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Editorial on the Research Topic

Drug repurposing and polypharmacology: A synergistic approach in

multi-target based drug discovery

Drug repurposing (also called drug repositioning) is a process of identifying new

therapeutic uses for approved and/or existing drugs for treating common, difficult-to-

treat and rare diseases (Paul et al., 2022; Rudrapal et al., 2022). On the other hand,

polypharmacology (or multi-targeting approach) involves the interactions of drug

molecules with multiple targets of different therapeutic indications/diseases (Jamir

et al., 2022).

Drug repurposing is increasingly becoming an attractive strategy worldwide as it

involves lower risk, potentially reduced expenditure and shorter development timelines as

compared to de novo drug discovery (Rudrapal et al., 2020). Rising scenarios of deadly

diseases (cancer, cardiovascular illness, diabetes, infectious diseases, COVID-19) largely

affect the lives of millions of people, and thereby it impose a heavy economic burden

globally (Singh et al., 2020). Currently available (or FDA approved) drugs are inadequate

to manage a majority of such diseases, and, therefore, there is an urgent need for new drug

candidates and/or drug therapy. Drugs with multi-targeting (polypharmacology

approach) potential are immensely interesting in repurposing, because this dual

synergistic strategy could offer better therapeutic alternative and useful clinical

candidates (Pinzi et al., 2021).

The Research Topic “Drug repurposing and polypharmacology: A synergistic approach

in multi-target based drug discovery” was aimed to compile latest research ideas,

directions, developments and advances focusing on the theme of the topic within the

scope of the journal. The topic was led by three Guest Editors listed above who are experts

in the subject and oversaw the entire editorial process for the submitted papers. A total of

ten articles were published, including seven original research and three review articles.
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In a study, Xie et al. reported that lenvatinib when combined

with the PD-1 inhibitor could effectively treat patients with

advanced intrahepatic cholangiocarcinoma (ICC). They

concluded that this combination therapy could be a safe and

better alternative option for the treatment of advanced ICC.

A review article by Liu et al. highlighted the development of

novel antiviral compounds targeting the S protein of SARS-CoV-

2 through screening of natural products and drug repurposing

approaches. This study provided insights into the discovery of

promising drug candidates from natural sources as possible anti-

SARS-CoV-2 agents.

Another study reported by Yang et al. utilized a molecular

docking protocol to screen out potential inhibitors targeting the

main protease (Mpro) of SARS-CoV-2. This study resulted in five

compounds (namely, N-1H-Indazol-5-yl-2-(6-methylpyridin-2-

yl)quinazolin-4- amine, ergotamine, antrafenine,

dihydroergotamine and phthalocyanine) as potential drug

candidates to be developed for clinical trials. Further, molecular

dynamics (MD) simulations confirmed that potential inhibitory

effect of the five identified compounds against SARS-CoV-2 Mpro.

Mangione et al. investigated upon Computational Analysis of

Novel Drug Opportunities (CANDO) platform to identify small

molecule inhibitors against COVID-19 on the basis of multiscale

therapeutic, repurposing and design approaches. Interestingly,

51 of their 276 predictions demonstrated anti-SARS-CoV-

2 potential according to published reports (clinical and

experimental), suggesting the ability of CANDO platform in

multi-target based drug discovery.

In another study, Khan et al. investigated molecular targets

and pathways of nitazoxanide as novel approaches for the

treatment of hepatocellular carcinoma (HCC) by using

molecular docking and network pharmacology approaches.

Authors proposed that distinct therapeutic effect for

nitazoxanide is possible in treating HCC, with well-defined

pharmacological targets and molecular pathways.

Sun et al. represented a bibliometric analysis of publications

on drug repurposing for 10 years (2010–2020), which included

2,978 of publications. Their findings reported that the

United States leads in drug repurposing research, followed by

China, the United Kingdom, and India. From keyword analysis,

they also reported that the hotspots have been changed in recent

years, with COVID-19/SARS-CoV-2/coronavirus being the most

prominent topic(s) in the domain of drug discovery.

A study by Kusuma et al. proposed an approach to

implement bipartite graph search optimization using the

branch and bound algorithm to identify the combination or

composition of Jamu formulas. In addition, the proposedmethod

comprising one to four selected plant species for the T2DM Jamu

formula was suggested by the researchers.

Cao et al. predicted the mechanism of action of licorice in the

treatment of COVID-19 through an extensive computational analysis

using bioinformatics tools and molecular dynamics simulation.

Authors reported that phytochemicals (phaseol, glycyrol,

glyasperin F) present in licorice could act against COVID-19

through the inhibition of STAT3, IL2RA, MMP1 and CXCL8.

Wang et al. investigated the target-specific compound

selectivity for multi-target drug discovery and repurposing by

experimental studies. Authors represented several case studies

exhibiting target-specific selectivity, which could facilitate the

repurposing drugs by multi-targeting approach.

A review article by Kakoti et al. summarized therapeutic drug

repositioning approaches for neurodegenerative diseases with recent

threats and issues. They demonstrated the neuroprotective effect of

kinase inhibitors, which, however, were originally developed for

oncological indications. Authors also highlighted several

opportunities and challenges of drug repurposing approaches in

the way of drug discovery despites many technological advancements.

In conclusion, this Research Topic has provided in-depth insights

into newer researchfindings (experimental, computational and review

reports) and latest updates including technological advancements and

challenges) related to ongoing repurposing strategies and drug

discovery research in various therapeutic areas of current interest.

Though drug repurposing strategies have several potentials as already

indicated above, it has many challenges in the process of drug

discovery, whether from a scientific or regulatory perspectives.

Critical evaluations of pre-clinical, clinical and observational data/

evidences are required to investigate the therapeutic efficacy and

safety/toxicity of a candidate drug for potential repurposing.
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Background: Lenvatinib combined with a PD-1 inhibitor has obtained a satisfactory
antitumor effect in several solid tumors. However, the efficacy and tumor response of
lenvatinib with a PD-1 inhibitor in advanced intrahepatic cholangiocarcinoma still need
further exploration.

Methods: This is a single-arm study for the assessment of the efficacy and tolerability of
lenvatinib with a PD-1 inhibitor in intrahepatic cholangiocarcinoma patients who had
chemotherapy failure. Efficacy was evaluated based on the Response Evaluation Criteria in
Solid Tumors RECIST Version 1.1 (RECIST 1.1).

Results: A total of 40 patients with advanced intrahepatic cholangiocarcinoma were
enrolled after the chemorefractory effect. The median progression-free survival was 5.83 ±
0.76 months. The 3-month and 6-month progression-free survival rates were 80.0% and
32.5%, respectively. The median overall survival was 14.30 ± 1.30 months. The 12-month
and 18-month overall survival rates were 61.4% and 34.7%. The 3-month RECIST 1.1
evaluation was that seven patients (17.5%) showed partial response, 23 patients (57.5%)
had stable disease, and 10 patients (25.0%) had progressive disease. The objective
response rate was 17.5%, and the disease control rate was 75.0%. All the recorded any-
grade adverse events inducing treatment termination were controllable, and there were no
AE-related deaths.

Conclusion: Our study showed that a combination of lenvatinib with the PD-1 inhibitor
could be an effective treatment for advanced intrahepatic cholangiocarcinoma after the
chemorefractory effect.

Keywords: advanced intrahepatic cholangiocarcinoma, lenvatinib, PD-1 inhibitor, combination therapy,
chemotherapy failure
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INTRODUCTION

Intrahepatic cholangiocarcinoma (ICC) is a hepatobiliary tumor with a
high death rate, which presents an unsatisfied prognosis with 10% of 5-
year overall survival (OS) and a median OS of approximately
24months (Kelley et al., 2020). ICC ranks second and accounts for
approximately 10% of primary liver malignancy (Chun and Javle,
2017). The symptoms of ICC are insidious and nonspecific which
include abdominal discomfort, weight loss, indigestion, or
asymptomatic elevation of liver functions on routine laboratory
testing, and only a minority of patients are diagnosed at an early
stage with the tumor removed by surgery (Esnaola et al., 2016).
Therefore, most patients present in the advanced stage will require
effective systemic therapy. Currently, the establishedfirst-line treatment
was gemcitabine and cisplatin, and the second-line treatment was
FOLFOX systemic chemotherapy (Rizvi et al., 2018). However, the
efficacy of these approaches is still unsatisfactory, and patients easily
develop the chemorefractory effect (Moeini et al., 2016). There is now
no uniform therapy for advanced ICC after chemotherapy failure. The
shortage of available therapeutic regimens has plagued the oncologists
exploring new strategies.

Lenvatinib is an oral tyrosine kinase inhibitor that restrains the
vascular endothelial growth factor receptor (VEGFR) 1–3, fibroblast
growth factor receptors (FGFR) 1–4, and platelet-derived growth
factor receptor (Kudo et al., 2018). Due to the advantage of inhibiting
tumors with multiple pathways, this multitargeted tyrosine kinase
inhibitor is being used for the treatment of many tumors (Hao and
Wang, 2020). Immunotherapy has emerged as a major tool in cancer
treatment with the recent success of trials with PD-1/PD-L1 axis
blockade (Balar andWeber, 2017). Programmed death-1 (PD-1) is a
checkpoint molecule on T cells, which plays a vital role in controlling
tumor progression through immune responses (Balar and Weber,
2017). Studies have proved that a combination of therapies involving
lenvatinib and the PD-1 inhibitor could produce a synergetic effect,
and lenvatinib with the PD-1 inhibitor has an augment antitumor
effect than alone (Kimura et al., 2018). This combination of lenvatinib
and the PD-1 inhibitor now has been applied for the treatment of
many cancers including hepatocellular carcinoma, renal cell
carcinoma, thyroid cancer, and endometrial carcinoma (Motzer
et al., 2015; Schlumberger et al., 2015; Finn et al., 2020; Makker
et al., 2020). The combination of lenvatinib and a PD-1 inhibitor is
efficacious and promising, and the combination is considered to be a
good pair of active drugs in malignancy therapy (Wang et al., 2019).

Given these factors, this combination could be an effective
treatment for advanced ICC and prolong the survival of patients.
Lin J et al. reported that lenvatinib with pembrolizumab was
promising in alternative patients with refractory bile tract
carcinoma, and the therapeutic outcomes were delightful as a
non–first-line treatment (Lin et al., 2020). Ding Y et al. reported
that chemotherapy, tislelizumab, and lenvatinib could be an effective
therapeutic regimen for preoperative advanced intrahepatic ICC
conversion therapy (Ding et al., 2021). These studies have inspired
clinical investigations of applying the regimen in patients with
advanced ICC. However, studies that reported lenvatinib with a
PD-1 inhibitor on advanced ICC are few, so there is still a
necessity for clinical evidence to further obtain knowledge of this
combination therapy. In this report, we focused on lenvatinib

combined with a PD-1 inhibitor in patients with advanced ICC
after chemotherapy failure.

MATERIALS AND METHODS

This study was conducted in accordance with the principles of the
Declaration of Helsinki (World Medical Association, 2013), and
the study protocol was approved by the Ethics Committee of the
Second Affiliated Hospital of Guangzhou Medical University
(no.2022-hg-ks-12).

Study Population
We retrospectively reviewed the medical records of patients who
received a diagnosis of advanced ICC from June 2018 to June 2020 at
the Second Affiliated Hospital of Guangzhou Medical University.
Patients who met the following criteria were included in this study:
1) histologically confirmed ICC; 2) all patients experienced disease
progression or could not tolerate systematic therapy; 3) at least one
measurable tumor lesion according to the RECIST 1.1 criteria; 4)
Eastern Cooperative Oncology Group (ECOG) performance status
of 0–1; 5) patients who had adequate liver function (i.e., Child–Pugh
class A or B liver function); 6) had adequate renal coagulation
function; and 7) age 18–75 years. The exclusion criteria were as
follows: 1) patient intolerance to lenvatinib or the PD-1 inhibitor; 2)
death or missed the follow-up within 3 months; 3) inadequate liver
or kidney function; and 4) patients who received other tyrosine
kinase inhibitor with or without PD-1 inhibitor.

The tumor stage was assessed by systemic imaging (either
enhanced computed tomography (CT) of the chest or bone scan,
contrast-enhanced CT or magnetic resonance imaging (MRI) of the
abdomen or brain, or positron emission tomography/computed
tomography (PET/CT). Baseline levels of liver function and blood
tests were collected. The albumin–bilirubin (ALBI) grade for each
patient was calculated using the formula: ALBI score = (log10
bilirubin × 0.66) + (albumin × −0.085). The ALBI grade is used
to identify different mortality risk subsets of patients as follows: grade
1 (lowestmortality risk) forALBI score≤−2.60, grade 2 (intermediate

FIGURE 1 | Flow chart of the study. Efficacy and safety of the treatment.
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mortality risk) for ALBI score > −2.60 and ≤ −1.39), and grade 3
(highest mortality risk) for ALBI score > −1.39 (Hiraoka et al., 2019).

Treatment and Assessment of the
Response
All patients accepted contrast material–enhanced CT orMRI within
2 weeks before lenvatinib administration. Information regarding the

information of initiation, completion of treatment, initial dose, dose
modifications, and adverse events (AEs) during treatment was
systematically collected. The prescription dosage of lenvatinib was
12 mg (for patients with a bodyweight ≥60 kg) or 8 mg (for patients
with a bodyweight <60 kg) orally once a day. For the PD-1 inhibitor,
the PD-1 inhibitor (tislelizumab) dose was applied according to the
drug instructions.

Follow-Up
The follow-up period for this study was terminated on 30 June 2021.
Laboratory tests including CA-125, albumin, bilirubin, aspartate
transaminase (AST), alanine transaminase (ALT), and
prothrombin time (PT) were performed to evaluate the treatment
response and liver function every six weeks after treatment. Patients
were evaluated at least once every six weeks after treatment. Each
follow-up visit involved performing screening abdominal imaging
(e.g., abdominal, chest, bone, brain CT, and/or MRI). Target tumors
were selected to a maximum of two lesions per organ and five lesions
in total. Theminimum size formeasurability is greater than 1 cm. The
tumor imaging response was evaluated according to the Response
Evaluation Criteria in Solid Tumors version 1.1 (Schwartz et al., 2016).
In brief, the complete response (CR) was defined as the disappearance
of arterial enhancement in the tumor. Partial response (PR) was
defined as ≥30% shrinking in the diameter of the targeted tumors.
Progressive disease (PD) was defined as at least a 20% increase in the
sum of the diameter of the targeted tumors or the appearance of a new
lesion. Stable disease (SD) neither met the CR nor PR and PD. The
primary endpoint for the study was overall survival (OS), and the
secondary endpoint was progression-free survival (PFS). OS was
defined as the time from accepting lenvatinib and the PD-1
inhibitor to death or the last follow-up, and the PFS was defined
as the time from the date of accepting lenvatinib and the PD-1
inhibitor to tumor progression or the last follow-up.

Statistical Analysis
The data were presented as a summary of the baseline
characteristics, therapeutic efficacies, and AEs. The 3- and 6-

TABLE 1 | Baseline characteristics of patients in the entire cohort.

Parameter Total

Age, years (median, IQR) 53.0 (43.0–58.8)

Gender, n [%] 9 [22.5]
Female 31 [77.5]
Male

Differentiation 11 [27.5]
Moderate 29 [72.5]
Poor

ECOG status 12 [30.0]
0 28 [70.0]
1
ALBI grade 31 [77.5]
1 9 [22.5]
2

Hepatitis 16 [40.0]

Metastasis, n [%] 28 [70.0]
Intrahepatic 26 [65.0]
Lymph nodes 17 [42.5]
Lungs 8 [20.0]
Bone

Previous therapy 13 [32.5]
Surgery 40 [100.0]
Systemic chemotherapy 8 [20.0]
Thermal ablation 14 [35.0]
Transarterial chemoembolization

Macrovascular tumor thrombus 10 [25.0]

Tumor size, cm, (median, IQR) 6.7 [4.9–8.2]

CA-199, U/ml, (median, IQR) 13.2 [13.2–299.7]

FIGURE 2 | Tumor percentage changes from the baseline in terms of the
target lesion sizes.

TABLE 2 | Therapeutic efficacy of the response and survival outcome of patients
treated with lenvatinib with the PD-1 inhibitor.

Therapeutic
response assessment

Evaluation of patients
(n = 40)

Objective response rate (ORR, %) 7 (17.5%)
Disease control rate (DCR, %) 30 (75.0%)
Complete response (CR, %) 0
Partial response (PR, %) 7 (17.5%)
Stable disease (SD, %) 23 (57.5%)
Progressive disease (PD, %) 10 (25.0%)
Clinical benefit rate (%) 15 (32.5%)
Progression-free survival (median, 95% CI, months) 4.83 ± 0.68 (3.49–6.18)
Overall survival (median, 95% CI, months) 14.30 ± 1.30 (11.76–16.84)
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month PFS and 6-, 12-, and 18-month OS were all estimated by
the Kaplan–Meier method. The hazard ratio (HR) of each clinical
factor was estimated by Cox proportional hazard modeling.

RESULTS

Patient Characteristics
A total of 61 patients were enrolled for drug administration, and
40 patients were included for analyses (Figure 1). The median
patient age was 53.0 years (range, 43.0–58.8), and 31 patients
(77.5%) were males, and nine patients (22.5%) were females. In
total, 28 (70.0%) patients had an ECOG performance status of 1,
and 16 patients (40.0%) had HBV infection. All patients with
hepatitis received regular antiviral therapy during lenvatinib and
PD-1 inhibitor treatment. A total of 30 (72.5%) patients had poor
tumor differentiation, and 32 (80.0%) patients had metastases,
including intrahepatic, lymph nodes, lung, and bone metastases.
A total of 25 patients (62.5%) received local therapy or surgery
before lenvatinib and PD-1 inhibitor treatment (Table 1).

In the cohort, all patients had a regular follow-up, and the
clinical responses were assessed. Overall, 19 of the 40 (47.5%)

patients exhibited a decrease in the tumor size from the baseline
(Figure 2). The median progression-free survival (PFS) was
5.83 ± 0.76 (95% CI, 4.34–7.33) months (Table 2). The 3-
month and 6-month PFS rates were 80% and 32.5%
(Figure 3A), respectively. In total, 11 patients were still alive
during the follow-up period. The median overall survival (OS)
was 14.30 ± 1.30 (95%: 11.76–16.84) months (Table 2). The 12-
month and 18-month OS rates were 61.4% and 34.7%
(Figure 3B). The 3-month RECIST 1.1 evaluation was that
seven (17.5%) patients showed partial response (PR), 23
(57.5%) had stable disease (SD), and 10 (25.0%) had
progressive disease (PD). The objective response rate (ORR)
was 17.5%, and the disease control rate (DCR) was 75.0%
(Table 2). We further determined the clinical benefit rate
(CBR, PFS≥ 6 months) in all assessment-available patients.
The CBR was 32.5% (Table 2).

All the recorded any-grade adverse events (AEs) inducing
treatment termination were controllable, and there were no AE-
related deaths. The most common AEs (any grade) were
decreased appetite, hypertension, fatigue, and diarrhea
(Table 3). For AE grade ≥3, the most common were
hypertension and proteinuria (Table 3). Most AEs occurring
during treatment were safe and tolerated.

PFS and OS Analysis
Cox-regression analysis results regarding the prognostic factors
of PFS or OS were further analyzed. Univariate analysis revealed
that intrahepatic metastases, lymph nodes metastases, lung
metastases, bone metastases, and ALBI grade 2 were correlated
with poorer PFS. Multivariate analysis illustrated that
intrahepatic metastasis (HR = 3.08, 95% CI: 1.23–7.67, and
p = 0.016) and ALBI grade 2 (HR = 3.84, 95% CI: 1.42–10.03,
and p = 0.005) were related to poorer PFS (Table 4). Univariate
analysis revealed that intrahepatic metastases, lymph nodes
metastases, lung metastases, and bone metastases were
correlated with poorer OS. Multivariate analysis illustrated that

FIGURE 3 | (A) Progression-free survival (PFS) and (B) overall survival (OS) in patients with advanced intrahepatic cholangiocarcinoma after the chemorefractory
effect.

TABLE 3 | Most common treatment-related adverse events in patients receiving
lenvatinib and the PD-1 inhibitor.

Adverse events Grades 1 and 2 Grades 3 and 4

Decreased appetite 19 (47.5) 0
Hypertension 18 (45.0) 3 (7.5)
Fatigue 13 (32.5) 1 (2.5)
Diarrhea 11 (27.5) 0
Increased ALT/AST 9 (22.5) 1 (2.5)
Proteinuria 9 (22.5) 2 (5.0)
Hypothyroidism 7 (17.5) 0
Rash or desquamation 7 (17.5) 0
Weight decreased 5 (12.5) 0
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intrahepatic metastasis (HR = 9.02, 95% CI: 1.80–45.07, and p =
0.007) was related to poorer OS (Table 5).

DISCUSSION

The therapeutic strategy for advanced ICC is challenging
worldwide as the ICC usually indicates a poor prognosis.
Surgical resection is the only potentially curative treatment
for ICC; however, the 5-year OS rate was 15–40% (Weber et al.,
2015). For advanced or recurrent ICC, the first-line treatment
was chemotherapy. However, patients usually developed
refractory; then, the second-line therapy was varied and
disappointed (Sirica et al., 2019). PD-1 inhibitor-based
immune therapy has obtained significant improvement in
several tumors, including melanoma, lung cancer, and head
and neck malignancies (Sui et al., 2018; Gavrielatou et al., 2020;
Guo et al., 2020). However, immune monotherapy faces many
challenges in biliary cancer. Studies showed that the efficacy of

the PD-1 inhibitor alone in biliary cancer remains
unsatisfactory (Ueno et al., 2019). In the Makoto et al.
study, combined therapy of biliary tract cancer (nivolumab
PD-1 inhibitor and chemotherapy) achieved obvious better
benefits than the PD-1 inhibitor alone (Ueno et al., 2019).

Combining the strategy with antiangiogenic molecular target
drugs or chemotherapy could improve the efficacy of
immunotherapies and has shown promising clinical results (Rizvi
et al., 2018; Wang et al., 2019). Mei K et al. have reported that
camrelizumab combined with apatinib has achieved promising
results in the treatment of advanced ICC. The medium PFS and
OS were 1.9 and 13.4 months (Mei et al., 2021). These results were
superior to the previously reported efficacy of apatinib alone in ICC
(Hu et al., 2020). Lin J et al. reported that lenvatinib with
pembrolizumab was considered a non-first-line therapy in
treating refractory bile tract carcinoma, and this study obtained
ORRwhich was 25%, and the DCR was 78.1%. The median PFS was
4.9 months, and the 6-month PFS rate was 33.7%. The median OS
was 11.0months, and the 1-year OS rate was 39.4% (Lin et al., 2020).

TABLE 4 | Univariate and multivariate analyses of prognostic factors on progression-free survival (PFS) in 40 patients with advanced ICC after chemotherapy failure.

Variable Univariate and multivariate analyses

Comparison HR (95% CI) P HR (95% CI) P

Tumor differentiation Moderate vs. poor 1.09 (0.53–2.25) 0.816
Macrovascular invasion No vs. yes 2.34 (0.42–1.82) 0.723
Intrahepatic metastases No vs. yes 2.34 (1.15–4.7) 0.019 3.08 (1.23–7.67) 0.016
Lymph nodes metastases No vs. yes 2.72 (1.35–5.48) 0.005 1.95 (0.86–4.40) 0.109
Lung metastases No vs. yes 5.03 (2.13–11.84) < 0.001 1.97 (0.76–5.15) 0.165
Bone metastases No vs. yes 2.49 (1.06–5.85) 0.037 1.47 (0.61–3.50) 0.390
ALBI grade 1 vs. 2 3.94 (1.71–9.07) 0.001 3.84 (1.42–10.03) 0.005
ECOG status 0 vs. 1 0.74 (0.37–1.47) 0.387
Hepatitis No vs. yes 1.42 (0.74–2.74) 0.289
Surgery Yes vs. no 1.35 (0.68–2.65) 0.388
TACE Yes vs. no 0.92 (0.48–1.79) 0.811
Ablation Yes vs. no 0.92 (0.42–2.02) 0.842
Sex Female vs. male 1.36 (0.64–2.89) 0.432
Smoking No vs. yes 1.22 (0.63–2.36) 0.564

Bold values means the P<0.05.

TABLE 5 | Univariate and multivariate analyses of prognostic factors on overall survival (OS) in 40 patients with advanced ICC after chemotherapy failure.

Variable Univariate and multivariate analyses

Comparison HR (95% CI) P HR (95% CI) P

Tumor differentiation Moderate vs. poor 1.42 (0.62–3.25) 0.404
Macrovascular invasion No vs. yes 0.92 (0.40–2.11) 0.847
Intrahepatic metastases No vs. yes 5.32 (2.01–14.15) 0.001 9.02 (1.80–45.07) 0.007
Lymph node metastases No vs. yes 2.66 (1.11–6.38) 0.029 1.67 (0.67–4.29) 0.269
Lung metastases No vs. yes 3.31 (1.40–7.83) 0.006 1.90 (0.75–5.13) 0.173
ALBI grade 1 vs. 2 0.49 (0.22–1.11) 0.088
ECOG status 0 vs. 1 0.94 (0.40–2.18) 0.876
Bone metastases No vs. yes 1.32 (0.49–3.58) 0.579
Hepatitis No vs. yes 1.98 (0.88–4.49) 0.101
Surgery Yes vs. no 1.46 (0.62–3.40) 0.386
TACE Yes vs. no 1.50 (0.70–3.22) 0.294
Ablation Yes vs. no 0.67 (0.26–1.72) 0.407
Sex Female vs. male 1.55 (0.72–3.31) 0.261
Smoking No vs. yes 0.92 (0.49–1.72) 0.784

Bold values means the P<0.05.
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In our study, the ORR was 17.5%, and the DCR was 75.0%. The
median PFS and 6-month PFS rates were 5.8months and 32.5%. The
median OS was 14.3 months, and the 12-month and 18-month rates
were 61.4%. Our results were in accordance with the research of Lin
et al. (2020).

Ueno M et al. demonstrated lenvatinib as monotherapy for
advanced biliary tract cancer, and the ORR was 11.5%. The
median PFS was 3.19 months, and the median OS was
7.35 months (Ueno et al., 2020). Our study was better than
Ueno M’s results. Lenvatinib combined with PD-1 inhibitors
have provided new ideas for advanced ICC. Previous studies have
proved that lenvatinib could enhance the antitumor efficacy of
PD-1 inhibitors by restraining angiogenesis (Shigeta et al., 2020).
Thus, the combination of these two agents is promising and
satisfactory when they are used in patients with refractory ICC.
Compared with the previous reports, our study focused on ICC
with chemotherapy failure, and patients were in a more advanced
stage than the published literature. We found that the
combination therapy of lenvatinib and the PD-1 inhibitor was
effective and competent for ICC patients in a more advanced
stage. A well-designed prospective trial with other second-line
treatments is needed to determine the precise efficacy and safety
of this combination therapy, or a further trial of this combined
regimen with chemotherapy as first-line therapy is promising.

However, there were some limitations to our study; first, it was a
retrospective study, so there is a need to develop a prospective trial to
evaluate this combination therapy as second-line therapy in advanced
ICC. Second, the small sample of our study limits more information
on factors related to the prognosis; further reports withmore patients
and a multicenter study are needed to get more comprehensive
results. Third, this study was the real-world application of lenvatinib
and the PD-1 inhibitor, and it is impossible to exclude interference
from the doctor and patients in terms of treatment.

In summary, our research provides evidence that a
combination of lenvatinib with the PD-1 inhibitor could be

an effective treatment for ICC after the chemorefractory effect.
This combination could achieve controllable safety and good
efficacy, thereby providing a new treatment option for
advanced ICC.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of the Second Affiliated
Hospital of Guangzhou Medical University. The patients/
participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

Conceptualization: LX and JH; data curation: QZ, LW, JH, and
WZ; formal analysis: QZ, WR, and HT; data analysis: LX and QZ.
Funding acquisition: QZ; investigation: LX, JH, and AH;
methodology: JL, YJ, and YL; project administration: QZ and
WZ; resources: QZ, JH, and WZ; original draft: LX and JH;
writing—review and editing: LX, QZ, and WZ.

FUNDING

This research was funded by the National Natural Science
Foundation of China (82102082).

REFERENCES

Balar, A. V., and Weber, J. S. (2017). PD-1 and PD-L1 Antibodies in Cancer:
Current Status and Future Directions. Cancer Immunol. Immunother. 66,
551–564. doi:10.1007/s00262-017-1954-6

Chun, Y. S., and Javle, M. (2017). Systemic and Adjuvant Therapies for
Intrahepatic Cholangiocarcinoma. Cancer Control 24, 1073274817729241.
doi:10.1177/1073274817729241

Ding, Y., Han, X., Sun, Z., Tang, J., Wu, Y., and Wang, W. (2021). Systemic
Sequential Therapy of CisGem, Tislelizumab, and Lenvatinib for Advanced
Intrahepatic Cholangiocarcinoma Conversion Therapy. Front. Oncol. 11,
691380. doi:10.3389/fonc.2021.691380

Esnaola, N. F., Meyer, J. E., Karachristos, A., Maranki, J. L., Camp, E. R., and
Denlinger, C. S. (2016). Evaluation and Management of Intrahepatic and
Extrahepatic Cholangiocarcinoma. Cancer 122, 1349–1369. doi:10.1002/cncr.
29692

Finn, R. S., Ikeda, M., Zhu, A. X., Sung, M.W., Baron, A. D., Kudo, M., et al. (2020).
Phase Ib Study of Lenvatinib Plus Pembrolizumab in Patients with Unresectable
Hepatocellular Carcinoma. J. Clin. Oncol. 38, 2960–2970. doi:10.1200/JCO.20.
00808

Gavrielatou, N., Doumas, S., Economopoulou, P., Foukas, P. G., and Psyrri, A.
(2020). Biomarkers for Immunotherapy Response in Head and Neck Cancer.
Cancer Treat. Rev. 84, 101977. doi:10.1016/j.ctrv.2020.101977

Guo, W., Ma, J., Guo, S., Wang, H., Wang, S., Shi, Q., et al. (2020). A20 Regulates
the Therapeutic Effect of Anti-PD-1 Immunotherapy in Melanoma.
J. Immunother. Cancer 8, 8. doi:10.1136/jitc-2020-001866

Hao, Z., and Wang, P. (2020). Lenvatinib in Management of Solid Tumors.
Oncologist 25, e302–e310. doi:10.1634/theoncologist.2019-0407

Hiraoka, A., Kumada, T., Michitaka, K., and Kudo, M. (2019). Newly Proposed
ALBI Grade and ALBI-T Score as Tools for Assessment of Hepatic Function
and Prognosis in Hepatocellular Carcinoma Patients. Liver Cancer 8, 312–325.
doi:10.1159/000494844

Hu, Y., Lin, H., Hao, M., Zhou, Y., Chen, Q., and Chen, Z. (2020). Efficacy and
Safety of Apatinib in Treatment of Unresectable Intrahepatic
Cholangiocarcinoma: An Observational Study. Cancer Manag. Res. 12,
5345–5351. doi:10.2147/CMAR.S254955

Kelley, R. K., Bridgewater, J., Gores, G. J., and Zhu, A. X. (2020). Systemic
Therapies for Intrahepatic Cholangiocarcinoma. J. Hepatol. 72, 353–363.
doi:10.1016/j.jhep.2019.10.009

Kimura, T., Kato, Y., Ozawa, Y., Kodama, K., Ito, J., Ichikawa, K., et al. (2018).
Immunomodulatory Activity of Lenvatinib Contributes to Antitumor Activity
in the Hepa1-6 Hepatocellular Carcinoma Model. Cancer Sci. 109, 3993–4002.
doi:10.1111/cas.13806

Kudo,M., Finn, R. S., Qin, S., Han, K. H., Ikeda, K., Piscaglia, F., et al. (2018). Lenvatinib
versus Sorafenib in First-Line Treatment of Patients with Unresectable
Hepatocellular Carcinoma: A Randomised Phase 3 Non-inferiority Trial. Lancet
391, 1163–1173. doi:10.1016/S0140-6736(18)30207-1

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 8944076

Xie et al. Lenvatinib With Anti-PD-1 for Intrahepatic Cholangiocarcinoma

12

https://doi.org/10.1007/s00262-017-1954-6
https://doi.org/10.1177/1073274817729241
https://doi.org/10.3389/fonc.2021.691380
https://doi.org/10.1002/cncr.29692
https://doi.org/10.1002/cncr.29692
https://doi.org/10.1200/JCO.20.00808
https://doi.org/10.1200/JCO.20.00808
https://doi.org/10.1016/j.ctrv.2020.101977
https://doi.org/10.1136/jitc-2020-001866
https://doi.org/10.1634/theoncologist.2019-0407
https://doi.org/10.1159/000494844
https://doi.org/10.2147/CMAR.S254955
https://doi.org/10.1016/j.jhep.2019.10.009
https://doi.org/10.1111/cas.13806
https://doi.org/10.1016/S0140-6736(18)30207-1
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Lin, J., Yang, X., Long, J., Zhao, S., Mao, J., Wang, D., et al. (2020). Pembrolizumab
Combined with Lenvatinib as Non-first-line Therapy in Patients with
Refractory Biliary Tract Carcinoma. Hepatobiliary Surg. Nutr. 9, 414–424.
doi:10.21037/hbsn-20-338

Makker, V., Taylor, M. H., Aghajanian, C., Oaknin, A., Mier, J., Cohn, A. L., et al.
(2020). Lenvatinib Plus Pembrolizumab in Patients with Advanced
Endometrial Cancer. J. Clin. Oncol. 38, 2981–2992. doi:10.1200/JCO.19.
02627

Mei, K., Qin, S., Chen, Z., Liu, Y., Wang, L., and Zou, J. (2021). Camrelizumab
in Combination with Apatinib in Second-Line or above Therapy for
Advanced Primary Liver Cancer: Cohort A Report in a Multicenter
Phase Ib/II Trial. J. Immunother. Cancer 9, e002191. doi:10.1136/jitc-
2020-002191

Moeini, A., Sia, D., Bardeesy, N., Mazzaferro, V., and Llovet, J. M. (2016).
Molecular Pathogenesis and Targeted Therapies for Intrahepatic
Cholangiocarcinoma. Clin. Cancer Res. 22, 291–300. doi:10.1158/1078-0432.
CCR-14-3296

Motzer, R. J., Hutson, T. E., Glen, H., Michaelson, M. D., Molina, A., Eisen, T., et al.
(2015). Lenvatinib, Everolimus, and the Combination in Patients with
Metastatic Renal Cell Carcinoma: A Randomised, Phase 2, Open-Label,
Multicentre Trial. Lancet Oncol. 16, 1473–1482. doi:10.1016/S1470-2045(15)
00290-9

Rizvi, S., Khan, S. A., Hallemeier, C. L., Kelley, R. K., and Gores, G. J. (2018).
Cholangiocarcinoma - Evolving Concepts and Therapeutic Strategies. Nat. Rev.
Clin. Oncol. 15, 95–111. doi:10.1038/nrclinonc.2017.157

Schlumberger, M., Tahara, M., Wirth, L. J., Robinson, B., Brose, M. S., Elisei,
R., et al. (2015). Lenvatinib versus Placebo in Radioiodine-Refractory
Thyroid Cancer. N. Engl. J. Med. 372, 621–630. doi:10.1056/
NEJMoa1406470

Schwartz, L. H., Litière, S., de Vries, E., Ford, R., Gwyther, S., Mandrekar, S., et al.
(2016). RECIST 1.1-Update and Clarification: From the RECIST Committee.
Eur. J. Cancer 62, 132–137. doi:10.1016/j.ejca.2016.03.081

Shigeta, K., Datta, M., Hato, T., Kitahara, S., Chen, I. X., Matsui, A., et al. (2020).
Dual Programmed Death Receptor-1 and Vascular Endothelial Growth Factor
Receptor-2 Blockade Promotes Vascular Normalization and Enhances
Antitumor Immune Responses in Hepatocellular Carcinoma. Hepatology 71,
1247–1261. doi:10.1002/hep.30889

Sirica, A. E., Gores, G. J., Groopman, J. D., Selaru, F. M., Strazzabosco, M., Wei Wang,
X., et al. (2019). Intrahepatic Cholangiocarcinoma: Continuing Challenges and
Translational Advances. Hepatology 69, 1803–1815. doi:10.1002/hep.30289

Sui, H., Ma, N., Wang, Y., Li, H., Liu, X., Su, Y., et al. (2018). Anti-PD-1/PD-L1
Therapy for Non-small-cell Lung Cancer: Toward Personalized Medicine and
Combination Strategies. J. Immunol. Res. 2018, 6984948. doi:10.1155/2018/
6984948

Ueno, M., Ikeda, M., Morizane, C., Kobayashi, S., Ohno, I., Kondo, S., et al. (2019).
Nivolumab Alone or in Combination with Cisplatin Plus Gemcitabine in
Japanese Patients with Unresectable or Recurrent Biliary Tract Cancer: A
Non-randomised, Multicentre, Open-Label, Phase 1 Study. Lancet
Gastroenterol. Hepatol. 4, 611–621. doi:10.1016/S2468-1253(19)30086-X

Ueno, M., Ikeda, M., Sasaki, T., Nagashima, F., Mizuno, N., Shimizu, S., et al.
(2020). Phase 2 Study of Lenvatinib Monotherapy as Second-Line Treatment in
Unresectable Biliary Tract Cancer: Primary Analysis Results. BMC Cancer 20,
1105. doi:10.1186/s12885-020-07365-4

Wang, D., Lin, J., Yang, X., Long, J., Bai, Y., Yang, X., et al. (2019). Combination
Regimens with PD-1/PD-L1 Immune Checkpoint Inhibitors for Gastrointestinal
Malignancies. J. Hematol. Oncol. 12, 42. doi:10.1186/s13045-019-0730-9

Weber, S. M., Ribero, D., O’Reilly, E. M., Kokudo, N., Miyazaki, M., and Pawlik, T.
M. (2015). Intrahepatic Cholangiocarcinoma: Expert Consensus Statement.
HPB (Oxford) 17, 669–680. doi:10.1111/hpb.12441

World Medical Association (2015). World Medical Association Declaration of
Helsinki: Ethical Principles for Medical Research Involving Human Subjects.
JAMA 310, 2191–2194. doi:10.1001/jama.2013.281053

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Xie, Huang, Wang, Ren, Tian, Hu, Liang, Jiao, Li, Zhou and
Zhang. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 8944077

Xie et al. Lenvatinib With Anti-PD-1 for Intrahepatic Cholangiocarcinoma

13

https://doi.org/10.21037/hbsn-20-338
https://doi.org/10.1200/JCO.19.02627
https://doi.org/10.1200/JCO.19.02627
https://doi.org/10.1136/jitc-2020-002191
https://doi.org/10.1136/jitc-2020-002191
https://doi.org/10.1158/1078-0432.CCR-14-3296
https://doi.org/10.1158/1078-0432.CCR-14-3296
https://doi.org/10.1016/S1470-2045(15)00290-9
https://doi.org/10.1016/S1470-2045(15)00290-9
https://doi.org/10.1038/nrclinonc.2017.157
https://doi.org/10.1056/NEJMoa1406470
https://doi.org/10.1056/NEJMoa1406470
https://doi.org/10.1016/j.ejca.2016.03.081
https://doi.org/10.1002/hep.30889
https://doi.org/10.1002/hep.30289
https://doi.org/10.1155/2018/6984948
https://doi.org/10.1155/2018/6984948
https://doi.org/10.1016/S2468-1253(19)30086-X
https://doi.org/10.1186/s12885-020-07365-4
https://doi.org/10.1186/s13045-019-0730-9
https://doi.org/10.1111/hpb.12441
https://doi.org/10.1001/jama.2013.281053
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Investigations of nitazoxanide
molecular targets and pathways
for the treatment of
hepatocellular carcinoma using
network pharmacology and
molecular docking

Shakeel Ahmad Khan1* and Terence Kin Wah Lee1,2*
1Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University,
Kowloon, Hong Kong SAR, China, 2State Key Laboratory of Chemical Biology and Drug Discovery, The
Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China

Nitazoxanide has been investigated for colorectal cancer and breast cancer.

However, its molecular targets and pathways have not yet been explored for

hepatocellular carcinoma (HCC) treatment. Utilizing a network pharmacology

approach, nitazoxanide’s potential targets and molecular pathways for HCC

treatment were investigated. HCC targets were extracted from the GeneCards

database. Potential targets of nitazoxanide were predicted using Swiss Target

Prediction and Super Pred. Intersecting targets were analyzed with VENNY online

tool. Using Cytoscape, a protein-protein interaction (PPI), cluster, and core targets-

pathways networks were constructed. Using the Database for Annotation,

Visualization and Integrated Discovery (DAVID), gene ontology (GO), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were

conducted. Thenitazoxanidewasmolecularly dockedwith anti-HCCcore targets by

employing Auto Dock Vina. A total of 168 potential targets of nitazoxanide,

13,415 HCC-related targets, and 153 intersecting targets were identified. The top

eight anti-HCC core targets were identified: SRC, EGFR, CASP3, MMP9, mTOR,

HIF1A, ERBB2, and PPARG. GO enrichment analysis showed that nitazoxanidemight

have anti-HCC effects by affecting gene targets involved in multiple biological

processes (BP) (protein phosphorylation, transmembrane receptor protein tyrosine

kinase (RTKs) signaling pathway, positive regulation of MAP kinase activity, etc.).

KEGG pathways and core targets-pathways network analysis indicated that

pathways in cancer and proteoglycans in cancer are two key pathways that

significantly contribute to the anti-HCC effects of nitazoxanide. Results of

molecular docking demonstrated the potential for active interaction between the

top eight anti-HCC core targets and nitazoxanide. Our research offers a theoretical

basis for the notion that nitazoxanide may have distinct therapeutic effects in HCC,

and the identified pharmacological targets and pathways might function as

biomarkers for HCC therapy.
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Introduction

HCC is a kind of cancer that often affects people who have a

history of hepatitis or cirrhosis. Owing to increasing malignancy

and morbidity, it is the second leading cause of global cancer-

related demise (Khan and Lee, 2022; Yang et al., 2022). Several

efficient therapeutic approaches, including biological therapy,

interventional radiology, chemotherapy, resection, tumor

ablation, transcatheter arterial chemical embolization (TACE),

liver transplantation, etc., have been extensively employed in

treating HCC in recent decades (Stehlin et al., 1988; El-Serag,

2011; Balogh et al., 2016; Hilmi et al., 2020). HCC detection in

patients at an early stage is critical and has significant importance

because it is strongly linked to a patient’s prognosis since

interventional therapy delivered at a preliminary phase of

HCC may significantly improve patient outcomes. Regrettably,

patients are often identified with HCC at an intermediate or

advanced stage, precluding resection and transplantation. Blood

vessels’ active invasion, resulting in extrahepatic and intrahepatic

metastases, is linked to a poor prognosis after surgical or medical

treatment because of a high recurrence rate (Dutta and Mahato,

2017; Mohs et al., 2017; Daher et al., 2018).

Moreover, chemotherapy treatment with sorafenib (tyrosine

multi-kinase inhibitor) has also been identified as a promising

therapeutic for an advanced stage of HCC. However, its

treatment can only increase overall survival by about

3 months (Llovet et al., 2008; Yuan et al., 2022). On the

contrary, numerous tyrosine multi-kinase inhibitors have been

shown to be dangerous or to have no effect on patient survival

(Cainap et al., 2015). Efforts have been undertaken to develop

promising pharmacological solutions against HCC in the lack of

adequate preventative or treatment methods in order to provide

patients with alternative treatment choices and enhance patient

life expectancies (Jindal et al., 2019).

In this instance, scientists are trying very hard to find

effective therapeutics for the treatment of HCC by adopting a

drug repurposing strategy compared to traditional drug

designing and development owing to its several limitations,

including failure in expensive late-stage clinical trials, high

attrition rates, takes a long time, high cost, etc. (Pfab et al.,

2021). Repurposing currently utilized drugs offers several

advantages over developing an entirely new therapeutic

(Zamboni et al., 2012; Gupta et al., 2013). In a drug

repurposing strategy, the failure risk is lower in terms of

safety, toxicity, and formulation information already available,

therefore drastically reducing the costs necessary to get the

medications to patients. In fact, bringing a repurposed drug to

market is ten times less expensive than bringing a unique

chemical molecule to market. Since data from clinical trials

about pharmacokinetics, bioavailability, etc., is already

available, the drug repurposing strategy also reduces the time

to make a new drug (Zamboni et al., 2012; Gupta et al., 2013;

Nosengo, 2016; Pushpakom et al., 2019; Pfab et al., 2021).

Nitazoxanide was first developed as an anthelmintic agent

and is an antimicrobial agent authorized by the FDA (Sisson

et al., 2002; Pfab et al., 2021). Müller et al. repurposed

nitazoxanide for colorectal cancer (CRC), and it has shown

anticancer activity by inhibiting apoptosis, DNA

fragmentation, nuclear condensation, and cell proliferation. It

specifically targeted glutathione-S-transferase P1 (GSTP1),

activating the AMPK pathway while suppressing c-Myc,

mTOR, and WNT signaling in CRC (Müller et al., 2008;

Senkowski et al., 2015). Moreover, nitazoxanide has been

reported to suppress c-Myc expression, leading to tumor

growth suppression and apoptosis induction in breast cancer

(Fan-Minogue et al., 2013). Nitazoxanide has not been explored

for HCC treatment and could be expected to down regulate the

overexpressed proteins implicated in the proliferation of HCC

malignancy.

Network pharmacology, multi-omics data, molecular

docking, and public medical databases have enabled an

alternative computational drug discovery approach and are

extensively used to design and develop therapeutic drugs for

many cancer types (Khan and Lee, 2022; Yuan et al., 2022).

Computational drug repurposing is particularly intriguing

since it allows for quicker screening of candidate drugs

than traditional drug design and development (Luo et al.,

2021). Computational drug repurposing develops interactions

between proteins, diseases, genes, and therapeutic candidates

based on open-access databases. It suggests viable therapeutic

candidates, assuming they target the same proteins in treating

ailments (Keenan et al., 2018). Currently, several researchers

are using them to design and develop therapeutic drug

candidates and explore the molecular pathways of natural

products implicated in the therapy of various ailments.

Therefore, we have utilized different bioinformatics tools in

this research, including network pharmacology and molecular

docking, to computationally repurpose and identify

nitazoxanide’s targets and molecular pathways that could

be involved in treating HCC. The flow chart of this

research is presented in Figure 1.

Materials and methods

Targets prediction of nitazoxanide

The targets of nitazoxanide were predicted using Swiss

Target Prediction (http://www.swisstargetprediction.ch/,

accessed on 12 May 2022) and SuperPred (https://

prediction.charite.de/, accessed on 12 May 2022) web

servers with limitations to “Homo sapiens” (Nickel et al.,

2014; Daina et al., 2019). The targets predicted with Swiss

Target Prediction and Super Pred, which have a probability

greater than zero and 50%, respectively, were selected as

potential targets for nitazoxanide.
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HCC-related targets determination

The HCC-related targets were identified by exploring the

Gene Cards (https://www.genecards.org/, accessed on 12 May

2022) database for the terms “hepatic cancer, hepatic carcinoma,

hepatocellular carcinoma, and hepatoma” (Rebhan et al., 1997).

Intersecting targets of HCC-related and
potential targets of nitazoxanide

The intersecting targets between HCC-related and potential

targets of nitazoxanide were identified using the VENNY

2.1 online tool (https://bioinfogp.cnb.csic.es/tools/venny/,

accessed on 12 May 2022) (Venny, 2022). These identified

intersected targets were screened for further analysis.

Protein-protein interaction analysis

The PPI analysis was performed on identified intersected

targets by employing the STRING (https://string-db.org/, version

11.5, accessed on 12 May 2022) database with limitations to

“Homo sapiens” and at a medium confidence score of 0.400 (von

Mering et al., 2003). Moreover, their results were further explored

by uploading them to Cytoscape software (version 3.9.0, Boston,

MA, United States, accessed on 12 May 2022) to find the

potential targets and anti-HCC core targets based on their

FIGURE 1
The flow chart of this research.
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degrees in the network (Lopes et al., 2010). Moreover, cluster

network analysis was carried out using the Molecular Complex

Detection (MCODE) plugin of Cytoscape (version 3.9.0) by

setting the parameters as; find clusters = in the whole

network, degree cutoff = 2, node score cutoff = 0.2, K-score =

0.2, and max depth = 100.

GO and KEGG enrichment analysis

GO, and KEGG enrichment analyses were performed on

identified intersected targets (determined in section 2.3) using

the database for annotation, visualization, and integrated

discovery (DAVID; version 6.8) (https://david.ncifcrf.gov/,

accessed on 13 May 2022) (DAVID, 2022). Both analyses

were performed by keeping the parameters: species, Homo

sapiens; identifier, official gene symbol; gene list, list type; and

remaining parameters, default values (Li et al., 2022). The results

of GO enrichment analyses are comprised of three terms,

including molecular functions (MF), cellular component (CC),

and biological process (BP). The top 10 GO data (MF, BP, and

CC) and 30 KEGG pathways were uploaded to the

Bioinformatics platform (http://www.bioinformatics.com.cn/,

accessed on 13 May 2022), and the results are displayed in

the form of a bubble plot (Weishengxin, 2022). The

enrichment of GO and pathways was deemed substantial if

p ≤ 0.05.

Network construction between anti-HCC
core targets and pathways

The network was established between anti-HCC core targets

and molecular pathways using Cytoscape software (version 3.9.0,

Boston, MA, United States; accessed on 13 May 2022) to

determine the intricate relationship between them in the

treatment of HCC with nitazoxanide (Lopes et al., 2010).

Expression of anti-HCC core targets

The GEPIA database (http://gepia.cancer-pku.cn/, accessed

on 14 May 2022) was used to examine the expression of the top

eight anti-HCC core targets (determined in section 2.4.) in liver

hepatocellular carcinoma (LIHC) (GEPIA, 2022 (Gene

Expression Profiling Interactive Analysis)).

Molecular docking

The 2D chemical structure of nitazoxanide was retrieved

from NCBI Pub Chem in Spatial Data File (SDF) (National

Center for Biotechnology Information, 2022). 3D structure

of nitazoxanide was constructed with BIOVIA Discovery

Studio Visualizer 2021 and saved in PDB format (BIOVIA

DS, 2016). The protein crystal structures of eight anti-HCC

core targets were retrieved from Protein Data Bank (RCSB

PDB: https://www.rcsb.org/search; RCSB PDB, 2022). The

water molecules and ligands from protein crystal structures

were extracted BIOVIA Discovery Studio Visualizer 2021.

Moreover, this was employed to prepare the grid and add

polar hydrogens to proteins. Each protein in PDB format was

uploaded to AutoDock Vina (version 1.2.0.) and added the

Kollman and Gasteiger partial charges. The PDB file of the

3D structure of nitazoxanide was then uploaded to

AutoDock Vina. Proteins and nitazoxanide files were

converted into pdbqt format using AutoDock Vina, and

then they were utilized to write scripts for molecular

docking (Trott and Olson, 2010). The docked complexes

of proteins and nitazoxanide were obtained and further

analyzed to determine their molecular interactions by

employing BIOVIA Discovery Studio Visualizer 2021

(BIOVIA DS). Binding energy less than zero suggests that

the ligand molecule may readily bind to the pockets of the

targeted proteins. It is generally accepted that a lower

binding energy value for a docked complex of ligand and

receptor implies a stronger binding (Trott and Olson, 2010).

Results

Potential targets of nitazoxanide

The nitazoxanide targets were predicted using the Swiss

Target Prediction and Super Pred web servers with “Homo

sapiens” limitations (Nickel et al., 2014; Daina et al., 2019). A

FIGURE 2
The intersecting targets between HCC-related and potential
targets of nitazoxanide (HCC = Hepatocellular carcinoma).
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total of 168 potential targets were retrieved with a probability

greater than zero and 50%.

HCC-related targets

By exploring the GeneCards database for the terms “hepatic

cancer, hepatic carcinoma, hepatocellular carcinoma, and

hepatoma,” 13,415 HCC-related targets were retrieved

(Rebhan et al., 1997).

Identification of intersecting targets

A total of 153 intersecting targets were identified between

HCC-related and potential targets of nitazoxanide using the

VENNY 2.1 online tool (Venny, 2022) (Figure 2). These

identified intersecting targets were deemed as potential anti-

HCC targets implicated in the treatment of HCC with

nitazoxanide.

PPI network analysis

Intersecting targets (153) were uploaded to the STRING

database with limitations to the species “Homo sapiens” (von

Mering et al., 2003). A PPI network was obtained, which

consisted of 153 nodes and 939 edges (Figure 3A). The

average node degree in the network was 12.3. Moreover, the

PPI network presented a 0.462 average local clustering coefficient

and 406 expected number of edges. The STRING results of the

PPI analysis were further imported to Cytoscape software

(version 3.9.0) for better understanding and visualization of

the network (Lopes et al., 2010).

The results demonstrated that the PPI network consists of

148 nodes (with the elimination of five disconnected nodes)

and 939 edges (Figure 3B). The elimination of disconnected

nodes from the network by the Cytoscape software (version

3.9.0) was also reported by Liu et al. (Liu et al., 2020).

Moreover, network centralization, heterogeneity, density,

diameter, and radius were 0.330, 0.937, 0.089, 6, and 3,

respectively. The clustering coefficient, characteristics path

FIGURE 3
(A) STRIN PPI network (B) PPI network of intersecting targets (C) A hub network of 55 anti-HCC core targets. In both networks (B,C), the
transition from red to yellow represents the degree shift from highest to lowest for each node (PPI = Protein-protein interaction).
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length, and the average number of neighbors were 0.409,

2.439, and 12.849, respectively.

