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Carlotta Masciocchi4, Vincenzo Pisapia4, Cristina Calvani4, Chiara Iacomini4,
Alfredo Cesario6, Luca Boldrini 5, Benedetta Gui7, Vittoria Rufini7,
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Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy

Aim: The first prototype of the “Multidisciplinary Tumor Board Smart Virtual Assistant”
is presented, aimed to (i) Automated classification of clinical stage starting from
different free-text diagnostic reports; (ii) Resolution of inconsistencies by identifying
controversial cases drawing the clinician’s attention to particular cases worthy for
multi-disciplinary discussion; (iii) Support environment for education and knowledge
transfer to junior staff; (iv) Integrated data-driven decision making and standardized
language and interpretation.

Patients and Method: Data from patients affected by Locally Advanced Cervical Cancer
(LACC), FIGO stage IB2-IVa, treated between 2015 and 2018 were extracted. Magnetic
Resonance (MR), Gynecologic examination under general anesthesia (EAU), and Positron
Emission Tomography–Computed Tomography (PET-CT) performed at the time of diagnosis
were the items from the Electronic Health Records (eHRs) considered for analysis. An
automated extraction of eHR that capture the patient’s data before the diagnosis and then,
through Natural Language Processing (NLP), analysis and categorization of all data to
transform source information into structured data has been performed.

Results: In the first round, the system has been used to retrieve all the eHR for the 96
patients with LACC. The system has been able to classify all patients belonging to the
training set and - through the NLP procedures - the clinical features were analyzed and
classified for each patient. A second important result was the setup of a predictive model
to evaluate the patient’s staging (accuracy of 94%). Lastly, we created a user-oriented
operational tool targeting the MTB who are confronted with the challenge of large volumes
of patients to be diagnosed in the most accurate way.
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Conclusion: This is the first proof of concept concerning the possibility of creating a
smart virtual assistant for the MTB. A significant benefit could come from the integration of
these automated methods in the collaborative, crucial decision stages.
Keywords: locally advanced cervical cancer, multidisciplinary tumor board smart virtual assistant, artificial
intelligence, virtual medicine support, chemoradiation (CRT)
INTRODUCTION

Biological, radiological and clinical knowledge in the locally
advanced cervical cancer (LACC) setting, as in all other fields
of oncology, is growing on exponentially. Oncologists deal every
day with many patients characterized by complex and
heterogeneous phenotypes. The simultaneous elaboration of
complex information is difficult even for experienced
physicians and a significant amount of relevant information
could be lost in the clinical decision process, as a direct
consequence of the “information overload” (1).

The huge amount of data created in hospitals and populating
complex data-lakes, stays largely unexploited and, in most of the
circumstances, not organized at all. These general considerations
make it clear that Artificial Intelligence (AI), a general term which
covers theuseof acomputer algorithms tomodel intelligentprocesses
(2, 3), is afieldwithpotentially limitless applications inmedicine and,
more specifically, in oncology. ThroughMachine Learningmethods,
AI enables managing large amounts of data and allows smart data
clustering for decision support in several knowledge areas.

The automated extraction and classification of actionable
information from unstructured data (reports) represents a
prerequisite for expanding “predictive” abilities and effectively
tailoring patient treatments. Once unstructured and structured
information are integrated and made consistent, and predictive
methods are introduced to support diagnostic and therapeutic
decisions, the most appropriate body where these data-driven
methods can be exploited is the Multidisciplinary Tumor
Board (MTB).

MTBs working groups have the main purpose in selecting the
most appropriate and effective treatment for cancer patients, by
taking into account staging of the tumor and its classification
along with overall clinical characteristics. Several specialists often
take part to the multidisciplinary meeting, such as radiation and
medical oncologists, pathologists, radiologists, surgeons, nuclear
medicine physicians and research nurses. Therefore, the point of
views may be various and sometimes conflicting. Moreover, the
discussion of each clinical case is often long and complex,
especially if there are conflicting exams or if only the reports
and not the images are available. Finally, there are not many
cases that can be clearly discussed in a single MTB session.

AI and Machine Learning have already been used as a decision
support tools in the framework of MTBs (4, 5) - yet many unmet
needs are still voiced by MTB operators that may be addressed
through such innovative approaches. The opportunities for more
effective decision-making process can be summarized as follows:

• decision-making support by integrating different sources and
information (as well as knowing which source is most reliable).
26
• decision-support systems that allow automated discrimination of
simple vs. complex cases to help focusing efforts for the latter.

• reduce potential inconsistencies and lack of homogeneous
criteria for diagnostic assessments by developing data-driven
methods and common languages.

• enable increased teamwork and effective decision making
across clinical expertise.

• leverage retrospective analyses from large data set to create
methods and knowledge base that can be exported to other
hospitals, thus creating a standardized approach for scalable
methods and multicentric research efforts.

In our constant efforts to ameliorate the outcomes in the
treatment of LACC, starting from the extensive work performed
on chemo-radiation followed by surgery (5–10), we plan to
implement a tailored AI-based decision support process. We
blue-printed and implemented an automated system based on
Natural Language Processing (NLP) (11, 12) to extract clinically
relevant information from different free text reports of diagnostic
exams and procedures that are commonly used in daily clinical
activity, followed by a machine learning predictive method to
support diagnostic decisions.

Therefore, to further develop and test the robustness of our
automated system, we have performed a proof of concept by
designing the first prototype of the “MTB Virtual Assistant” with
the following goals:

i. Automated classification of clinical stage starting from
different free-text diagnostic reports;

ii. Resolution of inconsistencies by identifying controversial
cases drawing the clinician’s attention to particular cases
worthy for thorough multi-disciplinary discussion;

iii. Support environment for education and knowledge
transfer to junior staff;

iv. Integrated data-driven decision making and standardized
language and interpretation.
MATERIALS AND METHODS

Patients
Data from patients affected by LACC, FIGO stage IB2-IVa,
treated between 2015 and 2018 were extracted from our
institutional data-lake. The following Electronic Health
Records (eHRs) items have been considered for analysis:

- Staging Magnetic Resonance (MR) report;

- Gynecologic examination under general anesthesia (EUA)
report;
January 2022 | Volume 11 | Article 797454
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- Staging Positron Emission Tomography–Computed Tomography
(PET-CT) report.

Other patient’s relevant data (e.g., demographics, laboratory
tests, body mass index, drugs, comorbidities etc.) were collected
for further analysis.

Methods
A two steps model has been applied to allow the set-up of the
MTB Virtual Assistant:

i. Automated extraction of the relevant eHR sets that capture
the patient’s data before the diagnosis and then, through
Natural Language Processing (NLP), analysis and
categorization of all information to transform source
information into structured data,

ii. development of A.I. methods to support the clinical staff in
the decision process with regards to tumor staging
confirmation and to help in identifying the most complex
cases, where more complex analyses and discussion are
needed (e. g. due to conflicting information coming from
different exams).

A first subset of patients with pre-validated staging and
diagnosis was used as training set for steps one and two.

Once steps (i) and (ii) have been completed and successfully
tested for patients’ subsets with pre-validated staging and
diagnosis (the ‘training set’), we developed an integrated
toolset to support the MTB diagnostic process. Each time a
new patient is selected for staging and treatment decision-
making and enters the workflow, her eHR are automatically
processed to provide structured clinical features (e.g. presence/
absence of specific disease features in the tumor region, tumor
activity etc.).

The A.I. algorithm then delivers an assessment for the staging
of the tumor with a certain degree of reliability, reported on the
screen as percentage of accuracy. The MTB staff can proceed– if
needed- to go deeper in the characterization of the information,
performing further analyses of clinical data patterns from
different sources and comparing the content from different
eHRs. This process, characterized by such a depth and
complexity of information, and the A.I. empowered multi-
dimensional analyses allow a robust consensus on the clinical
decision to be taken.

Step (i): Natural Language Processing:
Extracting Clinical Data from Text-Based
Medical Reports
The first step is represented by the extraction of clinically
relevant information from MR, EUA, PET-CT reports and
other eHRs. The challenge with these data sources was firstly
to transform the unstructured information into discrete,
categorical data able to define a clear, robust and actionable
framework of clinical and pathological features related to the
tumor loco-regional morphology.

The output of this transformation is therefore a pattern of
structured clinical features that describe in detail the disease of
Frontiers in Oncology | www.frontiersin.org 37
the patient whose specific data constitute the source information
of the integrated A.I. empowered analysis.

In terms of computer algorithm used, the NPL method to
transform text into data is based on a hybrid approach using
rules and annotations derived from medical guidelines,
combined with A.I. (machine learning); in this experience,
this was developed using the SAS Visual Text Analytics®

environment (12, 13). Pre-processing steps as such as
segmentation, boundary detection and tokenization, and word
normalization (stemming, spelling correction, expansion of
abbreviation) were performed to achieve a higher degree of
accuracy. Thereafter, syntactic and semantic analysis were
performed with the support of an algorithm that creates the
network of words, showing the occurrence of links among two
words and providing an enhanced approach to natural language
understanding. Finally, the sequence of steps above gave us the
relevant NLP features leading to data extraction from real life
medical reports.

By using these NLP steps, the medical reports were processed
and free-text diagnostic information were transformed into
categorical or quantitative clinical data that classify the clinical
features resulting from each of the three exams MR, EUA, PET-
CT. The selection of the relevant clinical features that
characterize the diagnosis – and most importantly tumor
staging – was performed by the multidisciplinary clinical team
and constitute the basis for the ontology of the study.

Therefore, the result of this data discovery process for each
patient is a table showing how detailed clinical features in the
tumor region are diagnosed for each of the three exams – as
shown in Table 1A. Any clinical feature is then inspected and
reported as being or not within the framework of the three types
of exams. Categorical morphological variables (i. e. whether or
not a specific region is involved) are mostly extracted from MR
and EUA, while PET-CT clinical features provide additional
levels of tumor (metabolic) activity.

Therefore, after the eHR automated reading and the
subsequent NLP step, the patient’s clinical features are
collected in a summarized pattern, as shown in Table 1B
(specific instance of the table for a patient case); this view
shows, for each of the clinical features, whether this has been
identified as positive (meaning whether that region is involved in
the tumor progression) or not. Examples from Table 1B indicate
bladder involvement, as detected both by MR and EUA, while
rectovaginal septum appears as involved when analyzing the
results from the EUA and not from the RM. This conflicting
outcome may indicate uncertainty in the staging assessment,
which is typically represented in the predictive model results, as
explained in step (ii) below.

This transformation from unstructured to structured data is
the mainstay of the input to the prediction and clustering then
executed by A.I. (machine learning) models.

Step (ii): Assessment of Tumor Staging
through Statistical Learning
To create a system that supports the MTB in disease staging, the
first step is to use a supervised learning technique for the training
January 2022 | Volume 11 | Article 797454
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set, where tumor stage was known a priori for each patient in this
group. This was achieved by applying clustering methods to
classify patients based on similarity in their clinical feature
pattern (the summary view as in Figure 1) and in their
diagnosed staging. When applying clustering algorithms for each
of the 3 diagnostic methods separately (MR, EUA, PET-CT) seven
groups for each of the three diagnoses were generated, with a good
degree of discrimination. Once the clusters have been created in
the training set, a machine learning algorithm has then been used
to build a predictive model for the staging based on composition of
the clusters. “Decision Tree” algorithms have been adopted, using
the SAS Vyia ® analytics and modeling features.
Frontiers in Oncology | www.frontiersin.org 48
Finally, a validation step has been performed on a new set of
patients to predict their staging based on the trained Decision
Tree model, testing the validity of the model.
RESULTS

The system has been firstly used to retrieve, with an automated
extraction procedure, all the eHR for 96 patients with histological
proven LACC. This represented and has been used as the
training set of the study, with validated 2009 FIGO staging
classification ranging from IB2 to IVA as output.
TABLE 1B | Example of a patient’s pattern with convergent and conflicting features.

Data Type Clinical Feature Inspected (Y/N) Clinical Feature Inspected (Y/N) Clinical Feature Inspected (Y/N)

MR EUA PET-CT

Parametrium involvement Categorical Y Y
Vaginal lower third involvement Categorical N N
Vaginal middle third involvement Categorical N N
Vaginal upper third involvement Categorical N N
Bladder involvement Categorical N N
Rectum involvement Categorical N N
Vesico-vaginal septum involvement Categorical N N
Recto-vaginal septum involvement Categorical Y N
Hydronephrosis Categorical N
Lymph nodes involvement Categorical Y
Lymph nodes activity Quantitative Y
Cervical lesion Categorical Y
Cervical activity Quantitative Y
Fornix involvement Categorical Y
Stroma involvement Categorical Y
Methabolic activity Quantitative N
“Other” activity Quantitative N
January 2
MR: Magnetic resonance; EUA: Examination under anesthesia; PET-CT, Positron Emission Tomography–Computed Tomography; Y, yes; N, no.
TABLE 1A | Clinical features included in the three diagnostic exams and data types.

Data Type Clinical Feature
Included in diagnosis

Clinical Feature
Included in diagnosis

Clinical Feature
Included in diagnosis

MR EUA PET-CT

Parametrium involvement Categorical o o
Vaginal lower third involvement Categorical o o
Vaginal middle third involvement Categorical o o
Vaginal upper third involvement Categorical o o
Bladder involvement Categorical o o
Rectum involvement Categorical o o
Vesico-vaginal septum involvement Categorical o o
Recto-vaginal septum involvement Categorical o o
Hydronephrosis Categorical o
Lymph nodes involvement Categorical o
Lymph nodes activity Quantitative o
Cervical lesion Categorical o o
Cervical activity Quantitative o
Fornix involvement Categorical o o
Stroma involvement Categorical o o
Methabolic activity Quantitative o
“Other” activity Quantitative o
022 | Volu
MR: Magnetic resonance; EUA: Examination under anesthesia; PET-CT, Positron Emission Tomography–Computed Tomography.
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The available eHR included MR, EUA, and PET-CT
diagnostic reports for all these patients.

The system resulted to be able to classify all patients
belonging to the training set and - through NLP procedures -
the clinical features were analyzed and classified for each
patient. This analysis provided the patient-specific summary
dashboard shown in Figure 1 (desktop MTB team dashboard,
which corresponds to Table 1B). This highlights how the
different diagnostic methods have identified which areas
have been impacted by the tumor progression (i. e. presence/
absence of the disease in different regions) and the main
activity levels. Again, this ‘clinical feature pattern’ also
highlights when two different diagnostic methods have
provided different outcomes for a given area, which is critical
to identify patients who require a more thorough analysis
during the MTB meetings.

In addition, the clinical staff can retrieve other clinical
parameters of interest directly from the system, such as
laboratory exams, biomarkers, risk factors – and it is always
Frontiers in Oncology | www.frontiersin.org 59
possible to get the direct access to medical reports and compare
them as shown in Figure 2.

Next, we focused on the development of predictive models for
the 2009 FIGO staging classification based on the 96-patients
worth training set and using a set of Decision Tree machine
learning algorithms, obtaining a patient’s staging prediction
accuracy of 94%.

The model uses clinical features extracted and classified from
the MR and the EUA reports. Even higher accuracy (98%) can be
achieved integrating the input from the PET-CT.

However, we consider the staging prediction coming from
MR and EUA combined as a more solid base for predictive
methods, as these two exams evaluate the same morphological
and anatomical indicators. In addition, they represent a
consistent and replicable set of diagnosis that can be exported
to other medical centers quite easily. Once the information
dashboard and predictive model have been designed based on
the training set, we have put focus in creating a user-oriented
operational tool targeting the MTB and the clinical teams who
FIGURE 1 | Example of dashboard showing clinical features from three diagnoses.
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are confronted with the challenge of large volumes of patients to
be diagnosed in the most accurate way. The resulting decision
support system is summarized in Figure 3 in a logical diagram.

The flow to support the MTB is designed as follows:

• when a new patient is prepared for the discussion at the MTB,
the system performs the following processing steps: (i) automatic
retrieval of eHR and other clinical data; (ii) NLP based
Frontiers in Oncology | www.frontiersin.org 610
transformation of the free text reports into structured clinical
features that characterize the single patient, on the basis of the
three diagnostic exams (MR; EUA; PET-CT); (iii) clustering of
patients according to the clinical features patterns; (iv) machine-
learning based prediction of the pre-diagnostic FIGO staging;

• once the steps described above have been completed (in near-
real time) for any new patient, the MTB staff will be able to
consult the list of patients covered in the board discussion on
FIGURE 2 | Example of dashboard included in Virtual Assistant that compare medical reports.
FIGURE 3 | Logical view of the Virtual Assistant dashboard and use in Multidisciplinary Tumor Board.
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the system dashboard and the assessment of FIGO staging
based on machine learning. The system provides also an alert
that signals the degree of discrepancies in the diagnostic
results which may impact the discrimination power
(Figure 4) – the scoring in the dashboard will be low in
case of controversial results. From there, the clinical team can
navigate through the system, giving priority to the most
critical patients (i.e., the patients where the model shows
the lowest discrimination power, as in the example in
Figure 5, where the A.I. model shows a low discrimination
power, 66%, due to discrepancies in the different diagnostics);

• as already mentioned, from the single panel view of the critical
patients, the MTB can get to a deeper view by analyzing the
specific clinical features classification from the three exams
(Figure 1). This drill-down may highlight clinical features
where two exams have led to different interpretations from two
specialists (e.g., radiologist and nuclear medicine physician),
which in itself would trigger more discussion in the board.

Ultimately, the clinical team may want to compare the eHR
items that originated the discrepancies, which would be
immediately available in the system (Figure 2).

In order to test the effectiveness of the overall approach, the
system has been tested with an independent group of 13 patients
(whose features have not been used in the Training Set),
confirming overall positive performances.

After all the medical reports were retrieved, the NLP system
proceeded in classifying all patients in detail through their
patterns of clinical features: the predictive model for FIGO
staging has shown an accuracy of 93%, substantially
confirming the performances observed in the training set.

DISCUSSION

A proof-of-concept for an integrated framework for automated
classification of disease staging, and a Clinical Decision Support
System in the multidisciplinary management of LACC is reported.
Frontiers in Oncology | www.frontiersin.org 711
Using NLP, we have trained and validated a biomedical
imaging report analyzer that performs a smart “automated
classification” of the LACC stage. As a primary staging
method, the algorithm trained using digital MR, PET-CT and
EUA reports from the cohort used in the Training Set, achieved
excellent accuracy when matched with the prediction of
the stage.

The performance compared favorably to clinical staging and
was confirmed to the same levels of accuracy when tested in the
independent Validation Set. Notably, the reports were performed
by different physicians without using a common template, so
even though the task for the software was complex and prone to
misinterpretation, it was successful.

To the best of our knowledge this is the first prototype aimed
at supporting effectively a MTB in the prioritization and
analysis of the most critical cases. The intuitive Graphical
User Interface allows an easy detection of discrepancies
among the imaging reports, so, rather than focusing on the
clinical cases without diagnostic uncertainties whose treatment
should be an easy skill, the software suggests the specialists to
focus their attention on the most critical cases, optimizing both
human and time resources, dedicating more quality time to
deep discussion and achieving a more robust data-
driven consensus.

In a large-volume scenario as well as in a low- resources
setting, the implementation of an automatic tool as the one
described could have a very relevant impact as supported by the
promising results of this proof-of-concept.

Obviously, this tool is not intended to replace the tumor
board’s discussion of clinical situations, even in circumstances
when the UAE and MR are in agreement. At truth, reports
frequently underpin parts that aren’t written, but are assessed in
multidisciplinary meetings (e.g. some poor detection of the outer
cervical stroma that is not a sure sign of parametrial invasion).It
has to be considered as a facilitator of the decisional process and
a tool to make MTD meetings go faster even if there are
numerous clinical cases to be discussed.
FIGURE 4 | Entry dashboard that classify incoming patients for the Multidisciplinary Tumor Board session.
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The approach proposed in this paper is – to the best of our
knowledge – quite novel and can complement other AI-based
technologies experienced in other research projects (4, 14). As an
example, radiology-focused applications aim to automate and
streamline analytical tasks in order to improve the efficiency,
accuracy, and consistency in the interpretation of the radiological
imaging (e.g., computer aided detection and diagnosis software,
i.e., CADe and CADx). Similarly, computer aided triage (CADt)
software analyzes images to prioritize the review of images for
patients with potentially time sensitive findings. Another
promising area of growth is the use of AI to set up a Clinical
Decision Support System for the treatment of cancer (e.g., IBM
“Watson for Oncology” software). The latter stores and indexes
literature, protocols, and patient charts, learning from test cases;
thereafter, all the information input is verified by the experts from
Memorial Sloan Kettering Cancer Center (15).

Albeit very focused and specific for LACC, this proof of
concept could be easily adapted and extended to other cancer
settings, demonstrating the favorable scalability of the provided
structure. There is, in fact, much room for re-use of the many
pivotal components:

- Extract/Transform/Load (ETL) automated extraction and
following NLP clinical features classification;

- machine-learning based predictive model for FIGO staging,
which can be trained on different patient set, classification
system and endpoints;
Frontiers in Oncology | www.frontiersin.org 812
- overall navigation and drill-down to different layers of
information, to allow the MTB for a data-supported
analysis and discussion (thus promoting collaborative
methods and integration of skills).

- especially in the Covid 19 era where MTBs are performed
increasingly in virtual/online mode, this system offers a
remote collaborative platform into the hospital and among
hospitals.

Furthermore, as already suggested by Bizzo et al. (16), A.I. can
help drive the field toward more structured reporting from
different specialists, which is critical for an effective MTB and
serves as the basis for a “virtuous cycle” in creating additional
data for A.I. to improve upon.

Moreover, a further strength of the proposed approach is
represented by the machine-learning and clustering methods -
used in connection with NLP and understanding of clinical
features from diagnoses – that allowed us to identify patients’
phenotypes which are not characterized only through the FIGO
staging and can be especially useful for future prognostic models
able to predict the complete pathological response, as well as
other prognostic outcomes.

Lastly, new prospective clinical scenarios such as the
possibility to introduce into the software other clinical tools
that could be useful for early cervical cancer characterization can
be speculated. For example, the addition of cervix clinical
morphology and characterization by colposcopy images or
FIGURE 5 | Dashboard view of a patient for the Multidisciplinary Tumor Board.
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ultrasound measurements to the MTB Smart Virtual Assistant
software could be quite useful in determining whether or not to
employ conization in early cervical cancer. Some literature data
are already available and could form the basis for a future
integration project (17–20).

In terms of future developments starting from this proof of
concept, we consider strategic the following key points:

• enlarge the training and validation cohort by recruiting patients
coming from our center as well as other institutions: the
increased cohort will allow to further improve the NLP
effectiveness and predictive system accuracy;

• use of this setting as a base for an end-to-end model; covering
also the re-staging and the pathological response definition; in
this way, we could be able to provide further insights to the
MTB not only at the diagnostics phase, but also along the
treatment and the follow-up.

• extend to other languages (e.g., English), possibly integrating
existing NLP system for eHR transformation and then
connecting our clustering and predictive methodologies: this
transformation could allow a widely dissemination.

In conclusion, while this prototype should still be considered as
first proof of concept of the possibility of creating a Smart Virtual
Assistant for MTB, we believe that this experience discloses a
significant benefit in the integration of these automated methods
in the collaborative, crucial decisional steps, giving clinicians the
opportunity to save time by optimizing the duration of
multidisciplinary meetings, to consolidate information and
leverage data-driven evidence that would be not achievable in the
more traditional settings and decisional workflows.
Frontiers in Oncology | www.frontiersin.org 913
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Background: Borderline Resectable Pancreatic Cancer (BRPC) remains a unique entity
that is difficult to categorize due to variance in definitions and the small number of patients.
The ultimate goal is to achieve a free resection (R0) after a favorable response to
neoadjuvant therapy that is somewhat difficult to assess by current radiological parameters.

Aim: To evaluate the role of Magnetic Resonance Imaging (MRI) pancreatic protocol,
including Diffusion-Weighted Imaging (DWI), in patients with BRPC receiving neoadjuvant
therapy, and further compare it to RECIST criteria and outcome.

Methods: Histologically confirmed BRPC patients were prospectively included. DWI-MRI
was performed pre- and post-therapy. Clinical characteristics with ensuing operability
were recorded and correlated to radiological RECIST/apparent diffusion coefficient (ADC)
change, preoperative therapy administrated, surgical resection status, and survival.

Results:Outof 30BRPCcases, only 11 (36.7%) ultimately underwent pancreaticoduodenectomy.
Attaining a stationary or stable disease via ADC/RECIST was achieved in the majority of
cases (60%/53.3% respectively). Of the 12 patients (40%) who achieved a regression by
ADC, 11 underwent surgery with an R0 status. These surgical cases showed variable
RECIST responses (PR=5, SD=4, PD=3). Responders by ADC to neoadjuvant therapy were
significantly associated to presenting with abdominal pain (p =0.07), a decline in post-
therapy CA19-9 (p<0.001), going through surgery (p<0.001), and even achieving better
survival (p<0.001 vs. 0.66).

Conclusion: DWI-MRI ADC picked up patients most likely to undergo a successful
operative procedure better than traditional RECIST criteria. An algorithm incorporating
novel radiological advances with CA19-9 deserves further assessment in future studies.

Keywords: borderline resectable pancreatic cancer, ADC, radiological assessment, RECIST criteria, DWI-MRI
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INTRODUCTION

Renowned for its grim outlook, pancreatic malignancies herald a
dismal prognosis, with the surgical option serving as the only
potential niche for this grave malignancy (1). The emergence of
the concept of borderline pancreatic ductal adenocarcinoma
(BPDAC) is a small subset of patients that deserves recognition,
and many have set out to define this category mainly based on the
imaging acquired. Nevertheless, the operating theater acts as the
real test if these patients may undergo an actual curative resection
or not (2). Because of its excellent accuracy and low complication
rate, endoscopic ultrasound-guided fine needle aspiration (EUS-
FNA) (or biopsy) is a first-line technique for conclusive tissue
diagnosis of pancreatic cancer (3, 4). However, EUS-FNA has
some limitations in its diagnostic abilities especially in relatively
small tumors, in addition to its limited availability and practice
difficulty issues in some resource limited health care settings (5).
As radiological diagnostic advances have continued to detect and
set the scene for this potentially curative procedure, it remains yet
challenging to select those operable cases correctly (6).

A notable quality improvement in detecting and
characterization of pancreatic ailments is diffusion-weighted
(DW) magnetic resonance (MR). This technique has the added
advantage of the relatively quick performance, minus the need for
gadolinium-based contrast agents, and offers a measure for tissue
diffusion (diffusion coefficients). DW MR imaging utilizes the
motion of water molecules in biologic tissues; thus, a restricted
signal intensity (or impeded) results in a low apparent diffusion
coefficient (ADC) on ADC maps and high signal intensity on DW
MR images, and vice versa (4).

Therefore, having impeded free water diffusion due to high cell
density and fibrosis, a feature of malignancy such as pancreatic
carcinoma presents with low ADC compared to healthy
pancreatic tissue (7, 8). On the other hand, when water
molecules are agile, for example, in necrotic tissue post-
treatment, this is reflected by higher ADC values (9). Pancreatic
adenocarcinoma has ameanADC 1.33 × 10−3mm2/s with a range
of 0.78 ×10−3 to 2.32 × 10−3 mm2/s reflecting the different
amounts of cellular density admixed with necrosis and
fibrosis (9).

This study aimed to evaluate the role of MRI pancreatic
protocol, including Diffusion-Weighted Imaging (DWI) in
patients with borderline resectable pancreatic adenocarcinoma
after neoadjuvant therapy, to identify responders by MRI with
surgical, histopathological, and outcome data.
PATIENTS AND METHODS

A prospective study of subjects with BRPC who received their
treatment at Helwan and Ain Shams University Hospitals was
performed. The study was granted ethical Institutional Review
Board approval. The NCCN criteria were used to define Borderline
resectable pancreatic cancer as any tumor radiologically in contact
with major peripancreatic vasculature as the portal vein (PV)
or superior mesenteric vein (SMV) that was deemed resectable
Frontiers in Oncology | www.frontiersin.org 216
(+/− reconstruction) or <180° involvement of the common hepatic
artery (CHA) or superior mesenteric artery (SMA) without any
tumor extension reaching the celiac axis (CA) or hepatic artery
bifurcation (10). Metastatic, resectable, and locally advanced cases
were excluded. Treatment naïve patients lacking severe
comorbidities with an Eastern Cooperative Oncology Group
(ECOG) performance status 0–2 were included. Neoadjuvant
chemotherapy (gemcitabine-based or FOLFIRINOX) was
administered for six cycles.

EUS-FNAwas conducted under deep sedationwith intravenous
midazolam, propofol, and fentanyl administration, by highly
experienced endsonographers in the study centers. Pentax linear
echoendoscope EG-3870UTK (PENTAX Medical, Tokyo, Japan,
insertion tube of 12.8 mm, biopsy channel of 3.8 mm), with a
Hitachi–Aloka Avius processor (Hitachi, Tokyo, Japan), was used
for obtaining EUS-FNA. Under EUS guidance, and with the
assistance of Color Doppler to exclude interfering vasculature,
tissue acquisition was performed using specific EUS needles. The
gained material was processed by preserving in 10% neutral-
buffered formalin fixative for the creation of a tissue block. The
remnant of the aspirated sample was to be smeared on a glass slide
and fixed immediately in 95% ethyl alcohol for subsequent staining.
All samples were examined by an experienced cytopathologist.

All patients underwent dedicated pancreatic MRI before and
after treatment by the fourth week. ADCmaps were acquired, and
the mean ADC value of the mass was calculated before and after
treatment. Also, the longest dimension was measured on T2WI
before and after treatment. Vascular relations were assessed on
the dynamic study.
MR Imaging Protocol
The study was performed on a 3.0-T MRI system (MAGNETOM
Skyra; Siemens Healthcare, Erlangen, Germany) with an 18-
element body phased array coil and a 32-element spine array coil.
Before contrast injection, anatomical MRI was performed,
including axial T2-weighted (T2W) HASTE (half-Fourier
acquisition single-shot turbo spin-echo) with controlled
respiration, without and with fat suppression (FS); coronal T2-
weighted HASTE without FS; coronal and axial T2/T1TrueFISP;
axial 3D T1-weighted Volumetric Interpolated Breath-hold
Examination (VIBE) with Dixon reconstruction D (in-phase,
out-of-phase, fat-only, and water only images) in breath-holding.

Gadolinium-based contrast was given intravenously using a
power injector (Ulrich Medical® Tennessee TM, Germany) at an
infusion rate of 1 ml/s. Then, T1-weighted breath-hold VIBE
images with SPAIR fat suppression in the arterial, venous, and
delayed phases were obtained. Subtracted images were computed
as well. Details of sequence parameters are reported in Table 1.
Diffusion-Weighted Imaging
DWI was performed using a single-shot echo-planar imaging
(EPI) pulse sequence during free breathing. A parallel imaging
technique was used to reduce the echo train length. Monopolar
gradients were utilized to perform a 3D diagonal encoding with
the following b-value(s): 0, 400, and 800 s/mm2.
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Multidisciplinary consultation was done to assess response and
resectability accordingly. Response Evaluation Criteria in Solid
Tumors (RECIST) version 1.1 (11) was utilized to measure
neoadjuvant therapy effect coupled with MRI ADC value, all
through pancreatic protocol MRIs pre- and post-therapy. The
pathological completeness of margins (R status) was reported in
patients who underwent the procedure.

Data on treatment, response to neoadjuvant chemotherapy by
RECIST 1.1, degree of resection (R status), outcome, and survival
were collected.

The primary objective was to assess the response rate by RECIST
and ADC values utilizing MRI pre- and post-neoadjuvant
chemotherapy and then correlate this to the resection margin
outcome. The secondary objectives were overall survival (OS) and
relapse-free survival (RFS) assessment and their relation to the
response parameters (RECIST and ADC value) as well as their
relation to the various baseline characteristics.

Overall survival was defined as the time interval between the
date of diagnosis and the date of death. The definition of RFS was
from the date of diagnosis till the date of cancer recurrence
(surgical cases; disease-free survival—DFS)/progression (non-
surgical cases; progression-free survival—PFS).

A sample size of 30 patients was selected to achieve an 80%
power to detect a mean of paired differences of 0.2 (pre and post
mean ADC values) with an estimated standard deviation difference
of 0.03 and with a significance value (alpha) of 0.05 based on the
work by Dalah et al. (12).

Data analysis and interpretation were conducted using SPSS
(Statistical Package for the Social Science; SPSS Inc., Chicago, IL, USA)
version 22 for Microsoft Windows. Quantitative data were described as
mean± standard deviation ( ± SD) ormedian (interquartile range [IQR])
according to data normality, while qualitative data were expressed as
frequencies and percentages. According to the data type, the association
between data was tested using the Chi-square test with Fisher’s exact,
Mann-Whitney test, or one-way ANOVA. Survival data were recorded
and tabulated using Kaplan Meier, and the log-rank test evaluated the
differences in survival. Variables with a p-value of less than 5% were
considered statistically significant.
RESULTS

A total of 30 patients with histopathologically proven PDAC were
recruited, and all received neoadjuvant chemotherapy (gemcitabine-
based or FOLFIRINOX). Pre- and post-chemotherapy MRI scans
were compared, and after multidisciplinary assessment, 11 patients
were deemed operable. Patient baseline characteristics are displayed
in Table 2.
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After a median follow-up of 14 months (IQR 10.75–22), 19
patients were alive (63.3%), resulting in a mean survival of 13.679
months (SE 1.009; 95% CI 11.702–15.656), while median OS that
was not reached (NR) as seen in Figure 1A. When comparing
survival for the surgical and non-surgical patients, 10 deaths were
in the inoperable group, and only one died in the surgical series.
The mean OS for the non-surgical cases was 8.51months (SE
0.377; 95% CI 7.77–9.25) and then for the surgical cases, 17.7
months (SE 0.285; 95% CI 17.14–18.25) as also seen in Figure 1B.
The median OS for the surgical group was NR, and for the non-
surgical group, it was 9 months (SE 0.459; 95% CI 8.101–9.899)

RFS in the whole cohort was set at a mean RFS of 10.16 months
(SE 1.137; 95% CI 7.934–12.389) and a median of 9 months (SE
TABLE 2 | General characteristics of the study group (n=30).

Variable Patients
(n = 30)

Age in years, mean± SD (median; range) 52.5 ± 6.6
(53.5; 40–62)

Gender, No. (%) Male 22 (73.3)
Female 8 (26.7)

Presentation, No. (%) Weight loss 26 (86.7)
Abdominal pain 28 (93.3)
Jaundice 14 (46.7)

ECOG performance, No. (%) 0 11 (36.7%)
1 19 (63.3%)

CA19-9 U/ml median (range) Pre-treatment 250 (100–
400)

Post-treatment 170 (20–285)
Site, No. (%) Body 12 (40.0)

Head 7 (23.3)
Neck 5 (16.7)
Tail 6 (20.0)

Neoadjuvant chemotherapy, No.
(%)

Gemcitabine/cisplatin 11 (36.7)
FOLFIRINOX 19 (63.3)

MRI involvement, No. (%) Celiac, SMA 1 (3.3)
Celiac, SMV 3 (10)
Portal/SMA 10 (33.3)
Portal/SMV 1 (3.3)
SMA 5 (16.7)
SMA, celiac, SMV/
PV

1 (3.3)

SMV/PV, SMA 9 (30)
ADC × 10−3 mm2/s, median (range) Pre-treatment 1.3 (1.1–1.4)

Post-treatment 1.4 (1.3–1.7)
ADC response, No. (%) Stationary 18 (60)

Regressive 12 (40)
RECIST, No. (%) SD 16 (53.3)

PD 9 (30)
PR 5 (16.7)

Surgery, No. (%) 11 (36.7)
R0 (n =11), No. (%) 11 (100)
January 2022 | Volume 11 |
PV, portal vein; SMA, superior mesenteric artery; SMV, superior mesenteric vein.
TABLE 1 | Sequence parameters for MRI pancreatic protocol.

Sequence TR/TE Matrix FOX Slice thickness Intersection gap Acquisition time

T2-HASTE 2200/95 320 × 259 mm 350 × 317 mm 5.0 mm 0.1 mm 1.46 s
T2/T1TrueFISP 426/1.68 256 × 256 mm 377 × 303.5 mm 5.0 mm 0 0.21 s
3D T1-VIBE 4.0/1.31 320 × 182 × 160 mm 400 × 325 mm 3.0 mm 0.6 mm 0.17
DWI 7,100/56 128 × 128 mm 380 × 308 mm 4.0 mm 0.08 mm 3.35 s
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1.167; 95% CI 6.713–11.287). The non-surgical series had a mean
PFS of 5.88 months (SE 0.576; 95% CI 4.751–7.008) and a median
PFS of 5 months (SE 0.483; 95% CI 4.053–5.947).

MeanDFS for the surgical cases was 15.73months (SE 1.21; 95%
CI 13.529–17.925), and with three cases exhibiting recurrence
(27.3%), median DFS was not reached, as evident in Figure 2.

Assessment for a response via RECIST and ADC values is
depicted in Table 3 and Figure 3, and it displayed a significant
association (p= 0.007). However, it is of poor magnitude based
on a kappa statistic of 0.29. The specific ADC value for the
resected and non-resected cases is seen in Table 3, similarly
displaying a significant difference. Discordant response between
ADC and RECIST is further depicted in Figures 4, 5.
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When examining the median ADC values for all cases pre-
and post-NACT, the main driver of a positive correlation overall
(P-value 0.001) was more apparent in the surgical cases (P-value
0.003 vs. 0.29), as seen inTable 4. CA19-9 had a positive statistical
significance for all cases, surgical or not, hence did not differentiate
the two groups.

Attaining a regressive response (or response) to neoadjuvant
therapy via ADC parameters was significantly associated with
abdominal pain as a presenting symptom, a decline in post-
therapy CA19-9, and the performance of surgery (Table 5).
Moreover, ADC displayed significance compared to RECIST
criteria when correlated to the outcome, as demonstrated in
Table 5 and Figure 6.
A

B

FIGURE 1 | OS of the entire study population (A) and comparison between surgical and non-surgical groups (B), as regards to the mean OS for the non-surgical
cases was 8.51 months and for the surgical cases 17.7 months. Log-rank, P = <0.001.
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On further analysis for the association between the reduction in
CA19-9 after NACT and its correlation with the ADC response, it was
apparent that regressive patients had a significantly more significant
reduction in CA19-90 (p <0.001) than stationary patients, while
RECIST responders lacked this association (p=0.203) (Table 6).

Upon addressing the discordance in response, further analysis
was performed on the 12 responding patients via ADC criteria.
They were further categorized into their relevant RECIST subgroup,
and CA19-9 normalization values were analyzed. A significant
relation was observed for all categories of response by size, thus
Frontiers in Oncology | www.frontiersin.org 519
rendering RECIST criteria inconclusive in response assessment of
response even if coupled with the tumor marker (Table 7).
DISCUSSION

The ultimate goal of BRPC is the potentiality of achieving an R0
surgery via neoadjuvant therapy. Preoperative therapy has the
added advantage of treating micrometastasis at an earlier stage
TABLE 3 | Association between ADC response and RECIST.

Variable RECIST

SD (n =16) PD (n =9) PR (n =5) Kappa P-value

ADC, No. (%) Stationary (n =18) 12 6 0 0.293 0.007
Regressive (n =12) 4 3 5
January 2022
 | Volume 11 | Article
FIGURE 3 | Distribution of response according to ADC and RECIST.
FIGURE 2 | RFS in surgical and non-surgical series.
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and offers an observation period to exclude rapid progressors
exhibiting a poor response to treatment (13).

This study demonstrated the enhanced utility of ADC via
MRI DWI as a predictor of achieving a favorable pathologic
response with clear resection margins paving the way to better
survival. This favorable response concurred to achieving
normalization in CA19-9 levels as well. Traditional RECIST
criteria did not perform well in identifying cases that exhibited
response via these two metrics.

Further analysis into responding patients by ADC and
subclassifying them further by RECIST criteria deemed
inconclusive even when CA19-9 response was accounted for with
significant p values for all PD, SD, and PR universally expressed.

In the current series, approximately one-third of the BRPCwere
ultimately resected, 36.6% to be precise, corresponding similarly to
Frontiers in Oncology | www.frontiersin.org 620
the rate reported by two meta-analyses that additionally
demonstrated favorable survival rate over 20% at 5-years (14, 15).

The radiologist’s incremental role in selecting neoadjuvant
therapy responders has remained difficult to determine despite
technological advances firmly. MD Anderson Cancer Center
reported that among 122 BRPC patients, the documented CR as
assessed by CTwas in only one patient (0.8%), PR in 12%, with SD
in 69%. Nevertheless, 66% underwent the surgical procedure with
a 95% R0 resection plus a 33-month mOS (95% confidence
interval, 25.4–40.6 months) compared to a mOS of 12 months
(95% confidence interval, 9.5–14.5 months) in those patients that
did not undergo the excision. They concluded RECIST criteria 1.1
was not associated with OS and failed to predict resectability (16).
Using CT imaging, other studies reported a low response rate that
did not signify an abandonment of pancreatectomy (17, 18).
FIGURE 4 | Discordant response between ADC and RECIST. Axial T2WI (A) shows progression of the pancreatic mass after neoadjuvant therapy compared to
initial axial T2WI (B). Post-treatment and initial DWIs (C, D, respectively) show corresponding restricted DWI of the mass. Post-treatment and initial ADC maps
(E, F, respectively) show comparable ADC values of the mass on both studies.
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FIGURE 5 | Discordant response between ADC and RECIST. Axial T2WI (A) shows stationary size of the pancreatic mass after neoadjuvant therapy compared
to initial axial T2WI (B). Note the central cystic change of the mass of necrosis. Post-treatment and initial DWIs (C, D, respectively) show corresponding
restricted DWI of the mass. Post-treatment and initial ADC maps (E, F, respectively) show regression of the ADC values of the mass on post-treatment study
compared to initial one.
TABLE 4 | Pre- and post-neoadjuvant ADC and CA19-9 values for the study population.

Variables Median (range) Pre-treatment Post-treatment P-value

ADC All cases (30) 1.3 (1.0–1.4) 1.4 (1.1–1.7) 0.001
Surgical cases (11) 1 (1–1.3) 1.4 (1.3–1.7) 0.003
Non-surgical cases (19) 1.4 (1–1.4) 1.3 (1–1.7) 0.29

CA19-9 (U/mL) All cases (30) 250 (100–400) 170 (20-285) 0.001
Surgical cases (11) 250 (100–380) 35 (20–48) 0.003
Non-surgical cases (19) 300 (130–400) 280 (25–380) 0.023
Frontiers in Oncology | www.frontiers
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Novel imaging parameters associated with diffusion and
perfusion were entered to improve the predictive potential for the
operative procedure, pathologic response, and ensuing outcome. A
small retrospective study found that tumor delineation by DWI
provided the best estimate of tumor size (19). Okada et al. (20)
prospectively reviewed 28 patients with BRPC who underwent
DWI before neoadjuvant chemotherapy and surgery and found
post-treatment whole-tumor ADC value a predictor of R0
resectability; however, the cutoff value of ADC at the location of
vascular contact did not discriminate R0 resectability.

Pre- and post-neoadjuvant chemoradiation (nCR) mean
ADC values in pancreatic tumors were retrospectively
compared and correlated to pathological treatment response in
a group of 25 (of which 22 were BRPC) patients by Dalah et al.
(12). Significantly higher post-nCR (1.667 ± 0.161×10−3)
compared with pre-nCR ADC values (1.395 ± 0.136×10−3

mm2/s) were reported. Additionally, mean ADC after
neoadjuvant treatment was significantly associated with the
pathological response attained (r=−0.5172; P=0.02)
demonstrably higher values in favorably responding tumors.
Despite the different methodology demonstrated in their
radiotherapy usage and histopathological grading assessment
for the response, these results are congruent to ours, whereas
we used R0 as a parameter for successful resection.

In another prospective trial, 60 consecutive pancreatic cancer
patients were enrolled, and imaging biomarkers as DWI,magnetic
resonance spectroscopy (MRS), and PET/MRI correlated stage
and PFS (21). This work concluded that these modalities gave
complementary data describing the disease characteristics, and a
ratio incorporatingADCmin served as themost potent biomarker
for tumor aggressiveness, stage, and PFS.
Frontiers in Oncology | www.frontiersin.org 822
Contrastingly, a retrospective observation of 36 pancreatic
cancer cases concluded that relying on ADC parameters in
response assessment may be misleading and warned against
abandoning traditional RECIST criteria. They reported size
reduction solely predicted pathologic response with 92%
sensitivity and 27% specificity compared to increased ADCs, 48%
sensitivity but a better specificity of 73% (22).

Not being devoid of limitations, this study had a small number of
patients, and in the end those that were able to undergo the surgical
procedure were yet even smaller, as is the case in this borderline
subtype. Also, pathologic examination of tissuewas not collected, and
comment on resection margin sufficed for this parameter, making
inter-trial comparisons difficult. However, it is worth noting that R0
alone in our study did provide excellent relevance to improved
survival. Finally, ADC has been a subject of interobserver
variability according to the region of interest volume and site, not
to mention technical factors related to the MRI system (23).

Coming to address this final drawback, radiologists with
expertise in abdominal MRI imaging along with rigorous
reporting and revision reviewed all scans. Other strengths
included the analysis of all recruited cases in intent-to-treat
fashion, even though some didn’t undergo the operation. Finally,
the majority of cases received FOLFIRINOX, which is considered
to have favorable mOS and R0 resection in BRPC, making it a
temporally relevant treatment.
CONCLUSION

The current study displayed the value of incorporating
functional domains to traditional criteria to better elucidate
TABLE 5 | Association between ADC response and characteristics of the study population (n =30).

Variable ADC Response

Stationary (n =18) Regressive (n =12) P-value

Age in years, mean± SD 53.1 ± 6.9 51.7 ± 6.4 0.58
Male, No. (%) 13 (72.2) 9 (75) 0.86
Presentation, No. (%) Weight loss 17 (94.4) 9 (75) 0.13

Abdominal pain 18 (100) 10 (83.3) 0.07
Jaundice 8 (44.4) 6 (50) 0.76

ECOG performance, No. (%) 0 5(45.5) 6 (54.5) 0.11
1 7 (36.8) 12 (63.2)

CA19-9 in U/ml, median (Range) Pre-treatment 280 (130–400) 250 (100–380) 0.36
Post-treatment 280 (25–380) 35 (20–48) <0.001

Site, No. (%) Body 7 (38.9) 5 (41.7) 0.98
Head 4 (22.2) 3 (25)
Neck 3 (16.7) 2 (16.7)
Tail 4 (22.2) 2 (16.7)

Neoadjuvant chemotherapy, No. (%) Gemcitabine/cisplatin 8 (44.4) 3 (25) 0.43
FOLFIRINOX 10 (55.5) 9 (75)

MRI involvement, No. (%) Celiac, SMA 0 1 (8.3) 0.59
Celiac, SMV 2 (11.1) 1 (8.3)
Portal/SMA 7 (38.9) 3 (33.3)
Portal/SMV 1 (5.6) 0
SMA 3 (16.7) 2 (16.7)
SMA, celiac, SMV/PV 1 (5.5) 0
SMV/PV, SMA 4 (22.2) 5 (41.7)

Surgery, No. (%) 0 11 (100) <0.001
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A

B

FIGURE 6 | Kaplan-Meier Curve of OS according to ADC response (A) and RECIST classification (B). For (A) ;1/green=responder, 3/blue=non-responder.
For (B) 1/blue=PD,2/green:SD, 3/beige: PR.
TABLE 6 | Association between ADC response/RECIST and OS of the study population and CA19-9 (n =30).

Variable ADC Response RECIST

Stationary (n =18) Regressive (n =12) P-value SD (n =16) PD (n =9) PR (n =5) P-value

Outcomes, No. (%) Alive 8 (44.4) 11 (91.7) <0.001 10 (62.5) 5 (55.6) 4 (80) 0.66
Dead 10 (66.6) 1 (8.3) 6 (37.5) 4 (44.4) 1 (20)

OS, mean (95% CI) 8.39 (87.64–9.14) 17.7 (17.14–18.26) <0.001 12.41 (9.3–15.45) 12.88 (9.19–16.55) 17.4 (16.35–18.45) 0.35
CA-19-9 in U/ml Pre-treatment 280 (130–400) 250 (100–380) 0.36 270 (100–400) 250 (150–370) 250 (100–380) 0.91

Post-treatment 280 (25–380) 35 (20–48) <0.001 225 (30–380) 220 (25–380) 33 (20–40) 0.022
Mean changea 14.4 (−1.33–30.8) 210.8 (153.0–267.8) <0.001 63.4 (3.4–123.5) 78.6 (10.8 146.3) 214.4 (88.9 339.9) 0.203
Frontiers in Oncology | www.frontiersin
.org 923
 January 2022
 | Volume 11 | Article
aData are presented as mean (95% CI).
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candidates of surgical potential and hence favorable outcome.
The simultaneity of response in both assessed imaging reporting
modalities in this study was observed in five cases only.
Furthermore, in the 12 responders via ADC, all attained an R0
operation, and 11 remained alive, indicating that the ADC could
be used to assess treatment response for PDAC. Radiomics
continues to solve challenging questions in therapy assessment,
and relying on old parameters needs to be updated into approved
modern evidence-based algorithms and pathways.
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Myxofibrosarcoma (MFS) is a rare soft tissue sarcoma that originates in the mesenchymal
tissue and occurs mainly in the limbs of elderly patients. Herein, we present the case of a
64-year-old woman who underwent extensive left vulvar resection and bilateral
lymphadenectomy for vulvar squamous cell carcinoma 6 months previously. A mass
was found again at the original surgical site of the left groin 3 months prior, and its size had
increased significantly in the past 1 month, with ulceration and pus. Magnetic resonance
imaging (MRI) showed a 10-cm mass in the left groin area; fluoro18-labeled deoxyglucose
positron emission tomography/computed tomography (18F-FDG PET/CT) showed a
marked increase in mass metabolism in the left groin area, which was highly suspected
to be a recurrence of squamous cell carcinoma. Subsequently, the patient underwent
surgery and the postoperative pathology and immunohistochemistry confirmed MFS. In
conclusion, MFS has rarely been reported to arise from the surgical site of squamous cell
carcinoma. Our case study demonstrates that MFS should be included in the differential
diagnosis of superficial masses in patients with a prior surgical history who present with a
soft tissue mass at the surgical site, especially for recently developed rapidly increasing
masses. This study aimed to systematically review the clinical features, diagnosis,
differential diagnosis, treatment, and prognosis of this disease based on our case and
related published literature and to provide clinicians with a broader perspective on the
differential diagnosis of soft tissue tumors.

Keywords: myxofibrosarcoma, squamous cell carcinoma, magnetic resonance imaging, positron emission
computed tomography, case report
CASE DESCRIPTION

A 64-year-old woman was admitted to a local county hospital 6 months previously because of the
discovery of a left vulvar mass. CT revealed a mass of approximately 3.5 cm × 2.0 cm (vertical
diameter × horizontal diameter) in her left vulva, and multiple enlarged lymph nodes were seen in the
left groin area (Supplementary Figure S1). The clinician suspected that she had a malignant tumor
and lymph node metastasis in the left inguinal region; therefore, extensive excision of the left vulvar
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mass and repair of the vulva followed by bilateral lymph node
dissection were undertaken. Postoperative pathology revealed
keratinized squamous cell carcinoma of the vulva, with a tumor
invasion depth of 5 mm, no tumor invasion at the resection
margin, metastasis in the left inguinal lymph node (3/7), and no
metastasis in the right inguinal lymph node (0/3). The patient did
not undergo further postoperative chemoradiotherapy. She
complained that a painful lump had reappeared in the original
surgical incision area of her left groin area 3 months previously; in
the past month, the lump had rapidly increased in size, ruptured,
and ulcerated; thus, she visited our hospital for treatment.
Physical examination revealed a cauliflower-like protruding skin
mass in the left groin with superficial ulceration and bleeding.
Moreover, a 2-cm mass was observed in the right inguinal area,
and the skin surface was red without ulceration or exudation. She
had no other positive signs, and her routine blood and tumor
marker values were within the normal range. She then underwent
imaging examinations; computed tomography (CT)
demonstrated a soft tissue-dense mass in the left groin area,
which presented as low T1 and high T2 signals on magnetic
resonance imaging (MRI), and contrast-enhanced scan showed
tumor infiltration into the fascia as “fascial tail sign.” In addition,
an unevenly enhanced nodular abnormal signal shadow was
observed in the right inguinal region, as shown in Figure 1.
Fluoro18-labeled deoxyglucose positron emission tomography/
computed tomography (18F-FDG PET/CT) showed a high FDG
concentration in the left groin mass, with a maximum standard
uptake value (SUVmax) of 31.38, and increased FDG uptake in
the right nodule, with an SUVmax of 28, as shown in Figure 2.
According to the patient’s history of vulvar squamous cell
carcinoma and the above imaging findings, the radiologist first
considered that the left mass was a recurrence of squamous cell
carcinoma, while the right inguinal nodule was a lymph node
Frontiers in Oncology | www.frontiersin.org 227
metastasis. Therefore, the patient underwent enlarged resection of
the tumor in the left inguinal region with local pedicled flap
transfer and repair and bilateral inguinal lymph node dissection.
During the operation, the scalpel moved the skin and
subcutaneous tissue along a 2-cm incision at the edge of the
tumor to the tumor base, and the tumor base was found to be
adherent to the femoral artery and femoral vein. The transverse
diameter of the tumor after resection was approximately 20.0 cm,
and no tumor involvement was observed at the upper, lower, left,
or right margins of the tumor under a microscope. Hematoxylin–
eosin staining showed that the tumor cells in the left mass were
spindle-shaped, the blood vessels were curvilinear, the
interstitium was myxoid, and the right groin lesion showed an
irregular squamous cell composition and visible horn strains.
Immunohistochemistry showed positive expression of vimentin,
CD68, and partial smooth muscle actin (SMA) and negative
expression of b-catenin, CD, Cluster of differentiation (CD34),
desmin, S100, and Signal transducer and activator of transcription
(STAT6) in left groin tumor cells, as shown in Figure 3. Based on
these pathological and immunohistochemical findings, the patient
was diagnosed with myxofibrosarcoma (grade II) in the left groin
region and keratinized squamous cell carcinoma in the right
inguinal lymph node. The patient refused chemotherapy and
radiotherapy after surgery; thus, we suggested a follow-up review.
The patient was still alive after a 1-year follow-up, and the latest
MRI results showed no tumor recurrence or local metastasis.
DISCUSSION

Myxofibrosarcoma is a mesenchymal tumor that most commonly
occurs in the extremities of elderly patients aged 60–70 years,
especially in the lower extremities. It rarely affects the trunk, head,
FIGURE 1 | MRI examination; (A) Axial T1WI shows hypointense signal of left groin mass (white arrow) and right inguinal lymph nodes (black arrow). (B) Axial T2WI
imaging demonstrates slightly high signal intensity in the left groin area (white arrow) and low signal intensity in the right inguinal lymph nodes (black arrow). (C) Contrast-
enhanced T1WI with fat suppression: the left groin mass showed uneven enhancement (white arrow), while the right inguinal lymph nodes showed marginal enhancement
(black arrow). (D) Sagittal contrast-enhanced T1WI clearly shows the “tail fascial sign” (black arrow). T1WI, T1-weighted images; T2WI, T2-weighted images
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neck, hands, or feet (1). Myxofibrosarcoma in the groin has rarely
been reported in the literature. Clinically, compared with other
types of sarcomas, MFS has a higher local recurrence rate and
lower distant metastasis rate (2). Pathological examination usually
classifies tumors into four grades of malignancy based on their cell
Frontiers in Oncology | www.frontiersin.org 328
abundance, cytopleomorphism, and prevalence of mitotic images
(3). MFS has obvious atypia, and grade I and II tumors are
dominated by fibroblast-like cells, while grade III and IV tumors
are mainly characterized by histiocytic cells (4). Histologically,
MFS is characterized by alternating hypocellular and myxoid
areas, multicellular fibrous areas, long curvy blood vessels in
various mucinous stroma, and a polynodular growth pattern (5).
Tumors can be either shallow or deep and usually occur under or
in the context of the skin, accounting for 20%–70% of the cases (6).
The etiology of the disease is not clear at present, but the
association between acute trauma and the development of soft
tissue sarcoma was first reported in the literature in 1901, as well as
in surgical scars, burn scars, and sites of repeated trauma (7).
Ineffective wound repair by dysfunctional fibroblasts is thought to
play a key role in accelerating the formation of malignant tumors
in genetically predisposed individuals (8). It has also been reported
that acute tissue injury activates satellite cells and promotes
sarcoma formation through the HGF, Hepatocyte growtll factor
(HGF)/C-MET signaling pathway (9). Clinically, cases of
myxofibrosarcoma secondary to soft tissue injury have been
reported (10–12). In the present case, the patient was tumor-
susceptible, and the tumor occurred at the surgical site. Therefore,
it was speculated that the occurrence of the tumor might be related
to previous surgical trauma; however, a larger number of cases is
necessary to confirm this hypothesis. Tumors are abundant in the
myxoid matrix. Weiss and Enzinger, in their initial description of
Malignant Fibrous Histiocytoma (MFH) myxoid variants,
required that at least 50% of tumors should consist of myxoid
regions in order for it to be classified as MFS (13). As the imaging
presentation of this disease is not specific, it is difficult to make a
specific diagnosis. Therefore, we lack a typical understanding of
this disease, increasing the chances for misdiagnosis. However,
imaging examination also has important clinical significance for
fibrosarcoma, and common imaging examinations include CT,
MRI, and PET-CT. MRI has a good resolution that can not only
clearly show the location, size, shape, and invasion range of the
FIGURE 3 | Histopathological findings (HE staining: A, ×40; B, ×200) show fusiform tumor cells, curving vessels, and myxoid alterations in the stroma.
Immunohistochemical staining showing vimentin (C), SMA (D), and CD68 (E) positivity. (F) Histopathological view of the right inguinal lymphadenopathy. HE staining
shows irregular squamous cells and horn strains (arrows). HE, hematoxylin and eosin.
FIGURE 2 | PET/CT examination. (A) Whole-body MIP images showed a
lumpy hypermetabolic lesion in the left groin (white arrow) and increased
nodular uptake of FDG in the right groin (black arrow). (B) Axial CT shows an
uneven low-density mass in the left groin (white arrow) and a rounded soft
tissue density nodule in the right inguinal region (black arrow). (C) PET and (D)
PET/CT fusion images show a hypermetabolic mass in the left groin area with
SUVmax of 31.38 (white arrow) and nodules in the right groin area with
radioactive uptake with SUVmax of 28.0 (black arrow). MIP, maximum intensity
projection; FDG, fluorodeoxyglucose; PET, positron emission tomography; CT,
computed tomography; SUVmax, maximum standard uptake.
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tumor but also reveal the pathological components of the tumor;
thus, it is considered to be an indispensable examination method
for the diagnosis of soft t issue tumors , including
myxofibrosarcoma (1). Depending on the components of the
lesion, there are different manifestations on imaging. Due to the
presence of the myxoid matrix in tumors, myxoid changes are
relativistic on MRI. On T1-weighted imaging (T1WI), myxoid
substrates with low cell density have less signal intensity than
muscle, but areas with high cell density are similar to the intensity
of muscle on MRI. The myxoma matrix has signal intensity on
T2WI/Short Time Inversion Recovery (STIR), whereas areas with
high cell density show low signal intensity, and myxoid matrix
enhancement is poor (14). MFS is classified into two types, solid
and “tail-like”, based on T2-weighted MRI. In the “tail-like” type,
there is extensive spread along the fascial planes that extended
away from the primary site of tumor (15). This type of tumor often
infiltrates and extends along the fascia plane, showing a specific
“tail fascia sign” on MRI, which is consistent with myxoid
fibrosarcoma; however, not all cases of this histotype show this
feature (14). PET/CT also has high value in revealing details on
tumor metabolism and distant metastasis and has high sensitivity
for the detection of primary sites and metastases. PET/CT is a new
imaging method that plays a significant role in the detection,
staging, and treatment of many sarcomas and cancers. However,
the small sample size has not proven its effectiveness (16). The
radioactive uptake of myxoid tumors is linked to the proportion of
mucous components in the tumors. Generally, tumors with a
higher proportion of mucus have a lower radioactive uptake,
which is related to the fact that the mucous components of
tumors cannot capture FDG (17). There are few reports on the
18F-FDG PET/CT findings of myxosarcoma, with a maximum
standard value range of 10.1 to 16.8 (18–20). In this case,
myxofibrosarcoma showed hypermetabolism on PET-CT, which
may be related to the fact that our patient had grade II
myxofibrosarcoma with more spindle cells and less myxoid
matrix (approximately 60%). The clinical, pathological, and
imaging features of the disease overlap with different histotypes,
and an accurate diagnosis can be challenging. It is often necessary
to distinguish it from other mucinous tumors such as
intramuscular myxoma and myxoid liposarcoma. Intramuscular
myxoma is a common benign myxoid soft-tissue tumor. On MRI,
there is a feathery T2 hyperintensity around the lesion, often in a
mildly diffuse or thick peripheral and septal pattern (21). Myxoid
liposarcoma usually appears in younger patients and is
characterized by its lipid content (22). Extraskeletal myxoid
chondrosarcomas are distinguished by their characteristic
cartilage matrix on MRI (23). The diagnosis of this disease relies
mainly on histopathological examination, which is the gold
standard. Surgical resection is the standard treatment for local
disease. Generally, when surgery is performed, extensive resection
should include a soft tissue edge of 2 cm around the tumor and
tumor cells should not be left at the edge (24). Postoperative
radiotherapy is essential when an adequate margin cannot be
obtained (25). Patients with this disease have an overall 5-year
survival rate of approximately 60%–70%, and good disease-
specific survival compared to that seen in other sarcomas (26).
Frontiers in Oncology | www.frontiersin.org 429
Due to the high recurrence rate of this tumor, all patients require
close observation and follow-up after treatment. Our patient was
still alive after a 1-year follow-up by imaging examination, and the
latest MRI results showed no tumor recurrence or local metastasis
(Supplementary Figure S2).

