 Known 44 SPRY4-IT1 Known

21 BCAR4 Known 45 DANCR Known

22 PDZRN3-AS1 Known 46 KCNQ1OT1 Known

23 HIF1A-AS2 Known 47 IFNG-AS1 Known

24 CRNDE Known 48 HOTAIR Known

TABLE 3 The rankings of the remaining 41 lncRNAs according to association with breast cancer on the MNDR dataset.

Rank lncRNA Evidence Rank lncRNA Evidence

49 HULC PMID: 31824174, 33107484, 33745450 70 ZFAT-AS1 Unconfirmed

50 CCAT1 Known 71 PTENP1 PMID: 28731027, 29085464, 29212574, 31196157

51 NPTN-IT1 Unconfirmed 72 HIF1A-AS1 Unconfirmed

52 PCAT1 PMID: 32853955, 28989584, 33850635, 32220602 73 SRA1 Known

53 HAR1A PMID: 26942882 74 MINA Unconfirmed

54 LSINCT5 Known 75 DLEU1 Known

55 TUG1 PMID: 28950664, 27848085, 30098551, 33380806 76 PSORS1C3 Unconfirmed

56 MIR155HG Unconfirmed 77 LINC00032 Unconfirmed

57 DGCR5 PMID: 32521856 78 WRAP53 Unconfirmed

58 IGF2-AS PMID: 33175607 79 7SK Unconfirmed

59 BCYRN1 Known 80 RRP1B Unconfirmed

60 EPB41L4A-AS1 PMID: 35181612 81 MYCNOS Unconfirmed

61 PINK1-AS Unconfirmed 82 PRINS Unconfirmed

62 DNM3OS Unconfirmed 83 ATP6V1G2-DDX39B Unconfirmed

63 ADAMTS9-AS2 PMID: 30840279 84 MKRN3-AS1 Unconfirmed

64 MIR31HG lncRNADisease 85 NRON Unconfirmed

65 BOK-AS1 Unconfirmed 86 MESTIT1 Unconfirmed

66 ESRG Unconfirmed 87 LINC00162 Unconfirmed

67 KCNQ1DN Unconfirmed 88 DISC2 Unconfirmed

68 ATXN8OS PMID: 31173245, 33385064, 33477683 89 SCAANT1 Unconfirmed

69 CDKN2B-AS1 Known
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Finally, lncRNA-disease association score Yfin(i, j) for each
lncRNA-disease pair can be computed by Eq. 25:

Yfin � ABT (25)

4 Results

4.1 Experimental settings

We conduct 5-fold cross validation for 10 times to investigate

the performance of LDA-RWLMF. AUC is used to evaluate the

prediction accuracy of LDA identification models. AUC is the

area under the true positive rate (TPR)-false positive rate (FPR)

curve, where TPR and FPR are defined by Eqs 26, 27:

TPR � TP
TP + FN

(26)

FPR � FP
TN + FP

(27)

where TP, FP, TN, FN represent the number of true positives,

false positives, true negatives, false negatives, respectively. Higher

AUC is, better the prediction performance is. In addition,

parameters in LDA-RWLMF are set to defaults provided by

Peng et al. (2020b). And parameters in the other four comparison

LDA prediction methods (LNCSIM1, LNCSIM2, ILNCSIM, and

IDSSIM) are set to the same values provided by corresponding

methods.

4.2 Performance comparison with other
methods

To measure the performance of the proposed LDA-RWLMF

method, we compare it with four other representative LDA

inference approaches on the MNDR dataset. That is,

LNCSIM1 (Chen, 2015), LNCSIM2 (Chen, 2015), ILNCSIM

(Huang et al., 2016), and IDSSIM (Fan et al., 2020).

LNCSIM1 and LNCSIM2 used Laplacian regularized least

squares to predict possible LDAs based on disease DAGs and

the information content, respectively. ILNCSIM first combined

the hierarchical structure of disease DAG and the information

content to compute disease similarity and then used Laplacian

FIGURE 3
The associations between the remaining 41 lncRNAs and breast cancer.
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regularized least squares to infer new LDAs. IDSSIM designed a

weighted K nearest neighbor approach to identify potential

associations between lncRNAs and diseases by integrating

disease semantic similarity and lncRNA functional similarity.