Further, a hub network of targets with degrees greater than

the average DC (12.84) was extracted and identified

55 potential HCC targets, which were classified as anti-

HCC core targets (Figure 3C). The identified 55 anti-HCC

core targets are presented in a bar graph based on their degree

in the network, as shown in Figure 4. The top eight anti-HCC

core targets are SRC (degree 60), EGFR (degree 58), CASP3

(degree 57), MMP9 (degree 47), mTOR (degree 45), HIF1A

(degree 43), ERBB2 (degree 42), and PPARG (degree 38).

These eight anti-HCC core targets were further investigated

for molecular docking analysis with nitazoxanide.

Clusters network analysis

The cluster network analysis was further carried out on the

constructed PPI network (Figure 3B) using the Molecular

Complex Detection (MCODE) plugin of Cytoscape software

(version 3.9.0). The PPI network was clustered into six

clusters, as shown in Figure 5. Clusters 1, 2, 3, and four have

17 nodes and 97 edges, 16 nodes and 42 edges, 15 nodes and

25 edges, and five nodes and seven edges, respectively. While

clusters five and six have three nodes and three edges. All of these

clusters indicated the existence of potential HCC-targets for the

nitazoxanide drug’s therapeutic effects. Moreover, clusters one

and two show the presence of the top eight anti-HCC core targets

FIGURE 4
55 anti-HCC core targets in hub network ranked by DC > 12.84 (DC = Degree centrality).
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identified in section 3.4 (Figures 3C, 4). Cluster 1 has seven out of

eight anti-HCC core targets: SRC, EGFR, CASP3, MMP9,

HIF1A, ERBB2, and PPARG. On the other hand, cluster 2 has

one out of eight anti-HCC core targets such as mTOR. Hence,

cluster network analysis corroborated the findings of the hub

network.

Expression of anti-HCC core targets in
LIHC

The expression of the top eight anti-HCC core targets

(SRC, EGFR, CASP3, MMP9, mTOR, HIF1A, ERBB2, and

PPARG) in LIHC and normal samples were analyzed using

the GEPIA database. The analysis results demonstrated that

anti-HCC core targets were differentially expressed in LIHC

and normal samples (Figure 6). These results corroborated

that these eight anti-HCC core targets are strongly correlated

to the development and progression of LIHC.

GO enrichment analysis

Anti-HCC effects of nitazoxanide drug were further investigated

by performing GO enrichment analysis on 153 intersecting targets.

The top 10 enrichedGO terms (BP,MF, andCC)were identified. The

results are presented in Figure 7. The targets attributed to the anti-

HCC effects of nitazoxanide drug are implicated in multiple BP,

which include peptidyl-tyrosine phosphorylation, protein

autophosphorylation, protein phosphorylation, transmembrane

receptor protein tyrosine kinase signaling pathway, positive

regulation of MAP kinase activity, peptidyl-serine phosphorylation,

etc.On the other hand, the targets implicated in the treatment ofHCC

with nitazoxanide drug are involved in multiple CC, including the

plasma membrane, cytoplasm, integral components of the plasma

membrane, cytosol, cell surface, etc. Moreover, results demonstrated

that targets by which nitazoxanide treats HCC are implicated in

multiple MF such as transmembrane receptor protein tyrosine kinase

activity, proteins serine/threonine/tyrosine kinase activity, protein

tyrosine kinase activity, kinase activity, ATP binding, etc.

KEGG enrichment analysis

The molecular mechanisms involved in the anti-HCC effects of

nitazoxanide drug were further investigated by performing a KEGG

pathway enrichment analysis on 153 intersecting targets. A total of

78 enriched KEGG pathways were identified at p ≤ 0.05. The top

30 KEGG pathways were presented in Figure 8 in a bubble plot form.

The molecular mechanism attributed to the anti-HCC effects of

FIGURE 5
Six clusters of PPI network (PPI = Protein-protein interaction).
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nitazoxanide drugmight be involved in pathways in cancer, PI3K-Akt

signaling pathway, MAPK signaling pathway, proteoglycans in

cancer, EGFR tyrosine kinase inhibitor resistance, apoptosis,

hepatitis B, ErbB signaling pathway, microRNAs in cancer, etc.

These findings suggest that all of these mechanisms may be

implicated in a synergistic manner in the modulation of HCC by

the nitazoxanide drug.

Network between anti-HCC core targets
and pathways

To identify the major pathways involved in the anti-HCC

effects of the nitazoxanide drug, a network between the top

eight anti-HCC core targets and their corresponding

pathways were constructed. The network results

demonstrated that seven anti-HCC core targets (CASP3,

EGFR, ERBB2, mTOR, MMP9, HIF1A, and PPARG)

followed the pathways in cancer (degree 7). On the other

hand, SRC, CASP3, EGFR, ERBB2, mTOR, MMP9, and

HIF1A followed the proteoglycans in cancer (degree 7)

(Figure 9).

Moreover, the pathways were further ranked by DC

greater than the average DC (3.35) in the network to find

the major pathways. A total of nine major pathways were

identified and presented in a bar graph, as shown in

Figure 10. Thus, these nine pathways may significantly

contribute to the anti-HCC effects of the nitazoxanide

drug by modulating the expression of anti-HCC core targets.

Molecular docking

The nitazoxanide drug was molecularly docked with the top

eight anti-HCC core targets (SRC, EGFR, CASP3, MMP9,

mTOR, HIF1A, ERBB2, and PPARG), and the findings are

FIGURE 6
Expression of top eight anti-HCC core targets in LIHC (Red and grey colored boxes represent tumor and normal cells, respectively) (LIHC= Liver
hepatocellular carcinoma).
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shown in Table 1. Figures 11A–O depicts docked complexes of

the nitazoxanide drug and anti-HCC core targets. The results

revealed that the nitazoxanide drug had a high affinity for all anti-

HCC core targets. However, nitazoxanide drug had a greater

binding affinity with three anti-HCC core targets (SRC, MMP9,

and PPARG) and had an energy score ≥ −7.0. On the other hand,

the nitazoxanide drug had a high binding affinity for mTOR,

EGFR, and CASP3. Furthermore, the nitazoxanide drug had a

modest binding affinity for HIF1A and ERBB2, yielding an

energy score of −5.1.

Discussion

HCC often afflicts individuals with a history of hepatitis or

cirrhosis. Owing to increasing malignancy and morbidity, it is the

second leading cause of global cancer-related demise (Khan and Lee,

2022; Yang et al., 2022). In the lack of viable HCC preventive or

therapeutic interventions, emerging trends have shifted toward drug

repurposing instead of conventional drug discovery and

development due to the latter’s many constraints (Pfab et al.,

2021). The emergence of the big data era and the growth of

bioinformatics approaches provide tremendous assistance for

drug discovery via network pharmacology (Vetrivel et al., 2021).

The core principle of network pharmacology is that prospective

targets may be predicted by looking at their biological pathways

from a network perspective. This may aid in discovering novel active

medications from medicinal compounds (Zhu et al., 2019; Vetrivel

et al., 2021). In this study, a network pharmacology approach was

utilized to evaluate the therapeutic mechanism of nitazoxanide as a

treatment for HCC. For the first time, nitazoxanide’s

pharmacological effects on HCC have been examined utilizing

network pharmacology and molecular docking simulations.

Therapeutic targets of nitazoxanide against HCC were predicted

using online databases. A total of 168 potential therapeutic targets

were identified. A total of 13,415 HCC-related targets were retrieved

from the online database. Furthermore, 153 intersecting targets were

identified between the potential targets of nitazoxanide and HCC-

related targets.

PPI and cluster network analysis of intersecting targets displayed

that multiple genes such as SRC, EGFR, CASP3, MMP9, mTOR,

HIF1A, ERBB2, and PPARG are implicated in the anti-HCC effects

of nitazoxanide. The report demonstrates that elevated expression of

SRC leads to the pathogenesis of HCC and subsequent metastasis

FIGURE 7
Top 10 GO enriched analysis of 153 intersecting targets involved in anti-HCC effects of nitazoxanide drug (GO = Gene ontology).
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(Zhao et al., 2015). Overexpression of EGFR has been implicated in

HCC pathogenesis, and activation of this receptor contributes to

HCC cells’ primary resistance to sorafenib (Sueangoen et al., 2020).

Persad et al. reported the implication of CASP3 overexpression in

the pathogenesis of HCC (Persad et al., 2004). Previous reports

demonstrate that MMP9 is an oncogene implicated in HCC

progression (Yan et al., 2013; Lu et al., 2015). Its higher

expression in HCC tissues was also reported by Liu et al. (Liu B.

et al., 2021). The mTOR signaling is involved in numerous cancer

hallmarks such as cell growth, apoptosis suppression, etc. In HCC

tissue samples, the mTOR pathway is more highly expressed than in

liver cirrhotic tissue in the general vicinity (Ferrín et al., 2020).

Reports show that HIF1A protein levels are considerably higher in

human HCC samples and are linked with a poorer prognosis (Chen

and Lou, 2017). In the last 3 decades, research indicated that

ERbb2 expression is seldom associated with the development of

HCC (Xian et al., 2005; Shi et al., 2019). However, alternative studies

also revealed that ERBB2 expression was higher in 30–40 percent of

HCC (Heinze et al., 1999; Shi et al., 2019). Moreover, GEPIA

database analysis shows that all eight anti-HCC core targets were

differentially expressed in LIHC and normal samples (Figure 6).

Hence, based on the literature and the GEPIA database, all eight of

these anti-HCC core targets played a crucial role in the progression

of HCC and may be promising therapeutic targets for treating HCC

with nitazoxanide.

The GO enrichment analysis demonstrated that nitazoxanide

might be displayed anti-HCC effects by affecting gene targets

implicated in multiple BP (peptidyl-tyrosine phosphorylation,

protein autophosphorylation, protein phosphorylation,

transmembrane receptor protein tyrosine kinase (RTKs) signaling

pathway, positive regulation of MAP kinase activity, peptidyl-serine

phosphorylation, etc.). Protein phosphorylation is vital for

performing various activities such as biological processes, cellular

localization, etc.; however, its aberrant regulation contributes to

several conditions such asHCC, etc. (Liu Y. et al., 2021).MAP kinase

regulates various cellular functions (apoptosis, proliferation,

differentiation, etc.). MAP kinase activity is upregulated in the

majority of malignancies with a high incidence rate, such as

pancreatic cancer, non-small cell lung cancer, and particularly

HCC (Li et al., 2021). RTKs are membrane-bound receptors

necessary for cell function. By phosphorylating intracellular

substrate proteins, they promote communication between cells.

They govern cell proliferation, differentiation, metabolism,

migration, etc., to maintain cellular homeostasis and are at the

FIGURE 8
Top thirty KEGG enriched pathways of 153 intersecting targets involved in anti-HCC effects of nitazoxanide drug.
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hub of intricate signaling networks. RTK mutations or aberrant

activation are common causes of the development of cancers,

including HCC (Sudhesh Dev et al., 2021). In addition, the

targets implicated in the treatment of HCC with the nitazoxanide

drug are involved in multiple CC, including the plasma membrane,

cytoplasm, integral components of the plasma membrane, cytosol,

cell surface, etc. Moreover, the results demonstrated that the targets

by which nitazoxanide treats HCC are implicated in multiple MF,

including transmembrane receptor protein tyrosine kinase activity,

protein serine/threonine/tyrosine kinase activity, protein tyrosine

kinase activity, kinase activity, ATP binding, etc.

The KEGG enrichment analysis revealed that the molecular

pathways underlying the anti-HCC effects of the nitazoxanide drug

might involve pathways in cancer, PI3K-Akt signaling pathway,

MAPK signaling pathway, proteoglycans in cancer, EGFR tyrosine

kinase inhibitor resistance, apoptosis, hepatitis B, ErbB signaling

pathway, microRNAs in cancer, etc. In spite of the fact that the

PI3K–AKT signaling pathway regulates a wide range of cellular

processes, its abnormal activation promotes the development of

HCC (Rahmani et al., 2020). Consequently, PI3K-AKT suppression

may be an alternative HCC therapeutic modality. RTKs trigger

activation of the MAPK signaling pathway. However, its

inappropriate modulation leads to abnormal cellular activity,

FIGURE 9
The network between the top eight anti-HCC core targets and their corresponding molecular pathways.

FIGURE 10
Nine pathways in the network ranked by DC > 3.35 (DC =
Degree centrality).

TABLE 1 Molecular docking of nitazoxanide with the top eight anti-HCC core targets.

Drug Binding affinity (kcal/mol)

SRC EGFR CASP3 MMP9 mTOR HIF1A ERBB2 PPARG

Nitazoxanide −7.0 −5.8 −5.5 −7.9 −6.9 −5.1 −5.1 −7.4
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FIGURE 11
Molecular docking results of top eight anti-HCC core targets with nitazoxanide drug. Nitazoxanide drug binds with SRC (2D and 3D) (A,B), EGFR
(2D and 3D) (C,D), CASP3 (2D and 3D) (E,F), MMP9 (2D and 3D) (G,H), mTOR (2D and 3D) (I,J), HIF1A (2D and 3D) (K,L), ERBB2 (2D and 3D) (M,N), and
PPARG (2D) (O).

Frontiers in Pharmacology frontiersin.org12

Khan and Lee 10.3389/fphar.2022.968148

25

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.968148


including enhanced cell growth and proliferation, dedifferentiation,

and survival, which are all implicated in the etiology ofmalignancies,

including HCC (Delire and Stärkel, 2015; Moon and Ro, 2021). The

upregulation of proteoglycans such as glypican-3 leads to the

development of melanoma. However, HCC patients had the

highest proportion of positive instances (Ahrens et al., 2020).

Therefore, inhibiting proteoglycans may be a potential treatment

option for treating HCC. Moreover, the network results of core

targets and pathways demonstrated nine major pathways

(Figure 10). Among nine major pathways, the top two pathways

were pathways in cancer (degree 7) and proteoglycans in cancer

(degree 7). Seven anti-HCC core targets (CASP3, EGFR, ERBB2,

mTOR, MMP9, HIF1A, and PPARG) followed the pathways in

cancer. On the other hand, SRC, CASP3, EGFR, ERBB2, mTOR,

MMP9, and HIF1A followed the proteoglycans in cancer (Figure 9).

Thus, these two pathways may significantly contribute to the anti-

HCC effects of the nitazoxanide drug by modulating the expression

of anti-HCC core targets.

To further validate the results, nitazoxanide’s impact on the

eight anti-HCC core targets (SRC, EGFR, CASP3, MMP9, mTOR,

HIF1A, ERBB2, and PPARG) was investigated in silico. The targets’

molecular interactions with nitazoxanide demonstrated efficient

binding in docking studies. Together, our findings show that

patients with HCC have elevated levels of transcriptional

expression of the expected targets and that therapy with

nitazoxanide may suppress the translational expression of those

targets.

Conclusion

In this study, we have successfully identified the anti-

HCC core targets and their biological functions, molecular

pathways, and the effect of nitazoxanide on HCC. The

constructed network pharmacology revealed the significant

interaction among the predicted targets that identified eight

anti-HCC core targets (SRC, EGFR, CASP3, MMP9, mTOR,

HIF1A, ERBB2, and PPARG) as the active bio targets of

nitazoxanide in HCC. Furthermore, we found that nine key

pathways are likely to be involved: pathways in cancer,

proteoglycans in cancer, MicroRNAs in cancer, central

carbon metabolism in cancer, lipid and atherosclerosis,

Kaposi sarcoma-associated herpesvirus infection, ErbB

signaling pathway, and EGFR tyrosine kinase inhibitor

resistance, by which nitazoxanide treats HCC. Our study

validates the notion that nitazoxanide’s anti-HCC effects

may emerge from synergistic interactions across several

targets and pathways, and our data offer evidence to

support this notion. A molecular docking simulation

demonstrated the potential for active interaction between

the anti-HCC core targets and nitazoxanide. Our study

provides a theoretical foundation for the idea that

nitazoxanide may have unique therapeutic benefits in

HCC, and the pharmacological targets that have been

identified may be potential biomarkers in the treatment

of HCC.
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Structures of the
SARS-CoV-2 spike glycoprotein
and applications for novel drug
development

Xiao-Huan Liu, Ting Cheng, Bao-Yu Liu, Jia Chi, Ting Shu and
Tao Wang*

School of Biological Science, Jining Medical University, Jining, China

COVID-19 caused by SARS-CoV-2 has raised a health crisis worldwide. The high

morbidity and mortality associated with COVID-19 and the lack of effective

drugs or vaccines for SARS-CoV-2 emphasize the urgent need for standard

treatment and prophylaxis of COVID-19. The receptor-binding domain (RBD) of

the glycosylated spike protein (S protein) is capable of binding to human

angiotensin-converting enzyme 2 (hACE2) and initiating membrane fusion

and virus entry. Hence, it is rational to inhibit the RBD activity of the S

protein by blocking the RBD interaction with hACE2, which makes the

glycosylated S protein a potential target for designing and developing

antiviral agents. In this study, the molecular features of the S protein of

SARS-CoV-2 are highlighted, such as the structures, functions, and

interactions of the S protein and ACE2. Additionally, computational tools

developed for the treatment of COVID-19 are provided, for example,

algorithms, databases, and relevant programs. Finally, recent advances in the

novel development of antivirals against the S protein are summarized, including

screening of natural products, drug repurposing and rational design. This study

is expected to provide novel insights for the efficient discovery of promising

drug candidates against the S protein and contribute to the development of

broad-spectrum anti-coronavirus drugs to fight against SARS-CoV-2.

KEYWORDS

COVID-19, spike glycoprotein, small-molecule inhibitors, drug development,
computer-aided drug development

1 Introduction

The 2019 novel coronavirus disease (COVID-19) caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread to more

than 210 countries and has become a serious threat to global public health (Jiang

et al., 2020; Lai et al., 2020). To date, the globe is still struggling with COVID-19.

Coronaviruses (CoVs) can infect humans and animals and cause a variety of diseases,

such as fever, severe respiratory illness and pneumonia, threatening human health

and public safety. CoVs are mainly divided into four genera, α-CoV, beta-CoV,
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gamma-CoV, and delta-CoV (Ou et al., 2020). During the

past 2decades, β-CoVs have caused three severe zoonotic

outbreaks: severe acute respiratory syndrome-CoV (SARS-

CoV) in 2003, Middle East respiratory syndrome-CoV

(MERS-CoV) in 2012, and newly emerged SARS-CoV-2 in

late 2019. To date, several promising antiviral medicines,

such as remdesivir (Schooley et al., 2021), molnupiravir

(Holman et al., 2021), and paxlovid (ritonavir/PF-

07321332) (Zhao et al., 2021), have been developed or

approved for marketing; unfortunately, no specific

medicine or standard treatment has been developed yet to

combat COVID-19.

Although the physiology-based approach is a traditional and

proven drug discovery paradigm for the development of novel

drugs, emerging computer-aided drug development has become

a promising alternative to accelerate the modern discovery

process (Yadav et al., 2020; Gentile et al., 2021). These in

silico strategies could very effectively identify novel active

scaffolds for a validated target. Therefore, target identification

(i.e., one or more targets) has become a key starting point for a

successful drug discovery project, which is also true for the

development of pancoronavirus (HCoV) antiviral drugs (Liu

et al., 2021).

The genome of SARS-CoV-2 contains two large

overlapping open reading frames (Figure 1A, ORF1a and

ORF1b) encoding 16 non-structural proteins (Nsp1 to 16),

along with open reading frames encoding four structural

proteins (spike (S), membrane (M), envelope (E), and

nucleocapsid (N)) and nine accessory proteins (Chan

et al., 2020; Pillay, 2020). The trimeric S protein

(~180 kDa, Figure 1B), consisting of the S1 and

S2 subunit, is crucial for the virus to enter the cell. In

particular, S1 contains a receptor-binding domain (RBD)

that binds to angiotensin-converting enzyme 2 (ACE2) to

initiate the entry of the virus into cells (Wang et al., 2020).

Considering that the SARS-CoV-2 viral life cycle starts with

the binding of the S-RBD to the host ACE2 receptor, the S

protein, especially the S-RBD, is considered a key molecular

target for the development of vaccines, therapeutic agents,

and diagnostic methods against COVID-19 (Pandey et al.,

2021; Souza et al., 2021; Tan et al., 2021; Zahradník et al.,

2021; Gyebi et al., 2022).

Given the importance of the S protein in the context of the

COVID-19 pandemic, in this review, the molecular features of

the S protein of SARS-CoV-2 are highlighted. Additionally,

computational tools available for the treatment of COVID-19

were also provided. Finally, recent advances in the novel

development of antivirals against the S protein are

summarized. Taken together, this study provides an essential

foundation for the design and development of efficient antiviral

agents based on the SARS-CoV-2 S protein.

2 Structures and functions of the
SARS-CoV-2 spike glycoprotein

2.1 S protein: A key target for antivirals

The surface transmembrane spike glycoprotein S is a typical

class I viral fusion protein that is responsible for viral attachment

to host cells, subsequent virus–cell membrane fusion and

humoral and cell-mediated response induction (Hatmal et al.,

2020). The overall structure of the SARS-CoV-2 S protein is quite

similar to that of SARS-CoV S; the main conformational

difference lies in the position of the receptor-binding domain

(RBD) (Wrapp et al., 2020). ACE2 can bind more tightly to the

SARS-CoV-2 S protein (with ~15 nM affinity) than to the SARS-

CoV S protein. This may help explain the enhanced

pathogenicity of COVID-19 compared with that of SARS-

CoV. The amino acid sequence identity of the S proteins of

SARS-CoV-2 and SARS-CoV is approximately 77%, also

indicating that they are closely related phylogenetically (Zhou

et al., 2020).

Usually, when the S protein is processed and hydrolysed

by one or multiple host proteases [e.g., furin and

transmembrane protease serine protease-2 (TMPRSS-2)], it

will lead to the formation of active and fusion-competent S

protein (Ou et al., 2020). For binding to the host cell receptor,

the RBD undergoes a transient hinge-like conformational

change from the “down” conformation (receptor

inaccessible) to the “up” conformation (receptor accessible)

(Peng et al., 2020; Meirson et al., 2021). In coronaviruses, the

fusion-competent S protein (Figure 2A)) usually forms a

trimer carrying the receptor-binding subunit S1 (700 amino

acids) and the membrane-fusion subunit S2 (600 amino

FIGURE 1
Diagrams of the genome of SARS-CoV-2 (1) and the full-
length SARS-CoV-2 S protein (2).(NTD, N-terminal domain; RBM,
receptor-binding motif; RBD, receptor-binding domain; HR,
heptad repeat).

Frontiers in Pharmacology frontiersin.org02

Liu et al. 10.3389/fphar.2022.955648

30

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.955648


acids). It is noted that an insertion of four amino acid residues

at the junction of S1 and S2 of SARS-CoV-2 will generate a

polybasic cleavage site (RRAR), which would greatly facilitate

effective cleavage (Andersen et al., 2020; Coutard et al., 2020).

For SARS-CoV and SARS-CoV-2 (Lan et al., 2020),

angiotensin-converting enzyme 2 (ACE2) is required for

binding to target cells (Figure 2C), while dipeptidyl

peptidase 4 (DPP4) is the necessary cellular receptor of

MERS-CoV (Raj et al., 2013).

The RBDs of SARS-CoV-2, MERS-CoV, and SARS-CoV are

located in the S1 subunit (Du et al., 2017) and are composed of a

core subdomain and a receptor-binding motif (RBM) mediating

viral attachment to host cells. Differences in the RBM domains

would lead to the use of different receptors in varying hosts (Lu

et al., 2013; Wang et al., 2013). Upon binding to the receptor, the

S1 subunit dissociates from the trimeric S protein and is then

exposed to the other subunit, S2 (Benton et al., 2020), (Cai et al.,

2020). The S2 subunit contains several important structural

elements (Walls et al., 2016), including an N-terminal fusion

peptide (FP), heptad repeat 1 (HR1), the central helix (CH), the

connector domain (CD), heptad repeat 2 (HR2), the

transmembrane region (TM), and the cytoplasmic tail (CT).

FP can bind to the target cell membrane and, once bound,

will induce S2 into a prehairpin state to connect the viral and

cellular membranes. Then, 3 HR1 regions self-assemble into a

trimeric coiled coil, and 3 HR2 regions fold into the interface of

the HR1 inner core, forming a six-helix bundle (6-HB) structure

(Yuan et al., 2017).

Wang et al. determined the crystal structure of the RBD of

SARS-CoV-2 bound to the cell receptor ACE2 (Figure 2C), and

the results revealed that the interaction modes resemble those of

the SARS-CoV RBD (Lan et al., 2020). The binding site is

composed of five-stranded antiparallel β sheets, several short

connecting helices, and loops. Among these secondary structures,

four pairs of disulfide bonds formed by eight cysteine residues

were also identified, which are used for stabilizing the β sheets.

Analysis of the critical residues associated with RBD binding

revealed that a total of 16 residues in the RBD (Figure 2C in dark

blue) might interact with the N-terminal helix of ACE2. Among

these critical residues, hydrophilic interactions (13 hydrogen

bonds and 3 salt bridges) are formed during binding to the

ACE2 receptor. It is worth noting that in this study, no

interactions between the N-acetyl-β-glucosaminide (NAG)

glycans and SARS-CoV-2 RBD were found, although the

glycan-RBD interaction is believed to be associated with the

binding of the SARS-CoV RBD to ACE2 (Li et al., 2005).

FIGURE 2
Crystal structure of prefusion SARS-CoV-2 spike glycoprotein (1, PDB ID: 6VSB), antibody CR3022 binding to the SARS-CoV-2 RBD (2, PDB ID:
6W41), and the SARS-CoV-2 spike receptor-binding domain bound with ACE2 (3, PDB ID: 6M0J).

Frontiers in Pharmacology frontiersin.org03

Liu et al. 10.3389/fphar.2022.955648

31

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.955648


In a recent study (Yuan et al., 2020), a highly conserved

cryptic epitope in the RBD of SARS-CoV-2 and SARS-CoV was

discovered, which could be recognized by the neutralizing

antibody CR3022 (Figure 2B). The presence of a glycan would

induce CR3022 to bind more tightly to SARS-CoV than SARS-

CoV-2. Although this special domain is distal from the

traditional RBD, it makes cross-reactive binding between

SARS-CoV-2 and SARS-CoV possible. In particular, it was

found that the binding epitope could be accessed by

CR3022 only when at least two of the three RBDs on the

trimeric S protein were in the “up” conformation.

2.2 Interactions between the S protein and
ACE2

Yan et al. (Yan et al., 2020) released the cryo-electron

microscopy structures of full-length human ACE2 in the

presence of the neutral amino acid transporter B0AT1 and the

RBD of the S protein of SARS-CoV-2 (Figure 3). The ACE2-

B0AT1 complex is assembled as a dimer of heterodimers

(Figure 3A) with two critical functional domains, including an

N-terminal peptidase domain (PD, residues 19–615) and a

C-terminal collectrin-like domain (CLD) of ACE2. The RBD

is recognized and directly binds to the PD of ACE2 mainly

through polar interactions, and the homodimerization process is

mediated by CLD (Song et al., 2018).

Interactions between S1-RBD and ACE2 mainly occur in the

region constructed by residues F486 to V503 (β*, coloured

yellow). The two ends of the β* region strongly interact with

the N- and C-termini of the α1 helix and certain areas on the

α2 helix and β1 sheet. Moreover, the interaction can be further

stabilized by interactions through several polar residues in the

middle of α1 (Figure 4). At the N-terminus of α1, P499, T500,
and N501 of the RBD form a network of H-bonds with Y41, Q42,

K353, V503, G354, D355, and R357 from ACE2 (Figure 4B). In

the middle of β*, Lys417 and Tyr453 of the RBD interact with

Asp30 and His34 of ACE2, respectively (shown in green,

Figure 4B). At the C-terminus of α1, Q493, C488 of the RBD

is H-bonded to K31 and T27 of ACE2, respectively (shown in

green, Figure 4B), whereas F486 of the RBD interacts with

M82 and Y83 of ACE2 through van der Waals forces (shown

in purple, Figure 4B). It is clear that those identified residues

associated with the interactions with ACE2 would certainly make

potential targets for inhibitors against virus replication. In

addition, it was found that the T470-F490 loop (activated in

FIGURE 3
Overall structure of the RBD-ACE2-neutral amino acid transporter complex (PDB ID: 6M17).
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the open state) and Q498-Y505 residues within the RBD domain

of SARS-CoV-2 S act as viral determinants for the specific

recognition of SARS-CoV-2 RBD by ACE2 (Xu et al., 2021).

2.3 Mutations in the spike protein and
related interactions

Owing to the crucial role of the S protein in entering the cell for

the virus, key mutations of the S protein might alter the virus’

infectivity, virulence, and antigenicity, leading to the reduced

effectiveness of therapeutic antibodies and vaccines (Wang et al.,

2021a; Wang et al., 2021b; Starr et al., 2021). Results showed that

mutants (N501Y, E484K, and K417 N/T) with high mutation

frequencies might have become the main genotypes for the

spread of SARS-CoV-2 (Yi et al., 2021). Recent quantitative

analysis of the stability of the ACE2-RBD complex for the

Omicron variant (SARS-CoV-2 B.1.1.529) showed that its RBD

could bind more strongly to the target human ACE2 protein than

the original strain through increased hydrogen bonding interactions

and a more buried solvent-accessible surface region (Lupala et al.,

2022). This might help explain why 85% of previously characterized

neutralization antibodies lost their efficacy against the new variant

Omicron (Cao et al., 2022). Omicron (B.1.1.529) exhibits more than

thirty amino acid mutations in the receptor-binding motif of the

spike protein, and the increases in transmissibility and immune

evasion have caused a challenging and threatening situation

worldwide (Kannan et al., 2021; Meo et al., 2021).

FIGURE 4
The interaction modes of S1 and ACE2 (PDB ID: 6M17).
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Recently, several crystal structures of the Omicron spike trimer

in complex with angiotensin-converting enzyme 2 (ACE2) or the

therapeutic antibody (JMB 2002) (Han et al., 2022; Hong et al., 2022;

McCallum et al., 2022; Yin et al., 2022) have been released. With

15 mutated residues, the overall structure of the Omicron ACE2-

RBD complex is similar to that of the wild-typeACE2-RBD complex

(Figure 5). Most Omicron mutations are located on the surface of

the spike protein and change binding epitopes to many current

antibodies. In the ACE2-binding site (Yin et al., 2022),

compensating mutations strengthen RBD binding to ACE2,

forming additional interactions with ACE2, including interactions

from the RBD mutations N477 (hydrogen bonds), R493, Q496,

R498 (hydrogen bonds), and Y501 (packing interactions) to ACE2

(Figure 6A). Moreover, RBD-RBD interactions from one of the two

down RBDs to the up RBD were found, which might be capable of

stabilizing the up conformation of the RBD. In contrast, the mutant

residues (Omicron residues L371, P373, and F375) located at the

entrance to the fatty acid–binding pocket could probably distort the

pocket and destabilize the RBDs in the all closed-down

conformation. All the mentioned interactions could further

contribute to the higher affinity of Omicron. Similar findings also

revealed new salt bridges, hydrogen bonds and π-stacking
interactions formed by mutated residues R493, S496, R498 and

Y501 in the RBD with ACE2 (Figure 6D) (Mannar et al., 2022). It

was also found that the mutant residues N471 (H bond), H505 (van

der Waals interactions), and R498 (salt bridge) also play important

roles in hACE2 binding (Mannar et al., 2022).

2.4 N-terminal domain of the S protein of
SARS-CoV-2

It has been revealed that S1 consisted of the NTD and the

RBD plays a critical role in the lifecycle of SARS-CoV-2.

FIGURE 5
The interaction modes of the Omicron spike protein and ACE2.
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Though the detailed functions of NTD have not been well

investigated, several studies showed that drug development

against the NTD, especially the NTD-directed antibodies,

might be another promising strategy (Ciuffreda et al., 2021;

Di Gaetano et al., 2021; Schuurs et al., 2021). In a study by Chi

et al. (2020), a neutralizing human antibody binding to the

NTD of the S protein was developed and investigated. The

biological results showed that the neutralizing capacity of

4A8 with EC50 of 0.61 mg/ml, moreover it could protect

the ACE2-293T cells with an EC50 of 49 mg/ml. From the

structure of the complex between 4A8 and S-NTD, it shows

that the heavy chain of 4A8 mainly participates in binding to

the NTD, on the contrary the light chain is away from the

RBD. On this basis, it was estimated that 4A8 might play

important functions in restraining the conformational

changes of the S protein. Also, at the surface area of the

4A8-NTD interface critical residues including K147, Y248,

K150, H146, R246, H245, W152, L129, N149, and so on could

interact with 4A8 by means of H-bounds, salt bridges and

hydrophilic interactions (Figure 7). In another study (Cerutti

et al., 2021), structural analysis of seven potent NTD-directed

neutralizing antibodies revealed a common highly

FIGURE 6
The interaction modes of the Omicron spike protein and ACE2.

FIGURE 7
The interaction modes of the 4A8 and S-NTD complex (PDB:7C2L).
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electropositive binding site, which is formed by a mobile β-
hairpin and several flexible loops including the critical

residues glycans N17, N74, N122, and N149. Similarly,

Matthew et al. also identified a supersite (site I, Figure 8),

which could be recognized by all known NTD-specific

neutralizing antibodies (McCallum et al., 2021). These

studies indicate that potent NTD-directed neutralizing

antibodies might probably target the single supersite.

3 Targets for novel drug development

Given that viral entry is mainly mediated by the trimeric

spike protein, the S protein is considered a major therapeutic

target for the treatment of SARS-CoV-2 infections. To

interfere with the S protein-hACE2 interaction,

neutralizing antibodies are usually the most traditional

and functional strategies. However, inhibitors of the

protein–protein interaction (PPI) between the S protein

and hACE2 have recently drawn increasing attention for

the development of potential antiviral agents to prevent viral

attachment and cellular entry to control the ongoing

COVID-19 pandemic (Tai et al., 2020; Bojadzic et al.,

2021). In addition, although small molecular weight

inhibitors (SMIs) are usually not considered potential

candidates for PPI modulation, an increasing number of

studies have revealed that SMIs could also be effective

against certain PPIs (Scott et al., 2016; Risner et al., 2020;

Pan et al., 2021).

Considering that anti-SARS-CoV-2 neutralizing

antibodies have been extensively investigated (Ju et al.,

2020; Cho et al., 2021; Wang et al., 2021c; Lucas et al.,

2021), in this section, the recent drug development of

novel small-molecule inhibitors (nonpeptide small

molecules) that can interfere with viral entry or viral

propagation is highlighted, including the discovery of

natural products, drug repurposing, and novel drug

development.

3.1 Computational tools developed for
COVID-19 treatment

In addition to the traditional computational tools frequently

used for rational drug development, such as Discovery Studio,

Gold and AutoDock, several types of computational resources,

tools and databases have recently been developed to investigate the

ever-growing available data against COVID-19 and its related

diseases.

(1) The D3Targets-SARS-CoV-2 web server (https://www.

d3pharma.com/D3Targets-SARS-CoV-2/index.php.) is a

webserver capable of predicting potential drug targets and

identifying lead compounds against specific or multiple

targets via structure-based virtual screening against

COVID-19 (Shi et al., 2020). It provides two strategies for

target prediction and virtual screening: the structure-based

method (D3Pockets) and the ligand-based method

(D3Similarity). The potential ligand-binding pockets is

predicted by D3Pockets, and the docking process is

performed with AutoDock Vina. By the end of 27-05-

2021, 56 potential proteins (constructed by homology

modelling or de novo prediction) involved in the whole

process of virus life have been included.

(2) D3Similarity is a ligand-based method developed based on

the molecular similarity evaluation between the submitted

molecule(s) and the active compounds in the database

(604 molecules) (Yang et al., 2021a). The 2D molecular

similarity is evaluated by using Open Babel based on the

Tanimoto coefficient (Tc) values between the SMILES of the

FIGURE 8
Crystal structure analysis of S-NTD bound to S2M28 Fab (PDB:7LY3).
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input structure and the molecules in the database. The 3D

molecular similarity was evaluated by using MolShaCS

(Molecular Shape and Charge Similarity). D3Pockets is a

web server developed for systematically exploring protein

pocket dynamics based on either molecular dynamic

simulation trajectories or conformational ensembles with

large-scale conformational changes (Chen et al., 2019).

Based on D3Pockets, the stability, continuity, and

FIGURE 9
Several potential natural products showing inhibitory effects against SARS-CoV-2.
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correlation of protein pockets could be investigated, and the

results could also be visualized with PyMOL.

(3) CovidExpress (https://stjudecab.github.io/covidexpress) is

an open-access database and interactive visualization tool

for intuitive investigation of SARS-CoV-2-related

transcriptomes, and we collected approximately

1,500 human bulk RNA-seq datasets from publicly

available resources (Djekidel et al., 2021). It can be used

to examine the relative gene expression levels in different

tissues, cell lines, and especially the response to SARS-CoV-

2. Based on this database, a series of commonly regulated

genes (~345 genes, 280 upregulated and 65 downregulated)

in SARS-CoV-2-infected lung and nasal cells were identified,

such as the interferon response genes OASL TNF, IL1A, and

CXCL10.

(4) The COVID-19 Docking Server (http://ncov.schanglab.org.

cn) is a web server that can be used for the prediction of the

binding modes between COVID-19 targets and ligands

(Kong et al., 2020). It provides a free and interactive tool

for the prediction of COVID-19 target-ligand interactions

and subsequent drug development. A total of 27 targets (e.g.,

spike protein, nucleocapsid protein, main protease, papain-

like protease, and RNA-dependent RNA polymerase)

involved in the virus life cycle were collected or

constructed based on homology modelling and prepared

for docking on the website. For different ligands, the

implementation methods are different. For small

molecular weight ligands, Open Babel is applied for

format transformation and 3D coordinate generation, and

AutoDock Vina is used for molecular docking. However, for

macromolecular drugs (e.g., peptides and antibodies),

CoDockPP is used as a docking engine with a multistage

fast Fourier transform (FFT)-based strategy for both global

docking and site-specific docking.

(5) MolAICal (https://molaical.github.io) was developed for the

rational design of potential 3D drug structures in the 3D

pockets of specific targets achieved by using a deep learning

model and classical algorithms (Bai et al., 2021). It contains

two main modules: one can employ the genetic algorithm,

deep learning and the Vinardo score for rational drug design.

The secondmodule can use a deep learning generative model

and molecular docking (achieved by AutoDock Vina) for

virtual screening. The models used in this tool have been

fully trained by different databases and methods. Several

user-defined rules (e.g., Lipinski’s rule of five, synthetic

accessibility) are also introduced for filtering out

undesired hits.

(6) COVID19 db (http://hpcc.siat.ac.cn/covid19db or http://

www.biomedicalweb.com/covid19db) is a user-friendly

and open-access platform that integrates 95 COVID-19-

related human transcriptomic datasets of 4,127 human

samples across 13 body sites associated with exposure to

33 microbes and 33 drugs/agents in GEO and 39,

930 drug–target–pathway interactions among 2,037 drugs,

1,116 targets, and 207 pathways in DrugCentral and KEGG

(Zhang et al., 2022). In addition, 14 different analytical

applications (included in the differential expression and

coexpression modules) and a web service tool are

designed and integrated to analyse the integrated data or

the obtained human transcriptomic data. Moreover, a drug

discovery tool is provided for the identification of potential

drugs and targets of COVID-19 and its related diseases at the

whole transcriptomic level.

In addition to those mentioned above, some other

computational tools have been developed to meet the urgent

demand of the COVID-19 outbreak, which are listed in Table 1.

3.2 Small-molecule inhibitors against the S
protein

In attempts to discover and identify small-molecule

inhibitors against the S protein, an efficient drug screening

strategy is extremely important for structure-based, fragment-

based, mechanism-based, and computer-guided drug discovery

(Figure 9).

3.2.1 Discovery of natural products for use as
inhibitors against the S protein

Compared with neutralizing antibodies, small-molecule

inhibitors might be more challenging for the blockade of

RBD-hACE2 interactions due to the lack of well-defined

binding pockets. However, they might offer alternatives that

are more broadly active, more patient-friendly, less

immunogenic, and more controllable than antibodies due to

improved pharmacokinetics, stability, and dosage logistics (Song

and Buchwald, 2015; Bojadzic and Buchwald, 2018; Xiu et al.,

2020). Traditionally, natural products are important sources for

novel drug development due to their rich sources, chemical

diversity, large chemical space diversity, and biological

activities. Therefore, natural products could make good

starting points for modern drug design for the treatment of

COVID-19 (Hu et al., 2021a; Mahmudpour et al., 2021).

Together with the combination of computer-aided drug

design and biological verification, drug development based on

natural products is believed to be an efficient strategy for modern

drug discovery.

Yu et al. applied this method to discover bioactive monomers

from the active ingredient of licorice (Glycyrrhiza uralensis Fisch)

for broad-spectrum anti-coronavirus candidates (Yu et al., 2021).

In addition, surface plasmon resonance (SPR) assays, NanoBit

assays and MTT assays were used simultaneously to determine

the binding activities, inhibitory activities, and cell toxicities of

selected compounds. The results showed that glycyrrhizic acid

(ZZY-44) was an efficient (IC50: 22 μM) and broad-spectrum
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anti-coronavirus molecule with low toxicity (CC50 > 100 μM)

in vitro, which could disrupt the interaction between the RBD

and ACE2 (KD = 0.87 μM).

Damir Bojadzic et al. (2021) identified several promising

candidates by screening a compound library of organic dyes.

Among them, Congo red, direct violet 1, Evans blue and novel

drug-like compounds (DRI-C23041, DRI-C91005) showed

inhibitory effects against the interaction of hACE2 with the

spike protein with low micromolar activity (IC50: 0.2–3.0 μM).

Notably, the results revealed that the inhibitors identified could

bind the SARS-CoV-2-S protein but not hACE2, which provides

great significance for the development of small-molecule

inhibitors of PPIs critical for SARS-CoV-2 attachment/entry.

Suresh Gangadevi et al. discovered that kobophenol A is a

potential inhibitor capable of blocking the interaction between

the ACE2 receptor and S1-RBD by virtual screening of a library

of natural compounds (Gangadevi et al., 2021). In this study, a

computer-aided drug design strategy was applied to screen

natural compounds, determine conformational changes and

predict potential binding sites, including molecular docking

and molecular Dynamic studies. The results showed that

kobophenol A from Caragana sinica extract could disrupt the

interaction between ACE2 and the SARS-CoV-2 S protein (IC50:

1.81 ± 0.04 μM and EC50: 71.6 μM). In addition, two potential

binding sites for Kobophenol A were predicted, including the

ACE2 hydrophobic pocket and the spike1/ACE2 interface.

Structure-based drug development is a proven method for

high-throughput screening of specific compounds. In a study,

through molecular Dynamic simulations and molecular docking,

the hydrophobic pocket at the FP domain was first investigated,

revealing the key binding regions (especially the FP hinge loop)

and interactions. Then, a pharmacophore model was generated

based on the predicted binding interaction. After that, nearly

200,000 drug-like compounds in the NCATS inhouse library

were screened according to pharmacophore- and 3D-shape-

based searches. Then, the 2,000 top-scoring compounds from

docking were selected, clustered and visually inspected.

Ultimately, 120 compounds were prioritized for further

evaluation. This led to the discovery of two novel chemotypes

of entry inhibitors (clobenztropine and D3-βArr), which

displayed single-digit micromolar inhibition against SARS-

CoV-2 (IC50: 12.6 and 15.8 μM) as well as SARS-CoV-1 and

MERS (Hu et al., 2021b). It is interesting that although the two

inhibitors are structurally distinct, they showed a similar binding

mode at the fusion peptide (FP) domain, including an H-bond

formed between Asp867 and the N atom of the polar headgroup

and the π−π stacking interaction with Phe833. This further

demonstrates the importance of the FP-binding site as a

promising target for the structure-based development of novel

inhibitors as drug candidates for treating COVID-19.

Similarly, two compounds (MU-UNMC-1 and MU-

UNMC-2) were identified as being capable of blocking both

SARS-CoV-2 replication at submicromolar IC50 values in

human bronchial epithelial cells (0.67 and 1.72 µM) and

Vero cells (5.35 and 1.63 µM) and the replication of rapidly

transmitting variants of concern, including South African

variant B.1.351 (IC50 = 9.27 and 3.00 mM) and Scotland

variant B.1.222 (IC50 = 2.64 and 1.39 mM) (Acharya et al.,

2021). In particular, MU-UNMC-2 could function

synergistically with remdesivir (RDV), indicating that RDV

and MU-UNMC-2 might be developed as a combination

therapy to fight SARS-CoV-2.

Ipomoeassins A-E, as a new family of glycoresins, were

isolated from the leaves of Ipomoea squamosa found in the

Suriname rainforest in 2005 (Cao et al., 2005). They were

shown to inhibit the proliferation of A2780 human ovarian

TABLE 1 Other computational tools developed for the analysis of COVID-19-related data.

Name Functions Website Ref

Virus-CKB (1) Target prediction; (2) platform of viral-associated computing resources; (3) drug
development

https://www.cbligand.org/g/
virus-ckb

Feng et al. (2021)

DINC-COVID Ensemble docking with flexible SARS-CoV-2 proteins http://dinc-covid.kavrakilab.org/ Hall-Swan et al.
(2021)

DeepR2cov Discovery of potential agents for treating the excessive inflammatory response in COVID-19
patients by a deep representation on heterogeneous drug networks

https://github.com/pengsl-lab/
DeepR2cov.git

Wang et al. (2021d)

CoV-AbDab A coronavirus antibody database containing over 1400 published/patented antibodies and
nanobodies

http://opig.stats.ox.ac.uk/webapps/
coronavirus

Raybould et al.
(2021)

SARS-CoV-
2 3D

Supply and analysis of possible experimentally solved and created 3D structures of SARS-
CoV-2

https://sars3d.com/ Alsulami et al. (2021)

CORDITE Combination of state-of-the-art data on potential drugs against the SARS-CoV-2 https://cordite.mathematik.uni-
marburg.de

Martin et al. (2020)

CoV3D Resource for up-to-date coronavirus protein structures https://cov3d.ibbr.umd.edu Gowthaman et al.
(2021)

DockCoV2 Prediction of the binding affinities of FDA-approved and taiwan national health insurance
(NHI) drugs against specific targets

https://covirus.cc/drugs/ Chen et al. (2021)
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cancer cells; among them, Ipomoeassin F (Ipom-F) is a potent

natural cytotoxin that inhibits the growth of many tumour cell

lines as a selective inhibitor of Sec61-mediated protein

translocation at the ER membrane (Zong et al., 2019).

However, in a recent study, it was found that Ipomoeassin-F

could also inhibit the in vitro biogenesis of the SARS-CoV-2 spike

protein (O’Keefe et al., 2021). It was also revealed that integration

of the viral S protein and ACE2 into the endoplasmic reticulum

membrane was significantly reduced by Ipom-F, while several

other viral membrane proteins were unaffected.

In a study by Mathew (Al-Sehemi et al., 2020), 31,000 natural

compounds of the natural product activity and species source

(NPASS) library were screened for the discovery of special hits

capable of interfering with the SARS-CoV-2 spike protein. The

results showed that Castanospermine from a culture extract of

Fusarium solani and Karuquinone B from different plant species

(e.g., Cassine glaucawere) were identified and selected based on their

binding affinity and pharmacokinetic data. However, no

information is available regarding the antiviral activities of

kuquinone B, and castanospermine was determined to show

antiviral effects (Chang et al., 2013) against various viruses

in vitro and in vivo, such as Ebola (Dowall et al., 2016) and Zika

(Bhushan et al., 2020). Similar to Anamika et al. (Basu et al., 2020),

the natural products hesperidin, emodin and chrysin were found to

be capable of inhibiting SARS-CoV-2. In particular, hesperidin from

Citrus aurantium could interfere with the interactions between

ACE2 and the spike protein. In addition, its interaction was

predicted to be located in the middle shallow part of the surface

of RBD of Spike, in which the dihydroflavone part was parallel with

the β-6 sheet of RBD and the sugar part was inserted into the

binding site in the direction away from ACE2 (Wu et al., 2020).

3.2.2 Drug repurposing for inhibitors against the
S protein

Recently, Yang et al. proposed a high-throughput screening

method for the efficient discovery of SARS-CoV-2 virus entry

inhibitors using SARS2-S pseudotyped virus (Figure 10) (Yang

et al., 2021b). The results showed that 7 drugs could significantly

inhibit SARS2 replication and reduce supernatant viral RNA load

with a promising level of activity. Among them, trimeprazine,

azelastine hydrochloride, and clemastine, classified as histamine

receptor antagonists with clemastine, were determined to show

the strongest anti-SARS2 activity. In addition, clemastine is

capable of targeting the sigma 1 and sigma 2 receptors

(Gordon et al., 2020). Sigma-1 and sigma-2 are endoplasmic

binding sites, and sigma-1 is usually considered as a pluripotent

chaperone for regulating Ca++ fluxes (Ortega-Roldan et al., 2013)

and the K+ channels (Abraham et al., 2019). In addition, studies

also showed that neuroprotection, neuroregulation, and

modulation of the proliferative status of cells might also be

associated with the functions of sigma 1 (Abate et al., 2020).

On the contrary, sigma-2 might play roles in regulating cell death

(Pati et al., 2017). Therefore, attention should be given to

antihistamine drugs for the development of antiviral agents.

In a study by Smith et al. (2020), SUMMIT, the world’s most

powerful supercomputer, was applied for the identification of

approved drugs that could bind to either the S-protein receptor

recognition region or the S protein-human ACE2 interface.

Additionally, in this study, an ensemble virtual high-

throughput screening docking strategy in combination with

restrained temperature replica-exchange molecular dynamic

(restrained T-REMD) simulations was used. The results

showed that 77 hits (24 having official approval) from over

8,000 drugs, metabolites, and natural products were found to

be capable of binding efficiently to the target. Among them, the

three top-scoring ligands (cepharanthine, ergoloid, and

hypericin) have ZINC15 annotations; however, no

experimental testing has been reported regarding the

effectiveness of the identified drugs.

In addition to computer-aided drug discovery, other novel and

efficient tools for the rapid screening of SARS-CoV-2 inhibitors

must also be established. To achieve this, an electrochemical

impedance spectroscopy (EIS)-based biosensor was designed and

characterized (Kiew et al., 2021). In this system, the core sensing

element mainly consisted of a recombinant ACE2 protein-coated

palladiumnanothin-film (ACE2-Pd-NTF) electrode, which could be

FIGURE 10
A high-throughput screening method for the efficient discovery of SARS-CoV-2 entry inhibitors using a SARS2-S pseudotyped virus.

Frontiers in Pharmacology frontiersin.org12

Liu et al. 10.3389/fphar.2022.955648

40

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.955648


used to detect alterations occurring in the binding of S-protein to

ACE2when exposed to the testmolecules.With thismethod, several

potential pharmacological leads that could disturb SARS-CoV-2-

ACE2 binding were successfully identified, such as ramipril and

perindopril. Although it is yet to be fully explored at present, this

approach has good potential for becoming a mainstream approach

for efficient, timesaving, and cost-effective drug discovery and

repurposing in the future.

In another study, it was found that maraviroc, FTY720,

nitazoxanide and atorvastatin could inhibit SARS-CoV-

2 replication in cell culture by screening 19 small molecules

and 3 biologics (Risner et al., 2020). However, confocal

microscopy with overexpressed S protein revealed that

maraviroc reduced the extent of S protein-mediated cell fusion.

Considering the huge chemical space of organic dyes, it is

believed that small-molecule inhibitors for PPIs would be more

likely to be discovered in such compounds (Downing et al., 2017;

Bojadzic and Buchwald, 2018). In a recent study, methylene blue

(MB) was found to be capable of inhibiting the interaction

between the S protein and ACE2 in a concentration-

dependent manner (IC50 = 3–3.5 μM), even in the absence of

light (Bojadzic et al., 2020). In another study, nonphotoactivated

MB showed in vitro activity at a very low micromolar range with

an EC50 of 0.30 ± 0.03 μM and an EC90 of 0.75 ± 0.21 μM at a

multiplicity of infection of 0.25 against SARS-CoV-2 (strain

IHUMI-3) (Gendrot et al., 2020). As a tricyclic phenothiazine

compound, it was approved by the FDA for the treatment of

methemoglobinemia. However, MeBlu shows dose-dependent

toxicity, with symptoms including nausea, vomiting, and

haemolysis, when used at doses >2 mg/kg (Dabholkar et al.,

2021). In addition to disturbing the direct interaction between

SARS-CoV-2 spike protein and ACE2, MB was reported to play

various biological roles in blocking the entry of SARS-CoV-2 into

the cells, such as preventing the endocytosis of virions into the

cells by increasing endosomal and lysosomal intracellular pH and

inhibiting the intermediate stages of endocytosis; blocking the

formation of the NLRP3 complex to prevent the cytokine storm

(van den Berg and Te Velde, 2020); inhibiting nitric oxide

synthase and promoting saturation of oxygen to terminate the

effects of bradykinin (Ghahestani et al., 2020; Karamyan, 2021).

Shweta et al. investigated FDA-approved LOPAC library

drugs against both the RBD of the spike protein and the

ACE2 host cell receptor with a high-throughput virtual

screening approach and molecular simulations (Choudhary

et al., 2020). The results showed that GR

127935 hydrochloride hydrate, GNF-5, RS504393, TNP, and

eptifibatide acetate were capable of binding to the

ACE2 receptor. In addition, KT203, BMS195614, KT185,

RS504393, and GSK1838705A could bind to the RBD of the

spike protein.

In a recent study, repurposing clinically approved drugs

for the treatment of COVID-19 in a 2019-nCoV-related

coronavirus model was achieved (Fan et al., 2020). The

results showed that cepharanthine (CEP), selamectin, and

mefloquine hydrochloride exhibited complete inhibition of

cytopathic effects in cell culture at 10 mmol/L. In particular,

CEP displayed the most potent inhibition of GX_P2V

infection (EC50 = 0.98 mmol/L). In another study using

Calu-3 cells, CEP was also determined to show an

FIGURE 11
Clinically approved drugs repurposed for the treatment of
COVID-19.
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inhibitory effect against SARS-CoV-2, with an IC50 of 30 μM

(as opposed to an IC50 of 4.47 μM in Vero cells) (Jeon et al.,

2020; Ko et al., 2020). CEP, a Japanese-approved alopecia

drug, is an alkaloid used frequently to treat radiation-induced

leukopenia, exudative middle ear catarrh, and viper bite.