In conclusion, myxofibrosarcoma rarely develops in the
surgical region after squamous cell carcinoma. The presence
of “tail fascial sign” on MRI suggests the possibility of the
disease, and the radioactive uptake of tumors on PET-CT
images is related to the composition of mucous in tumors.
More mucus in tumors leads to low metabolism, while less
mucus leads to high metabolism. Second, our case suggests that
myxofibrosarcoma may be associated with surgical trauma;
however, this needs to be confirmed in a large number of
cases in the future. In addition, our patient had an incidental
association of left groin myofibrosarcoma and right inguinal
lymph node squamous cell carcinoma metastasis, suggesting
that non-monism should be considered in the diagnosis of
tumors in future studies.
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68Ga-NGR-RGD for Ovarian Tumor
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1 Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China, 2 Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China, 3 Department of Radiology, University
of Pittsburgh, Pittsburgh, PA, United States

Ovarian cancer has the highest mortality rate of gynecologic malignancy. 18F-FDG
positron emission tomography (PET) adds an important superiority over traditional
anatomic imaging modalities in oncological imaging but has drawbacks including false
negative results at the early stage of ovarian cancer, and false positives when inflammatory
comorbidities are present. Aminopeptidase N (APN, also known as CD13) and integrin
avb3 are two important targets overexpressed on tumor neo-vessels and frequently on
ovarian cancerous cells. In this study, we used subcutaneous and metastatic models of
ovarian cancer and muscular inflammation models to identify 68Ga-NGR-RGD, a
heterodimeric tracer consisting of NGR and RGD peptides targeting CD13 and integrin
avb3, respectively, and compared it with 18F-FDG. We found that 68Ga-NGR-RGD
showed greater contrast in SKOV3 and ES-2 tumors than 18F-FDG. Low accumulation
of 68Ga-NGR-RGD but avid uptake of 18F-FDG were observed in inflammatory muscle. In
abdominal metastasis models, PET imaging with 68Ga-NGR-RGD allowed for rapid and
clear delineation of both peritoneal and liver metastases (3-6 mm), whereas, 18F-FDG
could not distinguish the metastasis lesions due to the relatively low metabolic activity in
tumors and the interference of intestinal physiological 18F-FDG uptake. Due to the high
tumor-targeting efficacy, low inflammatory uptake, and higher tumor-to-background
ratios compared to that of 18F-FDG, 68Ga-NGR-RGD presents a promising imaging
agent for diagnosis, staging, and follow-up of ovarian tumors.

Keywords: positron emission tomography (PET), ovarian cancer, CD13, integrin avb3, dual-receptor targeted
INTRODUCTION

Ovarian cancer has the highest mortality rate of all gynecologic malignant cancers, with more than
80% of patients presenting with advanced disease (1). Due to their silent nature of the disease,
patients often present with advanced stages at first diagnosis, which will result in 29-75% of patients
succumbing to ovarian cancer within 5 years. However, if diagnosed at stage I (ovary defined), the
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5-year survival rate exceeds 90% (1, 2). Therefore, it’s a research
priority to improve early detection and prevention, as a better
prognosis correlated with early stage at diagnosis.

Functional imaging plays an essential role in the management of
ovarian cancers. In particular, with the development and promotion
of PET/MRI (3, 4) with excellent soft tissue contrast and digital PET
scanner (5, 6) with higher sensitivity and diagnostic performance
than analog PET, functional imaging will reduce radiation dose,
enhance the diagnostic confidence and ensure the better strategies
for patient management and personalized treatment, showing a
wider clinical application prospect. 18F-FDG positron emission
tomography/computed tomography (PET/CT) imaging, as the
most frequently used functional imaging method in oncological
imaging, adds an important superiority over traditional anatomic
imaging modalities by providing functional information about
cellular glucose metabolism. However, 18F-FDG PET is not
recommended for the primary detection of ovarian cancers with a
relatively low level of sensitivity (52-58%) and specificity (76-78%)
(1, 7, 8), which might be due to tumor size and cystic or mucinous
histological features with no/low metabolic activity in tumors (9,
10). Besides, it is limited by several pitfalls, such as higher ovarian
glucose metabolism during menstruation and midcycle, physiologic
accumulation in several benign diseases, as well as its imprecise
distinction between cancerous growths and acute inflammation
lesions (11–14). Novel PET agents targeting biological tumor
features, including cell proliferation, angiogenesis, hypoxia,
metabolism, and receptor overexpression, are pursued in
preclinical researches to better detect early malignant lesions,
evaluate the heterogeneity of biological features, and monitoring
treatment response more accurately (10, 15–19).

Angiogenesis plays a prominent role in tumor growth, invasion
and metastasis by providing abundant oxygen, nutrients, and
metastatic conduits (20). aminopeptidase N (APN, also known as
CD13) and integrin avb3 are two key regulators involved in tumor
angiogenesis and tumor progression. They are overexpressed on
the tumoral neo-endothelial cells during angiogenesis as well as
cancerous cells, regarded as two important hallmarks of tumor
angiogenesis (21–24). There are several studies have focused on the
imaging and/or treatment of ovarian tumors by targeting CD13
(25, 26) or integrin avb3 (27, 28). However, these angiogenesis-
related factors, including CD13 and integrin avb3, are usually
differentially expressed in ovarian tumor tissues and cell lines due
to the heterogeneity and genetically instability of the disease (29,
30), making it a very challenging approach to find “the optimal
target”, and may also be one of the reasons for drug resistance of
cancer to monotherapy. Therefore, an alternative approach is to
develop a complementary receptor-targeting agent for the
detection and treatment of tumors.

Previously, we developed a CD13 and integrin avb3 dual-
receptor targeted radiotracer, 68Ga-NGR-RGD, which
demonstrated promising results in PET imaging of breast
cancers with superior imaging efficacy than monomeric 68Ga-
NGR and 68Ga-RGD (31). Furthermore, the physiological uptake
of 68Ga-NGR-RGD is low in most normal organs, except
kidneys, which may make this dual-receptor targeted tracer
supplement or even be superior to 18F-FDG PET/CT in the
Frontiers in Oncology | www.frontiersin.org 232
early diagnosis and staging of ovarian tumors. In this study, we
aim to evaluate the value of 68Ga-NGR-RGD in PET/CT imaging
of ovarian tumors. In addition, we also investigated its potential
application in distinguishing tumors and inflammation. Routine
18F-FDG imaging was also conducted as a control group in all
prepared mice models.
MATERIALS AND METHODS

Synthesis of NGR-RGD and Radiolabeling
NGR-RGD was synthesized and radiolabeled using our
previously developed method (31). Briefly, 150 µL sodium
acetate buffer (0.25 M, pH 6.8) and 2 µL NGR-RGD (2 mM)
were added to the tube containing 500 µL 68GaCl3 in 0.05 M HCl
(150-200 MBq) and mixed. The final pH of the radiolabeling
solution was approximately 4.0. Then, the mixture was heated at
95°C for 5 min. The radiolabeling field of the product 68Ga-
NGR-RGD was determined by radio-HPLC. 68Ga was produced
with a 68Ge/68Ga generator (Isotope Technologies Garching
GmbH, Garching, Germany). Peptides were obtained
commercially from Chinapeptide (Shanghai, China) or Gl
Biochem (Shanghai, China).

Cell Culture
Human ovarian cancer cells, SKOV3, ES-2, and OVCAR4 were
derived from our own laboratory preservation and cultured in
GibcoDulbecco’s Modified Eagle Medium/Nutrient mixture F-12
(DMEM/F12; Gibco, Carlsbad CA, USA), supplemented with
10% fetal bovine serum (FBS; Sciencell, Carlsbad CA, USA), 100
mg/mL streptomycin and 100 mg/mL penicillin (Solarbio,
Shanghai, China) at 37°C in a humidified incubator with
5% CO2.

Western Blot Analysis
Cancer cells were harvested, and total protein concentration was
measured with the BCA protein assay kit (Aidlab, Beijing,
China). After denaturation and separation by SDS-PAGE,
proteins were transferred to a polyvinylidenefluoride (PVDF)
membrane. Next, the blots were incubated with primary
antibodies (1:500 anti-CD13, 1:1000 anti-Integrin alpha V, and
1:1000 anti-Integrin beta 3; Abcam, Cambridge MA, USA), and
Glyceraldehyde-3-phosphate dehydrogenase (1:10000 GAPDH;
Sungene, Tianjin, China). Next, the membrane was incubated
with goat anti-rabbit IgG/HRP (diluted 1:20000; Sungene,
Tianjin, China). The membrane was scanned by enhanced
chemiluminescence (ECL kit, Beyotime) and analyzed using
Quantity One software (Bio-Rad, Hercules CA, USA).

In Vitro Cell Uptake and Blocking Studies
Cells in logarithmic phase were harvested and counted using a
cytometer (Cellmeter Mini, Nexcelom Bioscience LLC, Lawrence
MA, USA). Cells were seeded in a 24-well plate at 2×105 cells per
well 24 h in advance. 74 kBq 68Ga-NGR-RGD in 50 µL PBS were
added to each well and incubated at 37°C for 30 min, 1 h and 2 h.
For blocking study, cells were pretreated with one hundred times
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excess of non-radioactive NGR-RGD or NGR + RGD 15 min in
advance. At the end of each time point, supernatant was
collected, and cells were washed twice with pre-cooled PBS
(wash 1) before lysed with 1 N sodium hydroxide; then each
well was washed twice with pre-cooled PBS (wash 2). Cells,
supernatant and wash solutions were subjected to radioactivity
analysis using an automatic gamma counter (2470 WIZARD;
PerkinElmer, Waltham MA, USA). The percentage of
radioactivity taken up by the cells was calculated according to
Equation 1, wherein Cpm represents decay-corrected
radioactivity counts per minute.

% radioactivity uptake =

Cpm Cellsð Þ + Cpm Wash 2ð Þ½ �= Cpm Cellsð Þ + Cpm Supernatantð Þ + Cpm Wash 1ð Þ + Cpm Wash 2ð Þ½ � � 100

(Equation 1)

Animal Models
All animal studies were carried out according to the regulations
and standards of the Institutional Animal Care and Use
Committee of Tongji Medical College of Huazhong University
of Science and Technology. Subcutaneous SKOV3 or ES-2
tumors were engrafted into 4-6 weeks-old female BALB/C
nude mice obtained from Beijing HFK Bioscience Co. Ltd
(Beijing, China). For implantation, 5×106 cancer cells in 100
µL PBS were subcutaneously injected into the right shoulder of
each mouse. The mice were subjected to the following
experiments when tumor size reached 8-10 mm. For mouse
muscular inflammation models, 20 mL turpentine oil (Aladdin,
China) was injected into the right thigh muscle of each mouse
using a 29-gauge hypodermic needle. Turpentine oil caused
visible redness and swelling within 3 h after injection and the
inflammation mice were subjected to PET/CT scans at 24 h after
injection of turpentine oil.

For abdominal metastasis models, SKOV3 or ES-2 cells were
harvested and resuspended in a mixed solution (50% Matrigel,
Corning and 50% PBS). Next, 5×106 tumor cells in 200 µL were
injected into intra-peritoneal cavity (1, 32, 33). About 20 days
later, the mice underwent PET/CT imaging.

Animal PET/CT Imaging
and Biodistribution
PET/CT imaging was performed on the lnliView-3000B small
animal PET/SPECT/CT (Novel Medical, Beijing, China).
Overnight fasted tumor-bearing and inflammation mice
received intravenous (i.v.) injection of 2.4-3 MBq 18F-FDG.
Animals were then returned to anesthesia induction box and
subsequently anesthetized with 2.0% isoflurane delivered in
100% air. PET/CT scans were performed at 1 h after injection.
The day after 18F-FDG imaging, the PET/CT-based protocol for
68Ga-NGR-RGD imaging were conducted, including intravenous
injection of the 68Ga-NGR-RGD solution (4-5.5 MBq) and
identical procedures. For abdominal metastasis groups, PET/
CT were performed at 1 h p.i. of 18F-FDG or 68Ga-NGR-RGD.
Images were quantified via region-of-interest (ROI) analysis.

Following the terminal PET/CT scan, mice were sacrificed,
and organs of interest were harvested, weighed, and g-counted
Frontiers in Oncology | www.frontiersin.org 333
(2470 WIZARD; PerkinElmer, Waltham MA, USA) to validate
the imaging data. The tracer accumulation of tissues and organs
were noted by the percentage of injected dose per gram of tissue
and corrected for radioactive decay (%ID/g).

Immunohistochemistry Analysis
Tumors were extracted, fixed in 4% paraformaldehyde, and then
dehydrated and embedded in paraffin. Fixed tumor tissue sections
(5 mm) were deparaffinized, rehydrated and permeabilized in
EDTA buffer (pH 9.0). The sections were blocked for
nonspecific binding by adding 3% hydrogen peroxide and 10%
normal goat serum. Sections were incubated with primary
antibodies at 4°C overnight (anti-avb3, 1:100; anti-CD13, 1:100;
anti-CD31, 1:2000, Abcam, Cambridge MA, USA). Then sections
were further stained with secondary antibody (HRP-labeled goat
anti-rabbit IgG, diluted 1:50) at room temperature for 25 min, and
then incubated with 3,3’-diaminobenzidine (DAB, Beyotime,
Hangzhou, China) for 5 min. Last, slides were counterstained
with hematoxylin (Beyotime), dehydrated, covered, and observed
under light microscopy.

Statistical Analysis
Quantitative data were described as the mean ± standard deviation
(SD). Statistical analysis was performed using student t-test and
p-values < 0.05 were considered statistically significant.
RESULTS

CD13 and Integrin avb3 Expression in
Ovarian Tumor Cell Lines
Expression levels of CD13 and integrin avb3 in three ovarian
tumor cell lines were determined viaWestern blot, with GAPDH
used as an internal control (Figures 1A, B). Strong integrin avb3
band intensity was observed in SKOV3 and OVCAR4 cell lines
and strong CD13 staining was found in ES-2 cell line, indicating
the high expression of CD13 and/or integrin avb3 in ovarian
tumor cell lines.

Uptake Profile of 68Ga-NGR-RGD in
Ovarian Tumor Cells
To demonstrate the specificity of NGR-RGD for ovarian tumor cells,
we conducted the cell uptake andblocking studiesof 68Ga-NGR-RGD
in SKOV3, OVCAR4, and ES-2 ovarian tumor cells. High uptake of
68Ga-NGR-RGDwas observed in these three ovarian tumor cellswith
a gradually increasing trend over time (Figure 1C). On the contrary,
minimal uptake of 68Ga-NGR-RGD by SKOV3 and ES-2 cells was
detected when pretreated with excess amounts of non-radiolabeled
NGR-RGD or NGR+RGD (Figure 1D).

PET/CT Imaging and Biodistribution of
68Ga-NGR-RGD in Subcutaneous Tumors
Next, we performed the PET/CT scan in SKOV3 and ES-2
tumor-bearing mice and turpentine oil-induced muscular
inflammation mice using 18F-FDG and 68Ga-NGR-RGD. As
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shown in Figure 2A, 68Ga-NGR-RGD clearly delineated both
SKOV3 and ES-2 ovarian tumors, and the tumor contrast of
68Ga-NGR-RGD PET imaging was greater than that of 18F-FDG.
On the contrary, the uptake of 68Ga-NGR-RGD in inflammatory
muscle was minimal, while avid uptake of 18F-FDG in them
was observed.

The quantitative data were obtained from the region-of-
interest (ROI) analysis. Consistent with the PET images, 68Ga-
NGR-RGD showed significantly higher tumor-to-muscle (T/M)
and tumor-to-liver (T/L) ratios, with values of 2.71 ± 0.21 and
1.05 ± 0.04 for SKOV3-bearing mice and 2.78 ± 0.34 and 1.43 ±
0.16 for ES-2-bearing mice (n=4; all p<0.05), as compared to low
T/M and T/L ratios of 18F-FDG (0.92 ± 0.22 and 0.92 ± 0.04 for
SKOV3, 1.03 ± 0.47 and 0.97 ± 0.26 for ES-2) (Figures 2B, C).
We also quantified the tracer uptakes in inflammatory muscles
and compared them with tumors. The uptakes of 68Ga-NGR-
RGD in inflammatory muscles were much lower than tumors;
however, their 18F-FDG uptakes were much higher (Figure 2D).
And as expected, the tumor-to-inflammatory muscle ratios of
68Ga-NGR-RGD in SKOV3 and ES-2 were significantly higher
than that of 18F-FDG (all p<0.001) (Figure 2E).

Biodistribution studies of 68Ga-NGR-RGD were conducted at
1 h post injection to validate the PET analysis. 68Ga-NGR-RGD
uptake in SKOV3 and ES-2 xenografts were 0.68 ± 0.03%ID/g
and 0.70 ± 0.17%ID/g, respectively (Figure 3A). And high
tumor-to-muscle and tumor-to-liver ratios were recorded in
both ovarian tumors (Figure 3B), consistent with PET imaging
studies, further indicating the utility of 68Ga-NGR-RGD in the
diagnosis of ovarian cancer.
Frontiers in Oncology | www.frontiersin.org 434
Immunohistochemistry Staining in
Tumor Tissues
SKOV3 tumor sections showed high expression of integrin avb3
and moderate CD13, and ES-2 tumor sections showed abundant
CD13 and moderate integrin avb3 (Figure 3C). The staining of
endothelial marker CD31 (cluster of differentiation 31) was also
conducted to evaluate the angiogenesis of tumors. BothSKOV3and
ES-2 tumors displayed neovascularity. Immunohistochemical
results of tumor tissues were consistent with western blot results.
PET Imaging and Biodistribution in
Metastatic Models
To further investigate the potential application of 68Ga-NGR-
RGD in detecting metastases, SKOV3 and ES-2 abdominal
metastatic models were established by injecting tumor cells
intraperitoneally to simulate peritoneum implantation
metastasis of ovarian cancers. As shown in Figure 4, peritoneal
metastases could be easily delineated from 68Ga-NGR-RGD
PET/CT imaging in both ovarian tumor models. However, 18F-
FDG PET showed limited value in detecting these metastatic
lesions, which was limited by the relatively low uptake in tumors
and high background signals. In the images of 68Ga-NGR-RGD
(Figures 4A, C), several focal uptakes were found in the
abdominal space of both SKOV3 and ES-2 group mice,
suspected to be the peritoneal implantations; while in the
images of 18F-FDG (Figures 4B, D), several strips with high
signal were observed in abdomen. Surgical explorations were
done on the same mice after scanning, finding reddish-white
A B

DC

FIGURE 1 | Evaluation of binding affinity of 68Ga-NGR-RGD to ovarian tumor cells. (A) Western blot analysis of expression of CD13, integrin av and integrin b3 in
three ovarian tumor cell lines, with GAPDH used as internal control. (B) The semi-quantitative analysis was conducted through the integrated optical density ratio of
CD13, integrin av and integrin b3 to GAPDH. (C) Uptake of 68Ga-NGR-RGD in SKOV3, OVCAR4 and ES-2 ovarian tumor cell lines at 0.5 h, 1 h, 2 h. (D) Uptake of
68Ga-NGR-RGD in SKOV3 and ES-2 cells with or without blocking dose of NGR-RGD or NRG + RGD at 2 h. Cell uptake and blocking assays showed the
68Ga-NGR-RGD displayed specific binding to ovarian tumor cell lines. **p < 0.01, ***p < 0.001. Data are expressed as mean ± SD (n = 4).
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nodules with a slightly firm texture in all these groups
(Supplementary Figure 2). The nodules were extracted for
further evaluation, along with muscle, large intestine, small
intestine, spleen, and kidney. The nodular tissues (3-6 mm)
were confirmed to be 68Ga-NGR-RGD-avid but 18F-FDG-
nonavid by ex-vivo PET imaging. High radioactivity
accumulation was found in kidney, indicating that the tracer
was mainly excreted via kidney. Other tissues in the abdominal
cavity such as intestines and spleens showed low signals,
indicating that the high signal focuses in PET images were the
tumor metastases; whereas, uptake of 18F-FDG was high in large
intestine, suggesting the high signal regions in the image were
not metastases but intestinal physiological uptake. Additionally,
there were some liver metastases found in ES-2 abdominal
models (Figure 4E). The liver metastases of ovarian tumor
showed a strong uptake of 68Ga-NGR-RGD but a similar low
uptake of 18F-FDG as healthy liver, which further demonstrated
that 68Ga-NGR-RGD has excellent metastasis detection
efficiency of small peritoneal implants and liver metastases
over 18F-FDG. The hematoxylin-eosin (HE) staining confirmed
that the lesions on the liver were metastatic tumors (Figure 4F).

Ex-vivo biodistribution studies showed 2.11 ± 0.67%ID/g and
0.97 ± 0.23%ID/g tumor uptake of 68Ga-NGR-RGD in the
SKOV3 and ES-2 abdominal metastasis models, respectively
(Figure 5 and Supplementary Table 1). Tumor uptakes of
SKOV3 metastases were higher than SKOV3 subcutaneous
tumors, which might be attributed to a better blood supply and
the smaller metastasis size (34). Higher tumor-to-muscle (T/M)
and tumor-to-liver (T/L) ratios were recorded in 68Ga-NGR-
RGD group, consistent with the results of s.c. tumor models
(Supplementary Figure 3). More specifically, tumor-to-small
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intestine (T/SI) and tumor-to-large intestine (T/LI) ratios of
68Ga-NGR-RGD in abdominal metastasis models were
significantly higher than that of 18F-FDG (p<0.01), which was
consistent with PET imaging (Figure 5C).
DISCUSSION

CD13 and integrin avb3 are two important angiogenic factors
involved in the regulation of tumor angiogenesis and tumor
progression and several related targeted tracers were developed
for the detection of ovarian cancers, with proven specific and
sensitive targeting ability to ovarian cancers (22–25). However,
due to the high heterogeneity, and genetical instability of ovarian
cancer leading to a progressive increase in the number of
different angiogenic factors as the cancer progress to advanced
stages (20, 29, 30, 35, 36), the single-receptor targeted imaging
strategies may only cover a limited subset of the patients. Owing
to the dual-receptor binding property, improved in vivo kinetics,
and increased circulation half-life, heterodimer tracers
are expected to be more sensitive than single receptor-targeted
tracers, especially when only one receptor type is overexpressed
in a tumor model (31, 37, 38). In this study, we investigated the
ability and potential of our recently developed dual CD13 and
integrin avb3 targeted tracer 68Ga-NGR-RGD, as a tumor-
specific PET imaging agent, for the early diagnosis and staging
of ovarian tumors. 68Ga-NGR-RGD exhibited sharp contrasts in
subcutaneous ovarian xenografts and metastases, higher tumor-
to-background ratios, and in addition, high capability for
distinguishing tumor from inflammatory tissue which is
A B

D E

C

FIGURE 2 | PET/CT imaging and quantitative analysis of 68Ga-NGR-RGD and 18F-FDG in subcutaneous ovarian cancer models and inflammation models.
(A) Representative static small PET/CT images of 68Ga-NGR-RGD and 18F-FDG in SKOV3 and ES-2 xenograft mice and turpentine oil-induced muscular
inflammation mice at 1 h post radiotracer injection. White arrows indicated tumors and yellow arrows indicate the inflammatory muscles. (B, C) Tumor-to-muscle
(T/M) and tumor-to-liver (T/L) ratios among 68Ga-NGR-RGD and 18F-FDG imaging in SKOV3 (B) and ES-2 (C) xenograft mice. (D) Quantification of 68Ga-NGR-
RGD and 18F-FDG uptake in SKOV3 and ES-2 tumors and inflammatory muscle. (E) Tumor-to-inflammatory muscle (Tumor/Inflammatory M) ratios. *p < 0.05,
**p < 0.01, ***p < 0.001. Data are expressed as mean ± SD (n = 4).
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superior to 18F-FDG, suggesting it has great potential to provide
an enhancement to the standard diagnostic imaging of
ovarian cancer.

Here, three ovarian tumor cell lineswere selected and confirmed
to express high level of integrin avb3 and/or CD13, indicating the
possibility of dual-receptor targeted tracer for the detection of
ovarian tumors. In vitro studies showed high uptake of 68Ga-
NGR-RGD in three ovarian cancer cell lines, and blocking studies
showed significant decrease tracer uptake, validating the specific
binding of our radio-tracer towards integrin avb3 and CD13 on
ovarian tumor cells. Both SKOV3 and ES-2 subcutaneous
metastatic tumors were clearly visualized by 68Ga-NGR-RGD
PET imaging at 1 h post tracer injection, although SKOV3 cells
expressed a high level of integrin avb3 but relatively low level of
CD13, and ES-2 expressed a high level of CD13 but low integrin
avb3. These PET imaging results suggested a broad application of
68Ga-NGR-RGD in the detection of ovarian tumors with improved
tumor-targeting efficacy and sensitivity. Specifically, we could
readily identify the location of small peritoneal implants and liver
metastases (3-6 mm) in SKOV3 and ES-2 abdominal metastatic
models. These results demonstrated the utility of 68Ga-NGR-RGD
for the sensitive detection of integrin avb3 and/or CD13 positive
ovarian tumors.
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When compared with 18F-FDG, greater contrast of
subcutaneous and metastatic tumors was observed in 68Ga-
NGR-RGD PET imaging of SKOV3 and ES-2 ovarian tumor
models with significantly higher tumor-to-background ratios (T/
M and T/L). In addition, the overall abdominal background
uptake of 68Ga-NGR-RGD with exception of urinary system was
relatively low, so small metastases could be clearly delineated and
easily differentiated from background uptake of surrounding
tissues. However, 18F-FDG accumulated heavily in the large
intestine due to physiological intestinal uptake, which often
makes it difficult to distinguish between normal intestinal
uptake with adjacent abdominal or pelvic tumor or nodal
uptake (39–42). Moreover, in turpentine oil-induced muscular
inflammatory lesions (Supplementary Figure 1), high uptake of
18F-FDG was observed in inflammatory cells (neutrophils and
macrophages) and granulation tissues, which showed similar
histology and FDG-avid features to the reported studies (43–45),
mimicking a false-positive lesion of 18F-FDG PET. In contrast to
18F-FDG, 68Ga-NGR-RGD showed low accumulation in
inflammatory muscles. Therefore, the false-positive results in
physical uptake of surrounding tissues and inflammatory
changes detected by 18F-FDG can potentially be avoided using
68Ga-NGR-RGD as a more tumor-specific imaging agent.
A B

C

FIGURE 3 | Biodistribution data of 68Ga-NGR-RGD in ovarian xenograft mice and immunohistochemistry analysis of tumor tissue sections. (A) Biodistribution of
68Ga-NGR-RGD in SKOV3 and ES-2 subcutaneous ovarian tumor models at 1 h after injection (n = 4). (B) Tumor-to-muscle (T/M) and tumor-to-liver (T/L) ratios of
68Ga-NGR-RGD in SKOV3 and ES-2 xenograft mice. (C) Immunohistochemistry staining of CD13, integrin avb3 and CD31 in SKOV3 and ES-2 tumor sections. Scale
bar = 50 mm.
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There aremany potential applications that probably profit from
PET imaging targeting CD13 and integrin avb3. With the great
contrast of small tumors and higher tumor-to-background ratios
than 18F-FDG, 68Ga-NGR-RGD could provide significant
additional information, such as the relationship between tumor
lesionswith adjacent tissues anddistantmetastases, for determining
TNM staging and optimal treatment options, so it suggests that
68Ga-NGR-RGD is a potential candidate to be added to the workup
and treatment planning of patients with ovarian tumors. In
addition, anti-angiogenesis therapy has been regarded as a new
Frontiers in Oncology | www.frontiersin.org 737
era for tumor treatment in recent years, and targeting the tumor
neovascularization, including CD13 and integrinavb3, has become
a widely accepted therapeutic strategy in clinic (46, 47). The
heterodimer strategy may also help with the development of
therapy molecules, allowing for selection of responders and
treatment response monitoring during and after therapy.

One limitation of this study is that only two types of tumor
models were used, while ovarian tumors are highly heterogeneous
with complex tumor components (48). Future work will evaluate
tumor uptake of 68Ga-NGR-RGD in other types of tumor models,
A B

D

E F

C

FIGURE 4 | Radiological-surgical correlation of abdominal metastatic models. (A–D) Representative static PET/CT images of 68Ga-NGR-RGD and 18F-FDG in
SKOV3 and ES-2 abdominal ovarian metastasis models at 1 h post injection. In 68Ga-NGR-RGD PET/CT imaging, several metastatic lesions with strong uptake were
found in the peritoneal space [(A, C), white circle]. In 18F-FDG PET/CT imaging, there were several stripe high uptake foci (B, D). Surgical exploration was done in
the same animal after PET/CT imaging. Diffuse reddish-white nodules with a slightly firm texture were seen in the peritoneal space. Ex vivo PET imaging of excised
tissues was performed. The small metastases showed relatively high 68Ga-NGR-RGD uptake and low 18F-FDG uptake. H, heart; B, bladder; T, tumor; M, muscle; LI,
large intestine; SI, small intestine; Sp, spleen; K, kidney. Scale bar = 10 mm (E) ES-2 hepatic metastases (Hepatic M) showed strong uptake of 68Ga-NGR-RGD, but
a similar low uptake of 18F-FDG as healthy liver. (F) HE staining confirmed that the lesion on liver was tumor tissue. Scale bar = 250 mm or 100 mm.
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especially patient-derived xenograft models, with a various
expression of CD13 and integrin avb3. Currently, 68Ga is usually
produced by an in-house 68Ge/68Gagenerator, andone elution could
provide a dose enough for 2-5 patients based on the specification of
the generator. Therefore, we believe the final cost of a 68Ga-tracer
scan will be acceptable and should be close to routine 18F-FDG PET
scans (after considering the cyclotron and its maintenance). Clinical
studies evaluating the safety andefficacyof thedual-receptor targeted
tracer in humans are ongoing, which will be free of charge for the
patients enrolled, and we will report relevant data in the future.

In conclusion, 68Ga-NGR-RGD demonstrated a promising
application for early diagnosis, staging, and follow-up of ovarian
cancer, as it showed high tracer uptake, sharp contrasts in
subcutaneous xenograft and metastases, and higher tumor-to-
background ratios in ovarian tumor models with different
expression levels of CD13 and integrin avb3, demonstrating
superior diagnostic values than 18F-FDG PET/CT. Meanwhile,
in vivo PET imaging studies showed significantly lower
accumulation of 68Ga-NGR-RGD in inflammatory lesions
as compared to 18F-FDG, suggesting the potential of 68Ga-NGR-
RGD for di ffe rent ia t ing between tumor and non-
tumor inflammation.
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Cutaneous and subcutaneous soft tissue metastases are rare in lung adenocarcinoma
and suggest poor prognosis. We report a patient with lung adenocarcinoma who initially
presented with cutaneous and subcutaneous metastases to the abdomen that were
initially presumed to be herpes zoster and an occult subcutaneous soft tissue mass.
Because the lesions progressed over 3 weeks despite routine herpes zoster treatment,
magnetic resonance imaging was performed and showed a presumed sarcoma;
however, 18F-fluourodeoxyglucose positron emission tomography/computed
tomography demonstrated pulmonary lesions. Biopsy of the abdominal lesion
confirmed poorly differentiated lung adenocarcinoma. Early diagnosis of soft tissue
metastasis can be difficult. Clinicians should suspect internal organ malignancy when a
progressive cutaneous or subcutaneous soft tissue lesion is encountered.

Keywords: lung adenocarcinoma, soft tissue, skin rashes, metastasis, 18F-FDG, PET/CT
INTRODUCTION

Lung cancer is a frequently encountered malignancy that can metastasize to almost all organs and is
associated with high mortality (1, 2). Lung adenocarcinoma commonly metastasizes to the liver,
adrenal glands, brain, and bone (3). Soft tissue metastases from lung adenocarcinoma are rare and
occur predominantly in men (4). They may be apparent before the primary tumor and typically
herald a poor prognosis. Reported mean survival in patients with skin metastases is 2.9 months (5),
so early diagnosis and treatment are important. However, the diagnosis of skin metastases may be
delayed or missed. A high index of suspicion is required.
CASE DESCRIPTION

A 52-year-old woman presented with a 3-week history of painful rash and subcutaneous soft tissue
mass overlying the right abdomen at the waistline. She denied constitutional symptoms such as
fever, chills, night sweats, and unintentional weight loss. There was no history of major trauma,
surgery, smoking, alcohol use, or drug or food allergy. Notably, the patient was exposed to
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secondhand smoke from nicotine cigarettes due to her husband’s
smoking. In addition, her father died of esophageal cancer.
Herpes zoster was initially suspected but appropriate treatment
did not result in clinical improvement. In fact, progression
had occurred. Therefore, she was hospitalized for further
investigation and treatment. Physical examination showed a
raised skin mass surrounded by swelling and erythema on the
right abdomen (Figure 1A). Serum erythrocyte sedimentation
rate, C-reactive protein, white blood cell count, and multiple
tumor markers were elevated. Ultrasonography revealed a
solid mass underneath the rash. On magnetic resonance
imaging (MRI), the mass was 10 cm in diameter and
inhomogeneous on T2-weighted sequences (Figures 1B, C)
and exhibited markedly restricted diffusion on diffusion-
weighted sequences (Figure 1D). The mass was suspected to
be a sarcoma. To investigate potential distant metastases, 18F-
fluourodeoxyglucose (FDG) positron emission tomography
(PET)/computed tomography (CT) was performed, which
showed the previously demonstrated large abdominal mass was
hypermetabolic in the periphery and hypometabolic in the center
(Figure 2A); other hypermetabolic lesions were shown in the
right lung and the posterior pleural wall (Figure 2B–E). Lung
cancer with metastases was suspected and the patient
underwent ultrasound-guided biopsy of the subcutaneous soft
tissue mass. Examination of hematoxylin and eosin-stained
specimen (Figure 3A) revealed abundant oval and plump
cells with enlarged nuclei and red, broad cytoplasm.
Immunohistochemical examination showed staining was
positive for CK7 (Figure 3B), TTF-1 (Figure 3C), and PCK
but negative for P63, CK20, Villin, ER, CDX2, HER2, P16,
GATA-3, and VT-1. This suggested a diagnosis of primary
pulmonary adenocarcinoma with metastasis. Because PDL-1
was expressed (Figure 3D) and EGFR mutation was not
detected, the patient was placed on bevacizumab plus
pemetrexed–platinum doublet chemotherapy. After six cycles,
the primary pulmonary lesions shrunk but the cutaneous lesions
did not. Molecular testing revealed mutation in the BRAF 15
exon and targeted therapy was proposed, but the patient refused
for financial reasons. For relieving the patient’s pain, palliative
radiotherapy was initiated.
Frontiers in Oncology | www.frontiersin.org 242
DISCUSSION

Lung cancer morbidity and mortality is highest of all cancers
(1, 2) and lung adenocarcinoma accounts for approximately 40%
of all lung cancers (6). Although lung carcinoma can metastasize
to all organs, the liver, adrenal glands, bone, kidney, and brain
are the most common sites (3). Metastasis to cutaneous and
subcutaneous soft tissues is rare, with reported incidence rates
ranging between 1% and 12% (5, 7–9). Soft tissue metastasis can
be challenging to diagnose when it is the initial cancer
manifestation, as in our patient, who presented with a painful
rash in the absence of typical lung adenocarcinoma symptoms
(10). Soft tissue metastases may rapidly progress when the initial
diagnosis is missed.

To evaluate soft tissue metastases, MRI is the most sensitive
and specific imaging modality and enables assessment of tissue
characteristics, tumor extent, and areas of reactivity (11, 12).
In our patient, MRI was highly suspicious for sarcoma but 18F-
FDG PET/CT suggested a lung primary, which was confirmed by
biopsy. Although MRI can distinguish between benign and
malignant tumors, it cannot further distinguish malignancy.
Compared with sarcoma, soft tissue metastases from organ
malignancies are rare. They are easily missed, especially when
symptoms of the primary are absent or atypical. Therefore, 18F-
FDG PET/CT before biopsy is essential to improve diagnostic
accuracy and distinguish soft tissue masses.

Optimal management requires accurate diagnosis, which
requires biopsy in most cases (13, 14). In our patient,
histopathological and immunohistochemical examinations
resulted in a diagnosis of poorly differentiated pulmonary
adenocarcinoma (15, 16). In this disease, the appearance of
metastatic soft tissue masses indicates an advanced stage and
poor prognosis. Chemotherapy, immunotherapy, targeted
therapy, and radiotherapy are the mainstay treatments for soft
tissue metastasis; surgery is not typically recommended (17–19).
Unfortunately, six cycles of bevacizumab plus pemetrexed–
platinum doublet chemotherapy were not as effective as we had
hoped. The targeted therapy has been shown to decrease tumor
burden, decrease symptoms, and dramatically improve survival
outcomes in advanced lung cancers (19, 20). However, our patient
FIGURE 1 | Physical examination showed an erythematous rash and swelling surrounding a skin mass on the right abdomen (A, arrows). Magnetic resonance
imaging shoed an inhomogeneous soft tissue mass approximately 10 cm in diameter (B, coronal T2-weighted image; C, axial fat saturation T2-weighted image). The
lesion also showed markedly restricted diffusion on diffusion-weighted sequences (D, arrow).
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FIGURE 2 | A large mass showing hypermetabolism peripherally and hypometabolism centrally was found on 18F-fluorodeoxyglucose positron emission
tomography/computed tomography (A), arrows. Hypermetabolic lesions were imaged in the right lung and the posterior pleural wall (arrows) on axial computed
tomography (B, C), positron emission tomography (D) and fusion imaging (E).
FIGURE 3 | Hematoxylin and eosin staining revealed the tumor was composed of abundant oval and plump cells with enlarged nuclei and red, broad cytoplasm
(A). Immunohistochemical staining for CK 7 (B) showed a strong and diffuse brown cytoplasmic reaction. TTF-1 staining (C) Showed strong nuclear staining of
tumor cells. Immunohistochemical analysis showed PDL-1 expression (D).
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refused the targeted therapy for financial reasons. Then palliative
radiotherapy was initiated and proved effective for pain relief. To
date, the patient’s general condition has remained stable.

Early diagnosis of soft tissue metastasis can be difficult.
Clinicians should suspect internal organ malignancy when a
progressive cutaneous or subcutaneous soft tissue lesion is
encountered. A thorough examination should be performed and
18F-FDG PET/CT should be considered for further evaluation.
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Background: There remains a demand for a practical method of identifying lipid-poor
adrenal lesions.

Purpose: To explore the predictive value of computed tomography (CT) features
combined with demographic characteristics for lipid-poor adrenal adenomas and
nonadenomas.

Materials and Methods: We retrospectively recruited patients with lipid-poor adrenal
lesions between January 2015 and August 2021 from two independent institutions as
follows: Institution 1 for the training set and the internal validation set and Institution 2 for
the external validation set. Two radiologists reviewed CT images for the three sets. We
performed a least absolute shrinkage and selection operator (LASSO) algorithm to select
variables; subsequently, multivariate analysis was used to develop a generalized linear
model. The probability threshold of the model was set to 0.5 in the external validation set.
We calculated the sensitivity, specificity, accuracy, and area under the receiver operating
characteristic curve (AUC) for the model and radiologists. The model was validated and
tested in the internal validation and external validation sets; moreover, the accuracy
between the model and both radiologists were compared using the McNemar test in the
external validation set.

Results: In total, 253 patients (median age, 55 years [interquartile range, 47–64 years];
135 men) with 121 lipid-poor adrenal adenomas and 132 nonadenomas were included in
Institution 1, whereas another 55 patients were included in Institution 2. The multivariable
analysis showed that age, male, lesion size, necrosis, unenhanced attenuation, and portal
venous phase attenuation were independently associated with adrenal adenomas. The
clinical-image model showed AUCs of 0.96 (95% confidence interval [CI]: 0.91, 0.98),
0.93 (95% CI: 0.84, 0.97), and 0.86 (95% CI: 0.74, 0.94) in the training set, internal
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validation set, and external validation set, respectively. In the external validation set, the
model showed a significantly and non-significantly higher accuracy than reader 1 (84% vs.
65%, P = 0.031) and reader 2 (84% vs. 69%, P = 0.057), respectively.

Conclusions: Our clinical-image model displayed good utility in differentiating lipid-poor
adrenal adenomas. Further, it showed better diagnostic ability than experienced
radiologists in the external validation set.
Keywords: adrenal adenoma, computed tomography, model, clinic, distinguish
INTRODUCTION

Over the last decades, there has been an epidemic increase in the
detection of adrenal incidentalomas (1). Adrenal adenomas
account for most adrenal lesions and do not require further
treatment or only need regular follow-up (2). Adrenal adenomas
that contain large amounts of fat could be reliably diagnosed
through conventional imaging methods (3). However, 30% of
adenomas having an attenuation value of >10 HU (i.e., lipid-poor
adenomas) cannot be correctly differentiated from nonadenomas
(1). For adrenal lesions suspected to be metastatic tumors or
pheochromocytoma, further clinical examination and
intervention are needed to avoid adverse events, such as life-
threatening hypertension crises during operation. Therefore, it is
important to distinguish adrenal lipid-poor adenoma
from nonadenoma.

Chemical shift magnetic resonance imaging and energy
spectrum computed tomography (CT) are slightly more
sensitive for detection (4–7). However, their general use is
limited by the high price and relatively limited accessibility.
Thus, lipid-poor adrenal lesions usually need a dedicated
adrenal washout CT protocol for further characterization (8–
11). Nevertheless, the delayed phase and additional radiation
exposure may limit the utility of the washout CT protocol (12).
However, the relative percentage wash-in ratio of adrenal lesions
from the unenhanced to the portal venous phase can remedy the
above defects (12, 13). To our knowledge, only a few studies
including a large number of lipid-rich adenomas have
simultaneously assessed unenhanced attenuation and contrast
wash-in features on CT (12, 14). There is currently no combined
model established on easily available demographic information
and CT characteristics for distinguishing lipid-poor adenomas
and nonadenomas. Therefore, we aimed to develop a practical
clinical-image model for identifying lipid-poor adrenal lesions.
MATERIALS AND METHODS

Our study was approved by the Institutional Review Committee,
and the requirement of written informed consent was waived.
phy; AUC, area under the receiver
nce interval; IQR, Interquartile range;
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We followed the TRIPOD Statement (15) and completed the
checklist (Supplementary Table S1).
The Training Set and the Internal
Validation Set
We conducted a retrospective study on patients with adrenal
lesions who were continuously treated in Institution 1 from
January 2015 to August 2021. The inclusion criteria were as
follows: adult patients with adrenal lesions who underwent
adrenal or abdominal unenhanced and contrast-enhanced
CT scans.

The exclusion criteria were as follows: (a) lesions with an HU
≤ 10 on unenhanced CT and visible lipid-rich lesions (lipid-rich
adrenal adenoma or myelolipoma); (b) missing solid
components in the lesion: the change of CT attenuation
between the portal venous phase and unenhanced phase is ≤
10 HU; (c) lesions showing an increase of 10%–30% in the
maximum diameter of the adrenal gland during the follow-up
period; (d) the scheme of the adrenal or abdominal CT did not
meet the standards; (e) lesions with a history of systematic or
local treatment; and (f) lesions with a maximum diameter <
10 mm, which was determined to avoid the partial volume effect
caused by a thickness of 5 mm (8). For patients with multiple
adrenal lesions, only the maximum diameter was included in the
analysis to reduce the aggregation effect. The flowchart of the
patient selection is summarized in Figure 1. Patients from
Institution 1 were randomly split into the training set and the
internal validation set according to a ratio of 7:3. Some data in
this study had been used in prior research (16) on radiomics
conducted by our team.

Reference Standard
For all lesions, the final diagnosis was based on pathology or
widely accepted imaging standards (8). The diagnostic criteria
for lipid-poor adrenal adenomas and nonadenomas are
summarized in Supplementary Material S1.

The External Validation Set
Institution 2 analyzed patients with adrenal lesions continuously
treated from January 2015 to August 2021, constructed an
independent external validation set, and tested the model.
Patients in Institution 1 and Institution 2 were selected based on
the same inclusion and exclusion criteria (Figure 1). Moreover,
the scanning equipment, protocol, and contrast agent
concentration were consistent for patients in both institutions.
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Image Acquisition
All unenhanced and contrast-enhanced CT images were
obtained using multi-slice spiral CT scanners (uCT 530;
United Imaging, Shanghai, China; Discovery CT750HD; GE
Healthcare, Chicago, IL, USA). The images were displayed and
stored in the image archiving and communication system
(PACS). The CT protocols are provided in Supplementary
Material S2.

Image Analysis
The region of interest was manually drawn in the lesion layer
with the maximum diameter. Additionally, the obvious cystic,
calcified, and necrotic areas were avoided. All regions of interest
were determined on contrast-enhanced images. Subsequently,
they were copied to the unenhanced images. Placements were
corrected if necessary.

Two radiologists (ZHQ, reader 1, a radiologist with 3 years of
experience; LX, reader 2, a radiologist with 20 years of
experience), who were blinded to the clinical data and final
diagnosis, independently reviewed the CT images and recorded
information regarding shape, boundary, and necrosis. Moreover,
they measured the maximum diameter and the unenhanced and
portal venous phase CT attenuations which was also called
contrast-enhanced attenuation.

Absolute enhancement was calculated by subtracting
unenhanced from contrast-enhanced attenuation. The absolute
enhancement rate was calculated as follows: contrast-enhanced
attenuation/unenhanced attenuation × 100%. Based on
established guidelines (8): 1 ~ 2 cm, 2 ~ 4 cm, and ≥ 4 cm
were defined as small, medium, and large nodules, respectively.

To assess inter-reader agreement, all analyses were performed
independently by a third radiologist (PWT, a radiologist with 2
years of experience), who was also unaware of any clinical data and
final diagnosis. The consistency of quantitative variables between
the two readers was compared using intraclass correlation
coefficients (ICC). Inter-reader agreement was evaluated using
the kappa statistics for qualitative variables. Between-reader
differences were shown in the Bland Altman plots based on the
Frontiers in Oncology | www.frontiersin.org 348
mean of the measurement (17). After the consistency test, the
variables with ICC or kappa statistics > 0.8 was included. The
average values of the quantitative variables were used for
subsequent analysis. Between-reader disagreements in qualitative
data were resolved through a consensus between the two readers.

Statistical Analysis
Normally distributed continuous variables were analyzed using
Student’s t-test and presented as means and standard deviations.
Non-normally distributed continuous variables were examined
using the Mann-Whitney U test and presented as medians and
interquartile range (IQR). Categorical variables were analyzed
using the chi-square or Fisher’s exact test and expressed as the
frequency and percentage.

We conducted a least absolute shrinkage and selection
operator (LASSO) algorithm to select demographic variables
and CT features in the training set. We established a
generalized linear model (logistic regression) through
multivariate analysis of statistically significant variables to
predict the probability of lipid-poor adrenal adenoma.
Identification and calibration are crucial attributes with respect
to the performance evaluation of multivariable models (18).
Clinical effectiveness was evaluated using decision curve
analysis. The constructed model was used to predict the
probability of lipid-poor adenoma in the internal validation set
and external validation set.

The sensitivity, specificity, accuracy, and receiver operating
characteristic curve (AUC) of the model, and two readers were
calculated. AUCs between the combined model, unenhanced
attenuation, and absolute enhancement rate was compared using
the Delong test in the training set and internal validation set. The
accuracy between the model and both readers were compared
through the McNemar test in the external validation set.
MedCalc (version 19.4.1, MedCalc Software) and R software
(version 4.1.1, http://www.r-project.org) (rms, glmnet, rmda,
ggDCA, Hmisc, DynNom, rsconnect) were used to perform
the statistical analyses. Statistical significance was set at two
sided. P<0.05.
FIGURE 1 | Flowchart of the study sample.
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RESULTS

Study Participants
We included 665 patients with adrenal lesions who underwent
adrenal or abdominal unenhanced and contrast-enhanced CT.We
excluded 412 patients and included 253 in Institution 1 (median
age, 55 years [IQR, 47-64 years]; 135 men). Among the included
patients, 121 (48%) showed lipid-poor adrenal adenomas, while
132 (52%) showed nonadenomas, including 68 (27%) metastases
and 64 (25%) other nonadenomas (Figure 1).

The 121 lipid-poor adrenal adenomas were identified based
on pathological diagnosis (n = 109); size stability (n = 11),
and abnormal 18F-FDG uptake, fulfilling the criteria for
adenoma (n = 1).

The primary lesions and the diagnostic approaches of
metastases, and pathological types of other nonadenomas are
presented in Supplementary Material S3.

Using the same inclusion and exclusion criteria, 55 patients
(median age, 61 years [IQR, 50-70 years]; 29 men) with adrenal
lesions from Institution 2 were included in the external
validation set. Among them, 25 (45%) had adrenal adenomas
and 30 (55%) had nonadenomas, including 13 metastases and 17
others (Figure 1).

Characteristics of the Patients From
Institution 1 and Institution 2
Table 1 summarizes the clinical and CT characteristics of the
patients from Institution 1 and Institution 2. Patients with adrenal
adenomas were significantly younger and more of the female sex
than those with nonadenomas (median age, 52 years [IQR, 44–57
years] vs. 60 years [IQR, 52–67 years], [P < 0.001]; women: 64%
Frontiers in Oncology | www.frontiersin.org 449
[77/121] vs. 31% [41/132], [P < 0.001]). Moreover, patients with
adrenal adenomas showed a higher BMI than patients with
nonadenomas (median BMI, 24.6 kg/m2 [IQR, 22.4–26.7 kg/m2]
vs. 23.1 kg/m2 [IQR, 20.8–25.9 kg/m2], [P < 0.001]).

Regarding the CT signs, patients with lipid-poor adrenal
adenomas showed lower unenhanced attenuation than patients
with nonadenomas (median, 23 HU [IQR, 16–32 HU] vs. 37 HU
[IQR, 34–43 HU], [P < 0.001]), with no significant between-group
difference in contrast-enhanced attenuation (median, 65 HU
[IQR, 54–76 HU] vs. 67 HU [IQR, 57–79 HU], [P = 0.317]).
However, patients with adrenal adenomas showed higher absolute
enhancement attenuation than patients with nonadenomas
(median, 35 HU [IQR, 25–52 HU] vs. 26 HU [IQR, 19–42 HU],
[P < 0.001]). Similarly, the absolute enhancement rate was higher
in adenomas than in nonadenomas (296% [IQR, 233–353%] vs.
175% [IQR, 157–197%], [P < 0.001]).

Unilateral lesions were more frequent in patients with
adenomas than in those with nonadenomas (102 of 121
patients [84%] vs. 96 of 132 patients [73%]; P = 0.026). Lipid-
poor adrenal adenomas were smaller in diameter and were less
prone to necrosis than nonadenomas (P < 0.001). There were no
significant between-group differences in the other demographic
and CT characteristics (P > 0.05).

Characteristics of the Training Set and
Internal Validation Set
Supplementary Table S2 summarizes the clinical and CT
characteristics of the training set and internal validation set.
Except for the distribution of lesions and contrast-enhanced
attenuation, other clinical and CT features were statistically
different between patients with adenoma and those with
TABLE 1 | Characteristics of Institution 1 and Institution 2.