Table 1 gives the AUC values of the four LDA identification

methods and our proposed LDA-RWLMF on theMNDR dataset.

The results from Table 1 demonstrate that LDA-RWLMF

computes the highest AUC compared to LNCSIM1, LNCSIM2,

ILNCSIM, and IDSSIM on the MNDR dataset. Figure 2 gives the

results of LDA-RWLMF from 10 time cross validation. From

Figure 2, we can find that AUC obtain by LDA-RWLMF is

relatively steady during 10 time cross validation.

4.3 Case study

4.3.1 lncRNA biomarker identification for breast
cancer

Breast cancer is the commonest life-threatening cancer in

women (Key et al., 2001; Sharma, et al., 2010). lncRNAs play

important roles in epigenetic regulation, transcriptional

regulation and post-transcriptional regulation and have been

potential biomarkers of many diseases. Substantial publications

have reported that lncRNAs affect proliferation and apoptosis,

invasion and metastasis, and cancer stemness of breast cancer.

For example, LSINCT5 and Zfas one can promote the

proliferation of breast cancer, HOTAIR suppresses invasion

and migration of breast cancer, SOX2OT induces

SOX2 expression in breast cancer, and SRA is the expression

activator of breast cancer (Sun et al., 2017). We want to conduct

case analyses to find possible lncRNA biomarkers for breast

cancer based on the proposed LDA-RWLMF model.

In the MNDR dataset, there are 89 lncRNAs that may

associate with breast cancer, where 54 lncRNAs have been

experimentally validated to associate with the cancer and

35 lncRNAs have unknown associations with it. We use the

proposed LDA-RWLMF method to rank the 89 lncRNAs for

breast cancer. The results are shown in Tables 2, 3. Table 2

demonstrates the ranking results of the predicted top 48 lncRNAs

according to the computed association score with breast cancer

on the MNDR dataset. These 48 lncRNAs are known to link to

breast cancer on the MNDR dataset and are ranked as top 48.

Table 3 gives the rankings of the remaining 41 lncRNAs

according to the association scores with breast cancer on the

TABLE 4 The rankings of the identified top 50 lncRNAs associated with colorectal cancer on the MNDR dataset.

Rank lncRNA Evidence Rank lncRNA Evidence

1 SOX2-OT Known 26 NAMA Known

2 DLEU2 Known 27 WT1-AS Known

3 CASC2 Known 28 TDRG1 Known

4 TCL6 Known 29 GHET1 Known

5 TRAF3IP2-AS1 Known 30 CRNDE Known

6 DSCAM-AS1 Known 31 XIST Known

7 GAS5 Known 32 MALAT1 Known

8 MIR17HG Known 33 RMST Known

9 HAR1B Known 34 SNHG3 Known

10 CCDC26 Known 35 BACE1-AS Known

11 CBR3-AS1 Known 36 MIR100HG Known

12 PANDAR Known 37 IFNG-AS1 Known

13 MIAT Known 38 DANCR Known

14 SNHG4 Known 39 SNHG16 Known

15 HIF1A-AS2 Known 40 SNHG11 Known

16 HNF1A-AS1 Known 41 TERC Known

17 PCA3 Known 42 KCNQ1OT1 Known

18 BANCR Known 43 MEG3 Known

19 LINC00271 Known 44 HULC Known

20 PDZRN3-AS1 Known 45 UCA1 Known

21 CCAT2 Known 46 SPRY4-IT1 Known

22 BCAR4 Known 47 PCAT1 Known

23 DAOA-AS1 Known 48 HOTAIR Known

24 BDNF-AS Known 49 PVT1 Known

25 HCP5 Known 50 CCAT1 Known
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MNDR dataset. Among all lncRNAs unknown to associate with

breast cancer on the MNDR dataset, lncRNA HULC is predicted

to link to breast cancer with the highest association scores. Shi

et al. (2016) observed that HULC can act as an oncogene

biomarker in triple-negative breast cancer and as an

independent possible poor prognostic factor in patients

suffered from triple-negative breast cancer. Wang et al. (2019)

found that HULC can promote the development of breast cancer

through regulating the expression of LYPD1. Gavgani et al.