Transcriptome analysis indicated that CEP could efficiently

reverse most dysregulated genes and pathways in infected

cells, such as the ER stress/unfolded protein response and

HSF1-mediated heat shock response (Li et al., 2021).

3.2.3 Novel drug development for inhibitors
against the S protein

In a study by Sun et al. (2021), the discovery and rational

design of small-molecule inhibitors of the SARS-CoV-2 S protein

was achieved (Figure 12). First, molecular docking with the

Lamarckian genetic algorithm was applied for the screening of

14 antiviral molecules by analysing the binding energy and

interactions between the ligands and the receptor, the SARS-

CoV-2 S protein. This approach led to the discovery of

tizoxanide, dolutegravir, bictegravir, and arbidol, which have

high binding energies and are capable of binding to the

S1 and S2 subunits. Then, structure-based rational design was

performed using the molecular connection method and a

bioisosterism strategy by introducing specific functional

groups to enhance the binding energies and interactions with

the S protein. In this way, Ti-2, BD-2, and Ar-3 were identified

with much stronger binding ability to the S protein. Although no

experimental data about the antiviral activities have been

FIGURE 12
Strategies for the further structural optimization of arbidol (A), dolutegravir and bictegravir (B) and the structures of BD-2, Ti-2 and Ar-3.
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reported to date, the strategy used in this study might be valuable

in the rational design of novel anti-SARS-CoV-2 drugs.

In a recent study, another strategy was proposed for the

rational design of novel inhibitors against the binding of SARS-

CoV-2 to the ACE2 receptor (Figure 13) (Mishra and Nandi,

2021). First, favourable and accessible binding pockets of the

RBD were established using the deep convolution neural network

(DCNN) model based on parameters such as the hydrogen bond

acceptor/donor, hydrophobicity, and ionization energy. Based on

the four different binding pockets obtained, decoded de novo

drug molecules were then generated with a shape-captioning

network, leading to the formation of a total of 347 ligands in the

simplified molecular input line entry system (SMILES) strings.

BindScope based on a DCNN was then used for virtual high-

throughput screening according to the simulated binding

probabilities, which resulted in the identification of the top

20 molecules with high probabilities of binding. The obtained

20 hits were then subjected to further detailed screening using the

CB-Dock server with AutoDock Vina, and 6 compounds

showing the best potential to inhibit the spike

protein–ACE2 interaction were ultimately identified. Although

the newly designed compounds lack antiviral activities, they

possess excellent drug scores and are nontoxic and

nonmutagenic compared with the several existing antiviral

drugs available on the market. Similarly, Rituparno et al.

developed an atomistic de novo inhibitor generation-guided

drug repurposing strategy based on the free-energy validation

by well-tempered metadynamics (Chowdhury et al., 2021). It

contains three main steps including: generation of new

molecules, structural similarity mapping and validation of the

binding abilities, well-tempered metadynamics free energy

calculations.

In one study, three small-molecule fusion inhibitors with

potent inhibitory activity against MERS-CoV were identified

(Figures 14A–C); these inhibitors could bind to the surface of

HR1, interfering with HR2 recognition of HR1 (Kandeel et al.,

2020). These compounds are considered the first generation of

MERS-CoV small-molecule fusion inhibitors. In another study

FIGURE 13
Strategies for the further structural optimization of arbidol (A), dolutegravir and bictegravir (B) and the structures of BD-2, Ti-2 and Ar-3.
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(Musarrat et al., 2020), nelfinavir mesylate (Viracept, an anti-

HIV drug, Figure 14D) was found to be a potent inhibitor of cell

fusion caused by the SARS-CoV-2 S protein, with complete

inhibition even at 10 μM. Markus et al. discovered that the S

protein of SARS-CoV-2 is cleaved by the serine protease

TMPRSS2 and that cell entry could be inhibited by the

clinically proven protease inhibitor camostat mesylate

(Figure 14E (Hoffmann et al., 2020). Additionally, ligands

have been suggested to bind to the interfaces of the trimeric

structure of the SARS-CoV-2 S protein and may destabilize the

quaternary S protein structure, thereby interfering with the

SARS-CoV-2 life cycle (Bongini et al., 2020). In our opinion,

this is of importance for the discovery of promising drug

candidates but requires evidence-based support.

3.2.4 Application of machine learning for
COVID-19 drug discovery

Machine learning (ML) and deep learning (DL) algorithms as

two of the most widely used artificial intelligence technology

could also be applied to predict drug-target interactions and then

validate the predicted drugs in terms of chemical, biological, and

physical characteristics based on the various predictive models

(Patel et al., 2020; Crampon et al., 2022). To date, two main types

of ML algorithms have been developed including: supervised

learning (from training samples with known labels) and

unsupervised learning (from training samples without known

labels) (Rifaioglu et al., 2019). In a study by Batra et al. (2020), a

rational screening strategy was developed combining machine

learning-based models and high-fidelity ensemble docking

studies. Firstly, viable targets for drug discovery wase

determined as SARS-CoV-2 S-protein at its host receptor

region or the S-protein: human ACE2 interface. Then, the

Vina scores were estimated by random forest (RF) regression

models for the construction of molecular descriptors, which were

applied to represent the molecules for the development of the ML

models. The validated ML models were then used for virtual

screening ligands from drug and biomolecule data sets. Top

scoring 187 hits (75 FDA-approved) were further validated by all

atom docking studies, and important molecular descriptors and

promising chemical fragments are identified to guide future

experiments. Coveney et al. designed a novel in silico method

for drug design by coupling ML with physics-based (PB)

simulations (Bhati et al., 2021). The accurate PB simulations

would make the drug design process smarter by calculating the

binding free energies of obtained hits from the output of a deep

learning (DL) algorithm, which will then fed back to the DL

algorithm to improve its predictive performance. Recently, a

machine-learning method was proposed capable of identifying

drug mechanism of actions based on the cell image features (Han

et al., 2021). In this method, the supervised information theoretic

FIGURE 14
Chemical structures of the identified small-molecule fusion inhibitors against MERS-CoV and their inhibitory properties.
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metric-learning (ITML) algorithm was used for converting the

characteristics of drugs with similar mechanism of actions

clustered by affinity propagation algorithm. Therefore, this

method would be more useful in the development of

candidates with similar action mechanisms.

Undoubtedly, these results clearly demonstrate the power

and efficiency of the ML-based screening. However, in such

studies, development of accurate and reliable ML models is

the key part of a successful ML-based strategy (Lv et al.,

2021), including the data quality and algorithm design.

Therefore, it is important to train and validate the models

over established data sets.

4 Conclusion and perspectives

Since 2019, the outbreak of SARS-CoV-2 has posed a global

health emergency. The high morbidity and mortality associated

with COVID-19, especially the lack of an approved efficient drug

or vaccine for SARS-CoV-2, presents the urgent need for

developing standard antiviral therapies. Drug development to

counter COVID-19 could be streamlined by targeting different

viral proteins, especially the S protein, which is an effective choice

to interfere with viral entry into host cells. Computer-aided

modern drug development provides a time- and effort-saving

alternative for hit identification, lead optimization and rational

drug design. However, just as every coin has two sides, computer-

aided drug development also has its own disadvantages. Virtual

screening aided by structure-based docking has inherent

deficiencies caused by various factors, such as the lack of

crystal structures of target proteins and the influence of

various conformations and pockets, which could lead to false-

negative results. Hence, improving the performance and the

accuracy of the computational resources to streamline the

workflow used is still needed. In addition, to maximum full

play the function of the computational resources, deeper insights

into the Spike protein structure, function, and interactions with

ACE2 is still essential. Especially, it has demonstrated that

specific mutations in the S protein will greatly influence its

infectivity, transmissibility, virulence. Therefore, more

intensively studies on the adaptive evolutionary mechanisms

will further help develop proper and more efficient strategies

to fight SARS-CoV-2.

To date, most studies focused on novel drug development for

the prevention and treatment of COVID-19 are usually at the

in vitro experimental stage in the absence of actual in vivo data.

This might also result in the discovery of nonfunctional ligands

in animal or in vivo experiments. Therefore, a more efficient

strategy should also be investigated by integrating computational

resources with in vivo experiments. In this way, it would to the

greatest extent avoid the false positives and thereby maximize the

odds of success in following development process.

Recently, multitarget drugs (MTDs) have attracted great

attention due to their advantages in the treatment of complex

diseases such as Alzheimer’s disease. Since ACE2 is a

multifunctional protein, MTDs targeting several sub-

pathologies simultaneously might present a better

approach for the treatment of COVID-19. While it is

conceivable that rational design of MTDs with excellent

performance against SARS-CoV-2 is a huge challenge for

medicinal chemists; it demonstrates great potential and

provides a promising method for treating complex

diseases, including COVID-19.

Significantly, it has been reported that phospholipidosis

was a common mechanism underlying the antiviral activity of

many repurposed drugs (Tummino et al., 2021). Therefore,

one the one hand as mentioned above, adequate, and timely

in vitro tests would be more important for the detection of

phospholipidosis and elimination of the identified false

positives in early drug discovery. On the other hand, to

avoid phospholipidosis, drug discovery or screening of

antiviral drugs should be focused more on the target-

directed mechanism as highlighted in this review.

In summary, this review is expected to provide a potential

framework for designing and developing promising anti-SARS-

CoV-2 therapeutics.
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Jamu is an Indonesian traditional herbal medicine that has been practiced for

generations. Jamu ismade from variousmedicinal plants. Each plant has several

compounds directly related to the target protein that are directly associated

with a disease. A pharmacological graph can form relationships between plants,

compounds, and target proteins. Research related to the prediction of Jamu

formulas for some diseases has been carried out, but there are problems in

finding combinations or compositions of Jamu formulas because of the

increase in search space size. Some studies adopted the drug–target

interaction (DTI) implemented using machine learning or deep learning to

predict the DTI for discovering the Jamu formula. However, this approach

raises important issues, such as imbalanced and high-dimensional dataset,

overfitting, and the need for more procedures to trace compounds to their

plants. This study proposes an alternative approach by implementing bipartite

graph search optimization using the branch and bound algorithm to discover

the combination or composition of Jamu formulas by optimizing the search on

a plant–protein bipartite graph. The branch and bound technique is

implemented using the search strategy of breadth first search (BrFS), Depth

First Search, and Best First Search. To show the performance of the proposed

method, we compared our method with a complete search algorithm,

searching all nodes in the tree without pruning. In this study, we specialize

in applying the proposed method to search for the Jamu formula for type II

diabetes mellitus (T2DM). The result shows that the bipartite graph search with

the branch and bound algorithm reduces computation time up to 40 times

faster than the complete search strategy to search for a composition of plants.

The binary branching strategy is the best choice, whereas the BrFS strategy is

the best option in this research. In addition, the the proposed method can

suggest the composition of one to four plants for the T2DM Jamu formula. For a

combination of four plants, we obtain Angelica Sinensis, Citrus aurantium,

Glycyrrhiza uralensis, and Mangifera indica. This approach is expected to be

an alternative way to discover the Jamu formula more accurately.
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Introduction

Jamu, known as Indonesian herbal medicine, is local wisdom

that must be preserved because it has been practiced for

generations (Elfahmi et al., 2014). The 2010 Basic Health

Research results show that more than 50% of Indonesians use

herbal medicine (Purwaningsih, 2013). Jamu is made from

various plants that are considered to have healing properties

based on practical experience. Zuhud et al. (2001) identified

approximately 1,845 forest plant species in Indonesia that have

the potential as medicinal plants. National Agency of Drug and

Food Control in Indonesia noted that approximately 283 plant

species were officially registered and used for treatment. Thus,

Jamu has the potential to be developed. Because of the vast

biodiversity of Indonesia’s indigenous medicinal plants, herbal

medicine has the potential for economic development (Elfahmi

et al., 2014). However, this herbal medicine has not been widely

used because the discovery of herbal formulas has not been

supported by its scientific basis (Noor et al., 2022).

Various efforts to make herbal medicine have a

computational-based scientific basis have been carried out.

Research on herbal medicine by Afendi et al. (2010) put

forward the hypothesis that at least one Jamu formula has a

composition of four herbal plants. Onemain plant directly affects

disease, and the other three are supporting plants that have

analgesic, antimicrobial, and anti-inflammatory properties. The

3138 herbal formulas taken from 465 plants were classified into

nine properties (Afendi et al., 2010). Afendi et al. (2013)

continued their research by looking for the relationship

between plant composition and herbal medicine efficacy using

a statistical approach to classify nine properties of the 3138 Jamu

formulas derived from these 465 plants. Classification based on

partial least squares discriminant analysis produced an accuracy

of 71.6%. Fitriawan et al. (2013) conducted a similar study with a

machine learning approach using the support vector machine

(SVM) method, resulting in an accuracy of 71%. Puspita et al.

(2016) conducted another study that reported the study of feature

selection using clustering techniques to reduce the number of

irrelevant features before training using SVM.

Prediction of herbal composition based on plant composition

still does not obtain high accuracy. In addition, formula

predictions based on plant composition cannot describe the

interaction mechanism between compounds contained in

plants and target proteins that represent certain diseases. The

network pharmacology approach, first presented by Hopkins

(2008), provides an opportunity to investigate the molecular

complexity of herbal formulas and the correlation between herbal

formulas and disease complexes (Wu et al., 2013; Du et al., 2014).

It has been shown to work in various herbal compositions used in

traditional medicine (Emig et al., 2013; Lotfi Shahreza et al.,

2018). Furthermore, in this big data era, we can repurpose

traditional medicines by analyzing the combinatorial

properties of herbal formulas and their mechanism of action

(Newman et al., 2008; Huffman and Shenvi, 2019). With the

rapid advances in bioinformatics and systems biology, network-

based drug discovery is seen as a promising approach to more

cost-effective drug discovery (Keith et al., 2005; Jia et al., 2009;

Schadt et al., 2009; Zhang et al., 2019; Chaudhari et al., 2020;

Noor et al., 2022).

One of the representations of network-based drug discovery

is drug–target interaction (Li et al., 2009). Many studies predicted

interactions between compounds and target proteins, such as

using machine learning techniques, classification algorithms,

learning to rank algorithms, and deep learning algorithms (Xu

et al., 2021). Yamanishi et al. laid the basis for drug–target

interaction (DTI) prediction research. Their systematic study

employed a bipartite local model based on an SVM Yamanishi

et al. (2008). Yamanishi et al. (2010) used a distance learning

algorithm as a classifier. Other studies have used a binary

classification approach with machine learning techniques, such

as SVM and random forest (RF), to predict drug or compound

interactions with target proteins (Nasution et al., 2019; Shi et al.,

2019; Erlina et al., 2020; Wijaya et al., 2021). In this binary

classification approach, the features that represent DTI are

obtained from the compound fingerprint and the descriptor of

the protein. For example, in Erlina et al. (2020), the PubChem

fingerprint was used for its compound consisting of 881 features

and a dipeptide descriptor consisting of 400 features. The total

number of features is 1281. Therefore, Erlina et al. (2020)

reported that the binary classification model for this DTI faces

high-dimensionality problems that affect the model’s accuracy.

Several studies used deep learning to predict this DTI

(Fitriawan et al., 2016; Lee et al., 2019; Mei and Zhang, 2019;

Sulistiawan et al., 2020; Sajadi et al., 2021). Lee et al. (2019)

proposed a deep learning-based prediction model capturing local

residue patterns of proteins participating in DTIs. This was

motivated by reports about conventional learning-based

prediction models being not informative in predicting

accurate DTIs. Sajadi et al. (2021) proposed a method based

on deep unsupervised learning for drug–target interaction

prediction called AutoDTI++ to solve the sparsity problem of

the interaction matrix. Sulistiawan et al. (2020) used stacked

autoencoder (SAE) as pretraining for initializing weights on the

deep neural network (DNN) to prevent learning from stopping

too quickly. SAE for DNN pretraining can prevent the layer

outputs from vanishing during the training process (Boulila et al.,

2021) and help to achieve better generalization in prediction

results (Bahi and Batouche, 2018). However, there is a drawback

to using binary classification for predicting DTI. It simplifies the

DTI issue by modeling high-dimensional compound–protein
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and their complex associations into a binary classification model

without considering the relationship between compounds or

proteins (Mei and Zhang, 2019).

Thus, Pliakos et al. (2019) and Fadli et al. (2021) used

multilabel classification based on deep learning to generate a

prediction model for DTI. Multilabel classification can be used to

solve binary classification problems. In multilabel classification,

the training process produces a model that maps input vectors to

one or more classes. The prediction of the target is only

determined based on the pattern of the existing compound

structure. Utilizing proteins as class labels can reduce the

input dimensions because it does not require feature

extraction of the protein. In addition, from a machine

learning perspective, apart from being able to predict several

interactions at once, the multilabel classification model can

identify possible correlations between class labels (proteins) to

increase the performance of DTI predictions (Pliakos et al.,

2019).

The approach to machine learning for DTI, whether using

conventional machine learning methods, ensemble methods, or

deep learning, raises an important issue. Its application to predict

the formula of herbal compounds for certain diseases often leads

to different results. Erlina et al. (2020) reported the results of

different herbal compounds using multilayer perceptron, SVM,

and RF. To conclude which compounds and target proteins have

the most potential, Erlina et al. (2020) analyzed the overlapping

predictions of herbal compounds across all methods. Likewise,

Fadli et al. (2021) have built four different models based on

compound features. The four models produce several different

predictive compounds, so it is necessary to perform an

overlapping analysis of the predicted results. Another

limitation of the machine learning approach in predicting the

Jamu formula is that we cannot immediately know what plants

contain these candidate compounds. To get plant information,

we have to do a literature study or look for it in databases, such as

KNApSAcK (Afendi et al., 2012) and IJAH Analytics (http://ijah.

apps.cs.ipb.ac.id).

This research proposes a new approach using the graph

traversing technique to overcome the limitation of machine

learning approaches. In this study, a tree representing DTI was

built, and the unknown interactions were determined based on

similarity measurements among compounds and proteins that

meet a specific threshold value. Furthermore, the bipartite

network representing DTI was expanded into a bipartite

plant–protein network. Moreover, we applied a graph

traversing algorithm with the branch and bound technique

to perform tree searches to find medicinal plants for certain

diseases. Morrison et al. (2016) stated that the branch and

bound algorithm has been used successfully to find exact

solutions for a wide area of optimization problems. Zhang

et al. (2012) used branch and bound with a bipartite graph

to solve the single vehicle routing problem with a toll-by-weight

scheme. The results showed that branch and bound

outperforms the best-known exact algorithms at that time

for the unweighted minimum latency problem and was able

to find the optimal solution. Wang et al. (2019) used the branch

and bound technique to traverse the bipartite graph of resource

allocation problems in radio broadcast scheduling, and the

results showed that the algorithm greatly reduces the

searching space and execution time. In bioinformatics,

Sridhar et al. (2008) demonstrated branch and bound usage

to explore the metabolic networks and find the target for known

successful drugs. The algorithm can accurately identify the

target enzymes that interacted with the drugs and reduce the

total search time compared with the exhaustive search. Zhou

et al. (2016) used a modified branch and bound algorithm to

find the global minimum energy conformation in structure-

based computational protein design. The algorithm is able to

exploit the structure of residue–residue interaction graph to

significantly accelerate the process. Thus, we proposed to use

the branch and bound technique because of its ability to find the

solution optimally while being able to reduce search time and

space. To show the performance of the proposed method, we

compared our method with the complete search algorithm,

which searched all nodes in the tree without pruning. In this

study, we specifically apply the proposed method to search for

the Jamu formula for type II diabetes mellitus (T2DM) disease.

T2DM is a disease characterized by carbohydrate, fat, and

protein metabolism disorders and a lack of work and insulin

secretion (Fatimah, 2015). We hope that the proposed method

will become an alternative method for predicting interactions in

drug–target and for searching the Jamu formula for T2DM.

Materials and methods

Data acquisition

Data acquisition was done using web crawling techniques on

several databases and related research results. These data were

used to build three pharmacological networks as follows.

1) Network A represents a plant–compound–protein

network. The plant data are taken from the KNApSAcK

database (Afendi et al., 2012). The compound data are

taken from PubChem (Kim et al., 2019) and KNApSAcK

database. The protein target data are taken from PubChem

BioAssay (Wang et al., 2017).

2) Network B is an extension of network A by adding

10 compounds obtained from searching over compounds

in the ChemMine-Tools database (Backman et al., 2011).

These 10 compounds have similarity scores of at least 0.9 to

each compound in network A.

3) Network C represents the relationship between the T2DM

target proteins in Uniprot and the compounds in PubChem

BioAssay.
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Figure 1 illustrates the three above-mentioned networks. The

details of data and source databases for each network are

provided in Table 1.

Each compound has a CID and a CAS ID. The CAS ID is

used to find a CID that corresponds to the compound in the

PubChem database.

Data preprocess

The data was preprocessed on the target protein of T2DM

because of Usman et al. (2020). There are 21 proteins, each

has the betweenness centrality (BC) and closeness centrality

(CC) values. The two values are averaged and then

normalized to the range of 0–1. This value becomes the

weight of a protein. Table 2 shows the normalization

results. Genes in Table 2 are attributes that indicate the

gene name of the T2DM protein. BC and CC are the BC

and CC, respectively, whereas AVG is the average value of BC

and CC. The normalization results are shown in the NORM

column. From the data acquisition results, only 14 T2DM

proteins could be targeted by at least one compound.

Therefore, we carried out analysis and experiment with

those 14 T2DM target proteins.

FIGURE 1
Illustration of three networks of plants, compounds, and proteins, respectively represented by T, C, and P. We define three networks from
different databases to get the relationship between plants and protein. Network A connects plants from KNApSAcK, compounds from KNApSAcK and
PubChem, and proteins from PubChem BioAssay. Network B connects compounds in network A, compounds in network B taken from
ChemmineTools, and the target protein is the same as that in Network A. Network C connects proteins from Usman et al. (2020), proteins from
Uniprot, and compounds from PubChem BioAssay.

TABLE 1 Results of data acquisition from the various databases.

Network Data Data resources Results

A Plants KNApSAcK - 711 plants

Compound KNApSAcK - obtained 4926 compounds from 711 plants with 7725 interactions of plant–compound

- only 581 plants have at least one compound

Compound PubChem - only 2780 of 4926 compounds have CID and are categorized as compound

- only 541 plants have at least one compound

Target protein PubChem BioAssay - obtained 2308 target proteins with 131.798 interactions of compound–protein

- only 1063 compounds have at least one target protein

B Compound ChemmineTools - obtained 9647 compounds from the expansion of network A

Target protein PubChem BioAssay - obtained 2465 target protein from 9647 compound

C Target protein Usman et al. (2020) - 21 target proteins associated with T2DM

- The score of betweenness centrality (BC) and closeness centrality (CC)

Target protein UniProt - MGI to GI id conversion for each target protein

Compound Pubchem BioAssay - obtained 803 compounds have interaction with 14 target proteins of T2DM
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Measurement of compound similarity

Measurement of the similarity of two compounds was

carried out using the Tanimoto coefficient. The Tanimoto

coefficient is used to measure the degree of similarity with the

formula. The more similar the two compounds are, the higher

their Tanimoto coefficient. To be specific, the Tanimoto

coefficient approaches 1 when two compounds have more

similarities. By contrast, the Tanimoto coefficient approaches

0 when two compounds have more dissimilarities. For this

reason, the compound structure is encoded into binary bits

representing the compound’s molecular structure. We

utilized the Klekota–Roth fingerprint, which has

4860 binary features. For each compound, the fingerprint

algorithm encodes 1 in a bit if there is a corresponding

molecular structure, and 0, otherwise. Eq. 1 shows the

Tanimoto coefficient formula.

coef � c
(a + b − c) (1)

where a denotes the number of bits 1 in the first compound.b

denotes the number of bits 1 in the second compound.c denotes

the number of 1 bit in both compounds.

In this study, we used the fingerprint algorithm to calculate

the similarity score between the compounds in networks A

and C.

Connecting networks A, B, and C

The three main networks from this research are networks A,

B, and C, as shown in Figure 1. The vertex or node of the network

is a component, which can be a plant, a compound, a protein, or a

disease, whereas the edge represents the connection between

components. We used an adjacency list data structure to store the

networks. An adjacency list is a data structure that stores graphs

like a neighbor list. By using this data structure, we can speed up

the tracing process because enumerating a vertex’s neighbors can

be done in O(k), where k is the number of neighbors of a vertex

(Blandford et al., 2003).

Networks A and B connection
Networks A and B are connected because network B is an

extension of network A. The expansion is through the similarity

between compounds in network A (denoted as Ca) and

compounds in network B (denoted as Cb).

Networks A and C connection
Network A (denoted as Na) and C (denoted as Nc) are

connected through two pathways, namely, compound

similarities and protein similarities. The compound similarity

was formed by calculating the similarity of each compound in

network C (denoted as Cc) with the compound in network A (Ca)

using the Klekota–Roth fingerprinting and Tanimoto coefficient.

For each compound in network C (Cc), we record all compounds

with the highest similarity score and create a new edge between

Ca and Cc. The pseudocode is provided in Supplementary

Figure S1.

The protein similarity pathway was formed by looking at the

proteins in networks A and C that are the same. For each exact

protein pair, a new edge is created between the two proteins. The

pseudocode is provided in Supplementary Figure S2.

Networks B and C connection
Networks B and C are linked by protein similarity. A new

edge is created between every protein in network B that is the

same as the protein in network C. The pseudocode is provided in

Supplementary Figure S3.

Graph traversing for constructing a
weighted bipartite network plant–protein

Graph traversing from T2DM proteins to plants aims to

determine which plant can target T2DM proteins. For this

process to be efficient, it is necessary to trace the T2DM

protein to the compound in network A. Then, we stored the

interaction information between proteins and compounds in

network A. Next, for each compound, we traced it back to the

plant containing the compound in network A. Any components

(plants, compounds, or proteins) that cannot be traced from the

TABLE 2 Protein weight normalization results.

Gene BC CC AVG NORM

INS 0.3211 0.6250 0.4731 1.000

AKT1 0.2435 0.5128 0.3782 0.799

TCF7L2 0.2003 0.5714 0.3859 0.816

KCNJ11 0.1342 0.5000 0.3171 0.670

UBC 0.1097 0.4878 0.2987 0.632

PPARG 0.0952 0.5128 0.3040 0.643

GCGR 0.0780 0.4762 0.2771 0.586

INSR 0.0775 0.5000 0.2888 0.610

IAPP 0.0526 0.4348 0.2437 0.515

SOCS3 0.0518 0.4348 0.2433 0.514

EP300 0.0443 0.4167 0.2305 0.487

PPARA 0.0311 0.4082 0.2197 0.464

WFS1 0.0186 0.4444 0.2315 0.489

APOE 0.0163 0.3846 0.2004 0.424

FOXO1 0.0096 0.3704 0.1900 0.402

STAT3 0.0066 0.3509 0.1787 0.378

PTH 0.0044 0.3509 0.1776 0.375

CTLA4 0.0000 0.3448 0.1724 0.364

MTNR1B 0.0000 0.3922 0.1961 0.414

PRKACA 0.0000 0.3390 0.1695 0.358

SOD3 0.0000 0.3448 0.1724 0.364
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T2DM protein was removed from the network to form a simpler

network so that the search process became more efficient.

Next, we conducted graph traversing to construct a bipartite

network of plant–compound–protein as follows:

1) Traverse from network C to network B

A complete search was started by searching from network C

to network B. At first, the compound in network C was removed.

Then, a search was carried out from the T2DM proteins (denoted

as Pc) to each compound in network B (Cb). First, look for Pc and

Pb that are the same, where Pb denotes proteins in network B.

Next, store information on which target protein (Pt) traced each

compound Cb. Again, a search was carried out from the T2DM

proteins (Pc) to each compound Cb and recorded any target

protein (Pt) connected with compound Ca whose similarity

weight to compound B (Cb) is at least 0.9. The pseudocode is

provided in Supplementary Figure S4.

2) Traverse from network C to network A.

First, we removed the compounds in network C. A search

was carried out from the T2DM proteins Pc to the compound Ca

in network A. Then, we stored any target protein that is

connected to all compounds Ca. If there was a stored target

protein (Pt) connected to the compound Ca, the previously

recorded weight is updated to 1. Similar to the previous step,

we traced the T2DM proteins (Pc) but retained all compounds in

network C. For each compound Ca, record the T2DM protein

(Pc) as protein target Pt that traced it (if the protein has not been

recorded previously), and update the edge weights if the

similarity score of Ca and Cc traversed is greater than the

previous edge weight. Last, backtracking was carried out to all

compounds up to plants in network A. For each plant, if the

weight of the target protein is greater than the weight of the

previous target protein (if it has been recorded), then update the

weight and record all the target proteins that had interaction with

compounds traceable from the plant. The pseudocode is

provided in Supplementary Figure S5.

Graph traversing over networks A, B, and C finally produces

a relationship between plants and proteins. This relationship is

represented as a weighted bipartite graph between plants and

proteins. From the graph search results, some compounds and

plants cannot target any T2DM protein. These components were

eliminated from the network, leaving 1467 compounds and

460 plants in network A. Each compound and plant pair in

network A has information in the form of any T2DMprotein that

can be traced, along with edge weights found during tracing the

protein.

Examples of the search results and the stored information:

′73399′: ({′60391226′: [′Akt1′, 0.7993787198, 0.9]},

set([′60391226′])).
Information:

1) 73399 is CID a compound.

2) 60391226 is a GI of T2DM protein that can be traced from

this compound.

3) Akt1 is the symbol gene for the T2DM protein.

4) 0.7993787198 is the weight of the T2DM proteins.

5) 0.9 is the edge weight that is passed when tracing the T2DM

protein.

6) set([′60391226′]) is a set data structure to prevent double

counting.

If the node is a plant, the information that changes is only the

CID of the compound in the Latin name of the plant in question.

For example, “Schisandra chinensis Baill.”: ({′60391226′: [′Akt1′,
0.7993787198, 0.9]}, set([′60391226′])). The difference with the

previous result, namely, “Schisandra chinensis Baill.” is the

plant’s Latin name.

Composition of k plants as a candidate for
herbal formula

Each plant has a relationship with one or more target

proteins of TD2M. Each relationship has a different value.

The greater the value of the relationship between a plant and

protein indicates that the plant is associated with the target

protein. In addition to the correlation value, each significant

protein in T2DM has its weight. The known correlation value

and protein weight will be used as a benchmark in calculating the

herbal formula score using Eq. 2.

Formula score � ∑PiWi (2)

where Pi denotes protein weight ith and Wi denotes edge weight

of protein ith.

The higher the score of a formula, the better the formula will

be in treating T2DM. If T plants and k unique plants are

selected, there will be C(T, k) possible herbal formula

candidates with k constituent plants. C(n, r) is a function

that returns the value of the number of combinations of r

objects from n objects. It shows that the memory and time

complexity in finding the combination of k plants that make up

the herbal formula is O(Tk). However, memory usage

optimization can be done by limiting the number of

candidate herbal formulas. For example, if we only want an F

for herbal formulas with the highest score, we can use a priority

queue data structure to store the candidate herbal formulas. A

priority queue is a data structure in the form of a (binary)

heap. The (binary) heap itself is a complete binary tree. This

data structure has characteristics: for each subtree with root X,

the left and right child subtrees are smaller (or equal to) X. The

complexity of inserting and popping data in the priority queue is

O(log n), where n is the number of data stored in the priority

queue, whereas the top process has a complexity of O(1).
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The top is retrieving data with the maximum value in the

priority queue, whereas the pop is removing data with the

maximum value from the priority queue. This characteristic

can be used to store the score of herbal formula candidates.

Hence, the data stored in the priority queue is the herbal

candidate with the highest score’ the score will be stored in

the form of −score. This is because if the priority queue already

accommodates F candidate herbal formulas, then the pop process

will issue the herbal formula with the lowest score (−highest

score).

With this technique and data structure, the memory

complexity becomes O(F), where F is the number of

candidates with the highest score. If this process is paralleled

with t threads, then it takes t priority queues, each of which

accommodates F herbal candidates. The t priority queues will

then be combined into a priority queue. Memory complexity

becomes O(t*F).

By contrast, the time complexity is still O(Tk) because it must

produce all combinations of k plants as candidate herbal

formulas. However, optimization can be done by reducing T.

Because the herbal formula to be sought has the highest score,

plants that do not have the maximum edge weight for a T2DM

protein can be eliminated. Then, search for plants that are not a

subset (smaller) of T2DM protein than other plants, i.e., if we

choose a plant X whose T2DM protein is a subset of another

plant Y with more T2DM protein, then it is more optimal if we

choose plant Y.

Graph traversing using branch and bound
technique

According to Morrison et al. (2016), branch and bound is a

fundamental methodology and is widely used in solving exact

solutions for NP-hard optimization problems. Branch and bound

implicitly generate all possible solutions to the problem by

storing partial solutions called subproblems in the tree

structure. Unexplored nodes in the tree generate branches and

partition the solution space into smaller regions that can be

solved recursively (branching), and a pruning rule is used to

reduce the search space size that proves to be nonoptimal

(pruning). In the branch and bound algorithm, three

components are not explicitly explained but can significantly

influence the algorithm’s performance. These components are

search strategy, branching strategy, and pruning rules.

Searching strategy

In this study, the branch and bound technique will be

implemented using the search strategy of breadth-first search

(BrFS) (Bundy and Wallen, 1984), depth-first search (DFS)

(Morrison et al., 2016), and best-first search (BFS) (Morrison

et al., 2016). The difference between these three search strategies

is the order in which the nodes are searched. BrFS performs a

search by searching for the nearest neighbor, or in this case, the

nearest neighbor is a child of that node. A search by visiting the

nearest neighbor will make the search comprehensive. Next, the

second strategy is DFS. A search on DFS will perform a search

focused on one of the paths until it encounters a leaf node. After

the leaf nodes are traced, backtracking is carried out and traced

again on other paths. The last search strategy is BFS. In the BFS

search strategy, the node visited first is the node with the most

optimal partial solution. In the case of this herbal formula, of

course, the most optimal solution is to get the most significant

profit. The difference in search of the three search strategies is

shown in Figure 2. The value in the circle is the profit of each

node, whereas the value outside the node is the order of the node

search.

Branching strategy

In addition to determining the search strategy, the branching

strategy also considerably influences its use. In this study, the

branching strategy used is binary branching (Devroye, 1998;

Morrison et al., 2016)) and wide branching (Morrison et al.,

2016). The binary branchingmakes each node form two children,

namely, the selected plant condition and the unselected plant

condition. In the wide branching strategy, nodes will form as

many children as N-level nodes as many plants are added. The

different forms of the two branching strategies is shown in

Figure 3.

Pruning rule

The final aspect of the branch and bound algorithm is the

pruning rule. In this study, the pruning rule used is the lower

bounds to ensure the result is the most optimal solution. The

lower bounds pruning rule starts by sorting the data from the

most significant profit. Each node will calculate the maximum

profit that may be obtained. The node will not be traversed if the

profit is not greater than the maximum profit of the temporary

solution.

The problem of finding Jamu formulas can be approached as

a 1–0 KNApSAcK problem, so it can be solved using the branch

and bound technique (Ezugwu et al., 2019). Suppose that there

are data that have weight (wi) and profit (pi) stored in an array.

Furthermore, the data are sorted by the highest pi/wi value to find

the maximum profit that can be obtained with the maximum

limit (W) allowed. Figure 4 shows the data that have weight and

profit.

Figure 5 shows the process of finding the maximum profit

from Figure 4 using the lower bounds pruning rule. The letter X

in each node represents an item that was added (1), not added

Frontiers in Pharmacology frontiersin.org07

Kusuma et al. 10.3389/fphar.2022.978741

56

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.978741


(−), or not added (0) at that node. The letter B on each node is the

maximum profit value obtained if the node is traced. Each node

has its weight (w) based on the weight of the added items.

Implementation of branch and bound
technique

The first step is to store plant data using a struct (a collection

of variable definitions wrapped in a specific name). The plant

data are represented as a bipartite plant–protein graph. Each

significant protein in the data has a weight taken from two

centrality values, namely, BC and CC. Edges that connect plants

and proteins have different weights that are taken when tracing

graphs.

Examples of data stored using a struct:

′Leucaena glauca′: ({′3041727′: [′Ppara′, 0.4643250105, 0.9]},
{′60391226′: [′Akt1′, 0.7993787198, 0.9]},
{′13432234′: [′Pparg′, 0.6426582082, 0.9]}).
The set of plant data is stored in an array of structs. The plant

struct consists of the name of the plant (name), the weight of the

edge of the 14th plant protein (value), plant weight (weight), and

total plant profit (totalValue) calculated from Eq. 2. After being

saved, the data are sorted by the totalValue parameter. Storage

using arrays allows accessing plant struct data based on array

index.

FIGURE 2
Searching strategy (Morrison et al., 2016)

FIGURE 3
Branching strategy (Morrison et al., 2016)
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Implementation of the branch and bound using
breadth first search

The BrFS strategy was first tried using the queue data structure.

The queue data structure is used because it has FIFO (first in, first out)

properties, which follow the BrFS strategy. The BrFS strategy is

implemented using the binary branching strategy and the lower

bounds pruning rule. Figure 6 illustrates the use of the queue data

structure in tree tracing. The node value in Figure 6 is the order of

browsing in the tree. When the third node has been accessed and left

the queue, the two children of that node will enter the queue. Each

FIGURE 4
Data with weight and profit.

FIGURE 5
Lower bounds pruning rule.

Frontiers in Pharmacology frontiersin.org09

Kusuma et al. 10.3389/fphar.2022.978741

58

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.978741


node in the tree will store a list of plant indexes and the totalValue of

the sum of each stored plant. The X symbol in Figure 6 shows the

plants stored in that node.

The branch and bound algorithm starts by generating the root

node. The root node is then stored in the queue data structure. After

generating the root node, the next step is to enter a loop that will stop

when there are no nodes in the queue. Based on the nature of the

FIFO queue data structure, data from the queue is fetched (FRONT)

and removed from the queue (POP).

The next step generates the child of the node. There are two

children, namely, the condition of a plant being added and that

not being added. At this stage, there is a bound function call,

which is a function that calculates the upper bound of a node

shown in Supplementary Figure S6. After getting the bound value

of the child node, the value is compared with the temporary

maxProfit. If the bound value of the child node is greater than

maxProfit, then the child will be stored in the queue. In addition,

if the profit on the node is greater than maxProfit, then the

maxProfit value will be replaced with the node’s profit.

Implementation of the branch and bound using
depth-first search

The next step is implementing a DFS lookup strategy

using a stack data structure. The stack data structure is used

because it has first in, last out properties, which are in

accordance with the DFS search strategy. The DFS strategy

is implemented using a binary branching strategy and lower

bounds pruning rules. The stack data structure is used in tree

tracing. The value of the node is the order of tracing in the

tree. The search is carried out by always prioritizing accessing

the right child until it reaches the leaf node. After reaching

the leaf node, backtracking is performed and traces the left

child if the right child has been traced. Figure 7 shows the use

of the stack data structure on the tree.

Implementation of the branch and bound using
best-first search

The last search strategy is BFS by using the priority queue

data structure. The priority queue data structure is a data

structure in the form of a (binary) heap tree. (Binary) heap

tree is a data structure in the form of a complete binary tree and

has the characteristic that the value of each left child and right

child of a node will not be greater than its parent. The structure of

the (binary) heap tree can be seen in Figure 8, where the value for

each node is the total value of the nodes in the tree. The

complexity of deleting data and adding data to the priority

queue is O (log n), for n is the amount of data that has been

stored in the priority queue, whereas the process of accessing

FIGURE 6
Use of the queue data structure in tree tracing.
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leading data has a complexity of O (1). A priority queue follows

the BFS search strategy, which will execute nodes based on the

most optimal solution.

Using a wide branching strategy
After implementing the binary branching strategy, a wide search

strategy was implemented. In the wide branching search strategy, the

BrFS strategy is used because it has the shortest computation time

compared with the other two search strategies in the previous

experiment. In contrast to binary branching, where each internal

node must make two children for the condition of the plant being

added or not, in the wide branching strategy, each node will create a

different number of children depending on the plant index added last to

that node. Figure 9 shows a wide branching strategy. The computation

time of the wide branching strategy using BrFS ismuch longer than the

binary branching strategy; therefore, wide branching experiments with

DFS and BFS search strategies were not carried out. The X symbol in

Figure 9 shows the selected crop index at each node.

Results and discussion

Comparison of computing time and
search space

Differences in the use of search strategies and branching

strategies will affect the computational time and search space. In

order to get the best strategy, each computation time and search

space of the strategy will be compared. Each strategy, search and

branching, will get the same input data, namely, the

plant–protein bipartite graph. The comparison of the search

space will be seen from the number of candidate solutions

generated in each strategy.

Three search strategies combined with two branching

strategies resulted in four different branch and bound

strategies: BrFS with binary branching, DFS with binary

branching, BFS with binary branching, and BrFS with wide

branching. The four strategies in the branch and bound

FIGURE 7
Use of the stack data structure on the tree.

FIGURE 8
Priority queue with (binary) heap tree.
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algorithm have different computational times. Table 3 shows the

complete data on the computational time for each strategy in this

study: The experiment was conducted using PCwith Intel Core i3

1.8 GHz processor, 6 GB RAM, SSD Sandisk 120 GB, and Linux

Ubuntu 16.04 Operating System.

The binary search strategy produced optimum computational

time, especially in the BrFS and DFS search strategies. In the

combination of two plants, the longest time is the wide branching

strategy, but for the combination of three and four plants, the use of

complete search, as done in previous studies, requires a very long

computational time. In addition to the computation time, the search

space size can also be seen by calculating the number of solutions

generated for each strategy. Figure 10 shows the difference in the

search space size using the calculation of the number of solutions

generated for each strategy in log(n) units.

In Figure 10, it can be seen that the search space of complete

search is far above other strategies. The wide branching strategy

has a broad search over the binary branching strategy. The binary

branching strategy with either BrFS, DFS, or BFS search

strategies has almost the same search area.

Pruning process

The branch and bound and complete search algorithms have

the same worst-case complexity O(Tk), i.e., when no nodes are

FIGURE 9
Wide branching strategy.

TABLE 3 Complete data on the computational time for each strategy.

The number
of plant
(k)

BrFS DFS BFS Wide branching Complete search

2 0.25 0.256 0.31 1.14 0.98

3 11.40 11.64 18.70 48.25 169.12

4 476.21 483.75 1070.58 2106.60 20285.02
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pruned. In this study, the branch and bound algorithm has a

better computational time than the complete search strategy. It

proves that the pruning process was successfully carried out in

this study.

Comparison of branching strategies

The search space and computational time of the wide branching

and binary branching strategies differ quite a lot. The wide branching

strategy has a longer computation time and a larger search space than

the binary branching strategy because of its inability of the pruning

process. Each node in the wide branching forms a very large number

of child nodes and takes time and space for each level of the tree to be

formed. At node level 1 will raise to 460 child nodes and will be more

andmore for the next node. The number of nodes at each level results

in the length of the process to generate nodes with wi =W, where the

greater the W requested, the higher the target level.

Search strategy comparison

In the search strategy, BFS is not better than BrFS or DFS. BFS

performs a search based on the most optimum node on the node to

be searched. Searching based on the most optimum node is expected

to be able to cut the search space better, although it has a greater

complexity when the process of deleting and adding nodes to the list.

After testing, the search space of BFS with BrFS andDFS is notmuch

different. It caused the computation time of BFS to be longer than

BrFS and DFS. The best search strategy in this study is BrFS, which

has a slightly better computational time difference than DFS.

Searching using the BrFS strategy can reduce search space better

than other strategies. The BrFS strategy of tracing nodes with the

difference that the children on that node are plants are added and not

added. The BrFS strategy traces nodes from the root, which nodes

access high-scoring plants so that when high-scoring nodes are not

added, it speeds up the process of pruning those nodes.

Composition of k plants

From the previous search results, 460 plants had at least one

target protein in T2DM. Of the 460 plants, up to four combinations

will be used to create a candidate for herbal formula. For every k

combination of plants, 10 candidate herbal formulas with the highest

score will be taken. The higher the formula score, the more traceable

T2DM target protein and the more remarkable the edge weights

traced that protein.

If k = 1,Mangifera indica got the highest score with 9 out of 21

(42.8%) traceable T2DM proteins, or if seen from the formula score,

4.39 out of a maximum score of 11.3 (38.8%). The summary of the

10 candidates’ Jamu formulas for the combination of one plant with

the highest score can be seen in Supplementary Table S1. Moreover,

Punica granatum could only target seven T2DM proteins, but the

formula score was higher than Argemone mexicana, Salvia

miltiorrhiza, and Daucus carota. It shows that the edge or protein

weight targeted by Punica granatum is greater than the three plants.

A comparison of target proteins and edge weights between Punica

granatum and Argemone mexicana can be seen in Supplementary

Table S2.

When we compare edge weights, Punica granatum is relatively

always higher than Argemone mexicana. It makes the Punica

FIGURE 10
Comparison of search space area in log(n) units.
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granatum formula score higher than Argemone mexicana, although

Punica granatum cannot target GCGR protein. If k = 2, the

composition of Mangifera indica and Citrus aurantium obtained

the highest score, 5.26 (46.5%), and 11 T2DMproteins (52.3%) could

be traced. The summary of the 10 candidate herbal formulas for the

combination of two plants with the highest scores can be seen in

Supplementary Table S3.

Referring to the composition of one plant,Mangifera indica got

the highest score and could target 9 T2DM proteins. From

Supplementary Table S3, it can be seen that Mangifera indica

mostly appears in every candidate’s Jamu formula. However, the

number of T2DM proteins is only approximately 10 or 11. It

indicates that the second plant paired with Mangifera indica only

added approximately two new target proteins. However, it is also

possible that the edge weight of the second plant is higher than the

edge weight of Mangifera indica. The candidates with the highest

scores are Mangifera indica and Citrus aurantium. The comparison

of the protein weights of the two can be seen in Supplementary Table

S4. The contribution ofCitrus aurantium is in theKCNJ11 protein, in

which the edge weight value of Citrus aurantium is greater than that

of Mangifera indica. In addition, two T2DM proteins cannot be

targeted byMangifera indica, namely,MTNR1B and EP300 proteins.

If k = 3, the composition of Angelica sinensis, Citrus aurantium,

andMangifera indicahad the highest score, 5.7763 (51.1%), and there

were 12 T2DM proteins (57.1%) that could be traced. A summary of

the 10 best Jamu formula candidates can be seen in Supplementary

Table S5. Supplementary Table S5 shows several Jamu formulas that

have the same score. The plant compositions target the same T2DM

protein and have the same edge weights. For a composition of three

plants, the Jamu formula scores are approximately 50% of the

maximum score, and all of them targeted 12 T2DM proteins.

If k = 4, the herbal formula candidates with the highest score are

Angelica sinensis, Citrus aurantium, Glycyrrhiza uralensis, and

Mangifera indica, with a score of 6.13 (54.2%), and there are

13 T2DM proteins (61.9%) that can be targeted. The 10 best

candidates can be seen in Supplementary Table S6. The highest

score for the composition of the three plants was the combination of

Angelica sinensis, Citrus aurantium, andMangifera indica, which can

target 12 T2DM proteins. For k = 4, the composition reappeared as a

candidate for herbal medicine with the highest score, plus the plant

Glycyrrhiza uralensis. It shows that one new protein can be targeted

by Glycyrrhiza uralensis but cannot be targeted by the other three

plants. Glycyrrhiza uralensis consistently appeared in all 10 candidate

herbs, meaning that of the four plant combinations, only Glycyrrhiza

uralensis targeted a T2DM protein that neither did the other three. If

traced back from the T2DMprotein to the information stored in each

plant, it was seen that the TCF7l2 protein was only targeted by

Glycyrrhiza uralensis.

The limitation of this study is that it can only be used up to a

composition of four plants. Doing a combination of five plants

without reducing the number of plants will take much time. When

the combination is one plant, it only takes 0.005 s for the program to

finish. The combination of the two plants takes 0.34 s. Combinations

of three and four plants take 253 s and 33,214 s, respectively. The

comparison of the increase in program execution time is

comprehensively shown in Table 4. This problem can be

overcome by using parallel computing, which is beyond the scope

of this study.

Best composition of Jamu formula

The experiment results showed that the plant combinations

were obtained from two plant combinations to four plant

combinations. The best of each composition of plants can be

seen in Table 5. The composition of the two plants consists of

TABLE 4 Execution time for composition k plants.

Combination/Composition k Time to k (sec) Time
to- (k+1)/(k) (sec)

1 0.005 68

2 0.34 744.11

3 253 131.28

4 33214 —

TABLE 5 Best results of the composition of plants for the Jamu formula.

Composition of plant Latin name Formula score

2 Citrus aurantium, Mangifera indica 5.26512

3 Angelica sinensis, Citrus aurantium, Mangifera indica 5.77630

4 Angelica sinensis, Citrus aurantium, Glycyrrhiza uralensis, Mangifera indica 6.13136
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Citrus aurantium and Mangifera indica with a total formula

score of 5.26512. In formulas for three and four plants, Citrus

aurantium and Mangifera indica plants also existed. It can be

concluded that Citrus aurantium and Mangifera indica plants

dominate the Jamu formulas for two, three, and four plants.

The best results from the four plant compositions are Angelica

sinensis, Citrus aurantium, Glycyrrhiza uralensis, and Mangifera

indica. From the literature study, all the mentioned plants had the

potential to be used as T2DM treatments. Li and Chen (2007) and Li

et al. (2007) research analyzed the effects of Angelica sinensis

polysaccharides on diabetic rats. The results showed that

polysaccharides contained in Angelica sinensis could not only

significantly reduce blood glucose levels but also improve the

clinical symptoms of T2DM in the rats. Jia et al. (2015), which

conducted research on the effects of Citrus aurantium in diabetic

mice, reported that neohesperidin derived from Citrus aurantium

helped increase oral glucose tolerance and insulin sensitivity as well as

decrease insulin resistance in the diabetic mice. Moreover,

aromatherapy produced from Citrus aurantium extracts also

helped to relieve anxiety and fatigue in T2DM patients (Abdollahi

and Mobadery 2020). Glycyrrhiza uralensis can also be used for

T2DM treatment and prevention because of its flavonoids containing

α-glycosidase and PTP1B inhibitory activities. Both inhibitions have

been suggested as potential therapeutic targets for drug discovery for

T2DM patients (Guo et al., 2015). As for Mangifera indica, Ngo et al.

(2019) showed that its leaves extract contained potential

hypoglycemic and antioxidant properties, which could be

beneficial for T2DM patients, by inhibiting a starch digestive

enzyme, possessing glucose uptake capacity and adsorption, and

suppressing the production of nitric oxide, which its high level could

cause diabetes complications. Further research is needed to verify and

determine the potential efficacy of Jamu composition using Angelica

sinensis, Citrus aurantium, Glycyrrhiza uralensis, and Mangifera

indica plants.

Conclusion

Bipartite graph search optimization with branch and bound

algorithms for predicting Jamu formulas can reduce computation

time. The complete search strategy has the worst-case and best-

case complexities of O(Tk), where T is the number of plant data,

and k is the number of plant combinations. The branch and

bound algorithm has the worst-case complexity of O(Tk) and the

best-case of O(T). Although the worst case is the same, the

branch and bound algorithm achieves faster computation time.

In this study, we found that the best branching strategy is the

binary strategy t and the best search strategy are BrFS and DFS.

The proposed method suggests that the potential plant

composition for the type II diabetes mellitus Jamu formula

comprises Angelica sinensis, Citrus aurantium, Glycyrrhiza

uralensis, and Mangifera indica. We note that this

composition requires experimental validation, which is beyond

our current scope. In addition, Citrus aurantium and Mangifera

indica plants dominate the three- and four-plant composition for

Jamu formulas. This approach is expected to be an alternative

way to discover the Jamu formula more accurately.
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Optimal COVID-19 therapeutic
candidate discovery using the
CANDO platform

William Mangione, Zackary Falls and Ram Samudrala*
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University at Buffalo, Buffalo, NY, United States

Theworldwide outbreak of SARS-CoV-2 in early 2020 caused numerous deaths

and unprecedented measures to control its spread. We employed our

Computational Analysis of Novel Drug Opportunities (CANDO) multiscale

therapeutic discovery, repurposing, and design platform to identify small

molecule inhibitors of the virus to treat its resulting indication, COVID-19.

Initially, few experimental studies existed on SARS-CoV-2, so we optimized our

drug candidate prediction pipelines using results from two independent high-

throughput screens against prevalent human coronaviruses. Ranked lists of

candidate drugs were generated using our open source cando.py software

based on viral protein inhibition and proteomic interaction similarity. For the

former viral protein inhibition pipeline, we computed interaction scores

between all compounds in the corresponding candidate library and eighteen

SARS-CoV proteins using an interaction scoring protocol with extensive

parameter optimization which was then applied to the SARS-CoV-

2 proteome for prediction. For the latter similarity based pipeline, we

computed interaction scores between all compounds and human protein

structures in our libraries then used a consensus scoring approach to

identify candidates with highly similar proteomic interaction signatures to

multiple known anti-coronavirus actives. We published our ranked candidate

lists at the very beginning of the COVID-19 pandemic. Since then, 51 of our

276 predictions have demonstrated anti-SARS-CoV-2 activity in published

clinical and experimental studies. These results illustrate the ability of our

platform to rapidly respond to emergent pathogens and provide greater

evidence that treating compounds in a multitarget context more accurately

describes their behavior in biological systems.