Institution 1 Comparison with Institution 2

Variables Lipid-poor Adenoma (n =
121)

Nonadenoma*
(n = 132)

P Institution 1
(n = 253)

Institution 2
(n = 55)

P

Age (years), median (IQR) 52 (44-57) 60 (52-67) <0.001 55 (47-64) 61 (50-70) 0.048
Sex, n (%) <0.001 0.932
Male 44 (36) 91 (69) 135 (53) 29 (47)
Female 77 (64) 41 (31) 118 (47) 26 (53)

BMI (kg/m2), median (IQR) 24.6 (22.4-26.7) 23.1 (20.8-25.9) <0.001 23.5 (21.5-
26.2)

23.4 (20.85-
25.8)

0.259

Distribution of lesions, n (%) 0.026 0.550
Unilateral 102 (84) 96 (73) 198 (78) 41 (75)
Bilateral 19 (16) 36 (27) 55 (22) 14 (25)

Necrosis, n (%) 9 (7) 63 (48) <0.001 72 (28) 18 (33) 0.529
Diameter (cm), n (%) <0.001 0.443
1-2 63 (52) 25 (19) 88 (35) 15 (27)
2-4 54 (45) 62 (47) 116 (46) 29 (53)
≥4 4 (3) 45 (34) 49 (19) 11 (20)

Unenhanced attenuation (HU), median (IQR) 23 (16-32) 37 (34-43) <0.001 34 (22-40) 33 (25-37) 0.772
Contrast-enhanced attenuation (HU), median
(IQR)

65 (54-76) 67 (57-79) 0.317 66 (57-78) 64 (55-80) 0.691

Absolute enhancement (HU), median (IQR) 35 (25-52) 26 (19-42) <0.001 35 (26-46) 34 (23-50) 0.709
Absolute enhancement ratio (%), median (IQR) 296 (233-353) 175 (157-197) <0.001 214 (173-300) 199 (170-277) 0.679
July 2022 | V
olume 12 | Article 9
*There were 132 patients with nonadenoma in the Institution 1, the complete information of them is summarized in Supplementary Material S3.
BMI, Body Mass Index; IQR, Interquartile range; kg, kilogram; m, meter. P: categorical variables—Chi-Squared Test or Fisher’s exact test; continuous variables—Mann–Whitney U test.
The bold value means statistical significance.
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nonadenoma in the training set (P < 0.05). No statistically
significant difference was observed in all variables between the
training set and the internal validation set.

Feature Selection
The inter-reader agreement was moderate for shape and
boundary (k = 0.53–0.56) and almost perfect for necrosis (k =
0.86), size, unenhanced attenuation, and contrast-enhanced
attenuation (ICC = 0.98–0.99). More details are shown in
Supplementary Figure S1. After LASSO, except for body mass
index (BMI) and distribution of lesions, the other variables were
included (Supplementary Figure S2).

Multivariable Analysis and Model
Construction
Multivariate analysis showed that age (odds ratio [OR], 0.94;
95% confidence interval [CI]: 0.90, 0.98; P = 0.015), male sex
(OR, 0.26; 95% CI: 0.08, 0.74; P = 0.015), lesion size (2-4cm: OR,
0.51; 95% CI: 0.14, 1.75; P = 0.289; ≥ 4 cm: OR, 0.09; 95% CI:
0.01, 0.57; P = 0.014), necrosis (OR, 0.19; 95% CI: 0.04, 0.78; P =
0.027), unenhanced attenuation (OR, 0.79; 95% CI: 0.72, 0.85;
P < 0.001), and contrast-enhanced attenuation (OR, 1.07; 95%
CI: 1.04, 1.11; P < 0.001) were independently associated with
adrenal adenomas (Table 2). The formula of the combined
model is as follows:

In p
1−p

� �
= 7:4743 − 1:3572� Sex = maleð Þ − 0:0593� age − 0:6636 �

Tumor size = Middleð Þ − 2:4000� Tumor size = Lagerð Þ − 1:6424 �
Necrosis = Yesð Þ − 0:2361� Unenhanced attenuation  + 0:0700 �

Contrast enhanced attenuation

Prognostic Performance of the Model
In the training set, the AUCs were 0.96 (95% CI: 0.91, 0.98), 0.87
(95% CI: 0.81, 0.91), and 0.92 (95% CI: 0.87, 0.96) for the model,
unenhanced attenuation, and absolute enhancement rate,
respectively. Additionally, the diagnostic performance of the
Frontiers in Oncology | www.frontiersin.org 550
model was higher than that of the unenhanced attenuation or
absolute enhancement rate (P < 0.001 and P = 0.002,
respectively). The AUC of the model was 0.93 (95% CI: 0.84,
0.97) in the internal validation set, which was superior to that of
the unenhanced attenuation and absolute enhancement rate
(AUC: 0.83 [95% CI: 0.73, 0.91; P = 0.040] and 0.88 [95% CI:
0.78, 0.94; P = 0.060], respectively). Figure 2 shows the
nomogram and the receiver operating characteristic (ROC)
curves in the training set and internal validation set. Moreover,
the calibration curve of the model in the training set is shown in
Supplementary Figure S3. The online tool is available at https://
zhanghuangqi.shinyapps.io/dynnomapp/. Examples of the
nomogram’s clinical use are displayed in Figures 3, 4. The
decision curve and clinical impact curves are shown in
Supplementary Figures S4, S5. This study revealed that the
model achieved a seemingly better net benefit than unenhanced
attenuation or relative enhancement rate.

External Validation Set
In the external validation set (n = 55), the AUC of the model was
0.86 (95% CI: 0.74, 0.94). The model (84%; 95% CI: 71%, 92%)
showed a significantly and non-significantly higher accuracy
than reader 1 (65%; 95%CI: 51%, 78%; P = 0.031) and reader 2
(69%; 95% CI: 55%, 81%; P = 0.057), respectively (Table 3).
DISCUSSION

It is desirable to develop a practical and convenient method for
identifying lipid-poor adrenal lesions. To our knowledge, this is
the first study to establish a combined model based on easily
available demographic information and CT characteristics for
differentiating lipid-poor adrenal adenomas from nonadenomas.
Our model was validated and tested using the internal validation
set and independent external data and showed good diagnostic
efficiency. Further, it displayed better diagnostic ability than
inexperienced radiologists in the external validation set.
TABLE 2 | Results of multivariate analysis for features selected by LASSO algorithm.

Variable Multivariable Analysis

OR (95% CI) P

Age (per 1 year) 0.94 (0.90, 0.98) 0.015
Sex
Female Ref.
Male 0.26 (0.08, 0.74) 0.015

Diameter (cm)
1-2 Ref.
2-4 0.51 (0.14, 1.75) 0.289
≥4 0.09 (0.01, 0.57) 0.014

Necrosis
No Ref.
Yes 0.19 (0.04, 0.78) 0.027

Unenhanced attenuation (per 1 HU) 0.79 (0.72, 0.85) <0.001
Contrast-enhanced attenuation (per 1 HU) 1.07 (1.04, 1.11) <0.001
July 2022 | Volume 12 | Article
OR, odds ratio; CI, confidence interval; cm, centimeter; HU, Hounsfield Unit; Ref., reference. Data in parentheses are 95% CIs.
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To facilitate the clinical use of this model, we have transformed it
into online software for use.

Previous studies have tried to identify lipid-poor adrenal
adenoma. Several studies found that CT attenuation displayed
potential usefulness in distinguishing adrenal adenoma (13, 14,
19). Our clinical-image model showed higher diagnostic
efficiency than simple unenhanced CT attenuation and
absolute enhancement rates. In previous studies, the diagnosis
of adenomas was confirmed by long-term radiological follow-
up; there was a relatively low proportion of adenomas
confirmed by surgery or puncture (20, 21). However, in our
study, 90% (109 of 121 patients) of the adenomas were
confirmed by pathology. Yi et al. developed radiomic
nomograms to distinguish subclinical pheochromocytoma
from lipid-poor adenoma through CT images with an AUC
of 0.904 (22). Our model was based on easily available
demographic information and CT features and also achieved
Frontiers in Oncology | www.frontiersin.org 651
good performance; moreover, our study covered a wider
etiology of adrenal nonadenoma.

Multivariable analysis revealed that the main demographics for
predicting lipid-poor adrenal adenoma were age and sex,
consistent with previous studies (23–25). Many nonadenomas
were metastases, which tend to occur in the elderly (8). The
presence or absence of necrosis and lesion size were independently
associated with the diagnosis of lipid-poor adrenal adenoma.
According to relevant guidelines (8), we used the lesion size as a
categorical variable since it is clinically significant. Given the high
possibility of benign lesions, follow-up should be conducted for
lesions with a size of 1–2 cm. For lesions with a size > 2 cm and <
4 cm, the next plan is determined in combination with
unenhanced attenuation. Finally, for lesions larger than 4 cm,
surgical resection is decided based on the malignancy history.

Patients with adenomas showed lower unenhanced
attenuation than patients with nonadenomas. Several studies
A

B C

FIGURE 2 | The nomogram and the receiver operating characteristic (ROC) curves in the training set and the internal validation set. (A) Nomogram of lipid-poor adrenal
adenoma prediction based on clinical-image model. Added up the scores of each variable to get the total score. Based on it, the probability of lipid-poor adrenal adenoma
was showed by projecting the score to the risk axis. Online tool is available at https://zhanghuangqi.shinyapps.io/dynnomapp/. (B) The ROC curves for differentiating lipid-
poor adenomas and nonadenomas in the training set. The highest area under the curve was obtained with the combined model (0.96 [95% CI: 0.91, 0.98]), followed by
absolute enhancement rate (0.92 [95% CI: 0.87, 0.96]), and unenhanced attenuation (0.87 [95% CI: 0.81, 0.91]). (C) The combined model displayed the best diagnostic
performance for prediction of lipid-poor adenomas in the internal validation set (AUC, 0.93 [95% CI: 0.84, 0.97]).
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have demonstrated that adrenal adenomas have lower
unenhanced attenuation than pheochromocytomas or
malignant adrenal lesions (26). Pathologically, adrenal
adenoma, whether rich in or lacking lipids, is a benign
neoplasm of adrenocortical cells. The adrenal cortex consists of
zona glomerulosa, zona fasciculata, and zona reticularis. The
zona fasciculata constitutes three-fourths of the cortex
comprising lipid-laden cells (1).

Although adenomas have been reported to show rapid wash in
the portal vein phase (13, 27), they often showed no statistically
significant difference in univariate analysis. A recent study (12)
indicated that the ratio of portal venous phase attenuation to
unenhanced attenuation allowed sufficient identification of lipid-
poor adenomas and nonadenomas. Therefore, we attempted to
incorporate the portal vein phase attenuation into the combined
model, which was an independent risk factor in multivariate
analysis. The above may be attributed to the correlations
between independent variables; the influence of independent
variables on dependent variables reflects their own role and the
mixed roles of other variables.

In the external validation set, there were 13 cases of adrenal
metastases, which were accurately identified by our combined
Frontiers in Oncology | www.frontiersin.org 752
model. A total of five nonadenomas were misjudged as
adenomas, including four pheochromocytomas and one
spindle cell tumor. Only one pheochromocytoma among these
five patients was correctly identified by reader 2. Previous studies
have indicated that some pheochromocytomas are misdiagnosed
as adenomas on adrenal enhanced CT (20, 28). Furthermore,
these pheochromocytomas were rich in blood vessels and
displayed rapid washout similar to adenomas, which cannot be
accurately characterized in the delayed phase (20, 28).

Our study has some limitations. First, we did not collect the
full clinical history or laboratory examination. However, this was
consistent with our study objective, which was an early, rapid,
and noninvasive diagnosis of lipid-poor adenoma and effective
stratification of patients to avoid some unnecessary examination.
Second, we used a total iodine dose of 400 mgI/kg, which is lower
than previously reported values (10, 20, 29) and might limit the
application of our model. This could be attributed to our
participants weighing less than those in previous studies due to
race differences. Simultaneously, an excessively high iodine dose
adversely affects patients, causing fever, pain, and contrast
medium nephropathy (30, 31). Third, the diagnostic efficiency
of the combined model in the external validation set was not as
FIGURE 3 | Axial unenhanced and contrast-enhanced adrenal CT images in a 64-year-old woman with cough and expectoration. The woman was accidentally found
having left adrenal lesions due to chest CT findings of left upper lung mass and multiple lymph nodes in the left hilar and mediastinum. CT features were analyzed as
follows: lesion location = “left”, size = “ middle (2.7cm×2.1cm)”, shape =“quasi-circular”, unenhanced attenuation = 16 HU, contrast-enhanced attenuation = 55 HU,
and necrosis= “yes”. Both radiologists evaluated that the possibility of nonadenoma (metastasis) was high, while the possibility of adenoma judged by the model was
up to 81% (95% CI: 39%, 97%). The result of pathological diagnosis was adrenal adenoma.
July 2022 | Volume 12 | Article 902991
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high as we expected. Moreover, the diagnostic accuracy of the
two readers in the external validation set was lower than that in
the training set, which could partly explain the reduced
diagnostic efficiency of the model. Specifically, this might be
attributed to differences in the types of patients treated in
both sets.
Frontiers in Oncology | www.frontiersin.org 853
CONCLUSION

This study shows that the combined model, which is based on
accessible demographic characteristics and CT features, can
facilitate the identification of lipid-poor adrenal adenoma. In
the training set, the combined model had better diagnostic
FIGURE 4 | Axial unenhanced and contrast-enhanced adrenal CT images in a 67-year-old man with dizziness and unstable walking. The man was accidentally
found having left adrenal lesions due to abdominal CT findings of right kidney occupied. Meanwhile, the boundary of the mass was clear, and no obvious enlarged
lymph nodes were found around. CT features were analyzed as follows: lesion location = “left”, size = “middle (2.7cm×2.1cm)”, shape =“quasi-circular”, unenhanced
attenuation = 50 HU, and contrast-enhanced attenuation = 86 HU. The renal lesion was considered to be a malignancy. Reader 1 thought that it was more likely to
be nonadenoma, while reader 2 thought that it was more likely to be adenoma. The possibility of adenoma judged by the model was only 1% (95% CI: 0%, 7%).
One year later, the patient went to see a doctor again due to repeated cough, expectoration, and chest tightness. CT showed that left hilar was occupied by mass
with bronchial and pulmonary artery stenosis. It was confirmed as small cell lung cancer pathologically. The left adrenal gland was significantly larger than before,
with maximum diameter of 3.3cm. Metastasis was considered first, but it cannot be determined whether the metastasis was from lung cancer or renal cancer.
TABLE 3 | Sensitivity, Specificity, and Accuracy for Differentiating Lipid-Poor Adenomas from Nonadenomas by Two Readers and the Model.

External Validation Set

Sensitivity (%) Specificity (%) Accuracy (%)

Reader1 80 (20/25) 53 (16/30) 65 (36/55)
[59, 93] [34, 72] [51, 78]

Reader2 56 (14/25) 80 (24/30) 69 (38/55)
[35, 76] [61, 82] [55, 81]

Model 84 (21/25) 83 (25/30) 84 (46/55)
[64, 96] [65, 94] [71, 92]
July 2022 | Volume 12 |
Data in parentheses are numbers of lesions, with 95% CIs in brackets.
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efficiency than unenhanced attenuation or the absolute
enhancement rate. In the external validation set, the model
showed higher accuracy than an inexperienced radiologist.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
AUTHOR CONTRIBUTIONS

WP, HZ, and WJ: conception and design. HZ, XL, SJ, and JY:
collection and assembly of data. HZ, WP, and LM: data analysis
Frontiers in Oncology | www.frontiersin.org 954
and interpretation. WP, XD, BZ, and JY: manuscript writing. All
authors contributed to the article and approved the
submitted version.
ACKNOWLEDGMENTS

We would like to thank Editage (www.editage.com) for English
language editing.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2022.902991/
full#supplementary-material
REFERENCES
1. Sherlock M, Scarsbrook A, Abbas A, Fraser S, Limumpornpetch P, Dineen R,

et al. Adrenal Incidentaloma. Endocr Rev (2020) 41:775–820. doi: 10.1210/
endrev/bnaa008

2. Fassnacht M, Arlt W, Bancos I, Dralle H, Newell-Price J, Sahdev A, et al.
Management of Adrenal Incidentalomas: European Society of Endocrinology
Clinical Practice Guideline in Collaboration With the European Network for
the Study of Adrenal Tumors. Eur J Endocrinol (2016) 175:G1–1G34.
doi: 10.1530/EJE-16-0467

3. Maurea S, Mainolfi C, Bazzicalupo L, Panico MR, Imparato C, Alfano B, et al.
Imaging of Adrenal Tumors Using FDG PET: Comparison of Benign and
Malignant Lesions. AJR Am J Roentgenol (1999) 173:25–9. doi: 10.2214/
ajr.173.1.10397094

4. Platzek I, Sieron D, Plodeck V, Borkowetz A, Laniado M, Hoffmann RT.
Chemical Shift Imaging for Evaluation of Adrenal Masses: A Systematic
Review and Meta-Analysis. Eur Radiol (2019) 29:806–17. doi: 10.1007/
s00330-018-5626-5

5. Nagayama Y, Inoue T, Oda S, Tanoue S, Nakaura T, Morinaga J, et al.
Unenhanced Dual-Layer Spectral-Detector CT for Characterizing
Indeterminate Adrenal Lesions. Radiology (2021) 301:369–78. doi: 10.1148/
radiol.2021202435

6. Connolly MJ, McInnes M, El-Khodary M, McGrath TA, Schieda N.
Diagnostic Accuracy of Virtual non-Contrast Enhanced Dual-Energy CT
for Diagnosis of Adrenal Adenoma: A Systematic Review and Meta-Analysis.
Eur Radiol (2017) 27:4324–35. doi: 10.1007/s00330-017-4785-0

7. Nagayama Y, Inoue T, Oda S, Tanoue S, Nakaura T, Ikeda O, et al. Adrenal
Adenomas Versus Metastases: Diagnostic Performance of Dual-Energy
Spectral CT Virtual Noncontrast Imaging and Iodine Maps. Radiology
(2020) 296:324–32. doi: 10.1148/radiol.2020192227

8. Mayo-Smith WW, Song JH, Boland GL, Francis IR, Israel GM, Mazzaglia PJ,
et al. Management of Incidental Adrenal Masses: A White Paper of the ACR
Incidental Findings Committee. J Am Coll Radiol (2017) 14:1038–44.
doi: 10.1016/j.jacr.2017.05.001

9. Szolar DH, Kammerhuber F. Quantitative CT Evaluation of Adrenal Gland
Masses: A Step Forward in the Differentiation Between Adenomas and
Nonadenomas . Radio logy (1997) 202 :517–21 . do i : 10 .1148/
radiology.202.2.9015083

10. Kebapci M, Kaya T, Gurbuz E, Adapinar B, Kebapci N, Demirustu C.
Differentiation of Adrenal Adenomas (Lipid Rich and Lipid Poor)
From Nonadenomas by Use of Washout Characteristics on Delayed
Enhanced CT. Abdom Imaging (2003) 28:709–15. doi: 10.1007/s00261-
003-0015-0

11. Foti G, Malleo G, Faccioli N, Guerriero A, Furlani L, Carbognin G.
Characterization of Adrenal Lesions Using MDCT Wash-Out Parameters:
Diagnostic Accuracy of Several Combinations of Intermediate and Delayed
Phases. Radiol Med (2018) 123:833–40. doi: 10.1007/s11547-018-0911-6

12. Nagayama Y, Inoue T, Kato Y, Tanoue S, Kidoh M, Oda S, et al. Relative
Enhancement Ratio of Portal Venous Phase to Unenhanced CT in the
Diagnosis of Lipid-Poor Adrenal Adenomas. Radiology (2021) 301:360–8.
doi: 10.1148/radiol.2021210231

13. Foti G, Faccioli N, Manfredi R, Mantovani W, Mucelli RP. Evaluation of
Relative Wash-in Ratio of Adrenal Lesions at Early Biphasic CT. AJR Am J
Roentgenol (2010) 194:1484–91. doi: 10.2214/AJR.09.3636

14. Szolar DH, Kammerhuber FH. Adrenal Adenomas and Nonadenomas:
Assessment of Washout at Delayed Contrast-Enhanced CT. Radiology
(1998) 207:369–75. doi: 10.1148/radiology.207.2.9577483

15. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg
EW, et al. Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD): Explanation and Elaboration.
Ann Intern Med (2015) 162:W1–73. doi: 10.7326/M14-0698

16. Zhang B, Zhang H, Li X, Jin S, Yang J, Pan W, et al. Can Radiomics Provide
Additional Diagnostic Value for Identifying Adrenal Lipid-Poor Adenomas
From Non-Adenomas on Unenhanced Ct. Front Oncol (2022) 12:888778.
doi: 10.3389/fonc.2022.888778

17. Abu-Arafeh A, Jordan H, Drummond G. Reporting of Method Comparison
Studies: A Review of Advice, an Assessment of Current Practice, and Specific
Suggestions for Future Reports. Br J Anaesth (2016) 117:569–75. doi: 10.1093/
bja/aew320

18. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al.
Discrimination and Calibration of Clinical Prediction Models: Users Guides
to the Medical Literature. JAMA (2017) 318:1377–84. doi: 10.1001/
jama.2017.12126

19. Ng CS, Wei W, Altinmakas E, Li X, Ghosh P, Perrier NA, et al. Differentiation
of Malignant and Benign Adrenal Lesions With Delayed CT: Multivariate
Analysis and Predictive Models. AJR Am J Roentgenol (2018) 210:W156–
156W163. doi: 10.2214/AJR.17.18428

20. Caoili EM, Korobkin M, Francis IR, Cohan RH, Platt JF, Dunnick NR, et al.
Adrenal Masses: Characterization With Combined Unenhanced and Delayed
Enhanced CT. Radiology (2002) 222:629–33. doi: 10.1148/radiol.2223010766

21. Caoili EM, Korobkin M, Francis IR, Cohan RH, Dunnick NR. Delayed
Enhanced CT of Lipid-Poor Adrenal Adenomas. AJR Am J Roentgenol
(2000) 175:1411–5. doi: 10.2214/ajr.175.5.1751411

22. Yi X, Guan X, Zhang Y, Liu L, Long X, Yin H, et al. Radiomics Improves
Efficiency for Differentiating Subclinical Pheochromocytoma From Lipid-
Poor Adenoma: A Predictive, Preventive and Personalized Medical Approach
in Adrenal Incidentalomas. EPMA J (2018) 9:421–9. doi: 10.1007/s13167-018-
0149-3

23. Mosconi C, Vicennati V, Papadopoulos D, Dalmazi GD, Morselli-Labate AM,
Golfieri R, et al. Can Imaging Predict Subclinical Cortisol Secretion in Patients
July 2022 | Volume 12 | Article 902991

http://www.editage.com
https://www.frontiersin.org/articles/10.3389/fonc.2022.902991/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.902991/full#supplementary-material
https://doi.org/10.1210/endrev/bnaa008
https://doi.org/10.1210/endrev/bnaa008
https://doi.org/10.1530/EJE-16-0467
https://doi.org/10.2214/ajr.173.1.10397094
https://doi.org/10.2214/ajr.173.1.10397094
https://doi.org/10.1007/s00330-018-5626-5
https://doi.org/10.1007/s00330-018-5626-5
https://doi.org/10.1148/radiol.2021202435
https://doi.org/10.1148/radiol.2021202435
https://doi.org/10.1007/s00330-017-4785-0
https://doi.org/10.1148/radiol.2020192227
https://doi.org/10.1016/j.jacr.2017.05.001
https://doi.org/10.1148/radiology.202.2.9015083
https://doi.org/10.1148/radiology.202.2.9015083
https://doi.org/10.1007/s00261-003-0015-0
https://doi.org/10.1007/s00261-003-0015-0
https://doi.org/10.1007/s11547-018-0911-6
https://doi.org/10.1148/radiol.2021210231
https://doi.org/10.2214/AJR.09.3636
https://doi.org/10.1148/radiology.207.2.9577483
https://doi.org/10.7326/M14-0698
https://doi.org/10.3389/fonc.2022.888778
https://doi.org/10.1093/bja/aew320
https://doi.org/10.1093/bja/aew320
https://doi.org/10.1001/jama.2017.12126
https://doi.org/10.1001/jama.2017.12126
https://doi.org/10.2214/AJR.17.18428
https://doi.org/10.1148/radiol.2223010766
https://doi.org/10.2214/ajr.175.5.1751411
https://doi.org/10.1007/s13167-018-0149-3
https://doi.org/10.1007/s13167-018-0149-3
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pan et al. Clinical-Image Model to Distinguish Adenomas
With Adrenal Adenomas? A CT Predictive Score. AJR Am J Roentgenol (2017)
209:122–9. doi: 10.2214/AJR.16.16965

24. Northcutt BG, Trakhtenbroit MA, Gomez EN, Fishman EK, Johnson PT.
Adrenal Adenoma and Pheochromocytoma: Comparison of Multidetector CT
Venous Enhancement Levels and Washout Characteristics. J Comput Assist
Tomogr (2016) 40:194–200. doi: 10.1097/RCT.0000000000000343

25. Pennanen M, Raade M, Louhimo J, Sane T, Heiskanen I, Arola J, et al.
Adrenocortical Tumours: High CT Attenuation Value Correlates With
Eosinophilia But Does Not Discriminate Lipid-Poor Adenomas From
Malignancy. J Clin Pathol (2013) 66:1076–80. doi: 10.1136/jclinpath-2013-201513

26. Akbulut S, Erten O, Kahramangil B, Gokceimam M, Kim YS, Li P, et al. A
Critical Analysis of Computed Tomography Washout in Lipid-Poor Adrenal
Incidentalomas. Ann Surg Oncol (2021) 28:2756–62. doi: 10.1245/s10434-020-
09329-1

27. Inan N, Arslan A, Akansel G, Anik Y, Balci NC, Demirci A. Dynamic Contrast
Enhanced MRI in the Differential Diagnosis of Adrenal Adenomas and Malignant
Adrenal Masses. Eur J Radiol (2008) 65:154–62. doi: 10.1016/j.ejrad.2007.03.012

28. Park BK, Kim B, Ko K, Jeong SY, Kwon GY. Adrenal Masses Falsely
Diagnosed as Adenomas on Unenhanced and Delayed Contrast-Enhanced
Computed Tomography: Pathological Correlation. Eur Radiol (2006) 16:642–
7. doi: 10.1007/s00330-005-0017-0

29. Park SW, Kim TN, Yoon JH, Kim TH, Chung JM, Jeon UB, et al. The
Washout Rate on the Delayed CT Image as a Diagnostic Tool for Adrenal
Adenoma Verified by Pathology: A Multicenter Study. Int Urol Nephrol
(2012) 44:1397–402. doi: 10.1007/s11255-012-0202-4

30. Li Z, Li Q, Shen Y, Li A, Li H, Liang L, et al. Adrenal and Nephrogenic
Hypertension: An Image Quality Study of Low Tube Voltage, Low-Concentration
Frontiers in Oncology | www.frontiersin.org 1055
Contrast Media CombinedWith Adaptive Statistical Iterative Reconstruction. Int
J Clin Pract (2016) 70 Suppl 9B:B29–36. doi: 10.1111/ijcp.12860

31. Romano G, Briguori C, Quintavalle C, Zanca C, Rivera NV, Colombo A, et al.
Contrast agents and renal cell apoptosis. Eur Heart J (2008) 29:2569–76.
doi: 10.1093/eurheartj/ehn197
Conflict of Interest: Author LM is employed by He Kang Corporate Management
(SH).

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Pan, Zhang, Jin, Li, Yang, Zhang, Dong, Ma and Ji. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
July 2022 | Volume 12 | Article 902991

https://doi.org/10.2214/AJR.16.16965
https://doi.org/10.1097/RCT.0000000000000343
https://doi.org/10.1136/jclinpath-2013-201513
https://doi.org/10.1245/s10434-020-09329-1
https://doi.org/10.1245/s10434-020-09329-1
https://doi.org/10.1016/j.ejrad.2007.03.012
https://doi.org/10.1007/s00330-005-0017-0
https://doi.org/10.1007/s11255-012-0202-4
https://doi.org/10.1111/ijcp.12860
https://doi.org/10.1093/eurheartj/ehn197
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology

OPEN ACCESS

EDITED BY
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This study aimed to retrospectively analyze the features of contrast-enhanced

ultrasound (CEUS) of renal masses that cannot be detected by conventional

ultrasound (CUS). The data of 264 patients who underwent CEUS for renal

lesions from January 2016 to December 2019 were retrieved. Of these, 16

patients with renal masses which were not detected by CUS were included in

the final analysis. The corresponding characteristics of CEUS were evaluated,

including intensity of enhancement, homogeneity, wash-in and wash-out

patterns, and perilesional rim-like enhancement. Of the 16 patients, 10

patients had clear cell renal cell carcinoma (ccRCC) and 6 patients had

urothelial carcinoma of the renal pelvis (UCRP). Compared with the location

on non-enhanced computed tomography (CT) scan, all tumors were detected

on CEUS. Most (7/10) of the ccRCCs appeared as hyperenhancement,

homogeneous enhancement, synchronous-in, and no perilesional rim-like

enhancement. Most (4/6) of the UCRPs appeared as isoenhancement, slow-

in, fast-out, and no perilesional rim-like enhancement. CEUS may be helpful in

the diagnosis and differential diagnosis of renal tumors which were not

observed on CUS, and it might be an alternative method for some patients

when contrast-enhanced computed tomography (CECT) or magnetic

resonance imaging (MRI) cannot be performed.

KEYWORDS

conventional ultrasound, non-enhanced computed tomography, renal mass,
undetectable, contrast-enhanced ultrasound, clear cell renal cell carcinoma,
urothelial carcinoma of the renal pelvis
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Introduction

The differential diagnosis of renal tumor histotypes is vital

for clinical treatment decision-making and prognosis evaluation.

Imaging examination is the main basis for clinical differentiation

of renal tumor histotypes, which is of great significance (1). Most

of the patients with renal masses are asymptomatic in the early

stage, and 70%–80% of renal tumors can be detected by

ultrasound (US) in routine physical examination (2). Although

conventional ultrasound (CUS), including B mode and color

Doppler, has an important role in the diagnosis of renal tumors,

it also has some limitations. Factors such as obesity, growth

pattern, echo, and location may interfere with the CUS

examination, leading to misdiagnosis or missed diagnosis,

which often requires further examinations (3, 4).

Contrast-enhanced ultrasound (CEUS) was recently

introduced as a promising technique for the evaluation of

renal tumors (5). CEUS is performed by using a microbubble

contrast agent. As the size of the microbubbles is similar to red

cells (ranging from 1 to 10 µm), the microbubbles remain

completely in the intravascular space with no nephrotoxicity

and discharge through the respiratory system. The European

Federation of Societies for Ultrasound in Medicine and Biology

Guidelines and Recommendations on the Clinical Practice of

CEUS have suggested indications for CEUS of renal diseases (6).

CEUS is helpful in evaluating atypical cysts and uncertain

masses detected by computed tomography (CT) or magnetic

resonance imaging (MRI) (7). In addition to the role in the

differential diagnosis of renal masses, CEUS can also detect

masses that cannot be observed on CUS; however, there were

very few related studies (8). In our daily work, we also found

some cases with renal masses which were not detected by CUS.

These patients had a single suspicious renal mass on non-

enhanced CT scan. However, they were unable to undergo

contrast-enhanced computed tomography (CECT) or MRI for

their own reasons, so CEUS was then performed at the

ultrasound department, which clearly showed the masses. This

study aimed to analyze CEUS features of renal masses that were

undetectable by CUS.
Materials and methods

Patients

This retrospective study was approved and supervised by the

institutional review committee of our hospital, and informed

consent was obtained from each patient prior to the CEUS

examination. The data of 264 patients from January 2017 to

December 2020 were retrieved. Of these, 16 patients with renal

masses were included in the final analysis. Histopathological

evaluation was performed on the specimens obtained from
Frontiers in Oncology 02
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surgically resected lesions. The inclusion criteria were as

follows: 1) no renal mass was found on CUS; 2) a single

suspicious renal mass was observed on CT; 3) CEUS was

performed after CT examination; and 4) patients had not

undergone any invasive treatments before. The exclusion

criteria were as follows: 1) a renal mass that can be easily

identified by CUS; 2) cases that were confirmed by CECT or

MRI; 3) cases who had incomplete imaging data; and 4) patients

who were pregnant, had a history of cardiac failure, or had

respiratory disorders.
Imaging technology and
technical characteristics

US examination was performed by using an ultrasonic

diagnostic instrument (Aplio 500, Canon Medical Systems,

Tokyo, Japan), equipped with a probe 6C1 (frequency of 3.5–

5.0 MHz) for CUS and CEUS with a mechanical index of 0.07.

Compared with the location of the renal mass shown on the

non-enhanced CT scan, CUS was used to identify the renal mass.

At the same time, CUS was used to observe whether the renal

pelvis was separated. If the mass was still not found, CEUS was

performed on the area suspected by non-enhanced CT scan.

The area suspected by non-enhanced CT scan was then

targeted, and imaging settings such as depth, gain, and focal zone

were optimized to ensure adequate image quality. CEUS was

administered by injecting 1.2–2.4 ml of SonoVue (Bracco, Italy)

through an antecubital vein followed by flushing with 5.0 ml of

normal saline. All dynamic images were observed for 3 min and

stored on a hard disk for further analysis. All CEUS

examinations were evaluated by two radiologists with more

than 10 years of experience in CEUS. Differences in opinions

and findings were discussed and resolved by the same

two radiologists.
Analysis of CEUS

The enhancement pattern and characteristics of CEUS were

evaluated according to the literature (9). A) Enhancement

intensity at peak: the enhancement degree of the lesion was

compared with that of the renal cortex, and it was classified as

hyper-, iso-, or hypoenhancement. B) Enhanced homogeneity:

the homogeneity was divided into homogeneous and

heterogeneous. C) Wash-in pattern was classified as “fast-in,”

“synchronous-in,” or “slow-in,” indicating that the contrast

agent entered the mass faster than, the same as, and more

slowly than the adjacent renal cortex, respectively. D) Wash-

out pattern was divided into “fast-out,” “synchronous-out,” or

“slow-out,” indicating that the contrast agent discharged from

the mass faster than, the same as, and more slowly than the
frontiersin.org
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adjacent cortex, respectively. E) Perilesional rim-like

enhancement was divided into present or absent.
Analysis of CUS after CEUS

In the simultaneous display mode of both CUS and CEUS

images, the mass displayed on CEUS was delineated, and the

corresponding position of the mass on CUS was also

automatically delineated. The CUS features of the suspicious

area were analyzed. CUS features included echogenicity,

homogeneity, and blood flow signal. The echogenicity was

classified as hypoechoic, isoechoic, or hyperechoic when

compared with that of the adjacent renal cortex. Homogeneity

was classified as homogeneous and heterogeneous. The blood

flow signal inside the tumor was divided into yes or no.
Results

A total of 6 women and 10 men were recruited, with a mean

age of 62.2 ± 12.2 years (range, 38–83 years). There were a total

of 16 masses, with a mean maximum diameter of 2.2 ± 0.7 cm

(range, 1.2–3.8 cm). Of the 16 tumors, 9 (56.3%) were on the left,

and the remaining 7 (43.7%) were on the right. All the masses

were diagnosed by postoperative pathology. The pathological
Frontiers in Oncology 03
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results were clear cell renal cell carcinoma (ccRCC) in 10

patients (62.5%), with a mean maximum diameter of

2.0 ± 0.4 cm (range, 1.5–2.9 cm), and urothelial carcinoma of

the renal pelvis (UCRP) in 6 patients (37.5%), with a mean

maximum diameter of 2 .6 ± 0 .9 cm (range , 1 .2–

3.8 cm) (Table 1).

Of the 10 cases with ccRCC, 10 (100.0%) showed

hyperenhancement on CEUS. Six cases (60.0%) showed

homogeneous enhancement, and seven cases (70.0%) showed a

synchronous-in pattern (Figure 1). Of the six patients with

UCRP, five (83.3%) showed a slow-in pattern, four (66.7%)

showed a fast-out pattern, and the enhancement intensity was

isoenhancement in four cases (66.7%) (Figure 2). In one case of

UCRP with renal pelvis stones, CEUS showed an isoenhancement

lesion next to the stones, while it was suspicious for a thrombus or

a mass on CT (Figure 3). Perilesional rim-like enhancement was

not observed in all the cases.

All the cases were performed in the simultaneous display

mode of both CUS and CEUS images. Of the 10 cases with

ccRCC, 7 cases (70.0%) were isoechoic, and the other 3 cases

(30.0%) were hypoechoic on CUS. No renal pelvis separation

was observed in the 10 cases of ccRCC. The largest ccRCC was

not clearly demarcated from the renal pelvis and surrounding

blood vessels on CT, and it was mistaken for a tumor of the renal

pelvis (Figure 4); however, it was not observed on CUS. Of the

six cases with UCRP, all the lesions were hypoechoic on CUS.
TABLE 1 Clinical characteristics of the 16 patients with renal masses.

Case Gender Age Location Size
(cm)

Clinical presentation Reasons why CECT or MRI was
not performed

Surgical
methods

Pathology

1 Female 83 Right 1.9 × 1.6 Asymptomatic Chronic renal failure PN ccRCC

2 Female 52 Left 1.5 × 1.3 Pain and discomfort in the left
waist

Allergy to contrast media PN ccRCC

3 Male 38 Left 1.8 × 1.6 Asymptomatic Allergy to contrast media PN ccRCC

4 Male 43 Right 1.6 × 1.5 Asymptomatic Unwilling PN ccRCC

5 Male 71 Right 2.1 × 1.9 Pain and discomfort in the right
waist

Allergy to contrast media PN ccRCC

6 Male 69 Left 2.9 × 2.1 Asymptomatic Unwilling RN ccRCC

7 Female 57 Right 2.7 × 1.8 Asymptomatic Unwilling RN ccRCC

8 Male 65 Right 1.5 × 1.2 Pain and discomfort in the right
waist

Renal dysfunction PN ccRCC

9 Male 58 Left 1.7 × 1.6 Asymptomatic Unwilling PN ccRCC

10 Male 71 Left 2.3 × 2.1 Asymptomatic Unwilling PN ccRCC

11 Female 56 Right 2.4 × 1.8 Pain and discomfort in the right
waist, gross hematuria

Allergy to contrast media RN with excision of
bladder cuff

UCRP

12 Female 69 Right 2.2 × 1.6 Gross hematuria Renal dysfunction RN UCRP

13 Male 66 Left 1.2 × 7.8 Pain and discomfort in the left
waist

Allergy to contrast media RN with excision of
bladder cuff

UCRP

14 Male 74 Left 3.8 × 3.3 Pain and discomfort in the left
waist, gross hematuria

Unwilling RN with excision of
bladder cuff

UCRP

15 Male 73 Left 3.4 × 1.9 Gross hematuria Renal dysfunction RN UCRP

16 Male 50 Left 2.4 × 2.1 Gross hematuria Allergy to contrast media RN UCRP
fro
ccRCC, clear cell renal cell carcinoma; UCRP, urothelial carcinoma of the renal pelvis; RN, radical nephrectomy; PN, partial nephrectomy.
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Slight renal pelvis separation was observed in three

cases (Table 2).
Discussion

The European Association of Urology Guidelines on Renal

Cell Carcinoma suggested that CECT and MRI were the

preferred imaging modalities for the characterization and

diagnosis of renal cell carcinoma (RCC), and CEUS can be

used as a supplementary method for patients with chronic renal

failure or known allergy to iodide or gadolinium-containing

contrast agents (10). Among all the diagnosis methods, CEUS

has the advantages of minimal invasiveness, no radiation, real

time, and no burden on renal metabolism, which may be helpful

for tumor diagnosis, especially for early differential diagnosis (1).

In recent years, with the development of medical imaging

technology, more and more small renal tumors have been

detected, and the sonographic characteristics have been

summarized (11). However, for some tumors with atypical

sonographic appearances, misdiagnosis and missed diagnosis

may occur. Although great advances had been achieved in

imaging techniques, the detection of small renal tumors
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remained a challenge for CUS. These lesions commonly

showed blurred margins, which were confused with the

surrounding renal cortex. Moreover, the sensitivity of CUS

was fundamentally correlated to the size of the tumor. The

smaller the tumor size, the more difficult it can be detected by

CUS; however, CEUS was less affected by these factors.

Of the 16 patients in our study, 10 patients (62.5%) had

ccRCCs. The incidence of ccRCC is 70% of renal carcinoma (12).

Most of the ccRCCs are asymptomatic and detected by

incidental radiological examination (13). In our series, seven

cases were asymptomatic, and three cases had pain and

discomfort in the waist. On CUS, seven (70.0%) cases were

isoechoic, which were indistinguishable from the surrounding

renal cortex, and the lesions did not protrude from the renal

capsule either. The other three cases (30.0%) were hypoechoic on

CUS, which was similar to the echogenicity of the renal cone

nearby. Therefore, these lesions were easily missed on CUS.

However, the 10 cases with ccRCCs showed high enhancement

on CEUS, which was easily distinguished from the adjacent renal

parenchyma. Li et al. also reported that 26.3% of small tumors

could not be detected by CUS, while all the tumors could be

distinguished from the adjacent renal cortex on CEUS, by

showing a sharper margin and high enhancement (8).
FIGURE 1

A 43-year-old man had a ccRCC in the right kidney with the size of 1.6 × 1.5 cm. (A) Non-enhanced CT showed a suspicious lesion in the
middle of the right kidney (white arrow). (B) According to the position displayed on CT, the simultaneous display mode of conventional
ultrasound (CUS, right) and contrast-enhanced ultrasound (CEUS, left) was performed, and CEUS showed a lesion with hyperenhancement
(white arrow), but it was not detected on CUS (black arrow). (C) On CEUS imaging, it showed that the contrast agent entered the mass
synchronously with the adjacent renal cortex (white arrow). (D) At the peak of enhancement intensity, it showed homogeneous
hyperenhancement compared with that of the renal cortex (white arrow). (E) When the contrast agent discharged from the mass, it showed a
slow-out pattern compared to the adjacent cortex (white arrow).
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In the past, many studies have focused on the value of CEUS in

the differential diagnosis between benign and malignant renal

neoplasms. In addition to high enhancement, heterogeneous

enhancement and perilesional rim-like enhancement were also

highly suggestive of ccRCC (1, 14–17). Perilesional rim-like

enhancement may represent the tumor’s pseudocapsule which

was caused by the compression of the adjacent normal

parenchyma, leading to ischemia, necrosis, and then deposition of

fibrous tissue (18). However, it was not observed in all the ccRCCs.

The main reason might be that the mass size in our study was

smaller (mean, 2.0 ± 0.4 cm) than that of previous studies (14, 19).

Intratumoral hemorrhage, necrosis, and compression might not be

obvious in small tumors. Because of this, the rate (40.0%) of

heterogeneous enhancement in the present study was lower than

that in previous studies (19, 20). In addition, most ccRCCs showed a

synchronous-in pattern, and it was consistent with the results

reported by Li et al. (8). This characteristic might be related to

the pathologic features of RCC, which was characterized by

numerous thin-walled vessels with a rich blood flow (8). Our

results showed that CEUS was helpful in detecting tumors in

renal parenchyma that were undetectable on CUS; however, only

some features appeared on CEUS, which could be helpful in the

differential diagnosis. Therefore, the final diagnosis still depends on

pathology findings.
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In this study, there were six cases with UCRP which were not

detected by CUS. The urothelial tumor originating from the

renal pelvis accounts for about 10%–15% of all renal neoplasms,

mainly including urothelial carcinoma (90%), squamous cell

carcinoma (9%), and mucinous adenocarcinoma (1%) (21).

Urothelial carcinoma was usually seen in elderly men with the

most common symptom of gross or microscopic hematuria (22).

Some patients might also have low back pain; however, 10%–

15% of patients may be asymptomatic (23). In this study, gross

hematuria was observed in three patients, and back pain was

observed in four patients.

The main components of the renal sinus, including the

collecting duct, lymphatic channels, adipose tissue, fibrous

tissue, and nerve fibers, contribute to the hyperechogenicity of

renal sinus on CUS, which might easily cover up iso- or

hypoechoic lesions (24). When the renal pelvis separation is

eccentric in shape, only the lateral margins are visible, and when

the renal pelvis separation is lentil-like in shape, the lesion can be

missed. The malignant tumors of the renal pelvis may be

detected by showing neoplastic angiogenesis; however, color or

power Doppler has limited sensitivity in detecting small vessels

and low-speed blood flow. CEUS has a high sensitivity in

detecting microvasculature, and renal pelvis tumors show local

contrast enhancement on CEUS, which can clearly depict the
FIGURE 2

A 69-year-old woman had a UCRP in the right kidney with the size of 2.2 × 1.6 cm. (A) A suspicious renal pelvis mass (white arrow) was
observed on non-enhanced CT scan. (B) According to the position displayed on CT, the simultaneous display mode of CUS (right) and CEUS
(left) was performed, and CEUS demonstrated local contrast enhancement in the renal pelvis (white arrow). CUS showed a slight separation of
the renal pelvis, but no lesion was observed (black arrow). (C) On CEUS imaging, it showed a slow-in pattern compared to the renal cortex
(white arrow). (D) The enhancement intensity of the tumor was similar to that of the adjacent renal cortex (white arrow). (E) Compared to the
renal cortex, the tumor showed a fast-out pattern (white arrow) on CEUS.
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outline of the tumor; thus, a definite diagnosis can be obtained

(25). In this study, six cases of UCRP were indistinguishable

from the hypoechoic renal pelvis, but they showed

isoenhancement or hypoenhancement on CEUS. Therefore,

they can be recognized by CEUS because the renal pelvis was

not enhanced.

Of the six cases with UCRP, five cases (83.3%) showed a

slow-in pattern, and four cases (66.7%) showed a fast-out

pattern on CEUS. These findings were consistent with a

previous study. Xue et al. (26) reported that slow-in, fast-out,

and hypoenhancement were associated with renal urothelial

carcinoma, and the enhancement intensity at peak was lower

than that of the renal parenchyma. Compared with the renal

cortex, the contrast agent in the tumor discharges earlier and

faster, making the edge of the tumor easy to identify. Therefore,

the renal urothelial tumor might be detected more easily

by CEUS.

Sometimes, blood clots in the collecting system are difficult

to distinguish from the renal pelvis tumor by CUS due to a

similar sonographic appearance; however, on CEUS, tumors

could show slight enhancement, which might be distinguished

from blood clots with no contrast enhancement. In the case of

UCRP combined with renal pelvis stones in our study, CT
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showed that there may be blood clots in the renal pelvis. No

abnormalities were observed on CUS; however, CEUS showed

an isoenhancement zone, indicating that there might be a tumor

rather than blood clots. Our results showed that CEUS was

helpful in detecting tumors in the renal pelvis that were

undetectable on CUS, and it was also useful in the differential

diagnosis. If a suspicious mass is observed on CT, and CECT is

not available, CEUS can be recommended. However, the value of

CEUS and CECT in the differential diagnosis of renal pelvis

lesions needs to be further compared with a large sample.

The study has some limitations. First, the retrospective

nature of this study might lead to potential bias in data

collection. Second, the sample size of this study was limited,

and no statistical analysis was performed. A further study with a

large sample size should be performed. Furthermore, because the

kidneys are located in the posterior peritoneum, it may be

difficult to demonstrate blood flow in renal masses on

color Doppler.

In conclusion, CEUS may be helpful in the diagnosis and

differential diagnosis of renal tumors which were not observed

on CUS, and it could increase confidence in clinical decision-

making. CEUS might be an alternative method for some patients

when CECT or MRI cannot be performed.
FIGURE 3

A 73-year-old man had a UCRP in the left kidney with the size of 3.4 × 1.9 cm. (A) Non-enhanced CT scan showed that there may be blood
clots in the renal pelvis (white arrow). (B) According to the position displayed on CT, the simultaneous display mode of CUS (right) and CEUS
(left) was performed. No obvious lesion (black arrow) was detected on CUS, but it showed a slight separation of the renal pelvis and a stone
(black arrowhead) in the lower part of the renal pelvis. On CEUS, a lesion with enhancement was observed (white arrow), and the stone showed
no enhancement (white arrowhead). (C) The contrast agent entered the lesion more slowly than that of the adjacent renal cortex (white arrow).
(D) The tumor showed heterogeneous enhancement, and the enhancement intensity of the tumor (white arrow) was similar to that of the
adjacent renal cortex. (E) The contrast agent discharged from the mass quickly, and the tumor (white arrow) showed a fast-out pattern
compared to the renal cortex.
frontiersin.org

https://doi.org/10.3389/fonc.2022.943960
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tao et al. 10.3389/fonc.2022.943960
FIGURE 4

A 69-year-old man had a ccRCC in the left kidney with the size of 2.9 × 2.1 cm. (A) Non-enhanced CT scan showed a mass (white arrow) that
was poorly demarcated from the renal pelvis and surrounding vessels. (B) According to the position displayed on CT, the simultaneous display
mode of CUS (right) and CEUS (left) was performed, CEUS showed a suspicious mass with hyperenhancement (black arrow), but it was not clear
on CUS (white arrow). (C) On CEUS imaging, the contrast agent entered the mass (white arrow) synchronously with the adjacent renal cortex.
(D) The tumor showed homogeneous enhancement, and the enhancement intensity was slightly higher than that of the adjacent renal cortex
(white arrow). (E) CEUS imaging showed that the tumor had a slow-out pattern (white arrow) compared to the renal cortex.
TABLE 2 CEUS and CUS characteristics of the 16 renal masses.

Case Enhancement
intensity

Homogeneity
(CEUS)

Wash-in
pattern

Wash-out
pattern

Perilesional rim-like
enhancement

Echogenicity Homogeneity
(CUS)

Blood flow
signal

1 Hyperintense Heterogeneous Synchronous Synchronous Absent Hypoechoic Heterogeneous Yes

2 Hyperintense Heterogeneous Synchronous Fast Absent Isoechoic Heterogeneous Yes

3 Hyperintense Heterogeneous Slow Synchronous Absent Isoechoic Heterogeneous No

4 Hyperintense Homogeneous Synchronous Slow Absent Isoechoic Homogeneous Yes

5 Hyperintense Homogeneous Synchronous Slow Absent Isoechoic Homogeneous Yes

6 Hyperintense Homogeneous Synchronous Slow Absent Hypoechoic Heterogeneous No

7 Hyperintense Heterogeneous Synchronous Synchronous Absent Isoechoic Homogeneous No

8 Hyperintense Homogeneous Synchronous Fast Absent Isoechoic Homogeneous No

9 Hyperintense Homogeneous Fast Synchronous Absent Hypoechoic Homogeneous No

10 Hyperintense Homogeneous Fast Slow Absent Isoechoic Homogeneous No

11 Isointense Homogeneous Slow Fast Absent Hypoechoic Heterogeneous No

12 Hypointense Homogeneous Slow Fast Absent Hypoechoic Heterogeneous No

13 Hypointense Homogeneous Slow Fast Absent Hypoechoic Homogeneous No

14 Isointense Heterogeneous Fast Slow Absent Hypoechoic Heterogeneous No

15 Isointense Heterogeneous Slow Fast Absent Hypoechoic Heterogeneous No

16 Isointense Heterogeneous Slow Synchronous Absent Hypoechoic Heterogeneous No
Frontie
rs in Oncology
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CEUS, contrast-enhanced ultrasound; CUS, conventional ultrasound.
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CT and convex probe
endobronchial ultrasound
elastography for intrathoracic
malignant and benign lymph
nodes prediction

Xinxin Zhi1,2,3†, Xiaoyan Sun4,5†, Junxiang Chen1,2,3, Lei Wang6,
Lin Ye1,2,3, Ying Li1,2,3, Wenhui Xie5* and Jiayuan Sun1,2,3*

1Department of Respiratory Endoscopy, Shanghai Jiao Tong University, Shanghai, China,
2Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao
Tong University, Shanghai, China, 3Shanghai Engineering Research Center of Respiratory
Endoscopy, Shanghai, China, 4Department of Nuclear Medicine, The Fifth People’s Hospital of
Shanghai Fu Dan University, Shanghai, China, 5Department of Nuclear Medicine, Shanghai Chest
Hospital, Shanghai Jiao Tong University, Shanghai, China, 6Department of Ultrasound, Shanghai
Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
Background: Positron emission tomography–computed tomography (PET/

CT) and convex probe endobronchial ultrasound (CP-EBUS) elastography are

important diagnostic methods in predicting intrathoracic lymph nodes (LNs)

metastasis, but a joint analysis of the two examinations is still lacking. This study

aimed to compare the diagnostic efficiency of the two methods and explore

whether the combination can improve the diagnostic efficiency in

differentiating intrathoracic benign LNs from malignant LNs.

Materials and Methods: LNs examined by EBUS-guided transbronchial needle

aspiration (EBUS-TBNA) and PET/CT from March 2018 to June 2019 in

Shanghai Chest Hospital were retrospectively analyzed as the model group.

Four PET/CT parameters, namely, maximal standardized uptake value mean

standardized uptake value (SUVmean), SUVmean, metabolic tumor volume

(MTV), and tumor lesion glycolysis (TLG); four quantitative elastography

indicators (stiff area ratio, mean hue value, RGB, and mean gray value); and

the elastography grading score of targeted LNs were analyzed. A prediction

model was constructed subsequently and the dataset from July to November

2019 was used to validate the diagnostic capability of the model.

Results: A total of 154 LNs from 135 patients and 53 LNs from 47 patients were

enrolled in the model and validation groups, respectively. Mean hue value and

grading score were independent malignancy predictors of elastography, as well

as SUVmax and TLG of PET/CT. In model and validation groups, the

combination of PET/CT and elastography demonstrated sensitivity,

specificity, positive and negative predictive values, and accuracy for
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malignant LNs diagnosis of 85.87%, 88.71%, 91.86%, 80.88%, and 87.01%, and

94.44%, 76.47%, 89.47%, 86.67%, and 88.68%, respectively. Moreover,

elastography had better diagnostic accuracies than PET/CT in both model

and validation groups (85.71% vs. 79.22%, 86.79% vs. 75.47%).

Conclusion: EBUS elastography demonstrated better efficiency than PET/CT

and the combination of the two methods had the best diagnostic efficacy in

differentiating intrathoracic benign from malignant LNs, which may be helpful

for clinical application.
KEYWORDS

PET/CT, endobronchial ultrasound, elastography, lymph nodes, diagnosis
Introduction

Positron emission tomography–computed tomography (PET/

CT) plays a great role in the staging of mediastinal lymph nodes

(LNs) of non-small cell lung cancer, with a sensitivity and

specificity of 77% and 86%, respectively, for predicting LNs

metastasis (1–3). However, PET/CT can only reflect the uptake

value of contrast agent. Inflammatory changes in lymphoid

follicles and histiocytes can increase 18F-fluorodeoxyglucose

(18F-FDG) uptake, leading to the existence of false-positive

results (4, 5). LNs with tuberculosis infection can also have a

false-positive result because glucose metabolism increases with the

accumulation of FDG in inflammatory phagocytes of

granulomatous tissue (6). With the development of PET/CT

technology and the increasing clinical demand for sensitivity of

malignant LN prediction, the diagnostic false-positive rate (FPR)

increased, leading to a very important pathological biopsy (7).

Endobronchial ultrasound-guided transbronchial needle

aspiration (EBUS-TBNA) is an essential minimally invasive

examination, and it can be used to diagnose mediastinal

enlarged LNs with significantly high FDG uptake caused by

anthracosis (8). For malignant diseases, due to the limited

sampling of puncture needle, tumor micrometastasis may lead

to the presence of false-negative results (9). Therefore, EBUS-

TBNA has a false-negative rate (FNR) of 20% for lung cancer

(10). Relevant guidelines indicate that sonographic features can

be used to predict malignant and benign LNs during EBUS-

TBNA operation, and may prevent the need for repeat EBUS

procedures when initial biopsy results are inconclusive (11, 12).

Elastography can quantify the degree of tissue deformation in

grayscale mode and relative stiffness of tissues can be imaged as a

color image to reflect the benign and malignant tissues indirectly

(13). Generally, tumor tissue has a harder texture relative to

normal tissue. Research found that elastography had a better

diagnostic efficiency compared with single grayscale or blood

flow Doppler feature (14, 15).
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PET/CT and elastography are useful tools in the diagnosis of

intrathoracic LNs, which can help the selection of LNs with the

greatest likelihood of malignancy during EBUS-TBNA and

reduce unnecessary puncture (16, 17). For LNs with negative

TBNA results, PET/CT and elastography may have a good

supplementary role to reduce FNR. The two methods can

reflect the benign and malignant LNs from different aspects,

such as elastography, which mainly reflects the degree of stiffness

of LNs, while PET/CT mainly reflects the degree of FDG

metabolism of LNs. However, there has been no related

research about the comparison of PET/CT and elastography,

as well as the combination of the two methods in predicting

intrathoracic malignant LNs. This study aimed to analyze PET/

CT and EBUS elastography indicators in the model group to

compare the diagnostic efficiency of the two methods for

intrathoracic LNs. Then, a prediction model will be established

based on the model group and the diagnostic efficiency will be

validated in another dataset.
Materials and methods

Patients

This study was conducted in Shanghai Chest Hospital.