(2020) investigated that the HULC knockdown can induce

apoptosis and suppress cellular migration in breast cancer cells.

PCAT1 may link to breast cancer with the ranking of three

among all lncRNAs unknown to associate with breast cancer on

the MNDR dataset. Several studies have reported that

PCAT1 can associate with breast cancer although its

association with the cancer on the MNDR dataset is

unobserved. Abdollahzadeh et al. (2020) reported that the

altered regulation of PCAT1 may play crucial roles in the

development and pathogenesis of breast cancer. Sarrafzadeh

et al. (2017) assessed the expression of PCAT-1 through real-

time reverse transcription polymerase chain reaction in breast

tumor samples from 47 breast cancer patients and found that

PCAT-1 may involve in the pathogenesis of breast cancers. Wang

et al. (2021a) observed that PCAT-1 can facilitate breast cancer

progression by binding to RACK1 and thus boosting oxygen-

independent stability of HIF-1α. Tang et al. (2022) detect that

PCAT1 can regulate the expression of PITX2 in breast cancer.

In addition, we predict that nephronectin intronic

transcript 1 (NPTN-IT1, also known as lncRNA-LET) may

have relationship with breast cancer. NPTN-IT1 has been

reported to associate with bladder cancer through

attenuating the expression of the target of miR-145 and

ILF3 in bladder cancer (Zhang et al., 2021b). It was

significantly down-regulated in multiple tumor tissues of

colorectal cancer. It also has a regulation role in hypoxia

signaling of hepatocellular carcinoma (Sun et al., 2013) and

was highly expressed in HepG2 cells (Kong et al., 2019b). We

hope that association between three lncRNAs (HULC, NPTN-

IT1, and PCAT1) and breast cancer can be validated through

wet experiments. Figure 3 shows the associations between the

41 lncRNAs that are ranked as the last 41 and breast cancer.

Black solid lines represent known LDAs in the MNDR

database. Green solid lines represent LDAs that can be

observed in the lncRNA disease database. Red dots lines

represent LDAs that are predicted to be potential lncRNA

biomarkers of breast cancer and can be confirmed by related

publications. Blue equal dash lines represent unknown LDAs.

4.3.2 lncRNA biomarker identification for
colorectal cancer

Colorectal cancer is a heterogeneous disease. It has high

morbidity and mortality. lncRNAs demonstrate dense

associations with colorectal cancer. In this study, we

conduct case analyses to identify possible lncRNA

TABLE 5 The rankings of the remaining 41 lncRNAs according to association with breast cancer on the MNDR dataset.

Rank lncRNA Evidence Rank lncRNA Evidence

51 HAR1A Unconfirmed 71 ZFAT-AS1 Unconfirmed

52 NPTN-IT1 known 72 SRA1 Unconfirmed

53 TUG1 known 73 PSORS1C3 Unconfirmed

54 IGF2-AS PMID: 32853944, 30581274 74 HIF1A-AS1 Unconfirmed

55 LSINCT5 known 75 MINA Unconfirmed

56 DGCR5 PMID: 31452812 76 LINC00032 Unconfirmed

57 H19 known 77 WRAP53 Unconfirmed

58 EPB41L4A-AS1 PMID: 32557646 78 DLEU1 Unconfirmed

59 MIR155HG PMID: 34562123,31228357 79 RRP1B Unconfirmed

60 CDKN2B-AS1 known 80 7SK Unconfirmed

61 MIR31HG PMID: 30447009,35733512,34485123 81 PRINS Unconfirmed

62 ESRG PMID: 34896077 82 MYCNOS Unconfirmed

63 BCYRN1 PMID: 30114690,32944001,31773686 83 ATP6V1G2-DDX39B Unconfirmed

64 BOK-AS1 Unconfirmed 84 MKRN3-AS1 Unconfirmed

65 PINK1-AS Unconfirmed 85 NRON Unconfirmed

66 KCNQ1DN Unconfirmed 86 SCAANT1 Unconfirmed

67 ATXN8OS Unconfirmed 87 DISC2 Unconfirmed

68 DNM3OS Unconfirmed 88 MESTIT1 Unconfirmed

69 PTENP1 Unconfirmed 89 LINC00162 Unconfirmed

70 ADAMTS9-AS2 Unconfirmed
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biomarkers for colorectal cancer based on LDA-RWLMF. In