KEYWORDS

COVID-19, SARS-CoV-2, drug discovery, multitargeting, computational drug
repurposing, computational biology

1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease

caused by its infection, COVID-19, was first documented in Wuhan, China in December

2019. It spread rapidly and was declared a pandemic by theWorld Health Organization in

March 2020, causing over 5.9 million deaths across the world as of February 2022
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(Organization, 2022). The scientific community immediately

began employing various tools and methods to identify

medical interventions that would reduce the threat posed by

this novel coronavirus. Numerous institutions conducted clinical

trials evaluating the ability of therapeutics to decrease COVID-19

lethality, often reporting conflicting results for the same drug

(e.g. chloroquine and remdesivir) (Wang Y. et al., 2020;

Chowdhury et al., 2020; Spinner et al., 2020). Few clearly

conclusive success stories were reported in the months

immediately following the outbreak with the most notable

being dexamethasone, an anti-inflammatory corticosteroid

that reduced death rates in patients suffering from a

hyperactive immune system response known as a cytokine

storm (Group, 2021). Further, it took nearly two years for a

direct antiviral therapeutic indisputably capable of significantly

preventing death from COVID-19 to be approved by the FDA,

specifically both molnupiravir and the nirmatrelvir/ritonavir

combination drugs in December of 2021 (Mahase, 2021;

Hammond et al., 2022), which speaks to the complexity of

this disease and the urgent need for innovative technologies

that rapidly and effectively identify promising therapies. Such

technologies will not only be useful in the present but also to

combat any new emerging pathogens.

Significant advances made in the field of computational drug

discovery were deployed in the context of COVID-19 with the

goal of uncovering viable solutions (Mohamed et al., 2021). For

example, multiple studies utilized virtual docking methods to

identify compounds with strong affinity to SARS-CoV-2 proteins

(Vijayan et al., 2020; Wang, 2020; Baby et al., 2021). Others used

network-based bioinformatics methods to suggest drug

repurposing candidates or better understand SARS-CoV-

2 pathology, taking advantage of large scale human and virus

protein-protein interaction knowledge (Zhou et al., 2020;

Ghandikota et al., 2021; Gysi et al., 2021). On the clinical

side, applications of traditional and deep machine learning

methods have been utilized to identify high-risk patients, such

as convolutional neural networks that analyze CT and X-ray

images (Ardakani et al., 2020; Ozturk et al., 2020). Deep learning

approaches have also been directly applied to identify drug

candidates for treating COVID-19 (Liu et al., 2021; Pham

et al., 2021).

In this study we describe and evaluate the performance of our

Computational Analysis of Novel Drug Opportunities (CANDO)

multiscale therapeutic drug discovery, repurposing, and design

platform for identifying small molecules that show potential in

inhibiting the SARS-CoV-2 virus and treating COVID-19.

CANDO was originally designed as a shotgun repurposing

platform for exactly this type of epidemic/pandemic scenario

utilizing multiscale modeling techniques and adhering to

multitarget drug theory, but has since been enhanced to carry

out novel drug discovery against all indications (Jenwitheesuk

and Samudrala, 2003b, 2005; Jenwitheesuk et al., 2008; Horst

et al., 2012; Minie et al., 2014; Sethi et al., 2015; Chopra et al.,

2016; Chopra and Samudrala, 2016; Falls et al., 2019; Fine et al.,

2019; Mangione and Samudrala, 2019; Schuler et al., 2019;

Schuler and Samudrala, 2019; Mangione et al., 2020b; Hudson

and Samudrala, 2021; Schuler et al., 2021) as well as novel drug

design (Overhoff et al., 2021). The relatively recent introduction

of higher order biological data such as protein pathways, protein-

protein interactions, drug side effects, and protein-disease

associations has further augmented our ability to describe

compound behavior holistically, with subsequent improved

performance (Moukheiber et al., 2021; Schuler et al., 2021;

Mangione, 2022; Mangione et al., 2022). Our platform is

freely available to the scientific community and a detailed

description of the software implementation has been

published (Mangione et al., 2020a).

We employed two separate predictive pipelines within

CANDO to suggest putative drug candidates for COVID-19:

one first optimized our compound-protein interaction protocol

against SARS-CoV and then applied it to SARS-CoV-2, and the

other searched for compounds that were similar to those known

to possess anti-coronavirus activity based on interactions

computed with all human proteins. We originally published

three different ranked lists of putative drug candidates in

March and May of 2020 using the CANDO platform

(Mangione et al., 2020b; Group, 2020). In May 2020, we

published an assortment of drug candidates that were highly

ranked by CANDO and were at the time being investigated in

clinical trials to treat COVID-19. Since then several of our top

scoring compounds have been validated by us and by others

which we analyze in detail here. The significant number of top-

ranked therapeutics successfully validated in this study, our

previous work with the Ebola Virus Disease outbreak in West

Africa in 2014 (Chopra et al., 2016), as well as our earlier

validation studies and analyses (Jenwitheesuk and Samudrala,

2003b,a, 2005; Jenwitheesuk et al., 2008; Costin et al., 2010;

Nicholson et al., 2011; Michael et al., 2011a,b), all suggest that

CANDO is an effective tool to combat newly emerging epidemics

and pandemics.

2 Results and discussion

Figure 1 illustrates the pipelines and protocols used within

the CANDO platform to produce the three lists of drug

candidates; a detailed description follows below.

2.1 Compound-protein interaction
protocol parameter optimization

We initially assessed the robustness of predictions made

by the CANDO platform by inspecting the recapture rate of

small molecules identified to be active against SARS-CoV,

MERS-CoV, and other coronavirus species from two high-
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throughput screens by Shen et al. and Dyall et al. (Dyall et al.,

2014; Shen et al., 2019).

We parameterized our compound-protein interaction

scoring protocol via the discounted cumulative gain metric

after generating many matrices using various criteria (see

Section 3.4). Figure 2 depicts how well each parameter set

ranked the actives present in the three separate screens.

Among the top four competitive parameter sets, two did not

have any screens ranked within the top 10 and were discarded.

The parameter set we chose to apply to SARS-CoV-2 ranked 25th

for SARS-CoV, 3rd for HCoV-NL63, and 10th for HCoV-OC43.

We selected this over the other competitive parameter set because

omacetaxine mepesuccinate, one of the strongest actives

identified in the Dyall screen, was ranked 2nd versus being

ranked 14th in the discarded set. The final interaction scoring

protocol and corresponding de novo candidate generation

pipeline parameters included the integer based Extended-

connectivity fingerprint (ECFP) with a diameter of 10, dCxP

scoring protocol, and a compound-protein interaction score

cutoff of 0.9 (see Section 3.3 and Section 3.4).

2.2 Generation and validation of drug
candidates

We generated three lists of drug candidates from

corresponding pipelines that mixed and matched the

protocols and data sources as described in the methods: 1)

Using the parameters identified in the previous step, we

generated a list of 155 approved drug candidates with

strong interaction scores to SARS-CoV-2 proteins where

the top scoring compounds all had interaction scores

greater than or equal to 0.9 to one or both of the main

(Mpro) or papain-like (PLpro) proteases (identified as

3.5.20 de novo). 2) The nonredundant synthesis of the

18 actives from the Shen study and 21 actives from the

Dyall study as well as 2 promising manually added

candidates oseltamivir and remdesivir served as input to

the interaction signature similarity pipeline since it does

not require EC50 values. These 38 compounds were then

used to generate 45 approved drug candidates using the

signature similarity pipeline (3.5.20 similarity). 3) We later

FIGURE 1
Overview of COVID-19 drug candidate prediction pipelines within the CANDO platform. Drug/compound structure libraries were curated from
DrugBank (Wishart et al., 2018) and protein structure libraries comprising both the human and SARS-CoV proteomeswere extracted from the Protein
Data Bank (Burley et al., 2019). Interaction scores between every protein and compound in the corresponding libraries were calculated using our
bioanalytic docking (BANDOCK) protocol (Mangione et al., 2020a; Schuler et al., 2021). The interaction scores with the SARS-CoV proteins were
used for the de novo candidate generation pipeline (red) that identified compounds with the highest binding scores to multiple viral proteins, while
the interaction scores with the human proteins were used for a similarity based candidate generation pipeline (blue) that identified candidates based
on the similarity of their proteomic interaction signatures to drugs/compounds known to be effective against SARS-CoV in vitro. The interaction
scoring protocol parameters were optimized against SARS-CoV and then applied to modeled protein structures from the SARS-CoV-2 proteome in
the de novo candidate generation pipeline to produce the 3.5.20 de novo candidate list. Two distinct signature similarity drug candidate lists were
generated using the version 2.1 CANDO compound library initially followed by an enhanced v2.3 compound library denoted as 3.5.20 similarity and
5.18.20 similarity, respectively. The predictions in these three lists were validated using evidence from published clinical and experimental studies to
not only verify our platform but to determine optimal candidates that are safe and effective at treating COVID-19 downstream.
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repeated the similarity pipeline with a sublibrary of 85 anti-

SARS-CoV-2 actives and an enhanced CANDO compound

library (v2.3) to generate a list of 97 approved drug candidates

(5.18.20 similarity).

We scoured the literature to see if other studies validated our

candidates from our three lists against SARS-CoV-2, primarily

utilizing two different resources that collate detailed information

on therapeutic interventions against COVID-19: CoronaCentral

and the Targeting COVID-19 Portal from the Global Health

Drug Discovery Institute (GHDDI) (see Section 3.6). Table 1

gives a summary of the number of predicted candidates and

validations, along with correlation coefficients and discounted

FIGURE 2
Visualization of parameter optimization set ranks across three coronavirus screens. This scatter plot depicts the ranks of each set of parameters
for the interaction scoring protocol and de novo candidate generation pipeline within CANDO after using the discounted cumulative gain metric to
score how well each corresponding pipeline ranked sets of active compounds against three separate coronavirus species: HCoV-NL63, HCoV-
OC43, and SARS-CoV. The ranks for the HCoV-NL63 andHCoV-OC43 screens are depicted along the horizontal and vertical axes, respectively,
while the size of the points depicts if the screen against SARS-CoV ranked within the top 5, 100, or 1,680 for each parameter set. The shade reflects
the interaction score threshold that was used by the de novo pipeline to filter the candidates, scaled continuously from 0.0 (lightest) to 0.95 (darkest).
The chosen parameter set (orange box) was the second ranked among all three screenswith ranks of 3, 10, and 25 for HCoV-NL63, HCoV-OC43, and
SARS-CoV, respectively, and used an ECFP10 integer based fingerprint, dCxP scoring protocol, and 0.9 compound-protein interaction score cutoff.
The strong and consistent performance of this parameter set across three different coronavirus species justified our selection and warranted its use
in generating drug candidates to inhibit SARS-CoV-2.

TABLE 1 Summary details of drug candidates generated by the CANDO platform. For each candidate list, the total number of candidates that were
initially generated by our prediction modules, the number of viable candidates after manual filtering (removing ions and dyes) prior to validation,
the number of approved compounds, the number of candidates that were matched via literature search using the CoronaCentral and GHDDI
resources (“Checked”), the number of candidates with EHR evidence or in vitro activity less than 100 μM (“Validated”), the hit rate percentage, the
Pearson correlation coefficient (“CC”) between the full virus validation ranks and their EC50 scores (including the combined and nonredundant
lists), and the discounted cumulative gain (“DCG”) score are given. Overall, we obtained hit rates ranging from 13.5 to 29.9% using the CANDO
platform, with the signature similarity pipelines yielding the highest success rates and the direct viral inhibition de novo pipeline accurately
ranking the best, most potent, candidates.

Total Viable Approved Checked Validated Hit rate CC DCG

3.5.20 de novo 225 224 155 48 21 13.5% 0.41 0.96

3.5.20 similarity 115 114 45 17 11 24.4% 0.63 0.24

5.18.20 similarity 100 97 97 48 29 29.9% 0.35 0.22

Combined 440 435 297 113 61 20.5% 0.30 —

Nonredundant 419 414 275 102 51 18.5% 0.37 —
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TABLE 2 Complete list of validated candidates generated by the CANDO platform. The names of the 51 compounds, their ranks in the 3.5.20 de novo,
3.5.20 similarity, and 5.18.20 similarity lists, the full virus EC50s,main protease IC50s, and EHR-based evidence are given. Only the lowest full virus
EC50 for each candidate is shown. The de novo pipeline identified better, more potent, full virus inhibition candidates, while the signature similarity
pipeline identified a greater fraction of validated candidates accurately.

Compound 3.5.20 3.5.20 5.18.20 SARS-
CoV-2

Mpro
IC50

Other

de
novo

similarity similarity EC50
(μM)

(μM)

Omacetaxine
mepesuccinate

1 — — 0.03 — —

Chlorpromazine 3 11 3.14 — —

Clomipramine 4 — 5.63 — —

Entrectinib — — 4 — 58.4 μM IC50 Spike protein binding ACE2

Mycophenolate mofetil 7 — — 0.87 — —

Imipramine 127 8 — 10.0 — —

Toremifene — — 8 2.5 — —

Tamsulosin 100 14 38 — 18% relative risk reduction (death)

Bepridil 15 — — 0.86 72 —

Azelastine — — 15 2.24 — —

Zuclopenthixol — 28 18 1.35 — —

Masitinib — 20 50 3.2 — —

Erythromycin — — 20 — — 70% reduction SARS-2 infection at 100ug/ml

Chloroquine — 21 96 7.28 — —

Ritonavir — — 21 13.7 —

Hydroxychloroquine — 22 4.14 — —

Cobicistat — — 22 6.7 —

Amodiaquine — 23 40 0.13 — —

Nilotinib — 26 — 1.88 — 4.21 μM IC50 Spike protein binding ACE2

Pimozide — — 26 42 —

Diphenhydramine 28 — — 17.4 — —

Clomifene — 29 84 9.73 — —

Remdesivir 30 — — 0.76 — —

Butenafine — — 35 — 5.4 —

Moxifloxacin — 44 — 239.7 — —

Clarithromycin — — 47 — — 78% reduction in severe respiratory failure versus chloroquine

Saquinavir — — 54 — 9.92 —

Simeprevir — — 55 2.3 48.2 —

Ouabain — — 56 0.024 — —

Azithromycin — — 57 2.12 — —

Tranylcypromine 57 — — — 8.64 —

Almitrine — — 68 1.42 — —

Tamoxifen — — 74 8.98 — —

Colistimethate — — 75 — — Mpro 17% bound (50 μM)

Lopinavir — — 76 9.12 — —

Terconazole 144 — 78 11.92 — —

Silodosin 81 — — — — 18% relative risk reduction (death)

Atazanavir — — 82 0.22 60.7 —

Triamterene 86 — — — — 23.5 μM IC50 Spike protein binding ACE2

Hydroxyzine 90 — — 15.3 — 0.42 hazard ratio (death)

Itraconazole — — 90 0.39 — —

(Continued on following page)
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cumulative gain scores. Table 2 gives a full breakdown of the

validations from each list as well as two drugs with weak EC50s

not counted as validated: moxifloxacin and levofloxacin. This

includes full virus, main protease, other miscellaneous in vitro

(for example, inhibition of SARS-CoV-2 spike protein binding to

the human ACE2 receptor), and electronic health record (EHR)

studies. The studies demonstrating the activities are provided in

Supplementary Table S1 while the energetic stability of the

designated hits are provided in Supplementary Table S2.

Figure 3 uses a Sankey diagram to illustrate the validation of

all candidates with EC50s less than 10μM, which includes

31 drugs that were found to be effective against SARS-CoV-

2 in full virus inhibition studies. Overall, a total of 51 drugs

showed efficacy against SARS-CoV-2 out of 275 nonredundant

candidates for a hit rate of 18.5%.

In addition to these validations gathered from the literature,

30 candidates were evaluated by our collaborator, Ennaid

Therapeutics, of which 11 displayed in vitro efficacy; a patent

has been filed for their use (Samudrala et al., 2020).

Aside from moxifloxacin and diphenhydramine, all validations

of candidates ranked in the top 50 of their respective lists have full

virus EC50 values less than 10 μM. The same is true for those in the

top 100 with the exception of hydroxyzine and terconazole. The

second strongest reported EC50 (0.03 μM) was obtained using

omacetaxine mepesuccinate, the top ranked candidate from the

3.5.20 de novo list, which is only slightly weaker than the best

EC50 belonging to ouabain (0.024 μM), ranked 56 in the

5.18.20 similarity list. Figure 4 illustrates the proposed

mechanism of omacetaxine mepesuccinate inhibiting SARS-CoV-

2 via strong predicted interactions to the main and papain-like

proteases. Two other drugs known to inhibit both SARS-CoV-

2 proper as well as its main protease, bepridil and ebastine, were

present in the 3.5.20 de novo and 5.18.20 similarity lists respectively,

with the latter having a relatively weak interaction score to the main

protease of 0.82 while the former received a score of 0.98. However,

the protease inhibition activity of ebastine is supported by it being

the third most similar compound to nelfinavir, a known human

immunodeficiency virus protease inhibitor, based on their

proteomic interaction signature similarity, suggesting the

CANDO platform is capable of recognizing/predicting

mechanistic behavior in multiple ways.

We also investigated whymoxifloxacin was deemed a candidate

despite its low reported efficacy (Figure 5). Moxifloxacin was

predicted by the 3.5.20 similarity pipeline and received a score of

two meaning it was in the top 25 most similar compounds to two

coronavirus actives (average rank 19.5). Moxifloxacin was the 18th

most similar compound to mefloquine and the 21st most similar to

emetine; the former is a treatment formalaria, similar tomany other

anti-malarials with moderate activity (~4–15 μM) against

coronaviruses in vitro (Dyall et al., 2014; Ellinger et al., 2021),

and the latter is an experimental treatment for amoebiasis with

demonstrated activity against not only SARS-CoV-2 (EC50

0.46 μM) (Choy et al., 2020), but many other coronavirus species

(Dyall et al., 2014; Shen et al., 2019). Moxifloxacin having similarity

to one strong and one moderate anti-coronavirus compound would

suggest a stronger EC50 than 239.7 μM; we attribute this result to a

progressive decrease in behavioral/functional similarity signal

strength/relevance as the distance between their proteomic

TABLE 2 (Continued) Complete list of validated candidates generated by the CANDO platform. The names of the 51 compounds, their ranks in the
3.5.20 de novo, 3.5.20 similarity, and 5.18.20 similarity lists, the full virus EC50s, main protease IC50s, and EHR-based evidence are given. Only the
lowest full virus EC50 for each candidate is shown. The de novo pipeline identified better, more potent, full virus inhibition candidates, while the
signature similarity pipeline identified a greater fraction of validated candidates accurately.

Compound 3.5.20 3.5.20 5.18.20 SARS-
CoV-2

Mpro
IC50

Other

de
novo

similarity similarity EC50
(μM)

(μM)

Ebastine — — 92 0.5 57 —

Avatrombopag — — 95 5.71 — —

Trimipramine 99 — — 1.5 — —

Flunarizine 105 — — 19.05 — —

Tadalafil 108 — — — — 100 μM IC50 preventing Spike protein binding to ACE2

Thalidomide 109 — — — — 11 versus 23 median days SARS-CoV-2 negative conversion from
admission, 18.5 vs. 30 days length hospital stay

Paroxetine 111 — — — — 0.52 hazard ratio (death or intubation)

Ifenprodil 117 — — — 46.86 Mpro 39% bound (50 μM)

Nebivolol 123 — — 2.72 — —

Doxazosin 133 — — — — 74% relative risk reduction (death)

Levofloxacin 145 — — 418.6 — —

Teniposide 149 — — — — 46.3 μM IC50 Spike protein binding ACE2
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interaction signatures relative to those of known coronavirus actives

increases. In other words, the signal disappears as we move further

down the ranks as depicted in Figure 5.

The second to last validation in the 3.5.20 similarity list is

clomifene, an infertility treatment in women, at rank 29 with a

score of 2 and EC50 of 9.73 μM; it is similar to the coronavirus

active compounds tamoxifen (rank 2) and toremifene (rank 11),

constituting an average rank of 6.5. Additionally, all other

validations from the same list have an average rank of less

than or equal to 6.5 regardless of the score, which ranges

from two to six. This implies setting the cutoff rank for the

canpredict module to a lower value will produce stronger

candidates and is further supported by the higher hit rate

observed in the 5.18.20 similarity list (29.9 vs. 24.4% for

3.5.20 similarity) which was produced with a cutoff of ten.

However the candidates predicted in the 5.18.20 similarity list

benefited from using anti-SARS-CoV-2 drugs specifically, as

opposed to actives against other coronavirus species, and had

over double the number of active compounds when compared to

the actives used to generate the 3.5.20 similarity list.

The candidates generated using the human proteome

interaction signature similarity pipeline had higher

validation rates relative to the direct compound-protein

inhibition de novo pipeline; yet some of the candidates

generated by the latter demonstrated stronger in vitro

efficacy. The increase in hit rate is due to the similarity

pipeline utilizing the structural knowledge embedded in the

results of countless coronavirus studies, whereas the de novo

pipeline relies exclusively on the fidelity of the compound-

protein interactions computed using our interaction scoring

protocols, which are prone to inaccuracies. The de novo

pipeline was better tuned to correctly rank the strong

inhibitors as interaction scoring parameters were first

optimized for SARS-CoV using the discounted cumulative

gain metric, which prioritizes ranking the strongest active

compounds near the top of the list. This suggests that

weighting the active compounds based on their available

EC50 values for the full proteome interaction similarity

pipeline may produce more potent candidates.

Our observed hit rate of 18.5% is likely conservative as not all

of the compounds from the three candidate lists have been

validated for efficacy against SARS-CoV-2 in published

clinical and experimental studies. Conversely, the fraction of

these 51 validations analyzed in this study that will result in

FIGURE 3
Validation of SARS-CoV-2 full virus inhibition candidates generated by the CANDO platform. The flow of validations among the three candidate
lists generated using the CANDO platform are depicted from left to right using a Sankey diagram. The 155 candidates from 3.5.20 de novo (yellow)
yielded 21 validations, while the similarity counterpart from the same date (red) produced 11 validations from 45 candidates. The 5.18.20 similarity list
(blue) of 97 approved drugs resulted in 29 validations, resembling the hit rate of 3.5.20 similarity list andmore than twice that of the lone de novo
list. The 51 total validations were comprised of 31 full virus studies, 10 main protease (Mpro) inhibition studies, and 14 EHR or other inhibition based
studies. The compounds that were validated via a full virus inhibition of less than 10 μM are shown prioritized by their rank in the list (or best rank if in
multiple lists) corresponding to the thickness of their bars (ranging from rank 1–122). All but six drugs were in a single list, five drugs were in both
similarity based lists (purple) and one was in both the 3.5.20 similarity and de novo lists (orange). The length of the horizontal bar next to the names of
the compounds indicates the lowest reported EC50 or IC50 from published experimental studies progressing on a linear scale. The second strongest
reported EC50 (0.03 μM) belongs to omacetaxinemepesuccinate, which is the top candidate from 3.5.20 de novo. The correlation between rank and
strength of inhibition is sub-moderate (0.3718), and this is possibly due to the variation in assay design among different studies (viral replication
reduction, viral entry inhibition, viral induced cytopathic effect reduction, etc). Overall, the CANDO platform was able to identify several candidates
with potent anti-SARS-CoV-2 activity using two different predictive pipelines, verifying its potential to rapidly and efficiently respond to emerging
threats to global health.
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FIGURE 4
Analysis of selected interactions between SARS-CoV-2 proteases and top ranked CANDO-generated drug candidates. The main (Mpro, top)
and the papain-like (PLpro, bottom) proteases are depicted in grey with the binding site residues colored blue. Bepridil (green) and omacetaxine
mepesuccinate (orange) ranked at 15 and 1 in the 3.5.20 de novo list, and ebastine (blue) ranked at 92 in the 5.18.20 similarity list, are shown bound to
one or both proteases. These constitute example interactions of when CANDOmade a successful prediction as well as illustrate why candidate
generation is not perfect from a mechanistic multiscale perspective. The interaction score (orange triangles) between the compounds and the
proteases were generated using the bioanalytic docking protocol BANDOCK, with higher scores (maximum 1.0) predicting a higher likelihood of
interaction. The ligand associated with the binding site predictions by the COACH algorithm and chosen as the template for BANDOCK are depicted
in grey ellipses (full names available in the Supplementary Material), all of which are strong coronavirus protease inhibitors. These ligands are
compared to the query drug using the ECFP10 chemical fingerprint via RDKit and a similarity score is assessed based on the Sorenson-Dice
coefficient. The percentile of the similarity (black outlined boxes) from the corresponding distribution of all similarities between the query
compounds and all ligands in the binding site library is multiplied by the confidence score associated with the binding site prediction from COACH
(purple triangles) to serve as the final score. Bepridil inhibits the full SARS-CoV-2 virus and Mpro in vitro with EC50s of 0.86 and 72 μM, which was
successfully assigned a strong interaction score of 0.98. On the other hand, ebastine also inhibits the full virus andMprowith EC50s of 0.5 and 57 μM,
yet was assigned a lower interaction score of 0.82. Despite the strong percentile similarity score between ebastine and its template ligand (99.7), the
confidence score for this binding site prediction was 0.82, significantly lowering the final interaction score. However, ebastine is the 3rd most similar
compound to nelfinavir, a known human immunodeficiency virus protease inhibitor with activity against SARS-CoV-2, based on interaction similarity
to a library of 5,317 human proteins, suggesting its putative mechanism as a protease inhibitor. Omacetaxine mepesuccinate, the second strongest
full virus inhibitor predicted by CANDOwith an EC50 of 0.03 μM, was the top candidate from the de novo list and has interaction scores of 0.960 and
0.964 with Mpro and PLpro, respectively, and has not yet been validated in terms of target specificity. Based on the high interaction scores, we
propose this as its mechanism not only for SARS-CoV-2, but for all other coronavirus species against which it has activity. In this manner, the
mechanistic understanding of drug candidate behavior is readily deciphered in a multiscale manner, from the atomic-level fingerprints between the
novel drug candidates and the interacting ligands to the evolutionary information embedded at the protein and proteome scales, and exemplifies the
ability of the CANDO platform to accurately identify novel drug candidates and their mechanisms via a multi-pronged approach.
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clinical utility is limited due to a variety of factors such as

pharmacokinetics, pharmacodynamics, safety, and cost.

Multiple candidates that we listed as validations, specifically

chloroquine, hydroxychloroquine, and azithromycin, have had

conflicting reports of clinical benefit (Wang Y. et al., 2020;

Chowdhury et al., 2020; Spinner et al., 2020; Echeverría-Esnal

et al., 2021); regardless, we consider them a successful prediction

of the CANDO platform due to the extensive number of in vitro

studies reporting their SARS-CoV-2 inhibition, which is what the

compound-proteome interaction analytics pipelines present in

CANDO optimize for at present. Furthermore, even if CANDO

fails to accurately score a known interaction with our bioanalytic

docking protocol (BANDOCK) for a compound with reported

activity, as in the case of ebastine and the SARS-CoV-2 main

protease, its therapeutic mechanism may still be elucidated by

inspecting the behavior of highly similar compounds based on

their proteomic interaction signatures. Consequently, we are

actively implementing methods to further refine the feasibility

of our candidates based on the aforementioned factors.

3 Methods

3.1 Compound structure library and
known actives curation

The CANDO v2.1 compound library consisted of 8,696 drug

and drug-like small molecule three-dimensional structures,

including 1,979 approved for human use, and was extracted

from DrugBank (Wishart et al., 2018); this library was used for

the initial predictions. We later updated the CANDO compound

library to v2.3 that included 13,194 compounds from DrugBank

FIGURE 5
Analysis of the efficacy of two SARS-CoV-2 inhibitors with respect to proteomic interaction signature similarities predicted using the CANDO
platform. The structures of two validated compounds from the 3.5.20 similarity list, moxifloxacin (blue) and clomifene (green), are shown with
EC50 values of 239.7 and 9.73 μM, respectively. The EC50 values are based on the full virus in vitro inhibition of SARS-CoV-2. Their ranks in the list of
the top 25most similar compounds to two different coronavirus actives are outlined in black; moxifloxacin is at rank 18 and 21 in comparison to
mefloquine and emetine, and clomifene is at rank 2 and 11 in comparison to tamoxifen and toremifene, respectively. These ranks are determined by
the similarity coefficient (Sorenson-Dice) of the proteomic interaction signatures between the query compound and all others in the CANDO library.
The proteomic signatures are vectors of interaction scores between a compound and a library of 5,317 human proteins computed using our in-
house docking protocol BANDOCK (see Section 3.3). The fundamental hypothesis underlying the CANDO platform is that similar drugs will have
similar behavior in biological systems as measured by their proteomic interaction signatures. Despite the relatively high rank (44) of moxifloxacin in
the 3.5.20 similarity list, its measured EC50 was poor; this is explained by its lower interaction signature similarity to the two coronavirus actives
depicted suggesting behavioral signal strength inversely correlates with rank. On the other hand, clomifene, the next highest prediction from the
3.5.20 similarity list at rank 29, has a stronger EC50 and ranks higher in the similarity lists to two coronavirus active compounds. However the reported
EC50 values of mefloquine and emetine are strong at 4–15 and 0.46 μM, respectively, which implies that behavioral similarity signal is preserved for
highly ranked compounds and that using lower rank cutoff thresholds produces stronger candidates.
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consisting of 2,449 approved drugs and 2,519 small molecule

metabolites, with the remaining classified as experimental/

investigational. Biologic therapeutics were not included in our

analyses.

Initially, compounds were considered as a coronavirus active

if they were identified in one of two high-throughput screens by

Shen et al. and Dyall et al. (Dyall et al., 2014; Shen et al., 2019).

The former screened a library of 290 compounds against SARS-

CoV andMiddle East respiratory syndrome coronavirus (MERS-

CoV). The latter screened a 2,000 compound library against four

different coronavirus strains: human coronavirus OC43 (HCoV-

OC43), human coronavirus NL63 (HCoV-NL63), MERS-CoV,

and murine coronavirus (MHV-A59; also known as mouse

hepatitis virus). Out of 60 successful hits from both studies,

18 compounds from the Shen study along with their EC50s

against HCoV-OC43 and HCoV-NL63, as well as 12 compounds

from the Dyall study and their EC50s against SARS-CoV were

mapped to our compound library. These three actives

sublibraries were used for the compound-protein interaction

scoring protocol parameter optimization (see Section 3.4).

The nonredundant combination of actives in the Shen and

Dyall studies were used for the signature similarity candidate

generation pipeline (see Section 3.5). We also added oseltamivir

and remdesivir as at that time (February 2020) evidence

suggested that they may inhibit SARS-CoV-2 or related

coronaviruses (Wang M. et al., 2020; Coenen et al., 2020),

resulting in an actives library of 38 compounds.

As more data became available regarding in vitro efficacy

values for compounds against SARS-CoV-2, a second sublibrary

of 85 actives with reported EC50 values less than or equal to

10 μMwas extracted onMay 7, 2020 from the Targeting COVID-

19 Portal from GHDDI (Leng, 2020), which contained 17/

38 compounds from the previous list. The updated CANDO

compound library along with the new GHDDI actives sublibrary

were used for the enhanced signature similarity candidate

generation pipeline (see Section 3.5).

3.2 Protein structure library curation

The available SARS-CoV x-ray diffraction protein structures

were obtained from the Protein Data Bank (PDB) (Burley et al.,

2019) and initially served as our representative coronavirus

proteome, comprising eighteen total structures. These eighteen

SARS-CoV proteins were used for the compound-protein

interaction protocol optimization (see Section 3.3).

A SARS-CoV-2 protein library of 24 structures was

modeled from sequence using the I-TASSER v5.1 suite

(Yang et al., 2015) and comprised the proteome used for

the remaining analyses. We prioritized 18/24 proteins that

were modeled by I-TASSER using homology to known

coronavirus structures. These 18 SARS-CoV-2 proteins

were used for the de novo pipeline, while both iterations of

the signature similarity based pipeline (see Section 3.5) used a

library of 5,317 human protein x-ray diffraction structures

extracted from the PDB. The former piepline is implemented

using the canpredict de novo module, and the latter is

implemented using the canpredict similarity module, in the

cando.py Python package (Mangione et al., 2020a; Mangione

and Falls, 2022)).

3.3 Compound-protein interaction
calculation

We utilized our in-house bioinformatic analytics-based

docking protocol BANDOCK to generate interaction scores

between every compound and every protein structure; these

scores serve as a proxy for binding strength/probability (Minie

et al., 2014; Sethi et al., 2015; Falls et al., 2019; Hudson and

Samudrala, 2021). The COACH algorithm from the I-TASSER

suite (Yang et al., 2013) was used to predict binding sites for each

protein. COACH outputs an associated score and binding ligand

for every binding site in a protein and is the primary data used by

BANDOCK to generate interaction scores. For a given

compound and protein pair, every interacting ligand predicted

by COACH is compared to the query compound by computing

the similarity coefficient of their chemical fingerprints generated

via RDKit (Landrum, 2013). The maximum resulting coefficient

(i.e. the strongest match) and its associated binding site score are

then used to compute the final interaction score for the

compound-protein pair, depending on the scoring protocol

parameters. This is repeated iteratively for each protein in a

given library (e.g. SARS-CoV, SARS-CoV-2, human,

nonredundant PDB), resulting in a proteomic interaction

signature for every drug/compound, represented an N × M

matrix, where N is the number of drugs/compounds and M is

the number of proteins.

Interaction scoring (BANDOCK) parameters were

systematically varied to identify those optimal for assessing

anti-coronavirus activity. These were 1) the chemical

fingerprinting method: ECFP or functional-class fingerprint

(FCFP) with diameters of 0, 2, 4, 6, 8, and 10 and length of

2048; 2) the fingerprint style: binary vs integer based for the

compounds/ligands; 3) the scoring protocol: the binding site

score from COACH (Pscore), the Tanimoto or Sorenson-Dice

coefficient of the binding site ligand from COACH to the query

drug (Cscore) for binary or integer fingerprints, respectively, the

percentile of the Cscore in the distribution of all I-TASSER ligand

Cscores to the query drug (dCscore), or products of these (Pscore

× Cscore, Pscore × dCscore); and 4) thresholds: Pscore and

Cscore (or dCscore) thresholds so that any binding site or

compound-ligand similarity coefficient (or its percentile) that

does not exceed each cutoff, respectively, are ignored. A

compound-protein interaction matrix was generated for each

of these parameter combinations.
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Computed interaction scores with the 18 SARS-CoV proteins

were used for compound-protein scoring protocol parameter

optimization, while the scores computed (using the parameters

identified in the previous step) with the 18 SARS-CoV-2 proteins

were used for the de novo candidate generation pipeline. The

scores computed with a library of 5,317 human PDB structures

were used for the similarity-based pipelines (see section 3.5). The

initial parameters were an ECFP4 binary fingerprint with

Tanimoto coefficients for Cscores, Pscore scoring protocol,

and a dCscore threshold of 0.5 (50th percentile), which were

used to generate the March 5 2020 aka 3.5.20 list of candidates.

The enhanced parameters were an ECFP4 integer fingerprint

with Sorenson-Dice coefficient for Cscores, Pscore × dCscore

scoring protocol, and a dCscore threshold of 0.75 (75th

percentile), which were used to generate the May 18, 2020 aka

3.18.20 candidate list.

3.4 Parameter optimization using
coronavirus active compound recovery

We identified the best parameters for BANDOCK that

optimally ranked the compounds identified via high

throughput screens against three different coronavirus species

(SARS-CoV, HCoV-NL63, and HCoV-OC43), each of which

were assessed separately via de novo drug candidate generation.

We also varied the cutoff threshold of interaction scores to

consider so that the interaction scores with proteins below

that threshold were not considered in the total for a given

compound. The cutoffs in this study were incremented by

0.05, starting with 0.0 (no threshold) and ending with 1.0

(maximum score). The discounted cumulative gain metric

(Järvelin and Kekäläinen, 2002; Dupret, 2011), often employed

for search engine optimization and other early recognition

problems, was used to assess how well each matrix properly

ranked the active compounds in the proper order given their

associated EC50/IC50 values from each of the three species

separately. Our previous work has identified this metric as the

optimal one for drug repurposing studies (Schuler et al., 2021).

Briefly, discounted cumulative gain (DCG) rewards lists of

predictions that rank the optimal known actives at the top

and progressively penalizes lower ranked ones via the equation:

DCGp � ∑
p

i�1

2reli − 1
log2 i + 1( ) (1)

where p is the length of the list, i is the rank, and reli is the

relevance score of the item at position/rank i which is the inverse

of the EC50 values (1/EC50) for the 36 nonredundant actives.

Parameter sets utilizing any of the following criteria were

discarded due to trivial candidate rankings: Pscore scoring

protocol, interaction score threshold of 1.0, and Cscore

threshold of 1.0. Interaction scores generated using the Pscore

protocol did not utilize the chemical fingerprint similarity value

between the binding site ligand and the query compound and

subsequently failed to discriminate between two compounds that

used the same ligand. Using an interaction score or Cscore

threshold of 1.0 required the chemical fingerprint similarity

score to equal 1.0, meaning identical compounds, therefore

ensuring the only predicted candidates were known

coronavirus inhibitors.

3.5 COVID-19 drug candidate generation

To generate drug candidates against COVID-19, we used

both a de novo pipeline that ranked compounds based on their

predicted interaction scores against proteins from SARS-CoV-2,

and a similarity pipeline that searched the CANDO drug/

compound library for compounds similar to those deemed as

actives in terms of their interaction signatures. The former

protocol summed the computed interaction scores of each

compound against all viral proteins and ranked them from

best to worst. Interaction scores below particular thresholds

were ignored in the sums (see section 3.4). For the initial

iteration of the latter similarity protocol, drug candidates were

ranked by their frequency of occurrence in the top 25 most

similar compounds to each of the 38 coronavirus actives, while

the enhanced iteration ranked compounds by frequency of

occurrence in the top 10 most similar compounds to the

85 GHDDI actives. We kept track of the number of

coronavirus actives each compound was similar to within the

cutoff threshold along with their average ranks (which served as a

tie-breaker) to produce the final ranked list of candidates.

The outputs of our pipelines were three ranked lists of drug

candidates: one using the direct viral inhibition pipeline from the

initial iteration (3.5.20 de novo), a second using the similarity

based candidate generation pipeline from the initial iteration

(3.5.20 similarity), and the third using the similarity based

pipeline using the enhanced actives list (5.18.20 similarity).

3.6 External validation studies curation

We analyzed GHDDI (Leng, 2020) and CoronaCentral

(Lever and Altman, 2021) for up-to-date information on

COVID-19 therapeutic interventions which could

independently and prospectively validate our top ranked

candidates. Both sources utilize deep learning or natural

language processing methods to automatically extract and

annotate information from SARS-CoV-2 studies to produce

lists of possible actives. We manually parsed the manuscripts

that were annotated with and matched the name of any

candidate compounds from our three prediction lists for

corresponding efficacy values (EC50, IC50, hazard ratios,

etc) while eliminating studies that were purely
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computational or did not investigate the candidate compound

as the primary intervention.

4 Conclusion

This study highlights how CANDO may be used to rapidly

generate promising leads for drug development when time is

critical, provided the therapeutic intervention is possible within

established dosing guidelines. Our study is an assessment of

potential therapeutics for treating COVID-19 which were all

generated within three months of the pandemic declaration by

the WHO. Considering that it took almost one year for a vaccine

(Food and Administration, 2022) and two years for a potent

antiviral such as molnupiravir or nirmatrelvir (Mahase, 2021;

Hammond et al., 2022) to become available, we have exemplified

that computational drug discovery and repurposing platforms

like ours can be strategically used to alleviate the burden of

emergent pathogens ahead of time. Additional studies, ideally via

in vivo and/or clinical studies, verifying the efficacy of these

identified candidates is necessary in most cases, however for

already approved drug candidates such as those explored in this

study the need for trials demonstrating safety is greatly

diminished. Additionally, retrospective EHR analysis may also

be used to indirectly examine clinical benefits in human patients

as in the case of fluoxetine (Oskotsky et al., 2021).
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Purpose: The rapidworldwide spread of Corona Virus Disease 2019 (COVID-19)

has become not only a global challenge, but also a lack of effective clinical

treatments. Studies have shown that licorice can significantly improve clinical

symptoms such as fever, dry cough and shortness of breath in COVID-19

patients with no significant adverse effects. However, there is still a lack of in-

depth analysis of the specific active ingredients of licorice in the treatment of

COVID-19 and its mechanism of action. Therefore, we used molecular docking

and molecular dynamics to explore the mechanism of action of licorice in the

treatment of COVID-19.

Methods: We used bioinformatics to screen active pharmaceutical ingredients

and potential targets, the disease-core gene target-drug network was

established and molecular docking was used for verification. Molecular

dynamics simulations were carried out to verify that active ingredients were

stably combined with protein targets. The supercomputer platformwas used to

measure and analyze stability of protein targets at the residue level, solvent

accessible surface area, number of hydrogen bonds, radius of gyration and

binding free energy.

Results: Licorice had 255 gene targets, COVID-19 had 4,628 gene targets, the

intersection gene targets were 101. Kyoto Encyclopedia of Genes andGenomes

(KEGG) and Gene ontology (GO) analysis showed that licorice played an

important role mainly through the signaling pathways of inflammatory

factors and oxidative stress. Molecular docking showed that Glycyrol,

Phaseol and Glyasperin F in licorice may playe a role in treating COVID-19

by acting on STAT3, IL2RA, MMP1, and CXCL8. Molecular dynamics were used

to demonstrate and analyze the binding stability of active ingredients to protein

targets.

OPEN ACCESS

EDITED BY

Mithun Rudrapal,
Rasiklal M. Dhariwal Institute of
Pharmaceutical Education and
Research, India

REVIEWED BY

Habibu Tijjani,
Bauchi State University, Nigeria
Johra Khan,
Majmaah University, Saudi Arabia

*CORRESPONDENCE

Lixin Zhang,
534259627@qq.com,
orcid.org/0086-135-2919-4157
Wang Zan,
33058766@qq.com,
orcid.org/0086-186-2812-0209
Xiao Zhang,
954073462@qq.com,
orcid.org/0086-130-8661-6376

SPECIALTY SECTION

This article was submitted to Drugs
Outcomes Research and Policies,
a section of the journal
Frontiers in Pharmacology

RECEIVED 26 July 2022
ACCEPTED 11 August 2022
PUBLISHED 02 September 2022

CITATION

Cao J-F, Gong Y, WuM, Yang X, Xiong L,
Chen S, Xiao Z, Li Y, Zhang L, Zan W and
Zhang X (2022), Exploring the
mechanism of action of licorice in the
treatment of COVID-19 through
bioinformatics analysis and molecular
dynamics simulation.
Front. Pharmacol. 13:1003310.
doi: 10.3389/fphar.2022.1003310

COPYRIGHT

© 2022 Cao, Gong, Wu, Yang, Xiong,
Chen, Xiao, Li, Zhang, Zan and Zhang.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 02 September 2022
DOI 10.3389/fphar.2022.1003310

81

https://www.frontiersin.org/articles/10.3389/fphar.2022.1003310/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1003310/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1003310/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1003310/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1003310/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.1003310&domain=pdf&date_stamp=2022-09-02
mailto:534259627@qq.com
mailto:orcid.org/0086-135-2919-4157
mailto:33058766@qq.com
mailto:orcid.org/0086-186-2812-0209
mailto:954073462@qq.com
mailto:orcid.org/0086-130-8661-6376
https://doi.org/10.3389/fphar.2022.1003310
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.1003310


Conclusion: This study found that Phaseol in licorice may reduce inflammatory

cell activation and inflammatory response by inhibiting the activation of

CXCL8 and IL2RA; Glycyrol may regulate cell proliferation and survival by

acting on STAT3. Glyasperin F may regulate cell growth by inhibiting the

activation of MMP1, thus reducing tissue damage and cell death caused by

excessive inflammatory response and promoting the growth of new tissues.

Therefore, licorice is proposed as an effective candidate for the treatment of

COVID-19 through STAT3, IL2RA, MMP1, and CXCL8.

KEYWORDS

licorice, COVID-19, bioinformatics analysis, molecular docking, molecular dynamics

Introduction

Corona Virus Disease 2019 (COVID-19) is a respiratory

disease caused by Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) (Fernandes et al., 2022). Signs

and symptoms of COVID-19 disease vary from patient to

patient, but the most common clinical signs include fever,

fatigue, cough, anorexia, sputum production and shortness of

breath (Rai et al., 2021). Less common symptoms such as sore

throat, headache, confusion, hemoptysis, shortness of breath, and

chest tightness, as well as mild symptoms such as nausea, vomiting,

diarrhea, and gastrointestinal complications have also been

reported (Majumder and Minko, 2021). SARS-CoV-

2 transmission usually occurs via respiratory droplets with an

average incubation period of 6.4 days. Althoughmost patients tend

to be mildly ill, a small number of patients develop severe hypoxia

requiring hospitalization andmechanical ventilation (Ochani et al.,

2021). In severe cases, pneumonia, severe acute respiratory

syndrome, heart failure, renal failure, and even death occur (Rai

et al., 2021). However, there is a lack of effective COVID-19

therapeutic agents with few side effects. Therefore, screening and

investigating drugs to treat COVID-19 will contribute significantly

to the global fight against the COVID-19 epidemic.

Clinical evidence suggests that herbal drugs are effective

against viral infections such as influenza, SARS and SARS-

CoV-2 by targeting viral cell entry, viral replication and host

GRAPHICAL ABSTRACT
The mechanisms analysis of licorice in the treatment of COVID-19.
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antiviral immune response steps. Among the drugs and

formulations recommended by Chinese authorities for

COVID-19 treatment, the dried root of licorice is one of the

most commonly used ingredients in formulations. Recent reports

also suggest that licorice extracts may play a potential role in the

fight against COVID-19 and related diseases (Li et al., 2021).

According to the Chinese Pharmacopoeia, licorice is able to

nourish the spleen, remove heat, prevent toxicity, remove

phlegm, and relieve cough, cramps and pain, thus

harmonizing the effects of other drugs (Ng et al., 2021).

Many studies have reported that active compounds isolated

from licorice have antitumor, antibacterial, antiviral, anti-

inflammatory, immunomodulatory and several other activities

that help restore and protect the nervous, digestive, respiratory,

endocrine and cardiovascular systems (Yang et al., 2015). Licorice

has many pharmacological effects and is often used as a unique

“guiding drug,” accounting for more than half of the traditional

and modern prescriptions and formulations. The modulating

effects of licorice on other herbs include significant

detoxification, treatment of drug and food poisoning, or

suppression of adverse reactions, and this “guiding” effect has

been tested in many preparations. According to available studies,

the pharmacological effects of licorice and natural products such as

glycyrrhizin have beneficial effects on the prevention of some

immune reactions triggered by COVID-19 (Zhang et al., 2021). In

addition to antiviral and anti-inflammatory properties, one of the

components of licorice has a mechanism to enhance autophagy,

which studies have shown to be necessary for COVID-19

treatment (Abraham and Florentine, 2021).

Numerous studies have been conducted to find many active

components in licorice that can hinder SARS-COV-2 infection

and alleviate the clinical symptoms of COVID-19. Gomaa and

Abdel-Wadood demonstrated the antiviral activity of licorice

sweeteners and licorice extracts. The most common mechanism

of antiviral activity is due to disruption of viral uptake into host

cells and disruption of the interaction between SARS-COV2 and

the receptor binding structural domain (RBD) of ACE2 (Gomaa

and Abdel-Wadood, 2021). Luo found that quercetin, the active

component of licorice, has a strong docking ability with IL-6,

suggesting that licorice may primarily reduce IL-6 levels in

response to COVID-19 inflammatory outbreaks, which

represents a prospective therapeutic strategy for moderate

COVID-19 (Luo et al., 2022). Yi et al. found that the

triterpenoid licorice saponin A3 (A3) and glycyrrhizic acid

(GA) could effectively inhibit SARS-CoV-2 by targeting

nsp7 and the stinging protein RBD, respectively (Yi et al.,

2022). However, licorice as a traditional Chinese medicine

contains a large number of active ingredients, and the

complex drug composition seriously hinders the application of

licorice in clinical COVID-19 treatment, and the specific

mechanism of action of licorice for the treatment of COVID-

19 is still unclear. Molecular dynamics allows a comprehensive

and systematic simulation of the interaction and binding stability

between small molecule monomers and protein targets with the

help of powerful computational capabilities.

Molecular dynamics (MD) is based on large computer clusters

(even supercomputers) and aims to computationally obtain data on

the microstructure, physicochemical properties, and performance

characterization parameters of materials (Collier et al., 2020).

Molecular dynamics complements and digs deeper into the

traditional materials discipline, which is mainly experimental.

The data obtained from calculations are used to study and

analyze the mechanism behind the experiments at multiple levels

from micro, meso and macro scales (Nam, 2021). Molecular

dynamics simulations help to discover the relationships on

protein, protein-ligand, protein-protein, protein-DNA and other

biomolecular interactions (Al-Shar’i and Al-Balas, 2019). Molecular

dynamics simulations not only help to understand the physical

processes of systems at the atomic level, but also allow the discovery

of empirically undetectable hidden states. In addition, experimental

measurements of thermodynamic properties in biomolecular

systems are usually expensive and time-consuming (Filipe and

Loura, 2022). Accurate theoretical calculations of their free

energies by numerical simulations are becoming increasingly

important in medical biology, where 3D structures of small

molecule-protein complexes can reveal how and where a protein

interacts with a drug small molecule.

In this study, we screened licorice for potential active small

molecules by bioinformatics. The core intersection targets of

licorice and COVID-19 were screened. Protein-protein

interaction (PPI), Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Gene ontology (GO) were used to analyze the

potential association among the core intersection targets to

explore the mechanism of action and potential pathways. To

further validate the relationship between active small molecules

and key protein targets we performed molecular motion system

simulations through a supercomputer platform. Molecular motion

system simulations enable systematic study and analysis of drugs

to treat diseases from the cellular level to the chemical moiety level.

Molecular docking was used to determine the affinity of

monomeric compounds to protein targets, and molecular

dynamics was used to simulate the stability of bound

complexes and to analyze the dynamics of complexes after binding.

Therefore, this study of the potential mechanism of licorice in

the treatment of COVID-19 may provide new ideas and

necessary theoretical basis for clinical treatment.

Material and methods

Identification and screening of active
compounds of licorice

In this study, all compounds of licorice were screened and

analyzed using the Traditional Chinese Medicine System

Pharmacology Database (TCMSP) (Xie et al., 2021). We
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evaluated the drug components in terms of absorption,

distribution, metabolism and excretion and screened by two

key parameters, oral bioavailability (OB) and drug similarity

(DL). OB largely determines the impact of drug small molecules

on disease and DL is used for early screening and refinement of

candidate compounds in drug development. Active compounds

of licorice were screened on the basis of OB ≥ 30% and DL ≥ 0.18.

Analysis and screening of core
intersection gene targets

We used the GeneCards database and “COVID-19” and

“SAR-Cov-2” were used as keywords to obtain disease gene

targets. We also imported licorice into the GeneCards

database to obtain drug gene targets. Drug gene targets and

disease gene targets were intersected through the venny

website to obtain intersecting gene targets. And the

intersecting gene targets were screened to obtain core

intersecting gene targets by relevance score ≥2 as a

threshold, which is a comprehensive evaluation of the

association of genes with the studied diseases.

Construction of protein-protein
interaction network for corona virus
disease 2019 interaction in licorice
treatment

The STRING database was used to analyze protein-protein

interactions (PPI) for licorice treatment of COVID-19. In this

study, all the core intersecting targets were imported into

Cytoscape 3.7.1 for analysis in order to elucidate the

interactions between potential protein targets (Pan et al.,

2020). The network topology parameters were analyzed by

Cytoscape 3.7.1, and the hub protein targets were screened

according to the criteria of nodal degree value and median

centroid value greater than the mean.

Gene target enrichment analysis

Interacting gene targets were analyzed by Gene Ontology

(GO) functional annotation and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment in the DAVID database. In

this study, the relevant biological processes (BP), cellular

components (CC) and molecular functions (MF) of the gene

targets were obtained by GO enrichment. The core intersecting

targets were imported into the DAVID database and the selected

species was “Homo sapiens” (Xiong et al., 2020). We performed

KEGG pathway enrichment analysis for the relevant signaling

pathways involved in the disease-related targets and performed

gene target screening at p < 0.05. The main biological processes

and signaling pathways were analyzed for licorice treatment of

COVID-19. The Omicshare tool platform was used to visualize

the results of GO enrichment and KEGG enrichment (Cao et al.,

2022).

Validation of molecular docking and
docking protocols

Molecular docking was used to study the molecular affinity of

the active small molecules of licorice to the COVID-19 protein

target. The crystal structures of the proteins used for docking

were downloaded from the PDB database and the 3D structures

of the small molecules were downloaded from the PUBCHEM

database. We used AutoDock Vina 1.1.2 software for the

molecular docking work. Prior to docking, PyMol 2.5 was

used to process all receptor proteins (Burley et al., 2017).

ADFRsuite 1.0 was used to convert all processed small

molecules and receptor proteins into the PDBQT format

required for docking with AutoDock Vina 1.1.2. The docked

conformation with the highest output score was considered to be

the binding conformation for subsequent molecular dynamics

simulations (Ravindranath et al., 2015). In this study, the original

crystal ligand of the protein target was used as a positive reference

by re-docking the original crystal ligand and the protein. The

consistency of the binding pattern can indicate the correctness of

the molecular docking scheme (Cao et al., 2022).

Molecule dynamics

In this study, the small molecule-protein complexes obtained

by molecular docking were used as the initial structures for all-

atom molecular dynamics simulations, respectively (Mithun

et al., 2022). AMBER 18 software was used for the molecular

dynamics simulations (Maier et al., 2015; Lee et al., 2020). The

LEaP module was used to add hydrogen atoms to the system, a

truncated octahedral TIP3P solvent box was added at a distance

of 10 Å from the system, and Na+/Cl-was added to the system to

balance the system charge. At the maintenance temperature of

298.15 K, the NVT (isothermal isomer) system simulation was

performed for 500 ps to further distribute the solvent molecules

uniformly in the solvent box. The equilibrium simulation of the

whole system was performed for 500 ps at NPT (isothermal

isobaric). Finally, two composite systems are simulated for

50 ns of NPT system under periodic boundary conditions

(Larini et al., 2007).