EBUS-TBNA examination was performed on patients who met

the following criteria: (1) enlarged mediastinal/hilar LNs (at least

1 node >10 mm in the short axis) based on CT or positive

intrathoracic LNs detected (SUV ≥ 2.5) by PET/CT; (2)

pathological confirmation by EBUS-TBNA was clinically

required and feasible to confirm the nature of the LN; and (3)

no contraindication to the procedure. Patients who underwent

EBUS-TBNA examination and PET/CT from March 2018 to

November 2019 were consecutively enrolled and LNs meeting

the following criteria were analyzed: The time interval between

PET/CT and EBUS-TBNA was less than 1 month; LNs had not
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been diagnosed before EBUS-TBNA examination and no

antitumor therapy had been performed for target LNs before

EBUS-TBNA or PET/CT. LNs without elastography videos were

excluded. LNs from March 2018 to June 2019 were assigned into

the model group and LNs from July 2019 to November 2019

were assigned into the validation group. This study was

approved by the local Ethics Committee of Shanghai Chest

Hospital (No. KS-1947). The final diagnosis of LNs depended

on pathological results of EBUS-TBNA, thoracoscopy,

mediastinoscopy, microbiological examination, or clinical

follow-up for at least 1 year.
18F-FDG PET/CT image acquisition

All patients were intravenously injected with 0.10–0.15 mCi/

kg (3.7–5.6 Mbq/kg) of 18F-FDG after fasting for 6 h with a

blood glucose level of less than 10.0 mmol/L (180 mg/dl). A

combined PET/CT scanner Biograph 64, Siemens, Germany

was used 45–60 min later after 18F-FDG injection. Patients

were subjected to CT positioning scanning from the

skull base to one-third of the upper femur and then the

scanned area was selected for spiral CT scanning. Scanning

conditions were as follows: tube voltage was 120 kV, tube current

was automatically adjusted according to CARE Dose 4D

technology, and layer thickness was 5.0 mm. Subsequently, 5–

6 beds were used for whole-body PET image acquisition, and the

acquisition time was 2 min/bed. CT scan data were used to

correct the attenuation of PET images, and the TrueX + TOF

method was used to reconstruct the images to obtain PET

images, CT images, and transverse, sagittal, and coronal fusion

images (18).
Elastography

Elastography videos of LNs were recorded with an

ultrasound host (EU-ME2, Olympus) and an ultrasound

bronchoscope (BF-UC260FW, Olympus) in accordance with

standard operation. A scanning frequency of 10 MHz for the

ultrasound probe was set for all LNs. After grayscale and

Doppler mode were examined, a bronchoscopist switched to

elastography mode. The sampling frame should include the

target LN and surrounding tissue. When the EBUS probe

touched the airway, internal compression of targeted LN from

fluctuation of adjacent vessels and the breathing movement can

exert a pressurization effect to form elastography. If the image is

not ideal, the operator can gently press the screw part of the

bronchoscopy handle to pressurize the airway at a frequency of

3–5 times per second to achieve ideal images. After the

elastography became stable, two 20-s videos were recorded and

stored (14).
Frontiers in Oncology 03
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Measurement of PET/CT and
elastography parameters

All PET/CT parameters were firstly measured by a nuclear

medicine physicianwithmore than 3,000 cases of PCT/CT imaging

diagnostic experience and then reviewed by another nuclear

medicine physician with a similar experience. Short axis was

measured at the maximum cross-section of the targeted LN on

the CT image (1). Functional images of the maximal standardized

uptake value (SUVmax) and mean standardized uptake value

(SUVmean) were obtained using attenuation-corrected transaxial

images, the 18F-FDG injected dose, the patient’s body weight, and

the cross-calibration factor between PET and the dose calibrator.

SUV was defined as follows: SUV = tissue concentration (MBq/g)/

[injected dose (MBq)/body weight (g)]. Siemens syngo via software

was used to automatically calculate the metabolic tumor volume

(MTV) and tumor lesion glycolysis (TLG) (TLG = SUVmean *

MTV). The measurement of all parameters was based on the

delineation of target LN (19).

The qualitative grading score method was used: 1 (scattered

soft, mixed green–yellow–red); 2 (homogeneous soft,

predominantly green); 3 (intermediate, mixed blue–green

yellow–red); 4 (scattered hard, mixed blue–green); and 5

(homogeneous hard, predominantly blue). A score of 1–3

denotes benign and a score of 4–5 indicates malignant (14,

20). Three experienced doctors (LW, JC, and XZ) with EBUS

imaging observation of more than 500 LNs reviewed

elastography videos twice independently blind to the final

diagnosis of LNs, and determined the final qualitative

evaluation result of each expert subsequently. For grading

score of disagreement, three experts reached a consensus to

decide on the final assessment result. In order to reduce

subjectivity and quantify tissue elasticity, the above three

doctors selected the representative images of LNs from videos

together according to the final grading score previously

determined. Software developed by MatlabTM was used by

two doctors (JC and XZ) together to draw the region of

interest (ROI), and stiff area ratio (SAR), RGB, mean hue

value, and mean gray value methods were used as the

quantitative indicators (14, 21–23).
Statistical analysis

Receiver operating characteristic analysis was used to

determine the optimum cutoff values of continuous variables,

and the best cutoff values were taken at the maximal Youden

index. Chi-squared test or Fisher’s exact test was used for

categorical variables. p < 0.05 was considered statistically

significant. Significant PET/CT and elastography variables of

the univariate analysis or those deemed clinically important were

then entered into a multivariable logistic regression model to
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assess the factors independently associated with predict

malignancy. Cohen’s kappa method was used to analyze the

intra- and interobserver agreement of real-time elastography

grading score (24). SPSS version 25.0 (IBM Corp., Armonk, NY,

USA) was used for statistical analyses.
Results

Patients and LNs

A total of 154 LNs, namely, 92 malignant LNs and 62 benign

LNs, from 135 patients were analyzed in the model group

(Table 1). Adenocarcinoma accounted for the largest

proportion of malignant LNs (27.27%), as well as nonspecific

lymphadenitis of benign LNs (33.77%). There were 53 LNs from

47 patients in the validation group, namely, 36 malignant LNs

(18 adenocarcinoma, 6 squamous carcinoma, 1 non-small cell
Frontiers in Oncology 04
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lung cancer not otherwise specified, 5 small cell lung cancer, 3

neuroendocrine tumor not otherwise specified, 2 unknown type

of lung cancer, and 1 lymphoma) and 17 benign LNs (12

nonspecific lymphadenitis, 3 sarcoidosis, and 2 tuberculosis).

Perfect agreement was reached for intra- and interobserver

agreement of the elastography grading score, which were 0.883

and 0.913, respectively.
Diagnostic value of PET/CT and
elastography parameters

Receiver operating characteristic curves of PET/CT and

elastography variables derived from the model group

according to the final diagnosis were shown in Figure 1. The

cutoff values and area under the curve (AUC) values of PET/CT

and elastography variables were presented in Table 2. SUVmax

and TLG were two PET/CT parameters with the highest AUC
TABLE 1 Patients and LNs in the model group.

Number of patients 135

Sex, male/female 94/41

Age, years, mean (range) 62.08 (35–83)

Total LNs 154

Station No. of LNs (%)

2R 1 (0.65)

3P 1 (0.65)

4L 12 (7.79)

4R 47 (30.52)

7 51 (33.12)

10L 3 (1.95)

10R 6 (3.90)

11L 16 (10.39)

11Ri 9 (5.814)

11Rs 8 (5.19)

Diagnosis

Malignant 92 (59.74)

Adenocarcinoma 42 (27.27)

Squamous carcinoma 18 (11.69)

Non-small cell lung cancer not otherwise specified 6 (3.90)

Small cell lung cancer 16 (10.39)

Neuroendocrine tumor not otherwise specified 3 (1.95)

Lymphoepithelioma-like carcinoma 1 (0.65)

Unknown type of lung cancer 2 (1.30)

Metastatic tumors (non-lung primary malignancy) 4 (2.60)

Benign 62 (40.26)

Nonspecific lymphadenitis 52 (33.77)

Sarcoidosis 7 (4.55)

Tuberculosis 2 (1.30)

Non-tuberculous mycobacterium infection 1 (0.65)
LNs, lymph nodes.
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values of 0.788 and 0.813, respectively. Mean hue value and

grading score were two elastography quantitative indicators with

the highest AUC values of 0.854 and 0.860, respectively. As

shown in Table 3, SUVmax, TLG, mean hue value, and grading

score were independent predictive indexes for malignant LNs.
Comparison and combined diagnostic
value of PET/CT and elastography

In the model group, for PET/CT parameters, SUVmax and

TLG had the highest sensitivity of 91.30% and 81.52% and the

lowest FNR of 8.70% and 18.48%, respectively (Table 4). When
Frontiers in Oncology 05
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SUVmax or TLG positive (SUVmax > 7.02 or TLG > 12.53) was

diagnosed PET/CT positive, both SUVmax and TLG negative

(SUVmax ≤ 7.02 and TLG ≤ 12.53) were diagnosed as PET/CT

negative, and the sensitivity, FNR, and diagnostic accuracy of

PET/CT were 93.48%, 6.52%, and 79.22%, respectively (Table 5).

For elastography indicators, mean hue value and grading score

had the highest specificity of 83.87% and 87.10%, and the lowest

FPR of 16.13% and 12.90%, respectively (Table 4). When mean

hue value or grading score positive (mean hue value > 132.73 or

grading score > 3) was diagnosed as elastography positive, that

is, both mean hue value and grading score negative (mean hue

value ≤ 132.73 or grading score ≤ 3) were justified as

elastography negative, the diagnostic accuracy of elastography
FIGURE 1

ROC curves of PET/CT and elastography parameters in the model group. Through the ROC curves, the best cutoff value reflecting the best
diagnostic performance and the AUC value reflecting the overall diagnostic performance of each variable can be obtained. ROC, receiver
operating characteristic; AUC, area under the curve; SUVmax, maximal standardized uptake value; SUVmean, mean standardized uptake value;
MTV, metabolic tumor volume; TLG, tumor lesion glycolysis; SAR, stiff area ratio; B/G, blue versus green; B/R, blue versus red.
TABLE 2 Cutoff values and corresponding AUC of PET/CT and elastography variables for malignant LN prediction in the model group.

Index Cutoff p-value AUC 95% confidence interval

SUVmax 7.02 1.77E-09 0.788 0.706–0.871

SUVmean 4.59 5.01E-09 0.780 0.703–0.857

MTV 3.47 4.68E-09 0.781 0.706–0.856

TLG 12.53 6.37E-11 0.813 0.740–0.886

SAR 0.33 4.44E-13 0.847 0.782–0.912

B/G 1.05 7.50E-13 0.844 0.777–0.910

B/R 1.47 8.84E-12 0.827 0.760–0.894

Mean hue value 132.73 1.62E-13 0.854 0.789–0.918

Mean gray value 193.39 4.44E-13 0.847 0.781–0.913

Elastography grading score 3.5 6.16E-14 0.860 0.798–0.922
AUC, area under the curve; LNs, lymph nodes; SUVmax, maximal standardized uptake value; MTV, metabolic tumor volume; SUVmean, mean standardized uptake value; TLG, tumor
lesion glycolysis; SAR, stiff area ratio; B/G, blue versus green; B/R, blue versus red.
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was 85.71% (Table 5). Figure 2 displays the false-positive

representative images of PET/CT in LNs with tuberculosis,

sarcoidosis, and nonspecific lymphadenitis, as well as the false-

negative representative image of elastography in LNs with

neuroendocrine tumor not otherwise specified. The

combination of PET/CT with elastography can achieve the

highest diagnostic accuracy of 87.01% in the model group;

only when both the two methods (PET/CT and elastography)

were positive was the combined method justified as positive.

That is, either PET/CT or elastography negative was the

combined method justified as negative. Similar results can be

seen at the validation group, PET/CT combined with

elastography had the best diagnostic performance with an

accuracy of 88.68% (Table 5). The detailed diagnostic results

of PET/CT, elastography, and the combined method in the

validation group were displayed in Figure 3.
Frontiers in Oncology 06
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Discussion

This study explored the diagnostic capacity of PET/CT and

EBUS elastography on intrathoracic LNs. SUVmax ≥ 2.5 was

commonly used as a positive criterion, and sensitivity and

specificity estimates for the SUVmax ≥ 2.5 were 81.3% and

79.4%, respectively (25). The sensitivity of SUVmax was 91.30%

in this study. However, the high SUVmax values of sarcoidosis

and tuberculosis, which were 13.53 ± 8.37 and 17.57 ± 10.89,

respectively, led to a low specificity of 62.90%. FDG uptake is

related to the size of LNs, and a false-negative result could be

caused by the small size of LNs (26). In the model group,

SUVmax for short axis ≤ 1 cm and >1 cm is 6.01 ± 3.53 and

11.00 ± 5.36, respectively, with significant statistical difference (p

< 0.001). It was suggested that SUVmax is more reproducible

than SUVmean (27). In our study, SUVmean had the lowest
TABLE 3 Univariate and multivariate analyses of PET/CT and elastography parameters in the model group.

Index Univariate analysis Multivariate analysis

SUVmax > 7.02 7.82E-13 3.54E-02

SUVmean > 4.59 2.11E-08

MTV > 3.47 2.99E-09

TLG > 12.53 5.33E-12 3.63E-02

SAR > 0.33 1.72E-14

B/G > 1.05 6.17E-14

B/R > 1.47 7.74E-12

Mean hue value > 132.73 3.85E-15 1.81E-02

Mean gray value > 193.39 7.31E-15

Short axis > 1 cm 1.25E-03

Elastography grading score > 3 5.40E-17 1.49E-03
SUVmax, maximal standardized uptake value; SUVmean, mean standardized uptake value; MTV, metabolic tumor volume; TLG, tumor lesion glycolysis; SAR, stiff area ratio; B/G, blue
versus green; B/R, blue versus red.
TABLE 4 Diagnostic efficiency of PET/CT and elastography variables for malignant lymph nodes prediction in the model group.

Index Sensitivity Specificity PPV NPV Accuracy FPR FNR

SUVmax 91.30% 62.90% 78.50% 82.98% 79.87% 37.10% 8.70%

SUVmean 71.74% 74.19% 80.49% 63.89% 72.73% 25.81% 28.26%

MTV 72.83% 75.81% 81.71% 65.28% 74.03% 24.19% 27.17%

TLG 81.52% 74.19% 82.42% 73.02% 78.57% 25.81% 18.48%

SAR 88.04% 72.58% 82.65% 80.36% 81.82% 27.42% 11.96%

B/G 86.96% 72.58% 82.47% 78.95% 81.17% 27.42% 13.04%

B/R 83.70% 70.97% 81.05% 74.58% 78.57% 29.03% 16.30%

Mean hue value 80.43% 83.87% 88.10% 74.29% 81.82% 16.13% 19.57%

Mean gray value 82.61% 80.65% 86.36% 75.76% 81.82% 19.35% 17.39%

Short axis > 1 cm 95.65% 20.97% 64.23% 76.47% 65.58% 79.03% 4.35%

Elastography grading score 81.52% 87.10% 90.36% 76.06% 83.77% 12.90% 18.48%
frontier
LNs, lymph nodes; SUVmax, maximal standardized uptake value; SUVmean, mean standardized uptake value; MTV, metabolic tumor volume; TLG, tumor lesion glycolysis; SAR, stiff area
ratio; B/G, blue versus green; B/R, blue versus red; PPV, positive predictive value; NPV, negative predictive value; FPR, false-positive rate; FNR, false-negative rate.
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accuracy among PET/CT parameters. Volumetric parameter

MTV could be used to predict LN metastasis in lung cancer,

and it is an important prognostic indicator for NSCLC (28).

MTV in our study showed statistically significant differences in

benign and malignant LNs, but had the lowest AUC value

among the four PET/CT parameters. TLG is calculated by

multiplying SUVmean to MTV in an ROI, which can

represent both metabolic and volumetric information (19).

TLG is an independent parameter for differentiating benign

and malignant LNs with the highest AUC among PET/CT

parameters in this study. In both model and validation groups,

the combination of SUVmax and TLG provided better

diagnostic efficiency than any single parameter.

CP-EBUS sonographic features can be used to predict

malignant and benign diagnoses during EBUS-TBNA (12). By

measuring the compressibility of the tissue, elastography can

reflect the different relative stiffness between normal and

malignant LNs, and it has been extensively studied using

qualitative and quantitative methods. The elastography grading

score divides an image into 5 grades, which is convenient for

clinical application. For quantitative elastography indicators, SAR

is a good predictor of malignant LNs, with an accuracy of 81.82%

in this study and 83% and 82.35% in other studies (22, 29). The

RGB color model defines a color density of 0–49 as blue pixels. In

the model group, blue versus green (B/G) and blue versus red (B/

R) had accuracies of 81.17% and 78.57%, respectively, but with the

lowest AUC among quantitative elastography indicators. The

HSV color model defines a pixel value range from 145 to 180 as

blue pixels. Mao et al. found that the AUC of mean hue value was

0.814, and when the cutoff value was 126.28, the corresponding

accuracy was 80.88% (22). Mean hue values were 145.00 ± 16.16

and 119.66 ± 17.74 for malignant and benign LNs, and it was the

only independent predictor among quantitative indicators. Mean

gray values for malignant and benign LNs in the model group

were 197.36 ± 14.06 and 182.55 ± 29.61. The AUC of mean gray

value was lower than that of mean hue value in this study. In terms

of diagnostic methods, the combination of qualitative score with

mean hue value had a better diagnostic performance in both

groups relative to PET/CT.
TABLE 5 The diagnostic efficiency of PET/CT, elastography, and combination model in the model and validation groups.

Index Sensitivity Specificity PPV NPV Accuracy FPR FNR

Model group

PET/CT 93.48% 58.06% 76.79% 85.71% 79.22% 41.94% 6.52%

Elastography 89.13% 80.65% 87.23% 83.33% 85.71% 19.35% 10.87%

PET/CT+ Elastography 85.87% 88.71% 91.86% 80.88% 87.01% 11.29% 14.13%

Validation group

PET/CT 100.00% 23.53% 73.47% 100.00% 75.47% 76.47% 0.00%

Elastography 94.44% 70.59% 87.18% 85.71% 86.79% 29.41% 5.56%

PET/CT+ Elastography 94.44% 76.47% 89.47% 86.67% 88.68% 23.53% 5.56%
frontier
PPV, positive predictive value; NPV, negative predictive value; FPR, false-positive rate; FNR, false-negative rate.
FIGURE 2

Representative images of PET/CT and elastography in a variety of
diseases. A1 and A2 are representative true-positive images of
malignant LNs examined by PET/CT and elastography, which
showed a 4R LN with adenocarcinoma; B1 and B2 show a 7 LN
with nonspecific lymphadenitis, true-negative results in both
elastography and PET/CT; C1 and C2 show a 4R LN with
tuberculosis, and PET/CT showed high metabolism with an
SUVmax of 7.85 and a TLG of 39.09. In contrast, elastography
showed a grading score of 3 and a mean hue value of 117.74; D1
and D2 showed a 7 LN with sarcoidosis, in which PET/CT
showed a high metabolism while elastography showed soft
tissue. SUVmax, TLG, grading score, and mean hue value were
5.5, 22.06, 3, and 105.84, respectively; E1 and E2 showed a 4R
LN with nonspecific lymphadenitis, false positive by PET/CT but
true negative by elastography, and SUVmax, TLG, grading score,
and mean hue value were 7.84, 11.33, 1, and 89.37, respectively;
F1 and F2 show a 4R LN with neuroendocrine tumor not
otherwise specified, and PET/CT showed high metabolism with
an SUVmax of 13.29 and a TLG of 42.19. However, elastography
shows false-negative results with grading score of 3 and mean
hue value of 124.42. LN, lymph node; SUVmax, maximal
standardized uptake value; TLG, tumor lesion glycolysis.
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18F-FDG is not specific for tumor, which can be taken up by

various physiologic variants and benign pathologic lesions,

leading to false-positive results (30, 31). In the model group,

the FPR of PET/CT (SUVmax combined with TLG) was 41.94%

(26/62), and 73.08% (19/26) were diagnosed as true negative by

elastography among the 26 false-positive cases by PET/CT (19

nonspecific lymphadenitis, 4 sarcoidosis, 2 tuberculosis, and 1

non-tuberculous mycobacterium infection). Inflammation was a

well-known factor associated with FPR of PET scan. For

nonspecific lymphadenitis, 36.54% (19/52) in the model group

and 66.67% (8/12) in the validation group were diagnosed as

false positive by PET/CT, and the proportions for sarcoidosis

were 57.14% (4/7) in the model group and 100% (3/3) in the

validation group. For tuberculosis, a total of 4 cases in model and

validation groups had a positive SUVmax. Studies had shown

that tuberculosis is prone to lead to false-positive results, because

along with the accumulation of FDG in inflammatory

phagocytes and macrophages, glucose metabolism increased,

and staging accuracy using PET/CT was low in lung cancer

patients with parenchymal tuberculosis sequelae (6, 32). In the

validation group, there were 13 cases of false-positive diagnosis

by PET/CT, among which 9 cases were diagnosed as negative by

elastography. This result suggested that elastography could

reduce the FPR of PET/CT. Besides, 2 cases of false negative

results diagnosed by elastography (1 neuroendocrine tumor not

otherwise specified and 1 adenocarcinoma) showed high FDG

uptake of SUVmax, suggesting that PET/CT may reduce FNR of

elastography. However, only when PET/CT and elastography all

positive in this study were considered as malignant, so the

combined method did not decrease the FNR.

This study still had some limitations. Although the diagnostic

model constructed in this study has been validated, the validation
Frontiers in Oncology 08
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part was still a retrospective study, and further prospective

validation is needed. Moreover, all LNs in this study were from

a specialized thoracic hospital with a limited category of diseases

and the dataset was not large enough. Therefore, a multicenter

study with a larger dataset may acquire better results because of

different case compositions in different research centers.

Moreover, the subjects of this study were mainly patients

undergoing LN diagnosis rather than lung cancer staging, such

as sarcoidosis and tuberculosis in benign diseases, which may be

the reason why the diagnostic specificity and accuracy of PET/CT

were slightly lower than those of elastography.

In conclusion, the non-invasive diagnostic model combining

PET/CT and EBUS elastography constructed in this study had a

higher diagnostic accuracy than any single method for

intrathoracic benign and malignant LN differentiation.

Furthermore, the diagnostic performance of elastography was

superior to PET/CT when the two methods were compared

separately. This study may optimize the clinical diagnostic

methods of intrathoracic benign and malignant LNs.
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Introduction: Papillary thyroid microcarcinoma (PTMC) that metastasizes to

bone, especially metastasizes to contralateral humerus with so large mass, is

rarely reported before.

Case report: We presented a 50-year-old female patient with a large painful

mass in the right humerus for 5 years, presenting with swelling of the right

shoulder with limited mobility. Positron emission tomography–computed

tomography (PET/CT) showed a large mass in the right humerus, bilateral

lung lesions, and enlarged lymph nodes in the right supraclavicular fossa. Right

humerus lesion biopsy and immunohistochemical evaluations confirmed that

the lesion originated from the thyroid tissue. Then, the thyroid ultrasonography

showed a hypo-echoic solid nodule with an irregular taller-than-wide shape in

the upper of left thyroid lobe and enlarged lymph nodes with the absence of

fatty hilum in the contralateral right IV compartment. The total thyroidectomy

and cervical lymph node dissection were undertaken; the histopathology

confirmed the diagnosis of PTMC with contralateral cervical lymph node

metastasis.

Conclusion:We reported a case of PTMCwith contralateral large humerus and

cervical lymph node metastasis and demonstrated the PET/CT images of the

metastatic large humerus and thyroid ultrasonographic appearances of the

PTMC and enlarged cervical lymph node.

KEYWORDS

papillary thyroid microcarcinoma (PTMC), cervical lymph node metastases, large
humerus metastasis, bone metastases, PET/CT, thyroid ultrasonography
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Introduction

Papillary thyroid microcarcinoma (PTMC) is defined as

papillary thyroid carcinoma (PTC) measuring equal to or less

than 1 cm, which is the common well-differentiated thyroid

cancer with an excellent prognosis and extremely low lethality

(1). PTMC usually metastasizes to the regional cervical lymph

nodes, but metastases to the bones are rarely reported (2, 3). The

most common primary sites of metastatic humerus tumors were

the breast, myeloma, renal, lung, and prostate carcinomas being

the most common sources, and only 2% of these originate from

the thyroid (4). To our knowledge, humerus metastasis as an

initial presentation of PTMC is almost never reported in the

previous literature works, especially as huge as the head of a 3-

year-old child. Here, we reported a case of PTMC with

contralateral large humerus and cervical lymph node metastasis

and demonstrated the positron emission tomography–computed

tomography (PET/CT) images of the metastatic large humerus

and thyroid ultrasonographic appearances of the PTMC and

enlarged cervical lymph node.
Case report

We presented a 50-year-old female patient with a large painful

mass in the right humerus for 5 years, presenting with swelling of

the right shoulder with limited mobility. PET/CT with 18F-

fluorodeoxyglucose (18F-FDG) showed a large mass in the right

humerus (130 × 115 × 174 mm), bilateral lung lesions, and

enlarged lymph nodes in the right supraclavicular fossa

(Figure 1). Right humerus lesion biopsy was carried, and the

histopathology of the specimen displayed fistular and sieve
Frontiers in Oncology 02
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distribution with obvious nuclear heterogeneity (Figure 2A). The

immunohistochemical stains were positive for thyroid

transcription factor (TTF-1), thyroglobulin (TG), cytokeratin

(CK) pan, and CK7 and negative for hepatocyte (HPC), alpha

fetoprotein (AFP), Syn, CgA, special AT-rich sequence-binding

protein 2 (SATB2), calcitonin, P53, Napsin A, estrogen receptor

(ER), progesterone receptor (PR), and cadual type homeobox gene

2 (CDX2), which indicates that the lesion originated from the

thyroid follicular epithelial cells and not from the liver, breast,

colon, lung, or thyroid parafollicular cells; Ki67 proliferation index

was about 10% (Figures 2B-F). Then, the thyroid ultrasonography

was carried and revealed a hypo-echoic solid nodule with an

irregular taller-than-wide shape (4.7 × 3.7 × 5.3 mm) in the

upper of left thyroid lobe; this thyroid nodule has nine points

and classified as ACR Thyroid Imaging, Reporting and Data

System (TI-RADS) (5). The thyroid nodule showed uneven iso-

enhancement on the contrast-enhanced ultrasonography (CEUS),

which indicates that the enhancement of thyroid nodule was equal

to that of the surrounding tissue. The enlarged lymph nodes with

the absence of fatty hilum were displayed in the contralateral right

IV compartment of cervical lymph nodes (Figure 3). The total

thyroidectomy and right lateral cervical lymph node dissection

were undertaken; the histopathology confirmed the diagnosis of

PTMC with contralateral cervical lymph node metastasis (2/18),

indicating two lymph nodes involved in the right IV compartment

of cervical lymph nodes, and the total number of the right lateral

cervical lymph nodes was 18 (Figure 4). Interestingly, the patients

had no central cervical lymph node metastasis (0/7), and the

BRAFV600E mutation of the PTMC was wild type. According to

the eighth edition of the American Joint Committee on Cancer/

Tumor Lymph NodeMetastasis (TNM) staging system, the patient

was in TNM stage IVb (T, N1, of M1) (6).
FIGURE 1

PET/CT images of the patient. Increased 18F-FDG metabolism showed in (A) the large right humerus (130 × 115 × 174 mm) on the cross,
sagittal, and coronal sections and in (B) the left lung (6.5 × 6.0 mm); red arrows indicate the lung lesion.
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FIGURE 2

Histopathological sections of right humerus lesion (magnification, ×400). (A) H&E staining and (B–F) Immunohistochemical staining of (B) TTF-1,
(C) TG, (D) Ki 67, (E) CK pan, (F) CK 7. TTF-1, TG, CK pan, and CK7 were deeply stained (positive); Ki 67 proliferation index was about 10%.
FIGURE 3

Ultrasound images for the thyroid and cervical lymph node. (A) A hypo-echoic solid nodule with an irregular margin and a taller-than-wide
shape (4.7 × 3.7 × 5.3 mm) showed in the upper of left thyroid lobe on the gray-mode ultrasonography. (B) The nodule showed uneven iso-
enhancement on the CEUS mode ultrasonography. (C) A swollen lymph node with the absence of fatty hilum (17.4 × 6.6 mm) showed in the
right IV compartment of cervical lymph nodes, with no obvious blood flow in the lymph node.
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Discussion

PTC is the most common malignant carcinoma, with PTMC

being one of PTCs with the maximum tumor size of 10 mm,

which is considered as the most indolent variant of thyroid

cancer (1). The incidence of PTMC is increasing due to the

improved diagnostic ultrasonography and fine-needle aspiration

biopsy (1). Cervical lymph node metastases are the most

metastatic sites for PTMC, whereas the bones and lungs are

seldom reported in the literature (7, 8).

Bone metastasis from differentiated thyroid carcinoma is

estimated to be 2%–13%; depending on the histologic origin of

cancer, follicular thyroid carcinoma (FTC) is more likely to

cause bone metastases than PTC (7, 9, 10). The typical metastatic

lesions of bone are the spine, ribs, pelvis, and femur; humerus is

the most common location of the bone metastases in the upper

extremity (11). More than 80% of bone metastases are located in

the axial skeleton red marrow, where blood flow is high and

tumor cell adhesive molecules are more inclined to bind the

tumor cells to migrate (10).

18F-FDG PET/CT has been a predictor of increased

aggressiveness and a poor prognosis in many malignant

tumors and is helpful in the management of patients with

anaplastic and medullary thyroid carcinoma (12). However, it

is difficult to identify and estimate the standard uptake value of

PTMC on PET/CT due to the tumor size less than 1 cm (13). In

this case, increased 18F-FDG metabolism showed on a large

mass in the right humerus, bilateral lung lesions, and enlarged

lymph nodes in the right supraclavicular fossa, whereas the

primary tumor of thyroid without visually identifiable 18F-FDG

uptake is missed on PET/CT imaging. For the high 18F-FDG
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uptake of a mass in the right humerus, the PET/CT images on

the cross, sagittal, and coronal sections visually revealed the

three-dimensional huge size and high metabolism of the tumor,

providing important information for the patient management.

Thyroid ultrasonography is a recommended diagnostic

method for thyroid nodes. The typical malignant sonographic

features of PTC were solid composition, hypo-echogenicity,

irregular margin, presence of calcification, and taller-than-wide

shape (5, 14). In this case, this PTMC had four typical malignant

sonographic features: solid composition, hypo-echogenicity,

irregular margin, and taller-than-wide shape. Hong et al.

found that presence of calcification had the predicative for the

presence of central compartment lymph node metastases;

coincidental ly, this case accurately had no central

compartment lymph node metastases, but it had contralateral

cervical lymph node metastases (15). The mechanism of this

jump lymph node metastases is unclear now.

Although PTMC is generally associated with an excellent

prognosis and very low mortality rate of 0.5% (16), a study of

Orita et al. found that patients with PMTC showed significantly

worse survival than patients with standard variant PTC and FTC

(9). Another study of Kim et al. found that some PMTC will

show aggressive behavior, causing regional or even distant

metastases in their earlier presentation, and should not be

considered as indolent thyroid carcinoma (17). Weng et al.

found that the prognosis of patients with PTMC becomes

worse after the development of distant metastases (18). Thus,

not all PTMCs are associated with a good prognosis; the

mechanism of thyroid metastases in rare sites is unknown, and

further research on PTMCs is required, which has a significant

impact on patient management.
FIGURE 4

Histopathological sections of papillary thyroid microcarcinoma and metastatic lymph nodes. H&E staining of papillary thyroid microcarcinoma in
the left thyroid lobe: (A) magnification, × 40; (B) magnification, × 400. Red arrows indicate the PTMC; green dashed circle indicates the
amplification part in (B). H&E staining of metastatic lymph nodes: (C) magnification, ×16; (D) magnification, ×34. Red arrows indicate the
metastatic thyroid tissue in the lymph nodes; green arrows indicate the normal part of the metastatic lymph nodes.
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Conclusion

In this case, we have reported a case of a large mass in the

humerus with swelling of the right shoulder and limited mobility

as the first clinical presentation; the humerus lesion biopsy

confirmed that it originated from the thyroid tissue. The PET/

CT images of the metastatic large humerus and thyroid

ultrasonographic appearances of the thyroid nodule and

enlarged cervical lymph node were provided. The

postoperative histopathology confirmed it as a PTMC with

contralateral cervical lymph node metastases. Hence, our case

emphasizes that clinically significant metastases can arise

from PTMC.
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Prostate cystadenoma is a rare benign prostatic neoplasm, which grows

outside prostate and locates midline between the urinary bladder and

rectum. It usually presents as multilocular cysts, thus, named giant

multilocular prostate cystadenoma. The definite diagnosis is difficult to be

made before surgery, and it depends on histopathology. Here, we report a rarer

condition of prostate cystadenoma, which manifests as a giant unilocular cyst

with a solid nodule inside. The 55-year-old Chinese male patient presented

with dysuria and constipation. MRI revealed a 10.5 × 8.2 cmmono-cystic lesion

displacing the rectum to the posterior, prostate, and bladder to the anterior,

with a 2.8 × 2.1 cm solid nodule at the anterior wall. 18F-FDG PET/CT

demonstrated an elevated SUVmax (3.5) of the solid nodule. Laparoscopic

pelvic mass resection was performed and prostate cystadenoma was

diagnosed. In conclusion, when a mass of single locular cyst sits in the male

pelvis, the diagnosis of prostate cystadenoma could not be excluded.

KEYWORDS

prostatic cystadenoma, unilocular, diagnosis, treatment, surgery
Introduction

Prostate cystadenoma is an extremely rare benign tumor deriving from the prostate.

It usually locates between the urinary bladder and rectum and presents as a large

multilocular cystic mass, thus, named giant multilocular prostate cystadenoma. The

patient usually complain of discomfort, such as lower urinary tract symptoms and

defecation problems, and histopathological examination is needed for final diagnosis.

Since 1991, fewer than 40 cases of giant multilocular prostate cystadenoma are reported
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(1, 2). As far as we know, prostate cystadenoma presenting as a

unilocular cyst has not been reported in English literature. Here,

we report a rarer condition of prostate cystadenoma manifesting

as a giant unilocular cyst with a solid nodule, which is

challenging for both diagnosis and surgery.
Case presentation

A 55-year-old Chinese male patient presented with

dysuria and constipation for 4 months. Four months ago,

he experienced severe dysuria and intermitted lower

abdominal pain, without fever or hematuria. In the

meantime, the patient also developed constipation. Two

months later, he experienced constant hematuria and

painful urination. Then, he suffered from urinary retention

and a urinary catheter was placed to alleviate his lower

abdominal pain and hematuria. Physical examination was

unremarkable. Urinary occult blood was positive in urinary

analysis confirming hematuria. Serum tumor markers

including carcinoembryonic antigen (CEA), cancer antigen
Frontiers in Oncology 02
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(CA) 19-9, CA125, CA72-4, and CA242 were all normal.

Serum prostate-specific antigen (PSA) was also normal. Pelvic

magnetic resonance imaging (MRI) revealed a 10.5 × 8.2 cm

mono-cystic lesion displacing the rectum to the posterior,

prostate, and bladder to the anterior, with a 2.8 × 2.1 cm solid

nodule at the anterior wall (Figure 1, Supplement). The cystic

component was hyperintense on T1 weighted image (WI) and

T2WI, without diffusion restriction on diffusion weighted

image (DWI) nor enhancement on gadolinium-enhanced

fat-saturated T1WI, indicating protein rich or hemorrhagic

fluid. By contrast, the solid nodule, which was isointense on

both T1WI and T2WI, showed diffusion restriction and

marked enhancement. In addition, 18F-FDG positron

emission tomography/computed tomography (PET/CT)

demonstrated an elevated SUVmax (3.5) of the solid nodule.

Cystoscope could not be entered due to obstruction caused by

the mass.

The diagnosis was difficult before surgery as the lesion

was too large and the origin was hard to define. Although

there was no obvious invasion of adjacent organs, both MRI

and PET-CT suggested that the solid nodule is malignant.
FIGURE 1

Pelvic MRI and PET/CT. (A) Axial T1 weighted image (WI), (B) axial diffusion weighted image (DWI), (C) axial gadolinium-enhanced fat-saturated
T1WI, (D) axial T2WI, (E) sagittal T2WI, and (F) axial T2WI. (G, H) 18F-FDG PET/CT. There is a giant unilocular cystic lesion measured 10.5 ×
8.2 cm in size displacing the rectum (★) to the posterior, prostate (*), and bladder (▲) to the anterior. It was hyperintense on T1WI and T2WI,
without diffusion restriction nor enhancement. At the anterior wall, a 2.8 × 2.1 cm solid nodule with isointensity on both T1WI and T2WI,
diffusion restriction and marked enhancement, was also noted. PET/CT demonstrated an elevated SUVmax (3.5) of the solid nodule. Please note
the catheter in the bladder (◆). The thick arrow, the unilocular cystic lesion; the thin arrow, the solid nodule.
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However, biopsy under CT guidance was not possible due to

the cystic entity and the unavoidable bladder just in front of

it. Therefore, laparoscopic pelvic mass resection was

performed. During exploration, the giant mass was found to

be located between the bladder and rectum, and with marked

adhesion to the adjacent organs. Bilateral vas deferens were

not able to be detached from the tumor, thus, they were

ligated. The cystic capsule was incised from the top, and the

brown fluid was aspirated in order to minimize the tumor

size. The inner wall of the tumor was smooth, and a solid

nodule was noted on the anterior wall. While protecting the

rectum from damage, the tumor was completely removed.

Pathologically, the tumor is a solitary cystic mass that

contains multilevel branching papillary structure, lining

benign double-layer prostatic epithelial cells. Overall, the

cells lining the cysts were strongly and uniformly positive

for PSA and prostate specific membrane antigen (PSMA) and

negative for P504S (Figure 2, Supplement). Basal cells were

i d e n t i fi e d o n l i g h t m i c r o s c o p y a n d w i t h

immunohistochemical staining for high-molecular weight

cytokeratin CK34bE12 and p63 (Figure 2, Supplement).

Prostate cystadenoma was diagnosed. The patient was

discharged on post-operative day 5, and his symptoms of

dysuria, hematuria, and constipation completely resolved 2

weeks after the surgery.
Frontiers in Oncology 03
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Discussion

Prostate cystadenoma, a benign prostatic origin tumor,

usually presents as a giant multilocular cystic pelvic mass. The

age varies from 14 to 80 years old among the patients reported

(3, 4). Patients usually complain of symptoms related to mass

effect, including lower urinary tract symptoms and defecation

problems (5). The level of PSA may be not specific for diagnosis,

for PSA value may be elevated or normal (4, 6). On the other

hand, PSA level is not associated with tumor size or

recurrence, either.

Computed tomography (CT) and MRI usually show a large

multicystic mass along the midline between the bladder and

rectum. The tumor can be attached to the prostate or entirely

separate from the prostate in imaging (7). The septations of the

multilocular cyst could be enhanced, and enhanced solid portion

may be found in some cases (5). However, our case presented as

a large unilocular cystic mass with a solid nodule inside, while no

septations were found in the huge cyst. This manifestation of

unilocular prostate cystadenoma is rarer. Although the mass

located between the bladder and rectum, it was hard to confirm

the origin of the mass since it was too large, and the prostate was

separated from the lesion and compressed. The normal PSA also

increase the difficulty of diagnosis. The diffusion restriction on

DWI and elevated SUVmax on 18F-FDG PET/CT of the solid
FIGURE 2

Pathological diagnosis of the mono-cystic mass. (A) HE staining slide shows branching papillary structure, lining benign double-layer prostatic
epithelial cells (original magnification, ×100); (B) The cells lining the cysts were strongly and uniformly positive for PSA (original magnification,
×100); (C) Basal cells were immunohistochemical staining for high-molecular weight cytokeratin (34bE12) (original magnification, ×100); (D)
Basal cells were immunohistochemical staining for p63 (original magnification, ×100); (E) The gross specimen.
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nodule highly suspected the potential of malignancy. The final

diagnosis was made according to the histopathology. The benign

PSA-positive epithelial cells on immunohistochemistry analysis

confirms the prostatic origin.

Before obtaining the tumor tissue for histological

examination, the diagnosis of prostate cystadenoma is difficult.

Radiological differential diagnoses of retroperitoneal cystic mass

include Müllerian cysts, utricle cysts, and seminal vesicle cysts. It

may be easier to distinguish these diseases from typical giant

multilocular prostate cystadenomas, for their imaging

manifestations are usually not multilocular (2, 8). However,

the unilocular cyst of our case is more difficult to be

distinguished from them aside from the size. The location of

cystic mass between bladder and rectum, and the solid nodule in

the cyst may provide considerable and critical information for

identification. Other prostatic and retroperitoneal cystic lesions,

including cystic change of benign prostatic hyperplasia, prostatic

retention cysts, prostatic abscess, and lymphangioma and

sarcoma should also be considered for differential diagnosis

(5, 9).

Although prostate cystadenoma is a benign tumor, the

operation choice is necessary for prognosis. The complete

resection is necessary for prevention of recurrence (2, 9).

However, the procedure for giant multilocular prostate

cystadenomas varies from cystic debulking to pelvic

exenteration in previous reports, and the choice depends on

the diagnosis and suspicion of benignancy or malignancy and

adjacent organ invasion (2). It is reported that gonadotropin-

releasing hormone antagonist is effective for recurrence (2,

4, 10).

In conclusion, our case report adds to the recognition that

prostate cystadenoma could present as both multilocular and

unilocular cystic form. When a mass of single locular cyst sits in

the male pelvis, the diagnosis of prostate cystadenoma could not

be excluded.
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multicenter study
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Shunhua Liu2, Bing Mao2, Xin Li1,2, Yuejin Wu1,2,
Lanling Yang1,2, Luwen Liu1,2, Yaqiong Li2,
Shaobo Duan2,5* and Lianzhong Zhang1,2*
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Zhengzhou University People’s Hospital, Zhengzhou, China, 2Henan Engineering Technology
Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's
Hospital, Zhengzhou, China, 3Department of Ultrasound, First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China, 4Department of Ultrasound, Henan Provincial Cancer Hospital,
Zhengzhou, China, 5Department of Health Management, Henan University People’s Hospital,
Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
Objective: The purpose of this study was to investigate the preoperative

prediction of Cytokeratin (CK) 19 expression in patients with hepatocellular

carcinoma (HCC) by machine learning-based ultrasomics.

Methods: We retrospectively analyzed 214 patients with pathologically

confirmed HCC who received CK19 immunohistochemical staining. Through

random stratified sampling (ratio, 8:2), patients from institutions I and II were

divided into training dataset (n = 143) and test dataset (n = 36), and patients

from institution III served as external validation dataset (n = 35). All gray-scale

ultrasound images were preprocessed, and then the regions of interest were

then manually segmented by two sonographers. A total of 1409 ultrasomics

features were extracted from the original and derived images. Next, the

intraclass correlation coefficient, variance threshold, mutual information, and

embedded method were applied to feature dimension reduction. Finally, the

clinical model, ultrasonics model, and combined model were constructed by

eXtreme Gradient Boosting algorithm. Model performance was assessed by

area under the receiver operating characteristic curve (AUC), sensitivity,

specificity, and accuracy.

Results: A total of 12 ultrasomics signatures were used to construct the

ultrasomics models. In addition, 21 clinical features were used to construct

the clinical model, including gender, age, Child-Pugh classification, hepatitis B

surface antigen/hepatitis C virus antibody (positive/negative), cirrhosis (yes/no),

splenomegaly (yes/no), tumor location, tumor maximum diameter, tumor

number, alpha-fetoprotein, alanine aminotransferase, aspartate

aminotransferase, alkaline phosphatase, glutamyl-transpeptidase, albumin,

total bilirubin, conjugated bilirubin, creatinine, prothrombin time, fibrinogen,
frontiersin.org01
86

https://www.frontiersin.org/articles/10.3389/fonc.2022.994456/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.994456/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.994456/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.994456/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.994456&domain=pdf&date_stamp=2022-09-02
mailto:zlz8777@zzu.edu.cn
mailto:dustin2662@163.com
https://doi.org/10.3389/fonc.2022.994456
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.994456
https://www.frontiersin.org/journals/oncology


Abbreviations: HCC, hepatocellular carcinoma; CK

MRI, Magnetic resonance imaging; MRI, magnetic

HBsAg, hepatitis B surface antigen; HCV Ab, hepat

AFP, alpha-fetoprotein; DICOM, digital imaging an

medicine; ROI, region of interest; GLCM, gray-level

GLSZM, gray-level size-zone matrix; GLRLM, gray-le

GLDM, gray-level dependence matrix; NGTDM, ne

difference matrix; ICC intra-class correlation coef

aminotransferase; AST, aspartate aminotransfe

phosphatase; GGT, glutamyl-transpeptidase; TB,

conjugated bilirubin; PT, prothrombin time;

normalized ratio, AUC, area under the receiver op

curve; CI, confidence interval.

Zhang et al. 10.3389/fonc.2022.994456

Frontiers in Oncology
and international normalized ratio. The AUC of the ultrasomics model was

0.789 (0.621 – 0.907) and 0.787 (0.616 – 0.907) in the test and validation

datasets, respectively. However, the performance of the combined model

covering clinical features and ultrasomics signatures improved significantly.

Additionally, the AUC (95% CI), sensitivity, specificity, and accuracy were 0.867

(0.712 – 0.957), 0.750, 0.875, 0.861, and 0.862 (0.703 – 0.955), 0.833, 0.862,

and 0.857 in the test dataset and external validation dataset, respectively.

Conclusion: Ultrasomics signatures could be used to predict the expression of

CK19 in HCC patients. The combination of clinical features and ultrasomics

signatures showed excellent effects, which significantly improved prediction

accuracy and robustness.
KEYWORDS

hepatocellular carcinoma, machine learning, radiomics, cytokeratin 19 (CK19), ultrasonography
Introduction

Hepatocellular carcinoma (HCC) is the leading primary liver

cancer, which is one of the major global health challenges (1). In

2020, liver cancer ranked sixth and third in incidence rate and

mortality among all malignant tumors in the world, and there

were approximately 905,000 new cases and 830,000 deaths (2).

With a 5-year survival rate of 18%, liver cancer has become the

second most fatal tumor, just secondary to pancreatic cancer (3).

Although many treatment strategies are available in clinical

practice, the recurrence rate of HCC remains high, and the

prognosis is generally poor (4–6). Accumulating evidence

suggests that HCC is a heterogeneous tumor with a

multimolecular phenotype (7, 8), and that inter- and

intratumoral heterogeneity is often highly resistant to clinical

interventions, leading to treatment failure (9, 10). The key

factors associated with the prognosis of HCC include

microvascular invasion, tumor grade, Ki67 expression, etc.
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(11–13). Compared with these factors, CK19 is not only a

prognostic marker of HCC (14), but also a stemness-related

marker (15). Tumor hepatocytes are capable of self-renewal,

differentiation and proliferation, with stronger tumorigenicity

and chemoresistance (16, 17). Transarterial chemoembolization

and systemic chemotherapy play an important role in

the treatment of HCC (4, 6). However, CK19-positive

HCC patients are more likely to develop resistance to

chemotherapeutic drugs, resulting in treatment failure (18).

Therefore, one manifestation of HCC heterogeneity is the

expression of Cytokeratin (CK) 19.

Cytokeratins are important structural components in the

epithelial cell skeleton (19). In adult liver, CK8 and CK18 are

expressed in mature hepatocytes, while CK7 and CK19 are

expressed in cholangiocytes and hepatic progenitor cells (20).

CK19 has been shown to be expressed in 4-28% of HCC patients

(21–23). In vitro studies have confirmed that CK19-positive

HCC cells are closely related to invasiveness, epithelial-

mesenchymal transition, and angiogenesis (23, 24). Compared

with CK19-negative HCC patients, CK19-positive patients have

a poorer prognosis, their clinical manifestations are not only

more prone to resistance to chemotherapeutic drugs, but also

have a higher incidence of extrahepatic metastasis and vascular

invasion (14, 18, 23). Due to its high invasiveness, this molecular

subtype has been considered as a new subtype of HCC (16, 25). It

has been found that some liver transplant patients without CK19

expression and CK19-related gene expression have a good

prognosis, even if they do not meet the Milan criteria (18, 24).

It has been suggested that preoperative assessment of CK19

expression may help to determine judge whether patients

beyond the Milan criteria meet the condition of liver

transplantation, potentially expanding the criteria for liver

transplantation (26). Therefore, preoperative assessment of
frontiersin.org
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CK19 expression in HCC patients is critical for the effective

development of individualized treatment strategies.

Immunohistochemical analysis of biopsy tissues is a reliable

method for the clinical preoperative assessment of CK19

expression in HCC patients (27). However, tissue biopsy is

expensive, and the invasive procedure may bring a series of

complications, such as intra-abdominal or subcapsular bleeding,

needle-path metastasis and intra-abdominal metastasis (28, 29).

In addition, the sample size of biopsy tissues is small which can

easily leading to missed diagnosis (30). In addition, the biopsy is

not recommended as a routine test for diagnosis of HCC by the

current guidelines (6, 31). Therefore, the current preoperative

detection of CK19 is somewhat limited. Radiomics is a powerful

tool for modern precision medicine (32). It captures high-

throughput radiomics features from medical images combined

with clinically relevant information to further improve the

accuracy of diagnosis and prognosis prediction, since these

features can provide additional information, such as tumor

phenotypes and immune microenvironment (33). As one field

of radiomics, ultrasomics plays an important role in the

diagnosis and treatment of liver cancer (34). Mao et al.

successfully classified primary and metastatic liver cancer

using k-nearest neighbor, logistic regression, multilayer

perceptron, random forest, and SVM algorithms based on

grayscale ultrasound images (35). Based on ultrasound original

radio frequency signals of HCC, Dong et al. effectively predicted

MVI using sparse representation algorithm and machine

learning algorithm combined with signal analysis and

processing techniques (36). Ma et al. developed a radiomics

model based on dynamic contrast-enhanced ultrasound (CEUS)

(37). They found that the model performed well in predicting

early HCC recurrence after ablation, while combining CEUS, US

radiomics and clinical Combination models of factors can

stratify high risk of late recurrence. The above studies

demonstrate that multiple modalities of ultrasomics can

successfully predict diagnosis and differential diagnosis of

HCC, early recurrence and key prognostic factors. At present,

some studies have successfully constructed radiomics models for

predicting CK19 status based on Magnetic resonance imaging

(MRI) images with good performance (38–40). However, MRI

cannot be applied to some special populations, such as those

with claustrophobia or metal-containing implants in their

bodies. Furthermore, MRI is time-consuming and expensive,

which limits its clinical application (41). Ultrasound has become

one of the most common examination methods for the liver

because of its non-invasive and non-radiative properties, more

applicable population, repeated observation and relatively low

cost (42). As a branch of radiomics, ultrasomics has been

successfully applied to the accurate diagnosis of various

malignant tumors, such as liver cancer, thyroid cancer and

breast cancer, with good results (43–47). However, there are

few reports about the prediction of CK19 expression in HCC

patients based on ultrasomics method.
Frontiers in Oncology 03
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Therefore, this study aims to explore the value of machine

learning-based ultrasomics for non-invasive prediction of CK19

expression in HCC patients, and to further evaluate the

generalization ability of the prediction model using an

independent external validation dataset.
Materials and methods

Study population

This retrospective study was approved by the ethics review

boards of three medical institutions, Henan Provincial People’s

Hospital (Institution I), the First Affiliated Hospital of

Zhengzhou University (Institution II), and Henan Cancer

Hospital (Institution III), and the patients’ informed consent

was waived. From May 2019 to December 2021, clinical,

pathological and imaging data of 1535 hospitalized patients

from the above three medical institutions were collected, and

the population was screened according to the following criteria.

Inclusion criteria: (1) pathologically confirmed HCC with CK19

results; (2) performed liver ultrasound with two weeks before the

surgery; (3) clinical and imaging data integrity. Exclusion

criteria: (1) recurrent HCC; (2) history of radiotherapy,

chemotherapy, radiofrequency ablation, or other anti-tumor

therapies; (3) abdominal ultrasonography performed at other

hospitals; (4) preoperative imaging and clinical examinations

showing obvious metastases or concurrent malignant tumors of

other natures; (5) low quality image. A total of 214 patients were

finally included in this study, of which 179 patients from

institution I and II were divided into training dataset (n =

143) and test dataset (n = 36) by random stratified sampling

(ratio, 8:2), and 35 patients from institution III served as an

independent external validation dataset. The screening and

grouping flow chart of the study population is shown in Figure 1.

The indicators of the patients mainly included gender, age,

hepatitis B surface antigen (HbsAg)/hepatitis C virus antibody

(HCV-Ab), serum liver and kidney function indicators,

coagulation function indicators, liver cirrhosis, splenomegaly,

tumor location, maximum tumor diameter and tumor number.

HCC specimens from all patients were pathologically examined

and diagnosed according to World Health Organization criteria.

In this study, all patients were divided into CK19-positive and

CK19-negative groups, where CK19 positive is defined as the

presence of membranous or cytoplasmic immunoreactivity

in ≥5% of tumor cells (21).
Image acquisition, preprocessing and
ROI segmentation

All patients fasted for more than 8 hours before abdominal

ultrasonography. Preoperative ultrasonography was performed
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by sonographers with more than 10 years of experience in liver

ultrasonography, and the echogenicity, lesion size, and blood

flow signals of the lesions were also assessed and recorded. At

least one original ultrasound image clearly showing the

maximum lesion diameter and one original ultrasound image

containing the measured parameters in the same section should

be stored in Digital Imaging and Medicine Communication

(DICOM) format, respectively. The models of ultrasound

equipment used were: GE Logiq E20, GE Vivid E9, HIVISION

Ascendus, HIALOK ProSound A5, Philips EPIQ 7 or Philips

EPIQ 5, etc. All ultrasound probes were C75, with the frequency

of 1 – 5 MHZ.

In order to eliminate differences caused by different ultrasound

equipment and different operators and to ensure the comparability

of the features, researchers with 6 years of experience carried out

image preprocessing. To ensure the distribution of baseline features,

we first used stratified sampling to divide the training dataset and

test dataset for patients in institutions I and II in a ratio of 8:2. Then,

we used b-spline for ultrasound images reconstructed with different

voxel sizes. The images were resampled to a pixel size of 1 mm x1

mm, and gray-level discretized in the histogram with the bin width

set to a fixed 25.
Frontiers in Oncology 04
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Region of interest (ROI) segmentation for this study was

performed by a sonographer with 30 years of experience in

abdominal ultrasound diagnosis (sonographer 1), and a

sonographer with 10 years of experience in abdominal

ultrasound diagnosis (sonographer 2). First, under the

guidance of sonographer 1, sonographer 2 used ITK-SNAP

software (http://www.itksnap.org) to manually segment each

patient’s ultrasound image along the lesion margin on the

largest transverse section of the tumor. To assess the

reproducibility of features, 50 cases of the ultrasound images

were randomly selected for segmentation by the sonographer 2.

Both sonographers were blinded to the clinical and pathological

data of all patients. The flowchart of this research is shown in

Figure 2. The representative lesion segmentation images are

shown in Figure 3.
Ultrasomics feature extraction
and screening

First, 14 filters were used to process the original image of

each patient to obtain the corresponding derived images, and
FIGURE 1

Flowchart: Cases were screened and enrolled according to the established exclusion criteria.
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then the open-source software package pyradiomics 2.1.2 was

used to extract the information in all original images and derived

images in high-throughput and converted them into quantitative

features. Seven major radiomics features below were obtained:

first order, shape, gray level co-occurrence matrix (GLCM), gray

level run length matrix (GLRLM), gray level size zone matrix

(GLSZM), neighboring gray tone difference matrix (NGTDM)

and gray level dependence matrix (GLDM). After extracting all

feature values, the missing value of each feature was filled with

the median. Finally, the data were normalized (Z-score

normalization) according to the mean and standard deviation

to make the data conformed to a normal distribution. Details of

the feature extraction methods and the filters used are provided

in the Supplementary Material 1.