the MNDR dataset, 89 lncRNAs possibly associate with

colorectal cancer, where 55 lncRNAs have been validated to

be the biomarkers of the cancer and remaining 34 lncRNAs

have not been validated. We use LDA-RWLMF to compute the

association scores between all 89 lncRNAs and colorectal

cancer and rank the 89 lncRNAs for colorectal cancer. The

results are shown in Tables 4, 5. Table 4 shows the rankings of

the identified top 50 lncRNAs according to the computed

association score with colorectal cancer on the MNDR dataset.

The 50 lncRNAs are known to associate with colorectal cancer

on the MNDR dataset and are ranked as top 50.

Table 5 gives the rankings of the remaining 39 lncRNAs

according to the association scores with colorectal cancer on the

MNDR dataset. Among all lncRNAs unknown association with

colorectal cancer on the MNDR dataset, lncRNA HAR1A is

inferred to link to colorectal cancer with the highest association

scores. HAR1A is a favorable prognostic biomarker for patients.

Shi et al. (2019) analyzed the expression profiles of HAR1A using

RT-qPCR and found its expression level was significantly lower

in hepatocullular cancer. Chen et al. (2020) have still reported

that the HAR1A expression levels were reduced in hepatocellular

carcinoma tissues.

Figure 4 gives the associations between the remaining

39 lncRNAs and colorectal cancer. Black solid lines represent

known LDAs in the MNDR database. Red dots lines represent

LDAs that are predicted to be potential lncRNA biomarkers of

breast cancer and can be confirmed by related publications. Blue

equal dash lines represent unknown LDAs.

5 Discussion and conclusion

Breast cancer and colorectal cancer are the most frequent

cancers with high mortality rates. They demonstrate very high

heterogeneity at molecular and clinical levels. With the fast

development of next generation sequencing technologies, we

can more accurately characterize the human genome.

lncRNAs act mainly as gene expression regulators. The

dysregulation of lncRNAs may destroy the normal

transcriptional landscape and thus cause malignant

transformation. In addition, their highly specific expression

FIGURE 4
The associations between the remaining 39 lncRNAs and colorectal cancer.
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and functional tertiary structure force them to be as promising

diagnostic biomarkers and potential targets for various diseases

including breast cancer and colorectal cancer.

In this study, we proposed a computational lncRNA-disease

associationmethod (LDA-RWLMF) to identify potential biomarkers

for breast cancer and colorectal cancer. First, a random walk with

restart method was designed to extract negative LDAs. Second, a

logistic matrix factorization model was explored to infer possible

associations between lncRNAs and diseases. Finally, all lncRNAs are

ranked according to association scores with breast cancer and

colorectal cancer on the MNDR dataset.

We conduct 5-fold cross validation for 10 times to compare

LDA-RWLMF with state-of-the-art LDA prediction models on

the MNDR dataset, that is, LNCSIM1, LNCSIM2, ILNCSIM, and

IDSSIM. The results show that LDA-RWLMF computes the best

AUC values of 0.9312. We predict that lncRNAs (HULC, NPTN-

IT1, and PCAT1) may be possible biomarkers of breast cancer

and colorectal cancer.

Our proposed LDA-RWLMFmethod has two disadvantages.

First, it extracted credible negative LDA samples. In the area of

association prediction, there are no negative association samples

because of the limitation of biomedical experiments, which

causes relatively poor performance. Thus, we designed a

negative LDA extraction method based on PU learning.

Second, the logistic matrix factorization model can effectively

discover possible associations between two biological entities.

Thus, we used the model to identify new LDAs. In addition,

diseases and lncRNAs exhibit abundant biological features. In

this study, we failed to consider these diverse features. In the

future, we will further integrate more biological information to

improve LDA prediction.

In the future, we will further design more effective negative

sample screening method based on positive-unlabeled learning.

In addition, we will also develop deep learning model for LDA

prediction. We anticipate that the proposed LDA-RWLMF

method can help design therapeutic regimens for personalized

treatment of breast cancer and colorectal cancer and thus

opportunely inhibit its recurrence.
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