MMGBSA binding free energy calculation

The binding free energy between the protein and ligand for

all systems was calculated by the MM/GBSAmethod (Chen et al.,
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2020). The MD trajectory of 50 ns was used as the calculation in

this study. The calculation equations ars as follows:

ΔGbind � ΔGcomplex – (ΔGreceptor + ΔGligand)
� ΔEinternal + ΔEVDW + ΔEelec + ΔGGB + ΔGSA

In this formula, the non-polar solvation free energy (ΔGGA)

was calculated based on solvent accessible surface area (SA) and

the product of surface tension (γ), ΔGGA = 0.0072 × SASA (Cao

et al., 2022).

Results

Identification of potentially active
compounds in licorice

The identification of potentially active compounds in licorice

was based on the criteria of DL ≥ 0.18 andOB ≥ 30%. 200 potential

compounds in licorice were retrieved from the TCMSP database.

By further improving the OB score (OB ≥ 70%), 11 core active

compounds were screened from licorice, shown in Table 1.

Acquisition of intersectional target genes

In this study, 255 gene targets of licorice and 4,628 gene

targets of COVID-19 were obtained. A total of 101 intersecting

gene targets were processed by Venny, shown in Figure 1.

Core intersectional target screening and
protein interaction network diagram
construction

In this study, core intersectional gene targets were obtained from

the GeneCards database based on relevance score, and relevance

score ≥2 were considered as core intersectional gene targets. The

STRING database was used to analyze the 27 core intersectional

protein targets of COVID-19 and licorice, and a protein interaction

network diagram was constructed for the treatment of COVID-19

with licorice, shown in Figure 2A. 11 key intersectional protein

targets (such as: STAT3, IL2RA, CXCL8, etc.) were obtained by

increasing the confidence score (confidence level ≥0.95), and the

TABLE 1 The core active compounds in licorice.

MOL ID molecule_name OB MW DL

MOL002311 Glycyrol 90.77 366.39 0.66

MOL004990 7,2′,4′-trihydroxy-5-methoxy-3-arylcoumarin 83.71 300.28 0.27

MOL004904 Licopyranocoumarin 80.36 384.41 0.65

MOL004891 Shinpterocarpin 80.29 322.38 0.72

MOL005017 Phaseol 78.76 336.36 0.57

MOL004841 Licochalcone B 76.75 286.30 0.19

MOL004810 Glyasperin F 75.83 354.38 0.53

MOL001484 Inermine 75.18 284.28 0.53

MOL000500 Vestitol 74.65 272.32 0.20

MOL005007 Glyasperins M 72.67 368.41 0.59

MOL004941 (2R)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-one 71.12 256.27 0.18

FIGURE 1
Intersection targets-active ingredient networks. Targets of
the intersection of licorice and COVID-19.

Frontiers in Pharmacology frontiersin.org05

Cao et al. 10.3389/fphar.2022.1003310

85

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1003310


11 key intersectional protein targets were used to construct the key

protein interaction network diagram, shown in Figure 2B.

Gene ontolog and kyoto encyclopedia of
genes and genomes enrichment analysis

The 27 core intersectional gene targets were imported into the

DAVID database for enrichment analysis. At p < 0.05, the GO

enrichment analysis yielded 222 GO entries, including 193 BP

entries, 10 CC entries and 19 MF entries. The results showed that

biological processes were highly correlated with inflammation and

cytokine transmission, mainly involving the positive regulation of

gene expression, cytokine-mediated signaling pathway and

inflammatory response. In cellular component, external side of

plasma membrane, extracellular space and extracellular region

account for a relatively large amount. In molecular functions,

transcription regulatory region sequence-specific DNA binding,

cytokine activity and growth factor activity were relatively high,

shown in Figures 3A–F. KEGG pathway analysis yielded

72 pathways, and KEGG enrichment analysis showed that the

enriched pathways involved multiple pathways related to immune

response regulation and inflammation, mainly cytokine-cytokine

receptor interaction, pathways in cancer, inflammatory bowel

disease and other signaling pathways, shown in Figures 3G, H.

Disease-core gene target-drug network

The disease-core gene target-drug network was constructed to

demonstrate the main signaling pathways and biological processes

of licorice for the treatment of COVID-19, shown in Figure 4.

Molecular docking

The 11 key intersection protein targets were selected for

molecular docking. The results indicate that the CXCL8/Phaseol

complex was mainly maintained by hydrophobic interactions.

The small molecule Phaseol interacted with E29 on the protein by

hydrogen bonding and with V25, V27, V58, and I22 by

hydrophobic interactions, shown in Figure 5A. The binding of

the IL2RA/Phaseol complex was maintained mainly by hydrogen

bonding and hydrophobic interactions. The small molecule

Phaseol interacted with Y119, E116, R117, T14, and E9 on the

protein by hydrogen bonding and with Y119, F121, F15, E9, and

E116 by hydrophobic interactions. In addition, we also observed

pi-pi conjugation between Phaseol and F15, shown in Figure 5B.

In the MMP1/Glyasperin F complex, the small molecule

Glyasperin F interacted with A84 on the protein by hydrogen

bonding and with H83, V115, L81, Y140, and H118 by

hydrophobic interactions, shown in Figure 5C. The binding of

STAT3/Glycyrol indicated that the small molecule Glycyrol

hydrogen bonds with S611, E612, and S613 on the protein,

hydrophobic interaction with P629 and S613, and also cation

pi conjugation with R609, shown in Figure 5D. The molecular

docking results score are shown in Figure 6.

Molecular dynamics results

The root mean square deviation of the molecular dynamics

simulations can reflect the motility of the complexes, and the

larger RMSD and the more intense fluctuations indicate intense

motility. The simulation results suggested that the RMSD

fluctuations of MMP1/Glyasperin F and STAT3/Glycyrol were

FIGURE 2
Protein-protein interaction (PPI) network. (A) PPI network of protein targets, (B) PPI network of key protein targets (confidence>0.95).
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within 4 Å, which implied that the system was less kinetic.

Therefore, combining the magnitude of RMSD and stability,

we can determine the stability of these complexes from strong to

weak in the order of STAT3/Glycyrol, MMP1/Glyasperin F,

CXCL8/Phaseol, and IL2RA/Phaseol. The results are shown in

Figure 7.

FIGURE 3
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Analysis of related genes. (A) The top 10 terms in biological
processes (BP) were greatly enriched. (B) The subnetwork displayed the top 10 BP terms and related genes. (C) The top 10 terms in cellular
components (CC) were greatly enriched. (D) The subnetwork displayed the top 10 CC terms and related genes. (E) The top 10 terms in molecular
function (MF) were greatly enriched. (F) The subnetwork displayed the top 10 MF terms and related genes. (G) The top 15 KEGG pathways were
showed. (H) The subnetworks displayed the top 15 KEGG pathways.
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Combined free energy calculation results

Based on the trajectory of molecular dynamics simulations, the

binding energy was calculated in this study using the MM-GBSA

method. The binding energy can more accurately reflect the binding

mode of small molecules and target proteins. The experimental results

showed that CXCL8/Phaseol, IL2RA/Phaseol, MMP1/Glyasperin F,

STAT3/Glycyrol were −39.51 ± 2.06 kcal/mol, −20.12 ± 3.38 kcal/

mol, −43.70 ± 1.80 kcal/mol, −11.85 ± 1.06 kcal/mol. Negative values

indicate that these two molecules have binding affinity to the target

protein, and lower values indicate stronger binding. The simulation

results suggested that these molecules and the corresponding binding

affinities are very strong. TheMMP1/Glyasperin F binding energywas

the highest, with a value of 43.70 ± 1.80 kcal/mol. The binding

energies of these complexes were mainly contributed by van der

Waals energy as well as electrostatic energy. The experimental results

are shown in Table 2.

Hydrogen bond analysis

Hydrogen bonding is one of the strongest non-covalent binding

interactions, and a higher number indicates better binding. The

experimental results suggested that the number of hydrogen bonds

of the four complexes was basically 1-2 in the middle and late stages

of the simulation. Among them, the hydrogen bonding diagram of

MMP1/Glyasperin F complex showed more sparse in the late stage

of simulation, implying that hydrogen bonding was not the main

force for it to maintain stability. Combining the results of MGBSA

and the binding pattern, we suggested that hydrophobic interaction

FIGURE 4
Disease-core gene target-drug network. Square nodes represent gene targets, triangular nodes represent signaling pathways (KEGG), and
octagonal nodes represent gene ontology (GO) of related genes.

Frontiers in Pharmacology frontiersin.org08

Cao et al. 10.3389/fphar.2022.1003310

88

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1003310


was the main force for MMP1/Glyasperin F to maintain stability.

The results are shown in Figure 8.

The stability of the target protein at the
residue level

RMSF can respond to the flexibility of the protein during

molecular dynamics simulation. Usually the protein flexibility

decreases after the drug binds to the protein, which in turn

achieves the effect of stabilizing the protein while exerting the

enzymatic activity. The simulation results showed that the RMSF

of proteins in MMP1/Glyasperin F, STAT3/Glycyrol were low.

Especially for MMP1 protein, the RMSF of most of the dashed

lines was below 2 Å, implying that the complex binding was more

stable. In contrast, the RMSFs of the proteins in IL2RA/Phaseol

and CXCL8/Phaseol were larger, suggesting that these two

proteins were more flexible. The results are shown in Figure 9.

FIGURE 5
Molecular docking of active ingredients and core targets. (A) CXCL8/Phaseol, (B) IL2RA/Phaseol, (C) MMP1/Glyasperin F, (D)STAT3/Glycyrol.

FIGURE 6
Screening docking results between ligands and receptors.
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Analysis of the radius of gyration

The radius of gyration can reflect the degree of compactness

of the complex, and the size of fluctuation can be very intuitive to

determine the compactness or system convergence. The

fluctuations of the radius of gyration were MMP1/Glyasperin

F, STAT3/Glycyrol, CXCL8/Phaseol, IL2RA/Phaseol from the

largest to the smallest, respectively. The results are shown in

Figure 10.

Analysis of solvent accessible surface area

The Solvent Accessible Surface Area (SASA) is calculated as

the interface surrounded by the solvent. The larger the area

indicates that the complex can interact with the aqueous solution.

In addition, the fluctuation of SASA reflects the exposure of the

protein surface and the change of the buried area. The

fluctuations of SASA suggested that MMP1/Glyasperin F,

STAT3/Glycyrol, CXCL8/Phaseol fluctuated less and the SASA

values were small. The results are shown in Figure 11.

Discussion

In this study, we investigated the pharmacological

mechanism of action of licorice for the treatment of COVID-

19 by molecular docking and molecular dynamics simulation. It

was found that the important active chemical components

Phaseol in licorice may reduce inflammatory cell activation

and inflammatory response by inhibiting the activation of

CXCL8 and IL2RA; Glycyrol may act mainly on STAT3 to

regulate cell proliferation and survival; And Glyasperin F may

regulate cell growth by inhibiting the activation of MMP1,

thereby reducing tissue damage and cell death caused by

excessive inflammatory responses and promoting the growth

of new tissues. Therefore, the active small molecules Phaseol,

Glycyrol and Glyasperin F in licorice may act on CXCL8, IL2RA,

STAT3, and MMP1 to treat COVID-19 by reducing tissue

damage and inflammatory response.

Analysis of bioinformatics results

In this study, Phaseol, Glycyrol and Glyasperin F in licorice

may treat COVID-19 to reduce the inflammatory response and

promote cell survival by acting on CXCL8, IL2RA, STAT3,

and MMP1.

Phaseol may reduce inflammatory cell activation and

inflammatory response by inhibiting the activation of

CXCL8 and IL2RA. PPI analysis suggested that CXCL8 and

IL2RA were closely associated with targets of inflammatory

response regulation. GO analysis results suggested that

CXCL8 was mainly involved in chemokine activity and

interleukin eight receptor binding. KEGG pathway analysis

identified IL2RA in pathways such as cellular senescence and

MIF-mediated glucocorticoid regulation. The analysis showed

that CXCL8 acted as a chemokine that attracts neutrophils,

basophils and T cells, but not monocytes. It was also involved

FIGURE 7
Complex root mean square deviation (RMSD) difference over
time.

TABLE 2 Binding free energies and energy components predicted by MM/GBSA (kcal/mol).

System name ΔEvdw ΔEelec ΔGGB ΔGSA ΔGbind

Phaseol-CXCL8 −40.63 ± 1.83 −14.59 ± 1.22 21.41 ± 1.27 −5.69 ± 0.10 −39.51 ± 2.06

Phaseol-IL2RA −28.99 ± 2.58 −10.08 ± 9.51 22.88 ± 6.68 −3.92 ± 0.27 −20.12 ± 3.38

Glyasperin F-MMP1 −39.19 ± 1.25 −12.17 ± 2.77 11.90 ± 2.37 −4.24 ± 0.08 −43.70 ± 1.80

Glycyrol-STAT3 −14.88 ± 1.19 −1.77 ± 2.41 6.56 ± 2.24 −1.75 ± 0.14 −11.85 ± 1.06

ΔEvdW: van der Waals energy.

ΔEelec: electrostatic energy.
ΔGGB: electrostatic contribution to solvation.

ΔGSA: non-polar contribution to solvation.

ΔGbind: binding free energy.
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in neutrophil activation. The results of GO analysis suggested

that IL2RA was mainly involved in drug binding and interleukin

two binding. KEGG pathway analysis revealed IL2RA in

pathways such as immune cell activation and tumor

microenvironment regulation. The results suggested that

IL2RA was involved in the regulation of immune tolerance by

controlling the activity of regulatory T cells (TREG), which could

regulate the inflammatory response by suppressing the activation

and expansion of self-reactive T cells.

Glycyrol may act mainly on STAT3 to regulate cell

proliferation and survival. PPI analysis suggested that

STAT3 was closely associated with targets that regulate cell

growth and apoptosis. GO analysis results suggested that

STAT3 was mainly involved in DNA-binding

transcription factor activity and sequence-specific DNA

binding. KEGG pathway analysis identified STAT3 in

pathways such as cellular senescence. The results of the

analysis suggested that IL2RA was involved in the

regulation of immune tolerance through the control of

regulatory T cell (TREG) activity. TREG can regulate

inflammatory responses by suppressing the activation and

expansion of self-reactive T cells. The analysis showed that

IL6 could participate in cell cycle regulation by regulating the

transcriptional activity of STAT3, and

STAT3 inhibited cellular autophagy by suppressing

EIF2AK2/PKR activity.

Glyasperin F may regulate cell growth by inhibiting

the activation of MMP1. PPI analysis suggested that

MMP1 was closely associated with targets that regulate

protein hydrolysis and processing. GO analysis results

suggested that MMP1 was mainly involved in calcium

binding and metallopeptidase activity. KEGG pathway

analysis identified MMP1 in interleukin six family

signaling and other pathways. The analysis showed that

MMP1 was mainly involved in extracellular matrix

breakdown in normal physiological processes (such as:

embryonic development, reproduction and tissue

remodeling) as well as in disease processes (such as:

arthritis and metastasis).

However, the results of bioinformatics analysis could only

predict the potential relationship between the drug and the key

target. Therefore, this study further validated the mechanism of

action of licorice for COVID-19 treatment using molecular

docking and molecular dynamics.

FIGURE 8
Changes in the number of hydrogen bonds between small molecule ligands and protein receptors in complex system simulations. (A)CXCL8/
Phaseol, (B) IL2RA/Phaseol, (C) MMP1/Glyasperin F, (D)STAT3/Glycyrol.
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Analysis of molecular docking and
molecular dynamics

Molecular docking simulations revealed strong affinity of

drug active ingredients (such as: Phaseol, Glycyrol, and

Glyasperin F) to protein targets (such as: CXCL8, IL2RA,

STAT3, and MMP1). Molecular dynamics results suggested

that the drug small molecules and protein complexes could

maintain a very stable binding state and thus exert

pharmacological effects in the treatment of COVID-19.

Phaseol was able to act stably on CXCL8 and IL2RA, and in

particular CXCL8/Phaseol showed strong stability. Molecular

docking showed that the binding energy of small molecule

Phaseol to CXCL8 and IL2RA reached −8.9 and −8.3,

respectively. Based on the trajectory of molecular dynamics

simulations, we used the MMGBSA method to calculate the

binding energy, which can more accurately reflect the binding

mode of small molecules to target proteins. The binding free

energy results showed −39.51 ± 2.06 kcal/mol and −20.12 ±

3.38 kcal/mol for CXCL8/Phaseol and IL2RA/Phaseol. In

molecular dynamics simulations, the RMSD of both CXCL8/

Phaseol and IL2RA/Phaseol gradually converged in the first 10 ns

of the simulation and maintained stable fluctuations in

subsequent simulations, implying increasing stability of the

complex after binding. CXCL8/Phaseol binding results showed

that the small molecule Phaseol interacted with E29 on the

protein by hydrogen bonding and with V25, V27, V58, and

I22 by hydrophobic interaction. The IL2RA/Phaseol binding

results showed that the small molecule of drug interacted with

Y119, E116, R117, T14, and E9 on the protein by hydrogen

bonding, and with Y119, F121, F15, E9, and E116 by

hydrophobic interaction, and the pi-pi conjugation occurred

between Phaseol and F15.

The binding of Glycyrol to STAT3 was relatively stable and

molecular docking showed that the binding energy of the small

molecule to NLRP3 was −7.8. The free energy of binding results

showed STAT3/Glycyrol to be −11.85 ± 1.06 kcal/mol. The

RMSD fluctuations of STAT3/Glycyrol were all within 2 Å,

implying a small movement of the STAT3/Glycyrol system.

The STAT3/Glycyrol binding results indicated that the small

molecule Glycyrol interacted with S611, E612, and S613 on the

protein by hydrogen bonding, with P629 and S613 by

hydrophobic interaction, and also with R609 by cation pi

conjugation.

Glyasperin F bound to MMP1 could form a very stable

complex. Molecular docking showed that the binding energy

FIGURE 9
Changes in the stability of protein targets at the residue level. (A)CXCL8/Phaseol, (B) IL2RA/Phaseol, (C)MMP1/Glyasperin F, (D)STAT3/Glycyrol.
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of small molecule Glyasperin F to MMP1 reached −9.8. The

binding free energy results showed that MMP1/Glyasperin F

was −43.70 ± 1.80 kcal/mol. The hydrogen bonding of MMP1/

Glyasperin F was sparse at the late stage of molecular dynamics

simulation, implying that hydrogen bonding was not the main

force for its stability maintenance. The results of MMP1/

Glyasperin F binding indicated that the small molecule

interacted with A84 on the protein by hydrogen bonding and

with H83, V115, L81, Y140, and H118 by hydrophobic

interaction.

This study not only analyzed the relevant bioinformatics

findings, but also used a supercomputer platform to simulate the

microscopic evolution of complex systems of small molecule

drugs and proteins through molecular dynamics. The computer

simulations visualized the binding states of CXCL8/Phaseol,

IL2RA/Phaseol, STAT3/Glycyrol and MMP1/Glyasperin F.

The results of molecular dynamics simulations showed that

the simulated binding of the four complexes could remain

relatively stable.

Therefore, the results of this study can further explain the

mechanism of action of active small molecules of licorice for the

treatment of COVID-19 and related signaling pathways.

Phaseol may reduce inflammatory cell
activation and inflammatory response
through CXCL8 and IL2RA

Phaseol is the active component derived from licorice.

Phaseol was found to be closely associated with the IL6-

STAT3 signaling pathway (Lu et al., 2020), and Phaseol could

alleviate the inflammatory effects in lipopolysaccharide (LPS)-

induced RAW264.7 cells (Li et al., 2017).

CXCL8 (also known as CXCL8) belongs to the elastin-like

recombinant (ELR) CXC chemokine family (Liu et al., 2016).

CXCL8 can be secreted by different cell types, including blood

monocytes, alveolar macrophages, fibroblasts, endothelial cells,

and epithelial cells (Ha et al., 2017). CXCL8 acts as a chemokine

by directing neutrophils to the site of infection. Moreover,

CXCL8 is also involved in pro-inflammatory signaling

cascades along with other cytokines and plays a role in

systemic inflammatory response syndrome (SIRS).

CXCL8 is a highly selective pro-inflammatory chemokine,

and local and systemic elevations of CXCL8 have been found in

various inflammatory diseases as well as in SIRS and sepsis (Haas

et al., 2016). CXCL8 is barely detectable in the physiological state,

but can be stimulated by pro-inflammatory cytokines such as

tumor necrosis factor a (TNFa) and interleukin-1b (IL-1b) and

mediated by the transcription factors NF-κB and activator

protein-1 (AP-1), which can lead to a 10 to 100 fold

upregulation of CXCL8 expression. The function of CXCL8 is

mainly dependent on its interaction with specific cell surface G

protein-coupled receptors (GPCR), CXCR1 and CXCR2 (Liu

et al., 2016; Ha et al., 2017). CXCL8 contributes to the pathology

of angiogenesis, fibrosis, infection, atherosclerosis, and tumor

growth. Clinical studies have shown that elevated plasma levels of

CXCL8 and other ELR-CXC chemokines can occur with acute

indications such as arthritis, chronic obstructive pulmonary

disease (COPD), asthma, cystic fibrosis, atherosclerosis,

inflammatory bowel disease (IBD), psoriasis, and cancer, as

well as acute indications such as reperfusion injury and acute

respiratory distress syndrome (ARDS) (Cheng et al., 2017).

Leukocyte recruitment is critical in many acute and chronic

inflammatory diseases. Chemokines are key mediators of

leukocyte recruitment during the inflammatory response, and

FIGURE 11
Analysis of Solvent Accessible Surface Area (SASA).FIGURE 10

Analysis of protein folding state and overall conformation.
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the chemokine interleukin-8/CXCL8 is a classic neutrophil

chemoattractant (Martínez-Burgo et al., 2019). CXCL8 inhibits

the chemotactic response of neutrophils and suppresses the

neutrophil-induced inflammatory response (Zhou et al., 2019).

And CXCL8 promotes the activation and recruitment of

macrophages and monocytes, which is a prerequisite for the

shift from acute to chronic inflammation (Mohr et al., 2017).

CXCL8 has been reported to recruit leukocytes from the blood

into tissues during inflammation, and in turn, inflammation

worsened by activated leukocytes can increase CXCL8 levels

(Zhou et al., 2019). And it has been shown that

monoammonium glycyrrhizinate (MAG) of licorice has anti-

inflammatory properties. Mag inhibited the mRNA expression of

TNF-α-induced chemokines (including CXCL8, CX3CL1, and

CXCL16) in human dermal microvascular endothelial cell line

(HMEC-1) cells in a dose-dependent manner and reduced the

secretion of these chemokines (Cao et al., 2014).

IL2RA (also known as CD25) is a core component of the

trimeric IL-2 receptor complex and plays a key role in mediating

interleukin two immunomodulatory functions (Borysewicz-

Sańczyk et al., 2020). IL2RA is a membrane protein that is

involved in the regulation of immune tolerance by controlling

the activity of regulatory T cells (TREG). Interleukin 2 (IL2) is a

lymphocyte growth factor that plays an important role in the

regulation of immune homeostasis as an essential self-tolerance

regulator. It was found that cellular responsiveness to IL-2

directly depends on cellular expression of IL2RA, that IL-2

signaling increases with increased IL2RA expression, and that

IL2RA directly affects binding stability in the IL-2/IL-2R complex

(Buhelt et al., 2019). Plasma IL2RA levels were also found to be

significantly elevated in COVID-19 patients (Galván-Peña et al.,

2021; Sayah et al., 2021).

IL2RA is the receptor subunit that increases the affinity of the

receptor for IL2 cytokines (Akman et al., 2021). Expression of

IL2RA has been described at high levels on the surface of

regulatory T cells (Tregs), a population of T cells with the

ability to suppress self-reactive T cells. Further studies have

shown that IL2RA plays a crucial role in sensitizing T cells to

induce cell death (Borysewicz-Sańczyk et al., 2020). Changes in

IL2RA expression may affect immune and inflammatory

signaling cascade responses, which in turn affect CD4+ T cell

differentiation and TReg cell suppressive activity (Asouri et al.,

2020). IL2 signaling is involved in the differentiation and

homeostasis of regulatory T cells (Tregs), and IL2 signaling is

involved in the induction of cell growth and effector T cell

proliferation (Zeebroeck et al., 2021). Pre-activation of IL-12,

IL-15, and IL-18 was shown to upregulate IL2RA (CD25)

expression (Akman et al., 2021). Further studies have shown

that IL2RA plays a crucial role in sensitizing T cells to induce cell

death.

Therefore, we suggested that Phaseol may reduce

inflammatory cell activation and inflammatory response by

acting on CXCL8 and IL2RA, thereby reducing tissue damage

from excessive inflammatory response and alleviating the clinical

symptoms of COVID-19.

Glycyrol may affect cell proliferation and
survival by regulating STAT3

Glycyrol exhibits a variety of biological effects, including

antioxidant and anti-inflammatory effects and modulation of

intrinsic immunity (Shin et al., 2011; Fu et al., 2014; Kim et al.,

2020). It has been shown that Glycyrol-induced cell death is

associated with apoptosis and autophagy, Glycyrol can bind to

TOPK proteins and inhibit their kinase activity, leading to the

activation of apoptotic signalling pathways (Xu and Kim, 2014;

Lu et al., 2019).

STAT3 is a component of the acute phase response factor

(APRF) complex activated by interleukin-6 (IL-6), and

STAT3 plays a key role in many cellular processes such as cell

growth and apoptosis by mediating the expression of multiple

cellular stimuli (Hillmer et al., 2016). STAT3 is involved in

regulating biological processes such as cell growth,

differentiation and survival, inflammation and hematopoiesis

(Gao et al., 2018; Liu et al., 2021; Zhao et al., 2021).

STAT3 is a latent transcription factor that mediates

extracellular signals, such as cytokines and growth factors, by

interacting with peptide receptors on the cell surface.

STAT3 protein is transcriptionally activated mainly through

tyrosine phosphorylation. Activated STAT3 dimers translocate

to the nucleus and bind to sequence-specific DNA elements,

thereby transcribing target genes (You et al., 2015). Recent

studies have shown that STAT3 protein is expressed in

CD4 T cells, T helper Th17 cells, Th1 and Th2 cells and that

STAT3α isoforms may interact with proteins such as Probanin

one to regulate pathological immune responses. The IL-6/JAK/

STAT3 pathway is a major signaling pathway involved in

regulating the inflammatory response in disease pathogenesis.

JAK/STAT3 signaling promotes inflammation by regulating the

development of innate lymphocytes in the immune response

(Kang et al., 2021). STAT3 plays a central role in JAK/STAT

signaling (You et al., 2015). IL-6 is the main stimulator of

STAT3 in vivo, especially during inflammatory outbreaks. IL-6

signaling acts primarily through the JAK/STAT pathway, mainly

through STAT3. Both of these factors can form IL-6 amplifiers

that produce a cascade of amplifying effects associated with

inflammation. This effect promotes various pro-inflammatory

cytokines and chemokines, including IL-6, and recruits

macrophages and lymphocytes, thereby enhancing the positive

feedback loop formed by IL-6 and STAT3 (Luo et al., 2022).

Licorice was found to reduce IL-6 levels, which is the main

stimulator of STAT3 in vivo, especially during inflammatory

outbreaks (Richard, 2021). Inhibition of STAT3 activity

improved the pulmonary inflammatory response in LPS-

induced acute lung injury (ALI) (Xu et al., 2020). And one
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study found a clinical therapeutic effect on lung inflammation by

inhibiting STAT3 pathway (Zhao et al., 2016).

Therefore, we suggested that Glycyrol may act on STAT3 to

regulate cell proliferation and survival, thereby reducing cell

death due to inflammatory stimuli and promoting the growth

of new tissue.

Glyasperin F may regulate cell growth by
affecting the activation of MMP1

Glyasperin F is an isoflavone compound, studies have found

that Glyasperin F can inhibit the proliferation of lung cancer cells

(Ngnintedo et al., 2016; Kuete et al., 2018).

MMP-1 is one of the most abundant enzymes in the family of

matrix metalloproteinases (MMPs), which are mesenchymal

collagenases secreted by a variety of cells including fibroblasts,

endothelial and inflammatory cells (Gopal et al., 2016; Erdem

et al., 2020). MMP-1 is capable of degrading type I, II, and III

collagen, which plays a key role in extracellular matrix (ECM)

remodeling in normal development and pathology (Affara et al.,

2011).

MMP1 can be activated by several pro-inflammatory

cytokines and growth factors and its expression is increased in

alveolar epithelial cells during pulmonary fibrosis, and it inhibits

mitochondrial respiration and oxidative stress, while promoting

cell proliferation and migration (Lee et al., 2013). Various

inflammatory factors (including CXCL8, IL-1β, and TNF-α)
have been reported to contribute to the expression of MMP1

(Chen et al., 2019). MMP1 plays a clinically important role in

inflammatory diseases and has been associated with many

pathological processes, including wound healing, tumor

metastasis and arthritis (Affara et al., 2011). Several reports

suggest that MMP1 is indeed upregulated in patients suffering

from diseases such as COPD and lung cancer (Carver et al.,

2015). MMP-1 has been widely reported to lyse the extracellular

matrix (ECM) and to promote angiogenesis. MMP1 was found to

induce expression of vascular endothelial growth factor receptor

2 (VEGFR2) and endothelial cell proliferation, stimulate the

serine/threonine protein kinase MARK2 and activate the

transcription factor NF-κB for vascular remodeling and

angiogenesis (Ng et al., 2022).

Many studies have found that licorice inhibited the high

expression of matrix metalloproteinase-1 (MMP-1) and -3

(MMP-3) and down-regulated the expression of inflammatory

cytokines such as IL-6, TNF-α, and IL-10. These findings

strongly suggest that licorice regulates the abnormal

expression of MMP-1 and MMP-3 mainly through its

antioxidant and anti-inflammatory properties as well as (Kong

et al., 2015; Gopal et al., 2016).

Therefore, we proposed that Glyasperin F may regulate cell

growth by affecting the activation of MMP1, thereby promoting

recovery of injured tissues.

The mechanisms analysis of licorice in the
treatment of corona virus disease 2019

The summary of the mechanisms analysis of licorice in the

treatment of COVID-19 is shown in Graphical Abstract.

Conclusion

This study explored the pharmacological mechanism of

licorice for the treatment of COVID-19 by molecular docking

and molecular dynamics simulations. We found that Phaseol in

licoricemay reduce inflammatory cell activation and inflammatory

response by inhibiting the activation of CXCL8 and IL2RA;

Glycyrol may regulate cell proliferation and survival by acting

on STAT3. And Glyasperin F may regulate cell growth by

inhibiting the activation of MMP1, thus reducing tissue damage

and cell death caused by excessive inflammatory response and

promoting the growth of new tissues.
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Most drug molecules modulate multiple target proteins, leading either to

therapeutic effects or unwanted side effects. Such target promiscuity partly

contributes to high attrition rates and leads to wasted costs and time in the

current drug discovery process, and makes the assessment of compound

selectivity an important factor in drug development and repurposing efforts.

Traditionally, selectivity of a compound is characterized in terms of its target

activity profile (wide or narrow), which can be quantified using various statistical

and information theoretic metrics. Even though the existing selectivity metrics

arewidely used for characterizing the overall selectivity of a compound, they fall

short in quantifying how selective the compound is against a particular target

protein (e.g., disease target of interest). We therefore extended the concept of

compound selectivity towards target-specific selectivity, defined as the

potency of a compound to bind to the particular protein in comparison to

the other potential targets. We decompose the target-specific selectivity into

two components: 1) the compound’s potency against the target of interest

(absolute potency), and 2) the compound’s potency against the other targets

(relative potency). The maximally selective compound-target pairs are then

identified as a solution of a bi-objective optimization problem that

simultaneously optimizes these two potency metrics. In computational

experiments carried out using large-scale kinase inhibitor dataset, which

represents a wide range of polypharmacological activities, we show how the

optimization-based selectivity scoring offers a systematic approach to finding

both potent and selective compounds against given kinase targets. Compared

to the existing selectivity metrics, we show how the target-specific selectivity

provides additional insights into the target selectivity and promiscuity of multi-

targeting kinase inhibitors. Even though the selectivity score is shown to be

relatively robust against both missing bioactivity values and the dataset size, we

further developed a permutation-based procedure to calculate empirical

p-values to assess the statistical significance of the observed selectivity of a

compound-target pair in the given bioactivity dataset. We present several case

studies that show how the target-specific selectivity can distinguish between
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highly selective and broadly-active kinase inhibitors, hence facilitating the

discovery or repurposing of multi-targeting drugs.

KEYWORDS

drug selectivity, drug repurposing, drug discovery and development, kinase inhibition
activity, polypharmacological effects

1 Introduction

Compound selectivity is a critical factor when developing

new drugs or repurposing existing drugs for new uses (Bosc et al.,

2017; Schipper et al., 2022). Binding affinity measurements of a

compound across various target proteins enable systematic

mapping of the target activity space and bioactivity spectrum

of the compound. If a compound has a narrow target profile and

activity spectrum, i.e., it binds effectively to a few specific targets,

then the compound is considered as more selective than a

compound with a wide activity spectrum and which binds to

multiple targets with similar affinities. The overall selectivity of a

compound can therefore be characterized in terms of how

narrow or wide its bioactivity spectrum is. Compounds that

potently bind to a single target protein are often easier to develop

and optimize for clinical use. However, most of the currently

used drugs have relatively broad polypharmacological profile,

that is, their phenotypic responses are due to interactions with

multiple protein targets at different degrees of binding affinity.

For instance, kinases are promising therapeutic targets for

various indications, including cancer, autoimmune diseases,

inflammatory diseases, and cardiovascular diseases, but due to

their structural similarity, it is rather challenging to develop

highly selective kinase inhibitors (Davis et al., 2011). However,

such polypharmacological effects of kinase inhibitors make them

also potential candidates for drug repurposing, provided the

compound has sufficient selectivity against the off-target

proteins driving the disease progression.

A number of statistical and information theoretic metrics

have been introduced to quantify compound selectivity. For

example, the standard selectivity score calculates the number

of targets bound by a compound above a given binding affinity

threshold (Karaman et al., 2008). The Gini selectivity metric

quantifies how widely the binding affinity measurements of a

compound are spread across the target space (Graczyk, 2007;

Ursu et al., 2020). More specifically, if there are only a few high

binding affinities in the bioactivity spectrum, while the rest of the

target activities remain weak, then the binding affinities are

unevenly distributed, thus resulting in a high Gini coefficient,

and the compound is considered selective. The selectivity entropy

also estimates how the binding affinities of a compound

distribute across the target space (Uitdehaag and Zaman,

2011). A high entropy indicates that the compound binds to

many targets at comparable affinities, and is hence considered

non-selective, while low entropy indicates a strong binding to

only a few targets, thus making the compound selective

(Uitdehaag et al., 2012). While the dissociation constant Kd is

often used as an estimate of the binding affinity, the Partition

index makes use of association constant Ka instead (Cheng et al.,

2010). Partition index quantifies the compound selectivity by

calculating the fraction of binding strength (as measured by Ka)

to a reference target in comparison to other targets. Recently, the

KInhibition Selectivity Score (KISS) was designed for percentage

inhibition target activity data, with user-defined on- and off-

targets as prior information (Bello and Gujral, 2018). In KISS

calculation, penalties are placed on off-target effects by empirical

penalty functions, so that lower penalty and higher on-target

effects indicate that the compound is selective.

The existing selectivity metrics estimate certain

characteristics of a compound’s bioactivity spectrum from

slightly different perspectives, hence leading to a variable

performance in different drug discovery applications (Bosc

et al., 2017; Miljković and Bajorath, 2018a; Miljković and

Bajorath, 2018b). However, none of the existing metrics are

designed for identifying selective compounds for a given

target protein of interest. This is because the current

selectivity metrics effectively estimate the narrowness of the

bioactivity spectrum across the potential targets and consider

a compound as highly selective if it binds to only a single target,

regardless of the target identity. This makes it difficult to use

these metrics for finding selective compounds against a specific

target. A target-specific selectivity analysis is needed in many

applications, e.g., when developing or repurposing drugs against

a specific disease target, while guaranteeing that the drug should

not have strong off-target activities toward other proteins which

may lead to unwanted side effects (Aittokallio, 2022). To fill this

gap, we introduce a target-specific compound selectivity scoring

approach to facilitate identification of selective compounds

against a given target protein (Figure 1). We demonstrate here

the performance and use of the novel selectivity score in the

context of kinase inhibitors, which are known to have a wide

degree of polypharmacological activities, but the general

approach is applicable also to other drug and target classes.

2 Results

2.1 Kinase target activity dataset for the
selectivity scoring

To develop and test the new selectivity score, we used a

published dataset of fully-measured compound-target
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FIGURE 1
Schematic illustration of the target-specific drug selectivity concept. A subset of the Davis et al. dataset (Davis et al., 2011), where 28 randomly
selected compounds and all 442 kinases were used for the illustration purposes. The gray horizontal panel shows the activity profile of the 28 kinase
inhibitors against MEK1, where the compounds are ordered based on their relative potencies against MEK1. The green and purple vertical panels
show the bioactivity spectrums of the compounds CEP-701 and AZD-6244, respectively, across the 442 kinase targets. Even though CEP-701
has the highest potency against MEK1 across all the compounds, it also has other high-potency targets, indicating that CEP-701 is not highly selective
against MEK1. While AZD-6244 is not the most potent compound against MEK1, it has its highest potency against MEK1, and therefore AZD-6244 is
considered as more selective against MEK1 than CEP-701.

FIGURE 2
Bioactivity data (pKd values) in the Davis dataset (Davis et al., 2011), containing 72 compounds and 442 kinases. (A) The bioactivity distributions,
where the larger one includes all bioactivity data, and the smaller one (inset) includes only those bioactivities with pKd > 5 (the pairs with Kd = 10 uM,
i.e., pKd = 5, indicate no activity in the primary screen). (B)Heatmap of the target activities. Higher pKd (lower Kd) values indicate stronger compound-
kinase activities.
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interactions between 72 kinase inhibitors and 442 kinases (Davis

et al., 2011). Figure 2 shows the distribution of the measured

compound-kinase interactions in terms of pKd. In this bioactivity

data matrix, a large number of compound-kinase pairs show no

activity, with pKd = 5, i.e., Kd = 10 uM, and only a few compound-

target pairs show strong potency, with pKd > 9 i.e., Kd < 1 nM. As

expected with kinase inhibitors that are known to have varied

degrees of target promiscuity, many compounds have relatively

strong activities against multiple kinases, and many kinases have

a number of potent inhibitors. This makes the Davis et al. dataset

an excellent test bench for developing and testing a new

selectivity method, since it encompasses compounds and kinases

with different polypharmacological activities andwide differences in

their activity spectra, including both highly promiscuous com-

pounds targeting multiple kinases at low concentrations, and highly

selective compounds with narrow target activity profiles.

2.2 Decomposition of target-specific
compound selectivity

Given a compound ci ∈ C and a target tj ∈ T, the bioactivity

spectrum of the compound ci can be defined as

Bci � {Kci, tj | tj ∈ T}, and the activity profile of the target tj can

be defined as Ptj � {Kci, tj | ci ∈ C}, where Kci, tj is the interaction

strength between ci and tj (here, dissociation constant Kd, but in

general it can be any binding affinity estimate).

The existing compound selectivity metrics try to characterize

the distributional properties of Bci, essentially measuring whether

a compound interacts with only a few or larger number of targets.

However, such a compound-specific approach is not sufficient

when a specific protein target is under investigation. When

assessing the target-specific compound selectivity, two aspects

of the pairwise interactions need to be considered (1): how the

interaction strength of a compound is distributed across its

targets, i.e., characterizing Bci; and (2) how the interaction

strength of a target is distributed across the compounds,

i.e., characterizing Ptj (see the horizontal and vertical panels

of Figure 1).

Given a set of compounds C and a set of targets T, that are

explored in a target activity profiling study, the task of finding the

most potent compounds and highest affinity targets among the

compound and target spaces can be formulated as an

optimization problem:

c*(ti) � argmax
ci

Ptj, s.t. tjϵT

t*(ci) � argmax
ti

Bcj, s.t. ciϵC

However, as was illustrated in Figure 1, the optimal solutions to

these two objectives do not agree in general, i.e., the most potent

compound c*(tj) (e.g., CEP-701 in Figure 1) for a target tj (e.g.,

MEK1) is not necessarily among the compounds (e.g., AZD-6244)

that each exert their highest affinity toward tj and are considered

selective in this respect. Likewise, the selective potency of a

compound (AZD-6244) for a target (MEK1) does not imply that

the most potent compound (CEP-701) for the same target shows

superior potency over the other targets. Therefore, the target-

specific selectivity needs to be formulated as a multi-objective

optimization problem that considers both Bciand Ptj.

Intuitively, for a target tj, one tries to find the compound ci
that simultaneously maximizes Kci, tjin Ptj and minimizes some

statistic describing Bci\{Kci, tj}, for example, the mean of the set

Bci\{Kci, tj}. In addition to the global mean, we also used a more

local statistic by taking the mean of the h-nearest neighbors of

Kci, tjin Bci, i.e., Bci, hNN(tj), where hNN(tj) denotes the h-nearest
neighbors of Kci, tj in Bci in terms of target activity.

We formulated the above two statistics relative to Kci, tj as

below:

Global relative potency Gci,tj � Kci,tj −mean(Bci\{Kci, tj}) (1)
Local relative potency Lci,tj � Kci,tj −mean(Bci, hNN(tj)) (2)

Additionally, Kci, tj is termed as absolute potency. Based on

these definitions, the target-specific selectivity can be obtained as

a solution of the bi-objective optimization problem, in which one

maximizes simultaneously both the absolute potency and the

relative potency, which can be easily solved using the ε-constraint
method (Haimes, 1971; Miettinen, 1999) (see Materials and

methods for details). Here, we used the neighborhood size of

h = 5 in the local relative potency, unless otherwise specified.

In the Davis dataset, 1,208 selective compound-kinase pairs

were identified among the 31,824 total pairs between 72 compounds

and 442 kinases when using the local relative potency (Figure 3A);

while using the global relative potency, 660 selective pairs were

identified (Figure 3B). Even if the use of the local relative potency in

the optimization problem led to 1.8-fold more selective compound-

target pairs, compared to using the global relative potency, there is

still a relatively large overlap between the identified selective

compound-target pairs (Figure 3C). Since the local and global

relative potencies capture different aspects of Bci, they lead to

different optimal solutions. However, selective compound-target

pairs identified using both statistics can be considered together,

based on the needs of the user.

2.3 The integrated target-specific
compound selectivity score

When applying the bi-objective optimization to identify

selective compound-target pairs, an integrated selectivity score

can be calculated by combining both the local and global relative

potencies to quantify the selectivity of a compound for a given

target. Such integrated selectivity score Sci, tj for the compound-

target pair (ci, tj) is formally defined as:
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Sci,tj � α · Lci,tj + (1 − α) · Gci,tj (3)

where the parameter α adjusts for the contributions of the local

and global relative potency to the selectivity score.

The global relative potency Gci, tj focuses on comparing the

compound’s interaction strength against a specific target, relative

to the average affinity to the other targets, and it therefore reflects the

general interaction strength over Bci\{Kci, tj}. Large Gci, tj indicates

that the Kci, tj is generally high compared to the mean(Bci\{Kci, tj}),
but we note that (ci, tj) is not necessarily the only pair with strong

interaction. For example, its nearest neighbor in terms of target

potency, Kci, ta, may be as high as Kci, tj, meaning that compound

ci has similar interaction strength against tj and ta. Therefore, the local

relative potency Lci, tj was introduced to better distinguish between

Kci, ta and Kci, tj, since it emphasizes the local potency, relative to the

average of neighbor targets, instead of all the other protein targets.

A weighted sum of the two relative potencies can be used to

quantify the integrated selectivity of a compound-target pair to

be optimized in Eq. 3. The weight of each relative potency term

can be freely adjusted by the user.Whenmore weight is placed on

the local relative potency, then the selectivity score will focus

more on distinguishing between the given target and its nearest

neighbors in terms of the interaction strength, hence identifying

compounds most potent against the given target in the context of

the target neighborhood. As a default option, the mean of local

and global relative potencies can be used (i.e., α = 0.5), if none of

the terms is considered more important than the other in the

particular drug discovery or repurposing application (Figure 4A).

Figure 4B shows the correlation between the integrated

selectivity scores and pKd values, colored for three example

compounds discussed below. In general, and as was expected, a

higher interaction strength (absolute potency measured by pKd)

corresponds to higher selectivity. However, by combining the local

and global relative potencies, one can discover compounds that are

selective, yet may have relatively weak interaction strengths. For

example,MLN-120B has a relatively weak absolute potency of pKd =

7.72 with IKK2, but it was identified as selective against IKK2 with a

relatively high selectivity score of 2.11. In the Davis dataset, MLN-

120B is the second most potent inhibitor of kinase IKK2, yet having

the highest local relative potency. This example shows that with the

FIGURE 3
Heatmaps of the identified selective and broadly-active compound-kinase pairs among 72 compounds and 442 kinases when using (A) local
relative potency and (B) global relative potency; (C) the overlap of the identified selective compound-kinase pairs identified using the local and global
relative potency.
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FIGURE 4
(A) Heatmap of the selectivity scores between 72 compounds and 442 kinases when using the weighting factor α = 0.5 in Eq. 3; (B) Correlation
between the selectivity scores and absolute potency pKd across the 31,824 compound-kinase pairs in the Davis dataset. Higher scores indicate
higher selectivity. Examples of compound-kinase pairs with relatively low interaction strengths and high selectivity scores are highlighted in the box,
and details shown in the inset table.

FIGURE 5
Comparisons of (A) local and global relative potencies and (B) distributions of selectivity scores for dasatinib and GSK-461364A across
442 kinase targets. GSK-461364Awas identified through bi-objective optimization as selective against PLK1 using both (C) local relative potency and
(D) global relative potency.

Frontiers in Pharmacology frontiersin.org06

Wang et al. 10.3389/fphar.2022.1003480

103

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1003480


adjustable weights, it is possible to reach a balance between

compound potency and selectivity, with the aim to find

maximally selective and potent compounds for a particular target

of interest.

2.4 The application of target-specific
selectivity score to kinase inhibition

To illustrate the use of the target-specific selectivity score,

Figure 5 shows the selectivity scores and relative potencies of two

compounds: dasatinib and GSK-461364A. GSK-461364A is known

to be highly selective against only a few kinase targets, PLK1,

SNARK, and LOK, with much higher selectivity scores than for

other kinases (Figure 5B). In contrast, dasatinib is a broad-spectrum

multi-kinase inhibitor, and therefore many of its targets have high

global relative potencies, but none of these targets have a high local

relative potency (Figure 5A). A high global relative potency indicates

that the compound shows overall selectivity to any target in general,

since it considers the mean of Bci\{Kci, tj}. Thus, when considering

dasatinib to be selective against a set of targets, more weight can be

placed on the global relative potency; when searching for selective

compounds against a few specific targets, more weight can be placed

on the local relative potency. In this way, the target-specific

compound selectivity score provides flexibility and becomes

applicable to different drug discovery needs.

As shown above, GSK-461364A was identified as a highly

selective PLK1 inhibitor since it has both high local and global

relative potencies against PLK1 (Figures 5C,D). The bi-objective

optimization also identified GSK-461364A as an optimally

selective compound against SNARK and LOK, due to its high

local relative potency (Supplementary Figure S1). For many kinase

targets, such as PLK1, multiple highly selective compounds can be

rather easily identified from the Davis dataset, but for some other

targets, such as SNARK, LOK, and other targets shown in

Supplementary Figure S1, compromises between the potency and

selectivity need to be made through the bi-objective optimization. A

Pareto front was generated to illustrate all the equally optimal

compounds for a given target. For example, multiple compounds

were identified as optimally selective for the kinase TNIK (see

Supplementary Figure S1). The most selective compounds for the

target can then be identified using the selectivity score (Eq. 3), along

with other available information, including physicochemical

properties of the compounds or their toxicity profile. In this way,

the pareto optimization provides the user with additional quantitative

information for the drug discovery process.

2.5 Evaluation of the stability of the target-
specific selectivity score

To evaluate the stability of the target-specific selectivity score,

we first studied the impact of missing bioactivity values by adding

20, 40, 60 and 80% of missing values to the full bioactivity data

matrix, while keeping all the compounds and targets in the

matrix. When considering all compound-target pairs, the

global relative potency was in general more robust to missing

data than the local relative potency (Figures 6A,B). For each

kinase target, the recall value was calculated using the identified

selective compounds from the full data matrix as true positives,

using both local and global relative potencies (Figures 6C,D). As

expected, the recall tends to decrease when increasing the missing

value rates in the bioactivity data matrix. When only 20% of non-

missing data are available, the recall values were distributed

mostly at zero, suggesting that the identified selective pairs are

not stable anymore. Based on the above results, the methodology

appears reasonably consistent in bioactivity data matrices that

have maximally 20% of bioactivity pairs missing.

Next, we studied the effects of various bioactivity data matrix

sizes on the stability of the identifications. Data matrices of

increasing sizes were subsampled from the full data matrix, with

20, 40, 60 and 80% of compounds and targets included, and the

selective compound-target pairs were identified based on each

subsampled matrix. For a compound-target pair, the number of

times it was identified as selective in the submatrices of different sizes

was considered as a measure of consistency. If a compound-target

pair was identified as selective in all the data matrices, regardless of

the bioactivity matrix size, it indicates that even with a very small

data size, for example 20% of the compounds and targets that

corresponds to 4% of the full data matrix, the method can still

identify the selective pairs, and the result is consistent with that when

using the larger bioactivity data matrices.

Supplementary Figure S2 shows the overall heat map counting

the occurrences of selective pairs consistently identified across

different sizes of submatrices. A count of 5 means a compound-

target pair was identified as selective in all submatrices of different

sizes, and a count of 1 means a compound-target pair was identified

only once as selective. Some compound-target pairs were only

present in the largest data matrix, i.e., the full data matrix, thus

they can only be identified once. Similar to Figure 6, the selectivity

score tends to be more stable when using global relative potency, as

the identified pairs are more consistent compared to that when

using the local relative potency (Supplementary Figure S2A). As

expected, gradually decreasing the data matrix size leads to

identification of certain targets with many selective compounds,

indicating increased instability. In general, when the data size is the

smallest, i.e., 4% of the full data matrix, the method starts to behave

inconsistently, suggesting that larger data matrices are required.

2.6 Statistical evaluation of the relative
potency using empirical p-values

Statistical properties of the relative potency were next studied

by randomly permuting the compound-target bioactivity matrix.

Local and global relative potencies were calculated based on the
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permuted matrices to form the background distribution for null

hypothesis. As expected, the background distributions were

concentrated at around zero, especially for the local relative

potency (Figures 7A,B). Next, the empirical p-values were

calculated for each compound-target pair based on the

background distributions (Figure 7C). The empirical p-values

for the global relative potency were almost uniformly

distributed, as would be expected for a proper statistic, but

for the local relative potency, the p-values tend to be either very

small or close to 1. The ill-distributed p-values of local relative

potency may be due to the local neighborhood size (h = 5) that

was used as default in its calculation. When comparing the

p-value distributions of compound-target pairs identified as

selective with those of non-selective pairs, it was observed that

p-values for selective pairs are more concentrated around zero,

i.e., indicating statistically significant target-specific selectivity

(Figures 7D,E).

We note that the local relative potency is closely related to the

global relative potency, since when the number of neighbors h is

increased to all the targets, the local relative potency becomes

equal to the global relative potency. Thus, we wanted to study the

effect of using increasing numbers of nearest neighbors when

calculating the local relative potency for the bi-objective

optimization. In general, different numbers of nearest

neighbors resulted in rather similar detections, which are

distinct compared to using the global relative potency

(Supplementary Figure S3A). When comparing the identified

selective compounds per target, using the local relative potency

based on different numbers of nearest neighbors, we calculated

recall values using selective compounds identified by the global

relative potency as true positives. The recall distributions showed

that the performance of the local relative potency is again

relatively consistent when the number of nearest neighbors

varies (Supplementary Figure S3B). Taken together, the

consistent behavior of the local relative potency calculation

indicates that the two versions of the relative potency capture

both unique and common properties of the compound-target

interactions.

FIGURE 6
The number of times a compound was identified as selective for a target in bioactivity matrices with missing values when using (A) local relative
potency and (B) global relative potency. Upper row: the heatmaps show the overall results in the matrix between 72 compounds and 442 kinases
when adding 20, 40, 60 and 80% ofmissing values to the full bioactivity datamatrix. In panel a, gray stripes correspond to kinases for which almost all
compounds are identified as selective, indicating instability; Bottom row: the boxplots of the recall of identification of selective drug-kinase
pairs from data matrices with missing values when using (C) local relative potency and (D) global relative potency, using the selective pairs identified
in the full data matrix as ground truth.
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2.7 Comparison of target-specific
selectivity with existing selectivity metrics

Since most of the existing compound selectivity metrics are

designed only from the perspective of compound selectivity, it is

not straightforward to make comparisons between those metrics

and our target-specific selectivity metric. Furthermore, the

metrics are also designed for different bioactivity readouts,

and may have different directions and scales to indicate

selectivity. To make a reasonable comparison, we z-scaled and

standardized all the metrics so that the smaller the metric, the

more selective the compound (see Materials and Methods). For

our target-specific selectivity score, we used a summarized,

target-agnostic selectivity score, calculated as the mean of

selectivity scores of a compound across all available targets.

We also used the number of identified selective targets for

each compound as a measure of the compound’s overall

selectivity, regardless of the target. Supplementary Figure S4

shows that such summarized measures coincide among the

selectivity metrics, since in effect, they all measure whether a

compound has a strong activity against multiple or only a few

targets. For example, the local and global relative potencies

correlated well with the standard score using pKd of 7 as the

activity cut-off (Supplementary Figure S4).