The optimal feature subset was selected by feature

dimensionality reduction as follows: firstly, the reproducibility of

the extracted features was evaluated by the intraclass correlation

coefficient (ICC), where the features with ICC > 0.8 were considered

to be reproducible (48); secondly, the features with variance of 0

(i.e., features that did not contribute anything to the classification)

were excluded by the variance threshold; thirdly, the linear or

nonlinear information relationships between each feature and the

label were captured by mutual information, and the features with
Frontiers in Oncology 05
90
maximal information coefficient (MIC) of 0 were filtered. Finally,

dimensionality reduction was further performed using the

embedding method in combination with eXtreme Gradient

Boosting (XG Boost).
Model construction and evaluation

The ultrasomics model, the clinical model and the combined

model were constructed using the eXtreme Gradient Boosting

(XGBoost) algorithm in combination with the learning curve

and the grid search for tuning parameter, respectively. XGBoost,

an efficient and widely used machine learning algorithm,

incorporated regularization and parallel processing, which

could reduce both overfitting and computation (49).

Firstly, the ultrasomics model was constructed using the

optimal ultrasomics signatures selected above. Secondly, the

clinical model was constructed by 21 clinical features, including

gender, age, Child-Pugh classification, HbsAg/HBC Ab (positive/

negative), cirrhosis (yes/no), splenomegaly (yes/no), tumor location,

tumor maximum diameter, tumor number, and serum biochemical

parameters, including alpha-fetoprotein (AFP), alanine

aminotransferase (ALT), aspartate aminotransferase (AST),
A B C

FIGURE 2

Schematic diagram of the overall study: (A) Image acquisition and lesion segmentation; (B) Feature extraction and feature selection, and
(C) Model construction and evaluation.
B C DA

FIGURE 3

Examples of delineating regions of interest (ROI) on a grayscale ultrasound image. (A, B) are the CK19-positive HCC patient, (C, D) are the
CK19-negative HCC patient.
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alkaline phosphatase (ALP), glutamyl-transpeptidase (GGT),

albumin, total bilirubin (TB), conjugated bilirubin (CB),

creatinine, prothrombin time (PT), fibrinogen, international

normalized ratio (INR). Finally, the combined model was

constructed based on all the above clinical features and

ultrasomics signatures to explore whether the combination of the

two can show better performance. Supplementary Material 2

includes details of parameter tuning for model building.

The performance of the three prediction models was

assessed in the test dataset and the external validation dataset,

and expressed as four indicators: area under the receiver

operating characteristic curve (AUC) with 95% confidence

interval (CI), accuracy, sensitivity and specificity. Model

construction and evaluation were performed in the Python

environment using the scikit-learn 0.23.2 package.
Statistical analysis

Statistical analysis was performed by IBM SPSS Statistics 23.0

software. The distribution of continuous variables was first

determined by the Shapiro – Wilk test, expressed as mean ±

standard deviation or median (25th to 75th percentile) for

continuous variables. Categorical variables were expressed as

frequency and relative frequency. Statistical differences between

the two groups of CK19-positive and CK19-negative patients were

then analyzed as described above using t-test or Mann-Whitney U

test for continuous variables and chi-square test or Fisher’s exact

probability test for categorical variables. A value of p < 0.05 was

considered statistically significant.
Results

Baseline characteristics of the
study population

A total of 214 HCC patients were finally included in this

study. Patients from institution I and II were mixed and divided
Frontiers in Oncology 06
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into training dataset (n = 143) and test dataset (n = 36) by

random stratified sampling (ratio, 8:2), and patients from

institution III separately served as external validation dataset

(n = 35). In the whole study cohort, CK19 negative and positive

patients accounted for 78.97% (169/214) and 21.03% (45/214),

respectively, and male and female patients accounted for 80.37%

(172/214) and 19.63% (42/214), respectively. The baseline

clinical and pathological characteristics of all patients are

shown in Table 1.
Feature extraction and screening

A total of 1,409 features were extracted from the original and

derived images, including first order, shape, GLCM, GLRLM,

GLSZM, NGTDM and GLDM of 18, 14, 24, 16, 16, 5 and 14,

respectively. All but 14 shape features were obtained from the

original and derived images. Details of the features were

provided in the Supplementary Material 3.

Firstly, a total of 992 features were retained according to the

ICC of features. Secondly, 16 features with zero variance and 487

features with zero MIC were excluded using variance threshold

and mutual information. Finally, 12 most valuable signatures

were selected using the embedding method combined with

XGBoost for further dimension reduction. Supplementary

Figures 1, 2 showed the importance of the 12 signatures.
The performance Of ultrasomics, clinical
and combined models

Three prediction models, that’s ultrasomics model, clinical

model and combined model, were constructed using XGBoost

algorithm, respectively. The results showed that the ultrasomics

signatures showed satisfactory performance in predicting CK19

expression in HCC patients, and the AUCs of the test dataset

and the external validation dataset were 0.789 (95% CI, 0.621 –

0.907) and 0.787 (95% CI, 0.616 – 0.907), respectively. The AUC

of the clinical model constructed based on the relevant clinical
B CA

FIGURE 4

The ROC curves of the modes in the training dataset, test dataset and validation dataset: (A) The clinical model. (B) The ultrasomics model.
(C) The combined model.
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characteristics was 0.746 (95% CI, 0.574 – 0.876) and 0.638 (95%

CI, 0.459 – 0.793) in the test and validation datasets, respectively.

However, when the clinical features and ultrasomics features

were combined, the combined model achieved an excellent

performance in predicting CK19 expression, and the AUC

increased to 0.867 (95% CI, 0.712 – 0.957) and 0.862 (95% CI,

0.703 – 0.955), respectively. The ROC curves of all models in the

three datasets are presented in Figure 4, and the detailed

indicators of performance evaluation are presented in Table 2.
Frontiers in Oncology 07
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Discussion

HCC with positive CK19 expression is a new subtype of

primary liver cancer (16, 25). In HCC, positive CK19 expression

is one of the independent risk factors for prognosis, and is

significantly correlated with invasion, chemotherapy drug

resistance, and lymph node metastasis (14, 15, 18, 22). It has

been reported that recurrence-free survival was significantly

reduced in CK19-positive patients after surgical resection
TABLE 1 Preoperative clinical baseline characteristics of 214 patients.

Clinical characteristics CK19- (n = 169), n (%) CK19+ (n = 45), n (%) p value

Sex 0.181

male 139 (82.25%) 33 (73.33%)

female 30 (17.75%) 12 (26.67%)

Age (years) 56.30 ± 11.079 55.16 ± 10.388 0.535

Child-Pugh Class 0.041

A 151 (89.35%) 35 (77.78%)

B 18 (10.65%) 10 (22.22%)

HbsAg/HCV Ab 0.980

positive 128 (75.74%) 34 (75.56%)

negative 41 (24.26%) 11 (24.44%)

Cirrhosis 0.922

Yes 140 (82.84%) 37 (82.22%)

No 29 (17.16%) 8 (17.78%)

Splenomegaly 0.391

Yes 78 (46.15%) 24 (53.33%)

No 91 (53.85%) 21 (46.67%)

AFP (ng/ml) 14.60 (4.79-280.84) 33.80 (5.64-589.68) <0.001

ALT (U/L) 29.00 (20.15-46.9) 31.00 (21.00-48.00) 0.274

AST (U/L) 86.00 (69.00-114.00) 36.00 (25.00-49.85) 0.831

ALP (U/L) 86.00 (69.00-114.00) 88.50 (69.00-114.08) 0.283

GGT (U/L) 54.00 (30.15-103.50) 54.00 (30.00-113.50) 0.384

Albumin (g/L) 40.80 (36.90-44.40) 40.80 (36.98-44.40) 0.752

TB (umol/L) 13.2 (9.50-18.70) 13.70 (9.65-19.88) 0.070

CB (umol/L) 5.20 (3.50-7.80) 5.25 (3.70-7.80) 0.216

Creatinine (umol/L) 65.00 (56.00-76.00) 64.00 (56.00-75.25) 0.222

PT (s) 12.30 (11.40-13.20) 12.30 (11.40-13.20) 0.924

Fibrinogen (g/L) 2.44 (1.95-2.88) 2.45 (2.00-2.92) 0.108

INR 1.04 (0.98-1.11) 1.05 (0.98-1.11) 0.952

Tumor location 0.729

right lobe 139 (82.25%) 38 (84.44%)

left lobe 30 (17.75%) 7 (15.56%)

Maximum diameter (mm) 42.00 (28.00-67.00) 41.00 (27.00-66.25) 0.203

Tumor Number 0.208

1 136 (80.47%) 33 (73.33%)

2 12 (7.10%) 7 (15.56%)

>2 21 (12.43%) 5 (11.11%)
fronti
CK19, Cytokeratin 19; AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; GGT, glutamyl-transpeptidase; TB, total
bilirubin; CB, conjugated bilirubin; PT, prothrombin time; INR, international normalized ratio; Unless otherwise specified, data in parentheses are percentages.
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compared with CK19-negative HCC patients, with 26.1% decrease

in 1-year survival, 16% decrease in 2-year survival, and 16.4%

decrease in 3-year survival, which seriously affected prognosis of the

patients (50). Therefore, preoperative assessment of CK19

expression in HCC patients is critical for the development of

individualized treatment strategies, and improving the prognosis

of patients. Preoperative immunohistochemistry is the main choice

for clinical detection of CK19 (27). However, preoperative tissue

biopsy may increase the risk of unwanted complications, such as

abdominal or subcapsular hemorrhage, as well as needle tract

metastasis (28, 29). Meanwhile, in current guidelines, biopsy is

not a routine test for HCC diagnosis (6, 31). Therefore, the current

preoperative detection of CK19 is somewhat limited.

Radiomics could extract a large number of macro

unrecognizable, high- dimensional features through advanced

data mining technology to help clinicians to further improve the

accuracy of diagnosis and prognosis prediction (32). As a field of

radiomics, ultrasomics plays an important role in the diagnosis

and treatment of liver cancer (34). In this multicenter study, we

fully mined the high-throughput information in gray-scale

ultrasound images, and constructed and validated three

models to predict CK19 expression in HCC patients. Firstly,

we extracted a total of 1,409 ultrasomics features from the

original and derived images. In order to avoid curse of

dimensionality, we used ICC, variance threshold, and

embedding method combined with XGBoost to reduce the

dimensionality of the features, resulting in 12 optimal

signatures. Then, the XGBoost algorithm combined with the

learning curve and the grid search parameter adjustment

method was used to train three prediction models: the

ultrasound omics model, the clinical model and the combined

model. The results showed that ultrasomics signatures based on

machine-learning could predict and classify the expression of

CK19 in HCC.As can be seen from Table 2, the combined model

incorporating ultrasomics signatures and clinical factors

performed excellently, with AUC improving to 0.867 (95% CI,

0.712 – 0.957) and 0.862 (95% CI, 0.703 – 0.955), respectively. In

addition, in external validation dataset, the combined model not
Frontiers in Oncology 08
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only reached an AUC of more than 0.85, but also reached an

accuracy, sensitivity, and specificity of more than 80% (85.71%,

83.33%, and 86.21%, respectively), which indicated that the

combined model had a more stable performance. Notably, the

reproducibility of the results is one of the main limitations of

radiomics in clinical application, but the current radiomics

prediction studies of HCC are mostly based on a single center.

On one hand, the heterogeneity of the images collected by the

single center is relatively low, and the model had not been

verified externally, which might be an overfitting phenomenon.

On the other hand, the cases selected from multiple centers have

a wide range of disease distribution and other aspects compared

to a single center study. These were the reasons why we

conducted a multicenter study. The results showed that model

performance on the test dataset were comparable to the

performance on the external validation dataset, especially the

AUCs of the combined model were as high as 0.86. Therefore,

the models had a reliable generalization ability.

To date, only a few scholars explored the correlation between

HCC radiomics signatures and CK19 expression, mostly based on

MRI (38–40). Wang et al. identified HCC patients with positive

CK19 expression based on texture features of conventional MRI

image sequences (38). They manually segmented lesions and

extracted texture features in diffusion-weighted imaging (DWI)

sequences, and then analyzed 7 conventional sequence MRI

appearances, clinicopathological characteristics, and 2,415 texture

features using univariate and multivariate analysis methods. Finally,

serum AFP level ≥ 400 ng/mg, arterial rim enhancement, and

StdSeparation 3D texture features were identified as predictive

variables associated with CK19 positivity in HCC patients, and

then a logistic regression prediction model was constructed using

the above variables. The AUCs predicted by each of the three factors

was 0.650 (95% CI, 0.533 – 0.754), 0.635 (95% CI, 0.518 – 0.741),

and 0.765 (95% CI, 0.655 – 0.853), respectively. While combining

the three characteristics, the prediction model performed optimally,

with an AUC of 0.844 (95% CI, 0.744 – 0.916). Wang et al.

developed a nomogram for the prediction of CK19 expression,

which incorporates both clinico-radiological features and fused
TABLE 2 The performance of training dataset, test dataset and verification datase.

Dataset Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (95%CI) p value

Training dataset Clinical 82.52 88.57 80.56 0.917 (0.859-0.956) <0.0001

Ultrasomics 85.31 88.57 84.26 0.949 (0.899-0.979) <0.0001

Combined 95.80 94.29 96.30 0.995 (0.965-1.000) <0.0001

Test dataset Clinical 63.89 75.00 62.50 0.746 (0.574-0.876) 0.0750

Ultrasomics 77.78 75.00 78.12 0.789 (0.621-0.907) 0.0289

Combined 86.11 75.00 87.50 0.867 (0.712-0.957) 0.0016

Validation dataset Clinical 62.86 83.33 58.62 0.639 (0.459-0.793) 0.2513

Ultrasomics 71.43 66.67 72.41 0.787 (0.616-0.907) 0.0011

Combined 85.71 83.33 86.21 0.862 (0.703-0.955) <0.0001
fronti
AUC, area under the receiver operating characteristic curve; CI, confidence interval.
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radiomics features (39). They extracted 647 radiomics features from

enhancedMRI multi-sequence images based on a machine learning

algorithm, and then used the least absolute shrinkage and selection

operator regression and decision tree for feature screening and

model construction. Finally, in the validation dataset, the AUC of

the radiomics model fused with 17 optimal signatures was 0.822

(95% CI, 0.716 – 0.928), and the AUC of the combined model

incorporating clinical factors, conventional imaging features, and

radiomics signatures reached 0.846 (95% CI, 0.730 – 0.963). Yang

et al. developed four CK19 expression classifiers based on HCC-

enhanced MRI images from three centers and compared their

performance (40). They constructed predictive classifiers using four

machine learning algorithms: multiple logistic regression, support

vector machine, random forest, and artificial neural network

algorithm (ANN), respectively, and evaluated the generality of the

optimal classifier in two validation datasets. The results showed that

the ANN classifier constructed from the 12 optimal features

exhibited the best diagnostic performance. The AUC was 0.857,

0.726, and 0.790 in the training, validation 1, and validation 2

datasets, respectively. In this study, the AUC of the ultrasomics

model and the combined model reached 0.789 (95% CI, 0.621 –

0.907) and 0.867 (95% CI, 0.712 – 0.957) in the test dataset,

respectively. In addition, the two models also achieved similar

performance in the external validation dataset, with AUC of

0.787 (95% CI, 0.616 – 0.907) and 0.862 (95% CI, 0.703 – 0.955),

respectively. The results showed that although the gray-scale

ultrasound images used in this study were not as rich as the

image sequences contained in MRI, our ultrasomics model

achieved similar prediction performance with the prediction

model constructed by integrating multiple sequence radiomics

features of MRI. This fully demonstrated that gray-scale

ultrasound images included a variety of information and also had

a great potential in predicting the level of tumor heterogeneity. In

addition, our prediction model also showed excellent prediction

performance in the independent external validation dataset, and the

ultrasonography is relatively cheap, which makes the ultrasomics

method a better choice for popularization.

However, this study also had some limitations. Firstly, this was

a retrospective study and there might be selection bias. And the data

came from three medical institutions, especially with relatively few

positive samples. In the future, we hope to expand the research

scope and increase the sample size. Secondly, the images used in this

study were acquired by multiple ultrasound devices. Although

feature extraction was preprocessed before, there might still be

some device-related differences which were not eliminated. Again,

this study extracted features from the largest section of the tumor

only, and will includemore sections in the future for in-depth study.

Finally, only gray-scale ultrasound images were collected, but we

hope to collect more ultrasound images with multiple parameters

and modalities to further investigate CK19 expression prediction in

HCC patients by ultrasomics.

In conclusion, ultrasomics signatures could be used for

noninvasive prediction of CK19 expression in HCC, and the
Frontiers in Oncology 09
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combined prediction of clinical features and optimal ultrasomics

feature subset showed an excellent performance, which

improved the prediction of CK19 expression in HCC

significantly. Therefore, machine learning-based ultrasomics

methods may be used to predict tumor heterogeneity and

facilitate the development of precision medicine.
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Objective: To evaluate the effectiveness and advantages of a new method for

calculating breast tumor volume based on an automated breast ultrasound

system (ABUS).

Methods: A total of 42 patients (18–70 years old) with breast lesions were

selected for this study. The Ivenia ABUS 2.0 (General Electric Company, USA)

was used, with a probe frequency of 6–15 MHz. Adobe Photoshop CS6

software was used to calculate the pixel ratio of each ABUS image, and to

draw an outline of the tumor cross-section. The resulting area (in pixels) was

multiplied by the pixel ratio to yield the area of the tumor cross-section. The

Wilcoxon signed rank test and Bland-Altman plot were used to compare mean

differences and mean values, respectively, between the two methods.

Results: There was no significant difference between the tumor volumes

calculated by pixel method as compared to the traditional method (P>0.05).

Repeated measurements of the same tumor volume were more consistent

with the pixel method.

Conclusion: The new pixel method is feasible for measuring breast tumor

volume and has good validity and measurement stability.
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Introduction

Breast cancer ranks first in cancer deaths among women.

The latest data on global cancer burden (2020) show that breast

cancer accounts for 11.7% of all new cancer cases, officially

displacing lung cancer as the most prevalent cancer type

worldwide (1). In China, there were 420,000 new breast cancer

cases, ranking it first in the world (2). Chemotherapy is one of

the most commonly prescribed treatment methods for breast

cancer (3), and its effectiveness relies heavily on imaging

methods to evaluate tumor volume (4).

Various methods have been used to assess tumor volume

(5). Magnetic resonance imaging (MRI) has excellent soft

tissue resolution, uses no radiation, and offers multi-

directional and multi-sequence imaging; however, the

examination is time-consuming and expensive (6) .

Computerized tomography (CT) examination has high

spatial and density resolution (7), but uses a large radiation

dose and contrast agents with negative side effects. In

comparison, ultrasound examination offers the advantages of

being affordable, easy to administer, and radiation-free, and is

thus recognized as the preferred imaging method for breast

cancer (8). It is difficult to achieve accurate measurement of

dynamic and complex entities with two-dimensional

ultrasound, so volumetric parameters are measured with

three-dimensional ultrasound (9, 10).

Automated breast ultrasound (ABUS) is a three-dimensional

ultrasound technology for breast examination (11). It uses a

standardized, automated imaging system that stores image data

and has good repeatability (12). Its unique advantages contribute

to its important role in the diagnosis and treatment of breast

tumors (13). Currently, only tumor length can be measured on

the ABUS system, not cross-sectional area or volume (14).

Therefore, ABUS can only estimate volume according to the

ellipsoid formula using tumor length, width and height (15). It is

clinically necessary to overcome this limitation to ensure

accurate and stable measurement of breast tumor volumes

(16). Therefore, the authors designed a new method to

measure tumor volume using ABUS and evaluated its validity

and measurement stability.
Materials and methods

General information

This study was approved by the ethics committee of Shaanxi

Provincial Cancer Hospital (2021-137) and granted a waiver of

informed consent before commencement of the study. The ABUS

imaging data of 42 patients with breast tumors who underwent

ABUS examination in our hospital from June 2018 to June 2021
Frontiers in Oncology 02
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were retrospectively analyzed. The validity and measurement

stability of the pixel method were compared with those of the

traditional method (length × width × height/2). Inclusion criteria:

1) female patients; 2) aged 18–70 years old; 3) with breast tumors -

if there were multiple breast tumors, the one with the largest

length and diameter was selected; 4) the breast tumor had a well-

defined boundary; 5) the long diameter of the tumor was ≥1cm

and ≤5 cm. Exclusion criteria: 1) age < 18 years old or > 70 years

old; 2) breast tumor with ill-defined boundary; 3) the long

diameter of breast tumor was <1cm or >5 cm.
Instrument and ABUS inspection process

The Invenia ABUS 2.0 (General Electric Company, USA)

was used, with a probe frequency of 6–15 MHz, field of view of

15.3 cm, scanning length of 16.9 cm, and maximum scanning

depth of 5.0 cm. The patient was instructed to lie in a supine

position and breathe calmly. Preset scanning conditions were

selected on the instrument according to the size of the patient’s

breast. Lateral, medial, and anteroposterior scans were

performed bilaterally for all patients, and upper and lower

scans were added for larger breasts. After the scan the images

were imported into the image viewing system that comes with

ABUS for 3D reconstruction, and transverse, sagittal, and

coronal cross-sections were obtained.
Tumor volume measurement

ABUS imaging data of breast tumor volume was evaluated

by two physicians, each using both the pixel method and the

traditional method. The traditional method is to measure the

length, width, and height of the tumor using the image viewing

system that comes with ABUS. Using an ABUS coronal image,

the length was defined as the largest diameter of the tumor and

the width was defined as the largest diameter perpendicular to

the length. Using an ABUS cross-section, the height was defined

as the largest diameter of the tumor perpendicular to the plane of

the ABUS probe on the cross-section was selected as the height

(equivalent to the anteroposterior diameter of the tumor in vivo).

The volume of the tumor was calculated by length*width*height/

2. For the pixel method, first the pixel ratio was calculated

according to the scale of the original image, and then the tumor

was outlined in order to obtain the number of pixels in each

cross-section. This process is done in Adobe Photoshop CS6

software. Tumor cross-section area was then calculated by

multiplying pixel ratio by the number of pixels in each cross-

section. On ABUS images, each breast tumor was divided on the

coronal plane at 0.1-cm intervals. For each layer, the area was

measured by pixel method, and volume was calculated by
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multiplying area by height (the height of each layer was 0.1 cm).

The total tumor volume was calculated as the sum of the

volumes of each layer. Consistency and stability of the two

methods were then compared.
Statistical methods

SPSS 26.0 software was used to perform all statistical

analyses. All measurement data were expressed as mean ± SD,

and Bland-Altman plots or Wilcoxon signed rank test were used

to compare the mean values and differences of the two methods.

P < 0.05 was considered statistically significant.
Results

The 42 patients studied ranged from 19 to 65 years old, with

an average age of 37.3 ± 12.6 years old. Tumor lengths ranged

from 1.0 to 4.9 cm with an average length of 2.17 cm.

The analysis of tumor pixels is shown in Figures 1, 2.

Coronal images were imported into Adobe Photoshop CS6

software, and the area-to-pixel ratio was calculated according
Frontiers in Oncology 03
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to the scale on the image. Figure 3 shows the mean volume of

each tumor as measured by both pixel and traditional methods.

Patients’ ages and tumor lengths are shown in Table 1, along

with the differences in tumor volumes as measured by two

physicians using both pixel and traditional methods. The

mean volume of 42 lesions measured by the pixel method was

1.073 times that measured by the traditional method (standard

deviation: 0.266, 95% confidence interval: 0.541–1.605). There

was no significant difference in the volume measured by the pixel

method as compared to that measured by the traditional

method, indicating that the pixel method is feasible and

effective for tumor volume measurement (signed rank test,

P=0.542). The stability of the two methods was assessed by

comparing the mean difference between physicians. The mean

difference for the pixel method was significantly less than that of

the traditional method (P<0.01).

In addition, the consistency of the two physicians’

measurements was assessed using Bland-Altman analysis. As

shown in Figure 4, the majority of tumor volumes measured by

the pixel method were within the 95% confidence range. In

contrast, more tumor volumes measured by the traditional

method fell outside the 95% confidence range (shown in

Figure 5), further illustrating the higher consistency of the
FIGURE 1

Calculation of area-to-pixel ratio using Adobe Photoshop CS6 software. (A) scale bar (5 cm). (B) square with a length of 5 cm and actual area of
25 cm2. (C) number of pixels (70756) automatically counted by the software within the outlined region. (D) tumor.
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pixel method. The mean and standard deviation of the difference

between the measured values of the two physician based on the

pixel method was smaller, and there was no statistical difference

between the measured values of the two doctors (signed rank

test, P=0.300). In contrast, there was a statistically significant

difference between the two doctors’ measurement values using

the traditional method (signed rank test, P=0.001) (Table 2).

These results show that the pixel method has smaller
Frontiers in Oncology 04
100
measurement errors, more stable results, and less subjective

influence by physician.
Discussion

In this study, a new pixel method was developed to measure

the volume of breast tumors based on ABUS imaging. The
FIGURE 2

Calculation of pixels within the tumor. (A) tumor (outlined by white dashed line). (B) number of pixels (3916) automatically counted by the
software within the outlined region.
FIGURE 3

Means and standard deviations of each tumor volume as measured by pixel (red) and traditional (blue) methods.
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TABLE 1 Patient age and tumor length, and difference in tumor volumes measured by two physicians using either the pixel or traditional method.

Patient number Age Tumor length (cm) Tumor volume (cm3,
Pixel method)

Difference
(Pixel method)

Tumor volume (cm3,
Traditional method)

Difference
(Traditional method)

Doctor1 Doctor2 Doctor1 Doctor2

1 46 1.8 0.676 0.665 0.011 0.531 0.560 0.029

2 31 2.5 1.503 1.558 0.055 1.152 1.574 0.422

3 30 2.5 1.526 1.541 0.015 1.210 1.059 0.151

4 20 2.4 4.040 4.040 0.000 3.466 3.091 0.375

5 19 2.1 2.535 2.580 0.045 1.716 2.443 0.727

6 19 1.4 0.171 0.172 0.001 0.117 0.102 0.015

7 46 3.3 10.174 10.261 0.087 12.078 12.708 0.630

8 36 1.0 0.218 0.208 0.010 0.177 0.165 0.012

9 29 2.2 0.758 0.760 0.002 0.692 0.750 0.058

10 40 1.0 0.330 0.358 0.028 0.246 0.243 0.003

11 32 1.6 0.582 0.578 0.004 0.788 0.733 0.055

12 51 1.2 0.320 0.325 0.005 0.263 0.290 0.027

13 37 1.8 0.730 0.719 0.011 0.552 0.619 0.067

14 28 1.4 0.246 0.245 0.001 0.165 0.184 0.019

15 41 1.6 0.444 0.441 0.003 0.367 0.436 0.069

16 65 1.3 0.571 0.586 0.015 0.444 0.542 0.098

17 35 1.8 1.384 1.328 0.056 1.154 1.211 0.057

18 25 2.2 1.487 1.451 0.036 1.403 1.505 0.102

19 51 2.6 2.017 2.022 0.005 1.926 1.905 0.021

20 37 1.3 0.228 0.227 0.001 0.275 0.302 0.027

21 21 1.2 0.347 0.329 0.018 0.421 0.388 0.033

22 28 1.3 0.619 0.610 0.009 0.611 0.569 0.042

23 18 2.3 1.508 1.518 0.010 0.724 1.355 0.631

24 36 1.9 0.447 0.449 0.002 0.431 0.490 0.059

25 45 1.4 0.362 0.376 0.014 0.227 0.243 0.016

26 55 1.2 0.232 0.232 0.000 0.174 0.204 0.030

27 27 1.1 0.225 0.260 0.035 0.148 0.147 0.001

28 25 1.4 0.301 0.311 0.010 0.479 0.534 0.055

29 37 2.9 2.538 2.483 0.055 2.257 2.418 0.161

30 47 1.8 1.286 1.384 0.098 0.931 1.496 0.565

31 25 4.9 10.606 10.848 0.242 10.023 11.749 1.726

32 57 4.1 4.501 4.099 0.402 8.992 7.965 1.027

33 28 2.8 4.550 4.598 0.048 3.480 3.825 0.345

34 26 1.9 0.290 0.302 0.012 0.252 0.496 0.244

35 59 3.1 3.299 3.358 0.059 3.512 3.009 0.503

36 52 4.4 8.838 8.748 0.090 9.523 10.309 0.786

37 32 2.0 1.077 1.090 0.013 1.228 1.043 0.185

38 25 3.8 2.954 2.984 0.030 3.456 4.033 0.577

39 59 2.9 1.164 1.198 0.034 1.774 1.983 0.209

40 55 2.6 3.114 3.076 0.038 2.891 4.288 1.397

41 27 2.2 1.351 1.344 0.007 1.665 2.013 0.348

42 51 3.0 4.466 4.421 0.045 3.889 4.980 1.091
Frontiers in Oncolo
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difference values were compared using the Wilcoxon signed rank test (W-=879, W+=24, T0.01(42) =247-656, P<0.01).
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results demonstrate that compared with the traditional method,

the pixel method offers less error and more stability in

measuring the volume of breast tumors.

ABUS uses a standardized, automated system for the

acquisition and storage of image data (13, 17). Tomographic

images similar to MRI and CT can be obtained in transverse,

sagittal, and coronal planes, providing sufficient information from

which to calculate target volume (18, 19). However, the current

ABUS system can only measure tumor length, and has not yet been

used to measure cross-sectional area or volume. The present study

used pixel ratios to calculate cross-sectional areas and whole-tumor

volumes from ABUS images. Results indicated that tumor volumes

calculated by the pixel method were slightly higher than, but not
Frontiers in Oncology 06
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significantly different from, those calculated by the traditional

method. This indicates that the performance of the pixel method

is comparable to that of the traditional method. Bland-Altman

analysis showed that more tumor volumes measured by the pixel

method fell within the 95% confidence range as compared to those

measured by the traditional method, further illustrating the higher

consistency of the two physicians’ measurements by the pixel

method. The ultimate goal of the pixel method is to enable

automated measurement of tumor volumes by a computer.

Not only does the pixel method offer smaller error and

greater measurement stability, but it can also measure tumors

with irregular shapes. However, one disadvantage is that the

measurement time is long. In this study, the time required to
FIGURE 5

Bland-Altman analysis of tumor volumes measured by two doctors using the traditional method.
FIGURE 4

Bland-Altman analysis of tumor volumes measured by two doctors using the pixel method.
TABLE 2 Comparison between the difference of tumor volumes measured by two physicians using either the pixel or traditional method.

Pixel method Traditional method

Difference P Difference P

Mean (SD) -0.0016 (0.0816) 0.300 -0.194 (0.475) 0.001

median (Q1, Q3) -0.002 (-0.028,0.010) -0.058 (-0.348,0.012)
frontiersi
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calculate the breast tumor volume of each patient was about 2-10

minutes. If the method were to be merged into existing clinical

software, rather than having to import to Photoshop, then the

calculation time would be significantly reduced (20). In addition,

the present study only considered tumors with well-defined

boundaries. Many malignant breast lesions are ill-defined, and

whether the pixel method would be suitable for them requires

further investigation.

In conclusion, the pixel method is feasible and effective to

measure the volume of breast tumors, with small error and good

stability of the measured value.
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Prognostic value of PET/CT
and MR-based baseline
radiomics among patients
with non-metastatic
nasopharyngeal carcinoma

Roshini Kulanthaivelu1*, Andres Kohan1, Ricarda Hinzpeter1,
Zhihui Amy Liu2, Andrew Hope3, Shao Hui Huang3,
John Waldron3, Brian O’Sullivan3, Claudia Ortega1, Ur Metser1

and Patrick Veit-Haibach1

1Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and
Women’s College Hospital, University of Toronto, Toronto, ON, Canada, 2Department of
Biostatistics, Princess Margaret Cancer Centre, University Health Network, Dalla Lana School of
Public Health, University of Toronto, Toronto, ON, Canada, 3Department of Radiation Oncology,
University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of
Toronto, Toronto, ON, Canada
Purpose: Radiomics is an emerging imaging assessment technique that has

shown promise in predicting survival among nasopharyngeal carcinoma (NPC)

patients. Studies so far have focused on PET or MR-based radiomics

independently. The aim of our study was to evaluate the prognostic value of

clinical and radiomic parameters derived from both PET/CT and MR.

Methods: Retrospective evaluation of 124 NPC patients with PET/CT and

radiotherapy planning MR (RP-MR). Primary tumors were segmented using

dedicated software (LIFEx version 6.1) from PET, CT, contrast-enhanced T1-

weighted (T1-w), and T2-weighted (T2-w) MR sequences with 376 radiomic

features extracted. Summary statistics describe patient, disease, and treatment

characteristics. The Kaplan–Meier (KM) method estimates overall survival (OS)

and progression-free survival (PFS). Clinical factors selected based on

univariable analysis and the multivariable Cox model were subsequently

constructed with radiomic features added.

Results: The final models comparing clinical, clinical + RP-MR, clinical + PET/

CT and clinical + RP-MR + PET/CT for OS and PFS demonstrated that

combined radiomic signatures were significantly associated with improved

survival prognostication (AUC 0.62 vs 0.81 vs 0.75 vs 0.86 at 21 months for PFS

and 0.56 vs 0.85 vs 0.79 vs 0.96 at 24months for OS). Clinical + RP-MR features

initially outperform clinical + PET/CT for both OS and PFS (<18 months), and

later in the clinical course for PFS (>42 months).
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Conclusion: Our study demonstrated that PET/CT-based radiomic features

may improve survival prognostication among NPC patients when combined

with baseline clinical and MR-based radiomic features.
KEYWORDS

NPC, Radiomics, PET/CT, MRI, prognosis
Introduction/Background

Nasopharyngeal carcinoma (NPC) is an epithelial

malignancy arising from the mucosa of the nasopharynx, and

it accounts for 0.7% of all malignancies (1). NPC affects less than

one person per 100,000 in North America (2), but is endemic in

Southern China, the Middle East, and North Africa (2).

Although the prognosis of NPC is largely good, with 5-year

survival rates reaching up to 80% (3), 20%–30% of patients

experience treatment failure from locoregional recurrence or

distant metastasis (4).

Radiotherapy with or without concurrent chemotherapy is

regarded as the standard of care for NPC, and accurate staging,

including optimized imaging, is crucial for appropriate treatment

stratification (5). MR assessment is performed due to superior soft

tissue contrast resolution compared with CT, and 18Fluoride-

Fluorodeoxyglucose-Position Emission Tomography/Computed

Tomography (PET/CT) is utilized to evaluate for both the

presence of a primary lesion in cases of diagnostic uncertainty,

and for the presence of local lymph node and distant metastatic

disease. Increasing stages have been demonstrated to be associated

with poorer prognosis (3, 6). However, if these patients are

identified early, escalated therapy strategies can be employed.

Outsideof conventional TNMstaging, there is noconsensus on

specific prognostic biomarkers that can potentially improve

survival among NPC patients (4). Various clinical factors such as

EBV titer, hemoglobin, LDH, CRP, neutrophil to lymphocyte ratio,

and platelet counts have been identified as factors potentially

associated with poor survival (6, 7). However, the clinical utility

of these parameters, outside of EBV titer (4), is limited and new

tools are required to identify patients at risk of poor prognosis. In

recent years, radiomics has emerged as a promising field that can

potentially provide a means of improved prognostication.

Radiomics is an extension of computer-aided diagnosis and

detection and relies upon the concept that “medical images

contain information about disease-specific processes that are

imperceptible to the human eye” (8). Images are converted to

mineable data that are analyzed using computer algorithms both

quantitatively in terms of the spatial distribution of signal

intensities and pixel interrelationships and qualitatively in

terms of differences in intensity, shape, or texture (8–10).
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Multiple studies, dating as far back as 2017, have

demonstrated that multiparametric MR-based radiomic

parameters can be utilized to predict prognosis, progression-free

survival (PFS), and recurrence in patients with advanced NPC

(6, 11–19) and non-metastatic NPC (20, 21) with superior

prognostic performance over TNM staging (17, 22).

Metabolic parameters derived from PET/CT have

revolutionized oncological imaging (7). In terms of radiomic

analysis, more recent studies have utilized radiomic features

from baseline PET/CT to quantitatively characterize intra-

tumoral heterogeneity and provide prognostic information

among patients with NPC, with the prediction of locoregional

recurrence and distant metastasis in advanced NPC (7, 23–26).

There have not, however, been any studies in the literature so

far that have evaluated the combined prognostication value

between radiomic signatures on both PET/CT and MR and

clinical parameters among patients with NPC. The aim of this

study was to therefore evaluate and compare the prognostic

value of clinical data, radiomic features extracted from PET/CT

and MR both separately and combined.
Materials and methods

This retrospective study was approved by the institutional

review board and the need to obtain informed consent from

patients was waived.
Patient selection

A total of 146 patients with pathologically confirmed NPC

(Stages I–IVC) underwent staging with PET/CT between

December 2012 and July 2018 at the University Hospital

Network, Toronto. Of these, 130 patients had undergone MR

for the purpose of radiotherapy planning (RP-MR). Six patients

with stage M1 (treated with palliative intent) were excluded.

Subsequently, 124 patients with curative therapeutic intent with

both PET/CT and RP-MR scans were included for analysis.

Demographic details (age, sex), as well as clinical variables

including ECOG, smoking history, pathology, EBER, EBV titer,
frontiersin.org
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HPV, TNM staging, date of diagnosis and last follow up,

treatment intent and regimen, RT dates, dose, and follow up

data including local, regional, or distant failure, date, and status

at last follow up were collated and are summarized in Table 1.

Staging was performed according to the American Joint

Committee on Cancer TNM Staging System Manual, 7th

edition. Patient follow-up was measured from the date of

diagnosis to the last day of follow up. Overall Survival (OS)

time was defined as at the time from the date of diagnosis to the
Frontiers in Oncology 03
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date of death or last follow-up, with PFS time defined from the

date of diagnosis to the date of local, regional, or distant failure,

or death/last follow-up.
Image acquisition

PET
Pretreatment whole-body PET/CT was acquired on a

Siemens mCT40 PET/CT scanner (Siemens Healthineers,

Erlangen, Germany). Patients were positioned supine with

images obtained from the top of the skull to the upper thighs.

Iodinated oral contrast material was administered for bowel

opacification; no intravenous iodinated contrast material was

used. Patients were injected with 300–400 MBq (4–5 MBq/kg) of
18Fluoride-Fluorodeoxyglucose (18F-FDG) after having fasted

for 6 h, and PET/CT scanning was performed after

approximately 60 min. Overall, five to nine bed positions were

obtained, depending on patient height, with an acquisition time

of 2–3 min per bed position. The CT settings were as follows: 120

kV; 3.0 mm slice width; 2.0 mm collimation; 0.8 s rotation time;

and 8.4 mm feed/rotation. A PET emission scan using time of

flight with scatter correction was obtained, covering the identical

transverse field of view. The PET parameters were as follows:

image size: 2.6 pixels; slice: 3.27; and a 5-mm full width at half-

maximum (FWHM) gaussian filter type. Overall, patient data

has been acquired as published by our group previously (27).

RP-MRI
All patients were examined on a 3.0T MRI scanner for

radiotherapy planning (Siemens Magnetom Verio syngo MR

B17, Siemens Healthineers, Erlangen, Germany). Post contrast

T1-weighted (T1-w) and T2-weighted (T2-w) MR images were

acquired with the following parameters: axial T1-w turbo spin-

echo fat saturated images post contrast (TR 1,240 ms/TE 11 ms,

ET 256 × 205, FOV 24 × 24 cm, slice thickness 3 mm) and axial

T2-w turbo spin-echo fat saturated images (TR 8,290 ms, TE 117

ms, ET 22, FOV 24 × 24 cm, slice thickness 3 mm).
Radiomic feature extraction

Radiomic features were extracted using the LIFEx platform

version 6.1 (IMIV/CEA, Orsay, France) (28) from axial PET,

low-dose unenhanced CT (acquired as part of the PET/CT),

axial fat saturated and contrast-enhanced T1-w and T2-w RP-

MR Digital Imaging and Communications in Medicine

(DICOM) images that had been archived in PACS (Table 1

Supplemental Material). Semi-automatic segmentation of the

PET component was performed using a thresholding method,

with minor manual correction as required. PET volumes of

interest (VOI) were defined based on (a) background threshold;

(b) threshold at 40%; and (c) threshold at 70% of the SUVmax.
TABLE 1 Population characteristics.

n = 124

Sex (n)

Male 84% (104)

Female 16% (20)

mean Age in years (SD) 54.8 (11.6)

Smoking History (n)

Current 21% (26)

Ex-Smoker 26% (32)

Never 50% (62)

Unknown 3% (4)

Primary (n)*

NPC Type 1/2 25% (31)

NPC Type 3 75% (93)

Viral State (n)

EBER + 89% (110)

HPV + 6% (8)

Non-Viral 3% (4)

Unknown 2% (2)

mean EBV Titer (IU/ml, SD) 30,433.3 (175,831.1)

T Stage (n)‡

1/2 43% (54)

3 31% (38)

4 26% (32)

N Stage (n)‡

0 15% (18)

1 32% (40)

2 43% (53)

3 10% (13)

Overall Stage (n)‡

I 7% (9)

II 13% (16)

III 46% (57)

IV 1% (1)

IVA 23% (28)

IVB 10% (13)

RT/CRT Regimen (n)

CCRT − RT 36% (45)

CCRT + AC – IC + CCRT 64% (79)
*WHO classification ‡7th edition UICC/AJCC staging system, CCRT, concurrent
chemoradiation therapy; RT, Radiation Therapy, AC, adjuvant chemotherapy; IC,
induction chemotherapy.
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Volumetric segmentation of the tumor on CT and MRI was

carried out manually. Because there is no thresholding method

available for the CT or MR component, the contours for the CT-

derived VOI were drawn manually in a slice-by-slice fashion to

cover the entire tumor. The minimal VOI included at least 64

voxels and was confirmed (by the “CheckTex” feature in the

software) to make sure it created a single contiguous piece that

enabled consistent textural feature calculation.

To account for the impact of different resampling schemes in

MR, a fixed bin width of 128 bins, which corresponded to absolute

resampling, was chosen after the initial sampling of healthy normal

tissue (masseter muscle) for reference (29). Segmentation was

performed by one radiologist with 7 years of experience (RK).

Only primary lesionswere considered in the study; lymph nodes or

secondary lesionswere not included.A total of 94 radiomic features

were obtained from each imaging sequence.
Statistical analysis and modeling

Summary statistics were used to describe patient, disease,

and treatment characteristics. The Kaplan–Meier (KM) method

was used to estimate overall survival (OS) and progression-free

survival (PFS).

Preprocessing of the radiomic data included removing

features with more than 50% missing observations, i.e., due to

too few voxels to analyze, and removing features with little

variation (those with <4 unique values). The value of the 99.9

percentile was used to cap the upper extreme values for each

feature. All features were standardized with a mean of zero and a

standard deviation of one.

Clinical factors were selected based on statistical significance

with a p-value <0.05 in the univariable analyses (UVA) to build

multivariable Cox proportional hazards models for OS and PFS,

respectively. Subsequently, each radiomic feature was added to the

clinical model, and features with a p-value <0.01 were selected for

correlation assessment to filter out highly correlated features using

the caret (30) package in R. If the absolute pairwise correlation was

higher than 0.5, then the feature with the larger mean absolute

correlation was removed. The final model included both clinical

variables and radiomic features.Model performancewasquantified

and visualized using the area under the time-dependentROCcurve

(AUC) (31) calculated using leave-one-out cross-validation. All

statistical analyses were conducted in R version 4.0.2 (32).
Results

Population characteristics

Out of the 124 patients analyzed, 84% (n = 104) were males,

50% (n = 62) had never smoked, and 95% (n = 118) had had

previous infection by either HPV or EBV, with a mean EBV titer
Frontiers in Oncology 04
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of 30,433.5 IU/ml. The mean age was 54.8 y ( ± 11.6) and the

majority had stage III disease or lower (66%, n = 82) (Table 1).

The OS and PFS of our population can be seen in Figures 1,

2. The median follow up period was 50.3 months (a range of 4.5

to 88.3 months). Overall, 13 cancer-related deaths and 28

patients with relapse of their index disease were noted during

the follow-up period. In both cases, most of these events (100%

for OS and 96% for PFS) happened before 48 months.
Statistical analysis of prognostic factors

Univariable statistical analysis was performed for the clinical

variables, as shown in Table 2. Age was found to be significant

for OS, and both age and treatment regimen were found to be

significant for PFS, and thus these variables were included in the

final multivariable models. On top of the selected clinical

variables, statistically significant radiomic features with a p-

value <0.01 are shown in Table 3 for OS and Table 4 for PFS.

After filtering out highly correlated features, the final models are

presented inTable 5. ForOS, age (p = 0.026), PET_CONVENTIONAL_

SUVbwQ1 (p = 0.009), and RP_T1_GLZLM_GLNU (p = 0.006) were

significant prognostic factors, while for PFS PET DISCRETIZED

SUVbwmin (0.006) and RP T1 NGLDM Busyness (p = 0.043) were

significant prognostic factors.
Model performance

The performance of the following models was compared;

clinical alone, clinical + PET/CT features, clinical + RP-MR, and

clinical + PET/CT + RP-MR, for both OS and PFS, as shown in

Figures 3, 4. In both situations, models considering clinical + PET/

CT + RP-MR features outperformed those considering only clinical,

clinical + PET/CT or clinical + RP-MR features (AUC 0.96 vs 0.56

vs 0.85 vs 0.79 at 24 months in OS and 0.86 vs 0.62 vs 0.81 vs 0.75 at

21 months in PFS), which suggests a synergy between PET/CT and

RP-MR features. It is to be noted that in both the OS and PFS

models, clinical + RP-MR features appear to initially outperform

clinical + PET/CT features (AUC 0.87 vs 0.78 at 18 months in OS

and AUC 0.82 vs 0.76 at 14 months in PFS). In the OS model,

clinical + PET/CT outperformed clinical + RP-MR thereafter (AUC

0.89 vs 0.78 at 39 months), while in the PFS model, clinical + PET/

CT features outperformed clinical + RP-MR features from 18 to 39

months (AUC 0.81 vs 0.75 at 21 months), with clinical + RP-MR

outperforming those of clinical + PET/CT features from 42 months

thereafter (AUC 0.76 vs 0.74 at 45 months).
Discussion

To the best of our knowledge, no study so far has evaluated

PET/CT combined with MR-based radiomics and baseline
frontiersin.org
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clinical parameters among patients with NPC. We identified that

radiomic features from MR and PET/CT were associated with

improved prediction of OS and PFS, particularly when

combined (AUC of 0.96 and 0.86, respectively). Clinical + MR

features initially outperformed those of Clinical + PET/CT (<18

months), with Clinical + PET/CT features then outperforming

those of Clinical + RP-MR consistently in the OS model, while

Clinical + RP-MR features subsequently outperformed those of

Clinical + PET/CT (>42 months) in the PFS model.

Our study confirms the findings of multiple studies in the

literature that have demonstrated the pre-treatment prognostic

value of MR-based radiomics among patients with NPC,

consistently showing that MR-based radiomics outperform

clinical features alone when predicting either PFS or OS (4, 6,

11–20, 22). The AUC for clinical + RP-MR in our study was as

high as 0.84 for PFS and 0.87 for OS, which is comparable with

the literature where AUC varies from 0.8 (18) to 0.886 (12), and

the C-index from 0.72 (19) to 0.874 (20).

A significant proportion of these studies were only

performed among patients with advanced (stages III–IV), non-
Frontiers in Oncology 05
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metastatic NPC (4, 6, 11–14), with the remainder performed

among non-metastatic NPC patients of all stages, similar to our

study (15, 17–20, 22).

Similar to the majority of MR-based radiomic studies, we

included both contrast-enhanced T1-w and T2-w MR sequences

in our study (4, 6, 11–14, 16–18, 20, 22). However, although both

contrast-enhanced T1-w and T2-w MR sequences were

evaluated, ultimately only radiomic features from the contrast

enhanced T1-w sequences were found to be significant and

included in our final OS and PFS models (RP_T1_GLZLM_

GLNU, RP T1 CONVENTIONAL Skewness, and RP T1

NGLDM Busyness). This is partly different when compared to

other studies which have shown that joint contrast-enhanced T1

and T2 radiomic features have a better prognostic performance

than T1 or T2 features alone and may be as a result of better

performing PET-based radiomic features being incorporated

into our model (11, 12).

Another differentiation compared to the literature are the

methods used for radiomic feature extraction (e.g., MATLAB),

with only one other NPC radiomic study also using LIFEx
FIGURE 1

Kaplan–Meier curve for Overall Survival.
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software for radiomic feature extraction (14). Despite utilization

of the same MR sequences (contrast enhanced T1-w and T2-w

sequences) and radiomic extraction software, different radiomic

features were found to be significant [RP_T1_GLZLM_GLNU,

RP T1 CONVENTIONAL Skewness, and RP T1 NGLDM

Busyness in our study, and GLCM_Energy, GLCM_Corre, and

CONV_st in (14)]. This may reflect our utilization of 3.0 T fat-

saturated MR sequences with different technical parameters.

Similar to the majority of studies into NPC radiomics, our

study evaluated radiomic parameters within the primary

tumor. However, there are a number of studies that assess

both the primary NPC tumor and adjacent locoregional lymph

nodes, with similar findings, confirming the prognostic value of

combined baseline clinical and MR-based radiomics (14, 19).

There are three studies in the literature exploring the

performance of PET/CT based radiomic features among NPC

patients. Similar to our study, they demonstrated that combined

clinical with PET/CT features improved the prediction of PFS

with a c-index of 0.77 (23), 0.69 (24), and an AUC of 0.829 (7)

compared with 0.81 in our study. The study from Peng et al. only
Frontiers in Oncology 06
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examined patients with advanced NPC (stages II–IV) (7),

compared with ours and the remaining PET/CT radiomic

studies. In the study by Lv et al. age was identified as a

significant clinical parameter, as in our study, in addition to

IgA, N, and M stage (23) . Our s tudy ident ified

PET_CONVENTIONAL_SUVbwQ1 and PET DISCRETIZED

SUVbwmin as significant PET radiomic parameters, but no PET

features were retained following multivariable analysis in the

study of Lv et al. (23). By comparison, other parameters like

PET-NGTDM-Complexity, CT-GLGLM-LGGE, and PET-

GLGLM-SGLGE were found to be significant in the study by

Xu et al. (24).

Our study evaluated both the PET and the CT components

of the PET/CT study, but no CT parameters were found to have

significant prognostic value in our study, unlike the remaining

PET/CT-based radiomic studies (7, 23, 24). We routinely

evaluate the CT component in our radiomics studies since

PET/CT is used clinically as a combined imaging modality.

The complementary value of the CT component has previously

been demonstrated in the literature (27), and if radiomics should
FIGURE 2

Kaplan Meier curve for Progression Free Survival.
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ever make it into clinical routine decision-making in the future,

then the combined value of PET and CT radiomics would be

beneficial per disease site.

There is currently only a single study examining the prognostic

value betweenPETandMR in the existing literature (5), however, this

only utilizes T2-w MR and PET images. Our study is the first

demonstrating the improved prognostic value of combined clinical

+ PET/CT + MR features compared with clinical, PET/CT, or MR

features individually for bothOS andPFS (AUC0.96 at 24months in

OS and 0.86 at 21 months in PFS). Since our results indicated that

mainly PET and MR radiomic features seem to have a prognostic

value, combined PET/MR imaging could be considered as a clinical
Frontiers in Oncology 07
111
tool for staging, prognostication, and potentially surveillance of NPC.

Thismayoffer thepatient (andthehospital) improvedstaging logistics

(one combined exam compared to PET/CT and MR separately) as

well as possibly a better prognostication tool in the future.

Interestingly, clinical + RP-MR features initially outperformed

clinical + PET/CT for both OS and PFS in the follow up period (<18

months), and for PFS (>42 months). Since MRI is used mostly for

local staging (because of its well-documented superiority), one

consideration is that the local tumor may potentially be the

dominant driver and dictate short-term tumoral behavior. PET,

however, may provide improved overall prognostication,

representing the overall pathophysiological behavior in a better
TABLE 2 Univariable analysis of clinical variables.

OS PFSCovariate

HR (95% CI) p-value Global p-value HR (95%CI) p-value Global p-value

Age (years) 1.05 (1.00, 1.10) 0.043 1.05 (1.01, 1.08) 0.0046

Sex 1 0.19

Female Reference Reference

Male Not estimable 2.64 (0.63, 11.11)

ECOG PS 0.074 0.33

ECOG 0 Reference Reference

ECOG 1-2 2.70 (0.91, 8.04) 1.46 (0.68, 3.12)

Smoking pack year 1.01 (0.98, 1.05) 0.38 1.01 (0.99, 1.03) 0.51

History of Smoking 0.92 0.67

Current Reference Reference

Ex-smoker 1.83 (0.34, 10.01) 0.48 2.05 (0.63, 6.65) 0.23

Non-smoker 1.40 (0.29, 6.74) 0.67 1.46 (0.48, 4.45) 0.5

Unknown Not estimable 1 1.91 (0.21, 17.14) 0.56

Primary Pathology 0.55 0.97

NPC, Type 1/2 (WHO I/IIA) Reference Reference

NPC: Type 3 (WHO IIB) 0.70 (0.22, 2.27) 0.98 (0.42, 2.31)

EBER 0.37 0.095

Negative Reference Reference

Positive 0.50 (0.11, 2.29) 0.44 (0.17, 1.16)

EBV Titer pre RT 1.00 (1.00, 1.00) 0.59 1.00 (1.00, 1.00) 0.59

T stage 7th 0.46 0.43

T1–2 Reference Reference

T3 1.39 (0.35, 5.56) 0.64 0.63 (0.24, 1.66) 0.35

T4 2.28 (0.61, 8.48) 0.22 1.24 (0.53, 2.91) 0.62

N stage 7th 0.75 0.93

N0 Reference Reference

N1 0.43 (0.09, 2.11) 0.3 1.52 (0.42, 5.54) 0.52

N2 0.69 (0.17, 2.78) 0.61 1.44 (0.41, 5.12) 0.57

N3 0.46 (0.05, 4.45) 0.5 1.59 (0.32, 7.87) 0.57

Overall Stage 7th 0.27 0.18

I-III Reference Reference

IV 1.85 (0.62, 5.50) 1.67 (0.79, 3.54)

RT/CRT Regimen 0.32 0.035

CCRT - RT Reference Reference

CCRT+AC - IC+CCRT 0.58 (0.19, 1.72) 0.45 (0.21, 0.95)
frontiersin.org

https://doi.org/10.3389/fonc.2022.952763
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kulanthaivelu et al. 10.3389/fonc.2022.952763
way than morphological imaging procedures. Ultimately, these

findings remain indeterminate and would need to be confirmed

in similar studies.

Our study had some limitations, predominantly in terms of

methodology. This was a retrospective study with a moderate
Frontiers in Oncology 08
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number of patients (124) [sample sizes ranged from 85 to 737

subjects in the literature (3)], with mixed clinical stages of NPC

(I–IV). Other prognostic molecular biomarkers, such as

hemoglobin, LDH, neutrophil–lymphocyte ration, c-Met,

ERBB3, and MTDH, were not available for inclusion in the
TABLE 3 Feature selection for OS.

Covariate HR 95% CI lower BOUND 95% CI upper BOUND p-value

PET_CONVENTIONAL_SUVbwQ1* 1.81 1.15 2.84 0.00981

PET_CONVENTIONAL_SUVbwQ2 1.83 1.17 2.86 0.00808

PET_CONVENTIONAL_TLG.mL.onlyForPETorNM. 1.72 1.15 2.59 0.00862

PET_DISCRETIZED_SUVbwQ1 1.88 1.20 2.96 0.00627

PET_DISCRETIZED_SUVbwQ2 1.82 1.17 2.85 0.00825

PET_DISCRETIZED_TLG.mL.onlyForPETorNM. 1.75 1.16 2.63 0.00781

PET40_CONVENTIONAL_TLG.mL.onlyForPETorNM. 1.77 1.18 2.64 0.00573

PET40_DISCRETIZED_TLG.mL.onlyForPETorNM. 1.80 1.20 2.71 0.00449

PET40_GLZLM_GLNU 1.76 1.18 2.62 0.00572

CT_GLZLM_ZLNU 1.69 1.13 2.53 0.00991

RP_T1_SHAPE_Volume.vx. 1.67 1.28 2.19 0.00019

RP_T1_GLRLM_LRE 1.57 1.14 2.18 0.00634

RP_T1_GLRLM_GLNU 1.83 1.38 2.43 0.00002

RP_T1_NGLDM_Busyness 1.60 1.18 2.17 0.00234

RP_T1_GLZLM_GLNU* 1.68 1.15 2.46 0.00688
fronti
*Chosen variables for the model after correlation analysis.
TABLE 4 Feature selection for PFS.

Covariate HR 95% CI lower BOUND 95% CI upper BOUND p-value

PET_CONVENTIONAL_SUVbwmin 1.78 1.34 2.37 0.00008

PET_CONVENTIONAL_SUVbwQ1 1.90 1.38 2.61 0.00007

PET_CONVENTIONAL_SUVbwQ2 1.71 1.23 2.38 0.00157

PET_DISCRETIZED_SUVbwmin* 1.80 1.35 2.40 0.00006

PET_DISCRETIZED_SUVbwQ1 1.94 1.40 2.67 0.00006

PET_DISCRETIZED_SUVbwQ2 1.72 1.23 2.39 0.00133

PET_GLZLM_SZLGE 0.49 0.29 0.84 0.00884

RP_T1_CONVENTIONAL_Skewness* 1.64 1.16 2.31 0.00538

RP_T1_GLRLM_GLNU 1.49 1.14 1.94 0.00393

RP_T1_NGLDM_Busyness* 1.41 1.10 1.82 0.00766
*Chosen variables for the model after correlation analysis.
TABLE 5 Final prognostic models for PFS and OS.

Final Model for OS RT MRI Model for PFS

Covariate HR (95% CI) p-value Covariate HR (95%CI) p-value

Age 1.06 (1.01, 1.11) 0.026 Age 1.04 (1.00, 1.08) 0.06

PET CONVENTIONAL SUVbwQ1 1.92 (1.18, 3.13) 0.0092 Regimen = CCRT + AC − IC+CCRT (vs CCRT − RT) 0.63 (0.27, 1.47) 0.28

RMP T1 GLZLM GLNU 1.70 (1.16, 2.49) 0.0062 PET DISCRETIZED SUVbwmin 1.58 (1.14, 2.19) 0.0056

RP T1 CONVENTIONAL Skewness 1.38 (0.94, 2.02) 0.097

RP T1 NGLDM Busyness 1.31 (1.01,1.70) 0.043
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study (21). These were not routinely obtained among our patient

cohort, at our institution, at the time of treatment.

Although the PET/CT and RP-MR images were obtained

from the same institution and scanners, maintaining uniformity

in image acquisition, no image preprocessing was performed

prior to segmentation. However, there is currently no general

consensus available regarding whether and which image

preprocessing should be performed. Some researchers are even

opposed to image preprocessing since it would be prohibitive to
Frontiers in Oncology 09
113
implement clinically on a large scale. Also related to study

acquisition, CT was performed without intravenous contrast,

which could have contributed to its failure to produce significant

radiomic features, although other studies in different cancer

entities actually did find prognostic value in the CT component

of PET/CT. Finally, segmentation was also only performed

manually for CT and MR, without reproducibility evaluation.

Statistical methodology, in terms of feature selection and

modeling, is highly variable between radiomic studies (LASSO,
FIGURE 3

OS AUC comparison between the different prognostic models.
FIGURE 4

PFS AUC comparison between the different prognostic models.
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RFE, univariable analysis; RS, CR, and nomogram; Chi-squared test,

SFFS, and SVM). We performed a univariable analysis followed by

the construction of multivariable Cox regression models into which

radiomic features were then added. This approach allowed us to

identify prognostic factors by using interpretable models. A major

difference between our studies and those in the literature is that the

majority of studies use both training and validation cohorts to assess

model performance, with only one other study utilizing internal

cross-validation (19).Thus, the lackofanexternal validationcohort is

a potential limitationof our study, and therefore, future/other studies

would be needed to further validate our results. Because of the

absence of an independent validation cohort, this study can only be

classified as explorative (19).
Conclusions

In conclusion, our study demonstrated that PET/CT-based

radiomic features may improve survival prognostication when

combined with baseline clinical and MR-based radiomic features

among NPC patients.
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Early detection of Pancreatic Ductal Adenocarcinoma (PDAC) is complicated as

PDAC remains asymptomatic until cancer advances to late stages when

treatment is mostly ineffective. Stratifying the risk of developing PDAC can

improve early detection as subsequent screening of high-risk individuals

through specialized surveillance systems reduces the chance of misdiagnosis

at the initial stage of cancer. Risk stratification is however challenging as PDAC

lacks specific predictive biomarkers. Studies reported that the pancreas

undergoes local morphological changes in response to underlying biological

evolution associated with PDAC development. Accurate identification of these

changes can help stratify the risk of PDAC. In this retrospective study, an

extensive radiomic analysis of the precancerous pancreatic subregions was

performed using abdominal Computed Tomography (CT) scans. The analysis

was performed using 324 pancreatic subregions identified in 108 contrast-

enhanced abdominal CT scans with equal proportion from healthy control,

pre-diagnostic, and diagnostic groups. In a pairwise feature analysis, several

textural features were found potentially predictive of PDAC. Amachine learning

classifier was then trained to perform risk prediction of PDAC by automatically

classifying the CT scans into healthy control (low-risk) and pre-diagnostic

(high-risk) classes and specifying the subregion(s) likely to develop a tumor. The

proposed model was trained on CT scans frommultiple phases. Whereas using

42 CT scans from the venous phase, model validation was performed which

resulted in ~89.3% classification accuracy on average, with sensitivity and

specificity reaching 86% and 93%, respectively, for predicting the

development of PDAC (i.e., high-risk). To our knowledge, this is the first

model that unveiled microlevel precancerous changes across pancreatic
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subregions and quantified the risk of developing PDAC. The model

demonstrated improved prediction by 3.3% in comparison to the state-of-

the-art method that considers the global (whole pancreas) features for

PDAC prediction.
KEYWORDS

pancreatic ductal adenocarcinoma (PDAC), pancreatic cancer, PDAC prediction,
radiomics, pancreatic subregions, abdominal CT scans
Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is a lethal

cancer that accounts for more than 90% of pancreatic cancer

incidences (1–3). At present, PDAC is the 4th key cause of

cancer-related deaths (1, 4, 5), with a high expectancy to become

the 2nd most by 2030, in both males and females (4, 6, 7). The

American Cancer Society anticipates 62, 210 new incidences,

and 49, 830 deaths, related to PDAC for the year 2022 in the US

(8). The PDAC mostly remains subclinical in the initial stages

but progresses rapidly once established. Resultantly, in more

than 80% of the cases, cancer has already progressed to later

stages by the time of diagnosis (9–12). The negative margin (R0)

resection of the PDAC promises long-term survival which is

only possible when the cancer is identified at its earliest stages.

Treatment, whether surgical or non-surgical, initiated at later

stages of the PDAC is associated with poor survival benefits.

Although the current overall five-year survival rate of PDAC is

barely 11.5%, recent research suggests that detecting PDAC in

the earliest stage can increase the survival rate up to 50% (1,

13, 14).

Risk prediction of the PDAC assists in improving the

chances of diagnosis at an early stage as follow-up surveillance

of high-risk individuals on a regular basis would allow early

intervention reducing the chance of missing the initial stages of

the disease (15–17). However, since the conventional predictive

biomarkers of PDAC lack specificity, risk prediction is

challenging. Further, signs and symptoms of pancreatic cancer

are either absent or are nonspecific as these are associated with

several different diseases (2, 15–18). Factors including the

complex location and variability of the pancreas may underlie,

in part, the difficulty with an early diagnosis with imaging.

The pancreas undergoes several morphological changes, both

locally (e.g., subregional variations) and globally (alterations to the

whole pancreas), during the development of PDAC (1, 2).

Empirical observations associate PDAC with several

preconditioning disorders that usually lead to such

morphological and textural changes in the pancreas. For

example, complications including IPMN pancreatic tumors (19),

distal parenchymal atrophy (20), and pancreatolithiasis
02
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(intraductal calculi) (21) gradually increase the heterogeneity of

the pancreatic tissue and can potentially be used as a noninvasive

risk predictor. Other deformations may include shape and size

variations in the pancreas that are consistently associated with

ductal dilation (22) and inflammation (23) in the pancreas.

However, studies reported that these alterations can be highly

subtle and unique to each pancreatic subregion (the term

pancreatic subregion and subregion are used interchangeably).

For instance, tumor histology differs across pancreatic subregions

(i.e., head, body, and tail) (24, 25) which causes spatial

heterogeneity within the pancreas. Also, most of these micro-

level variations are difficult to comprehend by visual assessment of

abdominal imaging and require computer-based quantification.

AI is the primary choice to perform image-based extensive

analysis of such minute alterations and identify potential risk

predictors for disease (4, 26, 27). AI systems, as opposed

to manual approaches, execute complex tasks without

interruption and ensure highly accurate and precise outcomes.

In the domain of automated processing and analysis of medical

images, AI offers numerous techniques and tools to extract

accurate measurements from different structures, identify

nonlinear features, and evaluate tissue properties. For

prediction modeling, radiomic analysis (28, 29), and machine

and deep learning (26, 27, 30) are regarded as the most reliable

and common AI approaches.

In our recently published work (31), risk prediction of

PDAC was performed using AI analysis of the global features

of the pancreas. However, since the morphology of the pancreas

was assessed “as a whole”, it remained unknown whether the

identified precancerous changes (predictors) were merely the

manifestation of local changes that occurred in a specific

subregion (presumably where the tumor developed) or all

subregions simultaneously adopted such changes.

In this extended study, we thoroughly examined the

precursory changes taking place across pancreatic subregions

during cancer development and characterized the pancreas that

is likely to develop PDAC. A rigorous radiomic analysis of

morphological and textural features of three pancreatic

subregions (head, body, tail) in the pre-diagnostic abdominal

CT scans was performed to identify the features potentially
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predictive of cancer. Subsequently, a machine learning model

was developed that performs risk prediction by automatically

classifying the abdominal CT scans into the pre-diagnostic

(pancreas at high-risk for cancer) and healthy control

(pancreas at low risk for cancer) groups and specifying the

subregion of the pancreas that is expected to develop most part

of the tumor than its neighboring subregions. To our knowledge,

it is the first proposed model to perform the prediction of PDAC

based on the subregional analysis of the pancreas. The model

remained stable throughout the analysis and outperformed our

previous model. The results are promising and encouraging and

further validation with a much larger dataset is warranted.
Materials

CT imaging for PDAC Diagnosis

Of many imaging modalities, CT plays an important role in

the screening for early detection of PDAC. During the initial

evaluation of subjects with suspected PDAC, the abdominal

CT examination is the common choice to seek primary and

secondary signs of cancer. Two institutes, the Cedars-Sinai

Medical Center (CSMC) and the Kaiser Permanente Southern

California (KPSC) in Los Angeles, collaborated in the

proposed study and provided eligible CT scans for

analysis. All CT scans were anonymized before transferring to

the host institute CSMS. No informed consent was required as

the study design is retrospective.
Datasets for the analysis

The data obtained for the study consisted of contrast-

enhanced abdominal CT scans from Diagnostic, Pre

diagnostic, and Healthy controls groups. The diagnostic scan

belongs to the subject with biopsy confirmed PDAC and
Frontiers in Oncology 03
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observable tumor on the CT scan. These patients do not have

any history of pancreatic tumor resection. The pre-diagnostic

scan was acquired for the same subject, as in the diagnostic class,

6 months to 3 years before their PDAC was diagnosed. No

primary or secondary signs of PDAC were present at the time

the pre-diagnostic scan was acquired. The healthy control scan

was obtained for a different subject having healthy (‘normal’)

pancreas with no history of any pancreatic disorders. The gender

and age of each subject in the healthy control class and the year

their scan was acquired match those of exactly one unique

subject in the pre-diagnostic class to reduce instrumental and

morphologic differences, respectively. No subject in the healthy

control class developed PDAC within the next 36 months of

their scan. The data design of the study is shown in Figure 1.

The two institutes obtained 108 CT scans from 72 subjects

and were divided into Internal and External datasets. The former

consists of 66 scans (22 from each of the three groups) and the

latter consists of 42 scans (14 from each of the three groups)

from 44 and 28 subjects at CSMC and KPSC respectively. Also,

58 scans (19 diagnostic, 17 pre-diagnostic, 22 healthy control) in

the internal dataset and all 42 scans in the external dataset were

venous phase images, whereas the rest of 8 scans in the internal

dataset belong to multiple phases such as arterial, venous, and

connecting phases. The external dataset was used for external

validation of the proposed prediction model. Table 1 provides

the split of both internal and external dataset.
Data reference labeling
and preprocessing

For precise measurements of pancreatic features, accurate

delineation of the pancreas and the subregions is a prerequisite.

The anatomy of the pancreas is complex and requires

considerable attention and skills during outlining the pancreas

and its subregions. The general shape of the pancreas resembles

a hockey stick (J-shaped) structure. On the axial view of an
FIGURE 1

Proposed design of the data for the study. Each case in the dataset consists of three types of abdominal CT scans: Healthy control, Pre-
diagnostic, and Diagnostic. The Pre-diagnostic and Diagnostic scans were obtained from the same patient.
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abdominal CT, the pancreas lies across the posterior abdomen.

Anatomical subregions of the pancreas consist of the head, body,

and tail that appear in the left-to-right order on the axial view of

the CT. The head is the expanded medial part lying at the

duodenum curve and is attached to the body subregion that

connects to a tapered tail subregion. The anteroposterior

diameter and the length of the pancreas usually lie between 1

to 3 and 12 to 15 centimeters (32) with the head, body, and tail

covering 40%, 33%, and 26% portion of the whole

pancreas respectively.

Two experienced radiologists at CSMC manually outlined

the boundary of the pancreas and three subregions in all 108

scans using the commercial software ITK-Snap (33). To avoid

any prejudgment, findings or information attached to the scans

from previous assessments were removed before labeling. A

three-step labeling process was performed to ensure labeling

consensus. In the first labeling phase, the two readers

independently specified the boundary of the whole pancreas

and subregions in all scans to limit the inter-reader variability,

resulting in 85.4% labeling consistency. In the second phase,

both readers were allowed to evaluate each other’s labels and

update their original labels which resulted in 97% labeling

overlap. Lastly, the 3% labeling conflict in the updated label

sets was discussed and resolved with mutual agreement of

both graders.
Frontiers in Oncology 04
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In each diagnostic scan, the readers also specified the

subregion that contained the greatest amount of pancreatic

tumor. This helped grade the subregions in the corresponding

pre-diagnostic scans into high-risk and low-risk classes. For

instance, if most parts of the tumor were observed in the ‘head’

subregion of the pancreas in a diagnostic scan, then the ‘head’

subregion in the corresponding pre-diagnostic scan was graded

as a high-risk subregion, whereas the rest of the neighboring

subregions in the same pre-diagnostic scan were graded as low-

risk subregions, as given in Figure 2. Multiple subregions were

graded as high-risk in the same pre-diagnostic scan if the tumor

was observed in more than one subregion in the corresponding

diagnostic scan. Note that all subregions in the healthy control

scans were graded as low-risk subregions. Moreover, from 132

subregions in 44 CT scans (22 healthy control, 22 pre-

diagnostic) of the internal dataset, the grading identified a

total of 66 and 44 low-risk subregions in healthy control and

pre-diagnostic scans respectively, and 22 high-risk subregions in

pre-diagnostic scans. For 84 subregions from 28 CT scans (14

healthy control, 14 pre-diagnostic) of the external dataset, the

grading identified 42 and 28 low-risk subregions in healthy

control and pre-diagnostic scans respectively, and 14 high-risk

subregions in pre-diagnostic scans. Furthermore, the pancreas

‘as a whole’ was graded as low-risk and high-risk in healthy

control and pre-diagnostic groups respectively.
FIGURE 2

Pictorial description of specifying grades to subregions in pre-diagnostic scans. Tumor is observed in head subregion of diagnostic scans, and
so the corresponding head subregion in pre-diagnostic scan is marked ‘high risk’, whereas the rest of subregions are marked ‘low risk’.
TABLE 1 The table provides the split of the total 108 CT scans used in the study.

Healthy Control scans Pre-diagnostic scans Diagnostic scans Total scans Number of subjects

Internal dataset 22 scans (20 Venous,
2 Arterial)

22 scans (20 Venous, 2 Arterial) 22 scans (18 Venous,
4 Arterial)

66 44

External dataset 14 Venous scans 14 Venous scans 14 Venous scans 42 28
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Each of the 108 scans has 16-bit depth and a slice resolution

of 512 by 512 (along the x- and y-axis) and variable z-axis. No

preprocessing was performed on any of the scans except the

signal intensities in each scan were scaled between 0 and 1.
Methods

Risk prediction modeling was carried out by thoroughly

examining the morphology and the texture of the precancerous

subregions to seek predictive features, followed by utilizing these

features in a machine learning classifier to automatically

characterize the pancreas and subregions into high-risk and

low-risk classes for PDAC. The methodology is explained below.
Radiomic analysis of
pancreatic subregions

A large amount of radiomic features were obtained from

each of 194 subregions in 66 CT scans (22 healthy control, 22

pre-diagnostic, 22 diagnostic) of the internal dataset, i.e., three

sets of features – one for each of the three groups, whereas each

set consists of three subsets: one for each of three subregions.

Each feature in the set expressed a unique quantifiable property

of a subregion that provided information about the spatial

relationship of neighboring voxels in predefined proximity

(29). To calculate a numerical value for each feature, signal

intensities of all 3D pixels specified within a volumetric

subregion (all slices) of a scan were considered.

An important aspect of radiomic analysis is to consider the

variations in a radiomic feature determined by the three

parameters that include the Kernel size, the Angle, and the Bin

size (29). Different combinations of these parameters influence

the entire analyzation to a high extent. The kernel is the square

convolution matrix that specifies the area (proximity) A

surrounding a voxel x, for which the spatial relationships are

calculated with its neighbors lying within area A. The Angle

specifies the directions when calculating associations of x with its

neighbors within the area A. The Bin size was the number used

to discretize the continuous values of voxels in the CT image into

their counter parts equal bins to avoid considering two pixels

(having too-close signal intensities) any different. Each radiomic

feature represented one of the major characteristics of a

subregion that includes shape, size, texture, and signal

intensity using a unique mathematical expression. Common

types of radiomic features considered include first-order

statistics (e.g., kurtosis, coefficient of variation, entropy) and

higher-order statistics (e.g., contrast, homogeneity, coarseness).

With different combinations of three parameters, around 4000

radiomic features from each of 194 subregions were extracted by

considering the whole subregion as a single ‘region of interest’.
Frontiers in Oncology 05
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Using the 132 subregions in 44 CT scans (22 healthy control,

22 pre-diagnostic) in the internal dataset, a pairwise feature

comparison between the corresponding subregions (i.e., head-

to-head, body-to-body, tail-to-tail) was performed to identify the

features that were significantly different between high-risk and

low-risk subregions. For example, the extracted features from all

low-risk head subregions in the internal dataset were compared

with the same set of features extracted from all high-risk head

subregions in the internal dataset. About 3.5% of the extracted

features showed significance (found potentially predictive) at a

p-value of 0.05 in the statistical t-tests—supporting the core

hypothesis about the presence of precancerous changes

occurring locally within the subregions undergoing tumor

development. Note that the only purpose of considering the

features extracted from the 66 subregions in 22 CT diagnostic

scans in the internal dataset during the analysis was to help sub-

selecting the predictive features that are highly stable and do not

become insignificant when pre-diagnostic and diagnostic scans

are mixed.
Risk prediction of PDAC

The significant features (predictors) identified through the

subregional analysis were used to perform automated risk

prediction of PDAC by classifying the pancreas into either

low-risk or high-risk categories. The criteria set to perform

binary classification was to mark the pancreas as low-risk if

none of its subregions was classified as high-risk, whereas the

pancreas was marked as high-risk, if at least one of its subregions

was classified as high-risk. A misclassification is counted if a) the

classifier marks one or more subregions as high-risk in a healthy

control scan, or b) the classifier identifies a high-risk subregion

as low-risk in the pre-diagnostic scan or vice versa.

The Naïve Bayes (NB) model was trained for binary

classification in conjunction with the Recursive Feature

Elimination (RFE) (34, 35) method in which the RFE method

eliminated the weak features using different combinations of

identified predictors while maximizing the overall training

accuracy based on the given classification criteria. Of note,

the RFE was prespecified to select up to the seven best features

to avoid overfitting the NB classifier. The NB-RFE identified

seven features (Long-run low grey-level emphasis, Gaussian

left polar, Inverse gaussian left polar, Inverse cluster shade,

Inverse cluster prominence, Inverse cluster tendency, Short-

run low grey-level emphasis) as the best predictors for the

classifier to get the maximum classification accuracy during

training the model on all the 44 CT scans (132 subregions) of

the internal dataset. The external validation of the trained

model was then performed using 24 CT scans (84 subregions)

of the external dataset. An overview of the prediction process is

provided in Figure 3.
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Results

Model performance was evaluated in terms of classification

accuracy, sensitivity, and specificity. The classification accuracy

was calculated as the total number of correctly classified scans

(both healthy control and pre-diagnostic) to the total number of

scans input to the NB classifier. The sensitivity is the true

positive rate which refers to the total number of correctly

classified pre-diagnostic scans (high-risk pancreas) to the total

number of pre-diagnostic scans input to the NB classifier.

Whereas the specificity is the true negative rate which refers to

the total number of correctly classified healthy control scans

(low-risk pancreas) to the total number of healthy control scans

input to the NB classifier.

The mean classification accuracy achieved on the training

data (internal dataset) was 93% (41/44), i.e., the number of

correctly classified scans to the total number of scans observed.

The external validation of the classifier was performed using the

56 subregions in 28 scans (14 healthy control and 14 pre-

diagnostic) in the external dataset. The validation achieved the

mean classification accuracy of 89.3% (25/28), with the

sensitivity and specificity reaching 86% and 93% respectively,

as given in the confusion matrix Table 2.

Compared to the performance of our previous prediction

system (31) which produced 86% classification accuracy, the

proposed model demonstrated improved accuracy by 3.3%.

Also, it was empirically observed that the inter-variability

between the features extracted from corresponding ‘low-risk’

subregions identified in healthy control and pre-diagnostic scans

was significantly low at a p-value of 0.05. This supports our
Frontiers in Oncology 06
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primary hypothesis that the precancerous changes predominately

occur locally and are specific to the subregion within which the

tumor is likely developing. Also, the 95% confidence interval (CI)

achieved in the current study is 78-100, showing modest

improvement on the lower bound of the CI obtained in the

previous study (i.e., 73-99). Further improvement in the current

CI was possible if the model training was not enforced to use a

fixed limited number of predictors to avoid model overfitting.

Moreover, the radiomic analysis infers that it is essentially

the texture of the pancreas that changes locally and appears

abnormal on a CT scan during cancer development. These

textural changes are the possible indication of the stage the

underlying healthy cells are transitioning into tumor cells (e.g.,

the tumorous region turns more hypointense than the non-

tumorous peripheral region on a CT image). Furthermore, the

shape of the whole pancreas (in healthy and pre-diagnostic

scans) and subregions (belong to high-risk and low-risk

classes) was observed indifferent, partly because the shape of

the pancreas is highly irregular in general. However, the size of

the high-risk subregions was observed slightly higher than their

corresponding low-risk subregions, though not significantly

different to be considered a stable predictor.
Discussion

Clinical significance of PDAC prediction
using CT imaging

The Centers for Disease Control and Prevention reports that

7 million patients with abdominal pain visit to ER in the US each

year. These patients undergo CT examinations as per the

standard care protocol. The initial evaluation of these scans

assists clinicians to identify the underlying cause of abdominal

pain. Though the scans of majority of these patients do not

present any signs of cancer at this stage, some ultimately develop

PDAC in coming years. These pre-diagnostic scans, even with

no prominent signs of cancer, are clinically useful as these might

contain significant morphological signatures of early biological

adaptations associated with cancer. AI techniques can efficiently
TABLE 2 Confusion matrix for classification of 28 CT scans of the
external set consisting of 14 from each of Healthy control and Pre-
diagnostic group.

True Healthy True Pre-diagnostic

Predicted Healthy 13 2

Predicted Pre-diagnostic 1 12
Numbers in the orange blocks show true positives.
FIGURE 3

The major steps performed in the analysis and prediction process.
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assist in identifying these signs and forecasting cancer incidence

for the future. However, AI-based exploration of precancerous

signs is challenged by data scarcity as the PDAC has a low

prevalence. In this retrospective study, we examined the

quantitative difference of the CT-based features between pre-

diagnostic and healthy control scans. The study allowed

quantitative analysis of the subregional changes that occurred

in the precancerous or pre-symptomatic pancreas and helped

reduce limitations of low prevalence and low cancer yield in

prospective studies as half of the subjects have cancer.

The unique data structure designed for this study is the

foundation of the proposed prediction model as it allowed

examining precancerous changes retrospectively. Although the

overall prevalence of PDAC is significantly low, the percentage

of enrolled subjects who were at the preclinical stage was set to

50% to reduce the risk of class imbalance during model

development. Also, most of the literature considers that the

duration of 6-36 months between the pre-diagnostic and

diagnostic scan is a reasonable window to seek early signs.

Also, most of the scans used for mode training and testing are

portal venous phase. It is because tumors slowly uptake contrast

whereas the venous phase provides the optimal view of the tumor

edges and is thus considered the most valuable phase for PDAC

diagnosis. Also, viewing of the vasculature passing across or

alongside the pancreas is optimized in this phase. Changes

occurring to the vasculature during PDAC development can be

quantified and used as potential predictors. Nevertheless, other

phases also provide valuable information during PDAC screening

and treatment. For example, the arterial phase provides a unique

value when seeking lesions or during surgical treatment of PDAC

when the arteries are encased or distorted by the pancreatic tumor.

Thus, including multiphase scans in the model training helped

identify highly stable predictors to ensure the model is

sufficiently robust.

In accordance with the evidence provided, the proposed

research work assures the appropriate blend of imaging type,

feature analysis, and modeling techniques to address the

challenges of prediction and elevate the chances of cancer

diagnosis in the earliest stage. To our knowledge, it is the first

automated system developed that predicts the PDAC by

identifying early signs through analyzing the precancerous

irregularities occurring within pancreatic subregions using CT

scans. The proposed model not only demonstrated improved

prediction accuracy to existing models but also enabled the

system to identify subregions that are at higher risk of

developing tumors.
Significance of the subregional analysis

Several studies suggest that tumor development differs

across pancreatic subregions (Head:H , Body: B, Tail:T) in
Frontiers in Oncology 07
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terms of histology, presentation, and symptoms (24, 25, 36–

39). For instance, tumors in the head are mostly non-

squamous, whereas the body and tail tumors are usually

squamous. This results in spatial heterogeneity and various

discrepancies across the pancreatic sub-regions; such as tumor

presentation (e.g., head tumors are usually well-differentiated

and less aggressive than those in body/tail), related symptoms

(head tumors: unexplained weight loss, body tumors: pain in

the upper abdomen, tail tumors: pain in the lower abdomen),

sensitivity to drugs (head tumors are highly responsive to

Gemcitabine regimen and less responsive to Fluorouracil

regimen, whereas the body and tail tumors are vice-versa),

and the different rates of incidence (H: 71%, B: 13%, T: 16%),

metastasis (H: 42%,B: 68%, T: 84%), %), 2-year survival (H:

44%, B: 27%, T: 27%), and resection (H: 17%,B: 4%, T: 7%) (24,

25, 36–39).

This study examined the subregional changes in the

precancerous pancreas and enabled automated identification of

subregions undergoing tumor development. Knowledge of the

location of likely tumor will not only alert clinicians/radiologists

to pay attention to certain regions of the pancreas to avoid

misdetection of PDAC at an early stage but also enhance the

overall management of PDAC by helping determine more

appropriate and effective treatment, improving forecasting of

the treatment outcome, planning better resection, and ultimately

increasing the overall survival rate.
Improvement to previous model

In our previous study (31), we proposed the first model for

risk prediction of PDAC using AI analysis of the morphology of

the ‘whole pancreas’. The current study has three major new

contributions which were not included in the previous study

(31): a) investigation performed to identify whether all three

subregions concurrently adopt precancerous changes, or the

changes are predominant (or only occur) in the subregion

where the tumor is likely developing, b) analysis performed to

identify new CT-based predictors and improved the prediction

(in terms of model accuracy), and c) trained the model to specify

the subregion that is at highest risk of developing most part of

the tumor or where the tumor will likely originate.
Study limitations and future work

Due to the low prevalence of PDAC, the eligible pre-

diagnostic CT scans were found rare in the data archives of

the CSMC and KPSC. Limited training data may have

increased the chance of overfi t t ing during model

development. Another limitation is the insufficiency of pre-

diagnostic CT scans of non-venous CT phases. Also, since the
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incidence of PDAC in the general population is fairly low, the

model specificity of 93% still requires further enhancement to

avoid too many false-positive cases. The aim of the study was to

present the proof of the concept which encourages the

collection of larger datasets including the information on

non-imaging factors associated with risk of PDAC from the

repositories of different institutes for substantial training and

validation of the proposed prediction model. With sufficient

data, the biological interpretation of predictive image features

and their correlation with genetics would be achievable. A

model trained on large data will improve model specificity and

will efficiently assist in future prospective research on detecting

PDAC at the initial stages.
Conclusion

The current study presented the findings of the AI analysis of

precancerous changes that occurred across three subregions of

the pancreas using pre-diagnostic abdominal CT scans. The

study concluded that the pancreas adopts textural changes

during PDAC development, predominantly within the

subregion undergoing tumor development, potentially

regarded as a ‘high-risk’ subregion. A first model was built

that performed risk quantification of PDAC using the

identified textural changes as potential predictors and

characterized the pancreas into ‘high risk’ and ‘low risk’ for

PDAC classes. The model also specified the subregion that is

likely to develop the tumor, which can potentially assist in

improving early diagnosis, treatment planning, forecasting

treatment outcome, and overall disease management. The

proposed model demonstrates a 3.3% improved prediction

when compared with the existing prediction model that

considers the global changes occurring in the whole pancreas

during PDAC development. The results of this preliminary

study are promising and encouraging to further validate the

model on a large dataset.
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Defeng Liu1* and Yuan Fang2*

1Medical Imaging Center, The First Hospital of Qinhuangdao, Qinhuangdao, China, 2Medical
Imaging Center, Chongqing Yubei District People’s Hospital, Chongqing, China
Introduction: Preoperative evaluation of the mitotic index (MI) of

gastrointestinal stromal tumors (GISTs) represents the basis of individualized

treatment of patients. However, the accuracy of conventional preoperative

imaging methods is limited. The aim of this study was to develop a predictive

model based on multiparametric MRI for preoperative MI prediction.

Methods: A total of 112 patients who were pathologically diagnosed with GIST

were enrolled in this study. The dataset was subdivided into the development

(n = 81) and test (n = 31) sets based on the time of diagnosis. With the use of T2-

weighted imaging (T2WI) and apparent diffusion coefficient (ADC) map, a

convolutional neural network (CNN)-based classifier was developed for MI

prediction, which used a hybrid approach based on 2D tumor images and

radiomics features from 3D tumor shape. The trained model was tested on an

internal test set. Then, the hybrid model was comprehensively tested and

compared with the conventional ResNet, shape radiomics classifier, and age

plus diameter classifier.

Results: The hybrid model showed good MI prediction ability at the image

level; the area under the receiver operating characteristic curve (AUROC), area

under the precision–recall curve (AUPRC), and accuracy in the test set were

0.947 (95% confidence interval [CI]: 0.927–0.968), 0.964 (95% CI: 0.930–

0.978), and 90.8 (95% CI: 88.0–93.0), respectively. With the average

probabilities from multiple samples per patient, good performance was also

achieved at the patient level, with AUROC, AUPRC, and accuracy of 0.930 (95%

CI: 0.828–1.000), 0.941 (95% CI: 0.792–1.000), and 93.6% (95% CI: 79.3–98.2)

in the test set, respectively.
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Discussion: The deep learning-based hybridmodel demonstrated the potential to

be a good tool for the operative and non-invasive prediction ofMI in GIST patients.
KEYWORDS

deep learning, radiomics, magnetic resonance imaging, convolutional neural
network, gastrointestinal stromal tumor
Introduction

Gastrointestinal stromal tumors (GISTs) are the most

common mesenchymal tumors of the digestive tract wall in

that they are more common in the stomach and small intestine

(1). It is widely believed that GIST originates in Cajal cells, which

are involved in gastrointestinal motility (2). GIST occurs at a

median age of 60 years (10–100 years), with no sex difference in

the distribution (3). Before the advent of tyrosine kinase

inhibitors, the most common treatment for most GIST cases

was radical surgical resection without any residual tumor.

However, even after complete tumor resection, the patients

still have a high rate of recurrence and metastasis (4). Another

approach for the treatment of GIST was presented through the

invention and rational application of targeted drugs, such as

imatinib, which significantly improved the recurrence-free

survival and overall survival of GIST. The prognosis of GIST is

closely related to its risk grade (5). Joensuu and colleagues

proposed an improved National Institutes of Health (NIH)

grading system to grade the risk of a tumor based on its size,

location, mitotic index and whether it is ruptured (6). Different

risk grades correspond to different prognoses and treatment

methods. For very-low-risk patients, regular follow-up may be

used without immediate surgery. For low-risk patients, routine

resection similar to benign tumors can be performed without

targeted therapy and follow-up. Intermediate- or high-risk

patients should receive targeted therapy to shrink the tumor

before resection; after surgery, targeted therapy and long-term

follow-up should be continued for a period of time (7).

Therefore, accurate preoperative assessment of the tumor risk

grade has important guiding significance for the treatment plan.

The mitotic index (MI) is an important indicator of GIST risk

grading. However, it may be more difficult to perform a

preoperative assessment of MI than to obtain morphological

information, such as tumor location and size. Pathological

examination is still the gold standard to accurately quantify the

GIST mitotic index (8). However, as an invasive examination, it

may lead to tumor hemorrhage and intraperitoneal spread; hence,

a preoperative pathological biopsy is not a routine examination for

GIST (9). The application of endoscopic ultrasonography has

greatly improved the success rate of preoperative pathological

biopsy for mesenchymal tumors. However, a biopsy cannot be
02
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performed in some tumors at specific sites (10). For intermediate-

or high-risk tumors with active mitosis, preoperative application

of the GIST therapy can significantly reduce the tumor size, thus

effectively improving the resection rate of surgery and reducing

the risk of recurrence (11). In addition, small GIST is usually

treated by clinicians as a general benign tumor. However, once its

MI > 5 or even 10/HF, it may also be highly invasive and

dangerous; thus, it is obviously not suitable to apply the watch-

and-wait treatment strategy. Nevertheless, the accurate prediction

of tumor MI is of great significance to evaluate the risk of tumor

recurrence and guide the treatment strategy before and

after surgery.

Morphological information about tumors can be obtained

through endoscopic ultrasonography, computerized

tomography (CT), and magnetic resonance imaging (MR);

hence, they can be used as a basis to determine the location

and size of GIST and indicate the occurrence of rupture or

hemorrhage before surgery (12–14). Some prior recent CT-

based studies have correlated the morphological features of

GIST with the NIH risk classification, prediction of mutation

status, and prognosis (15, 16). In clinical practice, CT may be the

favored imaging method for GIST preoperative assessment, but

MR may provide more tumor information because of its multi-

sequence advantage. However, whether CT or MR, the

advancements in these conventional imaging methods are

limited by subjective human eye observation, which does not

provide enough information on the internal heterogeneity of

tumors. Moreover, it is difficult to characterize the MI of tumors,

which represents important pathological information.

Radiomics was first proposed by Lambin in 2012. It

emphasizes the high-throughput extraction of image

information (including shape, gray scale, and texture) from

medical images and adopts traditional statistical models such

as support vector machine, random forest, and XGBoost to

achieve tumor segmentation, feature extraction, and model

establishment (17). Using radiomics, researchers can transform

image information into a large number of features for a

quantitative study, which has been widely used in tumor

grading, staging, and prognosis research (18–20). The concept

of deep learning (DL) was proposed by Hinton et al. in 2006,

which is a new field in machine learning research. Its motivation

lies in the establishment of neural networks that simulate the
frontiersin.org
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analysis and learning process of the human brain, so as to

interpret image data by imitating the mechanism of the

human brain (21). Unlike radiomics, which relies on

predefined artificial features, deep learning algorithms can

extract more abstract high-dimensional features in a more

automatic way that is not susceptible to subjective influence

(22). Therefore, such algorithms have been widely used in the

automatic recognition, segmentation, and classification of lung

cancer, breast cancer, rectal cancer, and other tumors (23–25). In

this study, we trained a convolutional neural network (CNN)

classifier based on an integration of two-dimensional (2D)

multimodal MR images and three-dimensional (3D) shape-

based radiomics features to perform preoperative prediction of

mitotic index in GIST.
Materials and methods

This is a retrospective study, and the patients’ information

was anonymized. The ethics committee of our hospital approved

the study and waived the need for informed consent from

the patients.
Frontiers in Oncology 03
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Data

A total of 141 patients who were newly diagnosed with GIST

and underwent MR examination in our hospital from January

2013 to May 2022 were initially enrolled. The inclusion criteria

were as follows: 1) GIST was confirmed by postoperative

pathology after radical resection in our hospital; 2) mitotic

index was obtained through postoperative pathological

examination; 3) preoperative MR examination is available,

including T2-weighted imaging (T2WI) and diffusion-weighted

imaging (DWI) sequences. The exclusion criteria were as follows:

1) preoperative MR examination occurred more than 14 days

before surgery; 2) two radiologists with 5 years of experience in the

diagnosis of abdominal and pelvic MR evaluated the image quality

and excluded those whose image quality was too poor to delineate

the region of interest due to motion or other artifacts; 3) the

patients were treated with imatinib or other tyrosine kinase

inhibitors before surgery; 4) the patients were younger than 18

years. The patient inclusion process is shown in Figure 1. Then,

based on postoperative pathology results and modified NIH risk

classification criteria (6), the patients were classified into the group

with the low mitotic index (MI ≤ 5/50 HPFs, 55 patients) and the
FIGURE 1

The flowchart of dataset setup. Low-MI, low mitotic index; High-MI, high mitotic index.
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group with high mitotic index (MI > 5/50 HPFs, 68 patients). The

2008 modified NIH risk classification criteria are discussed in

detail in Supplementary Table 1. The data were divided into the

development set, consisting of 81 patients who were diagnosed

between January 2013 and September 2018, and the test set,

consisting of 31 patients who were diagnosed between October

2019 and May 2022.
Image acquisition and processing

All images were scanned using a 1.5T Siemens Avanto MR

system (Siemens, Munich, Germany) equipped with an eight-

channel phased-front coil dedicated to the abdomen. In order to

reduce gastrointestinal motion artifacts, the patients were

instructed to abstain from water and food for 4 h before the

scan. The imaging sequences included coronal fast imaging,

employing the steady-state acquisition (FIESTA) sequence, axial

fat-suppression T2WI, axial DWI, and axial in-phase and out-

of-phase T1-weighted imaging (T1WI). DWI was collected by

echo-planar imaging (EPI), with b values of 0 and 800. The

respiratory trigger technique was used for T2WI and DWI, and

the end-expiratory breath-holding method was used for FIESTA

and T1WI scans to reduce respiratory motion artifacts. Table 1

lists the detailed image acquisition parameters.
Region of interest segmentation
and three-dimensional shape
feature extraction

The images of all patients were downloaded in the digital

imaging and communications in medicine (DICOM) format from
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the picture archiving and communication system (PACS) of our

hospital. Apparent diffusion coefficient (ADC) maps were registered

to T2WI images using the Statistical Parametric Mapping software

v.12 (SPM12, University College London). A radiologist with more

than 5 years of experience in abdominal and pelvic MR diagnoses

segmented the entire tumor in three dimensions on T2WI images,

such that the segmentation was strictly along the edges of the tumor

and included areas of necrosis and cystic degeneration. In addition,

the maximum diameter of the tumor was measured, and the tumor

location was recorded during segmentation. The abovementioned

information was confirmed and corrected by another radiologist

with 10 years of experience in abdominal and pelvic MR imaging. In

case of any disagreement, consultation continued until an agreement

was reached.

Shape radiomics features were extracted using the PyRadiomics

package (https://www.radiomics.io/pyradiomics.html), which

contained 14 features, as follows: mesh volume, voxel volume,

surface area, surface area to volume ratio, sphericity, maximum

3D diameter, maximum 2D diameter (slice), maximum 2D

diameter (column), maximum 2D diameter (row) major axis

length, minor axis length, least axis length, elongation, and

flatness. The definitions and calculation methods of each of these

features can be found on the package documentation page https://

pyradiomics.readthedocs.io/en/latest/features.html#module-

radiomics.shape.
Convolutional neural network classifier
for mitotic index status prediction

The CNN structure is shown in Figure 2. The CNN classifier

used in this study is derived from the famous 50-layer ResNet

structure (hereinafter referred to as conventional ResNet). As

shown in Supplementary Figure 1, the network structure
TABLE 1 MRI protocols.

Image acquisition parameter Parameter values

FIESTA T2WI DWI T1WI
Acquisition plane Coronal Axial Axial Axial

Fat saturation No Yes Yes No

TR/TE (ms) 3.63/1.82 2,000/96 4,600/63 75/2.38,4.79

Angle (°) 60 70 150 70

Slice thickness (mm) 5 6 6 6

FOV (mm2) 350 × 350 379 × 284 379 × 308 380 × 320

Matrix 512 × 460 384 × 202 192 × 128 320 × 189

Voxel size (mm3) 1.0 × 1.0 × 5.0 1.0 × 1.0 × 6.0 2.0 × 2.0 × 6.0 1.2 × 1.2 × 6.0

Interslice gap 10% 10% 10% 10%

Delay (s)

Scan time (s) 12 165 97 69

b-Value (s/mm2) 0, 800
f

FIESTA, fast imaging employing steady-state acquisition; T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; T1WI, T1-weighted imaging; TR, repetition time; TE, echo time.
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contained the initial 7 × 7 convolution and layers 1 to 4

comprising three, four, six, and three residual blocks, such that

each residual block had one 3 × 3 convolution and two 1 × 1

convolutions. For the hybrid model, we included an additional

fully connected layer to the conventional ResNet, which used

additional image input and numerical input. The image input to

the hybrid model comprised axial T2WI and ADC and tumor

masks with the size of 128 × 128. To train a model with a high

performance given the insufficient sample size, we selected all

the images containing GIST for each patient, instead of a certain

layer of images. Therefore, based on tumor segmentation, there

may be multiple axial sections per patient, which would be used

for the development and testing of classification models. As for

the numerical input to the hybrid model, it included 14

morphologic features based on general imaging as well as the

patient’s age and tumor diameter. Before adding the above

features to the neural network, we standardized them

according to the following formula:

xn
! =

xn
! − xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21n + x22n +… + x2mn

p

where xn
! is the nth feature and m is the number of samples.

The training process of the CNN classifier is discussed in

detail below. First, the DICOM image was converted to PNG
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format, which was used for the training and validation of the

CNN model. Since our input data size is 384 × 202, which is

bigger than the original residual neural network (224 × 224), the

image and mask were resampled. Based on tumor segmentation,

all layers of each patient’s tumor were selected as independent

samples; this approach might have a better effect on data

enhancement than image flipping or rotation. In this way, our

convolutional residual neural network and our CNN classifier

obtained 891 development samples and 531 test samples. To

train our model, the transfer learning method was used, which is

widely used in computer vision, for efficient training and

accurate classification performance. A weight file obtained by

training an ResNet50 network was used on the large ImageNet

dataset to extract the features of target datasets, and the model

parameters were fine-tuned via the target datasets (891

development samples and 531 test samples) to obtain an

optimal conventional ResNet model. Then, the weight value of

the optimal pretrained conventional ResNet from the initial 7 ×

7 convolutional layers to the third layer, and the mixed model

was imported and set as untrainable. During the training of the

hybrid model, only the weights from the fully connected layers

that received shape, age, and maximum diameter as numerical

inputs from layer 4 and below were trained to maximize the

synergy between the image features from the pretrained weights
A B

FIGURE 2

Hybrid model for mitotic index prediction. (A) shows the process of 3-dimensional and 2-dimensional image segmentation. We convert a three-
dimensional mask to several two-dimensional masks. (B) shows the structure of hybrid mitotic index prediction model. In this model, layers 1–4
consisted of three, four, six, and three residual blocks, with each block containing 3 × 3 convolution once and 1 × 1 convolution twice.
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and numeric inputs. The input images were dynamically

enhanced by translation, scaling, rotation, shearing, Gaussian

noise, and blur. The Adam optimizer was used to optimize the

network (beta1 = 0.9, beta2 = 0.999, initial learning rate = 1e

−04), batch size was set to 30, and the maximum training epoch

was set to 100, and training was stopped when the lost value of

the validation set dropped to a stable level. The resulting model

had the lowest validation set loss value. Our CNN model was

implemented in PyTorch 1.1.0 (https://pytorch.org) and trained

on an NVIDIA Tesla 3080 12 G with a memory of 64 G.
Cross-validation

To generalize the reliability of the networks, threefold cross-

validation was performed on the 111 subjects by randomly

shuffling the dataset and distributing it into three groups by

stratified randomization (27 subjects for each group: 17 low MI

and 20 high MI in Group 1, 17 low MI and 20 high MI in Group

2, and 17 low MI and 21 high MI in Group 3). During each fold

of the cross-validation procedure, two of the three groups of

subjects were combined as the internal training set, and the

remaining group was used as the internal validation set. The

internal validation set helped improve network performance

during training. Note that each fold of the cross-validation

procedure represents a new training phase on a unique

combination of the three groups. Network performance was

reported on the internal validation set for each fold.
Statistical analysis

In this study, the predictive performance of the model was

studied at the image level and patient level separately such that

the results of the image level prediction can finally be used for

patient-level prediction. For a certain patient, the average

prediction probability of all images was calculated as the

prediction probability of the patient. The probability

threshold of the calculation accuracy was set as 0.5, so a

prediction probability ≥0.5 was classified as high MI, while a

prediction probability <0.5 was classified as low MI. The model

discrimination ability was evaluated by drawing the area under

the receiver operating characteristic curve (AUROC) and the

area under the precision–recall curve (AUPRC). In addition to

the hybrid and conventional ResNet models, a traditional

shape radiomics feature-based classifier was established in

this study; the random forest (RF) algorithm was used in the

development set, and the 10-fold cross-validation was

performed to evaluate the model, with each fold repeated

three times using X&Y software (X&Y Solutions, Inc.,

Boston, MA, USA) based on the R language. The RF

algorithm selected and ranked the parameters according to

their importance. The constructed “forest” represents the
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integration of decision trees (DTs) and was trained with the

“bagging” method. Bagging methods involve randomly

selecting samples of the derivation dataset with replacement,

building classifiers, and finally combining the learned models

to increase overall performance. In this study, the number of

trees in the RF model was 400, with the variables leading to the

minimum “out-bagging” error in the model selected as the

optimal model. The feature importance was derived from the

mean decrease in impurity (MDI). When the RF model has the

best effect, the hyperparameters are set as follows: max_depth =

400, max_features = 4, min_sample_leaf = 1, min_sample_split

= 2, and n_estimators = 400. In order to evaluate whether the

hybrid model achieved better diagnostic efficiency, the DeLong

test was used to compare AUROC values (26). A p-value <0.05

was considered statistically significant. Statistical analysis was

performed using the R software (V3.6.1).
Results

Characteristics of the study population

The clinical characteristics of 112 patients are summarized

in Table 2. The number of patients with low and high MI was 40

and 41 in the development set and 11 and 20 in the test set,

respectively. There was no significant difference in the

proportion of patients with high MI between the development

and test sets (p = 0.186). In the development set, there was a

significant difference in age between patients with high and low

MI, such that patients with high MI were older (p = 0.032). In

the test set, no significant age difference was observed (p =

0.438). In both the development set and test set, there was no

significant difference between the high MI group and low MI

group in terms of sex (p = 0.224 and p = 0.709, respectively), but

the tumor diameter was significantly larger in the high MI group

(p < 0.001 and p = 0.003, respectively).
Model evaluation

After the image was provided as an input, the conventional

ResNet was pretrained for 30 epochs. Among the 14 shape

features, the following four features were screened out by the RF

algorithm: Elongation, Maximum 2D Diameter row, Sphericity,

and Surface Volume Ratio. The variable importance of the shape

features and their different distributions according to MI are

shown in Supplementary Figures 2 and 3, respectively. The

abovementioned four features along with age and maximum

tumor diameter were used as the numerical input to the hybrid

model. Then, part of the weights was imported from the

pretrained conventional ResNet and fine-tuned by 30 epochs

to produce the hybrid model. Table 3 and Figure 3 show the

performance of the hybrid model in the development set and test
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set. At the image level, the AUROC, AUPRC, and accuracy were

0.960, 0.968, and 91.4%, respectively, in the development set and

0.947, 0.964, and 90.8, respectively, in the test set. In addition,

with the average probabilities from multiple samples per patient,

the hybrid model also showed good discrimination ability at the

patient level. It achieved AUROC, AUPRC, and accuracy of

0.913, 0.887, and 91.4%, respectively, in the development set and

0.930, 0.941, and 93.6%, respectively, in the test set.

The performance evaluation results of conventional ResNet,

shape radiomics classifier, and prediction using age plus diameter

are shown in Table 4. In the development set, the conventional

ResNet (per slice), conventional ResNet (per patient), shape

radiomics classifier, and age plus diameter achieved AUROCs of

0.951, 0.889, 0.677, and 0.698, respectively; AUPRCs of 0.960, 0.871,

0.665, and 0.761, respectively; and accuracies of 0.899, 0.889, 0.680,

and 0.716, respectively. In the test set, they achieved AUROCs of

0.927, 0.880, 0.754, and 0.659, respectively; AUPRCs of 0.929, 0.918,
Frontiers in Oncology 07
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0.851, and 0.824, respectively; and accuracies of 0.887, 0.871, and

0.772, respectively.
Model explanation

Comparison of the hybrid model with
other models

The comparison results of AUROCs and accuracies between

the hybrid model and age plus diameter, shape radiomics

classifier, and conventional ResNet are shown in Supplementary

Table 2 and Supplementary Figure 4. In both the development set

and the test set, the hybrid model outperformed the prediction of

age plus diameter, and there were significant differences in

AUROC and accuracy between the two models (all p < 0.05 for

accuracy and AUROC). In addition, the hybrid model was also

superior to the shape radiomics classifier (p < 0.05 for both
TABLE 2 Patient characteristics.

Development set (n = 81) Test set (n = 31)

Low MI (n = 40) High MI (n = 41) p Low MI (n = 11) High MI (n = 20) p

Age (years) 0.032 0.438

Mean ± SD 52.9 ± 12.8 60.7 ± 18.8 53.7 ± 16.0 59.5 ± 21.0

Sex 0.224 >0.999

Male 19 (47.5%) 25 (61.0%) 5 (45.5%) 10 (50.0%)

Female 21 (52.5%) 16 (39.0%) 6 (54.5%) 10 (50.0%)

Tumor site 0.320 >0.999

Gastric 21 (52.5%) 17 (41.5%) 4 (36.4%) 8 (40.0%)

Non-gastric 19 (47.5%) 24 (58.5%) 7 (63.6%) 12 (60.0%)

Diameter (cm) <0.001 0.003

Mean ± SD 6.1 ± 1.9 10.8 ± 3.6 4.3 ± 2.5 9.6 ± 6.3
frontiers
Data are presented as mean ± SD or number (percentage). Independent samples t-test was applied in continuous variables. Chi-squared test or Fisher’s exact test was applied to categorical
variables. Bold type indicates statistically significant difference.
Low MI, low mitotic index; High MR, high mitotic index.
TABLE 3 Diagnostic performance of the hybrid model for the prediction of mitotic index.

Development set Test set

Per slice Per patienta Per slice Per patienta

AUROC (95% CI) 0.960 (0.947–0.973) 0.913 (0.851–0.975) 0.947 (0.927–0.968) 0.930 (0.828–1.000)

AUPRC (95% CI) 0.968 (0.956–0.977) 0.887 (0.787–0.954) 0.964 (0.930–0.978) 0.941 (0.792–1.000)

Acc (95% CI) 91.4 (89.3–93.0) 91.4 (83.2–95.8) 90.8 (88.0–93.0) 93.6 (79.3–98.2)

Sen (95% CI) 91.6 (88.5–93.9) 92.7 (79.0–98.1) 92.1 (88.5–94.6) 95.0 (73.1–99.7)

Spe (95% CI) 91.1 (88.0–93.5) 90.0 (75.4–96.7) 88.5 (82.9–92.5) 90.9 (57.1–99.5)

PPV (95% CI) 91.4 (88.3–93.7) 90.5 (76.5–96.9) 93.4 (90.1–95.7) 95.0 (73.1–99.7)

NPV (95% CI) 91.3 (88.2–93.7) 92.3 (78.0–98.0) 86.2 (80.4–90.6) 90.9 (57.1–99.5)
AUROC, area under the receiver operating characteristics curve; AUPRC, area under the precision–recall curve; Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive predictive
value; NPV, negative predictive value.
aSince each patient yielded multiple tumor slices, the diagnostic accuracy per patient was calculated from the mean value of the all-predicted probabilities per patient.
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accuracy and AUROC). However, compared with conventional

ResNet, the hybrid model has slightly higher AUROC and

accuracy, but the difference between them is not significant.

Ablation analysis
The results of the ablation analysis are discussed in detail in

Supplementary Table 3. Compared with the conventional ResNet,

as we reduced the number of input images per patient and reduced

the sequences or masked tumor area, we observed a decrease in the

diagnostic performance, with accuracies, AUROCs, and AUPRCs at

70.4%–84%, 0.840–0.704, and 0.676–0.814, respectively, in the

development set and 61.3%–83.9%, 0.639–0.834, and 0.746–0.873,

respectively, in the test set. When we masked the tumor area from

image inputs, the lowest diagnostic performance was achieved, with

accuracy, AUROC, and AUPRC of 61.7%, 0.618, and 0.602,
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respectively, in the development set and 54.8%, 0.548, and 0.676,

respectively, in the test set.
Cross-validation

To ensure that the performance of the hybrid model was not

due to the random selection of the internal test set, we performed

a patient-level threefold cross-validation on the entire cohort (n =

112). In the internal validation set, the mean AUROC was 0.910

(range, 0.896–0.927) and 0.903 (range, 0.849–0.980) in the hybrid

model (per slice) and hybrid model (per patient), respectively

(Supplementary Table 4), similar to those in the test set. The

cross-validation results show that the hybrid model has

good robustness.
TABLE 4 Diagnostic performance of the conventional ResNet, shape radiomics classifier, and age plus diameter in the prediction of mitotic index.

Dataset AUROC (95% CI) AUPRC (95% CI) Acc (95% CI)

Conventional ResNet (per slice) Development set 0.951 (0.937–0.966) 0.960 (0.947–0.970) 89.9 (87.8–91.7)

Test set 0.927 (0.901–0.953) 0.929 (0.880–0.959) 88.7 (85.7–91.1)

Conventional ResNet
(per patient)a

Development set 0.889 (0.820–0.958) 0.871 (0.769–0.946) 88.9 (80.2–94.0)

Test set 0.880 (0.760–1.000) 0.918 (0.746–0.979) 87.1 (71.2–94.9)

Shape radiomics classifier Development set 0.677 (0.641–0.712) 0.665 (0.629–0.709) 68.0 (64.9–71.0)

Test set 0.754 (0.712–0.797) 0.851 (0.823–0.876) 77.2 (73.5–80.6)

Age plus diameter Development set 0.698 (0.574–0.803) 0.761 (0.657–0.852) 71.6 (61.0–80.3)

Test set 0.659 (0.465–0.853) 0.824 (0.690–0.915) 61.3 (43.8–76.3)
AUROC, area under the receiver operating characteristics curve; AUPRC, area under the precision–recall curve.
aSince each patient yielded multiple tumor slices, the diagnostic accuracy per patient was calculated from the mean value of the all-predicted probabilities per patient.
A B

FIGURE 3

Performance of the hybrid model in the prediction of mitotic index. (A) Receiver operating characteristic (ROC) curves of the hybrid model in
the development and test set. (B) Precision-recall (PR) curves of the hybrid model in the development and test set.
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Discussion

In this study, based on a ResNet50 CNN, we developed a

hybrid model to predict the MI status of GIST patients. The

CNN integrating 2D tumor signal intensity, 3D tumor shape,

patient age, and tumor size showed good predictive power in

both the development and test sets.