FIGURE 7
Distributions of (A) permuted and original local relative potencies; and (B) permuted and original global relative potencies; (C) the empirical
p-values calculated with permutation procedure for both local and global relative potency; empirical p-values of (D) local relative potency and (E)
global relative potency colored by whether the compound-kinase pair is identified as selective or not.
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Across the 72 kinase inhibitors in the Davis dataset, most

of the target-agnostic summary metrics identified selective

and broadly-active compounds rather consistently, expect for

the Gini coefficient that was not highly correlated with the

other metrics (Figure 8). This could be due to the different

data types required by Gini coefficient, which was designed for

percent inhibition values instead of Kd data. For example,

dasatinib and staurosporine are two well-known broadly-

active kinase inhibitors, and they were considered as non-

selective by most of the metrics. Similarly, more target-specific

compounds, such as GSK-461364A and PLX-4720, were

identified as highly selective compounds by most of the

summary metrics. As an exception, AZD-6244 was

considered non-selective in terms of Gini coefficient and

selectivity entropy, with relatively high scores compared to

other compounds in the dataset, whereas AZD-6244 was

considered relatively selective by our selectivity score and

the standard score. Upon inspecting the Davis dataset,

AZD-6244 has interaction strengths of pKd >5 with 13 out

of 442 kinases, which are mainly MEKs and EGFR mutants

(Supplementary Figure S5).

These results demonstrate a consistent performance of our

target-specific selectivity metric, when using it to measure the

overall target-agnostic compound selectivity.

2.8 Comparison of target-specific
selectivity with partition index

To make a more detailed, target-specific comparison, the

partition index scores were calculated such that each kinase

target was used separately as the reference target (see

Figure 9A which shows the negative logarithm of the

target-specific partition indices). The vertical stripes

indicate that the partition index considers many

compounds to be selective against all the targets, suggesting

that the partition index is not generally capable of finding

selective compound-target pairs. When comparing the

partition index with our target-specific selectivity score, it

was observed that the two metrics are generally well

correlated, as expected, but the new selectivity metric was

more distinctive in terms of identifying selective compound-

target pairs (Figure 9B). Especially, when the partition index is

small, between 0 and 1, the selectivity score can still

distinguish between the highly selective and broadly-active

kinase inhibitors better than the partition index.

Supplementary Table S1 shows several example compound-

target pairs that have low partition indices, yet higher and

more different target-specific selectivity scores (the black

bordered points in the bottom right corner of Figure 9B).

FIGURE 8
Comparison of various target-agnostic compound selectivity metrics. Local and global relative potencies are summarized along the targets of
each compound in the target-specific selectivity metric, and all the metrics are z-scaled and standardized so that the smaller metric values indicate
more selective compounds. The boldfaced compounds are discussed in the text.
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For example, the compound-target pairs (nilotinib, DDR1)

and (PTK-787, KIT) have selectivity scores of 2.30 (0.11%

quantile) and 1.97 (0.38%), respectively, while their partition

indices are 0.43 (0.057%) and 0.42 (0.053%), suggesting that

target-specific selectivity score provides slightly better

separation for the pairs, as further supported by the

significant p-values, using both local and global relative

potency (Supplementary Table S1). Such observations

suggest that the new selectivity score harnesses different

information than the partition index, thus providing

additional perspective to the target-specific discovery or

repurposing of selective compounds.

To further compare the two selectivity approaches, Figures

9C,D shows the distributions of the partition index for the

compound-target pairs identified as selective or non-selective

by the target-specific selectivity score. Regardless of whether

using the local or global relative potency, the partition indices

of the selective pairs tend to have lower values than those of non-

selective pairs, indicating that the two methods are generally

consistent with each other. However there exists also pairs

identified as selective by the target-specific score, yet having a

relatively large partition index values, or vice versa, shown as the

overlaps of two distributions in Figure 9C,D. For example, the

pair (BI-2536, PLK1) has a very low partition index of 0.13,

indicating relatively high selectivity. In the Davis dataset, GSK-

461364A is the most potent inhibitor of PKL1 (pKd = 10.03), with

BI-2536 being the second most potent (pKd = 9.72)

(Supplementary Figure S5). From the compound perspective,

both compounds have their highest potency against PLK1.

However, GSK-461364A has a pKd of 7.64 for its second most

potent target (SNARK), while BI-2536 has a pKd of 9.09 against

PLK2. Since BI-2536 has very similar potencies against its top-2

most potent targets, it is not considered as selective against

PLK1 when GSK-461364A is available in the library. These

examples further demonstrated that our method provides an

added value for finding target-specific selective compounds.

3 Discussion

Finding selective compounds is considered important for

kinase drug discovery since many of the current kinase inhibitors

FIGURE 9
Comparison of target-specific selectivity score and partition index. Upper row: (A) Heatmap of -log10 (partition index) for each kinase, where
smaller values indicate more selectivity; (B) correlation between partition index and selectivity score across the 31,824 compound-kinase pairs in the
Davis dataset; Bottom row: distributions of -log10 (partition index) colored by whether the compound-kinase pair was selective when using (C) local
relative potency and (D) global relative potency.
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are relatively promiscuous. This is the case also with many kinase

inhibitors marketed or under current development (Cohen et al.,

2021), and it remains a challenging task to findmore targeted and

selective inhibitors that can both improve efficacy and reduce the

unwanted off-target toxicity (Attwood et al., 2021). Our results

show that the new target-specific selectivity score provides an

added value for the discovery of multi-targeting, yet selective

compounds in the case when a target of interest is pre-defined.

The selectivity score derived from the relative potencies measures

the target-specific compound selectivity quantitatively and

provides flexibility for the user. The bi-objective optimization

was capable of identifying the maximally selective compound-

target pairs in the presence of a wide degree of

polypharmacological effects. The flexibility comes from the

user-adjustable weights for the local and global relative

potencies in the selectivity score, as well as from using both

the relative and absolute potency in the bi-objective optimization.

Such flexibility allows wide applications, based on different user

needs, for example, finding the most selective compound for a

single target or group of targets. Thus, the new metric is expected

to become beneficial in kinase inhibitor development, and more

broadly in lead compound identification in drug discovery and

for repurposing multi-targeting drugs.

The advantage of the target-specific selectivity score is that it

requires only the bioactivity measurements of the compound-target

pairs, without the need to provide other information of the

compounds, such as their on/off targets or chemical structures.

This makes our approach widely applicable to various types of

bioactivity measurements. In case the available bioactivity data

contains various studies of target activities using multi-dose

assays, such as a mix of Ki, Kd and IC50 readouts, then the

bioactivity readouts can be summarized and integrated using our

previously developed data transformations (Wang et al., 2020). Due

to its data-driven approach, the approach is not only limited to

kinase inhibitors, but once sufficient amounts of similar bioactivity

data become available for other target classes, such as G-protein-

coupled receptors (GPCRs), the same approach is directly applicable

to these data. Apart from calculating the target-specific selectivity

score, the approach also provides optimal solutions of the most

selective compound-target pairs based on the given bioactivity data.

Finally, the target-specific selectivity enables the user to find selective

compounds for the particular targets of interest. Such target-

specificity provides a unique perspective to analyzing compound

selectivity, and expands the application area of the current

compound selectivity metrics in multi-target drug discovery and

repurposing.

The limitation of any data-driven approach is the data

availability and quality. Since the target-specific selectivity

approach requires experimentally measured bioactivity data,

we recommend that at least 80% of the compound-target

pairs should have measured bioactivities to obtain a reliable

performance. Such a requirement limits the approach to only

compounds with sufficient amounts of target bioactivity

measurements available. However, the approach can be

further developed by incorporating other information of either

compounds or targets, for example, compound structural sim-

ilarity (Lo et al., 2019) to infer selectivity of novel compounds,

even without any measured bioactivities. Alternatively, machine

learning methods can be used to predict bioactivities for the

compound-target pairs that have not yet been explored exper-

imentally (Bora et al., 2016; Merget et al., 2017; Öztürk et al., 2018;

Thafar et al., 2019; Vamathevan et al., 2019; Bagherian et al., 2020;

Nguyen et al., 2020; Schneider et al., 2020; Cichońska et al., 2021;

Ye et al., 2021), after which the target-specific compound selec-

tivitymetric can be applied to the fully predicted compound target

interaction matrix to identify selective lead compounds against

any target of interest. In the general method development, we did

not distinguish between the on- and off-targets, or penalized

targets that may lead to adverse effects in clinical applications, but

such factors could be later incorporated into the general selectivity

scoring approach when applied to a particular disease or cellular

context, similar to the KInhibition Selectivity Score (Bello and

Gujral, 2018), but this will require careful distinction between the

therapeutic and toxicity-related targets.

4 Conclusion

We have developed a novel target-specific compound

selectivity metric by decomposing the selectivity into absolute

and relative potencies. Two statistics were used to describe the

relative potency, local and global relative potencies, which

characterized the target-specific compound selectivity from

different aspects and can be combined using a weighted sum

as the integrated selectivity score to facilitate the quantification

of compound selectivity. A bi-objective optimization problem

was used for maximizing both absolute and relative potencies to

identify the maximally target-specific selective compounds in a

given compound-target interaction dataset. The new selectivity

approach is expected to contribute to finding selective

compounds with improved target-specificity, as well as to

enable repurposing of existing multi-targeting drugs for new

disease indications that are driven by the specific disease protein.

5 Materials and methods

The workflow of the target-specific compound selectivity

scoring is illustrated in Supplementary Figure S6.

5.1 Compound-target interaction data for
method development

The compound target activity data used to develop and test

the target-specific compound selectivity were obtained from
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Davis et al. (Davis et al., 2011), hereby called the Davis dataset. In

the Davis dataset, dissociation constant Kd was measured for all

pairs between 72 compounds and 442 kinases. In our analyses,

pKd = -log10(Kd) is used, and the larger is the pKd the stronger the

binding affinity.

5.2 Decomposition of target-specific
compound selectivity

Similar to our previous work on identification of selective

drug combination treatment effects (Pulkkinen et al., 2021), two

aspects of compound binding properties were considered to

quantify target-specific selectivity (1): the compound’s potency

against the target of interest, termed the absolute potency; and (2)

the compound’s potencies against other targets, termed the

relative potency. To find a selective compound for a given

target protein, we consider that the compound needs to be

potent enough against the target, and simultaneously, it must

have a weak or no activity against the other potential targets.

The absolute potency can be basically any multi-dose

bioactivity measurement, such as Ki, Kd, IC50 or EC50, which

measures the binding affinity between the compound and target

of interest. The relative potency can be quantified in different

ways, for example, as the difference between the absolute potency

and the mean of a compound’s potencies against all the other

targets, except for the target of interest. Such relative potency uses

as reference the compound’s overall binding affinity with all

other targets, thus termed as global relative potency. A more

focused measure of relative potency is to consider only those

targets having the closest potencies to the target of interest, for

example, the difference between the absolute potency and the

mean of h nearest neighbors’ potencies with the target of interest.

Such calculation measures the compound’s average interaction

strength within the local neighborhood of the target of interest,

thus termed as local relative potency. If the mean value is higher

than the absolute potency, this indicates that the compound has

similar or stronger binding activity with several targets.

5.3 Bi-objective optimization to identify
target-specific selective compounds

Selectivity score provides a quantitative tool to understand and

quantify target-specific compound selectivity. However, in most

cases, it is difficult to find the optimally selective compound for a

specific protein target. Therefore, we used bi-objective optimization

to find the most selective compound-target pairs given a particular

compound-target interaction dataset. Two separate bi-objective

optimization problems were solved to identify target-specific

selective compounds (1): maximizing both absolute potency

Kci, tjand local relative potency Lci, tj (2); maximizing both

absolute potency Kci, tjand global relative potency Gci, tj.

Let us denote by Kci, tj the binding strength of a compound ci
from a set of compounds C � {ci} against a target protein tj from

a set of protein targets T � {tj}. The activity spectrum of a

compound ci can then be defined as Bci � {Kci, tj | tj ∈ T}.
For the optimization formulation, the two relative potencies

are formally defined as follows:

Local relative potency:

Lci,tj � Kci,tj −
1
n
∑n

h�1KhNN(ci ,tj)

where KhNN(ci, tj) denotes the absolute potency of hth nearest

neighbor of tj given ci.

Global relative potency:

Gci,tj � Kci,tj −
1

|T| − 1
∑|T|

l�1Kci,tl , (l ≠ j)

The bi-optimization problem is to maximize both the absolute

potency and the relative potency, which can be solved using the

ε-constraint method (Haimes, 1971; Miettinen, 1999) as follows:

⋃
ε∈R

{ argmax
c, t

Kc, t

∣∣∣∣∣∣∣∣∣
Lc, t < ε, c ∈ C, t ∈ T}

⋃
ε∈R

{ argmax
c, t

Kc, t

∣∣∣∣∣∣∣∣∣
Gc, t < ε, c ∈ C, t ∈ T}

Here, the relative potency can be calculated either by local or

global relative potency, Lc, t orGc, t, respectively. We used h = 5 as

default neighborhood size in the local relative potency.

5.4 Evaluation of target-specific selectivity

We carried out several analyses to evaluate the performance

and stability of the target-specific selectivity score.

5.4.1 The effect of matrix size and missing
bioactivity values

We first studied the effect of compound-kinase interaction

matrix sizes on the identification of selective compound-kinase

pairs. Increasingly sized submatrices were sampled using 20, 40,

60, 80 and 100% of the compounds and kinases in the full matrix,

respectively. In each submatrix, the same selectivity identification

method was applied to generate a binary matrix with 0 indicating

non-selective and 1 selective compound-kinase pairs. The matrices

were aligned by the identity of compounds and kinases and added

up accordingly. For example, all the five submatrices contain the first

20% of the compounds and kinases. Therefore, the sumof the binary

matrices, which ranges between 1 and 5, indicates how well the

method reproduces the same selectivity identification for the

compound-kinase pairs present in the particular part of the matrix.

Next, the effect of missing bioactivity values was studied. For

each kinase, 20, 40, 60, 80% compounds were randomly

subsampled from the set of all compounds, and these were
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assigned as missing, to form matrices with random artificial

missing values. Such matrices were generated with 20, 40, 60,

80% missing values independently (i.e., missing completely at

random). The same selectivity identification method was

applied to all the matrices. The identified selective compound-

kinase pairs from each subsampled matrix were compared to those

identified based on the original full data matrix, without missing

data, to study the effect of increasing the amount of missing data.

5.4.2 Permutation procedure to calculate
empirical p-values

The original compound-kinase bioactivity matrix was randomly

shuffled for 10,000 times, corresponding to a bioactivity matrix

between compounds and kinases where the labels of the compounds/

kinases were randomized, and the identificationmethod was applied

to each of those randomized matrices to form the background

distributions for the local and global relative potencies. Then, for

the observed local and global relative potencies calculated from the

original matrix, empirical p-values were calculated as the percentage

of values in the background distribution smaller or equal than the

observed local and global relative potencies, respectively.

5.4.3 Relationships between h, local and global
relative potency

To study the effect of the number of nearest neighbors h used in

the calculation of the local relative potency, an increasing number of

1, 5, 20, 100 nearest neighbors were used to calculate the local

relative potency. Then, for each kinase, the number of identified

selective compounds was compared among the local relative

potencies when using different numbers of nearest neighbors.

The local relative potency becomes equal to global relative

potency when setting the number of nearest neighbors equal to

all available neighbors, i.e., h = |T| - 1. Therefore, selectivity identified

using global relative potency was considered as the ground truth,

against which the selectivity identified using different local relative

potencies were compared, and the recall values were calculated:

Recall � TP

P
Here, TP is the number of true positives, i.e., the overlap

between the selective compound-target pairs identified both by

the local relative potency, using different numbers of nearest

neighbors, and by the global relative potency, considered as the

ground truth. P is the number of positive cases, i.e., the selective

compound target pairs identified by the global relative potency.

5.5 Comparison of compound selectivity
metrics

5.5.1 General compound selectivity metric
comparison

Since most of the existing compound selectivity metrics are not

target-specific, we used the number of selective targets identified for

each compound as a target-agnostic selectivity metric based on our

target-specific selectivity approach to make a fair comparison with

the other selectivity metrics. Different metrics may also have

different ranges as well as different directions. Thus, for

comparison, all the metrics were normalized to zero mean and

unit standard deviation using the z-scaling:

z � x − μ

σ

where x is the value of the original selectivity score, and μ and σ are

the mean and standard deviation of the original selectivity scores,

respectively. All the metrics were also normalized in direction, such

that the smaller the value of the metrics, the more selective is the

compound.

5.5.2 Target-specific compound selectivity
comparison

As described in the original work (Cheng et al., 2010), partition

index can be considered as a target-specific compound selectivity

metric when choosing specific reference target. Thus, we calculated

partition index for each compound-target pair separately as follows:

Partition index of (ci, tj) �
1

Kci ,tj

∑tj
1

Kci ,tj

This calculation was then compared with our target-specific

compound selectivity score calculated from the local and global

relative potency. In negative logarithm form, the smaller the

partition index, the more selective is the compound-target pair.

5.6 Software tools
Python programming language (version 3.7, https://www.

python.org) was used for all the analyses. Python libraries Pandas

(version 1.3.4) (McKinney and W, 2010; Reback et al., 2020) and

Numpy (version 1.21.2) (Harris et al., 2020) were used for data

processing and bi-objective optimization. Python libraries

Matplotlib (version 3.5.1) (Hunter, 2007), Seaborn (version 0.

11.0) (Waskom, 2021) and venn (0.1.3, https://pypi.org/project/

venn/) were used for making the figures.
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Drug repurposing has become an effective approach to drug discovery, as it

offers a new way to explore drugs. Based on the Science Citation Index

Expanded (SCI-E) and Social Sciences Citation Index (SSCI) databases of the

Web of Science core collection, this study presents a bibliometric analysis of

drug repurposing publications from 2010 to 2020. Data were cleaned, mined,

and visualized using Derwent Data Analyzer (DDA) software. An overview of the

history and development trend of the number of publications, major journals,

major countries, major institutions, author keywords, major contributors, and

major research fields is provided. There were 2,978 publications included in the

study. The findings show that the United States leads in this area of research,

followed by China, the United Kingdom, and India. The Chinese Academy of

Science published the most research studies, and NIH ranked first on the

h-index. The Icahn School of Medicine at Mt Sinai leads in the average

number of citations per study. Sci Rep, Drug Discov. Today, and Brief.

Bioinform. are the three most productive journals evaluated from three

separate perspectives, and pharmacology and pharmacy are unquestionably

the most commonly used subject categories. Cheng, FX; Mucke, HAM; and

Butte, AJ are the top 20 most prolific and influential authors. Keyword analysis

shows that in recent years, most research has focused on drug discovery/drug

development, COVID-19/SARS-CoV-2/coronavirus, molecular docking, virtual

screening, cancer, and other research areas. The hotspots have changed in

recent years, with COVID-19/SARS-CoV-2/coronavirus being themost popular

topic for current drug repurposing research.

KEYWORDS

drug repurposing, bibliometrics, drug development, COVID-19, virtual screening

1 Introduction

Sir James Black, a winner of the 1988 Nobel Prize, clearly recognized well before the 21st

century that drug repurposing strategies would occupy an important place in the future of new

drug discovery (Raju, 2000). In 2004, Ted T. Ashburn et al. (Ashburn and Thor, 2004)

summarized previous research and developed a general approach to drug development using
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drug repurposing, retrospectively looking for new indications for

approved drugs and molecules that are waiting for approval for new

pathways of action and targets. These molecules are usually safe in

clinical trials but do not show sufficient efficacy for the treatment of

the disease originally targeted (Southan et al., 2013). The definition

of the term “drug repurposing” has been endorsed by scholars

(Dudley et al., 2011) and used by them (Li et al., 2011; Cheng et al.,

2012). It should be pointed out that the synonyms of “drug

repurposing” often used by academics also include drug

repositioning (Rosa and Santos, 2020), drug rediscovery (Simsek

et al., 2018), drug redirecting (Jang et al., 2019), drug retasking

(Scherman and Fetro, 2020), and therapeutic switching (Kim et al.,

2019; Kurdi et al., 2019). After the research study by Ashburn et al.,

Allarakhia et al. expanded the starting materials for drug

repositioning to include products that were discontinued for

commercial reasons, expired patents, and candidates for

laboratory testing (Allarakhia, 2013). In the discovery process of

a completely new drug, the difficulty usually lies in its safety and

efficacy, which are the main potential causes of failure of most drugs

in the approval (Schuster et al., 2005) or clinical development stage

(Milne, 2017). Using existing knowledge about a drug or known

target (Mercorelli et al., 2018), the time, risk, and cost of developing a

drug using drug repositioning are reduced (Joshua, 2011), thereby

greatly increasing the efficiency and economics of drug

development, providing a better risk–reward trade-off, and

making it easier to win the favor of venture capital firms

(Ashburn and Thor, 2004).

Since the 1990s, the repositioning of sildenafil for male erectile

dysfunction (Goldstein et al., 1998) and pulmonary hypertension

(Badesch et al., 2007), the development of a new efficacy of

bupropion for smoking cessation (Hurt et al., 1997), new

applications of thalidomide for multiple myeloma (Singhal et al.,

1999; Barlogie, 2001), and chronic graft-versus-host disease

(Vogelsang et al., 1992) have generated intense interest from

pharmaceutical companies and academics (Kumar et al., 2019).

These classic success stories rely on three traditional approaches: 1)

molecular biology approaches (Pujol et al., 2010), 2) in vivo and ex

vivo experimental approaches (Kuter, 2007; Swinney and Anthony,

2011), and 3) expert knowledge-based approaches (Kumar et al.,

2019). Due to the unknown, complex, and information-fragmented

nature of drug candidates and potential new mechanisms of action

(Yella et al., 2018), this activity is dependent onmultiple factors, and

success is often fortuitous (Kumar et al., 2019). At the beginning of

the 21st century, cheminformatics (Feng et al., 2007; Joshua, 2011),

bioinformatics (Salazar et al., 2006; Feng et al., 2021), systems

biology (Lv et al., 2018; Turanli et al., 2021), genomics (Zhao

et al., 2016; Mirza et al., 2017), polypharmacology (Reddy and

Zhang, 2013; Anighohro et al., 2014), precision medicine (Delavan

et al., 2018; Tanoli et al., 2020), and other disciplines, combined with

artificial intelligence (Yang et al., 2019), have developed rapidly.

These rapidly growing disciplines have promoted the generation of

systematic (Talevi and Bellera, 2020) computermethods tomake the

drug repositioning process cheaper and shorter (Vanhaelen et al.,

2017; Luo et al., 2021). Computational drug repositioning is

classified as “disease-centric” or “target/gene-centric” or “drug-

centric” depending on the source of discovery (Li et al., 2016).

This process relies on public biochemical databases such as

DrugBank (Mihai et al., 2019; Mazzolari et al., 2020), ChEMBL

(Mendez et al., 2019), Cmap (Lin et al., 2020), PDB (Berman et al.,

2000), OMIM (Amberger et al., 2014), etc., to provide the

appropriate information. In fact, to make the computational drug

repurposing process, including the molecular docking and virtual

screening steps, more convenient, database tools specifically

developed for drug repurposing, such as EK-DRD (Zhao et al.,

2019), DREIMT (Troulé et al., 2021), DrugSig (Wu H. et al., 2017),

RepoDB (Malas et al., 2019), Promiscuous 2.0 (Gallo et al., 2021),

etc., have been reported in the last few years. In addition, it has been

found in the literature that only 10% of the research results have

been carried out in the “drug-centric” pathway, which holds great

prospects for future development (Parisi et al., 2020). With the help

of database tools, it is now possible to perform computational

screening of even a staggering number of hundreds of millions

of compounds (Fischer et al., 2020). Computer methods to carry out

this screening include machine learning (Napolitano et al., 2013),

network modeling (Francisco, 2013; Lotfi Shahreza et al., 2018), text

mining, and semantic reasoning (Christos et al., 2011; Yuan et al.,

2017; Ji et al., 2020), among others. The ultimate objective of

repositioning is to transfer one or two of the most relevant

results to clinical applications. Therefore, validation is quite

important (Li et al., 2016) and requires consideration of multiple

factors, such as price, toxicity levels, bioavailability, and differences

between validated and computational models (Li et al., 2016; Jarada

et al., 2020). Current validation methods include experimental

validation (Kang et al., 2014), electronic health records to aid

validation (Xu et al., 2015), cross-validation (Wu Z. et al., 2017;

Ozsoy et al., 2018), gold standard dataset evaluation (Luo et al.,

2021), literature citation validation (Chopra et al., 2016), and expert

consultation (Jarada et al., 2020).

Today, drug repositioning is increasingly prominent in the

development of drugs for a variety of neurological diseases

(Athauda and Foltynie, 2018; Kessing et al., 2019), cancer

(Gupta et al., 2013; Efferth, 2017), rare diseases (Sardana

et al., 2011; Southall et al., 2019), and infectious diseases

(Pietschmann, 2017; Muratov et al., 2021). An increasing

number of pharmaceutical companies are also establishing

relevant R&D programs (Kettle and Wilson, 2016) or funding

support (Tummino et al., 2021). To translate relevant research

results efficiently and smoothly, national departments within the

United Kingdom, the United States, and the Netherlands have

(Paul and Lewis-Hall, 2013; Vanhaelen et al., 2017) launched

initiatives or programs to build partnerships between

pharmaceutical companies and academia and to further

explore scientific and commercial opportunities (Yella et al.,

2018). It is certain that drug repositioning currently presents

several dilemmas, such as intellectual property challenges

(Breckenridge and Jacob, 2019), data platforms, and analytical
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techniques that need to be improved (Kumar et al., 2019), that

financial support remains important for technology development

and clinical trials (Verbaanderd et al., 2021), and that some

scientists deny the practical utility of the approach (Edwards,

2020).

There have been systematic analyses of terminology in the

drug repurposing literature (Langedijk et al., 2015), text mining

of drug–disease combinations (Baker et al., 2018), and the

progression of a particular drug (Li X. et al., 2020), but no

studies have yet provided a broad overview of publications on the

topic of drug repurposing research. When independent

researchers or collectives (including pharmaceutical

companies, academia, and government departments) seek

drug repurposing partnership partners and seek to obtain a

concise overview of comprehensive current research hotspots,

the lack of relevant intelligence analysis to aid decision-making

often makes the process convoluted and time-consuming (Frail

et al., 2015). The bibliometric approach can solve the

aforementioned problems relatively fairly, but at present,

scholars have only studied the bibliometrics of aspirin, a drug

repurposing (Li X. et al., 2020); there has not been a panoramic

study of drug repurposing, and therefore, this study is necessary.

Bibliometrics is a useful tool combining multiple parameters for

the quantitative analysis of scholarly publications and is currently

used to assess research hotspots and trends in a wide range of

disciplines and industries, such as management (Vogel and

Güttel, 2013; Feng et al., 2017), sociology (Rey-Martí et al.,

2016; Sharifi, 2021), economics (Zhang et al., 2019), medicine

(Tao et al., 2012; Powell et al., 2016), environmental engineering

(Colares et al., 2020; Mao et al., 2021), and agronomy (Canas-

Guerrero et al., 2013; Giraldo et al., 2019). Therefore, this study

uses bibliometric methods (Leung et al., 2017) to quantitatively

assess the following elements of drug repositioning publications:

1) major contributors: countries, research institutions, and

authors; 2) modes of collaboration: intercountry

collaborations; 3) the most productive journals; 4) the most

frequently used disciplinary knowledge; and 5) research

trends, judged by analyzing author keywords, Essential Science

Indicators (ESI) high citations, and hot research studies.

2 Methodology and data processing

2.1 Data collection

We use the Web of Science™ core database, an authoritative

academic information data service platform produced by

Clarivate (version © 2021 Clarivate.). Due to its rigorous

selection of journals, the Web of Science (WOS) Core

Collection Database is now internationally recognized as a

database for evaluating the scientific output or disciplinary

development of scholars and institutions. Among the

subdatabases, SCI-E mainly includes global journals in basic

science research, covering basic pharmacological and medical

research related to the theme of this study, “drug repositioning,”

while SSCI includes social science, covering ethical, nursing,

psychological, and other social science research related to this

study.

The data were obtained on 25 October 2021 through the

WOS Core Collection Database Citation Indexes SCI-E and

SSCI, using the formula “drug repurposing” OR “drug

repositioning” OR “drug rediscovery” OR “therapeutic

switching” OR “drug redirecting” OR “drug rediscovery” OR

“drug retasking” search query, searching in the “subject” field and

defining the document type as “Article” and “Review”. The

publication time parameters were initially limited to

publications related to “drug repositioning” published between

1990 and 2020. A total of 3,009 documents were obtained, of

which only 31 were published in two decades from 1990 to 2009.

Of these 31 documents, except for one document that is still

frequently used by scholars as a retrospective source for drug

repurposing definitions in these years (Ashburn and Thor, 2004),

the remaining 30 were cited by other authors during the period of

2010–2020 as shown in Figure 1. The overall level of interest in

these studies shows a fluctuating downward trend as opposed to

the rising citation fervor for drug repurposing, entering a stage of

decline even under the less-demanding evaluation criterion of a

5-year maturation window (Jacsó, 2009). As the literature ages,

its content becomes stale and obsolete in the perspective of

intelligence sources, and the value of the metrics for judging

current research trends is low. Therefore, we further narrowed

the study to 2,978 publications published from 2010 to 2020.

2.2 Data import and deduplication

The complete records of all retrieved documents are

downloaded and imported for processing into Derwent Data

Analyzer (DDA) version V10, a data cleaning, multiperspective

data mining, and visualization software from Clarivate that

improves data analysis efficiency and reduces labor costs.

After importing all records of WOS documents into DDA,

they are classified and measured according to a list of fields

such as keyword, country/region, institution, author, research

field, journal, etc. For each item in the list fieldset, DDA has a

built-in data cleaning tool for automatic data deduplication.

2.3 Data splitting or merging

After the machine has removed duplicates, the items in the

set of fields still need to be manually verified for splitting or

merging. It is to be noted that the regions of certain countries are

presented separately, while they are usually considered as a single

country internationally. Therefore, we need to perform merging,

such as combining Wales, Scotland, England, and Northern
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Ireland into the United Kingdom column and combining Hong

Kong and Macau regions into the China column.

To address the possible problem of different authors with the

same name, the following two main verification steps were

performed: 1) returning to the WOS database to search for

publications under that author’s name under the original

search formula conditions and 2) for authors whose

publications provide disputed information (this also includes

three cases: first, two or more authors with the same name but

not the same person; second, two or more authors with the same

abbreviated name, but the full names were found to be different

after a search; and third, similar signatures being different

variants of the same author’s name), in addition to searching

the ORCID-related information of the authors concerned for

judgment, we checked different institutional websites as well as

encyclopedias to look for changes in the study and work history

of authors with the same or similar names from 2010 to 2020 to

determine whether they were the same person. Based on the

verification, we then split or merged the results.

2.4 Data analysis and visualization

After data cleaning and matrix analysis by DDA, various

types of cluster plots and bubble plots can be obtained to

reveal the useful information behind the data. The

bibliometric fields of publication volumes, countries,

international collaborations, institutions, research areas,

journals, authors, highly cited research studies, and author

keywords were analyzed in this study. It should be noted that

because some studies were published online ahead of time and

the study publication date was a year or two behind, for

statistical purposes, the year of publication of such research

studies was included as the year of online publication. (e.g., a

study shown in the reference as published in 2022 may have

been published online in 2020).

3 Results

3.1 Number and type of publications

Of the 2,978 papers obtained using the search criteria

mentioned previously, the main ones were research studies

(2248; 75.49%) and reviews (730; 24.51%). Furthermore,

individual publications are not only classified by journals in

the single category of research studies or reviews but also belong

to other categories. These publications were also related to

proceeding studies (68; 2.28%), early access (24; 0.81%), book

chapters (7; 0.24%), data studies (2; 0.07%), and retracted

publications (2; 0.07%). The vast majority of research studies

and reviews were published in English (2967; 99.631%), with

the remainder in Japanese (3; 0.101%), Chinese (2; 0.067%),

Czech (1; 0.034%), French (1; 0.034%), German (1; 0.034%),

Hungarian (1; 0.034%), Korean (1; 0.034%), and Portuguese (1;

0.034%). Ninety were from SSCI, and the remaining 2888 were

from SCI-E. Further, 1,996 were from Open Access. An annual

analysis of published research studies is shown in Figure 2. The

number of publications for every year expanded from 17 in

2010 to 970 in 2020. Annual publications on the subject have

increased by more than 64 times. The number of annual

publications has been increasing at a relatively high rate

since 2015, while in 2020, there was a spike in the number

of publications and annual citations, probably due to the

FIGURE 1
Total number of citations per year from 2010 to 2020 for 30 publications published from 1990 to 2009.

Frontiers in Pharmacology frontiersin.org04

Sun et al. 10.3389/fphar.2022.974849

117

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.974849


COVID-19 pandemic, a global public health emergency that

prompted special attention from scientists. Among the four

countries with the highest number of publications (the

United States, China, the United Kingdom, and India), the

United States has maintained a high growth volume since 2010,

while China was the fastest in terms of average annual growth

FIGURE 2
Annual trends in the number of articles published and citations related to drug repositioning.

TABLE 1 Top 20 most productive countries/regions in the field of drug repositioning.

Rank Country TP TC h-index ACPP nCC SMCP (%) Region

1 The United States 918 27,355 74 29.8 59 48.15 Anglo-America

2 P.R. China 485 11,147 49 22.98 39 36.70 Asia

3 The United Kingdom 284 8,762 43 30.85 57 69.01 Europe

4 India 247 3,203 27 12.97 37 30.77 Asia

5 Italy 232 6,024 39 25.97 40 47.41 Europe

6 Germany 171 5,213 36 30.49 50 67.25 Europe

7 South Korea 161 2221 21 13.8 24 29.20 Asia

8 Japan 146 3,037 26 20.8 22 25.34 Asia

9 Brazil 125 1911 24 15.29 29 42.20 Latin America

10 France 116 3,627 26 31.27 35 56.03 Europe

11 Canada 111 4,641 28 41.81 46 62.16 Anglo-America

12 Spain 109 2305 27 21.15 38 58.72 Europe

13 Australia 73 1816 23 24.88 36 79.45 Oceania

14 The Netherlands 73 1,559 22 21.36 37 75.34 Europe

15 Switzerland 59 2126 23 36.03 32 67.80 Europe

16 Sweden 58 1,434 19 24.72 37 86.21 Europe

17 Taiwan Region 58 1,110 17 19.14 8 36.21 Asia

18 Argentina 51 749 17 14.69 16 43.14 Latin America

19 Belgium 48 1,062 18 22.13 26 81.25 Europe

20 Mexico 47 1,162 19 24.85 15 42.55 Latin America

Notes: TP, total papers; TC, total citations; ACPP, average citations per publication; nCC, number of cooperative countries; and SMCP, share of multinational cooperation publications.
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rate in the last three years. In 2020, the number of publications

in India surged and surpassed the production of the

United Kingdom.

3.2 Countries and number of publications

With respect to the 2978 publications related to drug

repositioning research, 89 countries contributed to the field of

drug repositioning research. The number of publications and

citations from the 20 most productive countries/regions is shown

in Table 1. There are nine countries/regions in Europe, five in the

Americas, five in Asia, and one in Oceania.

The four most productive countries/regions are, in order, the

United States, China, the United Kingdom, and India. The

United States is the absolute leader in this field, with

918 research studies on drug repositioning published since 2010,

which is already more than the next highest number of publications

in China and the United Kingdom combined. This is followed by

India (247), Italy (232), Germany (171), South Korea (161), and

Japan (146). Other productive countries include Brazil (125), France

(116), Canada (111), Spain (109), Australia (73), the Netherlands

(73), and Switzerland (59). In terms of publication impact, the

United States led the Total citations (TC) rankings with 27,355, twice

as many as that of China (11,147), which ranked second. We also

included the average citations per publication (ACPP) in the

comparison, which is calculated by dividing the TC by the TP

(total papers) value and is a relative number that may better reflect

the individual or collective level of attention than the individual TC

and TP values. Canada ranked first in ACPP at 41.81, closely

followed by the United Kingdom (30.85) and Germany (30.49).

In addition, the h-index was originally proposed as a simple

quantification that a researcher had at least h publications cited h

times, reflecting to a certain extent the research results of the

researcher as an individual (Hirsch, 2005). Later, the word

“researcher” in the definition began to be replaced by collective

words such as “academic group or institution (Van Raan, 2006),"

“journal (Braun et al., 2006)," and “country (Csajbók et al., 2007),"

becoming an indicator of the level of collective research to some

extent. Undoubtedly, the h-index of the United States ranks first in

this field with 74 times. Taking all parameters into account, we find

that publications in the United Kingdom, the United States, and

Canada perform better on average. While the number of

publications in China and India is significant, they have received

low levels of attention.

3.3 National/regional cooperation

It should be noted that DDA analysis software is nationally

identified based on the location of each researcher’s institution

address provided in the publication. If a publication is

coauthored by institutions from more than two countries, the

publication is defined as the result of an international

collaboration. Whether there is some affiliation between the

various institutions of the research group that produces the

multicountry collaboration is not taken into account. As shown

in Table 1, among the publications of the top 20 countries and

regions, the proportion of international collaborations is quite high

in European countries, especially in Sweden (86.21%) and Belgium

(81.25%). Asian and Latin American countries are generally

underrepresented. In addition, the United States, the most active

country in publishing and the country with the most

collaborations—with 59 countries or regions—still has over 50%

of the studies published overall.

Figure 3 depicts the academic collaboration network for the

top 20 countries and regions in terms of productivity. Using

DDA software, the network was mapped using a co-occurrence

matrix. The size of the circles is proportional to the extent of each

country’s contribution, the lines between the circles represent the

collaboration between countries/regions, and the thickness of the

connecting lines indicates the frequency of collaboration (Bao

et al., 2018). The results show that the United States cooperates

most frequently with China and the United Kingdom and has the

closest cooperation with them. In addition, Mexico, Belgium,

Argentina, Taiwan, Japan, and Korea have slightly sparser

cooperation networks among the 20 most productive

countries/regions, while the remaining countries have more

extensive cooperation networks among themselves.

3.4 Contributions of leading bodies

A total of 3,530 institutes were involved in drug repositioning

research. The top 20 productive institutes are shown in Table 2.

Eight of the top 20 institutions are from the United States, again

indicating the dominance of the United States in drug

repositioning research; three are from the United Kingdom;

two are from China; and Brazil, France, Mexico, Canada, the

Netherlands, Austria, and Sweden each have one. The Chinese

Academy of Science ranked first in terms of the number of

research studies, followed by Case Western Reserve University

and the NIH. The Icahn School of Medicine at Mt Sinai ranked

first in ACPP at 77.32. The NIH had the highest h-index value of

22. The Icahn School of Medicine at Mt Sinai was the best

performer in ACPP at 77.32, followed by the University of

California, San Francisco (67.82) and Johns Hopkins

University (65.68), both of which are US-based research

institutions. Compared with US research institutions, Chinese

research institutions are at the back of the pack in terms of ACPP,

and their impact needs to be improved.

The collaboration network between the 15 largest institutions

in 2010–2020 is shown in Figure 4. The collaboration network

provides a more visual view of the collaboration with different

institutions and thus helps in the search for more beneficial

collaborations. Next to the name of each institution is its total
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number of publications. At the intersections of these institutions,

yellow dots indicate collaborations with the other top 10 research

institutions. It should be noted that the number of yellow dots

can indicate the output of cooperation and the strength of

interagency cooperation. The nodal data with no crossover

points represent the number of publications produced by the

institute, either by its independent work or in collaboration with

research institutions outside the top 15 (Bao et al., 2019). From

Figure 4, we see that the University of Cambridge established the

largest collaborative network, followed by the large network

established by four institutions, the NIH, the Icahn School of

Medicine at Mt Sinai, Karolinska Institute, and King’s College

London. In terms of the number of copublications with

established institutions, the Chinese Academy of Science and

Shanghai Jiao Tong University copublished as many as six,

followed by the University of Cambridge and King’s College

London and the NIH and the Icahn School of Medicine at Mt

Sinai. Analyzing the aforementioned three pairs of institutional

combinations, King’s College London has two publications that

are the product of collaboration between the three research

institutions. The University of Sao Paulo and Aix-Marseille

University are relatively independent in this research area.

Combining the ranking of multiple parameters, we found that

the NIH and Icahn Sch Med Mt Sinai in the United States are the

most vocal institutions in terms of academic research result

perspective on the topic.

3.5 Contribution of leading research areas

An analysis of research areas gives a good indication of the scope

of application of the research topic, with an unrestrained number of

74 areas covered, with the top 20 areas of research in terms of

publication volume shown in Table 3. Briefly, “pharmacology and

pharmacy” took first place with 962 articles, followed by

“biochemistry and molecular biology”, and for ACPP, the top

three were science and technology-other topics (36.1)",

“mathematics (32.79)", and “cell biology (29.65)".

FIGURE 3
Cooperation between the top 20 most efficient countries/regions.
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TABLE 2 Top 20 most productive institutions in the field of drug repositioning for the period of 2010–2020.

Rank Institution TP TC ACPP h-Index PMCP (%) Country/region

1 Chinese Acad Sci 54 1,286 23.81 19 98.15 China/Asia

2 Case Western Reserve Univ 38 1799 47.34 20 86.84 The United States/Anglo-America

3 NIH 37 1777 48.03 22 72.97 The United States/Anglo-America

4 Stanford Univ 35 1,401 40.03 16 80.00 The United States/Anglo-America

5 Univ Sao Paulo 34 452 13.29 13 76.47 Brazil/Latin America

6 Harvard Med Sch 33 1,078 32.67 18 84.85 The United States/Anglo-America

7 Univ Cambridge 32 788 24.63 14 90.63 The United Kingdom/Europe

8 Icahn Sch Med Mt Sinai 28 2165 77.32 15 75.00 The United States/Anglo-America

9 Kings Coll London 28 605 21.61 13 96.43 The United Kingdom/Europe

10 Aix Marseille Univ 27 1,183 43.81 15 92.59 France/Europe

11 Univ Nacl Autonoma Mexico 27 943 34.93 17 88.89 Mexico/Latin America

12 Shanghai Jiao Tong Univ 25 524 20.96 13 76.00 China/Asia

13 Univ Toronto 24 457 19.04 11 95.83 Canada/Anglo-America

14 Karolinska Inst 23 708 30.78 10 100.00 Sweden/Europe

15 Leiden Univ 23 327 14.22 11 78.26 The Netherlands/Europe

16 UCL 23 584 25.39 14 95.65 The United Kingdom/Europe

17 HM Pharma Consultancy 22 23 1.05 2 4.55 Austria/Europe

18 Johns Hopkins Univ 22 1,445 65.68 16 95.45 The United States/Anglo-America

19 NCI 22 602 27.36 14 100.00 The United States/Anglo-America

20 Univ Calif San Francisco 22 1,492 67.82 13 86.36 The United States/Anglo-America

Notes: TP, total papers; TC, total citations; ACPP, average citations per publication; and PMCP, Proportion of multi-institutional collaborative publications.

FIGURE 4
Collaboration matrix mapped between the first 15 productive bodies.
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Figure 5 shows a bubble graph of the top 20 drug

repositioning research areas. The bubble plot shows three

dimensions of the data, namely, research area, year of

publication, and the number of publications. The horizontal

change in bubble size illustrates the growing trend of research

areas over time, the vertical size of the bubble shows the most

popular research areas in that year, and the number in the bubble

indicates the frequency of the topic in the research area and the

number of publications in that year (Chen et al., 2016). The

number of research results in each relevant field is increasing year

by year. Biophysics increased from five in 2019 to 77 in 2020, a

more than 15-fold increase, suggesting that drug repositioning

may have made a breakthrough or become widely used in this

field. The field of virology was in a downturn from 2010 to 2014,

with only one publication, with a gradual increase in relevant

studies after 2015.

3.6 Contribution of major journals

For scholars studying drug repositioning-related topics,

knowing which journals publish relevant research is important

in deciding which journals to read or submit their research studies

to. A total of 2,988 publications related to drug repositioning

research were published in 845 journals during the period of

2010–2020. The top 25 journals in terms of a total number of

studies published are shown in Table 4 Sci Rep topped the list with

75 studies published, followed by PLoS One (73; 2.52%), J. Biomol.

Struct. Dyn (67; 2.45%), Bioinformatics (53; 2.25%), and BMC

bioinformatics (50 articles; 1.78%). The rest of the journals had a

share of less than 1.5%. In terms of total citations (TC), at present,

studies in Drug Discov. have been cited a total of 2,119 times over

the past 10 years, followed in rank by PLoS One (1800) and

Bioinformatics (1,677). For ACPP, Drug Discov. Today still

holds first place with a high frequency of 50.45 times, followed

by PLoS Comput (33.14 times). The impact factor (IF) of a journal

is calculated by dividing the total number of citations of all

publications in the journal in the previous two years by the

number of publications (Garfield, 2006). Thus, Table 4 shows

that the ACPP of drug repurposing publications included in most

journals is much higher than that of IF, which roughly verifies that

the number of scholars interested in drug repurposing is relatively

high. In terms of the impact factor (IF) of specific journals, except

for Oncotarget and BMC Syst. Biol., which have not been included

in SCI since 2018 and 2020, Brief. Bioinform. has the highest value

of 11.622, followed by Drug Discov. Today (7.851), Bioinformatics

(6.937), Cancers (6.639), Eur. J. Med. Chem (6.514), and Expert.

Opin. Drug Discov. (6.098). The bubble chart shows that J. Biomol.

Struct. Dyn. featured 64 publications in 2020, compared to a

combined total of only four publications in the previous ten

years; the Oncotarget journal inclusion in this category peaked

in 2016–2017 (Figure 6).

TABLE 3 Contribution of the top 20 research areas in the field of drug repositioning.

Rank Research Area TP TC ACPP h-Index SP%

1 Pharmacology & Pharmacy 962 25,243 26.24 67 32.3

2 Biochemistry & Molecular Biology 721 18,768 26.03 59 24.21

3 Oncology 302 7,104 23.52 40 10.14

4 Chemistry 274 5,539 20.22 33 9.2

5 Mathematical & Computational Biology 242 6,671 27.57 40 8.13

6 Science & Technology-Other Topics 234 8,448 36.1 42 7.86

7 Computer science 215 5,392 25.08 38 7.22

8 Biotechnology & Applied Microbiology 189 5,384 28.49 36 6.35

9 Cell biology 185 5,486 29.65 34 6.21

10 Research & Experimental Medicine 157 4,322 27.53 31 5.27

11 Microbiology 151 3,714 24.6 32 5.07

12 Neurosciences & Neurology 136 2513 18.48 26 4.57

13 Biophysics 114 2071 18.17 25 3.83

14 Genetics & Heredity 94 1878 19.98 23 3.16

15 Infectious diseases 93 2603 27.99 28 3.12

16 Immunology 68 1744 25.65 22 2.28

17 Mathematics 66 2164 32.79 27 2.22

18 General & Internal Medicine 64 1,299 20.3 21 2.15

19 Parasitology 56 1,079 19.27 18 1.88

20 Virology 56 1,079 19.27 18 1.88

Notes: TP, total papers; TC, total citations; ACPP, average citations per publication; and SP%, share of publications.
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3.7 Contribution of the lead author

For scholars interested in the topic of drug repositioning, it is

useful to know how other researchers are working on the issue to

facilitate communication and collaboration between scholars. A

total of 15,620 authors contributed to studies within our

measurement consideration, and Table 5 shows the top

20 prolific authors by a number of publications. Of these

20 highly productive authors, seven were from the

United States, three were from Argentina, and two were from

Germany, indicating a relatively high concentration of drug

repositioning research in certain countries. In addition, the

NIH (United States), Case Western Reserve University

(United States), Tech University Dresden (Germany), and the

National University of La Plata (Argentina) each have two of

these academics.

Cheng, FX leads the list with 25 research studies, followed by

Talevi, A (23) and Mucke, HAM (22). For the list of

corresponding authors, the top three remain, in order, Mucke,

HAM (22), Cheng, FX (17), and Talevi, A (17). In terms of ACPP

ranking, Butte, AJ was ranked first with 154.33 points, followed

by Cheng, FX (100.56), Tang, Y (95), and Dudley, JT (82). Cheng,

FIGURE 5
Bubble chart of the top 20 drug repositioning research areas by year.
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FX still has the highest h-index at 21, followed by Zheng, W

(17), Talevi, A (12), Xu, R (11), and Schroeder, M (11). The

h-index has two drawbacks when researchers of the same topic

are compared with each other (Bornmann and Daniel, 2007).

One is that the scholar’s h-index does not decrease over time

but only grows or stays the same, and it is not possible to

obtain information on whether the scholar is still in an

academic career. In this study, we narrow the study to the

most recent publications from 2010 to 2020, taking into

account the timeliness of the h-index response information.

Second, older scholars usually enter academia earlier and have

an advantage in their h-indexes in comparison with those of

younger scholars. Therefore, this phenomenon must be

targeted for analysis or illustration. Thus, by combining the

authors’ educational experiences and employment

relationship changes that were recorded in the WOS

database and ORCID business cards, we inferred that more

than half of the scholars in the top 20 in terms of the number

of publications received their Ph.D. before 2008, and two

scholars, Mucke, HAM and Zheng, Wei, are older. In

contrast, Cheng, FX, a scholar from Case Western Reserve

Univ, completed his Ph.D. without a gap in 2013 and may have

a longer academic career in the future; therefore, Cheng, FX’s

h-index in the field of drug repositioning is likely to grow

more in the future and Cheng, FX is likely to have more

academic influence.

3.8 Research hotspots and trends

To reveal the focus of drug repositioning research and

research trends, the author keywords and the highly cited and

hot research topics of the ESI for each of the 2978 publications

were analyzed, which were also derived from the core database

of the WOS database (SCI-E/SSCI) (Liao et al., 2019). Highly

cited studies were defined as studies in the top 1% of the

citations for all studies in the same ESI discipline within the

10-year range of inclusion of ESI inclusion (Chang et al.,

2020). A hot research topic of the ESI refers to a study

published in two years with a citation frequency within one

of the corresponding disciplines in the world in the last

two months (Li L. et al., 2020).

TABLE 4 Top 25 journals publishing studies in drug repositioning studies.

Rank Journal Title TP TC ACPP IF (2020)

1 Sci Rep 75 1,081 14.41 4.38

2 PLoS One 73 1800 24.66 3.24

3 J. Biomol. Struct. Dyn 67 1,000 14.93 3.110

4 Bioinformatics 53 1,677 31.64 6.937

5 BMC Bioinformatics 50 658 13.16 3.169

6 Front. Pharmacol 43 1,073 24.95 5.811

7 Drug Discov. Today 42 2119 50.45 7.851

8 Molecules 40 329 8.23 4.412

9 ASSAY DRUG DEV. TECHNOL. 39 224 5.74 1.738

10 Int. J. Mol. Sci. 39 785 20.13 5.924

11 Oncotarget 38 861 22.66 —

12 Antimicrob. Agents Chemother 36 770 21.39 5.191

13 Brief. Bioinform 36 1,585 44.03 11.622

14 J. Chem Inf. Model. 35 1,134 32.4 4.956

15 Curr. Top. Med. Chem. 34 447 13.15 3.295

16 Curr. Med. Chem. 30 343 11.43 4.53

17 Cancers 27 185 6.85 6.639

18 Eur. J. Med. Chem. 26 418 16.08 6.514

19 Int. J. Antimicrob. Agents 22 729 33.14 5.283

20 Expert. Opin. Drug Discov. 21 366 17 6.098

21 Antiviral Res. 19 312 16.42 5.927

22 PLoS Comput. Biol. 19 889 46.79 4.475

23 Biochem. Biophys. Res. Commun. 17 218 12.82 3.575

24 BMC Syst. Biol. 17 407 23.94 —

25 Curr. Pharm. Design 17 312 18.35 3.116

Notes: TP, total papers; TC, total citations; ACPP, average citations per publication; and IF: impact factor.
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3.8.1 Author keyword analysis
Author keywords tend to provide more information and have

thus become a widespread focus (Chen et al., 2021; Zhen et al.,

2022). The data of 6,083 author keywords in the search results

were merged to make keywords with the same meaning

represented by a single unified word. In the end, 5,616 author

FIGURE 6
Bubble chart of the top 25 drugs repositioned by year in terms of journal production.
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keywords were obtained. It should be specified that some

publications without author keywords were excluded from the

statistical analysis. Of these author keywords, 4,296 were used

only once, representing 76.50% of the total. A total of 1,216

(21.65%) appeared 2–10 times, 79 (1.41%) appeared 10–20 times,

37 (0.66%) appeared 21–50 times, and the remaining eight

FIGURE 7
Bubble chart of the top 30 author keywords by year.
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(0.14%) were used between 51 and 1,500 times. All keywords

cumulatively appear a total of 12,400 times, while the top 30most

used author keywords appear 2,967 times alone, or

approximately 23.93%, as shown in Figure 7. The comparison

of keywords in recent years allows for tracking the frontiers of

research and predicting hotspots and trends in drug

repositioning research. The bubble plots show the three

dimensions of the data, namely, the year of publication, the

author’s keywords, and the number of corresponding

publications. The horizontal change in the size of the bubble

illustrates the increasing trend of author keywords over time, the

vertical size of the bubble shows the most popular keywords in

that year, and the numbers in the bubble indicate the frequency

of author keywords and the number of publications.

The top 30 keywords include five diseases: “COVID-19/

SARS-CoV-2/Coronavirus” (239), “Cancer” (75), “Alzheimer’s

disease” (48), “Breast cancer (36)", and “Chagas disease” (27).

Drug names appear four times, “Antiviral drugs” (56),

“Metformin” (35), “Statins” (28), and “Antibiotics” (25),

which reveal the diseases and applications to which drugs

were often repositioned during these 11 years. There were

four subject categories, “Bioinformatics” (43),

“Polypharmacology” (42), “Systems biology” (42), and

“Precision medicine” (28) and eight occurrences of research

methods, namely, “Virtual screening” (81), “Molecular

docking” (64), “Machine learning” (54, eighth), “Clinical

trials” (36), “High-throughput screening” (35), “Connectivity

map” (28), and “Molecular dynamics simulation” (26).