GIST mitotic index is an important indicator of metastasis

and prognosis, which is independent of the tumor size and

location; this led to the integration of this indicator in the NIH

system. Although radical resection is still the most commonly

used standard treatment for GIST, due to the high risk of

postoperative recurrence for patients with high MI, surgical

resection following neoadjuvant therapy may improve the

prognosis (27). Preoperative prediction of MI potentially helps

in setting the treatment plan, which leads to the investigation of

radiological findings to predict the MI status. A previous CT

study showed that GIST with high MI and high-risk grade is

more prone to internal necrosis, neovascularization, and

peripheral invasion, while low MI tumors have more regular

morphology and clearer boundaries with the surrounding tissues

(28). In addition, an MR study with higher soft tissue resolution

showed that tumor enhancement was significantly stronger in

patients with high MI compared with patients with low MI,

which may be related to the formation of new tumor vessels

inside (29). Some studies tried to evaluate the grading of GIST

using a DWI-based ADC map and PET-CT parameter map, and

they found the ADC value to be negatively correlated with the

grading of the GIST tumor, while the metabolic rate was

negatively correlated with it (30, 31). Changes in ADC caused

by targeted therapy may be related to a variety of cell death

mechanisms, including mitotic catastrophe, which indicates that

ADC can provide more information to evaluate mitosis from a

therapeutic perspective (32). Therefore, the ADC map was taken

as one of the sequences of the multimodal study in this study.

Radiomics can be used to obtain high-level features of tumor

images, which can reflect the heterogeneity of tumors and

provide a basis to evaluate biological behavior (33). A recent

enhanced CT-based study found a close relationship between the

mitotic number and 14 radiomics features of GIST, which

suggests that it may be another possible method to predict the

number of GIST (34). However, this study was based only on 2D

images of the maximum cross-section of the tumor, which did

not fully obtain the overall information about the tumor.

Moreover, the study only included enhanced CT images, with

a single type of image. As a result, the accuracy of its prediction

model in the test set was only 85.4%. In this study, the accuracy

of the hybrid model reached 93.6% after including the

information at all layers of the tumor.

Deep learning refers to a technology that combines low-level

features to form more abstract high-level features or categories

and then learns effective features from a large number of input

elements and uses these features to perform classification,
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regression, and information retrieval. There are many kinds of

DL models, among which CNN is most widely used in the field

of medical imaging. Unlike traditional radiomics based on

manual feature extraction, high-throughput image features can

be directly extracted from deep neural networks (DNNs)

without additional feature extraction operations; thus, no

additional error occurs in the analysis due to feature

calculation, and the effectiveness of the feature is only related

to the segmentation quality (35, 36). At present, CNN has been

successfully applied in many aspects, such as genotype

prediction, preoperative staging, lymph node metastasis

prediction, and prognosis evaluation of malignant tumors (37–

39). The application of the DL algorithm to extract image

information can overcome the influence of observer subjectivity.

Researchers have begun to explore the application of DL in

the diagnosis and evaluation of GIST. Previously, a DL model for

predicting the mitotic index of GIST was preliminarily

established by providing venous images as input into CNN.

The results showed that the image-based DL model could

evaluate the MI of GIST before surgery (40). However, the

generalization ability of the model proposed in their study was

not high, and the area under the curve (AUC) in the internal test

set was only 0.771–0.800. In our study, the AUC of the

conventional ResNet model reached 0.880–0.927 in the test

set, while the hybrid model achieved an even better predictive

ability, with an AUC of 0.930–0.947. The reason may be that MR

has a higher soft tissue resolution as compared with CT, so

images may contain more information, and the extracted DL

features may have better discrimination ability. The input

images in this study were multimodal MR images (including

T2WI and DWI images). Previous studies have confirmed that

multimodal images can improve the final effect of the DL model.

In a previous study, researchers also fed endoscopic ultrasound

images into neural networks for auxiliary diagnosis of GIST and

gastrointestinal leiomyoma. Their study showed that the two

tumor types could not be distinguished based on naked-eye

observation, and the accuracy was only 63%, while the accuracy

of the CNN system reached 86.98% (41). Another study

confirmed that an EUS–CNN system can be helpful not only

for less-experienced endoscopists but also for experienced

ones (42).

ResNet50 CNN was selected as the basic model in this study.

ResNet50 is a network framework of residual learning that solves

the degradation problem of decreasing accuracy caused by

increasing the network depth. Compared with previous

models, the residual network is easier to optimize and can

derive accuracy from a significantly increased depth (43).

Many previous studies have used this network to classify

tumors and achieved good results (44–46). The transfer

learning method was adopted, and a fully connected layer was

added to the hybrid model. The results of multi-slice CT images

can better reflect the overall biological behavior and mitotic rate

of the tumor than that of single-slice CT images (47).
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In addition to the multi-modal image input, the construction

process of the proposed hybrid model proposed was different

from that of the image-based CNN model reported in previous

studies (40). While the hybrid model combined shape features

and clinical indicators, in order to ensure the robustness of the

model, only shape features in traditional radiomics were selected

to establish the model. The main factor limiting the repeatability

of radiomics features is that the extraction results of first-order

and texture features depend on the range and number of bins of

signal intensity, and there is currently no accepted standard to

set the signal strength-related parameters (48, 49). Unlike the

intensity feature, the morphological feature is independent of the

abovementioned settings and can thus remain stable across

studies. This improves the stability of the research model.

The hybrid model fuses the 3D tumor morphology and

mitotic-related clinical indicators (age and tumor size) with the

CNN model, thus producing an enhanced model performance

compared with image-based CNN alone. Previous studies

showed that age and tumor size are independent risk factors

for prognosis in GIST patients (50). In this study, there were

significant differences in the age and maximum diameter

between the high MI group and low MI group. It was

previously shown that older patients with meningiomas are

more likely to have more active mitosis and larger tumors,

which indicates that they have faster tumor division and may

have a higher MI (51). However, the relationship between MI

and the factors of age and tumor size needs to be further

confirmed in GIST. Despite the differences between groups,

the prediction efficiency of these two indicators alone for MI is

very low, which also indicates that it is difficult to use only

clinical indicators for the MI status of tumors in clinical practice,

and we need to combine more indicators reflecting the internal

heterogeneity of the tumor.

This study used radiomics and deep learning analysis based on

MR plain scan images to predict mitosis in GIST. However, due to

the limited time resolution, MR is highly susceptible to respiratory

movement and intestinal peristalsis during abdominal imaging,

which limits its application in GIST assessment. Compared with

MR, CT is more widely used in the preoperative evaluation of GIST

in clinical at present, which has the advantages of low cost, short

examination time, and low susceptibility to motion artifacts (52).

However, plain CT has the inherent defect of insufficient soft tissue

resolution, so contrast-enhanced CT is often adopted for

preoperative evaluation of GIST, which may increase the renal

burden and allergy risk of patients. In addition, CT imaging is

single-parameter imaging based on tissue density, which provides

limited information. However, MRI has the advantage of multi-

sequence and arbitrary angle imaging, which is more conducive to

displaying the relationship between tumors and surrounding organs

from different angles. Given the above advantages of MR, GIST can

be accurately assessed clinically using only MR plain scan sequences

(53). In addition to higher tissue contrast, the application of

functional imaging sequences such as DWI can provide
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microscopic information about the tumor from the tissue level

and even the cell level (30). Radiomics or deep learning features

based on such specially weighted images may better reflect the

heterogeneity of the tumor.

This study has some limitations that merit discussion. First,

the sample size of this study is small, so future studies should

continue the data collection and use a larger sample size. Second,

this study is a single-center study. Although internal verification

has been performed, the repeatability and generalization ability

of the model should be further verified by external datasets.

Finally, because GIST is irregular in shape and may occur in any

part of the digestive tract and its adjacent tissues and organs are

complex, it is difficult to achieve automatic segmentation of the

tumors. In this study, manual segmentation was adopted, which

is more difficult but more accurate.

In conclusion, we developed a deep learning-based model

that used radiomics and clinical features to reliably predict the

MI status in GIST based on conventional, unenhanced MR

images. Our model is expected to serve as a practical tool for

the non-invasive characterization of GIST to support

personalized treatment plans.
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DCE-MRI and DWI can
differentiate benign from
malignant prostate tumors
when serum PSA is ≥10 ng/ml

Hongmei Sun1*, Fengli Du2, Yan Liu3, Qian Li1, Xinai Liu1

and Tongming Wang1

1Department of Magenetic Resonance Imaging (MRI), Henan Province Hospital of Traditional Chinese
Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China,
2Henan University of Chinese Medicine, Zhengzhou, China, 3School of Medical Engineering, Xinxiang
Medical University, Xinxiang, China
Background: This study investigated the diagnostic utility of dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted

imaging (DWI) parameters for distinguishing between benign and malignant

prostate tumors when serum prostate-specific antigen (PSA) level is ≥10 ng/ml.

Methods: Patients with prostate cancer (PCa) and benign prostatic hyperplasia

(BPH) with serum PSA ≥10 ng/ml before treatment were recruited. Transrectal

ultrasound-guided biopsy or surgery was performed for tumor classification

and patients were stratified accordingly into PCa and BPH groups. Patients

underwent DCE-MRI and DWI scanning and the transfer constant (Ktrans), rate

constant (Kep), fractional volume of the extravascular extracellular space,

plasma volume (Vp), and Prostate Imaging Reporting and Data System

Version 2 (PI-RADS v2) score were determined. The apparent diffusion

coefficient (ADC) was calculated from DWI. The diagnostic performance of

these parameters was assessed by receiver operating characteristic (ROC)

curve analysis, and those showing a significant difference between the PCa

and BPH groups were combined into a multivariate logistic regression model

for PCa diagnosis. Spearman’s correlation was used to analyze the relationship

between Gleason score and imaging parameters.

Results: The study enrolled 65 patients including 32 with PCa and 33 with BPH.

Ktrans (P=0.006), Kep (P=0.001), and Vp (P=0.009) from DCE-MRI and ADC

(P<0.001) from DWI could distinguish between the 2 groups when PSA was ≥10

ng/ml. PI-RADS score (area under the ROC curve [AUC]=0.705), Ktrans

(AUC=0.700), Kep (AUC=0.737), Vp (AUC=0.688), and ADC (AUC=0.999)

showed high diagnostic performance for discriminating PCa from BPH. A

combined model based on PI-RADS score, Ktrans, Kep, Vp, and ADC had a
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higher AUC (1.000), with a sensitivity of 0.998 and specificity of 0.999. Imaging

markers showed no significant correlation with Gleason score in PCa.

Conclusion: DCE-MRI and DWI parameters can distinguish between benign

and malignant prostate tumors in patients with serum PSA ≥10 ng/ml.
KEYWORDS

prostate cancer, prostate-specific antigen, PI-RADS, dynamic contrast-enhanced
magnetic resonance imaging, diffusion-weighted imaging
Introduction

Prostate cancer (PCa) has a high morbidity and mortality

(1). Prostate tumors are small, slow-growing lesions that are

potentially curable at an early stage. Prostate tumor cells can

undergo malignant transformation and overproliferate within a

short period of time, which is associated with a poor outcome

(2). Current diagnostic methods for PCa include measurement

of prostate-specific antigen (PSA), fine needle aspiration biopsy,

and postoperative pathologic examination. PSA is a highly

expressed marker in the prostate; however, abnormally high

PSA concentrations are not necessarily indicative of PCa, as

serum PSA is also elevated in benign prostatic hyperplasia

(BPH) (3). Thus, measurement of serum PSA lacks specificity

and sensitivity for diagnosing PCa. The gold standard is biopsy

but pathologic information can only be obtained after surgery or

through invasive method by needle biopsy, which is

unacceptable for high-risk patients. Transrectal ultrasound

(TRUS) scanning is efficient for screening but is associated

with complications.

Solid tumors exist in a complex microenvironment that

contributes to tumor heterogeneity (4). Increased angiogenesis

is correlated with tumor cell proliferation and metastasis.
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(DCE-MRI) is widely used to monitor changes in vascular

permeability (5–7). Five quantitative parameters that can be

extracted from DCE-MRI are the transfer constant (Ktrans), rate

constant (Kep), fractional volume of the extravascular

extracellular space (Ve), and plasma volume (Vp) (8–10). Ktrans

represents the diffusion rate of the gadolinium (Gd) contrast

agent; Ve is the volume of Gd contrast relative to the total

extravascular extracellular space volume; Kep is Ktrans/Ve; and Vp

is calculated from the volume of Gd contrast agent in plasma.

These parameters can be used to measure vessel density and the

permeability of the vessel endothelium. Diffusion-weighted

imaging (DWI) reflects the Brownian motion of H2O; the

diffusion rate is used to calculate the apparent diffusion

coefficient (ADC), which is directly proportional to the

metabolic rate—and accordingly, the aggressivity—of the

tumor. ADC has been applied to the classification of a variety

of tumors including breast tumors, glioma, etc. (11) Prostate

Imaging Reporting and Data System Version 2 (PI-PRADS v2) is

recommended as a noninvasive method for diagnosing PCa,

although it has low specificity (12).

Given the limitations of PSA, TRUS, and PI-PRADS v2, the

present study investigated the clinical utility of DCE-MRI and

DWI parameters for differentiating between PCa and BPH. We

also established a multivariate logistic regression model that can

be used to predict the malignancy of PCa.
Materials and methods

Patients

For this retrospective study, patients with elevated PSA and

clinically suspected PCa or BPH were recruited at Henan

Province Hospital of Traditional Chinese Medicine (TCM)

(Zhengzhou, China) between December 2016 and October

2020. The inclusion criteria were as follows: 1) PCa or BPH

confirmed by pathologic examination following ultrasound-

guided puncture or surgical tumor biopsy; 2) no treatment

prior to MRI scanning; 3) no MRI within 3 weeks of
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pathologic examination; 4) no MRI contraindications such as

claustrophobia; 5) PSA ≥10 ng/ml before MRI; and 6) good

image quality sufficient for diagnosis. The study was approved

by the institutional review board of Henan Province Hospital of

TCM. A flow diagram of the study protocol is shown in Figure 1.

MRI scanning

All patients underwent DCE-MRI examination with a 3.0T

MRI scanner (Signa HDxt; GE Healthcare, South Burlington, VT,

USA). MRI scanning data no more than 1 month before surgery.

The MRI protocol was set according to PI-RADS v2 (12). Patients

lay in the supine position and were scanned feet-first. The 8-

channel body phased surface coil (GE Healthcare) was located

above the pelvis. The general MRI scan included T1-weighted

imaging (T1WI), T2WI, liver acquisition with volume

acceleration (LAVA), and DWI. The LAVA sequence

parameters were as follows: repetition time (TR)=3.368 ms,

echo time (TE)=1.672 ms, flip angle=15°, number of excitations

(NEX)=1, acquisition matrix=256×192, bandwidth (BW)

=244.141 Hz, field of view (FOV)=512×512, slice thickness=5,

time resolution=10 s, period images=21, and scanning time=3.5

min. Before LAVA, patients were scanned with multiple fractional

anisotropy (FA) sequences (FA=3°, 9°, and 12°) with only 1 phase

of LAVA. Gadopentetate dimeglumine (Omniscan®; GE

Healthcare) was injected with a high-pressure injector at a rate

of 2 ml/s at 0.1 ml/kg body weight, followed by flushing with 20 ml

saline solution. DWI was performed with the following

parameters: b value=100 and 800, TR=5200 ms, TE=75.9 ms,

FA=90, slice thickness=4, FOV=256×256, NEX=6, acquisition

matrix=96×130, and BW=1953.12 Hz.
Imaging data analysis

An ADC map was obtained from the DWI scan. Two

radiologists with 5–10 years of experience delineated the

suspected lesions in all slices on ADC maps by comparing

T1WI and T2WI data. At same time, seminal vesicles, vessels,

calcification, hemorrhage, and artifacts were excluded from the

region of interest (ROI). Each ROI was segmented twice to

calculate the mean ADC value. DCE-MRI images were input

into Omni-Kinetics v2.1.0.R software (GE Healthcare, Shanghai,

China) (9). The T1 map was generated, and T10 was calculated

from the multi-FA sequence (10). We selected the femoral artery

to calculate arterial input function (AIF) of normal vessels and

obtained a concentration–time curve (10). We used the Tofts

model (13) to calculate the vascular permeability parameters

Ktrans, Kep, Ve, and Vp and generated a map. In order to obtain

the vascular permeability parameter values in lesions, the ROI

was marked as the lesion in all DCE-MRI images to ensure that

the ROI could be identified in the biopsy specimens (Figure 1).

Two relatively experienced radiologists (HS and FD) who

were blinded to the clinical information of patients

retrospectively and independently evaluated the images and
Frontiers in Oncology 03
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assigned a PI-RADS score to suspicious lesions according to

PI-RADS v2 guidelines (12); any disagreements were resolved by

a third senior radiologist. (Figure 2).
Pathologic examination

All patients with abnormal PSA underwent a pathologic

examination. Tissue samples were obtained from 24 patients who

underwent surgery and41whounderwent conventional 6+ 4- or 6+

3-needle TRUS-guided prostate biopsy (6 standard needle points, 2

points to sideof theperipheral area, and1or2points to the suspicious

area).14 The tissue specimenswere fixed in 4%paraformaldehyde for

1weekat 24°Cand thenembedded inparaffin.The tissueblockswere

cut into sections that were stained with hematoxylin and eosin and

examined under a light microscope by a pathologist with 5 years of

experience. A Gleason score—which was calculated as the sum of

primary and secondary patterns and ranged from 2 to 10, with a

higher score indicating poorer differentiation (14)—was assigned to

each sample.
Statistical analysis

TheMann–WhitneyUtestor t testwasperformedwithPrism8

software (GraphPad, La Jolla, CA, USA). Vascular permeability

parameters and ADC are presented as mean ± standard deviation.

Receiver operating characteristic (ROC) curve analysis was

performed with MedCalc software (MedCalc, Ostend, Belgium).

After calculating the maximum Youden index, the area under the

ROCcurve (AUC)was determined anda cutoff valuewas obtained.

Spearman correlation analysis was used to assess the relationship

between variables. Significant parameters were used to construct

the multivariate logistic regression model. The diagnostic

performance of the model was evaluated by AUC analysis.

Di ff e rences wi th P va lues <0 .05 were cons idered

statistically significant.
Results

Clinical characteristics of patients

Five patients were excluded from the analysis because of

poor DCE-MRI image quality; 7 were excluded because serum

PSA was unavailable; and 25 were excluded because they had not

undergone a pathologic examination. Ultimately, 65 patients

met the inclusion criteria, including 32 with PCa and 33 with

BPH. PI-RADS scores differed significantly between the 2 groups

(P=0.003; Table 1). The Gleason score distribution was as

follows: 5 points, n=1; 6 points, n=2; 3 + 4 points, n=8; 4 + 3

points, n=9; 8 points, n=7; 9 points, n=3; and 10 points, n=2

(Table 1 and Figure 2).
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DCE-MRI parameters and ADC in PCa
and BPH patients

DCE-MRI parameters in PCa patients were as follows: Ktrans,

1.811 ± 0.128min−1; Kep, 1.504 ± 0.170min−1; Ve, 0.704 ± 0.052; Vp,

0.261 ± 0.031; and ADC, (1.069 ± 0.177)×10−3 mm (2)/s (Table 2).

The following 4 parameters in the BPH group showed a significant

difference compared to the PCa group: Ktrans (1.698 ± 0.169 min−1,

P=0.006; Figure 3A); Kep (1.367 ± 0.095 min−1, P=0.001; Figure 3B);

Vp (0.286 ± 0.036, P=0.009; Figure 3D), and ADC ([1.794 ±

0.180]×10−3 mm(2)/s, P<0.001; Figure 3E and Table 2). Ve in the
Frontiers in Oncology 04
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BPH group (0.702 ± 0.056) did not differ significantly from the

value in the PCa group (P=0.911; Table 2 and Figure 3C).
Performance of imaging parameters and
PI-RADS in the differential diagnosis of
PCa vs BPH

Imaging parameters and PI-RADS score showed high

diagnostic performance in discriminating between PCa and BPH

patients, with AUCs of 0.705 for Ktrans, 0.700 for Kep, 0.737 for Vp,
FIGURE 1

Flow diagram of the study protocol.
FIGURE 2

(A–E) PI-RADS 2 scored alterations. An example of PI-RADS 2 lesion confirmed at biopsy as pathologic examination of BPH patient (E), multi-
parameter MRI showed hypoint T2 signal intensity in the peripheral zone, iso and hyper T2 signal intensity in the central gland(A), iso and hyper
T1 signal intensity in the central gland (B), normal diffusivity at b800 DWI (C) with contrast enhancement (D), that the peripheral zone in the
multi parameter MRI showed 2 points and the central gland in the multi parameter MRI showed 2 points, DWI showed 1 points. (F–J) PI-RADS 5
scored alterations. An example of PI-RADS 5 lesion confirmed at biopsy as pathologic examination of PCa patient (J), multi-parameter MRI
showed so and hyper T2 signal intensity in the central gland and peripheral zone (F), iso and hyper T1 signal intensity in the central gland (G),
hyperintensity signal at b800 DWI (H) with contrast enhancement (I), that the T2WI showed 5 points and DWI showed 5 points.
frontiersin.org

https://doi.org/10.3389/fonc.2022.925186
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2022.925186
0.688 for ADC, and 0.999 for PI-RADS score (Table 3 and

Figure 4A). The sensitivity values of PI-RADS, Ktrans, and ADC

were higher than those of Kep and Vp, whereas the specificity values

of Kep, Vp, and ADC were higher than those of PI-RADS and Ktrans

(Table 3). Given the significant differences in PI-RADS score and

imaging parameters between the PCa and BPH groups (PI-RADS,

P=0.0009; Ktrans, P=0.0022; Kep, P=0.0003; Vp, P=0.0049; ADC,

P<0.0001; Table 3), we compared their diagnostic performance with

the Delong test but found no significant difference between PI-

RADS and Ktrans (P=0.958; Figure 4B), Kep (P=0.722; Figure 4B), Vp

(P=0.845; Figure 4B), and ADC (P=0.088; Figure 4B). ADC showed

the highest diagnostic performance among imaging parameters

(ADC vs Ktrans, Kep, and Vp; P<0.001), whereas there was no

significant difference in performance among DCE-MRI parameters

(P≥0.05).Diagnostic performance of the combined model

PI-RADS score and imaging parameters (Ktrans, Kep, Vp, and

ADC) were used to construct a multivariate logistic regression

model, which distinguished between PCa and BPH with an AUC

of 1.000 (95% confidence interval [CI]: 0.945–1.000; Table 4).
Frontiers in Oncology 05
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The logistic regression analysis identified PI-RADS score and

imaging parameters (Ktrans, Kep, Vp, and ADC) as independent

predictors of PCa malignancy with high sensitivity (0.983) and

specificity (0.999) (Table 4). The model incorporating the above

independent predictors is presented as a nomogram (Figure 5).
Correlation between Gleason stage and
DCE-MRI parameters and ADC

A Spearman correlation analysis was performed to examine

the relationship between imaging parameters and Gleason stage.

The values of DCE-MRI parameters of the tumor region were

negatively correlated with Gleason stage, but not significantly

(Ktrans, r=−0.220, P=0.226; Kep, −0.177, P=0.332; Ve, −0.080,

P=0.663; and Vp, −0.058, P=0.754; Table 5). The ADC of the

tumor region was positively correlated with Gleason stage

(r=0.145), but this association was also nonsignificant

(P=0.430; Table 5).
TABLE 1 Patients’ demographic information.

Variable PCA n = 32 BPH n = 33 P valuea

n = 32 n = 33

Age, years (mean ± SD) 64.5 ± 6.2 59.0 ± 8.4 0.013b

PI-RADS 0.003b

1 3 14

2 0 2

3 14 7

4 14 10

5 2 0

Gleason score

5 1

6 2

3+4 8

4+3 9

8 7

9 3

10 2
fron
aP value with the Mann–Whitney U test; bsignificant difference.
BPH, benign prostatic hyperplasia; PCa, prostate cancer; PI-RADS, Prostate Imaging Reporting And Data System.
TABLE 2 DCE-MRI parameters and ADC for PCa and BPH groups.

Parameter PCa BPH P valuea

DCE-MRI

Ktrans, min−1 1.811 ± 0.128 1.698 ± 0.169 0.006b

Kep, min−1 1.504 ± 0.170 1.367 ± 0.095 0.001b

Ve 0.704 ± 0.052 0.702 ± 0.056 0.911

Vp 0.261 ± 0.031 0.286 ± 0.036 0.009b

ADC, 10−3 mm2/s 1.069 ± 0.177 1.794 ± 0.180 <0.001b
Data represent mean ± SD. aP value with the Mann–Whitney U test; bsignificant difference.
ADC, apparent diffusion coefficient; BPH, benign prostatic hyperplasia; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; Kep, rate constant; Ktrans, transfer constant;
PCa, prostate cancer; Ve, fractional volume of the extravascular extracellular space; Vp, plasma volume.
tiersin.org

https://doi.org/10.3389/fonc.2022.925186
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2022.925186
Discussion

The results of this study demonstrate that DCE-MRI and

DWI parameters can differentiate between benign and

malignant prostate tumors when serum PSA is ≥10 ng/ml.
Frontiers in Oncology 06
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Thus , K t r an s (AUC=0.700) , Kep (AUC=0.737) , Vp

(AUC=0.688), and ADC (AUC=0.999) can be used as imaging

biomarkers to evaluate PCa along with PI-RADS score. In order

to improve diagnostic specificity and sensitivity, we established a

multivariate logistic regression model to predict tumor
A B D EC

FIGURE 3

Box plot of vascular permeability parameters and ADC. (A–E) Ktrans (A), Kep (B), and ADC (E) differed significantly between PCa and BPH patients,
whereas Ve (C) and Vp (D) were similar between the 2 groups.
TABLE 3 Diagnostic performance of imaging parameters and PI-RADS score in discriminating between PCa vs BPH.

AUC Sensitivity Specificity Youden indexJ statistic 95% CI P valuea

PI-RADS 0.705 0.937 0.485 0.422 0.579–0.812 0.0009b

DCE-MRI

Ktrans 0.700 0.906 0.485 0.391 0.574–0.808 0.0022b

Kep 0.737 0.531 1.000 0.531 0.613–0.839 0.0003b

Vp 0.688 0.469 0.879 0.347 0.560–0.797 0.0049b

ADC 0.999 0.998 0.999 1.000 0.945–1.000 <0.0001b
fron
aP value with the Mann–Whitney U test; bsignificant difference.
ADC, apparent diffusion coefficient; AUC, area under the curve; BPH, benign prostatic hyperplasia; CI, confidence interval; DCE-MRI, dynamic contrast-enhanced magnetic resonance
imaging; Kep, rate constant; Ktrans, transfer constant; PCa, prostate cancer; PI-RADS, Prostate Imaging Reporting And Data System; Vp, plasma volume.
A B

FIGURE 4

(A) Diagnostic performance of imaging parameters (Ktrans, Kep, Vp and ADC) and PI-RADS score in discriminating between PCa and BPH based
on ROC curve analysis. (B) Delong analysis among imaging paramters (Ktrans, Kep, Vp and ADC) and PI-RADS score in discrimination between
PCa and BPH.
tiersin.org

https://doi.org/10.3389/fonc.2022.925186
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2022.925186
malignancy based on 3 vascular permeability parameters; ADC

and PI-RADS differed significantly between PCa and BPH

patients. We also established a nomogram to visualize the

multivariate logistic regression model, which showed higher

AUC (1.000) and higher sensitivity (0.983) and specificity

(0.999). However, vascular permeability parameters and ADC

did not show significant correlations with Gleason stage in

PCa patients.
Frontiers in Oncology 07
143
PCa is diagnosed as high risk when PSA is ≥10 ng/ml (15). The

goal of PSA screening is to classify PCa at an earlier stage. However,

a diagnosis cannot be made based solely on PSA level. The typical

PSA level in PCa is 4 ng/ml; this is too low for biopsy, which is

usually recommended for PSA levels of 4–10 ng/ml (16). The AUC

of PSA (4–10 ng/ml) for differentiating between PCa and BPH was

0.708, with a sensitivity of 0.837 and specificity of 0.583 (17); thus,

screening based on PSA can lead to overdiagnosis and
FIGURE 5

Nomogram for differentiating PCa from BPH. The nomogram was developed with PI-RADS, Ktrans, Kep, Vp, and ADC. This nomogram can be
used to classification of Pca from BPH. Before biopsy or surgery performed, patients underwent DCE-MRI and DWI scanning that, Ktrans, Kep, Vp,
ADC and PI-RADS were determined. All of these results will put into the Nomogram as follow: Points_PI_RADS will calculate by the score of
Points which is vertically projected on the line of Points by PI-RADS. Ktrans, Kep, Vp and ADC should be vertically projected on the line of Points
to get Points_Ktrans, Points_Kep, Points_Vp and Points_ADC. After this, the Total points is the sum of Points_PI_RADS, Points_Ktrans, Points_Kep,
Points_Vp and Points_ADC. After this, total points is vertically projected on the line of Risk for patients’ probability of PCa.
TABLE 5 Spearman correlations between imaging parameters and Gleason stage.

Ktrans Kep Ve Vp ADC

r −0.220 −0.177 −0.080 −0.058 0.145

P value 0.226 0.332 0.663 0.754 0.430
frontiers
ADC, apparent diffusion coefficient; Kep, back flow rate constant; Ktrans, volume transfer rate constant; Ve, extravascular extracellular space volume fraction; Vp, plasma volume fraction.
TABLE 4 Diagnostic performance of DCE-MRI parameters, ADC, and the combined model.

Coefficient OR AUC 95% CI lower 95% CI upper

Intercept −23.465

PI-RADS 9.929 1491.79

ADC −134.766 9.52×10−34

Ktrans 23.988 42909.20

Kep 114.729 1.27×1027

Vp −87.606 3.21×10−13

Nomogram 1.000 0.945 1.000
ADC, apparent diffusion coefficient; AUC, area under the curve; CI, confidence interval; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; Kep, rate constant; Ktrans,
transfer constant; OR, odds ratio; PI-RADS, Prostate Imaging Reporting And Data System; Vp, plasma volume.
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overtreatment (18). Some DCE-MRI studies have shown that the

vascular permeability parameters Ktrans and Kep were higher in PCa

than in BPH (19, 20), which is supported by our results. However,

the latter study also showed that Ve and Vp differed between these 2

groups, which was confirmed by another report (20) and is contrary

to our findings. Ours is the first investigation of the diagnostic

performance of DCE-MRI and DWI parameters in PCa when

serum PSA is ≥10 ng/ml, which is more closely associated with PCa

risk than any specific marker (16). Vascular permeability values

reported in PCa vary across the literature, even considering a 95%

CI; this may be attributable to the reference vessel for AIF (21),

parameters of the DCE-MRI sequence (eg, temporal resolution) of

different instrument manufacturers, and interindividual differences

among patients (22). There is accumulating clinical evidence that

DWI is a useful tool for the quantitative assessment of tumor

characteristics and prognosis (23, 24). ADC reflects the Brownian

motion of H2O, which is constantly interacting with other

molecules in the tissue microenvironment. Proliferating tumor

cells can inhibit H2O movement, resulting in a change in the

ADC value; therefore, ADC is used as a marker for tumor

malignancy and prognosis (25, 26) and to discriminate between

cancer and noncancer tissue (27). In the current study, ADC values

differed significantly between PCa and BPH, suggesting that

aggressive tumors block the diffusion of H2O to a greater extent

than those that are benign. DWI of 60 patients revealed that ADC

was an independent factor that could distinguish between BPH and

transition zone cancer (1.32 ± 0.19 vs 0.89 ± 0.17mm(2)/s; P<0.001)

(19). Compared to vascular permeability parameters, ADC showed

better diagnostic performance in detecting PCa, with an AUC of

0.999, sensitivity of 0.998, and specificity of 0.999.

PI-RADS v2 is a noninvasive method to predict PCa with

low specificity (28), which was confirmed in our study. To

improve sensitivity and specificity, we constructed an imaging-

based model combining PI-RADS score, ADC, Ktrans, Kep, and

Vp that was visualized as a nomogram and had a sensitivity of

0.983 and specificity of 0.999; these were higher than the

corresponding values for PI-RADS score and vascular

permeability parameters. In fact, ADC also showed high

sensitivity (0.998) and specificity (0.999) in our study.

Multiparameter (mp)MRI is increasingly recommended for

noninvasive PCa screening (17). A combined model based on

mpMRI showed higher diagnostic performance compared to a

single imaging parameter (17). Additional studies with a larger

sample size are needed to determine whether ADC can serve as

an imaging biomarker for the differentiation of PCa from BPH.

In this study, we have built a multiple logistic model to

classification of Pca and BPH with an amazing diagnostic

discrimination (AUC=1.000) by combining PI-RADS score,

ADC, Ktrans, Kep, and Vp. To provide the clinician with a

simplified quantitative tool to predict individual probability of

PCa, Nomogram was drawn on the basis of imaging-based

model combining PI-RADS score, ADC, Ktrans, Kep, and Vp.

For example, there were a representative case to illustrate the
Frontiers in Oncology 08
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discriminative ability of nomograms for the classification of Pca.

A 62-year-old man with PSA=12 ng/ml. After MRI scanning, his

PI-RADS score was 3, Ktrans was 1.723 min-1, Kep was 1.43 min-

1, Vp was 0.367, ADC was 1.025x10−3 mm(2)/s. After put these

value into the nomogram, we have got the score of PI_RADS

(Points=9.5), Ktrans (Points=7.3), Kep(Points=30.1), Vp

(Points=0.1)and ADC (Points=79.1) that the total points is

126. After vertically projected on the line of Risk the

probability of PCa is 96%.

We also analyzed the correlation between imaging

parameters and Gleason score, which is used for histologic

staging of PCa and is an important prognostic factor. A

significant negative correlation between ADC and Gleason

score was reported; this may be explained by the fact that the

high proliferation rate of tumor cells leads to a higher cell

density, which reduces extracellular space and restricts H2O

movement (19). However, we did not observe a significant

correlation between ADC and Gleason score, which may be

due to the small number of patients in the PCa group.

The present study had some limitations. Firstly, as the

patients were from a single hospital it is unclear whether our

findings are generalizable to all PCa patients. Secondly, ROI

segmentation was performed by 2 experienced radiologists, but

we did not evaluate intraobserver differences. Multicenter

studies addressing these shortcomings are needed to achieve a

higher level of evidence.
Conclusion

Ktrans and Kep in DCE-MRI and ADC in DWI can be used as

imaging biomarkers to distinguish PCa from BPH. A

multivariate logistic regression model combining these 3

parameters showed good diagnostic performance for PCa.

Thus, DCE-MRI and DWI are useful noninvasive diagnostic

tools that can guide management strategies for PCa patients.
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Investigating the diagnostic
efficiency of a computer-aided
diagnosis system for thyroid
nodules in the context of
Hashimoto’s thyroiditis

Liu Gong, Ping Zhou*, Jia-Le Li and Wen-Gang Liu

The Department of Ultrasound, Third Xiangya Hospital, Central South University, Changsha, China
Objectives: This study aims to investigate the efficacy of a computer-aided

diagnosis (CAD) system in distinguishing between benign and malignant

thyroid nodules in the context of Hashimoto’s thyroiditis (HT) and to evaluate

the role of the CAD system in reducing unnecessary biopsies of benign lesions.

Methods: We included a total of 137 nodules from 137 consecutive patients

(mean age, 43.5 ± 11.8 years) who were histopathologically diagnosed with HT.

The two-dimensional ultrasound images and videos of all thyroid nodules were

analyzed by the CAD system and two radiologists with different experiences

according to ACR TI-RADS. The diagnostic cutoff values of ACR TI-RADS were

divided into two categories (TR4 and TR5), and then the sensitivity, specificity,

and area under the receiver operating characteristic curve (AUC) of the CAD

system and the junior and senior radiologists were compared in both cases.

Moreover, ACR TI-RADS classification was revised according to the results of

the CAD system, and the efficacy of recommended fine-needle aspiration

(FNA) was evaluated by comparing the unnecessary biopsy rate and the

malignant rate of punctured nodules.

Results: The accuracy, sensitivity, specificity, PPV, and NPV of the CAD system

were 0.876, 0.905, 0.830, 0.894, and 0.846, respectively. With TR4 as the cutoff

value, the AUCs of the CAD system and the junior and senior radiologists were

0.867, 0.628, and 0.722, respectively, and the CAD system had the highest AUC

(P < 0.0001). With TR5 as the cutoff value, the AUCs of the CAD system and the

junior and senior radiologists were 0.867, 0.654, and 0.812, respectively, and

the CAD system had a higher AUC than the junior radiologist (P < 0.0001) but

comparable to the senior radiologist (P = 0.0709). With the assistance of the

CAD system, the number of TR4 nodules was decreased by both junior and

senior radiologists, the malignant rate of punctured nodules increased by 30%

and 22%, and the unnecessary biopsies of benign lesions were both reduced by

nearly half.

Conclusions: The CAD system based on deep learning can improve the

diagnostic performance of radiologists in identifying benign and malignant
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thyroid nodules in the context of Hashimoto’s thyroiditis and can play a role in

FNA recommendations to reduce unnecessary biopsy rates.
KEYWORDS

thyroid nodule, Hashimoto’s thyroiditis, ultrasound, computer-aided diagnosis,
unnecessary biopsy
1 Introduction
Hashimoto’s thyroiditis (HT) is the most common

autoimmune thyroid disease (AITD) (1), with a higher

prevalence in women than in men (2). Lymphocytic

infiltration and follicular destruction are histological features

of autoimmune thyroiditis (AIT), resulting in progressive

atrophy and fibrosis of the thyroid tissue (1). HT constitutes a

risk factor for primary thyroid lymphoma (PTL), as clonal B cells

normally present in lymphomas can be found in patients with

HT, and cellular changes caused by long-term chronic antigenic

stimulation may evolve into malignancy (3). Although PTL is a

rare disease, it usually presents with a more aggressive course

and a worse prognosis. The association between HT and thyroid

cancer (TC) remains controversial, and while many studies have

produced conflicting results (4–6), some scholars have

highlighted an immunological link between HT and PTC (7).

For these reasons, it is necessary to proactively screen patients

for HT and determine whether they are accompanied by

suspicious thyroid nodules. HT was clinically diagnosed based

on hypothyroidism, elevated thyroglobulin antibodies (TG-Ab)

and thyroid peroxidase antibodies (TPO-Ab), inhomogeneous

parenchyma on ultrasonography, and lymphocytic infiltration

on cytology (8). However, HT remains difficult to diagnose, with

only 25%–30% of patients presenting with elevated levels of

thyroid-stimulating hormone (TSH) and decreased serum

thyroid hormones, and not all patients with HT have elevated

TG-Ab and TPO-Ab (9). Thus, in addition to blood markers,

ultrasonography and fine-needle aspiration (FNA) also become

essential tools to screen for nodules in the context of HT.

HT exhibits varying ultrasound characteristics at different

stages of pathology, with inhomogeneous parenchyma being the

most common. The characteristics of malignant nodules

underlying diffused background of HT in different studies are

inconsistent, with some studies suggesting that malignant

nodules in HT tend to have smooth margins and varying

calcifications (10) while others suggesting irregular margins

and microcalcifications (11). The diversity of malignant

features leads to more ambiguous diagnostic criteria and

makes it more difficult for radiologists to identify the nature of

nodules in a heterogeneous background. To manage thyroid
02
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nodules effectively, many national and international associations

have proposed ultrasound-based diagnostic classifications.

Wang et al. compared the efficacy of three thyroid risk

stratification systems and found that the TI-RADS proposed

by the American College of Radiology (ACR) in 2017 was most

effective for thyroid nodules in HT (12). ACR TI-RADS is able to

guide whether a nodule requires FNA or follow-up based on the

nodule’s category and maximum diameter (13). Nodules were

scored according to five categories of features, namely,

composition, echogenicity, shape, margin, and focal

echogenicity, and then the scores of each feature were

summed to derive the corresponding category, which is TR1

to TR5. The maximum diameter thresholds for nodules

requiring FNA were as follows: TR3 nodules ≥2.5 cm, TR4

nodules ≥1.5 cm, and TR5 nodules ≥1 cm. Nevertheless, the

identification of malignant features in ultrasound images is

closely related to the experience of the radiologist, which leads

to interobserver variability and unnecessary biopsy.

In recent years, computer-aided diagnosis (CAD) has

initially been used in the screening of thyroid nodules. There

are two types of CAD methods. One is classical machine

learning, which builds models based on the features

recognized by human experts. Many studies using support

vector machines support vector machine (SVM) or random

forest algorithms as classifiers found that these can improve

the diagnostic accuracy of inexperienced or non-professional

radiologists (14, 15), but machine learning requires human

experts to extract features in the region of interest (ROI) (16),

making the differences in various research results. The other is

the deep learning method, which does not require prior

definition by human experts (16) and can automatically

extract multilevel features that cannot be recognized by

radiologists (17). By contrast, deep learning approaches have

significant advantages in overcoming heterogeneity using

automated learning procedures (18). ITS100 (Med Imaging AI,

Wuxi, China), a commercial thyroid CAD software, is an

auxiliary diagnosis system based on a deep convolutional

neural network (DCNN). Compared with other CAD systems,

this software identifies high-dimensional features through

DCNN, which enables real-time localization, characterization,

and boundary segmentation of lesions in complex backgrounds,

thereby eliminating the interobserver’s differences. To the best of
frontiersin.org
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our knowledge, most CAD systems have high diagnostic

performance in diagnosing thyroid nodules without HT (17),

but there are few studies using CAD systems to diagnose diffuse

thyroid diseases such as HT.

Therefore, the objectives of this study were to compare the

performance of the CAD system and radiologists of different

seniority using ACR TI-RADS in diagnosing thyroid nodules

coexistent with HT and to investigate whether unnecessary

biopsy could be reduced with the assistance of the CAD system.
2 Materials and methods

2.1 Patients

This retrospective study has been approved by the Ethics

Committee of the Third Xiangya Hospital of Central South

University. This study involved all patients with thyroid nodules

who underwent ultrasound examination in our hospital from

November 2020 to November 2021. All patients signed an

informed consent form.

The inclusion criteria were as follows: 1) ultrasound

examination showing heterogeneous echogenicity and 2)

histopathological diagnosis suggestive of Hashimoto’s

thyroiditis. The exclusion criteria were as follows: 1) the

patient had a history of partial thyroidectomy or coarse needle

aspiration biopsy prior to the examination and 2) the images

obtained were not clear.
2.2 Image acquisition and CAD
system analysis

The two-dimensional ultrasound images and videos were

acquired with the Siemens ACUSON Sequoia color Doppler

ultrasound diagnostic instrument with an 18L6 transducer. The

patient was placed supine on an examination bed, and the

radiologist performed a dynamic scan of the transverse and

longitudinal sections of the thyroid and obtained the scanning

video of the thyroid nodules and the images of the largest long-

axis section.

The CAD system used in this study was Ian Thyroid

Solution 100 (ITS100). The CAD system was directly

connected to the ultrasonic instrument. After the collected

thyroid nodule images and videos were input into the system,

the location of the nodule was dynamically identified, and the

malignant features in different sections were analyzed, the final

results would be obtained by clicking on the screen (Figure 1).

All of the above procedures were done by the same radiologist

with over 10 years of experience.
Frontiers in Oncology 03
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2.3 Image review

The acquired 2D ultrasound images and videos were

interpreted by another senior radiologist (experience over 10

years) and a junior radiologist (experience within 5 years), who

analyzed the thyroid nodules according to the ACR TI-RADS

(13). They were blinded to the pathological findings of the

thyroid nodules and the results of the CAD system

before interpretation.
2.4 CAD system revised recommendation
of FNA

The ACR TI-RADS provides clear guidance on whether to

perform FNA or follow-up of the thyroid nodules. The criteria

for using the CAD system to revise the ACR TI-RADS

recommendations for FNA are as follows: when the CAD

system indicated that the thyroid nodule was benign, one level

was subtracted to the ACR TI-RADS except TR1. Conversely,

when the CAD system indicated that the thyroid nodule was

malignant, the ACR TI-RADS classification was increased by

one level except TR5. According to the modified ACR TI-RADS,

the distribution of benign and malignant nodules in each

classification was recorded, and suggestions on whether the

nodules should be FNA were provided (Figure 2).
2.5 Statistical analysis

The cutoff value of ACR TI-RADS for benign and malignant

thyroid nodules was divided into two categories. The first

category took TR4 as the cutoff value; TR1, TR2, and TR3 as

possibly benign; and TR4 and TR5 as possibly malignant. The

second category took TR5 as the cutoff value; TR1, TR2, TR3,

and TR4 as possibly benign; and TR5 as possibly malignant.

Using surgical pathology results as the gold standard, the

receiver operating characteristic (ROC) curve of CAD and

radiologists with different cutoff values was established. The

sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV), accuracy, and area under the ROC curve

(AUC) were calculated, respectively.

Statistical analyses were performed with SPSS 26.0 and

MedCalc 19.0.4. Continuous variables were expressed as mean

± standard deviation. The age of the patients, blood markers, and

the maximum diameter of the nodules were compared using t-

test (or Mann–Whitney U test), and the gender of patients and

the sonographic features of the nodules were compared using the

chi-square test (or Fisher’s exact test). The Delong’s test was

used to determine whether there was any statistical difference in

diagnostic efficacy between the CAD system and the radiologists,
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A B

C D

FIGURE 2

(A) A malignant thyroid nodule measuring 11 × 9 mm. The ACR TI-RADS of the nodule given by two radiologists were all TR4, and follow-up
was recommended. (B) The CAD system indicated that the nodule was malignant, and the modified ACR TI-RADS was TR5, with a
recommendation for FNA. (C) A benign thyroid nodule measuring 15 × 9 mm. The ACR TI-RADS of the nodule given by the junior radiologist
was TR4, and FNA was recommended. (D) The CAD system indicated that the nodule was benign, and the modified ACR TI-RADS was TR3, with
a recommendation for follow-up. The numbers in the figure are the benign and malignant rates produced by the CAD system. As the numbers
from this CAD system are all greater than 95%, these numbers are not significant in our study.
A B

C D

FIGURE 1

(A) 2D ultrasound image of a malignant thyroid nodule with HT; (B) the corresponding diagnostic results of the CAD system. (C) 2D ultrasound
image of a benign thyroid nodule with HT; (D) the corresponding diagnostic results of the CAD system. The numbers in the figure are the
benign and malignant rates produced by the CAD system. As the numbers from this CAD system are all greater than 95%, these numbers are
not significant in our study.
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and the McNemar test was used to compare sensitivity and

specificity. P <0.05 indicated statistically significant differences.
3 Results

3.1 Demographics and thyroid
nodule characteristics

In total, 242 consecutive patients were eligible for ultrasound

suggestive of heterogeneous echogenicity and histopathological

diagnosis suggestive of HT; however, 41 cases were excluded

because of a history of partial thyroidectomy, 12 cases because of

a coarse needle aspiration biopsy prior to examination, and 52

cases because of unclear images that prevented recognition by
Frontiers in Oncology 05
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the CAD system. Ultimately, a total of 137 HT patients (mean

age, 43.5 ± 11.8 years) were enrolled in this study, consisting of

53 benign patients and 84 malignant patients. In the benign

group, some of the patients underwent surgery for suspicious

pseudo-nodules. Some of these patients had indeterminate FNA

results coupled with ultrasound suggesting possible malignancy,

they were treated surgically for safety, and a few other patients

underwent surgery for large cystic–solid mixed nodules, with

final histopathological findings of pseudo-nodules in 36 cases,

nodular goiters in 13 cases, and thyroid adenomas in 4 cases,

respectively. In the malignant group, all cases were PTC. The

basic characteristics of the patients and nodules are summarized

in Table 1. There were no significant differences in gender (P =

0.457) and maximum tumor diameter (P = 0.118) between the

benign and malignant groups. However, patients with benign
TABLE 1 The characteristics of patients and nodules.

Characteristics Total Benign nodules Malignant nodules P-value

Sex – – – 0.457

Male 43 19 24 –

Female 94 34 60 –

Age 43.5 ± 11.8 48.2 ± 11.2 40.5 ± 11.2 <0.001

Tumor diameter (mm) 11.2 ± 8.3 12.8 ± 11.1 10.2 ± 5.7 0.118

Blood markers

TSH 1.6 ± 1.2 1.4 ± 1.3 1.7 ± 1.1 0.316

TG 17 ± 17.4 19.4 ± 18.4 14.6 ± 16.4 0.349

TG-Ab 132.4 ± 263.1 123.7 ± 180.8 141.1 ± 329.6 0.822

TPO-Ab 196.7 ± 281.4 184.6 ± 272.4 208.8 ± 295.4 0.769

Composition 0.028

Solid 83 26 57

Mixed cystic and solid 54 27 27

Echogenicity 0

Hypoechoic 113 33 80

Hyperechoic or isoechoic 24 20 4

Shape 0.003

Taller than wide 52 12 40

Wider than tall 85 41 44

Margin 0.065

Lobulated or irregular 88 29 59

Smooth or ill-defined 49 24 25

Calcifications 0

Microcalcifications 78 17 61

No microcalcifications 59 36 23
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nodules were younger than those with malignant nodules (P <

0.001), and the differences in blood markers associated with HT

between the groups were not statistically significant (all P >

0.05). By comparing the sonographic features of benign and

malignant nodules, we observed that there was no remarkable

difference in margin (P = 0.065), but statistically significant

differences in composition, echogenicity, aspect ratio, and

presence of microcalcifications (all P < 0.05).
3.2 Diagnostic performance of CAD
and radiologists

The diagnostic performance of the CAD software and the

junior and senior radiologists for thyroid nodules with HT is

shown in Table 2 and compared in Table 3. When TR4 was used

as the cutoff value, the AUCs of the CAD system and the junior

and senior radiologists were 0.867, 0.628, and 0.722, respectively.

The CAD system had the highest AUC (P < 0.0001), and the

specificity of the CAD system was significantly higher than that

of both the junior and senior radiologists (P < 0.0001), but there

was no statistical difference in sensitivity between the CAD

system and all radiologists (P > 0.05). When TR5 was used as

the cutoff value, the AUCs of the CAD system and the junior and

senior radiologists were 0.867, 0.654, and 0.812, respectively, and

the AUC of the CAD system was superior to that of the junior

radiologist (P < 0.0001) but not different from that of the senior

radiologist (P = 0.0709). The sensitivity of CAD was higher than

that of both the junior and senior radiologists (all P < 0.05), but

the specificity was lower than that of the senior radiologist (P =

0.0375) and not significantly different from that of the junior

radiologist (P = 0.1797). The ROC curves for the CAD system,

senior radiologist, and junior radiologist under different cutoff

values are shown in Figures 3, 4.
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3.3 Effectiveness of the CAD system in
reducing unnecessary biopsy

The modified ACR TI-RADS classification is presented in

Table 4. Compared with the senior radiologist alone, the

modified ACR TI-RADS TR3 malignancy rate was lower

(20.0% vs 11.1%), and the malignancy rate for both TR4 and

TR5 was higher (44.1% vs 83.3%, 91.3% vs 92.8%). Meanwhile,

13 malignant nodules raised from TR4 to TR5, four malignant

nodules changed from TR3 to TR4, 15 benign nodules lowered

from TR4 to TR3, and 27 benign nodules downgraded from TR3

to TR2. The diagnostic efficacy of the junior radiologist also

improved with the assistance of the CAD system, the modified

ACR TI-RADS TR3 malignancy rate decreased (39.5% vs.

16.7%), and TR4 and TR5 malignancy rates increased (56.8%

vs. 63.2% and 77.4% vs. 88.0%). Furthermore, 18 malignant

nodules upgraded from TR4 to TR5, 12 malignant nodules

increased from TR3 to TR4, 14 benign nodules lowered from

TR4 to TR3, and 22 benign nodules decreased from TR3 to TR2.

The diagnostic efficacy of the radiologists assisted by the

CAD system and the comparison with the radiologist alone are

shown in Tables 5, 6. Using the modified ACR TI-RADS TR4 as

the cutoff value, the AUCs of the senior radiologist + CAD

system and the junior radiologist + CAD system were 0.876 and

0.813, respectively, both of which were higher than the

performance of the radiologist alone (all P < 0.0001). The

specificity of the combined diagnosis was also higher than that

of the radiologist alone for both junior and senior radiologists

(all P = 0.0001). When the modified ACR TI-RADS TR5 was

used as the cutoff value, the AUCs of the senior radiologist +

CAD system and the junior radiologist + CAD system were

0.856 and 0.808, respectively, and the diagnostic efficacy of the

junior radiologist + CAD system was higher than when

diagnosed alone (P < 0.0001), and there was no significant
TABLE 2 Quantitative indicators of the CAD system and the two radiologists with different seniority.

Method AUC Accuracy Sensitivity Specificity PPV NPV

Cutoff value TR4

CAD 0.867 0.876 0.905 0.830 0.894 0.846

Senior radiologist 0.722 0.766 0.918 0.428 0.755 0.800

Junior radiologist 0.628 0.672 0.821 0.434 0.697 0.605

Cutoff value TR5

CAD 0.867 0.876 0.905 0.830 0.894 0.846

Senior radiologist 0.812 0.796 0.738 0.887 0.912 0.681

Junior radiologist 0.654 0.635 0.571 0.736 0.774 0.520

The bold values represent the best value of an index in the comparative experiments.
AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.
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difference between the senior radiologist with or without the

assistance of the CAD system (P = 0.1457). The sensitivity of all

radiologists with the CAD system was higher than the diagnosis

alone (all P < 0.05).

The effect of the CAD system to reduce unnecessary biopsy

is demonstrated in Table 7. With the assistance of the CAD

system, the malignancy rate of biopsy increased from 60.8% to

82.8% for senior radiologists and from 48.2% to 78.3% for junior

radiologists. Compared with radiologists alone, the unnecessary

biopsy rate of the senior radiologist + CAD was reduced (14.6%

vs 7.3%, P = 0.026), and the unnecessary biopsy rate of the junior

radiologist + CAD was more significantly reduced (20.4% vs

9.5%, P = 0.003).
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4 Discussion

As far as we know, several studies have shown that chronic

lymphocytic thyroiditis is somehow associated with the

development of both PTC and PTL (4, 7, 19), and one case of

a patient with both PTC and PTL arising in the setting of HT has

been reported (20), such that the treatment and prognosis of the

patient would be altered. Ultrasonography and FNA assist in the

early identification of patients with malignant changes and

should be used promptly in uncertain situations (21). Since

FNA is an invasive examination and the ultrasound

characteristics of HT make it difficult to identify and aspirate

the nodules (22), ultrasound is widely applied in the diagnostic

of HT as a non-invasive tool. Conventional sonographic features

of HT often present as diffuse parenchyma with numerous

inflammatory pseudo-nodules that interfere with the

radiologist’s judgment, and ultrasound relies on the experience

of the radiologist. It can be challenging for young radiologists in

remote areas to diagnose thyroid nodules with HT.

Recently, CAD has begun to be used in the diagnosis of

thyroid nodules. The results of many studies have shown that the

diagnostic efficacy of CAD systems was comparable to that of

experienced radiologists and higher than that of inexperienced

radiologists (23–27). Gao et al. found that CAD systems

possessed a higher sensitivity than experienced radiologists

when the ACR TI-RADS TR5 was used as the cutoff value

(0.967 vs. 0.900, P < 0.01) (28). It should be noted that patients

with HT were excluded from the above study in order to avoid

interference of the CAD system by the complicated context.

Hence, different CAD systems had shown high diagnostic

performance for thyroid nodules in a homogeneous

background. However, such CAD systems were not applicable

to all people, and it is our expectation that the CAD system can

effectively identify thyroid nodules in a complex background.

Feature selection and extraction are essential steps for

traditional CAD systems. It mainly includes four kinds of

features, namely, texture features, morphological features,
FIGURE 3

Comparison of the ROC curves between CAD and the two
radiologists when TR4 was used as the cutoff value.
TABLE 3 Quantitative indicators for the two radiologists compared with the CAD system.