In the context of the pandemic in 2020, there was a surge in

research on the subject, with “COVID-19/SARS-CoV-2/

Coronavirus” topping the list of keywords as soon as they

appeared that year. “Virtual screening” is a research method

that appeared seven times more frequently in 2020 than in the

previous year. Since “Drug repurposing/repositioning” is a

subject matter and a strategy for drug discovery/drug

development, it would not make much sense to analyze these

two keywords. Molecular docking is one of the core steps of

virtual screening, and the COVID-19 pandemic generated many

opportunities for the practice of drug repositioning. Therefore,

high-quality studies of the keywords “COVID-19/SARS-CoV-2/

Coronavirus”, “Virtual screening”, and “Molecular docking”

were surveyed, as shown in the bubble chart, in the past

two years, reflecting the relevant research trend in recent

years. Wang, F et al. developed a new free reverse docking

server based on a consensus algorithm (combining several

docking algorithm strategies) to address the original

shortcomings of computational molecular docking in drug

repositioning, such as a low success rate, cumbersome

operational steps, and reliance on code writing (Wang et al.,

2019). M Lapillo et al. extensively evaluated the performance

assessment of docking-based target fishing methods and

developed a consensus docking-based target fishing tactic

TABLE 5 Contribution of the top 20 authors to drug repurposing studies.

Rank Author TP TC ACPP H-Index TPR Institution (Current),
Country/Region

1 Cheng, FX 25 2514 100.56 21 17 Case Western Reserve Univ, USA/Anglo-America

2 Talevi, A 23 446 19.39 12 17 Natl Univ La Plata UNLP, Argentina/Latin America

3 Mucke, HAM 22 23 1.05 2 22 HM Pharma Consultancy, Austria/Oceania

4 Zheng, W 19 1,189 62.58 17 12 NIH,USA/Anglo-America

5 Xu, R 16 330 20.63 11 15 Case Western Reserve Univ, USA/Anglo-America

6 Dudley, JT 15 1,218 81.2 10 7 Icahn Sch Med Mt Sinai, USA/Anglo-America

7 Schroeder, M 15 454 30.27 11 12 Tech Univ Dresden, Germany/Europe

8 Andre, N 12 471 39.25 9 5 Aix Marseille Univ, France/Europe

9 Wang, QuanQiu 12 237 19.75 9 0 ThinTek LLC,USA/Anglo-America

10 Arga, KY 11 175 15.91 8 6 Marmara Univ, Turkey/Asia

11 Haupt, V. Joachim 11 399 36.27 8 0 Tech Univ Dresden, Germany/Europe

12 Carrillo, C 10 192 19.2 8 1 Inst Ciencias and Tecnol Cesar Milstein, Argentina/Latin America

13 Duenas-Gonzalez, A 10 326 32.6 8 9 Univ Nacl Autonoma Mexico, Mexico/Latin America

14 Bellera, Carolina L 10 192 19.2 7 0 Natl Univ La Plata, Argentina/Latin America

15 Sun, Wei 10 508 50.8 8 0 NIH,USA/Anglo-America

16 Tang, Y 10 950 95 9 6 East China Univ Sci and Technol, Peoples R China/Asia

17 Tempone, AG 10 113 11.3 7 7 Adolfo Lutz Inst, Ctr Parasitol and Mycol, Brazil/Latin America

18 Aittokallio, T 9 431 47.89 8 6 Aalto Univ, Finland/Europe

19 Bae, JS 9 39 4.33 4 9 Kyungpook Natl Univ, South Korea/Asia

20 Butte, AJ 9 1,389 154.33 9 5 Univ Calif San Francisco, USA/Anglo-America

Notes: TP, total papers; TC, total citations; ACPP, average citations per publication; and TPR, total number of publications for which they are responsible.
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(Lapillo et al., 2019). In a virtual screening process, Gervasoni, S.

conducted a literature search for molecular binding sites for

SARS-CoV-2-associated protein targets while combining pocket

and docking searches to propose a new pocket mapping strategy

that identifies binding cavities with significantly better

performance than pocket detection alone (Gervasoni et al.,

2020). Xie, L et al. screened antitoxic drugs based on the

multitarget structure of the pathway center and stated that

this inhibition of multiple targets in one pathway would be

more effective than targeting a single protein, and the chance

of drug resistance was smaller, which could be applied to other

pathways (Xie and Xie, 2019). Li, Z et al. reported a virtual

screening method based on accelerated free energy perturbation

absolute binding free energy (FEP-ABFE) prediction and stated

that the virtual screening method based on the prediction of FEP-

ABFE will play a role in many other drug repositioning studies

(Li Z. et al., 2020). After a series of drug repurposing

computational screens and various validation activities by

several scientists, it was agreed that raltegravir (Beck et al.,

2020; Elfiky, 2020), clonidine (Jeon et al., 2020; Xu et al.,

2020), chloroquine and hydroxychloroquine (Fantini et al.,

2020) have therapeutic effects in the treatment of novel

coronavirus.

In addition, from the studies on the keyword “Machine

learning” over the 10-year period shown in the bubble chart,

it was found that the classical machine learning algorithms of

support vector machines (Kinnings et al., 2011; Pérez-Sánchez

et al., 2014; Zhao and So, 2018), regularized least squares (Hao

et al., 2016; Zhou et al., 2019), logistic regression (Qabaja et al.,

2014; Liu et al., 2015; Xu et al., 2017), and random forests (Cao

et al., 2014; Coelho et al., 2016) have been widely used in inferring

drug–target and drug–disease interactions.

3.8.2 Analysis of hot research topics
While the level of influence of a study is reflected by a

combination of many aspects, the number of citations remains

an important indicator (Wu Y. et al., 2020). Based on the

definition of highly cited and hot ESI papers in Section 3.8 of

this study, a total of 108 highly cited studies were obtained, of

which 11 were hot research topics. Hot research topics are shown

in Table 6. It should be noted that the first-ranked author is used

here as a representative, and the corresponding institution is

shown. This rule is followed in Section 3.8.3 of this study. All hot

research topics were published in 2020, and with the exception of

an article describing the damage caused by nonsteroidal anti-

inflammatory drugs (NSAIDs) to multiple organs and new

information on drug repurposing (Bindu et al., 2020), the

remaining studies focused on drug repositioning therapeutic

target studies in novel coronavirus pneumonia (Wu C. et al.,

2020; Gordon et al., 2020), screening drug studies (Elfiky, 2020;

Jeon et al., 2020; Rut et al., 2020; Singh et al., 2020; Wang, 2020),

reviews of clinical trials (Rosa and Santos, 2020; Tu et al., 2020),

TABLE 6 All ESI hot citation studies from 2011 to 2020.

No Author Title TC Journal Institution,Country/Region OPC

1 Gordon, DE
et al.

A SARS-CoV-2 protein interaction map reveals targets for
drug repurposing

952 Nature Univ Calif San Francisco, United States
et al.

France;
England

2 Wu, CR et al. Analysis of therapeutic targets for SARS-CoV-2 and
discovery of potential drugs by computational methods

817 Acta Pharm. Sin. B Huazhong Univ Sci and Technol,
Peoples R China et al.

None

3 Liu, C et al. Research and Development on Therapeutic Agents and
Vaccines for COVID-19 and Related Human Coronavirus
Diseases

543 ACS Central Sci CAS, United States None

4 Elfiky, AA Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and
Tenofovir against SARS-CoV-2 RNA dependent RNA
polymerase (RdRp): A molecular docking study

363 Life Sci Cairo Univ, Egypt None

5 Tu, YF et al. A Review of SARS-CoV-2 and the Ongoing Clinical Trials 324 Int. J. Mol. Sci Natl Yang Ming Univ, Taiwan None

6 Jeon, S et al. Identification of Antiviral Drug Candidates against SARS-
CoV-2 from FDA-Approved Drugs

211 Antimicrob. Agents
Chemother

Inst Pasteur Korea, South Korea None

7 Wang, JM Fast Identification of Possible Drug Treatment of
Coronavirus Disease-19 (COVID-19) Through
Computational Drug Repurposing Study

199 J. Chem. Inf. Model Univ Pittsburgh, United States None

8 Rosa, SGV
et al.

Clinical trials on drug repositioning for COVID-19
treatment

131 Rev. Panam. Salud
Publica

Univ Fed Fluminense, Brazil None

9 Singh, TU
et al.

Drug repurposing approach to fight COVID-19 86 Pharmacol. Rep ICAR Indian Vet Res Inst, India None

10 Rut, W et al. Activity profiling and crystal structures of inhibitor-bound
SARS-CoV-2 papain-like protease: A framework for anti-
COVID-19 drug design

69 Sci. Adv Wroclaw Univ Sci and Technol, Poland
et al.

The
United States

11 Bindu, S
et al.

Non-steroidal anti-inflammatory drugs (NSAIDs) and
organ damage: A current perspective

63 Biochem.
Pharmacol

Bose Inst, India et al. None

Notes: TC, total citations; and OPC, other partner countries.
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TABLE 7 Top 20 highly cited ESI publications from 2011 to 2020.

No Author (PY) Title TC TCPY Journal Institution,Country/
Region

OPC

1 Wishart, DS et al.
(2018)

DrugBank 5.0: a major update to the
DrugBank database for 2018

1820 606.7 Nucleic Acids Res Univ Alberta, Canada et al. None

2 Pushpakom, S et al.
(2019)

Drug repurposing: progress,
challenges and recommendations

885 442.5 Nat. Rev. Drug
Discov

Univ Liverpool, England et al. None

3 Maier, L et al. (2018) Extensive impact of non-antibiotic
drugs on human gut bacteria

639 213.0 Nature European Mol Biol Lab, Germany
et al.

Japan

4 Zhou, YD et al.
(2020); Cheng, FX
et al. (2020)

Network-based drug repurposing for
novel coronavirus 2019-nCoV/SARS-
CoV-2

609 609.0 Cell Discov Cleveland Clin, United States
et al.

None

5 Anighohro, A et al.
(2014)

Polypharmacology: Challenges and
Opportunities in Drug Discovery

492 70.3 J. Med. Chem Univ Modena and Reggio Emilia,
Italy et al.

Germany

6 Cheng, FX et al.
(2012)

Prediction of Drug-Target Interactions
and Drug Repositioning via Network-
Based Inference

491 54.6 PLoS Comput.
Biol

E China Univ Sci and Technol,
Peoples R China

None

7 Langhans, SA (2018) Three-Dimensional in Vitro Cell
Culture Models in Drug Discovery and
Drug Repositioning

395 131.7 Front.
Pharmacol

Alfred I DuPont Hosp Children,
United States

None

8 Xu, M et al. (2016) Identification of small-molecule
inhibitors of Zika virus infection and
induced neural cell death via a drug
repurposing screen

389 77.8 Nat. Med NIH, United States et al. China

9 Sirota, M et al. (2011);
Dudley, JT et al.
(2011)

Discovery and Preclinical Validation
of Drug Indications Using Compendia
of Public Gene Expression Data

327 32.7 Sci. Transl. Med Stanford Univ, United States None

10 Sriram, K et al. (2018) G Protein-Coupled Receptors as
Targets for Approved Drugs: How
Many Targets and How Many Drugs?

311 103.7 Mol. Pharmacol Univ Calif San Diego,
United States

None

11 Dudley, JT et al.
(2011)

Exploiting drug-disease relationships
for computational drug repositioning

282 28.2 Brief. Bioinform Arizona State Univ, United States
et al.

None

12 Medina-Franco, JL
et al. (2013)

Shifting from the single to the
multitarget paradigm in drug
discovery

285 35.6 Drug Discov.
Today

Univ Nacl Autonoma Mexico,
Mexico et al.

The United States

13 Peters, JU (2013) Polypharmacology - Foe or Friend? 275 34.4 J. Med. Chem F Hoffmann La Roche Ltd.,
Switzerland

None

14 Yoshida, GJ et al.
(2015)

Metabolic reprogramming: the
emerging concept and associated
therapeutic strategies

255 42.5 J. Exp. Clin.
Cancer Res

Japan Soc Promot Sci, Japan None

15 Skrott, Z et al. (2017) Alcohol-abuse drug disulfiram targets
cancer via p97 segregase adaptor NPL4

249 62.3 Nature Palacky Univ/Czech Republic
et al.

Denmark; Sweden;
Switzerland; The
United States; China

16 Li, J et al. (2016) A survey of current trends in
computational drug repositioning

242 48.4 Brief. Bioinform Chinese Acad Med Sci, Peoples R
China et al.

The United States

17 Stokes, JM et al.
(2020)

A Deep Learning Approach to
Antibiotic Discovery

235 235 Cell MIT, United States et al. Canada

18 Reddy, AS et al. (2013) Polypharmacology: drug discovery for
the future

228 28.5 Expert Rev. Clin.
Pharmacol

Univ Texas Houston,
United States

None

19 Menden, MP et al.
(2013)

Machine Learning Prediction of
Cancer Cell Sensitivity to Drugs Based
on Genomic and Chemical Properties

229 28.6 PLoS One Wellcome Trust Genome
Campus Cambridge, England
et al.

The United States

20 Beck, BR et al. (2020) Predicting commercially available
antiviral drugs that may act on the
novel coronavirus (SARS-CoV-2)
through a drug-target interaction deep
learning model

225 225 Comp. Struct.
Biotechnol. J

Deargen Inc., South Korea et al. The United States

Notes: PY, publication year; TC, total citations; TCPY, total citations per year; and OPC, other partner countries.
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and reports of other coronavirus therapeutic agents and vaccine

studies (Liu et al., 2020). From the perspective of cooperation,

most of themwere completed by a country’s independent agency.

In terms of the countries and regions studied, four studies

involved US scholars, five studies involved Asian scholars, and

one contribution was from an African scholar. In addition, “A

SARS-CoV-2 protein interaction map reveals targets for drug

repurposing (Gordon et al., 2020)”, published in Nature by

Gordon, DE with a total of 125 scholars from the

United States, the United Kingdom, and France was the most

cited publication with 952 citations.

3.8.3 Analysis of the most cited studies
Eleven hot research topics were removed from the

108 highly cited ESI studies, and the top 20 most cited

studies were selected from the remaining highly cited

studies for analysis. In terms of year of publication, the

study by Dudley, JT et al. published in NUCLEIC ACIDS

RESEARCH in February 2011 was the earliest of these studies

(Dudley et al., 2011). Five highly cited studies were published

in 2013, and three studies were published as recently as 2020.

Two studies were published in Nature, and one each was

published in Nat. Rev. Drug Discov. and Nat. Med. subj. of

Nature E; J. Med. Chem. L was next with two studies. There

were 12 studies with the first author or coauthor from the

United States, representing more than half of those in Table 7,

followed by China (4), Canada (2), England (2), Germany (2),

Japan (2), and Switzerland (2) in order of contribution of two

or more studies. Nine studies were based on collaborations

between different institutions in multiple countries. One of

them, entitled “Alcohol-abuse drug disulfiram targets cancer

via p97 segregase adapter NPL4”, published in Nature in

2017 by Skrott, Z et al. is a collaboration between scholars

from six countries: Czech Republic, the United States,

Denmark, Sweden, Switzerland, and China (Skrott et al.,

2017). In TC, “DrugBank 5.0: a major update to the

DrugBank database for 2018” (Wishart et al., 2018) by

Canadian University of Alberta scientists Wishart, DS et al.

ranked first (1820 total citations). The most cited publication

on an annual basis was “Network-based drug repurposing for

novel coronavirus 2019-nCoV/SARS-CoV-2”, published in

2020, which was authored by Zhou, YD et al. and was the

highest annual average cited publication with 609 citations

(Gordon et al., 2020). The scientists Cheng, FX and Dudley,

JT, contributed to two of these 20 publications and are

important influencers in the field.

The three studies published in 2020 focus on novel

coronavirus-related drug rediscovery activities (Zhou et al.,

2020) and the use of deep learning techniques (Beck et al.,

2020; Stokes et al., 2020). Dudley, JT et al. (2011) and

Pushpakom, S et al. (2019) provided systematic reviews of

the methods and challenges of drug repositioning at that time

(Dudley et al., 2011; Pushpakom et al., 2019). Initially, Sirota,

M et al. (2011) explored the role of integrating genome-wide

computational approaches for predicting reusable drugs

(Sirota et al., 2011), while from 2013 onward, Peters, JU

et al., Medina-Franco et al., JL et al., Reddy, AS et al., and

Anighoro, A et al. generally recognized the importance of

combining multiple points of pharmacological knowledge for

drug repositioning studies (Medina-Franco et al., 2013; Peters,

2013; Reddy and Zhang, 2013; Anighohro et al., 2014). In the

face of a worldwide health emergency caused by the Zika virus

epidemic, Xu et al. (2016) used drug repositioning to identify

lead compounds for drug development (Xu et al., 2016). Of

course, techniques related to the mining of repositionable

drugs through experimental high-throughput screening, a

traditional experimental approach, are not without

progress; for example, Langhans (2018) explored the

challenges of transferring 3D cell culture technology to the

use of high-throughput screening (HTS) (Langhans, 2018).

4 Discussion

In 1995, Mchugh et al. investigated the immunomodulatory

action mechanism of thalidomide in humans, which was the first

relevant publication on drug repositioning (Mchugh et al., 1995).

The publication time can be divided into three phases: the growth

period of 1995–2009, the steady growth period of 2010–2018, and

the rapid rise from 2019 and beyond. The 2978 publications

studied between 2010 and 2020 were completed by

15,338 authors from 3,530 research institutions in

89 countries, and at the time of this study’s completion, the

WOS database had surpassed more than 1,400 publications in

2021 under the same search restrictions for the topic, with more

than 31,000 citations for the year, supporting further evidence

that the topic is still gaining momentum worldwide.

The publication countries/regions are divided into three

types: first, countries with a traditionally developed medical

level, mainly developed countries in Western Europe, North

America, and Oceania; second, countries with a developed

pharmaceutical manufacturing industry, such as India and

Japan in Asia; and third, developing countries with some

research potential, such as China, Brazil, Argentina, and

Mexico. In terms of national cooperation, Western European

countries have shown a high degree of cooperation, with the

United States, China, and the United Kingdom cooperating more

frequently. This may be because Western European countries

have a tradition of cooperation in the field of research, and the

United States, China, and the United Kingdom are the most

powerful countries in terms of drug repositioning publications

and therefore cooperate more with each other. The United States

accounts for half of the 20 most productive institutions, which

may explain why the United States still publishes more than 50%

of its studies independently, despite having the largest

international collaborative network base, because it already
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has the most active and high-quality producing institutions

within the country for research institutions seeking

collaboration. Furthermore, 19 of these 20 institutions are

universities and research institutes, and one is a company,

HM Pharma Consultancy, which was established in 2000 to

focus on drug repositioning for the development of new drugs

(Nosengo, 2016). This evidence suggests that the topic of drug

repositioning is not only widely studied in academia but also has

a place in the industry.

The 2978 studies are spread across 74 research areas, but

pharmacology and pharmacy and biochemistry and molecular

biology account for a larger proportion of the total number of

studies. It is quite notable that the majority of studies reported in

biophysics did not rise significantly until 2020. The reasons for

this may be the following: first, there was a breakthrough in basic

research in this field in 2020 and second, due to the novel

coronavirus, research in this direction has increased its

application for the prevention and control of the pandemic.

In terms of journals, Sci Rep ranked first, followed by PLoS

One and J. Biomol. Struct. Dyn. In terms of lead authors, three

have the most productive and influential positions: Cheng, FX is

the most prolific author, based on the number of papers and

h-index; Mucke, HAM is the most frequent corresponding

author; and Butte, AJ is the top author in terms of ACPP

ranking. Even though Latin American countries do not have

an advantage in terms of national cooperation or the total

number of institutional funding units, Latin American

scholars have overcome many obstacles and are actively at the

forefront of scholarship, contributing significantly to the field.

Through the analysis of the authors’ keywords, cancer has

been the main disease addressed by this method. Metformin has

been found by many scientists to have a good inhibitory effect on

various tumors, mainly in gynecology (Kumar et al., 2013; Xu

et al., 2015; Gadducci et al., 2016; Seliger et al., 2019), and it has

become a specific drug that has been most frequently mentioned

in drug reuse in recent years. In terms of “antiviral drugs”,

scholars not only use drug repositioning to find antiviral

drugs to treat diseases, such as Ebola (Kouznetsova et al.,

2014; Dyall et al., 2018) and HIV (Trivedi et al., 2020), that

have plagued humans for a long time but also use this method to

seek treatments for infectious diseases, such as Zika virus (Xu

et al., 2016; Chan et al., 2017) and novel coronaviruses that have

threatened several countries and even the world. For these

diseases, emergency research on drug repositioning has played

an important role in reducing mortality, calming patient fears,

and restoring economic production when no specific drugs or

vaccines were initially available during the pandemic. The

combination of precision medicine and drug repositioning

studies, often used to seek treatments for rare diseases

(Álvarez-Machancoses et al., 2020) and, in particular,

genetically related diseases (Reay et al., 2020), is expected to

be fully developed in the future. In the past 2 years, “Virtual

screening”, together with “Molecular docking” and “Machine

learning”, has become the most cutting-edge and important

research methods in related technology fields, constantly

improving the accuracy of drug reuse and screening.

Currently, to develop more efficient and accurate research,

there are two trends in the use of drug repositioning. One is

the combination of various methods, such as the use of text

mining and network analysis, and the creation of statistical

models for predicting semantic link association to assess the

relationship between pharmacological target pairings (Chen

et al., 2012); text analysis combined with machine learning

(Zhu et al., 2020) to develop drugs for Parkinson’s disease;

prediction of new DTIs using data from multiple databases

(Olayan et al., 2018); and the obtained relocated anticancer

drugs were verified by cross-validation, literature, and

experimental verification (Cheng et al., 2021). Second, the

most advanced algorithms are applied and improved, such as

matrix decomposition (Xuan et al., 2019; Huang et al., 2020;

Meng et al., 2021; Tang et al., 2021; Sadeghi et al., 2022) and

matrix completion (Luo et al., 2018; Yan et al., 2022) and deep

learning (Aliper et al., 2016; Zeng et al., 2019; Chiu et al., 2020;

Stokes et al., 2020; Lee and Chen, 2021; Liu et al., 2021).

In fact, some of the studies in the list of highly cited research

topics on novel coronaviruses drug repurposing studies are

currently approaching 3,000 citations on Google Scholar

(Gordon et al., 2020). The percentage of highly cited studies

and hot research topics related to novel coronaviruses is also a

good indication that the method has made an indelible

contribution to the study of novel coronaviruses and similar

infectious diseases. Auxiliary technology for the experimental

screening of traditional drugs is also developing (Langhans,

2018), which also promotes drug repositioning or other drug

development processes. Furthermore, the high-quality results of

Elfiky, AA, a scientist from Cairo University, Egypt (Elfiky,

2020), suggest that relevant research in some economically

underdeveloped countries may reach top levels worldwide due

to the return or affiliation of some prominent scientists.

5 Conclusion

For this research, the literature on drug repositioning research

published in the SCI-E and SSCI sections ofWOS core journals from

2010 to 2020 was analyzed based on bibliometrics and DDA

software. This area has been of interest to scientists since the end

of the 20th century and entered a period of rapid growth in 2019,

with the peak far from being reached. Using bibliometrics as a tool,

the United States has become a world leader in terms of the number

of submissions, number of high-quality studies, funding support,

strength of research institutions, and number of top scholars,

followed by China and the United Kingdom, where more

research is being performed in this area. As a method of drug

discovery, drug repurposing is closely related to the development of

various biomedical disciplines, and computer-related disciplinary
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methods, such as mathematical computational biology and

computer science, have taken an important place in the research

of this field in the last decade. The authors’ keyword analysis

suggests that research in the field of the novel coronavirus will

remain valuable until the associated pandemic is completely

contained. Virtual screening, molecular docking, machine

learning, and other related technical fields still need long-term

development to achieve efficient and accurate repositioning of

drugs (Kumar et al., 2019). Precision medicine, combined with

drug repositioning, is the most promising direction for the future. In

conclusion, drug repositioning can help to treat more diseases, such

as drug resistance, poor drug selectivity, and limited therapeutic

options.

This study may help some scholars with an initial interest in

drug repositioning-related research to gain a concise and rapid

understanding of the current state of global research, as well as

offer some relevant information to institutions or groups seeking

collaboration.

6 Limitations

It is worth noting that this study has some biases and

limitations. First, there are still some issues with the

publications included in the study based on subject terms: 1)

some relevant publications that do not use the search formula in

this study may have been excluded from this study and 2) there

may also be a small number of articles whose use of some of the

aforementioned search terms deviates significantly from the

general understanding; yet, such publications are included in

this study. Second, some extraneous factors distort the credibility

of the bibliometric statistics. 1) When analyzing the keywords of

publications, some publications are excluded from the statistical

analysis because they do not list author keywords (e.g., (Gordon

et al., 2020)). 2) Excessive self-citation by some authors

(Haghighat and Hayatdavoudi, 2021) inflates the actual level

of interest in the publication. 3) for a publication, when an author

submits more than one institution’s address information,

this publication is counted as research results by each

institution. Finally, in future work, patents from the WOS

database associated with the topic of drug repositioning

will be analyzed to provide another perspective on the

situation of the topic in terms of applications and

technological innovations.
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neurodegenerative diseases:
Threats and issues
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Drug repositioning or repurposing is the process of discovering leading-edge

indications for authorized or declined/abandoned molecules for use in different

diseases. This approach revitalizes the traditional drug discovery method by

revealing new therapeutic applications for existing drugs. There are numerous

studies available that highlight the triumph of several drugs as repurposed

therapeutics. For example, sildenafil to aspirin, thalidomide to adalimumab, and

so on. Millions of people worldwide are affected by neurodegenerative diseases.

According to a 2021 report, the Alzheimer’s disease Association estimates that

6.2 million Americans are detected with Alzheimer’s disease. By 2030,

approximately 1.2 million people in the United States possibly acquire

Parkinson’s disease. Drugs that act on a single molecular target benefit people

suffering from neurodegenerative diseases. Current pharmacological approaches,

on the other hand, are constrained in their capacity to unquestionably alter the

course of the disease and provide patients with inadequate and momentary

benefits. Drug repositioning–based approaches appear to be very pertinent,

expense- and time-reducing strategies for the enhancement of medicinal

opportunities for such diseases in the current era. Kinase inhibitors, for example,

which were developed for various oncology indications, demonstrated significant

neuroprotective effects in neurodegenerative diseases. This review expounds on

the classical and recent examples of drug repositioning at various stages of drug

development, with a special focus on neurodegenerative disorders and the aspects

of threats and issues viz. the regulatory, scientific, and economic aspects.
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1 Introduction

There has been a relentless search for the discovery of drugs

in various therapeutic segments. Of late repurposing also referred

to as drug repositioning has gained interest in recent years. As per

the reports, various discoveries have taken place in the finding of

new molecules and the development of alternative strategies

using repurposing strategies. In comparison to the classical

drug discovery process, the new approach of Drug

repurposing (DR) has various advantages and has opened new

vistas in the field of Pharmacology and Medicinal chemistry.

Treatment of rare and intractable diseases, minimizing attrition

rates, reducing the cost of therapy, etc. are some of the advantages

of drug repurposing. Essentially it is a new way of approaching

drug compounds and targets that have been abandoned during

the development stages either to their risks or other issues. This

review shed light on the classical and recent examples of DR at

various stages of drug development, with a special focus on

neurodegenerative diseases (NDs) and the aspects of threats and

issues viz. the regulatory, scientific, and economic aspects.

2 Drug repurposing approaches

As stated by the U.S. Census Bureau, the world’s population

on 1st January 2022 was estimated to be 7.8 billion. This depicts

that there is an expansion of 74 million people or a 0.9% growth

rate (The Economic Times, 2021). Furthermore, there has been

an escalation in the figure of geriatric people that is

supplementing the world population growth. The dwellers of

each country in the world are enduring build-up in both the

proportion and size of elderly persons. It is envisioned that 1 in

every 6 people in the globe will be in the age group of 60 years or

beyond by 2030. In developed countries, life expectancy is

ascending in small doses above 80 years. While there is a

deviation in the assortment of a country’s population towards

older ages, the frequency of incidence and progression of

incurable ND has heightened. Aging is the leading risk factor

for nearly all ND including Alzheimer’s disease (AD) and

Parkinson’s disease (PD) (Hou et al., 2019). The number of

people being afflicted by AD is anticipated to surge up to

135 million by 2050 because AD alone can affect between

one-third and one-half of people above the age of 85 years.

NDs are expected to have disastrous repercussions on

individuals, families, and societies unless efficient aids are

discovered to minimize the progression of these diseases.

Over the past century, NDs have generated distinctive and

convincing challenges to effective drug discovery. In America,

AD and PD are the two uttermost prevalent NDs with 5 million

Americans existing with AD as well as more than 500,000 people

diagnosed with PD (Karlawish et al., 2017). Yet another group of

people comprising millions more are affected with rare NDs,

such as amyotrophic lateral sclerosis (ALS), multiple sclerosis

(MS), Huntington’s disease (HD), frontotemporal dementia

(FTD), and spinal muscular atrophy (Katsnelson et al., 2016;

Correale et al., 2017). The healthcare cost of contrasting

dementias and AD scores for over US$200 billion, an amount

presumably to escalate by 2050 if these disorders persist to be

unrecoverable (Barnes, 2021). It has been unveiled that there is

no cure for MS even though as many as 9 immunomodulatory

compositions have reached FDA approval for MS since 2000.

This is shockingly diverse from the instance that even though the

number of AD patients is pondered to approximately double in

the following 10 years, only four non-disease-modifying

compounds were passed for AD during that equivalent period

(Crismon, 1994; Cusi et al., 2007; Birks and Evans, 2015; Birks

and Harvey, 2018). Besides the overwhelming load of AD and

other NDs on our healthcare system touching a bothersome level

and unfulfilled efficacious cure, the urgency for the well-timed

creation of competent therapies has been increasing bit by bit.

Currently, treatments accessible for NDs can barely handle

the symptoms or terminate the progression of the disease

(Durães et al., 2018). The drug discovery process right from

target identification and validation to licensed use of a drug is a

daunting task that comes with a long gestation period. DR (DR)

is a present-day trending strategy that overcomes several

shortcomings of the denovo development of entirely new

drugs. It speeds up the discovery process and is efficient,

economical, riskless, and reduces the failure rates in the

clinical development and testing phases (Tanoli et al., 2021).

With the expanding necessity for the treatment of NDs and the

commitment given by DR, it makes sense that old drugs are being

used as new treatments for these diseases. Nonetheless, the

foremost issue in drug repositioning is tracking down novel

drug-disease relationships. To deal with this issue, there are a

range of approaches and two cardinal strategies of DR, viz., on-

target and off-target (refer Figure 1) (Rudrapal et al., 2020). In

on-target (target-centric) DR, the pharmacological mechanism of

a drug molecule that is previously established is correlated to a

new therapeutic implication. In this plan of action, the biological

target of the drug candidate is unaltered, but the ailment is

dissimilar. It incorporates computational approaches, biological

experimental approaches, and mixed approaches (Ferreira and

Andricopulo, 2016). On the other way around, in the off-target

(drug-centric) profile, the pharmacological mechanism of a drug

candidate is unrecognized. Drugs and drug candidates respond to

new targets, out of the original scope, for afresh curative

indications. Consequently, the targets along with the

indications are unique (Ashburn and Thor, 2004). In the

sphere of DR emphasis is given to three significant stages:

procreation of candidate compounds, preclinical analysis, and

clinical trial. For the production of candidate compounds, it’s of

high priority to determine relevant drugs for potential remedial

indications. Notable advances have been made in the

understanding of neurodegerative disease biology. Likewise, a

plethora of fresh accessible resources has simplified drug
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discovery attempts through the medium of drug reprofiling.

These incorporate bounteous data from clinical, mechanistic

and epidemiological research, development of biomarkers, and

a number of well-validated models, both cell and animal-based.

Nowadays, the most prevailing drug reprofiling approaches in

NDs are predominantly grounded on ad hoc clinical and

epidemiological risk assessment in human testing and

preclinical alterations in rodent models (Ashburn and Thor,

2004). However, for the accomplishment of superior DR in

NDs, more precise and standardized approaches for both

activity-based and computational methods should be put into

effect. In conjunction with swift advancement in the scientific

study of disease, the accessibility to contrasting sophisticated

tools available in genomics and bioinformatics and assured

clinical drug libraries will immeasurably hasten and promote

future endeavours in neurodegenerative disease drug

repositioning. For exploration of novel therapeutic liabilities

for neurodegenerative disease, two alternative and

complementary approaches perhaps be applied widely, one is

activity-based/experiment based phenotypic screening and the

other is theoretical/in silico-based/computational approaches

(Rudrapal et al., 2020). DR can also be approached through a

combination of both fields.

2.1 Experiment-based approaches

When it comes to the series of actions in drug discovery and

drug repurposing, the experiment-based/experimental screening

approaches are frequently supposed to be the fundamental

step. It refers to the identification of original compounds for

new pharmacological utilization entrenched on experimental

assays. It necessarily blends protein target-based and cell/

organism-based screens in vitro and/or in vivo disease models

without necessitating the employment of every structural data of

biological target proteins. In this approach, structural data of

target proteins as well as the drug-induced cell/disease

phenotypic information is not mandatory. The activity-based

approach is also time and labor-consuming and amid the

screening process, the generation of false positive hits is low.

Experimental repositioning comprises a handful of approaches,

essentially the cell assay approach, target screening approach,

animal model approach, and clinical approach (Lionta et al.,

2014; Oprea and Overington, 2015).

Affinity chromatography and mass spectrometry are two

broadly operated proteomic techniques in analyzing drug

candidates (Brehmer et al., 2005). In the present age, drug

target analysis along with drug repositioning are entangled.

DR is distinctive from drug discovery in terms of modification

of drug targets. The affinity of drug ligands can be predicted using

a cellular thermal stability assay which can map the contact

patterns of intracellular targets (Molina et al., 2013). Utilizing

this method, a considerable number of molecular on and off-

targets have been divulged for numerous clinically approved

drugs. New biological targets of well-known drugs are derived via

affinity matrices chiefly observed in the area of kinases (Klaeger

et al., 2016; Scott et al., 2016).

2.2 In-silico approaches

To accomplish effective therapies for neurodegenerative

disease and get the therapies to the clinic faster,

computational drug repurposing, or the in silico screening of

FDA-approved compounds is advantageous. For investigating

drug-target binding kinetics and drug residence times of

prevailing drugs or drug candidates, using the computer as

assistance for molecular docking is a notable approach (De

FIGURE 1
Two cardinal strategies of drug repurposing (A) On target/target Centric (B) Off target/Drug Centric.
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Benedetti and Fanelli, 2018). In silico/computational drug

reprofiling, simulated screening of public databases of

mountainous drug/chemical libraries is executed by adopting

computational biology and bioinformatics/cheminformatics

tools. In this approach, the potential bioactive molecules are

identified based on the molecular interaction between the drug

molecule and protein target (Talevi, 2018). This calls for

structural data of target proteins and drug-induced cell/disease

phenotypic data. In-silico based approach is time and labor

efficient and has a higher rate of false positive hits during the

screening.

For many neurodegenerative disorders, it should be

considered that drugs look for satisfactory penetration into

the blood-brain barrier (BBB). The two sections for curative

means of accessing brain targeting are invasive and non-invasive

categories (Alam et al., 2010; Gabathuler, 2010). The invasive

category encompasses the transitory rise in BBB permeability,

and the non-invasive category primarily engages in the

transformation of drug molecules via a physiological,

chemical, or colloidal carrier system approach.

Simultaneously, these methods are also connected with

computational approaches.

Lately, the amalgamation of economically feasible large-scale

computational capacity with high-throughput clinical,

molecular, and structural biology technologies has constructed

a modernistic and favorable circumstance to logically repurpose

conventional drugs by adopting computational frameworks

rather than chance findings. Currently available computational

approaches/strategies to DR can be branched into molecular,

clinical, and structure-based (biophysical) methods.

Intending to conclude drugs that may modify disease gene

marks, molecular approaches have opted which aims to match

the drug-gene expression marks pre-and post-drug treatment

with disease gene expression marks. It does not depend on prior

recognition of the target molecule for high-throughput screening

of existing compounds. Currently, resources such as CMap

(Connectivity Map) and LINCS are limited in the case of

neurodegenerative disease. Molecular approaches of

computational drug repositioning integrate genetic, epigenetic,

proteomic, transcriptomic and metabolomics evidence to

determine promising and up-to-date indications for drugs.

Additionally, techniques such as network integration,

correlating gene expression profiles amidst a disease model

and drug-treated condition, prediction of drug-protein

interactions, and implementation of genotype-phenotype

associations are also being practiced (Yang and Agarwal, 2011;

Chen et al., 2017; Luo et al., 2017). There is an enormous demand

for the generation of databases based on transcriptomic drug

perturbation in CNS tissues to ascertain the drug response to

inappropriate tissue and cell types for neurodegenerative disease.

Recently, for AD (AD), a proteotranscriptomic-based

computational drug repositioning method named Drug

Repositioning Perturbation Score/Class (DRPS/C) resulted

based on inverse associations between disease-induced or

drug-induced gene and protein perturbation patterns (Lee

et al., 2020). Another such instance in the matter of ND is the

work by Zhang et al. where the National Human Genome

Research Institute-European Bioinformatics Institute Genome-

Wide Association Study catalog, PubMed, and the Human

Metabolome database were precisely extracted to generate an

assembly of proteomic, metabolomics, and genetic signatures of

AD (Zhang et al., 2016; Wishart et al., 2018; Buniello et al., 2019).

By commixing this multi-omics data with the Therapeutic Target

database and Drug Bank drug-target databases, the authors of the

study were capable of illustrating a list of 75 drug predictions in

AD (Wishart et al., 2006; Li et al., 2018).

In clinical methods of drug discovery and repurposing, large-

scale health data such as the electronic medical record (EMR),

insurance claims data, clinical trial data, health registries, health

surveys, and personal genome testing companies are engaged as a

supreme asset. Mount Sinai BioMe cohort and the eMERGE

network are two notable illustrations of EMR databases.

Meticulous medicine approaches can be utilized with the aid

of an abundant sample size. It is effortless to identify drugs that

are efficacious in indications other than the primary drug use by

taking the patient medication history as an asset. For instance,

the latest reconsideration of human trials and Medicare

pharmacy claim specifics has recommended that when

compared to nonuser counterparts, statin users experience a

lower incidence of AD (Geifman et al., 2017). Likewise,

utilizing EMR laboratory testing data from Ajou University a

group of researchers compared the ‘clinical signatures’ or

laboratory test values of patients before drug administration

and following drug administration and found two therapies

for Kawasaki syndrome that is terbutaline sulfate and

ursodeoxycholic acid evoked identical changes in laboratory

values. Correlating the disease pairs disclosed that there is a

significant extent of resemblance in clinical signatures between

Kawasaki syndrome and Amyloid lateral sclerosis (ALS),

advocating that terbutaline sulfate can be competent in

treating ALS besides Kawasaki syndrome. One of the

shortcomings of clinical methods is that before analysis

clinical data must be changed into a structured database.

Moreover, EMR evidence is oftentimes inadequate and

cluttered. In the event of neurodegenerative disease patients

are to be longitudinally outlined and for NDs with lengthy

disease courses it’s strenuous to track the physical and mental

wellness and consequences. Also for genetic subtype-specific

drug repurposing, clinical data should be paired with

genetic data.

However, substantial improvement has been made in the

computerized recovery of knowledge from unstructured EMR

data (Ford et al., 2016; Delespierre et al., 2017). Recently,

Observational Medical Outcomes Partnership (OMOP), has

been simulated by the Observation Health Data Sciences and

Informatics program. OMOP is a universally accepted scheme to
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transform claimed information and EMR record data into a

uniform and consistent data format with familiar data

representations essentially terminologies, coding schemes, etc.

(Hripcsak et al., 2015). As a result of mutable data coding and

formatting, consecutive statistical analyses can be intended with

the slightest information loss. There are alternative linkage

procedures that include probabilistic matching strategies and

‘fuzzy’matching techniques and these techniques take advantage

of multiple field values to compare records even when no single

field is an exact match (Dean et al., 2001; Malin and Sweeney,

2005).

In biophysical methods, drug-target predictions can be

accomplished by taking biochemical characteristics of drugs

into accounts such as binding affinity or biophysical

properties like 3D conformation (Holdgate et al., 2013;

March-Vila et al., 2017). These methods comprise structural,

ligand-based, and molecular docking methods and possibly be

principally advantageous in NDs such as HD with well-

established targets (Nance, 2017). Structural methods utilize

the complete advantage of 3D protein configuration data to

determine structurally identical drugs that might conceal

similar targets (March-Vila et al., 2017). Structural methods

employ local site similarity metrics to describe protein binding

sites or those that identify two protein environments that can

bind the same ligand that is chemiosmotic protein environments

(de Franchi et al., 2010; Jalencas and Mestres, 2013). If the

hypothesis is such that two diseases share similar target

proteins, then a structurally similar molecule/drug may be

dynamically useful in both diseases. This can be illustrated by

the fact that patients with AD and HD both have marked extra

synaptic NR2B subunit-containing N-Methyl-D-aspartate

receptors (NMDARs) and increased phosphorylation of

NMDARs (Song et al., 2003; Hoe et al., 2009). Establishing

drugs that hinder the extra synaptic NMDAR activity using

addressing structurally analogous ligands or binding sites

depicts a credible strategy for DR in both of these conditions

(Ehrnhoefer et al., 2012).

Ligand-based methods presume that two molecules may

share similar targets if they share a similar bioactivity profile.

To verify innovative targets for conventional drugs/compounds,

ligand-based methods pay attention to chemical and biological

knowledge such as binding affinity; cellular activity; absorption,

distribution, metabolism, and excretion data (Gregori-Puigjane

and Mestres, 2008; March-Vila et al., 2017). Ligand-based

methods entrust public bioactivity databases such as

PubChem, DrugBank, and ChEMBL in opposition to

structure-based methods, Docking-based methods implement

molecular docking simulations either to predict promising

drugs for a given target or novel targets for existing drugs

(Kitchen et al., 2004). One such example of docking-based

repurposing is to single out droperidol as an established drug

in AD by the application of high-throughput ligand–protein

inverse docking due to droperidol’s high binding affinity to seven

AD target proteins (Xie et al., 2016). Although biophysical

methods are competent in drug repositioning, they look for

prior labeling of target molecules and demand crystallographic

evidence of target and drug molecules.

In recent years, several companies are developing and

elaborated Artificial intelligence (AI) and machine learning

(ML) based frameworks for drug discovery. These methods

are exceptionally proficient at linking diverse classes of data.

There has been a blooming diversion towards the evolvement of

ML techniques to efficaciously dig for transcriptomic, structural,

and clinical data (Mani et al., 2012; Kadurin et al., 2017; Shameer

et al., 2017; Butler et al., 2018; Wang et al., 2018; Smith et al.,

2019). IBM adopted AI-based text-mining approaches to

constitute a semantic model of ALS-associated RNA-binding

proteins that may exemplify drug targets. BM could uncover

potential ALS-associated RNA-binding by application of this

model to a new set of RNA-binding proteins (Bakkar et al., 2018).

2.2.1 Artificial intelligence/machine learning
algorithms

In recent years, several companies are developing and

elaborated Artificial intelligence (AI) and machine learning

(ML) based frameworks for drug discovery. These methods are

exceptionally proficient at linking diverse classes of data.

There has been a blooming diversion towards the

evolvement of ML techniques to efficaciously dig for

transcriptomic (Wang et al., 2018; Smith et al., 2019),

structural (Kadurin et al., 2017; Butler et al., 2018; Popova

et al., 2018), and clinical (Shameer et al., 2017; Nemati et al.,

2018). ML is one of the forms of artificial intelligence. It does

facilitate vigorous interrogation of multiple datasets by using

statistical techniques to determine formerly undetected

associations and patterns in the data and in the recent past

the approaches have been presenting promising outcomes

when applied to drug repurposing of neurodegenerative

diseases (Myszczynska et al., 2020). Machine learning

algorithms are chiefly classified into supervised,

unsupervised and reinforcement learning approaches

(Bharadwaj et al., 2021). The ongoing methods most

frequently applied to neurodegenerative disease-related data

are the supervised machine learning algorithms. IBM adopted

AI-based text-mining approaches to constitute a semantic

model of ALS-associated RNA-binding proteins that may

exemplify drug targets. BM could uncover potential ALS-

associated RNA-binding by application of this model to a

new set of RNA-binding proteins (Bakkar et al., 2018). In a

study, a novel computational approach was reported to predict

drug repositioning grounded on a ML algorithm and data

integration. The approach in the study relied on the persistent

analysis of classification mismatches as genuine

reclassifications opportunities. The definiteness of the

results were of high levels and were rational with several

literature reports (Napolitano et al., 2013). In another
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study, a novel method “PREDICT” was presented which was

based on the observation that drugs that are similar can also be

indicated for similar disease (Gottlieb et al., 2011). The

method obtained tremendous specificity and sensitivity,

more desirable than the existing methods in predicting the

large-scale drug indications for both approved drugs and novel

molecules. In recent years, it has been a remarkable preference

to pave the way for novel computational approaches and deep

learning (DL) methods is one such example which commits to

intensify the capableness of drug repurposing methods.

Approaches known as deep neural networks (DNNs) are

adopted by DL which encompasses artificial neural

networks including plentiful hidden layers between the

input and output layers (Ma et al., 2015). One instance of a

work that selected deep learning was in which the authors

confirmed how DNN trained on gigantic transcriptional

response datasets can assort different drugs to therapeutic

categories solely established on their transcriptional profile

(Aliper et al., 2016). Additionally, favourable outcomes were

obtained by means of a deep learning-based algorithmic

framework termed as DeepDTIs (Drug target interaction)

which ascertained drug-target interactions using chemical

structures and known interactions. (Wen et al., 2017).

2.2.2 Network-based methods
By virtue of immense present-day progress in the sphere of

system biology has led to the progression in applications such as

drug repurposing. Networks are clear, understandable and

flexible data structures on which associations can be implied

using many statistical and computational approaches. The

perception of interaction network is massively engaged in

biology. In network models pairwise relations between various

objects is exhibited. Schematically, in such networks, nodes are

represented by entities (genes, proteins, complexes, metabolite,

disease), while edges represent interactions or relationship

between two nodes such the relationship between drugs and

known gene targets and large number of diverse connections

between two nodes can be displayed concurrently (Savva et al.,

2019). Despite of the potency of such approaches has been

verified for considerable times with drug-target interaction

prediction, these methods are afflicted by the deficiency of

current knowledge on molecular interactome, leading to noisy

results. Network-based drug repositioning methods can be

organized into categories based on their main source of

biological data: 1) gene regulatory networks, 2) metabolic

networks, and 3) drug interaction networks (Approaches

et al., 2019). Moreover, a fourth category, integrated

approaches, using multiple data sources simultaneously, can

also be supplemented.

For example, a recent work proposed a untried

bidirectional drug repositioning approach that comprised

of Top-down and Bottom-up approaches and eventually

provided information about significant repositioning drug

candidates (Rakshit et al., 2015). This method takes into

account tripartite indication-drug-target network (IDTN),

also considering the topological significance (choosing most

potent drugs based on seven topological parameters, such as

degree, betweenness, centroid, closeness, eccentricity,

radiality, and stress, which are basic network measures

used to analyse a network) of drugs. A separate study

proposed a different approach based on a two-pass random

walk with restart on the drug-disease heterogeneous network,

referred to as TP-NRWRH, to predict new indications for

approved drugs (Liu et al., 2016). It was applied on three

different types of networks, that is, integrated drug-drug

similarity, disease-disease similarity, and drug-disease

networks. This method was evaluated and in case study on

the AD it showed that nine of top 10 predicted drugs have

been approved or are investigational for neurodegenerative

diseases.

2.2.3 Genome-wide association studies-based
methods

Another robust tool for drug repurposing is the utilization

of genomics technologies. For the past few years, genome wide

association studies (GWAS) has been another source of data

which is being exploited for new information regarding the

association of specific genomic variations known as single

nucleotide polymorphisms (SNPs), with complex trait human

diseases, such as AD, multiple sclerosis, etc. (Savva et al.,

2019). GWAS can distinguish thousands of SNPs

synchronously and these data are used by researchers to

detect genes that are linked with a specific disease trait and

to analyse how these variations affect responses to drugs.

Furthermore, GWAS can be indicated to identify

alternative indications for existing drugs rapidly and

systematically (Hurle et al., 2013). However, objections

such as inadequacy of data regarding whether an activator

or inhibitor is needed to observe an effect, makes it

burdensome to use GWAS information alone. While

applying GWAS to initiate repurposing of drug candidates,

the basic process is to analyse the catalogue of SNPs linked

with the disease to determine a subgroup of genes that are

speculated to be drug targets according to the drug ability of

the gene’s product. Thereafter, process demands to select

which of these gene products, if any, are targets for the

drugs that are in the pharmaceutical channels at that

instant. One such illustration detected by this approach is a

clinical candidate Biib-033 (Biogen Idec, Cambridge, MA,

USA), which is an antibody targeting the leucine-rich

repeat and immunoglobulin domain-containing 1 (LINGO-

1), which was developed for multiple sclerosis. Two GWAS

studies detected LINGO-1 as a target for essential tremor,

which is a neurological disorder, propounding that it could be

repurposed for vital tremor ailments (Gudjonsdottir et al.,

2009; Clark et al., 2010). .
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3 Drug repurposing for
neurodegenerative diseases

Diseases that affect the central as well as the peripheral

nervous system, are known as neurodegenerative diseases

(NDs). More than 600 distinct neuropathological illnesses

exist, which include stroke, Parkinson’s disease, brain tumors,

and epilepsy. Considering that the global population is growing,

there are more NDs than ever before (Siuly and Zhang, 2016;

Matilla-Dueñas et al., 2017; Kumar et al., 2021). In the next

20 years, neurodegenerative disorders that impact motor

function will overtake cardiovascular disease as the second

most common cause of mortality, according to the World

Health Organization. No ND is currently curable due to its

poorly understood molecular basis, and the medicines

available merely treat the symptoms or slow the disease’s

course (Onyango et al., 2021). Since the medicine’s

pharmacokinetic and pharmacodynamic properties are already

known, DR is the most beneficial new technique for the creation

of an effective treatment for NDs. The promise of old

medications for the most important NDs, like Amyotrophic

lateral sclerosis, Huntington’s disease, Parkinson’s disease,

Multiple sclerosis, and Alzheimer’s disease has been the

subject of numerous studies (Durães et al., 2018). Figure 2

represents a summary of drugs repurposed for some

neurodegenerative diseases.

3.1 Alzheimer’s disease

AD accounts for 80% of occurrences of dementia in senior

persons. The gradual memory loss, the incapacity to learn, and

the deterioration in behavior and function are its signs. Although

the exact pathology of AD is unknown, it is thought to be related

to the buildup of amyloid-β plaques in the brain, which

eventually cause neuronal and synaptic degeneration

(Scheltens et al., 2016). The majority of AD medications are

used to address cognitive impairments or other symptoms, and

they work best when started early (Appleby et al., 2013).

Commonly prescribed drugs for AD are cholinesterase

inhibitors viz. Galantamine, Donepezil, Rivastigmine etc.

Galantamine, an alkaloid found in Galanthus species, has

been researched as a potential treatment for peripheral

neuropathies and myopathies. It has the potential to block

FIGURE 2
Summary of a few drugs repurposed for neurodegenerative diseases, adapted from (Durães et al., 2018) via CC by 4.0 license.
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TABLE 1 List of repurposed drugs for AD.

Drug name Earlier indication Repurposed References

Carmustine It is a small, lipophilic, non-ionized nitrosourea molecule
that can cross the blood-brain barrier and is employed as
an alkylating agent in cases of brain cancer

Carmustine, at a non-toxic dose, demonstrated a
significant reduction in amyloid-β development in cells
overexpressing the precursor protein to the amyloid
protein

Hayes et al. (2013)

Bexarotene A retinoid X receptor antagonist is used to treat
cutaneous T-cell lymphomas

In mice overexpressing familial AD mutations, it has been
demonstrated to be effective at reversing
neurodegeneration, enhancing cognition, and lowering
amyloid-β levels

Tousi (2015)

Tamibarotene It is an agonist of the retinoic acid receptor and is used to
treat acute promyelocytic leukemia

It can influence a variety of pathways involved in the
pathogenesis of AD, including those that control the
release of pro-inflammatory chemokines and cytokines by
brain cells, the behavior of animals with increased
senescence, and cortical acetylcholine levels

Fukasawa et al. (2012)

Paclitaxel It is an antimitotic drug authorized for the treatment of
non-small cell lung cancer as well as ovarian and breast
cancer

Although paclitaxel can be a substrate for P-gp and only
penetrates a small portion of the central nervous system, it
is particularly helpful in treating tauopathies because it
reduces tau protein phosphorylation

Brunden et al. (2011)

Thalidomide It prevents angiogenesis, endothelial cell growth, and
blood-brain barrier disruption

Through the inhibition of tumor necrosis factor-α, it can
minimize the death of hippocampus neurons

Ryu and McLarnon (2008)

Azithromycin,
erythromycin

Macrolide antibiotics They prevent the production of the amyloid precursor
protein, which lowers the amyloid-β levels in the brain

Appleby et al. (2013)

Tetracyclines Antibiotic (protein synthesis inhibitors) It has been discovered that it encourages the destruction of
fibrils and inhibits the synthesis of amyloid-β

Diomede et al. (2010)

Rifampicin Use for Mycobacterium infections It has shown results in the reduction of amyloid-β fibrils in
a dose-dependent manner because of reduced production
and enhanced elimination of amyloid-β

Tomiyama et al. (1996)

Acyclovir,
penciclovir, foscarnet

antiviral drugs In AD cell models, decreases phosphorylated tau protein
and amyloid-β

Wozniak and Itzhaki
(2010)

Amphotericin B Antifungal drug It has been demonstrated to slow down the production of
amyloid-β (but posses toxicity)

Hartsel and Biochemistry
(2003)

Clioquinol Antifungal, Antiparasitic In transgenic mice brains, it shows a reduction in the
amyloid-β plaques

Grossi et al. (2009)

Valproic acid Antiepileptic drug Due to its ability to alleviate memory impairments and
diminish the production of amyloid-β plaques in
transgenic mice, it is recommended as a neuroprotective
treatment for AD.

Smith et al. (2010)

Valsartan Antihypertensive (angiotensin receptor blocker) Chronic adverse stress, which can increase brain
angiotensin II levels, is one of the main environmental
factors of AD. Because it has been shown that angiotensin
II increases are linked to amyloidogenesis, using
angiotensin receptor blockers may be useful in delaying
the loss of cognitive processing. Additionally, valsartan
reduces inflammation, vasoconstriction, and
mitochondrial dysfunction while encouraging
acetylcholine release

Culman et al. (2002)

Trimetazidine Anti-ischemic drug It can penetrate the blood-brain barrier, lower free radical
production, enhance axonal regeneration, and effectively
myelinate both healthy and damaged axons

Hassanzadeh et al. (2015)

Liraglutide Anti-diabetic drug It demonstrated brain penetration and indicated
physiological changes in the brain that improved learning
and reduced the development of amyloid-β and
inflammation in the brain

Mcclean et al. (2011)

Ghrelin Peptide hormone (synthesized in the alimentary tract
which controls appetite)

It has been shown that ghrelin, as well as its deacylated
precursor, has neuroprotective effects by preventing
programmed cell death and reducing the rise of
interleukins induced by amyloid-β

Wagner et al. (2017)

Acitretin Retinoid receptor activators It reported an increase in antioxidant regulation and
amyloid- β clearing enzymes

Tippmann et al. (2009)

Zileuton Antiasthma drug Zileuton, which inhibits 5-lipoxygenase, is thought to offer
therapeutic benefits for AD. This is due to the finding that

Di Meco et al. (2014)

(Continued on following page)
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muscle acetylcholinesterase. Galantamine’s ability to improve

nerve impulse transmission also makes it useful for reversing

neuromuscular blockade during anesthesia. During the 1960s

through the 1980s, the majority of galantamine use was confined

to Italy, Bulgaria, Germany, and France under the brand name

Nivalin®. Galantamine’s therapeutic properties for the treatment

of AD were first investigated in the 1980s, and it was only in

2000 that it was included in the arsenal of drugs used to treat AD

(Mucke, 2015). The production of misfolded proteins, oxidative

stress, mitochondrial dysfunction, and impaired cell metabolism

are only a few of the signaling pathways that may be involved in

the pathogenesis of both cancer and neurodegeneration. The goal

of the subsequent research was to see whether cancer medications

may also be used to treat AD. Following these, investigations have

been made to see if cancer medications can also be used to treat

AD (Monacelli et al., 2017). Pathogens can enter the CNS in a

variety of ways, depending on the organism, which may speed up

the development of AD. The first is accomplished by a damaged

BBB (Orgogozo et al., 2003). Some viruses, like the herpes virus,

can go dormant after the original infection and then reawaken

decades later in elderly people, causing delayed harmful

complications (Nagarajan and Wilde, 2005). According to a

2020 study model, immunocompromised people who were

exposed to C. pneumoniae through their noses developed Aβ
plaque and NFTs in their olfactory cortex as well as in

hippocampus (Sundar et al., 2020). Thus antimicrobials such

as Rifampicin, Amphotericin B, acyclovir, penciclovir, foscarnet

etc. (see Table 1) have also been researched to see whether they

may be used to treat AD, specially its symptoms (Iqbal et al.,

2020). Antidiabetics are also used to treat AD because type

2 diabetes has been established as a risk factor for the disease.

According to studies, AD sufferers’ brains have become less

sensitive to insulin signalling. Insulin therapy has been shown

to improve memory and cognition while also protecting the brain

from damage and controlling the levels of phosphorylated tau

protein. Additionally, insulin can promote cell growth, repair,

and activation of neural stem cells. As a result, substances that

affect insulin release may potentially be beneficial for AD.

Analogues of glucagon-like peptide 1, which increase insulin

production, may also have an impact on a number of AD-related

processes, including tau phosphorylation, amyloid-β reduction,

and impaired neuronal function and cell death (Perry et al., 2003;

Zhao et al., 2004). Some drugs repurposed for AD are listed in

Table 1.

3.2 Parkinson’s disease

PD is a multifactorial neurological condition that impairs a

patient’s ability to move. Dopamine neurons in the putamen and

caudate areas of the brain are the main targets of Parkinson’s

disease. Due to mitochondrial DNA deletion, elevated ROS and

RNS generation decreased antioxidant function, and dopamine

inhibition, the activities of mitochondria are reduced in the

substantia nigra of parkinsonian brains (Ryan et al., 2015;

Reeve et al., 2018). As dopamine is oxidized by both

Monoamine oxidase (MAO) A and B, the level of dopamine

drops in PD (Alexander, 2004). Primary tremor, akinesia,

rigidity, bradykinesia, lack of postural instability, and

secondary motor symptoms including the freezing of gait,

micrographia, and speech issues are the hallmarks of

Parkinson’s disease (PD). In PD, non-motor symptoms

include sensory impairment, autonomic dysregulation,

neurobehavioral abnormalities, and sleep problems are also

possible. Parkinson’s disease is treated with levodopa,

carbidopa, amantadine, rotigotine, dopamine agonists,

Catechol-O-methyltransferase (COMT) inhibitors,

anticholinergics Selegiline, rasagiline, safinamide, etc (Gupta

and Shukla, 2021). The most recent therapy options for PD

include newer dopaminergic medications, immunotherapies,

drug repurposing, medications that target non-dopaminergic

neurotransmitters, regenerative treatments, and deep brain

stimulation. Many medications are currently undergoing

clinical trials. Several medications, including the following, are

being repurposed for PD: The antibiotic doxycycline, which has

been investigated for its anti-PD effects after being once

TABLE 1 (Continued) List of repurposed drugs for AD.

Drug name Earlier indication Repurposed References

5-lipoxygenase is more prevalent in AD, creating it an
exciting target within this context. Research using zileuton
in mice revealed a decrease in amyloid-β accumulation

Sildenafil/tadalafil Erectile dysfunction drugs (inhibitors of
phosphodiesterase-5) Phosphodiesterase-5 regulates
cGMP, which in turn regulates memory problems caused
on by amyloid-β

In aged mouse models, sildenafil was effective in reducing
amyloid-β and suppressing neuroinflammation.
Furthermore, Tadalafil showed neuroprotection and an
increase of cognition

García-Barroso et al.
(2013), Zhang et al. (2013)

Trazodone Antidepressant Trazodone has demonstrated potential in suppressing
signaling via the PERK/eIF2α-P branch of the unfolded
protein response, which is overactivated in AD patients
and harms regulating translation s in cells

Halliday et al. (2017)
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identified as a possible anti-AD therapeutic approach

(Dominguez-Meijide et al., 2021). Differences in doxycycline

concentration can distinguish between an antibacterial and an

anti-inflammatory effect. Smaller concentrations than the ones

used to treat microorganisms with antibiotics do not influence

bacterial susceptibility, according to studies, but they do exhibit

anti-inflammatory activity, which is connected to their

neuroprotective effects. Doxycycline’s antioxidant properties

and its capacity to transform early species of α-synuclein
oligomers (a presynaptic neuronal protein connected to PD

genetically and neuropathologically) into non-toxic and non-

seeding species are two additional ways that aid neuroprotection

(Dominguez-Meijide et al., 2021). Only oligomeric species of α-
synuclein have been discovered to bind to doxycycline, however,

the physiological monomeric forms of α-synuclein are still

present. Table 2 represents repurposed drug for PD. The anti-

PD activity of antiasthma medications, specifically β2-
adrenoreceptor agonists, has been researched. Recent research

has connected the β2-adrenoreceptor to the control of the SNCA-
synuclein gene. More particular, stimulation of the β2-
adrenoreceptor was demonstrated to exhibit neuroprotection.

Three anti-asthmatic drugs were investigated, and salbutamol,

the one with the highest blood-brain barrier permeability,

demonstrated the greatest promise. The conducted analysis

revealed that all three medications were capable of lowering

the abundance of SNCA-mRNA and α-synuclein (Mittal et al.,

2017).

3.3 Huntington’s disease

HD is characterized by dementia, behavioral and mental

abnormalities, and involuntary choreatic movements (McColgan

and Tabrizi, 2018). The multifunctional protein huntingtin

(HTT) develops a mutant form as a result of a genetic

mutation, which causes toxicity and causes neuronal death

and malfunction. When a mutation in the HTT gene’s exon

1 on chromosome 4p16.3 results in CAG (C-cytosine, A-adenine,

and G-guanine) trinucleotide DNA segment extension,

repetition, and multiplicity, HD develops. In a gene, the CAG

segment is typically repeated between 10 and 35 times. However,

due to mutations, more than 36 CAG repeats are produced,

which results in the genesis of HD (Tabrizi et al., 2020). The slow

degeneration of neurons in the basal ganglia, particularly the

caudate nucleus and putamen to the cerebral cortex, signals the

beginning of HD (Kshirsagar et al., 2021). The symptoms of HD

begin to appear in adults, and they worsen with time until they

eventually result in death within years. The sole alternative is to

control the symptoms since there is no known cure for this illness

s (Roos, 2010).

Tetrabenazine was initially created as a result of research into

the design of straightforward drugs with reserpine-like

antipsychotic action. It functions as both a mild blocker of the

D2 dopamine postsynaptic neurons and a highly selective,

reversible inhibitor of monoamine absorption by presynaptic

neurons. Research on this substance as an antipsychotic was

conflicting, thus this medication was repurposed for conditions

like HD that are characterized by abnormal, involuntary

hyperkinetic movements. Tetrabenazine has never been shown

to elicit signs of dyskinesia, making it a safer drug to use in HD

than dopamine receptor blockers (Paleacu, 2007). For the

treatment of HD, several medications with dopamine

antagonistic action have been investigated. This is the

situation with the antipsychotic drug tiapride, a D2 receptor

antagonist. Selegiline, however, is a popular option for the

treatment of Huntington’s chorea in Europe (Roos et al.,

1982). A neuroleptic medication called clozapine is used to

treat schizophrenia. With little antagonistic activity toward the

D2 dopaminergic receptors, it exhibits a high affinity for the

D1 and D4 dopamine receptors. Although clinical trials had

mixed outcomes, it was recommended as a good symptomatic

medication for chorea due to its low prevalence of

TABLE 2 List of repurposed drugs for PD.

Drug name Earlier indication Repurposed References

Amantadine Anti influenza As a mild glutamate receptor antagonist, it is used to treat Parkinson’s disease
(PD), boosting dopamine and preventing its reuptake

Lee and Kim,
(2016)

Nilotinib Tyrosine kinase Abl inhibitors, used to treat chronic
myeloid leukaemia

It was found that α-synuclein build-up and increased α-synuclein expression
are both signs of Abl activation in neurodegeneration. Nilotinib accelerates α-
synuclein breakdown by preventing Abl phosphorylation

Pagan et al.
(2016)

Zonisamide Antiepileptic drug Increased dosages revealed a reduction in intracellular dopamine. Both motor
and non-motor symptoms have responded well to this medication, but its
exact mode of action is yet unknown

Fox et al. (2018)

Methylphenidate Central nervous system stimulant used to treat
attention-deficit hyperactivity disorder

This medication has been found in numerous studies to be beneficial in
lowering PD-related gait problems and non-motor symptoms

Devos et al.
(2013)

Exenatide Glucagon-like peptide-1 (used for type 2 diabetes) It has proven to be capable of neuroprotection and beneficial neuroplastic
change, which can stop or reduce the progression of the disease. It can cross
the blood-brain barrier and offers neuroprotection by turning on GLP-1
receptors

Jankovic, (2017)
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TABLE 3 List of repurposed drugs for HD.

Drug
name

Earlier indication Repurposed References

Clozapine Neuroleptic drug Although clinical trials had mixed outcomes, it was recommended as a good
symptomatic medication for chorea due to its low prevalence of extrapyramidal
side effects

Bonuccelli et al.
(1994)

Tetrabenazine Intended to have antipsychotic effects but
produced conflicting success

Repurposed to treat HD symptoms, it functions as a mild blocker of D2 dopamine
postsynaptic neurons and a high-affinity, reversible inhibitor of monoamine
uptake by presynaptic neurons

Paleacu (2007)

Olanzapine Antipsychotic drug It is routinely prescribed for the treatment of HD’s motor and behavioural
symptoms. Although this medication has a strong affinity for serotonin receptors,
it is antagonistic to dopamine D2 receptors

Paleacu et al.
(2002)

Risperidone Antipsychotic drug It is used to treat schizophrenia and bipolar disorder as a D2 receptor antagonist
and serotonin agonist, and it can also be used to treat HD chorea

Duff et al. (2008)

Memantine Used to treat AD. Investigation into memantine’s efficacy for treating HD revealed that it could
lower neurons’ sensitivity to glutamate-mediated excitotoxicity

Beister et al. (2004)

TABLE 4 Some repurposed drugs for ALS and MS.

Drug name Earlier indication Repurposed References

Masitinib Tyrosine kinase inhibitor (used to treat canine cancer) Tyrosine kinase inhibitors may be effective against the
aberrant glial cells that grow in ALS, explaining their usage
in the disease

Trias et al. (2016)

Triumeq® (dolutegravir +
abacavir + lamivudine)

An antiretroviral Drug used in anti-HIV therapy Based on the fact that ALS patients had reverse
transcriptase blood concentrations comparable to HIV-
infected patients and that a human endogenous retrovirus
was found to be expressed in the brains of ALS victims, this
medicine was investigated for the treatment of the disease

Clinicaltrials
(2022)

Retigabine Anti-epileptic drug (causes membrane hyperpolarization
by attaching to voltage-gated potassium channels, which
increases the M-current.)

Because it is believed that neurons in this condition are
hyper-excited and fire more frequently than usual,
ultimately leading to cell death, it can promote motor
neuron survival and lower excitability, which is beneficial
in the treatment of ALS.

Wainger et al.
(2021)

Tamoxifen An antioestrogen drug (authorized for use in breast cancer
chemotherapy and chemoprevention)

The discovery of neurological improvements in patients
and disease stability in ALS patients who had breast cancer
treated with tamoxifen led to the drug’s accidental
repurposing for the treatment of ALS.

Chen et al.
(2020)

Mitoxantrone An anthracenedione that has been proven effective in the
treatment of breast and prostate cancer, acute leukaemia,
and lymphoma

Mitoxantrone has also been licensed for the treatment of
MS due to its immunosuppressive properties, which are
connected to variable responses of the T- and B-cells in the
central nervous system to antigens, myelin degradation
brought on by macrophages, and axonal lesions

Fox (2004)

Cyclophosphamide An alkylating agent treatment of leukaemia, lymphomas,
and breast carcinoma

Cyclophosphamide is used in MS because it can have an
immunosuppressive and immunomodulatory effect.
Additionally, cyclophosphamide has good absorption in
the central nervous system and can cross the blood-brain
barrier

Awad and Stue
(2009)

Amiloride A diuretic medication Amiloride can prevent the neuronal proton-gated acid-
sensing ion channel 1 (ASIC1), which is overexpressed in
axons and oligodendrocytes in MS lesions, from having its
neuroprotective and myeloprotective effects. A further
benefit of amiloride’s preventive action occurring later in
the course of inflammation is that it makes it active even
before inflammation begins

Arun et al.
(2013)

Ibudilast Phosphodiesterases inhibitor used for bronchial asthma
and cerebrovascular disorders

Ibudilast can prevent the brain’s microglia and astrocytes
from releasing tumor necrosis factor, which reduces
neuronal degeneration. It is also helpful in MS because it
can prevent oligodendrocyte apoptosis, suppress astrocyte
apoptosis, and prevent demyelination

Barkhof et al.
(2010)
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extrapyramidal side effects (Bonuccelli et al., 1994). Another

antipsychotic medicine, olanzapine, is frequently recommended

to treat HD’s behavioral and motor symptoms. While

antagonizing dopamine D2 receptors, this medication has a

high affinity for serotonin receptors. It can be advised when

irritation, sleep issues, weight loss, and chorea are present

because it is safe and well tolerated (Paleacu et al., 2002). As a

D2 receptor antagonist and serotonin agonist, the antipsychotic

risperidone, which is used to treat schizophrenia and bipolar

disorder, can also be used to treat HD chorea. It demonstrated

positive results in stabilizing mental symptoms and motor

deterioration (Duff et al., 2008). Quetiapine, an atypical

antipsychotic, has a strong affinity for dopamine and

serotonin receptors. Even though there haven’t been many

instances of quetiapine being used to treat HD symptoms,

those have emphasized the drug’s value in treating chorea,

particularly when it’s coupled with psychiatric symptoms

(Alpay and Koroshetz, 2006). An adamantane derivative called

memantine is used to treat AD. It is an inhibitor of N-methyl-D-

aspartate (NMDA) that is non-competitive. A large influx of

calcium enters the cell as a result of excessive NMDA receptor

stimulation, which ultimately results in cell death. Memantine

can therefore stop this calcium influx in neuronal cells and stop

the death of brain cells. When memantine’s effectiveness in

treating HD was investigated, it was shown that it could

lessen the susceptibility of neurons to glutamate-mediated

excitotoxicity (Beister et al., 2004). Table 3 represents list of

repurposed drugs for HD.

3.4 Other neurodegenerative diseases

Upper and lower motor neurons, which regulate the

voluntary muscles, die as a result of the condition known as

ALS. Muscles eventually weaken and shrink as a result, which

causes muscular atrophy. Other signs include difficulty breathing,

swallowing, speaking, and twitching or rigid muscles. Most ALS

causes are aetiologically unknown, with genetic inheritance

accounting for roughly 10% of cases (Kiernan et al., 2011).

Only two medications, edaravone, and riluzole, are presently

accessible to postpone the development of the illness, albeit

they cannot reverse the symptoms once they have appeared

(Zoccolella et al., 2007; Sawada, 2017). Another autoimmune

condition affecting the central nervous system is MS. It is a

protracted, inflammatory disorder in which the myelin and

axons are partially or completely damaged. Its progression is

uncertain, and its early symptoms include temporary neurological

impairments that eventually turn severe. There is currently no

approved treatment for MS, however, there are medications that

can slow the disease’s progression and symptoms (Trapp and

Nave, 2008). Several drugs are currently being repurposed for the

treatment of ALS as well as MS. Table 4 represents some drugs

that are under clinical trial for ALS or MS.

3.5 Unsuccessful repurposed drugs for
neurodegenerative diseases

Even though there have been numerous instances of

pharmacological repurposing, numerous attempts at

repositioning have also been unsuccessful. A drug may look

promising in computational analyses or in vitro assays but not in

vivo, requiring the investigation of the medicine to be stopped in

favor of other activities. This was the situation with latrepirdine,

an antihistamine that was repurposed for AD and HD after being

licensed in Russia for the treatment of rhinitis brought on by

allergies. Despite the lack of a characterized mechanism of action,

it had been suggested that it might alter the activity of channels

and neurotransmitters, avoiding amyloid toxicity among other

things (Bezprozvanny, 2010). In actuality, phase III studies

unsuccessful to find any appreciable variations in the course

of the disease, despite phase II research showing improvement in

AD patients related to placebo (Doody et al., 2008). There have

also been attempts to employ the anti-hypercholesterolemic

medications simvastatin and atorvastatin for AD. This notion

was developed in response to the important finding that

cardiovascular illness and AD frequently co-occur. Studies had

demonstrated that statins could raise neuroprotection and reduce

amyloid-β levels, among other positive benefits. However, none

of them were effective in the management of AD (DL et al., 2005;

Sano et al., 2011). Studies evaluating the use of selective serotonin

reuptake inhibitors, commonly used as antidepressants, in the

treatment of AD have also been conducted. Although

nortriptyline and paroxetine originally showed an

improvement in cognitive abilities, subsequent analyses

revealed that there was no improvement in cognitive behavior

even after these medications had addressed mood disorders

(Nebes et al., 2003).

In phase II investigations for the treatment of ALS, the

antibiotic ceftriaxone seemed promising, but it also failed to

demonstrate clinical efficacy in phase III tests (Cudkowicz et al.,

2014). Even cladribine was initially rejected as an MS treatment

before it was approved (Leist and Weissert, 2011). Even though

DR is encouraging in the creation of new treatments for ND, the

approval procedure can be challenging and frequently leads to

the failure of repurposing initiatives.

5 Opportunities and challenges of
drug repurposing

Owing to its proficiency in sparing time and cost, drug

repositioning has become a crucial method for exploiting new

therapeutic implications of current drugs or drug candidates.

Such an ingenious type of approach will undeniably accelerate

the drug development process. Concurrently, in the case of

neurological diseases, some restraints need to be considered

during the process of drug repositioning. Repurposing drugs
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experiences humongous challenges due to which there are

limitations in the market for repurposed drugs. A single phase

III clinical trial of a repurposed drug for AD can cost up to

300–400 million dollars (Shineman et al., 2014). This

demonstrates even though repurposed drugs can deviate from

the initial development stage and safety testing, they demand

profound high-risk extravagant clinical trials to establish efficacy.

As a result of the sluggish progression of neurodegenerative

diseases, clinical trials might take a long duration. Further, apart

from proving the drug penetration into the brain, many times

drugs must be tested for safety issues in geriatric populations who

periodically have comorbidities and undergo treatment that may

interreact with the repurposed drug. DR may be difficult in

neuropathological states considering its complex molecular and

cellular signaling mechanisms. The reason that drugs respond to

multiple targets despite affecting a single target might accelerate

the risk of a range of adverse reactions (Vogt and Mestres, 2010).

An all-inclusive evaluation of the assets as well as lacking these

adverse effects can assist us to figure out drug repositioning from

a more multifaceted perspective (Reddy and Zhang, 2013). Other

challenges in repurposing drugs include limited or no patent

protection or patent life, commercialization, and reimbursement

challenges.

In pursuance of overcoming obstructions encountered in the

course of drug repurposing, we can consider several proposals. In

the first place, it is inspirited to furnish more financial support in

conjunction with technical assistance for clinical trials of drugs to

be repurposed. Pharmaceutical companies are exceedingly

doubtful to finance human trials of approved drugs to be

repositioned unless there is a viable commercial strategy. This

generates a favorable circumstance where government and

foundations can take the eagerness to do something.

Currently, several groups are taking a large interest in funding

pilot trials of repurposed drug candidates with the hopes of

paying more impetus to drug repurposing. Foundations such as

‘Cures Within Reach’ are entirely centralized on aiding

repurposing studies. The MJFF, ADDF, Cure Parkinson’s

Trust, Alzheimer’s Society (United Kingdom), the Multiple

Myeloma Research Foundation, and others have financed

repurposing trials. In association with government initiatives,

various academic centers are also heading the repurposing

attempts. Secondly, to augment data sharing it is crucial to

constitute an exhaustive data analysis platform. The enormous

volume of data piled up by approved drugs or drug candidates for

clinical trials can be stored in an assorted manner and can be

unlocked and reanalyzed adopting Information science services

and artificial intelligence. The bottleneck in the research process

is that data derived from biological databases and human trials

are massive and perplexed and the conventional data processing

methods cannot work out with it. We can unquestionably

improve our understanding of the disease from this big data

and make more accurate disease-related strategies. Nevertheless,

there is a considerable breach between producing biomedical

data and data analysis. Expertise needs to find technical

clarifications to ensure the efficiency of research with less

energy and time. Finally, it is fundamental to resolve patent

restrictions and take judicious surveillance in pursuance of

facilitating the DR process. The utilization of drug reprofiling

should be backed by a risk handling strategy and the drug’s safety

assurance can be established by clinical trial information or data

from post-marketing surveillance.

6 Conclusion

In recent years, many repurposed drugs have found their

place as potential agents to treat various neurodegenerative

diseases. As already discussed many companies are developing

and elaborating the strategic advantages of using Artificial

intelligence (AI) and machine learning (ML) based

frameworks for drug discovery in this segment. Despite these

advancements, there are threats to the precise analysis of existing

pre-clinical and clinical evidence concerning particularly from

regulatory and scientific perspectives. Apart from focussing on

the efficacy of the newly repurposed drugs, robust post-

authorization studies are equally important.
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The novel coronavirus disease (COVID-19) caused by SARS-CoV-2 virus

spreads rapidly to become a global pandemic. Researchers have been

working to develop specific drugs to treat COVID-19. The main protease

(Mpro) of SARS-CoV-2 virus plays a pivotal role in mediating viral replication

and transcription, which makes it a potential therapeutic drug target against

COVID-19. In this study, a virtual drug screening method based on the Mpro

structure (Protein Data Bank ID: 6LU7) was proposed, and 8,820 compounds

collected from the DrugBank database were used for molecular docking and

virtual screening. A data set containing 1,545 drug molecules, derived from

compounds with a low binding free energy score in the docking experiment,

was established. N-1H-Indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-

amine, ergotamine, antrafenine, dihydroergotamine, and phthalocyanine

outperformed the other compounds in binding conformation and binding

free energy over the N3 inhibitor in the crystal structure. The bioactivity and

ADMET properties of these five compounds were further investigated. These

experimental results for five compounds suggested that they were potential

therapeutics to be developed for clinical trials. To further verify the results of

molecular docking, we also carried out molecular dynamics (MD) simulations

on the complexes formed by the five compounds and Mpro. The five complexes

showed stable affinity in terms of root mean square distance (RMSD), root mean

square fluctuation (RMSF), radius of gyration (Rg), and hydrogen bond. It was

further confirmed that the five compounds had potential inhibitory effects on

SARS-CoV-2 Mpro.
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1 Introduction

From December 2019, the world witnessed an outbreak of

an acute respiratory disease (Han et al., 2020; Rothan and

Byrareddy, 2020). In the early stages of the disease outbreak,

Zhou et al. (2020) obtained the full-length genomic sequences

of the virus collected from five patients. These sequences

exhibited 79.6% homology with SARS-CoV. In addition,

the newly found virus exhibited 96% identity to bat

coronavirus at the whole-genome level. The International

Committee of Taxonomy of Viruses named the virus

“severe acute respiratory syndrome coronavirus 2” (SARS-

CoV-2), and the World Health Organization (WHO)

announced this new disease as a novel coronavirus disease

2019 (COVID-19) (Anand et al., 2020; Wang et al., 2020).

According to data from the WHO, over 526 million confirmed

cases and over six million deaths have been recorded by

29 May 2022.

Similar to SARS-CoV, SARS-CoV-2 also belongs to the β-

coronavirus class but is more contagious and mutable (Tang B.

et al., 2020; Shereen et al., 2020). Vaccination has been widely

promoted as an important preventive measure against COVID-

19. As on 9 September 2022, the WHO reported that there were

371 COVID-19 vaccine candidates in development, of which

172 have entered clinical trials (COVID-19 vaccine tracker and

landscape, 2022, https://www.who.int/publications/m/item/

draft-landscape-of-covid-19-candidate-vaccines). Among the

vaccines in clinical development, the number of types ranked

was protein subunit vaccines (32%), RNA vaccines (23%), viral

vector (non-replicating) vaccines (13%), inactivated virus

vaccines (13%), DNA vaccines (9%), and other types of

vaccines. As research on protein subunit vaccines was

relatively mature and was the priority vaccine development

method, the number of protein subunit vaccines was the

largest among COVID-19 vaccines. However, persistent

mutations of the virus can affect the vaccine’s preventive

effect, especially Omicron, which largely evaded the antibodies

elicited by the vaccine (Planas et al., 2022). SARS-CoV-

2 comprises a single-stranded positive-sense RNA genome

that encodes both structural and non-structural proteins. The

non-structural proteins include RNA-dependent RNA

polymerase, coronavirus main protease (Mpro, also known as

3C-like protease, 3CLpro), and papain-like protease (PLpro). When

the viral genome enters the host cell, the host cell protein

translation mechanism translates it into a viral polyprotein,

which is then cleaved into effector proteins by the viral

proteases Mpro and PLpro (Tang X. et al., 2020; Liu et al., 2020;

Zhang et al., 2020). Since Mpro can cleave polyproteins at no less

than 11 conserved sites, it plays a vital role in the replication of

viral particles (ul Qamar et al., 2020). Therefore, it is an attractive

target for the screening of antiviral inhibitors. The high-

resolution crystal structure of SARS-CoV-2 Mpro was

presented by the Zihe Rao and Haitao Yang’s research team.

They also provided a basis for drug screening and design based

on the structure of the Mpro (Jin et al., 2020).

The research and development of a new drug is a time-

consuming process that requires huge financial investment. In

the current global crisis, the repositioning of existing drugs seems

to be a potentially useful tool in searching for new therapeutic

options (Serafin et al., 2020). Computer-assisted virtual screening

provides an inexpensive and rapid alternative to high-

throughput screening for drug discovery. Furthermore, virtual

screening technology can optimize the selection of potential

drugs (de Carvalho Gallo et al., 2018). In the past few

decades, virtual screening has played an important role in the

discovery of small molecule inhibitors of therapeutic targets.

Various ligands and structure-based virtual screening methods

have been used to identify small-molecule ligands for proteins of

interest (Bharatham et al., 2017; Singh and Jana, 2017; Li et al.,

2020). Virtual screening technology has revealed several

compound molecules that can inhibit SARS-CoV activity (Wei

et al., 2006; Niu et al., 2008; Wang et al., 2017).

In this study, we investigated potential Mpro inhibitors using a

docking-based virtual screening approach. We used a variety of

screening strategies, such as molecular docking, molecular

dynamics (MD) simulations, biological activity, and ADMET

prediction. The AutoDock Tools were used to prepare the Mpro

receptor model of SARS-CoV-2. A Vina-based molecular

docking program was encoded, and Mpro and compounds

(from DrugBank, with the 3D structure) were docked. The

compounds were sorted based on the combined free energy

score. The potential drug compounds with inhibitory effects

on Mpro were determined by analyzing the binding mode

between the compounds with better scoring results and Mpro.

The bioactivity and ADMET properties of the five selected

compounds were further explored. Simultaneously, we

performed MD simulation experiments on the complexes of

five compounds and Mpro. The purpose of this study was to

identify potential drug compounds from DrugBank by molecular

docking and MD simulations. This method can rapidly predict

whether a compound has inhibitory effect on the activity of Mpro

based on the physicochemical properties of the compound and

the stability of the protein–ligand complex.

2 Materials and methods

2.1 Receptor (SARS-CoV-2 Mpro protein)
preparation

SARS-CoV-2 Mpro is a key CoV enzyme, which plays a

pivotal role in mediating viral replication and transcription,

making it an attractive drug target for treating COVID-19

(Anand et al., 2002; Yang et al., 2003; Jin et al., 2020).

The complex crystal structure of Mpro and the N3 inhibitor

(PDB ID: 6LU7) (Jin et al., 2020) was downloaded from the
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Protein Data Bank (http://www.rcsb.org). Mpro was isolated from

the complex crystal structure using PyMOL. The separation

process of Mpro and N3 inhibitor is shown in Figure 1.

Figure 1A shows the complex crystal structure of Mpro protein

with N3, and (c) shows the 3D structure of Mpro.

2.2 Ligand data set preparation

For the docking experimental ligand (which is composed

of a drug molecule data set and N3 inhibitor), the N3 inhibitor

was isolated from the SARS-CoV-2 main protease crystal

complex. Figure 1B shows the 3D structure of N3 inhibitor.

The drug molecule data set contained 8,820 molecules

with their 3D structures. They were obtained from DrugBank

(https://www.drugbank.ca/) in the SDF format (Wishart et al.,

2018).

2.3 Pre-processing of receptor and ligands

The docking program requires files stored in the Protein Data

Bank, especially in the Partial Charge and Atom Type (PDBQT)

format. Mpro standardization involved Gasteiger charges and the

addition of polar hydrogen atoms. The conversion of the file

format from the Protein Data Bank (PDB) format to PDBQT

format was implemented using AutoDock Tools.

Data standardization was performed as a part of the pre-

processing. The drug molecules of the ligand data set were

first added to polar hydrogen atoms using Open Babel

software (O’Boyle et al., 2011). Subsequently, Gasteiger

charges were added using Raccoon (Forli et al., 2016) and

broken down into 8,820 small molecule files in a PDBQT

format.For the N3 inhibitor, Open Babel software was used to

add polar hydrogen atoms and Gasteiger charges, followed by

converting the format from PDB to PDBQT.

2.4 Molecular docking and screening

Molecular docking was performed using AutoDock Vina

and the standardized docking data. In this study, the center of

grid box was set to (–10.807, 12.541, 68.917) Å for (center_x,

center_y, center_z). Meanwhile, the size of the grid box was

defined as (30, 30, 30) Å for (size_x, size_y, size_z). Figure 2A

shows the setting information of the grid box, and (b) shows

the 3D structure of the grid box for Mpro. To generate as many

different binding modes as possible, the num-modes was set

to 20 (maximum number of binding modes to generate), and

the energy range was set to 6 kcal/mol (maximum energy

difference between the best binding mode and the worst one

displayed [kcal/mol]). The number of CPUs was set to 20

(CPU = 20), and the explicit random seed was set to 200.

We encoded a bash script file to implement the docking

process. This script file encapsulated the Vina program and the

parameters required for the Vina program, including the

parameters set in the previous paragraph and the input and

output parameters. It could automatically execute the Vina

program and perform docking experiments with each ligand

molecule and the receptor and finally showed the score of each

FIGURE 1
(A) Complex crystal structure of Mpro protein with N3; (B) three-dimensional structure of N3 inhibitor; and (C) three-dimensional structure of
Mpro protein.
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ligand molecule. It was used to calculate the free energy score of

Mpro with different conformations of each ligand.

Screening for the potential drug molecule was achieved by

implementing a specific Python script program. The optimal

docking score of Mpro with the N3 inhibitor was used as a

reference standard for the analysis and screening to establish a

candidate drug molecule data set. Figure 3 shows the

experimental process of molecular docking and virtual

screening.

Discovery Studio Visualizer was used to analyze the

interactions and types of interactions between compounds and

Mpro (docking complexes).

FIGURE 2
(A) Setting information of the grid box and(B) three-dimensional structure of gird box in the Mpro protein.

FIGURE 3
Experimental process of molecular docking and virtual screening. (A) Receptor; (B) ligands; (C) receptor pre-processing; (D) ligand pre-
processing; (E) docking of receptor and ligands; (F) table of free energy score; and (G) virtual screening for the docking result.
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2.5 Molecular dynamics simulation

Molecular dynamics (MD) simulation is an effective

method to predict the stability of protein–ligand complexes

(Bharadwaj et al., 2021). In this study, we used GROMACS

(version: 2022.2, https://www.gromacs.org/) for molecular

dynamics simulation. The topology file for Mpro protease

was generated using the gmx pdb2gmx command, with the

addition of the gromos53a6 force field. The topologies of the

five drug molecules were generated using the PRODRG

(http://davapc1.bioch.dundee.ac.uk/) server, and their

respective topology files with parameters set to chirality:

Yes; charge: Full; and EM: NO was also generated.

The simulation system adopted a rectangular solvated box and

used gmx grompp for the energy detection and minimization

processes. The maximum number of minimization steps to

perform was set to 50,000, the energy step size was set to 0.01,

and the energyminimization algorithm adopted the steepest descent

minimization. At the same time, the system was stabilized by 100 ps

NVT and NPT balance. The V-rescale thermal bath coupling

algorithm was used in the NVT ensemble, and the

Parrinello–Rahman pressure coupling method was used in the

NPT ensemble. Finally, we performed 100 ns MD simulations of

the equilibrium system at a temperature of 300 K and pressure of

1 bar. The RMSD, RMSF, Rg, number of hydrogen bonds, and

protein–ligand interactions of the MD simulation results were

recorded and analyzed for further validation of our virtual

screening results. The results of molecular dynamics simulations

were visualized using qtgrace (version: V26) software.

2.6 Bioactivity and ADMET property
prediction

As an alternative to clinical experiments, computer technology

was a fast and efficient method to predict the pharmacodynamic

properties of compounds (Zaki et al., 2022). We combined the

DrugBank database and used Molinspiration Cheminformatics

(https://www.molinspiration.com) and admetSAR web service

(Yang et al., 2019) to predict the bioactivity and ADMET

properties of the five screened compounds, respectively.

3 Results

3.1 Molecular docking and screening

In this study, AutoDock Vina was used to perform the docking

of the screenedmolecules with modeledMpro. Each ligand generated

20 conformations. These conformations were further subjected to

virtual screening evaluation. From the docking search, the

conformation with the lowest docked energy was selected as the

FIGURE 4
Interaction of covalent bonding and hydrogen bonding between Mpro protein and N3.

TABLE 1 Groups of 1,545 compounds in DrugBank.

No. Group Count

1 Approved 95

2 Approved; experimental 4

3 Approved; experimental; investigational 1

4 Approved; investigational 108

5 Experimental 736

6 Experimental; investigational 8

7 Investigational 543

8 Others 50
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best conformation. The molecular docking results for AutoDock

Vina are presented in Supplementary Table S1.

The binding energy of the interaction of N3 with Mpro was

-7.8 kcal/mol. N3 is mainly stabilized by interacting with Mpro

through the formation of covalent and hydrogen bonds. The S

atom of Cys145 ofMpro forms a covalent bond with C20 of N3. As

shown in Figure 4, N3 forms seven hydrogen bonds with Gly143,

His164, Glu166, Thr190, Gln189, His163, and Phe140 of Mpro

(Tang B. et al., 2020). These results show the active pocket

position of Mpro. As a reference, 1,545 compounds, with

energy values lower than -7.8 kcal/mol, were obtained. The

groups of these compounds in DrugBank are listed in Table 1.

According to the order of energy value, the top 30 compounds

from the molecular docking analysis are listed in Table 2.

The top 30 compounds were distributed among four different

groups of compounds. Among these, we selected the compounds

with the best docking energy. For the “approved” type, we selected

two compounds. Next, we analyzed the interactions of the

compounds C33H35N5O5 (DB00696, generic name: ergotamine),

C30H26F6N4O2 (DB01419, generic name: antrafenine), C33H37N5O5

(DB00320, generic name: dihydroergotamine), C21H16N6

(DB08450, generic name: N-1H-indazol-5-yl-2-(6-methylpyridin-

2-yl) quinazolin-4-amine), and C32H18N8 (DB12983, generic name:

phthalocyanine) with Mpro.

The conformation diagrams of these compounds are

displayed in Figure 5. The interactions of the Mpro protease

with each of the five molecules are shown in Figures 6–10.

Hydrophobic interactions were visualized using LIGPLOT

(Laskowski and Swindells, 2011) Figure 7. Other interactions,

including conventional hydrogen bond, carbon–hydrogen bond,

pi–donor hydrogen bond, alkyl, pi–alkyl, halogen (fluorine), and

pi–pi t-shaped, were visualized using Discovery Studio

Visualizer. The interactions of residues with their respective

ligands are shown in Supplementary Table S2.

TABLE 2 Top 30 compounds from the docking results.

No. Accession number Chemical formula Group Binding energy (kcal/mol)

1 DB12983 C32H18N8 Investigational -10.7

2 DB12225 C36H45N5O5S Investigational -10.4

3 DB11651 C30H23N5O Investigational -10.3

4 DB13050 C38H52N6O2 Investigational -10.2

5 DB11913 C28H25FN6O3 Investigational -10.1

6 DB14883 C29H24FN7O Investigational -10.1

7 DB14894 C28H21F4NO7 Investigational -10.0

8 DB00320 C33H37N5O5 Approved; investigational -9.9

9 DB06486 C32H29N5O2 Investigational -9.9

10 DB08450 C21H16N6 Experimental -9.8

11 DB12411 C30H34N8 Investigational -9.8

12 DB00696 C33H35N5O5 Approved -9.7

13 DB04868 C28H22F3N7O Approved; investigational -9.7

14 DB12323 C27H21F3N8O Investigational -9.7

15 DB12719 C25H24F2N2O3 Investigational -9.7

16 DB11791 C23H17FN6O Approved; investigational -9.6

17 DB11799 C21H18F3N3O5 Approved; investigational -9.6

18 DB11977 C33H37F2N7O4 Investigational -9.6

19 DB13648 C44H50N4O2 Experimental -9.6

20 DB00820 C22H19N3O4 Approved; investigational -9.5

21 DB01761 C28H29F3N6 Experimental -9.5

22 DB04016 C40H35N2O6P Experimental -9.5

23 DB06888 C22H21N5O3 Experimental -9.5

24 DB12200 C23H19N3O2 Investigational -9.5

25 DB13109 C25H28N8O3 Investigational -9.5

26 DB01200 C32H40BrN5O5 Approved; investigational -9.4

27 DB01419 C30H26F6N4O2 Approved -9.4

28 DB04330 C29H19Cl2N3O6S Experimental -9.4

29 DB06630 C30H25F10NO3 Investigational -9.4

30 DB07020 C20H14N6O2 Experimental -9.4
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FIGURE 5
Conformation diagrams of these compounds. (A) Ergotamine; (B) antrafenine; (C) dihydroergotamine; (D) N-1H-indazol-5-yl-2-(6-
methylpyridin-2-yl)quinazolin-4-amine; and (E) phthalocyanine.

FIGURE 6
(A) Hydrophobic interaction between Mpro and ergotamine and (B) two-dimensional plot of ergotamine interaction with the amino acid
residues.
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FIGURE 7
(A)Hydrophobic interaction betweenMpro and antrafenine and (B) two-dimensional plot of antrafenine interactionwith the amino acid residues.

FIGURE 8
(A) Hydrophobic interaction between Mpro and dihydroergotamine and (B) two-dimensional plot of dihydroergotamine interaction with the
amino acid residues.
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FIGURE 9
(A) Hydrophobic interaction between Mpro and N-1H-indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine and (B) two-dimensional plot
of N-1H-indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine interaction with the amino acid residues.

FIGURE 10
(A)Hydrophobic interaction between Mpro and phthalocyanine and (B) two-dimensional plot of phthalocyanine interaction with the amino acid
residues.
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3.2 Molecular dynamics simulation

We performed 100 ns MD simulations for each of the five

compounds and N3 inhibitors in complex with Mpro. As shown

in Figure 8, complex N3–Mpro trajectory stabilized around

20 ns, N-1H-indazol-5-yl-2-(6-methylpyridin-2-yl)

quinazolin-4-amine–Mpro stabilized around 25 ns,

phthalocyanine–Mpro stabilized around 35 ns, antrafenine–Mpro

stabilized around 25 ns, ergotamine–Mpro stabilized around 25 ns,

and dihydroergotamine–Mpro stabilized around 25 ns The results

showed that the RMSD of the five complexes in the MD trajectory

interval (35–50 ns) fluctuated from 2.47 to 3.59 Å for

dihydroergotamine Figure 9, 2.71–3.71 Å for ergotamine,

2.43–4.75 Å for phthalocyanine, 2.99–4.56 Å for antrafenine,

2.25–3.40 Å for N-1H-indazol-5-yl-2-(6-methylpyridin-2-yl)

quinazolin-4-amine, and 1.91–3.33 Å for the N3 inhibitor and

Mpro complex. The smaller the RMSD value, the smaller the

fluctuation of the complex structure. Compared with

N3 inhibitors, the RMSD of the five molecule–Mpro complexes

have little difference Figure 10.

Rg is an important indicator for evaluating the

compactness of the docking architecture. The smaller the

cyclotron radius, the better the compactness Figure 11, and

hence, the more stable the protein structure. The Rg results of

the five molecules and N3 inhibitors in the complex with Mpro

are shown in Figure 12. The average Rg of the N3–Mpro

complex was about 22.5 Å. The average Rg of the five

complexes showed little difference and was lower than that

of the N3–Mpro complex except for ergotamine–Mpro complex.

The average Rg of the drug dihydroergotamine–Mpro,

phthalocyanine–Mpro, N-1H-indazol-5-yl-2-(6-

methylpyridin-2-yl) quinazolin-4-amine–Mpro, and

antrafenine–Mpro complexes were all about 22 Å. The

average Rg of the ergotamine–Mpro complex was about the

highest (22.8 Å). This shows that the results of the Rg analysis

are consistent with the results of the RMSD trajectory analysis.

The RMSF can be used to observe how individual amino

acids fluctuate during the simulation. It is possible to compare

the effects of different small-molecule ligands on the spatial

structural fluctuations of proteins by calculating the RMSF

value. The smaller the value of RMSF, the smaller the

disturbance of the small-molecule ligand to the protein, and

therefore the stronger the stability of the complex. We

calculated the RMSF value for each of the five small

molecules and N3 inhibitors bound to Mpro. The calculated

values are shown in Figure 13. The RMSF results showed that

the average RMSF value of Mpro bound to dihydroergotamine

was 1.75 Å, which indicates less fluctuation in the complex

FIGURE 11
Plot of root mean square deviation (RMSD) values, during 100 ns MD simulation of compound–Mpro complexes. (A) N3–Mpro RMSD; (B) N-1H-
indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine–Mpro RMSD; (C) phthalocyanine–Mpro RMSD; (D) antrafenine–-Mpro RMSD (E)
ergotamine–Mpro RMSD; and (F) dihydroergotamine–Mpro RMSD.
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structure. However, the residues Met49 (7.07 Å), Tyr54

(3.67 Å), Arg188 (2.30 Å), and Thr24 (2.30 Å) showed a

slight fluctuation in the dihydroergotamine–Mpro complex

during the simulation. Thus, from the perspective of RMSF,

the stability order of the complex formed with the main

protease is dihydroergotamine, antrafenine, ergotamine, N-

1H-indazol-5-yl-2-(6-methylpyridin-2-yl) quinazolin-4-

amine, and phthalocyanine.

Hydrogen bonds between the ligand and key residues of

the main protease were investigated using 100 ns MD

simulations as shown in Figure 14. During the 100 ns

simulation, there were multiple hydrogen bonds between

the five compounds and Mpro. The results confirmed

that the five compounds in the MD system had a

strong inhibitory effect on Mpro, and there was a good

binding effect between the compounds and Mpro in the

pocket of Mpro.

3.3 Pharmacodynamic properties

The results of bioactivity and ADMET are shown in

Supplementary Tables S3, S4, respectively.

Molinspiration Cheminformatics can predict the GPCR

ligand, ion channel modulator, kinase inhibitor, nuclear

receptor ligand, protease inhibitor, and enzyme inhibitor

values of compounds to evaluate their biological activities.

According to reports, a bioactivity score of -5.0–0.0 is

considered moderately active, and a score of ≥0 is considered

active (Mokhnache et al., 2019; Rahman et al., 2021). From the

predicted results, it can be concluded that N-1H-indazol-5-yl-2-

(6-methylpyridin-2-yl)quinazolin-4-amine (score 0.38) is an

active enzyme inhibitor, and the other four compounds can

be approximately considered active enzyme inhibitors.

The admetSAR can predict ADMET for pharmacodynamic

studies of five compounds in the host. In Supplementary Table

S4, parameters such as molecular weight, water solubility (logS),

human intestinal absorption, blood–brain barrier, Caco-2

permeable, human oral bioavailability, and toxicity of the

compounds were listed. The results showed that the solubility

value of antrafenine was slightly lower than -4, while the values of

other compounds were higher than -4. This indicated that the

solubility of the five compounds was suitable (Rahman et al.,

2021). None of the five compounds were carcinogenic. But it

should be noted that phthalocyanine and N-1H-indazol-5-yl-2-

(6-methylpyridin-2-yl)quinazolin-4-amine were shown to have

AMES toxicity. Regarding drug-likeliness, only N-1H-indazol-5-

yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine met the

requirements of the five rules, and other compounds were

larger than the ideal molecular weight of 500. By comparison,

FIGURE 12
Plot of radius of gyration (Rg) values, during 100 nsMD simulation of compound–Mpro complexes. (A)N3–Mpro Rg; (B)N-1H-indazol-5-yl-2-(6-
methylpyridin-2-yl)quinazolin-4-amine–Mpro Rg; (C) phthalocyanine–Mpro Rg; (D) antrafenine–Mpro Rg; (E) ergotamine–Mpro Rg; and (F)
dihydroergotamine–Mpro Rg.
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it was concluded that the drug candidate order of the five

compounds was ergotamine, dihydroergotamine, antrafenine,

N-1H-indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-

amine, and phthalocyanine.

4 Discussion

The docking of small-molecule compounds to receptor

binding sites and the estimation of the binding affinity of the

complex are important components of the structure-based drug

design process. AutoDock Vina is an open-source program for

drug discovery, molecular docking, and virtual screening, which

significantly improves the average accuracy of the binding mode

predictions (Herowati and Widodo, 2014; Xiang et al., 2015).

Ergotamine is an α-1 selective adrenergic agonist that is

commonly used in the treatment of migraine disorders. The

binding energy of ergotamine and Mpro was -9.7 kcal/mol.

Ergotamine forms hydrogen bonds with residues Gly143, Cys145,

and Glu166, respectively. Glu166, Met165, Met49, His41, Cys145,

Leu27, Thr26, and Asn142 residues and the hydrophobic groups of

ergotamine can engage through hydrophobic interactions.

Ergotamine has an alkyl interaction with residue Met49 and a

pi–alkyl interaction with residue His41. The molecular docking

representation of ergotamine with Mpro is shown in Figure 6.

The interaction energy between antrafenine and Mpro was

-9.4 kcal/mol. Antrafenine forms hydrogen bonds with residues

Thr25, Ser46, Tyr54, and His163, respectively. Met49, Glu166,

His41, Gln189, Arg188, Met165, Cys145, Asn142, and

Gly143 residues and antrafenine can engage through

hydrophobic interactions. There were also alkyl, pi–alkyl, and

halogen (fluorine) interactions between antrafenine and residues.

The molecular docking representation of antrafenine with Mpro is

shown in. Moreover, antrafenine is a piperazine derivative drug,

which exhibits analgesic and anti-inflammatory effects similar to

naproxen.

The interaction energy between dihydroergotamine and Mpro

was -9.9 kcal/mol. Dihydroergotamine forms hydrogen bonds

with residues Gly143, Cys145, and Glu166, respectively.

Moreover, dihydroergotamine is stabilized by the interaction

with Mpro through hydrophobic interactions, involving

Glu166, Leu27, Cys145, Thr24, Thr45, Met49, His41, and

Met165 residues. There were also carbon–hydrogen bond,

alkyl, and pi–alkyl interactions between dihydroergotamine

and residues. The molecular docking representation of

dihydroergotamine with Mpro is shown in .

N-1H-indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine

is an experimental drug molecule. The binding energy of N-1H-

indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine and Mpro

was -9.8 kcal/mol. N-1H-indazol-5-yl-2-(6-methylpyridin -2-yl)

FIGURE 13
Plot of root mean square fluctuations (RMSF) values, during 100 ns MD simulation of compound–Mpro complexes. (A)N3–Mpro RMSF; (B)N-1H-
indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine–Mpro RMSF; (C) phthalocyanine–Mpro RMSF; (D) antrafenine–Mpro RMSF; (E)
ergotamine–Mpro RMSF; and (F) dihydroergotamine–Mpro RMSF.
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quinazolin-4-amine forms hydrogen bonds with residues Leu141,

Ser144, Cys145, and Gln189, respectively. Gln192, Pro168, and

Leu167 residues and the methyl of N-1H-indazol-5-yl-2-(6-

methylpyridin-2-yl)quinazolin-4-amine can engage through

hydrophobic interactions. Furthermore, Arg188, Asp187, Met165,

Gln189, His41, and Cys145 residues can form hydrophobic

interactions with N-1H-indazol-5-yl-2-(6-methylpyridin -2-yl)

quinazolin-4-amine. There were also pi–donor hydrogen bond,

alkyl, pi–alkyl, halogen (fluorine), and pi–pi T-shaped interactions

between N-1H-indazol-5-yl-2-(6 -methylpyridin-2-yl)quinazolin-4-

amine and residues. The molecular docking representation of N-

1H-indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine with

Mpro is shown in.

Phthalocyanine is an 18-electron large conjugated system

compound comprising four isoindole units. The center of the

conjugated ring structure has a large cavity that can

accommodate metal ions (such as iron, cobalt, and nickel).

Phthalocyanine has the lowest binding energy value of

-10.7 kcal/mol. Glu166, Met165, Arg188, His41, Met49, and

Thr25 residues and the isoindole ring of phthalocyanine can

engage through hydrophobic interactions. The carbonyl group of

Gln189 (hydrogen bond acceptor) forms a hydrogen bond with

the NH group of acting phthalocyanine (hydrogen bond donor).

Phthalocyanine also has alkyl and pi–alkyl interactions with

residues. However, it should be noted that phthalocyanine has

unfavorable interactions with residues His41 and Glu166,

respectively. The molecular docking representation of

phthalocyanine with Mpro is shown in.

5 Conclusion

Molecular docking and molecular dynamics simulations have

been widely used in drug screening and drug design. In this study,

we present several exciting findings about SARS-CoV-2 Mpro. The

compounds analyzed in this study can be used as potential inhibitors

of SARS-CoV-2Mpro: Ergotamine is an approvedmedication for the

treatment of migraine disorders, and antrafenine is used as an anti-

inflammatory and analgesic agent for the relief of mild-to-moderate

pain. Furthermore, we have uncovered dihydroergotamine, N-1H-

indazol-5-yl-2-(6-methylpyridin-2-yl) quinazolin-4-amine, and

phthalocyanine, which may be developed as potential treatments

against SARS-CoV-2 infections. Structural optimization and clinical

trials are needed for these compounds to become strong drug

candidates. At present, no biological experiments have been

carried out in this study. However, through high-throughput

molecular docking and molecular dynamics simulations, it was

confirmed that these five compounds can form stable

conformational structures with Mpro and have potential inhibitory

effects on SARS-CoV-2. At the same time, this study provides

research ideas and helps for drug designing and drug reusing for

the treatment of SARS-CoV-2.
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