P-value

Sensitivity Specificity AUC

Cutoff value TR4

Senior radiologist 1.000 <0.0001* <0.0001*

Junior radiologist 0.0923 <0.0001* <0.0001*

Cutoff value TR5

Senior radiologist 0.0005* 0.0375* 0.0709

Junior radiologist 0.0012* 0.1797 <0.0001*

*Represents statistical significance.
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model-based features, and descriptor features (29), but most of

the features are artificially designed, and deep learning CAD

systems can automatically extract high-dimensional features that

humans cannot recognize. Therefore, some scholars have

attempted to use a deep learning CAD system to diagnose

thyroid nodules within a complex context. Zhao et al.

developed an HT-CAD model based on the convolutional

neural network (CNN) with higher diagnostic performance

than senior radiologists (P < 0.001), and the accuracy was

improved by nearly 9% (30). Hou et al. used a deep learning-

based CAD system to distinguish nodules in the context of HT,
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and the AUC was significantly higher than that of three groups

of radiologists with different years of experience (all P < 0.05)

(31). The above studies demonstrated the diagnostic feasibility of

CAD systems based on deep learning for nodules in HT, but

only static images of the largest section of the nodule were input

into the CAD system. As we all know, the malignant features of

thyroid nodules vary in different angles and sections, and many

nodules with HT have irregular margins and indistinct borders.

In this scenario, the CAD system based on deep learning

exploited in this study takes advantage of its ability to

automatically identify and track the malignant features of each

section during dynamic scanning, which can more accurately

distinguish the nature of nodules and reduce the interference

caused by individual sections compared with static image

recognition alone.

Many studies have shown that the CAD system is more

beneficial for junior radiologists to improve their diagnostic

performance (32–34), which was also confirmed in our study. In

this study, we used ACR TI-RADS TR4 and TR5 as the cutoff

values separately and found that the AUC of the CAD system

was higher than that of both junior and senior radiologists when

TR4 was used as the cutoff value, and the specificity of the

radiologists was lower than that of the CAD system. The AUC of

the CAD system was higher than that of junior radiologists and

comparable to that of senior radiologists when TR5 was used as

the cutoff value, and the sensitivity of radiologists at this time is

lower than that of the CAD system. The reason for this

discrepancy may be due to the less distinctive malignant

features of nodules in TR4 compared with TR5, resulting in

less specificity for radiologists and more reliance on CAD

systems. Consequently, we can conclude that no matter

whether the ACR TI-RADS cutoff value of TR4 or TR5 was

used, the CAD system showed higher diagnostic performance

than junior radiologists and was greater than or comparable to

senior radiologists. Other than that, regardless of whether the
TABLE 4 Modified ACR TI-RADS according to the CAD system.

ACR TI-RADS Total Benign nodules Malignant nodules Malignant rate (%)

Senior radiologist/+CAD

2 0/30 0/30 0/0 0/0

3 35/18 28/16 7/2 20.0/11.1

4 34/6 19/1 15/5 44.1/83.3

5 68/83 6/6 62/77 91.3/92.3

Junior radiologist/+CAD

2 0/25 0/25 0/0 0/0

3 38/18 23/15 15/3 39.5/16.7

4 37/19 16/7 21/12 56.8/63.2

5 62/75 14/9 48/66 77.4/88.0
FIGURE 4

Comparison of the ROC curves between CAD and the two
radiologists when TR5 was used as the cutoff value.
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modified ACR TR4 or TR5 was used as the cutoff value, the

efficacy of the junior radiologist + CAD was higher than that of

the radiologist alone, while the efficacy of the senior radiologist

was not significantly different from that of the radiologist alone,

which could indicate that the support of the CAD system is more

contributing to the diagnostic effectiveness of junior radiologists.

FNA is often performed because of suspicious nodules in

patients with HT (35). It was found in our study that radiologists

combined with the CAD system, compared with radiologists

alone, resulted in a decreased number of TR4 nodules and an

increased number of TR2 and TR5 nodules. The junior

radiologist, assisted by the CAD system, moved 30 malignant

nodules up one level and 43 benign nodules down one level.
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According to the modified ACR TI-RADS recommendations for

FNA, the rate of unnecessary biopsy rate by junior and senior

radiologists decreased by 10.9% and 7.3%, and the rate of

malignancy in punctured nodules increased by 30.1% and

22.0%, respectively, which were consistent with the results of

several studies (23, 36, 37). Therefore, with the assistance of the

CAD system, radiologists were capable of reducing unnecessary

biopsy of thyroid nodules in the context of HT and improving

the malignancy rate of the nodules.

The present study has also some limitations. First, this study

is a single-center study with a small sample size, and all patients

included in this study were surgical patients, so these limitations

increased the possibility of bias. The second is that all of the
TABLE 6 Quantitative indicators of the two radiologists combined with the CAD system compared with the radiologists alone.

P-value

Sensitivity Specificity AUC

Cutoff value modified TR4

Senior radiologist + CAD 0.6875 0.0001* <0.0001*

Junior radiologist + CAD 0.0352* 0.0001* <0.0001*

Cutoff value modified TR5

Senior radiologist + CAD 0.0018* 0.3750 0.1457

Junior radiologist + CAD <0.0001* 0.1797 <0.0001*

*Represents statistical significance.
fron
TABLE 7 The effectiveness of the CAD system in assisting junior and senior radiologists in FNA.

FNA Malignant rate of biopsy (%) Unnecessary biopsy rate (%) P-value

Benign Malignant

Senior radiologist 20 31 60.8 (31/51) 14.6 (20/137) –

Junior radiologist 28 26 48.2 (26/54) 20.4 (28/137) –

Senior radiologist + CAD 10 48 82.8 (48/58) 7.3 (10/137) 0.026*

Junior radiologist + CAD 13 47 78.3 (47/60) 9.5 (13/137) 0.003*

P-value is the comparison of unnecessary biopsy rates before and after the application of the CAD system.
*Represents statistical significance.
TABLE 5 Quantitative indicators of the two radiologists with different seniority assisted by the CAD system.

Method AUC Accuracy Sensitivity Specificity PPV NPV

Cutoff value modified TR4

Senior radiologist + CAD 0.876 0.891 0.940 0.811 0.888 0.896

Junior radiologist + CAD 0.813 0.839 0.928 0.698 0.830 0.860

Cutoff value modified TR5

Senior radiologist + CAD 0.856 0.861 0.881 0.830 0.892 0.815

Junior radiologist + CAD 0.808 0.803 0.786 0.830 0.880 0.710
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malignant thyroid nodules in this study were papillary

carcinoma, while other pathological types, such as medullary

cancer or lymphoma, need to be investigated. In addition, the

background of nodules with HT is complex, which makes the

automatic identification of nodules difficult, and further

development of a higher-performance CAD system is required.

A multicenter, prospective study exploring the value of deep

learning CAD software in HT with a large sample of different

types of TC is worthy of further development.
5 Conclusion

In conclusion, this study shows that the CAD system based

on deep learning is a non-invasive and effective method to

identify benign and malignant thyroid nodules in the context

of HT. Moreover, radiologists, with the assistance of the CAD

system, can play a role in FNA recommendations and reduce the

rate of unnecessary biopsies, especially for junior radiologists.
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Multitasking dynamic contrast
enhanced magnetic resonance
imaging can accurately
differentiate chronic
pancreatitis from pancreatic
ductal adenocarcinoma

Nan Wang1, Srinivas Gaddam2, Yibin Xie1,
Anthony G. Christodoulou1,3, Chaowei Wu1,3, Sen Ma1,
Zhaoyang Fan1,4, Lixia Wang1, Simon Lo2, Andrew E. Hendifar5,
Stephen J. Pandol2 and Debiao Li1,3*

1Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA,
United States, 2The Karsh Division of Gastroenterology and Hepatology, Cedars Sinai Medical
Center, Los Angeles, CA, United States, 3Bioengineering Department, University of California, Los
Angeles, Los Angeles, CA, United States, 4Department of Radiology, Keck School of Medicine,
University of Southern California, Los Angeles, Los Angeles, CA, United States, 5Samuel Oschin
Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
Background and aims: Accurate differentiation of chronic pancreatitis (CP) and

pancreatic ductal adenocarcinoma (PDAC) is an area of unmet clinical need. In

this study, a novel Multitasking dynamic contrast enhanced (DCE) magnetic

resonance imaging (MRI) technique was used to quantitatively evaluate the

microcirculation properties of pancreas in CP and PDAC and differentiate

between them.

Methods: The Multitasking DCE technique was able to acquire one 3D image per

second during the passage of MRI contrast agent, allowing the quantitative

estimation of microcirculation properties of tissue, including blood flow Fp,

plasma volume fraction vp, transfer constant Ktrans, and extravascular

extracellular volume fraction ve. Receiver operating characteristic (ROC) analysis

was performed to differentiate the CP pancreas, PDAC pancreas, normal control

pancreas, PDAC tumor, PDAC upstream, and PDAC downstream. ROCs from

quantitative analysis and conventional analysis were compared.

Results: Fourteen PDAC patients, 8 CP patients and 20 healthy subjects were

prospectively recruited. The combination of Fp, vp, Ktrans, and ve can

differentiate CP versus PDAC pancreas with good AUC (AUC [95% CI] = 0.821

[0.654 – 0.988]), CP versus normal pancreas with excellent AUC (1.000 [1.000

– 1.000]), PDAC pancreas versus normal pancreas with excellent AUC (1.000

[1.000 – 1.000]), CP versus PDAC tumor with excellent AUC (1.000 [1.000 –

1.000]), CP versus PDAC downstream with excellent AUC (0.917 [0.795 –

1.000]), and CP versus PDAC upstream with fair AUC (0.722 [0.465 – 0.980]).
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This quantitative analysis outperformed conventional analysis in differentiation

of each pair.

Conclusion: Multitasking DCE MRI is a promising clinical tool that is capable of

unbiased quantitative differentiation between CP from PDAC.
KEYWORDS

quantitative imaging, dynamic contrast enhanced magnetic resonance imaging,
microcirculation properties, Multitasking DCE, differential diagnosis of chronic
pancreatitis and pancreatic ductal adenocarcinoma
Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the third most

common cause of cancer-related death in the United States with

a poor 5-year survival rate of 9% (1). Currently the only curative

treatment for PDAC is complete tumor resection, often in

conjugation with adjuvant chemotherapy (2), where an

accurate diagnosis at early stage is a prerequisite. Chronic

pancreatitis is a fibrotic reaction of the pancreatic connective

tissue due to an ongoing inflammation that can damage both

endocrine and exocrine pancreas (3). The most worrisome

complication of CP is the increased risk for developing PDAC,

which can be 2.3 -18.5 folds higher (4–7). On the other hand, 10-

20% of CP cases can be mass forming and mimic PDAC, which

may cause misdiagnosis and overtreatment (8). PDAC is also

likely to be associated with chronic obstructive pancreatitis in

the upstream portion of the pancreas as a result of main

pancreatic ductal obstruction by tumor (9).

Accurate differentiation of PDAC from CP is of great clinical

importance for timely and precise treatment. However, this

continues to be a challenging area due to the shared clinical

signs, radiologic features, and morphologic appearance of the two

diseases (10–13). Conventional imaging techniques including

endoscopic ultrasound (EUS), PET/CT, and MRI cannot

differentiate well between early PDAC and CP as the typical

imaging features of CP (generalized parenchymal glandular

atrophy, diffuse pancreatic calcifications, and dilation of the

main pancreatic duct) can often be seen in PDAC (14, 15),

resulting in reduced diagnostic accuracy. Even a fine needle

biopsy (FNB) can be unreliable in this situation (16–18). This

may result in further delay of diagnosis and treatment of PDAC or

unnecessary surgery and exposure to complications of CP (11, 19).

In recent years, dynamic contrast enhanced (DCE) magnetic

resonance imaging (MRI) has been an emerging tool for the

clinical diagnosis of PDAC. Investigational studies also showed

that DCE MRI may have a promising role in the diagnosis of CP

and the differentiation of CP versus PDAC (20–23). It acquires a

series of T1-weighted images during the injection and passage of
02
159
gadolinium (Gd)-based contrast agent (CA). The changes of the

signal intensity reflect the CA distribution within the tissue and

the underlying microcirculation properties such as tissue blood

flow, microvascular density, permeability, and extravascular

extracellular space distribution. These microcirculation

properties contain crucial information about disease

characteristics, progression, and regression, and can be used for

diagnosis and therapy monitoring (23–25).

However, DCE MRI has yet to fully realize its potential in the

imaging of pancreas due to demanding technical challenges.

Existing techniques cannot achieve adequate coverage and high

spatiotemporal resolution at the same time. In clinical practice, T1-

weighted images are usually acquired for four to six phases during

the CA passage (referred as multi-phaseMRI) (22, 26, 27), and each

phase takes 15-20 seconds. In addition, the presence of respiratory

motion and the need to hold breath makes the time intervals even

larger, which is insufficient to quantify the microcirculation

properties. Consequently, current diagnosis relies only on the

morphological information of the pre- and post-contrast images,

which are subject to coil positioning, and inter-scanner and inter-

reader variability given its qualitative nature.

To overcome these limitations, our research group has

developed a quantitative Multitasking DCE MRI technique

(28) that has shown promise in the characterization of carotid

atherosclerosis (29), PDAC (30), and breast cancer (31).

Specifically for pancreas, this technique allows free-breathing

acquisition, coverage of the entire abdomen, clinically sufficient

spatial resolution, 1-second temporal resolution (one 3D image

per second). With the high temporal resolution, Multitasking

DCE is able to capture the contrast agent kinetics within the

tissues, and thus to quantitatively evaluate the microcirculation

properties. Our prior work has preliminarily demonstrated that

Multitasking DCE MRI can produce high-quality image with

free-breathing acquisition and characterize PDAC tissues (30).

In this study, we aim to quantitatively evaluate the

microcirculation properties of pancreas in CP and PDAC

using Multitasking DCE, and to distinguish them with the

quantitative parameters on an objective basis.
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Materials and methods

Study population

The prospective study was approved by the local

institutional review board and written informed consent was

obtained from all participating subjects before the research

imaging studies. The study was performed from February 2018

to June 2019 with PDAC patients, CP patients, and healthy

volunteers. Among them, nineteen patients with PDAC, which

was confirmed by histopathology obtained by EUS-guided FNB,

were recruited to the study. All the PDAC patients received

clinical CT within 1 week before the research MRI and were

undergoing neoadjuvant chemotherapy at the time of the study.

Patients were excluded for the following reasons: 1) prior

surgical resections of PDAC; 2) intolerance to Gd-based

contrast agent. Eight patients with definitive CP were recruited

from an NIH-sponsored prospective cohort of patients with

pancreatic disease (32). The inclusionary criteria were the

clinical diagnosis of unequivocal CP (Cambridge grade >3).

All these images were reviewed and confirmed to be CP by a

radiologist as part of the PROCEED study (NCT03099850) (32).

Healthy volunteers without a history of pancreas diseases or

family history of pancreatic cancer were recruited as the normal

control group. Subjects with noticeable pancreatic abnormality

were excluded from the final analysis.
MRI experiments

All subjects received the research MRI imaging on a 3-Tesla

clinicalMRI scanner (BiographmMR, SiemensMedical Solutions,

Erlangen, Germany) in head-first supine position with an 18-

channel phase array surface coil. In the imaging session, a

standard-of-care non-contrast protocol was first performed. It

consisted of:
Fron
1) 3D T1-weighted gradient echo with Dixon fat

suppression in axial orientation with parameters: 18-

second breath-holding, flip angle = 9°, field of view

(FOV) = 247 × 380 mm, acquisition matrix = 180 ×

320, slice thickness = 3 mm, number of slices = 72.

2) Multi-slice T2-weighted single-shot turbo spin-echo in

axial and coronal orientations with parameters: 42-

second free-breathing, flip angle = 105°, FOV=226 ×

330 mm, matrix =176 × 256, slice thickness = 5 mm,

slice gap = 1 mm, number of slices = 46.

3) Multi-slice single-shot echo-planar diffusion-weighted

imaging with parameters: 5-min free-breathing,

b-values = 50, 400, and 800 s/mm2, FOV = 306 ×

399 mm; matrix, 132 × 172, slice thickness = 6 mm,

slice gap = 1 mm, number of slices = 50.
tiers in Oncology 03
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4) Multi-slice magnetic resonance cholangiopancreatography

(MRCP): 10-min respiratory-triggering, flip angle = 100°,

FOV = 300 × 300 mm, acquisition matrix = 384 × 384,

slice thickness = 1 mm, number of slices = 80.

5) Multitasking DCE. It is a 10-min free-breathing

acquisition of saturation-prepared gradient echo

sequence with following parameters: saturation

recovery time = 500 ms, flip angle = 10°, field of view

(FOV) = 268 × 380 mm, acquisition matrix = 200 × 320,

slice thickness = 3 mm, number of slices = 120. The Gd-

based contrast agent (Gadavist, 0.1 mmol/kg, Bayer

Schering Pharma) was administrated intravenously 3

minutes into the scan at a rate of 2 mL/s, followed by a

20 mL saline flush at the same rate. The reconstructed

images have a temporal resolution of 1 second.
Detailed imaging parameters for the protocols are

summarized in Table 1.
Multitasking DCE reconstruction and
quantitative DCE modeling

The reconstruction and quantitative analysis of Multitasking

DCE images were processed off-line in MATLAB (R2018a,

Mathworks, MA, USA). The details on the reconstruction have

been described in Wang et al (30). In this work, the 3D

Multitasking DCE images covering the entire abdomen were

reconstructed at 6 respiratory states and the images of end-

expiration were used for subsequent analysis. The reconstructed

spatial resolution is 1.2 × 1.2 × 3.0 mm (3). The reconstructed

temporal resolution is 1 second, leading to 600 dynamic T1 maps

within the 10-minute acquisition.

With the dynamic T1 maps, the CA concentration can be

directly calculated without approximation using the equation:

Ct(td) =
R1,t(td) − R1(0)

g
, (1)

where Ct is the CA concentration in a certain tissue (any type

of tissue within the FOV), td is the DCE time points from 0 to 10

minutes at an interval of 1 second, R1,t is the relaxation rate (1/

T1,t) of the tissue, and g= 4.0 L·mmol-1·s-1 is the relaxivity rate of

Gadavist. The CA concentration in the arterial plasma Cp,

termed as arterial input function (AIF), can also be derived

using Equation 1.

With the CA concentration of plasma Cp and of the target

tissue Ct, the two-compartment exchange model (33) was used

to describe the contrast agent activities and estimate the

microcirculation parameters including tissue plasma flow Fp,

fractional plasma volume vp, transfer constant Ktrans, and

extravascular extracellular faction ve. The microcirculation

parameters were derived using following equations (31):
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Ct(td) =   Fp · Cp(td)* Me−atd + (1 −M)e−btd
� �

, (2)

vp =
Fp

Ma + (1 −M)b
,     Ktrans = Fp

M(1 −M)(a − b)2

Ma2 + (1 −M)b2
,     ve =   vp

M(1 −M)(a − b)2

ab
, (3)

where * denotes convolution, and M, a, and b are

intermediate variables. The plasma flow Fp and three

intermediate parameters M, a, and b are first fitted from Cp

and Ct using Equation 2. The vp, K
trans, and ve are subsequently

calculated using Equation 3.
Pancreas segmentation and
image analysis

A radiologist (LW), who has 11-year clinical experience in

the reading of abdominal MRIs and was blinded to the

histopathological diagnosis, evaluated all the MRI images. The

margin of the pancreas for all subjects were drawn manually on

the Multitasking DCE images. For PDAC images, the tumor

boundary was identified by cross-referencing the non-contrast

MRI protocols of the same imaging session and the clinical

contrast-enhanced CT images acquired within 1 week before the

study. The region of interest (ROI) of PDAC tumor was then

defined on multiple slices within the boundary of tumor

avoiding edges and vessels. The ROI of pancreas upstream and

downstream were defined subsequently, if applicable. The ROI

of the PDAC pancreas was a combination of the ROIs of PDAC

tumor, upstream (if any), and downstream (if any). For CP and

normal control pancreas, the ROI was maximized within the

pancreas margin. As a summary, six types of tissues were

defined: 1) PDAC tumor, 2) PDAC upstream, 3) PDAC

downstream, 4) PDAC pancreas, 5) CP pancreas, and 6)

normal control pancreas. The microcirculation parameters
Frontiers in Oncology 04
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reported for each type of tissue for each case were the average

of all voxels within the ROI.
Statistical analysis

Statistical analysis was conducted in SPSS (Version 24, IBM,

NY, USA). The descriptive statistics including mean and

standard deviation (SD) were obtained for six type of tissues:

PDAC pancreas, PDAC tumor, PDAC upstream, PDAC

downstream, CP pancreas, and normal control pancreas.

Analysis of variance (ANOVA) with Bonferroni correction

was used to assess the multi-group comparison. The value of

P< 0.05 was considered statistically significant. The performance

of the microcirculation parameters in the differentiation of the

tissues were assessed with receiver operating characteristic

(ROC) analysis. The sensitivity, specificity, and area under the

ROC curve (AUC) of each single microcirculation parameter

and combination of all parameters were evaluated. An AUC of

0.5 to 0.6 suggests no discrimination, 0.6 to 0.7 is considered

poor, 0.7 to 0.8 is fair, 0.8 to 0.9 is good, and > 0.9 is

excellent (34).
Comparison of quantitative DCE analysis
versus conventional time-signal intensity
curve analysis

For clinical multi-phase MRI, quantitative microcirculation

parameters are unavailable due to the small number of DCE

phases acquired and the low temporal resolution. Under this

circumstance, time-signal intensity curve (TIC) approach serves

as an alternative way to analyze the CA dynamics (22). It

classifies the shape of the time-signal intensity curves into
TABLE 1 List of imaging parameters.

parameters T1W GRE T2W HASTE SS-EPI DWI MRCP Multitasking DCE

Slice thickness (mm) 3 5 6 1 3

Slice resolution 50% N/A N/A N/A 50%

Gap (mm) N/A 1 1 0 N/A

Number of slices acquired 72 86 50 80 120

TR (ms) 4.15 1000 4500 8903 5.60

TE (ms) 1.39/2.65(OP/IP) 99 47 701 2.45

Number of averages 1 1 6 1 1

FOV (mm2) 247×380 226×330 306×339 300×300 268×380

Acquisition matrix 180×320 176×256 132×172 384×384 200×320

Flip angle (◦) 9 105 90 100 10

iPAT factor 3 2 2 2 N/A

Scan time 18-second breath
hold

42-second free-breathing 5-min free-breathing 10-min resp-triggered 10-min free-breathing
T1W GRE, T1-weighted gradient echo; T2W HASTE, T2-weighted single-shot turbo spin-echo; SS-EPI-DWI, single-shot echo-planar diffusion weighted imaging; MRCP, magnetic
resonance cholangiopancreatography; N/A, Not applicable.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1007134
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.1007134
several categories based on the time to the peak and the wash-

out patterns, as shown in Supplementary Figure S1 in the

supplementary materials. The enhancement patterns are useful

to differentiate pathological tissues from normal. Zhang et al

(22) reported that conventional multi-phase MRI with TIC

analysis was able to differentiate mass-forming pancreatitis

from PDAC. To compare the differentiation ability of the

quantitative DCE analysis versus the TIC analysis, the high-

temporal-resolution Multitasking DCE images were averaged to

a temporal resolution of 18-second per phase and 6 key phases

were chosen for analysis: pre-contrast, 18-second, 45-second,

75-second, 2.5-minute, 4-min post-contrast. The pattern of the

signal intensity curves were classified into 5 types (18), as

illustrated in Supplementary Figure S1A in the supplementary

material: type I, a rapid rise to the peak at 18 s after injection;

type II to V, a slower rise to a peak at 45s, 75s, 2.5 or 4 min after

the injection, respectively. For each type of curve, two subtypes

were defined based on the wash-out pattern (Supplementary

Figure S1B): subtype-a, more than 10% signal decrease after

reaching the peak; subtype-b, less than 10% signal decrease after

the peak. Each tissue of each case was assigned to a category and

the ROC analysis was performed to differentiate the tissues based

on their categories. Subsequently, a significance test was

performed to compare the AUC values produced by the ROC

analysis using TIC versus using quantitative DCE approach

according to DeLong test using MedCalc (MedCalc Software

Ltd, Belgium).
Results

Demographics

The demographics of this study are summarized in Figure 1.

Among the 19 PDAC patients, two of them had undergone

surgery on the pancreas in the past. Additionally, two others
Frontiers in Oncology 05
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were not able to receive MRI contrast agent. Finally, another one

patient had excess bulk motion during the study, yielding

unreadable MR images. These patients were excluded, and the

final group included 14 PDAC patients (51 to 77 years old, 7

females). The mean size of the tumors, defined as the largest

diameter in axial CT images according to RECIST 1.1 criteria31,

was 3.9 cm, ranging from 1.6 cm to 6.7 cm. Six tumors were in

the pancreatic head, three in the pancreatic neck, three in the

pancreatic body, and two in the pancreatic tail. The PDAC

downstream was measurable in 10 cases, while the PDAC

upstream was measurable in 9 cases. A total of 8 CP patients

(30 to 72 years old, 4 females) underwent MRI imaging. Upon

review of the images, all of them met the Cambridge criteria

for CP. In addition, a total of 20 healthy subjects (23 to 60 years

old, 9 females) were included as normal control group in

the study.
Quantifications of microcirculation
parameters for different tissues

The microcirculation parameters were estimated

successfully for all the involved subjects. Figure 2 (A) shows

the example microcirculation parametric maps from a 72-year-

old PDAC patient with the tumor located at the neck of the

pancreas, as labeled by red solid boundary on the gray-scale

image. The CA concentration curve of PDAC tumor shows

slower and progressive enhancement, while the concentration

curve of downstream pancreas showed faster wash-in and

moderate wash-out. Reduced Fp, vp, K
trans, and increased ve

was observed in PDAC tumor. Figure 2B is an example from a

65-year-old patient with CP, labeled by yellow dashed boundary.

An example of normal control pancreas from a 32-year-old

healthy subject is shown in Figure 2C.

The mean and standard deviation measurement of Fp, vp,

Ktrans, and ve for the six types of tissues are displayed in the bar
FIGURE 1

Flow chart for subject recruitment and grouping.
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graphs in Figure 3. The detailed mean values and standard

deviations of each microcirculation parameter for each tissue are

displayed in Table 2. The ANOVA test with Bonferroni

correction of each microcirculation parameters between some

pairs of tissues are listed in Table 3. The former half of Table 3

shows the comparison of each pair of CP, PDAC pancreas, and

normal control pancreas. With Bonferroni correction,

significant differences were observed in Fp for CP versus

PDAC pancreas (P = 0.015), and in Fp and ve for CP versus

normal control (P = 0.012,<0.001, respectively) and PDAC

pancreas versus normal control (P<0.001,<0.001, respectively).

The latter half of Table 3 compares the measurements between

CP versus PDAC tumor, downstream, and upstream. Fp, K
trans,

and ve showed significant differences between CP and PDAC

tumor (P<0.001, = 0.012,<0.001, respectively); ve was

significantly different between CP and PDAC downstream
Frontiers in Oncology 06
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(P =0.024); None of the microcirculation parameters showed

significant differences between CP and PDAC upstream.

Prediction of type of tissue using
microcirculation parameters

The ROC analysis was successfully carried out to evaluate the

performance of microcirculation parameters in differentiating CP

versus other tissues using either each single parameter or a

combination of the four parameters. In the differentiation of CP

and PDAC pancreas (Figure 4A, Fp showed the highest accuracy

(AUC [95% CI] = 0.795 [0.604 - 0.985]) as a single parameter; the

combination of the four parameters produced improved

differentiation ability with good AUC (0.821 [0.654 – 0.988]). In

the differentiation of CP and normal control pancreas (Figure 4B),

ve showed the highest AUC (0.981 [0.938 – 1.000]) when using
B

C

A

FIGURE 2

Example microcirculation parametric maps. (A) Example maps from 72-year-old patient with PDAC, whose tumor is located at the neck of
pancreas. First panel shows a gray-scale Multitasking image at the arterial phase at the center slice of the tumor. The tumor was labeled by the
red solid boundary. Downstream was visible in this slice. The second panel shows estimated microcirculation parametric maps. PDAC tumor
showed lower Fp, lower vp, and elevated ve compared to downstream. The third panel shows the averaged contrast agent concentration curves
for blood, PDAC tumor, and PDAC downstream. (B) Example maps from a 65-year-old patient with CP. The pancreas was labeled by the yellow
dashed boundary. (C) Representative maps of a 32-year-old subject in the normal control group.
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FIGURE 3

Bar graphs for the mean and standard deviation (error bar on top of each bar) for Fp, vp, K
trans, and ve for all types of tissues (normal, normal

control pancreas; PDAC, PDAC pancreas; CP, CP pancreas).
TABLE 2 The mean and standard deviation of Fp, vp, K
trans, and ve for the six types of tissues.

Fp (mL/min/mL) vp Ktrans (min-1) ve

Control 3.39±1.23 0.14±0.09 0.29 ± 0.43 0.10±0.07

PDAC whole 1.24±0.89 0.11±0.04 0.23 ± 0.16 0.41±0.11

CP 2.13±0.83 0.13±0.06 0.40 ± 0.35 0.38±0.12

PDAC mass 0.72±0.04 0.09±0.05 0.14 ± 0.06 0.61±0.11

Downstream 1.71±1.21 0.15±0.06 0.24 ± 0.13 0.25±0.12

Upstream 1.34±1.13 0.12±0.05 0.35 ± 0.35 0.40±0.18
Frontiers in Oncology
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TABLE 3 The P value between some pairs of the tissues using one-way ANOVA analysis.

Comparison pairs Fp (mL/min/mL) vp Ktrans (min-1) ve

CP PDAC pancreas 0.015* 0.327 0.136 0.583

CP Normal control pancreas 0.012* 0.827 0.561 <0.001*

PDAC pancreas Normal control pancreas <0.001* 0.276 0.601 <0.001*

CP PDAC tumor <0.001* 0.093 0.012* <0.001*

CP PDAC downstream 0.383 0.454 0.175 0.024*

CP PDAC upstream 0.125 0.732 0.795 0.830
e

* indicate statistical significance after Bonferroni correction.
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single parameter; the combination of the four parameters can

differentiate all the cases of current study cohort with AUC =

1.000 [1.000 – 1.000]. In the differentiation of PDAC pancreas and

normal control pancreas (Figure 4C), ve showed the highest AUC

(0.993 [0.974 – 1.000]) for single parameter; the combination of

the four parameters can differentiate all the cases with AUC =

1.000 [1.000 – 1.000]. For CP versus PDAC tumor (Figure 4D), Fp
(0.929 [0.824 – 1.000]), Ktrans (0.920 [0.806 – 1.000]), and ve (0.920

[0.805 – 1.000]) showed excellent differentiation ability when

using a single parameter; the combination of all the four

parameters can differentiate all the cases with AUC = 1.000

[1.000 – 1.000]. For CP versus PDAC downstream (Figure 4E),

ve showed the highest AUC for single parameter (0.781 [0.569 –

0.994]), while the combination of the four parameters showed

increased accuracy with excellent AUC (0.917 [0.795 – 1.000]).

For CP versus upstream (Figure 4F), Fp showed the fair AUC for

single parameter (0.792 [0.558 – 1.000]), and the combination of

the four parameters showed slightly reduced but still fair accuracy

(0.722 [0.465 – 0.980]).
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Prediction of type of tissue using
conventional TIC analysis

For TIC analysis, the number of cases in each category for

each type of tissue are summarized in Table 4. CP demonstrated

the TIC of type II (n = 2), type III (n = 5), and type IV (n = 1); the

PDAC pancreas demonstrated type II (n = 3), type III (n = 4),

and type IV (n = 7), which were within the same range of CP;

PDAC tumor demonstrated type III (n = 3), type IV (n = 4), and

type V (n = 7), representing a slower enhancement. Figure 5

displays the ROC plots to differentiate the CP versus PDAC

pancreas (AUC [95% CI] = 0.629 [0.400 – 0.823], poor), CP

versus normal control pancreas (0.984 [0.944 – 1.000],

excellent), PDAC pancreas versus normal control pancreas

(0.991 [0.968 – 1.000], excellent), CP versus PDAC tumor

(0.915 [0.789 – 1.000], excellent), CP versus downstream

(0.725 [0.468 – 0.905], fair), and CP versus upstream (0.625

[0.342 – 0.908], poor) with the sensitivity, specificity, and AUC

listed under each plot.
B C

D E F

A

FIGURE 4

ROC curves and the sensitivity (SEN), specificity (SPE), and AUC to differentiate between (A) CP (N = 8) versus PDAC pancreas (N = 14), (B) CP (N = 8)
versus normal control pancreas (N = 20), (C) PDAC pancreas (N = 14) versus normal control pancreas (N = 20), (D) CP (N = 8) versus PDAC tumor (N =
14), (E) CP (N = 8) versus PDAC downstream (N = 10), and (F) CP (N = 8) versus PDAC upstream (N = 9) using each single microcirculation parameter
or the combination of all the four parameters. SEN, sensitivity; SPE, specificity; AUC, area under ROC curve.
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Comparison of quantitative DCE analysis
and conventional TIC analysis

Table 5 lists the AUC fromTIC, the highest AUC using a single

microcirculation parameter from quantitative DCE, the AUC of

combining all microcirculation parameters for the differentiation of

each pair, and the P values using DeLong test to compare the

performance of TIC analysis and quantitative DCE analysis. In

most pairs, a single microcirculation parameter from quantitative

DCE approach produced higher AUC than conventional TIC

approach (except in the differentiation of CP versus normal

control, where the AUC for TIC is 0.984 and the AUC from a
Frontiers in Oncology 09
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single microcirculation parameter is 0.981). The combination of

microcirculation parameters demonstrated higher AUC in all pairs

when compared to the conventional TIC approach. The DeLong

test indicated that quantitative DCE analysis performed

significantly better in differentiating CP versus PDAC pancreas

(P = 0.032) and CP versus PDAC downstream (P = 0.042).
Discussions

The differential diagnosis between PDAC and CP remains an

unmet clinical need. In terms of clinical factors, both diseases
TABLE 4 TIC category for each type of tissue.

Category PDAC whole CP PDAC mass Down-stream Upstream Control

I a 0 0 0 2 1 10

I b 0 0 0 0 0 5

II a 1 1 0 3 0 5

II b 2 1 0 0 1 0

III a 3 3 0 5 1 0

III b 1 2 3 0 2 0

IV a 4 0 3 0 4 0

IV b 3 1 1 0 0 0

V 0 0 7 0 0 0
fron
TIC, time-signal intensity curve.
B C

D E F

A

FIGURE 5

ROC curves and the sensitivity, specificity, and AUC using TIC analysis to differentiate between (A) CP versus PDAC pancreas, (B) CP versus
normal control pancreas, (C) PDAC pancreas versus normal control pancreas, (D) CP versus PDAC tumor, (E) CP versus PDAC downstream, and
(F) CP versus PDAC upstream. SEN, sensitivity; SPE, specificity; AUC, area under ROC curve; TIC, time-signal intensity curve.
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can have similar background histories such a history of alcohol

and tobacco use, and similar clinical signs such as weight loss,

chronic abdominal pain, anorexia, and diabetes (8). For blood

test, the best-established biomarker for PDAC diagnosis is

carbohydrate antigen 19-9 (CA19-9), a Lewis antigen of the

MUC1 protein class. Unfortunately, CA19-9 can also be elevated

in patients with CP, yielding a distinction no better than 65%

(35). Imaging is the most common approach to diagnose these

diseases. Contrast-enhanced CT and multi-phasic contrast-

enhanced MRI have shown high sensitivity and high specificity

for the diagnosis of CP or PDAC solely (36, 37). However, the

shared imaging findings make the differential diagnosis a

complicated issue. The common imaging features include

generalized parenchymal glandular atrophy, diffuse pancreatic

calcifications, dilation of the main pancreatic duct, hypo-

attenuation on contrast-enhanced CT (38), and hypo-

enhancement on multi-phasic contrast-enhanced MRI. EUS

and EUS-guided fine needle aspiration (FNA) have high

sensitivity and specificity in the detection of PDAC and CP

(39). However, studies have shown that the sensitivity drops

significantly to only 50–75% in patients with chronic

pancreatitis (40, 41) due to shared pathological features (17).

In recent years, advanced techniques have been developed to

improve the diagnosis and differentiation of PDAC and CP. New

blood biomarkers including plasma suPAR (42) and a bunch of

metabolic markers (43) have shown promises in the

differentiation of the two diseases. Perfusion CT has been used

for the diagnosis and differentiation of PDAC (44) and CP (45,

46) with positive results, but remains in the research phase for

pancreas due to higher radiation dose and limited field of view.

In MRI, non-contrast techniques including diffusion-weighted

imaging and T1 mapping, and contrast-enhanced techniques

with more dynamic phases and TIC analysis (22) also show

promising differential ability of the two diseases (12, 45). These

new techniques are non-invasive approaches with clinical

promises, but still need to be validated on larger cohorts

of patients.
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In this work, we investigated the differential ability of tissue

microcirculation parameters estimated from Multitasking DCE

technique. The microcirculation properties carry crucial

information about disease characteristics, progression, and

regression. The alteration of microcirculation properties

usually precedes morphological changes (47–49), providing a

pathway for early detection, staging, and treatment monitoring.

DCE MRI has the potential to capture the microcirculation

properties by tracking the contrast agent kinetics within the

tissues, but has been limited by the demanding sampling

requirements. The pathological lesions usually bear high-level

heterogeneity within the structure, which requires adequate

coverage and high spatial resolution to capture the spatial

variation. On the other hand, high temporal resolution is

required to accurately track the kinetics of contrast agent

within the tissues. Previous studies have demonstrated that a

temporal resolution of least 10 seconds is necessary to depict

tumor enhancement dynamics (50), and 1-3 seconds to capture

the dynamics of AIF (51, 52). Furthermore, respiratory motion

remains a major challenge and can further degrade the image

quality for pancreas imaging.

The recently-proposed Multitasking DCE technique is a

promising solution to resolve the abovementioned limitations

(28–31, 53–55). The technique is capable of resolving respiratory

motion, achieving a free-breathing acquisition for 10-minutes to

capture the contrast agent kinetics. It enables entire-abdomen

coverage, clinical-sufficient spatial resolution, and 1-second

temporal resolution simultaneously, allowing for the capture of

spatial variation and temporal kinetics. Consequently,

quantitative DCE analysis can be performed to estimate the

microcirculation parameters. In this work, the two-

compartment exchange model was used, and four independent

microcirculation parameters were estimated: Fp, representing

tissue blood flow, vp, correlated with the microvascular density,

Ktrans, which has a joint effect of blood flow and permeability-

surface area product, and ve, which is correlated with fibrosis

content. Compared with normal control pancreas, the PDAC
TABLE 5 The comparison of the differentiation ability of TIC approach versus quantitative DCE approach.

Pairs AUC of
TIC

Highest AUC of a single microcirculation
parameter

AUC of combined microcirculation
parameters

P
value

CP PDAC
pancreas

0.629 0.795 0.821 0.032*

CP Normal
control

0.984 0.981 1.000 0.353

PDAC
pancreas

Normal
control

0.991 0.993 1.000 0.353

CP PDAC tumor 0.915 0.920 1.000 0.179

CP Downstream 0.725 0.781 0.917 0.042*

CP Upstream 0.625 0.792 0.722 0.380
frontie
For most pairs, the highest AUC produced by a single microcirculation parameter is higher than the AUC of TIC. The combination of the four microcirculation parameters outperforms the
TIC analysis for all the pairs.
* indicates statistical significance.
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tumor, PDAC pancreas and CP all showed significantly lower Fp
(P<0.001,<0.001, 0.012, respectively) and higher ve (P<0.001,

<0.001,<0.001, respectively), consistent with their pathological

characteristics including reduced blood flow and high

fibrosis replacement.

These microcirculation parameters showed strong ability in

the differentiation of CP versus PDAC tumor. Fp, K
trans, and ve

demonstrated significant difference between CP and PDAC

tumor (P<0.001, 0.012,<0.001, respectively); the AUC using

these three parameters individually to differentiate CP versus

PDAC tumor are all above 0.9 (0.929, 0.920, 0.920, respectively),

representing excellent differential ability. The non-tumoral part

of PDAC is frequently associated with secondary inflammatory

changes (11, 56). This associated pancreatitis happens more

frequently in the upstream of PDAC due to the obstruction of

pancreatic duct (57, 58). The differential ability of the

microcirculation parameter between CP and non-tumoral

tissues in PDAC were also evaluated. For CP versus PDAC

downstream, ve showed significant difference (P = 0.024) and

produced the highest AUC (0.781) with a single parameter; the

combination of all the four parameters demonstrated excellent

differential ability with an AUC of 0.971. For CP versus PDAC

upstream, Fp showed a visible reduction in the upstream as

displayed in Figure 3, but none of the microcirculation

parameters had significant difference between the two tissues.

A major reason could be the large standard deviation from the

small sample size and varied diseases grade or severity. The ROC

analysis showed a fair AUC of 0.792 using Fp and 0.722 when

combining of all the four parameters. These results indicate that

the microcirculation parameters, especially Fp, has a great

potential to differentiate CP with PDAC upstream.

Furthermore, the evaluation of differential ability between

CP and whole PDAC pancreas were performed. Fp was

significantly different between CP and PDAC pancreas (P =

0.015) and showed a fair and close to good AUC of 0.795.

Combing of all parameters presented a good differentiation with

an AUC of 0.821. The ability to differentiate CP versus whole

PDAC pancreas has great utility in clinical context. It provides

the possibility to identify patients with PDAC without the

accurate localization of tumor.

To demonstrate the advantages of the quantitative

Multitasking DCE technique, the comparison with the

conventional TIC approach was also performed. The TIC

approach showed excellent accuracy to differentiate CP versus

PDAC tumor (AUC = 0.915), CP versus normal control

pancreas (AUC = 0.984), and PDAC pancreas versus normal

control pancreas (AUC = 0.991). These results are comparable to

the highest AUCs produced by a single microcirculation

parameter but lower than the AUCs from the combination of

all microcirculation parameters. For CP versus downstream, TIC

produced fair accuracy with AUC of 0.725, while the

microcirculation parameters showed excellent differential

ability with AUC of 0.917. For CP versus upstream, TIC
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produced poor differentiation ability with AUC of 0.625,

perhaps due to the similar enhancement pattern of CP and

PDAC upstream with associated pancreatitis. The quantitative

DCE approach, on the other hand, can capture more dynamic

information and improve the differentiation ability to an AUC of

0.792. For CP versus PDAC pancreas, TIC performed poorly

with AUC of 0.629. while quantitative DCE approach presented

a good differentiation (AUC = 0.821) when using all

microcirculation parameters. The comparison demonstrated

that Multitasking DCE with quantitative DCE analysis

outperformed the conventional TIC approach and can

potentially improve the differentiation between CP

versus PDAC.

Another intriguing potential of the quantitative Multitasking

DCE technique is to evaluate and predict the treatment outcome

of PDAC and CP (24, 59, 60). Most of the therapies affect tumor

microvasculature and thus the microcirculation properties,

altering tumor blood flow, microvascular density, and

extravascular extracellular distribution. By identifying the

changes in microcirculation properties with quantitative

Multitasking DCE, there is a great potential to predict the

treatment effect at early stage and individualize the

therapy regimen.

Our study has several limitations. First, the sample sizes for

all groups were relatively small, which may affect the statistical

outcome. The ability to differentiate CP versus PDAC of

Multitasking DCE need to be validated on larger patient

cohort. Second, the PDAC and CP groups included a variety

of tumor stages or disease severity. Sub-group analysis based on

tumor grade or disease severity was not possible due to the small

sample size. This variation can be a major factor contributing to

the wide standard deviation of the microcirculation parameters.

Third, all the PDAC patients had undergone neoadjuvant

chemotherapy at the time of the study, which may change the

tissues properties. Future studies on treatment-naïve PDAC

patients will be performed. Finally, the resection specimens

were not available in this pilot study. The correlation between

the microcirculation parameters and the histological markers

including the microvascular density and fibrosis were not

accessible in this work. With the promising preliminary

results, future studies with the correlation between

pathological details and imaging parameters will be performed

on untreated PDAC and CP patients.
Conclusion

A novel Multitasking DCE MRI technique with quantitative

analysis of microcirculation parameters was performed to

differentiate PDAC and CP. The combination of the

microcirculation parameters showed strong ability to different

CP from normal control pancreas, PDAC pancreas, PDAC

tumor, PDAC downstream, and PDAC upstream, and superior
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performance compared to conventional TIC analysis approach.

Multitasking DCE appears to be a promising clinical tool for the

differentiation of CP from PDAC on a quantitative and

objective basis.
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3. Birgin E, Hablawetz P, Téoule P, Rückert F, Wilhelm TJ. Chronic pancreatitis
and resectable synchronous pancreatic carcinoma: A survival analysis.
Pancreatology (2018) 18:394–8. doi: 10.1016/j.pan.2018.04.009

4. Hao L, Zeng XP, Xin L, Wang D, Pan J, Bi YW, et al. Incidence of and risk
factors for pancreatic cancer in chronic pancreatitis: A cohort of 1656 patients.
Digestive Liver Dis (2017) 49:1249–56. doi: 10.1016/j.dld.2017.07.001

5. Kirkegård J, Mortensen FV, Cronin-Fenton D. Chronic pancreatitis and
pancreatic cancer risk: a systematic review and meta-analysis. Off J Am Coll
Gastroenterol ACG (2017) 112:1366–72. doi: 10.1038/ajg.2017.218

6. Gandhi S, de la Fuente J, Murad MH, Majumder S. Chronic pancreatitis is a
risk factor for pancreatic cancer, and incidence increases with duration of disease:
A systematic review and meta-analysis. Clin Transl Gastroenterol (2022) 13. doi:
10.14309/ctg.0000000000000463

7. Narkhede RA, Desai GS, Prasad PP, Wagle PK. Diagnosis and management
of pancreatic adenocarcinoma in the background of chronic pancreatitis: Core
issues. Digestive Dis (2019) 37:315–24. doi: 10.1159/000496507

8. Elsherif SB, Virarkar M, Javadi S, Ibarra-Rovira JJ, Tamm EP, Bhosale PR.
Pancreatitis and PDAC: association and differentiation. Abdominal Radiol (2020)
45:1324–37. doi: 10.1007/s00261-019-02292-w
9. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet (2004)
363:1049–57. doi: 10.1016/S0140-6736(04)15841-8

10. Choi SY, Kim SH, Kang TW, Song KD, Park HJ, Choi YH. Differentiating
mass-forming autoimmune pancreatitis from pancreatic ductal adenocarcinoma
on the basis of contrast-enhanced MRI and DWI findings. Am J Roentgenol (2016)
206:291–300. doi: 10.2214/AJR.15.14974

11. van Gulik TM, Moojen TM, Van Geenen R, Obertop H, Gouma DJ, Rauws
EAJ. Differential diagnosis of focal pancreatitis and pancreatic cancer. Ann Oncol
(1999) 10:S85–8. doi: 10.1093/annonc/10.suppl_4.S85

12. Wang L, Gaddam S, Wang N, Xie Y, Deng Z, Zhou Z, et al. Multiparametric
mapping magnetic resonance imaging of pancreatic disease. Front Physiol (2020)
11:8. doi: 10.3389/fphys.2020.00008

13. Cruz-Monserrate Z, Gumpper K, Kaul S, Badi N, Terhorst S, Dubay K, et al.
Delayed processing of secretin-induced pancreas fluid influences the quality and
integrity of proteins and nucleic acids. Pancreas (2021) 50:17–28. doi: 10.1097/
MPA.0000000000001717

14. Krishna NB, Mehra M, Reddy A. V & agarwal, b. EUS/EUS-FNA for
suspected pancreatic cancer: influence of chronic pancreatitis and clinical
presentation with or without obstructive jaundice on performance
characteristics. Gastrointest Endosc (2009) 70:70–9. doi: 10.1016/j.gie.2008.
10.030

15. Kim T, Murakami T, Takamura M, Hori M, Takahashi S, Nakamori S, et al.
Pancreatic mass due to chronic pancreatitis: Correlation of CT and MR imaging
features with pathologic findings. Am J Roentgenol (2001) 177:367–71. doi:
10.2214/ajr.177.2.1770367
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.1007134/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.1007134/full#supplementary-material
https://doi.org/10.3322/caac.21590
https://doi.org/10.1007/s00261-010-9633-5
https://doi.org/10.1016/j.pan.2018.04.009
https://doi.org/10.1016/j.dld.2017.07.001
https://doi.org/10.1038/ajg.2017.218
https://doi.org/10.14309/ctg.0000000000000463
https://doi.org/10.1159/000496507
https://doi.org/10.1007/s00261-019-02292-w
https://doi.org/10.1016/S0140-6736(04)15841-8
https://doi.org/10.2214/AJR.15.14974
https://doi.org/10.1093/annonc/10.suppl_4.S85
https://doi.org/10.3389/fphys.2020.00008
https://doi.org/10.1097/MPA.0000000000001717
https://doi.org/10.1097/MPA.0000000000001717
https://doi.org/10.1016/j.gie.2008.10.030
https://doi.org/10.1016/j.gie.2008.10.030
https://doi.org/10.2214/ajr.177.2.1770367
https://doi.org/10.3389/fonc.2022.1007134
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.1007134
16. Saraswat M, Joenväärä S, Seppänen H, Mustonen H, Haglund C, Renkonen
R. Comparative proteomic profiling of the serum differentiates pancreatic cancer
from chronic pancreatitis. Cancer Med (2017) 6:1738–51. doi: 10.1002/cam4.1107

17. Klöppel G, Adsay NV. Chronic pancreatitis and the differential diagnosis versus
pancreatic cancer. Arch Pathol Lab Med (2009) 133:382–7. doi: 10.5858/133.3.382

18. Bang SJ, Kim MH, Kim DH, Lee TY, Kwon S, Oh HC, et al. Is pancreatic
core biopsy sufficient to diagnose autoimmune chronic pancreatitis? Pancreas
(2008) 36:84–9. doi: 10.1097/mpa.0b013e318135483d

19. Munigala S, Kanwal F, Xian H, Agarwal B. New diagnosis of chronic
pancreatitis: Risk of missing an underlying pancreatic cancer. Off J Am Coll
Gastroenterol ACG (2014) 109:1824–30. doi: 10.1038/ajg.2014.318

20. Coenegrachts K, Van Steenbergen W, De Keyzer F, Vanbeckevoort D, Bielen D,
Chen F, et al. Dynamic contrast-enhanced MRI of the pancreas: initial results in healthy
volunteers and patients with chronic pancreatitis. J Magnetic Resonance Imaging: Off J
Int Soc Magnetic Resonance Med (2004) 20:990–7. doi: 10.1002/jmri.20212

21. Kim JK, Altun E, Elias Jr J, Pamuklar E, Rivero H, Semelka RC. Focal
pancreatic mass: Distinction of pancreatic cancer from chronic pancreatitis using
gadolinium-enhanced 3D-gradient-echo MRI. J Magnetic Resonance Imaging: Off J
Int Soc Magnetic Resonance Med (2007) 26:313–22. doi: 10.1002/jmri.21010

22. Zhang TT, Wang L, Liu HH, Zhang CY, Li XM, Lu JP, et al. Differentiation of
pancreatic carcinoma and mass-forming focal pancreatitis: qualitative and quantitative
assessment by dynamic contrast-enhanced MRI combined with diffusion-weighted
imaging. Oncotarget (2017) 8:1744. doi: 10.18632/oncotarget.12120

23. Kim JH, Lee JM, Park JH, Kim SC, Joo I, Han JK, et al. Solid pancreatic
lesions: characterization by using timing bolus dynamic contrast-enhanced MR
imaging assessment–a preliminary study. Radiology (2013) 266:185–96. doi:
10.1148/radiol.12120111

24. Akisik MF, Sandrasegaran K, Bu G, Lin C, Hutchins GD, Chiorean EG.
Pancreatic cancer: utility of dynamic contrast-enhanced MR imaging in assessment of
antiangiogenic therapy. Radiology (2010) 256:441–9. doi: 10.1148/radiol.10091733

25. Bali MA, Metens T, Denolin V, Delhaye M, Demetter P, Closset J, et al.
Tumoral and nontumoral pancreas: Correlation between quantitative dynamic
contrast-enhanced MR imaging and histopathologic parameters. Radiology (2011)
261:456–66. doi: 10.1148/radiol.11103515

26. Koelblinger C, Ba-Ssalamah A, Goetzinger P, Puchner S, Weber M, Sahora
K, et al. Gadobenate dimeglumine–enhanced 3.0-TMR imaging versus multiphasic
64–detector row CT: prospective evaluation in patients suspected of having
pancreatic cancer. Radiology (2011) 259:757–66. doi: 10.1148/radiol.11101189

27. Lee ES, Lee JM. Imaging diagnosis of pancreatic cancer: a state-of-the-art
review. World J gastroenterol: WJG (2014) 20:7864. doi: 10.3748/wjg.v20.i24.7864

28. Christodoulou AG, Shaw JL, Nguyen C, Yang Q, Xie Y, Wang N, et al.
Magnetic resonance multitasking for motion-resolved quantitative cardiovascular
imaging. Nat BioMed Eng (2018) 2:215–26. doi: 10.1038/s41551-018-0217-y

29. Wang N, Christodoulou AG, Xie Y, Wang Z, Deng Z, Zhou B, et al.
Quantitative 3D dynamic contrast-enhanced (DCE) MR imaging of carotid vessel
wall by fast T1 mapping using multitasking. Magn Reson Med (2019) 81:2302–14.
doi: 10.1002/mrm.27553

30. Wang N, Gaddam S, Wang L, Xie Y, Fan Z, Yang W, et al. Six-dimensional
quantitative DCE MRmultitasking of the entire abdomen: Method and application
to pancreatic ductal adenocarcinoma. Magn Reson Med (2020) 84:928–48. doi:
10.1002/mrm.28167

31. Wang N, Xie Y, Fan Z, Ma S, Saouaf R, Guo Y, et al. Five-dimensional
quantitative low-dose multitasking dynamic contrast-enhanced MRI: Preliminary
study on breast cancer.Magn Reson Med (2021) 85:3096–111. doi: 10.1002/mrm.28633

32. Yadav D, Park WG, Fogel EL, Li L, Chari ST, Feng Z, et al. PROspective
evaluation of chronic pancreatitis for EpidEmiologic and translational StuDies
(PROCEED): Rationale and study design from the consortium for the study of
chronic pancreatitis, diabetes, and pancreatic cancer. Pancreas (2018) 47:1229. doi:
10.1097/MPA.0000000000001170

33. Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced
MRI. NMR BioMed (2013) 26:1004–27. doi: 10.1002/nbm.2940

34. Mandrekar JN. Receiver operating characteristic curve in diagnostic test
assessment. J Thorac Oncol (2010) 5:1315–6. doi: 10.1097/JTO.0b013e3181ec173d

35. Duffy MJ, Sturgeon C, Lamerz R, Haglund C, Holubec VL, Klapdor R, et al.
Tumor markers in pancreatic cancer: a European group on tumor markers
(EGTM) status report. Ann Oncol (2010) 21:441–7. doi: 10.1093/annonc/mdp332

36. Singh VK, Yadav D, Garg PK. Diagnosis and management of chronic
pancreatitis: a review. JAMA (2019) 322:2422–34. doi: 10.1001/jama.2019.19411

37. Kichler A, Jang S. Chronic pancreatitis: epidemiology, diagnosis, and
management updates. Drugs (2020) 80:1155–68. doi: 10.1007/s40265-020-01360-6

38. Eriksen RØ, Strauch LS, Sandgaard M, Kristensen TS, Nielsen MB,
Lauridsen CA. Dynamic contrast-enhanced CT in patients with pancreatic
cancer. Diagnostics (2016) 6:34. doi: 10.3390/diagnostics6030034
Frontiers in Oncology 13
170
39. Kitano M, Yoshida T, Itonaga M, Tamura T, Hatamaru K, Yamashita Y.
Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer.
J Gastroenterol (2019) 54:19–32. doi: 10.1007/s00535-018-1519-2

40. Dutta AK, Chacko A. Head mass in chronic pancreatitis: Inflammatory or
malignant. World J Gastrointest Endosc (2015) 7:258–64. doi: 10.4253/
wjge.v7.i3.258

41. Schima W, Böhm G, Rösch CS, Klaus A, Függer R, Kopf H. Mass-forming
pancreatitis versus pancreatic ductal adenocarcinoma: CT and MR imaging for
differentiation. Cancer Imaging (2020) 20:1–12. doi: 10.1186/s40644-020-00324-z

42. Aronen A, Aittoniemi J, Huttunen R, Nikkola A, Rinta-Kiikka I, Nikkola J,
et al. Plasma suPAR may help to distinguish between chronic pancreatitis and
pancreatic cancer. Scand J Gastroenterol (2021) 56:81–5. doi: 10.1080/00365521.
2020.1849383

43. Mayerle J, Kalthoff H, Reszka R, Kamlage B, Peter E, Schniewind B, et al.
Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma
from chronic pancreatitis. Gut (2018) 67:128–37. doi: 10.1136/gutjnl-2016-312432
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